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Preface to "Cybersecurity and the Digital Health: An
Investigation on the State of the Art and the Position
of the Actors”

Cybercrime is increasingly exposing the health domain to growing risk. The push towards a
strong connection of citizens to health services, through digitalization, has undisputed advantages.
Digital health allows remote care, the use of medical devices with a high mechatronic and IT content
with strong automation, and a large interconnection of hospital networks with an increasingly
effective exchange of data. However, all this requires a great cybersecurity commitment—a
commitment that must start with scholars in research and then reach the stakeholders. New devices
and technological solutions are increasingly breaking into healthcare, and are able to change the
processes of interaction in the health domain. This requires cybersecurity to become a vital part
of patient safety through changes in human behaviour, technology, and processes, as part of a
complete solution. We must also not forget that the health domain is a complex system in which
multiple factors, heterogeneous and dynamic, interact, including the plurality of health services,
specialist skills and professional, technical health, and economic-administrative roles, as well as the
heterogeneity of the processes. All professionals involved in cybersecurity in the health domain were
invited to contribute with their experiences. This book contains contributions from various experts
and different fields. Aspects of cybersecurity in healthcare relating to technological advance and
emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on
some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with
different roles involved in cybersecurity in the health domain.

Daniele Giansanti
Editor
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1. Cybersecurity

The problem of computer security is as old as computers themselves and dates back
decades. The transition from: (a) a single-user to multi-user assignment to the resource and
(b) access to the computer resource of the standalone type to one of the types distributed
through a network made it necessary to start talking about computer security. All network
architectures, from peer to peer to client-server type, are subject to IT security problems.

The term Cybersecurity has recently been introduced to indicate the set of procedures
and methodologies used to defend computers, servers, mobile devices, electronic systems,
networks and data from malicious attacks. Cybersecurity [1-3] is therefore applied to
various contexts, from the economic one to that relating to mobile technologies and includes
various actions:

Network security: the procedures for using the network safely;

Application Security: the procedures and solutions for using applications safely;
Information security: the management of information in a secure way and in a privacy-
sensitive manner in accordance with pre-established regulations;

e  Operational security: the security in IT operations, such as, for example, in bank-
type transactions;

e Disaster recovery and operational continuity: the procedures for restarting after problems
that have affected the regular/routine operation of a system and to ensure operational
continuity. For example, using informatic solutions such as an efficient disk mirroring
and/or backup policy;

e  End-user training: specific training for the actors involved in the use of the systems,
which where necessary, must also include the citizen.

2. Cybersecurity and Health Care

The recent decade has seen a growing interest in information security. Cyber attacks
in the industry and consumer sectors have been widely echoed in the past and recent
cyber attacks in the healthcare sector are of concern. Recently, for example, at the center
of the debate were the attacks on health systems and the potential vulnerabilities that
have come to light for some types of critical medical device (mostly active implantable)
that can be connected to the network [1,2]. In several nations, there has generally been
a delay in addressing cybersecurity issues compared to other nations, for example, the
US. This is due to the fact that in the US, the world of health is undoubtedly an industry,
not only in terms of perception, but in practice: the approach to the problem in the US
has, in fact, been identical to that taken in general towards the world of industry and
consumption. Only recently, however, has the problem begun to be given due attention.
In the current healthcare sector, the criticality relating to the extraordinary diffusion of
innovative technologies (e.g., artificial pancreas, pacemakers) connected to the network in
the healthcare sector (over 300,000 classes of Medical Devices) are inevitably intertwined
with the safety and efficacy characteristics of the services provided and the protection of
the data processed, creating a context of high attention.
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The cybersecurity in the healthcare:

e Includes all the general actions listed and described in the previous paragraph (Net-
work Security, Application Security, Information Security, Operational Security, Disas-
ter Recovery and Operational Continuity, End-User Training) tuned and specialized
for the health-care sector;

e  Faces four main aspects in the cyber-system that can either be a complex medical device
(e.g., wearable pumps; wearable stimulators; pacemakers; artificial pancreas) and/or
a complex interoperable and heterogeneous system (e.g., A Hospital Information Sys-
tem; a Radiology Information System; a dedicated medical network) comprehending
several components of elaboration systems, informatics, biomechatronics, bioengineering,
electronics, networks, eHealth, mHealth [1].

The data preservation

The procedures assuring the data for a prolonged period remains reachable and
functioning. These procedures must respect adequate specifications and use informatic
resources that are adequate for the purpose, such as adequate and stable filing systems.

The data access and modification

Refers to those typical functionalities such as storing and recovering data stored
in databases or other archives. The implementation of these actions is obtained by
means of specific designed procedures for the authentication and authorization of the
regulated access.

The data exchange

Data exchange can be carried out either internally (for example, in the Hospital LAN)
or externally (from the Hospital Lan to the external actors, such as, for example, the citizen
and/or other practitioners, and /or other healthcare bodies). It is evident that the data
exchange should take in a safe way place, in compliance with defined security specifics,
with the application of suitable measures of data protection.

The interoperability and compliance

The Interoperability allows both a health-care worker and a citizen to exchange the
data among several systems and devices in a shared manner. Two systems are considered
interoperable when they are able to exchange data and later present that data so that
they are comprehensible by all the involved actors. The compliance refers to the world of
regulations. It deals, for example, both with the use of the same standards (e.g., Dicom
in the radiology information systems) and with adherence to national and international
regulations (e.g., the GPRS in Europe) concerning the usage of health information.

3. Specific Healthcare Sectors to Be Faced with Particular Attention in
the Cybersecurity

3.1. Wearable Medical Device

The wearable medical devices [2-6], and, in particular, the implantable ones, are part of
a heterogeneous system (e.g., pacemakers, artificial pancreas). In a heterogeneous system,
the wireless connection allows the components to communicate with each other, and
creates an environment potentially susceptible to cyber attacks. If the connection between
the wearable device for continuous monitoring and the external elaborator is potentially
unsafe, an attacker could send deliberately incorrect data to the control algorithm. For
the artificial pancreas, for example, this could cause the release of a high amount of insulin,
resulting in a situation of hypoglycemia in the patient; the body would respond to a
hypoglycemic situation through the release of glucagon and epinephrine and continuing
the situation would compromise the brain, motor and cognitive functions, even leading to
death. For the pacemaker, this could cause the generation of an incorrect electronic pulse
activity and create, for example, the dangerous fibrillations, which could rapidly lead to
the death of the subject wearing the device. To take account of these issues, the Food and
Drug Administration (FDA), for example, has made guidelines and recommendations
available online.
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3.2. Picture Archiving and Communication System

The Picture Archiving and Communication System (PACS) [2,3] is a medical device
software (defined by the FDA as a Class Il medical device) dedicated to the management
of a diagnosis reached using the medical imaging. A PACS embeds several parts such
as elaborators, workstations, digital-databases, digital data-stores, digital-applications. In the
PACS, several software components are dedicated to the image downloading, uploading
and manipulation. These actions clearly imply issues of data security and integrity, if we
consider that a PACS is a deposit of patients’ data with the inference of aspects related to the
data privacy and protection. It is evident that the cybersecurity assumes strategic importance
in the PACS in several tasks/activities of the digital radiology, in particular:

1.  During the diagnostic/decision-making processes;
2. During the various phases of information manipulation ranging from image acquisi-
tion to its storage and subsequent sharing according to client/server type architectures.

3.3. Health Care Networks

As is well known, hospital companies today are strongly based on digital technologies.
The cyber risk is rapidly increasing with [2,3,7]:
1.  The so-called dematerialization of administrative processes;
2. The increased dependence on computerized biomedical and non-biomedical technologies
(as described above);
3. The large amount of data stored in the Hospital Information Systems (HIS).

Recently, we have assisted in attacks on the HIS, both based on viruses (in minor cases)
and by real complex systems, managed by increasingly capable and ingenious unlawful
organizations. This means that the HIS can be attacked and breached in terms of both
privacy and of activities [7]. It should be considered that the HISs have a criticality of the
highest level, since the activity (based on specifically designed softwares) is linked to the
health of people. With regard to the HIS, cybersecurity has, therefore, a leading role in the
defense of IT infrastructures and in the final analysis of the citizen.

4. Conclusions

The cybersecurity in healthcare includes all the general actions employed both in the
consumer and industrial sectors (Network Security, Application Security, Information
Security, Operational Security, Disaster Recovery and Operational Continuity, End-User
Training) tuned and specialized for the health-care sector. It should be considered that the
criticality of the healthcare systems is of the highest level, since the activity is linked to
the health of people; therefore, a correct and effective implementation of the cybersecurity
assumes the utmost importance. All traditional health sectors and those emerging from
eHealth and mHealth must be addressed with the utmost attention, and can and should be
investigated by scholars. Training and information must be key aspects of cybersecurity
in healthcare.

It will be necessary to foresee specific investigations with targeted scientific studies in each
of the above-described fields. It will be also necessary to set up specific studies based on survey
tools, to understand the perception and the state of the correct use of cybersecurity on the actors
involved, from the medical specialist to the common people, who are disadvantaged and have a low
level of instruction.

It could be also useful to understand whether it is appropriate to expand and better generalize
the role of cybersecurity in new border areas of the health sector, such as, for example, (a) the sector
of non-medical apps that can be confused with medical devices and whose non-compliant use could
put patient safety at risk, especially during this COVID-19 pandemic period (perspective articles
here are also strongly needed and welcome), and (b) the sector of the new Apps for the digital contact
tracing, where discussion is increasing on the position of the citizen: with, on the one hand, his or
her privacy rights and, on the other hand, the need to make every effort in order to stop the Covid-19
pandemic (reviews which analyze this issue are also welcome here) [8,9].
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Abstract: Recent studies report that cybersecurity breaches noticed in hospitals are associated with
low levels of personnel’s cybersecurity awareness. This work aims to assess the cybersecurity culture
in healthcare institutions from middle- to low-income EU countries. The evaluation process was
designed and performed via anonymous online surveys targeting individually ICT (internet and
communication technology) departments and healthcare professionals. The study was conducted
in 2019 for a health region in Greece, with a significant number of hospitals and health centers,
a large hospital in Portugal, and a medical clinic in Romania, with 53.6% and 6.71% response
rates for the ICT and healthcare professionals, respectively. Its findings indicate the necessity of
establishing individual cybersecurity departments to monitor assets and attitudes while underlying
the importance of continuous security awareness training programs. The analysis of our results
assists in comprehending the countermeasures, which have been implemented in the healthcare
institutions, and consequently enhancing cybersecurity defense, while reducing the risk surface.

Keywords: cybersecurity culture; awareness; security assessment; healthcare domain

1. Introduction

Cybersecurity has become one of the dominant information technologies (IT) domains
in the health sector [1]. Over recent decades, various scientific attempts have been made
towards identifying, classifying, and addressing vulnerabilities and weaknesses in health-
care institutions and hospitals [2-5]. However, this effort did not discourage nor limit
the continuously evolving cybercrime in this domain. The European Union Agency for
Cybersecurity (ENISA) stated that the healthcare sector accounted for 27% of the overall
cyberattacks in Europe in 2018 [6].

The coronavirus outbreak, among its many side-effects, resulted in a significant cy-
bercrime increase [7,8]. Critical infrastructures, as categorized based on the 2016/1148
NIS Directive [9], have major targets. Among them, EU hospitals are experiencing patient
data loss [10,11], ransomware, and availability attacks. The following are two of the most
troubling examples:
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e  The Brno University Hospital in the Czech Republic which, on 12 March 2020, was
forced to shut down its entire IT network, impacting two of the hospital’s other
branches, the Children’s Hospital and the Maternity Hospital [12].

e A fatality in a German hospital linked to a cyberattack [13].

Although security infrastructure is of critical importance for the defense against cyber-
criminals’ tactics and techniques, an organization’s biggest threat to privacy and security
has been acknowledged to be its own personnel [14]. ENISA’s report in 2018 [6] revealed
that 50.6% of attacked hospitals identified insider threats as their most serious adversary.

As anticipated, a significant scientific effort has been made towards assessing health-
care personnel readiness over recent years [15-17]. Recognizing the multidisciplinary
approach dictated towards this challenge, researchers soon adopted a holistic approach,
and the term “cybersecurity culture” soon emerged.

Cybersecurity culture denotes the combination of attitudes, behaviors, knowledge,
and awareness the organization’s personnel display about common cyber risks and threats
to protect the information assets [18]. Its evaluation involves the conduction of focused
campaigns, which often results in the initiation of education programs, ICT infrastructure
auditing, and the reassessment of current security policies to cultivate hospital personnel’s
culture and sense of responsibility when processing sensitive information in daily business
operations, thus preventing attacks or leakages [19,20]. Several endeavors towards assess-
ing healthcare personnel’s cybersecurity culture were based on surveys. Indicatively, the
surveys in Poland [21] and Finland [22] reported that medical professionals lack sufficient
cybersecurity training. The analysis in [23] confirmed human error as one of the most
common reasons for security incidents in hospitals. Authors in [24,25] highlighted that
lack of security culture, awareness, and employee negligence or maliciousness constitute
significant factors for the adoption of security policies.

Regarding the ICT resources utilization in hospitals, an analysis in 2008 [26] recorded
a variation from 0.082 to 0.210 of ICT professionals (full-time job) per hospital bed in USA
hospitals (0.142 in average, or equivalently, 1 ICT employee to total staff ratio of 60.7).
Eurostat’s general report in 2018 [27] documented an EU average value of 3.9% for the
relative share of ICT specialists in total corporate employment.

This study analyses, before the COVID-19 situation, the overall disposition towards
cybersecurity in healthcare institutions, which exhibit a proportion of ICT specialists in
total employment below the EU average and compares the findings with relevant analyses
in hospitals from Northern America and Northern Europe. We selected three different
healthcare organizations from three different countries, i.e., Greece, Portugal, and Romania.
In contrast to the above methods, we aimed to capture the cybersecurity awareness level of
the organizations by first focusing on the ICT employees and consequently assessing the
impact of this recorded level on the rest of the healthcare professionals.

The organizations under evaluation were the following: (i) a health region in Greece
that comprises a significant number of reference hospitals and health centers (hereafter
Institution A); (ii) a reference hospital in a large Portuguese region (henceforth Institution B);
(iii) a Romanian medical clinic for impatient rehabilitation (henceforward Institution C).
According to Eurostat [27], the percentage of ICT personnel to the total corporate staff for
Greece was 1.8%, for Portugal it was 2.4%, and for Romania it was 2.2%. To the best of our
knowledge, this is the first time that such an assessment has been conducted.

2. Methods and Materials

The Cybersecurity Culture Framework was developed in 2019 in the context of the
EnergyShield [28], a European Union (EU) project targeting cybersecurity in the electrical
power and energy system (EPES). It was officially introduced to the scientific community
in 2020 [29] in a manuscript detailing an evaluation methodology of both individuals” and
organizations’ security culture indicators. Its model consists of dimensions and domains
analyzed into a combination of organizational and individual security factors (Figure 1).
Thus, facilitating the assessment of organizational security policies and procedures in
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conjunction with employees’ characteristics, behaviors, attitudes, and skills. The specific
framework exploits a variety of evaluation techniques, varying from surveys to more
sophisticated approaches, such as simulations and serious games.
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Figure 1. Cybersecurity Culture Framework.

This study, using the aforementioned cybersecurity culture framework, aims to capture
the perspective and the level of personnel’s cybersecurity awareness in the prior presented
healthcare institutions. The percentage of the ICT staff compared to the total workforce
is 0.45% for Institution A (average number among all the supervised units), 0.78% for
Institution B, and 0.92% for Institution C (values lower than the Eurostat recorded statistics
for these countries). The following two discrete online questionnaires were carefully
designed to target two different personnel categories:

e Employees occupied in the ICT departments (ICT questionnaire);
e  Non-ICT healthcare employees (non-ICT questionnaire) i.e., doctors, nurses, auxiliary,
laboratory, and administrative personnel.

The survey’s questionnaires are presented in Appendices A and B, while the participa-
tion was on a voluntary and anonymous basis.

The ICT questionnaire comprised the following five parts: The first part included
questions about demographics, years of experience, and serving population derived from
the Employee Profiling domain of the Attitude dimension (individual level). The second
part focused on ICT aspects involving the number of cybersecurity trainings performed,
percentages of total budget allocation to ICT, and cybersecurity deriving from the Se-
curity Awareness and Training Program domain of the Defense dimension along with the
Security Management Maturity domain of the Security Governance dimension (organization
level). The Section 3 targeted computer network policies and external parties” access com-
bining indicators from different domains of the Access and Trust and Assets dimensions
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(organizational level). The fourth part requested individuals to answer questions about
current cybersecurity methods and practices used deriving from the Policies and Procedures
Awareness domain of the Awareness dimension (individual level). The last part focused on
cybersecurity performance indicators (e.g., number of cyber security incidents over time
and mean time for resolving an incident) deriving from the Security Governance dimension
(organizational level).

The non-ICT questionnaire included questions for demographics, employment status,
cybersecurity, or related trainings such as General Data Protection Regulation (GDPR), the
ability to understand cyberattacks, cybersecurity processes” availability, and precautions
taken. Security metrics were once again a combination of different indicators described
in multiple layers of the cybersecurity culture framework aiming to obtain an overall
evaluation of the non-ICT personnel culture. To sense if the non-ICT personnel had
previously participated in cybersecurity campaigns, we used technical terminology in some
questions of the questionnaire. In other words, several techniques were used to carefully
trim and adjust the assessment process to the targeted audience.

The deployed numbers of computers are approximately 2800, 850, and 90 for Institu-
tions A, B, and C, respectively. Knowing that it is generally difficult to voluntarily collect
answers from the non-ICT personnel, due to the nature of their work, we sent the invitations
(electronic and paper-based) to all the employees with the target to increase the response
rate for the non-ICT personnel, and especially of those that have access to computers.
Additionally, multiple-choice based questionnaires were translated from English to the
native languages of the participants for better comprehension of their contents and to lift
the language barrier and alleviate it from the equation. The collected data was translated
back to English, harmonized, and checked for consistency.

The surveys were conducted from September 2019 to November 2019. There was no
time limit for the completion of the questionnaires and participants were not reimbursed
or offered any other incentive. Furthermore, since our analysis focused on middle- to
low-income countries, we conducted an extensive literature survey on evaluations of the
cybersecurity awareness status of hospitals in the USA, Canada, and Northern Europe
(high- to middle-income countries) so as to comparatively analyze our findings.

3. Results

We invited 10,418 healthcare professionals (8500 from Greece, 1700 from Portugal, and
218 from Romania) and 69 ICT hospital employees (60 from Greece, 7 from Portugal, and 2
from Romania) to participate in the online survey. The participation rate is graphically pre-
sented in Figure 2. In total, 736 individuals responded to the surveys (37 for ICT and 699 for
non-ICT). The overall answers to the ICT personnel were 28 (Institution A), 7 (Institution B),
and 2 (Institution C), respectively, while for the non-ICT, the responses to the healthcare
questionnaire were 449 (Institution A), 124 (Institution B), and 126 (Institution C). The
response rate for the ICT personnel was 53.62%. The response rate for the non-ICT em-
ployees was 18.69% on the basis of the deployed computers and 6.71% on the basis of total
employees, respectively.

3.1. Employed ICT Cybersecurity Procedures and Methods

The results revealed that 89%, 100%, and 50% of the ICT personnel in Institutions
A, B and C, respectively, acknowledged the complete absence of dedicated cybersecurity
departments in their institutions. Similar responses were given by the non-ICT personnel
(86%, 63%, and 68% for Institutions A, B, and C, respectively). This deviation is due to the
participants’ inability to distinguish between ICT and cybersecurity departments. In total,
100% of the ICT personnel in Institutions A and B and 50% in Institution C, responded they
did not follow an incident response plan form responding to a data breach in a timely and
cost-effective manner.
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Figure 2. Campaign general participation information: (a) per profession, (b) healthcare professional
per institution, and (c) ICT hospital employees per institution.

The ICT questionnaire responses on common vulnerabilities (Figure 3) revealed they
did not adopt common policies, irrespectively of their education status, gender, or age.
Although obsolete and black-boxed technologies, deployed in hospitals, play a significant
role in data breaches, 40.5% of ICT personnel indicated the usage of legacy systems with
known vulnerabilities in their day-to-day operations (representing more than 50% of the
total equipment). Additionally, only 24.3% were aware of the existence of cybersecurity
terms within the service level agreements (SLA) with vendors. The importance of setting
up a unique identifier policy for users and roles for the mitigation of the impact of internal
threats was acknowledged only by 48.6% of the ICT personnel. The need for secure sockets
layer (SSL) certificates to be used by the web-based health information system (HIS) was
identified by only 48.6%. Only 48.6% of the ICT personnel were aware that certain attacks,
such as distributed denial of service (DDoS), are considered criminal actions. On the other
hand, 75.7% acknowledged the usage of proactive backup measurements.
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PARTNER

Figure 3. ICT personnel responses on common cybersecurity vulnerabilities.

Furthermore, 54% of the ICT personnel indicated that no records were kept, rendering
a forensic analysis impossible and also resulting in no lessons learnt about the organizations’
response. Moreover, as shown in Figure 4, the ICT personnel replied that most identified
cybersecurity incidents took up to 6 h to resolve. The analysis revealed that the “Mean
Downtime” was equal to the “Mean Time to Resolve the Incident”, which means that
parts of ICT facilities and related ICT-enabled services might have lost availability and
functionality during the incident, a fact that possibly translates that no continuity plan was
in place. This is in line with the finding that a small number of cybersecurity penetration
tests were conducted during the last two years (affirmative answers: only 18% from A, 57%
from B, and 50% from C). All the above indicate the necessity of performing regular ICT
penetration tests and iterative trainings.

B Mean Time to Resolve an Incident? B Mean Downtime During an Incident?

60%

50%

40%

30%

20%

B
% e -

0-6 hours 7-12 hours 13-24 hours 25-48 hours No records kept

Figure 4. Cybersecurity Incident: Downtime and Time to Resolve.

3.2. Training on Cybersecurity and Data Protection

The survey exposed the lack of cybersecurity-related training across the three insti-
tutions. 70% of the ICT personnel admitted they have not received official cybersecurity
training in the past 3 years, with the remaining 30% revealing a frequency of less than
one training per year even on European legislation and guidance, such as Directive (EU)
2016/1148 NIS Directive and the GDPR. Nevertheless, the ICT personnel responded they
were aware of those acts at 80% in A, 86% in B and 50% in C. On the other hand, 73% of

1
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non-ICT personnel replied they had access to sensitive information and were aware of
GDPR (Figure 5).

B Does your hospital have a Cyber-Security Department or external services ?

Have you been informed or trained regarding GDPR in order to minimize private personal data breaches or cybersecurity incidents ?

m Does your work in the hospital involves access to patient data, which is considered confidential and sensitive information ?

Institution A Institution B Institution C Institution A Institution B Institution C Institution A Institution B Institution C Institution A Institution B Institution C Institution A Institution B Institution C

Doctor

Nurse Administrative Lab. Other

Figure 5. Awareness of Non-ICT personnel on legal aspects, privacy and cybersecurity structure.

39% of the ICT personnel in Institution A, 57% in Institution B and 100% in Institution
C replied they used to perform internal cybersecurity awareness training (e.g., about
phishing). The latter indicates the recorded low number of ICT staff might have played a
significant role in not conducting training.

3.3. Cybersecurity Awareness Level

Figure 6 shows the positive answers of the non-ICT group to questions related to
cybersecurity awareness. Only 22.7% of the non-ICT personnel felt sufficiently trained in
security, while only 38.5% were confident they could recognize a security issue or incident if
they encountered one. This confidence was mainly supported by personnel in Institution C,
while in the other two institutions they were perceived to be low-to-moderately trained.
Trying to sensor the adequacy of the personnel’s awareness of cybersecurity threats such as
email phishing and their reactions to them, it was found that only 26.8% of the participants
knew what a social engineering attack was, while only 21.9% knew how to detect an email
phishing attack. Although participants acknowledged they handled sensitive data on a
daily basis, only 23.3% perceived the level of importance of their terminals” content to
hackers. 40.9% answered they knew when their terminals had been compromised and
whom to contact in such a case. 30.9% understood the consequences of sharing their
terminal or credentials, while 37.3% knew how to handle email attachments. More than
50% of the non-ICT personnel acknowledged the existence of antivirus software and the
policy of locking their terminals when they leave. Their majority also responded (76%) that
following security policies would help them do their job better.

11
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Figure 6. Digital behavior and security comprehension level of non-ICT Healthcare Employees.

4. Discussion

Our findings showed healthcare ICT personnel represented a very small percentage
of the total workforce, generally below 1%. The surveyed organizations have dedicated
only a small amount of their total ICT budget (below 5%) to cybersecurity purposes. The
importance of budget allocation to cybersecurity is illustrated in the 2019 report [30] of the
Healthcare Information and Management Systems Society (HIMSS) in the USA. Although
our surveyed organizations reported less than 5% in ICT budget allocation for cybersecurity,
the report among 166 USA health information security specialists in [30] acknowledged
a significant increase in this budget category (10% of the respondents acknowledged
cybersecurity funding of more than 10%, 11% responded 7-10%, while 25% answered
3-6%). The identified differences in the ICT investments indicate that smart hospitals
have invested more in cybersecurity and in associated human resources to protect their
information assets, rather than traditional hospitals [9], which are in the process of digital
transformation. The ongoing application of the EU’s digital convergence policies (e.g.,
cross-border health data exchange) is expected to bridge the aforementioned gap.

Almost all of the respondents (96%) in the 2019 HIMSS survey [30] indicated their
respective organizations conducted risk assessments (37% of which were comprehensive,
resulting in the adoption of new or improved security measures by 72% of them). In
our study, the lack of cybersecurity departments and that 70% of ICT employees have
not received official cybersecurity training in the past 3 years, accounted for the low
adoption and lack of standard or common policies in cybersecurity incidents (100% for
A and B and 50% for C). Only 48.6% of the ICT personnel (A, B, and C) acknowledged
the importance of applying a unique identifier policy for users and roles, in contrast to
the 2017 survey [31] among 39% of all the USA’s hospitals, where more than 90% of them
used unique identification for system users (supported by automatic logoff of system users,
required use of strong passwords, etc.). Additionally, 40.5% of the ICT personnel in our
study indicated the usage of legacy systems (more than 50% of the total equipment). The
legacy-systems impediment is also acknowledged in [30] (69% of respondents), but in a
lower percentage of the total equipment (more than 10% for only 14% of respondents).
Moreover, in contrast to our study (see Section 3.2.), only 18% of respondents in [30] stated
their organization did not conduct phishing tests and trainings due to a lack of personnel
with the appropriate cybersecurity knowledge and expertise. Furthermore, in our study,
21.9% acknowledged they do not know how to detect an email phishing attack, which
suggests that the actual percentage of a real, ongoing phishing attack might be even higher.
In contrast to that, a recent study at US health care institutions [15] indicates a median
click rate on phishing campaigns of 16.7%, which is further reduced on subsequent ones,
highlighting the importance of training on that matter.

12
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Regarding the non-ICT personnel, comparing our findings (Table 1) with a 2020 study
in Poland [21], a 2019 study in a health region of western Finland [22], and a 2019 study
in a health organization in western Canada [19], revealed the low level of cybersecurity
awareness status. In Institutions A, B, and C, the 22.7% that felt sufficiently trained in
security and the 23.3% that perceived the importance of the terminals’ content to hackers,
appeared significantly lower next to the 51.31% of the 1200 Finnish professionals reporting
bring sufficiently aware of the information and the cybersecurity matters pertaining to
their job. About the same percentage (55.7%) of 586 non-ICT professionals in the Canadian
healthcare organization, declared their satisfaction with ICT security in their daily activities.
73.2% of our non-ICT participants did not know what a social engineering attack was,
which makes them a potential hazard of disclosing sensitive information (e.g., passwords).
69.1% could not realize the consequences of sharing their terminal or credentials with other
employees. The Finnish study reported a negative answer to disclosing one’s password
over the phone, either if requested by an authority (96%), or by an ICT manager (83%),
while the Canadian one states that 93.6% would never share login information with other
employees. Only 21.9% of the respondents in our study could detect spam emails and
phishing attacks, and only 37.3% could handle attachments, which both fell behind the
Finnish awareness score (41.54%) and the Canadian personnel that acted correctly upon
them (55%).

Table 1. Percentage (%) of answers related to cybersecurity awareness along with the corresponding
standard deviations for non-ICT personnel.

