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1. Introduction

The advancement in manufacturing technology and scientific research have improved
the development of enhanced composite materials with tailored properties depending on
their design requirements in many engineering fields, as well as in thermal and energy
management. Some representative examples of advanced materials in many smart applica-
tions and complex structures rely on laminated composites, functionally graded materials
(FGMs), and carbon-based constituents, primarily carbon nanotubes (CNTs), and graphene
sheets or nanoplatelets, because of their remarkable mechanical properties, electrical con-
ductivity, and high permeability. For such materials, experimental tests usually require a
large economical effort because of the complex nature of each constituent, together with
many environmental, geometrical, and/or mechanical uncertainties in nonconventional
specimens. At the same time, the theoretical and/or computational approaches represent
a valid alternative for the design of complex manufacts with more flexibility. In such a
context, the development of advanced theoretical and computational models for composite
materials and structures is a subject of active research, as explored here for a large variety
of structural aspects, involving static, dynamic, buckling, and damage/fracturing problems
at different scales.

2. Enhanced Theoretical and Computational Models

In a context where an increased theoretical/computational demand is required to
solve solid mechanics problems, this Special Issue has collected 13 papers regarding the
application of high-performing computational strategies and enhanced theoretical formula-
tions to solve different linear/nonlinear problems, even from a multiphysical perspective.
To this end, classical and nonclassical theories have been proposed together with multiscale
approaches, homogenization techniques, and different fracturing models.

The first paper, authored by S. Brischetto and R. Torre [1], proposes a steady-state
hygro-thermomechanical stress analysis of single-layered and multilayered plates and
shells with FGMs under different moisture conditions and introduces a novel exact solution
as a valid benchmark for moisture diffusion problems in composite materials. Different
environmental conditions (primarily temperature and moisture) of structural components
can significantly affect their internal stress distributions and overall response during their
service life, with possible premature damage and failure mechanisms. Among advanced
composite materials, FGMs represent heterogeneous materials with enhanced stiffness
properties, hardness, thermal conductivity, moisture diffusivity, and corrosion resistance
due to the combination of two of more different phases, primarily metallic and ceramic
phases, as shown in more common examples [2]. In this setting, several recent works in
literature focused on structures embedding FGMs, even with possible defects and porosi-
ties, and developed innovative analytical and numerical models combined with different
higher-order assumptions to handle uncoupled or coupled multiphysical problems [3–8].
For multiscale electromechanical applications (i.e., sensors, actuators, and energy conver-
sion devices), piezoelectric materials with functionally graded properties (FGPMs) are

Appl. Sci. 2022, 12, 4715. https://doi.org/10.3390/app12094715 https://www.mdpi.com/journal/applsci1
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increasingly attracting the interest of many researchers [9–12]. This interest is mainly
related to their capability to produce large displacements while minimizing the internal
stress concentration, creep fatigue proneness, and interfacial failures, with improved relia-
bility and life cycle in many intelligent devices, generally in the form of flexible cantilever
elements [13]. As detailed in the work by H.X. Jing et al. [13], indeed, purely FGMs and
FGPMs can exert bimodular effects to a certain degree, which can modify the mechanical
behavior of structures, with a further influence on design applications of electromechanical
devices based on piezoelectric effects.

Nowadays, with the advancement of nanotechnology, CNTs and graphene sheets
represent two valid alternatives of structural reinforcement due to their outstanding
properties. This has led to extensive research on the behavior of sandwich structures
reinforced with nanocomposites [14–18]. Among different reinforcement possibilities,
graphene nanoplatelets (GPLs) provide uniform reinforced assembly, as well as the easiest
manufacturing process. In the work by M.S. Nematollahi [17], for example, a higher-order
laminated beam theory is applied to include the shear and rotation effects on a thick
GPL-reinforced sandwich beam, where the nonlinear governing equations of the problem
are solved in a straightforward manner by means of the multiple timescale method. The
sensitivity of the vibration response to the total amount of GPLs is explored by the authors,
together with the possible effect related to the power-law parameter, structural geome-
try, and environmental conditions. Unlike traditional engineering structural problems,
the design of micro-electromechanical systems (MEMS) usually involves microstructures,
novel materials, and extreme operating conditions, where multisource uncertainties usually
exist. In such a context, the work by M. Safarpour et al. [18] determines a general thermo-
elasticity solution to treat both the static and frequency problems of functionally graded,
GPL-reinforced composite plate structures under different boundary conditions and em-
bedding foundations, as typically applied in many lightweight mechanical and biomedical
components, as well as in membranes and flexible wearable sensors and actuators. An-
other kind of carbon-based reinforcement relies on CNTs, in lieu of conventional fibers,
for which different molecular dynamic simulations have been successfully performed in
the literature to exploit the elastic properties of polymer–CNT composites embedded in
polymeric matrices [19,20]. Among sandwich CNT-based nanostructural applications, the
work authored by A.A Daikh et al. [21] provides a mathematical continuum model to
investigate the buckling behavior of cross-ply, single-walled, CNT-reinforced curved beams
in thermal environment, based on a novel quasi-3D higher-order shear deformation theory
and nonlocal strain gradient method accounting for any possible nanoscale size effect.
An efficient numerical model based on a fractional calculus is, instead, established by D.
Gritsenko and R. Paoli [22,23] to study the viscoelastic flow in circular pipes, for different
geometrical radii, fractional orders, and elastic moduli ratios, compared to classical models.
This mathematical tool allows for a significant improvement of predictive power for numer-
ous practical applications from heat conduction to anomalous diffusion and viscoelastic
properties of fluids and solids.

The extensive use of composite materials and structures in many engineering appli-
cations with complex microstructures and manufacturing processes requires a thorough
attention to their mechanical performances, such as the structural deflection damage and
load capacity [24,25], as well as the buckling and dynamic behavior [26], along with pos-
sible related uncertainties and stochastic variations. In this setting, the work authored
by J. Chen et al. [24] provides a damage investigation of carbon-fiber-reinforced plastic
laminates with fasteners accounting for a complex multiphysics coupling process. A the-
oretical study on prestressed pipes is also provided in [25], showing that high-strength
prestressing wires withstand an internal high water pressure and external load, and a
mortar coating protects the wires and cylinder against corrosion. As also highlighted in
the work by C. Shen et al. [26], the characteristics of a coarse–fine composite structure and
the complexity of dynamics modeling affect the entire system’s high precision control
performance. In this last work, the authors apply a finite element analysis and theoretical
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study of the stress and deflection of a two-axis, four-gimbal, coarse–fine composite, UAV
electro-optical pod, with useful insights for aerospace applications.

3. Future Developments

Although this Special Issue has been closed, further developments on the theoretical
and computational modeling of enhanced structures and composite materials are expected,
including their static, dynamic, and buckling responses and fracture mechanics at different
scales, which will be useful for many industrial applications.

Author Contributions: Conceptualization, F.T. and R.D.; methodology, F.T. and R.D.; formal analysis,
F.T. and R.D.; investigation, F.T. and R.D.; data curation, F.T. and R.D.; writing—original draft
preparation, F.T. and R.D.; writing—review and editing, F.T. and R.D. All authors have read and
agreed to the published version of the manuscript.
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Abstract: Prestressed concrete cylinder pipes (PCCPs) can suffer from prestress loss caused by
wire-breakage, leading to a reduction in load-carrying capacity or a rupture accident. Reinforcement
of PCCPs with external prestressed steel strands is an effective way to enhance a deteriorating pipe’s
ability to withstand the design load. One of the principal advantages of this reinforcement is that
there is no need to drain the pipeline. A theoretical derivation is performed, and this tentative design
method could be used to determine the area of prestressed steel strands and the corresponding center
spacing in terms of prestress loss. The prestress losses of strands are refined and the normal stress
between the strands and the pipe wall are assumed to be distributed as a trigonometric function
instead of uniformly. This derivation configures the prestress of steel strands to meet the requirements
of ultimate limit states, serviceability limit states, and quasi-permanent limit states, considering the
tensile strength of the concrete core and the mortar coating, respectively. This theory was applied to the
reinforcement design of a PCCP with broken wires (with a diameter of 2000 mm), and a prototype test
is carried out to verify the effect of the reinforcement. The load-carrying capacity of the deteriorating
PCCPs after reinforcement reached that of the original design level. The research presented in this
paper could provide technical recommendations for the application of the reinforcement of PCCPs
with external prestressed steel strands.

Keywords: prestressed concrete cylinder pipe; external prestressed steel strands; theoretical study;
wire-breakage

1. Introduction

A prestressed concrete cylinder pipe (PCCP) contains four components, namely, (1) a concrete
core, (2) a steel cylinder lined with concrete (LCP) or encased in concrete (ECP), (3) high strength
prestressing wires to withstand the internal high water pressure and external load, and (4) a mortar
coating to protect the wires and cylinder against corrosion. The promise of the PCCP lies in its high
bearing capacity, strong permeability resistance, and cost-effectiveness. Efficiencies in construction
and reductions in fabrication costs have led to the extensive use of PCCPs in the USA, Canada, and
China, and have also led to the pivotal development of this pipe. However, these pipes may suffer
from prestress loss caused by wire-breakage. Wire-breakage or rupturing can result in significant
losses to society, making the reinforcement of deteriorating pipes essential.
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Reinforcement with external prestressed steel strands is regarded as an efficient way of
strengthening bridges and beams that are deteriorating due to increased overloading and progressive
structural aging [1–5]. Miyamoto A. [6,7] demonstrated the feasibility of applying this prestressing
technique to the strengthening of existing steel bridges. Chen S. [8] proposed a finite element model to
investigate the inelastic buckling of continuous composite beams that were prestressed with external
tendons. Lou T. [9] also concluded that external prestressing significantly improved the short-term
behavior of a composite beam. Tan K. H. [2], Aparicio A. C. [10], Park S. [11], and others have presented
a series of prototype tests regarding externally prestressed concrete beams and have verified that
external tendons can be used to effectively influence beam behavior.

The reinforcement of a PCCP with external prestressed steel strands involves repairing critical
pipes with additional external post-tensioning to increase the longevity of problematic PCCP pipelines.
The strands are wrapped outside the pipe with a fixed spacing between each strand, according to the
service water pressure [12] (Figure 1). A well-known large-scale application of external prestressed
strands is in the Great Man-Made River pipelines in Libya [12]. Most of the pipes in this project have an
internal diameter of 4.20 m. Authorities have determined that repair of the critical pipes should proceed,
with additional external post-tensioning in areas where pipes had burst. The reinforcement of the
external prestressed strands on PCCPs has proven to be effective here. This approach is advantageous
due to its ability for construction to proceed with no need to drain the pipeline. However, few
theoretical studies have been carried out regarding the prestress losses and the mechanism applying
external prestressed strands to strengthen PCCPs.

Figure 1. Structural drawing of a prestressed concrete cylinder pipe (PCCP) strengthened with
prestressed steel strands.

This study introduces a theoretical derivation and investigates the prestress loss of steel strands
applied to PCCPs. The normal stress between the strands and the pipe wall is assumed to be distributed
as a trigonometric function, instead of uniformly, to estimate prestress losses. The area of the steel
strands is determined to meet the requirements of ultimate limit states, serviceability limit states,
and quasi-permanent limit states, considering the tensile strength of the concrete core and the mortar
coating, respectively. An example calculation of this theory and a prototype test is calculated on the
same PCCP to verify the feasibility of this theory. The load response of the pipe before and after the
reinforcement process is analyzed.

2. Theoretical Derivations

2.1. Calculation of Prestress Loss, σst,l

The prestress loss persisted during and after the tensioning operation, and can be divided into two
categories, namely, instantaneous loss and long-term loss [13–15]. Instantaneous loss, i.e., short-term
loss during the tensioning operation, described the prestress losses caused by friction resistance
between the surface of the pipe wall and the steel strands, the anchor deformation, the concrete elastic
compression induced by stepwise tensioning operation, and cracks closures. Long-term prestress
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losses included prestress losses [13,16], while taking into account the materials aging, including the
effects of shrinkage and the creep losses of concrete, and the long-term relaxation losses of prestressed
steel strands. Types of prestress loss of steel strands applied to PCCPs are illustrated in Figure 2. Since
the reinforcement of PCCPs with external prestressed steel strands is a post-tensioning method, the
impact of temperature can be removed from consideration when considering the reinforcement of
PCCPs with external prestressed steel strands.

Figure 2. Types of prestress loss of steel strands applied to PCCPs.

2.1.1. Calculation of Retraction Length, lre, and Its Corresponding Retraction Angle, θre

As far as we know, the stress distribution along the strand is nonlinear. The anchor influenced the
prestressed steel strand within a certain length range due to the static friction caused by the retraction
of the strand. This length is called the retraction length, lre. Strands within the retraction length showed
a displacement opposite to the tension direction, which decreases the prestress. The movement trend
is demarcated at point C, and the stress is redistributed from ACB to A′CB (Figure 3).

 
Figure 3. Distribution of strand stress caused by retraction.

The circumferential micro-segment of the prestressed steel strand is regarded as the research
object, where the corresponding angle is dθ (Figure 4). Assuming that the normal stress of the steel
strand in the micro-segment is evenly distributed, a differential equation can be established according
to the static equilibrium conditions:

T·sin
(

dθ
2

)
+ (T + dT)·sin

(
dθ
2

)
− dP = 0 (1)
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where T and P stand for the tension force and the normal pressure of the strand, respectively.

Figure 4. Stress of a micro-segment of a strand.

Higher variables were omitted, taking dθ
2 = sin

(
dθ
2

)
. Equation (1) can be simplified to Tdθ = dP.

The equation describing the momentary balance for rotation around the center of curvature, O, can be
written as follows:

rst·μdP + rstdT = 0 (2)

where T = T0 when θ = 0, thus, T = T0e−μθ. rst, where rst is the calculated radius of the strand
wrapped outside the pipe (m) and μ is the friction coefficient between the prestressed strands and the
outer surface of the deteriorating pipe. The influencing factors of μmainly include the type of steel, the
type of lubricating grease, the materials wrapped outside, and the quality control of the construction.
Here, μ ranges from 0.08 to 0.12, with a mean value of 0.1.

The stress for an arbitrary cross section is calculated as per Equation (3):

σ = σste−μθ (3)

where σst is the tension stress of prestressed steel strands (N/mm2). σst = fst,t·α, in which α is the
control coefficient for the tension of the steel strands (N/mm2). Normally, this value ranges between 0
and 0.75 [17–19]. fst,t is the nominal tensile strength of the prestressed strand (N/mm2).

The stress at the end section of the retraction length can be written as follows:

σre = σste−μθre . (4)

The length reduction of the strand caused by the anchor deformation and the clip retraction, Δlre,
can be expressed by Equation (5):

Δlre =

∫ θre

0

σl2rst

Est
dθ =

2rstσst
[
1− e−μθre(1 + μθre)

]
μEst

(5)

where Est is the elastic modulus of the adopted steel strand (N/mm2) and e−μθre is expanded into a
power series according to the Taylor formula. Only the first three terms of the formula have sufficient
precision, since μθre is adequately small, which is given by Equation (6):

e−μθre = 1− μθre +
(μθre)

2

2
. (6)

Equation (7) can be derived by incorporating Equation (6) into Equation (5) and omitting the high
micro (μθre)

3:

Δlre =
μrstσstθre

2

Est
(7)

The correspondence between the retraction length, lre, and the retraction angle, θre, is represented
as follows:

lre = rstθre. (8)
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Therefore, the retraction length, lre, and its corresponding angle, θre, can be given by Equations (8)
and (9).

lre =

√
ΔlreEstrst

μσst
(9)

The various types of anchorage used with steel strands were classified as plug and cone, straight
sleeve, contoured sleeve, metal overlay, and split wedge anchorages. The value of Δlre varies with the
type of anchor.

2.1.2. Prestress Loss Caused by Friction Resistance, σl1

The prestress loss caused by the friction resistance, σl1, can be calculated based on the consideration
of two parts, namely, the bending loss and the deviation loss. The radial pressing force, σr, is produced
between the strand and the pipe wall by prestressed strands, thereby resulting in extrusion friction.
The bending loss accounted for a large proportion of the total friction loss.

Based on the assumption of a rigid body, we hypothesized that the pressure between the strand
and the pipe wall would be uniformly distributed [20], and that elastic deformation would occur
when the two elastic bodies were pressed into contact with each other. The stress between the contact
surfaces is ellipsoidal, and its value can be related to the radius of curvature and the elastic modulus of
the contact object. It is not accurate enough to consider the contact stress as uniformly distributed
under normal contact pressure due to the large tensile force of the prestressed steel strands.

The scope of the bending loss can be related to the retraction length, lre. We can assume that
the normal stress between the strands and the pipe wall would be distributed as a trigonometric
function [21], as illustrated in Figure 5 and Equation (10).

p(α) = p0 cos2
(
π
θ
α
)

(10)

where cos2
(
π
θα

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 α = θ

2
1 α = 0

0 α = −θ2

Figure 5. Distribution of the normal stress of the pipe wall excluding the friction.

A balance of forces in the z-direction can be established by Equation (11). From Equation (11), we
derived Equation (12). Therefore, the normal stress can be calculated using Equation (13):

T· sin
(
θ
2

)
+ (T + dT)· sin

(
θ
2

)
+ 2

∫ θ
2

0
p(α)· cosαdl = 0 (11)
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p0 =
sin θ

2∫ θ
2

0 cos2
(
π
θα

)
cosαdα

× T
R

(12)

where
∫ θ

2
0 cos2

(
π
θα

)
cosαdα =

(
cos2

(
π
θα

)
sinα

)∣∣∣∣ θ2
0
+ π

θ

∫ θ
2

0 sinα sin
(

2π
θ α

)
dα =

2( πθ )
2

sin θ
2

( 2π
θ )

2−1
.

p(α) =
(
2− θ2

2π2

)
· cos2

(
π
θ
α
)
·σ0

R
(13)

The prestress loss related to the bending loss, F, during the tensioning operation is depicted in
Equation (14).

F = 2
∫ θ

2

0
μp(θ)·dl = μθσ0

(
1− θ2

4π2

)
(14)

The deviation loss stems from errors in pipe positioning and installation, which causes friction
between the force rib and the pipe material, thereby forming contact friction. The deviation loss
occupies a small proportion of the total friction loss. The correction coefficient, c1, is involved here,
and the deviation loss is not separately calculated in this paper. As a result, the total prestress loss
caused by the friction resistance can be calculated, as displayed in Equation (15).

σl1 = c1F (15)

where c1 is the correction coefficient, accounting for the bending loss and the deviation loss, and is
usually in the range of 1 to 1.3 [19].

2.1.3. Prestress Loss Caused by Anchorage Deformation, σl2

The prestress loss caused by deformation at the end of the anchorage should be taken into
consideration. This refers to the prestress loss caused by the deformation of the anchor and the
retraction of the clip due to the concentrated stress. A slip at the anchorage depends on the particular
prestressing system adopted and is not a function of time. This loss can be written as per Equation (16):

σl2 = Est
Δlre

2πrst
. (16)

2.1.4. Prestress Loss Caused by the Elastic Compression of Concrete During Batch Tensioning, σl3

The prestress loss can be adjusted using certain construction technologies, including
ultra-tensioning and repeated tensioning. For example, the tensioning can be started from the
middle of the pipeline and gradually pulled symmetrically to both sides when batch tensioning is
adopted. The steel strands that would later be tensioned would cause elastic compression deformation
of the concrete, which would contribute to the prestress loss of the previously anchored strands. This
prestress loss can be simplified by the following formula [21]:

σl3 =
m− 1

2m
nyσh1 (17)

where m is the total number of batches and σh1 is the normal stress of the concrete produced by the
combined force of the steel strands at the action point (the center of gravity of all steel strands), which
is equal to the sum of the normal stresses of the concrete produced by the batch of steel strands, which
is Δσh1. That is, σh1 =

∑
Δσh1 = mΔσh1. ny is the combined force of all of the steel strands. Δσh1 is the

normal stress of the concrete generated by the subsequent batch of steel strands at the center of gravity

of the first tensioned steel strand, as calculated by the following formula: Δσh1 = n
m

(
1

Aj
+

ey·yi
Ij

)
.
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During engineering, ultra-tensioning or repeated tensioning technologies can be utilized in the
first several batches of strands, so that the actual effective prestress of the pipe is substantially equal to
the design level. After ultra-tensioning or repeated tensioning, the prestress loss caused by the elastic
compression of the concrete during batch tensioning, σl3, is considered to be approximately zero.

2.1.5. Prestress Loss Due to Crack Reduction and Closure, σl4

In our experiment, due to the restraining effect of the prestressed steel strand, the cracks of the
concrete core were reduced to some extent, or even closed. The reduction of the circumference of the
pipe led to the prestress loss of the strands. Therefore, the change in the maximum width of the visible
cracks in the concrete core can be utilized to estimate the prestress loss caused by crack reduction
and closure.

The change in the maximum width of the cracks corresponds to the change in the length of the
prestressed steel strands (Figure 6). The prestressed steel strand is in the elastic phase, and the stress is
proportional to its strain. Therefore, the prestress loss, σl4, caused by the crack reduction and closure,
can calculated according to the following equation.

li =
rst

D/2
wi (18)

σ0

σ0−σl4
=

2πrst + l1
2πrst + l2

(19)

where wi is the maximum width of the visible cracks in the concrete core (m), i = 1, 2 for the condition
before and after the reinforcement, li is the length of prestressed strands corresponding to the maximum
width of the cracks in the concrete core before and after the reinforcement (m), and D is the outer
diameter of the concrete core (m).

 

Figure 6. Correspondence between crack width and strand length.

Therefore, the prestress loss due to the crack reduction and closure, σl4, can be defined as Equation (20):

σl4 =
σ0(w1 −w2)

πD + w1
(20)

2.1.6. Prestress Loss Caused by Shrinkage and Creep of Concrete, σl5

The shrinkage and creep of the original concrete pipe were involved in the calculation of the
prestressed stress of the prestressing wires. The shrinkage and creep of the reinforced pipe have been
basically completed before the reinforcement, and, as such, no further repeated calculations were
performed for the prestress loss caused by shrinkage and creep of concrete, i.e., σl5 = 0.

2.1.7. Prestress Loss Due to Long-Term Relaxation of the Strand, σl6

The deformation of the strand will change with time, and the stress will decrease accordingly
when the strand is subjected to a constant external force, which is the prestress loss due to the long-term
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relaxation of the strand. The greater the tensile force of the steel strand, the more obvious the stress
relaxation effect is. The relaxation generally occurred earlier in the process, without considering the
quality of the strands. This effect can be basically completed after one year, and then gradually calmed.
The relaxation loss, σl6, is related to the relaxation coefficient, k, and can calculated according to the
following formula:

σl6 = kσst (21)

where k is the relaxation coefficient and is related to the quality of the steel. For the cold-drawn thick
steel bar, k is taken as 0.05 for one-time tensioning and 0.035 for ultra-tensioning. As for the steel wires
and steel strands, k is considered to be 0.07 for one-time tensioning and 0.045 for ultra-tensioning [17].
For low-relaxation steel wires, the value of k can be taken to be 0.002 when no data are available, which
we have learned from our experience.

The total prestress loss of the prestressed wires can calculate by Equation (22):

σst,l =
6∑
1

σi (22)

2.2. Calculation of Area of Prestressed Steel Strands

According to the study by Zarghamee M. [22–25], the cracking of PCCPs under combined loads
mainly occurs at (1) the bottom of the inner surface of the concrete core, (2) the top of the inner surface of
the concrete core, and (3) the spring-line of the outer surface of the concrete core. Therefore, these three
sections are defined as dangerous sections. The area of prestressed steel strands can be determined
under the assumption of a complete loss of prestress of prestressing wires.

2.2.1. Stress of PCCPs under Combined Loads

The combined loads acting on the pipe include the vertical earth pressure at the top of the pipe,
Fsv,k, the lateral earth pressure, Fep,k, the ground pile load, the weight of the pipe, G1k, the weight of
fluid in the pipe, Gwk, and the variable load.

The values of Fsv,k and Fep,k are calculated according to Marston’s theory [17] and Rankine’s earth
pressure theory [26], respectively. The variable load can be regarded as the ground stacking load, and
its standard value is defined as qmk = 10 kN/m.

The weight of the pipe can be written as per Equation (23):

G1k = πrG(Di + hc)hc (23)

where Di is the inner diameter of the pipe (m), hc is the thickness of concrete core (m), and rG is the
gravity density of the pipe (kN/m3).

The weight of fluid in the pipe, Gwk, can be calculated by Equation (24):

Gwk =
rWπD2

i
4

(24)

where rw is the gravity density of the fluid in the pipe (kN/m3).

2.2.2. Calculation of the Area of Prestressed Strands, Considering the Concrete Core Compression of
Ultimate Limit States

According to Chinese specifications [27,28], the design requirements for the calculation of ultimate
limit states under the external soil load, weight of pipe, weight of fluid, and other variable loads are
detailed. The design value of the maximum bending moment of the pipe at the spring-line, Ml

max, can
be calculated using Equation (25). The value of Ml

max is negative, indicating that the outer surface of the
concrete core is subjected to tension. The absolute value can be taken when the formula is substituted
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for reinforcement. The design value of the maximum axial tension of the pipe at the spring-line, Nl, is
written as per Equation (26):

Ml
max = γ0r

[
kvm

(
γG3Fsv,k +ψcγQ2qvkD1

)
+ khmγG4Fep,kD1 + kwmγG2Gwk + kgmγG1G1k

]
(25)

Nl = γ0
[
ψcγQ1Pdr× 10−3 − 0.5

(
Fsv,k +ψcqvkD1

)]
(26)

where γ0 is the factor of importance. It varies with the structure and the layout of the pipes. The value
of γ0 is generally 1.1. For side-by-side pipelines, the γ0 value should be taken as 1.0, in particular.
Moreover, the value of γ0 should also be taken as 1.0 for pipes with storage facilities or those which
are used for drainage. r is the calculated radius of the pipe (m), and kvm, khm, kwm, kgm represent the
bending moment coefficient of the bending moment at the spring-line of the pipe under the vertical
earth pressure, lateral earth pressure, the weight of fluid inside the pipe, and the weight of the pipe,
respectively. These factors were determined according to Appendix E [27]. The kgm of the arc-shaped
soil bedding can be adopted according to the data of the bedding angle of 20◦. γGi and γQj are the
partial coefficients under the permanent load i and the variable load j. ψc is the combination coefficient
of the variable loads and usually takes the value of 0.9. D1 is the outer diameter of the pipe (m). Pd is
the designed water pressure (N/mm2).

The area of the prestressed strands of ultimate limit states should be calculated by Equation (27):

Ast ≥
λy

fpyk

(
Nl +

Ml
max

d0
−Asc f ′yy

)
(27)

where λy is the comprehensive adjustment factor of the PCCP, fpyk is the design strength of prestressed
strands (N/mm2), d0 is the distance from the prestressed strand to the center of gravity of the pipe(m),
Asc is the area of the cylinder per unit length (m2/m), and f ′yy is the design strength of the cylinder
(N/mm2).

2.2.3. Checking Calculation of Prestressed Strands Considering the Concrete Core Compression of
Serviceability Limit States

The maximum bending moment of the pipe at the top or the bottom, Mpms, is calculated as per
Equation (28). The value of Mpms is negative, indicating that the outer surface of the concrete core is
subjected to tension. The absolute value is taken when substituting the following equations. The axial
tension of the pipe wall, Nps, is written as per Equation (29):

Mpms = γ0
[
kvm

(
Fsv,k +ψcqvkD1

)
+ khmFep,kD1 + kwmGwk + kgmG1k

]
(28)

Nps = ψcPdr× 10−3 (29)

where kvm, khm, kwm, and kgm represent the bending moment coefficient of the bending moment at
the top or the bottom of the pipe under the vertical earth pressure, lateral earth pressure, the weight
of fluid inside the pipe, and the weight of the pipe, respectively. These factors can be determined
according to Appendix E [27]. The kgm of the arc-shaped soil bedding can adopted, according to the
data of the bedding angle of 20◦.

The maximum tensile stress at the edge of the pipe at the bottom, σss, is calculated as per Equation (30).

σss =
Nps

An
+

Mpms

ωcWp
(30)

where An is the conversion area of the pipe section (including the cylinder, steel strands, and the mortar
coating) (m2/m). ωc is the conversion coefficient of the elastic resistance moment of the tensioned
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edge of the pip -wall. Wp is the momentary elastic resistance of the unconverted tension edge of the
rectangular section of the pipe wall (m2/m).

The effective prestress of the prestressed steel strands after the prestress loss, σ′st, can be written as
σ′st = σst − σst,l.

Therefore, the area of prestressed strands of serviceability limit states should be calculated by
Equation (31):

Ast ≥
(
σss −Kγ fty

)An

σ′st
(31)

where K is the influence coefficient of concrete in the tension area, γ is the plastic influence coefficient
of concrete in the tension area, and fty is the standard value of concrete tensile strength.

The area of prestressed strands needs to simultaneously meet the requirements outlined in
Equations (27) and (31).

2.2.4. Checking Calculation of the Mortar Coating under Serviceability Limit States

Checking the calculation of mortar at the spring-line of the pipe should be carried out under
serviceability limit states.

The maximum bending moment of the pipe at the spring-line, Ml
pms, can be calculated by Equation

(32). The value of Ml
pms, is negative, indicating that the mortar coating is subjected to tension.

The absolute value is taken when the following equations are substituted. The axial tension of the pipe
at the spring-line, Nl

ps, can be written as per Equation (33):

Ml
pms = r

[
kvm

(
Fsv,k +ψcqvkD1

)
+ khmFep,kD1 + kvmGwk + kgmG1k

]
(32)

Nl
ps = ψcPdr× 103 − 0.5

(
Fsv,k +ψcqvkD1

)
(33)

The maximum tensile stress at the edge of the pipe at the spring-line, σl
ss, can be calculated as per

Equation (34):

σl
ss =

Nl
ps

An
+

Ml
pms

ωmWp
(34)

The maximum tensile stress at the edge of the mortar coating at the spring-line, σl
ss, should be less

than its tensile strength (Equation (35)) under serviceability limit states. If not, Sections 2.2.2 and 2.2.3
should be repeated.

σl
ss ≤ αmεmtEm (35)

where αm is the design parameter of the mortar coating strain, which is equal to 5. εmt is the strain of

mortar coating when the strength reaches the tensile strength, and can be given as εmt =
fmt,k
Em
≥ 0.52

√
fmc,k

Em
.

2.2.5. Checking Calculation of Mortar Coating under Quasi-Permanent Limit States

Checking the calculation of mortar at the spring-line of the pipe should be carried out under
quasi-permanent limit states.

The maximum bending moment of the pipe at the spring-line, Ml
pml, can be calculated as per

Equation (36). The value of Ml
pml is negative, indicating that the mortar coating is subjected to tension.

The absolute value is taken when substituting the following equations. The axial tension of the pipe at
the spring-line, Nl

ps, is written as per Equation (37):

Ml
pml = r

[
kvm

(
Fsv,k +ψqvqvkD1

)
+ khmFep,kD1 + kvmGwk + kgmG1k

]
(36)

Nl
pl = ψqwPdr× 103 − 0.5

(
Fsv,k +ψqvqvkD1

)
(37)
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where ψqv, ψqw is the quasi-permanent coefficient of vertical pressure generated by ground vehicle
loads and the internal water pressure, respectively.

The maximum tensile stress at the edge of the pipe at the spring-line, σl
ls, is calculated as per

Equation (38):

σl
ls =

Nl
pl

An
+

Ml
pml

ωmWp
. (38)

The maximum tensile stress at the edge of the mortar coating at the spring-line, σl
ss, should be

less than its tensile strength (Equation (39)) under quasi-permanent limit states. If not, we return to
Equations (2) and (3).

σl
ls ≤ α′mεmtEm (39)

where α′m is the design parameter of strain for mortar coating and is equal to 4.
Above all, the area of prestressed strands per unit length, Ast, should be determined.
The prestressed steel strands are spirally wound at equal intervals. Thus, the center spacing of

steel strands can be calculated by Equation (40):

lst = A× 1000
Ast

(40)

where A is the nominal section area, without polyethylene, of the adopted steel strand.

3. Applications

In order to verify the feasibility of the deduction, an example calculation of the theory and a
prototype test were carried out on the same PCCP with broken wires. The specimen was an embedded
prestressed concrete cylinder pipe (ECP) and the calculation process used is illustrated in Section 3.2.
The center spacing of steel strands, calculated through the deduction, was then applied to the same
pipe in a prototype test (Section 3.3).

3.1. Parameters of the Design and Materials

The theory and prototype tests were carried out on the same pipe. The geometric parameters of
the adopted pipe are given as Table 1. Key parameters of the materials, involving the concrete, mortar
and cylinder, are shown in Table 2.

Table 1. Geometric parameters of the embedded concrete pipe (ECP).

Geometric Parameter Value Geometric Parameter Value

Inner diameter of PCCP, Di/mm 2000 Net thickness of mortar coating, hm/mm 25

Thickness of core concrete, hc/mm 140 Spacing between each wire, ls/mm 22.1

Outer diameter of cylinder, Dy/mm 2103 Diameter of wires, ds/mm 6

Thickness of cylinder, ty/mm 1.5 Number of layers, n 1
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Table 2. Key parameters of the materials.

Key Parameter Value Key Parameter Value

Designed 28-day compressive strength
of the core concrete, f ′c /(N/mm2) 44 Modulus of concrete, Ec/(N/mm2) 3.55 × 104

Standard compressive strength of
mortar, fmc,k/(N/mm2) 45 Modulus of mortar, Em/(N/mm2) 2.416 × 104

Poisson’s ratio of concrete, vc 0.167 Modulus of cylinder, Ey/(N/mm2) 2.068 × 105

Poisson’s ratio of mortar, vm 0.2 Modulus of wire, Es/(N/mm2) 1.93 × 105

Minimum tensile strength of the
prestressed wire, fsu/(N/mm2) 1570 Designed tensile or compressive yield

strength of steel cylinder, fyy/(N/mm2) 227.5

Gross wrapping tensile stress in wire,
fsg/(N/mm2) 0.75 fsu

Designed tensile strength of steel
cylinder at pipe burst, f ′yy/(N/mm2) 215

Design tensile strength of core concrete,
f ′t /(N/mm2) 1.95 Unit weight of the pipe, γc/kN/m3 25

Standard tensile strength of core
concrete, fty/(N/mm2) 2.75 Unit weight of mortar, γm/kN/m3 23.5

Unit weight of backfill soil, γs/kN/m3 18 Unit weight of water, γw/kN/m3 10

As for the parameters of load, the internal working pressure used was Pw = 0.6 N/m2. The internal
transient pressure was ΔHr = max(0.4Pw, 276 kPa) = 0.276 N/mm2. The internal design pressure
was Pd = Pw + ΔHr = 0.876 MPa ≈ 0.9 N/mm2. The thickness of soil above the top of the pipe
was H = 3 m. The bedding angle was 90◦. The type of installation was trench-type with a positive
projecting embankment. The standard value of the ground stacking load was qmk = 10kN/m2.

The parameters of environment are shown as follows: The average relative humidity of the storage
environment was 70% RH, the time in outdoor storage was t1 = 270 d. Burial time after outdoor
storage was t2 = 1080 d.

Key parameters of the adopted strand are given in Table 3.

Table 3. Key parameters of the adopted strand.

Key Parameter Value Key Parameter Value

Nominal diameter without
polyethylene dst/mm 15.2 Control coefficient for the

tensioning of the steel strands, α 0.63

Nominal section area without
PE, A/mm2 140 Tension stress of the prestressed

steel strands, σst/(N/mm2) 1171.8

Nominal tensile strength,
fst,t/( N/mm2) 1860 Standard tensile yield strength,

fpyk/(N/mm2) 1580

Modulus of the strand,
Est/( N/mm2)

1.95 ×
105

Designed tensile yield strength,
fpy/(N/mm2)

1110
[17]

3.2. Example Calculation

3.2.1. Calculation of Prestress Loss, σst,l

For the utilized split wedge without jacking force, Δlre = 6 mm (measured in the prototype
test [29]). Given μ = 0.1, the calculated radius of the strand wrapped outside the pipe, rst, and the
retraction length, lre, can be known as follows:

rst =
Di
2

+ hc +
dst

2
= 1.1726 m, lre =

√
ΔlreEstrst

μσst
= 3.4217 m
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The corresponding angle of the retraction length, θre, is π, which is consistent with the value of θ,
indicating that the assumption is reasonable (Equation (10)).

The prestress loss caused by friction resistance, anchorage deformation, elastic compression of
concrete during batch tensioning, crack reduction and closure, shrinkage and creep of concrete, and
long-term relaxation of the strand is given in Table 4.

Table 4. The calculation results of the prestress loss.

Item Value

Prestress loss related to the bending loss, F 276.099
Correction coefficient accounting for the bending loss and the deviation loss, c1 1.01
Prestress loss caused by friction resistance, σl1/( N/mm2) 278.860
Prestress loss caused by anchorage deformation, σl2/( N/mm2) 158.802
Prestress loss caused by elastic compression of concrete during batch tensioning, σl3/( N/mm2) 0
Maximum width of the visible cracks in the concrete core before the reinforcement, w1/m 0.0022
Maximum width of the visible cracks in the concrete core after the reinforcement, w2/m 0.0001
Prestress loss due to the crack reduction and closure, σl4/( N/mm2) 0.3434
Prestress loss caused by shrinkage and creep of concrete, σl5/( N/mm2) 0
The relaxation coefficient of the strand, k 0.045
Prestress loss due to long-term relaxation of the strand, σl6/( N/mm2) 52.731
Total prestress loss of prestressed wires, σst,l/( N/mm2) 490.74

3.2.2. Stress of PCCP under Combined Loads

The stress of the adopted PCCP under combined loads, involving the vertical earth pressure at
the top of the pipe, the lateral earth pressure, the variable load, weight of the pipe, and weight of water
in the pipe, is presented in Table 5.

Table 5. The calculation results of the stress.

Item Value

Vertical earth pressure at the top of the pipe, Fsv,k/(kN/m) 164.245
Lateral earth pressure, Fep,k/(kN/m) 25.026

Variable load, qmk/(kN/m) 10
Weight of the pipe, G1k/(kN/m) 29.157

Weight of water in the pipe/(kN/m) 31.416

3.2.3. Calculation of Area of Prestressed Strands, Considering the Concrete Core Compression of
Ultimate Limit States

Assuming that the area of prestressed strands is Ast = 2223 mm2/m, the calculation process of
the area of prestressed strands, considering the concrete core compression of ultimate limit states, can
be depicted in Table 6.

The value of Ml
max is negative, indicating that the outer surface of the concrete core is subjected to

tension. The absolute value is taken when substituting the formula for reinforcement.

Therefore, Ast ≥ λy
fpyk

(
Nl +

Ml
max
d0
−Asc f ′yy

)
= 1069.413 m2/m
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Table 6. The calculation results of the stress.

Item Value

Thickness of the pipe, T/m 0.171
Calculated radius of the pipe, r/m 1.0855
Outer diameter of the pipe, D1/m 2.342
Combination coefficient of the variable loads, ψc 0.9
The factor of importance for two side-by-side pipelines, γ0 1
Design value of the maximum bending moment of the pipe at the spring-line, Ml

max/(kN·m/m) −33.998
Design value of the maximum axial tension of the pipe at the spring-line, Nl/(kN/m) 1111.712
Width of calculated section, B/m 1
Ratio of modulus of the strand to the concrete, nst 5.83
Ratio of modulus of the cylinder to the concrete, ny 5.49
Ratio of modulus of the mortar to the concrete, nm 0.68
Conversion area of pipe section (including cylinder, steel strands and the mortar coating), An/m2 0.1792
Cross sectional area moment of the cross section of the concrete core, mortar, steel cylinder and
prestressed steel strand on the inner surface of the pipe wall, Sn/m3 0.01496

Cross sectional area of the cylinder for unit pipe length, Asc/(m2/m) 0.0015
Distance from the mandrel to the inner surface of the pipe wall after the conversion, y0 0.08347
Distance from the center of the prestressed steel strand to the center of gravity of the pipe wall
section, d0/m 0.06412

Comprehensive adjustment factor for ECP whose diameter is larger than 1600 mm, λy 0.9

Notes: T = hc + hm + ds, r =
Di+T

2 , D1 = Di + 2T, An = Bhc +
(
ny − B

)
Bty + (nst − nm)Ast + nmB(T − t), Sn =

Bh2
c

2 +
(
ny−

)
Bty

(Dy−Di−ty)
2 + (nst − nm) ∗Ast + nmB(T − hc)

(
T−hc

2 + hc
)
, Asc = Bty, y0 = An

Sn
, d0 = hc +

dst
2 × 10−0 − y0.

3.2.4. Checking Calculation of Prestressed Strands Considering the Concrete Core Compression of
Serviceability Limit States

The conversion coefficient of the elastic resistance moment of the tensioned edge of the pipe wall
can be obtained by interpolation, where ωc = 1.017 and ωm = 0.9932. The checking calculation process
of the prestressed strands, considering the concrete core compression of serviceability limit states, is
depicted in Table 7.

Table 7. The calculation results of the stress.

Item Value

Maximum bending moment of the pipe at the bottom, Mpms/(kN·m/m) 36.316

Maximum bending moment of the pipe at the top, M′pms/(kN·m/m) 23.423

Axial tension of the pipe wall, Nps/(kN/m) 879.255

Elastic resistance moment of the unconverted tension edge of the rectangular section of the pipe
wall, Wp/

(
m2/m

) 0.00487

Maximum tensile stress at the edge of the pipe at the bottom, σss/
(
N/mm2

)
12.107

Effective prestress of the prestressed steel strands apart from the prestress loss, σ′st/( N/mm2) 681.06

Influence coefficient of concrete in tension area, K 1.2239

Plastic influence coefficient of concrete in tension area, γ 1.75

Note: K = 0.2449
Mpms

ωcWp fty
+ 0.5714.

Therefore, the area of prestressed strands should meet the requirement of Ast ≥
(
σss −Kγ fty

)
An
σ′st

=

2222.300 mm2/m.
Above all, the area of prestressed strands is Ast = 2223 mm2/m.
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3.2.5. Checking Calculation of Mortar Coating under Serviceability Limit States

The maximum bending moment of the pipe at the spring-line was Ml
pms = –24.897 kN·m/m.

The value of Ml
pms, is negative, indicating that the mortar coating was subjected to tension. The

absolute value was taken when substituting the following equations. The axial tension of the
pipe at the spring-line was Nl

ps = 769.388 kN/m The maximum tensile stress at the edge of the

pipe at the spring-line was σl
ss = 9.44 N/mm2. The strain of mortar coating was εmt =

fmt,k
Em
≥

0.52
√

fmc,k
Em

= 0.0001444. The design parameter of strain for the mortar coating was αm = 5. Thus,(
αmεmtEm = 17.44 N/mm2

)
>

(
σl

ss = 9.44 N/mm2
)
, indicating that the area of prestressed strands is

able to meet the tensile requirement of the mortar coating under the serviceability limit states.

3.2.6. Checking Calculation of Mortar Coating under Quasi-Permanent Limit States

ψqv and ψqw are the quasi-permanent coefficient of vertical pressure generated by the ground
vehicle loads and the internal water pressure, respectively. Here, ψqv = 0.5 and ψqw = 0.72. The
maximum bending moment of the pipe at the spring-line was Ml

pml = −23.422 kN·m/m. The value

of Ml
pml is negative, indicating that the mortar coating was subjected to tension. The absolute value

was taken when substituting the following equations. The axial tension of the pipe at the spring-line
was Nl

pl = 602.911 kN/m. The maximum tensile stress at the edge of the pipe at the spring-line was

σl
ls = 8.21 N/mm2. The design parameter of strain for the mortar coating was α′m = 4. Therefore,(
α′mεmtEm = 13.95 N/mm2

)
> (σl

ss = 8.21 N/mm2), indicating that the area of prestressed strands is
able to meet the tensile requirement of the mortar coating under quasi-permanent limit states.

Above all, this is reasonable of the calculation result of the area of prestressed strands, which is
Ast = 2223 mm2/m. The center spacing of steel strands was lst = A× 1000

Ast
= 62.99 mm.

3.3. A Prototype Test

A prototype test of ECP reinforced by steel strands with the fixed spacing calculated in Section 3.2
was performed in an assembled apparatus (Figure 7). The apparatus was mainly constituted by two
ECPs, whose internal diameters were 2000 mm [29]. The adopted pipes were exactly the same as those
given in Section 3.1. The entire test process involved five load stages, namely, (1) increasing the internal
water pressure to the working pressure (0–0.6 MPa), (2) cutting the prestressing wires manually until
the cracks propagated in the concrete core (0.6 MPa), (3) decreasing the internal water pressure to the
artesian pressure (0.6–0.2 MPa), (4) performing the tensioning operation after wrapping the strands
externally around the pipe (0.2 MPa), and (5) increasing the internal water pressure to the original
level (0.2–0.6 MPa). In most of the actual pipe failures modes, most pipes failed at 4 or 8 o′clock, not at
the invert, crown, or spring-lines [29]. The position of 8 o′clock was chosen in this test for convenience
(Figure 8).

Post-tensioning was designed with the theory conducted in Section 3.2, indicating that the target
tensile strength was equal to 1171.8 MPa and the center spacing of steel strands was taken as 62 mm.
To prevent a prestress loss due to the retraction of clips and the stress relaxation of strands, excessive
stretching is essential here. The tensioning process is divided into six stages, which were 20%, 25%,
50%, 75%, 100%, and 115%. Tensioning was performed simultaneously from both sides and in a
symmetrical manner along the pipeline axis.

The statuses of each component of the pipe and the steel strands were measured by resistance
strain gauges along the axial direction at inverted (360◦), crown (180◦), and spring-line (90◦, 270◦)
orientations (Figure 8). Figure 9 exhibits the hoop strains in the concrete core before and after the
reinforcement under the working pressure (0.6 MPa). The strains in the concrete core all showed a
drastic drop after the process of tensioning. Moreover, the maximum width of the cracks in the outer
concrete core at spring-line reduced from 2.2 mm to 0.1 mm after strengthening, as observed through
field observation.
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Figure 7. The spot photo of the test apparatus.

Figure 8. Layout of measuring points of (a) the pipe and (b) the steel strands.

 
Figure 9. Comparison of strains in core concrete before and after the reinforcement: (a) 2.5 m inner
concrete core at 0◦; (b) 2.5 m inner concrete core at 90◦; (c) 2.5 m inner concrete core at 180◦; (d) 3 m
inner concrete core at 0◦; (e) 3 m inner concrete core at 90◦; (f) 3 m inner concrete core at 180◦; (g) 3 m
inner concrete core at 270◦; (h) 2.5 m outer concrete core at 0◦; (i) 2.5 m outer concrete core at 90◦; (j) 3
m outer concrete core at 90◦; (k) 3 m outer concrete core at 180◦; (l) 4 m outer concrete core at 90◦; (m) 4
m outer concrete core at 180◦.
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The strengthened pipe was capable of sustaining the working pressure and the water tightness
property was in a good state. The strains of the steel strands were all below the tensile strain level. The
reinforcement of the PCCP with external prestressed steel strands was able to meet the strengthen
requirement of the test. The rationality of the derivations in this paper were verified by the effective
reinforcement effect with external prestressed steel strands.

4. Conclusions

A theoretical derivation was performed, aiming to determine the appropriate area of prestressed
steel strands per unit length, and a prototype test was conducted to verify the rationality of the
derivation in this study. The following conclusions can be drawn:

(1) The calculation formula for the prestress loss of different types of steel strands has been derived
and the effective prestress of the prestressed steel strands can be determined.

(2) A stress calculation formula of the concrete core under the ultimate limit states and serviceability
limit states was determined and used for calculation. The condition of the mortar coating under
the serviceability limit and the quasi-permanent limit states was verified, and the reinforcement
area of the steel strand was finally determined. This tentative derivation was applied to the
reinforced pipe with broken wires (inner diameter of 2000 mm) to calculate the appropriate area
of prestressed steel strands.

(3) The crack propagation in the concrete core was constrained by the strands and the test pipe
was able to sustain the working pressure after strengthening. In addition, the maximum width
of the cracks in the outer concrete core at the spring-line showed some closure because of the
contribution of the strands. The bearing capacity of the prototype test was returned to the original
design level and the behavior of the pipe was in accordance with the expectation of derivation.
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Featured Application: Half of the Si atoms in Ti2.25Co0.75Si are replaced by B, Al, Ga, P, As, and

Sb, and the results show that doped Ti2CoSi with an appropriate concentration of impurities could

exhibit half-metallic ferromagnetic, gapless half-metallic, and spin-gapless semiconducting states.

Abstract: First-principles calculations were used to investigate several inverse Ti2CoSi-based
compounds. Our results indicate that Ti2CoSi could transform from a spin-gapless semiconductor
to a half metal if a quarter of the Co atoms are replaced by Ti. Ti2.25Co0.75Si would keep stable
half-metallic properties in a large range of lattice parameter under the effect of hydrostatic strain,
and would become a gapless half metal under the effect of tetragonal distortion. Furthermore,
we substituted B, Al, Ga, P, As, and Sb for Si in the Ti2.25Co0.75Si compound. Our results
demonstrate that Ti2.25Co0.75Si0.5B0.5, Ti2.25Co0.75Si0.5Al0.5, and Ti2.25Co0.75Si0.5Ga0.5 are half-metallic
ferromagnetic materials, and Ti2.25Co0.75Si0.5P0.5, Ti2.25Co0.75Si0.5As0.5, and Ti2.25Co0.75Si0.5Sb0.5 are
spin-gapless semiconducting materials. The introduced impurity atoms may adjust the valence
electron configuration, change the charge concentration, and shift the location of the Fermi level.

Keywords: first-principles calculation; Heusler compounds; gapless half metals; spin
gapless semiconductor

1. Introduction

With the development of nanotechnology and computational materials science, spintronics has
developed rapidly in the past 30 years. In order to improve the performance of spin diodes, spin
valves, and spin filters, the design of high spin-polarized materials has attracted much attention [1–4].
For half-metallic ferromagnetic compounds with unique electronic structures, one of the two spin
channels is semiconducting and the other is metallic. As promising spintronic candidates, they exhibit
a complete spin polarization of carriers near the Fermi level [5–12]. A spin-gapless semiconductor is
another new kind of spintronic material, which has an almost complete spin polarization and good
compatibility with the existing semiconductor industry. By shifting the Fermi energy at the finite gate
voltage, the spin-polarized transport properties of spin-gapless semiconductors can be tuned, which
has great prospects for future spintronic applications [13,14].

Appl. Sci. 2020, 10, 782; doi:10.3390/app10030782 www.mdpi.com/journal/applsci
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Half metals and spin-gapless semiconductors are special kinds of materials. Because of their
unique electronic structures, they have novel spin-dependent electronic properties. The band structure
of these materials has only one energy gap for a specific spin direction, which means that the band gap
disappears in the opposite spin direction. This phenomenon leads to the application prospects of high
carrier spin polarization and spin-controlled electrical and magnetic features. In recent years, in order
to develop new technologies involving spintronics, it has been important to search for new materials
with these characteristics. Many of these materials are Heusler alloys with a specific crystalline
ordering, which is very important for the unique electronic and magnetic properties of these materials.
Therefore, it is crucial to study these alloys and compounds with these novel physical properties.

Heusler alloys are named for the German mining engineer and chemist Friedrich Heusler, who
investigated Cu–Mn–Al alloys around the year 1900. Heusler compounds are ternary intermetallic
compounds, which have been known since 1903 [15]. These alloys were interesting because some of
them were ferromagnetic, even though their constituent atoms were non-ferromagnetic as elements.
At that time, Cu2MnAl compounds were proven to be ferromagnetic, although none of the three
elements were ferromagnetic. The structure of the alloys was later found to be face-centered cubic (fcc)
with a four-atom basis consisting of a single formula unit. Thus, members of this Heusler family with
a formula unit A2BC (known as “full” Heuslers) can be viewed as layers consisting of a square lattice
of “A” atoms alternating with layers of “B” and “C” atoms, as shown in Figure 1a. A related Heusler
family has members with the formula unit ABC, in which half of the “A” atoms of the full Heusler are
replaced by vacancies, as shown in Figure 1b.These are known as “half” Heuslers or semi-Heuslers.
A third Heusler family with the formula unit A2BC (similar to the “full” Heuslers) consists of alloys
that can be viewed as “AB” layers alternating with “AC” layers, as shown in Figure 1c. These are
known as “inverse” Heuslers.

The properties of Heusler compounds can be altered by element substitution, but no single set of
properties can characterize the entire Heusler family. Heusler alloys are expected to play an important
role in spintronics, magneto-optical reading–recording devices, magnetic tunnel junctions, or tunneling
magnetoresistance devices, due to their various multifunctional magnetic properties [16,17]. In the
past years, several inverse binary- and ternary-Heusler alloys with a high Curie temperature, as well
as quaternary-Heusler alloys, were theoretically predicated to exhibit spin-gapless semiconducting
electronic structures [18,19]. Moreover, the bulk and thin films of Mn2CoAl and Ti2MnAl films were
experimentally fabricated [20–23]. More recently, with first principle calculations, Ti2MnAl0.5Sn0.5 and
Ti2MnAl0.5In0.5 were proven to be half metal and spin-gapless semiconductor, respectively [24].

Magnetic Heusler compounds are widely used in spintronic applications. The Heusler
semiconductor can be used as either a spin-conserved tunneling barrier or a spin-transporting
spacer in a Heusler ferromagnet–Heusler semiconductor–Heusler ferromagnet heterojunction, which
has been extensively investigated in recent years. The magnetic Heusler compound is useful and
meaningful for its potential integration into magnetic multilayer devices toward some spin valves, as
well as for other opportunities and new phenomena.

In addition to these spintronic applications mentioned above, Heusler compounds, with other
excellent properties, were studied extensively in the past several years. For instance, several Heusler
compounds can be used as solar cell materials, thermoelectric materials, topological materials,
magneto-optical materials, magneto-caloric materials, shape-memory materials, heavy-Fermion
materials, superconductors, semiconductors, and so on [25–28].

In this work, the electronic structures and magnetic properties of the Ti2CoSi inverse Heusler alloy
were calculated when a quarter of Co atoms were replaced by Ti. Then, the effects of hydrostatic strain
and tetragonal deformation on the electronic structures and magnetic properties of the Ti2.25Co0.75Si
compound were studied. Meanwhile, half of the Si atoms in Ti2.25Co0.75Si were replaced by B, Al, Ga,
P, As, and Sb, and the results show that doped Ti2CoSi with an appropriate concentration of impurities
could be a half-metallic ferromagnet, a gapless half metal, or a spin-gapless semiconductor.

24



Appl. Sci. 2020, 10, 782

 

Figure 1. Crystal cell of (a) a full Heusler structure, (b) half Heusler structure, and (c) inverse
Heusler structure.

2. Materials and Methods

2.1. Structure of Materials

Structurally, the large Heusler family is described by only two variants, namely: the so-called
full-Heusler X2YZ phase, which is usually crystallized in the Cu2MnAl-type (L21) structure, and the
half-Heusler XYZ phase with a C1b structure, where X is a transition metal, Y may be a transition
metal or a rare metal, and Z is a main group element. For full-Heusler alloys, if the atomic number of Y
is higher than that of X, making the Y element more electronegative than the X element, the inverse
Heusler structure of Hg2CuTi-type can be observed [29]. This structure adopts an F-43m space group,
and the atoms obey the following filling rules: X in (0, 0, and 0) and (0.25, 0.25, and 0.25), and Y and Z
in (0.5, 0.5, and 0.5) and (0.75, 0.75, and 0.75), respectively [30].

2.2. Computational Methods

For investigating the electronic structures and magnetic properties of these pure and doped inverse
Heusler alloys, ab initio calculations were carried out by using the density functional theory (DFT)
with the standard generalized gradient approximations (GGA) of Perdew, Burke, and Erzerhof (PBE)
to deal with the exchange correlation functional [31–36]. The cutoff energy for the plane wave was set
to be 500 eV, and the k point meshes for the Brillouin zone were set to be 12 × 12 × 12. In addition,
the convergence for the difference on the total energy was set to be 1 × 10−6 eV/atom [37,38].

3. Results and Discussion

3.1. Crystal Structures and Lattice Parameters

As shown in Figure 2a, the crystal structure of the regular Heusler alloy Ti2CoSi has a face-centered
cubic structure with the following atomic positions: Ti (0, 0, and 0), Ti (0.5, 0.5, and 0.5), Co (0.25, 0.25,
and 0.25), and Si (0.75, 0.75, and 0.75). Figure 2b shows that the inverse structure possesses 16 atoms in
the unit cell with the following atomic positions: Ti (0, 0, and 0), Co (0.5, 0.5, and 0.5), Ti (0.25, 0.25, and
0.25), and Si (0.75, 0.75, and 0.75). From the previous study, it is known that the inverse Heusler alloy
Ti2CoSi is a spin-gapless semiconductor with an integer magnetic moment of 3 μB at the equilibrium
lattice constant of 6.03 Å. With the GGA calculations, we found that the inverse Ti2CoSi alloy evinces
gapless semiconducting characteristics at the equilibrium lattice parameter of 6.02 Å, which derives
0.16% less than from the previous investigation, demonstrating that our research is reasonable.
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Figure 2. Crystal cell of Ti2CoSi with (a) regular cubic Heusler structure and (b) an inverse cubic
Heusler structure.

For determining the magnetic ground state of these materials, we calculated the energies of the
ferromagnetic (FM) and anti-ferromagnetic (AFM) states. The energy differences between the AFM
and FM states are listed in Table 1. The positive values illustrate that the energy of the FM state is
smaller than that of the AFM state, indicating that the FM state is the magnetic ground state of these
materials. At the same time, the minimized energies were obtained by computing the total energy
among a large range of lattice parameters. The equilibrium lattice parameters are 6.01 Å and 6.04 Å for
Ti2.25Co0.75Si0.5B0.5 and Ti2.25Co0.75Si0.5P0.5, which is smaller than that of Ti2.25Co0.75Si, as the radius of
Si is larger than that of the B and P atoms. The calculated values are 6.13 Å, 6.13 Å, 6.12 Å, and 6.25 Å for
Ti2.25Co0.75Si0.5Al0.5, Ti2.25Co0.75Si0.5Ga0.5, Ti2.25Co0.75Si0.5As0.5, and Ti2.25Co0.75Si0.5Sb0.5, respectively.

3.2. Electronic Structures and Magnetic Properties

The electronic band structures of the Ti2.25Co0.75Si alloy at its equilibrium lattice constant were
calculated and are shown in Figure 3a. The spin-up and spin-down electronic bands are indicated
by blue and red lines, respectively. When we replaced 25% cobalt with titanium in a cubic cell,
a Ti2.25Co0.75Si alloy was achieved. It can be seen that the spin-up direction shows a metallic behavior
and the spin-down direction evinces a semiconducting behavior with an indirect band gap of 0.22 eV
around the Fermi level. The valence band maximum (VBM) and conduction band minimum (CBM) are
located at R and M points, respectively. Thus, Ti2.25Co0.75Si is a half-metallic ferromagnetic material
with an integer magnetic moment of 7 μB (see Table 1). The calculated values of P were 98% for
Ti2.25Co0.75Si0.5B0.5 and Ti2.25Co0.75Si0.5Ga0.5, and 96% for Ti2.25Co0.75Si0.5P0.5, and 100% for the other
studied compounds in this work, where P = [N↑(EF) − N↓(EF)] / [N↑(EF) + N↓(EF)], and N↑,↓(EF) are
the spin-dependent density of states at the Fermi level [39–41].

It is also important to study the effect of the possible lattice distortion during the process of
film deposition on the electronic structures. The influences of compression and tetragonalization on
the magnetic properties of the Ti2.25Co0.75Si compound were investigated. Figure 4a presents the
position of the CBM and VBM of the spin-down channel as a function of the lattice constant. Upon
compressing the lattice strain, the half-metallic properties can be kept between a range from 5.78 Å
to 6.35 Å, indicating that the half-metallic characteristics of Ti2.25Co0.75Si can be preserved when the
lattice constants are changed by −4.9%~4.4% in relation to the equilibrium lattice constant. Figure 4b
presents the position of the CBM and VBM of the spin-down channel as a function of the c/a ratio.
Under the influence of tetragonalization, we found that the alloy experiences the transformation from
a magnetic metal to a traditional half metal to a gapless half metal, and finally to a magnetic metal.
For a Ti2.25Co0.75Si compound, a gapless half metal can be obtained when the lattice parameter, c, is
expanded by 12%. The corresponding electronic band structures (c/a = 1.12) are plotted in Figure 3b.
It can be seen that majority-spin electrons pass through the Fermi level, while the CBM and VBM of
the minority spin just touch the Fermi level at R and A points, respectively.
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Table 1. The optimized equilibrium lattice parameter, ao (Å); the energy difference �E (eV) between
anti-ferromagnetic (AFM) and ferromagnetic (FM) states; and the total magnetic moment μtot (μB) of
the studied compounds.

Compound ao Δ E μtot

Ti2.25Co0.75Si 6.08 1.171 7.00
Ti2.25Co0.75Si0.5B0.5 6.01 0.607 5.00
Ti2.25Co0.75Si0.5Al0.5 6.13 0.592 5.00
Ti2.25Co0.75Si0.5Ga0.5 6.13 0.673 5.00
Ti2.25Co0.75Si0.5P0.5 6.04 0.705 8.91

Ti2.25Co0.75Si0.5As0.5 6.12 0.830 9.00
Ti2.25Co0.75Si0.5Sb0.5 6.25 0.963 9.00

 

 

  

 

 
 

 

Figure 3. Spin-resolved electronic band structures of Ti2.25Co0.75Si (a) at an equilibrium lattice constant
and (b) with c/a = 1.12 lattice distortion. The zero of the energy scale is set at the Fermi energy. The blue
and red solid lines represent spin-up and spin-down states, respectively.

 

Figure 4. The energy of conduction band minimum (CBM) and valence band maximum (VBM) of the
spin-down channel as a function of (a) the lattice constant and (b) the c/a ratio for Ti2.25Co0.75Si.
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In the following, we substituted half of the silicon with B, Al, Ga, P, As, and Sb atoms in the
cubic cell of Ti2.25Co0.75Si compound. The spin-resolved electronic band structures of the investigated
compounds in the equilibrium lattice parameters were computed and are presented in Figures 5 and 6.
For Ti2.25Co0.75Si0.5B0.5, Ti2.25Co0.75Si0.5Al0.5, and Ti2.25Co0.75Si0.5Ga0.5, although the Fermi level shifts
into a low region of energy with the decrease of the valence electrons, the majority-spin electrons still
pass through the Fermi level and the minority-spin bands evince semiconducting characteristics with a
band gap, indicating that they are also half metallic. In particular, we found that for Ti2.25Co0.75Si0.5B0.5

and Ti2.25Co0.75Si0.5Ga0.5, the VBM of the spin-down channel touched the Fermi level at T point,
demonstrating two quasi-gapless half metals. We also found that the minority spin band gap of
Ti2.25Co0.75Si0.5B0.5 was smaller than that of Ti2.25Co0.75Si0.5Al0.5 and Ti2.25Co0.75Si0.5Ga0.5. The reason
for this may be that the atomic radius of the boron atom is relatively small, which leads to a
certain chemical pressure, and then reduces the band gap. For the cases of Ti2.25Co0.75Si0.5P0.5,
Ti2.25Co0.75Si0.5As0.5, and Ti2.25Co0.75Si0.5Sb0.5, the spin-up bands open a seamless gap, and the Fermi
level is located at this zero-gap as a result of the increase of valence electrons. Generally speaking,
spin-gapless semiconductors can be divided into four categories, as follows: (i) one spin channel is
semiconducting and the other spin channel is gapless; (ii) one spin channel is semiconducting and
the VBM touches the Fermi level, while the other spin channel is gapless; (iii) there is a gap for both
spin-up and spin-down channels, nonetheless, both the VBM of the spin-up channel and the CBM of the
spin-down channel are in contact with the Fermi level; and (iv) one spin channel is gapless, and for the
other spin channel, the Fermi level touches the edge of the conduction bands. For Ti2.25Co0.75Si0.5P0.5,
the spin-up channel is gapless and the CBM touches the Fermi level in the spin-down channel. Thus,
it belongs to the fourth type. For Ti2.25Co0.75Si0.5As0.5 and Ti2.25Co0.75Si0.5Sb0.5, the spin-up channel is
gapless, while the spin-down channel is semiconducting. As a consequence, they should belong to
the first type. Nevertheless, for Ti2.25Co0.75Si0.5As0.5, the CBM of the down spins stand too close to
the Fermi level. Thus, the singular electromagnetic transport effect can only be observed at very low
temperatures. For Ti2.25Co0.75Si0.5Sb0.5, there is also a very small gap in the spin-up channel. Thereby,
strictly speaking, it would be a spin-polarized narrow band-gap semiconductor. However, at a finite
temperature, the compound would present the typical electromagnetic transport phenomenon of the
spin-gapless semiconductor.

Taking Ti2.25Co0.75Si0.5B0.5 and Ti2.25Co0.75Si0.5P0.5, for example, we discussed the orbital-resolved
spin polarization. The total density of the states (DOS) and partial DOS for Ti2.25Co0.75Si0.5B0.5 and
Ti2.25Co0.75Si0.5P0.5 obtained using GGA, are presented in Figure 7. The DOS around the Fermi level
is heavily dominated by the 3d states of the Ti and Co atoms. It was found that the 3d states of
Co are mainly distributed from −1 to −3 eV, while the 3d states of Ti are mainly distributed around
and beyond the Fermi level. The electronic configurations of the Ti and Co atoms are 3d24s2 and
3d74s2, respectively. Thus, the Ti atom with less than half of the filling valence electron shell is mainly
distributed at high energy levels, and the Co atom with more than half the filling valence electron shell
is mainly distributed at low energy levels. It was also found that the impurity atoms play a key role in
adjusting the valence electron concentration of the compound, and shift the Fermi level upwards or
downwards. For Ti2.25Co0.75Si0.5B0.5, the acceptor doping moves the Fermi level downwards, and thus
the Fermi level is submerged in the deeper energy region. For Ti2.25Co0.75Si0.5P0.5, the donor doping
moves the Fermi level upwards, and thus the Fermi level is able to be pulled out of the filled bands
and is located at the nearly zero band gap.
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ΓΓ ΓΓ  
Figure 5. Spin-resolved electronic band structures of (a) Ti2.25Co0.75Si0.5B0.5, (b) Ti2.25Co0.75Si0.5Al0.5,
and (c) Ti2.25Co0.75Si0.5Ga0.5 at the equilibrium lattice parameters. The zero of the energy scale is set at
the Fermi energy. The blue and red solid lines represent the spin-up and spin-down states, respectively.
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ΓΓ ΓΓ

Figure 6. Spin-resolved electronic band structures of (a) Ti2.25Co0.75Si0.5P0.5, (b) Ti2.25Co0.75Si0.5As0.5,
(c) and Ti2.25Co0.75Si0.5Sb0.5 at the equilibrium lattice parameters. The zero of the energy scale is set at
the Fermi energy. The blue and red solid lines represent the spin-up and spin-down states, respectively.

The results show that the spin-up and spin-down states around the Fermi level are predominantly
derived from the Ti-d and Co-d states, and the d–d hybridization is the main origin for spin polarization.
In order to understand this matter intuitively, we drew the spin density plots of Ti2.25Co0.75Si0.5B0.5

and Ti2.25Co0.75Si0.5P0.5 (see Figure 8), which are defined as the difference of spin-up and spin-down
states. We can see that the spin density predominantly concentrates on the Ti and Co atoms, evincing
that the spin polarization is mainly from the Ti and Co atoms. For these compounds, the magnetic
moments are predominantly due to the Ti-d and Co-d electrons. The large exchange splitting of the
Ti-d and Co-d states leads to a large magnetic moment.
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Figure 7. The total density of the states (DOS) of (a) Ti2.25Co0.75Si0.5B0.5 and (b) Ti2.25Co0.75Si0.5P0.5 at
the equilibrium lattice parameters. The partial DOS of (c) Ti2.25Co0.75Si0.5B0.5 and (d) Ti2.25Co0.75Si0.5P0.5

at the equilibrium lattice parameters. The black, red, blue, and orange solid lines indicate the Ti-d,
Co-d, Si-p, and B (P)-p states, respectively.

 

Figure 8. The spin densities of (a) Ti2.25Co0.75Si0.5B0.5 and (b) Ti2.25Co0.75Si0.5P0.5 at the equilibrium
lattice parameters.

4. Conclusions

In summary, we have determined the structural, electronic, and magnetic properties of inverse
Ti2CoSi-based compounds. By adjusting the concentration of titanium and cobalt, the fabricated
Ti2.25Co0.75Si compound is half metallic, that is, single-channel spin polarized. The majority-spin
bands are strongly metallic, while the minority-spin bands are semiconductor-like around the Fermi
level. This gap has previously been reported by other authors, and is formed as a result of the strong
3d–3d hybridization between the two transition-metal atoms [42–45]. It is thought that this 3d–3d
interaction is essential for the formation of the gap at the Fermi level. Under the influence of isotropic
hydrostatic pressure, the Ti2.25Co0.75Si alloy can preserve the half-metallic feature between a range of
5.78 Å to 6.35 Å. Nevertheless, it would transform to a gapless half metal upon the tetragonalization
of the lattice. Tetragonal deformation could modify the crystal symmetry and vary the position of
the edge of the bands, especially at some high-symmetry points in the reciprocal space. Our further
calculations on Ti2.25Co0.75Si0.5B0.5, Ti2.25Co0.75Si0.5P0.5, and other doped compounds demonstrate that
the doped foreign impurity is able to adjust the valence electron concentration of the compound and
shift the Fermi level upwards or downwards, creating several different electronic structures around
the sensitive Fermi level.
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Abstract: This paper investigates the dynamic buckling of bi-directional (BD) functionally graded (FG)
porous cylindrical shells for various boundary conditions, where the FG material is modeled by means
of power law functions with even and uneven porosity distributions of ceramic and metal phases.
The third-order shear deformation theory (TSDT) is adopted to derive the governing equations of
the problem via the Hamilton’s principle. The generalized differential quadrature (GDQ) method is
applied together with the Bolotin scheme as numerical strategy to solve the problem, and to draw the
dynamic instability region (DIR) of the structure. A large parametric study examines the effect of
different boundary conditions at the extremities of the cylindrical shell, as well as the sensitivity of
the dynamic stability to different thickness-to-radius ratios, length-to-radius ratios, transverse and
longitudinal power indexes, porosity volume fractions, and elastic foundation constants. Based on
results, the dynamic stability of BD-FG cylindrical shells can be controlled efficiently by selecting
appropriate power indexes along the desired directions. Furthermore, the DIR is highly sensitive
to the porosity distribution and to the extent of transverse and longitudinal power indexes. The
numerical results could be of great interest for many practical applications, as civil, mechanical or
aerospace engineering, as well as for energy devices or biomedical systems.

Keywords: bi-directional functionally graded; bolotin scheme; dynamic stability; elastic
foundation; porosity

1. Introduction

Circular cylindrical shells have an essential role in various fields of engineering applications
such as aircraft, pressure vessels, gas turbines, and many other industrial purposes because of their
excellent performance. Due to the advancement of the knowledge and technology, in recent years a
new category of materials with interesting properties, named as functionally graded materials (FGMs)
has been successfully applied. Conventional types of these materials are made of two or more different
constituent phases, namely, the ceramic and metal phases, which are distributed gradually according
some fixed functions. Since FGMs have some extraordinary properties, namely, a high temperature and
a corrosion resistance, as well as an improved residual stress distribution, they are widely studied in
many field of the applied sciences and they are adopted as structural components in military, medical,
or aerospace industries, as well as in power plants or vessels. Thus, due to their special privileges in
comparison with traditional materials, most industries make effort to exert such materials in lieu of
ordinary ones [1–4].
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A large number of studies in literature has focused on the thermo-mechanical and buckling
behavior of FGMs for shell and plate structures. In this context, only some research works associated
with FG cylindrical shells will be reviewed here, in line with the perspective developed in the present
work. Du et al. [5] investigated the nonlinear forced vibration response of FG cylindrical thin shells,
and used the perturbation method and the numerical Poincaré maps to solve the governing equations
of the problem. Rahimi et al. [6] studied the vibration of FG cylindrical shells with ring supports. It
was found that symmetric and asymmetric boundary conditions affect significantly the vibrations of
the structure, with a general increase or decrease, respectively. In a recent work, Ghasemi et al. [7]
have studied the agglomeration effect of FG hybrid single-walled carbon nanotubes on the vibration
of hybrid laminated cylindrical shell structures. Bich et al. [8] performed the nonlinear static and
dynamic buckling of imperfect eccentrically stiffened FG thin circular cylindrical shells subjected
to an axial compression. Beni et al. [9] presented a novel formulation based on a modified couple
stress theory to study simply supported FG circular cylindrical shells in the framework of thin shell
structures, whereby the vibration behavior based on a classical continuum was found to be quite
unaffected by the length scale parameters. Da Silva et al. [10] studied the nonlinear vibrations of a
simply supported fluid-filled FG cylindrical shell subjected to a lateral time-dependent load and an
axial static preloading condition. Bich and Nguyen [11] applied the displacement method to study the
nonlinear vibration of FG circular cylindrical shells subjected to an axial and transverse mechanical
loading. Ghannad et al. [12] introduced an analytical solution for the deformation and stress response
of axisymmetric clamped–clamped thick FG cylindrical shells with variable thickness, while applying
the first-order shear deformation theory and the perturbation theory, based on the Donnell’s nonlinear
large deflection theory. To date, many analytical and numerical approaches have been proposed in
literature to handle simple and coupled vibration problems of cylindrical shell structures, including
thermo-elastic, piezoelectric, and thermo-piezoelectric multi-field problems (see refs. [13–27], among
others). As far as FGMs are concerned, many recent studies about the free vibration and buckling
response of conventional and bi-directional FG cylindrical shells have been recently performed in
literature [28–33]. A key point of the static and dynamic response of FG shell structures is related to the
presence of porosities, which can form during a fabrication process, with possible effects on the global
structural response. Indeed, an increasing attention to this aspect has been devoted in the scientific
community for a correct interpretation of the mechanical performances of FG materials and structures.
For example, in a recent work, Kiran and Kattimani [34] assessed the possible effect of porosity on the
vibration behavior and static response of FG magneto-electro-elastic plates, with a clear reduction of
the natural frequencies for an increased porosity within the material. In another study, Kiran et al. [35]
analyzed the effect of porosity on the structural behavior of skew FG magneto-electro-elastic plates.
Barati et al. [36] performed the buckling analysis of higher order graded smart piezoelectric plates with
porosities resting on an elastic foundation. It was found that the buckling behavior of piezoelectric
plates is significantly influenced by the porosity distribution. In the further works by Wang et al. [37,38],
the authors studied the vibration response of longitudinally traveling FG plates with porosities [37]
while considering the thermo-mechanical coupled response in [38]. A similar free vibration problem
was studied in [39,40] for FG cylindrical shells, by means of the sinusoidal shear deformation theory
and the Rayleigh–Ritz method, accounting for the possible presence of defects and porosities. In the
context of nanomaterials and nanostructures, some modified couple stress theories have been recently
proposed as efficient theoretical tools to study their coupled thermomechanical vibration behavior,
also in presence of different levels of porosity, see [41–47], among others.

Up to date, however, there is a general lack of works in literature focusing on the dynamic
buckling response of bi-directional (BD)-FG cylindrical shell embedded in a Winkler–Pasternak
foundation, including the simultaneous effect of porosity. To this end, we propose the third-order
shear deformation theory (TSDT) to model the cylindrical shells with porosities, subjected to an axial
compressive excitation. The Hamilton’s principle will be employed to determine the governing partial
equations of motion, whereby the generalized differential quadrature (GDQ) method is adopted to
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solve the problem together with the associated boundary conditions into a system of Mathieu–Hill
equations. Afterward, the Bolotin method is employed to determine the boundaries of the dynamic
instability region (DIR) of BD-FG cylindrical shells. A systematic study focuses on the sensitivity of the
dynamic stability behavior to different dimensionless ratios, i.e., the thickness-to-radius ratio, or the
length-to-radius ratio, as well as to different boundary conditions, transverse and longitudinal power
indexes, porosity volume fractions and foundation constants. The paper is organized as follows. In
Section 2 we determine the governing equations of the problem for porous BD-FG cylindrical shells,
which are solved numerically according to the GDQ and Bolotin methods, as detailed in Section 3.
Section 4 aims at validating the proposed approach and shows the main results from a broad numerical
investigation, whereas the final remarks are discussed in Section 5.

2. Governing Equations of the Problem

Let us consider a BD-FG porous cylindrical shell embedded in an elastic foundation with thickness
h, radius R, and length L, where two different porosity distributions of the constituent phases are
accounted for the analysis, namely an even and an uneven distribution, see Figures 1 and 2. We assume
a BD-FG material made of a metal (labeled as m) and a ceramic (labeled as c) in the inner and outer shell
surfaces, respectively. While the material properties for a conventional FG model vary continuously
along the thickness direction from a ceramic or metal to another one, the basic material properties
selected herein, vary also along the shell length from the metal to the ceramic phase. To this end, the
volume fractions of the ceramic and metal phases are defined as follows

Vc(x, z) =
(1

2
+

z
h

)nz(x
L

)nx
, Vm(x, z) = 1−Vc(x, z), (1)

where nz and nx refer to the non-negative volume fraction exponents defining the profile variation of
the material properties along the shell thickness and length directions, respectively. In addition, z and x
stand for the radial distance from the mid-plane and longitudinal distance from the origin of the BD-FG
cylindrical shell, respectively. The effective material properties (i.e., Yong’s modulus, density and
Poisson’s ratio) of the BD-FG porous cylindrical shell are assumed to change according to a modified
power law model with a linear algebraic combination of volume fractions of two basic materials. Two
types of BD-FG material models include both even and/or uneven porosity distributions, i.e.,

E(x, z) = Em + (Ec − Em)
(1

2
+

z
h

)nz(x
L

)nx − ζ
2
(Ec + Em), (2a)

ρ(x, z) = ρm + (ρc − ρm)
(1

2
+

z
h

)nz(x
L

)nx − ζ
2
(ρc + ρm), (2b)

ν(x, z) = νm + (νc − νm)
(1

2
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h

)nz(x
L

)nx − ζ
2
(νc + νm), (2c)

for even distributions, or
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)nz(x
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2
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(
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)
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(1

2
+

z
h

)nz(x
L

)nx − ξ
2
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(
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ν(x, z) = νm + (νc − νm)
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2
+
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h

)nz(x
L

)nx − ξ
2
(νc + νm)

(
1 +
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, (3c)

for an uneven distribution. In the all the expression (2) and (3), ζ and ξ denote the volume fraction of an
even or uneven porosity inside the phases, respectively. While an even model accounts for porosities
evenly distributed across the radial direction, the porosities in an uneven model is mostly concentrated
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in the shell mid-plane. It is worth noting that the uneven porosity distribution is linearly reduced from
a larger value at mid-plane to a smaller value at the top and bottom sides of the structure.

Figure 1. Geometrical scheme of a bi-directional (BD)-functionally graded (FG) porous cylindrical shell
embedded in an elastic foundation.

Figure 2. Distribution of porosity: (a) even porosity, (b) uneven porosity.

In what follows, we apply the TSDT, such that the displacement field of an arbitrary point of the
shell along the x, y, and z axes, is defined as

u(x, y, z, t) = u0(x, y, t) + zϕx(x, y, t) − cz3
(
ϕx(x, y, t) + ∂w0(x,y,t)

∂x

)
,

v(x, y, z, t) = v0(x, y, t) + zϕy(x, y, t) − cz3
(
ϕy(x, y, t) + ∂w0(x,y,t)

∂y

)
,

w(x, y, z, t) = w0(x, y, t),

(4)

where c = 4
3h2 , and u, v, w stand for the longitudinal, circumferential, and transverse (radial)

displacement components, respectively. These are determined, in turn, by means of the kinematic
quantities u0, v0, and w0 at the middle surface, and the rotations ϕx and ϕy of a transverse normal
section about the x and y axis, respectively.

According to the TSDT, the strain components of the cylindrical shell can be written as [48]

εxx =
∂u0(x, y, t)

∂x
+ z

∂ϕx(x, y, t)
∂x

− cz3
(
∂ϕx(x, y, t)

∂x
+
∂2w0(x, y, t)

∂x2

)
, (5a)
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εyy =
∂v0(x, y, t)

∂y
+ z
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∂y

− cz3
(
∂ϕy(x, y, t)

∂y
+
∂2w0(x, y, t)

∂y2

)
+

w
R

, (5b)

γxy =
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∂y +
∂v0(x,y,t)

∂x + z
(
∂ϕx(x,y,t)

∂y +
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∂x

)
−cz3

(
∂ϕx(x,y,t)
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∂x + 2∂
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)
,

(5c)

γxz = ϕx(x, y, t) − 2cz2
(
ϕx(x, y, t) +

∂w0(x, y, t)
∂x

)
+
∂w0(x, y, t)

∂x
, (5d)

γyz = ϕy(x, y, t) − 2cz2
(
ϕy(x, y, t) +

∂w0(x, y, t)
∂y

)
+
∂w0(x, y, t)

∂y
, (5e)

which are related to the stress components as follows
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where the stiffness Qij is defined as

Q11(x, z) = Q22(x, z) = E(x,z)
1−(ν(x,z))2 , Q12(x, z) = Q21(x, z) = ν(x, z)Q11(x, z),

Q44(x, z) = Q55(x, z) = Q66(x, z) = E(x,z)
2(1+ν(x,z)) .

(7)

The strain energy of the BD-FG porous cylindrical shell is expressed as follow

ΠS =
1
2

L∫
0

2πR∫
0

h
2∫

− h
2

(σxxεxx+σyyεyy + τxyγxy + τxzγxz +τyzγyz
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dzdydx, (8)

and the kinetic energy of the cylindrical shell reads
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The total potential energy corresponding to the axial compressive load Fa(t) together with the
Winkler and/or Pasternak elastic foundation, can be written as follow

ΠE =
1
2

L∫
0

2πR∫
0

h
2∫

− h
2

(
kww0

2+kg
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+
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(
∂w0
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)2⎞⎟⎟⎟⎟⎠dzdydx, (10)

where kw and kg refer to the Winkler foundation stiffness and shear layer stiffness of the elastic
foundation, respectively.
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Consistently with the Hamilton’s principle, the following governing equations of motion for the
BD-FG cylindrical shell are determined

t2∫
t1

(δΠT − δΠS − δΠE)dt = 0, (11)

where the symbol δ denotes the variation of the energy quantities. By combination of Equations (8)–(10)
and Equation (11), after integration by parts, we get the following governing equations of motion,
under the assumption of a null value for u0, v0, w0, ϕx, and ϕy.
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Note that the resultants in Equation (12) are computed by integration of the pertaining stress
components along the shell structure, i.e.,
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{
Qxz

Qyz
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dz, (16)
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The generalized inertia moments are defined as

(I0(x), I1(x), I2(x), I4(x), I5(x), I6(x)) =

h
2∫

− h
2

(
1, z, z2, z3, z4, z6

)
ρ(x, z)dz. (18)

Three types of boundary conditions are considered along the shell edges, namely

� Simply-Simply (S-S) supports

x = 0, L ⇒ v0 = w0 = ϕy = Mx = Nx = 0, (19)

� Clamped-Clamped (C-C) supports

x = 0 , L ⇒ u0 = v0 = w0 = ϕx = ϕy = 0, (20)

� Clamped-simply (C-S) supports

x = 0⇒ u0 = v0 = w0 = ϕx = ϕy = 0, (21a)

x = L⇒ v0 = w0 = ϕy = Mx = Nx = 0, (21b)

3. Solution Procedure

In this section, we want to determine the dynamic stability of BD-FG porous cylindrical shells,
where the governing equations of motion are expressed through the following expansion for the
kinematic quantities

u0(x, y, t) = U(x) sin
(
n

y
R

)
U(t) (22a)

v0(x, y, t) = V(x) cos
(
n

y
R

)
V(t) (22b)

w0(x, y, t) = W(x) sin
(
n

y
R

)
W(t) (22c)

ϕx(x, y, t) = Φx(x) sin
(
n

y
R

)
Φx(t) (22d)

ϕy(x, y, t) = Φy(x) cos
(
n

y
R

)
Φy(t) (22e)

where n is the circumferential half wave number, U(t), V(t), W(t), Φx(t) and Φy(t) are the time
functions. The admissible displacement functions in Equation (22) satisfy both the equations of motion
and their boundary conditions. Afterward, the governing equations of the problem are discretized
according to the GDQ method.

Upon substitution of Equation (22a–e) and Equation (5a–e) into Equation (12), after a proper
manipulation, we obtain the equations of motion in their final form, as detailed in Appendix A.
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The above-mentioned equations of motion are solved numerically in a strong form by means of
the GDQ method, as largely discussed in [49] and in a review paper [50] in terms of accuracy, stability
and reliability, and successfully applied for many numerical applications, namely, the buckling, free
vibration, or dynamic problems of composite structures [51–55], as well as the fracture mechanics
problems [56,57] or non-linear transient problems [58,59]. In addition, the Bolotin method [60] is
proposed herein to determine the DIRs for the differential equations system, known as Mathieu–Hill
system of equations. More details about the basics of the proposed numerical tools are recalled in
what follows.

3.1. The GDQ Method

The GDQ method approximates the fundamental system of differential equations, by discretizing
the derivatives of a function J(x) respect to a spatial variable at a given discrete grid distribution, by
means of the weighting coefficients. For a one-dimensional problem where the whole domain 0 ≤ x ≤ L
is discretized in N grids points, the approximation of the nth-order derivatives of J function respect to
x variable can be expressed as [49]

dnJ
(
xp

)
dxn =

N∑
r=1

χ
(n)
pr J(xr) n = 1, 2, . . . , N − 1, (29)

χ
(n)
pr being the weighting coefficients, defined as follows [49]

χ
(1)
pq =

Υ
(
xp

)
(
xp − xq

)
Υ
(
xq

) , p � q; p, q = 1, 2, . . . , N (30)

and Υ
(
xp

)
is the Lagrangian operator expressed as [49]

Υ
(
xp

)
=

N∏
p�q, q=1

(
xp − xq

)
. (31)

For higher order derivatives of the weighting coefficients it is [49]

χ
(n)
pq = n

⎛⎜⎜⎜⎜⎜⎜⎝χ(n−1)
pp χ

(1)
pq −

χ
(n−1)
pq(

xp − xq
)
⎞⎟⎟⎟⎟⎟⎟⎠ (32)

It is well known in literature that the type of grid distribution within the domain can
affect significantly the accuracy of the proposed method [50]. In what follows we apply a
Chebyshev–Gauss–Lobatto non-uniform pattern, due to its great performances, as verified by Shu [49]

xp =
L
2

(
1− cos

(
xp − 1
N − 1

)
π

)
p = 1, 2, . . . , N. (33)

Thus, the governing differential equations of motion and boundary conditions are discretized
according to the GDQ approach, as detailed in Appendix B. Let us denote the periodic axial compressive
load as

Fa(t) = αFcr + βFcr cos(ωt) (34)

where α and β refer to the static and dynamic load factors, respectively. Furthermore, Fcr denotes the
critical static load and ω stands for the excitation frequency. By substituting Equation (34) into the
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third Equation (A3) from the Appendix A, and by combining the discretized equations of motion along
with the associated boundary conditions, the problem can be redefined in the following matrix form

(
Mbb Mbd
Mdb Mdd

)⎧⎪⎪⎨⎪⎪⎩
..
Γb..
Γd

⎫⎪⎪⎬⎪⎪⎭+

((
Kbb Kbd
Kdb Kdd

)
+ Fcr(α+ β cos(ωt))

(
KG

bb KG
bd

KG
db KG

dd

)){
Γb
Γd

}
=

(
0
0

)
(35)

where M, K, and KG are the mass, stiffness, and geometric stiffness matrixes, respectively, and

Γ =
{
U, V, W, Φx, Φy

}T
denotes the unknown dynamic displacement vector. In addition, indexes b and

d indicate the boundary points and domain points, respectively.

3.2. Bolotin Method

The second order system of differential Equation (35) is known in literature as Mathieu–Hill
system of equations due to presence of the periodic coefficient, accordingly. In the present study we
propose the Bolotin method [60] to define the boundaries associated to the DIR of the BD-FG porous
cylindrical shell. Based on this method, the dynamic displacement vector Γ can be defined in a Fourier
series as follows [60]

{Γ} =
∞∑

s=1,3,...

(
{ϑs} sin

( sωt
2

)
+ {υs} cos

( sωt
2

))
, (36)

where ϑs and υs denote the arbitrary time invariant vectors. It should be mentioned that the first DIR
with period 2T is generally much meaningful and wider than the secondary one with period T. For
this reason, in this work we consider the solutions with period 2T. By substitution of Equation (36)
into Equation (35) and by mathematical manipulation, we get the following first order equation∣∣∣∣∣∣[K] − Fcr

(
α± β

2

)[
KG

]
− ω

2

4
[M]

∣∣∣∣∣∣ = 0, (37)

which represents a classical eigenvalue problem. The critical buckling load can be computed from
Equation (35) by neglecting the inertia terms and by setting α + β cos(ωt) = 1. Then, solving
Equation (37) for some fixed values of α and Fcr, the variation of the excitation frequency ω in regards
to β can be drawn as DIR for the BD-FG structure.

4. Numerical Investigation

In this section some illustrative example are shown, starting with a preliminary validation of the
proposed method with respect to the available literature, and continuing with a parametric investigation
of the problem, whose results are evaluated comparatively in order to evaluate the sensitivity of the
mechanical response.

4.1. Validation

Due to the general lack of works in the literature on the dynamic buckling behavior of BD-FG
porous cylindrical shells, the proposed model is validated, herein, for an axial buckling problem
of a simply supported conventional FG cylindrical shell based on two different theories. Thus, for
comparative purposes, we select the same material properties and shell geometry as reported in [48,61],
and neglect the inertia terms, foundation parameters and porosity effects, while assuming a null
value for nx. In Table 1 we summarize the results in terms of critical axial buckling load Fcr for a FG
cylindrical shell with h = 0.001 m, L/R = 0.5, Ec = 380 GPa, Em = 70 GPa, ν = 0.3, c = 0, with a
clear excellent agreement between our results and predictions in Ref. [61] based on the first order
shear deformation theory. This first numerical example could be considered as limit case, where the
TSDT reverts to the FSDT, since it refers to a thin shell structure, just for validation purposes. More
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accurate results, however, are always expected under a TSDT assumption for increased values of the
shell thickness, as done in the next parametric investigation.

Table 1. Comparative evaluation of the critical axial buckling load (MN) for a FG cylindrical shell with
h = 0.001 m, L/R = 0.5, Ec = 380 GPa, Em = 70 GPa, ν = 0.3, nx = 0.

R/h Khazaeinejad and Najafizadeh [61] Present

5 Alumina 1.598 (1,1) 1.5975
nz = 1 0.853 (1,1) 0.8532
nz = 2 0.662 (1,1) 0.6624
nz = 5 0.520 (1,1) 0.5197

nz = 10 0.450 (1,1) 0.4500
Aluminum 0.294 (1,1) 0.2942

10 Alumina 1.403 (1,1) 1.4029
nz = 1 0.759 (1,1) 0.7589
nz = 2 0.589 (1,1) 0.5885
nz = 5 0.456 (1,1) 0.4557
nz = 10 0.393 (1,1) 0.3931

Aluminum 0.258 (1,1) 0.2584

20 Alumina 1.594 (1,1) 1.5936
nz = 1 0.903 (1,1) 0.9029
nz = 2 0.698 (1,1) 0.6977
nz = 5 0.514 (1,1) 0.5140

nz = 10 0.430 (1,1) 0.4295
Aluminum 0.293 (1,1) 0.2935

30 Alumina 1.566 (2,1) 1.5664
nz = 1 0.826 (2,1) 0.8262
nz = 2 0.642 (2,1) 0.6419
nz = 5 0.511 (2,1) 0.5108

nz = 10 0.449 (2,1) 0.4486
Aluminum 0.289 (2,1) 0.2885

100 Alumina 1.443 (3,1) 1.4428
nz = 1 0.782 (3,1) 0.7822
nz = 2 0.606 (3,1) 0.6064
nz = 5 0.469 (3,1) 0.4681

nz = 10 0.404 (3,1) 0.4008
Aluminum 0.266 (3,1) 0.2657

300 Alumina 1.443 (5,1) 1.4431
nz = 1 0.787 (5,1) 0.7841
nz = 2 0.610 (5,1) 0.6079
nz = 5 0.468 (5,1) 0.4683

nz = 10 0.402 (5,1) 0.4017
Aluminum 0.266 (5,1) 0.2658

As further comparative study, Table 2 compares the dimensionless critical buckling load (Pcr =

FcrL2/π2Dm; Dm = Emh3/12
(
1− ν2

m

)
) for a FG cylindrical shell with h = 0.001 m, Ec = 380 GPa,

Em = 70 GPa, ν = 0.3, c = 4/3h2. Based on Table 2, it is worth noticing the high precision between our
results and predictions by Bagherizadeh et al. [48], which confirms the accuracy of the GDQ method.
This method is thus proposed in the following parametric study, as efficient numerical tool to solve
the problem.
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Table 2. Comparative evaluation of the dimensionless critical axial buckling load for a FG cylindrical
shell with h = 0.001 m, Em = 70 GPa, ν = 0.3, nz = 2.

Z h/R Bagherizadeh et al. [48] Present

50 0.01 79.9296 (4,5) 79.9295
0.025 79.48684 (4,3) 79.4868
0.05 78.79842 (4,3) 78.7984

300 0.01 479.5066 (10,5) 479.5065
0.025 476.3834 (10,3) 476.3834
0.05 470.8775 (11,1) 470.8775

900 0.01 1438.157 (18,3) 1438.1576
0.025 1428.611 (18,2) 1428.6108
0.05 1412.380 (19,1) 1412.3802

4.2. Parametric Study

We refer to a BD-FG cylindrical structure with constituent phases of properties listed in Table 3,
where the following dimensionless parameters are considered to compute the dimensionless structural
excitation frequencies

Ω = ωR
√
ρm

Em
, Kg =

kgR2

Emh3 , Kw =
kwR4

Emh3 . (38)

Table 3. Material properties of the BD-FG cylindrical shell.

Constituent Phases Materi
Properties

E (GPa) ρ (Kg/m3) ν

c SiC 427 3100 0.17
m Al 70 2702 0.3

We determine the DIR, and highlight the effects of different parameters such as the
thickness-to-radius ratio (h/R), the length-to-radius ratio (L/R), the static load factor, the boundary
conditions, the power law indexes (nx,nz), the type and volume fraction of porosity, and the foundation
parameters, on the dynamic buckling behavior of the BD-FG cylindrical shell.

In Figure 3 we plot the variation of the DIR for different thickness-to-radius ratios (h/R), where a
clear shift of the DIR is observed for increasing h/R ratios. This means that the DIR becomes wider for
a certain value of the dynamic load factor, and occurs with a sort of delay. An increased h/R ratio from
0.01 to 0.1 yields a global shift of the DIR origin point towards high excitation frequencies.

Figure 4 shows the sensitivity of the DIR for varying L/R ratios, while keeping fixed h/R = 0.01.
In detail, for L/R = 1 the structure has a wider DIR in comparison with the other values, whereby an
increasing L/R ratio yields the DIR to take place at lower excitation frequencies. Based on the plots in
Figure 4, we can observe a reduction of about 41.96% in the excitation frequencies corresponding to the
origin of the instability region, for a L/R ranging between 1 and 10. When the L/R ratio features higher
magnitudes, the bending resistance gradually reduces and yields an increased bending deformation.
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Figure 3. Effect of the thickness-to-radius ratio on the dynamic instability region (DIR) for a BD-FG
cylindrical shell with R = 0.5 m, L/R = 1, nx = nz = 1, α = 0.3.

Figure 4. Effect of the length-to-radius ratio on the DIR for a BD-FG cylindrical shell with R = 0.5 m,
h/R = 0.02, nx = nz = 1, α = 0.3.

In Figure 5, we evaluate the effect of the static load factor on the instability region of the BD-FG
cylindrical shell. As expected, in absence of a static load on the structure, the width of DIR gets smaller,
whereby for an increased static load factor, it becomes gradually greater for a fixed value of dynamic
load factor (i.e., β = 1), and its origin tends to move on the left side. This proves the sensitivity of the
structural instability to the static load factor.
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Figure 5. Effect of the static load factor on the DIR for a BD-FG cylindrical shell with R = 0.5 m,
h/R = 0.02, L/R = 1, nx = nz = 1, α = 0.3.

As also visible in Figure 6, we evaluate the impact of different boundary conditions on the DIR of
the cylindrical shell. Here, we consider three different boundary conditions, namely, S-S, C-S, and
C-C boundary conditions. Based on the plots of Figure 7, it is worth noting that a C-C boundary
conditions yields higher values of the dimensionless excitation frequencies than those ones provided
by a S-S or C-S supports, due to an increased stiffness of the structure. Furthermore, the origin of
the instability region tends to get away from the origin. Once the dynamic load factor β reaches
the unit value, the width of the DIR for S-S boundary condition becomes smaller, compared to the
other boundary conditions. This means that, for lower values of dimensionless excitation frequency,
a BD-FG cylindrical shell with S-S supports tends to become more unstable compared to the other
boundary conditions.

Figure 6. Effect of boundary conditions on the DIR for a BD-FG cylindrical shell with R = 0.5 m,
h/R = 0.02, L/R = 1, nx = nz = 1, α = 0.3.
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Figure 7. Effect of the longitudinal power index on the DIR for a FG cylindrical shell with R = 0.5 m,
h/R = 0.02, L/R = 1, nz = 0, α = 0.3.

A further investigation is devoted to study the influence of the power law index along the length
nx on the dynamic buckling behavior of one-directional FG cylindrical shell, as depicted Figure 7. In
such a case, the DIR takes place at lower frequencies owning to an increased magnitude of the power
law index. The effect of an increased dimensionless excitation frequency related to the origin of the
DIR is meaningful within the range 0.2 ≤ nx ≤ 5. For greater values of nx, the variation in frequency
corresponding to the origin of DIR becomes less remarkable. A one-directional FG cylindrical shell
with nx = 10 or nx = 8 is more sensitive to the dynamic instability for lower excitation frequencies
compared with those ones with nx ≤ 5.

For a conventional FG cylindrical shell, we also investigate the effect of the transverse power
index nz on the DIR, as plotted in Figure 8. It can be mentioned that for a constant value of the dynamic
load factor, the enhancement of nz yields a reduction width of the dynamic instability region, especially
for lower excitation frequencies. In addition, the origin DIR moves to a lower dimensionless excitation
frequency. Comparing the results from Figures 7 and 8, it can be concluded that, a double increase of
both nx, and nz, leads to a reduction in the excitation frequency. Nevertheless, nx plays an important
role in the reduction of the excitation frequency and in the increase of the structural instability. For
β = 0, for example, we note a reduction of the excitation frequency equal to 49.3% and 44.49%, for and
increasing value of nx and nz from 0.2 up to 10, respectively.

Figure 9 shows the effect of the transverse and longitudinal volume fraction indexes on the DIR.
In detail, for an increase of these two parameters, the origin of DIR moves to higher dimensionless
excitation frequency, and the DIR width declines. In conclusion, the double increase of nx and nz

leads a metal phase reinforcement, with a overall decrease of the structural stiffness and an increase in
the structural instability. BD-FG cylindrical shells with lower values of nz and nx, are less sensitive
to the dynamic instability, due to their higher stiffness. The contrary occurs for higher values of
nx and nz due to an increased deformability of the structure. The importance of applying BD-FG
materials is highlighted when the variation of material properties is considered in a single direction or
more directions simultaneously. This issue can be beneficial for the fabrication and design purposes
of modern FG structures. Subsequently, the dynamic stability of BD-FG cylindrical shells can be
controlled selecting appropriate power indexes corresponding to the desired direction.
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Figure 8. Effect of the transverse power index on the DIR for a BD-FG cylindrical shell with R = 0.5 m,
h/R = 0.02, L/R = 1, nx = 0, α = 0.3.

Figure 9. Effect of the longitudinal and transverse power indexes on the DIR for a FG cylindrical shell
with R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3.

Moreover, Figure 10 shows the effect of an even porosity volume fraction on the dimensionless
excitation frequency of a BD-FG porous cylindrical shell. Note that the dimensionless excitation
frequency decreases for increasing values of nx and nz. In addition, for a fixed value of nx, nz, the
excitation frequency tends to converge to a common point. As expected, at the intersection point,
the effect of an even porosity volume fraction, ζ, on the dimensionless excitation frequency is almost
negligible. However, for different values of nx, nz, the effect of even porosity between the ceramic
and metal phases can change significantly, such that before the intersection point, an increased even
porosity volume fraction increases the dimensionless excitation frequency, and the contrary occurs
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after the intersection point, with a gradual decrease in the excitation frequency for an enhanced ζ. The
additional Figures 11 and 12 show the different response for different values of ζ, while assuming the
same value for nx and nz. In detail, under the assumption nx = nz = 0.15 (Figure 11), it is visible that
an increased porosity ζ moves the DIR towards higher excitation frequencies. A reversed behavior
occurs in Figure 12 under the assumption nx = nz = 1.5, since an increased value of ζ causes a general
shift of the DIR to lower excitation frequencies. This confirms the effect of either the even porosity
volume fraction ζ and the power indexes nx and nz on the stability response of the structure.

Figure 10. Effect of the even porosity volume fraction ζ on the dimensionless excitation frequency
versus the longitudinal and transverse power indexes for a BD-FG porous cylindrical shell with
R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3, β = 0.

Figure 11. Effect of the even porosity volume fraction ζ on the DIR for a BD-FG porous cylindrical shell
with R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3, nx = nz = 0.15.
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Figure 12. Effect of the even porosity volume fraction ζ on the DIR for a BD-FG porous cylindrical shell
with R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3, nx = nz = 0.15.

In Figures 13–15 we repeat the parametric analysis to evaluate the effect of an uneven porosity
between two phases of the second ceramic and second metal. In detail, Figure 13 shows the variation
of the dimensionless excitation frequency versus nx, nz, for different values of ξ. Figure 14 is devoted
to check for the influence of ξ on the DIR of the structure for nx = nz = 0.15. Additionally, in this
case, we can observe as the DIR moves to the right side by increasing ξ and it takes place at higher
excitation frequencies. Nevertheless, by assuming nx = nz = 1.5, a different trend is noticed for the
DIR in Figure 15, since an increased value of ξ yields the DIR to occur at lower excitation frequencies
and its width gets smaller.

Figure 13. Effect of the uneven porosity volume fraction ξ on the dimensionless excitation frequency
versus the longitudinal and transverse power indexes for a BD-FG porous cylindrical shell with
R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3, β = 0.
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Figure 14. Effect of the uneven porosity volume fraction ξ on the DIR for a BD-FG porous cylindrical
shell with R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3, nx = nz = 0.15.

Figure 15. Effect of the uneven porosity volume fraction ξ on the DIR for a BD-FG porous cylindrical
shell with R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3, nx = nz = 0.15.

The last parametric analysis considers the possible sensitivity of the response to the elastic
foundation. For this reason, Figures 16 and 17 plot the variation of the DIR with the Winkler or
the Pasternak foundation coefficients, respectively. A noteworthy increase in stiffness emerges from
both figures, where the origin of the DIR moves towards higher values of frequency. According to
a comparative evaluation of the results, it seems that the best dynamic behavior of the cylindrical
shell is reached for a structure surrounded by a Pasternak elastic foundation. Hence, the effect of the
Pasternak elastic coefficient is more remarkable than the Winkler-based one, where a BD-FG cylindrical
shell becomes more stable if embedded in a Pasternak foundation.
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Figure 16. Effect of the Winkler coefficient on the DIR for a BD-FG cylindrical shell with R = 0.5 m,
h/R = 0.02, L/R = 1, α = 0.3, Kg = 0, nx = nz = 1.5.

Figure 17. Effect of the Pasternak coefficient on the DIR for a BD-FG cylindrical shell with R = 0.5 m,
h/R = 0.02, L/R = 1, α = 0.3, Kw = 0, nx = nz = 1.

5. Conclusions

This work investigates the dynamic stability of BD-FG cylindrical shells embedded in an elastic
foundation, including possible effects related to porosity. The material properties of BD-FG porous
cylindrical shells are computed according to a modified BD power law model. Using the Hamilton’s
principle, we determine the governing equations of the problem, under the classical TSDT assumptions.
The aforementioned equations are rewritten into a system of Mathieu–Hill equations, according to
a GDQ approach. The work is also devoted to determine the DIR of the structure while applying
the Bolotin method. After a preliminary validation of the proposed formulation, with respect to the
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available literature, we perform a large numerical investigation to check for the sensitivity of the
response both in terms of excitation frequencies and DIRs, for different thickness-to-radius ratios,
length-to-radius ratios, boundary conditions, transverse and longitudinal power law indexes, even
and uneven porosity volume fractions, and foundation parameters. Based on the systematic numerical
investigation, the main conclusions can be summarized as follows

• An increased thickness-to-radius ratio causes a general shift of the DIR origin towards higher
excitation frequencies. Moreover, the DIR gets wider at a certain value of the dynamic load factor.

• An increased length-to-radius dimensionless ratio moves the DIR origin towards lower excitation
frequencies, whereas the DIR gets smaller.

• A simultaneous increase of longitudinal and transverse power indexes yields an overall decrease
in the excitation frequencies associated with the DIR origin.

• The control of the dynamic instability for a BD-FG cylindrical shell, is convenient for an appropriate
selection of the power indexes.

• BD-FG cylindrical shells with a simply support at both ends are more unstable than the
clamped-clamped or clamped-simply supported structures, because of their higher deformability.

• The effect of coefficients and type of porosity on the structural DIR depend on the extent of the
longitudinal and transverse power law indexes. There exists a certain value for these indexes, for
which the excitation frequencies corresponding to the DIR can invert their behavior.

• A general increase in the elastic foundation coefficients yields higher excitation structural
frequencies especially when a Pasternak foundation is assumed instead of a Winkler foundation.
Anyway, the presence of an elastic foundation makes the structure stiffer and more stable.
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Appendix A

Here below are the equations of motion in their final form(
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where

(
Aij(x), Bij(x), Cij(x), Dij(x), Fij(x), Gij(x)

)
=

h
2∫

− h
2

Qij(x, z)
(
1, z, z2, z3, z4, z6

)
dz (A6)

Appendix B

In what follows we rewrite the equations of motion (A1)–(A5) in a discretized form, according to
the GDQ method.(
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N∑

r=1
χ
(1)
pr U(xr)

)

− cn2D12(xp)
R2

(
N∑

r=1
χ
(1)
pr U(xr)

)
− A12(xp)

R

(
N∑

r=1
χ
(1)
pr U(xr)

)

+c
(

N∑
r=1

χ
(2)
pr D11(xr)

)(
N∑

r=1
χ
(1)
pr U(xr)

)
+ 2c

(
N∑

r=1
χ
(1)
pr D11(xr)

)(
N∑

r=1
χ
(2)
pr U(xr)

)

+cD11
(
xp

)( N∑
r=1

χ
(3)
pr U(xr)

)
− cnV(xp)

R

(
N∑

r=1
χ
(2)
pr D12(xr)

)

− 2cn
R

(
N∑

r=1
χ
(1)
pr D12(xr)

)(
N∑

r=1
χ
(1)
pr V(xr)

)
− cnD12(xp)

R

(
N∑

r=1
χ
(2)
pr V(xr)

)

− 2cn
R

(
N∑

r=1
χ
(1)
pr D66(xr)

)(
N∑

r=1
χ
(1)
pr V(xr)

)
− 2cnD66(xp)

R

(
N∑

r=1
χ
(2)
pr V(xr)

)

+
cn3D11(xp)V(xp)

R3 +
nA11(xp)V(xp)

R2 + 2c2n2

R2

(
N∑

r=1
χ
(1)
pr G12(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)

58



Appl. Sci. 2020, 10, 1345

+ 4c2n2

R2

(
N∑

r=1
χ
(1)
pr G66(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)
− c2n4G11(xp)W(xp)

R4

+
c2n2W(xp)

R2

(
N∑

r=1
χ
(2)
pr G12(xr)

)
+

2c2n2G12(xp)
R2

(
N∑

r=1
χ
(2)
pr W(xr)

)
− 9c2n2F66(xp)W(xp)

R2

+
4c2n2G66(xp)

R2

(
N∑

r=1
χ
(2)
pr W(xr)

)
+

6cn2C66(xp)W(xp)
R2 − 2cn2D11(xp)W(xp)

R3

−n2A66(xp)W(xp)
R2 +

cW(xp)
R

(
N∑

r=1
χ
(2)
pr D12(xr)

)
+ 2c

R

(
N∑

r=1
χ
(1)
pr D12(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)

+
2cD12(xp)

R

(
N∑

r=1
χ
(2)
pr W(xr)

)
+ A66

(
xp

)( N∑
r=1

χ
(2)
pr W(xr)

)
+

(
N∑

r=1
χ
(1)
pr A66(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)

−2c2
(

N∑
r=1

χ
(1)
pr G11(xr)

)(
N∑

r=1
χ
(3)
pr W(xr)

)
− c2G11

(
xp

)( N∑
r=1

χ
(4)
pr W(xr)

)
− A11(xp)W(xp)

R2

−6c
(

N∑
r=1

χ
(1)
pr C66(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)
− 6cC66

(
xp

)( N∑
r=1

χ
(2)
pr W(xr)

)

+
2c2n2G66(xp)

R2

(
N∑

r=1
χ
(1)
pr Φx(xr)

)
+

2c2n2Φx(xp)
R2

(
N∑

r=1
χ
(1)
pr G66(xr)

)

− cn2F12(xp)
R2

(
N∑

r=1
χ
(1)
pr Φx(xr)

)
− 2cn2Φx(xp)

R2

(
N∑

r=1
χ
(1)
pr F66(xr)

)

− 2cn2F66(xp)
R2

(
N∑

r=1
χ
(1)
pr Φx(xr)

)
+

c2n2G12(xp)
R2

(
N∑

r=1
χ
(1)
pr Φx(xr)

)

+
cD12(xp)

R

(
N∑

r=1
χ
(1)
pr Φx

(
xp

))
+

(
N∑

r=1
χ
(1)
pr A66(xr)

)
Φx

(
xp

)
+ A66

(
xp

)( N∑
r=1

χ
(1)
pr Φx(xr)

)

−c2G11
(
xp

)( N∑
r=1

χ
(3)
pr Φx(xr)

)
− B12(xp)

R

(
N∑

r=1
χ
(1)
pr Φx(xr)

)
− 6c

(
N∑

r=1
χ
(1)
pr C66(xr)

)
Φx

(
xp

)
−6cC66

(
xp

)( N∑
r=1

χ
(1)
pr Φx(xr)

)
+ 9c2

(
N∑

r=1
χ
(1)
pr F66(xr)

)
Φx

(
xp

)
+9c2F66

(
xp

)( N∑
r=1

χ
(1)
pr Φx(xr)

)
+ cF11(x)

(
N∑

r=1
χ
(3)
pr Φx(xr)

)

+c
(

N∑
r=1

χ
(2)
pr F11(xr)

)(
N∑

r=1
χ
(1)
pr Φx(xr)

)
+ 2c

(
N∑

r=1
χ
(1)
pr F11(xr)

)(
N∑

r=1
χ
(2)
pr Φx(xr)

)

−c2
(

N∑
r=1

χ
(2)
pr G11(xr)

)(
N∑

r=1
χ
(1)
pr Φx(xr)

)
− 2c2

(
N∑

r=1
χ
(1)
pr G11(xr)

)(
N∑

r=1
χ
(2)
pr Φx(xr)

)

+ 2c2n
R

(
N∑

r=1
χ
(1)
pr G12(xr)

)(
N∑

r=1
χ
(1)
pr Φy(xr)

)
− c2n3G11(xp)Φy(xp)

R3

− 9c2nF66(xp)Φy(xp)
R + 2c2n

R

(
N∑

r=1
χ
(1)
pr G66(xr)

)(
N∑

r=1
χ
(1)
pr Φy(xr)

)

+
c2nG12(xp)

R

(
N∑

r=1
χ
(2)
pr Φy(xr)

)
+

cn3F11(xp)Φy(xp)
R3

− cnD11(xp)Φy(xp)
R2 +

2c2nG66(xp)
R

(
N∑

r=1
χ
(2)
pr Φy(xr)

)

+
6cnC66(xp)Φy(xp)

R − 2cn
R

(
N∑

r=1
χ
(1)
pr F66(xr)

)(
N∑

r=1
χ
(1)
pr Φy(xr)

)

− 2cnF66(xp)
R

(
N∑

r=1
χ
(2)
pr Φy(xr)

)
− cnΦy(xp)

R

(
N∑

r=1
χ
(2)
pr F12(xr)

)

− 2cn
R

(
N∑

r=1
χ
(1)
pr F12(xr)

)(
N∑

r=1
χ
(1)
pr Φy(xr)

)
− cnF12(xp)

R

(
N∑

r=1
χ
(2)
pr Φy(xr)

)

+
c2nΦy(xp)

R

(
N∑

r=1
χ
(2)
pr G12(xr)

)
+

nB11(xp)Φy(xp)
R2 − nA66(xp)Φy(xp)

R − kwW
(
xp

)
+kg

(
N∑

r=1
χ
(2)
pr W(xr) − n2

R2 W
(
xp

))
− Fa

N∑
r=1

χ
(2)
pr W(xr) =

1
W(t)

(
I0
(
xp

)
W

(
xp

) d2W(t)
dt2

(A9)

59



Appl. Sci. 2020, 10, 1345

−c2I6
(
xp

)( N∑
r=1

χ
(2)
pr W(xr)

d2W(t)
dt2 − n2

R2 W
(
xp

) d2W(t)
dt2

)
+ cI3

(
xp

)( N∑
r=1

χ
(1)
pr U(xr)

d2U(t)
dt2

− n
R V

(
xp

) d2V(t)
dt2

)
+ c

(
I4
(
xp

)
− cI6

(
xp

))( N∑
r=1

χ
(1)
pr Φx(xr)

d2Φx(t)
dt2

− n
R Φy

(
xp

) d2Φy(t)
dt2

)

−n2B66(xp)U(xp)
R2 +

cn2D66(xp)U(xp)
R2 +

(
N∑

r=1
χ
(1)
pr B11(xr)

)(
N∑

r=1
χ
(1)
pr U(xr)

)

+B11
(
xp

)( N∑
r=1

χ
(2)
pr U(xr)

)
− c

(
N∑

r=1
χ
(1)
pr D11(xr)

)(
N∑

r=1
χ
(1)
pr U(xr)

)
− cD11

(
xp

)( N∑
r=1

χ
(2)
pr U(xr)

)

−nB66(xp)
R

(
N∑

r=1
χ
(1)
pr V(xr)

)
− nV(xp)

R

(
N∑

r=1
χ
(1)
pr B12(xr)

)
− nB12(xp)

R

(
N∑

r=1
χ
(1)
pr V(xr)

)

+
cnD12(xp)

R

(
N∑

r=1
χ
(1)
pr V(xr)

)
+

cnD66(xp)
R

(
N∑

r=1
χ
(1)
pr V(xr)

)
+

cnV(xp)
R

(
N∑

r=1
χ
(1)
pr D12(xr)

)

− cW(xp)
R

(
N∑

r=1
χ
(1)
pr D12(xr)

)
− cD12(xp)

R

(
N∑

r=1
χ
(1)
pr W(xr)

)
− c2n2G12(xp)

R2

(
N∑

r=1
χ
(1)
pr W(xr)

)

+
cn2F12(xp)

R2

(
N∑

r=1
χ
(1)
pr W(xr)

)
+

cn2W(xp)
R2

(
N∑

r=1
χ
(1)
pr F12(xr)

)

− 2c2n2G66(xp)
R2

(
N∑

r=1
χ
(1)
pr W(xr)

)
+

2cn2F66(xp)
R2

(
N∑

r=1
χ
(1)
pr W(xr)

)

− c2n2W(xp)
R2

(
N∑

r=1
χ
(1)
pr G12(xr)

)
−A66

(
xp

)( N∑
r=1

χ
(1)
pr W(xr)

)
− 9c2F66

(
xp

)( N∑
r=1

χ
(1)
pr W(xr)

)

+c2
(

N∑
r=1

χ
(1)
pr G11(xr)

)(
N∑

r=1
χ
(2)
pr W(xr)

)
+ c2G11

(
xp

)( N∑
r=1

χ
(3)
pr W(xr)

)

+
W(xp)

R

(
N∑

r=1
χ
(1)
pr B12(xr)

)
+

B12(xp)
R

(
N∑

r=1
χ
(1)
pr W(xr)

)
− c

(
N∑

r=1
χ
(1)
pr F11(xr)

)(
N∑

r=1
χ
(2)
pr W(xr)

)

−cF11
(
xp

)( N∑
r=1

χ
(3)
pr W(xr)

)
+ 6cC66

(
xp

)( N∑
r=1

χ
(1)
pr W(xr)

)
−n2C66(xp)Φx(xp)

R2 +
2cn2F66(xp)Φx(xp)

R2 − c2n2G66(xp)Φx(xp)
R2

+

(
N∑

r=1
χ
(1)
pr C11(xr)

)(
N∑

r=1
χ
(1)
pr Φx(xr)

)
+ C11

(
xp

)( N∑
r=1

χ
(2)
pr Φx(xr)

)
−A66

(
xp

)
Φx

(
xp

)
−9c2F66

(
xp

)
Φx

(
xp

)
+ c2

(
N∑

r=1
χ
(1)
pr G11(xr)

)(
N∑

r=1
χ
(1)
pr Φx(xr)

)

+c2G11
(
xp

)( N∑
r=1

χ
(2)
pr Φx(xr)

)
− 2c

(
N∑

r=1
χ
(1)
pr F11(xr)

)(
N∑

r=1
χ
(1)
pr Φx(xr)

)

−2cF11
(
xp

)( N∑
r=1

χ
(2)
pr Φx(xr)

)
+ 6cC66

(
xp

)
Φx

(
xp

)
− nC66(xp)

R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)

−nΦy(xp)
R

(
N∑

r=1
χ
(1)
pr C12(xr)

)
− nC12(xp)

R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)

− c2nG66(xp)
a

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
+

2cnF66(xp)
R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)

+
2cnF12(xp)

R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
− c2nΦy(xp)

R

(
N∑

r=1
χ
(1)
pr G12(xr)

)

+
2cnΦy(xp)

R

(
N∑

r=1
χ
(1)
pr F12(xr)

)
− c2nG12(xp)

R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
= 1

Φx(t)

((
I0
(
xp

)
− cI3

(
xp

))
U
(
xp

) d2U(t)
dt2 +

(
I2
(
xp

)
− 2cI4

(
xp

)
+c2I6

(
xp

))
Φx

(
xp

) d2Φx(t)
dt2 − c

(
I4
(
xp

)
− cI6

(
xp

)) N∑
r=1

χ
(1)
pr W(xr)

d2W(t)
dt2

)
,

(A10)

60



Appl. Sci. 2020, 10, 1345

nB12(xp)
R

(
N∑

r=1
χ
(1)
pr U(xr)

)
+

nU(xp)
R

(
N∑

r=1
χ
(1)
pr B66(xr)

)
+

nB66(xp)
R

(
N∑

r=1
χ
(1)
pr U(xr)

)

− cnD12(xp)
R

(
N∑

r=1
χ
(1)
pr U(xr)

)
− cnU(xp)

R

(
N∑

r=1
χ
(1)
pr D66(xr)

)
− cnD66(xp)

R

(
N∑

r=1
χ
(1)
pr U(xr)

)

+

(
N∑

r=1
χ
(1)
pr B66(xr)

)(
N∑

r=1
χ
(1)
pr V(xr)

)
+ B66

(
xp

)( N∑
r=1

χ
(2)
pr V(xr)

)
− n2B11(xp)V(xp)

R2

+
cn2D11(xp)V(xp)

R2 − c
(

N∑
r=1

χ
(1)
pr D66(xr)

)(
N∑

r=1
χ
(1)
pr V(xr)

)
− cD66

(
xp

)( N∑
r=1

χ
(2)
pr V(xr)

)

+
nB11(xp)W(xp)

R2 − nA66(xp)W(xp)
R − cnF12(xp)

R

(
N∑

r=1
χ
(2)
pr W(xr)

)
− 9c2nF66(xp)W(xp)

R

− 2cnF66(xp)
R

(
N∑

r=1
χ
(2)
pr W(xr)

)
+

cn3F11(xp)W(xp)
R3 − c2n3G11(xp)W(xp)

R3

− 2cn
R

(
N∑

r=1
χ
(1)
pr F66(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)
+

2c2nG66(xp)
R

(
N∑

r=1
χ
(2)
pr W(xr)

)

+
6cnC66(xp)W(xp)

R + 2c2n
a

(
N∑

r=1
χ
(1)
pr G66(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)

+
c2nG12(xp)

R

(
N∑

r=1
χ
(2)
pr W(xr)

)
− cnD11(xp)W(xp)

R2 +
nC12(xp)

R

(
N∑

r=1
χ
(1)
pr Φx(xr)

)

+
nΦx(xp)

R

(
N∑

r=1
χ
(1)
pr C66(xr)

)
+

nC66(xp)
R

(
N∑

r=1
χ
(1)
pr Φx(xr)

)

+
c2nΦx(xp)

R

(
N∑

r=1
χ
(1)
pr G66(xr)

)
− 2cnF12(xp)

R

(
N∑

r=1
χ
(1)
pr Φx(xr)

)

− 2cnF66(xp)
R

(
N∑

r=1
χ
(1)
pr Φx(xr)

)
+

c2nG66(xp)
R

(
N∑

r=1
χ
(1)
pr Φx(xr)

)

+
c2nG12(xp)

R

(
N∑

r=1
χ
(1)
pr Φx(xr)

)
− 2cnΦx(xp)

R

(
N∑

r=1
χ
(1)
pr F66(xr)

)

+

(
N∑

r=1
χ
(1)
pr C66(xr)

)(
N∑

r=1
χ
(1)
pr Φy(xr)

)
+ C66

(
xp

)( N∑
r=1

χ
(2)
pr Φy(xr)

)
−A66

(
xp

)
Φy

(
xp

)
− n2C11(xp)Φy(xp)

R2 +
2cn2F11(xp)Φy(xp)

R2

− c2n2G11(xp)Φy(xp)
R2 − 2c

(
N∑

r=1
χ
(1)
pr F66(xr)

)(
N∑

r=1
χ
(1)
pr Φy(xr)

)

−2cF66
(
xp

)( N∑
r=1

χ
(2)
pr Φy(xr)

)
+ 6cC66

(
xp

)
Φy

(
xp

)
− 9c2F66

(
xp

)
Φy

(
xp

)
+c2

(
N∑

r=1
χ
(1)
pr G66(xr)

)(
N∑

r=1
χ
(1)
pr Φy(xr)

)
+ c2G66

(
xp

)( N∑
r=1

χ
(2)
pr Φy(xr)

)
= 1

Φy(t)

((
I0
(
xp

)
− cI3

(
xp

))
V
(
xp

) d2V(t)
dt2 +

(
I2
(
xp

)
− 2cI4

(
xp

)
+ c2I6

(
xp

))
Φy

(
xp

) d2Φy(t)
dt2

−c
(
I4
(
xp

)
− cI6

(
xp

))
n
R

d2W(t)
dt2

)
,

(A11)

References

1. Birman, V.; Byrd, L.W. Modeling and analysis of functionally graded materials and structures. Appl. Mech.
Rev. 2007, 60, 195–216. [CrossRef]

2. Miyamoto, Y.; Kaysser, W.A.; Rabin, B.H.; Kawasaki, A.; Ford, R.G. Functionally Graded Materials: Design,
Processing and Applications; Springer Science & Business Medi: New York, NY, USA, 2013.