Question Institution A Institution B Institution C
n =449 (100%) n =124 (100%) n =126 (100%)
Do you have cyber-security policies at your hospital?
Yes 11% £ 0.5 55% + 4.9 60% £ 5.3
No 14% + 0.7 2% £ 0.2 7% £ 0.6
Do not know 75% £ 3.5 43% £+ 3.8 33% £2.9
Have you been informed or trained regarding General Data
Protection Regulation (GDPR) in order to minimize private
personal data breaches or cybersecurity incidents?
Yes 31% £ 2.5 31% £+ 0.2 31% £ 0.1
No 69% =+ 0.08 69% £ 0.2 69% £ 0.1
How careful are you when you open an attachment in email?
I always make sure it is from a person I knpw, and I am 3% + 6.7 48% + 15.9 50% & 18.4
expecting the email
As long as I know the person or company that sent me th.e 59% 4 7.7 42% & 15.4 45% & 18.4
attachment, I open it
There is nothing wrong with opening attachments 9% £ 6.3 10% + 12.3 5% £74
Have you given your password to your colleagues or your
manager, when you were asked for it?
Yes 33% £9.1 26% + 14.2 30% +24.1
No 67% £ 9.1 74% £ 14.2 70% £ 24.1
Is anti-virus currently installed on your computer?
Yes 60% £ 2.8 16% + 1.4 79% %+ 6.9
No 11% £ 0.5 65% £ 5.8 5% £ 0.4
Do not know 29% + 1.3 19% £ 2.7 17% £ 1.5
I am confident that I could recognize a security issue or incident
if I saw one.
Strongly agree 4% 24 4% + 4.6 14% £ 12.3
Agree 24% £+ 8.1 39% £ 18.3 59% £ 15.3
Neither agree nor disagree 42% £ 10 34% £ 18 8% £7.8
Disagree 23% + 8.3 20% £ 9.1 17% £ 10.3
Strongly disagree 7% + 4.5 3% £3 2% £ 1.9

Low to moderate knowledge and awareness in the above fields pose a potential
risk during daily working activities, such as processing patients” data or communicating
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medical information to other parties. Therefore, it is deduced that there is a high risk of
security incidents triggered by non-ICT employees because the aforementioned threats
and attacks and the associated impact of potential incidents have not been efficiently
communicated to them by the ICT staff. All the above indicate that decreasing the end-
point complexity as proposed in [32], along with training conduction, is essential in raising
awareness amongst personnel and motivating them to pay attention to cyber-threats and
policies to limit human errors [33-35]. The adoption of a risk-aware attitude and associated
skills by the non-ICT staff through cybersecurity trainings and a robust organizational
monitoring strategy could lead to a more GDPR-compliant status. Even in New Zealand, a
country where robust cybersecurity practices have long been in their agendas, the majority
of internet users, as revealed by a 2019 survey [36], still take low to no security measures,
while they perceive monitoring practices, such as the use of monitoring software, as highly
technical. The necessity for intense cybersecurity awareness trainings, even from a young
age, is highlighted.

5. Considerations and Limitations

The response rate of the non-ICT personnel was correlated with the number of the
deployed computers they use daily. However, due to the variations in the clinic shift
patterns, it was hard to stringently identify the non-ICT personnel that used computers.
Therefore, we tried to collect responses by sending the non-ICT participation invitation
mainly through their direct management, assuming it would be communicated to the total
number of employees. Due to the voluntary and anonymous nature of the questionnaires,
the commitment of all doctors and nurses was not totally ensured. Nevertheless, the
collected answers proved to conform to the findings from the ICT questionnaire, where we
managed to achieve high response rates. The availability of similar studies in the literature
for the health care sector, especially recent ones, is not abundant, and comparisons were
performed mainly against data from surveys conducted in hospitals in the USA, Canada,
and some territories of northern Europe.

6. Conclusions

The implementation and deployment of security awareness programs in healthcare
institutions along with training procedures proves to be a necessity. Furthermore, 76%
of the non-ICT personnel replied that following hospitals’ security policies would help
them perform their job better. Consequently, the findings were communicated to the
management of the institutions, and certain courses of proactive and reactive cybersecurity
measures have been triggered and implemented during the COVID-19 crisis. Specifically, a
certain budget was allocated to procure or upgrade cybersecurity systems and software
(e.g., antivirus databases, UTM firewalls with IDS/IPS). A specialised workshop has been
conducted with ENISA’s support for the ICT staff, which in several cases was reinforced
accordingly. Additionally, in-house awareness campaigns for non-ICT employees about
anti-phishing or anti-social engineering have periodically been conducted. Moreover,
those who deal daily with sensitive data and processes have participated in GDPR related
seminars. In the future, we aim to revisit the updated cybersecurity measures and strategies
and re-perform an extensive assessment to re-evaluate the new level of cybersecurity
awareness and personnel readiness.
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Appendix A
ICT Personnel Questionnaire
1.  General Characteristics
a.  Demographics
i Age:
20-39 0O
40-60 O
60+ O
ii. Gender:
Male O
Female O

b. Education:

Secondary Education O
Vocational training Institution a
Bachelor’s Degree a
MSc 0
PhD O

c. Position:

ICT director O
ICT manager O

ICT staff O

d.  Years of experience
0-50
6-100
more than 10 O

e. Healthcare Organization:
Hospital ad
Clinic O
Health Authority O
National ]
Regional O
Local O

Employees <100 O
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Employees 100-300 O
Employees 301-600 O
Employees 601-1000 O
Employees >1000 O
Population <100 k O
Population 100 k-300 k O
Population >300 k O

2. Specific ICT

a.

Proportion of ICT employees in total employment (%)
0-1% O
1.1-2% O
2.1-3% O
3.1-4% 0
4.1-5% O
5.1-6% O
6.1-7% O

Existence of a Cybersecurity Department

Yes O
No O

Official Trainings had in ICT cybersecurity during the last 3 years (number)

0O
10
20
30
40

Do you perform internal cybersecurity awareness trainings (e.g., phishing) in
order to teach employees what to check in the received emails?

Yes O
No O

Average yearly organization’s budget allocated to ICT during the last 3 years
(in Euros)

0-100K O
101-200 K O
201-300 K O
301400 K O
401-500 K O
Do not know O

Percentage of current ICT budget allocated to cybersecurity (e.g., antivirus
purchasing or license renewal, firewall purchase or firewall license renewals,
etc.) during the last 3 years (%)

0-5% O

6-10% O

11-15% O

16-20% O

21-25% O

26-30% O

Do not know O

3.  Network Communication with External Partners and Collaborators

a.

Usage of secure method or other methods for third party accesses

VPN O
TeamViewer O
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AnyDesk O

Remote Desktop O

Other secure method O
Other unsecure method O

Communication ports opened and monitored during daily operations (con-
stantly or on demand)

Port TCP 22 (SSH) O

Port TCP 23 (Telnet) O

Port TCP 3389 (RDP) O

Port TCP 20 (FTP data) O

Port TCP 21 (FTP control) O

other O

Do existing SLAs include terms that ensure cybersecurity policies are applied
by the external partner for preventing data breaches when connected remotely
to hospital’s information systems?

Yes O

No O

Do not know O

4. Cybersecurity Methods & Practices

a.

Does your organization have an official cybersecurity plan?

Yes O

No O

Do not know O

If the previous answer is yes, which of the following plans?

Risk Assessment U

Incident Respond Plan O

Mitigation plan O

Report plan O
Have any cybersecurity tests been performed in your organization during the
last 2 years?

Yes O
No O
If the previous answer is yes, which of the following tests?

Scanning O

Penetration O

Weak password identification O
Phishing O

Virus/malware checking O

Verification of latest updates/outdates O
Other O

Are you familiar with the Directive (EU) 2016/1148 NIS Directive and
GDPR regulation?

Yes O

No O

Partially O

Is a DDoS attack considered a criminal action according to your national
legislation?

Yes O

No O

Do not know O
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Does your working practice have policies and procedures for the assignment of
a unique identifier for each authorized user according to its role?

Yes O
No O
Do not know O

Does your working practice have back up information systems so that it can
access HIS in the event of an emergency or when your practice’s primary
systems become unavailable i.e., in the event of a disaster?

Yes O
No O

Do SSL certificates exist for web-based hospital information systems?

Yes O
No O
Partially O

Which of the following tools do you use daily for information security?

Antivirus/malware O

Firewall(s) O

Data encryption (data in transit) O

Data encryption (data at rest) O

Patch & vulnerability management O

Intrusion detection systems (IDS) O

Network monitoring tools O

Mobile device management O

User access controls U

Intrusion prevention system O

Access control lists O

Single sign on O

Web security gateway O

Multi-factor authentication O

Data loss prevention (DLP application) O
Messaging security gateway O

Audit logs of each access to pt. health and financial records O
My duties do not include cyber-security activities O

5. Cybersecurity Performance Indicators

a.

Percentage of legacy (unsupported) or known vulnerable systems in place (e.g.,
end of life operating systems in medical devices) in total equipment (%)
0-10% O

11-20% O

21-30% O

31-40% O

41-50% O

51-60% O

More than 60% O

Do not know O

Number of cyber security incidents during the last 3 years (e.g., phishing attacks,
virus infections, etc.)?

0-50

6-10 O

11-150

1620 O

21-250
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26-30 O
No records kept O

c. Number of unauthorized login attempts in HIS, Active Directory, RIS/PACS
per month?
0-50
6-10 0
11-150
16-20 O
21-250
26-30 O
No records kept O
No records kept but it is monitored regularly O
d. Mean time to resolve an incident?
0-6hDO
7-12h 0
13-24h O
2548 h O
3-7 days O
More than a week O
No records kept O
e. Mean downtime during an incident?
0-6h O
7-12h O
13-24h O
25-48h O
3-7 days O
No records kept O

Appendix B
Non-ICT Personnel Questionnaire
1.  General Characteristics
a.  Demographics
i Age:
21-30 0O
31400
41-50 O
51-60 O
61+ 0
ii. Gender:
Male O
Female O
b. Education
Secondary Education O
Vocational training Institution O
Bachelor’s Degree O
MSc O
PhD O
C. Position

Doctor O
Nurse O
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10.

11.

Auxiliary personnel O

Lab. personnel O
Administrative personnel O
Technical personnel O
Other O

Does your hospital have a cybersecurity department or external services?

Yes O

No O

Do not know O

Does your work on the hospital involves working on a computer at any time?

Yes O

No O

Have you been informed or trained regarding General Data Protection Regulation
(GDPR) in order to minimize private personal data breaches or cybersecurity incidents?
Yes O

No O

Does your work in the hospital involves access to patient data, which is considered
confidential and sensitive information?

Yes O

No O

Do you have cybersecurity policies at your hospital?

Yes O

No O

Do not know O

Do you know when your computer is hacked or infected, and whom to contact when
it occurs?

a.  Yes, I know when my computer is hacked or infected and I know whom to
contact.
b.  No, Ido not know when my computer is hacked or infected and I do not know

whom to contact.

c. Yes, I know when my computer is hacked or infected, but I do not know whom
to contact.

d.  No, Idonot know when my computer and I know whom to contact.

Have you ever found a virus or trojan on your computer at work?

a.  Yes, my computer has been infected before

b.  No, my computer has never been infected

c. I do not know what a virus or trojan is

Is an anti-virus currently installed on your computer?

a. Yes
b. No
C. Do not know

How careful are you when you open an attachment in email?

a.  lalways make sure it is from a person I know, and I am expecting the email
b.  Aslong as I know the person or company that sent me the attachment, I open it
C. There is nothing wrong with opening attachments

Do you know what a social engineering attack is?

a. Yes, I do
b. No, I do not
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12. Do you know what an email scam is and how to identify one?

a.  Yes, I know what an email scam is and how to identify one
b. I know what an email scam is, but I do not know how to identify one
C. No, I do not know what an email scam is or how to identify one
13. My computer has no value to hackers; they do not target me.
a. True
b.  False

14. Can you use your own personal devices, such as your mobile phone or USB sticks or
CD/DVD discs to store or transfer confidential hospital information?

a. Yes
b. No
C. Do not know

15. Have you downloaded and installed software on your computer at work?

a. Yes
b. No

16. Have you given your password to your colleagues or your manager when you were
asked for it?

a. Yes
b. No
17.  Which of these is closer to your thinking, even if neither is exactly right?
a.  Following security policies at our hospital prevents me from doing my job
b.  Following security policies at our hospital helps me do my job better
18. Ifeel I have been sufficiently trained in security at our hospital.
a.  Strongly agree
b.  Agree
C. Neither agree nor disagree
d.  Disagree
e. Strongly disagree
19. T am confident that I could recognize a security issue or incident if I saw one.
a.  Strongly agree
b.  Agree
c. Neither agree nor disagree
d.  Disagree
e. Strongly disagree
20. Do you lock your PC when you leave your office even for a while?
Yes O
No O
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Abstract: Fifth generation (5G) mobile communication technology can enable novel healthcare
applications and augment existing ones. However, 5G-enabled healthcare applications demand
diverse technical requirements for radio communication. Knowledge of these requirements is
important for developers, network providers, and regulatory authorities in the healthcare sector
to facilitate safe and effective healthcare. In this paper, we review, identify, describe, and compare
the requirements for communication key performance indicators in relevant healthcare use cases,
including remote robotic-assisted surgery, connected ambulance, wearable and implantable devices,
and service robotics for assisted living, with a focus on quantitative requirements. We also compare
5G-healthcare requirements with the current state of 5G capabilities. Finally, we identify gaps in the
existing literature and highlight considerations for this space.

Keywords: 5G networks; healthcare; key performance indicators; wireless communication

1. Introduction

Integrating fifth generation (5G) mobile communication technology into digital health-
care technology can facilitate healthcare delivery with expanded communication capabili-
ties given 5G’s high data speed, ultra-low latency, massive device connectivity, reliability,
increased network capacity, and increased availability. These characteristics can enable
novel healthcare use cases and augment existing ones [1-4]. Use cases include remote
robotic-assisted surgery, remote diagnosis/teleconsultation, in-ambulance treatment by a
remote physician, wearable device applications (wearable device applications are consid-
ered within the scope of the Internet of Things (IoT), narrow band IoT (NB-IoT), or Massive
IoT), service robotics for assisted living, and medical big data management [1,5-9].

5G-enabled healthcare applications have diverse communication technical require-
ments for different use cases. Knowledge of those requirements is important for all stake-
holders, including developers, network providers, and regulatory authorities in the health-
care sector, to facilitate safe and effective healthcare [6], where an understanding of the
underlying communication requirements is needed to select wireless technology with
features that support healthcare application design targets and expected performance [10].
5G promises to provide the low latency and high bandwidth to enable modern healthcare
applications such as remote robotic surgery and in-ambulance treatment. Accordingly,
designing, deploying, and evaluating the systems needed to implement those use-cases can
be informed with a clear understanding of the underlying communication requirements
that can enable the intended functionality.

For instance, the expansive set of 5G configuration and optimization parameters offer
network operators flexible options in setting up their networks and dynamically optimizing
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network performance to achieve a desired objective. Accordingly, a large set of parameters
can impact the needed performance for a 5G-healthcare use case. Accordingly, quantitative
key performance indicators (KPIs) can help 5G network providers assess the feasibility
of a given 5G-enabled healthcare use case, provide the level of service needed for the
safe and effective functioning of 5G-enabled healthcare applications, and draft service
level agreements with their customers. Clearly specified KPIs can also inform regulatory
authorities like the U.S. Food and Drug Administration (FDA) when evaluating whether
communication service levels and quality of service are met to support the safe and effective
use of a 5G-enabled medical device. Finally, end users such as healthcare facilities and
patients can use this knowledge for developing, negotiating, and managing relevant service
level agreements (SLAs) with the 5G network provider [6].

In this review paper, we identify, compare, and summarize the communication require-
ments for several healthcare use cases that can be enabled by 5G. The focus of this paper
is on quantitative requirements. Furthermore, we identify gaps in the existing literature
and highlight considerations in this area. Specifically, we survey the technical requirements
for remote robotic-assisted surgery, mobile connected ambulance (i.e., in-ambulance treat-
ment by remote physicians), wearable and implantable devices, and service robotics for
assisted living.

This article is unique in detailing a comprehensive review of the quantitative KPI
requirements of 5G-healthcare use cases. To the best of our knowledge, the closest work to
our review paper on the similar topic is the recent magazine article by Cisotto et al. [11],
which highlights select quantitative requirements for the use cases of telepresence and
robotic-assisted telesurgery, remote pervasive monitoring, healthcare in rural areas, and mo-
bile health (m-Health). Compared to the related work, our review paper includes references
specific to the use of 5G in healthcare, in addition to those addressing the communication
requirements of the healthcare applications regardless of the enabling communication
technology, which can inform how applications use 5G. Our literature search results extend
until 29 June 2021. Accordingly, we have significantly expanded the scope of the considered
references to comprehensively capture the state-of-the-art and include a comparative study
between planned and existing 5G capabilities. We have also identified gaps in this space
and considerations for 5G-healthcare requirements, which were not within the scope of [11].
Moreover, after identifying literature that reported KPIs for the use of 5G in healthcare use
cases, we have traced the original sources of the referenced KPIs in those papers.

The rest of the paper is organized as shown in Figure 1. In Section 2, an overview of
5G KPIs with specifications of their definitions is provided. Sections 3.1-3.4 identify four
potential areas of 5G healthcare applications and review KPI requirements in individual
areas, which include telesurgery (Section 3.1), connected ambulance (Section 3.2), healthcare
IoT (Section 3.3), and robots for assisted living (Section 3.4). The identified 5G-healthcare
requirements are then compared with the current state of 5G capabilities in Section 4, and
gaps in this space are highlighted in Section 5. Finally, Section 6 concludes the paper.

Collecting KPIs from Identifying case- communication requirements Identifying knowledge gaps
relevant literature »| specific KPIs > 10 status (310 | and future considerations
(Section 2) (Section 3) 4 (Section 5)

Comparing 5G-healthcare

(Section 4)

X~

3.1 Remote robotic- 3.2 Connected 3.3 Healthcare 3.4 Robots for
assisted surgery ambulance IoT assisted living

/\

3.1.1 Experiment
based

3.1.2 Simulation

based

Figure 1. Methodology and organization of paper.
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2. Key Performance Indicators for 5G-Healthcare

While KPIs such as data rate, accessibility, reliability, and mobility have been widely
used in the performance evaluation of 4G cellular networks, the diversity and heterogeneity
of 5G applications are calling for further expansion to incorporating novel sets of KPIs
for measuring adequacy and efficacy of 5G-enabled services. The taxonomy shown in
Figure 2 highlights the vastness of 5G network KPIs. Inspired by [12-14] and combined
with domain knowledge, this taxonomy classifies 5G KPIs into four categories: network,
service, application, and user. Each category also includes high-level and low-level KPIs.
High-level ones measure the overall performance of the network based on metrics defined
by the standardization bodies such as 3rd Generation Partnership Project (3GPP). However,
most of the time, these high-level KPIs are focused on characterizing general features of
the cellular system/service. In this regard, we also introduce low-level KPIs under each
high-level one to further instantiate specific requirements. A certain 5G-enabled healthcare
application might depend on a given set of KPIs to deliver its function while having low
sensitivity to others.

The service level KPIs often discussed in 5G-enabled healthcare literature to address
several aspects of the communication network, including availability, accessibility, reliability,
data rate, and retainability. Availability is the fraction of time the network is available
to provide the services users demand [15]. Accessibility is discussed in the context of
connectivity time, which measures the time to establish a network connection, starting
at the user request and ending at the beginning of the data transmission. Reliability is
addressed through numerous low-level KPIs shown in Figure 2: throughput, latency, jitter,
and packet loss rate (PLR), and bit error rate (BER). User throughput during active time is the
size of a burst divided by the time between the arrival of the first packet and the reception of
the last packet of the burst. Latency corresponds to the travel time of data packets from the
source to the destination (i.e., one-way, or end-to-end latency) [16]. The round-trip latency
is the time it takes a signal to be sent plus the time spent to receive an acknowledgement
of that signal. Jitter is a measure of the variation in the time of arrival between packets.
If uncontrolled, jitter impacts the audio and video quality, which can negatively impact
applications where this type of communication is used (e.g., telesurgery, remote diagnosis,
and service robotics for assisted living). PLR is the fraction of packets that failed to reach
the receiver out of total number of transmitted packets. BER is the total number of bits
received in error over the total number of bits sent. Like jitter, high BER/PLR negatively
impacts audio and video quality. Also relevant to the service level is the data rate, which is a
measure of the volume of successfully received application data, expressed in bits, within a
period expressed in seconds. A high data rate is relevant in applications that transport
large volumes of data. Service retainability refers to the count of radio link interruptions
following the activation of that link between the user and the network. A related measure
of service retainability is the number of reconnections, i.e., the count of attempts a user
performs to re-establish network connection following a link failure.

The overall network characteristics are addressed in the literature with several network
level KPIs such as network bandwidth, utilization and spectral efficiency. Bandwidth refers
to the network maximum aggregated data transmission rate. Connection density and traffic
density are measures of utilization. Connection density refers to the number of connected
devices per unit area. This is relevant in connected IoT application, where the number
of connected devices is large. Traffic density (or area traffic capacity) is a measure of the
volume of catered data in a unit area. Spectral efficiency is the maximum number of bits
the network can provide to users every second using a given bandwidth.
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Figure 2. Taxonomy of 5G network KPIs.

On the user level, KPIs of battery or power consumption, range, and payload size are
commonly reported in literature covered in this paper. User battery consumption and the
its associated low-level KPI, duty cycle, which is the ratio between an application active
(ON) and idle (OFF) times, are relevant in IoT devices where transmissions are intermittent
and battery lifetime is limited. Range is the distance at which the signal transmitted is
sufficient for the transmitter and receiver to communicate effectively. Another relevant
KPI discussed in literature is the user payload size, which can be controlled to balance the
transferred data volume with the incurred transmission overhead. This promotes efficient
network resource usage while helping to meet specific application needs.

On the application level, security and position accuracy are the most commonly dis-
cussed KPIs in literature reviewed in this paper. Security refers to the network ability to
identify, isolate, and eliminate threats to its infrastructure, users, and their data. Position
accuracy is a measure of the difference between the estimated and actual user locations.
The 3GPP (the entity that develops 5G specifications) has set different position accuracy
targets for different scenarios ranging from several meters for emergency calls to a few
decimeters for indoor plant operations and vehicle-to-everything (V2X) [17].

Although relevant to enabling 5G healthcare functions, some KPIs are seldom ad-
dressed in the articles reviewed in this paper. For example, the network-coverage is relevant
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to all applications using its services. While network coverage area probability is related to user
activity range, it refers to the percentage of service area where users can receive a desired
service. On the application level, privacy is relevant to healthcare applications because
it refers to the ability of the network to keep the data that passes through it or is stored
privately in it. Also on the application level, network resource elasticity is relevant in ap-
plications with temporary need for elevated connection capabilities such as in-ambulance
treatment and other emergency related applications. Resource elasticity describes the
network ability of responding to temporal and spatial fluctuations in traffic demand by re-
distributing available resources to seamlessly meet the demand of critical applications [18].
On the service level, mobility is relevant to applications that are mobile such as connected
ambulance. Mobility is the maximum user speed that a network can support. It also refers
to the ability of a network to support mobile users. A measure of mobility can be the rate
of successful handovers between the coverage sites. Additional examples of KPIs related to
the service level include the service restoration time under resilience and survival time under
reliability. The former refers to the period in which the services are restored to normal
operating status after experiencing a downtime. The latter is the tolerable packet delay in
which an application can still function effectively.

Figure 3 illustrates a subjective summary of the general relevance of the high-level 5G
network KPIs we investigated in Figure 2 to the following applications: remote robotic-
assisted surgery, connected ambulance or in-ambulance treatment by remote physician,
healthcare IoT applications, medical data management, teleconsultation and remote di-
agnosis, and service robotics for assisted living. These applications are only considered
as generic concepts, which recognizes that realistic medical devices implementing one or
more of these application concepts have unique KPI needs. Furthermore, the FDA guidance
document on radio frequency wireless technology in medical devices recommends that
the medical device wireless quality of service (QoS) is specific to the medical device [10].
Accordingly, this summary can help inform the KPI value specifications that should be
determined for the specific intended use of a medical device and its design. Relevance is
qualitatively described as high, medium, or low. Notably, remote robotic-assisted surgery
needs careful provisioning of several KPIs, including reliability, where low-level KPIs such
as latency;, jitter, and packet loss fall under. However, when the scenario is implemented
in an operating room, mobility is not as relevant as other KPIs since the connection will
not move across multiple network cells. On the contrary, in-ambulance treatment by re-
mote physician or connected ambulance needs exceptional mobility support since the data
exchange occurs while the ambulance is mobile. Support for mobility in this case comple-
ments other relevant KPIs such as reliability, data rate, availability, coverage, and resource
elasticity to enable the exchange of diverse data streams (e.g., video, audio, file transfer,
and control commands). The number of connected wearable devices is expected to grow
globally from 720 million in 2019 to more than 1 billion in 2022 [19]. Accordingly, the KPIs
of utilization and UE battery consumption are highly relevant for enabling the network
connectivity for such devices given their energy constraints. In the case of medical data
management, security and privacy are more relevant compared to other KPIs, such as relia-
bility. Like other services that use audio and video, remote diagnosis or teleconsultation are
negatively impacted with degraded reliability. Other relevant KPIs for this use case include
coverage, range, and utilization, to facilitate the service access by many users. Finally, we
note that reliability, range, and position accuracy are relevant in the service robotics for
assisted living use case where the robot is mobile in a limited area. The following sections
will review the related literature for each of these use cases.
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Figure 3. Examples of 5G-enabled healthcare application concepts and their projected needs for some
communication KPIs.

3. KPIs for Specific 5G-Healthcare Use Cases
3.1. Remote Robotic-Assisted Surgery

Several studies have addressed quantitative KPI requirements for remote robotic-
assisted surgery, which we also refer to as telesurgery for the remainder of this review. This
use case involves the use of a robotic-assisted surgery platform by a surgeon located in
a remote geographic location. The most commonly reported KPIs include latency, data
rate, and packet loss [11,20-47]. Few studies have also reported quantitative requirements
for reliability, communication service availability, payload size, traffic density, connection
density, service area dimension, survival time, range, and duty cycle [11,30,34,44]. Table Al
presents the reported latency requirements for several communication streams that can
be used during telesurgery such as camera flows, vital signs, and feedback for force
and vibration. Latency in this context is considered end-to-end. Compared to latency,
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quantitative requirements for jitter have been investigated less investigated in the literature.
The reported jitter requirements are detailed in Table A2. Similarly, requirements for
data rate are detailed in Table A3. These requirements can be influenced by different
compression techniques used. Reported packet loss and BER requirements are presented in
Table A4. Reports of other KPIs, such as reliability, availability, survival time, etc., are listed
in Table A5. By big payload in Table A5, we mean when the packet exceeds 10 Kb [11].
The ability of current 5G networks to meet these KPIs will be discussed in Section 4.

Notably, the reported KPI values are inconsistent across literature reports, which could
be attributed to the varying type of tasks considered by the researchers during telesurgery.
Additionally, the equipment used to perform telesurgery and the simulation environment
also varies across studies. To detail the context of the telesurgery KPI specification, we also
labeled the original source of the reported KPIs in each study as detailed in Tables A1-A5.
Most KPI values were found in experiment and simulation settings of the individual studies
with exceptions where the values were a consensus view of the achievable performance by
wireless stakeholders [22,33], and Refs. [22,30] contain a white paper by the 5G Infrastruc-
ture Public Private Partnership (5GPPP) that highlighted use cases for 5G in healthcare and
suggested quantitative requirements. A technical requirements document was compiled
by the IEEE 802.15 Task Group 6 for Body Area Networks (BAN), formed in 2007 to help
develop a communication standard optimized for the low power devices and operation,
in or around the human body to serve a variety of applications, including medical ap-
plications. The report in [30] outlined findings from the National Science Foundation
(NSF)-funded workshop on ultra-low latency wireless networks. The report addressed
healthcare application requirements of the emerging applications, including telesurgery,
in terms of throughput, latency, and reliability. In the following, the relevant experimental
and simulation studies are summarized.

3.1.1. Experiment Based

The Aesop 1000TS robot (Computer Motion, Goleta, CA, USA) was adapted to hold
a metal pin in addition to a laparoscope and camera (Stryker Instruments, San Jose, CA,
USA) in [23]. Programmed incremental time delays were introduced in the audiovisual
acquisition, and the number of errors made while performing tasks at various time delay
intervals was noted. A remote surgeon in Baltimore, MD performed tasks 9000 miles away
in Singapore and determined that a delay of <700 ms is acceptable.

A teleoperation capable ZEUSTM robotic minimally invasive surgery system was
used in [24], with a dedicated communication link by Bell Canada and Telesat Canada. This
link included a wired link with a roundtrip delay of 64 ms, a satellite link with a roundtrip
delay of 580 ms, and a software simulated delay link through a local switch. Different tasks
were performed from London, Ontario to Halifax, Nova Scotia, Canada. These included
dry (typical surgical maneuvers at latencies from 0 to 1 s, in increments of 100 ms) and
wet (internal mammary artery takedown on a pig) experiments. A heuristic mathematical
model accompanied the task completion times and error rate results, showing acceptable
delays of up to 300 ms and 800 ms for simple tasks with training. It was concluded that
the effect of delay is not pronounced until the round-trip time exceeds 400 ms and the
maximum tolerable delay is approximately 600 ms.

Researchers from European Institute of Telesurgery used the ZEUS system, which is
transcontinental, which attempted a remote robot-assisted laparoscopic cholecystectomy on
a 68-year-old woman with a history of abdominal pain and cholelithiasis. The surgeon’s
subsystem (Equant’s point of presence, New York) and patient’s subsystem (operating room
in European Institute of Telesurgery, Strasbourg) were connected via a high-speed terrestrial
network (i.e., ATM service), with a round-trip distance of over 14,000 km. Robot motion data
had a high priority and a rate guarantee of 512 Kbps within the 10 Mbps virtual path. The
operation was carried out successfully in 54 min, with a 155 ms mean time lag for transmission.
The study estimated that 300 ms was the maximum time tolerable delay.

31



Healthcare 2022, 10, 293

Dohler et al. [32] attempted a robot-assisted laparoscopic gall bladder removal for six
pigs, with the surgeon located in Strasbourg, France and animals located in Paris, France,
using the ZEUS system. The time lag was artificially increased from 20 ms up to 551.5 ms. It
was concluded that no packets were lost during the surgical procedures, and the round-trip
delay was 78-80 ms, with additional 70 ms for video coding and decoding and a few
milliseconds for rate adaptation, summing to 155 ms [32].

To study the impact of haptic feedback in virtual environments, two experimental
platforms were implemented in [40]. Platform 1 consisted of two sites at the University of
Belfast separated by a few hundred meters and linked by Gigabit Ethernet connection. The
configuration of the experimental platform consisted of four 100 Mbps Ethernet segments,
two 1000 Mbps fiber optic segments, and four PCs. One PC was connected to a PHANToM
Desktop, two generated background traffic, and one ran the remote virtual environment.
In Platform 2, one of the computers is used to emulate network impairments. Haptic data,
network congestion, and network-impairments were analyzed using these two platforms
by introducing controlled delay (0 ms to 50 ms), jitter (1 ms to 15 ms), and packet loss
(0.1% to 50%). Study participants self-scored the sense of force feedback. The haptic QoS
requirements were summarized by less than 10 ms delay, less than 3 ms jitter, 1% to 5% for
packet loss rate, and haptic data transmission rate of approximately 1 kHz.