3. Noda, N. Thermal stresses in functionally graded materials. J. Therm. Stress. 1999, 22, 477–512. [CrossRef]
4. Shen, H.S. Functionally Graded Materials: Nonlinear Analysis of Plates and Shells; CRC Press: Boca Raton, FL,

USA, 2016.
5. Du, C.; Li, Y.; Jin, X. Nonlinear forced vibration of functionally graded cylindrical thin shells. Thin-Walled

Struct. 2014, 78, 26–36. [CrossRef]

61



Appl. Sci. 2020, 10, 1345

6. Rahimi, G.H.; Ansari, R.; Hemmatnezhad, M. Vibration of functionally graded cylindrical shells with ring
support. Sci. Iran. 2011, 18, 1313–1320. [CrossRef]

7. Ghasemi, A.R.; Mohandes, M.; Dimitri, R.; Tornabene, F. Agglomeration effects on the vibrations of
CNTs/fiber/polymer/metal hybrid laminates cylindrical shell. Compos. Part B Eng. 2019, 167, 700–716.
[CrossRef]

8. Bich, D.H.; van Dung, D.; Nam, V.H.; Phuong, N.T. Nonlinear static and dynamic buckling analysis of
imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression.
Int. J. Mech. Sci. 2013, 74, 190–200. [CrossRef]

9. Beni, Y.T.; Mehralian, F.; Zeighampour, H. The modified couple stress functionally graded cylindrical thin
shell formulation. Mech. Adv. Mater. Struct. 2016, 23, 791–801. [CrossRef]

10. da Silva, F.M.A.; Montes, R.O.P.; Goncalves, P.B.; del Prado, Z.J.G.N. Nonlinear vibrations of fluid-filled
functionally graded cylindrical shell considering a time-dependent lateral load and static preload. Proc. Inst.
Mech. Eng. Part C J. Mech. Eng. Sci. 2016, 230, 102–119. [CrossRef]

11. Bich, D.H.; Nguyen, N.X. Nonlinear vibration of functionally graded circular cylindrical shells based on
improved Donnell equations. J. Sound Vib. 2012, 331, 5488–5501. [CrossRef]

12. Ghannad, M.; Rahimi, G.H.; Nejad, M.Z. Elastic analysis of pressurized thick cylindrical shells with variable
thickness made of functionally graded materials. Compos. Part B Eng. 2013, 45, 388–396. [CrossRef]

13. Jafari, A.A.; Khalili, S.M.R.; Tavakolian, M. Nonlinear vibration of functionally graded cylindrical shells
embedded with a piezoelectric layer. Thin-Walled Struct. 2014, 79, 8–15. [CrossRef]

14. Jin, G.; Xie, X.; Liu, Z. The Haar wavelet method for free vibration analysis of functionally graded cylindrical
shells based on the shear deformation theory. Compos. Struct. 2014, 108, 435–448. [CrossRef]

15. Liu, Y.Z.; Hao, Y.X.; Zhang, W.; Chen, J.; Li, S.B. Nonlinear dynamics of initially imperfect functionally
graded circular cylindrical shell under complex loads. J. Sound Vib. 2015, 348, 294–328. [CrossRef]

16. Mehralian, F.; Beni, Y.T. Size-dependent torsional buckling analysis of functionally graded cylindrical shell.
Compos. Part B Eng. 2016, 94, 11–25. [CrossRef]

17. Sheng, G.G.; Wang, X. Nonlinear response of fluid-conveying functionally graded cylindrical shells subjected
to mechanical and thermal loading conditions. Compos. Struct. 2017, 168, 675–684. [CrossRef]

18. Sheng, G.G.; Wang, X. The dynamic stability and nonlinear vibration analysis of stiffened functionally graded
cylindrical shells. Appl. Math. Model. 2018, 56, 389–403. [CrossRef]

19. Zhang, Y.; Huang, H.; Han, Q. Buckling of elastoplastic functionally graded cylindrical shells under combined
compression and pressure. Compos. Part B Eng. 2015, 69, 120–126. [CrossRef]

20. Sofiyev, A.H.; Hui, D. On the vibration and stability of FGM cylindrical shells under external pressures with
mixed boundary conditions by using FOSDT. Thin-Walled Struct. 2019, 134, 419–427. [CrossRef]

21. Sun, J.; Xu, X.; Lim, C.W.; Qiao, W. Accurate buckling analysis for shear deformable FGM cylindrical shells
under axial compression and thermal loads. Compos. Struct. 2015, 123, 246–256. [CrossRef]

22. Huang, H.; Han, Q.; Wei, D. Buckling of FGM cylindrical shells subjected to pure bending load. Compos.
Struct. 2011, 93, 2945–2952. [CrossRef]

23. Wali, M.; Hentati, T.; Jarraya, A.; Dammak, F. Free vibration analysis of FGM shell structures with a discrete
double directors shell element. Compos. Struct. 2015, 125, 295–303. [CrossRef]

24. Mohammadi, M.; Arefi, M.; Dimitri, R.; Tornabene, F. Higher-Order Thermo-Elastic Analysis of FG-CNTRC
Cylindrical Vessels Surrounded by a Pasternak Foundation. Nanomaterials 2019, 9, 79. [CrossRef] [PubMed]

25. Tornabene, F.; Brischetto, S.; Fantuzzi, F.; Viola, E. Numerical and exact models for free vibration analysis of
cylindrical and spherical shell panels. Compos. Part B Eng. 2015, 3675, 231–250. [CrossRef]

26. Arefi, M.; Mohammadi, M.; Tabatabaeian, A.; Dimitri, R.; Tornabene, F. Two-dimensional thermo-elastic
analysis of FG-CNTRC cylindrical pressure vessels. Steel Compos. Struct. 2018, 27, 525–536.

27. Nejati, M.; Dimitri, R.; Tornabene, F.; Yas, M.H. Thermal buckling of nanocomposite stiffened cylindrical
shells reinforced by functionally Graded wavy Carbon NanoTubes with temperature-dependent properties.
Appl. Sci. 2017, 7, 1223. [CrossRef]

28. Aragh, B.S.; Hedayati, H. Static response and free vibration of two-dimensional functionally graded
metal/ceramic open cylindrical shells under various boundary conditions. Acta Mech. 2012, 223, 309–330.
[CrossRef]

29. Zafarmand, H.; Hassani, B. Analysis of two-dimensional functionally graded rotating thick disks with
variable thickness. Acta Mech. 2014, 225, 453–464. [CrossRef]

62



Appl. Sci. 2020, 10, 1345

30. Ebrahimi, M.J.; Najafizadeh, M.M. Free vibration analysis of two-dimensional functionally graded cylindrical
shells. Appl. Math. Model. 2014, 38, 308–324. [CrossRef]

31. Allahkarami, F.; Satouri, S.; Najafizadeh, M.M. Mechanical buckling of two-dimensional functionally graded
cylindrical shells surrounded by Winkler–Pasternak elastic foundation. Mech. Adv. Mater. Struct. 2016, 23,
873–887. [CrossRef]

32. Satouri, S.; Kargarnovin, M.H.; Allahkarami, F.; Asanjarani, A. Application of third order shear deformation
theory in buckling analysis of 2D-functionally graded cylindrical shell reinforced by axial stiffeners. Compos.
Part B Eng. 2015, 79, 236–253. [CrossRef]

33. Li, L.; Hu, Y. Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity
theory. Compos. Struct. 2017, 172, 242–250. [CrossRef]

34. Kiran, M.C.; Kattimani, S.C. Assessment of porosity influence on vibration and static behaviour of functionally
graded magneto-electro-elastic plate: A finite element study. Eur. J. Mech.-A/Solids 2018, 71, 258–277.
[CrossRef]

35. Kiran, M.C.; Kattimani, S.C.; Vinyas, M. Porosity influence on structural behaviour of skew functionally
graded magneto-electro-elastic plate. Compos. Struct. 2018, 191, 36–77. [CrossRef]

36. Barati, M.R.; Sadr, M.H.; Zenkour, A.M. Buckling analysis of higher order graded smart piezoelectric plates
with porosities resting on elastic foundation. Int. J. Mech. Sci. 2016, 117, 309–320. [CrossRef]

37. Wang, Y.Q.; Wan, Y.H.; Zhang, Y.F. Vibrations of longitudinally traveling functionally graded material plates
with porosities. Eur. J. Mech.-A/Solids 2017, 66, 55–68. [CrossRef]

38. Wang, Y.Q.; Zu, J.W. Vibration behaviors of functionally graded rectangular plates with porosities and
moving in thermal environment. Aerosp. Sci. Technol. 2017, 69, 550–562. [CrossRef]

39. Wang, Y.; Wu, D. Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear
deformation theory. Aerosp. Sci. Technol. 2017, 66, 83–91. [CrossRef]

40. Kiani, Y.; Dimitri, R.; Tornabene, F. Free vibration of FG-CNT reinforced composite skew cylindrical shells
using the Chebyshev-Ritz formulation. Compos. Part B Eng. 2018, 147, 169–177. [CrossRef]

41. Ghadiri, M.; SafarPour, H. Free vibration analysis of size-dependent functionally graded porous cylindrical
microshells in thermal environment. J. Therm. Stress. 2017, 40, 55–71. [CrossRef]

42. Barati, M.R.; Zenkour, A.M. Vibration analysis of functionally graded graphene platelet reinforced cylindrical
shells with different porosity distributions. Mech. Adv. Mater. Struct. 2019, 26, 1580–1588. [CrossRef]

43. Malikan, M.; Tornabene, F.; Dimitri, R. Nonlocal three-dimensional theory of elasticity for buckling behavior
of functionally graded porous nanoplates using volume integrals. Mater. Res. Express 2018, 5, 095006.
[CrossRef]

44. Malikan, M.; Tornabene, F.; Dimitri, R. Effect of sinusoidal corrugated geometries on the vibrational response
of viscoelastic nanoplates. Appl. Sci. 2018, 8, 1432. [CrossRef]

45. Arefi, M.; Bidgoli, E.M.R.; Dimitri, R.; Tornabene, F. Free vibrations of functionally graded polymer composite
nanoplates reinforced with graphene nanoplatelets. Aerosp. Sci. Technol. 2018, 81, 108–117. [CrossRef]

46. Jouneghani, F.Z.; Dimitri, R.; Tornabene, F. Structural response of porous FG nanobeams under
hygro-thermo-mechanical loadings. Compos. Part B Eng. 2018, 152, 71–78. [CrossRef]

47. Arefi, M.; Bidgoli, E.M.R.; Dimitri, R.; Bacciocchi, M.; Tornabene, F. Nonlocal bending analysis of curved
nanobeams reinforced by graphene nanoplatelets. Compos. Part B Eng. 2019, 166, 1–12. [CrossRef]

48. Bagherizadeh, E.; Kiani, Y.; Eslami, M.R. Mechanical buckling of functionally graded material cylindrical
shells surrounded by Pasternak elastic foundation. Compos. Struct. 2011, 93, 3063–3071. [CrossRef]

49. Shu, C. Differential Quadrature and Its Application in Engineering; Springer Science & Business Media: New
York, NY, USA, 2012.

50. Tornabene, F.; Fantuzzi, N.; Ubertini, F.; Viola, E. Strong formulation finite element method based on
differential quadrature: A survey. Appl. Mech. Rev. 2015, 67, 1–55. [CrossRef]

51. Tornabene, F.; Fantuzzi, N.; Bacciocchi, M.; Dimitri, R. Free vibrations of composite oval and elliptic cylinders
by the generalized differential quadrature method. Thin-Walled Struct. 2015, 97, 114–129. [CrossRef]

52. Yas, M.; Nejati, M.; Asanjarani, A. Free vibration analysis of continuously graded fiber reinforced truncated
conical shell via third-order shear deformation theory. J. Solid Mech. 2016, 8, 212–231.

53. Kamarian, S.; Salim, M.; Dimitri, R.; Tornabene, F. Free vibration analysis conical shells reinforced with
agglomerated Carbon Nanotubes. Int. J. Mech. Sci. 2016, 108–109, 157–165. [CrossRef]

63



Appl. Sci. 2020, 10, 1345

54. Liu, G.R.; Wu, T.Y. In-plane vibration analyses of circular arches by the generalized differential quadrature
rule. Int. J. Mech. Sci. 2001, 43, 2597–2611. [CrossRef]

55. Tornabene, F.; Dimitri, R. A numerical study of the seismic response of arched and vaulted structures made
of isotropic or composite materials. Eng. Struct. 2018, 159, 332–366. [CrossRef]

56. Dimitri, R.; Tornabene, F.; Zavarise, G. Analytical and numerical modeling of the mixed-mode delamination
process for composite moment-loaded double cantilever beams. Compos. Struct. 2018, 187, 535–553.
[CrossRef]

57. Dimitri, R.; Tornabene, F. Numerical Study of the Mixed-Mode Delamination of Composite Specimens. J.
Compos. Sci. 2018, 2, 30. [CrossRef]

58. Tomasiello, S. Differential quadrature method: Application to initial-boundary-value problems. J. Sound Vib.
1998, 218, 573–585. [CrossRef]

59. Tornabene, F.; Dimitri, R.; Viola, E. Transient dynamic response of generally-shaped arches based on a
GDQ-time-stepping method. Int. J. Mech. Sci. 2016, 114, 277–314. [CrossRef]

60. Bolotin, V.V. The dynamic stability of elastic systems. Am. J. Phys. 1965, 33, 752–753. [CrossRef]
61. Khazaeinejad, P.; Najafizadeh, M.M. Mechanical buckling of cylindrical shells with varying material

properties. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2010, 224, 1551–1557. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

64



applied  
sciences

Article

Dynamics Modeling and Theoretical Study of the
Two-Axis Four-Gimbal Coarse–Fine Composite UAV
Electro-Optical Pod

Cheng Shen, Shixun Fan *, Xianliang Jiang, Ruoyu Tan and Dapeng Fan

College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073,
China; shensicheng1996@sina.cn (C.S.); jxl123gfkd@163.com (X.J.); tyirorie@hotmail.com (R.T.);
fdp@nudt.edu.cn (D.F.)
* Correspondence: shixunfan@nudt.edu.cn; Tel.: +86-158-7428-5588

Received: 12 February 2020; Accepted: 7 March 2020; Published: 11 March 2020

Abstract: In the UAV electro-optical pod of the two-axis four-gimbal, the characteristics of a coarse–fine
composite structure and the complexity of dynamics modeling affect the entire system’s high precision
control performance. The core goal of this paper is to solve the high precision control of a two-axis
four-gimbal electro-optical pod through dynamic modeling and theoretical study. In response to this
problem, we used finite element analysis (FEA) and stress study of the key component to design the
structure. The gimbals adopt the aerospace material 7075-t3510 aluminum alloy in order to meet the
requirements of an ultralight weight of less than 1 kg. According to the Euler rigid body dynamics
model, the transmission path and kinematics coupling compensation matrix between the two-axis
four-gimbal structures are obtained. The coarse–fine composite self-correction drive equation in the
Cartesian system is derived to solve the pre-selection and check problem of the mechatronic under
high-precision control. Finally, the modeling method is substituted into the disturbance observer
(DOB) disturbance suppression experiment, which can monitor and compensate for the motion
coupling between gimbal structures in real time. Results show that the disturbance suppression
impact of the DOB method with dynamics model is increased by up to 90% compared to PID
(Proportion Integration Differentiation method) and is 25% better than the traditional DOB method.

Keywords: two-axis four-gimbal; electro-optical pod; dynamics modeling; coarse–fine composite

1. Introduction

The UAV electro-optical pod system is widely used in ship-borne, vehicular, and airborne
equipment and also plays a necessary role in recent information technology equipment [1]. It can accept
the region target image information, accurately identify the target motion state, and guide decision
making. Previous studies in the literature [2–6] used the PIOGRAM diagram method to explain the
kinematics principle of the stable mechanism and pointed out the geometric coupling problem of a
two-axis two-gimbal structure. Through special bearing and motor design, previous studies in the
literature [7,8] constructed a two-axis two-gimbal stable tracking platform with large field-of-view
visual axis. One study [9] applied the Euler dynamics theorem to establish the equation of the visual
axis stabilization structure. However, the two-axis two-gimbal structure is suitable for a stable platform
with low speed and low demand for stability precision, which may cause too much error or even
self-locking when working under normal conditions. In the UAV two-axis four-gimbal electro-optical
pod, the characteristics of a coarse–fine composite structure and the complexity of dynamics modeling
affect the high precision control performance of the system. Therefore, it is necessary to adopt new
dynamics modeling and theory to study the two-axis four-gimbal coarse–fine composite electro-optical
pod for use in a UAV.
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A previous study [10] adopted external prestressed steel, which is applied to concrete cylinder
pipes. This derivation configures the prestress of steel strands to meet the requirements of ultimate
limit states, serviceability limit states, and quasi-permanent limit states, considering the tensile strength
of the concrete core and the mortar coating, respectively. Another study [11] presents a simplified
mathematical model for the analysis of varying compliance vibrations of a rolling bearing. The results
of the parametric analysis demonstrate that, with the proper choice of the size of the internal radial
clearance and external radial load, the level of the varying compliance vibrations in a rolling bearing can
be theoretically reduced to zero. In the literature [12,13], an aluminum conductor steel-reinforced cable
and a racing tire are modeled to study their vibrations and finite element analysis. The above modeling
methods are worth being referred to. However, these methods do not study the two-axis four-gimbal
electro-optical pod for use in a UAV, and there is lack of experiments on dynamics modeling of a
coarse–fine composite structure platform.

Another previous study [14] analyzed the equal-acceleration model of a two-axis four-gimbal
maneuvering target. Taking the equivalent sinusoidal movement and the uniform linear movement as
examples, the system was simulated. The results show that the precision of the coarse–fine composite
control is higher than that of single-detector control, and the two-axis four-gimbal structure is simple
and suitable for engineering implementation. Reference [15] presents the magnetic field analysis for
the double layer Halbach array voice coil motor. The analytical model is built by adopting Fourier
analysis and proves the feasibility of the analytic method with the equivalent structure. Reference [16]
is an analysis and modeling the fast steering mirror. A detailed analysis was provided to show the
proposed approach and improve disturbance suppression performance with only a slight weakening of
the target tracking ability. The proposed feed-forward control was effectively verified through a series
of comparative simulations and experiments. Besides, the method was applied in a real ship-based
project. However, this dynamic modeling and the theoretical study of these methods are applicable to
medium or large platforms and devices. It is of little significance to the design of an ultralight two-axis
four-gimbal coarse–fine UAV electro-optical pod.

In this paper, the dynamics modeling and theoretical study of the two-axis four-gimbal coarse–fine
composite UAV electro-optical pod is deeply analyzed. In response to this problem, finite element
analysis (FEA) and theoretical analysis of the stress and deflection of the key structural component are
used to design the structure. According to the Euler rigid body dynamics model, the transmission path
and motion coupling compensation matrix between two-axis four-gimbal are obtained, and suitable
aerospace materials were used for analysis. Finally, the simulation verifies the correctness of the model.

2. Structure Design

As shown in Figure 1, the two-axis four-gimbal coarse–fine composite structure can be simplified
to a cantilever beam. Because the integrated shafting structure requires high precision, and there
are deflection errors in actual processing and manufacturing, it is necessary to check the mechanical
parameters of the uniaxial structure to observe whether it meets the performance requirements of the
cantilever beam.

2.1. Bending Internal Force and Deflection

To better clarify the simplified model, the structure of the two-axis four-gimbal electro-optical
pod structure is divided into five key components for analysis. As shown in Figures 1 and 2, S1 is the
spherical cover, S2 is the outer pitch gimbal that is the core component of the simplified model of the
cantilever beam, S3 is the fine-stage components (think of it as the load q in the middle of S2), S4 is the
voice coil motor that outputs constant torque F, S5 is the end cover that is on the left side and the fixed
end of the cantilever beam. What is more, because the rotation angle between the gimbals is relatively
small, the torque change is ignored, and its maximum value is taken for analysis.
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Figure 1. Ultralight two-axis four-gimbal electro-optical pod and coarse–fine composite system. BLDC:
brushless direct current motor; VCM: voice coil motor.

 

Figure 2. The clarifications of the model as simplified to a cantilever beam.

First, the bending internal force of plane bending under external force is analyzed. Moreover, the
internal force diagram of bending moment and shear force is drawn by force analysis. In additions, the
core problem is to check the deflection error of the simplified model of the cantilever beam.

In Figures 2 and 3, suppose that the connection between S2 and S5 is the origin O. Then, establish
the Cartesian coordinate system Oxy. The distance of l1, l2, and l3 are shown in Figure 2. l1 is the
distance between the fixed end of the left end cover and the fine-stage components. l2 is the length of
fine-stage components. l3 is the distance between the fine-stage components and the voice coil motor
(VCM). Span H is the sum of l1, l2, and l3. F is the VCM output constant torque. q is the load that is
enforced by the fine-stage components S2 in the middle of the cantilever beam S2 (outer pitch gimbal).

In Figure 3, the x-axis is the length of the outer pitch gimbal, which is the simplified model of the
cantilever beam. Fx-x and M-x represent the changing states of shear force Fx and bending moment M
at different positions, X, of in the cantilever beam. What is more, the internal force diagram of bending
moment and shear force is drawn. Figure 3 shows the change of bending moment M and shear force
Fx with x.
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Figure 3. Force analysis of coarse–fine composite structure.

Because the deformation of the cantilever beam is very small, the change of the beam’s span
length after deformation is ignored. Since the example reports a cantilever beam, at the O-point (the
fixed end), the bending moment is max. Figure 4a,b presents the changing states of the shear force Fx

and bending moment M. Moreover, the material of the beam works within the elastic range of the
beam, so the deflection and angle of the beam are linear with the load acting on the beam. Using
static equilibrium analysis of material mechanics, the deflection of cantilever beam is calculated by the
superposition principle. Because of its complicated force, it is divided into three force forms to solve
the equations, respectively, which are finally superimposed together to obtain the deflection curve
equation of the coarse–fine composite structure.

  

(a) (b) 

Figure 4. The internal force diagram. (a) Fx − x; (b) M− x.

In Figure 5, due its complexity, the force of the system is divided into three force forms in order to
use the superposition principle to solve the equation. What is more, the rigid displacement of the free
end A of the cantilever beam is selective analysis. The key is to decompose the load q in the middle
into two loads q starting at the origin A. The first is down, the second is up.

  

(a) (b) 

 
(c) 

Figure 5. Superposition principle method static equilibrium analysis. (a) Form 1; (b) Form 2; (c) Form 3.
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As shown in Table 1, the structure distance data obtained after Solidworks software simulation is
analyzed. The deflection curve equation of each superposition diagram is as follows:

yD1 = y1 + θA1 · l3 =
q(l1 + l2)

4

8EI
+

q(l1 + l2)
3

6EI
· l3 =

3q(l1 + l2)
4 + 4q(l1 + l2)

3l3
24EI

, (1)

yD2 = y2 + θA2 · (l2 + l3) = −q(l1)
4

8EI
− q(l1)

3

6EI
· (l2 + l3) = −3q(l1)

4 + 4q(l1)
3(l2 + l3)

24EI
, (2)

yD3 = y3 =
F(l1 + l2 + l3)

3

3EI
, (3)

Table 1. Structure distance data obtained by Solidworks software.

Length Value/mm

l1 40
l2 43
l3 33

Span H 116

By superimposing Equations (1)–(3), we can obtain

yD = yD1 + yD2 + yD3 =
3q(l1+l2)

4+4q(l1+l2)
3l3

24EI − 3q(l1)
4+4q(l1)

3(l2+l3)
24EI +

F(l1+l2+l3)
3

3EI , (4)

were E = the elastic modulus of the material, N/mm2; I = the cross-sectional area of the material, mm2;
and q = standard values for distributed loads, kN/m. As shown in Table 2, after Solidworks software
simulation, the free end force q and the average distributed load F were obtained as follows:

Table 2. Structure free and force and average distributed load data by Solidworks software.

Parameter Value

F 0.00022 kN
q 0.0085 kN/m

It is made of aluminum alloy nonferrous metal with excellent comprehensive performance and
its brand name is 7075-t3510. According to the data, the elastic modulus of 7075 aluminum alloy is
E = 71.7Gpa. The coarse–fine composite structure adopted the calculation method of moment of inertia
of circular section. All known parameters are substituted into the equation of the deflection curve
derived from the superposition.

yD = yD1 + yD2 + yD3 ≈ 1.67× 10−6mm, (5)

The coarse–fine stage composite structure is the overall plane bending of the main structure.
Therefore, the allowable deflection is less than H/1500. The calculated result is

H
1500

=
0.116
1500

≈ 0.77× 10−4mm > 1.67× 10−6mm. (6)

To sum up, the deflection of the coarse–fine composite structure is checked to meet the specified
deviation requirement. According to the internal force diagram of bending moment and shear force,
the bending internal force of the cantilever beam under the action of external force is within the
normal range.
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2.2. Finite Element Analysis

In the Figure 6, finite element analysis (FEA) was carried out for the force of the key structural
component, and the objects were meshed and solved by FEA. We then analyzed whether the stress,
strain, and displacement parameters met the requirements.

 
(a) 

 
(b) 

 
(c) 

Figure 6. Finite Element Analysis (FEA) of key structure component (outer roll gimbal). (a) Stress
analysis; (b) strain analysis; (c) displacement analysis.
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It can be seen from the grading on the right of Figure 6a–c and Table 3 that the more red the
structure is, the more dangerous it is. The increase of stress, strain, and displacement in the drilling
position is large and relatively concentrated, but it still meets the needs for the normal working of the
structure within the safety range. The results of finite element analysis still prove that it can meet the
requirements of operation, and the outer roll gimbal is safe and reliable as a whole.

Table 3. Finite element analysis data obtained by Solidworks software.

Parameter
Value

Max Min

Stress 2.02× 107N/m2 1.13× 104N/m2

Strain 3.49× 10−4 2.79× 10−7

Displacement 3.42× 10−1mm 1.00× 10−30mm

The deformation ratio 49.3719

2.3. Design of Limit Structure of Rotation Angle

According to the Euler transformation of the fixed-point rotation of a rigid body, the Euler angle
has no limit. However, in the coarse–fine composite structure of the two-axis four-gimbal electro-optical
pod, the rotation angle of each gimbal is limited due to the external dimension, load weight, and the
center of mass imbalance of the gimbal.

As shown in Figure 7a, in order to ensure the normal operation of the UAV’s electro-optical pod
in a safe range, a limit stopper is used to limit the rotation angle of each gimbal structure. A balancing
weight is used to allocate the overall mass to prevent the occurrence of center of mass imbalance. As
shown in Figure 7a,b, the rotation angle of inner pitch gimbal limiting stopper is +7◦~−7◦ (a total of
14◦), and the rotation angle of inner roll gimbal limiting stopper is +12◦~−12◦ (a total of 28◦). In this
angle range, the operation of the UAV’s electro-optical pod is normal and safe.

 
(a) 

 
(b) (c) 

Figure 7. The diagram of rotation angle of each gimbal of the electro-optical pod. (a) The electro-optical
stopper; (b) the rotation angle of the inner pitch gimbal limiting stopper; (c) the rotation angle of the
inner roll gimbal limiting stopper.
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3. Dynamics Modeling

3.1. Coarse–Fine Composite Analysis

As shown in Figure 1, the structure of the two-axis four-gimbal electro-optical pod is more
complicated. It is therefore an effective solution to study the coarse–fine composite structure first. The
working principle of the coarse–fine composite structure involves the definition of multiple coordinate
systems, which are respectively explained as follows.

A Inertial coordinate system ({i}, OiXiYiZi)
B UAV coordinate system ({d}, OdXdYdZd)
C Coarse motor stator coordinate system ({u}, OuXuYuZu)
D Fine motor rotor coordinate system ({g}, OgXgYgZg)

The coarse motor is fixedly connected with the guide rail through the threaded connection,
without considering the damping effect between the structures. There is geometric eccentricity er in
the shafting structure of the coarse–fine stage mechatronic system, which will cause coaxiality error
and affect the high precision control performance of the electro-optical pod. As shown in Figure 8a, the
geometric eccentricity of the shafting structure is caused by force deformation, uneven cutting force,
and chip formation of the cutting edge.

 
 

(a) (b) 

Figure 8. (a) Geometric eccentricity error of coarse–fine composite structure; (b) Euler transformation
diagram for fixed-point rotation.

In Figure 8b, according to the transformation matrix of fixed-point rotation in the Cartesian
coordinate system, the Euler transformation [17] is analyzed as shown in Figure 8b, and the Euler
angle is θ,φ,ϕ. The first step is to rotate the θ angle about the k axis, so that the i axis rotates to the
m position and the j axis rotates to the n position; Cartesian coordinate system Oijk→ Omnk . The
second step is to rotate the φ angle about the m axis, so that the n axis rotates to the q position and the k
axis rotates to the p position; Cartesian coordinate system Omnk→ Omqp . The third step is to rotate
the ϕ angle about the p axis, so that the m axis rotates to the r position and the q axis rotates to the s
position; Cartesian coordinate system Omqp→ Orsp . Finally, the Euler transformation of fixed-point
rotation is completed.

In the Cartesian coordinate system, after the system {u} rotates the θ1 angle around the Xi axis, the
system {i} is used as the reference system to observe the position of the system {u}. Then, the system {u}
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rotates the θ2 angle around Zi axis. Euler transformation of coarse–fine composite structure can be
calculated as the rotation transformation matrix, denoted as

EXθ = Aθ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 cosθ1 − sinθ1

0 sinθ1 cosθ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (7)

EZθ = Aθ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
cosθ2 − sinθ2 0
sinθ2 cosθ2 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠. (8)

According to Euler transformation law of rigid body fixed point rotation, it can be obtained from
Equations (7) and (8) that

E = Ekθ · Emφ · Epϕ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
cosθ − sinθ 0
sinθ cosθ 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠. (9)

Since the stator of the coarse motor is connected with the guide rail by thread, there is no
fixed-point rotation for the system {u} against the system {i}. Only the installation error of rotation
along the Y-axis exists. The kinematic coupling equation shows that

ωu =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ωux

ωuy

ωuz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosθu 0 sinθu

0 1 0
− sinθu 0 cosθu

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ωix
ωiy
ωiz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
·
θu

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (10)

Due to the Euler transformation law of rigid body fixed point rotation, the kinematics coupling
equations of the system {u} against the system {v} and the system {v} against the system {g} are

ωv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ωvx

ωvy

ωvz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = EkθvEmφvEpϕv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ωux

ωuy

ωuz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

·
θvx·
θvy·
θvz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (11)

ωg =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ωgx

ωgy

ωgz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = EkθgEmφgEpϕg

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ωvx

ωvy

ωvz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

·
θgx·
θgy·
θgz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (12)

The symbols used in the equation and Figure 9 are defined as follows:
·
θu = the angular velocity

vector of the coarse motor stator relative to the inertial coordinate system;
·
θvx,

·
θvy,

·
θvz = the angular

velocity vector of the coarse motor rotor relative to the coarse motor stator coordinate system;
·
θgx,

·
θgy,

·
θgz = the angular velocity vector of the fine motor rotor relative to the coarse motor rotor

coordinate system; ωu,ωv,ωg = the angular velocity and its components on the coordinate axis; and
LOS = the line of sight.

In Figure 9, the external environment disturbance is included. In order to simplify the analysis
process of the coarse–fine stage visual axis stabilization, this paper mainly discusses the conduction
path and characteristics of UAV motion to the mechatronic system. Therefore, the disturbance input of
the external environment is analyzed as an inertial coordinate system, and the whole process of motion
coupling of the coarse–fine mechatronic system is obtained through the transformation of Cartesian
coordinate along the system {u}, system {v}, and system {g}. The Euler angle θ,φ,ϕ is determined
separately in order to determine the relationship between the angular velocities at each stage and the
inertial space.
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Figure 9. The coarse–fine composite structure of electro-optical pod kinematic coupling Piogram.

3.2. Two-Axis Four-Gimbal Structure

Based on the analysis of the transmission path and kinematics coupling compensation matrix of
the coarse–fine composite structure, the dynamics modeling and theoretical study of the ultralight
two-axis four-gimbal electro-optical pod are studied. The working principle of the two-axis four-gimbal
electro-optical pod involves the definition of multiple coordinate systems, which are respectively
explained as shown in Figure 10.

 

Figure 10. Simplified Cartesian coordinate system of the two-axis four-gimbal electro-optical pod.

The inner gimbal rotates in a small range, and the outer gimbal follows the macro-field control
of the inner gimbal in a large range. At the same time, the feedback error of the outer gimbal is
compensated by the inner gimbal so that the inner gimbal can offset the disturbance of rolling and
pitching. Finally, the two-axis four-gimbal electro-optical pod maintains the stability of the visual axis
to achieve high-precision coarse–fine composite control.

A. Direct Connection Stabilization
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The gyroscope is sensitive to the angular velocity of the inner pitch system {e} and the inner roll
system {a} relative to the inertial system {i}. Therefore, make ωYe = ωZe = 0, and then the structure can
keep the visual axis of the detector stabilization.

⎛⎜⎜⎜⎜⎜⎝
·
θe·
θa

⎞⎟⎟⎟⎟⎟⎠ =
{
ωgyro_Y
ωgyro_X

=

(
sinθa cosθE

cotθe cosθa cosθE + sinθE

)
ωZA

+

( − cosθa − sinθE sinθa

cotθe sinθa − cotθe cosθa sinθE − cosθE

)(
ωYE
ωXA

) , (13)

According to Equation (13), the structure can keep the visual axis of the stabilization.
B. Indirect Connection Stabilization

The angular velocity of gyroscope sensitive the outer pitch axis system {E} and the outer roll axis
system {a} relative to the inertial system {i} is ωgyro_X = ωXA,ωgyro_Y = ωYE.

⎛⎜⎜⎜⎜⎜⎝
·
θe·
θa

⎞⎟⎟⎟⎟⎟⎠ =
(

1 0
0 − secθe

)(
ωYe
ωZe

)
+

(
sinθa cosθE

cotθe cosθa cosθE + sinθE

)
ωZA

+

( − cosθa − sinθE sinθa

cotθe sinθa − cotθe cosθa sinθE − cosθE

)(
ωgyro_Y
ωgyro_X

) , (14)

According to Equation (14), the structure can keep the visual axis of the stabilization.
Assuming that, in the case of sensitive motion of pitch and roll gyroscopes, their sensitivity values

are ωgyro_Y, ωgyro_Z, respectively,
·
θa represents the angular velocity vector of the inner roll gimbal

relative to the outer pitch gimbal, and
·
θe represents the angular velocity vector of the inner roll gimbal

relative to the inner roll gimbal; ωA, ωE, ωa, ωe, respectively, represent the angular velocity of the
two-axis four-gimbal structure and the components of its three coordinate axes.

According to the Euler dynamical theorem and Coriolis rotation law,

dH
dt

=
∂H
dt

+ω×H, (15)

where H =
(

HX HY HZ
)T
=moment of momentum; dH

dt = absolute derivatives (rate of change)

of vector H; ∂H
dt = dHX

dt i + dHY
dt j + dHZ

dt k = relative derivatives of vector H; and i, j, k = unit vectors of
coordinate axis of the body reference system, respectively.

According to the moment of momentum theorem,

dH
dt

= M, (16)

where M =
(

MX MY MZ
)T
= the external addition torque vector of the rigid body. Under the

assumption that the all three axes are principal axes of inertia, the following equation can be established:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
IX
·
ωX + (IZ − IY)ωYωZ = MX

IY
·
ωY + (IX − IZ)ωXωZ = MY

IZ
·
ωZ + (IY − IX)ωXωY = MZ

, (17)

where IX, IY, IZ = the moment of inertia of the rigid body around the coordinate axis of the follower
reference system.

The moment of momentum theorem is applicable to the calculation of larger angular velocity.
However, the electro-optical pod of two-axis four-gimbal structure is compact and ultralight, with
a mass less than 1 kg and a stabilization precision is 20 μrad. When the design is carried out in
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combination with the actual situation, the values of some parameters are ignored. Based on the space
dynamics [18], the coarse–fine composite self-correction drive equation are derived.

A. Inner Pitch Gimbal

MYe ≈
(
xe × ·

vb
)
me +

[
xe ×

( ·
ωa × ye

)]
me +

[
xe ×

( ·
ωE × ya

)]
me +

[
xe ×

( ·
ωA × yE

)]
me + IYe

·
ωe + (ωe × IYeωe), (18)

B. Inner Roll Gimbal

MXa ≈
(
xa × ·

vb
)
ma +

[
xa ×

( ·
ωE × ya

)]
ma +

[
xa ×

( ·
ωA × yE

)]
ma +

(
ye × ·

vb
)
me

+
[
ye ×

( ·
ωa × ye

)]
me +

[
ye ×

( ·
ωe × ye

)]
me + IXa

·
ωa + [ωa × (IXaωa)] + MYe

, (19)

C. Outer Pitch Gimbal

MYE ≈
(
xE × ·

vb
)
mE +

[
xE ×

( ·
ωA × yE

)]
mE +

(
ya × ·

vb
)
ma +

[
ya ×

( ·
ωE × ya

)]
ma

+
[
ya ×

( ·
ωa × ya

)]
ma +

(
ya × ·

vb
)
me +

[
ya ×

( ·
ωE × ye

)]
me +

[
ya ×

( ·
ωa × ye

)]
me

+
[
ya ×

( ·
ωe × ye

)]
me + IYE

·
ωE + [ωE × (IYEωE)] + MXa + MYe

, (20)

D. Outer Roll Gimbal

MXA ≈
(
xA × ·

vb
)
mA +

(
yE × ·

vb
)
mE +

[
yE ×

( ·
ωA × yE

)]
mE +

[
yE ×

( ·
ωE × yE

)]
mE

+
(
yE × ·

vb
)
ma +

[
yE ×

( ·
ωA × ya

)]
ma +

[
yE ×

( ·
ωE × ya

)]
ma +

[
yE ×

( ·
ωa × ya

)]
ma

+
(
yE × ·

vb
)
me +

[
yE ×

( ·
ωA × ye

)]
me +

[
yE ×

( ·
ωE × ye

)]
me +

[
yE ×

( ·
ωa × ye

)]
me

+
[
yE ×

( ·
ωe × ye

)]
me + IXA

·
ωA + [ωA × (IXAωA)] + MYE + MXa + MYe

, (21)

where ωi = angular velocity of inner pitch{e}, inner roll{a}, outer pitch{e}, outer roll{a} relative to inertial
gimbal system{i}; vb = the speed of the UAV gimbal {b} relative to the inertial gimbal; mi = the quality
of inner pitch, inner roll, outer pitch and outer roll gimbal; I·· = IYe,IXa,IYE,IXA is the rotational inertia of
the inner pitch, the inner roll, the outer pitch and the outer roll gimbal along their respective rotation
axis; xi = the vector distance from the origin of four gimbal coordinate systems and UAV coordinate
systems to their respective centroids is designated as the inner pitch xe, inner roll xE, outer pitch xa,
outer roll xA, and UAV xb; yi = the vector displacement between the rotation axis of the inner pitch
gimbal and the inner roll gimbal is ye, the vector displacement between the rotation axis of the inner
roll and the outer pitch gimbal is ya, the vector displacement between the rotation axis of the outer
pitch and the outer roll gimbal is yE; and M·· = the torque of the four gimbals relative to the rotation
axis in the inertial coordinate system is the output torque of the four motors.

In order to further study the Euler rigid body dynamics model mechanism of the ultralight
two-axis four-gimbal electro-optical pod, Figure 11 is drawn. In Figure 11, the torques due to gimbal
kinematics and those due to geometrical coupling have been combined. The key problem is to ensure
the high precision control of the structure visual axis.

When both θe = 0 and θa = 0, the inner gimbal angle is zero. The disturbing moment of
the two axes is minimized. Through the following performance of the outer gimbal, the mutual
perpendicularity between the inner gimbals can be guaranteed, so as to eliminate the geometric
constraint coupling brought by the outer gimbal to the visual axis and realize the interference isolation,
proving once again that the system can decouple two stabilization channels from the perspective of
kinematics. The coupling interference of geometric constraints can be eliminated, and the control
precision can be improved.
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3.3. Comparison Validation

Because the motor adopts a direct drive way, it does not consider slip failure. The impact caused
by friction is small, so it is assumed that the transmission efficiency of the final stage of the pod is
η = 99%. The parameters of gimbal rotation angular velocity, UAV maneuvering acceleration, and
gimbal angular velocity are

·
ωYe =

·
ωXa =

·
ωYE =

·
ωXA = ε = 120◦/s2 ≈ 2rad/s2 ≈ 0.318r/s2, (22)

·
vb = a ≤ 5g ≈ 50m/s2, (23)

ωYe = ωXa = ωYE = ωXA = ωmax = 60◦/s ≈ 1rad/s ≈ 0.159r/s, (24)

As shown in the coarse–fine composite drive self-correction equation, the cross-product term
value is small, and the included angle is small as it approaches zero infinitely and is greater than zero.
According to the trig function, if θ→ 0, cosθ→ 1 . What is more, a× b = |a| · |b| · cos〈a , b〉. Therefore,
the term cos〈a , b〉 can be ignored as the constant 1.

As shown in Table 4, the moment of inertia and mass data of gimbals at all stages when the
electro-optical pod rotates at 0◦ are presented. The moment of inertia and the distance between the
center of mass and the origin are analyzed when the electro-optical pod rotates at different angles.
We then calculate the coarse–fine composite forecast torque (Equations (18)–(21)), full payload, and
equivalent dynamics load calculates torque (Equations (22)–(24)) of the electro-optical pod structure.
Our results are shown in Figure 12.

Table 4. Rotational inertia when the initial rotation angle is 0◦ and quality simulation data.

Gimbal
Rotational Inertia (Including Load/kg·m2) Mass (Including

Load/kg)X Y Z

Inner pitch e 0.57× 10−3 0.58× 10−3 0.48× 10−3 0.471
Inner roll a 0.89× 10−3 0.84× 10−3 0.93× 10−3 0.681

Outer pitch E 0.99× 10−3 0.94× 10−3 0.11× 10−2 0.740
Outer roll A 0.26× 10−1 0.88× 10−2 0.27× 10−1 1.925

It can be observed from Figure 12 that the difference of the coarse–fine composite forecast torque,
full payload, and equivalent dynamics load calculates the torque. This is due to the influence of friction,
wind load, and conductor’s interference torque. The load of the inner pitch gimbal is less at the center
and the influence of disturbance is minimal, so the difference with the real value is not large. The
gimbal is extended one level outward, the bearing load increase, the shape is more irregular, the circuit
board leads are complex, and other factors cause the error to increase within a certain range of the
true value.
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(a) 

 
(b) 

 
(c) 

Figure 12. Cont.
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(d) 

Figure 12. The ultralight two-axis four-gimbal electro-optical pod torque comparison validation. (a)
Inner roll gimbal; (b) inner pitch gimbal; (c) outer roll gimbal; (d) outer pitch gimbal.

4. Experiment

In view of the problem that the coupling effect between two-axes four-gimbal seriously affects
the stability precision, it is necessary to combine the coupling relationship of rotational inertia of
each gimbal axis for disturbance suppression analysis. Because of the effectiveness of the interference
observer (DOB) in suppressing external interference [19,20], in this paper, an interference observer
suitable for the ultralight two-axis four-gimbal electro-optical pod is studied.

As shown in Figure 13, the control object is set as the ultralight two-axis four-gimbal system, and
the minimum phase system under ideal state is adopted. The nominal inverse model of the controlled
object is Js + B. Based on the kinematic coupling analysis and modeling, a DOB disturbance observer
is used to study self-correcting disturbance suppression. The traditional DOB controller is improved to
a time-varying DOB controller with rotational inertia. At the same time, the results of the moment of
inertia analysis after the modeling mentioned in this paper are substituted into the nominal inverse
model Jn of each gimbal control loop. Realize the real-time change of Jn following the change of gimbal
angle θ. The control loop of the outer roll gimbal A was given sinusoidal interference as an example,
and a Matlab Simulink simulation comparison experiment was carried out.

 

Figure 13. Disturbance suppression output diagram of outer roll gimbal A.

The rotational inertia of the rotating axis changes in real time. First, the parameters of the
traditional PID controller are set as follows: Kp = 20, Ki = 6. As can be seen from Table 4, the initial
parameters of rotational inertia are set as J = JXA = 0.176 × 10−1kg ·m2. The parameters of the
disturbance observer and its low-pass filter are set as follows: B = 0.002,g = 200, Bn = 0.002. From the
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motion coupling and modeling analysis, it can be known that the coupling rotational inertia on the
outer roll gimbal A is

J = (cosθE cos2 θe − sinθE cosθa sinθe cosθe)JXe+

(cosθE sin2 θe − sinθE sinθa cosθa cos2 θe)JZe + cosθEJXE + JXA
, (25)

Figures 14 and 15 verify the optimality of the velocity loop’s traditional PID control, the traditional
DOB disturbance suppression control, the improved DOB self-correcting disturbance suppression
control, and the low-pass filter parameter selection. Set the system input amplitude to 0. The input
amplitude of sine wave disturbance is 10 rad/s, and the frequency is 8 Hz. As shown in Figure 14, in
order to facilitate the observation of the experimental results, the output value of the improved DOB
was taken as negative gain output Scope which was distinguished from the other three waveforms.
Further observation of the experimental results shows that

ΔX < ΔY, (26)

 

Figure 14. Disturbance suppression output diagram of outer roll gimbal A.

 
Figure 15. Comparison diagram of disturbance suppression output of outer roll gimbal A.
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The results show that the disturbance suppression impact of DOB method with dynamics model
is increased by up to 90% better than PID. As shown in Figure 13, this is defined as

e = d− d′, (27)

As shown in Figure 16, by comparing the two figures, it can be known that the estimated deviation
of traditional DOB disturbance suppression is e = 0.51 and the estimated deviation of the improved
DOB disturbance suppression is e = 0.43. The results show that the disturbance suppression impact of
DOB method with dynamics model is increased by up to 25% compared to the traditional DOB.

  
(a) (b) 

Figure 16. Comparison diagram of disturbance suppression difference output of outer roll gimbal
A. (a) The output deviation of traditional DOB disturbance suppression; (b) the output deviation of
improved DOB disturbance suppression.

5. Conclusions

This paper represents an in-depth study on the dynamics modeling and theoretical study of the
two-axis four-gimbal coarse–fine composite electro-optical pod. Our conclusions are as follows.

A In the UAV electro-optical pod of the two-axis four-gimbal, the characteristics of the coarse–fine
composite structure and the complexity of dynamics modeling affect the entire system’s
high-precision control performance. The core goal of this paper is solve the high precision
control of two-axis four-gimbal electro-optical pod through dynamic modeling and theoretical
study. FEA and theoretical analysis of the stress and deflection of the key structure component
was used to design the structure. The gimbal structure adopts 7075-t3510 aluminum alloy, which
is an aerospace material that meets the requirements of an ultralight electro-optical pod weighing
less than 1 kg.

B According to the Euler rigid body dynamics model, the transmission path and kinematics coupling
compensation matrix for the two-axis four-gimbal are obtained. The coarse–fine composite drive
correction equation of the inner-outer gimbals is derived to solve the pre-selection and check
problem of the coarse–fine motors under high-precision control.

C The modeling method is substituted into the DOB disturbance suppression experiment, which
can monitor and compensate for the motion coupling between gimbal structures in real time. Our
results show that the disturbance suppression impact of the DOB method with dynamics model
is up to 90% better than PID and 25% better than traditional DOB.

D This manuscript is based on the dynamics modeling and theoretical study of the two-axis
four-gimbal coarse–fine composite UAV electro-optical pod. This manuscript is valuable for all
researchers interested in the coarse–fine composite, two-axis four-gimbal structures, and ultralight
electro-optical pods.
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Abstract: The damage induced by lightning strikes in carbon-fiber-reinforced plastic (CFRP) laminates
with fasteners is a complex multiphysics coupling process. To clarify the effects of different lightning
current components on the induced damage, components C and D were used in simulated lightning
strike tests. Ultrasonic C-scans and stereomicroscopy were used to evaluate the damage in the tested
specimens. In addition, the electrothermal coupling theory was adopted to model the different effects
of the arc and the current flowing through the laminate (hereinafter referred to as the conduction
current) on CFRP laminates with fasteners under different lightning current components. Component
C, which has a low current amplitude and a long duration, ablated and gasified the fastener and
caused less damage to the CFRP laminate. Under component C, the heat produced by the arc played
a leading role in damage generation. Component D, which has a high current amplitude and a short
duration, caused serious surface and internal damage in the CFRP laminate and little damage to the
fastener. Under component D, the damage was mainly caused by the Joule heat generated by the
conduction current.

Keywords: Carbon-fiber-reinforced plastics (CFRPs); fastener; arc; Joule heat; finite element analysis
(FEA)

1. Introduction

Carbon-fiber-reinforced plastics (CFRPs) have excellent mechanical properties and are widely
used in various industries [1–3]. With the massive expansion of wind power and the rapid growth
in the number of aircraft, the chances of wind turbine blades and aircraft being struck by lightning
have inevitably increased substantially. Because the destructive effects of lightning strikes often
lead to serious consequences, research on lightning damage in CFRPs has received unprecedented
attention [4–8].

In structural design, depending on the excellent formability of composite materials, the number
of fasteners can be reduced by optimizing the design; however, completely eliminating the need for
fasteners is difficult. These fasteners have greater electrical conductivity than the other materials in
CFRP laminates. Therefore, when a lightning strike occurs, the current is discharged through the
fasteners first and then into each layer of the CFRP laminate, which leads to fiber breakage, resin
degradation, and internal delamination [9]. In addition, the temperature and air pressure inside the
fastener hole will change dramatically during the lightning strike [10], which leads to damage around
the hole, loss of fastener support, and weakening of the mechanical and electrical properties of the
CFRP [11]. Therefore, research on the damage in CFRPs with fasteners subjected to lightning strikes is
the key point of composite lightning protection [10,12].
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The duration of a lightning strike is extremely short, during which a large amount of energy is
released in an instant, resulting in extremely high temperatures. Observing the damage characteristics
near the attachment point of the lightning strike in real time with instruments is difficult. Therefore,
finite element analysis (FEA) has become an effective method for studying the damage evolution
process of CFRP laminates with fasteners under lightning strikes and for verifying the correctness of the
test results. Chemartin et al. [13] used the finite volume method in the time domain and unstructured
mesh to establish the mechanism model of CFRPs with fasteners, and simulated the spark phenomenon
in fasteners. The research showed that sparking may occur when the current density is greater than 10
kA/mm2. Kirchdoerfer [10] simulated the gas conditions and related local geometric changes in the
interior space around the fastener during lightning strikes, and discussed the importance of chemical
change modeling in future work. Meanwhile, the electrothermal coupling model is used to investigate
the damage of CFRP under lightning strike. Muñoz et al. [14] developed a finite element model to
consider the damage sources observed in a lightning strike, such as thermal damage caused by Joule
heat. Yin et al. [11] established a three-dimensional electrothermal coupling model of ablation damage
of CFRP with fasteners based on the relationship of the energy balance in s lightning strike. The
results indicated that fasteners distributed the lightning current to each layer, and a larger conduction
current dispersion area led to less damage to the laminate. Abdelal et al. [15] proposed a physical
model to predict lightning strike damage for composite materials. The finite element method of
non-linear material model was used to analyze composite materials with copper mesh protection.
Ogasawara et al. [16] proposed a electrothermal coupling model of angle ply composite laminates,
which considered the anisotropic thermoelectric behavior of layer and unidirectional composite
laminates. However, their work neglected the arc heat effect in numerical simulation. Dong et al. [17]
considered the influence of the arc heat effect and replaced it with heat flux in the models, while the
damage to CFRP with fasteners was not mentioned. On the basis of previous work, this paper used
the electrothermal coupling module in COMSOL to design simulation models to explore the arc heat
and conduction current effects on the damage of CFRP with fasteners, as well as the damage difference
under different lightning current conditions.

Experimental investigations are often used to study the damage in CFRP laminates with fasteners
subjected to lightning strikes. Previous studies have found a relationship between the damaged area
and the mounting depth of the fasteners during a lightning strike. The shallower the mounting depth,
the larger the surface damage area [18]. CFRP laminates with fasteners show penetrating damage
under lightning strikes, with damage occurring on both sides of the specimen [19,20]. The lightning
current component D is influential in developing out-gassing, whereas no out-gassing is observed
when component C is used [21]. To make the simulated lightning strikes in the laboratory more closely
approximate natural lightning strikes, it is important to ensure that the lightning current waveforms
and current amplitudes used in the tests meet the standard requirements [19]. However, in the study
of lightning damage in CFRP laminates with fasteners, many of the waveforms and amplitudes used in
previous studies did not meet the standard requirements [22,23], and the roles of the arc and conduction
current in the process of damage were not clearly distinguished.

In this work, simulated lightning strike tests were performed on CFRP laminates with fasteners
using lightning current components C and D, which comply with the standards. Ultrasonic C-scans
and stereomicroscopy were used to evaluate the differences in specimen damage under the two
components, and an electrothermal coupling model was adopted to verify the test results to study the
different effects of the conduction current and arc after the action of lightning current components C
and D. The results were compared with the lightning damage of pure CFRP under components C and
D [17].
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2. Materials and Methods

2.1. Specimen Preparation

The material used in this work was a unidirectional carbon fiber prepreg (TC35/FRD-Y360). The
specimen dimensions were 250 mm (length) × 250 mm (width) × 2 mm (thickness), and the stacking
sequence was
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/90
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/90

◦
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, creating a total of 15 plies.
The diameter of the mounting hole was 8 mm, and the fastener material was stainless steel. Compared
with titanium alloy, stainless steel has good electrical conductivity and a lower melting point, which will
result in more severe damage during lightning strikes, which is beneficial for observation and analysis.
The specimens used in this work were unpainted and unprotected. This structure allowed us to focus
on the details of CFRP response to high energy discharge alone [19]. The assembly of the fastener and
CFRP laminate is shown in Figure 1a. The tight fitting of the fastener and the CFRP laminate mounting
hole can reduce the contact resistance between the two elements. The discharge electrode with a
diameter of 8 mm was made of tungsten–copper alloy (W80Cu20) and was positioned directly above
the centre point of the specimen, separated from the specimen by a distance of approximately 3 mm.
The four sides of the specimen were fixed on a metal plate with detachable copper strips. For reliable
grounding, four copper braids were connected at the four corners of the metal plate. The simulated
lightning current was injected into the specimen as an arc discharge and then flowed through the metal
plate and out through the copper braid. The clamp and connection are shown in Figure 1b.

 

 

  
(a) (b)  

Figure 1. (a) Assembly diagram of the CFRP with a fastener; (b) the clamp and connection.

2.2. Test setup and waveform

The lightning current waveforms described in [22] and [23] include four components
(Figure 2). Components A, B, C, and D represent the first return stroke, intermediate current,
continuing current, and the subsequent return stroke, respectively. These four components can
be divided into two categories: (1) short-duration, small-transferred-charge, high-action-integral,
high-current-amplitude components A and D; and (2) long-duration, large-transferred-charge,
low-action-integral, low-current-amplitude components B and C. To make this study universal,
lightning current components C and D were used in the simulated lightning strike test of the CFRP
laminates with fasteners. The current amplitude of component C was 200 A, the duration of which
could reach 1 s, and the transferred charge was 200 C; the actual test waveform is shown in Figure 3a.
The current amplitude of component D was 100 kA, the duration could reach 500 μs, and the action
integral was 2.5 × 105 A2s; the actual test waveform is shown in Figure 3b.
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Figure 2. Simulated lightning current waveforms in [23].

  
(a)  (b)  

Figure 3. Lightning current waveforms used in the present study: (a) component C; (b) component D.

3. FEA

3.1. Electrothermal Coupling Theory

Because of the short duration of the lightning strike, measuring and observing the damage
evolution process is difficult. Therefore, FEA is an effective method for analyzing the process.
COMSOL was successfully applied to the finite element simulation of CFRP damage during lightning
strikes [10]. The electrothermal coupling module in COMSOL provides a method for analyzing
such problems. The module considers both the effect of the electrical conductivity with respect to
temperature and the effect of the electric field with respect to the current density.

Herein, a steady-state electrical simulation analysis and a transient thermal simulation analysis
are performed in sequence [24]. The lightning current flowing through the CFRP laminate will
generate Joule heat, causing the resin to pyrolyze and gasify, which is a typical electrothermal coupling
process [25–27]. During this process, the following charge conservation equations need to be followed:

∂ρe

∂t
+ ∇·j = 0 (1)

where ρe is the charge density and j is the current density inside the material.
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The relationship between the current and Joule heat can be expressed as follows:

Pe= j·E =
j2

σ
(2)

where Pe is Joule heat per unit volume and σ and E are the electric conductivity and electric field
intensity per unit volume, respectively.

The heat transfer in the material conforms to Fourier’s law. The governing equation of heat
balance can be expressed as follows [14,27,28]:

ρCp
∂T
∂t

= ∇·(k∇T) +
j2

σ
(3)

where Cp is the specific heat capacity at constant pressure, ρ is the density, T is the absolute temperature,
and k is the thermal conductivity.

The heat transferred to the material by the arc is equivalent to the heat flux [17], and the heat flux
is expressed as follows:

Q(r, t) ≈ 10J(r, t) (4)

where t is the time, Q is the heat flux of the lightning arc, and J is the current density on the top of
the fastener.

3.2. Finite Element Modeling

During the lightning strike, the temperature changes drastically, and the thermal conductivity,
electrical conductivity, density, and specific heat of the material change significantly with respect to
the temperature [15,29,30]. Table 1 shows the material parameters measured by thermogravimetric
analysis (NETZSCH STA449F3, Germany) and laser flash thermal conductivity analysis (LFA467,
Germany).

Table 1. Physical properties of the specimen.

Tempe-rature
(°C)

Density
(kg/m3)

Specific Heat
(J/(kg·K))

Thermal Conductivity Electrical Conductivity

Longi-tudinal
(W/(m·K))

Transverse/through-
thickness
(W/(m·K))

Longi-tudinal
(S/m)

Transverse(S/m)
Through-
thickness

(S/m)

25 1472 1176 6.578 0.723 17,800 10.4 2.8
300 1472 2048 9.617 0.633 17,800 10.4 2.8
500 1110 1454 7.166 0.423 17,800 2000 2000
510 1110 1454 7.166 0.423 17,800 2000 2000

3316 1 1110 2146 7.166 0.423 17,800 20,000 20,000
>3316 2 1110 5875 1.0 × 108 1.0 × 108 1.0 × 108 1.0 × 108 1.0 × 108

1,2- These parameters are not directly measured but obtained through extrapolation [15,27,31,32].

The parameters of stainless steel fasteners are shown in Table 2.

Table 2. Physical properties of stainless steel.

Density
(kg/m3)

Specific Heat
(J/(kg·K))

Thermal Conductivity (W/(m·K)) Electrical Conductivity (S/m)

7850 4.75 × 102 44.5 4.032 × 106

Some assumptions were proposed: no clearance between fastener and composite, and the contact
electrical resistance and thermal resistance on the interface were ignored; the delamination caused by
Joule heat and the thermal stress inside the specimen was not considered. The stacking sequences and
dimensions of the CFRP laminate used in the finite element modeling were the same as those of the
specimen. The model is shown in Figure 4. The whole model had 28,157 elements, 28,055 hexahedra,
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2,200 edge elements, and 136 vertex elements. The electrical potential boundary of the model was
set as follows: the electrical potential of the two parallel sides was 0 V. Heat exchange between the
specimen and the environment occurred when the specimen was directly exposed to the air. Therefore,
the thermal boundary of the model was set as follows: the thermal radiation emissivity of the top and
bottom surfaces was 0.9; the four sides of the model were thermally insulated and did not exchange
heat with the external environment; and the environmental temperature was 25 ◦C. The conduction
current and heat flux of components D and C were imported into COMSOL and applied on the entire
top surface of the fastener. For modeling of different fiber orientations, rotated coordinate systems
were used and the material properties of CFRP were assigned to each layer. For each layer, the size of
elements increased from the center to the four sides to improve the efficiency and ensure the accuracy
at the same time. The maximum and minimum side lengths were 10 mm and 3 mm, respectively. The
average element quality was about 0.9. The total time of the transient solver was set according to the
duration of the waveform (300 μs for component D and 1 s for component C). In this work, the relative
tolerance of the simulation model was 0.01, the tolerance factor was 0.1, the maximum number of
iterations was 10, and the termination technique was the tolerance. The simulation was done on a
Dell Precision Tower 780 workstation equipped with two E5-2603 CPUs and 48 GB memory, and the
longest time consumed about 11 h for a calculation case. In the process of calculation, the temperature
distribution and the physical parameters of the materials were monitored by the domain point probes
arranged in the model to ensure the convergence of the model.

Figure 4. Finite element model and boundary conditions.

In the model, r(t) is the arc channel radius; Q(r, t) is the heat flux obtained by Equation (4),
which is used to represent the role of the arc; and I(t) is the conduction current injected into the top of
the fastener.

The heat flux radius is assumed to be the same as the fastener radius. When a lightning strike
occurs, the lightning current is divided into two parts: one part is attached to the top of the fastener
in the form of an arc, whereas the other part is conducted in the fastener and the laminate in the
form of conduction current. Therefore, the damage in CFRP laminates with fasteners is caused by the
combination of the arc and conduction current. To understand the effect of the arc and conduction
current on CFRP damage and to understand the difference in CFRP damage under different lightning
current components, we designed three simulation models for each lightning current component, as
shown in Table 3.

Table 3. Simulation model.

Simulation Model Function

Conduction current + heat flux Simulate the combined effect of the arc and conduction current
Conduction current Simulate the effect of the conduction current

Heat flux Simulate the effect of the arc
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4. Results

4.1. Surface Damage

Figure 5a,b show the surface damage in the specimens under the action of components C and
D, respectively.

  
(a) (b) 

Figure 5. Surface damage in the specimens after lightning strike: (a) component C; (b) component D.

For component C, serious ablation damage occurred on the top of the fastener, which was still
tightly connected to the laminate. The damage in the laminate was located within a distance of 9 mm
around the fastener. Resin discoloration was observed but very few fibers were exposed or warped.

For component D, no obvious damage was observed on the top of the fastener, but the fastener
was loose and slightly sunken. Fiber tufts, fiber breakage, resin sublimation, and resin discoloration
appeared on the surface of the laminate. These forms of damage extended 35 mm along the fiber
direction and 19 mm orthogonal to the fiber direction. In addition, flaky fiber shedding was observed
along the fiber direction.

4.2. Damage in the Fastener Hole

After the lightning strike tests, each specimen was cut, as shown in Figure 6c, and the cross-section
of the hole was observed with a stereomicroscope (Leica/M125, Germany). Figure 6a,b are cross-sectional
photos of the specimen after the action of components C and D, respectively. In these figures, the
regularly spaced vertical lines are the shadows left by the synthesis of multiple cross-sectional photos,
which do not represent the damage.

(a) 

Figure 6. Cont.
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(b) 

 
(c) 

Figure 6. Damage in the fastener hole of the specimens after lightning strikes: (a) component C; (b)
component D. (c) Specimen cutting diagram for microscopic evaluation.

For component C, black particles cover the surface of the inner wall of the fastener hole and few
fiber breakages or cracks are observed between the layers, which indicates that the temperature of the
inner wall of the hole was not high when the specimen was subjected to a lightning strike and that the
amount of resin vaporized by the lightning strike was not substantial.

For component D, Figure 6b shows extended delamination damage away from the hole. Resin
matrix cracks and fiber breakages are observed around the hole, and black particles also appear in
the hole. As the fastener penetrated the laminate, the delamination damage near the hole became
extremely serious.

4.3. Internal Damage

The internal damage in the CFRP laminate can be non-destructively evaluated with an ultrasonic
scanning device (KSI V400E, Germany). The frequency of the ultrasonic wave was 40MHz, and the
pulse–echo mode was used for scanning. Ultrasound C-scan, which is sensitive to delamination, is
based on the reflection of ultrasonic energy from the intermediate interface. When the ultrasonic wave
encounters the damaged interface, the reflected energy in the form of pulse–echo amplitude is different
from the undamaged condition [33]. The reflected ultrasonic signals are converted into image signals
with different gray values.

Figure 7a,b show the internal damage morphology under the action of components C and D,
respectively. These figures show that the damage expands from the fastener to the delamination
boundary after the lightning strikes. The damage within the delamination boundary in Figure 7 consists
of two zones. One is the thermal decomposition damage and ablation damage, where the material is
pyrolyzed and vaporized (marked with dark red, hereinafter referred to as the decomposition damage).
The other is speculated to be delamination (marked with blue), where the damage of the interlayer
structure is caused by the internal pressure generated by the rapid expansion of pyrolysis gas [34].
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(a) (b) 

Figure 7. Ultrasonic C-scan results of specimens after lightning strikes: (a) component C; (b)
component D.

For component C, the damage area inside the specimen is small, the damage lengths in the 0◦
direction and 90◦ directions are approximately 30 mm, and the difference between the two directions is
small (in Figure 7a, the damage length in the 0◦ direction is 30.4 mm, whereas the damage length in
the 90◦ direction is 29.8 mm). This finding indicates that a small amount of resin in the specimen has
undergone pyrolysis and gasification during the lightning strike.

For component D, a large area of damage is observed in the specimen, and the damage lengths in
the 0◦ and 90◦ directions are greater than 100 mm, which indicates that during the lightning strike,
component D induces more resin pyrolysis and gasification than component C. Moreover, an internal
explosion occurs under component D. The rhomboid-shaped damage area might be caused by the
orthogonal stacking structure of the specimen.

4.4. Finite Element Simulation Results

During a lightning strike, the Joule heat generated by the conduction current flowing through the
laminate will cause a continuous rise in the CFRP temperature [35]. A temperature contour exceeding
a specific threshold value is used to characterize the damage area in each layer [16]. The threshold
value usually adopts the decomposition temperature of the resin. When the temperature exceeds this
temperature, the area is considered to be the decomposition damage area. According to Table 1, the
decomposition temperature of the resin is set to 300 ◦C [29]. Therefore, the area surrounded by the 300
◦C temperature contour in the FEA represents the same effect as the dark-red area (decomposition
damage) under the C-scan.

Figure 8(a1–a3) are the temperature profiles of the specimen under component C in the conduction
current + heat flux, conduction current, and heat flux simulation models, respectively. Figure 8(a1,a2)
indicate that the decomposition damage shape and size of the laminates are similar to each other
and that the damage shape is circular. Such decomposition damage shapes, which are similar to the
dark-red area in Figure 7a, do not reflect the anisotropy of the CFRP laminates because component C
has a long duration, providing Joule heat in sufficient time to spread in all directions. The first layer
(0◦ direction) and the second layer (90◦ direction) are two orthogonal layers, and their temperature
distributions are shown in the upper-right corner and lower-right corner of Figure 8(a1), respectively.
The decomposition damage shapes of the two layers are almost identical.
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(a1)  (b1)  

  
(a2)  (b2) 

(a3)  (b3)  

Figure 8. Temperature profiles of specimens under different simulation models and different lightning
current components: component C in the (a1) conduction current + heat flux model, (a2) conduction
current model, and (a3) heat flux model; component D in the (b1) conduction current + heat flux model,
(b2) conduction current model, and (b3) heat flux model.

In addition, the temperature of the top of the fastener (in the center of Figure 8(a1)) exceeds 3000 ◦C
after the combination of the conduction current and the heat flux. This temperature is much higher than
the melting temperature of the fastener and causes severe ablation damage to the fastener. Figure 8(a3)
shows the temperature distribution when using the heat flux model. In this model, the damage to the
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laminate caused by heat flux is approximately 2.5mm, and the temperature of the fastener is similar to
that in the conduction current + heat flux model, which means that the ablation damage of the fastener
under the action of component C has an important relationship with the heat flux.

Figure 9(a1–a3) are the cross-sectional temperature profiles of the specimen under component C
in three simulation models. The heat diffusion can be inferred from the temperature gradient of the
fasteners in Figure 9(a1,a3); heat is transferred to the CFRP laminate along with the fastener, causing the
material temperature around the fastener to increase. In Figure 9(a2), the temperature of the fastener is
far less than 300 ◦C and the decomposition damage occurs in a small area around the fastener. Because
the damage occurs in the conduction current model, it is completely caused by the Joule heat generated
by the conduction current. According to the results of Figure 5a, Figure 8(a1–a3), and Figure 9(a1–a3), a
small area of CFRP laminate damage and serious fastener damage will clearly occur under component
C. Thus, arc heating (heat flux) is the main cause of fastener damage under component C.

 

  
(a1)  (b1)  

  
(a2)  (b2)  

  
(a3)  (b3)  

Figure 9. Cross-sectional temperature profiles of the fastener hole under different simulation models
and different lightning current components: component C in the (a1) conduction current + heat flux
model, (a2) conduction current model, and (a3) heat flux model; component D in the (b1) conduction
current + heat flux model, (b2) conduction current model, and (b3) heat flux model.

Figure 8(b1–b3) are the temperature profiles of the specimen under component D in the conduction
current + heat flux, conduction current, and heat flux simulation models, respectively. Figure 8(b1,b2)
show that the decomposition damage shape and size of the specimen were similar, and that the
decomposition damage was centered on the fastener and fanned out along the 0◦ and 90◦ directions.
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The decomposition damage in both directions exceeded 50 mm. This decomposition damage shape,
which resembles the dark-red area in Figure 7b, reflects the anisotropy of the CFRP laminates because
component D has a short duration, which does not provide sufficient time for the Joule heat to spread
evenly in all directions. The first layer (0◦ direction) and the second layer (90◦ direction) are the
two orthogonal layers, and their temperature distributions are shown in the upper-right corner and
lower-right corner of Figure 8(a1), respectively. Both layers showed that the decomposition damage in
the fiber direction was substantially greater than that perpendicular to the fiber direction. In addition,
Figure 8(b1,b3) show that no noticeable temperature rise occurred at the top of the fasteners from the
heat flux. Figure 8(b3) is the temperature distribution when the heat flux model is used. In this model,
the highest temperature at the top of the fastener is approximately 550 ◦C, which does not ablate the
fastener. There are no visible signs of damage around the fastener, which means that the heat flux has
little contribution to the damage of the CFRP with fasteners when component D is applied.

Figure 9(b1–b3) are the cross-sectional temperature profiles of the specimen under component
D in three simulation models. The cross-sections of the specimens in Figure 9(b1,b2) show that the
Joule heat generated by the conduction current caused the massive decomposition damage area in the
laminate, whereas the fasteners remained at a lower temperature. According to the results of Figure 5b,
Figure 8(b1–b3), and Figure 9(b1–b3), large CFRP laminate decomposition damage and minor fastener
damage will occur under component D. Thus, the Joule heat generated by the conduction current is
the leading factor for CFRP laminate decomposition damage under component D.

Figure 10 compares the damage profiles in the conduction current + heat flux model (marked
with the solid red line) with the thermal decomposition damage and ablation damage profiles in
the ultrasonic C-scans (marked with the black dotted line). The damage in the specimen caused by
component D is much greater than that caused by component C. Figure 10a,b show that the FEA results
are in good agreement with the experimental results. Therefore, it is reliable to study CFRP laminates
with fasteners by FEA.

(a) (b)

Figure 10. Damage comparison between simulated lightning strikes and finite element simulations: (a)
component C; (b) component D.

5. Discussion

Dong et al. [17] considered the Joule heat effect and arc heat effect when investigating the damage
of CFRP laminates without fasteners under components D and C. Comparing their results with ours, it
can be found that there is a significant difference in damage between CFRP laminates without fasteners
and CFRP laminates with fasteners with the same lightning current components.

For CFRP laminates without fasteners, the results showed that the Joule heat effect and the arc heat
effect could cause damage. Component D controls the area of in-plane damage, while the sequential
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injection of component C after D aggravates the in-plane damage and tends to increase the damage
depth. The Joule heat effect plays a leading role in component D, while the arc heat effect plays a
dominant role in component C.

For CFRP laminates with fasteners, when the lightning strike acts on the fastener, because the
conductivity of the fastener is approximately 1000 times greater than that of the carbon fibers [36], the
lightning current will be discharged through the fastener first and then redistributed in each layer of
the laminate in the form of a conduction current. The amplitude of the conduction current in each
layer is related to the stacking sequence, the grounding mode, and the electrical conductivity. During
the test, the specimen is grounded on four sides. In this grounding method, the conduction current can
be scattered along each layer to the ground boundary. According to the surface damage (Figure 5),
the fastener hole damage (Figure 6), and the internal damage (Figure 7), the damages induced by
components C and D differ markedly. Laminates subjected to component C sustained less damage
than those subjected to component D. However, the fasteners were severely ablated under component
C and not under component D.

When the gap between the discharge electrode and the laminate is broken down, an arc will
be generated, forming a high-temperature ionization region at 30,000 K [15]. For component C, the
high-temperature arc, which has a long duration, acts on the fastener. The accumulation of heat makes
the fastener gasify. Figure 5a shows that the fastener has sustained serious ablation damage. For
component D, because of the short duration, the heat of the high-temperature arc seldom accumulates
in the fastener; thus, Figure 5b shows that the fastener has minor ablation damage under component D.

Figure 5b shows that resin damage occurs on the surface of the laminate far from the fastener
after component D is applied. This damage should be caused by dielectric surface discharge [12]. The
dielectric breakdown model considers that the discharge direction is determined by the local electrical
potential gradient. During the lightning strike, a large amount of induced charge will accumulate on
the surface of the specimen. When the electric field intensity generated by the accumulated charge
exceeds the critical value, discharge will occur on the surface of the material, causing damage to the
resin. For component C (Figure 5a), due to the low amplitude of the discharge voltage, dielectric
breakdown is less likely to occur; thus, the resin damage on the specimen surface should be caused by
the metal droplets splashing and attaching to the surface after the fastener has melted.

During a lightning strike, the resin on the inner wall of the fastener hole is pyrolyzed and gasified,
which generates high-temperature, high-pressure gas [37]. The heated gas expands rapidly, producing
a high-speed gas flow doped with black particles, which may be the product of carbon fiber sublimation
and pyrolysis carbonization at high temperatures [38]. Some of the black particles entered the fastener
nut through the gap, whereas the rest remained on the inner wall of the fastener hole (Figure 6).

Figure 7 shows that there is a great difference in the internal damage of the laminates under
different lightning components.

For component C, the current amplitude is 200 A. Due to the high current density around the
fastener, a large amount of Joule heat can be generated. Moreover, the arc heat will spread to the
laminate through the fastener (see Figure 9(a1,a3)). The combined effect of the Joule heat and arc heat
results in resin pyrolysis. In the zone far from the fastener, the current density and the arc heat decay
rapidly, and no internal damage in this zone can be observed under the C-scan. The internal damage
caused by component C is concentrated in a small area around the fastener, as shown in Figures 7a and
8(a1).

For component D, the fastener spreads the conduction current to all the layers, and this current is
approximately 6.7 kA per layer. These conduction currents can generate large amounts of Joule heat,
allowing the resin to pyrolyze over large areas and release gas. According to Figure 6b, Figure 7b, and
Figure 9b, it can be speculated that these high-temperature, high-pressure gases trapped inside the
CFRP laminate may cause an internal explosion when the gas pressure reaches a critical level, which
will result in serious delamination damage.
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6. Conclusions

In this work, components C and D were used in simulated lightning strike tests. Ultrasonic
C-scans and stereomicroscopy were used to evaluate the damage sustained by the specimens during
the lightning strike tests. Moreover, the electrothermal coupling theory was adopted to model the
different effects of the arc heat and Joule heat. The following conclusions are drawn.

(1) The damage to the laminate was concentrated around the fasteners. The conduction current
flowed through the fastener to all layers and caused damage in each layer. With increasing distance
from the fastener, the current density and the arc heat decayed.

(2) Component D, which had a high current amplitude and a short duration, led to serious surface
and internal damage in the CFRP laminate and little damage to the fastener. The damage was mainly
caused by the Joule heat generated by the conduction current. Component C, which had a low current
amplitude and a long duration, ablated and gasified the fastener and caused less damage to the CFRP
laminate. In this process, the arc heating produced by the arc played a leading role.

(3) The temperature profiles in the conduction current + heat flux model were analogous to
the thermal decomposition damage and ablation damage profiles from the C-scan. Therefore, the
conduction current + heat flux model is reasonable in FEA of CFRPs with fasteners subjected to
lightning strikes. The simulation results show an obvious anisotropy in Component D but not in
Component C, because component C has sufficient time for the Joule heat to spread in all directions,
whereas component D lacks sufficient time.

This work evaluated the damage in CFRP laminates with fasteners subjected to lightning current
components C and D and found that the damage under different lightning current components
presented unique characteristics. Due to the variety of lightning strikes in nature, the damage induced
by other lightning current components and multi-components needs further study on the basis of the
research results of the single lightning current component.
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Abstract: Piezoelectric materials have been found to have many electromechanical applications in
intelligent devices, generally in the form of the flexible cantilever element; thus, the analysis to
the corresponding cantilever is of importance, especially when advanced mechanical properties
of piezoelectric materials should be taken into account. In this study, the vibration problem of a
piezoelectric cantilever beam with bimodular functionally-graded properties is solved via analytical
and numerical methods. First, based on the equivalent modulus of elasticity, the analytical solution for
vibration of the cantilever beam is easily derived. By the simplified mechanical model based on subarea
in tension and compression, as well as on the layer-wise theory, the bimodular functionally-graded
materials are numerically simulated; thus, the numerical solution of the problem studied is obtained.
The comparison between the theoretical solution and numerical study is carried out, showing that the
result is reliable. This study shows that the bimodular functionally-graded properties may change,
to some extent, the dynamic response of the piezoelectric cantilever beam; however, the influence
could be relatively small and unobvious.

Keywords: piezoelectric effect; bimodular model; functionally-graded materials; cantilever; vibration

1. Introduction

The piezoelectric effect is among the most exploited transduction mechanisms for multiscale
electromechanical applications, such as sensors, actuators and energy conversion devices, in which
piezoelectric vibrational energy harvesting is attractive. For piezoelectric materials, there is a
wide spectrum, from piezoelectric ceramics, perovskite structured lead zirconate titanate (PZT),
to piezoelectric polymer films, polyvinylidene fluoride (PVDF). Among the piezoelectric materials,
piezoelectric ceramics (PZT) is currently regarded as the most promising material system of
piezoelectric vibrational energy harvesting devices since it can produce large output power, effective
electromechanical coupling and high mechanical strain under an applied electric field [1,2]. Usually,
piezoelectric sensors are a laminated original made of ceramic slice; thus, it is easy to result in
stress concentration and also to develop interfacial microcracks. For overcoming this difficulty,
functionally-graded piezoelectric materials (FGPM), whose properties of materials continuously
change along certain direction, are developed. In FGPM, the obvious interface is disappeared, thus
effectively avoiding the damage caused by the stress concentration at the interface. Studies concerning
FGPM and corresponding structures made of FGPM have attracted the interests of scholars from all
over the world [3–8].

In the existing works, the vibration problems of piezoelectric structures with functionally-graded
properties have been extensively studied, and some valuable results were obtained. Based on
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the first-order shear theory, Mahinzare et al. [9] studied the free vibration of a rotating circular
nanoplate composed of two directional functionally-graded piezo materials (two directional FGPM).
The steady-state forced vibration of functionally-graded piezoelectric beams was investigated by Yao
and Shi [10]. Shakeri and Mirzaeifar [11] made static and dynamic analysis of thick functionally-graded
plates with piezoelectric layers based on the layerwise finite element model. Ebrahimi [12] investigated,
analytically, the vibrations and dynamic response of functionally-graded plate, which is integrated with
piezoelectric layers in thermal environment. Using a numerical method, Chen et al. [13] investigated the
transient response and natural vibration of FGPM curved beam. Li et al. [14] studied the free vibration
of FGM beams with surface-bonded piezoelectric layers, which is statically thermal post-buckled and
subjected to both voltage and temperature rise. Huang and Shen [15] investigated the dynamic response
and vibration of FGM plates with piezoelectric actuators in thermal environments. Fu et al. [16] made
a nonlinear analysis of free vibration, dynamic stability and buckling for the FGPM beams in thermal
environment. Li and Shi [17] studied the free vibration of a FGPM beam by using state-space based
differential quadrature. Considering that there have been many studies in this field, it is not necessary
to review them in detail here.

Compared with the FGPM, the bimodular effect of materials is relatively less known. However,
many investigations have indicated that some materials [18,19], such as graphite, plastics, ceramics,
concrete, steel, polymeric materials, powder metallurgy materials and some composites, will perform
different elastic properties when they are in tension and compression; that is, they have different moduli
when tensioned and compressed and thus are named bimodular materials [20] (see Figure 1), in which σ
is the stress, ε is the strain and E+ and E− represents the tensile modulus of elasticity and compressive one,
respectively. In 1982, the Elasticity Theory of Different Moduli, by Ambartsumyan [21], was published,
in which the constitutive model for bimodular materials and the corresponding application in structural
analysis were introduced systematically. The publication of this book marks that the idea of bimodular
materials entered the field of vision of scholars from all over the world. Thereafter, bimodular problems
for materials and structures have been investigated extensively [22–25]. These works indicated that
the bimodular effect of materials will modify, to some extent, the mechanical behaviors of structures.
Unfortunately, due to the complexity in analysis, the bimodular effect of materials is often neglected.
Although some works have been carried out to combine the functionally-graded properties with
bimodular effect of materials, for example, [26], the existing works appear insufficient. In fact, not only
pure functionally-graded materials but also functionally-graded piezoelectric materials may have a
certain degree of bimodular effect. Simple neglect will inevitably lead to analytical errors, which could
further influence the design application of the electromechanical devices based on piezoelectric effect.

             

(a)                  (b)                   (c) 

Figure 1. Constitutive model for bimodular materials: (a) nonlinear model under actual state;
(b) bilinear model when E+ > E−; (c) bilinear model when E+ < E−.

He et al. [27] considered the bimodular effect during the analysis of functionally-graded
piezoelectric materials and structures for the first time, and presented a two-dimensional analytical
solution for a FGPM bimodular cantilever beam. Thereafter, aiming at the static problem of a bimodular
FGPM cantilever, He et al. [28] neglected some unimportant factors to derive the one-dimensional
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theoretical solution and, based on the model of tension-compression subarea, conducted a
two-dimensional numerical simulation. However, the existing works appear insufficient since
there is no dynamic solution to the corresponding problem. At present, for a cantilever-type structure
which is extensively adopted in piezoelectric sensors devices, the bimodular functionally-graded effect
on its vibration has not been investigated. In addition, for piezoelectric polymer elements, the vibration
problem, due to flexible and lightweight characters of the elements, is particularly acute, which also
deserves further research.

In this paper, the free damping vibration problem of a piezoelectric cantilever beam with bimodular
functionally-graded properties is analyzed by using analytical and numerical methods. The paper
is organized as follows: In Section 2, the problem studied is briefly described and the constitutive
relation for bimodular functionally-graded piezoelectric materials is presented. In Section 3, we derive
the equivalent modulus of elasticity and obtain the analytical solution of the problem described.
The numerical simulation for the problem is performed step by step in Section 4 and the corresponding
comparisons and discussions are given in Section 5. Based on the results obtained in this study,
some main conclusions are presented in Section 6.

2. The Problem Description

An FGPM orthotropic cantilever beam with different tensile and compressive properties is
considered here, and the corresponding Cartesian coordinates system (x, y, z) is established, as depicted
in Figure 2, where the right end of the beam is free and the left end is fully fixed; h is the rectangular
section height of the beam, b is the section width and l is the beam length (h << l). By exerting a
concentrated load at the right end of the beam, an initial displacement v0 is generated at this end of the
beam, as depicted in Figure 2. Then, by removing the load suddenly, the beam will freely vibrate until
it ceases due to the existence of damping.

Figure 2. Scheme of the functionally-graded piezoelectric materials (FGPM) bimodular cantilever beam.

During the bending vibration, the beam will continuously present downward bending and
upwards bending up to the last cease. In the downward (or upward) bending, the tensile and
compressive areas, bound by the neutral layer, will take turns to generate; this physical phenomenon is
different from the corresponding static problem, which has an unchanged tensile area and compressive
area [27,28]. Therefore, unlike a bending beam in static analysis, in the vibration problem here, it seems
that there is no definite tensile or compressive area in the beam. For the convenience of the following
analysis, however, we assume in this study that the tensile or compressive area is defined in the present
of initial displacement, i.e., the upper part of the beam is in compression and the lower part is in
tension, as shown in Figure 2.

Note that the physical parameters of materials of the beam are also functions of coordinates due
to the functionally-graded property. In present study, we assume physical parameters vary only along
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the thickness direction. Thus, all the material parameters are assumed to change with z, according to
the following relations.

s+i j = s0
i jF

+(z), d+i j = d0
i jF

+(z),λ+i j = λ0
i jF

+(z),

s−i j = s0
i jF
−(z), d−i j = d0

i jF
−(z),λ−i j = λ0

i jF
−(z) , (1)

in which, F+(z) = eα1z/h, F−(z) = eα2z/h are the tensile and compressive gradient functions, respectively;
superscript “+” represents tension and “−” compression; d+/−

i j ,λ+/−
i j , s+/−

i j are piezoelectric coefficient,

dielectric coefficient and elastic coefficient, respectively; d0
i j,λ

0
i j, s0

i j are values at the neutral layer of the
corresponding material parameters. It should be noted here that the neutral layer is defined at z = 0,
whose determination has been reported in our previous study on static problem [27,28]. The proposal
of the neutral layer stems from the static problem but is still adopted in dynamic counterpart; otherwise,
the so-called subarea in tension and compression cannot be realized. Furthermore, note that a set of
very small electrodes are adhered discontinuously to the lower and upper surfaces of the beam and the
beam is then poled along the direction of z.

Suppose that, in a two-dimensional problem, the stress and strain components is denoted by
σ+/−

x , σ+/−
z , τ+/−

zx and ε+/−
x , ε+/−

z ,γ+/−
zx , respectively; the electrical displacement and the electrical field

components by D+/−
x , D+/−

z and E+/−
x , E+/−

z , respectively. Therefore, the physical equations are

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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in which superscript “+/−” denotes “tension/compression”, similar to Equation (1). Until now,
Equations (1)–(3) construct the materials relation considering piezoelectric effect as well as bimodular
functionally-graded properties.

3. Equivalent Modulus of Elasticity and Analytical Solution

For a relatively shallow beam, the stress and strain along x direction, σ+/−
x and ε+/−

x , are dominant,
while other stresses and strains along z direction, σ+/−

z and τ+/−
zx as well as ε+/−

z and γ+/−
zx , are less

important. Thus, the constitutive relation of FGPM with bimodular effect, that is, Equations (2) and (3),
may be further simplified as, ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε+/−
x = s+/−

11 σ+/−
x + d+/−

31 E+/−
z

ε+/−
z = 0
γ+/−

zx = 0
(4)

and ⎧⎪⎨⎪⎩ D+/−
x = λ+/−

11 E+/−
x

D+/−
z = d+/−

31 σ+/−
x + λ+/−

33 E+/−
z

. (5)

In existing studies for the two-dimensional problem [27,29], Dx >> Dz may be found; thus, it may
be assumed that Dz ≈ 0 in a one-dimensional problem, especially if a long and shallow beam is
considered here. From the second one of Equation (5), we have

E+/−
z = − d+/−

31

λ+/−
33

σ+/−
x (6)
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Plugging Equation (6) into the first one of Equation (4) yields

ε+/−
x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
s+/−

11 λ+/−
33 − (d+/−

31 )
2

λ+/−
33

⎤⎥⎥⎥⎥⎥⎥⎥⎦σ+/−
x =

σ+/−
x
E∗ , (7)

in which E∗ represents the equivalent modulus of elasticity, that is

E∗ =
λ+/−

33

s+/−
11 λ+/−

33 − (d+/−
31 )

2 . (8)

We note that Equation (8) may be rewritten as the form E∗ = [s+/−
11 − (d+/−

31 )
2
/λ+/−

33 ]
−1

, clearly
showing the piezoelectric effect on the elastic modulus. Then, E∗ = 1/s+/−

11 is obtained when

s+/−
11 >> (d+/−

31 )
2
/λ+/−

33 ; this, exactly, stands for the reciprocal relation of stiffness coefficient and

flexibility coefficient. Meanwhile, the existence of the term (d+/−
31 )

2
/λ+/−

33 also reveals the well-known
piezoelectric stiffening effect. It is this term that the resulting equivalent modulus becomes larger than
1/s+/−

11 , thus stiffening the mechanical performance of piezoelectric materials and structures under
external loading.

Now, the vibration equation of free damping of the bimodular FGPM cantilever beam may be
easily obtained, by only replacing E in a classical equation [30] by E∗,

E∗Iy
∂4v(x, t)
∂x4

+ m
∂2v(x, t)
∂t2 + c

∂v(x, t)
∂t

= 0. (9)

in which m is the uniformly-distributed mass, v(x, t) is the displacement along z direction, t is the time
variable, E∗Iy is the equivalent bending stiffness of the beam, Iy is the moment of inertia with respect
to y axis, c is the damping parameter, and c = 2ξmω, in which, ξ is the damping ratio and ω is the
undamped frequency. Equation (9) may be solved under the following boundary conditions:

v(x, t) = 0 and
∂v(x, t)
∂x

= 0, at x = 0 (10)

EIy
∂2v(x, t)
∂x2 = 0 and EIy

∂3v(x, t)
∂x3 = 0, at x = l. (11)

and the conditions of initial values

v(x, t) = v0 and
∂v(x, t)
∂t

= 0, at x = l, t = 0 (12)

The variable separation is first needed to solve the Equation (9); suppose that

v(x, t) = φ(x)Y(t) (13)

Plugging Equation (13) into Equation (9), we may obtain the following two equations:

d4φ(x)
dt4

− a4φ(x) = 0 (14)

and
d2Y(t)

dt2 +
c
m

dY(t)
dt

+ω2Y(t) = 0 (15)

in which a is an unknown constant: ω2 = a4E∗Iy/m. Thus, the partial differential Equation (9) is
transformed two ordinary differential Equations (14) and (15), and their solutions under defined
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boundary conditions or initial conditions, φ(x) and Y(t), may be easily derived. Since the solving
process is readily found in any a textbook on dynamic problems of bending beams, here we do not
repeat the details, only directly presenting the final solution; they are

φ(x) = cos ax− cosh ax− (cos aL + cosh aL)
(sin aL + sinhaL)

(sin ax− sinhax) (16)

and

Y(t) =
[
Y(0) cosωDt +

(
dY(0)/dt + Y(0)ξω

ωD

)
sinωDt

]
e(−ξωt) (17)

in which Y(0) is the corresponding mode amplitude for initial displacement v0, and ωD is the natural
damped frequency,

ωD = ω
√

1− ξ2 (18)

Obviously, the proposal of the equivalent modulus of elasticity for bimodular FGPM beams
plays an important role; this equivalent modulus may be used in the analysis of similar bimodular
FGPM structures.

4. Numerical Simulation

In order to simulate the free vibration of the beam, a transient load is applied on the right end
of the beam at the beginning, thus generating an initial displacement v0 at the end, and then release
suddenly, the beam will vibrate up to the cease due to the damping, as shown in Figure 2. In this
section, the software ABAQUS is used to simulate the free damping vibration of the bimodular FGPM
cantilever beam.

4.1. Constitutive Equation of Piezoelectrical Materials

First, we need to describe the input of the piezoelectrical materials parameters in the software.
The piezoelectrical materials model in ABAQUS follows the e-form constitutive equation, such that

⎧⎪⎪⎨⎪⎪⎩ σi j = cE
ijklεkl − eki jEk

Di = eijkεkl + λεikEk
, (19)

where the stress component is denoted by σi j; the strain component is denoted by εi j; the electrical
displacement component is denoted by Di; the electrical field strength are denoted by Ek; the stiffness
coefficient matrix is denoted by cE

ijkl; the dielectric constant matrix is denoted by λεik.
In piezoelectrical materials, there is a polarization direction which corresponds to z direction in

x-y-z coordinate system (i.e., 3-direction in matrix). In ABAQUS, we need to transform the flexibility
coefficient matrix into the stiffness coefficient matrix, such that

[
sij

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11 s12 s13 0 0 0
s21 s22 s23 0 0 0
s31 s32 s33 0 0 0
0 0 0 s66 0 0
0 0 0 0 s44 0
0 0 0 0 0 s44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒

[
cij

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c66 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

Note that the above definition for the variation form of functionally-graded materials
and the flexibility coefficient sij = s0

i je
αiz/h (where i = 1, 2 due to the bimodular effect),

the stiffness coefficient will thus vary with cij = c0
i je
−αiz/h, otherwise sij and cij cannot

satisfy [sij][cij] = [s0
i j]e

αiz/h[c0
i j]e
−αiz/h = [E] (here [E] is an unit matrix). The piezoelectrical strain
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constants should, at the same time, be eij = dijcE
ij = d0

i je
αiz/hc0

i je
−αiz/h = e0

i j, where cE is the constant
matrix of elastic stiffness in the state of short circuit; thus, the piezoelectrical stress constants matrix is

[
eij

]
=

[
e0

i j

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 e15 0
0 0 0 0 0 e15

e31 e31 e33 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (21)

The constitutive equation for piezoelectric materials is, in the form of matrix, expressed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ12

σ13

σ23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c66 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

γ12

γ13

γ23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 e31

0 0 e31

0 0 e33

0 0 0
e15 0 0
0 e15 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

E3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
D1

D2

D3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 e15 0
0 0 0 0 0 e15

e31 e31 e33 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

γ12

γ13

γ23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
λ11 0 0
0 λ11 0
0 0 λ33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1

E2

E3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (23)

According to Voigt notation, the vector components (1, 2, 3, 4, 5 and 6) correspond to the
second-order tensor mark of double-subscript (11, 22, 33, 13, 23 and 12), respectively. Thus, the above
two equations can be written as,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ12

σ13

σ23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1122 D1133 0 0 0
D2211 D2222 D2233 0 0 0
D3311 D3322 D3333 0 0 0

0 0 0 D1212 0 0
0 0 0 0 D1313 0
0 0 0 0 0 D1313

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

γ12

γ13

γ23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 e311

0 0 e322

0 0 e333

0 0 0
e113 0 0

0 e223 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

E3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (24)

and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
q1

q2

q3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 e113 0
0 0 0 0 0 e113

e311 e322 e333 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

γ12

γ13

γ23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
D11 0 0

0 D11 0
0 0 D33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1

E2

E3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (25)

where, Dijkl represents the modulus of elasticity, Dij represents the dielectric coefficient and qi
represents the electrical displacement component. By the comparison of the above two sets of
equations, the corresponding relationship among constants is readily found, which can be used to
input values of the constants. For example, c11 should be input at the location of D1111; e31 should be
input at the location of e311 and λ11 should be input at the location of D11.

4.2. Initial Modeling

(i) Establishment of structures

Suppose that the length l of a FGPM cantilever beam is set to be 50 mm, the section width b to be
10 mm and the section height h to be 2 mm.
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(ii) Determination of tension-compression subarea under initial displacement

For the determination of the tensile and compressive height of the beam, a set of functionally-graded
indexes should be chosen first in the light of our previous study on static analysis [28]. In this study,
we consider the following two groups of gradient indexes: (a) α1 = −2, α2 = −3 and (b) α1 = 2, α2 = 3
to correspond to the two different cases: E+(z) > E−(z) as well as E−(z) > E+(z), respectively, as shown
in Figure 3, in which E0 is the electric modulus value on the neutral layer, in case (a), h1 = 0.6 mm,
h2 = 1.4 mm and in case (b), h1 = 1.4 mm, h2 = 0.6 mm.

  

(a) (b) 

Figure 3. E−(z): (a) α1 = −2, α2 = −3; (b) α1 = 2, α2 = 3.

As is the case in most commercial software, there will be the limitations for implementing FGMs
in ABAQUS; for example, it seems to be inconvenient to realize the change of material properties
along a certain direction as a continuous function. To overcome the shortcomings, an alternative
implementation was proposed in the context of the commercial finite element package ABAQUS [31].
In this study, however, the layer-wise model was still used to simulate the functionally-graded
properties, since this practice is conventional and well-known. Without losing the computational
accuracy, we divided the beam into a moderate number of layers along the thickness direction;
the physical parameters of the material on each layer are considered to be the same, thus indirectly
realizing the continuous variation of properties of materials along the thickness direction if the numbers
for layering are sufficient. To this end, bound by the neutral layer, the upper and lower areas of the
beam are equally divided into 40 layers along the thickness direction, each layer being 0.05 mm thick,
as depicted in Figure 4. It is easy to see that in case (a), there are 28 layers in the compressive area
and 12 layers in the tensile area, while in case (b), the layering is the opposite, that is, 12 layers in the
compressive area and 28 layers in the tensile area. The coordinate origin is still on the neutral layer.

 

(a) (b) 

Figure 4. Sketch of layering on cross section of the beam (unit: mm): (a) α1 = −2, α2 = −3; (b) α1 = 2,
α2 = 3.

(iii) Input of properties of materials

The material PbZrTiO3-4 (generally abbreviated as PZT-4) is selected as our materials simulated.
Table 1 shows the material constant on the neutral layer z = 0 which are directly input into ABAQUS.
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Material constants up or down the neutral layer may be computed and input into the program, by
using the layering pattern of tension-compression established in Step (ii).

Table 1. Elastic, piezoelectric and dielectric constants of PZT-4 materials [32].

Elastic Constant
(10−12 m2·N−1)

Piezoelectric Constant
(10−12 C·N−1)

Dielectric Constant
(10−8 F·m−1)

s0
11 s0

12 s0
13 s0

33 s0
44 d0

31 d0
33 d0

15 λ0
11 λ0

33
12.4 −3.98 −5.52 16.1 39.1 −135 300 525 1.301 1.151

(iv) Boundary conditions

The left end of the beam is fully fixed and the right end is free; this agrees with the mechanical
model presented in Figure 2. Besides, the upper and lower surfaces of the beam are open circuited.

(v) Mesh division

An 8-node linear piezoelectric brick C3D8E is used, and the mesh size is set to be 1 mm× 1 mm,
in which the size ratio is 0.001 and also the global seed is set.

4.3. Analysis of Frequency Extraction

While solving linear dynamic problems, the mode superposition method is used in ABAQUS.
Before the dynamic analysis, we need to extract the frequency of the computational example to obtain
the vibration mode and natural frequency of the structure.

First of all, according to the initial model established in Section 4.2, the density of materials is
defined as 7.5× 103 kg/m3 in a property function module and also the frequency extraction analysis is
defined in the analysis step. In ABAQUS, there are two kinds of method in the frequency extraction:
one is the Lanczos method, which is suitable for the larger model and needs to extract the multi-order
mode; the other is the subspace iterative method. In this computation, the latter is selected due to the
characteristic of structural unit.

In the analysis of linear dynamic problems using the mode superposition method, a sufficient
number of modes are required in the frequency extraction. The criterion follows that the total effective
mass in the main direction of motion exceeds 90% of the movable mass in the model. To this end,
we calculate and extract the frequency whose eigenvalue numbers are 10, 15 and 20, respectively,
to select the appropriate eigenvalue. By viewing DAT file, we extract the data of frequency, participation
factors and effective mass for 10, 15 and 20 eigenvalues, as shown in Tables 2–4. Here, below, are listed
the data from the case α1 = −2, α2 = −3, which is very significant.

The main motion direction of the beam is along the z-axis direction, the participation factors in
Tables 2–4 reflect that the first-order mode acts mainly in the z-direction. The total mass of this model
is 7.500× 10−3 kg. Since the constrained nodes account for a small proportion of all nodes, it may be
approximated that the movable mass in the model is equal to the total of the model. Table 5 shows
that, when eigenvalue numbers are 10, 15 and 20, respectively, the ratio of effective mass in z-direction
to total motion mass. It is easy to see that when the eigenvalue numbers are 15 and 20, the ratios are
uniformly greater than 90%, which both satisfy the basic requirement for sufficient number of modes.
However, considering the hardware factors and amount of calculation, the 15th order mode is adopted
here. Besides, for another case α1 = 2, α2 = 3, we still select the 15th order mode, the ratio reads
6.993× 10−3/(7.500× 10−3) = 93.24% in this case.
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Table 2. Frequency, participation factor and effective mass for 10 eigenvalues.

Mode
Number

Frequency/Hz
(Cycles Time)

Participation Factor
(z-component)

Effective Mass/Kg
(z-component)

1 326.490 1.565 4.562 × 10−3

2 1767.500 6.332 × 10−11 7.519 × 10−24

3 2029.300 −0.868 1.418 × 10−3

4 2688.300 2.535 × 10−10 8.065 × 10−23

5 5634.600 0.510 4.941 × 10−4

6 7994.700 8.990 × 10−9 1.007 × 10−19

7 9720.000 −2.243 × 10−8 1.114 × 10−18

8 10,916.000 −0.366 2.549 × 10−4

9 13,994.000 −4.504 × 10−6 1.983 × 10−14

10 14,237.000 1.494 × 10−2 8.313 × 10−7

Total 6.729 × 10−3

Table 3. Frequency, participation factor and effective mass for 15 eigenvalues.

Mode
Number

Frequency/Hz
(Cycles Time)

Participation Factor
(z-component)

Effective Mass/Kg
(z-component)

1 326.490 1.565 4.562 × 10−3

2 1767.500 6.332 × 10−11 7.519 × 10−24

3 2029.300 −0.868 1.418 × 10−3

4 2688.300 2.527 × 10−10 8.016 × 10−23

5 5634.600 0.510 4.941 × 10−4

. . . . . . . . . . . . . . . . . . . . . . . .
12 20,587.000 −7.667 × 10−7 5.125 × 10−16

13 22,745.000 −1.099 × 10−6 3.228 × 10−15

14 26,094.000 −0.244 1.042 × 10−4

15 28,006.000 −2.242 × 10−5 3.993 × 10−13

Total 6.989 × 10−3

Table 4. Frequency, participation factor and effective mass for 20 eigenvalues.

Mode
Number

Frequency/Hz
(Cycles Time)

Participation Factor
(z-component)

Effective Mass/Kg
(z-component)

1 326.490 1.565 4.562 × 10−3

2 1767.500 6.331 × 10−11 7.517 × 10−24

3 2029.300 −0.868 1.418 × 10−3

4 2688.300 2.527 × 10−10 8.016 × 10−23

5 5634.600 0.510 4.941 × 10−4

. . . . . . . . . . . . . . . . . . . . . . . .
17 36,310.000 4.508 × 10−7 1.586 × 10−16

18 37,469.000 4.075 × 10−7 5.328 × 10−16

19 42,285.000 1.940 × 10−2 1.246 × 10−6

20 45,307.000 0.236 3.677 × 10−5

Total 7.101 × 10−3

Table 5. Ratios of z-direction mass to total mass under different eigenvalue numbers.

Eigenvalue Numbers Effective z-Direction Movable Mass to Total Motion Mass

10 6.729× 10−3/(7.500× 10−3) = 89.72%
15 6.989× 10−3/(7.500× 10−3) = 93.19%
20 7.101× 10−3/(7.500× 10−3) = 94.68%
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4.4. Simulation for Free Damping Vibration

As shown in Table 3, we have finished the frequency extraction of 15 eigenvalues for the case
α1 = −2, α2 = −3, in which the maximum frequency reads 28,006 Hz; thus, the corresponding period
is 1/28006 s = 0.00003571 s. Since the time increment in the analysis step of transient modal should be
less than this period value, the time increment is determined as 3× 10−5 s. The details are shown below.

(i) Establishment of dynamic analysis step of transient modal

Although the material properties considered in this study are bimodular, functionally-graded and
piezoelectric—that is, it is not linear—the nonlinear behavior of the material itself has little impact on
the dynamic response of the structure. Besides, the motion attributes to the small deflection bending
vibration thus there is no geometrical nonlinearity here. Furthermore, the damping of the structural
system is relatively small, and the frequency involved in the analysis is low. Therefore, the system may
be regarded as linear, which is suitable for linear transient dynamic analysis.

Frequency extraction analysis step is followed by this step. To observe the attenuation process
of the vibration, the analytical step time is set to be 0.5 s and the time increment is determined as
3× 10−5 s, as indicated above.

(ii) Setting of the damping

Direct modal damping is used here and the value of the damping ratio is 0.03. The starting mode
order is 1 and the terminating mode order is 15.

(iii) Setting of the output of historical variable

In the output of historical variable, the displacement component is selected.

(iv) Definition of load

In order to make the model produce the initial displacement of 2 mm, a short-term load is applied
on the model, in which the time of duration of the load is determined by the variation of load amplitudes
with time and the amplitude is given in tabulate. In the time period 0–0.005 s, the amplitude is 1;
and in the later time period, the amplitude is set as 0. The smoothness parameter is set as 0.25. Lastly,
along the negative direction of z-axis, the load is applied and the magnitude of the load is 25 N.

(v) Submission of analysis and post-processing

After a job is established, we may submit the job and calculate and output the results.
Figures 5 and 6 show cloud diagrams of stress and displacement of 15th order mode at the end
of the transient modal analysis, in which Figure 5 is for the case α1 = −2, α2 = −3 and Figure 6 is for
the case α1 = 2, α2 = 3.

Note that although the numerical implementation in ABAQUS is three-dimensional in the form,
we still put out the final results in the form of two-dimensional case, including three stresses, σx,
σz and τxz, as well as two displacements, u and w, which are typical in two-dimensional plane problem.
In fact, the studied problem is a two-dimensional plane problem, even in some cases (for example, a
slim beam), the problem may be further simplified as a one-dimensional problem, like our analytical
solution based on Euler–Bernoulli beam theory.
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Figure 5. Cloud diagram of stress and displacement for the case α1 = −2, α2 = −3: (a) σx; (b) σz; (c) τxz;
(d) u; (e) w.
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Figure 6. Cloud diagram of stress and displacement for the case α1 = 2, α2 = 3: (a) σx; (b) σz; (c) τxz;
(d) u; (e) w.
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5. Comparisons and Discussion

5.1. Comparison of Theoretical and Numerical Results

For the purpose of the full comparison between the theoretical results and numerical ones,
both under the two cases of different modulus—that is, the tensile elastic modulus is greater than the
compressive one E+(z) > E−(z), or reversely, E+(z) < E−(z)—we should select an object of study from
the beam, for example, the upper surface of the free end, as our study object. In order to investigate the
displacement variation with time under two cases of different modulus, we take the following two
cases of functionally-grade index: (a) α1 = −2, α2 = −3, which corresponds to E+(z) > E−(z), and the
case (b) α1 = 2, α2 = 3, which corresponds to E+(z) < E−(z). The numerical results are taken from the
15th order mode. For the theoretical results, we should compute the equivalent modulus of elasticity
first. For this purpose, substituting Equation (1) into Equation (8), we have

E∗ =
λ+/−

33

s+/−
11 λ+/−

33 − (d+/−
31 )

2 =
λ0

33

s0
11λ

0
33 − (d0

31)
2 e−αiz/h (26)

Substituting the values of s0
11, d0

31 and λ0
33 from Table 1 into the above equation and also noting

that the upper surface is in compression; thus, αi = α2, the values of the equivalent modulus of
elasticity, may be determined and is listed in Table 6. Note that for the first case, E+(z) > E−(z),
we take αi = α2 = −3 and z = −0.0014 m, and for the second case, E+(z) < E−(z), we have αi = α2 = 3
and z = −0.0006 m, in which the values of z may refer to the cases (a) and (b) in Figure 4. Besides,
the theoretical value of vibration frequency may be obtained via the expression ω2 = a4E∗Iy/m and the
numerical result of frequency is also from the 15th order modes, which are also listed in Table 6.

Table 6. Equivalent modulus and frequency from theoretical and numerical results.

Cases
Equivalent Modulus

E∗ (GPa)

Vibration Frequency
ω (Hz)

Theoretical Value Numerical Value

E+(z) > E−(z) 11 17,506 28,006

E+(z) < E−(z) 227 28,019 34,599

Figures 7 and 8 show the two time-displacement curves from theoretical and numerical results,
in which Figure 7 is for E+(z) > E−(z) and Figure 8 is for E+(z) < E−(z). It is easy to see that despite
some differences, the theoretical curve basically agrees with the curve from numerical simulation, this
validates the theoretical solution to some extent.

From Figures 7 and 8, we may also see that under two cases E+(z) > E−(z) and E+(z) < E−(z),
the attenuation speed of the vibration from the numerical result is faster than that from theoretical
solution, this is because the natural frequency from numerical simulation is greater than the one from
theoretical solution, which may be easily seen from Table 6, in which for E+(z) > E−(z), the value
from numerical simulation is 28,006 Hz while the counterpart from theoretical solution is 17,506 Hz;
for E+(z) < E−(z), the two values from numerical simulation and theoretical solution are 34,599 Hz
and 28,019 Hz, respectively. In addition, for E+(z) < E−(z), the attenuation speed is obviously faster
than that in the case E+(z) > E−(z); this also may be easily seen from Table 6, in which the natural
frequency from E+(z) < E−(z) is greater than the one from E+(z) > E−(z), for example, for theoretical
solutions 28,019 Hz is greater than 17,506 Hz, while the numerical simulation 34,599 Hz is also greater
than 28,006 Hz. It may be concluded that the relative magnitudes of the tensile and compressive
moduli have influence on the attenuation speed of the vibration.
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 theoretical
                    numerical

 
Figure 7. Comparison of two time-displacement curves for E+(z) > E−(z)

 
Figure 8. Comparison of two time-displacement curves for E+(z) < E−(z)

It should be noted here that there are some differences between the theoretical solution and the
numerical simulation, mainly due to the different mechanical models on which the two methods
are established. In the theoretical analysis, the introduction of the equivalent modulus of elasticity
may greatly simplify the derivation process; on the other hand, this equivalent practice inevitably
cause some errors, in other words, the so-called equivalence is actually a compromise. Based on this
consideration, the numerical simulation seems to be more accurate than the theoretical analysis; that is
to say, the theoretical analysis and numerical simulation have their own advantages and complement
each other.

5.2. Comparison of Theoretical and Experimental Results

At present, the relevant vibration experiment for the functionally-graded piezoelectric cantilever
beam has not been found, not to mention the consideration for bimodular effect of the materials.
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The comparison should therefore be based on the experimental data available. Aiming at purely
piezoelectric materials (which means there is no bimodular effect and also no functionally-graded
characteristic), Yang et al. [33] performed an experiment of free damping vibration of a cantilever beam.
In this section, the theoretical solution derived in this study with the experimental results from [33]
will be compared.

Before comparison, it is necessary for us to reduce our theoretical solution to a purely piezoelectric
case, to agree with the material model adopted in [33]. For this purpose, we need to presume
α1 = α2= 0 in Equation (8); thus, the equivalent modulus of elasticity E∗ may be simplified as

E′ =
λ33

s11λ33 − (d31)
2 (27)

in which E′ stands for the equivalent modulus of elasticity without bimodular and functionally-graded
characteristic. Accordingly, Equation (18) may be changed as

ω′D = ω′
√

1− ξ2 (28)

in which ω′D is the natural damped frequency in the same case of materials.
In the comparison we should take the same parameters in accordance with the experimental model

in [33], including the shape dimension of the beam, h = 0.0001 m, b = 0.02 m, l = 0.05 m, the damping
ration ξ = 0.03 and the uniformly-distributed mass m = 0.015 Kg/m, as well as the material parameters
of PZT-5 (shown in Table 7). Besides, three different initial displacements in [33] are also adopted in
our theoretical results; thus, Table 8 lists the vibration frequencies from experimental measurement and
theoretical solution. It is easily seen that the differences between experimental results and theoretical
results are small, which indicates the theoretical vibration frequency is reliable.

Table 7. Materials parameters of PZT-5 [33].

Elastic Constant
(10−12 m2·N−1)

Piezoelectric Constant
(10−12 C·N−1)

Dielectric Constant
(10−8 F·m−1)

s11 s12 s13 s33 s44 d31 d33 d15 λ11 λ33
16.4 −5.74 −7.22 18.8 47.5 −172 374 584 1.505 1.531

Table 8. Frequencies of experimental and theoretical results.

Initial Displacements
(mm)

Vibration Frequency (Hz)

Experimental Results
Reference [33]

Theoretical Results
(This Paper)

Relative Errors
(%)

0.475 123.25 123.220 0.02
0.750 123.25 123.220 0.02
1.342 123.25 123.220 0.02

Figures 9–11 show time-displacement curves from theoretical and experimental results under
the three different initial displacements. It is readily found that the theoretical results agree with the
experimental ones, although there are some differences between them, which may be caused by some
uncontrollable factors in the experimental operation.
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Figure 9. Comparison of two time-displacement curves under initial displacement 0.475 mm.

 

Figure 10. Comparison of two time-displacement curves under initial displacement 0.750 mm.

 

Figure 11. Comparison of two time-displacement curves under initial displacement 1.342 mm.
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6. Conclusions

In this study, we investigate the free damping vibration problem of a bimodular FGPM cantilever
beam by using analytical and numerical methods. By comparisons, the theoretical results basically agree
with the numerical results, although there are some differences, mainly due to the different mechanical
models. In addition, the theoretical solutions after regression agree well with the experimental results
of the pure piezoelectric cantilever, which also proves, indirectly, the effectiveness of theoretical work.
The following three conclusions can be drawn:

(i) Under two cases, E+(z) > E−(z) and E+(z) < E−(z), the attenuation speed of the vibration from
numerical simulation is faster than that from theoretical solution; besides, the attenuation speed
in the case E+(z) < E−(z) is obviously faster than that in the case E+(z) > E−(z).

(ii) The bimodular functionally-graded properties may change, to some extent, the dynamic
response of the piezoelectric cantilever beam; however, the influence could be relatively small
and unobvious.

(iii) In the frame of simple models, with analytical considerations, this work may be helpful for the
analysis and design of flexible and lightweight cantilever-type elements composed of piezoelectric
materials, especially when the bimodular functionally-graded properties of materials cannot be
completely ignored.

Although the results in this study are obtained on the piezoelectric ceramics (PZT), this work will
also be helpful for predicting the mechanical behaviors of a vibrational cantilever made of piezoelectric
polymer films (PVDF); however, there may be a huge difference in their behavior and property about
vibrational cantilever. Among the two main types of piezoelectric materials, due to the fact that the
elastic modulus of PZT is far greater than that of PVDF; thus, the vibration frequency of PZT is far
greater than that of PVDF. This should be give more attention in analyzing the vibration characteristic
of cantilevers made of the two different piezoelectric materials.
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Abstract: We provide an analytical investigation of the nonlinear vibration behavior of thick sandwich
nanocomposite beams reinforced by functionally graded (FG) graphene nanoplatelet (GPL) sheets,
with a power-law-based distribution throughout the thickness. We assume the total amount of
the reinforcement phase to remain constant in the beam, while defining a relationship between
the GPL maximum weight fraction, the power-law parameter, and the thickness of the face sheets.
The shear and rotation effects are here considered using a higher-order laminated beam model.
The nonlinear partial differential equations (PDEs) of motion are derived from the Von Kármán
strain-displacement relationships, here solved by applying an expansion of free vibration modes.
The numerical results demonstrate the key role of the amplitudes on the vibration response of
GPL-reinforced sandwich beams, whose nonlinear oscillation behavior is very important in the
physical science, mechanical structures and other mathematical analyses. The sensitivity of the
response to the total amount of GPLs is explored herein, along with the possible effects related to
the power-law parameter, the structural geometry, and the environmental conditions. The results
indicate that changing the nanofiller distribution patterns with the proposed model can remarkably
increase or decrease the effective stiffness of laminated composite beams.

Keywords: functional reinforcement; graphene nanoplatelets; higher-order shear deformable
laminated beams; nanocomposites; nonlinear free vibration; sandwich beams

1. Introduction

Sandwich structures, generally made of a soft core and two hard face sheets, are largely used in the
aerospace, oil, gas, and petrochemical industries, due to their enhanced mechanical properties, namely, a high
strength-to-weight ratio and a high resistance to heat, humidity, and noise [1–5]. Hence, in recent decades,
much attention has been paid to the mechanical behavior of these structures [6–12]. Based on the available
literature, it seems that the geometry of the layers, the mechanical properties of the constituents, and the
geometrical properties of the whole structure can have a meaningful effect on the static and dynamic
behavior of sandwich structures [13–20]. The presence of some reinforcing layers in sandwich structures
represents one important issue to consider for a general improvement of their mechanical properties [21–24].
Nowadays, with the advancement of nanotechnology, carbon nanotubes (CNTs) and graphene sheets (GSs)
are two alternative options for the reinforcement of structures, due to their extraordinary properties. This has
led to an extensive research on the behavior of sandwich structures reinforced with nanocomposites [25–28].
Among different reinforcement possibilities, graphene nanoplatelets (GPLs) provide a uniform reinforced
assembly, as well as the easiest manufacturing process, as discussed in [29–32]. Graphene is a monolayer
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structure of carbon atoms with extraordinary electrical, mechanical, thermal, and optical properties [33–35],
which make it very attractive for high-tech device applications, such as micro/nano-electromechanical
systems [36]. Graphene and its derivatives—namely, GPLs—are increasingly applied as a reinforcement
material in many nanocomposite structures [37–43]. This justifies the large attention paid in the literature
to the mechanical behavior of structures reinforced with graphenic materials [44–53].

Despite the extensive literature available on the behavior of composite structures reinforced with
nanostructures, there is a general lack of works focusing on the nonlinear dynamic and vibration
behavior of sandwich beams reinforced by GPLs. This is here investigated for thick polymer sandwich
beams with face sheets reinforced by GPLs, in a context where the reduced weight of polymers and the
high strength of GPLs can provide remarkable properties in the equivalent composite structure. A novel
reinforcement model is proposed herein, which considers the functionality of the GPLs distribution
throughout the thickness of the face sheets, and a constant total amount of the reinforced material.
A higher-order laminated beam theory is applied to include the shear and rotation effects on the thick
GPL-reinforced sandwich beam, where the nonlinear governing equations of the problem are solved
in a straightforward manner by means of the multiple timescales method. The main advantage of
the present method is that it can cover weak or strong nonlinearities with possible damping effects.
The method is demonstrated to be very simple and accurate with respect to other existing predictions
and theories from the literature.

The reinforcement phase varies along the thickness according to a power-law distribution, whereby
the effective material properties of the nanocomposite beam are determined by means of the Halpin–Tsai
micromechanics model and the rule of mixtures. The nonlinear partial equations of motion are derived
by the Hamilton’s principle, in accordance with the third-order shear deformation theory and the
Von Kármán strain-displacement relationships. We then apply Galerkin’s approach to discretize the
nonlinear differential equations of motion, while determining the frequency equations by means of the
multiple timescales method. Various numerical examples indicate the accuracy of the proposed model
and check for the sensitivity of the vibration response of GPL-reinforced sandwich beams, of great
interest for design and practical purposes.