The study in [29] involved both simulation and practical experiments, where multi-
modal data were transmitted over a QoS-enabled Internet Protocol (IP) network. The force
feedback device was the PHANToM desktop from SensAble Technologies Inc., which could
provide force up to 3.3 N in 3 axis directions and generate 1000 packets/s of position and
force data during the haptic collaboration actions. In the experiments, the force feedback
device was used to manipulate moving virtual objects and to provide the user with feed-
back from the virtual environment. The end-to-end delay experienced by the haptic traffic
was found to decrease from 200 ms (best effort) to 40 ms by running the haptic application
in a Differentiated Services (DiffServ) network.

To understand the impact of vibration feedback latency, authors of [37] built a system
consisting of a liquid crystal display (LCD), touch sensor, rod device with a vibrator,
microcontroller, and a host computer. The microcontroller (NXP semiconductors, mbed
NXP LPC1768) controlled the feedback latency from 0.1 to 25.6 ms, according to an adaptive
staircase algorithm. Twenty-four participants first sat in front of the touchscreen and were
instructed to tap the touchscreen by raising the rod as quickly as possible after the rod head
made contact with the touchscreen with an approach velocity of 0.1-0.5 m/s. After the
practice, they experienced a 25.6 ms delayed vibration. The participants then conducted
eight staircases for further experiments involving two surface conditions (wood or metal).
The results showed a 5.5 ms detection threshold of the vibration feedback latency.

Another experimental study proposed a multiplexing scheme that was evaluated using
a teleoperation system consisting of a KUKA light weight robot arm (KUKA Robotics), a JR3
force/torque sensor, a force dimension Omega 6 haptic device [31], and real-time Linux-
based Xenomai development software. Using the robot arm, the human operator could
move toys and peg them in corresponding holes, which was considered as a representative
task for the teleoperation applications. Haptic teleoperation experiments were performed,
and KPIs considered were varying end-to-end signal latencies (force delay, video delay,
audio delay), packet rates, peak delay, convergence time, and peak signal-to-noise ratio
(PSNR) for visual quality.

In [39], researchers from Touch Lab, MIT demonstrated an experiment on haptic
interaction between two users over a network with 2.4 Gbps connection. Authors used
two PHANToM force-feedback devices at both sites; one was located at UCL VECG Lab,
London, UK and the second was in MIT Touch Lab, Massachusetts, USA. The experimental
subjects were to cooperate in lifting a virtual box together under different conditions.

A mutual tele-environment system named “HaptoClone” is proposed by researchers
from the University of Tokyo in [36], which mutually copies adjacent 3D environments
optically and physically using micro-mirror array plates technology. Haptic feedback was
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also given by using an airborne ultrasound tactile display. Different objects were touched
by users, and the perceived delay of tactile feedback was measured. Simulations showed
that a 100 ms delay was allowable to achieve the real-time interaction.

Other experimental studies using robot systems of SoloAssist (AKTORmed) in Ger-
many, Panda robot (Franka Emika) in Italy, 3D-microscope (Karl Storz) and TiRobot system
(Tinavi), and MicroHand (WEGO Group) in China are surveyed in [46].

3.1.2. Simulation Based

The surgical simulator dV-Trainer from Mimic technologies Inc., Seattle, WA, USA
was used in [26,27]. In [26], sixteen medical students performed an energy dissection and a
needle-driving exercise on the dV-Trainer, with latencies varying between 0 and 1000 ms
with a 100 ms interval. These latencies were communication latencies from the time that a
movement was initiated by the surgeon until the image of the movement is visible on the
surgeon’s monitor. The difficulty, security, precision, and fluidity of manipulation were
self-scored by subjects. It was concluded that the surgical performance deteriorates in
an exponential way as the latency increases. This study further concluded that latencies
less than 200 ms were ideal for telesurgery; 300 ms was also suitable; 400-500 ms may
be acceptable; and 600-700 ms was only acceptable for low-risk and simple procedures.
Surgery was quite difficult at 800-1000 ms. The same simulator was utilized in [27].
However, in this study, instead of students, 37 surgeons were involved and performed
different exercises in an easy-to-difficult order. The dV-Trainer simulator was permitted to
introduce fixed latencies into the exercises between the gesture on the grips and the visual
feedback on the console. Instead of a self-scoring system as in [26], the dV-trainer in [27]
included a built-in scoring system, capturing instrument collisions, drops, etc. This study
concluded that although the impact of delay is related to the difficulty of the procedures,
overall, delays of 100 to 200 ms caused no significant impact, delays higher than 500 ms
caused a noticeable increase in surgical risk, and surgery became extremely difficult and
should be avoided at delays higher than 700 ms.

In [29], following experiments on a testbed (PHANToM devices), a probability density
function (PDF) model of the haptic traffic from a distributed haptic virtual environments
(DHVE) application was created for the use in a simulated DiffServ network using OPNET
simulation tool. Subsequently, the effect of running the haptic traffic over a DiffServ IP
network was obtained. Results indicated that the haptic throughput increases with the
increase in the queue scheduling weight.

Another work leveraging a similar testbed used a force-feedback haptic device in
the PHANToM experimental testbed [41]. The set-up involved two computers that were
connected through a gigabit Ethernet fiber optic link running on the best effort IP service.
The collected network traces from the test network were used to generate statistical models
of each type of DVHE traffic that can be used in the standard network simulation packages
such as OPNET. The measured network parameters included throughput, packet lost, delay,
and jitter. Results from this simulation model showed a close match of simulation network
throughputs with experimental throughputs of 850 Kbps and 630 Kbps in asynchronous
and synchronous modes, respectively. DHVE effective throughput deteriorated sharply
above 90% background load. End-to-end delays of more than 5 ms occurred at above 90%
background load. The impact of jitter, latency, and packet loss was studied in [38] using the
analytical models, OPNETWORK, and OPNET simulators. For audio, the simulated traffic
behavior model was based on two-state (ON-OFF) Markov modulated rate process (MMRP)
with the exponentially distributed time at each state. For video, the model was based on
K-state MMRP. The QoS requirements for the audio were reported as: delay < 150 ms,
jitter < 30 ms, and packet loss < 1%. For video, these requirements were concluded as:
delay < 400 ms, jitter < 30 ms, and packet loss < 1%.

Another simulation-based study to investigate the haptic-audio-visual data communi-
cation used an interpersonal communication system, HugMe, which consisted of a haptic
jacket for a remote person to simulate nurture touching, a haptic device for a local person
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to communicate his feelings with the remote person, and a depth camera to capture the
image and depth information of the remote person and send it back [28].

Several studies citing jitter requirements for telesurgery have referred to the work
in [43] that used Image Server and Haptic Handshake applications. The network emula-
tion in [43] consisted of two endpoint computers and a third intervening computer that
simulates the network using NISTNet software. The Handshake application is intended to
train students remotely in surgical procedures by placing a haptic device at each endpoint
and having the instructor guide the movements of the student remotely. The performance
was evaluated under varying packet loss, delay, and jitter conditions. Minimum end-to-
end performance requirements for throughput was 128 Kbps, packet loss was less than
10%, delay was less than 20 ms with abrupt movement and less than 80 ms with gentle
movement, and jitter was less than 1 ms.

The authors investigated the effect of packet loss and latency in multimodal telepres-
ence systems in [35]. The packet loss caused the impression of time delay and influenced the
perception of the subsequent events. The simulated haptic feedback force was generated
via PHANToM haptic device. The visual 3D environment was presented on a monitor,
which was fixed above the haptic device and tilted 80° toward the observer. The visual
space was collocated with (i.e., projected into) the haptic space by means of a mirror, and
participants viewed the mirrored image through a pair of shutter glasses for the stereo
image presentation. Visual-haptic event judgment was investigated under packet loss rates
of 0,0.1, 0.2, and 0.3, respectively. The minimum required latency for visual-haptic events
was concluded to be 50 ms. Finally, telesurgery reports using software-defined networking
(SDN), fog, and cloud infrastructures are described and compared in [48]. For more details
on the use of SDN, fog, and cloud in emerging healthcare, the reader is referred to the
works in [49-53].

The reported KPI values are inconsistent across literature reports due to factors such
as varying types of tasks during telesurgery, varying equipment, and varying simulation
environments across the studies. For example, latency ranges from as low as 1 ms for
haptic feedback to as high as 700 ms for camera flow data, jitter ranges from 1 ms for haptic
feedback to 55 ms for 3D camera flow, and the data rate requirements vary between 10 Kbps
for vital signs transmission and 1.6 Gbps for 3D camera flow. Similarly, the BER also varies
between 10717 to 103 depending on the data type.

3.2. Connected Ambulance

Table 1 summarizes the literature relevant to the connected ambulance use case in
terms of the investigated communication KPIs. The literature covers a wide range of
applications termed connected ambulance. In essence, this involves providing medical
care enroute to a healthcare facility while exchanging relevant data (e.g., imaging, vital
signs, audio, and video) with healthcare providers. Requirements for 5G-enabled mobile
healthcare in general are discussed in [21], where the authors propose to implement two-
way connectivity between ambulances and hospitals across the UK. The KPIs discussed in
the paper include the maximum allowed end-to-end latency for different data types (i.e.,
150 ms for camera and audio flow, 250 ms for vital signs, and less than 10 ms for force and
vibration). Data rate requirements for different data types were also specified, with the
highest data rate requirement being 10 Mbps for two-way visual multimedia streaming,
followed by haptic feedback, including force and vibration data types with 400 Kbps each,
and then audio multimedia stream with a requirement of 200 Kbps. Depending on the
required quality and bandwidth constraints, the data rate requirements for audio data
can vary between 22 and 200 Kbps. Moreover, different types of vital signs were assigned
different data rates, with EEG having the highest requirement of up to 86.4 Kbps [21].
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Table 1. Summary of literature for relevant connected ambulance KPIs.

Use Case KPIs Data Type Tools Study Year
Ambulance transporting Throughput, number Audio, video, and vital .
stroke patients to hospital of reconnections signs TeleBAT system in ambulance [54] 2000
Ambulance transporting N Rhythm-surveillance and
cardiac patients to hospital Retainability, PLR 12-lead ECGs defibrillation equipment [55] 2002
Philips standard (basic device
model without advanced
Ambulance transporting L PLR features such as
cardiac patients to hospital atency, 12-Lead ECG computer-assisted ECG (561 2010
interpretations), embedded,
and integrated ECG device
Ambulance transporting R L VIMED CAR, head gnql body
stroke patients to hospital Retainability Audio, video cameras, and specialized [57] 2012
P P microphones
b dRe.tgarllablhty, d Audio-video, blood
. andawl (mean an pressure, heart rate, blood
Ambulance transporting maximal upload and oxveen saturation PreSSUB 3.0 system 58] 2014
stroke patients to hospital dovxclinltoatd spefeds for glycefngia, and electrolnic in ambulance
ata trans 'er), patient identification
accessibility
In-Touch RP-Xpress
Ambulance transporting Reliability, . . telemedicine device, Verizon
stroke patients to hospital retainability Audio, video Jetpack 4G LTE mobile hotspot 5912014
(4620LE) for 4G LTE
Audio-video, blood
pressure, heart rate, blood
Bandwidth (median oxygen saturation,
Ambulance transporting maximal and glycemia, temperature, PreSSUB 3.0 system [60] 2016
stroke patients to hospital average upload cardiac rhythm, Glasgow in ambulance
download speed) Coma Scale (GCS),
and electronic patient
identification
Mobile stroke treatment units Servi . CT. audio-vid d MSTUs with CT svstem, camera
for patients with acute onset . erxgﬁ%restgrfltlon » audlio-video, an Y . [61] 2016
of stroke-like symptoms time, , and latency vital signs (RP-Xpress; InTouch Health)
Testing of video encoding Bitrate, data rate N{lu%ti—objective optimizatiog,
framework on ultrasound P p ! : Philips ATL 5000 ultrasoun
videos of carotid artery in time varying Ultrasound videos of the machine, x265 open source [62] 2017
bandwidth common carotid artery
connected availability software, and Ubuntu 14.04.4
ambulance scenario LTS/Linux 64-bit platform
A mobile small ﬁeu-b?'sed Latency, data rate,
ambuiﬁ?gfﬁlgrf ir? ;1p PLR, retainability, and Ultrasound video LTE Sim system level simulator [63] 2018
heterogeneous network spectral efficiency
Project proposal aiming to .
Ultrasound video
capture more than 6000 . ; ‘. Sonography and
ambulances across the UK Latency, data rate, in-ambulance video vital vital-signs-measuring [21] 2019
e be 500 PLR signs, EEG, ECG, force, 3 :
clljirf?;rle r?t veﬁdors vibration equipment in ambulances
MEC-based TeleStroke service
by SliceNet, NetFPGA cards,
Connected ambulance Uplink/downlink Video slices (eHealth, SimpleSumeSwitch architecture,
prototype study with QoS h h 1 P . i LTE eNodeBs, 6412019
control in network slicing throughput, latency  con ergncmg, surveliance OpenFlow-enabled switches, [64]
environment (average per-hop) and entertainment) Software Development Kit
(SDK), Dell Edge Gateway, and
P4 NetFPGA
eHealth infrastructure at Dell,
Average packet loss, Ireland, pfSense security,
Connected Ambulance ;
prototype study in network latency (round trip Audio, video OpenVPN, Dell Edge Gateway [65] 2019
slicing environment time), throughput series 3003, LTE SIMS,
(frames per second) OpenMANO OSM, and
MEC by SliceNET
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Table 1. Cont.

Use Case KPIs Data Type Tools Study Year
Prediction of ambulances’
future locations to overcome Position accuracy GPS data Apache Spark, Spark SQL, and [66] 2020
mobility-based challanges algorithms
Uplink/downlink
Proposition of an architecture rate, number of device Ultrasound image, vital Vital signs monitor, ultrasound
connections, latency, . ¢ . . [67] 2020
for connected ambulance speed, reliability, and signs, and video equipment, and video cameras
jitter
Report compiled by industry Latency, jitter, survival
ts and academic time, communication . . .
expe1}'1 hei service availability, 4K video, audio Reference given to [22] [11] 2020
researc egil})cﬁseesd on their reliability, and data
rate
Simulation of mobile Data Distribution Service (DDS)
ambulance using emulated th Later}llcy, taverggPeLR Body tempergt}t:re, Flo?d middleware, and biosensor Z(g?g_zg]ZO
biosensor data roughput, an pressure, and heart rate emulator )
iPad, Jabber video app,
. University of Virginia Health
ATbulapce tr'fmsporfmg Retainability, dio. vid System firewall, COR IBR600 [71,72]
stroke patients in rural area AP Audio, video, LE-VZ; CradlePoint router, 4G 2016, 2020
. reliability - . . ,
to hospital Verizon Wireless sim, and
AP-CW-M-522-RP2-BL and
AP-CG-522-BL antennas
5G customer-premises
equipment (CPE) signal
Connected ambulance . : :
evaluation in network slicing D?iwtnhnltd uplénk Video, CT image, vital furfziircl)if?glflg)Sgitiiszﬁlsae?sice [73] 2021
: t usi ata rate, an - ¢
enVltreOSrtu;lin Olils;ng a uplink latency signals, and medical record flow forwarding device, and
medical data acquisition device,
MEC cloud computing node
) ) ) MEYTEC Grfn\l;H t(ﬁemedicailne
ok units e soute Reliabiliy Audio, video, ECG,and VY00 RE N 7473
to hospital retainability vital signs videoconferencing and 2019, 2021
teleradiology

The studies in [11,22] also highlighted some general requirements for this use case,
including 10 ms latency, 2 ms jitter, <2 ms survival time, 1 — 10~° service availability,
1 — 107 reliability, and 0.05 Mbps data rate.

The project “improving treatment with rapid evaluation of acute stroke via mobile
telemedicine” (iTREAT) in [71] reported that 93% of connected ambulance cases achieved a
minimum 9 min of continuous, and live video transmission with a mean mobile connectivity
time of 18 min, and 87.5% of tests achieved bidirectional audio video quality with ratings
of 4 out of 5 or higher, excluding one route with poor transmission quality. The transport
routes were 20 min to the University of Virginia Medical Center, and 30 test runs were
performed. Limitations of this study include manual ratings of the service quality, not
explicitly incorporating patient while testing, exclusion of one route with poor coverage
conditions, small size of study, and being limited to one region.

Another e-ambulance study used biosensor emulators in a laboratory to mimic biosen-
sor communication behavior and studied KPIs with the varying number of biosensors and
payload sizes [68-70]. Reported outcomes include an upper bound of 250 ms on latency,
and 0.4 Mbps for average overall throughput, and the success ratio of transmitted samples
varied between 97.7% and 99.9%.

A connected ambulance use case was investigated in [62] in the context of proposing a
video encoding configuration that jointly optimizes the clinical video quality, time-varying
bandwidth availability, and heterogeneous device’s performance capabilities. The proposed
model estimated structural similarity quality with a median accuracy error of less than 1%,
bitrate demands with the deviation error of 10% or less, and encoding frame rate within a
6% margin.
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The study in [67] proposed measurement-based requirements for high-definition ul-
trasound images (uplink rate > 20 Mbps, downlink rate > 5 Mbps, network delay < 80 ms,
jitter < 30 ms), 4K video (uplink rate > 20 Mbps, downlink rate > 20 Mbps, network
delay < 50 ms, jitter < 20 ms). Reliability was set to 99.99%, and mobility was 0-120 km/h.
The measured download rate inside the ambulance, which is a user of a 5G private network,
reached 1361.21 Mbps, and upload rate reached 257.52 Mbps.

Handling specific patient conditions was also addressed in the context of connected
ambulance, e.g., prehospital stroke evaluation and treatment [76]. A Prehospital Stroke
Study at the Universitair Ziekenhuis Brussel investigated the safety, technical feasibility,
and reliability of in-ambulance telemedicine [58]. A total of 43 attempts were made to
perform a prehospital teleconsultation of neurological and non-neurological conditions (e.g.,
strokes, trauma, respiratory, gastro-intestinal, acute pain, intoxication, labor, dysglycemia,
and vascular disease). The authors concluded that 30 teleconsultations were performed,
with success rate of 73.2%. Transient signal loss occurred during 6 teleconsultation sessions
(14.6%). The time before the connection was re-established varied from 38 seconds to
5 minutes and 47 seconds. Permanent signal losses occurred in five teleconsultations
(12.2%). The success rates for the communication of blood pressure, heart rate, blood
oxygen saturation, glycemia, and electronic patient identification were 78.7%, 84.8%, 80.6%,
64.0%, and 84.2%, respectively. Communication of a prehospital report to the in-hospital
team had a 94.7% success rate and prenotification of the in-hospital team 90.2%. Most
problems were caused by unstable bandwidth of the 3G/4G mobile network; limited
high speed broadband access; and software, hardware, or human error. The study’s main
limitations include the small sample size, short study duration, and complex observational
design. A continuation of this study was carried out in [60], which addressed patients
with suspected acute stroke and reported median maximal and average upload speeds
as 196 Kbps and 40 Kbps, respectively. The download median maximal speed is reported
as 407 Kbps, and average speed is reported 12 Kbps, using 4G. An experimental study
evaluated the use of mobile stroke treatment units (MSTUs) to diagnose and treat 100
residents of Cleveland who had an acute onset of stroke-like symptoms [61]. It was
concluded that there were six instances of video disconnection, of which five were because
of an area of poor wireless reception, and one was due to the compatibility issue of the
devices. No video disconnections lasted longer than 60 s. One limitation pointed out by
the authors is the small sample size of this study.

TeleBAT system in [54] used an integrated mobile telecommunications system while
transporting patients to the University of Maryland hospital via an ambulance. Results
showed feasibility of the case, with number of disconnections resulting from coverage
holes, or network switching.

Another case study on mobile stroke units (MSU), all, consisted of a combination
of two studies: PrioLTE2 (Reliability of Telemedically Guided Pre-hospital Acute Stroke
Care With Prioritized 4G Mobile Network Long-Term Evolution) study and TeDir (TeleDi-
agnostics in Prehospital Emergency Medicine [Tele-Diagnostik im Rettungsdienst]) study.
A remote neurologist rated the audiovisual quality. The authors in [74] reported high inter-
rater reliabilities between the onboard and remote neurologists, and 16 out of 18 treatment
decisions agreed. Limitations of this study included 12.6% of the teleconsultations not
being completed due to the failure of video connection, higher rate of aborted attempts than
the previous studies (1% in [61] and 2% in [77]), small number of patients, and inclusion of
the data from two separate studies with different assessment metrics.

A prehospital utility of rapid stroke evaluation using in-ambulance telemedicine
(PURSUIT) pilot feasibility study was conducted in [59]. Actors performing pre-scripted
stroke scenarios of varying stroke severity were used in live acute stroke assessments. It is
concluded that 80% of the sessions were conducted without major technological limitations.
Reliability of video interpretation was defined by a 90% concordance between the data
derived during the real-time sessions and those from the scripted scenarios. A previous
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pilot study, StrokeNET in Berlin, could not conclude assessments because the audio video
was lost in 18 out of 30 scenarios [57].

As for cardiac patients, a study published in 2010 [56] demonstrated the transmission
of 12-lead electrocardiography (ECG) in an ambulance driving at 50-100 km/h to the cell
phone of the attendant emergency medical technician and then to the hospital and to the
cell phones of off-site cardiologists using a 3G network, after going through the hospital
ECG-processing server. It was concluded that the ECG can be transmitted successfully at
the first attempt in all five trials, except in one remote, mountainous ambulance service area.
The average transmission time of an ECG report ranged from 91 to 165 s. Interruption of
ambulance ECG transmission occurred in up to 27% of transmissions. Rehman et al. in [55]
reported a 1 year study included data from 17 ambulances enroute to Silkeborg Central
Hospital (distance ranging from 20-75 km) transmitting 12-lead ECGs and involving
250 patients with the suspected diagnosis of acute myocardial infarction. Results indicated
that 86% of prehospital diagnoses were successful. Geographically related transmission
problems were the primary reason for failure. Limitations of this study included patient
history taking by direct communication between the physician and patient and the lack of
a randomized setup.

Mobility is one of the unique features of the connected ambulance use cases and
this raises the connectivity issues that can be observed in high-speed moving vehicles
(e.g., poor signal quality, multiple handovers, greater occurrences of connection drops,
and penetration loss from metallic walls of vehicle). To address these challenges, authors
in [63] evaluated data streaming between one ambulance and hospital nodes on the uplink
with a small cell inside the ambulance traveling at a speed of 120 km/h. In the simulation
scenario, a transceiver was installed on the roof of the ambulance to transmit/receive data
to/from the backhaul macrocell network. The small cell installed inside the ambulance
made a wireless connection between the paramedics and the small cell access point (SAP).
The SAP and the transceiver were connected through a wired network. The PLR value
when using the small cell was reduced to 4.8% compared to 14% in case of 10 users trying
to connect to the outside macrocell base station. All 10 users were located in the same
ambulance. Throughput also improved by a small amount with the small cell. Authors
concluded that using small cell inside the ambulance could be particularly useful in high
bandwidth congestion scenarios. Another way to help address mobility challenges can be
to predict the future location of the ambulance based on its previous locations as reported
in [66]. The authors proposed an algorithm, NextSTMove, which is 300% faster than
traditional algorithms and achieved accuracies of 75% to 100%.

Among the 5G features that can enable connected ambulances is network slicing,
where logical network resources can be provisioned to accommodate specific application
demands. A study conducted in network slicing environment using facilities at the 5G
Prototyping Lab at Dell EMC facilities Ireland and SliceNet reported an average round trip
latency of 296.91 ms from client to core, an average round trip time of 50.68 ms from client
to edge, and an average packet loss of 7.2% for the core and 0.1% at the edge [65]. Another
study was carried out in [64] using the same experimental tools with the added features
like QoS control based on the data plane programmability and low-latency cloud-based
mobile edge computing (MEC) platform. Throughput was evaluated for the coordinated
and uncoordinated network slicing strategies and ranged from 0 to 18 Mbps. In QoS-aware
slicing, average delay of less than 0.05 ms was observed. However, in non-QoS aware
slicing, no guarantee of low latency was given for any network transmission.

Another network-slicing system architecture for 5G-enabled ambulance service was
tested in the experimental settings with ambulance speed of 30 km/h. Two types of data
were considered in this study: video data for remote consultation and uploading of 4.5 GB
of computed tomography (CT) image data from an ambulance to a destination hospital
affiliated with the Zhengzhou University [73]. For video data, the average downlink speed
of 1080 p 30 Hz HD video in the 5G network environment was 4.6 Mbps, compared to
3.5 Mbps with unstable network and packet loss in 4G. For CT data, the upload time was
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shortened by 33 percent in 5G as compared to 4G and the average latency for 5G was
12.88 ms, compared to 76.85 ms for 4G which was 6 times that of 5G.

Other relevant studies are ongoing by the groups such as PRE-hospital Stroke Treatment
Organization’s (PRESTO) [75,78] and EU 5G PPP Trials working group by SliceNET [79,80].

The reported KPI values for connected ambulance use case vary across literature re-
ports with the variation in considered ambulance mobility, which has a range of 0-120 km/h
across reports. Accordingly, latency ranges from around 10 ms for haptic feedback to
around 250 ms for vital signs transmission. However, one study also reports latency of
as low as 0.05 ms using a QoS-aware slicing scheme. Jitter ranges from 2 ms to 30 ms,
depending on the data type and survival time remains less than 2 ms. The maximum data
rate requirement reported in literature is around 1360 Mbps and the minimum is 22 Kbps,
depending on the communication quality and bandwidth constraints. The average packet
loss is reported to be in the 0.1% to 7.2% range.

3.3. Healthcare IoT

Based on the American Society of Engineers, medical internet of things refers to
the amalgamation of the medical devices and applications that connect to healthcare
information technology systems by leveraging the networking technologies [81]. Healthcare
IoT systems encompass diverse applications and computational capabilities and target
diverse populations. Notably, many healthcare IoT systems predate 5G and are being
used with 4G and local area wireless technologies such as Wi-Fi and Bluetooth. However,
5G can enable an expanded use of healthcare IoT and facilitate the development of novel
applications [53]. Accordingly, we dedicate this section to highlighting the wide range
of healthcare IoT applications and summarizing their reported communication KPIs. We
broadly categorize healthcare IoT systems, which include, medical, and non-medical
devices, into five types as shown in Figure 4: (1) fitness tracking and health improvement,
(2) chronic disease monitoring, (3) aid for the physically impaired, (4) tracking of life
threatening events, and (5) embedded /implantable medical devices.
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Figure 4. Types ofhealthcare IoT devices and service assistive robots.

Applications targeted for healthy individuals can be used for a wide range of purposes,
including routine monitoring, lifestyle improvement, or disease prevention, where they act
as early warning systems [82]. Examples include smart watches [83,84] that can monitor
heart rate, blood glucose level, blood pressure, and breathing rate. Other fitness and health
improvement wearables include temperature sensors [85,86]; pulse oximeter SpO, [87-89];
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sleep trackers [90]; fertility and pregnancy trackers [91]; and monitors for respiration [92],
blood pressure [93-96], pH [97,98], stress [99], mood [100], and sleep [101].

Patients with underlying conditions or those who need assisted living in chronic
scenarios can benefit from applications for measuring and reporting electroencephalogram
(EEG) [102,103], ECG [93,104,105], electromyography (EMG) [106,107] heart rate [108-110]
for cardiac patients, glucose [111,112], insulin for diabetic patients [113-115], and contin-
uous respiratory rate for chronic respiratory patients [116]. For assisting the physically
impaired, there are numerous wearable devices to help improve quality of life, such
as hearing aids (ear-to-ear communication) [117,118]; devices for disability assistance,
e.g., muscle tension monitor [119]; muscle tension stimulation [120]; wearable assistive
devices for the blind [121-124]; devices for speech impairment [125,126]; artificial /wearable
limbs [127-129]; and exoskeleton suits [130]. Other examples that can be used by the elderly,
or by Alzheimer’s or epilepsy patients, include wearables for fall detection [131-133] and
seizure detection [134,135], and gyroscopes [136] and accelerometers [137] for localization
monitoring. Examples of implantable devices include pacemakers [138] and implantable
cardioverter defibrillators (ICD) [139], and implanted actuator [140,141].

Despite the diversity of healthcare IoT applications, the underlying KPIs requirements
are shared by most. However, KPI levels vary for different applications. Following are
some of the KPI requirements for this category.

Energy efficiency is vital for battery-operated devices, where the needed battery
lifetime can range from a few days to a few years. Accordingly, battery lifetime can be
>1 week (the life-time numbers are expected /calculated based on normal use conditions for
continuous monitoring) for non-implantable devices, and for monitoring ECG, EEG, EMG,
glucose, etc. [142]. For implantable devices, this figure can grow to several years (e.g., >3 years
for deep brain stimulator) or remain within the range of hours for some applications such as
>24 h for capsule endoscopes [34]. The importance of battery lifetime increases in implanted
devices given the risks associated with the device replacement because of depleted battery.
In an attempt to overcome constraints on the battery form factor to accommodate specific
implant application, solutions for energy harvesting were considered in the literature that can
benefit from the energy present in the environment, human body, and wireless signals [143].
Duty cycle is also relevant in this context, where a lower duty cycle contributes to longer battery
lifetime. It captures the tradeoff between the need to timely communicate data and the cost
of battery power to do so. The work in [34] reports on duty cycle requirements ranging from
<1% (e.g., temperature sensors, fall detection devices, and respiration monitors) to <50% (e.g.,
implantable endoscope capsules).

The efficiency of data transmission during the device ON time is described by the data
rate, with varying requirements according to the application and the used transmission
protocol. Literature reports offer a wide array of data rate requirements. For example,
the researchers in, patel2010applications report that monitoring devices for temperature,
heart rate, breathing, blood pressure, blood sugar, and oxygenation require <10 Kbps
data rate, 72 Kbps for ECG, 86.4 Kbps for EEG, 1 Mbps for deep brain stimulation and
capsule endoscopy, and 1-1.5 Mbps for EMG and location tracking devices [34,144]. Other
references [142,145-147] listed different values, including 128-320 Kbps for deep brain
stimulators, 3 Kbps per ECG channel per link, and 16 bps for the wearable temperature
sensors. Data rate can be influenced by device processing capabilities, the data use model
(i.e., real-time processing by an external processor is associated with demand for a high
data rate, while applications suitable for post-processing can use a low data rate), and the
capabilities of the wireless technology being considered. With the advancement of 5G,
literature reports now point to a higher data rate to be supported by wearables (e.g.,
10 Mbps [148], 0.1-5 Mbps [11].) Requirements for BER also varied by application and
were reported in [149], generally ranging from 1071 to 10~°. Specific examples included
an ultrasonic wearable device prototype designed to be used as heart rate monitor, and
ECG respiratory rate monitor, and step counter reported a BER requirement of lower than
10~° using a transmission power of 13 dBm [150]. BER for vital sign monitoring devices
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such as ECG, pulse oximeters, and implantable devices such as hearing aids are reported
as <1019 [34]. To facilitate the diverse healthcare IoT applications, the overall reliability
and service availability should be 1 — 1073 [11].

Latency requirements also varied across the applications and by the source. The
authors in [144] report <50 ms latency for monitors of chronic disease and emergency
event detection. Vital signs monitors were assigned a latency of <1 s, while fitness tracking
devices increased latency tolerance to a few seconds. A blanket latency requirement for
wearables was set at 250 ms in [11,34], while survival time was set at 10 ms in [11,22]
and jitter <25 ms in [11]. Other reported latency values include <50 ms for deep brain
stimulators and <100 ms for hearing aids [142]. In [151], LTE-based data transmission
experiments using a real-time video wearable device (i.e., BlueEye) under impaired channel
loss and propagation loss were performed. The purpose of the study was to test whether
mHealth services could be used in the locations with poor coverage conditions. For differ-
ent mobility scenarios, the jitter values obtained were 0.473 ms for the static users, 2.05 ms
for the pedestrian users, and 3.54 ms for the vehicular users. In an attempt to reduce latency
in healthcare IoT applications, significant research was dedicated to data processing and
analytics at the edge side of the system to circumvent delays caused by the processing lag
and cross network data transfer [53,152]. In this context, latency of transmitting various raw
ECG captures from a gateway to a remote cloud was compared with the total latency of pro-
cessing on fog computing service and transmitting preprocessed ECG data in [153]. At the
data rate of 9 Mbps there was 48.5% latency reduction by leveraging fog computing in this
case. This comes at the cost of addressing data security and privacy while in transport
between the device and the cloud. To help manage medical device risks, including security,
a risk management process is specified in the international organization for standardization
(ISO) 14,971 standard for the application of risk management to the medical devices [154].
Moreover, the FDA published a draft guidance on the content of premarket submissions
for the management of cybersecurity in medical devices [155], which provides recommen-
dations to industry regarding cybersecurity aspects of the medical device cybersecurity
management, such as risk assessment. Security KPIs in the context of 5G-enabled healthcare
applications are summarized in [6], including authenticity, confidentiality, integrity, agility,
vulnerability, resilience, mitigation/recovery time, and proactiveness.

Network-level KPIs were addressed in the context of healthcare IoT, including a
connection density of 20,000 devices/km? in remote pervasive monitoring settings such as
in smart home wearables and 10,000 devices/km? for general mHealth wearables [11,22].
Other reported KPIs include 50 Gbps/km? traffic density and 50 km user activity range [11].

Given that the healthcare IoT includes diverse applications that can be used in diverse
environments, their enabling KPIs can be influenced by practical deployment factors such
as number of nodes, topology, operating frequencies, transmit power restrictions height of
device [156], interference, and co-existence [156,157], and others. Finally, we note that one
of the emerging 5G-enabled healthcare applications is medical augmented reality /virtual
reality (AR/VR). According to a study by Qualcomm [158], the requirements for AR/VR
can go to as high as 10-50 Mbps for 360° 4 K video, 50-200 Mbps for 360° 8 K video,
and up to 5000 Mbps (or 5 Gbps) for 6 degree-of-freedom (DoF) video. Moreover, a study
by Facebook indicates a real-time playback rate of 4 Gbps (or 32 Gbps) for 6 DoF video,
indicating there might be some use cases where individual sustained per-user rates of
>1 Gbps might be needed [159]. The varying applications and diverse IoT device categories
contributed to the reported KPI covering a broad range of values. For instance, the battery
lifetime ranges from 24 h for capsule endoscopes to several years for other implantable
devices. The data transmission rate for wearable devices varies from as low as <10 Kbps
to 10 Mbps. Similarly, the BER also varies between 10~!9 and 10~2 depending on the data
type. The latency ranges from 0.473 ms for wearable devices for vital signs monitoring to a
few seconds for fitness tracking devices, while the network-level KPIs include a connection
density of 10,000-20,000 devices/km?.
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3.4. Robots for Assisted Living

Robots in assisted living environments have been widely studied in literature [11,2047]. An
assistive robot can be defined as an aiding device that has the ability to process the sensory
information for helping the physically /mentally impaired or elderly persons to perform
tasks of daily living without the need of attendants, in hospital or at home [160]. Assistive
robots can be broadly classified into two categories, i.e., services assistive robots and
companion robots as shown in Figure 4. In this section, our focus is on the communication
KPIs for this application with a summary provided in Table 2 of the reported cellular
network KPIs.

Table 2. Summary of literature for relevant assistive robots KPIs.

KPI Service Robot Assigned Tasks Target Population  Study
Mobile robot
UE battery BENDER with Assistance in rou'tme. tasks and user Elderly [161]
telepresence localization
capabilities
Latency, PLR Companion robot User finding e%nd medication Elderly [162]
reminder
Latency, data rate Cloud robot Monitoring of vital signs Elderly [163]
Accessibility, position Domestlc health As51stance. in routine taslfs, user Healthy elderly [164]
accuracy assistant Max searching and following
Throughput Domestic robot Video streaming through Elderly and [165]
(packets per seconds) DoRo robot cameras children

Latency, PLR, position

accuracy (mean
localization error)

Recognition and localization

Service robot
of users

Healthy elderly [166]

Latency (round trip time), Personalized medical support and Eﬁfﬁli]h}if;}i)clze
retainability Mobile robot DoRo . pp . [167]
(total service time) pre-set reminder event diseases
(multimorbidity)
e Nao, Qbo and ) ) . Elderly and
Latency, reliability Hanson robots Streaming of teleoperation website children [168]

Position accuracy

Assistance in routine tasks, health

ASTRO robot related reminders

Healthy elderly [169]

Assistive robotic Patients with

Position accuracy arm Tablet placement infront of patient limited or no [170]
mobility

Position accurac Mobile humanoid Support for household tasks and Elderly and [171]
y robot GARMI emergency assistance patients

Position accuracy is pertinent to robots used for fall detection and real-time assistance.
The authors in [172] demonstrated that by exploiting the information from the reflected
multipath components, increased accuracy and robustness in localization can be achieved.
Moreover, they proposed 5G mmWave as one of the promising solutions for indoor accurate
localization for assistive living.

According to the EU Horizon 2020 project “Robots in Assisted Living Environments” [173],
assisted living considerations include reliability, connectivity, low battery discharge profile, low
latency, high communication success rate, and minimum localization error, with appropriate
feedback to support people with limited mobility, who require assistance and companionship.
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To provide personalized medical support to the elderly in the presence of several
chronic diseases, the authors in [167] designed a hybrid robot—cloud approach. The robot
autonomously reached the user with the pre-set reminder events acting as a physical
reminder. This case study in DomoCasa Lab (Italy) evaluated the robot (DoRo) based on
KPIs such as latency (i.e., round trip time), retainability (i.e, in terms of total service time),
robot processing time (RPT), average travel time, and mean velocity. Latency over the 20
experimental trials was reported as 56 ms and RPT as 0.012 ms. For the use case where
DoRo had to travel 12.6 m to deliver the services with a mean velocity of 0.31 m/s, the total
service time was 40.08 s.

The ASTROMOBILE system was evaluated in [169]. The mean path length for the
simplest use case (moving in the kitchen) was 9.6 m with a mean velocity of 0.51 m/s, path
jerk of 0.023 x 10°, and a mean position accuracy error is 0.98 m.

Under the German research project SERROGA, which lasted from 2012 to mid 2015,
a companion robot for domestic health assistance was developed [164]. Its services include
communication, emergency assistant, physical activity motivator, navigation services, pulse
rate monitoring, and fall detection. The robot was evaluated in different apartments and
labs for a minimum of 29 min and a maximum duration of 255 min, with a velocity range
of 0.25-0.27 m/s for distance covered of 355-2600 m. The robot was able to complete the
user following tasks with a positioning accuracy of 95%.

A cloud-robotic system for the provisioning of assistive services for the promotion of
active and healthy ageing in Italy and Sweden was assessed in [166] on the basis of latency
(i.e, round trip time), PLR (i.e, data loss rate), position accuracy (i.e, mean localization error),
and localization root mean square error (RMSE) KPIs. The reliability and responsiveness of
the cloud Database Management Service (DBMS) was evaluated based on latency as the
time a robot waits for the user position, after a request to the server. The study took place
in two sites: smart home in Italy (Domocasa lab) and residential condominium in Sweden
(Angen). The mean latency in Domocasa lab was 40 ms, while for the Swedish site it was
134.57 ms. The local host latency acquired during the experimentation was 7.46 ms and was
used as a benchmark. The rate of service failures was less than 0.5% in Italy, and 0.002% for
the Angen site. In Domocasa and Angen, the mean absolute localization errors were 0.98 m
and 0.79 m, respectively, while the RMSE were 1.22 m and 0.89 m, respectively. On average,
the absolute localization error considering the two setups was 0.89 m, and the RMSE was
1.1 m. The use of the presence sensors increased the localization accuracy in the selected
positions by an average of 35%.

Assistive living robots domain can suffer from errors caused by the communication
connection issues, latency, and spatiotemporal dynamic environment changes. To improve
the autonomy and efficiency of robots in smart environment, the authors in [174] proposed
a framework for the improvement of the assistive robot performance through a context
acquisition method, an activity recognition process, and a dynamic hierarchical task planner.
Additionally, authors in [175] proposed to use full duplex 5G communication for reliable
and low-latency robot-based assistive living.

In a trend similar to the other investigated use-cases, the reported communication
KPI values for assistive robots varied across reports, with latency varying from 7.46 ms
to 134.57 ms and velocity varying from 0.25 m/s to 0.51 m/s. The localization error has a
narrow range from 0.89 m-0.98 m, while the distance covered by the assistive robots has a
broad range from 12.6 m—2600 m, and service time varies from 0.08 s—255 min.

4. 5G-Healthcare Requirements vs. Status of 5G Capabilities

5G technology was developed to meet the use cases specified by the International
Telecommunication Union (ITU) International Mobile Telecommunications-2020 (IMT-2020).
These are enhanced mobile broadband (eMBB), ultra-reliable, and low-latency commu-
nications (URLLC), and massive machine type communications (mMTC). As detailed in
the previous sections, many healthcare applications can benefit from the communication
capabilities of these 5G use cases. A study based on simulation confirmed that the 3GPP
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5G system complies with the ITU IMT-2020 performance requirements [176]. 5G trials and
commercial deployments are accelerating throughout the world [177-179]. These show
varying levels of performance toward theoretical goals. For example, 2 Gbps throughput
and 3 ms latency were achieved in Austria using spectrum in the 3.7 GHz band [177]. In
another 5G trial in Belgium, 2.94 Gbps throughput and 1.81 ms latency were achieved.
The peak throughputs of 15 Gbps, 5 Gbps, and 4.3 Gbps in 5G trials were also reported by
European network operators Telia, Elisa, and Tele2 Lithuania, respectively [177]. In the U.S,,
AT&T reported on 5G use cases such as video streaming, downloading, and conferencing
and achieved upload and download speeds around 1 Gbps [177]. Sprint tested streaming
5G virtual reality systems and 4K video and achieved peak download speeds of more than
2 Gbps using the 73 GHz mmWave spectrum [178]. Verizon achieved 4.3 Gbps speeds by
aggregating C-band spectrum with mmWave spectrum in a lab trial [179].

Although commercial 5G coverage is still limited [180-182], 5G tests by OpenSignal
in 2020 compared services offered by Verizon (mmWave), T-Mobile (mmWave, 600 MHz),
Sprint (2.5 GHz), and AT&T (850 MHz) [183]. The report concluded that users should
not automatically expect speeds of several hundred Mbps on 5G because in the tests they
observed an average 5G download speeds ranging from 47.5 Mbps to 722.9 Mbps. They
also noted that the U.S. carrier’s 5G services are held back by 5G spectrum availability
and some services are fast; however, they are limited by the coverage. Those with greater
coverage offer slow speeds due to the limited spectrum. They also highlighted the need for
the U.S. carriers to repurpose large portions of the mid-band spectrum for 5G in the U.S. to
facilitate the 5G performance goals.

Comparing the realistic performance reports with the most stringent data rate require-
ment for telesurgery (i.e., 1.6 Gbps for 3D camera flow as listed in Table A3), we note
that the throughput requirements of many healthcare use cases might be possible to meet
with existing 5G capabilities. However, use cases requiring 6 DoF content such as AR/VR
might be challenging those current capabilities. Furthermore, our review highlights that
the latency for the haptic feedback can go as low as 1 ms, and for connected ambulance,
the lower limit is 10 ms. However, realistic latency figures are expected to remain in the
10-12 ms range [184,185], rather than 1-2 ms. Notably, the 1 ms latency is specified in
next-generation radio access network (NG-RAN) domain, which is defined as the link
between the end user and base station (including MEC). This latency increases when the
communication needs to be transmitted to the core network. Therefore, the end-to-end
latency target could be around 5 ms [186]. The additional delay can impact the applications
that utilize the core network (e.g., remote expert for collaboration in surgery, video analytics
for behavioral recognition, and remote patient monitoring). 5G mmWave frequencies—also
known as frequency range 2 (FR2)—can support large subcarrier spacing, resulting in
smaller transmission time interval and thus improving latency. This indicates a favorable
latency requirement support for healthcare use cases when using the mmWave spectrum.
However, this comes at the expense of limited coverage due to the wave propagation
properties in the mmWave spectrum, which can impact applications that need mobility sup-
port such as the connected ambulance. Moreover, the realistic deployments and trials are
limited by the specific used configurations and the small set of reported KPIs like downlink
throughput and latency. Accordingly, enabling a specific healthcare application using 5G
requires a collaboration between the application developer, 5G network service provider,
and the application user to ensure that the service meets the application requirements for
communication and that the application can be used safely.

5. Gaps in Literature and Future Considerations

A considerable part of the existing literature addresses the communication require-
ments for the healthcare applications qualitatively, for example, using descriptors such
as “big”, “small”, and “extremely low”. Where quantitative requirements are mentioned,
the focus is on high-level KPIs, which leaves a gap in describing how a given application

can be supported in certain scenarios. For example, when addressing throughput, uplink
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and downlink throughput are commonly discussed; however, cell edge throughput is not
considered. Similarly, mobility is commonly mentioned in terms of speed in the case of
connected ambulance, but other mobility-related KPIs, such as handover success/failure
rates or handover execution time, are not specified.

Although some reports describe individual KPIs in detail, the trade-offs between
multiple KPIs and their interactions with configuration and optimization parameters
(COPs) in a healthcare applications are often omitted. For example, one trade-off between
throughput and latency for next-generation video content is described in [158], which
states that achieving 5-20 ms latency requires 400-600 Mbps throughput, while achieving
1-5 ms latency requires 100200 Mbps throughput. Another example of trade-offs is
between coverage, capacity, and load balancing [187], or the trade-off between coverage,
height of BS, and antenna parameters [188]. Such trade-offs are rarely considered in the
literature on 5G-enabled healthcare use cases, which can complicate applications with
conflicting requirements such as achieving high throughput with high mobility or low
battery consumption. One way to study these trade-offs might be to combine several KPIs
into a new one. For example, Samsung developed representative KPIs to describe the
performance of multi-objective optimization involving more than two KPIs, such as sum of
log of data rate, considering both throughput and fairness. It can be used as a joint KPI of
wearable devices applications to represent both energy efficiency and throughput, energy
efficiency, and delay, or energy efficiency and reliability [189].

Another gap in the literature is the limited 5G network scenarios that are assessed.
Limitations include the small number of network trials, small number of infrastructure
configurations, small coverage area, and the lack of spatiotemporal variability for trials being
conducted in the laboratory settings. A critical analysis of 5G network failure modes that can
impact 5G-enabled healthcare use cases is an open question not addressed in the literature.
For example, only the success of the connected ambulance use case is discussed in the
literature. However, this use case might be negatively impacted in situations with extremely
high mobility, high user density, a disaster scenario where a large number of ambulances rush
to the same point, a cell outage, or the presence of multiple critical traffic flows in the network.

Moreover, network KPIs are commonly vendor-specific, where each network equip-
ment vendor specifies the performance metrics using its own set of counters and naming
conventions. This may give rise to the challenge of managing non-standardized KPIs.
The large number of technical counters in the heterogeneous 5G deployments, the use of
vendor-specific monitoring tools by the network operators, and the lack of unified data for-
mat for collecting and reporting the performance data also pose a challenge for managing
the service level agreements between the 5G network operators and the end users of the
5G-enabled healthcare systems [6]. For further reflection on avenues for addressing the
highlighted considerations in practice and research, the reader is referred to [6,190].

Finally, we note that real-time systems and time-sensitive networks (TSNs) can benefit
several of the discussed healthcare applications such as remote robotic-assisted surgery
and in-ambulance treatment. This can be supported by 5G’s technical features such as
the near-instantaneous data transmission. For instance, the telerobotic spinal surgeries
conducted using 5G-enabled robots have been enabled by a minimal lag between the
robot and the remote physician [191]. Similarly, authors in [192] presented a survey on
application requiring near real-time response, including healthcare applications such as AR,
VR, tele-diagnosis, tele-surgery, and telerehabilitation. Accordingly, future considerations
for 5G-enabled healthcare include the investigation and analysis of real-time systems
and TSNs and their role in supporting healthcare applications. 5G can also contribute to
enabling connected healthcare applications in small-scale healthcare facilities like those in
rural areas [193,194].

6. Conclusions

5G communication features promise to enable novel healthcare applications and
expand network access in the existing connected medical devices. Understanding the
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communication KPI requirements for 5G-enabled healthcare use cases can help healthcare
application developers, 5G network providers, and regulatory authorities in the healthcare
sector to promote safe and effective healthcare. In this paper, we have surveyed quantitative
and qualitative KPI requirements for different use cases, including remote robotic-assisted
surgery, mobile-connected ambulances, wearable and implantable devices in the healthcare
IoT, and service robotics for assisted living. A comparison of 5G-healthcare requirements
with the status of 5G capabilities reveals that some healthcare applications can be sup-
ported by the existing 5G services while others might be challenging, especially those with
stringent latency requirement. This calls for a collaboration between the healthcare applica-
tion developers and the network service providers to explore, document, and manage the
possible connectivity support for a given application throughout its lifecycle.

We have also identified gaps in the existing literature and highlight considerations in
this space, including the lack of focus on quantitative requirements, omitting relevant KPlIs,
overlooking the trade-offs between multiple KPIs and COPs, the lack of unified KPI specifica-
tions across different network operators and equipment vendors, and (lastly) the limitations
5G scenarios conducted in the existing trials. The gaps in this space and considerations
highlighted in this paper can help direct future 5G-enabled medical device studies and
facilitate the safe, effective, and efficient implementation of 5G technology in healthcare.
Medical devices must integrate 5G technology safely and effectively to facilitate patient
access to 5G-enabled medical device applications. As a part of the overall medical device
risk management process, documenting and meeting the communication requirements for
diverse 5G-healthcare use cases comes under service level agreements. Therefore, knowl-
edge of requirements for 5G-enabled medical use cases highlighted in this paper can also
help network service providers, users, and regulatory authorities in developing, managing,
monitoring, and evaluating service-level agreements in 5G-enabled medical systems.
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Appendix A. Telesurgery KPIs

Table Al. Latency requirements for telesurgery.

Data Type Reported Latency Source Distance
<150 ms [20,21] Experiment [32] 14,000 km
<200 ms [11,22] Other [22] ~1000 m
2D camera flow <700 ms [23] Experiment [23] 9000 miles
<600 ms [24] Experiment [24] 14,000 km
<300 ms [25] Experiment [25] 14,000 km
<150 ms [20,21] Experiment [32] 14,000 km
<300 ms [26] Experiment [26] -
<500 ms [27] Experiment [27] -
<400 ms [28,29] Simulation [38] -
280 ms [195] Experiment [195] 15 km
3D camera flow 20-50 ms [30] Other [30] 200 km
2-60 ms [46] Experiment [196] -
146-202 ms [197] Experiment [197] 4 km, 6.1 km
. ~740 km, 1260 km,
28 ms [191] Experiment [191] 144 km, 190 km, 3160 km
258-278 ms [198] Experiment [198] 3000 km
0.25-5 ms [48] Simulation [48] -
Audio flow <150 ms [20,21,28,31] Experiment [32] 14,000 km
100 ms [30] Other [30] 200 km
Temperature <250 ms [11,20,21,33,34] Other [33] -
Blood pressure <250 ms [11,20,21,33,34] Other [33] -
Heart rate <250 ms [11,20,21,33,34] Other [33] -
Respiration rate <250 ms [11,20,21,33,34] Other [33] -
ECG <250 ms [11,20,21,33,34] Other [33] -
EEG <250 ms [11,20,21,33,34] Other [33] -
EMG <250 ms [11,20,21,33,34] Other [33] -
3-10 ms [20,21] Experiment [37] -
1-10 ms [30] Other [30] 200 km
Force 3-60 ms [28] Experiment [39] ~3200 miles
<50 ms [29,35] Experiment [40] & Simulation [35] few hundred meters
40 ms [29] Experiment & Simulation [29] -
<100 ms [36] Experiment [36] -
<5.5ms [20,21,28,31] Experiment [37] -
Vibration <50 ms [29] Experiment [40] few hundred meters
1-10 ms [30] Other [30] 200 km
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Table A2. Jitter requirements for telesurgery.

Data Type

Reported Jitter

Source

2D camera flow

3-30 ms [11,20]

Simulation [41]
Simulation [38]

3D camera flow

3-30 ms [11,20]

3-55 ms [48]
<30 ms [28-30,34,38,41]

Simulation [41]

Simulation [38]

Simulation [48]
Other [30]

<30 ms [11,20,28,29,34]

Simulation [41]
Simulation [38]

Audio flow
50 ms [30] Other [30]
3-55 ms [48] Simulation [48]
Experiment [40]
<2ms [11,20,29,34] Simulation [41]
Force 10 ms [30] Other [30]
1-10 ms [28] Experiment [42]
Experiment [40]
<2ms [11,20,29,34] Simulation [41]
Vibration 10 ms [30] Other [30]
1-10 ms [28] Experiment [42]
Table A3. Data rate requirements for telesurgery.
Data Type Reported Data Rate Source

2D camera flow

<10 Mbps [20,21]

Simulation [41] Experiment [40]

3D camera flow

137 Mbps-1.6 Gbps [20,21]
~8 Mbps [196]
95-106 Mbps [197]
2.5-5 Mbps [28,29]

Simulation [28]
Experiment [196]
Experiment [197]

Simulation [41] Experiment [40]

1 Gbps [30] Other [30]
>1 Gbps [11] Simulation [28]
Audio flow 22-200 Kbps [20,21,28,29] Experiment [31]
Temperature <10 Kbps [20,21,34] Other [33]
Blood pressure <10 Kbps [20,21,34] Other [33]
Heart rate <10 Kbps [20,21,34] Other [33]
Respiration rate <10 Kbps [20,21,34] Other [33]
ECG 72 Kbps [20,21,34] Other [33]
EEG 84.6 Kbps [20,21,34] Other [33]
EMG 1.536 Mbps [20,21,34] Other [33]
128-400 Kbps [20,21] Experiment [28,31]
Force 500 Kbps—-1 Mbps [29] Simulation [41]
128 Kbps [28] Experiment [43]
128-400 Kbps [20] Experiment [28,31]
Vibration 500 Kbps—-1 Mbps [29] Simulation [41]
128 Kbps [28] Experiment [43]
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Table A4. Packet loss or bit error rate for telesurgery.

Data Type

Reported Loss

Source

2D camera flow

<1073 [20,21]

Experiment [40,41]

3D camera flow

<1073 [20,21]
<1% [28,29]
0.01-0.06% [48]

Experiments [40,41]
Experiments [40,41] &
Simulation [38]
Simulations [48]

<1072 [20,21]
0.01-0.06% [48]
<1% [28,29]

Experiments [40,41]
Simulations [48]
Experiments [40,41], Simulation [38]

Audio flow 105 [30] Other [30]
<1073 [20,21] Other [33]
Temperature <1010 [34] (BER) Other [33]
<1073120,21] Other [33]
Blood pressure <1010 [34] (BER) Other [33]
<1073120,21] Other [33]
Heart rate <1010 [34] (BER) Other [33]
o <1073 [20,21] Other [33]
Respiration rate <1070 [34] (BER) Other [33]
<1073 [20,21] Other [33]
ECG <1017 [34] (BER) Other [33]
<1073 [20,21] Other [33]
EEG <10-10 [34] (BER) Other [33]
<1073120,21] Other [33]
EMG <1010 [34] (BER) Other [33]
<10% [29] Experiments [40,41]
<10~ [20] [21] Experiments [40,41]
Force 0.01-10% [28] Experiments [40,41]
<0.1[35] Experiments [35]
<10% [29] Experiments [40,41,43]
Vibration <10~* [20] [21] Experiments [40,41,43]
0.01-10% [28] Experiments [40,41,43]

Table A5. Other requirements for telesurgery.

KPI Reported Requirement Source

Reliability 1—-1077 [11,44]
Availability 1—105 [11]
Payload size Big [11]
Traffic density Low [Gbps/ km?] [11]
Connection density Low [/km?] [11]
Service area dimension 10m x 10m X 5m [11]
Survival time 0 ms [11]
e
Duty cycle for vital signal monitoring <1-10% [34]

49



Healthcare 2022, 10, 293

References

1. Li, D. 5G and intelligence medicine—How the next generation of wireless technology will reconstruct healthcare? Precis. Clin.
Med. 2019, 2, 205-208. [CrossRef]

2. Liu, E; Effiok, E.; Hitchcock, J. Survey on health care applications in 5G networks. IET Commun. 2020, 14, 1073-1080. [CrossRef]

3. Hamm, S; Schleser, A.C.; Hartig, J.; Thomas, P.; Zoesch, S.; Bulitta, C. 5G as enabler for Digital Healthcare. Curr. Dir. Biomed. Eng.
2020, 6, 1-4. [CrossRef]

4. Padmashree, T.; Nayak, S.S. 5G Technology for E-Health. In Proceedings of the 2020 Fourth International Conference on I-SMAC
(IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Palladam, India, 7-9 October 2020; pp. 211-216.

5. Gupta, P; Ghosh, M. Revolutionizing Healthcare with 5G. Telecom Bus. Rev. 2019, 12, 41.

6.  Qureshi, HN.; Manalastas, M.; Zaidi, S.M.A.; Imran, A.; Al Kalaa, M.O. Service Level Agreements for 5G and beyond: Overview,
Challenges and Enablers of 5G-Healthcare Systems. IEEE Access 2020, 9, 1044-1061. [CrossRef]

7. Ullah, H,; Nair, N.G.; Moore, A.; Nugent, C.; Muschamp, P.; Cuevas, M. 5G communication: An overview of vehicle-to-everything,
drones, and healthcare use-cases. IEEE Access 2019, 7, 37251-37268. [CrossRef]

8. Muzammil, S. Telehealth: Is It Only for the Rural Areas? A Review of Its Wider Use. Telehealth Med. Today 2020, 5, 30938 -30953.
[CrossRef]

9. Qadri, Y.A.; Nauman, A ; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The future of healthcare internet of things: A survey of emerging
technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121-1167. [CrossRef]

10. FDA. Radio Frequency Wireless Technology in Medical Devices, Guidance for Industry and Food and Drug Administration Staff.
Available online: https:/ /www.fda.gov/media/71975/download (accessed on 29 October 2020).

11. Cisotto, G.; Casarin, E.; Tomasin, S. Requirements and Enablers of Advanced Healthcare Services over Future Cellular Systems.
IEEE Commun. Mag. 2020, 58, 76-81. [CrossRef]

12.  Schaich, F.; Hamon, M.H.; Hunukumbure, M.; Lorca, J.; Pedersen, K.; Schubert, M.; Kosmatos, E.; Wunder, G.; Reaz, K. The
ONES5G Approach Towards the Challenges of Multi-Service Operation in 5G Systems. In Proceedings of the 2018 IEEE 87th
Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3-6 June 2018; pp. 1-6. [CrossRef]

13.  5GPPP. White Paper on Service Performance Measurement Methods over 5G Experimental Networks from TMV WG. Avail-
able online: https:/ /5g-ppp.eu/white-paper-on-service-performance-measurement-methods-over-5g-experimental-networks /
(accessed on 30 June 2021).