The paper is organized as follows. In Section 2 the mechanical and geometrical properties of
materials and their structure are briefly described. Section 3 presents the theoretical formulation of the
problem, along with the numerical procedure. A number of illustrative applications and comparative
evaluations with the available literature are proposed in Section 4. Finally, in Section 5 some concluding
remarks are reported.

2. Material Properties and Geometry

A nanocomposite sandwich beam with length L, thickness ht and width b is considered, as shown
in Figure 1. The Cartesian coordinate system (x, z) is here used to derive the equations of motion,
where the structural mid-plane is parallel to the x-axis. The beam is made of a homogeneous core
and two face sheets with a symmetric GPL-based reinforcement, whose weight fraction satisfies the
following power-law:

Γ(z) = Γmax

(
2|z| − hc

ht − hc

)κ
, (1)

where Γmax is the maximum value of the distribution function and κ is a power-law parameter,
which defines the GPLs dispersion throughout the thickness of the face sheets.
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Figure 1. General configuration and graphene nanoplatelet (GPL) dispersion description in a laminated
GPL-reinforced sandwich beam.

For a proper analysis, the total amount of GPLs in the beam remains constant independently
of the distribution pattern (see Figure 2). This means that, if we keep constant the total amount of
GPLs in the beam, Γb, the maximum value of the GPL weight fraction, Γmax, increases by increasing
the power-law parameter. Note that the total amount of reinforced GPLs decreases by increasing the
power-law parameter if the maximum value of the GPL weight fraction is kept constant.

Figure 2. Variation of the dimensionless GPL weight fraction (Γ = Γ(z)/Γb) through the thickness of
the top face sheet with respect to various power-law parameters (h = (2z− hc)/2h f ).

Due to possible difficulties during the manufacturing process of a functional reinforced lamina,
each face sheet is considered to be made of N layers with equal thickness and the GPL reinforcement is
assumed to be uniform within each layer (see Figure 1).

Therefore, the GPL weight fraction in the kth lamina can be defined as

Γ(k) = Γmax

(
2|hk| − hc

ht − hc

)κ
, (2)

where hk is the distance between the mid-plane of the beam and the mid-plane of the kth layer.
The volume fraction of the reinforced GPLs can be related to their weight fraction as

V(k)
GPL =

Γ(k)

Γ(k) + (ρGPL/ρM)
(
1− Γ(k)

) , (3)
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ρM and ρGPL being the mass density of the matrix and GPLs, respectively. Here, the Halpin–Tsai
micromechanical model is adopted to define the effective elastic modulus of the reinforced face
sheets [54]. Moreover, the GPL reinforcement is assumed to be randomly oriented in each lamina [27].

Therefore, the elastic modulus for the kth layer can be expressed as

E(k)
C =

3
8

⎛⎜⎜⎜⎜⎜⎜⎝1 + ξLηLV(k)
GPL

1− ηLV(k)
GPL

⎞⎟⎟⎟⎟⎟⎟⎠EM +
5
8

⎛⎜⎜⎜⎜⎜⎜⎝1 + ξWηWV(k)
GPL

1− ηWV(k)
GPL

⎞⎟⎟⎟⎟⎟⎟⎠EM, (4)

where

ηW =
(EGPL/EM) − 1
(EGPL/EM) + ξW

, ηL =
(EGPL/EM) − 1
(EGPL/EM) + ξL

, (5)

ξW =
2wGPL

hGPL
, ξL =

2lGPL

hGPL
, (6)

and hGPL, lGPL, wGPL stand for the average thickness, length, and width of GPLs, respectively; EM and
EGPL denote the Young modulus of the matrix and GPLs, respectively.

Using the rule of mixtures, the effective mass density and Poisson’s ratio for the kth layer can be
defined as

ρ
(k)
C = ρGPLV(k)

GPL + ρM

(
1−V(k)

GPL

)
, (7)

ν
(k)
C = νGPLV(k)

GPL + νM

(
1−V(k)

GPL

)
, (8)

νM and νGPL being the Poisson’s ratio of the matrix and GPLs, respectively.

3. Theoretical Formulations

In this section, the nonlinear governing equations of the problem for functionally graded (FG)
GPL-reinforced sandwich beams are derived by Hamilton’s principle, while using a higher-order shear
deformation approach.

3.1. Displacement Field and Strains

In agreement with the third-order shear deformation theory [55,56], the displacement components
u1(x, t) and u3(x, t) of an arbitrary point in the x and z directions for shear deformable sandwich beams
can be expressed as

u1(x, z, t) = u(x, t) + zφ(x, t) − 4z3

3h2
t

(
φ+

∂w
∂x

)
, (9)

u3(x, z, t) = w(x, t), (10)

where u(x, t) and w(x, t) are the displacement components of a point at the mid-plane of the beam
in the x and z directions, respectively. Moreover, φ(x, t) denotes the slope of a transverse normal at
z = 0. Based on the Von Kármán strain-displacement relationships, the nonlinear strain components
associated with the displacement field (9)–(10) can be written as

εxx = ε
(0)
xx + zε(1)xx + z3ε

(3)
xx , (11)

γxz = γ
(0)
xz + z2γ

(2)
xz , (12)

where

ε
(0)
xx =

∂u
∂x

+
1
2

(
∂w
∂x

)2

, ε(1)xx =
∂φ

∂x
, ε(3)xx = −c1

(
∂φ

∂x
+
∂2w
∂x2

)
, (13)

γ
(0)
xz = φ+

∂w
∂x

, γ(2)xz = −c2

(
φ+

∂w
∂x

)
, (14)
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and
c1 =

4
3h2

t

, c2 = 3c1 =
4
h2

t

. (15)

3.2. Equations of Motion

The equations of motion of FG-GPL reinforced sandwich beams are derived from Hamilton’s
principle. Accordingly, we have ∫ t2

t1

(δU − δW − δK)dt = 0, (16)

where U is the strain energy, W is the work done by external forces, and K is the kinetic energy. The
virtual strain energy δU for the third-order shear deformable sandwich beams reads as follows

δU =
∫

A

∫ L
0 (σxxδεxx + σxzδγxz)dxdA

=
∫

A

∫ L
0

[
σxx

(
δε

(0)
xx + zδε(1)xx + z3δε

(3)
xx

)
+ σxz

(
δγ

(0)
xz + z2δγ

(2)
xz

)]
dxdA

=
∫ L

0

[
−∂Nxx

∂x δu− ∂
∂x

(
Nxx

∂w
∂x

)
δw− ∂Mxx

∂x δφ+ c1
∂Pxx
∂x δφ− c1

∂2Pxx
∂x2 δw

+ Qxδφ− ∂Qx
∂x δw− c2Rxδφ+ c2

∂Rx
∂x δw

]
dx

+
[
Nxxδu + Nxx

∂w
∂x δw + Mxxδφ− c1Pxxδφ− c1Pxx

∂
∂xδw + c1

∂Pxx
∂x δw + Qxδw− c2Rxδw

]L

0
,

(17)

where ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Nxx

Mxx

Pxx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
∫

A
σxx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
z
z3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦dA,
[

Qx

Rx

]
=

∫
A
σxz

[
1
z2

]
dA. (18)

The virtual kinetic energy δK is defined as

δK =
∫

A

∫ L
0 ρ(z)

( .
u1δ

.
u1 +

.
u3δ

.
u3

)
dAdx

=
∫ L

0

[(
m0

..
u + m1

..
φ− c1m3

( ..
φ+ ∂

..
w
∂x

))
δu

+
(
m1

..
u + m2

..
φ− c1m3

..
u− c1m4

(
2

..
φ+ ∂

..
w
∂x

)
+ c2

1m6
( ..
φ+ ∂

..
w
∂x

))
δφ

+

(
m0

..
w + c1m3

∂
..
u
∂x + c1m4

∂
..
φ
∂x − c2

1m6

(
∂

..
φ
∂x + ∂2 ..

w
∂x2

))
δw

]
dx,

(19)

with

mi =

∫
A
ρ(z)zidA =

2N+1∑
k=1

b
∫ zk+1

zk

ρ
(k)
c zidz, i = 0, 1, 2, 3, 4, 6. (20)

In the total absence of external forces on the structure, it is δW = 0. Therefore, by substitution
of Equations (17) and (19) into Equation (16), by integrating the result by parts, and equating the
coefficients of δu, δw, and δφ to zero separately, we get the following nonlinear equations of motion:

∂Nxx

∂x
= m0

..
u + m1

..
φ− c1m3

(
..
φ+

∂
..
w
∂x

)
, (21)

∂Mxx

∂x
− c1

∂Pxx

∂x
−Qx + c2Rx = m1

..
u + m2

..
φ− c1m3

..
u− c1m4

(
2

..
φ+

∂
..
w
∂x

)
+ c2

1m6

(
..
φ+

∂
..
w
∂x

)
, (22)

∂
∂x

(
Nxx

∂w
∂x

)
+ c1

∂2Pxx

∂x2 +
∂Qx

∂x
− c2

∂Rx

∂x
= m0

..
w + c1m3

∂
..
u
∂x

+ c1m4
∂

..
φ

∂x
− c2

1m6

⎛⎜⎜⎜⎜⎜⎝∂
..
φ

∂x
+
∂2 ..

w
∂x2

⎞⎟⎟⎟⎟⎟⎠. (23)

125



Appl. Sci. 2020, 10, 5669

Thus, we define the stress resultants in terms of the displacement and rotation components of the
sandwich beam as

Nxx = A11

⎛⎜⎜⎜⎜⎝∂u
∂x

+
1
2

(
∂w
∂x

)2⎞⎟⎟⎟⎟⎠+ B11

(
∂φ

∂x

)
− c1E11

(
∂φ

∂x
+
∂2w
∂x2

)
, (24)

Mxx = B11

⎛⎜⎜⎜⎜⎝∂u
∂x

+
1
2

(
∂w
∂x

)2⎞⎟⎟⎟⎟⎠+ D11

(
∂φ

∂x

)
− c1F11

(
∂φ

∂x
+
∂2w
∂x2

)
, (25)

Pxx = E11

⎛⎜⎜⎜⎜⎝∂u
∂x

+
1
2

(
∂w
∂x

)2 ⎞⎟⎟⎟⎟⎠+ F11

(
∂φ

∂x

)
− c1H11

(
∂φ

∂x
+
∂2w
∂x2

)
, (26)

Qx = (A55 − c2D55)

(
φ+

∂w
∂x

)
, (27)

Rx = (D55 − c2F55)

(
φ+

∂w
∂x

)
, (28)

where

(A11, B11, D11, E11, F11, H11) =
N∑

k=1

b
∫ hk+1

hk

Q(k)
11

(
1, z, z2, z3, z4, z6

)
dz, (29)

(A55, D55, F55) =
N∑

k=1

b
∫ hk+1

hk

Q(k)
55

(
1, z2, z4

)
dz, (30)

and

Q(k)
11 =

E(k)
C

1−
(
ν
(k)
C

)2 , Q(k)
55 = G(k)

C =
E(k)

C

2
(
1 + ν

(k)
C

) , (31)

In view of Equations (21)–(28), the nonlinear partial differential equations of motion of FG
GPL-reinforced sandwich beams can be written as

A11
(
∂2u
∂x2 + ∂2w

∂x2
∂w
∂x

)
+(B11 − c1E11)

∂2φ
∂x2 − c1E11

∂3w
∂x3

= m0
∂2u
∂t2 + (m1 − c1m3)

∂2φ
∂t2 − c1m3

∂3w
∂x∂t2 ,

(32)

(B11 − c1E11)
(
∂2u
∂x2 + ∂2w

∂x2
∂w
∂x

)
+
(
D11 − 2c1F11 + c2

1H11
)∂2φ
∂x2 +

(
−c1F11 + c2

1H11
)
∂3w
∂x3

+
(
−A55 + 2c2D55 − c2

2F55
)(
φ+ ∂w

∂x

)
= (m1 − c1m3)

∂2u
∂t2 +

(
m2 − 2c1m4 + c2

1m6
)∂2φ
∂t2 +

(
−c1m4 + c2

1m6
)
∂3w
∂x∂t2 ,

(33)

c1E11

(
∂3u
∂x3 −

(
∂2w
∂x2

)2)
+
(
c1F11 − c2

1H11
)∂3φ
∂x3 − c2

1H11
∂4w
∂x4

+
(
A55 − 2c2D55 + c2

2F55
)(∂φ
∂x + ∂2w

∂x2

)
+A11

(
∂2u
∂x2

∂w
∂x + ∂u

∂x
∂2w
∂x2 + 3

2

(
∂2w
∂x2

(
∂w
∂x

)2
))

+(B11 − c1E11)
(
∂2φ
∂x2

∂w
∂x +

∂φ
∂x

∂2w
∂x2

)
= m0

∂2w
∂t2 + c1m3

∂3u
∂x∂t2 +

(
c1m4 − c2

1m6
) ∂3φ
∂x∂t2 − c2

1m6
∂4w
∂x2∂t2 .

(34)

3.3. Solution Procedure

In this section, the nonlinear equations of motion are solved numerically, in order to obtain the
linear and nonlinear frequency equations. In this regard, the nonlinear partial differential equations
(PDEs) of motion (32)–(34) are discretized as ordinary differential equations by employing the Galerkin
method. Afterwards, the multiple timescales approach is used to obtain the nonlinear frequency
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equation. Here, we assume that the GPL-reinforced sandwich beam is simply supported at both ends
with movable supports. Based on these assumptions, the displacement and rotation field of the beam
can be defined as expansions of the free vibration mode shapes, namely,

u(x, t) =
∞∑

n=1

Un(t)χn(x), χn(x) = Cos
(nπx

L

)
, (35)

φ(x, t) =
∞∑

n=1

ϕn(t)ψn(x), ψn(x) = Cos
(nπx

L

)
, (36)

w(x, t) =
∞∑

n=1

Wn(t)λn(x), λn(x) = Sin
(nπx

L

)
, (37)

Un, ϕn and Wn being the unknown generalized coordinates which stand for the amplitude of the
vibration. Moreover, the following functions χn(x), ψn(x), and λn(x) are introduced to satisfy all
boundary conditions of the system. By considering a single mode approximate solution and by
substitution of Equations (35)–(37) into Equations (32)–(34), after multiplying the results by χ, ψ, and λ
and after their integration over the domain of the system, the following nonlinear differential equations
of motion are obtained

g11Un + g12Wn + g13Wn
2 + g14ϕn = 0, (38)

g21Un + g22Wn + g23Wn
2 + g24ϕn = 0, (39)

g31Un + g32Wn + g33UnWn + g34Wn
2 + g35Wn

3 + g36ϕn + g37Wnϕn + g38Un
′′ + g39Wn

′′ + g310ϕn
′′ = 0, (40)

where coefficients g11, g12, . . . , g310 are detailed in Appendix A. The ordinary differential equation of
transverse motion can be obtained by solving Un and ϕn in terms of Wn from Equations (38) and (39)
and substituting the results in Equation (40). Thus, we get

Wn
′′ + α1Wn + α2Wn

3 = 0, (41)

where

α1 = ω2
L =

g14(g22g31 − g21g32) + g12(−g24g31 + g21g36) + g11(g24g32 − g22g36)

g24(−g12g38 + g11g39) + g14(g22g38 − g21g39) + (g12g21 − g11g22)g310
, (42)

α2 =
g14(−g23g33 + g21g35) + g13(g24g33 − g21g37) + g11(−g24g35 + g23g37)

g24(g12g38 − g11g39) + g14(−g22g38 + g21g39) + (−g12g21 + g11g22)g310
, (43)

and ωL is the natural frequency of the nanocomposite sandwich beam. According to the multiple
timescale approach [57,58], we approximate the solution of Equation (41) by means of the following
expansion,

W(t, ε) = εW1(T0, T1, T2, . . .) + ε2W2(T0, T1, T2, . . .) + ε3W3(T0, T1, T2, . . .) + . . . (44)

where ε is a small perturbation parameter and Tn = εnt refers to the independent variables for
n = 0, 1, 2, . . ., whose derivatives with respect to t are defined as follows:

d
dt =

dT0
dt

∂
∂T0

+ dT1
dt

∂
∂T1

+ . . . = D0 + εD1 + . . .
d2

dt2 = D2
0 + 2εD0D1 + ε2

(
D2

1 + 2D0D2
)
+ 2ε3D1D2 + ε4D2

2 + . . .
(45)
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where Dn = ∂/∂Tn. In our case, we apply the expansion up to O
(
ε3

)
, such that we need T0, T1 and T2.

By substitution of Equations (44) and (45) into Equation (41), expanding and equating coefficients of ε,
ε2, and ε3 to zero, we get the following relations:

Order ε: D2
0W1 +ω2

LW1 = 0 (46)

Order ε2: D2
0W2 +ω2

LW2 = −2D0D1W1 (47)

Order ε3: D3
0W3 +ω2

LW3 = −2D0D2W2 −D2
1W1 − 2D0D2W1 − α2W3

1 (48)

The solution of Equation (46) takes the following form:

W1 = A(T1, T2) exp(iωLT0) + A exp(−iωLT0) (49)

where A is an unknown complex function and A is its complex conjugate. By substitution of Equation
(49) into Equation (46) we obtain the following relation:

D2
0W2 +ω2

LW2 = −2iωLD1A exp(iωLT0) + cc (50)

cc being the complex conjugate of the previous term. Any particular solution of Equation (50) has a
secular term containing the factor T0 exp(iωLT0) unless D1A = 0. This means that A is independent of
T1, whereby the solution of Equation (50) is verified to be identically null.

By substitution of W2 = 0, together with Equation (49), into Equation (48) we get the
following expression

D2
0W3 +ω2

LW3 = −
[
2iωLD2A− 3α2A2A

]
exp(iωLT0) − α2A3 exp(iωLT0) (51)

In this last relation the secular terms containing exp(iωLT0) must be equal to zero to have a
periodic solution, which corresponds to enforce the following relation:

2iωLD2A− 3α2A2A = 0 (52)

whose solution can be found by defining A as

A =
1
2

a exp(iβ) (53)

where a and β are real functions of T2.
By substituting Equation (53) into Equation (52) and by equating the real and imaginary parts to

zero, we obtain
ωLa′ = 0 and ωLaβ′ − 3/8α2a3 = 0 (54)

where the prime denotes the derivative with respect to T2. Solving both relations in Equation (54),
it follows that a is a constant and

β = 3/8
α2

ωL
a2T2 + β0 (55)

where β0 is a constant. By combination of Equations (53) and (55) with Equation (49), we obtain the
following closed-form solution for the nonlinear frequency of the transverse vibration of GPL-reinforced
sandwich beams based on third-order shear deformation theory:

ωNL = ωL

⎛⎜⎜⎜⎜⎝1 +
3
8
α2

ω2
L

ε2a2

⎞⎟⎟⎟⎟⎠, (56)

where a is the amplitude of the vibration.
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4. Numerical Results

In this section, we present the numerical results from a large parametric investigation into
the nonlinear vibration behavior of thick sandwich beams reinforced with GPLs. To check for the
accuracy of the proposed model, our numerical results obtained for FG GPL-reinforced beams are
compared with those available from the literature. In this regard, the thickness of the core layer in
the present model is assumed to be zero (hc = 0). In Tables 1 and 2, the dimensionless free linear
(ωL = ωL × L × √

m10/A10) and nonlinear (ωNL = ωNL × L × √
m10/A10) frequencies are provided

for a simply supported, GPL-reinforced beam and compared with numerical results reported by
Feng et al. [30]. The reference model is based on a Timoshenko beam theory, whereby two different
patterns are considered for validation purposes. The following properties are assumed for the
beam: EM = 2.85 GPa, ρM = 1200Kg/m3, EGPL = 1.01 TPa, ρGPL = 1062.5Kg/m3, wGPL = 1.5 μm,
lGPL = 2.5 μm, and hGPL = 1.5 nm.

Table 1. First three dimensionless natural frequencies (ωL = ωL × L× √
m10/A10) of simply supported

laminated beams reinforced with GPLs (L/ht = 20).

Pattern Reference
Mode

1 2 3

UD
(κ = 0)

Feng et al. [30] 0.21542 0.85226 1.88292

Present 0.23482 0.92903 2.05352

FG-X
(κ = 1)

Feng et al. [30] 0.25853 1.01309 2.20666

Present 0.26759 1.05199 2.30258

Table 2. First three dimensionless nonlinear frequencies (ωNL = ωNL × L × √
m10/A10) of simply

supported laminated beams reinforced with GPLs (L/ht = 20).

Pattern Reference
Mode

1 2 3

UD
(κ = 0)

Feng et al. [30] 0.27259 1.07270 2.33122

Present 0.29020 1.08015 2.41741

FG-X
(κ = 1)

Feng et al. [30] 0.31973 1.20509 2.54097

Present 0.31619 1.18544 2.62712

In Table 3, a comparison has been attempted between results from the present formulation for
the first four dimensionless frequencies (ωL = ωL ×

(
L2/h

)√
ρ/E11) of simply supported orthotropic

beams and those from the literature, based on different higher-order shear deformation theories [59–61].
The material properties are assumed to be E11 = 144.9 GPa, E22 = 9.65 GPa, G12 = G13 = 4.14 GPa,
G23 = 3.45 GPa, ρ = 1389.23Kg/m3, and ν12 = ν21 = 0.3.

Table 3. Comparison of the first four dimensionless natural frequencies (ωL = ωL ×
(
L2/h

)√
ρ/E11) of

orthotropic thick beams based on different higher-order shear deformable beam theories (L/ht = 10).

Reference
Mode

1 2 3 4

Shen et al. [61] 2.3100 6.9538 11.9707 17.0393

Li and Qiao [60] 2.3188 7.0204 12.0894 17.3139

Vo and Thai
[59] 2.3198 7.0091 12.1250 17.2949

Present 2.4038 7.2110 12.3975 17.6279
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As is clearly visible in Table 3, the numerical results based on the proposed model agree
very well with predictions from the literature based on other shear deformable models. It seems
that higher-order-models available in the literature [59–61] get more conservative results than our
formulation. At the same time, the proposed multiple timescale approach proves to be an efficient
analytical tool to solve nonlinear systems in a very easy and straightforward manner.

In the benchmark Tables 4 and 5, we report the numerical results in terms of the first-order
nonlinear frequency and nonlinear-to-linear frequency ratio for a GPL-reinforced sandwich beam.
The material and geometrical properties of the beam are considered to be EM = 2.85 GPa,
ρM = 1200Kg/m3, EGPL = 1.01 TPa, ρGPL = 1062.5Kg/m3, wGPL = 1.5 μm, lGPL = 2.5 μm,
and hGPL = 1.5 nm. These properties are kept constant for the following examples. The numerical
results are obtained for a different power-law parameter, length-to-total thickness of the beam ratio,
as well as for a different total weight fraction of the GPLs reinforced in the beam (Γb). As mentioned
before, Γb is defined such that the total amount of GPLs remains constant with respect to any
change in the power-law parameter or thickness of the face sheets. According to Tables 4 and 5,
an increased total weight fraction of GPLs (Γb) yields a meaningful increase of the nonlinear frequency
of the beam, while decreasing the nonlinear-to-linear frequency ratio. In addition, an increased
length-to-thickness ratio provides a decreasing effect on the nonlinear frequency of the system and its
associated nonlinear-to-linear ratio.

Table 4. First-order nonlinear frequency of a simply supported GPL-reinforced sandwich beam
(hc/ht = 0.6, N = 10, a/ht = 1).

L/ht Γb
κ

0.5 1 2 5

10
0.5 1.52551 1.53220 1.54115 1.54952

1 1.96610 1.97452 1.98470 1.99110

2 2.62940 2.63683 2.64207 2.63204

20
0.5 0.38485 0.38708 0.39006 0.39311

1 0.49821 0.50165 0.50612 0.51036

2 0.66931 0.67405 0.67978 0.68391

Table 5. First-order nonlinear-to-linear frequency ratio of a simply supported GPL-reinforced sandwich
beam (hc/ht = 0.6, N = 10, a/ht = 1).

L/ht Γb
κ

0.5 1 2 5

10
0.5 1.59007 1.56735 1.54135 1.51106

1 1.55652 1.53643 1.51484 1.49074

2 1.54324 1.52830 1.51607 1.50875

20
0.5 1.55431 1.53007 1.50227 1.47047

1 1.51103 1.48708 1.46023 1.42993

2 1.48700 1.46431 1.43990 1.41399

On the other hand, an increased power-law parameter gets an increased nonlinear frequency and
a decreased nonlinear-to-linear frequency ratio. A non-uniform behavior can be observed, sometimes,
for an increasing power-law parameter and for a large amount of Γb. This aspect is illustrated in detail
as follows.
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4.1. Effect of the Amplitude of the Vibrations

Figures 3 and 4 show the effect of an increasing amplitude on the nonlinear frequency and
the nonlinear-to-linear frequency ratio. According to both figures, the nonlinear frequency of a
GPL-reinforced sandwich beam generally increases by increasing the amplitude of the vibrations as
well as its nonlinear-to-linear frequency. However, an increased vibration amplitude significantly
affects the nonlinear frequency and its rational form, for smaller values of the power-law parameter. It
seems that for sandwich beams with a larger amount of GPL-reinforcement, the nonlinear frequency is
increasingly affected by larger vibration amplitudes.

Figure 3. Variation of the first-order nonlinear frequency and nonlinear-to-linear frequency ratio of a
GPL-reinforced sandwich beam with respect to an increasing amplitude of vibrations, and for different
power-law parameters (hc/ht = 0.6, N = 10, Γb = 1%, L/ht = 10).

Figure 4. Variation of the first-order nonlinear frequency and nonlinear-to-linear frequency ratio of
a GPL-reinforced sandwich beam with respect to an increasing amplitude of vibrations, and for a
different total amount of GPLs in the beam (hc/ht = 0.6, N = 10, a/ht = 1, L/ht = 10,κ = 2).
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4.2. Effect of the Power-Law Parameter

Here, we study the effect of the power-law parameter on the nonlinear vibration behavior of the
nanocomposite structure. Figure 5 depicts the variation of the nonlinear frequency as a function of the
power-law parameter for different thickness ratios, hc/ht, and vibration amplitudes a/ht. Note that,
for a small amplitude of vibration, the nonlinear frequency of the system increases by increasing the
power-law parameter. The effect of an increasing power-law parameter on the vibration response of
the system is different depending on the amount of the thickness ratio. For an increased amplitude
of the vibration up to a threshold value, the results become non-uniform for an increased power-law
parameter. An increased amplitude of vibration will completely change the behavior of the system;
namely, by increasing the power-law parameter, the nonlinear frequency of the GPL-reinforced
sandwich beam decreases for a large amplitude of vibration.

Figure 5. Variation of the first-order nonlinear frequency of a GPL-reinforced sandwich beam due to
increasing power-law parameter for different core-to-beam thickness ratios and amplitudes of vibration
(N = 10, Γb = 1%, L/ht = 10).

In Figure 6, we plot the variation of the nonlinear-to-linear frequency ratio of the nanocomposite
structure vs. the power-law parameter. It is worth noting that an increased power-law parameter has a
decreasing effect on the nonlinear-to-linear frequency ratio of the system. These effects become even
more pronounced for larger vibration amplitudes, while leaving the overall behavior almost unaltered.
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Figure 6. Variation of the first-order nonlinear-to-linear frequency ratio of a GPL-reinforced sandwich
beam due to an increased power-law parameter for different core-to-beam thickness ratios and
amplitudes of vibration (N = 10, Γb = 1%, L/ht = 10).

In Figures 7 and 8, the nonlinear frequency and the nonlinear-to-linear frequency ratio of a
GPL-reinforced sandwich beam are plotted vs. the power-law parameter, while assuming different
thickness ratios and total weight fractions of the GPL phase in the beam.

Figure 7. Variation of the first-order nonlinear frequency of a GPL-reinforced sandwich beam due to an
increasing power-law parameter, for different core-to-beam thickness ratios and total amount of GPLs
reinforcement in the beam (N = 10, a/ht = 1, L/ht = 10).
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Figure 8. Variation of the first-order nonlinear-to-linear frequency ratio of a GPL-reinforced sandwich
beam due to an increasing power-law parameter for different core-to-beam thickness ratios and total
amounts of GPLs reinforcements in the beam (N = 10, a/ht = 1, L/ht = 10).

According to Figure 7, for a small amount of the GPLs weight fraction, the nonlinear frequency
increases by increasing the power-law parameter. Moreover, the effect of an increasing power-law
parameter becomes more pronounced for sandwich beams with thick face sheets. As the total weight
fraction of GPLs increases, a different response is noticed, in terms of nonlinear frequency, by increasing
the power-law parameter. More specifically, for a large GPL weight fraction, we notice a threshold
value after which the nonlinear frequency decreases by increasing the power-law parameter. Of course,
the value of the threshold point varies with the thickness of the face sheets. On the other hand,
the results for the nonlinear-to-linear frequency ratio show some opposite effects for an increasing
power-law parameter. An increased total amount of GPL reinforcement phase in the face sheets has a
pronounced effect on the general behavior of the system, which has to be studied carefully.

4.3. Effect of the Thickness of the Face Sheets

Figures 9 and 10 show the effect of the core-to-face thickness ratio on the nonlinear vibration
response of the structure. As visible in both figures, a decreasing thickness of the face sheets generally
increases the nonlinear frequency of the system for a small vibration amplitude. By increasing the
amplitude vibrations, the structural response changes due to an increased thickness ratio; namely,
for large amplitude vibrations, the frequency decreases by increasing the thickness ratio, and the
nonlinear-to-linear frequency ratio decreases accordingly. This behavior is almost unaffected by the
amplitude vibrations.
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Figure 9. Variation of the first-order nonlinear frequency of a GPL-reinforced sandwich beam with
respect to an increasing core-to-face thickness ratio for different power-law parameters and amplitudes
of vibration (N = 10, Γb = 1%, L/ht = 10).

Figure 10. Variation of the first-order nonlinear-to-linear frequency ratio of a GPL-reinforced sandwich
beam with respect to an increasing core-to-beam thickness ratio for different power-law parameters
and amplitudes of vibration (N = 10, Γb = 1%, L/ht = 10).
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4.4. Effects of the Total Weight Fraction of the GPLs

The last parametric investigation checks for the sensitivity of the response to an increased total
amount of GPL phase in the face sheets of a sandwich beam, both in terms of nonlinear frequency
and nonlinear-to-linear frequency. As shown in Figure 11, an increased total weight fraction of the
GPLs will increase the nonlinear frequency of the system. Different effects on the nonlinear-to-linear
frequency ratio are observable, depending on the value of the selected power-law parameter.

Figure 11. Variation of the first-order nonlinear frequency and nonlinear-to-linear frequency ratio of a
GPL-reinforced sandwich beam with respect to an increasing total amount of GPLs in the beam, for
different power-law parameters (hc/ht = 0.6, N = 10, a/ht = 3, L/ht = 10).

5. Concluding Remarks

In the present paper we analyze the nonlinear free vibration response of thick sandwich beams
with FG GPL-reinforced face sheets, based on a novel dispersion model for the reinforcement phase.
A higher-order laminated beam model is associated with the Von Kármán strain-displacement
relationships to capture the shear and rotation effects on the structural behavior of the system.
The nonlinear equations of motion are determined through Hamilton’s principle, and they are
discretized to ordinary differential equations by means of Galerkin’s approach. An analytical solution
procedure based on the multiple timescales method is then used to obtain the nonlinear frequency
equation. A large numerical investigation analyzes the effect of the vibration amplitude, the thickness
of the face sheets, and the GPL dispersion on the nonlinear vibration response of the reinforced
sandwich structure, where the following conclusions can be summarized as follows:

- An increased amplitude of vibrations significantly increases the nonlinear frequency and its ratio
to linear frequency. The sensitivity of the nonlinear response varies with the total amount of
GPL reinforcement in the beam, as well as with the value of the power-law parameter and the
thickness of the face sheets.
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- An increased power-law parameter can have different effects on the stiffness of the GPL-reinforced
sandwich beam, depending on the value of the vibration amplitude and the total weight fraction
of the GPLs.

- There exists a threshold value for the vibration amplitude, after which the behavior of the system
can change for an increased thickness of the face sheets and power-law parameter.

- For low amplitude vibrations, the nonlinear frequency increases by increasing the power-law
parameter and by decreasing the thickness of the faces sheets. For large amplitude vibrations,
the contrary occurs by increasing both the power-law parameter and core-to-face thickness ratio.

- The effect of an increasing power-law parameter and a decreasing thickness of the face sheets on
the nonlinear-to-linear frequency ratio is independent of the vibration amplitude.

- An increasing total weight fraction of GPLs in the beam generally increases the nonlinear frequency
of the system. The sensitivity of the nonlinear-to-linear frequency ratio can be more or less
pronounced, depending on the GPL dispersion pattern in the face sheets.

- The proposed parametric study would be of great interest for optimization and design of materials
and for an appropriate evaluation of stability for sandwich beams under different environmental
conditions, which would prove useful in many space and aircraft applications.
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Appendix A

In the following, we provide the extended relations for the coefficients g11, g12, . . . in Equations
(38)–(40), i.e.,

g11 =
n2π2A11

2L
, (A1)

g12 = −n3π3c1E11

2L2 , (A2)

g13 =

(
1 + (−1)n+1

)
n2π2A11

3L2 , (A3)

g14 =
n2π2(B11 − c1E11)

2L
, (A4)

g21 =
n2π2(B11 − c1E11)

2L
, (A5)

g22 =
n3π3

(
−c1F11 + c2

1H11
)

2L2 −
nπ

(
−A55 + 2c2D55 − c2

2F55
)

2
, (A6)

g23 =

(
1 + (−1)n+1

)
n2π2(B11 − c1E11)

3L2 , (A7)

g24 =
n2π2

(
D11 − 2c1F11 + c2

1H11
)

2L
−

L
(
−A55 + 2c2D55 − c2

2F55
)

2
, (A8)

g31 =
n3π3c1E11

2L2 , (A9)
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g32 =
n2π2

(
−A55 + 2c2D55 − c2

2F55
)

2L
− n4π4c2

1H11

2L3 (A10)

g33 =
n2π2

(
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(
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)
Sin4

(
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2

))
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4
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3L3 , (A12)
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Abstract: Pipe flow is one of the most commonly used models to describe fluid dynamics. The concept
of fractional derivative has been recently found very useful and much more accurate in predicting
dynamics of viscoelastic fluids compared with classic models. In this paper, we capitalize on our
previous study and consider space-time dynamics of flow velocity and stress for fractional Maxwell,
Zener, and Burgers models. We demonstrate that the behavior of these quantities becomes much
more complex (compared to integer-order classical models) when adjusting fractional order and
elastic parameters. We investigate mutual influence of fractional orders and consider their limiting
value combinations. Finally, we show that the models developed can be reduced to classical ones
when appropriate fractional orders are set.

Keywords: fractional calculus; Riemann-Liouville fractional derivative; viscoelasticity; pipe flow;
fractional Maxwell model; fractional Zener model; fractional Burgers model

1. Introduction

Fractional calculus in general and fractional derivative in particular has been gathering an
increasing researchers interest recently. This mathematical tool provides the means for significant
improvement of predictive power for numerous practical applications as summarized in a recent
literature [1–18]. Heat conduction [5,18], anomalous diffusion [4,7], and viscoelastic properties of
fluids and solids [3,9,10,13] are just a few examples of fundamental phenomena where fractional
calculus finds immediate practical applications and provides promising results. While fractional
models in general demonstrate better fit of experimental data compared to their classical counterparts,
those involving variable-order fractional operators (VO-FC) are the handy tools for the cutting-edge
research. VO-FC not only provides an effective tool to alter the system properties described by the
fractional orders but also allows accounting for fractional orders variations with time, coordinate,
and internal system-specific parameters.

One of the fields where fractional calculus has already proven its efficiency is the prediction of
dynamics of viscoelastic flows in various constrained geometries, with circular pipe being one of the
most popular ones. With theoretical foundations laid in [19], researchers considered numerous specific
problems. The models studied here were addressed by Yin in [20] (Maxwell), by Shah in [21] (Burgers)
to name a few. Fractional viscoelastic models, including Maxwell and Zener ones, were considered
in close detail in series of works by Schiessel, Friedrich, and others [22,23]. Those authors provided
in-depth physical analysis of mathematical concepts introduced via fractional calculus formalism,
suggested, developed, and explained various ladder models. This brief literature overview is
intended to mention the most recent achievements in a field of FC and to point out studies that
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specifically targeted fractional models studied here. A more detailed consideration that includes
historic retrospective can be found in our previous study [1] .

In this paper, we capitalize on the approaches developed in [1] to examine the behavior of
fractional viscoelastic Maxwell, Zener, and Burgers models in application to pipe flow. We present an
in-depth parametric analysis of these models and outline various operating regimes for each of them.
Different from [1], here we consider 3D profiles of flow velocity and stress. It allows for the exploration
of flow dynamics in spatial and frequency domains simultaneously and catches the specifics that cannot
be easily visible in 2D projections. We consider various combinations of fractional orders, investigate
their mutual influence, and establish an approach for viscoelastic flow optimization. The paper is
organized as follows. We first provide domain definition. The governing equations for fluid flow
and constitutive equations for the model considered are given in Sections 2.1 and 2.2, respectively.
The main results of this study appear in Section 3. In particular, Section 3.1 describes the general
approach for seeking the solution. Sections 3.2–3.7 present and discuss space-frequency dynamics of
velocity and stress profiles. In particular, Section 3.2 presents velocity for fractional Maxwell model.
Stress profiles for fractional Maxwell model are considered in Section 3.3. Zener model behavior is
studied in Sections 3.4 and 3.5 (velocity and stress, respectively). Sections 3.6 and 3.7 are devoted to
fractional Burgers model. The results of this study are summed up in Section 4. Hereafter we use the
following notions. Under “classic” we understand either model or profile corresponding to integer
values of fractional orders. “Fractional order” and “fractional parameter” is essentially the same.
We also use “frequency domain” to refer to nondimensional frequency.

2. Problem Formulation

Here we provide brief problem formulation and key governing equations. All the details as
well as derivations and overview of mathematical apparatus involved can be found in our previous
study [1].

Let us introduce cylindrical coordinate system (r, θ, z) and consider laminar flow of incompressible
viscoelastic fluid along z axis of infinitely long pipe of radius R with circular cross-section.
The corresponding schematic is shown in Figure 1.

Figure 1. Domain definition for circular pipe.

2.1. Flow Dynamics

The flow dynamics is governed by continuity and momentum equations with no-slip boundary
condition at the wall applied. Due to flow and geometry specifics, only z-component of momentum
equation remains and reads as:

ρ
∂uz

∂t
= −∂p

∂z
+

1
r

∂(rσrz)

∂r
(1)

Here ρ, uz, p, σrz stand for fluid mass density, z-component of flow velocity, pressure,
and rz-component of stress.
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2.2. Constitutive Equations

First, we consider fractional Maxwell model (Figure 2a). Its constitutive equation reads as:

σ(t) + τα−β
aDα−β

t σ(t) = Eτα
aDα

t ε(t), 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, α ≥ β (2)

Here α and β are the fractional orders, τ, E are given by:

τ =
(E1τα

1

E2τ
β
2

) 1
α−β , E = E1

(τ1

τ

)α
, E = E2

(τ2

τ

)β
, (3)

where E1, τ1, E2, τ2 stand for the Young’s moduli, relaxation times of elements “1” and “2”, respectively.
The ranges imposed for α and β have both physical and mathematical meaning. Physically, changing α

and β from 0 to 1 allows balancing between viscous and elastic properties of fluid. Mathematically,
all fractional orders should be non-negative, in order to ensure that we deal with fractional derivatives,
not fractional integrals. An additional relation bounds α and β, so that the entire range for β can
only be considered provided α = 1. The limiting integer values of fractional orders deserve special
attention, as they allow restoring various classical cases. In particular, α = 1 and β = 0 correspond to
the classical Maxwell fluid:

σ + τσ̇ = Eτε̇, (4)

while α = 1 and β = 1 results in a constitutive equation for the Newtonian fluid:

σ =
Eτ

2
ε̇ (5)

Here we omitted time dependence of stresses and strains for brevity and introduced dot as a time
derivative operator. A closer look at the definition of τ reveals that the case α = β is somewhat special.
Indeed, it corresponds to a critical gel. It means that τ blows up when α = β. However, it happens
when the base (expression in brackets) is greater than unity. If the opposite is true, then τ is bounded.
However, the detailed analysis of all the specifics it brings is beyond the scope of this study.

Next, we consider fractional Zener model shown in Figure 2b. In this case constitutive equation is:

σ(t) + τα−β
aDα−β

t σ(t) = Eτα
aDα

t ε(t) + E0τγ
aDγ

t ε(t) + E0τγ+α−β
aDγ+α−β

t ε(t),

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, α − β ≥ 0, γ + α − β ≥ 0 (6)

Here γ is the fractional order of element “3” and E0 is defined as:

E0 = E3

(τ3

τ

)γ
, (7)

where E3, τ3 stand for Young’s modulus and relaxation time of element “3” and all other notations are
the same as above. At a glance, here we end up with two additional relations for the fractional orders
α, β, and γ: α − β ≥ 0 and γ + α − β ≥ 0. A closer look to this inequalities reveals that if α − β ≥ 0 is
held, the second one is satisfied automatically. That is, of course, only true for non-negative values of
the fractional orders. To get classical Zener fluid, one should assume α = 1, β = 0, and γ = 0. Then the
constitutive equation reduces to:

σ + τσ̇ = E0ε + (E + E0)τε̇ (8)
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Next, assuming α = 1, β = 1, and γ = 1, one will end up with Newtonian fluid and constitutive
equation of the form:

σ =
E + 2E0

2
τε̇ (9)

Finally, for fractional Burgers model, (Figure 2c) we have:

σ(t) +
E
E0

τα−γ
aDα−γ

t σ(t) +
E
E0

τα−δ
aDα−δ

t σ(t) +
E
E0

τβ−γ
aDβ−γ

t σ(t) +
E
E0

τβ−δ
aDβ−δ

t σ(t) =

= Eτα
aDα

t ε(t) + Eτβ
aDβ

t ε(t),

0 ≤ α ≤ 1, 1 ≤ β ≤ 2, 0 ≤ γ ≤ 1, 0 ≤ δ ≤ 1, α − γ ≥ 0, β − γ ≥ 0, α − δ ≥ 0, β − δ ≥ 0 (10)

Here δ is the fractional order of element “4”, (7) is still valid and additionally:

E0 = E4

(τ4

τ

)δ
, (11)

where E4, τ4 stand for Young’s modulus and relaxation time of element “4” and all other notations
being the same as above. Here we impose four additional conditions for fractional orders α, β, γ and
δ. Different from previous models, the range of β has changed as the classical Burgers model should
include second derivatives of stresses and strains with respect to time. Moreover, there are no relations
for fractional orders α and β. At the same time, the whole range of values for fractional orders γ and δ

can only be considered if α = 1. To get classical Burgers model, one should set α = 1, β = 2, γ = 0 and
δ = 0. Then the constitutive equation reads as:

σ + 2
E
E0

τ(σ̇ + τσ̈) = Eτ(ε̇ + τε̈), (12)

where two dots stand for the second derivative with respect to time. Newtonian fluid can be obtained
by setting α = β = γ = δ = 1. Corresponding constitutive equation reads as:

σ =
2EE0

E0 + 4E
τε̇ (13)

a) b) c)

Figure 2. Fractional viscoelastic models: (a) Maxwell; (b) Zener; (c) Burgers.
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3. Results and Discussion

3.1. General Solution

Here we follow the approach proposed earlier by Yin [20] for Maxwell model and then generalize
it for all other models. Introduce pressure gradient of the form:

∂p
∂z

= P0eiωt (14)

For all models considered in this study, nondimensional velocity and stress profiles are given by:

ũ =
∣∣∣uz

u0

∣∣∣ =
(

1 − J0(
√

ω̄ãφ)

J0(
√

ω̄ã)

)
, σ̃ =

∣∣∣σrz

σ0

∣∣∣ = J1(
√

ω̄ãφ)√
ω̄ã J0(

√
ω̄ã)

, (15)

where we used the following quantities:

r̃ =
r√
ντ

, ã =
R√
ντ

, ω̃ = ωτ, φ =
r̃
ã

, u0 =
1

4ρω

∂p
∂z

, r2ξ2 = ω̄r̃2, (16)

and ν, ω stand for kinematic viscosity and angular frequency, σ0 = ∂p
∂z R, and Jl(·) is the Bessel function

of first kind of order l. For all the models considered, we set ã = 0.1. Table 1 provides expressions for
parameter ξ2 and ranges of fractional orders for all three models. The details of velocity and stress
profiles derivation can be found in [1].

Table 1. Fractional models and their parameters.

Model

Parameter
ξ2 α β γ δ

Fractional Maxwell
(
ρω2/E

)[ 1
(iωτ)α + 1

(iωτ)β

]
[0, 1] [0, 1] − −

Fractional Zener
(
ρω2/E

)[ 1

(E0/E)(iωτ)γ+ (iωτ)α+β

(iωτ)α+(iωτ)β

]
[0, 1] [0, 1] [0, 1] −

Fractional Burgers
(
ρω2/E

)[ 1
(E0/E)

(
(iωτ)γ+(iωτ)δ

) + 1(
(iωτ)α+(iωτ)β

)
]

[0, 1] [1, 2] [0, 1] [0, 1]

3.2. Velocity Profiles for Fractional Maxwell Model

For fractional Maxwell model parameters that can vary are fractional orders α and β. We examine
dynamics of normalized velocity along pipe diameter with respect to nondimensional frequency, ω̃.
Both fractional orders α and β are varied considering α ≥ β. Let us first fix β = 0.2 and vary α: α = 0.2,
..., 1 (See Supplementary Materials animation muz1https://youtu.be/wNkKfdEOS4Q). Alternatively,
α = 1 and β is varied as: β = 0.2, ..., 1 (animation muz2 https://youtu.be/2dWZ6KNwL5I). These two
velocity profiles have both similarities and distinct differences. Consider similarities first. Oscillatory
behavior of the velocity profile is observed with respect to both spatial and frequency coordinates while
for the latter these oscillations are also damped. Moreover, up to a certain nondimensional frequency,
velocity increases rapidly until forming a nearly parabolic profile. Additionally, with α and β increasing,
resonant peaks of velocity profile shift to higher values of non-dimensional frequency. Upon passing
this profile, oscillations emerge along the pipe diameter. The dynamics of initial parabolic profile,
however, differ when changing α and β. In particular, when β is fixed and α increases, peak amplitudes
in initial parabolic profile oscillate. In contrast to it, when we fix α and vary β, initial parabolic profile
peak amplitude gradually decreases with increasing β. What is even more noticeable, for α = 1 and
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β = 0.2, ..., 1 , the velocity profile reduces to parabolic for the entire range of nondimensional frequency
as β increases. This result is not surprising as for α = 1 and β = 1 we end up with a Newtonian fluid.

3.3. Stress Profiles for Fractional Maxwell Model

Now let us have a look at stress profiles (animations msf1 https://youtu.be/3YnhhJUy1Wg and
msf2 https://youtu.be/wTi8FdTpyok). Here again we either fix β = 0.2 and vary α: α = 0.2, ..., 1
(animation msf1) or fix α = 1 and vary β: β = 0.2, ..., 1 (animation msf2), while satisfying α ≥ β. Let us
start from the similarities. The profiles are symmetrical with respect to pipe centerline. For both cases,
stress exhibits aperiodic oscillations in a frequency domain and increases monotonically (nonlinear)
from the pipe center up to the wall. Here come the differences. When β is fixed, stress peak amplitudes
oscillate with increasing α in frequency domain with resonant peak shifting to higher values. More
specifically, peak amplitude initially decay up to α ∼ 0.5. For α > 0.5 trend reverses. Interestingly, the
rate of amplitude change is higher for α < 0.5. The situation changes dramatically when α = 1, β = 0.2,
..., 1 . While the initial behavior is very similar to the first case, the stress becomes independent of
frequency and increases linearly from the pipe center up to the wall as β approaches unity (Newtonian
fluid).

3.4. Velocity Profiles for Fractional Zener Model

Fractional Zener model is described by four parameters, namely three fractional orders α, β, γ

and elastic parameter ψ (ψ = E0/E). Let us first set ψ = 1 and examine contributions made by
fractional orders α, β, γ. In the first pair of animations (zuz1 https://youtu.be/T8LLEwgiC4k and
zuz2 https://youtu.be/dXQCrXTNLbQ) we investigate the influence of fractional order α (α = 0.2,
..., 1) for two limiting cases of β and γ (β = γ = 0.2 and β = γ = 1, respectively). In both cases
we observe parabolic profiles along the pipe diameter with the amplitude increasing when so does
nondimensional frequency. However, in case of lower limits for fractional orders β and γ, the parabolic
profile is followed by complex oscillatory pattern. Moreover, peak values of initial parabolic profile
also oscillate. The situation is strikingly different if we consider the upper limit for fractional orders
β and γ (β = γ = 1). Here parabolic profile occupies the entire range of nondimensional frequency
considered. Moreover, it is independent from fractional order α.

Let us now have a look at the impact of the fractional order β. More specifically, we fix fractional
orders α = 1, γ = 0.2 (animation zuz3 https://youtu.be/bjLWJxFWy8I) and α = 1, γ = 1 (animation
zuz4 https://youtu.be/9VaIO3HkW8Y), while varying β: β = 0.2, ..., 1. Initial velocity profiles look
somewhat similar to the previous case. That is, for lower limit value of γ profile is initially parabolic
and switches to oscillatory in both space- and frequency domains. For the upper limit of γ, increasing
parabolic profile along pipe diameter occupies entire frequency domain. However, it all changes when
β start increasing. In particular, velocity profile gradually becomes parabolic along pipe diameter for
the entire frequency range thus delivering a case of Newtonian fluid (animation zuz3 https://youtu.
be/bjLWJxFWy8I). For the upper limit value of γ (animation zuz4 https://youtu.be/9VaIO3HkW8Y),
the amplitudes of parabolic profile gradually decrease (up to roughly 60% from the maximum value)
with increasing β.

Next, we investigate the effect of varying fractional order γ. More specifically, we fix α = 1 for
both lower limit of β (β = 0.2, animation zuz5 https://youtu.be/j8AGHtMGXV8) and upper limit of
β (β = 1, animation zuz6 https://youtu.be/-wJNeA8hTXY), while varying γ: γ = 0.2, ..., 1. While the
plots exhibit some similarities with the case of varying fractional order β, their dynamics is different. In
particular, the rate of amplitudes decay for both parabolic and oscillating components is much higher.
The same can be said when the profile turns to a parabolic for the entire frequency domain. As for the
upper limit value of β, the amplitudes of parabolic profile also decay relatively faster (up to roughly
35% from the maximum value).

Finally, we consider the impact of elastic parameter ψ. More specifically, we fix α = 0.5 and
β = 0.2 for both lower (animation zuz7 https://youtu.be/GExLFiUC8Hk) and upper (animation zuz8
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https://youtu.be/YbKXMIgcwSY) limits of fractional order γ (γ = 0.2 and γ = 1, respectively). At
the same time, we vary ψ: ψ = 0.01...100. For the lower limit of γ, the peak amplitudes of the velocity
profile increase until switching happens (ψ ∼ 20) from parabolic+oscillatory behavior to purely
parabolic. Upon reaching parabolic profile, its amplitudes start decaying while further increasing ψ.
The rate of decay, however, decreases with increasing ψ (especially for ψ > 30). Different from all
other cases with upper limit values of fractional order set, here for γ = 1 we observe a combination of
parabolic and oscillatory profiles for lower values of ψ. It changes abruptly to a parabolic one (ψ ∼ 0.1)
and almost vanish for ψ > 5. This more complex structure can, however, be attributed to the fact that
we set α not at the upper limit value (α = 1) but at α = 0.5.

Generally speaking, the influence of fractional orders and elastic parameter on a velocity profile
is quite different. The strongest effect is achieved when varying elastic parameter ψ. Among fractional
orders, the most powerful contribution in a profile dynamics is made by the fractional order γ,
while influence of α is the weakest one. This trend is especially visible for the upper limit values of the
fractional orders.

3.5. Stress Profiles for Fractional Zener Model

We further consider the dynamics of stress profiles for fractional Zener model. We first fix
ψ = 1 and examine the influence of fractional parameters only. We consider the contribution made
by the different parameters in the same order as for velocity profiles, i.e., varying α, β, γ and ψ.
Let us start from the fractional order α. Corresponding plots are shown in animations zsf1 https:
//youtu.be/SOV4_XRiL1s and zsf2 https://youtu.be/ajgZpM0JQS8. For the first one we set β = 0.2,
γ = 0.2 and vary α: α = 0.2, ..., 1. As previously, profile is symmetric with respect to the pipe centerline.
Moreover, it exhibits abruptly decaying aperiodic oscillations in a frequency domain. As α increases,
peak amplitudes of the stress initially reduce, followed by increase for α > 0.5. Different from fractional
Maxwell model (see animation msf1 https://youtu.be/3YnhhJUy1Wg), the rate of peak amplitude
change appears to be almost the same for α < 0.5 and α > 0.5. The stress profile for upper limit values
of β and γ is shown in animation zsf2 https://youtu.be/ajgZpM0JQS8. It reveals that the stress is
independent from the fractional order α and remains almost the same for the entire frequency domain.

Next, we examine the influence of fractional order β. More specifically, α is fixed (α = 1) with β

varying (β = 0.2, ..., 1) and limiting values of γ. Stress dynamics for γ = 0.2 is given in animation zsf3
https://youtu.be/jSkii6WKFlg. Different from the case with varying α, here we observe switching
from oscillatory to constant behavior in a frequency domain as β increases. Stress profile for upper
limit of γ (γ = 1) is shown in animation zsf4 https://youtu.be/zpyOc_J-Xnc. It turns out to be very
slightly increasing at the pipe walls with increasing β in a frequency domain, while linearly increasing
from the pipe center up to its walls.

Let us now vary fractional order γ. We set α = 1; β = 0.2 (animation zsf5) https://youtu.be/
M72Hy5s1D_U or β = 1 (animation zsf6 https://youtu.be/A-yh4HRlXz4) and vary γ: γ = 0.2, ..., 1.
Here again we observe a switch from oscillatory to V-shape profile with increasing γ (β = 0.2). When
β = 1, V-shape profile is present for the entire range of γ. It slightly decays at the pipe walls. However,
this decay vanishes with increasing γ to to being completely independent from ω̃.

Finally, we looked at the difference made by varying elastic parameter ψ. We fixed α = 0.5,
β = 0.2, vary ψ (ψ = 0.01...100). The lower limit case (γ = 0.2) is given in animation zsf7 https:
//youtu.be/qlLd7LQ6mtw. Switching between oscillatory and V-shape profiles is observed. However,
its dynamics is different from the cases of varying fractional orders. More specifically, the peak
stress values first increase with increasing ψ. This trend is observed until switching to V-shape
profile, when stress amplitudes start gradually decrease. Next, we set γ = 1 (animation zsf8 https:
//youtu.be/WqIpXuk0tG8). Here too, a drastic difference from all the cases with varying fractional
orders is observed. That is, complex symmetric oscillatory profile is present for the lowest values of
ψ. As ψ starts increasing, stress amplitudes drop abruptly and switching to a V-shape profile occurs.
Upon reaching this point, stress amplitude at the pipe walls starts growing.
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3.6. Velocity Profiles for Fractional Burgers Model

Finally, let us examine the most complex model presented in this study, fractional Burgers
model. Here five parameters should be considered, namely four fractional orders α, β, γ, δ and elastic
parameter ψ. Here we follow the pattern used above to maintain consistency. In particular, we first
fix elastic parameter value and study the influence of fractional parameters on model dynamics and
then include varying elastic parameter in consideration. To demonstrate the model to be universal,
we picked a different value of elastic parameter, ψ = 10, when varying fractional orders α, β, γ and δ.
It is worth remembering that for fractional Burgers model the range of fractional order β is different
(1 ≤ β ≤ 2) from those for fractional Maxwell and Zener model (0 ≤ β ≤ 1).

As previously, let us start from a varying fractional order α (α = 0.2, ..., 1). We fix β = 1.2
and consider lower (γ = 0.2, δ = 0.2) and upper (γ = 1, δ = 1) limits of the fractional orders γ

and δ. Corresponding plots are shown in animations buz1 https://youtu.be/tLqceVl3ywk and buz2
https://youtu.be/JlIdYSZ-hbk. For lower limit values of fractional orders γ and δ, velocity profile
appears to be independent from the fractional order α. Moreover, profile itself looks different from
those fractional Maxwell and Zener models (for varying α). In particular, as nondimensional frequency
increases, the velocity profile changes from parabolic to a resonant with plateaus. This difference,
however, can be attributed to the fact that we picked a different value of elastic parameter ψ. When
upper limit values of γ and δ are considered, velocity profile changes to parabolic with gradually
increasing amplitude for the entire frequency domain. As α increases, no changes in profile shape
are observed until α ∼ 0.6. Starting from it, peak profile value starts decreasing and reduces by
approximately 40%.

Next, we fix α = 1 and consider the impact of fractional order β. Velocity profile for lower limit
of the remaining fractional orders (γ = 0.2, δ = 0.2) is given in animation buz3 https://youtu.be/
TUZE3HmaUg8. While the initial profile looks similar to the previous case, its dynamics with β differs.
More specifically, profile consists of parabolic and resonant profiles. As β increases, peak value of
parabolic profile slowly increases. Upon reaching β ∼ 1.8 it remains almost unchanged. In contrast to
it, as shown in animation buz4 https://youtu.be/Cp6h-9S-7hA, for γ = δ = 1, there is only parabolic
profile present for the entire frequency domain. Its peak amplitudes decrease gradually with increasing
β dropping by approximately 70% from their maximum values. Moreover, as β surpasses a certain
value (β ∼ 1.7), profile remains almost unchanged up to upper limit (β = 2).

Now let us have a look at the influence made by varying fractional order γ. More specifically,
we fix α = 1, consider lower (β = 1, δ = 0.2) and upper (β = 2, δ = 1) limits for fractional
orders β and δ. Finally, we vary γ in a range: γ = 0.2, ..., 1. For the lower limit (animation buz5)
https://youtu.be/X2DWL3tJDV8 we start with a combination of parabolic and resonant profiles. As γ

increases, peak value amplitudes for both components gradually decrease. Simultaneously, the profile
degenerates to a parabolic for the entire frequency domain. These trends are observed up to γ ∼ 0.6.
Upon passing this value, profile remains parabolic. Its peak amplitude starts slowly increasing up to the
limit value (γ = 1). When it comes to upper limit ((animation buz6) https://youtu.be/hs7pUv2nybo),
dynamic parabolic profile is observed for the entire frequency domain. It, however, has some specifics
that distinguishes it from previous cases. That is, for lower values of γ, peak values of parabolic
profiles approach resonance at a certain ω̃, then starts decaying, and finally reaches nearly constant
value. The situation, however, changes when γ starts increasing. Peak values of parabolic profile
start reducing until peak itself disappears. Then for the entire frequency domain parabolic profile is
observed with amplitudes gradually increasing with ω̃.

The last, but the least fractional order to vary is δ. Other fractional orders are as follows: α = 1;
β = 1, γ = 0.2 (lower limit) and β = 2, γ = 1 (upper limit). Finally, δ = 0.2, ..., 1. Lower
limit case is given in animation buz7 https://youtu.be/wmkBTIXXI0I. Similar to animation buz5
https://youtu.be/X2DWL3tJDV8, where we varied γ, a combination of parabolic and resonant profiles
is observed. With δ increasing it degenerates to a parabolic profile for the entire frequency range with
a resonance at a certain ω̃. For the upper limit (animation buz8 https://youtu.be/0UQ6tFeV3yc) the
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profile is overall similar to animation buz6 https://youtu.be/hs7pUv2nybo, where varying γ was
considered.