14. 5G-Monarch. Documentation of Requirements and KPIs and Definition of Suitable Evaluation Criteria. ~Available on-
line: https://5g-monarch.eu/wp-content/uploads/2017/10/5G-MoNArch_761445_D6.1_Documentation_of_Requirements_
and_KPIs_and_Definition_of_Suitable_Evaluation_Criteria_v1.0.pdf (accessed on 30 June 2021).

15. Krasniqi, F.; Gavrilovska, L.; Maraj, A. The Analysis of Key Performance Indicators (KPI) in 4G/LTE Networks. In Future Access
Enablers for Ubiquitous and Intelligent Infrastructures; Poulkov, V., Ed.; Springer International Publishing: Cham, Switzerland, 2019;
pp- 285-296.

16. 3GPP. 3GPP TR 38.913, “Study on Scenarios and Requirements for Next Generation Access Technologies”. V14.2.0. March 2017.
Available online: http://www.3gpp.org (accessed on 30 June 2021).

17.  Dwivedi, S.; Shreevastav, R.; Munier, F.; Nygren, J.; Siomina, I; Lyazidi, Y.; Shrestha, D.; Lindmark, G.; Ernstrém, P,; Stare, E.; et al.
Positioning in 5G networks. arXiv 2021, arXiv:2102.03361.

18. Gutierrez-Estevez, D.M.; Gramaglia, M.; De Domenico, A.; Di Pietro, N.; Khatibi, S.; Shah, K.; Tsolkas, D.; Arnold, P,; Serrano, P
The path towards resource elasticity for 5G network architecture. In Proceedings of the 2018 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW), Barcelona, Spain, 15-18 April 2018; pp. 214-219.

19. Global Connected Wearable Devices. Available online: https:/ /www.statista.com/statistics /487291 / global-connected-wearable-
devices/ (accessed on 27 June 2021).

20. Zhang, Q.; Liu, J.; Zhao, G. Towards 5G enabled tactile robotic telesurgery. arXiv 2018, arXiv:1803.03586.

21. Usman, M.A,; Philip, N.Y,; Politis, C. 5G enabled mobile healthcare for ambulances. In Proceedings of the 2019 IEEE Globecom
Workshops (GC Wkshps), Waikoloa, HI, USA, 9-13 December 2019; pp. 1-6.

22. Thuemmler, C.; Gavrasm, A.; Jumelle, A.; Paulin, A.; Sadique, A.; Schneider, A.; Fedell, C.; Abraham, D.; Trossen, D. 5G and
e-Health; 5G-PPP White Paper. 2015; pp. 1-24. Available online: https://5g-ppp.eu/euro-5g/ (accessed on 20 July 2021).

23. Fabrlzio, M.D.; Lee, B.R.; Chan, D.Y.; Stoianovici, D.; Jarrett, TW.; Yang, C.; Kavoussi, L.R. Effect of time delay on surgical
performance during telesurgical manipulation. J. Endourol. 2000, 14, 133-138. [CrossRef] [PubMed]

24. Rayman, R; Primak, S.; Patel, R.; Moallem, M.; Morady, R.; Tavakoli, M.; Subotic, V.; Galbraith, N.; Van Wynsberghe, A.; Croome,
K. Effects of latency on telesurgery: An experimental study. In Lecture Notes in Computer Science, Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted Intervention, Palm Springs, CA, USA, 26-29 October 2005; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 57-64.

25. Marescaux, J.; Leroy, J.; Rubino, E; Smith, M.; Vix, M.; Simone, M.; Mutter, D. Transcontinental robot-assisted remote telesurgery:
Feasibility and potential applications. Ann. Surg. 2002, 235, 487. [CrossRef] [PubMed]

26. Xu,S.; Perez, M.; Yang, K,; Perrenot, C.; Felblinger, ].; Hubert, ]. Determination of the latency effects on surgical performance

and the acceptable latency levels in telesurgery using the dV-Trainer® simulator. Surg. Endosc. 2014, 28, 2569-2576. [CrossRef]
[PubMed]

50



Healthcare 2022, 10, 293

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Perez, M.; Xu, S.; Chauhan, S.; Tanaka, A.; Simpson, K.; Abdul-Muhsin, H.; Smith, R. Impact of delay on telesurgical performance:
Study on the robotic simulator dV-Trainer. Int. J. Comput. Assist. Radiol. Surg. 2016, 11, 581-587. [CrossRef]

Eid, M,; Cha, J.; El Saddik, A. Admux: An adaptive multiplexer for haptic-audio-visual data communication. IEEE Trans. Instrum.
Meas. 2010, 60, 21-31. [CrossRef]

Marshall, A.; Yap, K.M.; Yu, W. Providing QoS for networked peers in distributed haptic virtual environments. Adv. Multimed.
2008, 2008, 841590. [CrossRef]

NSE. NSF Follow-on Workshop on Ultra-Low Latency Wireless Networks. In NSF Workshop on Ultra Low-Latency Wireless
Networks; NSF: Arlington, VA, USA, 2016.

Cizmeci, B.; Xu, X.; Chaudhari, R.; Bachhuber, C.; Alt, N.; Steinbach, E. A multiplexing scheme for multimodal teleoperation.
ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2017, 13, 1-28. [CrossRef]

Marescaux, J.; Leroy, J.; Gagner, M.; Rubino, F.; Mutter, D.; Vix, M.; Butner, S.E.; Smith, M.K. Transatlantic robot-assisted
telesurgery. Nature 2001, 413, 379-380. [CrossRef]

Zhen, B.; Patel, M,; Lee, S.; Won, E.; Astrin, A. TG6 technical requirements document (TRD). IEEE P§02 2008, 15, 8.

Patel, M.; Wang, J. Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel.
Commun. 2010, 17, 80-88. [CrossRef]

Shi, Z.; Zou, H.; Rank, M.; Chen, L.; Hirche, S.; Muller, H.J. Effects of packet loss and latency on the temporal discrimination of
visual-haptic events. IEEE Trans. Haptics 2009, 3, 28-36.

Makino, Y.; Furuyama, Y.; Inoue, S.; Shinoda, H. HaptoClone (Haptic-Optical Clone) for Mutual Tele-Environment by Real-time
3D Image Transfer with Midair Force Feedback. In Proceedings of the CHI, San Jose, China, 7 May 2016; pp. 1980-1990.
Hachisu, T.; Kajimoto, H. Vibration feedback latency affects material perception during rod tapping interactions. IEEE Trans.
Haptics 2016, 10, 288-295. [CrossRef]

Bertsekas, D.P. Traffic Behavior and Queuing in a QoS Environment. OPNETWORK 2005, Session 1813; 2005. Available online:
https:/ /www.cpe ku.ac.th/~anan/myhomepage/wp-content/uploads/2015/01/1-opnet_full_presentation.pdf (accessed on 20
October 2021).

Kim, J.; Kim, H.; Tay, B.K.; Muniyandi, M.; Srinivasan, M.A.; Jordan, J.; Mortensen, J.; Oliveira, M.; Slater, M. Transatlantic touch:
A study of haptic collaboration over long distance. Presence Teleoperators Virtual Environ. 2004, 13, 328-337. [CrossRef]
Souayed, R.T,; Gaiti, D.; Yu, W.; Dodds, G.; Marshall, A. Experimental study of haptic interaction in distributed virtual
environments. In Proceedings of the EuroHaptics, Munich, Germany, 5-7 June 2004; pp. 260-266.

Yap, KM.; Marshall, A.; Yu, W,; Dodds, G.; Gu, Q.; Souayed, R.T. Characterising distributed haptic virtual environment network
traffic flows. In IFIP—The International Federation for Information Processing, Proceedings of the International Conference on Network
Control and Engineering for QoS, Security and Mobility, Lannion, France, 14-18 November 2005; Springer: Boston, MA, USA, 2005;
pp. 297-310.

Park, K.S.; Kenyon, R.V. Effects of network characteristics on human performance in a collaborative virtual environment. In
Proceedings of the IEEE Virtual Reality (Cat. No. 99CB36316), Houston, TX, USA, 13-17 March 1999; pp. 104-111.

Dev, P; Harris, D.; Gutierrez, D.; Shah, A ; Senger, S. End-to-end performance measurement of Internet based medical applications.
In Proceedings of the AMIA Symposium, San Antonio, AZ, USA, 9-13 November 2002; American Medical Informatics Association:
San Antonio, AZ, USA, 2002; pp. 205-209.

Soldani, D.; Fadini, F.; Rasanen, H.; Duran, J.; Niemela, T.; Chandramouli, D.; Hoglund, T.; Doppler, K.; Himanen, T.; Laiho, J.;
et al. 5G mobile systems for healthcare. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring),
Sydney, NSW, Australia, 4-7 June 2017; pp. 1-5.

Xia, S.B.; Lu, Q.S. Development status of telesurgery robotic system. Chin. J. Traumatol. 2021, 24, 144-147. [CrossRef] [PubMed]
Valdez, L.B.; Datta, R.R.; Babic, B.; Miiller, D.T.; Bruns, C.J.; Fuchs, H.F. 5G mobile communication applications for surgery: An
overview of the latest literature. Artif. Intell. Gastrointest. Endosc. 2021, 2, 1-11. [CrossRef]

Dohler, M. The Internet of Skills: How 5G-Synchronized Reality Is Transforming Robotic Surgery. In Robotic Surgery; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 207-215._20. [CrossRef]

Sedaghat, S.; Jahangir, A.H. RT-TelSurg: Real Time Telesurgery Using SDN, Fog, and Cloud as Infrastructures. IEEE Access 2021,
9, 52238-52251.

Ahvar, E.; Ahvar, S.; Raza, S.M.; Manuel Sanchez Vilchez, J.; Lee, GM. Next generation of SDN in cloud-fog for 5G and
beyond-enabled applications: Opportunities and challenges. Network 2021, 1, 28-49. [CrossRef]

Aggarwal, S.; Kumar, N. Fog computing for 5G-enabled tactile Internet: Research issues, challenges, and future research
directions. Mob. Netw. Appl. 2019, 1-28.%2Fs11036-019-01430-4. [CrossRef]

Hartmann, M.; Hashmi, U.S; Imran, A. Edge computing in smart health care systems: Review, challenges, and research directions.
Trans. Emerg. Telecommun. Technol. 2019, e3710. [CrossRef]

Akrivopoulos, O.; Chatzigiannakis, I; Tselios, C.; Antoniou, A. On the deployment of healthcare applications over fog computing
infrastructure. In Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC),
Turin, Italy, 4-8 July 2017; Volume 2, pp. 288-293.

Mutlag, A.A.; Abd Ghani, M.K.; Arunkumar, N.A.; Mohammed, M.A.; Mohd, O. Enabling technologies for fog computing in
healthcare IoT systems. Future Gener. Comput. Syst. 2019, 90, 62-78. [CrossRef]

51



Healthcare 2022, 10, 293

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

LaMonte, M.P,; Cullen, J.; Gagliano, D.M.; Gunawardane, R.; Hu, P.; Mackenzie, C.; Xiao, Y. TeleBAT: Mobile telemedicine for the
Brain Attack Team. ]. Stroke Cerebrovasc. Dis. 2000, 9, 128-135. [CrossRef] [PubMed]

Terkelsen, C.; Norgaard, B.; Lassen, J.; Gerdes, J.; Ankersen, J.; Romer, F; Nielsen, T.; Andersen, H. Telemedicine used for remote
prehospital diagnosing in patients suspected of acute myocardial infarction. J. Intern. Med. 2002, 252, 412—420. [CrossRef]
Hsieh, ].C.; Lin, B.X.; Wu, ER,; Chang, P.C.; Tsuei, Y.W.; Yang, C.C. Ambulance 12-lead electrocardiography transmission via cell
phone technology to cardiologists. Telemed. E-Health 2010, 16, 910-915. [CrossRef] [PubMed]

Liman, T.G.; Winter, B.; Waldschmidt, C.; Zerbe, N.; Hufnagl, P.; Audebert, H.]J.; Endres, M. Telestroke ambulances in prehospital
stroke management: Concept and pilot feasibility study. Stroke 2012, 43, 2086—2090. [CrossRef]

Yperzeele, L.; Van Hooff, R.].; De Smedt, A.; Espinoza, A.V.; Van Dyck, R.; Van de Casseye, R.; Convents, A.; Hubloue, I.; Lauwaert,
D.; De Keyser, |.; et al. Feasibility of AmbulanCe-Based Telemedicine (FACT) study: Safety, feasibility and reliability of third
generation in-ambulance telemedicine. PLoS ONE 2014, 9, e110043. [CrossRef] [PubMed]

Wuy, T.C.; Nguyen, C.; Ankrom, C.; Yang, J.; Persse, D.; Vahidy, F.; Grotta, J.C.; Savitz, S.I. Prehospital utility of rapid stroke
evaluation using in-ambulance telemedicine: A pilot feasibility study. Stroke 2014, 45, 2342-2347. [CrossRef]

Espinoza, A.V.; Van Hooff, R.J.; De Smedt, A.; Moens, M.; Yperzeele, L.; Nieboer, K.; Hubloue, I.; de Keyser, J.; Convents, A;
Tellez, H.E,; et al. Development and pilot testing of 24/7 in-ambulance telemedicine for acute stroke: Prehospital stroke study at
the Universitair Ziekenhuis Brussel-Project. Cerebrovasc. Dis. 2016, 42, 15-22. [CrossRef]

Itrat, A.; Taqui, A.; Cerejo, R.; Briggs, F.; Cho, S.M.; Organek, N.; Reimer, A.P.; Winners, S.; Rasmussen, P.; Hussain, M.S.; et al.
Telemedicine in prehospital stroke evaluation and thrombolysis: Taking stroke treatment to the doorstep. JAMA Neurol. 2016,
73,162-168. [CrossRef]

Antoniou, Z.C.; Panayides, A.S.; Pantzaris, M.; Constantinides, A.G.; Pattichis, C.S.; Pattichis, M.S. Real-time adaptation to
time-varying constraints for medical video communications. IEEE ]. Biomed. Health Inform. 2017, 22, 1177-1188. [CrossRef]
Rehman, 1.U.; Nasralla, M.M.; Ali, A.; Philip, N. Small cell-based ambulance scenario for medical video streaming: A 5G-health
use case. In Proceedings of the 2018 15th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT
(HONET-ICT), Islamabad, Pakistan, 8-10 October 2018; pp. 29-32.

Wang, Q.; Alcaraz-Calero, J.; Ricart-Sanchez, R.; Weiss, M.B.; Gavras, A.; Nikaein, N.; Vasilakos, X.; Giacomo, B.; Pietro, G.; Roddy,
M.; et al. Enable advanced QoS-aware network slicing in 5G networks for slice-based media use cases. IEEE Trans. Broadcast.
2019, 65, 444-453. [CrossRef]

Roddy, M.; Truong, T.; Walsh, P.; Al Bado, M.; Wu, Y.; Healy, M.; Ahearne, S. 5G Network Slicing for Mission-critical use cases. In
Proceedings of the 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September-2 October 2019; pp. 409-414.
Kamal, M.D.; Tahir, A.; Kamal, M.B.; Naeem, M.A. Future Location Prediction for Emergency Vehicles Using Big Data: A Case
Study of Healthcare Engineering. |. Healthc. Eng. 2020, 2020, 6641571. [CrossRef] [PubMed]

Yu, S.; Yi, E; Qiulin, X,; Liya, S. A Framework of 5G Mobile-health Services for Ambulances. In Proceedings of the 2020 IEEE 20th
International Conference on Communication Technology (ICCT), Nanning, China, 28-31 October 2020; pp. 528-532.

Bin-Yahya, M.A.R. E-AMBULANCE: A Real-Time Integration Platform for Heterogeneous Medical Telemetry System of Smart
Ambulances. Ph.D. Thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, 2015.

Ehrler, F; Siebert, . N. PedAMINES: A disruptive mHealth app to tackle paediatric medication errors. Swiss Med. Wkly. 2020, 150,
w20335. [CrossRef]

Almadani, B.; Bin-Yahya, M.; Shakshuki, EM. E-AMBULANCE: Real-time integration platform for heterogeneous medical
telemetry system. Procedia Comput. Sci. 2015, 63, 400-407. [CrossRef]

Lippman, ].M.; Smith, S.N.C.; McMurry, T.L.; Sutton, Z.G.; Gunnell, B.S.; Cote, J.; Perina, D.G.; Cattell-Gordon, D.C.; Rheuban,
K.S.; Solenski, N.J.; et al. Mobile telestroke during ambulance transport is feasible in a rural EMS setting: The iTREAT Study.
Telemed. e-Health 2016, 22, 507-513. [CrossRef] [PubMed ]

Kim, H.; Kim, S.W,; Park, E.; Kim, ].H.; Chang, H. The role of fifth-generation mobile technology in prehospital emergency care:
An opportunity to support paramedics. Health Policy Technol. 2020, 9, 109-114. [CrossRef]

Zhai, Y.; Xu, X.; Chen, B.; Lu, H.; Wang, Y,; Li, S.; Shi, X.; Wang, W.; Shang, L.; Zhao, ]. 5G-Network-Enabled Smart Ambulance:
Architecture, Application, and Evaluation. IEEE Netw. 2021, 35, 190-196. [CrossRef]

Geisler, F; Kunz, A.; Winter, B.; Rozanski, M.; Waldschmidt, C.; Weber, ].E.; Wendt, M.; Zieschang, K.; Ebinger, M.; Audebert, H.].;
et al. Telemedicine in prehospital acute stroke care. J. Am. Heart Assoc. 2019, 8, e011729. [CrossRef]

Kandimalla, J.; Vellipuram, A.R.; Rodriguez, G.; Maud, A.; Cruz-Flores, S.; Khatri, R. Role of Telemedicine in Prehospital Stroke
Care. Curr. Cardiol. Rep. 2021, 23, 1-5. [CrossRef]

Rajan, S.S.; Baraniuk, S.; Parker, S.; Wu, T.C.; Bowry, R.; Grotta, ].C. Implementing a mobile stroke unit program in the United
States: Why, how, and how much? JAMA Neurol. 2015, 72, 229-234.

Wu, T.C; Parker, S.A.; Jagolino, A.; Yamal, ].M.; Bowry, R.; Thomas, A.; Yu, A.; Grotta, ].C. Telemedicine can replace the
neurologist on a mobile stroke unit. Stroke 2017, 48, 493—-496. [CrossRef] [PubMed]

Audebert, H.; Fassbender, K.; Hussain, M.S.; Ebinger, M.; Turc, G.; Uchino, K.; Davis, S.; Alexandrov, A.; Grotta, J. The
PRE-hospital stroke treatment organization. Int. J. Stroke 2017, 12, 932-940. [CrossRef] [PubMed]

EU 5G PPP Trials Working Group (Including J. Alcaraz Calero and Q. Wang). The 5G PPP Infrastructure-Trials and Pilots Brochure.
Available online: https:/ /5g-ppp.eu/wp-content/uploads/2019/09/5GInfraPPP_10TPs_Brochure_FINAL_low_singlepages.pdf
(accessed on 24 June 2021).

52



Healthcare 2022, 10, 293

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.
105.

Martinez-Alpiste, L; Jose, M.; Alcaraz, C.; Qi, W.; Gelayol, G.; Chirivella-Perez, E.; Salva-Garcia, P. 5G Can Shape Mission-Critical
Healthcare Services. Available online: https:/ /https:/ /www.comsoc.org/publications/ctn/5g-can-shape-mission-critical-
healthcare-services (accessed on 24 June 2021).

MIoT. Internet of Medical Things Revolutionizing Healthcare. Available online: https:/ /aabme.asme.org/posts/internet-of-
medical-things-revolutionizing-healthcare (accessed on 26 June 2021).

Lukowicz, P; Anliker, U.; Ward, J.; Troster, G.; Hirt, E.; Neufelt, C. AMON: A wearable medical computer for high risk patients.
In Proceedings of the Sixth International Symposium on Wearable Computers, Seattle, WA, USA, 10 October 2002; pp. 133-134.
Diaz, KM.; Krupka, D.J.; Chang, M.].; Peacock, J.; Ma, Y.; Goldsmith, J.; Schwartz, J.E.; Davidson, K.W. Fitbit®: An accurate and
reliable device for wireless physical activity tracking. Int. J. Cardiol. 2015, 185, 138. [CrossRef] [PubMed]

Reeder, B.; David, A. Health at hand: A systematic review of smart watch uses for health and wellness. J. Biomed. Inform. 2016,
63, 269-276. [CrossRef]

Trung, T.Q.; Ramasundaram, S.; Hwang, B.U.; Lee, N.E. An all-elastomeric transparent and stretchable temperature sensor for
body-attachable wearable electronics. Adv. Mater. 2016, 28, 502-509. [CrossRef]

Yamamoto, Y.; Yamamoto, D.; Takada, M.; Naito, H.; Arie, T.; Akita, S.; Takei, K. Efficient skin temperature sensor and stable
gel-less sticky ECG sensor for a wearable flexible healthcare patch. Adv. Healthc. Mater. 2017, 6, 1700495. [CrossRef]

Adiputra, R.; Hadiyoso, S.; Hariyani, Y.S. Internet of things: Low cost and wearable SpO2 device for health monitoring. Int. J.
Electr. Comput. Eng. 2018, 8, 939. [CrossRef]

Azhari, A.; Yoshimoto, S.; Nezu, T.; lida, H.; Ota, H.; Noda, Y.; Araki, T.; Uemura, T.; Sekitani, T.; Morii, K. A patch-type wireless
forehead pulse oximeter for SpO; measurement. In Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference
(BioCAS), Turin, Italy, 19-21 October 2017; pp. 1-4.

Chacon, PJ.; Pu, L.; da Costa, T.H.; Shin, Y.H.; Ghomian, T.; Shamkhalichenar, H.; Wu, H.C,; Irving, B.A.; Choi, ].W. A wearable
pulse oximeter with wireless communication and motion artifact tailoring for continuous use. IEEE Trans. Biomed. Eng. 2018,
66, 1505-1513. [CrossRef]

Surrel, G.; Rincén, F; Murali, S.; Atienza, D. Low-power wearable system for real-time screening of obstructive sleep apnea. In
Proceedings of the 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, PA, USA, 11-13 July 2016;
pp- 230-235.

Shilaih, M.; Goodale, B.M.; Falco, L.; Kiibler, F.; De Clerck, V.; Leeners, B. Modern fertility awareness methods: Wrist wearables
capture the changes in temperature associated with the menstrual cycle. Biosci. Rep. 2018, 38, BSR20171279. [CrossRef]

Xie, R;; Du, Q.; Zou, B.; Chen, Y.; Zhang, K; Liu, Y.; Liang, J.; Zheng, B.; Li, S.; Zhang, W.; et al. Wearable leather-based electronics
for respiration monitoring. ACS Appl. Bio Mater. 2019, 2, 1427-1431. [CrossRef]

Mizuno, A.; Changolkar, S.; Patel, M.S. Wearable Devices to Monitor and Reduce the Risk of Cardiovascular Disease: Evidence
and Opportunities. Annu. Rev. Med. 2020, 72, 459-471. [CrossRef] [PubMed]

Holz, C.; Wang, E.J. Glabella: Continuously sensing blood pressure behavior using an unobtrusive wearable device. Proc. ACM
Interactive Mobile Wearable Ubiquitous Technol. 2017, 1, 1-23. [CrossRef]

Kuwabara, M.; Harada, K.; Hishiki, Y.; Kario, K. Validation of two watch-type wearable blood pressure monitors according to the
ANSI/AAMI/ISO81060-2: 2013 guidelines: Omron HEM-6410T-ZM and HEM-6410T-ZL. . Clin. Hypertens. 2019, 21, 853-858.
[CrossRef] [PubMed]

Arakawa, T. Recent research and developing trends of wearable sensors for detecting blood pressure. Sensors 2018, 18, 2772.
[CrossRef] [PubMed]

Escobedo, P.; Ramos-Lorente, C.E.; Martinez-Olmos, A.; Carvajal, M.A.; Ortega-Munoz, M.; de Orbe-Paya, I.; Herndndez-Mateo, F,;
Santoyo-Gonzalez, F.; Capitan-Vallvey, L.F,; Palma, A.].; et al. Wireless wearable wristband for continuous sweat pH monitoring.
Sens. Actuators B Chem. 2021, 327, 128948. [CrossRef]

Nakata, S.; Shiomi, M.; Fujita, Y.; Arie, T.; Akita, S.; Takei, K. A wearable pH sensor with high sensitivity based on a flexible
charge-coupled device. Nat. Electron. 2018, 1, 596—603. [CrossRef]

Wijsman, J.; Grundlehner, B.; Liu, H.; Hermens, H.; Penders, ]. Towards mental stress detection using wearable physiological
sensors. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
Boston, MA, USA, 30 August—3 September 2011; pp. 1798-1801.

Valenza, G.; Nardelli, M.; Lanata, A.; Gentili, C.; Bertschy, G.; Paradiso, R.; Scilingo, E.P. Wearable monitoring for mood
recognition in bipolar disorder based on history-dependent long-term heart rate variability analysis. IEEE . Biomed. Health Inform.
2013, 18, 1625-1635. [CrossRef]

Gruwez, A.; Bruyneel, A.V; Bruyneel, M. The validity of two commercially-available sleep trackers and actigraphy for assessment
of sleep parameters in obstructive sleep apnea patients. PLoS ONE 2019, 14, 0210569. [CrossRef]

Lin, C.T;; Ko, L.W.; Chang, M.H.; Duann, J.R.; Chen, ].Y;; Su, T.P; Jung, T.P. Review of wireless and wearable electroencephalogram
systems and brain-computer interfaces—a mini-review. Gerontology 2010, 56, 112-119. [CrossRef]

Casson, A.J.; Yates, D.C.; Smith, S.J.; Duncan, J.S.; Rodriguez-Villegas, E. Wearable electroencephalography. IEEE Eng. Med. Biol.
Mag. 2010, 29, 44-56. [CrossRef]

Ip, J.E. Wearable devices for cardiac rhythm diagnosis and management. JAMA 2019, 321, 337-338. [CrossRef] [PubMed]

Jeon, B.; Lee, J.; Choi, J. Design and implementation of a wearable ECG system. Int. ]. Smart Home 2013, 7, 61-69.

53



Healthcare 2022, 10, 293

106.

107.

108.

109.

110.

111.

112.

113.
114.

115.

116.

117.

118.
119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

Beniczky, S.; Conradsen, I.; Henning, O.; Fabricius, M.; Wolf, P. Automated real-time detection of tonic-clonic seizures using a
wearable EMG device. Neurology 2018, 90, e428—e434. [CrossRef]

Tsubouchi, Y.; Suzuki, K. BioTones: A wearable device for EMG auditory biofeedback. In Proceedings of the 2010 Annual
International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August—4 September
2010; pp. 6543-6546.

Nathan, V.; Jafari, R. Particle filtering and sensor fusion for robust heart rate monitoring using wearable sensors. IEEE ]. Biomed.
Health Inform. 2017, 22, 1834-1846. [CrossRef] [PubMed]

Park, ].H.; Jang, D.G.; Park, ].W.; Youm, S.K. Wearable sensing of in-ear pressure for heart rate monitoring with a piezoelectric
sensor. Sensors 2015, 15, 23402-23417. [CrossRef]

El-Amrawy, F.; Nounou, M.I. Are currently available wearable devices for activity tracking and heart rate monitoring accurate,
precise, and medically beneficial? Healthc. Inform. Res. 2015, 21, 315. [CrossRef]

Tsai, C.W,; Li, C.H.; Lam, RW.K,; Li, CK,; Ho, S. Diabetes care in motion: Blood glucose estimation using wearable devices. IEEE
Consum. Electron. Mag. 2019, 9, 30-34. [CrossRef]

Cappon, G.; Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G. Wearable continuous glucose monitoring sensors: A
revolution in diabetes treatment. Electronics 2017, 6, 65. [CrossRef]

Pickup, J.C. Insulin-pump therapy for type 1 diabetes mellitus. N. Engl. J. Med. 2012, 366, 1616-1624. [CrossRef]
Weissberg-Benchell, ].; Antisdel-Lomaglio, J.; Seshadri, R. Insulin pump therapy: A meta-analysis. Diabetes Care 2003, 26, 1079-1087.
[CrossRef]

Gadaleta, M.; Facchinetti, A.; Grisan, E.; Rossi, M. Prediction of adverse glycemic events from continuous glucose monitoring
signal. IEEE |. Biomed. Health Inform. 2018, 23, 650-659. [CrossRef] [PubMed]

Angelucci, A.; Kuller, D.; Aliverti, A. A home telemedicine system for continuous respiratory monitoring. IEEE ]. Biomed. Health
Inform. 2020, 25, 1247-1256. [CrossRef]

Scherer, M.; Menachery, K.; Magno, M. SmartAid: A Low-Power Smart Hearing Aid For Stutterers. In Proceedings of the 2019
IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 11-13 March 2019; pp. 1-6.

Sudharsan, B.; Chockalingam, M. A microphone array and voice algorithm based smart hearing aid. arXiv 2019, arXiv:1908.07324.
DJordjevic, S.; Stancin, S.; Meglc, A.; Milutinovic, V.; Tomazic, S. Mc sensor—A novel method for measurement of muscle tension.
Sensors 2011, 11, 9411-9425.

Mansuri, B.; Torabinejhad, F; Jamshidi, A.A.; Dabirmoghaddam, P.; Vasaghi-Gharamaleki, B.; Ghelichi, L. Transcutaneous electrical
nerve stimulation combined with voice therapy in women with muscle tension dysphonia. J. Voice 2020, 34, 490.e11-490.e21. [CrossRef]
Veldzquez, R. Wearable assistive devices for the blind. In Wearable and Autonomous Biomedical Devices and Systems for Smart
Environment; Springer: Berlin/Heidelberg, Germany, 2010; pp. 331-349.