Finally, we consider the impact made by a varying elastic parameter ψ. Here ψ changes in
a range ψ = 0.1, ..., 100. We start from α = 1, β = 1, γ = 0.2 and δ = 0.2 (animation buz9
https://youtu.be/t_BV2foEg5w). The profile dynamics appears to be the most complex considered so
far. For the lowest values of ψ we have a combination of parabolic profile, inclined decaying oscillations
that are symmetric with respect to pipe centerline. The latter enclose a plateau. As ψ increases, this
complex combination transforms to parabolic+oscillatory profile observed for fractional Maxwell and
Zener models. Next, it turns to a combination of parabolic and resonant profiles. With further increase
in ψ, parabolic profile with resonance at certain ω̃ emerges. Finally, it becomes a simple parabolic
profile with the amplitude increasing with ω̃. The next set of fractional parameters considered is:
α = 1, β = 2, γ = 0.2, and δ = 0.2 (animation buz10 https://youtu.be/Fyel0IDrbtU). The variety of
the profiles remains the same. However, in this case switching between them occurs slower compared
to the previous one. Moreover, relative peak amplitudes turn out to be higher. Two final profiles
correspond to parameter sets: α = 1, β = 1, γ = 1, δ = 1 and α = 1, β = 2, γ = 1, δ = 1 (animations
buz11 https://youtu.be/MboUM5_YEM0 and buz12 https://youtu.be/U7uPEOWOc5s, respectively).
This pair appears to be a way more simpler compared its immediate predecessors. More specifically,
for both cases plots represent a combination of parabolic and M-shape profiles. Both reduce to simple
parabolic profiles as ψ increases, with amplitudes increasing when so does ω̃. In contrast to animation
buz10 https://youtu.be/Fyel0IDrbtU, in animation buz12 relative peak amplitudes decay faster for
the upper limit of β (β = 2). Relative simplicity of these two profiles can be attributed to the fact that
all fractional orders as well as their differences are set to integers.

3.7. Stress Profiles for Fractional Burgers Model

Finally, we will have a look at the dynamics of stresses for fractional Burgers model. In picking the
values for parameters affecting system behavior, we pursue the logic developed for the velocity profiles.
In particular, we first fix the value of the elastic parameter at ψ = 10, set limiting values for three out of
four fractional parameters and vary the fourth one. Then vary ψ for various limiting values of fractional
orders. Once again, let us start from varying fractional order α (α = 0.2, ..., 1). Simultaneously, we set
β = 1.2, γ = 0.2, δ = 0.2 for lower limit (animation bsf1 https://youtu.be/Pa3jHar4Ld8) and β = 1.2,
γ = 1, δ = 1 for the upper limit (animation bsf2 https://youtu.be/mTf29Vn1TSQ). When compared
to animations zsf1 https://youtu.be/SOV4_XRiL1s and zsf2 https://youtu.be/ajgZpM0JQS8 for
fractional Zener model, both similarities and differences can be outlined. For upper limit values,
stresses are independent from α and do not change in frequency domain. For lower limit, plots have
similar structure and are independent from α. At the same time, for Zener model major peak is sharper
and higher, while for Burgers it has lower peak amplitude and is way more dispersive.

Next, we fix α = 1 and consider the impact of fractional order β. Velocity profile for lower limit
of the remaining fractional orders (γ = 0.2, δ = 0.2) is given in animation bsf3 https://youtu.be/
UdAFrW3Ut-8. It differs dramatically from a similar plot for fractional Zener model (animation zsf3
https://youtu.be/jSkii6WKFlg). In particular, while aperiodic oscillations are also observed in both
frequency and space domains, no switching to V-shape profile occurs. Instead, amplitude of major
peak slowly increases with increasing β. As for the upper limit (γ = 1, δ = 1), static V-shape profile is
observed.

Now let us have a look on the influence made by varying fractional order γ. More specifically,
we fix α = 1, consider lower (β = 1, δ = 0.2) and upper (β = 2, δ = 1) limits of fractional orders
β and δ. Finally, we vary γ in a range: γ = 0.2, ..., 1. For lower limit, plot is shown in animation
bsf5 https://youtu.be/eRX9wVxeW_Y. It exhibits aperiodic oscillations in both space- and frequency
domains. As γ increases, the value of the major peak increases too. Moreover, the peak itself shifts to
higher values of ω̃. When compared to appropriate Zener model (animation zsf5 https://youtu.be/
M72Hy5s1D_U), a striking difference can been seen. More specifically, for Zener model, increasing γ
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results in switching profile from oscillating to V-shape. For the upper limit, plot is given in animation
bsf6 https://youtu.be/owVOe5Nvc9Q. As γ increases, it demonstrates switching between oscillatory
and V-shape profiles. When compared to appropriate Zener model (animation zsf6 https://youtu.be/
A-yh4HRlXz4), the major difference is that for the latter only V-shape profile is present.

Next in line, we consider varying fractional order δ (δ = 0.2...1). Corresponding plots for lower
limit (α = 1, β = 1, γ = 0.2) and upper limit (α = 1, β = 2, γ = 1) are shown in animations bsf7
https://youtu.be/8H_w4KVlAp8 and bsf8 https://youtu.be/Djga0UAMybI, respectively. We start
with the lower limit case. Here we observe aperiodic oscillatory behavior of the stress profile. As δ

increases up to δ ∼ 0.5, amplitudes of the major peaks decrease. Upon passing this point, trend
reverses and peak amplitudes start increasing up to the upper limit of δ (δ = 1). For the upper limit
case switching between aperiodic oscillatory and V-shape profiles occurs as δ increases. Interestingly,
relative stress amplitudes keep decreasing for the entire δ range. At the same time, the rate of this
decrease gradually becomes smaller and is almost not visible for δ > 0.8.

Finally, we consider the impact made by a varying elastic parameter ψ. Here ψ changes in a
range ψ = 0.1, ..., 100. We start from the pair α = 1, β = 1, γ = 0.2, δ = 0.2 (animation bsf9
https://youtu.be/a_TNASPHc8Y) and α = 1, β = 2, γ = 0.2, δ = 0.2 (animation bsf10 https:
//youtu.be/v35B5JzHzmE). Different from all the cases with varying fractional orders, here we
observe very sharp major peaks in a frequency domain followed by abrupt decay and almost zero,
flat plateaus. As ψ increases, aperiodic oscillatory profiles in space domain emerge. Moreover, major
peaks become more dispersive and move to higher values of nondimensional frequency. For both cases
profiles are on the track to V-shape but end up with nonlinear behavior in both space and frequency
domains. Thus, a typical picture observed earlier with V-shape profile and stress independent from
nondimensional frequency is not achieved. The difference between two is in the relative amplitudes
of the major peaks. These are larger when the upper limit for β is set (β = 2, animation bsf10
https://youtu.be/v35B5JzHzmE). Animations bsf11 https://youtu.be/KKaSzIMAMDY and bsf12
https://youtu.be/d_qQx1P7fXw show the cases with the upper limits of fractional orders γ and
δ. More specifically, animation bsf11 corresponds to α = 1, β = 1, γ = 1, δ = 1, while animation
bsf12 shows the case of α = 1, β = 2, γ = 1, δ = 1. For both cases curved V-shaped profiles are
observed starting from the lowest values of ψ. As ψ increases, both profiles tend V-shape and become
independent from nondimensional frequency ω̃. Both profiles remain unchanged for ψ > 5. The only
difference is that for upper limit of β (β = 2, animation bsf12) the rate of transformation to V-shape
profile is higher.

We would like to pay attention to a parameter ξ. It has been earlier introduced as a wave
number but is also related to other physical quantities. A closer look at Table 1 reveals similarities
in the form of these expressions. More specifically, ξ2 for fractional Maxwell, Zener, and Burgers
models differ by the terms in square brackets. What are these terms? In fact, divided by E, these are
complex compliances, J∗(ω) (ξ2 = ρω2 J∗(ω)), as they were defined in literature (see, for example,
[22] for fractional Maxwell and fractional Zener models). As ξ enters both velocity and stress profiles,
it delivers deeper physical meaning and establishes its role in fluid flow characterization. Moreover,
with complex compliance introduced, other physical quantities can be readily obtained, including
creep compliance, complex, and relaxation moduli. All these quantities are routinely measured in
experiments for material properties characterization.

Fractional orders, their mutual influence, and underlying physical meaning should also be
considered. Each fractional order (except for β in fractional Burgers model) varies in a range from 0
to 1. As outlined earlier, it allows to balance material properties between purely elastic and purely
viscous. The same is true for all the differences of fractional orders. However, when both elastic and
viscous behavior are present, damped oscillations of flow velocity are observed (in nondimensional
frequency domain). Velocity profiles for models considered in this study are not symmetrical with
respect to fractional orders. To better understand this phenomenon, let us look again at velocity profiles
for fractional Maxwell model. Why does profile behavior in frequency domain differ in animations
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muz1 https://youtu.be/wNkKfdEOS4Q and muz2 https://youtu.be/2dWZ6KNwL5I? In animation
muz1 an initial situation (α = β = 0.2) results in α − β = 0 in the left-hand side of the constitutive
equation. At the same time, in the right-hand side α = 0.2. Consequently, damped (α �= 0) oscillations
are observed. When α increases, α − β �= 0. It starts contributing in oscillatory behavior of the flow.
That is why damped oscillations are present for α = 1. Now examine animation muz2. At the very
beginning we have α = 1 and α − β = 0.8. When β starts increasing, oscillations in frequency domain
gradually disappear. Why? Because we are on the track to pure dashpot that is reached for α = β = 1
(α = 1 in a right-hand side of (7) and α − β = 0 in a left-hand side of (7)).

Finally, if we examine Figure 2, simple-to-complex approach in constructing fractional viscoelastic
models can be restored. All the models are constructed via connecting fractional elements in series/
parallel. For instance, fractional Zener model is readily obtained from Maxwell one via adding
fractional element in parallel. More complex models can be built in a similar fashion. Fractional
Burgers model, for example, can be obtained from fractional Kelvin-Voigt one, as outlined in
[1]. Fractional viscoelastic models are principally different from their integer-order counterparts.
An increase in the number of fractional elements is made to properly describe the specific class of
materials. For integer-order models, adding more elements often serves to increase model accuracy.
Thus, fractional viscoelastic models not only help to describe behaviors missed by integer-order ones
but also simplify problem solving and material characterization.

4. Conclusions

This study has provided detailed parametric analysis of velocity and stress profiles for three
fractional viscoelastic models, namely Maxwell model, Zener model, and Burgers model. These models
were chosen to represent two-, three- , and four-element viscoelastic systems. Two types of parameters
were considered: fractional and elastic. We have extended 2D projections of velocity and stress profiles
studied in [1] and considered 3D dynamic velocity and stress surfaces in space and frequency domains.
It allowed better visual representation of quantities studied. Surface plots simplified comparison of
contributions made by varying individual fractional orders for each model considered. Dependent
on researchers’ needs, proper altering of fractional and elastic parameters can be made. Whether
achieving of local/global minimum/maximum is required for practical applications, an optimal
operating regime can found and visualized. In case the predictions of fractional models should be
compared with classical or Newtonian ones, we have provided corresponding constitutive equations.

Fractional Maxwell model was found to be dependent on a pair (α, β) of fractional parameters
only. The model has demonstrated dynamic behavior with fixed one and varying another fractional
parameter, switching from a combination of parabolic and oscillatory behaviors (for lower values of
fractional parameters) to purely classic parabolic behavior for the velocity profile (for higher values
of fractional parameters). The latter took place only when both tended to unity that corresponded to
Newtonian fluid. Fractional Zener model was found to be dependent on three fractional parameters
and one elastic parameter. Among these four parameters, the strongest impact is made by the elastic
one. As for varying fractional orders, the strongest effect (profile switching rate) was caused by
γ, while the weakest by α. Moreover, for all combinations of upper limits for fractional orders,
only parabolic profiles were observed. Fractional parameters were found to be proportional to the
“rate” of switching between parabolic+oscillating and parabolic profile as well as determining the
position of the dominant resonant peak in frequency domain. Fractional Burgers model was defined
by four fractional parameters and one elastic parameter. As changing various parameter combinations,
several distinct profile types have been obtained. When elastic parameter was fixed, combinations
of three fractional parameters set to lower limit with fourth varying resulted in a combination of
parabolic and complex resonant (with plateaus) components of varying amplitudes. No switching to
purely parabolic profiles was observed. In contrast to it, when three out of four fractional parameters
were set to their upper limits, velocity profiles appeared to be purely parabolic with amplitudes
decreasing with fractional orders α and β increasing. At the same time, peak amplitudes grew
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monotonically in a frequency domain. When fractional parameters γ and δ varied, the shape of the
parabolic profile changed. More specifically, in a frequency domain it demonstrated a presence of
resonant peak followed by decay and finally reaching a nearly constant value. For changing elastic
parameter, new types of velocity profiles emerged. In particular, setting fractional orders to lower
limits resulted in a series of changing profiles. It started with a combination of parabolic profile,
inclined decaying oscillations that were symmetric with respect to pipe centerline. The latter enclosed
a plateau. Next, it transformed to parabolic+oscillatory profile. Further increase in ψ resulted in
parabolic profile with resonance at certain ω̃. We ended up with a simple parabolic profile with the
amplitude increasing with ω̃. For upper limit values of fractional parameters, a dynamic combination
of parabolic and M-shape profile was obtained.

Stress profiles for all three models exhibited three types of behavior. These were aperiodic oscillations
in spatial and frequency domains and V-shape profiles (curved or straight). Individual features of the
stress profiles, however, varied from model to model. In particular, for fractional Maxwell model the
stress profiles changed dynamically with the fractional parameters. More specifically, an increase in
fractional parameters resulted in switching from aperiodic oscillations to V-shape profile. For fractional
Zener model, two types of behavior were obtained: switching and complete independence from
fractional parameters. Stress profiles independent from fractional parameters corresponded to “classic”
case. Finally, for fractional Burgers model all three types of profiles were obtained. Different from
fractional Zener model, however, here V-shape profiles were observed for both lower and upper limits
of fractional orders.

The variety of profile shapes and its dynamics clearly demonstrates how powerful the approach
developed is. It is applicable for completely different materials in a wide range of viscous and
elastic properties. Dependent on the material used, an appropriate model can be chosen for more
accurate predication of viscoelastic pipe flow dynamics. The beauty of the approach developed is that it
provides analytical generalization of several most commonly used viscoelastic models as well as clearly
demonstrates how rich and complex flow dynamics is when applying fractional calculus methods.

The methods developed in this study not only allow representation of different viscoelastic
models in a similar functional form but also relate purely mathematical quantities with that
measured experimentally. Thus, theoretical considerations appear to be on a venue of immediate
practical applications.
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Abstract: Fractional calculus is a relatively old yet emerging field of mathematics with the widest
range of engineering and biomedical applications. Despite being an incredibly powerful tool, it,
however, requires promotion in the engineering community. Rheology is undoubtedly one of the
fields where fractional calculus has become an integral part of cutting-edge research. There exists
extensive literature on the theoretical, experimental, and numerical treatment of various fractional
viscoelastic flows in constraint geometries. However, the general theoretical approach that unites
several most commonly used models is missing. Here we present exact analytical solutions for
fractional viscoelastic flow in a circular pipe. We find velocity profiles and shear stresses for fractional
Maxwell, Kelvin–Voigt, Zener, Poynting–Thomson, and Burgers models. The dynamics of these
quantities are studied with respect to normalized pipe radius, fractional orders, and elastic moduli
ratio. Three different types of behavior are identified: monotonic increase, resonant, and aperiodic
oscillations. The models developed are applicable in the widest material range and allow for the
alteration of the balance between viscous and elastic properties of the materials.

Keywords: Riemann–Liouville fractional derivative; viscoelasticity; pipe flow; fractional Maxwell
model; fractional Kelvin–Voigt model; fractional Zener model; fractional Poynting–Thomson model;
fractional Burgers model

1. Introduction

The very first consideration of the problem involving fractional differential equation is traced
back to the very end of the seventeenth century. It was Leibniz who introduced the notation dn/dxn

and L’Hospital who asked Leibniz: “What if n be 1/2?”. Leibniz response to this question has laid the
foundations of what is today known as fractional calculus (FC) [1]. Despite these early attempts made
by outstanding minds who were definitely ahead of their time, further development towards practical
applications appeared to be somewhat slow. An interested reader can refer to an excellent review of
Ross for details on early stages of FC development [2].

The fundamentals of FC along with a brief applications overview can be found in classical books
by Miller and Ross [3], Podlubny [4], or more recent one by Mainardi [5]. In the following decades
it became obvious that with the incredible potential of FC to tackle problems in absolutely different
fields, each of them should be addressed separately. By these means the general approaches in solving
fractional differential equations could be tailored to reflect the specifics of a given field, optimize
solution process, and formulate reliable constraints and ranges for, sometimes, purely mathematical
parameters. Along these lines, readers with a background in physics can refer to [6–9], while those
from the engineering field can refer to [10,11].
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The comprehensive overview summarizing state-of-the-art practical applications of FC has been
recently published by The Royal Society Publishing. The sixteen-paper issue entitled “Advanced materials
modeling via fractional calculus: challenges and perspectives” [12–27] covers applications of constant-order
(CO) and variable-order (VO) fractional differential operators to several fundamental phenomena. These
include anomalous diffusion, [13,16] heat conduction [14,27], fractional viscoelasticity of fluids [19],
and materials [12,18,22]. The approach to model viscoelastic properties of materials with VO FC operators
is undoubtedly among the most promising ones, as it allows for the consideration of fractional order
dynamics with respect to time, space, and material variables [22].

Viscoelasticity has been in the scope of researchers’ interest since the nineteenth century and
has gone through gradual development. With mathematical apparatus available at the time, several
mechanical models have been proposed, developed, and generalized to address the problem of
a more accurate description of material properties observed. Those classical models named after
researchers who made a significant contribution to the field include but are not limited to Maxwell,
Kelvin, Voigt, Zener, and Burgers. Based on two principal elements, spring and dashpot, connected
in series and/or in parallel, those models met the needs of adequate material response description
towards stresses and strains applied. However, as it often happened, experimental results started to
accumulate, which illustrated the behaviors beyond the above-mentioned models. This issue was
addressed from scratch, namely via rethinking of a basic element by Scott-Blair in 1947 [28]. He came
up with an idea of considering a single element capable of a simultaneous description of viscous
and elastic properties of the material. This approach capitalized on a notion of fractional derivative
and allowed for the alteration of the balance between viscous and elastic properties without any
additional complexity, but covering a wide range of materials. The systematic study of fractional
calculus applications to viscoelasticity was made by Bagley and Torvik [29], who laid theoretical
foundations of this approach. Since that time the field had emerged, especially when biomedical
applications were outlined. Historically, several approaches were developed to implement balancing
between viscous and elastic properties of materials. Initially, ordinary first-order constitutive equations
were straightforwardly replaced with fractional counterparts [30–34]. An obvious drawback of this
approach was its purely phenomenological character. An alternative approach implied physical
representation of fractional constitutive equations via hierarchical combinations of dashpots and
springs [35–38]. This concept (so-called ladder models) has been successfully implemented in further
studies by Schiessel et al. [39] and Friedrich et al. [40]. The authors have considered generalized
viscoelastic models, replaced them with fractional ones, and obtained their analytical solutions in
terms of relaxation modulus and creep compliance.

Numerous studies have demonstrated the superiority of fractional calculus approach compared
to classical one in predicting viscoelastic properties of materials and flows in various geometries.
Hernandez et al. [41] studied the behavior of relaxation modulus for polymethyl methacrylate (PMMA)
and polytetrafluoroethelene (PTFE) and demonstrated much more accurate fitting of experimental
data using fractional Maxwell model compared to integer-order one. Markis et al. [42] proposed and
experimentally verified the generalized fractional Maxwell model in the design of damper systems for
seismic and vibration isolation. Zhang and coworkers [43] have studied the stress-relaxation behavior
of fabrics coated with PTFE under various temperatures. The authors demonstrated the superiority of
fractional Maxwell model in predicting stress-relaxation behavior. This behavior was experimentally
proven to be nonlinear, while predicted to be linear by the classic Maxwell model. Moreover, compared
to the generalized Maxwell model, the fractional one appeared to be much easier, as it did not require
a large number of structural units to increase accuracy. The similar results for fractional Maxwell and
fractional Zener models were obtained for elastomers (carbon-black filled resins) [44–46], polymers
and rocks [47], and biological materials [48]. Fractional Kelvin–Voigt model was found to be efficient
in predicting viscoelastic behavior of sludge [49].

Fractional calculus approach to viscoelasticity found applications not only for solids, as shown
above, but also for various fluids. A brief historic retrospective reveals that both classic and fractional
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viscoelastic fluid flows in constrained geometries, especially pipes and ducts, turned out to be of
a particular researchers’ interest for about a century. This can be attributed to the fact that such
geometries are widely used for practical applications and also admit relatively easy analytical
solutions. Oscillatory pipe flows were among thoroughly investigated. Its classical consideration was
traced back to 1920–1930s [50,51]. These seminal studies were further extended and generalized by
Wornersley, Uchida, and others [52–55]. Later researchers considered dynamics of oscillatory pipe
flows at various Reynolds numbers [56,57], both experimentally and theoretically, and specifically
investigated transition to turbulence [58,59]. The foundations of fractional derivatives towards fluids
viscoelastic behavior were laid by Bagley and Torvik [29]. Wood [60] studied viscoelastic transient
flows in cylindrical pipes and annulus. Yin et al. [61] provided a theoretical framework for oscillating
viscoelastic pipe flow using fractional Maxwell model. The authors demonstrated a drastic difference
in velocity profile compared to the integer-order Maxwell model. Viscoelastic start-up flow with
the fractional Maxwell model was considered by Yang et al. [62]. A similar problem in the annular
pipe using fractional Burgers model was solved by Shah et al. [63]. An unsteady viscoelastic flow
in a cylinder [64] and rectangular duct [65] (using fractional Maxwell model) were also considered.
The exact solutions of unsteady flow in cylindrical domains with Maxwell fractional model were
derived by Khandelwal and Mathur [66,67]. Maqbool and coworkers [68] considered a flow of
generalized fractional Burgers fluid in inclined tube. Tang et al. [69] studied nonlinear free vibrations
of a pipe conveying fractional viscoelastic fluid. They demonstrated decreasing mode amplitudes
with increasing fractional order. Wang and Chen [70] considered a similar problem for the pipeline
conveying fractional fluid more accurately employing Legendre polynomials. Javadi et al. [71]
investigated the effect of gravity on fractional viscoelastic fluid flow in a pipe and addressed the
problem of stability for it. This selected list of fractional calculus applications is far from complete.
An interested reader can refer to a recent review of Sun et al. [72]. A big picture of various applications
of FC is also given in [17,23].

However, despite abundant theoretical, numerical, and experimental results on fractional
viscoelastic flow in pipes, the general, unifying theoretical approach to tackle flow dynamics is
still missing. To fill in this research gap, this paper provides exact analytical solutions for velocity
profiles and shear stresses. We demonstrate that the same solution form is applicable for different
viscoelastic models including Maxwell, Kelvin–Voigt, Zener, Poynting–Thomson, and Burgers.
Velocity profiles and shear stresses are studied parametrically with respect to fractional order and
elastic properties (Young’s modulus ratio, starting from 3-element model). This paper is organized as
follows. We first provide general problem formulation for fluid flow along with domain definition
(Section 2.1). In Section 2.2 we introduce the notion of the fractional element and its governing
equation. Sections 2.3–2.7 provide constitutive equations for the most common fractional viscoelastic
models. The main results of this study appear in Section 3. In particular, Section 3.1 describes the
general approach of seeking the solution along with brief revisiting of applicable transformations.
Sections 3.2–3.6 present and discuss centerline velocity and shear stress profiles dynamics with varying
fractional order and elastic parameters. Two-, three-, and four-component fractional models are
considered. Finally, the results of this study are summarized in Section 4.

2. Problem Formulation

2.1. Domain Definition

Introduce cylindrical coordinate system (r, θ, z) and consider laminar flow of incompressible
viscoelastic fluid along z axis of infinitely long pipe of radius R with circular cross-section. The domain
of interest is shown in Figure 1. The governing equations are momentum and continuity that read as:

ρ
du
dt

= −∇p + divσ (1)
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divu = 0, (2)

where ρ, u, p, σ are fluid mass density, flow velocity, pressure, and stress, respectively and d
dt stands for

total derivative. Provided u = uz(r, t)ez, where ez is a unit vector in z-direction and all but σrz stress
tensor components are set to 0, the momentum equation reduces to:

ρ
∂uz

∂t
= −∂p

∂z
+

1
r

∂(rσrz)

∂r
, (3)

where uz stands for z-component of flow velocity and all other quantities are defined above. Additionally,
we apply nonslip boundary condition at the wall.

Figure 1. Domain definition for the circular pipe.

2.2. Fractional Element

The idea of introducing basic element accounting for both viscous and elastic properties of the
material belongs to Blair [28]. Here we follow a conventional approach of constructing more complex
mechanical models based on this element. For such an element, the stress-strain relation (constitutive
equation) reads as:

σ(t) = Eτα
aDα

t ε(t), 0 ≤ α ≤ 1, (4)

where σ(t), ε(t), E, τ, α stand for stress, strain, Young’s modulus, relaxation time and fractional order,
respectively. The limiting cases of α = 0 and α = 1 represent spring and dashpot, respectively. The schematic
of the element is given in Figure 2a. Here we use a conventional notation of Riemann–Liouville fractional
derivative of a smooth function, f (t), given by:

aDα
t f (t) =

1
Γ(k − α)

dk

dtk

∫ t

a
(t − t0)

k−α−1 f (t0)dt0, (5)

where k is the integer, α is the fractional order, and Γ(·) stands for Gamma-function defined as:

Γ(x) =
∫ ∞

0
e−t0 tx−1

0 dt0 (6)

In the following subsections we will provide constitutive equations for two-, three-, and four-component
fractional viscoelastic models.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Fractional models: (a) basic element; (b) Maxwell; (c) Kelvin–Voigt; (d) Zener; (e) Poynting–Thomson;
(f) Burgers.

2.3. Fractional Maxwell Model

We start our consideration from the simplest yet commonly used two-component fractional
model with basic elements connected in series (fractional Maxwell model, Figure 2b). The constitutive
equation for this model reads as [39]:

σ(t) + τα−β
aDα−β

t σ(t) = Eτα
aDα

t ε(t), 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, α ≥ β, (7)

where α and β stand for the fractional orders, τ, E are defined as:

τ =
(E1τα

1

E2τ
β
2

) 1
α−β , E = E1

(τ1

τ

)α
, E = E2

(τ2

τ

)β
, (8)

and E1, τ1, E2, τ2 are the Young’s moduli, relaxation times for elements “1” and “2”, respectively.
Constitutive equation of fractional Maxwell model (7) can be reduced to classical one, if α = 1 and
β = 0. Moreover, if we set α = 1 and β = 1, Newtonian fluid can be obtained. The ranges set for
fractional orders α and β have both mathematical and physical meaning. Non-negative values of
fractional orders and their difference reflect the fact that the dynamics of processes considered are
described by fractional derivatives not fractional integrals. The upper limit of fractional orders range
is set to get the corresponding classical viscoelastic model as a limiting case of a fractional one. For τ

as it was defined above, α = β represents a special case. Indeed, it corresponds to relaxation time
blowing up. Physically it means that a fluid becomes a critical gel. This special case is, however,
beyond the scope of the current study. It is worth mentioning that relaxation time blows up only
provided that the base of τ is greater than unity. If, however, that is not the case, i.e., τ base is less than
unity, τ itself remains bound.
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2.4. Fractional Kelvin–Voigt Model

Now let us connect two basic fractional elements in parallel. The dynamics of corresponding
model (Kelvin–Voigt fractional model) are described as follows [39]:

σ(t) = Eτα
aDα

t ε(t) + Eτβ
aDβ

t ε(t), E = E2

(τ2

τ

)β
, (9)

where all the notations are similar to those for fractional Maxwell model. The schematic of the model
is given in Figure 2c. If α = 1 and β = 0, we appear at classical Kelvin–Voigt model.

2.5. Fractional Zener Model

Let us now consider 3-element model referred to as fractional Zener model (Figure 2d). The corresponding
constitutive equation reads as [39]:

σ(t) + τα−β
aDα−β

t σ(t) = Eτα
aDα

t ε(t) + E0τγ
aDγ

t ε(t) + E0τγ+α−β
aDγ+α−β

t ε(t),

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, α − β ≥ 0, γ + α − β ≥ 0, (10)

where γ stands for the fractional order of element “3” and E0 is given by:

E0 = E3

(τ3

τ

)γ
, (11)

with E3, τ3 being Young’s modulus and relaxation time for element “3” and all other notations being
the same as above. Assuming α = 1, β = 0, and γ = 0, classical Zener model can be restored.

2.6. Fractional Poynting–Thomson Model

For fractional Poynting–Thomson model (Figure 2e) the constitutive equation is [39]:

σ(t) +
E
E0

τα−γ
aDα−γ

t σ(t) +
E
E0

τβ−γ
aDβ−γ

t σ(t) = Eτα
aDα

t ε(t) + Eτβ
aDβ

t ε(t),

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, α − γ ≥ 0, β − γ ≥ 0, (12)

with all the notations similar to above, but different limitations applied to fractional orders α, β and γ.
Provided α = 1, β = 0, and γ = 0, we get classical Poynting–Thomson model.

2.7. Fractional Burgers Model

Finally, for the most complex, 4-element model considered in this study (fractional Burgers model,
Figure 2f) the constitutive equation reads as [5]:

σ(t) + E
E0

τ
α−γ
a Dα−γ

t σ(t) + E
E0

τα−δ
aDα−δ

t σ(t) + E
E0

τ
β−γ
a Dβ−γ

t σ(t) + E
E0

τ
β−δ
a Dβ−δ

t σ(t) =

= Eτα
aDα

t ε(t) + Eτ
β
a Dβ

t ε(t),

0 ≤ α ≤ 1, 1 ≤ β ≤ 2, 0 ≤ γ ≤ 1, 0 ≤ δ ≤ 1, α − γ ≥ 0, β − γ ≥ 0, α − δ ≥ 0, β − δ ≥ 0

(13)

where δ stands for the fractional order of element “4”, (11) is still valid and additionally:

E0 = E4

(τ4

τ

)δ
, (14)
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with E4, τ4 being Young’s modulus and relaxation time for element “4” and all other notations being
the same as above. If we set α = 1, β = 2, γ = 0, and δ = 0, classical Burgers model can be restored.
Here β − γ ≥ 0 and β − δ ≥ 0 are satisfied automatically, given the range for β, γ, and δ.

3. Results and Discussion

3.1. General Solution

Here we follow the approach proposed earlier by Yin [61] for Maxwell model and then generalize
it for all other models. Consider a specific type of pressure gradient given as follows:

∂p
∂z

= P0eiωt (15)

Introduce Fourier and inverse Fourier transforms of flow velocity and pressure:

Uz(r, ω) =
∫ +∞

−∞
uz(r, t)e−iωtdt, uz(r, t) =

1
2π

∫ +∞

−∞
Uz(r, ω)eiωtdω (16)

P(r, ω) =
∫ +∞

−∞
p(r, t)e−iωtdt, p(r, t) =

1
2π

∫ +∞

−∞
P(r, ω)eiωtdω (17)

Recall Fourier transform rule for fractional derivative:

F{aDα
t uz} = (iω)αUz(r, ω), F{aDα−β

t
∂p
∂z

} = (iω)α−β ∂P(r, ω)

∂z
, (18)

where appropriate integration limits are implied. In particular, lower terminal value is set to: a = −∞.
Then the general algorithm to find flow velocity is the following: (1) express stress and its derivative
from the constitutive eq-n; (2) plug stress and its derivative in momentum eq-n; (3) eliminate stress and
its derivative and get modified momentum eq-n; (4) perform Fourier transform of modified momentum
eq-n; (5) solve corresponding ODE for Fourier transform of velocity (Uz(r, ω)); (6) change variables
with ξ for simplicity; (7) perform inverse Fourier transform of Uz(r, ω) to get uz(r, t). Regardless of
the model considered, z-component of the velocity reads as:

uz(r, t) =
i

ρω

∂p(z, t)
∂z

[
1 − J0(ξr)

J0(ξR)

]
, (19)

where Jn(·) is the Bessel function of the first kind of order n. The only difference that defines behavior
of the system is hidden in ξ. At the same time, the form of the solution reproduces a well-known
classical result (see, for example Reference [73]). Thus it represents a natural extension of integer-order
models using apparatus of FC. As long as velocity profile was defined, we could also get expression
for the stress. The direct integration of (3) accounting for (15) results in:

σrz =
∂p
∂z

J1(ξr)
ξ J0(ξR)

, (20)

where again the individual properties of the model are hidden in parameter ξ. Physical meaning
of ξ is worth consideration. First, of all, [ξ] = [1/m], so that it can be considered as an “effective”
wave number. Moreover, as shown below, ξ is related to complex compliance. Introducing σ0 = ∂p

∂z R,
nondimensional stress σ̃ = σrz/σ0 is given by:

σ̃ =
J1(ξr)

ξRJ0(ξR)
(21)
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For practical purposes and analysis simplification, it is more convenient to introduce the following
nondimensional quantities and relationships:

r̃ =
r√
ντ

, ã =
R√
ντ

, ω̃ = ωτ, φ =
r̃
ã

, u0 =
1

4ρω

∂p
∂z

, r2ξ2 = ω̄r̃2, (22)

where ν is a kinematic viscosity and all other quantities were defined earlier. Then velocity and stress
profiles are given by:

ũ =
∣∣∣uz

u0

∣∣∣ =
(

1 − J0(
√

ω̄ãφ)

J0(
√

ω̄ã)

)
, σ̃ =

∣∣∣σrz

σ0

∣∣∣ = J1(
√

ω̄ãφ)√
ω̄ã J0(

√
ω̄ã)

(23)

As velocity profiles and shear stresses have been defined, we can now proceed with considering
specific fractional viscoelastic models and outlining their specifics. Six parameters will be considered:
fractional order (α, β, γ, δ), nondimensional radius, ã, and elastic ratio, ψ.

3.2. Fractional Maxwell Model

Let us start from the simplest two-parameter fractional Maxwell model. As outlined above,
the key quantity that defines the behavior of a model is ξ. For this model ξ is given by:

ξ2 =
ρω2

E

[ 1
(iωτ)α

+
1

(iωτ)β

]
, (24)

or alternatively in nondimensional form:

ω̄ = ω̃2
[ 1
(iω̃)α

+
1

(iω̃)β

]
(25)

Centerline velocity profiles for fractional Maxwell model are shown in Figure 3. For all the plots
α = 0.5. The value of ã ranges from ã = 0.01 (Figure 3a) to ã = 0.1 (Figure 3c). For this model an
additional condition is imposed: α ≥ β, thus only a half of β range is considered given the value
of α set. As can be seen from this figure, the behavior of centerline velocity changes dramatically
from monotonically increasing to resonant or oscillatory. Centerline velocity profile also changes with
increasing fractional order (β). For lower values of ã, an increase of β results in decreasing of centerline
velocity up to the constant value (as β → 0.5). For higher values of ã (Figure 3b,c) the system exhibits
aperiodic oscillations at low β and demonstrates a switch from resonant behavior to monotonically
increasing as β increases. It is also worth mentioning that peak values decrease with increasing β.
What is the reason for such a dramatic change of a velocity profile dynamics with varying ã? In fact,
ã2 turns out to be nothing else but a Reynolds number: ã2 = Re, one of the key flow parameters.

(a) (b) (c)

Figure 3. Centerline velocity profile for fractional Maxwell model: (a) ã = 0.01; (b) ã = 0.05; (c) ã = 0.1.
For all plots α = 0.5. Subscript “c” stands for “centerline”.
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Now let us have a look at the shear stress dynamics (at the wall) shown in Figure 4. Here again
we fix α = 0.5 and vary β (α ≥ β). Similar to velocity profile, shear stress increases monotonically with
ω̃ for lower values of ã. The trend, however, changes to almost constant with increasing fractional
order. As ã increases, the system exhibits more complex behaviors. In particular, there are aperiodic
oscillations observed for lower values of fractional order that switch to resonant ones and monotonic
decay as the fractional order starts to increase. Moreover, peak values shift to higher values of ω̃

with increasing fractional order and the peaks themselves become more dispersive. At the same time,
an increase of ã results in resonant peaks becoming sharper and shifting to lower values of ω̃.

(a) (b) (c)

Figure 4. Shear stress profile at the pipe wall for fractional Maxwell model: (a) ã = 0.01; (b) ã = 0.05;
(c) ã = 0.1. For all plots α = 0.5. Subscript “w” stands for “wall”.

Finally, for relatively high values of ω̃ and ã, shear stress plots converge and become nearly
independent from the fractional order β. To better understand physical meaning behind fractional
orders α and β, we have examined its influence on centerline velocity and shear stress dynamics in a
wider range of ω̃ (0 ≤ ω̃ ≤ 1000) with the fixed value of ã (ã = 0.1) as shown in Figure 5. We have
first fixed α = 0.5 and varied β: 0.1 ≤ β ≤ 0.5. For both centerline velocity (Figure 5a) and shear
stress (Figure 5b) low values of β resulted in oscillatory profiles that in turn reflects the fact that the
fractional order β describes elastic properties of the fluid considered. In contrast, if we fix β = 0.5
and vary α: 0.6 ≤ α ≤ 1, the oscillations are damped much quicker for both centerline velocity and
shear stress (Figure 5c,d). Finally, let us set α = 1 and vary β: 0.25 ≤ β ≤ 1. Corresponding plots for
centerline velocity and shear stress are shown in Figure 5e,f, respectively. When α = 1 and β = 1,
Newtonian fluid is obtained with centerline velocity monotonically reaching constant value and shear
stress monotonically decaying.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

Figure 5. Fractional Maxwell model: (a) centerline velocity, α = 0.5; (b) shear stress, α = 0.5; (c) centerline
velocity, β = 0.5; (d) shear stress, β = 0.5; (e) centerline velocity, α = 1; (f) shear stress, α = 1. For all plots
ã = 0.1. Subscripts “c” and “w” stand for “centerline” and “wall”, respectively.

3.3. Fractional Kelvin–Voigt Model

Next, we consider another commonly used two-parameter fractional model referred to as Kelvin–Voigt.
We start from parameter ξ, responsible for system behavior. It reads as:

ξ2 =
ρω2

E

[ 1
(iωτ)α + (iωτ)β

]
, (26)

or alternatively in nondimensional form:

ω̄ =
ω̃2[

(iω̃)α + (iω̃)β
] (27)

In contrast to fractional Maxwell model, no additional relations between α and β are implied here.
Thus, we have more freedom to set the values of these fractional orders within the entire range.

Centerline velocity profiles and shear stresses for fractional Kelvin–Voigt model are given in
Figure 6. Here again we fix α = 0.5 and vary β. Different from fractional Maxwell model, centerline
velocity profiles (Figure 6a,c,e) do not exhibit aperiodic oscillations with varying both fractional order
and ã. Centerline velocity amplitudes increase with increasing ã and decrease with increasing fractional
order β. Shear stresses’ dynamics for the same model are presented in Figure 6b,d,f. Here again all
three types of behavior encountered for fractional Maxwell model are present. More specifically, as ã
increases, shear stresses experience three different types of behavior: from monotonically increasing
through resonant to oscillatory. Relative stress amplitudes decrease with increasing fractional order β.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Fractional Kelvin–Voigt model: (a) centerline velocity, ã = 0.01; (b) shear stress, ã = 0.01;
(c) centerline velocity, ã = 0.05; (d) shear stress, ã = 0.05; (e) centerline velocity, ã = 0.1; (f) shear stress,
ã = 0.1. For all plots α = 0.5. Subscripts “c” and “w” stand for “centerline” and “wall”, respectively.

3.4. Fractional Zener Model

Now examine the behavior of three-element fractional Zener model. The key model variable, ξ,
in this case becomes:

ξ2 =
ρω2

E

[ 1

(E0/E)(iωτ)γ + (iωτ)α+β

(iωτ)α+(iωτ)β

]
, (28)

or alternatively in nondimensional form:

ω̄ =
ω̃2

ψ(iω̃)γ + (iω̃)α+β

(iω̃)α+(iω̃)β

, (29)

where ψ = E0
E is an elastic parameter. By definition elastic parameter ψ can be rewritten as:

ψ =
E3τ

γ
3

E1τα
1

τγ−α (30)
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For classical Zener model (α = 1, β = 0, and γ = 0), ψ reduces to: ψ = E3/E2, i.e., The ratio of
Young’s moduli, thus justifying the notion introduced above. Similar to fractional Maxwell model,
we impose additional conditions for fractional orders α, β, and γ. From two inequalities: α − β ≥ 0
and γ + α − β ≥ 0, we end up with the first one. The second one is satisfied automatically, provided
the first one is and γ being non-negative.

We first examine the dynamics of centerline velocity. Different from two-element models, where
we considered the influence of three parameters (α, β, and ã) on the system behavior, here we need to
account for five parameters (ã, α, β, γ and ψ). Let us fix α = 0.5 (as previously), γ = 0.5 and ψ = 1.
Since α − β ≥ 0, we only consider 0 ≤ β ≤ 0.5. Corresponding centerline velocity profiles are given
in Figure 7a,d,g. Centerline velocity changes its behavior from monotonically increasing to resonant
with increasing ã. Moreover, relative velocity amplitudes increase with increasing ã. In addition to it,
an interesting phenomenon is observed in Figure 7g. Relative velocity amplitudes tend to decrease
with increasing fractional-order β up to a certain value (ω̃ ∼ 150). At this point, centerline velocities
for all fractional orders become close, and then the trend inverses, namely velocity amplitudes start to
increase with increasing fractional-order β.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Centerline velocity for fractional Zener model: (a) ã = 0.01, α = γ = 0.2, ψ = 1; (b) ã = 0.01,
α = β = 0.5, ψ = 1; (c) ã = 0.01, α = β = γ = 0.5; (d) ã = 0.05, α = γ = 0.2, ψ = 1; (e) ã = 0.05,
α = β = 0.5, ψ = 1; (f) ã = 0.05, α = β = γ = 0.5; (g) ã = 0.1, α = γ = 0.2, ψ = 1; (h) ã = 0.1,
α = β = 0.5, ψ = 1; (i) ã = 0.1, α = β = γ = 0.5. Subscript “c” stands for “centerline”.

Next, let us fix α = β = 0.5, ψ = 1 varying γ and ã. The corresponding plots for centerline
velocity are shown in Figure 7b,e,h. Here we can observe switching from monotonically increasing
to resonant behavior of the system with ã increasing and relative velocity amplitude decrease with
increasing fractional order γ. Moreover, for larger values of ã centerline velocity behavior changes
from resonant to almost linearly increasing with increasing fractional order γ.

Finally, we fixed α = β = γ = 0.5 and varied ã and ψ as shown in Figure 7c,f,i. As can be seen,
the system behavior changes from monotonically increasing to resonant with increasing ã. Moreover,
resonant curves become less dispersive, with increasing ã and more dispersive with increasing ψ.
Relative amplitudes of centerline velocity also decrease with increasing ψ.
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The dynamics of shear stresses are given in Figure 8. The first column in Figure 8 (Figure 8a,d,g)
corresponds to α = γ = 0.5, ψ = 1 and varying ã and β. In Figure 8g there exist two values of ω̃ where
shear stresses become very close for different values of fractional order β. Upon reaching the one
corresponding to lower value of ω̃, the trend reverses with relative stress amplitude decreasing for
increasing fractional order, β. For large values of ω̃, shear stress becomes almost independent of the
fractional order, β. For the second column of Figure 8 (Figure 8b,e,h), we set α = β = 0.5, ψ = 1 and
varied ã along with γ. The new phenomenon observed can be seen in Figure 8e,h. That is, the resonant
behavior changes to monotonically increasing and finally to constant with increasing fractional order γ.
The similar trend is observed in case of varying ψ as shown in Figure 8c,f,i (α = β = γ = 0.5).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Shear stress at the pipe wall for fractional Zener model: (a) ã = 0.01, α = γ = 0.2, ψ = 1;
(b) ã = 0.01, α = β = 0.5, ψ = 1; (c) ã = 0.01, α = β = γ = 0.5; (d) ã = 0.05, α = γ = 0.2, ψ = 1;
(e) ã = 0.05, α = β = 0.5, ψ = 1; (f) ã = 0.05, α = β = γ = 0.5; (g) ã = 0.1, α = γ = 0.2, ψ = 1;
(h) ã = 0.1, α = β = 0.5, ψ = 1; (i) ã = 0.1, α = β = γ = 0.5. Subscript “w” stands for “wall”.

3.5. Fractional Poynting–Thomson Model

The next model to be considered is fractional Poynting–Thomson one. Here ξ reads as:

ξ2 =
ρω2

E

[ 1
(E0/E)(iωτ)γ

+
1(

(iωτ)α + (iωτ)β
) ], (31)

or alternatively in nondimensional form:

ω̄ = ω̃2
( 1

ψ(iω̃)γ
+

1
(iω̃)α + (iω̃)β

)
(32)

Here we impose two additional conditions for fractional orders α, β, and γ: α − γ ≥ 0 and
β − γ ≥ 0. As previously, we first examine the behavior of centerline velocity (Figure 9). Fixing α =

γ = 0.2, ψ = 1, we vary ã and β. The trends are somewhat repeatable compared to fractional
Maxwell model (Figure 3a,d,g) and demonstrate elastic behavior for the entire range of β. Next,
we fixed α = β = 0.2, ψ = 1 and varied ã along with fractional order γ. The corresponding plots
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are presented in Figure 9b,e,h. Here aperiodic oscillations for lower values of fractional order γ,
oscillatory and monotonically increasing velocity profiles with increasing γ are observed. Finally,
we set α = β = γ = 0.5 and varied ã and ψ (Figure 9c,f,i). Here, resonant behavior is observed even
for lower values of ã (Figure 9c). Moreover, for ψ < 1 aperiodic oscillations of velocity are observed
followed by it becoming independent from ω̃. The trend, however, changes to resonant for ψ > 1.
Overall, the velocity oscillations are damped slower with ψ increasing.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Centerline velocity for fractional Poynting-Thomson model: (a) ã = 0.01, α = γ = 0.2, ψ = 1;
(b) ã = 0.01, α = β = 0.5, ψ = 1; (c) ã = 0.01, α = β = γ = 0.5; (d) ã = 0.05, α = γ = 0.2, ψ = 1;
(e) ã = 0.05, α = β = 0.5, ψ = 1; (f) ã = 0.05, α = β = γ = 0.5; (g) ã = 0.1, α = γ = 0.2, ψ = 1;
(h) ã = 0.1, α = β = 0.5, ψ = 1; (i) ã = 0.1, α = β = γ = 0.5. Subscript “c” stands for “centerline”.

The shear stress dynamics at the wall are shown in Figure 10. As previously, we first fixed
α = γ = 0.2, ψ = 1 and varied ã and β (Figure 10a,d,g). After major peak, shear stress drops
dramatically with oscillations being damped for the entire range of β, except for Figure 10a, where
it increases monotonically. The value of the major peak itself oscillates with increasing β. Next,
as shown in Figure 10b,e,h, system parameters were set at α = β = 0.2, ψ = 1 with varying ã and γ.
Monotonically increasing trend for lower values of ã changes to aperiodic oscillations and resonant for
higher ones. Moreover, the value of the major peak decreases monotonically with increasing fractional
order γ. Finally, we set α = β = γ = 0.5 and varied ã and ψ. The corresponding plots are shown
in Figure 10c,f,i. As can be seen from it, resonant behavior is present for all values of ã. However,
it switches to monotonically increasing with increasing ψ. Moreover, the switch happens at higher
values of ψ as ã increases and is absent for ã = 0.1 (Figure 10i).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Shear stress at the pipe wall for fractional Poynting-Thomson model: (a) ã = 0.01, α = γ =

0.2, ψ = 1; (b) ã = 0.01, α = β = 0.5, ψ = 1; (c) ã = 0.01, α = β = γ = 0.5; (d) ã = 0.05, α = γ = 0.2,
ψ = 1; (e) ã = 0.05, α = β = 0.5, ψ = 1; (f) ã = 0.05, α = β = γ = 0.5; (g) ã = 0.1, α = γ = 0.2, ψ = 1;
(h) ã = 0.1, α = β = 0.5, ψ = 1; (i) ã = 0.1, α = β = γ = 0.5. Subscript “w” stands for “wall”.

3.6. Fractional Burgers Model

Here we discuss the most complex fractional viscoelastic model, Burgers model. For this model ξ

is given by:

ξ2 =
ρω2

E

[ 1
(E0/E)

(
(iωτ)γ + (iωτ)δ

) +
1(

(iωτ)α + (iωτ)β
) ], (33)

or alternatively in nondimensional form:

ω̄ = ω̃2
( 1

ψ[(iω̃)γ + (iω̃)δ]
+

1
(iω̃)α + (iω̃)β

)
(34)

It is worth noting that for fractional Burgers model the range of fractional orders differs from
all other models considered above. In particular, while the range for orders α, γ, and δ is still from
0 to 1, 1 ≤ β ≤ 2. This change affects the dynamics of the centerline velocity profile dramatically.
Centerline velocity profiles are shown in Figure 11. We first fixed α = γ = δ = 0.5, ψ = 1 and varied ã
and β. The corresponding plots are shown in Figure 11a,d,g. The profile appears to be independent
from the fractional order β. The situation changes when we set β = 1.5 and vary δ (Figure 11b,e,h).
Velocity profile is very sensitive to the changes in fractional order δ when it has relatively low values.
Aperiodic oscillations with reducing peak values for increasing values of δ are observed. For varying ψ

(Figure 11 c,f,i), trends are overall similar to that for the fractional Poynting–Thomson model with the
peaks for the fractional Burgers model being slightly sharper. This similarity can be attributed to the
specific values of the fractional orders α, γ and δ set in Figure 11c,f,i (α = γ = δ = 0.5). This specific
setting has consequences for constitutive equations in both models. That is, the terms containing
fractional derivatives of the orders α − γ and α − δ become of the order zero.

169



Appl. Sci. 2020, 10, 9093

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Centerline velocity for fractional Burgers model: (a) ã = 0.01, α = γ = 0.5, ψ = 1;
(b) ã = 0.01, α = β = 0.5, ψ = 1; (c) ã = 0.01, α = β = γ = 0.5; (d) ã = 0.05, α = γ = 0.5, ψ = 1;
(e) ã = 0.05, α = β = 0.5, ψ = 1; (f) ã = 0.05, α = β = γ = 0.5; (g) ã = 0.1, α = γ = 0.5, ψ = 1;
(h) ã = 0.1, α = β = 0.5, ψ = 1; (i) ã = 0.1, α = β = γ = 0.5. Subscript “c” stands for “centerline”.

Finally, let us have a look at the shear stresses shown in Figure 12. As can be seen from it, shear
stress, too, is independent from the fractional order β (Figure 12a,d,g). Stress dynamics change in
Figure 12b,e,h. Quickly decaying aperiodic oscillations are observed. In particular, major peak values
decrease monotonically with increasing value of fractional order δ. Moreover, these peaks become
sharper and shift to lower values of ω̃ with increasing ã. Next, we fixed α = γ = δ = 0.5 and β = 1.5.
Here we observed resonant behavior for all values of ã and quickly damped oscillations for low values
of ψ (Figure 12c,f,i).

A closer look at expressions for ξ corresponding to different models reveals their similarity.
To illustrate this statement, let us introduce complex compliance, J∗(ω). For all the models considered,
it has the following functional form: [...]/E, where an expression in square brackets is model-specific.
Both ξ and ω̄ can be expressed in terms of complex compliance:

ξ2 = ρω2 J∗(ω), ω̄ = ω̃2EJ∗(ω), (35)

as it was defined in [39]. Thus, generally speaking, ξ is a complex quantity. Moreover, as we got complex
compliance, other physical quantities including creep compliance, complex modulus, and relaxation
modulus can be restored. For instance, J∗(ω) = 1/G∗(ω), where G∗(ω) stands for complex modulus.
Then for fractional Maxwell model the loss modulus, G”(ω) = Im(G∗(ω)), reads as [39]:

G”(ω) = E
(ωτ)α sin(πα/2) + (ωτ)2α−β sin(πβ/2)

1 + (ωτ)2(α−β) + 2(ωτ)α−β cos(π(α − β)/2)
(36)

Another insight can be obtained upon examination of Figure 2b–f and corresponding constitutive
equations. The general observation is that more complex models can be obtained via consecutive
combination of simpler ones with fractional elements. In particular, by adding fractional element to
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fractional Maxwell model in parallel, we arrive at fractional Zener model. Alternatively, starting
from fractional Kelvin–Voigt model and adding fractional element in series, we get fractional
Poynting–Thomson model. Adding one more fractional element in series, we end up with fractional
Burgers model. The same “additive” behavior is observed for complex compliances.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Shear strees at the pipe wall for fractional Burgers model: (a) ã = 0.01, α = γ = 0.5, ψ = 1;
(b) ã = 0.01, α = β = 0.5, ψ = 1; (c) ã = 0.01, α = β = γ = 0.5; (d) ã = 0.05, α = γ = 0.5, ψ = 1;
(e) ã = 0.05, α = β = 0.5, ψ = 1; (f) ã = 0.05, α = β = γ = 0.5; (g) ã = 0.1, α = γ = 0.5, ψ = 1;
(h) ã = 0.1, α = β = 0.5, ψ = 1; (i) ã = 0.1, α = β = γ = 0.5. Subscript “w” stands for “wall”.

It is worth emphasizing the generality of the approach developed. Provided the flow is
axisymmetric, the pipe having a circular cross-section, and no-slip condition at the wall is satisfied,
the solutions derived are suitable for various viscoelastic models commonly used for practical
applications. For the same form of the solution of velocity and stress profiles, the prediction of
flow dynamics for completely different fluids can be obtained via deriving a single model parameter, ξ.
Moreover, the functional form of ξ itself is also identical for all the models considered. What makes a
given model specific is the expression for the complex compliance. This powerful approach simplifies
significantly the implementation of other possible viscoelastic models within a given framework.
The classical viscoelastic and Newtonian fluid models present the limiting cases of the theoretical
approach proposed in this study. Velocity profiles’ dynamics for fractional Maxwell and Newtonian
fluids in a circular pipe are shown in Supplementary Materials 1. These clearly demonstrate the
complexity of behavior for fractional Maxwell model.

4. Conclusions

We have obtained exact analytical solutions for velocity profiles and shear stresses. Fractional Maxwell,
Kelvin-Voigt, Zener, Poynting–Thomson, and Burgers models were considered. We demonstrated that the
same form of the solution is applicable to all the models considered, thus generalizing prior studies.
For both centerline velocity and shear profiles, three types of behavior (monotonically increasing,
resonant, oscillating aperiodic) have been identified. In addition to it, switching between trends of
relative velocity amplitudes have been predicted. Monotonically decreasing trends were found to be
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typical for relatively low values of normalized pipe radius with more complex behaviors taking place
for higher values of the normalized radius. In addition to this, centerline velocity profiles featured
almost constant plateaus. The proposed models cover the widest range of viscoelastic materials both
in terms of the balance between viscous and elastic properties (via fractional-order) and the ratio of
elastic properties for complex materials.

The approach we developed features an advantage that is worth mentioning. It allows the
wide range of fractional viscoelastic models to be represented and solved in the same functional
form. In fact, the entire system behavior can be described by a single function ξ (or ω̄). It, in turn,
is related to a complex compliance with the functional form identical for all five models considered
in this study. Knowing complex compliance, complex and relaxation moduli and creep compliance
are readily obtained. These quantities can be directly measured thus providing immediate practical
applications for materials analysis. However, for some specific fields (e.g., polymers), experimental
creep compliance data for short times has not been well-established so far. This problem was outlined
in recent studies (see, for example, Reference [74]). It definitely deserves attention of the research
community and will hopefully be addressed in future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/24/9093/
s1 .

Author Contributions: Conceptualization, D.G.; methodology, D.G.; software, D.G.; validation, R.P.; formal
analysis, D.G.; investigation, D.G.; resources, R.P.; writing—original draft preparation, D.G.; writing—review and
editing, R.P.; funding acquisition, R.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Argonne National Laboratory through grant #ANL 4J-303061-0030A
“Multiscale modeling of complex flows”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Leibniz, G. Letter from Hanover, Germany, to GFA L’Hopital, September 30; 1695. Math. Schriften 1849,
2, 301–302.

2. Ross, B. The development of fractional calculus 1695–1900. Hist. Math. 1977, 4, 75–89. [CrossRef]
3. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley:

Hoboken, NJ, USA, 1993.
4. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential

Equations, to Methods of their Solution and Some of their Applications; Elsevier: Amsterdam, The Netherlands, 1998.
5. Mainardi, F. Fractional Calculus: Theory and Applications; MDPI: Basel, Switzerland, 2018.
6. Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; Volume 35.
7. Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2014.
8. Tarasov, V. Handbook of Fractional Calculus with Applications, Volume 4: Applications in Physics, Part A;

De Gruyter: Berlin, Germany, 2019.
9. Tarasov, V. Handbook of Fractional Calculus with Applications, Volume 5: Applications in Physics, Part B;

De Gruyter: Berlin, Germany, 2019.
10. Baleanu, D.; Lopes, A.M. Handbook of Fractional Calculus with Applications, Volume 7: Applications in Engineering,

Life and Social Sciences, Part A; De Gruyter: Berlin, Germany, 2019.
11. Baleanu, D.; Lopes, A.M. Handbook of Fractional Calculus with Applications, Volume 8: Applications in Engineering,

Life and Social Sciences, Part B; De Gruyter: Berlin, Germany, 2019.
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Abstract: This paper presents a mathematical continuum model to investigate the static stability
buckling of cross-ply single-walled (SW) carbon nanotube reinforced composite (CNTRC) curved
sandwich nanobeams in thermal environment, based on a novel quasi-3D higher-order shear defor-
mation theory. The study considers possible nano-scale size effects in agreement with a nonlocal
strain gradient theory, including a higher-order nonlocal parameter (material scale) and gradient
length scale (size scale), to account for size-dependent properties. Several types of reinforcement ma-
terial distributions are assumed, namely a uniform distribution (UD) as well as X- and O- functionally
graded (FG) distributions. The material properties are also assumed to be temperature-dependent
in agreement with the Touloukian principle. The problem is solved in closed form by applying the
Galerkin method, where a numerical study is performed systematically to validate the proposed
model, and check for the effects of several factors on the buckling response of CNTRC curved sand-
wich nanobeams, including the reinforcement material distributions, boundary conditions, length
scale and nonlocal parameters, together with some geometry properties, such as the opening angle
and slenderness ratio. The proposed model is verified to be an effective theoretical tool to treat
the thermal buckling response of curved CNTRC sandwich nanobeams, ranging from macroscale
to nanoscale, whose examples could be of great interest for the design of many nanostructural
components in different engineering applications.