Garcia-Macias, J.A.; Ramos, A.G.; Hasimoto-Beltran, R.; Hernandez, S.E.P. Uasisi: A modular and adaptable wearable system to
assist the visually impaired. Procedia Comput. Sci. 2019, 151, 425-430. [CrossRef]

Savindu, H.P; Iroshan, K.; Panangala, C.D.; Perera, W.; De Silva, A.C. BrailleBand: Blind support haptic wearable band for
communication using braille language. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), Banff, AB, Canada, 5-8 October 2017; pp. 1381-1386.

Sun, M.; Burke, L.E.; Mao, Z.H.; Chen, Y.; Chen, H.C,; Bai, Y.; Li, Y,; Li, C.; Jia, W. eButton: A wearable computer for health
monitoring and personal assistance. In Proceedings of the 51st Annual Design Automation Conference, San Francisco, CA, USA,
1-5 June 2014; pp. 1-6.

Kapur, A.; Kapur, S.; Maes, P. Alterego: A personalized wearable silent speech interface. In Proceedings of the 23rd International
Conference on Intelligent User Interfaces, Tokyo, Japan, 7-11 March 2018; pp. 43-53.

Marjanovic, N.; Piccinini, G.; Kerr, K.; Esmailbeigi, H. TongueToSpeech (TTS): Wearable wireless assistive device for augmented
speech. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Jeju, Korea, 11-15 July 2017; pp. 3561-3563.

Huo, W.; Mohammed, S.; Moreno, ].C.; Amirat, Y. Lower limb wearable robots for assistance and rehabilitation: A state of the art.
IEEE Syst. J. 2014, 10, 1068-1081. [CrossRef]

Hadi, A.; Alipour, K.; Kazeminasab, S.; Elahinia, M. ASR glove: A wearable glove for hand assistance and rehabilitation using
shape memory alloys. J. Intell. Mater. Syst. Struct. 2018, 29, 1575-1585. [CrossRef]

Gandolla, M.; Antonietti, A.; Longatelli, V.; Pedrocchi, A. The effectiveness of wearable upper limb assistive devices in
degenerative neuromuscular diseases: A systematic review and meta-analysis. Front. Bioeng. Biotechnol. 2020, 7, 450. [CrossRef]
Chen, B.; Zhong, C.H.; Zhao, X.; Ma, H.; Guan, X; Li, X,; Liang, EY.; Cheng, ].C.Y;; Qin, L.; Law, SW.; et al. A wearable
exoskeleton suit for motion assistance to paralysed patients. . Orthop. Transl. 2017, 11, 7-18. [CrossRef]

Delahoz, Y.S.; Labrador, M.A. Survey on fall detection and fall prevention using wearable and external sensors. Sensors 2014,
14, 19806-19842. [CrossRef] [PubMed]

Chen, D.; Feng, W.; Zhang, Y,; Li, X.; Wang, T. A wearable wireless fall detection system with accelerators. In Proceedings of the
2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 7-11 December 2011; pp. 2259-2263.
Yi, W.J.; Saniie, ]. Design flow of a wearable system for body posture assessment and fall detection with android smartphone. In
Proceedings of the 2014 IEEE International Technology Management Conference, Chicago, IL, USA, 12-15 June 2014; pp. 1-4.

54



Healthcare 2022, 10, 293

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.
144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

Bruno, E.; Biondi, A.; Thorpe, S.; Richardson, M.; Consortium, R.C. Patients self-mastery of wearable devices for seizure detection:
A direct user-experience. Seizure 2020, 81, 236-240. [CrossRef]

Jeppesen, J.; Fuglsang-Frederiksen, A.; Johansen, P.; Christensen, J.; Wiistenhagen, S.; Tankisi, H.; Qerama, E.; Hess, A.; Beniczky,
S. Seizure detection based on heart rate variability using a wearable electrocardiography device. Epilepsia 2019, 60, 2105-2113.
[CrossRef]

Pierleoni, P,; Belli, A.; Palma, L.; Pellegrini, M.; Pernini, L.; Valenti, S. A high reliability wearable device for elderly fall detection.
IEEE Sens. |. 2015, 15, 4544-4553. [CrossRef]

Atallah, L.; Lo, B.; King, R.; Yang, G.Z. Sensor positioning for activity recognition using wearable accelerometers. IEEE Trans.
Biomed. Circuits Syst. 2011, 5, 320-329. [CrossRef]

Ouyang, H.; Liu, Z; Li, N,; Shi, B.; Zou, Y.; Xie, F.; Ma, Y; Li, Z,; Li, H.; Zheng, Q.; et al. Symbiotic cardiac pacemaker. Nat.
Commun. 2019, 10, 1-10. [CrossRef]

Eicken, A.; Kolb, C.; Lange, S.; Brodherr-Heberlein, S.; Zrenner, B.; Schreiber, C.; Hess, J. Implantable cardioverter defibrillator
(ICD) in children. Int. J. Cardiol. 2006, 107, 30-35. [CrossRef] [PubMed]

Van der Kroft, S. Design and Validation of an Implantable Actuator for Use in a Novel Dynamic Arteriovenous Shunt System.
Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2021.

Shiba, K.; Tsuji, T.; Koshiji, K. Direct drive of an implantable actuator using a transcutaneous energy transmission system. J. Life
Support Eng. 2006, 18, 17-24. [CrossRef]

BAN Applications Matrix, Document 15-07-0735-08-0. 2008. Available online: https://www.ieee802.org/15/pub/default_page.
html (accessed on 15 June 2021).

Rong, G.; Zheng, Y.; Sawan, M. Energy Solutions for Wearable Sensors: A Review. Sensors 2021, 21, 3806. [CrossRef]

Kos, A.; Milutinovi¢, V.; Umek, A. Challenges in wireless communication for connected sensors and wearable devices used in
sport biofeedback applications. Future Gener. Comput. Syst. 2019, 92, 582-592. [CrossRef]

Ullah, S.; Khan, P; Ullah, N.; Saleem, S.; Higgins, H.; Kwak, K.S. A review of wireless body area networks for medical applications.
arXiv 2010, arXiv:1001.0831.

Movassaghi, S.; Abolhasan, M.; Lipman, J.; Smith, D.; Jamalipour, A. Wireless body area networks: A survey. IEEE Commun.
Surv. Tutor. 2014, 16, 1658-1686. [CrossRef]

TG6 Applications Matrix, Document 15-08-0406-00-0006, IEEE P802. 2008. Available online: https://view.officeapps.live.
com/op/view.aspx?src=https%3A%2F%2Fmentor.ieee.org %2F802.15%2Fdcn%2F08%2F15-08-0644-09-0006-tg6-technical-
requirements-document.doc (accessed on 7 June 2021).

Jones, R.W.; Katzis, K. 5G and wireless body area networks. In Proceedings of the 2018 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW), Barcelona, Spain, 15-18 April 2018; pp. 373-378.

Soh, PJ.; Vandenbosch, G.A.; Mercuri, M.; Schreurs, D.M.P. Wearable wireless health monitoring: Current developments,
challenges, and future trends. IEEE Microw. Mag. 2015, 16, 55-70. [CrossRef]

Santagati, G.E.; Melodia, T. A software-defined ultrasonic networking framework for wearable devices. IEEE/ACM Trans. Netw.
2016, 25, 960-973. [CrossRef]

Garcia-Perez, C.; Diaz-Zayas, A.; Rios, A.; Merino, P,; Katsalis, K.; Chang, C.Y.; Shariat, S.; Nikaein, N.; Rodriguez, P.; Morris, D.
Improving the efficiency and reliability of wearable based mobile eHealth applications. Pervasive Mob. Comput. 2017, 40, 674—-691.
[CrossRef]

Sahni, Y.; Cao, J.; Zhang, S.; Yang, L. Edge mesh: A new paradigm to enable distributed intelligence in internet of things. IEEE
Access 2017, 5, 16441-16458. [CrossRef]

Gia, T.N,; Jiang, M.; Rahmani, A.M.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. Fog computing in healthcare internet of things: A
case study on ecg feature extraction. In Proceedings of the 2015 IEEE International Conference on Computer and INFORMATION
technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence
and Computing, Liverpool, UK, 26-28 October 2015; pp. 356-363.

ISO standard. ANSI/AAMI/ISO 14971:2019-Medical Devices-Application of Risk Management to Medical Devices. Available
online: https:/ /www.iso.org/standard /72704.html (accessed on 20 June 2021).

FDA. Content of Premarket Submissions for Management of Cybersecurity in Medical Devices: Draft Guidance for Industry
and Food and Drug Administration Staff. Available online: https://www.fda.gov/media/119933/download (accessed on 25
September 2021).

Motani, M.; Yap, KK.; Natarajan, A.; de Silva, B.; Hu, S.; Chua, K.C. Network characteristics of urban environments for wireless
BAN. In Proceedings of the 2007 IEEE Biomedical Circuits and Systems Conference, Montreal, QC, Canada, 27-30 November
2007; pp. 179-182.

Al Kalaa, M.O.; Balid, W.; Refai, H.H.; LaSorte, N.J.; Seidman, S.J.; Bassen, H.L; Silberberg, J.L.; Witters, D. Characterizing the
2.4 GHz spectrum in a hospital environment: Modeling and applicability to coexistence testing of medical devices. IEEE Trans.
Electromagn. Compat. 2016, 59, 58-66. [CrossRef]

Qualcomm Technologies, Inc. VR and AR Pushing Connectivity Limits. Available online: https://www.qualcomm.com/media/
documents/files /vr-and-ar-pushing-connectivity-limits.pdf (accessed on 25 June 2021).

Pozo, A.P; Toksvig, M.; Schrager, T.F.; Hsu, J.; Mathur, U.; Sorkine-Hornung, A.; Szeliski, R.; Cabral, B. An integrated 6DoF video
camera and system design. ACM Trans. Graph. (TOG) 2019, 38, 1-16. [CrossRef]

55



Healthcare 2022, 10, 293

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

Feil-Seifer, D.; Mataric, M.]. Defining socially assistive robotics. In Proceedings of the 9th International Conference on
Rehabilitation Robotics, 2005, ICORR 2005, Chicago, IL, USA, 28 June-1 July 2005; pp. 465-468.

Pavén-Pulido, N.; Lépez-Riquelme, J.A.; Ferruz-Melero, J.; Vega-Rodriguez, M.A.; Barrios-Leon, A.J. A service robot for
monitoring elderly people in the context of ambient assisted living. |. Ambient Intell. Smart Environ. 2014, 6, 595-621. [CrossRef]
Bonaccorsi, M.; Fiorini, L.; Cavallo, F.; Esposito, R.; Dario, P. Design of cloud robotic services for senior citizens to improve
independent living and personal health management. In Ambient Assisted Living; Springer: Berlin/Heidelberg, Germany, 2015;
pp. 465-475.

Ma, Y,; Zhang, Y.; Wan, J.; Zhang, D.; Pan, N. Robot and cloud-assisted multi-modal healthcare system. Clust. Comput. 2015,
18, 1295-1306. [CrossRef]

Gross, H.M.; Mueller, S.; Schroeter, C.; Volkhardt, M.; Scheidig, A.; Debes, K.; Richter, K.; Doering, N. Robot companion for
domestic health assistance: Implementation, test and case study under everyday conditions in private apartments. In Proceedings
of the 2015 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September—2
October 2015; pp. 5992-5999.

Manzi, A.; Fiorini, L.; Limosani, R.; Sincak, P,; Dario, P.; Cavallo, F. Use case evaluation of a cloud robotics teleoperation system
(short paper). In Proceedings of the 2016 5th IEEE International Conference on Cloud Networking (Cloudnet), Pisa, Italy, 3-5
October 2016; pp. 208-211.

Bonaccorsi, M.; Fiorini, L.; Cavallo, E; Saffiotti, A.; Dario, P. A cloud robotics solution to improve social assistive robots for active
and healthy aging. Int. J. Soc. Robot. 2016, 8, 393—408. [CrossRef]

Fiorini, L.; Esposito, R.; Bonaccorsi, M.; Petrazzuolo, C.; Saponara, F.; Giannantonio, R.; De Petris, G.; Dario, P.; Cavallo, F.
Enabling personalised medical support for chronic disease management through a hybrid robot-cloud approach. Auton. Robot.
2017, 41, 1263-1276. [CrossRef]

Cadrik, T.; Takag, P.; Ondo, J.; Sin¢ék, P.; Mach, M.; Jakab, F.; Cavallo, F.; Bonaccorsi, M. Cloud-based robots and intelligent space
teleoperation tools. In Robot Intelligence Technology and Applications 4; Springer: Berlin/Heidelberg, Germany, 2017; pp. 599-610.
Cavallo, F; Limosani, R.; Fiorini, L.; Esposito, R.; Furferi, R.; Governi, L.; Carfagni, M. Design impact of acceptability and
dependability in assisted living robotic applications. Int. J. Interact. Des. Manuf. (I[IDeM) 2018, 12, 1167-1178. [CrossRef]
Brunete, A.; Gambao, E.; Hernando, M.; Cedazo, R. Smart Assistive Architecture for the Integration of IoT Devices, Robotic
Systems, and Multimodal Interfaces in Healthcare Environments. Sensors 2021, 21, 2212. [CrossRef]

Trobinger, M.; Jahne, C.; Qu, Z.; Elsner, J.; Reindl, A.; Getz, S.; Goll, T.; Loinger, B.; Loibl, T.; Kugler, C.; et al. Introducing
GARMI-A Service Robotics Platform to Support the Elderly at Home: Design Philosophy, System Overview and First Results.
IEEE Robot. Autom. Lett. 2021, 6, 5857-5864. [CrossRef]

Witrisal, K.; Meissner, P; Leitinger, E.; Shen, Y.; Gustafson, C.; Tufvesson, F.; Haneda, K.; Dardari, D.; Molisch, A.F,; Conti, A.; et al.
High-accuracy localization for assisted living: 5G systems will turn multipath channels from foe to friend. IEEE Signal Process.
Mag. 2016, 33, 59-70. [CrossRef]

RADIO Project. Unobtrusive, Efficient, Reliable and Modular Solutions for Independent Ageing. Available online: http:
/ /www.radio-project.eu/ (accessed on 24 June 2021).

Ramoly, N.; Bouzeghoub, A.; Finance, B. A framework for service robots in smart home: An efficient solution for domestic
healthcare. IRBM 2018, 39, 413—-420. [CrossRef]

Kaneriya, S.; Vora, J.; Tanwar, S.; Tyagi, S. Standardising the use of duplex channels in 5G-WiFi networking for ambient assisted
living. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai,
China, 20-24 May 2019; pp. 1-6.

Henry, S.; Alsohaily, A.; Sousa, E.S. 5G is real: Evaluating the compliance of the 3GPP 5G new radio system with the ITU IMT-2020
requirements. IEEE Access 2020, 8, 42828-42840. [CrossRef]

European 5G Observatory. 5G Trials That Have Been Publicly Announced in EU27, UK, Norway, Russia, Switzerland and Turkey.
Available online: https:/ /5gobservatory.eu/5g-trial /major-european-5g-trials-and-pilots/ (accessed on 25 June 2021).

sdx Central. 5G Trials in the United States—Steps Toward Standardization. Available online: https:/ /www.sdxcentral.com/5g/
definitions/5g-trials/ (accessed on 25 June 2021).

Verizon. Verizon Will Rapidly Integrate C-Band Spectrum with mmWave for Customers. Available online: https:/ /www.verizon.
com/about/news/verizon-c-band-spectrum-mmwave (accessed on 25 June 2021).

Verizon. Explore 4G LTE and 5G Network Coverage in Your Area. Available online: https://www.verizon.com/coverage-map/
(accessed on 26 June 2021).

AT&T. Wireless Coverage. Available online: https:/ /www.att.com/maps/wireless-coverage.html (accessed on 26 June 2021).
T-Mobile. Coverage Maps. Available online: https://www.t-mobile.com/coverage/coverage-map (accessed on 26 June 2021).
Opensignal. How AT&T, Sprint, T-Mobile and Verizon Differ in Their Early 5G Approach. Available online: https://www.
opensignal.com/2020/02/20/how-att-sprint-t-mobile-and-verizon-differ-in-their-early-5g-approach (accessed on 25 June 2021).
Digital Trends. 5G vs. 4G: How Will the Newest Network Improve on the Last? Available online: https://www.digitaltrends.
com/mobile/5g-vs-4g/ (accessed on 25 June 2021).

Forbes. 5G Latency Improvements Are Still Lagging. Available online: https://www.forbes.com/sites /bobodonnell /2020/02/
18/5g-latency-improvements-are-still-lagging /?sh=6d74337548f1 (accessed on 25 June 2021).

56



Healthcare 2022, 10, 293

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

Carrozzo, G.; Siddiqui, M.S.; Du, K,; Sayadi, B.; Carrasco, O.; Lazarakis, F; Sterle, J.; Bruschi, R. Definition and Evaluation of
Latency in 5G with Heterogeneous Use Cases and Architectures. Available online: https://www.5gcity.eu/wp-content/uploads/
2020/05/Definition-and-Evaluation-of-Latency-in-5G-with-Heterogeneous-Use-Cases-and- Architectures.pdf (accessed on 20
October 2021).

Asghar, A.; Farooq, H.; Imran, A. Concurrent CCO and LB optimization in emerging HetNets: A novel solution and comparative
analysis. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), Bologna, Italy, 9-12 September 2018; pp. 1-6.

Qureshi, H.N.; Imran, A. On the tradeoffs between coverage radius, altitude, and beamwidth for practical UAV deployments.
IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2805-2821. [CrossRef]

Park, S.H.; Kang, N.G.; Cho, C.; Won, E.T,; Patro, R K.; Goyal, G.; Bhatia, A.; Bynam, K.; Naniyat, A. System Simulation Metrics
for BAN—Samsung. Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANSs). 2008. Available
online: https://mentor.ieee.org/802.15/file /08 /15-08-0630-00-0006-system-simulation-metrics-for-ban.ppt (accessed on 20
October 2021).

Qureshi, H.N.; Manalastas, M.; Imran, A.; Kalaa, M.O.A. Service Level Agreements for 5G-Enabled Healthcare Systems:
Challenges and Considerations. IEEE Netw. 2021, 1-8. [CrossRef]

Tian, W.; Fan, M.; Zeng, C.; Liu, Y.; He, D.; Zhang, Q. Telerobotic spinal surgery based on 5G network: The first 12 cases.
Neurospine 2020, 17, 114. [CrossRef]

Parvez, I.; Rahmati, A.; Guvenc, I.; Sarwat, A.I; Dai, H. A survey on low latency towards 5G: RAN, core network and caching
solutions. IEEE Commun. Surv. Tutor. 2018, 20, 3098-3130. [CrossRef]

Ron Malenfant, Cisco. Industry Voices—5G Has the Potential to Transform Healthcare for Rural Communities. Available online:
https:/ /www.fiercehealthcare.com/tech/industry-voices-5g-has-potential-to-transform-healthcare-for-rural-communities (ac-
cessed on 20 October 2021).

OTH Amberg-Weiden. 5G4Healthcare. Available online: https://www.oth-aw.de/en/research-and-cooperation/latest-news-in-
research/5g4healthcare/homepage/ (accessed on 12 January 2020).

Acemoglu, A.; Peretti, G.; Trimarchi, M.; Hysenbelli, ].; Krieglstein, J.; Geraldes, A.; Deshpande, N.; Ceysens, PM.V.; Caldwell,
D.G.; Delsanto, M.; et al. Operating from a distance: Robotic vocal cord 5G telesurgery on a cadaver. Ann. Intern. Med. 2020,
173,940-941. [CrossRef] [PubMed]

Jell, A.; Vogel, T.; Ostler, D.; Marahrens, N.; Wilhelm, D.; Samm, N.; Eichinger, J.; Weigel, W.; Feussner, H.; Friess, H.; et al.
5th-Generation Mobile Communication: Data Highway for Surgery 4.0. Surg. Technol. Int. 2019, 35, 36—42. [PubMed]

Lacy, A.; Bravo, R.; Otero-Pifieiro, A.; Pena, R.; De Lacy, F; Menchaca, R.; Balibrea, J. 5G-assisted telementored surgery. Br. J.
Surg. 2019, 106, 1576-1579. [CrossRef]

Zheng, J.; Wang, Y.; Zhang, J.; Guo, W.; Yang, X.; Luo, L.; Jiao, W.; Hu, X,; Yu, Z.; Wang, C.; et al. 5G ultra-remote robot-assisted
laparoscopic surgery in China. Surg. Endosc. 2020, 34, 5172-5180. [CrossRef]

57






@‘ healthcare

Review

Pathway of Trends and Technologies in Fall Detection:
A Systematic Review

Rohit Tanwar 1*©©, Neha Nandal 2, Mazdak Zamani 3-*

Citation: Tanwar, R.; Nandal, N.;
Zamani, M.; Manaf, A.A. Pathway of
Trends and Technologies in Fall
Detection: A Systematic Review.
Healthcare 2022, 10, 172. https://
doi.org/10.3390/healthcare10010172

Academic Editors: Daniele Giansanti

and Krzysztof Laudanski

Received: 4 October 2021
Accepted: 27 December 2021
Published: 17 January 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Azizah Abdul Manaf 4

School of Computer Science, University of Petroleum & Energy Studies, Dehradun 248007, India
Department of Computer Science and Engineering, Gokaraju Rangaraju Institute of Engineering and
Technology, Hyderabad 500090, India; neha28nandal@gmail.com

3 Department of Computer Science, New York University, New York, NY 10012, USA

Independent Researcher, Kuala Lumpur 54100, Malaysia; azizahmanafl8@gmail.com

*  Correspondence: r.tanwar@ddn.upes.ac.in (R.T.); mazdak.zamani@nyu.edu (M.Z.)

Abstract: Falling is one of the most serious health risk problems throughout the world for elderly
people. Considerable expenses are allocated for the treatment of after-fall injuries and emergency
services after a fall. Fall risks and their effects would be substantially reduced if a fall is predicted or
detected accurately on time and prevented by providing timely help. Various methods have been
proposed to prevent or predict falls in elderly people. This paper systematically reviews all the
publications, projects, and patents around the world in the field of fall prediction, fall detection, and
fall prevention. The related works are categorized based on the methodology which they used, their
types, and their achievements.

Keywords: fall detection; fall prediction; fall prevention; fall risk factors; gait assessment

1. Introduction

According to the World Health Organization [1], approximately 28-35% of people
with an age of 65 fall every year. The count further increases to 32—42% for people of age 70.
With the rapid rise in the number of elderly people, the demand for supportive healthcare
systems has also increased. The advancement in the fields of sensors, cameras, and com-
munication makes it feasible to develop more efficient and optimized healthcare systems.
Moreover, financial support from the respective governments motivates researchers to help
elderly people through their valuable research [2]. Research in the medical field shows that
a human being’s process of aging leads towards a decreased walkability in elderly persons
along with bringing down the physiological and nervous system function. Therefore, the
probability of being injured during a walk becomes greater, which can cause several anile
diseases. The prediction and evaluation of fall risks are very important given the surging
number of aged people [3]. The impact of falls in the elderly is extensive and occurs across
the world [4,5]. The process of fall prevention includes knowing and assessing the parame-
ters responsible for a fall, predicting the possibility of a fall, and then not letting the fall
happen. The process may include medical and paramedical treatment to fine-tune the fall
parameters, the use of some aids, and some similar methods. It is very difficult to prevent a
fall; however, long-term treatment may help in achieving fall prevention. Fall intervention
is a set of techniques that help prevent future falls. Techniques that include exercise, home
modification, and medication are carried out under clinical or self-administration with the
aim of fall prevention in elderly persons [6].

1.1. Fall Risk Factors

Understanding the possible risk factors responsible for falls in elderly persons is
required. A better understanding of these risk factors will help in developing a better fall
prevention system. Numerous factors related to biology, behavior, demographics, and
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Extrinsic Fall Factors
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environment are there that can be a cause of falls for an elderly person [7]. A list of risk
factors has been identified through the study of relevant and published literature, as shown
in Figure 1. Numerous causes are responsible for the fall of an elderly person or patient.
Physiological conditions and falls from the bed are the most common cause of the fall [8-10].
The authors in [11] designed a reliable and flexible method for the classification of falls in
the elderly. Along with that, the operational definitions for types of falls were also provided.
In the proposed three-level hierarchical classification scheme, the first level consists of four
major classifications. Each major classification has further subcategories which are further
divided into other subcategories of level three. The detailed categorization is shown in

Figure 1.
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Figure 1. Fall risk factors [11].

1.2. Types of Fall

Categorizing falls used to be a great issue until the 1990s. A lack of consensus among
researchers was the biggest hurdle. Most of the categorization then was based upon the
factors responsible for falls. Depending on the position before a fall, a fall was considered
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to be of three general types, as described in Figure 2.
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Fall From Bed

*The person is lying in the
bed (either sleeping or not)
when the fall begins

*The body height reduces
from bed height to the
floor height. In that
duration, the body usually
experiences like a free fall
motion.

*The position where body
lying on the florr is near to
the bed

*The whole process takes 1-
3 seconds and it happens in
various subactions.

Fall from Sitting

*The person is at sitting
position either on a chair
or at some furniture of
similar height at the
beginning of the fall

*The height of the head
reduces to the floor, till
then it falls in a free fall
manner.

eThe position where body is
lying is near to the chair

oThe fall process happens in
1-3 seconds in different
subactions

Fall from Walking or
Standing

*The person is in standing
or walking position at the
beginning of fall

*The head reduce its height
from the level equal to the
height of the person and
reaches to the floor lying
on it. It may show a little
motion while lying.

eThe fall is usually
unidirectional.

Figure 2. Types of falls [8-10].

1.3. Fall Detection/Prevention Approaches

A list of technologies has been developed by researchers to detect and prevent the
occurrence of falls in elderly people. Numerous techniques have been used to handle the
problem of falls among elderly people. These approaches are based on the integration
of machine learning, IoT (Internet of things) devices, imaging techniques [12], etc. The
continuous monitoring of the elderly person using either wearable or non-wearable devices
and finding the probability of their fall in advance is known as fall prediction [13]; however,
fall prediction is more concerned with the detection of fall risk factors. It requires a highly
accurate prediction mechanism that could respond instantly in no time. However, it is
not easy to achieve, but an accurate prediction will significantly contribute to preventing
elderly persons from the after effects of falls. Fall detection is the process of finding out that
an elderly person has experienced a fall and then sending some alarm signal to let medical
professionals know about the incident. Various incidents might give an illusion of a fall,
such as sitting on a chair from a standing position, bending on knees to pick something
up, etc. The process is expected to differentiate actual falls from false falls and then send
an alarm to pre-specified people or locations instantly. The intention is to send help to the
elderly people after the fall as soon as possible so that after effects can be minimized.

Fall detection: fall detection techniques can be classified into three basic categories: (i)
wearable devices, (ii) camera-based devices, and (iii) ambience devices. The categorization
of fall detection is presented in Figure 3. In the wearable devices approach, some wearable
gadgets or garments need to be worn by the people at risk of a fall. These devices sense
the information regarding the body posture or the movement and then some algorithm
processing this information decides whether it is a fall or not. The decision is then commu-
nicated to the pre-specified caregivers. However, the use of wearable devices seems to be
very intrusive and an extra overhead to some users. They do not want to bother to keep on
wearing any device all the time. Moreover, there is an issue regarding the placement of the
device. Some activities, such as sleeping and walking, might displace the device from its
original location and may result in less accurate results.
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Figure 3. Fall detection approaches [2].

The camera-based approach seems to overcome some of these issues. The cameras
are placed at selected locations so that continuous monitoring of the elderly people can be
performed passively. Unlike sensors, it is possible to assess and analyze more than one
feature using the camera. These types of systems were less preferable initially when the
cost of the camera used to be very high. Additionally, the data captured through these
devices can be stored for later analysis and reference. In the ambience device approach, a
series of sensors are installed in the vicinity of the related persons, such as a wall, floor, bed,
etc. The data are gathered from these sensors and, using that input, an algorithm decides
whether there is a fall or not. Consequently, the incident is reported to the caregivers. Since
there is no need to wear any sensor, the related person is not concerned about any type of
overhead.

A variety of devices from different manufacturers are available in the market that
send alerts when a fall occurs. According to a survey, the number of automatic systems
for detecting falls will cover 60% of the fall detection systems market by 2019-20. The
compound annual growth rate (CAGR) is expected to be approx. 4% from 2019 to 2029 [14].
Governments are investing more in research related to fall detection devices so that the
major portion of their budget that is used in medical care and treatment of after-fall injuries
could be minimized. These devices differ in their location of the mount, response time, size,
etc. Some of the devices are listed [10-13] below:

1.  MobileHelp

2. Medical Guardian

3.  LifeFone

4. Bay Alarm Medical

5. GreatCall Lively Mobile Plus
6. Apple Watch

Fall prevention: preventing falls in elderly people is something that cannot be guar-
anteed and achieved 100%. It can be used as an activity for ensuring that the targeted
person is in a minimal risk zone. It is performed through continuous monitoring and
periodically assessing the status of identified fall risk factors. If the observed values for
those parameters lie in the acceptable range, then the targeted people might be assumed to
be in the safe zone. The list of activities [15,16] that can be performed for fall prevention
can be listed as:

e Notice if they are holding onto walls, or something else, when walking, or if they
appear to have difficulty when walking or arising from a chair.
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Talk about their medication.

Complete a walk-through safety assessment of their home.
Enlist their support in taking simple steps to stay safe.
Discuss their current health conditions.

Perform regular checkups of the eyes and spectacles.

2. Methodology

This section discusses the methodology followed for carrying out this work. The
literature studied comprises the work completed as publications, patents, and funded
projects or surveys in this domain in the specified time duration, as shown in Figure 4. The
query used for searching is a Boolean “OR” combination of the terms “Fall Detection”, “Fall
Prediction”, and “Fall Prevention”, and it should appear in the title of the publication. A
number of projects/surveys and patents completed in a window of two years starting from
the year 1991-92 was sought out. The process was repeated for the subsequent two-year
periods until 2020. Similarly, the number of publications was identified using Google
Scholar. Additionally, the publications were also categorized according to the different
publishers, including Springer, Elsevier, IEEE, etc. The publications were further grouped
based on the technology used to detect/predict/prevent falls. The articles that were purely
concerned with clinical research were excluded. Additionally, the articles where falls were
a secondary concern, and the primary concern was some pre-existing disease, were not
included. The non-availability of full text and indexing in some inappropriate databases
were also considered as part of the criteria for exclusion.

Publications found
through Google
Scholar (n=501)

Publications found
through other

sources (n =12)

o

Screening (n =513)

[Reason for Exclusion

Presence of some primary disease — 213

[Purely clinical perspective — 64
[Full Text not available — 97

Full Text Article [nappropriate indexing — 31

Available (n = 108)

v

y

v v

Publications (1 = 85) Patents Projects and Surveys
(n=7) (n=16)
b4
Publisher- Year-wise Total
wise count

Figure 4. Review methodology.
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3. Research Publications

To make the review process more systematic, the research publications that have been
studied are placed in various categories depending upon the underlying technology they
are focused upon. Before discussing the research publications in various categories, it
is better to describe the parameters used for the evaluation of an algorithm used for fall
detection or prevention.

3.1. Evaluation Parameters

A fall detection or prediction model needs to be tested for its effectiveness at analysis.
The following four parameters [15,16] are used to evaluate a given model:

(i) Sensitivity: the system can detect falls correctly. It is defined as the ratio of the
number of falls correctly classified and the total number of falls as follows:

e TP
SenSItIVIty = W

N ¢y

where, TP = Falls correctly identified, and FN = Fall not detected by the model.
(ii) Specificity: the system can avoid false alarms (detecting an event similar to a fall,
which is not a fall in actuality). It is calculated using ADL (activities of daily living) as

follows: ™
Sensitivity = TN + FP )

where, TN = Number of ADL coorectly classified, FP = Number of False Falls
(iii) Accuracy: accuracy is the capability of a model to correctly identify actual falls and
to recognize falls false as well. It is calculated through a balanced calculation of sensitivity
and specificity:
Specificity + Sensitivity
: )
(iv) False positive rate: this is the number of false falls identified as actual falls per
hour. It is calculated as a ratio of the number of false falls to the total time of recording;:

Accuracy =

B FP
False Positive Rate = ADL time (in hrs) Y

3.2. Cell Phone-Based Approaches

A simple system for fall risk prediction is developed in [3] using a cell phone along with
a three-dimensional accelerometer. Practically, it is less expensive to use the accelerometer
to monitor a human walking as an object. Along with the proposed work, the authors
defined gait symmetry and stability under the data conditions of acceleration. The proposed
gait assessment model was capable of analyzing and evaluating the stability and symmetry
of an individual’s gait. The proposed gait assessment model could predict the fall risk
of a walking object correctly. The improved results for the performance and efficiency
were obtained, justifying the effectiveness of the work. The problem of fall prediction is a
manifold one, whose solution demands balanced coordination of behavioral, physiological,
and environmental parameters.

Fortina and Gravina [12] designed a system comprising a smartphone and wearable
accelerometer that sends an alarm when a fall is detected in real time. The system was
capable of triggering fall incidents using different alerting modalities, providing emergency
services with a notification in no time. The approach was tested on 20 subjects and the
results reported an 83% specificity, 97% sensitivity, and 90% precision. The fall detection
system in the future would be improved in terms of design and evaluation and become
better because of this work. Research on the invention of modest wearable devices for
blood pressure checking to detect orthostatic hypotension and the associated fall risk is
almost nullified, however, although the research on using smartphones as devices to detect
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falls is in transit, and certain limitations are still challenges that need to be resolved, as
listed below:

It is doubtful whether the quality of the built-in sensors of cell phones [17] is good
enough to properly identify falls. The accelerometer sensor of smartphones have
dynamic ranges of up to £2 g, but the level required for a fall detection device to
produce an appropriate result is +4 g to +6 g (1 g = 9.8 m/s?).

The limited battery life (only a few hours) of smartphones on heavy usage is a major
concern [17]. Past studies show that battery consumption rises to more than double
when three sensors are used simultaneously. Using power-saver mode appears to be a
genuine solution, but the performance would be affected considerably.

Smartphones are not designed and developed purposefully for detecting falls [1]. The
various compatibility and operational issues result in a compromise with accuracy
when used in real time.

The positioning of mobility sensors significantly impacts the behavior of fall detectors.
The accuracy of the smartphone-based fall detection systems demands its mounting
or placement at some particular and unnatural position, usually the chest or wrist [15].
However, this mandate of positioning either produces discomfort to the user or
compromise with the accuracy achieved. Moreover, an additional device is needed
to carry and position the smartphone at the desired point. It makes the product less
attractive overall.

3.3. Sensor-Based Approaches

The use of accelerometer and gyroscope sensors either alone or in pairs has been the

preferred choice of researchers to detect falls. In some research, the existing sensors of
the devices are being exploited for fall detection, while in others, the desired sensor(s)
is/are connected externally. Figure 5 shows the use of the different types of sensors in fall
detection and prediction. The accelerometer sensor was used in 86% of the research works
related to fall detection or prediction. Only 5% of the researchers used a barometer and
magnetometer for fall detection.

20

Type of Sensors Used

160 152
140
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80
60

40

15 13
3 6

Accelerometer Gyroscope Accelerometer Barometer Magnetometer
and Gyroscope

Figure 5. Types of sensors used in fall detection.

The problem of falls in the elderly is renowned and hazardous throughout the world.

A delay in fall assistance may result in practical damage to the elderly person along with a
decrease in movement and ease of living. The authors of [18] suggested a novel system to
detect falls in aged people using the IoT. Their approach was based on utilizing energy-
efficient wireless sensor networks, cloud computing, and smart devices. The wearable
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device was designed by embedding a 3D-axis accelerometer into a 6LoWPAN (low-power
wireless personal area networks) device. The real-time data were collected from the
movement of elderly people. To detect falls with improved efficiency, a decision tree-based
big data model, along with a smart IoT gateway, is used for processing and analyzing
sensor data. The moment a fall is detected, the system reacts by sending an alert message
to the caregivers or emergency services chosen for providing care. The data are managed
and stored in the cloud. The medical professionals can use that data for further analysis.
Additionally, there is a system service that generates another machine learning model based
on these data to adapt to future falls. The experimental consequences were improved fall
detection success rates, measured using accuracy, gain, and precision.

Gait analysis and the monitoring of mobility are usually performed using accelerome-
ters and gyroscopes in wearable systems. Most of the researchers recently have worked
on obtaining and analyzing the data from accelerometers and gyroscope sensors for the
assessment of fall risks [17,19]. Bourke et al. [20] analyzed different permutations of the
magnitude of acceleration, sensor velocity, and body posture and, based on that, a fall detec-
tion system was developed. They observed that the maximum value of fall sensitivity along
with the lowest value of the false positive rate was achieved when the three parameters
were fused and used with a triaxial accelerometer. Bianchi et al. [21] developed a wearable
device by utilizing an accelerometer along with a pressure sensor that mounts on the waist.
Different variants of fall scenarios occurring indoors as well as outdoors were tested to
minimize and avoid false alarms. The results revealed that false positives occurring under
general circumstances are reduced considerably with the usage of the barometric sensor.
As with other usual research, the authors simulated the testing environment, and healthy
young people were used for testing the device. Ease of wearing is a prime characteristic
of fall detection with wearable devices because of their continuous use for a long time. A
study on the wearable devices found that, in a trial with a case that involved an enclosed
waist-mounted device for fall detection performed on aging adults for three months, the
device was transferred to different body locations because of discomfort and bruising [22].
Thus, along with small size, comfort is also a main factor that should be focused upon. The
devices should not cause discomfort even if they are used for a long time and attached to
the same location. Howcroft et al. [23] analyzed the performance of using two wearable
sensors together in predicting fall risks. Two sensors, i.e., pressure-sensing insoles and
accelerometers, four locations of accelerometer, i.e., head, left, pelvis, and right shank, and
choices of three models, i.e., support vector machine (SVM), naive Bayesian, and neural
network. The observations reported that the best input can be provided for predicting
falls when gait assessment is performed using multiple sensors, such as with a hybrid
of the posterior pelvis, neural network, and head and left shank accelerometers. Some
researchers [24] have invented a novel approach to avert the fall of a user by governing
a passive intelligent walker as per the walking attribute of the user. These sensors are
connected with an aid device for walking to identify gesture movements and the sensor’s
distance from a person. These types of sensors usually have a short range and a high rate
of false alarms, with an individual stepping away from the walker being misunderstood as
a fall. Another researcher [25] worked on the prevention of bedside falls and introduced
a “Bed-exit” alarm. The proposed system utilizes pressure sensors. The pressure sensors
are embedded on the side rails of the user’s bed to sense the movement of an individual if
they move out of the bed. A threshold value is to be set for the pressure sensor which, if
exceeded, leads to an alarm going off to prevent the fall. For interactions with fall preven-
tion exercise games, the available ambient sensors are often utilized. Researchers, Pisan
et al. [26] and Kayama et al. [27], proposed systems that utilize Microsoft Kinect sensors
with a game invented for older adults. The proposed game helps to identify the functional
and cognitive changes in the patients by carrying out different physical and cognitive tasks.
Multi-tasking has been embedded because it is proven to be a reliable predictive factor for
future falls. Tong et al. [28] presented an HMM (hidden Markov model) method utilizing a
triaxial accelerometer for fall prediction. Additionally, the proposed work again has not
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been tested and analyzed on real-life scenarios and elderly people who can be an example
of people who are fall prone.

The solution to wrist-worn fall detection, and its development and assessment, has
been presented in this paper [29]. Several different types of signals and direction com-
ponents were collaboratively utilized along with machine learning methods to find out
the best approach for fall detection. The sensors included a gyroscope, magnetometer,
and accelerometer, the directions utilized were vertical and non-vertical, and the signals
included velocity, displacement, and acceleration. Data for the work were collected from
22 volunteers for both fall and non-fall movements. With machine learning methods, an
accuracy of 99.0% was achieved along with 100% sensitivity and 97.9% specificity. Ad-
ditionally, the work has been tested with threshold methods, and a 91.1% accuracy was
achieved along with a 95.8% sensitivity and 86.5% specificity. In the view of practical
applications, the benefits of machine learning methods have been elaborated upon by the
prolonged tests of a volunteer wearing a fall detector. Work has been proposed in [16] to
detect falls in aged people in indoor environments. This was an IoT-based system that takes
advantage of low-power wireless sensor networks, cloud computing, and big data. For its
implementation, a 6LOWPAN device wearable was used in which a 3D-axis accelerometer
had been embedded, which can collect data from aged people’s movements. The reading
collected by the sensor was analyzed utilizing a decision tree-based model. An alert is
activated if a fall is detected, and the system reacts automatically by providing notifications.
Lastly, the services will be provided built on the cloud. The system provides a service that
leverages these data for building up machine learning models every time a fall is detected.
The work showed very effective success at achieving results within the parameters of
precision and accuracy. The work presented in the survey [30] utilized a depth sensor.
A unique process to identify levels of fall risk has been implemented. This procedure of
level identification is an enhancement of fall detection. The proposed algorithm showed
effective performance results. The different and many suggestions along with solutions are
present in the form of several tools, resources, and assessments for intervention, but falling
is one of the major health problems which can occur to an individual. In today’s time, it is
considered highly desirable to go for health care if a severe fall happens.

The proposed model [31] is a working sub-model for the real-time monitoring of heart
attacks and falls of a patient. To develop this system, an Arduino UNO and Arduino NANO-
based process has been included as the architecture, with pulse and accelerometer sensors.
The key concept is to gather the data related to health from time to time, and the data
collected are to be made available utilizing a real-time interface called Thingspeak. Within
this process, the person can be invigilated from time to time without any disturbance.
The proposed model is also utilized to deliver notifications at the time of emergency
with GSM (global system for mobile communication) technology, which is combined
with the Arduino architecture. This model will be greatly helpful for elderly people,
Frankenstein syndrome patients, or patients with a history of heart attacks because of
genetic disorders. Other work [32] shows a health monitoring solution that identifies the
occurrence of accidental falls in the elderly. The technique of fall detection implements
sound- and accelerometer-based detections for valid fall occurrence. Fall detection based
on an accelerometer is instrumental for the valid detection of fall occurrence. However, it
has been shown that an accelerometer individually is not enough for fall detection because
an accelerometer is affected by misinterpretations of routing motion activities, categorizing
them as falls. To detect the pressure of sound from a resultant fall, the utilization of
sound sensors has been integrated, but the pressure of sound is not enough to be utilized
as a trustworthy fall indicator. Therefore, a method for the detection of falls based on
fuzzy logic has been presented to activate the sound sensor and accelerometer’s output
signals, and the utilization of a sound pressure detector to verify the signal provided
by an accelerometer can lower the incorrect fall detection rate of every day falls from
1.37 to 0.06. Choosing a particular paradigm, given the many approaches for detecting
falls and ADL, needs some parameter to ease the selection. Power consumption is one
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such parameter, especially when dealing with embedded systems with limited constraints.
Most of the wearable as well as non-wearable devices involve classification as one of its
essential steps. Generally, machine learning algorithms or threshold-based approaches
are exploited for classification purposes. The low computation needs combined with the
moderate classification performance of threshold-based approaches creates a trade-off with
the machine learning algorithms that normally demand high computation and offer better
classification performance. A solution was presented for this problem in [33] that matches
the power constraints of embedded systems. The method exploited advanced signal
processing to find the maximum correlation of the unknown event within the available
set of fall and ADL signatures. The power requirements were reduced by adopting a
modified alignment strategy along with a normalization procedure specifically targeting
the computational requirements. The method was able to satisfactorily classify an unknown
event belonging to a specific class of events. Paper [34] discusses UWB (ultra-wide band)
sensors, which are both environmentally and practically based on radar and are non-
wearable, as a solution. Specifically, we are concerned about the impact of unsupervised
changes in detection techniques on UWB sensor information to detect falls. Furthermore,
accelerometer sensor information is also used for assessing the oversimplification of our
unsupervised method for fall detection. Planned techniques are assessed using UWB
sensor information sets obtained from an Australian E-Heath research center (i.e., Living
Lab) and publicly accessible accelerometer sensor information sets. Results produced
capable outcomes. Work [35] shows a stance recognition-based fall discovery framework
for wellbeing observations, predicated based on keen sensors worn from the body function
using personal networks. If it can be determined that this has the best range limit, when
incidental falls occur, it could be successfully utilized in combination with an android
gadget. By aggregating the full-time information and learning of an accelerometer, cardio
tachometer, and other intelligent sensors, a fall might be calculated and separated from our
ordinary lifestyle. The technique concerning the planned framework has been clarified in a
much more feature in the paper. The planned framework accomplishes a 99% exactness
rating by utilizing exclusive sensors similar to a temperature sensor, a circulatory strain
level-checking sensor, and a cardio tachometer.

The work completed in paper [36] shows how one of the projected solutions in the
literature has been modified for use with a smartwatch on a wrist, solving some problem:s,
and updating part of the procedure. The testing includes a publicly accessible dataset. The
results point to numerous enhancements that can be adapted for the target population.
Other work [37] is focused on designing and developing a live system capable of detecting
falls in humans. When a fall occurs, it would be able to alarm the concerned person so
that the after-fall damages can be minimized. This can be used to reduce the damages at
construction sites and in industry as well. The setup was assembled as a low-cost gadget
using a MEMS (microelectromechanical systems) motion sensor (MPU-6050) and a GSM or
RF (radio frequency) to send data. The mounting location of the gadget is chosen in such a
way that a minor change in the center of gravity of the subject can be noticed.

The information is then processed and analyzed to detect the occurrence of falls. In
this paper [38], an approach is presented that detects the fall of an elderly person while
moving inside the house or indoor premise and provides their exact location. A sensor-
based fall detection method is used to detect the occurrence of falls and the location is
provided using an artificial neural network. The work conducted in [39] was based on the
Internet of things (IoT), and focused on the development of an energy-efficient wearable
sensor node. A lightweight, energy-efficient, small-size and flexible device was designed
for detecting falls. The design was a consequence of an exhaustive study on the parameters
that affect energy consumption in IoT devices (wearable devices). The scope of research
on ambient assisted living using smartphones motivated the researchers to work in this
area. It was concluded from various approaches that wearable devices perform better at
identifying falls from ADLs. These systems are tested in a controlled environment and
optimization is performed for a given set of sensor types, sensor positions, and subjects. A
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self-adaptive pervasive fall detection method is proposed in this work. The work proposed
is robust to the heterogeneity of practical situations in life [40]. The authors in [39] proposed
an RNN (recurrent neural network)-based human fall detection method. The ability of
the network to work with acceleration measurements from sensors means that it has the
appropriate tools for the task. Study [41] presented an IoT fall system for the fall detection
of elderly people that uses the benefits of IoT. The proposed system shows a 3D-axis
accelerometer added into a 6LoWPAN wearable device with the capacity of measuring the
movements of elderly volunteers as data. Table 1 shows the specificity (SP) and sensitivity
(SE) achieved by various researchers. The research work considered in this table has
exploited the accelerometer sensor for detecting falls. It can be observed from the table that
various researchers have succeeded at achieving 100% specificity and sensitivity by using
an accelerometer to detect falls [42].

Table 1. Performance of accelerometer-based fall detection devices [4-13,15-17,19-52].

Title Author Details Year  Specificity Sensitivity
Evaluation of accelerometer-based fall detection algorithms on F. Bagala et al. 2012 833 57
real-world falls
Evaluation of a thresholdjbased tr1.—ax1al accelerometer fall AK. Bourke et al. 2007 916 93
detection algorithm
Comparison of low-complexity fall detection algorithms for body M. Kangas et al. 2008 100 98
attached accelerometers
Accurate, fast fall detfectlon using gyroscopes and Q. Lietal 2009 9 91
accelerometer-derived posture information
Barometric pressure and triaxial alccelerometry-based falls event E Bianchi et al. 2010 965 975
detection
Asses.,sment Of waist-worn trl—zflx1a1 acceleromet.er—basefi N A Bourke ot al. 2010 100 94.6
fall-detection algorithms using continuous unsupervised activities
A wearable pre-impact fall detector using feature selection and S. Shan et al. 2010 100 100
support vector machine
Unsupervised machine-learning method fqr improving the M. Yuwono et al. 2012 99.6 98.6
performance of ambulatory fall-detection systems

Evaluation of fall detection classification approaches H. Kerdegari et al. 2012 92 90.15
Patient Fall Detection using Support Vector Machines C. Doukas et al. 2007 96.7 98.2
A framework for daily activity monitoring and fall detection J. Cheng et al. 2013 97.66 95.33

based on surface electromyography and accelerometer signals

3.4. Camera-Based Approaches

In fall detection and prediction systems, there is a high usage of camera-based sen-
sors [53,54]. For monitoring the routing activities of any individual, distinct cameras are
used in such systems. Along with the pros, these systems also have some cons, such as
budget and privacy, and they are unable to track beyond the camera range. Another fine
example of ambient sensors is proximity sensors, which are utilized for fall detection. Bian
et al. [55] utilized a single-depth camera to introduce a novel approach for fall detection in
which key joints of the person’s body are to be analyzed. This newly developed approach
utilized an infrared-based depth camera which can work in dark environments. However,
the invented approach is not able to identify the falls that end with the person lying on
the furniture. Paper [54] planned an integrative replica of fall motion recognition and fall
severity level assessment. The detection of fall motion and the presentation of data in a
continuous stream, with the time-sequential frames fifteen body joint positions, have been
obtained from Kinect’s 3D camera. Some features are extracted and fed into a designated
machine learning model replica. Compared to existing models, which rely on inputs of the
image depth, the planned method resolves the background uncertainty of the human body.
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The experimental outcome confirmed that the planned method of fall detection achieved
99.97% accuracy with zero false negatives and was robust compared to the state-of-the-art
approach because it utilized image depth.

The work completed in [56] suggested a method for detecting falls using the 3D
skeleton data received from a Microsoft Kinect. The technique utilized the accelerated
velocity of the center of mass (COM) of different body components and the skeleton data
as main biomechanical features and applied long short-term memory networks (LSTM)
for detecting a fall. Unlike other similar methods, it does not require the mounting of a
sensor on any body part of the elderly, people preserving their privacy. The method was
tested and validated on the existing dataset and was found to be effective in fall detection.
Since no special mounting of sensors is required, the device can be used for detecting falls
in elderly people at home. This paper [57] discusses an intelligent fall detection system
based on video. The first step is to extract the silhouette of a person using the background
subtraction method; a collection of features is then evaluated to estimate a fall. The head
position is estimated using a new technique and its virtual velocity is computed using an
FSM (finite state machine).

For the expansion of systems that are human interactive, the visual human action
classification is important. The work [58] enquires about a human stage classification that
is image based, with a walking support system to increase safety. The paper [59] presented
a real-time system that is very fast and more accurate and able to identify falls in videos
taken by cameras. A new spatial and temporal variant-based aspect is presented which
comprises the geometric orientation, the location of a person, and their discriminatory
motion. The datasets used for the study are different cameras that fall with two and three
classes. An accuracy level in the range of 99.0 to 99.2 has been achieved. A comparison of
nine methods has been conducted and the effectiveness and improvement of the presented
approach with the dataset have been given in the work.

3.5. Survey/Questionnaire

The authors in their work [2] have reviewed the existing fall prediction methods and
strategies for old people and patients. Based on the approaches using sensors, the tech-
niques for detecting falls are categorized into three domains namely, “Wearable Devices”,
“Ambience Devices”, and “Camera-Based”. Each class is subdivided further based on their
fundamental principle of working. The advantages and disadvantages of each category
have been listed along with the remarks for further improvements. Similarly, in [8], the
authors have conducted a systematic survey of existing systems for predicting falls in the
elderly. The shortcomings and the challenges listed by the authors help to design effective
implementation techniques for fall prevention and prediction. One of the recent surveys
highlighted a crucial point regarding wearable devices, namely that 32% of the users usu-
ally stop wearing them after 6 months and almost 50% stopped their usage completely after
a year [60]. Therefore, a requirement of research must be to scrutinize the functionalities
of wearable devices, such as modishness, budget, reliability, and flexibility, to increase its
demand among customers. Questionnaires and assessments are often a part of clinical fall
risk analysis that can analyze posture, cognition, and other important fall risk factors [61].
Questionnaire and assessment analysis provides a sample and snapshot for analyzed fall
risks. They are usually subjective and utilize threshold assessment scores to categorize an
individual as fallers and non-fallers [62,63]. However, fall risk flow should be modeled
based on a continuum, and include categories of risk, such as low, moderate, or high fall
risk. Modest sensors and distinct health tools can be utilized to perform the longitudinal
monitoring of aging adults who can provide an effectively accurate assessment of fall risk.
Shany et al. [64] introduced the utilization of wearable devices, such as sensors, for fall
risk, especially under supervised and unsupervised environments. However, discussions
about the testing, validation, and maintenance of different methodologies and real-life fall
implementations are not being discussed in this work.
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Another work in [65] shows a methodic review according to PRISMA (preferred
reporting items for systematic reviews and meta-analysis statement) principles. Twenty-two
studies out of eight hundred and fifty-five were studied for this work. The features which
were extracted from the study were the outcome variables, fall prediction models, sensing
techniques, and assessment activities. Four major sensing technologies, i.e., cameras,
pressure sensing, laser sensing, and inertial sensors, were found to be useful for predicting
fall risk accurately in elderly adults. The work presented accuracy levels in the range of
47.9% to 100% because of modeling techniques and kinematic parameter variations. Several
sensor technologies have been used in fall risk analysis in elderly adults. It can be said that
the devices are very valuable for providing an easy-to-handle and accurate analysis. In the
future, it is necessary to find out ways to diagnose fall risk by using sensor technology. One
of the major concerns of healthcare in several communities, specifically with elderly people,
is unintentional falls. Related surveys have found that sensors, cameras, and sensor-based
approaches are used to develop systems that can classify fall detection with human beings.
The work presented in [66] elaborates upon three parameters, i.e., prevention, assessment,
and intervention, which are shown as a three-tier model. This work has been conducted
to bring together innovative tools, proactive programs, and technology that have been
constructed for fall prevention. The realization of the resources will intensify the clinician’s
capability to precisely assess gait and balance, with the help of which the risk of falls can
decrease. Research work [67] concentrates on falls in the elderly and how elderly people
can be helped with fall prevention. As per the survey, 20% of all the elderly who have
fallen remained on the ground for more than an hour. Moreover, 50% of the elderly people
who suffered from falls die within 6 months of it, even if there are no physical injuries. The
psychological effects can also lead to death. More than 50% of elderly people suffer a fall
far from home where installed fall detection systems cannot reach. One of the top reasons
for fatal as well as non-fatal injuries in elderly people is due to falls.

Fall frequency within one year calculated using time-to-time monitoring has defined
the status of falls for 7/153 fallers or non-fallers. Based on [68] and their analysis of
718,582 turns, prospective fallers turned less frequently, took a longer time to turn, and
were not very reliable in terms of their turn angle (p = 0.007, 0.025, and 0.038, respectively).
Prospective fallers walk slower, use up less time walking and turning, and have extra
time occupied in sedentary behavior (p = 0.043, 0.012, and 0.015, respectively). Those who
have less control over their gait and turning abilities might attempt to decrease the risk
of falling by restraining exposure and implementing advisory progress strategies while
turning. As there were hardly any differences in general active rates among fallers and
non-fallers, turning ability and gait may lead to an elevated risk of fall. Falls of patients
and other injuries related to falls remain a concern of safety. The JHFRAT (Johns Hopkins
fall risk assessment) device [69] has been utilized to perform untimely risk detection, which
is meant to anticipate physiological cascades in adult patients. Psychometric properties
in keen care settings have not been so far completely recognized; this revision sought
to fill that space. The presented results showed that JHFRAT is reliable, with negative
predictive validity and high sensitivity. Positive predictive validity and specificity were
lower compared to the expectation.

An assessment for the identification of fall risk [70] is usually performed in hospitals
and environments, such as the laboratory. Instead of these assessment testing methods,
a passive monitoring solution in the home would be a cheaper and less time-consuming
option. As sensors become more readily accessible, a machine learning replica can be
utilized for the huge amount of information they create. This is useful for the finding,
prediction, and risk determination of falls. In this review, the increased complexity level of
sensor information required analysis, and the machine learning methods used to decide the
risk of falling were analyzed. The latest research on utilizing passive monitoring in house
has been discussed, whereas the viability of active monitoring by utilizing wearable and
vision-based sensors has been measured. The comparison of methods, such as prediction,
detection of falls, and mitigation of risk, has been conducted. This study [71] proposes a

71



Healthcare 2022, 10, 172

technique to analyze the ways in which elderly adults at high falling risk interact with the
smart rollator, i-Walker, to navigate indoor, flat environments. The smart rollator is a sensor
and actuator prepared and able to collect data for several hours. In [72], a multi-parametric
score based on consistent fall risk assessment tests, along with medication, the history of a
patient, their motor skills, quality of sleep, and environmental factors was planned. The
resulting entire fall risk score reflects entity changes in vitality and behavior, which are
triggers for fall prevention interventions. The deployment and evaluation of the system has
been conducted in a pilot learning program for 30 elderly patients over 4 weeks. Another
paper, Ref. [73], depicts a person in motion as a scatterer using time-variant (TV) speed, TV
vertical motion angles, and TV horizontal motion angles of scatterers in motion. In addition,
we obtained TV angular parameters of every moving scatterer, such as the departure angle
of elevation, the azimuth departure angle, the arrival angle of elevation, and the azimuth
arrival angle. Moreover, TV unit vectors of the departure of transmitted wave planes
and unit vectors of the arrival of the received wave planes are obtained. Additionally,
showing the Doppler power spectrum uniqueness of such channels provides a closed-form
explanation of the spectrogram of complex channel growth. The precision of the analysis
is determined using simulations. The paper contributes an initiative for implementing to
device-free monitoring of indoor activity and systems of fall detection.

Study [74] collects and analyzes technological solutions that exist for the assessment
of fall risk with several sensor-based technologies. This work also presents an easy solution
for fall risk assessment and provides a design based on the concept for the integration
of solutions based on the sensor for the Finnish National Kanta Personal Health Record.
Paper [75] shows that older adult falls result in substantial medical costs. The calculation of
medical costs attributable to falls provides important data about the problem’s magnitude
and the potential financial outcomes of effective prevention strategies. The objective of the
study [76] was to expand a fall risk mobile health (mHealth) app and to decide the applica-
bility of a fall risk app in healthy and older adults. A fall risk app was created which carries
a health history questionnaire and five progressively challenging mobility responsibilities
to determine individual fall risk. An iterative design—evaluation process for semi-structured
interviews was created for resolving the usability of the app on a smartphone and tablet.
Participants also completed a systematic usability scale (SUS) assessment. Standing-level
falls [77] are the most common reason for injury-related demise in older grown-ups and
a typical cause of attendance at accident and emergency departments. In any case, these
patients once in a while underwent rule-coordinated screening and mediations during or
following a scene of care. Diminishing damaging falls in a maturing society starts with
pre-hospital assessments and proceeds through hazard evaluations and mediations that
happen after crisis division care. Even though means for preventing people from needing
to access emergency services have been implemented, proof-based systems to decrease the
number of falls in elderly adults rely on fall prevention, and advancements incorporate
the approval of screening instruments and the consolidation of contemporary innovations,
such as PDAs (personal digital assistants), to improve fall location identification rates. This
work [78] included measures that speak to various elements (clinical versatility and parity,
quality, physiological, postural influence, and the mean and fluctuation of distinction scores
among double- and single-task walk conditions) to decide the blend of measures that were
the most sensitive for distinguishing fallers from non-fallers. This study aimed to analyze
a smartphone fall prevention app to identify product features [79]. Along with that, the
scope of revenue generation was also explored using willingness to pay (WTP).