Keywords: curved sandwich nanobeams; nonlocal strain gradient theory; quasi-3D higher-order
shear theory; thermal-buckling

1. Introduction

Multilayered composites are widely used in various engineering structures, ranging
from macroscale (i.e., aircraft, submarines, space-station structures, etc.) to nanoscale
(nano-sensors, nano-actuators, nano-gears, and micro/nano-electro-mechanical systems
(MEMS/NEMS), due to the high stiffness and strength-to-weight ratios caused by fiber
reinforcements. In the recent literature, reinforcements based on carbon nanotubes (CNTs)
have been largely applied in lieu of conventional fibers due to their excellent properties
in order to improve the mechanical, electrical, and thermal properties of composite struc-
tures. In [1,2], for example, different molecular dynamic simulations have been successfully
applied by the authors to exploit the elastic moduli of polymer–CNT composites embedded
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in polymeric matrices. Fidelus et al. [3] examined the thermo-mechanical properties of
different epoxy-based nanocomposites with randomly oriented single-walled (SW) and
multi-walled (MW) CNTs. Moreover, Shen [4] investigated the nonlinear bending behavior
of FG nanocomposite plates reinforced by SWCNTs subjected to a transverse uniform
or sinusoidal load in a thermal environment using two different distribution functions.
A nonlocal strain gradient theory was also proposed by Lim et al. [5] to study a wave
propagation in macro and nanobeam structures for the first time. Wu and Kitipornchai [6]
investigated the free vibration and elastic buckling of sandwich beams with a stiff core and
functionally graded (FG)-CNTRC face sheets in a Timoshenko beam theoretical framework.
Among coupled thermo-mechanical problems, Eltaher et al. [7] investigated the influence
of a thermal loading and shear force on the nonlocal buckling response of nanobeams via
higher-order shear deformation Eringen beam theories. Similarly, Ebrahimi and Faraz-
mandnia [8] investigated the thermo-mechanical vibration of sandwich FG-CNTRC beams
within a Timoshenko-based beam approach; Sobhy and Zenkour [9] illustrated the influ-
ence of a magnetic field on the thermo-mechanical buckling and vibration response of
FG-CNTRC nanobeams with a viscoelastic substrate. In line with the previous works,
Daikh and Megueni [10] studied the thermal buckling of FG sandwich higher-order plates
with material temperature-dependent properties under a nonlinear temperature rise; Arefi
and Arani [11] combined a third-order shear deformation approach together with the
nonlocal elasticity to study the static deflection of FG nanobeams under a coupled thermo-
electro-magneto-mechanical environment. A novel refined shear theory was recently
proposed by Bekhadda et al. [12] for the study of a gradation influence on the vibration
and buckling behavior of FG beams with a power-law function by means of Fourier series.
Medani et al. [13], instead, applied the first order shear deformation and energy principle
to study the static and dynamic behavior of FG-CNT-reinforced porous sandwich plates.
Arani et al. [14] later performed a thermo-electro-mechanical buckling study of FG-CNTRC
sandwich nanobeams based on a nonlocal strain gradient elasticity theory and differen-
tial quadrature numerical procedure. More complicated double-curved sandwich panels
were accounted by Nejati et al. [15], who analyzed the thermal vibration in presence of
pre-strained shape memory alloy wires. Chaht et al. [16] analyzed the size-dependent static
behavior of FG nanobeams, including the thickness stretching effect; whereas a nonlocal
trigonometric shear deformation theory and nonlocal quasi-3D theory were proposed
in [17,18], respectively, to treat FG nanobeams. An efficient alternative tool to handle non-
localities within nanostructures is represented by the strain gradient theory, as successfully
applied in [19,20] for the thermal snap-buckling and bending analysis of FG curved porous
and non-porous nanobeams and in [21,22] for the buckling study of porous FG sandwich
nanoplates resting on a Kerr foundation due to a heat conduction. A theoretical formu-
lation based on a Reddy shear deformation theory, has been also proposed in the recent
work by Daikh et al. [23] to study the buckling and vibration of FG-CNTRC-laminated
nanoplates in thermal environment, with promising results for engineering applications.
Furthermore, Daikh et al. [24] investigated the thermal buckling response of FG sandwich
beams under a power-law (P-FGM) or sigmoid (SFGM) variation. Further attempts of
combining higher order theories and nonlocal approaches in a unified context, can be
found in [25–28] to predict the influence of an axial in-plane load function on the critical
buckling load and mode shape of composite beam members, also in presence of porosities.
During fabrication, structural members can exhibit an initial curved shape as possible
imperfection related to iterative heating and cooling processes. Many MEMS devices
employ curved structures as well [29]. The initial curvature of a beam structure can be a
source of difficulty in developing the constitutive relations, as verified by Emam et al. [30],
who illustrated the possible effects of curvatures and imperfections on the post-buckling
and free vibration response of multilayer nonlocal prestressed nanobeams. Shi et al. [31]
also studied the effect of nanotube waviness and agglomeration on the elastic property
of CNT-reinforced composites. A further systematic study was performed by Khater
et al. [32], who investigated the impact of the surface energy and thermal loading on the
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static stability of curved nanowires, modeled as curved Euler-Bernoulli beams, accounting
for both the von Karman and axial strain field. Among more sophisticated shell models, a
valuable comparison between different higher-order formulations was proposed in [33–35]
for the static analysis of multilayered composite and sandwich plates and shells, both
from a theoretical and computational perspective. Mohamed et al. [36] later proposed a
differential quadrature method to study the nonlinear free and forced vibrations of buckled
curved beams resting on nonlinear elastic foundations. A further attempt of combining the
nonlocal strain gradient and higher-order shell theories was conducted by Karami et al. [37]
for a wave dispersion study in anisotropic doubly-curved nanoshells, as well as in [38–41]
for FG-CNTRC curved nanobeams also in coupled piezoelectric conditions. In another
work, Arefi et al. [42] predicted the static deflection and stress field of curved FG-CNTRC
nonlocal Timoshenko nanobeams resting on an elastic foundation under four different
distribution patterns of CNTs throughout the thickness direction. Eltaher et al. [43] also
presented the influence of periodic and/or nonperiodic imperfections on the buckling, post-
buckling and dynamic response of curved beams resting on nonlinear elastic foundations
by means of high-performing numerical differential-integral quadrature methods (DIQMs).
Malikan et al. [44] developed a theoretical model to study the dynamics of non-cylindrical
curved viscoelastic SWCNTs by applying a second gradient theory of stress-strain, whereas
Mohamed et al. [45] used an energy equivalent model to study the post-buckling response
of imperfect CNTs resting on a nonlinear elastic foundation, including mid-plane stretching
and nanoscale effects. Among the most recent works on the topic, Van Tham et al. [46]
developed a novel four-variable refined shell theory to study the free vibration of multi-
layered FG-CNTRC doubly curved shallow shell panels; Dindarloo et al. [47] exploited the
strain-driven nonlocal integral theory to study the bending response of isotropic doubly
curved high-order shear deformation nanoshells under a combined assumption of exponen-
tial and trigonometric shape functions. Furthermore, Eltaher and Mohamed [48] exploited
the nonlinear stability and vibration of imperfect CNTs modeled as Euler-Bernoulli beams
with a mid-plane stretching, while in [49–51], the authors studied the free and forced
vibration and the dispersion behavior of elastic waves of doubly-curved nonlocal strain
gradient theory nanoshells in conjunction with a higher-order shear deformation shell
theory. Based on the available literature, however, the influence of a material scale, size
scale, and graduation distribution functions on the thermal static stability of curved sand-
wich nanobeams with temperature-dependent material seems to be generally lacking. To
this end, the present paper aims at providing a closed-form solution to the problem, for
different boundary conditions, that could be useful as theoretical benchmark for different
computational studies and engineering design applications. The paper is organized as
follows. In Section 2, the theoretical formulation of curved sandwich CNTRC nanobeams
is reviewed, including the kinematic field, relations and constitutive equations. Section
3 illustrates the governing equilibrium equation of curved sandwich beams in a classical
and nonclassical domain, while discussing about different thermal field distributions and
temperature-dependent properties of materials. Section 4 presents the analytical solutions
of the problem for different boundary conditions, whose comparative study is performed
systematically and discussed in Section 5. Finally, in Section 6, conclusions are drawn
together with possible future research directions.

2. Theoretical Formulation

2.1. Geometric and Mechanical Properties

A symmetric cross-ply single-walled carbon nanotube reinforced composite (CNTRC)
curved sandwich beam of length L, thickness h, and radius of curvature R is considered,
as shown in Figure 1. Different volume fraction distributions of CNTs are here assumed
throughout the thickness (see Figure 2), in agreement with the following relations [22]:

• UD (Uniformly-Distributed) CNTRC multilayered nanobeam:

Vcnt = V∗
cnt (1)
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Shear layer stiffness 

Winkler stiffness  

Figure 1. Geometry of a carbon nanotube reinforced composite (CNTRC) curved sandwich beam: (a)
geometric parameters of the curved beam, (b) cross-section of the curved beam.

Figure 2. Cross-sections of various (CNTRC) carbon nanotube reinforced composite sandwich beams.

• FG-O CNTRC multilayered nanobeam:

Vcnt = 2

⎛
⎝1 −

∣∣∣2|z| − ∣∣∣z(k−1) + z(k)
∣∣∣∣∣∣

z(k) − z(k−1)

⎞
⎠V∗

cnt (2)

• FG-X CNTRC multilayered nanobeam:

Vcnt = 2

∣∣∣2|z| − ∣∣∣z(k−1) + z(k)
∣∣∣∣∣∣

z(k) − z(k−1)
V∗

cnt (3)

More specifically, UD CNTRC refers to a uniform distribution of CNTs, whereas
FG-V CNTRC, FG-O CNTRC and FG-X CNTRC account for different non-uniform FG
distributions. Moreover, z(k) and z(k − 1) refer to the thickness coordinates at the bottom
and top sides of the kth layer within the laminated nanobeam; V∗

cnt is the total volume
fraction of CNTs, defined as

V∗
cnt =

Wcnt

Wcnt + (ρcnt/ρm)(1 − Wcnt)
(4)
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where Wcnt is the CNTs mass fraction; ρcnt, ρm refer to the CNTs and polymer mass
density, respectively.

The Mori–Tanaka scheme [31] is here applied together with the rule of mixtures and
molecular dynamics, as suggested in [1,2]. Thus, the effective Young’s modulus and shear
modulus for each CNTRC sheet is described as

Ek
11 = η1Vk

cntE
cnt
11 + Vk

p Ep
η2
Ek

22
=

Vk
cnt

Ecnt
22

+
Vk

p
Ep

η3
Gk

12
=

Vk
cnt

Gcnt
12

+
Vk

p
Gp

(5)

where Ek
11 and Ek

22 are the elasticity modulus along the in-plane directions (x, z) for the
kth layer and Gk

12 is its shear modulus. The subscripts p and cnt refer to the polymer and
SWCNT properties, respectively, assuming the CNT efficiency parameters η1, η2, η3 as
proposed in [6] and summarized in Table 1.

Table 1. CNT efficiency parameters.

V*
cnt η1 η2 η3

0.12 0.137 1.022 0.715

0.17 0.142 1.626 1.138

0.28 0.141 1.585 1.109

The Poisson’s ratio νk
12, the density ρk, and the thermal expansion coefficients in the

longitudinal and transverse directions αk
11, αk

22, for each sheet are given as follows:

νk
12 = Vk

cntν
cnt
12 + Vk

p νp (6)

ρk = Vk
cntρcnt + Vk

p ρp (7)

αk
11 = Vk

cntα
cnt
11 + Vk

p αp (8)

αk
22 =

(
1 + νcnt

12
)
Vk

cntα
cnt
22 +

(
1 + νp

)
Vk

p αp − νk
12αk

11 (9)

2.2. Kinematic Field

In the present work, a quasi-3D higher-order-shear deformation theory (HSDT) is
used to define the governing equations for the buckling problem of CNTRC curved sand-
wich beams, whose displacements components are expressed in terms of the midline
displacements and cross-section rotations as

u(x, z, t) =
(
1 + z

R
)
u0 − z ∂w0

∂x + Φ(z)ϕx
w(x, z, t) = w0 + Φ(z)′ϕz

(10)

A novel hyperbolic shape function Φ(z) is proposed herein to determine the distribu-
tion of the transverse shear strain and stress field along the thickness direction, namely

Φ(z) =
h
(

π cos h
(

π
2
)
tan h

( z
h
) − sin h

(
πz
h
)(

1 − tan h
(

1
2

)2
))

π

(
tan h

(
1
2

)2
+ cos h

(
π
2
) − 1

) (11)
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Based on a quasi-3D theory, the strain fields of the curved sandwich beam have the
following form:

εxx =
[

∂u
∂x + w

R

]
= ∂u0

∂x − z ∂2w0
∂x2 + Φ(z) ∂ϕx

∂x + w0
R + Φ(z)′ ϕz

R

εzz =
[

∂w
∂x

]
= Φ(z)′′ ϕz

γxz =
[

∂u
∂x + ∂w

∂x − u0
R

]
= Φ(z)′

(
∂ϕx +

∂ϕz
∂x

) (12)

2.3. Constitutive Equations

The stress field is governed by the following constitutive relations:

⎧⎨
⎩

σxx
σzz
τxz

⎫⎬
⎭

(k)

=

⎡
⎢⎣ Qk

11 Qk
13 0

Qk
13 Qk

33 0

0 0 Qk
55

⎤
⎥⎦
⎧⎨
⎩

εxx
εzz
γxz

⎫⎬
⎭

(k)

(13)

with Qk
ij being the transformed material constants, defined by means of the lamination

angle θk for the kth layer, as follows:

Qk
11 = Q11 cos4 θk + 2(Q12 + 2Q66) sin2 θk cos2 θk + Q22 sin4 θk

Qk
13 = Q13 cos2 θk + Q23 sin2 θk

Qk
55 = Q55 cos2 θk + Q44 sin2 θk

(14)

and
Q11 = E11

1 − ν12ν21

Q12 = Q13 = ν12E11
1 − ν12ν21

Q23 = ν21E22
1 − ν12ν21

Q22 = Q33 = E22
1 − ν12ν21

(15)

E33 = E22, G12 = G13 = G23, ν21 =
E22

E11
ν12, ν13 = ν12, ν31 = ν21, ν32 = ν23 = ν21 (16)

3. Equilibrium Governing Equations

3.1. Classical Formulation of Curved Sandwich Beams

Based on a classical formulation, the equilibrium equations of the problem are deter-
mined by means of the potential energy principle. In detail, the strain energy variation is
defined as

h/2∫
− h/2

L∫
0

[
σ
(k)
xx δεxx + σk

zzεzz + τ
(k)
xz

(k)γxz

]
dxdz −

L∫
0

N0
x

∂w0
∂x

∂δw0
∂x dx−

L∫
0

[
kww0δw0 + kg

∂w0
∂x

∂δw0
∂x + kNLw3

0δw0

]
dx (17)

in agreement with a quasi-3D theory, where kw and kg are the linear Winkler stiffness
and the shear layer stiffness, respectively, and kNL refers to the non-linear stiffness. The
strain energy variation can be rewritten in terms of stress resultants as

L∫
0

[
Nxx

∂δu0

∂x
− Mxx

∂2δw0

∂x2 + Pxx
∂δϕx

∂x
+ Nxx

δw0

R
+ Qx

δϕz

R
+ Rzδϕz + Qxzδϕx + Qxz

δδϕz

∂x

]
dx (18)

where

182



Appl. Sci. 2021, 11, 3250

Nxx =
N
∑

k=1

hk+1∫
hk

σ
(k)
xx dz = A11

∂u0
∂x − B11

∂2w0
∂x2 + Bs

11
∂ϕx
∂x + A11

w0
R + D11

ϕz
R + E12 ϕz

Mxx =
N
∑

k=1

hk + 1∫
hk

σ
(k)
xx zdz = B11

∂u0
∂x − F11

∂2w0
∂x2 + Fs

11
∂ϕx
∂x + B11

w0
R + Ds

11
ϕz
R + Js

12 ϕz

Pxx =
N
∑

k=1

hk + 1∫
hk

σ
(k)
xx Φ(z)dz = Bs

11
∂u0
∂x − Fs

11
∂2w0
∂x2 + Gs

11
∂ϕx
∂x + Bs

11
w0
R + Hs

11
ϕz
R + Es

12 ϕz

Qx =
N
∑

k=1

hk + 1∫
hk

σ
(k)
xx Φ(z)′dz = D11

∂u0
∂x − Ds

11
∂2w0
∂x2 + Hs

11
∂ϕx
∂x + D11

w0
R + Ks

11
ϕz
R + Ls

12 ϕz

Qxz =
N
∑

k=1

hk + 1∫
hk

τ
(k)
xz Φ(z)′ dz = Ks

33

(
ϕx + ∂ϕz

∂x

)

Rz =
N
∑

k=1

hk + 1∫
hk

σ
(k)
zz Φ(z)′′ dz = E12

∂u0
∂x − Es

12
∂2w0
∂x2 + Js

12
∂ϕx
∂x + E12

w0
R + Ls

12
ϕz
R + Ls

22 ϕz

(19)

and

{
A11, B11, F11, Bs

11, Fs
11, Gs

11
}
=

N
∑

k=1

hk + 1∫
hk

Qk
11

{
1, z, z2, Φ(z), zΦ(z), Φ(z)2

}
dz

{
D11, Ds

11, Hs
11, Ks

11
}
=

N
∑

k=1

hk + 1∫
hk

Qk
11
{

Φ(z)′ , zΦ(z)′ , Φ(z)Φ(z)′ , Φ(z)′ 2}dz

{
E12, Es

12, Js
12, Ls

12
}
=

N
∑

k=1

hk + 1∫
hk

Qk
12{Φ(z)′′ , zΦ(z)′′ , Φ(z)Φ(z)′′ , Φ(z)′ Φ(z)′′ }dz

Ls
22 =

N
∑

k=1

hk + 1∫
hk

Qk
22Φ(z)′′ 2dz

Ks
33 =

N
∑

k=1

hk + 1∫
hk

Qk
33Φ(z)′ 2dz

(20)

Integrating by parts and setting the coefficients of δu0, δw0, δϕx, and δϕz equal to zero,
the equilibrium equations of the problem are as follows:

δu0 : ∂Nxx
∂x = 0

δw0 : ∂2 Mxx
∂x2 − Nxx

R − N0
x

∂2w0
∂x2 − kww0 + kg

∂2w0
∂x2 − kNLw0

3 = 0
δϕx : ∂Pxx

∂x − Qxz = 0
δϕz : ∂Qxz

∂x − Rz − Qx
R = 0

(21)

3.2. Nonlocal Strain Gradient Approach

We account for possible effects related to the strain gradient stress and nonlocal elastic
stress fields, in line with [5], as follows:

σij = σ
(0)
ij −

dσ
(1)
ij

dx
(22)

where σ
(0)
ij refers to the classical stress components corresponding to the strain field εkl

and the higher-order stress σ
(1)
ij corresponds to strain gradient εkl,x. The classical and

higher-order stress components are described as

σ
(0)
ij =

∫ L
0 Cijklα0(x, x′, e0a)εkl,x(x′)dx′

σ
(1)
ij = l2

∫ L
0 Cijklα1(x, x′, e1a)εkl,x(x′)dx′

(23)
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where Cijkl is an elastic constant and l is the material length scale parameter, here introduced
to account for the strain gradient stress field; e0a and e1a are the nonlocal parameters
defining the nonlocal elastic stress field.

The nonlocal kernel functions α0(x, x′, e0a) and α1(x, x′, e1a) satisfy the conditions
developed by Eringen [52], whereby the general constitutive relations can be defined as[

1 − (e1a)2∇2
][

1 − (e0a)2∇2
]
σij = Cijkl

[
1 − (e1a)2∇2

]
εkl − Cijkl l2

[
1 − (e0a)2∇2

]
∇2εkl (24)

[
1 − μ∇2

]
σij = Cijkl

[
1 − λ∇2

]
εkl (25)

where μ = (ea)2 and λ = l2.
In addition, the constitutive relations for a nonlocal shear deformable CNTRC curved

sandwich nanobeam can be written as

σxx − μ
∂2σxx

∂x2 = Qk
11

(
εxx − λ

∂2εxx

∂x2

)
(26)

σxz − μ
∂2σxx

∂x2 = Qk
55

(
γxz − λ

∂2γxz

∂x2

)
(27)

Based on a nonlocal strain gradient theory, the following equilibrium equations
are obtained in terms of the displacement components by substitution of Equation (19)
into Equation (21).(

1 − λ ∂2

∂x2

)(
A11

∂2u0
∂x2 − B11

∂3w0
∂x3 + A11

R
∂w0
∂x + Bs

11
∂2 ϕx
∂x2 +

(
D11
R + E12

)
∂ϕz
∂x

)
= 0

(
1 − λ ∂2

∂x2

)⎛⎝ B11
∂3u0
∂x3 − A11

R
∂u0
∂x − F11

∂4w0
∂x4 + 2B11

R
∂2w0
∂x2 − A11

R2 w0

+ Fs
11

∂3 ϕx
∂x3 − Bs

11
R

∂ϕx
∂x +

(
Ds

11
R + Js

12

)
∂2 ϕz
∂x2 −

(
D11
R2 + E12

R

)
ϕz

⎞
⎠

−
(

1 − μ ∂2

∂x2

)(
N0

x
∂2w0
∂x2 − kww0 − kg

∂2w0
∂x2 − kww0

3
)
= 0(

1 − λ ∂2

∂x2

)(
Bs

11
∂2u0
∂x2 − Fs

11
∂3w0
∂x3 +

Bs
11
R

∂w0
∂x + Gs

11
∂2 ϕx
∂x2 − Ks

33 ϕx +
(

Hs
11

R + Js
12 − Ks

33

)
∂ϕz
∂x

)
= 0

(
1 − λ ∂2

∂x2

)⎛⎝ −
(

D11
R − E12

)
∂u0
∂x +

(
Ds

11
R + Es

12

)
∂2w0
∂x2 −

(
D11
R2 + E12

R

)
w0

−
(

Hs
11

R + Js
12 − Ks

33

)
∂ϕx
∂x −

(
2 Ls

12
R +

Ks
11

R2 + Ls
22

)
ϕz + Ks

33
∂2 ϕz
∂x2

⎞
⎠ = 0

(28)

3.3. Temperature Field

In the present work we assume a uniform temperature field distribution on the CNTRC
surfaces, labeled as Tm and Tp, on the bottom and top sandwich surfaces, respectively. A
(10,10) SWCNT-based reinforcement is selected within the numerical investigation, with
the same mechanical properties as assumed by Shen [4] and summarized in Table 2.

Table 2. Thermo-mechanical properties of SWCNTs.

T[K] Ecnt
11 [TPa] Ecnt

22 [TPa] Gcnt
12 [TPa] νcnt

11 αcnt
11 [10−6]/K] αcnt

22 [10−6]/K]

300 5.6466 7.0800 1.9445 0.175 3.4584 5.1682

400 5.5679 6.9814 1.9703 0.175 4.1496 5.0905

500 5.5308 6.9348 1.9643 0.175 4.5361 5.0189

700 5.4744 6.8641 1.9644 0.175 4.6677 4.8943

1000 5.2814 6.6220 1.9451 0.175 4.2800 4.7532

To analyze the thermal effect on the buckling response of CNTRC curved sandwich
nanobeams, we assume the following temperature-dependent material properties, in
line with [53].
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P = P0

(
P − 1T − 1 + 1 + P1T + P2T2 + P3T3 + P4T4

)
(29)

where T = T0 + ΔT, T0 is the ambient temperature (T0 = 300 K), ΔT is the temperature
difference, and P0, P1, P2, P3 and P4 are thermal coefficients listed in Table 3.

Table 3. Temperature-dependent coefficients of CNT material properties [22].

P0 P−1 P1 P2 P3 P4

Ecnt
11 [TPa] 6.5653 0 −8.9437 × 10−4 1.9182 × 10−6 −1.8198 × 10−9 6.0043 × 10−13

Ecnt
22 [TPa] 8.2271 0 −8.9024 × 10−4 1.9066 × 10−6 −1.8063 × 10−9 5.9486 × 10−13

Gcnt
12 [TPa] 1.1056 0 5.6727 × 10−3 −1.4815 × 10−5 1.6402 × 10−8 −6.5007 × 10−12

α11
[
10−6/◦C

] −1.1279 0 −2.0340 × 10−2 2.5672 × 10−5 −1.0186 × 10−8 5.9455 × 10−14

α22
[
10−6/◦C

]
5.4359 0 −1.7906 × 10−4 4.6367 × 10−8 1.2424 × 10−11 −5.3290 × 10−14

νcnt
12 0.175 0 0 0 0 0

The polymeric matrix (PmPV) features temperature-dependent elastic properties,
as follows:

Em = (3.51 − 0.0047T) GPa (30)

αm = 45(1 + 0.0005ΔT)10−6 GPa (31)

where the Poisson’s ratio and mass density are set as vm = 0.34 and ρm = 1150 kg/m3,
respectively.

4. Analytical Solution

In this section, the equilibrium equations are solved analytically using the Galerkin
method for simply-supported (SS), clamped-clamped (CC) and clamped-hinged (CS)
boundary conditions. The following displacement functions are thus assumed:

⎧⎪⎪⎨
⎪⎪⎩

u0
w0
ϕx
ϕz

⎫⎪⎪⎬
⎪⎪⎭ =

∞

∑
m=1

⎧⎪⎪⎨
⎪⎪⎩

Um
∂Xm
∂x

WmXm

ψxm
∂Xm
∂x

ψzmXm

⎫⎪⎪⎬
⎪⎪⎭ (32)

with Um, Wm, ψxm and ψzm being arbitrary parameters. The functions Xm(x) that satisfy
the selected boundary conditions are defined as

• For SS beam

Xm = sin(βx), β = mπ
L (33)

• For CC beam

Xm = 1 − cos(βx) , β =
2mπ

L
(34)

• For CS beam

Xm = sin(βx)[cos(βx)− 1], β = mπ
L (35)
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By substituting Equation (32) in Equation (28), we get

[
Kij

]
⎧⎪⎪⎨
⎪⎪⎩

Um
Wm
ψxm
ψzm

⎫⎪⎪⎬
⎪⎪⎭ = 0, i, j = 1 : 4 (36)

where

= d − d  

= − ∫ d − ∫ d  + ∫ d − ∫ d   

= ∫ d − ∫ d   

=  +  ∫ d − ∫ d   

= ∫ d − ∫ d − ∫ d − ∫ d   

= − ∫ d − ∫ d  +  2 ∫ d − ∫ d − − ∫ d −
∫ d − ∫ d − ∫ d − ∫ d − ∫ d   

= d − d − d − d  

=  + ∫ d − ∫ d −  + ∫ d − ∫ d   

= ∫ d − ∫ d   

= − ∫ d − ∫ d − ∫ d − ∫ d   

(37) 

= ∫ d − ∫ d − ∫ d − ∫ d   

=  +  − ∫ d − ∫ d   

= −  + ∫ d − ∫ d   

=  + ∫ d − ∫ d −  +  ∫ d − ∫ d   

= −  + − ∫ d − ∫ d   

= − 2  +   +  d − d  + d − d
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The accuracy of the proposed theoretical solution is explored in the next section,
within a large systematic investigation aimed at determining the sensitivity of the buckling
response. The proposed model is limited to uniform cross-sectional curved FG-CNTRC
nanobeams with SS, SC, and CC boundary conditions and linear variation of temperature
across the beam thickness; a further expansion should include more complicated cross-
sectional geometries and thermal variations.

5. Results and Discussion

In this section, various numerical applications are presented to determine the accuracy
of a quasi-3D HSDT, to solve the buckling problem of FG-CNTRC straight sandwich beams,
compared to some existing solutions from the literature. Then, we investigate the effect of
curvature on the structural response of CNTRC sandwich beams, which could be of great
interest for design purposes, among different engineering applications. In what follows,
the critical buckling load and elastic foundation parameters are presented in dimensionless
form, as follows:

N = R2 N0
x

A110
, Kw = kw L2

A110
, Kg =

kg
A110

, KNL = kNL L2

A110
(38)

where the coefficient A110 refers to a beam made of pure matrix material at room tempera-
ture T = 300 K. The length of the curved sandwich beam is kept equal to L = 20 for all the
numerical examples.

5.1. Comparison Study

We start the numerical analysis by a comparative evaluation of our results with
predictions from the open literature, while including possible thickness stretching effects.
In Table 4, we summarize the results in terms of dimensionless critical buckling load
for SS- and CC-CNTRC sandwich beams with and without thickness stretching effects
and compare their accuracy against the numerical predictions by Wu et al. [6], based
on a differential quadrature method (DQM). The face sheets are made of poly methyl
methacrylate (PMMA) as matrix, with Em = 2.5 GPa and νm = 0.3, and armchair (10,
10) SWCNTs as reinforcement phase, with Ecnt

11 = 5.6466 TPa, Ecnt
22 = 7.08 TPa, Gcnt

12 =
1.9445 TPa and νcnt = 0.175 (in 300 K). Titanium alloy (Ti-6Al-4V) is used as core, with
Em = 113.8 GPa and νm = 0.342. It is worth noticing the good correlation between our
results (see Table 4) and the findings of [6] when the thickness stretching effect is neglected.

5.2. Parametric Study

The parametric study in this section assumes a PmPV as core material and as matrix
phase for the face sheets of the sandwich structure, with mechanical properties as specified
in Equations (30) and (31); (10,10) SWCNTs are considered as the reinforcement phase
(Table 3). The mechanical properties of materials depend on the temperature. Table 5
presents the effect of the dimensionless thickness ratio L/h on the buckling load of a
single layer CNTRC curved beam with various CNT volume fractions in the presence (or
absence) of a thickness stretching effect εzz, while keeping the opening angle α = L/R
equal to π/3. Note that increased values of L/h result in lower values of the buckling
load, under the same assumptions for the reinforcement distribution, volume fraction and
possible stretching effects. In any case, the worst buckling response is observed for an
FG-O reinforcement distribution within the material, whereas a FG-X distribution seems
to yield the highest buckling loads for fixed values of L/h, εzz, V∗

cnt. The stability of the
curved beam increases significantly for higher values of V∗

cnt, with a small variation in the
buckling load, depending on whether εzz is assumed (or not) equal to zero.
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Table 4. Comparisons of dimensionless critical buckling loads for FG-CNTRC straight beams hc/hf, V∗
cnt = 0.12.

L/h
CC SS

V*
cnt=12 V*

cnt=17 V*
cnt=28 V*

cnt=12 V*
cnt=17 V*

cnt=28

UD

10
Wu [6] 0.0254 0.0296 0.0373 0.0070 0.0082 0.0107
Present
εzz = 0 0.0271 0.0319 0.0413 0.0071 0.0084 0.0110

Present
εzz �= 0 0.0267 0.0316 0.0410 0.0066 0.0080 0.0106

20 Wu [6] 0.0070 0.0082 0.0107 0.0018 0.0021 0.0028
Present
εzz = 0 0.0071 0.0084 0.0110 0.0018 0.0021 0.0028

Present
εzz �= 0 0.0069 0.0082 0.0108 0.0017 0.0020 0.0027

30 Wu [6] 0.0031 0.0037 0.0049 0.0008 0.0009 0.0012
Present
εzz = 0 0.0032 0.0038 0.0049 0.0008 0.0009 0.0012

Present
εzz �= 0 0.0031 0.0037 0.0049 0.0007 0.0008 0.0012

FG

10
Wu [6] 0.0261 0.0305 0.0387 0.0072 0.0085 0.0111
Present
εzz = 0 0.0271 0.0319 0.0413 0.0071 0.0084 0.0110

Present
εzz �= 0 0.0267 0.0316 0.0410 0.0066 0.0079 0.0106

20
Wu [6] 0.0072 0.0085 0.0111 0.0018 0.0022 0.0029
Present
εzz = 0 0.0071 0.0084 0.0110 0.0018 0.0021 0.0028

Present
εzz �= 0 0.0069 0.0082 0.0108 0.0017 0.0020 0.0027

30
Wu [6] 0.0032 0.0039 0.0051 0.0008 0.0010 0.0013
Present
εzz = 0 0.0032 0.0038 0.0049 0.0008 0.0010 0.0012

Present
εzz �= 0 0.0031 0.0037 0.0049 0.0007 0.0009 0.0012

Table 5. Effect of thickness ratio on the buckling load of a single layer CNTRC curved beam α = π
3 ,

T = 300 K.

L/h
V*

cnt=12 V*
cnt=17 V*

cnt=28

εzz=0 εzz �=0 εzz=0 εzz �=0 εzz=0 εzz �=0

UD

5 73.7930 73.4424 120.6917 120.1610 146.3642 145.5590
10 49.0266 49.0250 77.6401 77.6399 101.4712 101.4484
20 21.9451 21.9242 33.2103 33.1708 48.7346 48.7136
30 11.4565 11.4369 17.0329 16.9992 26.2191 26.1931

FG-X

5 79.5433 79.1094 128.5687 127.9463 149.0114 148.3479
10 57.1285 57.1134 90.5184 90.5055 111.0156 110.9778
20 28.9721 28.9611 44.1395 44.1160 61.6479 61.6372
30 15.9804 15.9653 23.8972 23.8700 35.6810 35.6608

FG-O

5 58.0980 57.9593 96.1446 95.9410 128.1600 127.5412
10 33.6793 33.6650 52.7577 52.7221 75.9965 75.9952
20 12.7261 12.6870 18.9830 18.9144 29.3401 29.2905
30 6.2518 6.2261 9.1882 9.1452 14.5124 14.4755

In Table 6, we account for the influence of opening angles α, boundary conditions, and
CNT reinforcement patterns on the dimensionless critical buckling load of (0◦/90◦/c/90◦/0◦)
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sandwich beams. Note that the critical buckling load increases significantly for a decreased
opening angle and increased CNT volume fraction. As summarized in Table 7, the dimen-
sionless critical buckling load of curved sandwich (0◦/90◦/0◦/c/0◦/90◦/0◦) nanobeams
could be affected by nonlocal and length scale parameters as well as by the core-to-face
sheet thickness ratio, hc/h f , and thermal condition. A meaningful reduction of the criti-
cal buckling load is observed for higher temperatures for a fixed geometry and nonlocal
parameters μ, λ. An increased value of μ and a reduced value of λ reduce the critical
buckling load of the nanostructure under the same thermal and geometric assumptions.
Moreover, Table 8 summarizes the sensitivity of the buckling response of CNTRC sandwich
(0◦/c/0◦) beams to different elastic foundation parameters and boundary conditions, with
an increased stability of the structure for more rigid boundary conditions and foundation.

Table 6. Effect of opening angle on the dimensionless buckling load of curved sandwich beam (0◦/90◦/c/90◦/0◦) (hc/hf = 4,
h = L/10, T = 300 K.

α
SS CC CS

V*
cnt=12 V*

cnt=17 V*
cnt=28 V*

cnt=12 V*
cnt=17 V*

cnt=28 V*
cnt=12 V*

cnt=17 V*
cnt=28

UD

π/4 74.6585 100.3288 139.9486 339.9366 442.8754 611.3111 212.5558 278.2913 381.2890
π/3 41.9954 56.4350 78.7211 257.7059 343.7374 492.5488 149.4863 199.1205 281.3863
π/2 18.6646 25.0822 34.9871 198.9635 272.9172 407.7090 104.4352 142.5681 210.0248

2π/3 10.4989 14.1087 19.6803 178.3950 248.1198 378.0018 88.6652 122.7722 185.0451

FG-X

π/4 74.8276 100.6190 140.6169 340.6800 444.0969 613.9162 213.0218 279.0764 383.0227
π/3 42.0905 56.5982 79.0970 258.1393 344.4732 494.1862 149.7553 199.5840 282.4389
π/2 18.7069 25.1548 35.1542 199.1755 273.3061 408.6553 104.5634 142.8020 210.5910

2π/3 10.5226 14.1496 19.7743 178.5296 248.3875 378.7063 88.7442 122.9258 185.4411

FG-O

π/4 74.5146 100.1307 139.7518 339.3283 442.1373 610.8484 212.1712 277.8003 380.9295
π/3 41.9144 56.3235 78.6104 257.3788 343.3707 492.4602 149.2768 198.8661 281.2614
π/2 18.6286 25.0327 34.9379 198.8371 272.8157 407.8875 104.3507 142.4828 210.0675

2π/3 10.4786 14.0809 19.6526 178.3388 248.1110 378.2735 88.6244 122.7461 185.1463

Table 7. Effect of nonlocal and length scale parameter on the dimensionless buckling load of simply
supported UD-CNTRC curved sandwich nanobeam (0◦/90◦/0◦/c/0◦/90◦/0◦) (α = π/3, h = L/10,
V∗

cnt = 28.

hc/hf

μ T = 300 K T = 500 K T = 700 K

λ 4 6 8 4 6 8 4 6 8

0 0 81.8686 73.5399 66.3319 61.1267 56.6032 52.3027 19.0516 18.8260 18.5363
1 83.8886 75.3545 67.9686 62.6350 57.9999 53.5932 19.5217 19.2906 18.9937
2 85.9086 77.1690 69.6053 64.1432 59.3965 54.8837 19.9918 19.7551 19.4511
3 87.9287 78.9835 71.2419 65.6515 60.7931 56.1743 20.4618 20.2196 19.9084

1 0 79.8972 71.7691 64.7347 59.6548 55.2402 51.0433 18.5928 18.3727 18.0900
1 81.8686 73.5399 66.3319 61.1267 56.6032 52.3027 19.0516 18.8260 18.5363
2 83.8400 75.3108 67.9292 62.5987 57.9662 53.5622 19.5104 19.2794 18.9827
3 85.8114 77.0816 69.5265 64.0706 59.3292 54.8216 19.9691 19.7327 19.4290

2 0 78.0185 70.0816 63.2125 58.2521 53.9413 49.8431 18.1557 17.9407 17.6646
1 79.9436 71.8107 64.7722 59.6894 55.2723 51.0729 18.6036 18.3834 18.1005
2 81.8686 73.5399 66.3319 61.1267 56.6032 52.3027 19.0516 18.8260 18.5363
3 83.7936 75.2691 67.8916 62.5640 57.9342 53.5325 19.4996 19.2687 18.9722

3 0 76.2262 68.4715 61.7603 56.9139 52.7021 48.6980 17.7386 17.5285 17.2588
1 78.1070 70.1610 63.2842 58.3181 54.0025 49.8996 18.1762 17.9610 17.6847
2 79.9878 71.8505 64.8081 59.7224 55.3029 51.1011 18.6139 18.3935 18.1105
3 81.8686 73.5399 66.3319 61.1267 56.6032 52.3027 19.0516 18.8260 18.5363
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Table 8. Effect of hardening nonlinear parameters on the dimensionless buckling load of CNTRC curved sandwich beams
(0◦/c/0◦) (α = π/3, h = L/10, hc/hf = 4, V∗

cnt = 0.12, T = 300 K.

Kw Kg Knl
SS CC CS

UD FG-X FG-O UD FG-X FG-O UD FG-X FG-O

0

0
0 59.3208 59.9622 58.6879 406.4881 408.7038 404.3375 229.0790 230.5969 227.5994

0.05 60.7067 61.3482 60.0738 410.5303 412.7460 408.3797 230.5082 232.0261 229.0286
0.1 62.0926 62.7341 61.4597 414.5725 416.7882 412.4220 231.9374 233.4554 230.4578

0.05
0 77.5586 78.2001 76.9257 424.7259 426.9416 422.5753 247.3168 248.8347 245.8372

0.05 78.9446 79.5860 78.3117 428.7681 430.9838 426.6175 248.7460 250.2640 247.2664
0.1 80.3305 80.9719 79.6976 432.8103 435.0261 430.6598 250.1752 251.6932 248.6957

0.1
0 95.7965 96.4379 95.1636 442.9637 445.1794 440.8131 265.5546 267.0725 264.0750

0.05 97.1824 97.8238 96.5495 447.0059 449.2216 444.8554 266.9838 268.5018 265.5042
0.1 98.5683 99.2097 97.9354 451.0482 453.2639 448.8976 268.4130 269.9310 266.9335

0.05

0
0 61.1687 61.8101 60.5358 407.8740 410.0897 405.7234 230.2339 231.7518 228.7543

0.05 62.5546 63.1960 61.9217 411.9162 414.1319 409.7656 231.6631 233.1811 230.1835
0.1 63.9405 64.5819 63.3076 415.9584 418.1742 413.8079 233.0923 234.6103 231.6128

0.05
0 79.4065 80.0479 78.7736 426.1118 428.3275 423.9612 248.4717 249.9897 246.9921

0.05 80.7924 81.4338 80.1595 430.1540 432.3697 428.0034 249.9009 251.4189 248.4214
0.1 82.1783 82.8197 81.5454 434.1962 436.4120 432.0457 251.3301 252.8481 249.8506

0.1
0 97.6443 98.2857 97.0114 444.3496 446.5653 442.1990 266.7095 268.2275 265.2300

0.05 99.0302 99.6717 98.3973 448.3918 450.6076 446.2413 268.1387 269.6567 266.6592
0.1 100.4162 101.0576 99.7833 452.4341 454.6498 450.2835 269.5680 271.0859 268.0884

0.1

0
0 63.0166 63.6580 62.3837 409.2599 411.4756 407.1093 231.3888 232.9068 229.9092

0.05 64.4025 65.0439 63.7696 413.3021 415.5178 411.1515 232.8180 234.3360 231.3385
0.1 65.7884 66.4298 65.1555 417.3443 419.5601 415.1938 234.2473 235.7652 232.7677

0.05
0 81.2544 81.8958 80.6215 427.4977 429.7134 425.3471 249.6266 251.1446 248.1471

0.05 82.6403 83.2817 82.0074 431.5399 433.7556 429.3894 251.0559 252.5738 249.5763
0.1 84.0262 84.6676 83.3933 435.5822 437.7979 433.4316 252.4851 254.0030 251.0055

0.1
0 99.4922 100.1336 98.8593 445.7355 447.9512 443.5849 267.8645 269.3824 266.3849

0.05 100.8781 101.5195 100.2452 449.7777 451.9935 447.6272 269.2937 270.8116 267.8141
0.1 102.2640 102.9054 101.6311 453.8200 456.0357 451.6694 270.7229 272.2408 269.2433

Figure 3 also depicts the buckling response for a SS (0◦/90◦/c/90◦/0◦) beam versus
the thickness ratio, L/h, while varying the opening angles. All the plots in Figure 3
feature a monotone decreasing behavior for increasing values of L/h, reaching a plateau
for L/h ≥ 30. Note also that an increased opening angle value decreases significantly the
buckling load of the structure for each fixed value of L/h.

In Figure 4 the critical buckling load versus the opening angle is illustrated, taking
into account the core-to-face sheet thickness ratio variation. A clear reduction of the beam
stiffness with an increased core layer can be observed for each fixed opening angle, which
is even more pronounced for lower values of the opening angles.

Figure 5 also shows the double effect of the core-to-face sheet thickness ratio and CNT
volume fraction on the dimensionless buckling load, with a clear shift of the curve upwards
for increasing values of Vcnt. The highest critical buckling load is reached for a volume
fraction Vcnt = 28, where the lowest stability is observed for Vcnt = 12. The impact of the
thermal environment on critical buckling load is visible in Figure 6, where an increased tem-
perature value leads to a clear reduction in the buckling load for all the selected boundary
conditions because of the thermal dependence of the mechanical properties of the materials.
As also expected, the highest stability is reached by CC sandwich beams, independently of
the thermal environment. The further effect of nonlocal μ and length scale λ parameters on
the critical buckling load is also plotted in Figures 7 and 8, respectively. One can easily note
that the buckling load increases by decreasing the nonlocal parameter and by increasing
the length scale parameter, in line with the information in Table 7. Unlike the length scale
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parameter λ, an increased nonlocal parameter μ leads to a stiffness reduction of CNTRC
laminated nanobeams. The critical buckling load versus the thickness ratio L/h is finally
illustrated in Figure 9 by assuming different elastic foundation parameters. An increased
thickness ratio L/h leads to a monotone reduction of the buckling load, with a meaningful
effect of the shear foundation parameter Kg on the buckling results.
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Figure 3. Dimensionless buckling load versus thickness ratio.
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Figure 4. Dimensionless buckling load versus opening angle.
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Figure 5. Dimensionless buckling load versus the core-to-face sheet thickness ratio.
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Figure 6. Dimensionless buckling load versus temperature.
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Figure 7. Dimensionless buckling load versus the nonlocal parameter.
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Figure 8. Dimensionless buckling load versus the length scale parameter.
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Figure 9. Effect of thickness ratio and elastic foundation on the dimensionless buckling load.

6. Conclusions

A novel quasi-3D higher-order shear deformation theory was proposed in this work
to study the buckling response of CNTRC curved sandwich nanobeams for the first time.
The problem was tackled theoretically, based on a Galerkin procedure, accounting for
different boundary conditions and size-dependent effects. The material properties of
CNTRC sheets were here assumed to be temperature-dependent, in agreement with the
Touloukian principle.

A parametric study was performed systematically, to check for the influence of some
significant parameters on the buckling response of CNTRC curved sandwich nanobeams,
namely the CNTs reinforcement patterns and the nonlocal and length scale parameter,
together with the geometric parameters. Based on the parametric investigation, it seems
that the critical buckling load decreases for an increased temperature because of a global
reduction in the stiffness of CNTRC curved sandwich nanobeams. Possible size effects
can reduce the overall stiffness of CNTRC curved sandwich nanobeams, whereby the
dimensionless critical buckling load decreases for an increased nonlocal parameter μ.
Unlike the nonlocality effect, an increased length scale parameter λ leads to an increased
buckling stability. More flexible elastic foundations and boundary conditions can reduce
significantly the overall structural stability, which is also largely affected by a varying
core-to-face sheet thickness ratio hc/h f , opening angle α, and CNT volume fractions. The
results obtained by neglecting the effect of thickness stretching (ε = 0) are perfectly in line
with predictions from the literature, thus confirming the good accuracy of the proposed
method to handle similar problems. The results obtained in this work, could represent
valid benchmarks for engineers and researchers to validate different numerical methods as
well as for practical design purposes of nanostructures.
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Abstract: In this work, we study the vibration and bending response of functionally graded graphene
platelets reinforced composite (FG-GPLRC) rectangular plates embedded on different substrates and
thermal conditions. The governing equations of the problem along with boundary conditions are
determined by employing the minimum total potential energy and Hamilton’s principle, within a
higher-order shear deformation theoretical setting. The problem is solved both theoretically and
numerically by means of a Navier-type exact solution and a generalized differential quadrature
(GDQ) method, respectively, whose results are successfully validated against the finite element
predictions performed in the commercial COMSOL code, and similar outcomes available in the
literature. A large parametric study is developed to check for the sensitivity of the response to
different foundation properties, graphene platelets (GPL) distribution patterns, volume fractions of
the reinforcing phase, as well as the surrounding environment and boundary conditions, with very
interesting insights from a scientific and design standpoint.

Keywords: FG-GPL; GDQ; heat transfer equation; higher-order shear deformation theory

1. Introduction

Due to their outstanding thermal and mechanical properties, carbon-based nano-
filler reinforced composites are widely applied in many engineering fields, such as civil,
biomedical and automotive engineering [1–6]. In more detail, graphene platelets (GPLs)
are increasingly introduced as carbon nano-fillers because of their relevant potentials in
terms of high surface area, elasticity modulus, thermal conductivity, etc. GPLs, as one
of novel nanosize reinforcements, have special properties, and their two-dimensional
geometry enables them to be scattered in the matrix with less agglomeration, unlike the
one-dimensional anisotropic ones. Due to their excellent mechanical, chemical, and physi-
cal properties, graphene-based composites demonstrate a wide range of applications in
an engineering field, such as sensors, fuel cells, supercapacitors, and batteries. The addi-
tion of graphene as reinforcing agent in a polymer matrix, indeed, improves the overall
performances and properties of composite materials, as largely demonstrated in the litera-
ture from researchers working in this area [7,8]. The primary interest of using graphene
materials stems from their excellent mechanical, thermal, electrical and physicochemical
properties with prosing results in all fields of technologies. For example, graphene repre-
sents one of the stiffest and most grounded materials, with an elastic modulus of ∼ 1 TPa
and quality of ∼ 100 GPa [9–11]. By introducing 1 volume percent of graphene in a poly-
mer matrix, the nanocomposite material reaches a conductivity of about 0.1 Sm−1 with
adequate consequences for electrical applications, along with significant changes in quality
and strength [12]. In such a context, several theories and computational models have
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been developed in the last decades in the field of GPL-reinforced media. Anamagh and
Bediz [13], for example, studied the buckling and vibration response of GPL-reinforced rect-
angular plates with different boundary conditions, based on a spectral-Tchebychev model.
Reddy et al. [14] surveyed the vibrational frequencies of the composite plates reinforced by
GPLs, and investigated the effect of various parameters, primarily, boundary conditions,
distribution patterns, geometry and weight fractions of GPLs, on the natural frequencies
of the system. In addition, Qaderi and Ebrahimi [15] focused on the frequency response
of GPL reinforced rectangular plates embedded on viscoelastic substrates, and their sen-
sitivity to different damping coefficients. In line with the previous works, Song et al. [16]
studied the free and forced vibration behavior of FG-GPL-reinforced (FG-GPLR) plates
by applying a first-order shear deformation theory (FSDT), with a clear enhancement of
the vibration performances even with the addition of small quantities of GPLs. Based
on the Chebyshev—Ritz procedure, Yang et al. [17] investigated the natural frequencies
and critical buckling loads of FG-GPLR nanocomposite plates in presence of different
porosities levels. Among the recent literature, different continuum-based nonlocal models
have been considered as effective methods to treat plate-like nanostructures and to avoid
possible difficulties encountered during experimental characterizations or time-consuming
computational atomistic simulations of nanotubes. In this context, some theoretical studies
of the free vibration response of graphene sheets can be found in the recent works [18–24],
based on different nonlocal theoretical assumptions, accounting for different small-scale
parameters, geometrical properties, boundary and environmental conditions. It is also
well-known that different substrates can surround a structural member, thus affecting its
mechanical behavior and stability. Numerous engineering problems (e.g., heavy machines,
pavement of roads, etc.), indeed, are modeled as structural members resting on an elastic
medium [25]. The elastic substrates are commonly modeled as Winkler or Pasternak foun-
dations by means of one or two parameters [26,27]. The effect of visco-Pasternak substrate
on the nonlinear dynamic response of the FG-GPLRC rectangular plates can be found in the
seminal works by Fan et al. [28], and by Liu et al. [29] along with a sensitivity study of the
mechanical behavior to different foundation parameters and porosity distributions. Among
further works, Gao et al. [30] analyzed the nonlinear vibrational frequencies of FG-GPLR
porous plates embedded on a two-parameter-type elastic medium, where an increased
porosity coefficient was found to reduce the overall stiffness of structures. The vibrational
properties of FG rectangular plates resting on a two-parameter elastic substrate were also
surveyed by Thai and Choi [31]. They demonstrated that an increased quantity of metal
components can significantly increase the deformability in a structural system. Similarly,
Zhou et al. [32] studied the frequency response of thick plates on elastic media, while check-
ing for the effect of different parameters, namely, the foundation coefficients, boundary
conditions and aspect ratios, on the structural stiffness. A FSDT was also proposed in [33]
to assess the nonlinear vibrational frequency and dynamic behavior of FG-GPLR plates
resting on a viscoelastic-Pasternak foundation, with a clear reduction of the structural
capacity for increased compressive loads.

Starting with the available literature on the topic, the present work aims at determin-
ing a general thermo-elasticity solution to treat both the static and frequency problems of
GPLRC rectangular plates under different boundary conditions and embedding founda-
tions, as typically applied in many lightweight mechanical and biomedical components, as
well as in membranes and flexible wearable sensors and actuators. Despite the available
literature on plate-like nanostructures, usually based on nonclassical approaches, the pro-
posed work explores the capability of a higher-order shear deformation plate formulation
combined with a modified Halpin and Tsai model to handle the problem, and checks for the
potentials of the generalized differential quadrature (GDQ) approach as high-performance
numerical tool to solve the equations even with a reduced computational effort, in lieu
of the most common continuum finite element methods from the literature. The govern-
ing equations are here derived by means of the Hamilton’s principle, accounting for a
modified Halpin–Tsai model for the definition of the material properties and the effect
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of the dispersion in nanocomposites. The GDQ-based solution is here compared to the
analytical once based on a Navier-type expansion, and numerically. An extensive study
is performed systematically to analyze the impact of different parameters such as the
distribution patterns and weight fractions of the reinforcement phase, complex environ-
ments, Winkler–Pasternak foundation coefficients, and Kerr substrate constants on the
overall response of FG-GPLRC rectangular plates. Results of the present study would be
useful for the design of advanced lightweight composite members in civil and mechanical
engineering, due to the importance of nanofillers dispersion and the application of foun-
dation structures. The proposed GDQ method represents an innovative computational
tool for design purposes, due to its great capability to solve challenging problems, with
high simplicity and accuracy. A further extension of the formulation accounts for the
thermal buckling of nanocomposite members within a unified setting, as useful for coupled
problems for which theoretical predictions are usually cumbersome to obtain.

2. Theoretical Formulation

Here, we consider a FG-GPLRC rectangular plate resting on an elastic Winkler–
Pasternak and Kerr medium, whose geometry and dimensions are depicted in Figure 1.
The GPLs reinforcement is assumed to be distributed either uniformly (GPL-UD) or in a
functionally graded way throughout the thickness, with two symmetric patterns, GPL-X,
and GPL-O, respectively.

Figure 1. Cont.
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Figure 1. Rectangular plate embedded on and elastic foundation.

2.1. Effective Material Properties

The material properties are here defined according to a modified Halpin–Tsai model,
such that the effective Young’s modulus of the GPL/polymer composite E reads as fol-
lows [34]:

E =
3
8
(1 + ξLηLVGPL)

(1 − ηLVGPL)
EM +

5
8
(1 + ξWηWVGPL)

(1 − ηWVGPL)
EM (1)

where

ξL = 2
LGPL
tGPL

, ξW = 2
WGPL
tGPL

, ηW = −
1 −

(
EGPL
EM

)
ξW +

(
EGPL
EM

) , ηL =

(
EGPL
EM

)
− 1

ξL +
(

EGPL
EM

) (2)

with EM and EGPL are the Young’s moduli of the polymer matrix and GPLs, respectively;
VGPL is the GPL volume fraction, ξL and ξW are the parameters characterizing both the
geometry and size of GPL nanofillers; LGPL, WGPL and tGPL are the average length, width,
and thickness of GPLs, respectively.

In line with findings by Rafiee et al. [35], the effective Young’s modulus of GPL/polymer
nanocomposites is well-approximated by the modified Halpin–Tsai model. The result
determined by Equation (1), indeed, is only 2.7% higher than the experimental predictions.
Based on the same rule of mixtures, the effective Poisson’s ratio and mass density read
as follows:

ρ = ρGPLVGPL + ρM(1 − VGPL), ν = νGPLVGPL + νM(1 − VGPL) (3)

while, the effective shear modulus is defined as:

G =
E

2(1 + ν)
(4)

As also depicted in Figure 2, we select three different distribution patterns of GPLs
along the thickness direction of the structure, whose analytical expressions take the follow-
ing form [36]:
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VGPL
(
zj
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

2 V∗
GPL

(
1 − 2 Z

h

)
0 ≤ Z ≤ h

2

2 V∗
GPL

(
1 − 2 (h−Z)

h

)
h
2 ≤ Z ≤ h

GPL − X
⎧⎪⎪⎨
⎪⎪⎩

2 V∗
GPL

(
1 − 2 (

h
2 −Z)

h

)
0 ≤ Z ≤ h

2

2 V∗
GPL

(
1 + 2 (

h
2 −Z)

h

)
h
2 ≤ Z ≤ h

GPL − O

{
V∗

GPL 0 ≤ Z ≤ h
2

V∗
GPL

h
2 ≤ Z ≤ h

UD

(5)

being V∗
GPL = ΛGPL(

ρGPL
ρM

)
(1−ΛGPL)+ΛGPL

and zj =
(

1
2 + 1

2n − j
NL

)
h, j = 1, 2, 3, . . . , NL.

Figure 2. Distribution patterns of GPLs: (a) GPL-UD distribution, (b) GPL-X distribution, (c) GPL-O distribution.

2.2. Displacement Field

As already mentioned in the introduction, we follow a higher order shear deformation
theory (HSDT) to define the kinematic field of the structure, i.e., [37].

u(x, y, z, t) = u0(x, y, t) + z u1(x, y, t) + z2u2(x, y, t) + z3u3(x, y, t)
v(x, y, z, t) = v0(x, y, t) + z v1(x, y, t) + z2v2(x, y, t) + z3v3(x, y, t)
w(x, y, z, t) = w0(x, y, t)

(6)

where (u, v, w) refer to the axial displacement components of an arbitrary point (x, y, z)
within the domain; (u0, v0, w0) stand for the related components at the reference mid-
plane; (u1, v1, w1) are the rotations of the normal about the y-, x-, and z-axis respectively;
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u2,v2,u3,v3 define the higher-order terms in the Taylor’s series expansion. Also, the non-null
strain components are defined in Appendix A.

The constitutive relations for the elastic problem are expressed as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σx
σy
τyz
τxz
τxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(K)

=

⎡
⎢⎢⎢⎢⎣

Q11 Q12 0 0 0
Q21 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66

⎤
⎥⎥⎥⎥⎦

(K)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εx
εy
γyz
γxz
γxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(K)

(7)

where the elastic constants are defined in Appendix A.

2.3. Hamilton’s Principle and Governing Equations

The fundamental equations of the problem are determined by applying the Hamilton’s
principle, in the following variational energy form [38]:

∫ t2

t1

(δΦk − δΦe − (δΦw1 + δΦw2 + δΦw3 + δΦw4))dt = 0 (8)

where Φk and Φe stand for the kinetic and elastic energy, respectively, and the external
work Φw is split as Φw1, Φw2, Φw3, and Φw4 whose definition depends on the elastic
Winkler–Pasternak and Kerr substrates, as well as on the mechanical loading, respectively.
The above-mentioned quantities are defined in a variational form as:

δΦk =
∫
V

ρ

(
∂U
∂t

∂δU
∂t

+
∂V
∂t

∂δV
∂t

+
∂W
∂t

∂δW
∂t

)
dV (9)

δΦe =
∫
V

(
σxxδεxx + σyyδεyy + σzzδεzz + τxyδγxy + τyzδγyz + τxzδγxz

)
dV (10)

In addition

δΦw1 =
∫
A

(
−kwwo + kp

(
∂2wo
∂x2 + ∂2wo

∂y2

))
δwodA (11)

kw and kp being the Winkler and Pasternak constants.
While

δΦw2 =
∫
A

(
− kl ku

kl+ku
wo +

ksku
kl+ku

(
∂2wo
∂x2 + ∂2wo

∂y2

))
δwodA (12)

where ks, ku, kl , refer to the shear layer, upper, and lower spring layers, respectively [39].
The last energy contribution related to the external load P acting on the top surface of the
plate reads as follows [40]:

δΦw3 = −
∫
A

Pδw0dA (13)

In addition, the conductive layer reinforced with GPLs satisfies the following Fourier
heat conduction relation:

∇2T + R = ρc
∂T
∂t

(14)

In absence of a thermal generation, in steady-state conditions, it is:

∇2T = 0 (15)

For a conductive layer reinforced with a UD or FG distribution of GPLs, we get the
following relations:

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 = 0 for UD (16a)
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∂

∂x

(
Kc

∂T
∂x

)
+

∂

∂y

(
Kc

∂T
∂y

)
+

∂

∂z

(
Kc

∂T
∂z

)
= 0 for FG (16b)

whose thermal boundary conditions read as follows:

T(0, y, z) = 0, T(a, y, z) = 0, T(x, 0, z) = 0, T(x, b, z) = 0, T(x, y, 0) = T1, T(x, y, h) = T2 (17)

The last energy contribution related to the thermal load can be obtained as:

δ Φw4 =
∫
A

(
(NT

1 )
∂w0

∂x
∂δw0

∂x
+ (NT

2 )
∂w0

∂y
∂δw0

∂y

)
dA (18)

with

NT
1 =

h
2∫

− h
2

(Q11 + Q12)αC(T − T0)dz, NT
2 =

h
2∫

− h
2

(Q21 + Q22)αC(T − T0) dz (19)

and T0 being the ambient temperature.
By substitution of Equations (9)–(13), and (18) into Equation (8), after a mathematical ma-

nipulation we get the following equations as presented in Appendix A (Equations (A4)–(A12)).

3. Thermal Field

To satisfy the thermal boundary conditions in Equation (17), we introduce a Fourier-
type solution as follows:

T =
∞

∑
m=1

∞

∑
n=1

Tmn(z) sin(Pmx) sin(Pny) . (20)

where Pm = mπ/a and Pn = nπ/b. Moreover, the thermal conductivity coefficients related
to the GPLs distribution pattern are determined as:

UD :
Kc

Km
= 1 + D (21a)

GPL − X :

{
Kc
Km

= 1 + 2D(1 − 2 Z
h ) 0 ≤ Z ≤ h

2
Kc
Km

= 1 + 2D(−1 + 2 Z
h )

h
2 ≤ Z ≤ h

(21b)

GPL − O :

{
Kc
Km

= 1 + 4D( Z
h ) 0 ≤ Z ≤ h

2
Kc
Km

= 1 + 4D(1 − Z
h )

h
2 ≤ Z ≤ h

(21c)

Inserting Equations (20) and (21a) into Equation (16a) and solving the equation ana-
lytically in its final form, we obtain the following expression of temperature gradient for
GPLRC rectangular plates with a uniform distribution of GPLs.

Tmn = C11e
√

A11Z + C22e−
√

A11Z (22)

where C11 , C22, and A11 are arbitrary constants determined with appropriate enforcement
of the thermal surface boundary conditions (see more details in Appendix B).

At the same time, by combining Equations (20), (21b) and (21c), the heat conduction
differential Equation (16b) reduces to the following hypergeometric equation:

(A1Z + A2)
∂2Tmn(z)

∂Z2 + (A3Z + A4)
∂Tmn(z)

∂Z
+ (A5Z + A6)Tmn(z) = 0 (23)
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with A1, A2, . . . , A6 being constant coefficients depending on the pattern of GPLs distribu-
tion (see Appendix B). The analytical solution of Equation (23) takes the following form:

Tmn = C1eα1KummerM(β1, β2, β3)(A2 + A1Z)α2 + C2eα1 KummerU(β1, β2, β3)(A2 + A1Z)α2 (24)

where the Kummer’s function, also known as the confluent hypergeometric function of the
first kind, is a solution to a Kummer’s differential equation. In addition, KummerU and
KummerM functions represent two special types of Kummer function.

As the thermal behavior of a structure depends on its thermo-mechanical properties,
it is worth noticing in Figure 3 that the temperature distribution in thermoelastic solutions
is completely different from a uniform or harmonic distribution.

Figure 3. Different temperature distributions, when b = 10 h, a = b, ΛGPL = 0.3 (wt%), GPL-X, T1 = 300, T2 = 400.
(a) Representation of the effect of different distribution, (b) temperature variation for different temperature boundary T2.