3.6. Threshold- and Machine Learning-Based Approach

To develop a reliable and accurate fall detector, it is desirable to have a system that
is capable of effectively distinguishing ADL from falls. The authors in [80] developed a
paradigm that utilizes the sensors of a smartphone. Advanced signal processing procedures
were used to obtain the moving average of scalar values of the three accelerometer compo-
nents. The adoption of the cross-correlation event polarized approach helped the system to
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behave robustly. For better classification, two different types of classification algorithms
were used, one based on threshold mechanism and the other on principal component
analysis (PCA). The performance of the paradigm can be analyzed on two aspects, namely,
the classification of a fall and distinguishing a fall from ADL. As compared to the threshold-
based approach, the method outperformed on both aspects. However, the performance was
moderate for the classification of falls and satisfactory for distinguishing falls from ADL. To
improve the performance of the classification of falls, a modified classifier was presented
in [80]. In the modified classification approach, the posture information of the user was
also gathered after the ADL detection. Using this information, it was easy to discriminate
between the multiple classifications of the same event, which was made feasible when
using a large dataset for assessment.

In [81], a low-cost and very accurate fall detection algorithm based on machine learn-
ing has been proposed. A new method for online feature extraction which employs the
fall’s time characteristics efficiently has been proposed. Along with the same, a new de-
sign of a system based on machine learning has been proposed which can achieve the
numerical /accuracy complexity tradeoff. The lower computing cost of the algorithm helps
to combine it with a wearable sensor as well as make the requirement of energy much
lower, which increases the wearable device autonomy. The experimental results on a big
open dataset show that the accuracy of the proposed algorithm is 99.9% with a computing
cost of less than 500 floating-point operations per second. The fall detection systems that
utilize the built-in accelerometer sensors of smartphones have been developed to overcome
several limitations. One of the major drawbacks of these systems is the enhanced false
alarm rate that inhibits their use as a preferred approach. In this work [82], a new technique
has been proposed using data mining for monitoring falls. The accelerometer data is mined
to discover sequence patterns. These patterns are utilized to formulate a robust system
for monitoring falls based on the mobile platform. The proposed solution was tested on
a real dataset as well as the MobiFall dataset. The results were compared with existing
fall detection algorithms that are smartphone based, and it was found that the method
achieved an acceptable false alarm rate. Fall detection was improved using consecutive-
frame voting in this work [83]. The process starts with human detection using background
subtraction. The subtraction was conducted using a combined approach that involved a
mixture of the Gaussian model with an average filter model. The feature extraction section
has the task of calculating orientation, aspect ratio, and area ratio from the PCA (principal
component analysis) of a human silhouette. In the human centroid section, the moving
objects were grouped using human centroid distance. In event classification, event postures
are classified. In the end, the voting of majority results is counted from consecutive runs.
The results with improved accuracy indicate that the proposed method is better than the
prior work that was tested on the Le2i dataset. Most of the techniques are based on a
TBA (threshold-based algorithm). However, some researchers have used machine learning-
based approaches to predict falls. The hybrid approach of TBA and ML are available in
some cases, but each method has its strengths and shortcomings. The work completed
in [84] analyzes the TBA- and/or ML-based techniques. The work performed in [85] is
capable of identifying the pattern of falls along with the task of detection. This information
regarding patterns is further utilized for assistance using machine learning. The proposed
method was successful at efficiently differentiating falls from non-falls, thereby increasing
accuracy. An automated method for inspection is proposed in this paper [86] to check PPE
(personal protective equipment) usage by steeplejacks mounted beside exterior walls for
aerial work. The inclusion of the aerial operation scenario-understanding method makes
the inspection a tool that can be used to take preventive measures for control. The occlusion
mitigation method based on deep learning is used for PPE checking. The method was
tested under various conditions. The demonstrations and experimental results proved
the reliability and effectiveness of the method for fall prevention and help in adopting
safe supervision. The important offering of work [87] is a non-linear model along with
threshold-based classification for recognizing abnormal gait patterns with more accuracy.
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Within the same paper, a dataset with some real parameters was developed to calculate fall
prediction. The smartphone sensors of the gyroscope and accelerometer have been used for
dataset creation. The presented approach has been implemented and an accuracy of 93.5%
has been achieved, which is good compared to other approaches.

3.7. Other Approaches

Sannino et al. [88,89] proposed an approach where a tag is placed on the subject’s
chest for providing data. The concept of windowing was used to classify windows in fall
and non-fall action categories. Consequently, a final window composition was used to
determine the global action as a fall or non-fall. The technique was tested and verified
on real data comprising fall and non-fall events. The testing results were convincing and
justified the effectiveness of their approach. The work presented in [90] elaborates upon
the multi-player fall prevention game platform and fall sensing games that were inspired
by the exercise program of Otago. The results of the work showed that the game integrates
well with senior care centers. Another work, Ref. [91] presented an improvement of Kalman
filter-based slip estimation for characterizing slipping distance. The very impressive thing
about the algorithm is the detection of accurate slip onset in a fast manner along with the
cost-effective and non-intrusive features of the sensor. For the validation and demonstration
of the implemented work of a slip detection and estimation model, several experiments
have been conducted. The work given in [92] presented a wireless channel data-based
fall-sensing system that is real time and transparent. A dynamic template matching (DTM)
algorithm has been utilized to build up FallSense. The model has been tested on Wi-Fi
devices and an evaluation of the same has been conducted in real environments. The
results presented in the work show the outperformance of FallSense compared to other
approaches in terms of parameters, such as false alarm rate, complexity, and precision.
One of the top reasons for injuries among elderly people is falling. Present solutions
suggest wearing fall-alert sensors, but they have been shown to be ineffective in medical
research because most of the time elderly people do not wear them. These things became
the reason why the new passive sensors that interpret falls using radio frequency (RF)
have come into existence. This does not have any implications for elderly people, and
it does not encourage them to wear any kind of device. The existing approaches cannot
deal with real-world complexities, although major advances have been made in passive
monitoring. These approaches perform training and testing on the same people in the
same environment, and they cannot extend it to a new environment. Additionally, these
approaches cannot differentiate motions from different people, which makes it easy to miss
out on a fall in the presence of different motions. To handle these problems, Aryokee, a
fall detection system that is RF based [93] and which utilizes a state machine-governed
convolutional neural network was proposed. The fall detection system, Aryokee, works
with new environments and people who are not seen in the training set. It also separates
dissimilar sources of motion to improve robustness. The dataset used was of 140 people
performing activities of 40 types in different environments (57 different environments). The
results achieved show 92% precision and 94% recall in fall detection. The methods of fall
detection based on wearable inertial devices have been explored from 2013 to 2018 [94].
First and foremost, fall definition, fall’s conventional phases, the categories of falls, and
the classification of falls have been introduced completely. The research work has been
explained in the context of modules, such as the collection of data, pre-processing, feature
extraction, and the construction of a model for wearable fall detection system frameworks.
The evaluation of the fall detection method’s performance has been performed by inducing
the most-used technical criteria. Finally, nine datasets of fall detection have been elaborated
upon, and also the predictive performance based on the datasets has been assessed.

The FLIP (flooring for injury prevention) study [95] was a superiority trial conducted
over a random 4 years in 150 single rooms at a Canadian LTC (long-term care) site. Resi-
dents’ rooms were randomly blocked (1:1) with compliant flooring installation (2.54 cm
smart cells) or rigid control flooring (2.54 cm plywood) covered with hospital-grade vinyl

74



Healthcare 2022, 10, 172

in April 2013. The foremost result was a fall injury of a serious manner lasting more than
4 years which needed a visit of the emergency department and a process of treatment or
a hospital diagnostic evaluation. The secondary results included minor injuries, or any
injuries related to falling, fracture, and falls. Results were confirmed by blinded asses-
sors between 1 September 2013, and 31 August 2017, and examined with treatment as
the objective. The problem of fall detection has been studied elaborately for a long time.
However, designing accurate embedded algorithms with affordable computing costs is still
a challenge because of limited wearable hardware resources.

This work [96] presents a model that is non-stationary, and which is important for
such system development. A 3D stochastic trajectory model has been designed to find
the mobility patterns of the user. The designed model has a forward fall mechanism.
Radio waves will be transmitted to the complete indoor propagation environment, and the
fingerprints of the object scattered on the emitted waves will be collected by the receiver.
The radio channel has been modeled correspondingly through a process that captures the
Doppler effect based on time spent by the occupant at home. The non-stationary channel’s
time-frequency behavior has been studied by calculating the power spectral density of the
Doppler effect and with spectrogram analysis. The derivation and simulation of instant
mean Doppler shift and spread have been performed and the proposed model showed
results at 5.9 GHz. The presented results are very effective at developing fall detection
models which are reliable, and the model is helpful for studying the effect of several
walking/falling patterns. The results are intuitive for emergent reliable fall detection
techniques, though the model is functional for studying the impact of diverse patterns on
the whole fall detection system performance.

This research [97] outlines a detailed technique based on CNNs (convolution neural
networks) for identifying falls using non-invasive thermal vision sensors. It consists of
an agile information compilation for labeling images to produce a dataset that describes
numerous cases of both multiple and single occupancies. The cases mentioned comprised
situations with a fallen inhabitant and standing inhabitants. They also provide information
augmentation methods for optimizing the capability of classification learning and the
reduction of configuration duration. Third, they define three types of CNN for analyzing
the effect of the number of layers and the size of the kernel on the technique’s performance.
The obtained results show, in the context of single occupancy, an accuracy of 0.92, and
a reduction of 0.10 in accuracy in multiple occupancies. The learning abilities of CNNs
have been highlighted as outstanding for use with composite images gained from the
inexpensive tools. Do the thus-produced images have more noise along with uncertain
and blurred areas? The result shows that a CNN based on three layers executes stable
performance, along with fast learning. The planned technique in [98] offered extracts of
motion data using a best-fit approximated ellipse and a bounding box around the human
body, finding a histogram projection and identifying head position over time, which is
useful for producing ten features for fall identification. The above features are fed into a
multilayer perceptron neural network to calculate fall categorization. The investigational
outputs explain the reliability of the planned method for a high fall detection rate of
99.60% and a low false alarm rate of 2.62% when used with the UR fall detection dataset.
Comparisons to state-of-the-art fall detection methods revealed the robustness of the
planned method.

The study conducted in [99] focuses on the validation and improvement of existing
algorithms for fall detection. The study was conducted in two phases. In the first phase,
twenty subjects were recruited of ages 86.25 £ 6.66 years who had experienced high-risk
falls. The data concerning their movements were recorded for 59 days in real time using
the AIDE-MOI sensor. The existing algorithms were optimized using these data. Then, the
evaluation of the optimized algorithm was performed for 66 days. In total, 31 real falls were
recorded through the data gathered in both phases. These data were then segmented into
one-minute chunks for categorization as “fall” or “non-fall”. A significant improvement
was observed in the sensitivity (27.3% to 80.0%) and specificity (99.9957% to 99.9978%)
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of a threshold-based algorithm. A new method is described in [100] that overcomes
several deficiencies of the traditional fall detection methods. The system developed is
completely passive and the user is not required to wear any of the devices. The system is
developed utilizing the channel state information (CSI) of Wi-Fi along with an accelerometer
mounted on the ground to detect floor vibration. The proposed method also overcomes the
limitations of existing methods based on the Wi-Fi CSI approach that mandates the presence
of only one user in the room. The experimental results show an efficient result of 95%
accuracy. A fuzzy logic-based adjustable autonomy (FLAA) model is proposed in [101,102]
to handle the autonomy of multi-agent systems that are active in tough surroundings.
This model focuses on the management of the autonomy of agents and enables them to
make competent autonomous decisions. The autonomy is quantitatively measured and
distributed among several agents using fuzzy logic based on their performance.

Figure 6 details the variation in the number of publications every two years since
1991. The results for the same are obtained through Google Scholar for the keywords
“Fall Prediction” OR “Fall Detection” OR “Fall Prevention”. Similarly, Figure 7 shows
the publication details for certain top-level publishers every two years. From the graphs,
it is evident that the task of reducing or minimizing the fall risk and its after effects has
been motivating more researchers every year. Certain challenges need the focus of active
researchers and show the pathways for future research.

Year wise analysis of papers published on Fall Detection/Fall
Prediction or Fall Prevention
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Figure 6. Variation of the number of publications (per publisher).

Year wise number of Research papers by
differnt publishers
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Publishers

Figure 7. Variation of the number of publications (publisher-wise).
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Figure 8 represents [103—-105] the evaluation of the different approaches developed
to detect or prevent falls. The evaluation has been conducted based on the attainment
percentage of three parameters: sensitivity, specificity, and accuracy. It can be observed that
in some cases, the respective authors succeeded in achieving more than a 98% value for the
respective parameters [14,18,106-112].

Analysis of various fall prediction and
prevention approaches

00000 WVWVLWLOVLWLOO
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e Specificity  « »Sensitivity Accuracy

Figure 8. Qualitative analysis of various fall prediction and prevention techniques.

4. Patents

Researchers have been continuously working for the last three decades to reduce
the risk and impact of falls in older people or patients. However, a comparatively fewer
number of patents have been filed in this domain. The same is evident in Figure 9. The
work conducted in [26] shows the number of patents filed every two years since 1991 to
date. Most of the patents are filed in the USA. However, [10] describes the details of Osome
of the patents granted in the USA and India. Table 2 gives an insight into some of the
patents that have been granted in this domain.

Year wise number of patents on Fall
prediction/Fall Detection or Fall Prevention

50 —

Patents

Year

Figure 9. Patents granted on fall prediction or detection.
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Table 2. Details of patents granted [113].

S. No. Patent ID Patent Title Aie;rro(\)/fal Inventor Name Country
Fall detection technology J Ma_;)k Alri\(j[rez\./ Hzr:ison,T
1 US10037669B2 and 2018 can-rautvartin, fAdam L. USA
reporting Barth, Christopher
P Silverman
. Mark D. Grabiner, Kenton R.
2 US8990041B2 Fall detection 2010 Kaufman, Barry K. Gilbert USA
3 US20160100776A1 Fall detection and fall risk detection 2015 Bijan BolooriNajafi, Ashkan USA
systems and methods Vaziri, Ali-Reza
. . Han-sung Lee, Jae-geol Cho,
4 US20180263534 Al detecct:)‘r’lrt‘rcolﬁ‘i’:e t;r:jeﬁeth(’d for 2018 Moo-rim Kim, Chang-hyun ~ USA
& Kim
Shoe system for the detection and
5 US20180146737 monitoring of health, vitals, and fall 2018 Joseph Goodrich USA
detection
. . Senem Velipasalar, Mauricio
6 US20180007257 ~ Automatic det;iﬁg?aby a wearable 2018 Casares, Akhan USA
Almagambetov
System And Method For Personal
7 2316/CHE/2013 Crash/Fall Detection And 2013 Abhishek H Latthe INDIA

Notification

5. Projects and Surveys

According to the National Council of Aging, an older adult dies because of a fall every
19 minutes, and every 11 minutes, an older adult is treated in an emergency department for
a fall-related injury [101]. Approximately USD 50 billion is spent on treating fall-related
injuries in older adults in America. Table 3 describes some projects sanctioned in this
domain along with the funding details. Having a birds’ eye view of medical expenditure
on falls worldwide is enough to understand the need for projects and research to be carried
out in this domain. The OU College of Nursing earns a grant of USD 1 million to continue
its fall prevention program. Congress was requested to allocate a budget of USD 10 million
for fall prevention programs in just one financial year [112,114-123].
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Table 3. Details of funded projects for fall detection or prevention.

Project Title Investigators Year 0 f Organization Funding Details Project Description
Sanction
“Randomized Trial of a Behav1(?ral .Interventlons', Care
. . . Coordination, Other Clinical
Multifactorial Fall Injury Shalender Bhasin Budget: Interventions
Prevention Strategy: A Joint Thomas Gill ’ 2014 Harvard Medical School; Yale Medical $33,365,602 Other Health Ser\;ices
Initiative of PCORI and the . ’ School; UCLA Medical School Source: Patient-Centered .
. . . David B. Reuben . Interventions, Technology
National Institute on Aging of the Outcomes Research Institute . -
. . P Interventions, Training and
National Institutes of Health” [61] . :
Education Interventions
Fall Prevention Center of Excellence, ) -
“Home Safety Adaptations for the s headquartered at the University of Budget: Unspe.aﬁed Home safe.ty for older people
. Unspecified 2010 . . . Source: The Eisner from Fall, fire, etc. and develop
Elderly (Home SAFE)” [62] Southern California Leonard Davis . . .
Foundation and implement related strategies
School of Gerontology
DeS}gr.1 and Developmen’c of fall . Centre for B}omedlc.al Engineering, Budget: Rs.26,78,162/-
prediction and protection system Dr. Dinesh 2015 Indian Institute of Source: DST Unspecified
for pelvis & femur fractures: Kalyanasundara m Technology (IIT)-Delhi, Hauz Khas, IND’I A p
Preliminary study” [63] New Delhi- 110 016.
“WIISEL(Wireless Insole for Fannv Breuil. Meritxell Budget: $2.9 M
Independent and Safe Elderly Y N 2007 WIISEL, 7th Framework Programme Source: European To prevent falls in older people
.\ Garcia Mila .
Living)” [124] Commission
“Development of a wireless sensor Bharti School of Telecommunication
ne twofk based eait assessment Technology and Management, Budget: Rs.36,73,200/-
svstem for fallg redictionin Prof. Subrat Kar 2008 Indian Institute of Technology Delhi, Source: DST Unspecified
y P Hauz Khas, New Delhi- INDIA

elderly patients” [125]
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6. Observations and Findings

The systematic study of relevant literature in the field of fall detection and prediction
yields a few observations. These findings are the challenges that researchers willing to
work in this domain might focus upon.

(i) The majority of the systems developed for detecting or predicting falls in elderly
or ambulatory persons are not tested in the real environment. The testing of these
systems is primarily performed on the volunteers, who are healthy and young, and
usually in the laboratory. The lack of validation against actual users puts doubt on
their performance in real life.

(ii) The final acceptance of any system by the actual users is more likely if their opinions
are incorporated at the initial stage of development. Unfortunately, the requirements
are not gathered by actively involving the elderly peoples initially.

(iii) Most of the projects, patents, and models developed validate their product by measur-
ing certain parameters. There are hardly any cases where user acceptance or satisfaction
is taken as the criteria for the effectiveness of the research work conducted.

(iv) A hybrid approach of wearable, as well as ambient devices under reasonable cost
would be beneficial to deal with obtrusive factors.

(v) Most of the people who are under consideration are reluctant to press the panic button
after a fall. It happens either because of difficulty in activating it or because they do
not want to disturb their caregivers.

(vi) Nearly no studies have so far involved the inputs of actual subjects and their relatives
and family members. It may be the case that not every time a person falls requires the
emergency services. Similar issues can be handled if they are actively involved in the
requirement gathering step.

(vii) Usually, the products are designed from a technological perspective, considering
things such as power consumption, battery backup, response time, sensors mounting,
etc. Medical grounds are surpassed generally by these technical debates.

(viii) In the devices with a push-button, the older people take more time to realize that
they are falling rather than younger ones (who are used for testing the device). Con-
sequently, they might not press the button in a timely manner. This is challenge for
older people that needs to be addressed.

(ix) The existing systems are hardly in line with the patient confidentiality standards and
regulations of the HIPPA.

7. Conclusions and Future Scope

Despite continued research over many decades into preventing and predicting falls in
elderly people, some factors are still unattended to. The concerns of various governments
and the reputed organizations, such as the WHO (World Health Organization), regarding
the increasing incidents of falls and their impact are enough to attract researchers to this
field. However, some recent research has claimed to achieve the required accuracy in
predicting falls, but still they are questionable because of their testing environment. Most
of the researchers have not taken into account the perceptions of the actual users regarding
what they expect from the product. National governments prefer to give funding for
promoting research in this field so that the budget that is spent on after-fall services can
be reduced. In the future, the researchers may focus on exploiting some of the principal
observations stated in this paper. A hybrid approach of proper education, IoT techniques,
and clinical support is expected to achieve real goals.
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Abstract: The technological innovation of digital contact tracing (DCT) has certainly characterized
the COVID-19 pandemic, as compared to the previous ones. Based on the first studies, considerable
support was expected from smartphone applications (“apps”) for DCT. This commentary focuses
on digital contact tracing. Its contributions are threefold: (a) Recall the initial expectations of these
technologies and the state of diffusion. (b) Deal with the introduction of the app “Immuni” in
Italy, while also highlighting the initiatives undertaken at the government level. (c) Report the
state of diffusion and use of this App. The commentary ends by proposing some reflections on the
continuation of this investigation in Italy.

Keywords: eHealth; medical devices; digital health; mHealth; cyber-risk; contact tracing; digital
health; app; pandemic; COVID-19

1. Introduction

In the health domain, contact tracing (CT) is defined by the World Health Organiza-
tion [1] to be composed of three activities:

(a) Contact identification,
(b) Contact listing, and
(¢) Contact follow-up.

In this pandemic, unlike the previous ones, we have been able to rely on strong
technological innovation in mobile technology as we know it today, which is based on
smartphones (available in their current configuration starting from 2007 [2]). Immediately
at the beginning of the pandemic, the potential of mobile technology as a strategic support
tool for controlling the spread of the pandemic, emerged through modeling studies. Ferretti
et al. [3] demonstrated that the use of digital contact tracing (DCT) [3] could control
the diffusion of the COVID-19 (transforming the three components of the CT into the
three components of the DCT). Indeed, in some cases, DCT seems irreplaceable. Just
think of super diffusion events, or when it is impossible for a person to remember all the
recent contacts.

Subsequently, DCT has been considered as a powerful and strategic tool capable of
transforming the traditional CT with a practical, effective, speedy, and reliable digital
approach. Solutions with a different technological approach have been developed quickly
in the first few months of the pandemic. Apps were deployed using GPS or Bluetooth (with
different technological variants) for DCT, with different approaches to privacy [4]. DCT
also used other solutions, such as in China [5]. A national app was not developed here.
WeChat and Alipay were used in China to convey a security code (Healthcode) for DCT.
In the following months, the use of DCT has spread, and, to date, there is consolidated
scientific literature on this experience of using technology in the health domain.
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The purpose of the commentary is: (a) to recall the state of diffusion of DCT to
date. (b) To highlight the initiatives undertaken at the government level for the running
in of the Italian DCT based on the App, “Immuni”. (c) To report the state of diffusion
and use. The remainder of this commentary is arranged in three sections, followed by
concluding perspectives.

Section 2 (The digital contact tracing: the state of diffusion of the technology) takes
stock of the diffusion of technology in the health domain. Section 3 (The Italian national
app, “Immuni”, for digital contact tracing: the running-in and the initiatives supporting
the diffusion) deals with the introduction of the App, “Immuni”, and the government
initiatives undertaken in Italy. Section 4 (State of diffusion and use of the app, “Immuni”)
reports and discusses the state of diffusion and use of DCT in Italy.

2. The Digital Contact Tracing: Design, Deployment, and Current Use

A search on Pubmed (as of 5 October 2021) with the key ((Contact tracing [Title/Abstract])
AND (App)) returned 176 results, of which 172 (97.73%) were published between 2020-2021.
Before the pandemic DCT had been used in the field of tuberculosis [6] and hepatitis [7].
Among these articles, 21 are reviews or overviews, as they were found by the search terms
((Contact tracing [Title/Abstract]) AND (App)) AND (review), 20 of which were released from
the last two years. A total of 13 reviews and overviews are very recent, as they appeared in
2021. They deal with heterogeneous aspects of DCT development. They concern census,
privacy, functionality, integrations with other systems, integration acceptance, quality, effectiveness,
and other issues.

To date, more than 78 countries have developed COVID-19 DCT apps to limit the
spread of the coronavirus [8]. An analysis of the literature shows that Bluetooth is one
of the major technologies used in DCT [9]. Europe, for example, proposed at least two
digital contact tracing application models, one described based on privacy-preserving
proximity tracing [10] with calculations on the mobile phone, and the other based on pan-
European privacy-preserving proximity tracing [11], with calculations on a central server.
The approach relating to the collection of information (to be entered into the system) was
different between the different apps. For example, The Norwegian, Singaporean, Georgian,
and New Zealand apps were among those that collected the most personal information
from users, whereas some apps, such as the Swiss app and the Italian (“Immuni”) app, did
not collect any user information [9].

The study proposed in [12] reviewed the functionalities and effectiveness of the free
mobile health applications available in the Google Play and App stores in some nations
during the COVID-19 outbreak [12]. The analysis revealed that various applications
have been developed for different functions, such as contact tracing, awareness building,
appointment booking, online consultation, etc. However, the study highlighted that only
a few applications have integrated various functions and features (e.g., self-assessment,
consultation, support, and access to information). No apps were identified that had
built-in social media features. Very few apps were dedicated to raising awareness and
sharing information about the COVID-19 pandemic. The study [12] suggested developing
integrated mobile health applications with most of the features, including DCT. The study
reported in [13] considered the quality of the apps for DCT. It used the mobile app rating
scale to assess the app quality. It highlighted that European national health authorities
have generally released high quality COVID-19 contact tracing apps, about functionality,
aesthetics, and information quality. However, the study reported that the engagement-
oriented design generally was of lower quality. A lot of both technological and medical
knowledge has been collected. There are now studies, such as [14], which derive and
summarize best practices for the design of the ideal digital contact tracing apps.
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3. The Italian National App, “Immuni”, for Digital Contact Tracing: The Running-In
and the Initiatives Supporting the Diffusion

Italy released its own national app called “Immuni”. The use (download and data
entry) is on a voluntary basis [15].

Italian politicians have opted for a centralized and non-regionalized approach for the
use of an app for DCT. A government app was therefore developed after an appropriate
public selection of various proposals [16]. Updated information and project data, with
a high-level description, are available in [15,17]. In brief, this app uses Bluetooth low energy
technology to distinguish proximity events between citizens using a smartphone with the
app installed.

The introduction of the app, “Immuni”, was accompanied by dissemination initiatives
for all the actors involved: health domain workers, contact tracing operators, and the population.

Public dissemination documents have been provided at the national level for health
domain workers (including stakeholders).

The Istituto Superiore di Sanita, the Italian National Institute of Health, has proposed
(and continues to propose) guidelines during the pandemic, on various issues related to
the epidemic. These guidelines are called Istituto Superiore di Sanita Covid Report and they
are all available in the Italian language [18]. Many of these reports are also available in the
English language [19].

During the start-up period of the Italian Digital Contact Tracing, three reports [20-22],
dedicated or strongly correlated to DCT were proposed. The last had two versions: the
first one was in May 2020, and the last one in October 2020. These three reports [20-22]
dealt with three aspects of the health domain that are closely related to DCT: the traditional
CT [20], DCT [22], and the impact of ethics in DCT [21]. This is to inform, update, and raise
awareness among workers in the health domain.

The first report [20] highlighted how contact tracing is a key component of COVID-19
prevention and control strategies. Furthermore, the report explained the aim of contact
tracing to rapidly identify secondary cases and prevent further transmission of infection,
and described the key phases of contact tracing in Italy.

The second report [21] highlighted that DCT raises multiple relevant ethical issues
involving various areas: organization of health services, public health, clinical medicine,
social medicine, epidemiology, technology, law, and many other areas. Furthermore, it
reported some crucial elements from an ethical point of view, which included the evaluation
of effectiveness, the separation of personal data from public health data, transparency,
information, and the solidarity dimension (for example, helping the less capable with
technologies) that must characterize any public health action.

The third report [22] had three perspectives. The first one introduced contact tracing,
starting from the definition of the World Health Organization and independently from
the digital techniques. The second point of view highlighted the innovations of mobile
technology, based on smartphones connected to DCT. The third point of view dealt with
the diffusion and evolution of these apps through an analysis of state-of-the-art technology.

The Istituto Superiore di Sanita coordinated online courses at a national level and
proposed them to the contact-tracing operators [23]. Specific training was also provided
on the app, “Immuni”. The remote training methods allowed both the enlargement of
the prospective number of the trained subjects and maintained social distancing. The gen-
eral population also received information on the app, “Immuni” through the mass media
(the internet, radio, newspapers, and public posters).

4. Deployment and Current Use of the App, “Immuni”

The section analyzes the deployment and use of the app, also taking into consideration
parameters relating to the digital divide, the estimates of truly positive subjects based on
seroprevalence, and economic indicators. Table 1 reports the description of the topic con-
sidered, the source referring to it, and the relative indexed scientific references (web, report,
and study) accessed at the date of writing the piece (5 October 2021). The acronyms used are

89



Healthcare 2022, 10, 67

also shown in the list of acronyms before the references. References are available in [24-26]
(Table 1) and provide the numerical data related to: (a) the daily numerical downloads;
(b) the daily number of diagnosed positives to the virus, who accepted data storage; and
(c) the number of notifications. Based on this data, we observe that 16,167,210 downloads
were carried out; 25,720 positive users registered voluntarily; and 111,791 notifications were
sent. The manufacturer says that the detection is partial, as all notifications for iOS devices
are detected and only a third of those sent by Android have the necessary technology
available to safely detect them.

Table 1. Summary table with the description of the data considered, the direct or indirect source, and
the references (* accessed at the date of writing, 5 October 2021).

Description Sources (Direct or Indirect) Reference and Year

CENSIS (Italian national body
designated for social N. 31 (2019), N. 32 (2021)
research) reports

Statistics on people owning
smartphones in Italy.

Statistics on the use of the app
“Immuni” (downloading,
uploading of diagnosed
positive subjects, etc.)

N. 15-17, N. 24-26, N.

GitHub and app “Immuni” Webs 33-34 (%)

Eurostat (European body

isti d ti ) -
Statistics on gross domestic designed for European statistics)

N. 35-36(Updated 3

product per capita (GDP) reports march 2021)
ISTAT (Italian national body
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