4. Solution Procedure

4.1. Analytical Solution

Following a Navier-type procedure, we now introduce the analytical solution to the
above-mentioned governing equations for simply supported FG-GNPRC plates, namely [37]:

(u0, u1, u2, u3) =
∞

∑
n=1

∞

∑
m=1

(U0, U1, U2, U3) cos(pmx) sin(pny) exp(iωt) (25a)

(v0, v1, v2, v3) =
∞

∑
n=1

∞

∑
m=1

(V0, V1, V2, V3) sin(pmx) cos(pny) exp(iωt) (25b)

w0 =
∞

∑
n=1

∞

∑
m=1

W0 sin(pmx) sin(pny) exp(iωt) (25c)

Substituting Equations (25a)–(25c) into Equations (A4)–(A12) (see Appendix A), it is
possible to derive the following relations in matrix form, under the assumption p = 0(

[K]− [M]ω2
)
{δ} = {0} (26)

with [K] and [M] being the stiffness and mass matrix, respectively, and {δ}T = {U0, V0, W0,
U1, V1, U2, V2, U3, V3}. Thus, the natural frequencies are determined by means of the
following eigenvalue relation: ∣∣∣[K]− [M]ω2

∣∣∣ = 0 (27)
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4.2. Numerical Solution

The same problem is also solved numerically by means of the GDQ method, due to
its capability to yield accurate solutions even with a reduced computational effort [41–46]
while maintaining a certain flexibility when involving any kind of boundary condition
along the structural edges. The proposed method allows solving of the problem in a strong
form, by discretizing the derivatives of a function in the following form [41]:

∂ f
∂x

∣∣∣∣
x=xi , y=yj

=
Nx

∑
m=1

Ny

∑
n=1

Ax
im Iy

jn fmn (28a)

∂ f
∂y

∣∣∣∣
x=xi , y=yj

=
Nx

∑
m=1

Ny

∑
n=1

Ix
im Ay

jn fmn (28b)

∂

∂r

(
∂ f
∂θ

∣∣∣∣
x=xi , y=yj

)
=

Nx

∑
m=1

Ny

∑
n=1

Ax
im Ay

jn fmn (28c)

∂2 f
∂x2

∣∣∣∣
x=xi , y=yj

=
Nx

∑
m=1

Ny

∑
n=1

Bx
im Iy

jn fmn (28d)

∂2 f
∂y2

∣∣∣∣
x=xi , y=yj

=
Nx

∑
m=1

Ny

∑
n=1

Ix
imBy

jn fmn (28e)

where Ix
im and Iy

jn are equal to one when i = m and j = n, or equal to zero, otherwise. In

addition, Ax
im, Ay

jn, Bx
im and By

jn are the weighting coefficients of the first and second-order
derivatives along the x and y-directions, respectively, defined as:

A(1)
im =

⎧⎪⎨
⎪⎩

ξ(xi)
(xi−xm)ξ(xm)

when i �= m

−
Nx
∑

k=1,k �=i
A(1)

ik when i = m
i, m = 1, 2, . . . , Nx (29a)

A(1)
jn =

⎧⎪⎪⎨
⎪⎪⎩

ξ(yj)
(yj−yn)ξ(yn)

when j �= n

−
Ny

∑
k=1,k �=j

A(1)
jk when j = n

j, n = 1, 2, . . . , Ny (29b)

with

ξ(xi) =
Nx

∏
k=1,k �=i

(xi − xk) (30a)

ξ
(
yj
)
=

Ny

∏
k=1,k �=j

(
yj − yk

)
(30b)

and

B(2)
im = 2

(
A(1)

ii A(1)
im − A(1)

im
(xi − xm)

)
i, m = 1, 2, . . . , Nx , i �= m (31a)

B(2)
jn = 2

⎛
⎝A(1)

jj A(1)
jn −

A(1)
jn(

yj − yn
)
⎞
⎠ j, n = 1, 2, . . . , Ny , j �= n (31b)

B(2)
ii = −

Nx

∑
k=1,k �=i

B(2)
ik , i = 1, 2, . . . , Nx, i = m (31c)
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B(2)
jj = −

Ny

∑
k=1,k �=j

B(2)
jk , j = 1, 2, . . . , Ny, j = n (31d)

In what follows, we select a Chebyshev distribution of grid points within the domain
defined as:

xi =
a
2

(
1 − cos

(
(i − 1)
(Nx − 1)

π

))
i = 1, 2, 3, . . . , Nx (32a)

yj =
b
2

(
1 − cos

(
(j − 1)(
Ny − 1

)π

))
j = 1, 2, 3, . . . , Ny (32b)

Thus, the algebraic eigenvalue problem can be redefined in matrix form as:
{[

[Mdd] [Mdb]
[Mbd] [Mbb]

]
ω2

mn +

[
[Kdd] [Kdb]
[Kbd] [Kbb]

]}{
δd
δb

}
= 0 (33)

where we distinguish among inner and boundary grid-points, by means of subscripts d
and b, respectively, whereas δ stands for the displacement vector. The natural frequencies
of the problem are derived as solutions of Equation (33).

5. Minimum Total Potential Energy Principle

Now we apply the minimization procedure of the total energy associated to the
structural system to study its static response [47], namely:

δ(Φe + Φw1 + Φw2 + Φw3 + Φw4) = 0 (34)

which is combined with the energy quantities in Equations (10)–(13) and (18) to yield
the following governing equations of GPL reinforced composite rectangular plates (see
Equations (A34)–(A42) in Appendix B).

Bending Analysis

The analytical solution for a static problem stems from a Fourier-type series discretiza-
tion of the mechanical force, as follows [48]:

Pmn =
∞

∑
n=1

∞

∑
m=1

qmn sin(pmx) cos(pny) (35)

in which qmn = 4p0
mnπ2

(
1 − (−1)n)(1 − (−1)m)

, and p0 = 0.1 MPa.
By substitution of Equations (35) and (25a)–(25c) into Equations (A34)–(A42), with the

assumption ω = 0, we get the following relation:

{[F] + [K]}{δ} = 0 (36)

which is solved in terms of the kinematic unknowns.
At the same time, based on a GDQ definition of the problem, the substitution of Equa-

tions (28a)–(28e) into Equations (A34)–(A42) leads to the following relation in matrix form:
{[

[Fdd] [Fdb]
[Fbd] [Fbb]

]
+

[
[Kdd] [Kdb]
[Kbd] [Kbb]

]}{
δd
δb

}
= 0 (37)

depending on the kinematic unknowns δd and δb.

6. Results and Discussion

6.1. Validation

We now present the results from a large numerical investigation aimed at studying
the static and vibrational response of GPLRC multilayer rectangular plates, with material
properties as summarized in Table 1. After a preliminary convergence study, we test the

206



Appl. Sci. 2021, 11, 6331

performances of our proposed formulation with a comparative evaluation against the open
literature or further numerical methods.

Table 1. Material properties of the system (see Ref. [3]).

Polymer Epoxy (Matrix) Graphene Platelets

νm = 0.34 νGPL = 0.186
ρm [kg/m3] = 1.2 × 103 ρGPL [kg/m3] = 1.06 × 103

Em [GPa] = 2.85 EGPL [TPa] = 1.01
lGPL [μm] = 2.5
wGPL [μm] = 1.5
tGPL [nm] = 1.5

The GDQ numerical study starts considering the effect of an increased grid point
distribution on the structural response in terms of dimensionless fundamental frequency
and bending deflection, for two different boundary conditions (completely clamped and
simply-supported), as visible in Figures 4 and 5, respectively. Based on the plots in these
figures it is worth noticing the very fast stabilization of results even with a reduced number
of sampling points, whose rate of convergence maintains almost constant independently of
the selected boundary conditions. As a further step we perform a parametric evaluation
of the frequency response for GPL reinforced thick rectangular plates in terms of natural
frequencies for different reinforcement distributions, accounting for different longitudinal
and transverse modes, as summarized in Table 2. A FSDT is adopted in this case for
comparative purposes with predictions by Song et al. [16], with a perfect matching for all the
selected graphene distributions and mode shapes. Among the different GPL distributions,
it seems that a GPL-X distribution predicts the highest vibrational frequencies of the system,
whereas a pure epoxy material yields the lowest vibrational values.

Figure 4. Convergence study of the first fundamental frequency, when assuming a GPL-UD, b/a = 5, a/h = 10, and
ΛGPL = 0.5%: (a) CCCC boundary conditions, (b) SSSS boundary conditions.
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Figure 5. Convergence study of the bending deflection, when assuming a GPL-UD, p0 = 105, b/a = 5, a/h = 10, and
ΛGPL = 0.5%: (a) CCCC boundary conditions, (b) SSSS boundary conditions.

Table 2. Dimensionless natural frequency of a rectangular plate made by pure epoxy and dif-
ferent types of graphene distribution with various longitudinal and transverse mode shapes for
(a × b × h = 0.45 m × 0.45 m × 0.045 m), ωmn = ωmnh

√
ρm/Em, and ΛGPL = 1 %.

GPL-X GPL-O GPL-UD Pure Epoxy ωmn (m, n)

0.1378 0.102 0.1216 0.0584 Ref. [16]
(1, 1)0.1378 0.102 0.1216 0.0584 FSDT

0% 0% 0% 0% Error%

0.3249 0.2456 0.2895 0.1391 Ref. [16]
(2, 1)0.3249 0.2456 0.2895 0.1391 FSDT

0% 0% 0% 0% Error%

0.4939 0.3796 0.4436 0.2132 Ref. [16]
(2, 2)0.4939 0.3796 0.4436 0.2132 FSDT

0% 0% 0% 0% Error%

0.5984 0.4645 0.54 0.2595 Ref. [16]
(3, 1)0.5984 0.4645 0.54 0.2595 FSDT

0% 0% 0% 0% Error%

0.7454 0.586 0.6767 0.3251 Ref. [16]
(3, 2)0.7454 0.586 0.6767 0.3251 FSDT

0% 0% 0% 0% Error%

0.969 0.7755 0.8869 0.4261 Ref. [16]
(3, 3)0.969 0.7755 0.8869 0.4261 FSDT

0% 0% 0% 0% Error%

We focus, now, on the statics of FG square plates, with the upper and lower surfaces
made by a pure ceramic and metal, respectively. The mechanical properties of the system
are assumed to vary along the thickness direction based on the following relation [49]:

E(z) = (Ec − Em)
(

z
h + 1

2

)p
+ Em

ρ(z) = (ρc − ρm)
(

z
h + 1

2

)p
+ ρm

v(z) = (vc − vm)
(

z
h + 1

2

)p
+ vm

(38)

where subscripts c and m refer to the ceramic and metal phases, respectively, and p is the
power-law index of the FG material. The mechanical properties of pure ceramic and metal
phases are summarized in Table 3, where the ceramic phase features a meaningful higher
stiffness than a pure metal. This means that an increased quantity of metal components
in the structure would increase its flexibility, as specified in the deflection response of
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Table 4, for different exponents p, in line with findings by References [48,49]. As further
validation, we compare our vibration results with finite element predictions as performed
in COMSOL, for a square plate with constant thickness h = 10 mm, length 250 mm,
and different GPL distribution profiles. As the GPLRC plate features an inhomogeneous
behavior, the material properties are assumed to be graded in the thickness direction. In
Tables 5–7, we compare the vibration results for the first six modes, and for three different
reinforcement distributions, namely, a GPL–UD, –X, and –O profile, respectively, It is worth
noticing the very good matching of results compared to finite elements, with a limited
percentage error (lower than 1.04% in each case), despite the reduced computational
effort. For a GPL-O distribution we also represent the related mode shapes in Figure 6,
while keeping ΛGPL = 0.1 (wt%), with a reasonable kinematic response with the selected
simply-supported boundary condition.

Table 3. Material properties of the system.

Property Value

Ec 380 GPa
Em 70 GPa
vc 0.3
vm 0.3

Table 4. Effect of the volume fraction exponent of the FG material on the dimensionless deflections
of SSSS FG square plates.

Present Ref. [49] Ref. [48] p

0.4621 0.4666 0.4665 p = 0 (Ceramic)
0.9416 - 0.9287 1
1.2002 1.1908 1.194 2
1.3204 - 1.32 3
1.3869 1.3769 1.389 4
1.4342 - 1.4356 5
1.4741 1.4554 1.4727 6
1.5107 - 1.5049 7
1.5455 1.5157 1.5343 8
1.579 - 1.5617 9

1.6112 1.5695 1.5876 10
2.5085 - 2.5327 p = ∞ (Metal)

Table 5. Comparison with FEM (GPL-UD).

S. No Mode ω (Hz) FEM (Hz) Relative Error%

S1 1 494.9 495.9 0.19%
S2 2 996.8 997.3 0.05%
S3 3 1453.0 1451.9 0.07%
S4 4 1766.1 1763.9 0.12%
S5 5 2180.2 2175.1 0.23%
S6 6 2752.5 2743.3 0.33%

Table 6. Comparison between FEM-based predictions and results from our formulation (GPL-X).

S. No Mode ω (Hz) FEM (Hz) Relative Error

S1 1 520.2 520.51 0.06%
S2 2 1046.4 1044.0 0.23%
S3 3 1523.8 1516.3 0.49%
S4 4 1840.6 1840.1 0.027%
S5 5 2283.2 2264.3 0.83%
S6 6 2879.9 2850.2 1.04%
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Table 7. Comparison between FEM-based predictions and results from our formulation (GPL-O).

S. No Mode ω (Hz) FEM (Hz) Relative Error

S1 1 468.1 470.1 0.42%
S2 2 944.0 947.3 0.34%
S3 3 1377.3 1381.4 0.29%
S4 4 1665.5 1670.2 0.28%
S5 5 2069.4 2074.0 0.22%
S6 6 2615.0 2620.4 0.20%

Figure 6. The first six mode shapes of a GPLRC rectangular plate with a GPL-O distribution pattern.
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6.2. Parametric Study

We perform, now, a parametric study focusing on the sensitivity of the frequency
response Δω% =

(
ωc − ωepoxy

)
/ωepoxy × 100 against the weight fraction of GPLs for each

selected distribution pattern (Figure 7), with a clear beneficial effect on the structural
stiffness and stability as ΛGPL increases within the material. Moreover, due to the presence
of high normal stresses in the upper and lower sides of multilayered plates, a GPL-X
distribution with an increased quantity of GPLs causes a hardening effect on the system,
together with higher natural frequencies. On the other hand, a higher concentration of the
reinforcing phase in the middle surface of the plate increases the structural deformability
monotonically, whose variation rate is plotted in Figure 7, with a perfect agreement with
predictions by Song et al. [16]. A further parameter affecting the frequency response
is the number of layers NL in the structure, as plotted in Figure 8 for three different
reinforcement distributions. Except for the uniform reinforcement case for which the
response is unaffected by NL, a small increase of this parameter can cause some hardening
or softening effects on the structural stiffness, with a sharp increase or decrease of the
frequency, for a GPL-X or GPL-O distribution, respectively. Even for these two distributions,
the solutions stabilize for a number of layers equal or higher than 10, as also predicted by
Song et al. [16]. The sensitivity of the response to the number of layers in the thickness
direction is plotted in Figure 9 in terms of dimensionless vibrational frequency, for a square
plate with a/h = 25 and ΛGPL = 0.3% under a completely-clamped (CCCC) and simply-
supported (SSSS) boundary condition. Based on a comparative evaluation of the plots in
these two figures, the best stability response seems to be reached for a CCCC multilayered
structure with NL = 10 and a GPL-X reinforcement distribution, in terms of vibration
frequency (see Figure 9). At the same time, an increased number of layers more than
10 becomes deleterious for the overall stability of plates with a GPL-O type distribution,
both for CCCC and SSSS boundary conditions. Figure 10 depicts the variation of the first
vibration frequency against the thermal gradient ΔT of moderately thick square plates for
different GPL weight fractions. Due to the variation of the thermoelastic properties of the
system, together with the presence of initial internal stresses and strains in the structure by
thermal attacks, this complex environment causes a combined hardening-softening impact
on the system. More specifically, an increased thermal variation decreases the fundamental
frequency of the system up to a certain value of ΔT, for which the fundamental frequency
becomes zero, and the structure undergoes a static instability phenomenon. This critical
temperature moves towards higher values for increased weight fractions of GPLs (from
0.2% up to 0.8%). It is worth also noticing that in the pre-divergence zone, by approaching
the static instability phenomenon, an enhanced temperature causes a very fast reduction
of the vibrational frequency of the system. In order to survey the effect of the Kerr
foundation on the vibrational behavior and static instability of GPL-reinforced plates,
we plot the variation of dimensionless first fundamental frequency versus the thermal
variation for different substrate coefficients while selecting an SSSS and CCCC boundary
condition, respectively, in Figure 11a,b. As the presence of an elastic foundation can vary the
bending stiffness of a structure, we note that an enhanced value of the foundation constants
improves the vibrational behavior of the system. Meanwhile, the divergence instability can
be delayed by increasing the substrate coefficients values. In other words, the presence of an
elastic medium gets higher critical values at which the static instability phenomenon takes
place. In addition, clamped boundary constraints reduce the positive effect of foundations,
with a less pronounced variation in the critical temperature corresponding to the static
instability and natural vibrational frequencies of the system.

A further goal of the systematic analysis is also the evaluation of the maximum
deflection of the structure, hereafter reported in dimensionless form. In Figure 12 we
show the variation of this kinematic quantity versus the number of layers within a SSSS
(Figure 12a) and CCCC (Figure 12b) laminated structure, accounting for the three different
GPLs patterns. Unlike the UD of GPLs, the kinematic response seems to be clearly sensitive
to the number of layers NL within a multilayered structure, with a monotone increase
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or decrease depending on whether a GPL–O or –X distribution is selected as reinforcing
phase, with a plateau obtained in correspondence of NL = 10. With regard to the sensitivity
of the deflection response to the reinforcement weight fraction, we plot the results in
Figure 13a,b for a SSSS and CCCC boundary condition, respectively. Based on the plots in
this figure, an increased amount of GPL nanofillers decreases monotonically the overall
deformability of the structure. For example, the introduction of a small percentage of GPLs
(equal to 0.5%) is able to reduce the deformability of the system up to a percentage of
360%, for a GPL-X symmetric distribution. This last reinforcement dispersion provides the
highest stiffness in multilayered structures, for both a SSSS and CCCC boundary conditions,
whereas the highest deformability is obtained for GPL-O distributions of the reinforcing
phase under the same weight fraction assumptions. From a design standpoint, a GPL-X
symmetric dispersion is desirable as the best reinforcing distribution among others, due to
its capability to limit the structural deformability. At the same time, a further reduction
in deformability can be obtained, accounting for the elastic properties of the surrounding
medium, as plotted in Figures 14 and 15 for a Winkler–Pasternak or Kerr elastic substrate,
respectively. In both cases, indeed, elastic foundations with increased stiffness properties
get lower deflections, while keeping fixed the GPL weight fraction within the structure.
This reduction is even more pronounced for more relaxing boundary conditions as simply-
supports, while assuming a Kerr medium in lieu of a Winkler–Pasternak-type foundation
(compare the plots of Figures 14 and 15).

Figure 7. Relative frequency variation vs. the GPL weight fraction, for different GPL distribution
patterns (b/a = 1, a/h = 10, and SSSS boundary condition).

Figure 8. Relative frequency variation vs. the number of layers, for different GPL distribution
patterns (b/a = 1, a/h = 10, and SSSS boundary condition).
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(a) CCCC (b) SSSS 

Figure 9. Dimensionless fundamental frequency vs. the number of layers, for different GPL distribution patterns
(b/a = 1, a/h = 25, ΔGPL = 0.3%): (a) CCCC boundary conditions, (b) SSSS boundary conditions.

Figure 10. Dimensionless fundamental frequency vs. thermal variation, for different GPL weight
fractions (a = b, a/h = 25, and GPL-X).

Figure 11. Dimensionless fundamental frequency vs. thermal variation, for different Kerr substrate coefficients (a = b,
a/h = 25, ΛGPL = 0.3%, Kl = 105, and GPL-X): (a) SSSS boundary conditions, (b) CCCC boundary conditions.
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Figure 12. Dimensionless deflection vs. number of layers, for different distribution patterns of reinforcement
(b/a = 1, a/h = 25, ΔGPL = 0.3%, p0 = 105): (a) SSSS boundary conditions, (b) CCCC boundary conditions.

Figure 13. Dimensionless deflection changes vs. GPL weight fraction, for different distribution patterns of reinforcement
(b/a = 1, a/h = 10, p0 = 105): (a) SSSS boundary conditions, (b) CCCC boundary conditions.

Figure 14. Dimensionless deflection vs. GPL weight fraction, for different elastic foundation coefficients (b/a = 1,
a/h = 10, GPL − X, p0 = 105): (a) SSSS boundary conditions, (b) CCCC boundary conditions.
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Figure 15. Dimensionless deflection vs. GPL weight fraction, for different Kerr foundation coefficients (b/a = 1,
a/h = 10, GPL − X, p0 = 105 and KI = 105): (a) SSSS boundary conditions, (b) CCCC boundary conditions.

7. Conclusions

In this paper we focused on the vibrational and static response of FG-GPLRC multi-
layer rectangular plates by combining a higher order formulation of shells together with
a modified Halpin and Tsai model to account the effect of the dispersion in nanocom-
posites. The problem is here solved both theoretically with a Navier-type solution, and
computationally, by means of the GDQ approach, as high-performance numerical tool.
The proposed model is successfully validated in its accuracy against predictions from
the literature and results from finite element formulations in the first part. Based on a
parametric study, it seems that A GPL-X pattern in a multilayered member provides the
highest fundamental frequencies and stiffness of the structure. These mechanical properties
increase for an increased GPL weight fraction within the material. In addition, the vibration
and kinematic results based on a uniform distribution of GPLs are always unaffected by the
reinforcement weight fraction and number of layers within the structure. At the same time,
the elastic foundations with increased stiffness properties reduce the overall deformability
of multilayered GPL-reinforced structures, which confirms the importance of considering
the correct mechanical performances of different substrates around a structural member for
design purposes. It is also observed that the presence of a thermal environment reduces the
structural efficiency and stiffness due to the introduction of an additional stress and strain
field in the system. Meanwhile, elastic foundations with increased stiffness properties
raise the critical temperature of multilayered structures while reducing their deformability.
This study would provide useful scientific insights and an enhanced tool to engineers and
designers for the development of novel and efficient composite structures and components,
such as electronic circuits, sensors, or flexible electrodes for displays and solar cells.
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Appendix A

The non-null strain components are defined as

215



Appl. Sci. 2021, 11, 6331

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εxx
εyy
γyz
γxz
γxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε0
xx

ε0
yy

γ0
yz

γ0
xz

γ0
xy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ z

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k0
xx

k0
yy

k0
yz

k0
xz

k0
xy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ z2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε∗xx
ε∗yy
γ∗

yz
γ∗

xz
γ∗

xy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ z3

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k∗xx
k∗yy
k∗yz
k∗xz
k∗xy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A1)

where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε0
xx

ε0
yy

γ0
yz

γ0
xz

γ0
xy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u0
∂x
∂v0
∂y

v1 +
∂w0
∂y

u1 +
∂w0
∂x

∂u0
∂y + ∂v0

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k0
xx

k0
yy

k0
yz

k0
xz

k0
xy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u1
∂x
∂v1
∂y

2v2
2u2

∂u1
∂y + ∂v1

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε∗xx
ε∗yy
γ∗

yz
γ∗

xz
γ∗

xy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u2
∂x
∂v2
∂y

3v3
3u3

∂u2
∂y + ∂v2

∂x

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k∗xx
k∗yy
k∗yz
k∗xz
k∗xy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u3
∂x
∂v3
∂y
0
0

∂u3
∂y + ∂v3

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (A2)

The elastic constants used in Equation (7) are introduced as

Q11 =
EC

1 − ν2
C

, Q12 =
νCEC

1 − ν2
C

, Q13 = Q23 = Q12, Q33 = Q22 = Q11, Q44 = Q55 = Q66 = GC (A3)

The set of governing associated to the Hamilton’s principle takes the following form

δu0 :
∂Nxx

∂x
+

∂Nxy

∂y
= I0

..
u0 + I1

..
u1 + I2

..
u2 + I3

..
u3 , (A4)

δv0 :
∂Nyy

∂y
+

∂Nxy

∂x
= I0

..
v0 + I1

..
v1 + I2

..
v2 + I3

..
v3 , (A5)

δw0 :
∂Qx
∂x +

∂Qy
∂y − NT

1
∂2w0
∂x2 − NT

2
∂2w0
∂y2 + kp

∂2w0
∂x2 + kp

∂2w0
∂y2 − kww0

− kl ku
kl+ku

w0 +
ksku

kl+ku

∂2w0
∂x2 + ksku

kl+ku

∂2w0
∂y2 − Pw0 = I0

..
w0,

(A6)

δu1 :
∂Mx

∂x
+

∂Mxy

∂y
− Qx = I1

..
u0 + I2

..
u1 + I3

..
u2 + I4

..
u3 , (A7)

δv1 :
∂My

∂y
+

∂Mxy

∂x
− Qy = I1

..
v0 + I2

..
v1 + I3

..
v2 + I4

..
v3, (A8)

δu2 :
∂N∗

x
∂x

+
∂N∗

xy

∂y
− 2Sx = I2

..
u0 + I3

..
u1 + I4

..
u2 + I5

..
u3 , (A9)

δv2 :
∂N∗

y

∂y
+

∂N∗
xy

∂x
− 2Sy = I2

..
v0 + I3

..
v1 + I4

..
v2 + I5

..
v3 , (A10)

δu3 :
∂M∗

x
∂x

+
∂M∗

xy

∂y
− 3Q∗

x = I3
..
u0 + I4

..
u1 + I5

..
u2 + I6

..
u3 , (A11)

δv3 :
∂M∗

y

∂y
+

∂M∗
xy

∂x
− 3Q∗

y = I3
..
v0 + I4

..
v1 + I5

..
v2 + I6

..
v3 , (A12)

where
..

( ◦ ) refers to the acceleration field, and Ii are the mass inertias. The corresponding
boundary conditions are defined as

δu0 = 0 or Nx nx + Nxyny = 0 ,
δv0 = 0 or Ny ny + Nxynx = 0 ,
δw0 = 0 or Nx nx + Qyny + Qxnx + NT

1
∂w0
∂x nx + NT

2
∂w0
∂y ny

−kp
∂w0
∂x nx − kp

∂w0
∂y ny − ksku

kl+ku

∂w0
∂x nx − ksku

kl+ku

∂w0
∂y ny = 0 ,

(A13)

δu1 = 0 or Mx nx + Mxyny = 0 ,
δv1 = 0 or My nynx + Mxynx = 0 ,

(A14)
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δu2 = 0 or N∗
x nx + N∗

xyny = 0 ,
δv2 = 0 or N∗

y ny + N∗
xynx = 0 ,

(A15)

δu3 = 0 or M∗
x nx + M∗

xyny = 0 ,
δv3 = 0 or M∗

y nynx + M∗
xynx = 0 ,

(A16)

where⎡
⎣ Nx N∗

x
Ny N∗

y
Nxy N∗

xy

⎤
⎦ =

h
2∫

− h
2

⎧⎨
⎩

σx
σy
σxy

⎫⎬
⎭{

1 z2 }
dz ,

⎧⎨
⎩

Mx
My
Mxy

⎫⎬
⎭ =

h
2∫

− h
2

⎧⎨
⎩

σx
σy
σxy

⎫⎬
⎭zdz ,

⎧⎨
⎩

M∗
x

M∗
y

M∗
xy

⎫⎬
⎭ =

h
2∫

− h
2

⎧⎨
⎩

σx
σy
σxy

⎫⎬
⎭z3dz ,

[
Qx
Qy

]
=

h
2∫

− h
2

{
σxz
σyz

}
dz ,

[
Sx
Sy

]
=

h
2∫

− h
2

{
σxz
σyz

}
z dz ,

(I0, I1, I2, I3, I4, I5, I6) =
∫
z

ρ
(
1, z1, z2, z3, z4, z5, z6)dz.

(A17)

and

Nxx = A11
∂u0
∂x + B11

∂u1
∂x + C11

∂u2
∂x + D11

∂u3
∂x + A12

∂v0
∂y + B12

∂v1
∂y + C12

∂v2
∂y + D12

∂v3
∂y

Nxy = A44

(
∂u0
∂y + ∂v0

∂x

)
+ B44

(
∂u1
∂y + ∂v1

∂x

)
+ C44

(
∂u2
∂y + ∂v2

∂x

)
+ D44

(
∂u3
∂y + ∂v3

∂x

)
Nyy = A21

∂u0
∂x + B21

∂u1
∂x + C21

∂u2
∂x + D21

∂u3
∂x + A22

∂v0
∂y + B22

∂v1
∂y + C22

∂v2
∂y + D22

∂v3
∂y

Qy = A55

(
∂w0
∂y + v1

)
+ B55(2v2) + C55(3v3)

Qx = A66

(
∂w0
∂x + u1

)
+ B66(2u2) + C66(3u3)

Mx = B11
∂u0
∂x + C11

∂u1
∂x + D11

∂u2
∂x + E11

∂u3
∂x + B12

∂v0
∂y + C12

∂v1
∂y + D12

∂v2
∂y + E12

∂v3
∂y

Mxy = B44

(
∂u0
∂y + ∂v0

∂x

)
+ C44

(
∂u1
∂y + ∂v1

∂x

)
+ D44

(
∂u2
∂y + ∂v2

∂x

)
+ E44

(
∂u3
∂y + ∂v3

∂x

)
My = B21

∂u0
∂x + C21

∂u1
∂x + D21

∂u2
∂x + E21

∂u3
∂x + B22

∂v0
∂y + C22

∂v1
∂y + D22

∂v2
∂y + E22

∂v3
∂y

N∗
x = C11

∂u0
∂x + D11

∂u1
∂x + E11

∂u2
∂x + F11

∂u3
∂x + C12

∂v0
∂y + D12

∂v1
∂y + E12

∂v2
∂y + F12

∂v3
∂y

N∗
xy = C44

(
∂u0
∂y + ∂v0

∂x

)
+ D44

(
∂u1
∂y + ∂v1

∂x

)
+ E44

(
∂u2
∂y + ∂v2

∂x

)
+ F44

(
∂u3
∂y + ∂v3

∂x

)
N∗

y = C21
∂u0
∂x + D21

∂u1
∂x + E21

∂u2
∂x + F21

∂u3
∂x + C22

∂v0
∂y + D22

∂v1
∂y + E22

∂v2
∂y + F22

∂v3
∂y

M∗
x = D11

∂u0
∂x + E11

∂u1
∂x + F11

∂u2
∂x + Y11

∂u3
∂x + D12

∂v0
∂y + E12

∂v1
∂y + F12

∂v2
∂y + Y12

∂v3
∂y

M∗
xy = D44

(
∂u0
∂y + ∂v0

∂x

)
+ E44

(
∂u1
∂y + ∂v1

∂x

)
+ F44

(
∂u2
∂y + ∂v2

∂x

)
+ Y44

(
∂u3
∂y + ∂v3

∂x

)
M∗

y = D21
∂u0
∂x + E21

∂u1
∂x + F21

∂u2
∂x + Y21

∂u3
∂x + D22

∂v0
∂y + E22

∂v1
∂y + F22

∂v2
∂y + Y22

∂v3
∂y

(A18)

Based on relations (A13)–(A16), different boundary conditions can be set as follows

Clamped (C) edges:{
x = 0, a
y = 0, b

→
⎧⎨
⎩

u0 = 0 u1 = 0 u2 = 0 u3 = 0
v0 = 0 v1 = 0 v2 = 0 v3 = 0 ,
w0 = 0

(A19)

Simply (S) edges:

⎧⎨
⎩

x = 0, a → {Nxx = Mxx = N∗
xx = M∗

xx = 0

y = 0, b →
{

Nyy = Myy = N∗
yy = M∗

yy = 0
. (A20)

Appendix B

The parameters in Equations (21a)–(21c) are defined as follows

D =
1
3

V∗
GPL

⎧⎨
⎩ 2

H + 1
Kx
Km −1

+
1

1
2 (1 − H) + 1

Kz
Km −1

⎫⎬
⎭, (A21)
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H =
Ln

[
ρ
(
ρ+

√
ρ2 − 1

)]
√
(ρ2 − 1)3

− 1
ρ2 − 1

, (A22)

Kx =
Kg

2RkKg
L + 1

, (A23)

Kz =
Kg

2RkKg
t + 1

, (A24)

ρ =
lGPL
tGPL

. (A25)

The constants in Equation (23) are determined as

C11 =

∣∣∣∣ T1 T2

1 e−
√

A1h

∣∣∣∣∣∣∣∣ 1 1
e
√

A1h e−
√

A1h

∣∣∣∣
, C22 =

∣∣∣∣ T2 T1

e
√

A1h 1

∣∣∣∣∣∣∣∣ 1 1
e
√

A1h e−
√

A1h

∣∣∣∣
, A11 = P2

m + P2
n , (A26)

where

FG − X:
Z < h

2 ⇒ A1 = − 4D
h ; A2 = 1 + 2D ; A3 = 0 ; A4 = − 4D

h ; A5 = −A11
4D
h ; A6 = (1 + 2D )A11

Z > h
2 ⇒ A1 = 4D

h ; A2 = 1 − 2D ; A3 = 0 ; A4 = 4D
h ; A5 = A11

4D
h ; A6 = (1 − 2D )A11

(A27)

FG − O :
Z < h

2 ⇒ A1 = 4D
h ; A2 = 1 ; A3 = 0 ; A4 = 4D

h ; A5 = A11
4D
h ; A6 = A11

Z > h
2 ⇒ A1 = − 4D

h ; A2 = 1 + 4D ; A3 = 0 ; A4 = − 4D
h ; A5 = − 4D

h A11; A6 = (1 + 4D )A11

(A28)

More details about coefficients in Equations (25a)–(25c) are defined in the following

α1 = −
(

A3 +
√
−4A5 A1 + A32

)
2A1

Z (A29)

α2 =
A1

2 − A1 A4 + A2 A3

A1
2 (A30)

β1 =
−2A6 A1

2−2A1
2
√

−4A5 A1+A3
2−2A2 A5 A1

2A1
2
√

−4A5 A1+A3
2

+
−A1 A3 A4+A1 A4

√
−4A5 A1+A3

2+A2 A3
2−A2 A3

√
−4A5 A1+A3

2

2A1
2
√

−4A5 A1+A3
2

(A31)

β2 =
2A1

2 − A1 A4 + A2 A3

A1
2 (A32)

β3 =

√
−4A5 A1 + A32(A2 + A1Z)

A1
2 (A33)

The governing equations of GPLRC plates determined by means of minimum total
potential energy principle in Section 5 are defined as

δu0 :
∂Nxx

∂x
+

∂Nxy

∂y
= 0 , (A34)

δv0 :
∂Nyy

∂y
+

∂Nxy

∂x
= 0, (A35)
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δw0 :
∂Qx
∂x +

∂Qy
∂y − NT

1
∂2w0
∂x2 − NT

2
∂2w0
∂y2 + kp

∂2w0
∂x2 + kp

∂2w0
∂y2 − kww0

− klku
kl+ku

w0 +
ksku

kl+ku

∂2w0
∂x2 + ksku

kl+ku

∂2w0
∂y2 − Pw0 = 0,

(A36)

δu1 :
∂Mx

∂x
+

∂Mxy

∂y
− Qx = 0, (A37)

δv1 :
∂My

∂y
+

∂Mxy

∂x
− Qy = 0, (A38)

δu2 :
∂N∗

x
∂x

+
∂N∗

xy

∂y
− 2Sx = 0 , (A39)

δv2 :
∂N∗

y

∂y
+

∂N∗
xy

∂x
− 2Sy = 0 , (A40)

δu3 :
∂M∗

x
∂x

+
∂M∗

xy

∂y
− 3Q∗

x = 0 , (A41)

δv3 :
∂M∗

y

∂y
+

∂M∗
xy

∂x
− 3Q∗

y = 0 , (A42)

The boundary conditions and static quantities associated with the problem are the
same as defined in Equations (A13)–(A16).
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Abstract: The present work studies the buckling behavior of functionally graded (FG) porous
rectangular plates subjected to different loading conditions. Three different porosity distributions are
assumed throughout the thickness, namely, a nonlinear symmetric, a nonlinear asymmetric and a
uniform distribution. A novel approach is proposed here based on a combination of the generalized
differential quadrature (GDQ) method and finite elements (FEs), labeled here as the FE-GDQ method,
while assuming a Biot’s constitutive law in lieu of the classical elasticity relations. A parametric study
is performed systematically to study the sensitivity of the buckling response of porous structures,
to different input parameters, such as the aspect ratio, porosity and Skempton coefficients, along
with different boundary conditions (BCs) and porosity distributions, with promising and useful
conclusions for design purposes of many engineering structural porous members.

Keywords: buckling; FE-GDQ; functionally graded materials; porosity; 3D elasticity

1. Introduction

In the last decades, an increased interest in porous materials has arisen among scien-
tists and designers regarding engineering materials and structures due to their remarkable
mechanical properties, electrical conductivity and high permeability. Besides, porous
materials can be used in the aerospace industry and sea structures because of their very
low density, but also in submarines, reformers and catalysts owing to their high specific
surfaces. Thus, many investigations on the mechanical behavior of functionally graded (FG)
porous plate and shell structures have been increasingly conducted in the literature from a
theoretical, experimental and computational standpoint. Biot [1] was one of the pioneers
who investigated the buckling response of a fluid-saturated porous slab under an axial
compression, and checked for the sensitivity of the buckling load to pore compressibility.
Similarly, Magnucki and Stasiewicz [2] suggested an analytical determination of the critical
buckling load of a compressed porous beam based on a broken-line hypothesis and the
principle of stationary action for the total potential energy. A shear deformation theory
was applied in [3] for the buckling study of porous beams with varying material properties,
and in [4] for the bending and buckling of rectangular plates made of a foam material with
a nonlinear symmetric porosity distribution. In the further work by Chen et al. [5], the
elastic buckling behavior of shear deformable FG porous beams was studied systematically
to check for the effect of different porosity distributions on the mechanical response. A
multiple analytical, numerical and experimental approach was proposed by Jasion et al. [6]
for the buckling study of plates and beams, with a foam core and external layers of perfect
material. In the last decades, different higher-order assumptions have been integrated with
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high-performance computational methods to treat buckling problems of perfect and/or
porous composite structures. A nonlinear dynamic buckling of FG porous beams was
performed by Kang Gao et al. [7]. The Galerkin method was applied by the authors to
determine the governing equations of the problem, which was then solved numerically by
means of a fourth-order Runge–Kutta method. A different approach based on a general-
ized differential quadrature (GDQ) method was applied by Tang et al. [8] to analyze the
nonlinear and linear buckling behavior of FG porous Euler–Bernoulli beams. A refined
theory was also proposed by Ebrahimi and Jafari [9] to treat the buckling problem of smart
magneto-electro-elastic-FG porous plates, accounting for two different FG distributions.
Hyperbolic higher-order shear deformation theory (HSDT) was combined with a mesh-free
approach in [10] to investigate the buckling and free vibration behavior of porous FG plates
resting on an elastic foundation. Among coupled problems, Cong et al. [11] focused on
the nonlinear thermomechanical buckling and post-buckling of porous FG plates with
two poro/nonlinear symmetric and non-symmetric distributions, by using the Reddy’s
HSDT and Galerkin method. Further recent contributions on the buckling and free vi-
bration response of perfect and porous FG plates applied first-order shear deformation
theory (FSDT) combined with the Chebyshev Polynomials-Ritz method [12–15], even for
graphene-reinforced nanocomposites. Tu et al. [16], instead, proposed a Galerkin-based
solution for the nonlinear buckling and post-buckling study of imperfect porous plates
subjected to different mechanical loads while applying classical shell theory–Von Karman
nonlinearity. In addition, Sekkal et al. [17] focused on a novel quasi-3D HSDT to assess
the buckling and vibration response of FG plates, whose solution was determined ana-
lytically. Shahsavari et al. [18] investigated the shear buckling of porous nanoplates with
even, uneven and logarithmic-uneven distribution templates, by means of the Galerkin
method, a novel size-dependent quasi-3D shear deformation theory and Eringen’s nonlocal
elasticity. Another successful application of mesh-free methods can be found in [19] for
the thermal buckling response of porous sandwich plates with CNT-reinforced nanocom-
posite layers. At the same time, Li et al. [20] studied the nonlinear vibration and dynamic
buckling of a sandwich FG porous plate reinforced by graphene platelets and resting
on a Winkler–Pasternak elastic foundation, where the Galerkin method was proposed
together with the fourth-order Runge–Kutta approach as theoretical and numerical tools.
A conventional FSDT approach was also employed by Shahgholian et al. [21] for the study
of the buckling behavior of FG graphene-reinforced porous cylindrical shells combined
with the Rayleigh–Ritz numerical method, whereas Zhao et al. [22] applied the classical
Euler–Bernoulli theory and the Galerkin method to check for the dynamic instability of FG
porous arches reinforced by graphene platelets.

Based on the current literature on the buckling of FG porous structures, however, most
studies rely on the use of simple elastic Hooke’s laws, with limited attention to the effect of
pore fluid pressures stemming from poroelastic constitutive Biot’s laws. In such a context,
Jabbari et al. [23,24] proposed a closed-form solution for the axial buckling of FG-saturated,
porous, rectangular, simply supported Kirchhoff plates, immersed in a piezoelectric [23]
or thermal field [24], respectively. In [25], the same authors studied the axisymmetric
buckling of a saturated circular porous-cellular plate as provided by FSDT. In the further
work by Jabbari et al. [26,27], classical plate theory (CPT) or HSDT was implemented for
the analysis of the buckling capacity of circular porous plates under a radial compressive
load, and its sensitivity to some important poroelastic material properties. In another work,
Jabbari et al. [28] performed a buckling study of thin circular FG plates made of saturated
porous-soft ferromagnetic materials in transverse magnetic fields, whereas in [29,30],
a FSDT closed solution was proposed to the buckling problem of transversely graded
saturated porous plates with piezoelectric layers, and the axisymmetric post-buckling study
of saturated porous circular plates under a uniform radial compression. Among moderately
thick plates, Rezaei and Saidi [31] assessed the buckling behavior of fluid-infiltrated porous
annular sector plates, as provided by Mindlin plate theory involving fluid-saturated and
fluid-free conditions. Additional buckling studies for structural members made of metals
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or composite materials can be found in [32–35]. The available literature, however, shows
the potential application of buckling issues in many porous structures, although at the
present state, a proper study of the buckling response of saturated porous rectangular plates
subjected to normal and shear loads is still lacking. Based on the literature overview, it
seems that the analysis of porous structures is usually based on FSDT and HSDT. Moreover,
in most studies, the Hooke’s law or drained condition is commonly assumed to model
the porous behavior of structures. Based on the above-mentioned lacking aspects of the
problem, in this work, the buckling behavior is investigated for FG-saturated porous
rectangular plates subjected to a double normal and shear loads. To this end, 3D elasticity
theory and Biot’s constitutive law are applied, while proposing a mixed FE-DQM based on
a Rayleigh–Ritz energy formulation as an efficient computational tool to solve the problem.
The application of Biot’s constitutive law in lieu of the simple Hooke’s law provides more
realistic results and conclusions, even from a practical standpoint. Based on the fact that
plate theories overestimate the buckling loads for thick plates, 3D elasticity is implemented
here to account for the thickness stretching effects, for the sake of accuracy, together with
a more efficient mixed FE-GDQ method rather than conventional FEs. Three different
porosity distributions are selected here in the thickness direction, namely, a nonlinear
symmetric, a nonlinear asymmetric and uniform distribution. The objective of the work is
to check the effects of different porosity distributions, as well as the porosity and Skempton
coefficients on the critical buckling load of undrained rectangular plates with different
geometrical dimensions and BCs, as useful for many engineering applications.

The remainder of the paper is structured as follows. In Section 2, the geometrical and
mechanical properties of porous rectangular plates are briefly described, together with the
governing equations of the problem, as determined by means of the virtual work principle
and Biot’s constitutive poroelastic law. Section 3 presents the main basics of the mixed
FE-GDQ numerical formulation, as proposed here to solve the problem, whose numerical
examples are tested and discussed in Section 4 among a large systematic investigation.
Conclusions are finally drawn in Section 5.

2. Theoretical Definition of the Problem

2.1. Poroelastic Modeling of Plates

Let us consider a rectangular FG porous plate, with in-plane dimensions a and b,
and thickness h, as depicted in Figure 1, along with three different porosity patterns
throughout the thickness direction (0 ≤ z ≤ h), namely, a non-symmetric nonlinear porous
distribution (PNND), a symmetric nonlinear porous distribution (PNSD) and a uniform
porous distribution (PUD). Except for uniform porosities, the mechanical properties of the
material in terms of shear modulus, Young’s modulus and mass density, for a PNND and
PNSD, are defined as in Equation (1) [36–40].

Figure 1. Geometrical scheme and loading conditions for a FG-saturated porous plate.
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E = E1[1 − e0 Q]

G = G1[1 − e0 Q]

ρ = ρ1[1 − em Q]

(1)

In which

Q(z) =

⎧⎪⎨
⎪⎩

(a)PNND cos
(πz

2h

)
(b)− PNSD cos

(π

2
− πz

h

) (2)

and 0 ≤ e0 ≤ 1 is the porosity coefficient. Moreover, E1, G1 and ρ1 denote the Young’s
modulus, the shear modulus and the mass density at z = h (for a PNND) and at z = 0 (for
a PNSD), whereby Ej = 2Gj(1 + ν), j = 0, 1 and the Poisson’s ratio, ν, is assumed to be
constant in the z-direction. The constitutive equations of FG-saturated porous rectangular
plates are derived from Biot’s theory, which accounts for the displacements field of the
solid, the pore fluid movement as well as their interactions owing to the applied loads [41].
Based on Biot’s theory, the constitutive law is thus written as [42]:

σij = 2Gεij + λεkkδij − pαδij (3)

where
p = M(Ψ − αεkk)

M =
2G(vu − v)

α2(1 − 2vu)(1 − 2v)

vu =
v + αβ(1 − 2v)/3
1 − αβ(1 − 2v)/3

v=
ε jj

εii
|σii=0, p = 0, i �= j

vu=
ε jj

εii
|σii=0, Ψ = 0, i �= j

α = 1 − K
KS

K =
2(1 + v)

3(1 − 2v)
G

Ku =
2(1 + vu)

3(1 − 2vu)
G

Note that p is the pore fluid pressure, such that, for p = 0, Biot’s law reverts to the clas-
sical Hooke’s law (or drained condition). In addition, λ denotes the Lamè constant, δij is the
Kronecker delta and α is the Biot’s effective stress coefficient (with 0 < α < 1). This param-
eter accounts for the effect of porosity on the structural behavior and resistance of porous
materials in the absence of an internal fluid. At the same time, M, G, νu, εkk, Ψ, Ks and
β stand for the Biot’s modulus, shear modulus, undrained Poisson’s ratio (ν < νu < 0.5),
volumetric strain, variation of fluid volume content, bulk modulus of a homogeneous ma-
terial and the Skempton coefficient, which introduces the pore fluid property, respectively.
This last coefficient, β, in particular, denotes a dimensionless parameter to include the
impact of a fluid within cavities on the overall response of a porous material in undrained
condition (Ψ = 0), and it is described as the ratio of the cavity pressure to the total body
stress, namely,

β =
dp
dσ

∣∣∣∣
Ψ=0

=
1

1 + e0
CP
CS

=
Ku − K

αKu
(4)
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In which Ku, K refer to the bulk modulus in undrained and drained conditions re-
spectively, and CP and CS stand for the fluid and solid compressibility in pores. Thus, the
Skempton coefficient defines the effect of fluid compressibility on the elastic modulus and
compressibility of the whole porous material [42].

2.2. Governing Equations

The governing equations of the problem are derived here from the principle of virtual
work, as follows:

δU − δVg = 0 (5)

where U is the total strain potential energy of the plate defined on the domain Ω as:

U =
1
2

∫
Ω

σijεijdΩ (6)

and Vg is the potential energy related to geometry, which takes the following form:

Vg =
1
2

∫
Ω

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Px

[(
∂u
∂x

)2
+

(
∂w
∂x

)2
+

(
∂v
∂x

)2
]
+ Py

[(
∂u
∂y

)2
+

(
∂w
∂y

)2
+

(
∂v
∂y

)2
]
+

Pxy

(
∂w
∂x

∂w
∂y

+
∂v
∂x

∂v
∂y

− ∂u
∂x

∂u
∂y

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

dΩ (7)

By substitution of Equations (6) and (7) into Equation (5), the following relation
is obtained:

∫ h

0

∫ a

0

∫ b

0

⎡
⎢⎢⎢⎢⎢⎢⎣

(
σxxδεxx + σyyδεyy + σzzδεzz + σyzδγyz + σxzδγxz + σxyδγxy

)
−Px

(
∂u
∂x

∂δu
∂x

+
∂v
∂x

∂δv
∂x

+
∂w
∂x

∂δw
∂x

)
− Py

(
∂u
∂y

∂δu
∂y

+
∂v
∂y

∂δv
∂y

+
∂w
∂y

∂δw
∂y

)

−Pxy

(
∂δw
∂x

∂w
∂y

+
∂δw
∂y

∂w
∂x

+
∂δv
∂x

∂v
∂y

+
∂δv
∂y

∂v
∂x

− ∂δu
∂x

∂u
∂y

− ∂δu
∂y

∂u
∂x

)

⎤
⎥⎥⎥⎥⎥⎥⎦

dv = 0 (8)

where the constitutive relations for FG-saturated porous plates in 3D poroelasticity can be
defined according to Biot’s constitutive law, as [σij] = [C][εij]. For FG-saturated porous
rectangular plates, the elasticity matrix reads as follows:

C =
E(1 − ν)

(1 + ν)(1 − 2ν)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ν

1 − ν

ν

1 − ν
0 0 0

ν

1 − ν
1

ν

1 − ν
0 0 0

ν

1 − ν

ν

1 − ν
1 0 0 0

0 0 0
1 − 2ν

2(1 − ν)
0 0

0 0 0 0
1 − 2ν

2(1 − ν)
0

0 0 0 0 0
1 − 2ν

2(1 − ν)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mα2 0 0 0 0 0
0 Mα2 0 0 0 0
0 0 Mα2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

= E Λ + ϒ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

The elasticity modulus, E, is assumed to vary along the z-direction, whereas the
Poisson’s ratio, ν, remains constant.
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3. Mixed FE-GDQ Numerical Formulation

A set of rectangular-quadratic elements, Ne, is considered to discretize the x–y plane
of the domain. Each element should be differentiable at both in-plane and transverse
displacements for solving the governing equations. Hence, the displacement components
are approximated as:

u(x, y, z, t) =
N
∑

j=1
ϕj(x, y)Uj(z, t),

v(x, y, z, t) =
N
∑

j=1
ϕj(x, y)Vj(z, t), j = 1, 2, . . . , N

w(x, y, z, t) =
N
∑

j=1
ϕj(x, y)Wj(z, t)

(10)

where N stands for the total number of nodes in the discretized x–y plane, and ϕj(x, y) de-
notes the global Lagrange interpolation functions. By combination of Equations (3) and (8),
and integrating by parts in the z-direction, the following governing equations per each
node i (i = 1, 2, . . . , N) are obtained:

δUi :
N
∑

j=1
AijC55(zj)

∂2Uj

∂z2 +
N
∑

j=1

∂C55(zj)

∂z
∂Uj

∂z
+

N
∑

j=1

(
DijC55(zj)− DjiC12(zj)

)∂Wj

∂z

+
N
∑

j=1

∂C44

∂z
(zj)Wj −

N
∑

j=1

(
EjiC12(zj) + E ijC66(zj)

)
Uj −

N
∑

j=1

(
FijC11(zj) + HjiC66(zj)

)
Vj

−Px
N
∑

j=1
Db

ijVj − Py
N
∑

j=1
Bb

ijVj − Pxy
N
∑

j=1
Sb

ijVj − Pxy
N
∑

j=1
Kb

ijVj = 0

(11)

δVi :
N
∑

j=1
Aij C44(zj)

∂2Vj

∂z2 +
N
∑

j=1

∂C44(zj)

∂z
∂Vj

∂z
+

N
∑

j=1

(
Dij C44(zj)− Dji C12(zj)

)∂Wj

∂z

+
N
∑

j=1

∂C44

∂z
(zj)Wj −

N
∑

j=1

(
Eji C12(zj) + E ijC66(zj)

)
Uj −

N
∑

j=1

(
Fij C11(zj) + Hji C66(zj)

)
Vj

−Px
N
∑

j=1
Db

ijVj − Py
N
∑

j=1
Bb

ijVj − Pxy
N
∑

j=1
Sb

ijVj − Pxy
N
∑

j=1
Kb

ijVj = 0

(12)

δWi :
N
∑

j=1
Aij C11(zj)

∂2Wj

∂z2 +
N
∑

j=1

(
BijC12(zj)− BijC55(zj)

)∂Uj

∂z

+
N
∑

j=1

(
DijC12(zj)− Dji C44(zj)

)∂Vj

∂z
− N

∑
j=1

Bij ∂C12(z)
∂z

Uj

+
N
∑

j=1
Dij ∂C12(z)

∂z
Vj +

N
∑

j=1

(
Fij C44(zj) + HijC55(zj) + Aij ∂C11(z)

∂z

)
Wj

−Px
N
∑

j=1
Db

ijWj − Py
N
∑

j=1
Bb

ijWj − Pxy
N
∑

j=1
Sb

ijWj − Pxy
N
∑

j=1
Kb

ijWj = 0

(13)

where,

Hij =
a∫

0

b∫
0

∂ϕi
∂x

∂ϕj

∂x
dxdy, Fij =

a∫
0

b∫
0

∂ϕi
∂y

∂ϕj

∂y
dxdy, Eij =

a∫
0

b∫
0

∂ϕi
∂x

∂ϕj

∂y
dxdy

Hij =
a∫

0

b∫
0

∂ϕi
∂x

∂ϕj

∂x
dxdy, Fij =

a∫
0

b∫
0

∂ϕi
∂y

∂ϕj

∂y
dxdy, Eij =

a∫
0

b∫
0

∂ϕi
∂x

∂ϕj

∂y
dxdy

Db
ij =

a∫
0

b∫
0

∂ϕi
∂x

∂ϕj

∂x
dydx, Bb

ij =
a∫

0

b∫
0

∂ϕi
∂y

∂ϕj

∂y
dydx, Sb

ij =
a∫

0

b∫
0

∂ϕi
∂x

∂ϕj

∂y
dydx, Kb

ij =
a∫

0

b∫
0

∂ϕi
∂y

∂ϕj

∂x
dydx

(14)
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The BCs at the lower and upper surfaces (z = 0 and z = h) associated with Equations (11)–(13)
are defined as:

Either δUi = 0, or

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N
∑

j=1
AijC55(zj)

∂Uj

∂z
+

N
∑

j=1
Bij C55(zij)Wj = 0 at z = 0,

N
∑

j=1
AijC55(zj)

∂Uj

∂z
+

N
∑

j=1
Bij C55(zij)Wj = 0 at z = h,

(15)

Either δVi = 0, or

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N
∑

j=1
AijC44(zj)

∂Vj

∂z
+

N
∑

j=1
Dij C44(zj)Wj = 0 at z = 0,

N
∑

j=1
AijC44(zj)

∂Vj

∂z
+

N
∑

j=1
Dij C44(zj)Wj = 0 at z = h,

(16)

Either δWi = 0, or

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N
∑

j=1
AijC11(zj)

∂Wj

∂z
+

N
∑

j=1
Dij C12(zj)Vj +

N
∑

j=1
BijC12(zj)Uj = 0 at z = 0

N
∑

j=1
AijC11(zj)

∂Wj

∂z
+

N
∑

j=1
Dij C12(zj)Vj +

N
∑

j=1
BijC12(zj)Uj = 0 at z = h

(17)

As far as the GDQ method is concerned, this approach discretizes the spatial deriva-
tives of a function f (z, t) as a weighted linear sum of the functional values at all nodes in
the solution domain, by means of some fixed weighting coefficients. Thus, the first- and
second-order derivatives of a one-dimensional function read as follows:

∂ f (z, t)
∂z

∣∣∣∣
z=zi

=
Nz
∑

j=1
Az

ij f
(
zj, t

)
=

Nz
∑

j=1
Az

ij fj(t)

∂2 f (z, t)
∂z2

∣∣∣∣
z=zi

=
Nz
∑

j=1
Bz

ij f
(
zj, t

)
=

Nz
∑

j=1
Bz

ij f j(t)
(18)

where Az
ij and Bz

ij are the weighted coefficients at the grid nodes of the solution domain. To
derive the weighting coefficients, the following relations are employed:

Az
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M(zi)(
zi − zj

)
M(zi)

for i �= j

−
Nz
∑

k=1,k �=i
Az

ik for i = j
i, j = 1, 2, . . . , Nz, (19)

Bz
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

[
Az

ii A
z
ij −

Az
ij

zi − zj

]
for i �= j,

−
Nz
∑

k=1,k �=i
Bz

ik for i = j

i, j = 1, 2, . . . , Nz, (20)

being

M(1)(zi) =
N

∏
j=1,j �=i

(
zi − zj

)
for i = 1, 2, . . . , N

To obtain more accurate results, a Chebyshev–Gauss–Lobatto quadrature-mesh size is
assumed here, in line with findings by Malik and Bert [43]. At the current stage, the GDQ
method is employed to discretize the system of equations through the thickness direction
(i.e., along the z-axis). A set of Nz grid points is assumed to discretize the domain along the
thickness direction for each quadratic grid point. This means that Equations (11)–(13) can
be rewritten in the domain (i.e., for each node k = 2, 3, . . . , Nz − 1), as follows:
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δUi :
N
∑

j=1

Nz
∑

m=1
AijC55(zj) BkmUjm +

N
∑

j=1

∂C55(zj)

∂z
Az

kmUjm +
N
∑

j=1

NZ
∑

m=1

(
BijC55(zj)− Bij C12(zj)

)
Az

kmWjm

+
N
∑

j=1

∂C44

∂z
(zj)Wj −

N
∑

j=1

(
EjiC12(zj) + E ijC66(zj)

)
Uj −

N
∑

j=1

(
FijC11(zj) + HjiC66(zj)

)
Vj

−Px
N
∑

j=1
Db

ijVj − Py
N
∑

j=1
Bb

ijVj − Pxy
N
∑

j=1
Sb

ijVj − Pxy
N
∑

j=1
Kb

ijVj = 0

(21)

δVi :
N
∑

j=1

NZ
∑

m=1
AijC44(zj)BkmVjm +

N
∑

j=1

NZ
∑

m=1

∂C44(zj)

∂z
Az

kmVkm +
N
∑

j=1

NZ
∑

m=1

(
DijC44(zj)− DjiC12(zj)

)
Az

kmWkm

+
N
∑

j=1

∂C44

∂z
(zj)Wj −

N
∑

j=1

(
EjiC12(zj) + EijC66(zj)

)
Uj −

N
∑

j=1

(
FijC11(zj) + HjiC66(zj)

)
Vj

−Px
N
∑

j=1
Db

ijVj − Py
N
∑

j=1
Bb

ijVj − Pxy
N
∑

j=1
Sb

ijVj − Pxy
N
∑

j=1
Kb

ijVj = 0

(22)

δWi :
N
∑

j=1

NZ
∑

m=1
AijC11(zj) Bz

kmWjm +
N
∑

j=1

NZ
∑

m=1

(
BijC12(zj)− BijC55(zj)

)
Az

kmUjm

+
N
∑

j=1

Nz
∑

m=1

(
DijC12(zj)− DjiC44(zj)

)
Az

kmVjm − N
∑

j=1
Bij ∂C12(z)

∂z
Uj +

N
∑

j=1
Dij ∂C12(z)

∂z
Vj

+
N
∑

j=1

(
FijC44(zj) + HijC55(zj) + Aij ∂C11(z)

∂z

)
Wj − Px

N
∑

j=1
Db

ijWj − Py
N
∑

j=1
Bb

ijWj

−Pxy
N
∑

j=1
Sb

ijWj − Pxy
N
∑

j=1
Kb

ijWj = 0

(23)

Likewise, the BCs in Equations (15)–(17) at the top and bottom sides of the structures
take the following form:

Either Uik = 0, or

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N
∑

j=1

Nz
∑

m=1
Aij C55(zj)Az

kmUjm+
N
∑

j=1
BijC55(zj)Wjk = 0 for k = 1

N
∑

j=1

Nz
∑

m=1
Aij C55(zj)Az

kmUjm+
N
∑

j=1
BijC55(zj)Wjk = 0 for k = NZ

(24)

Either Vik = 0, or

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N
∑

j=1

Nz
∑

m=1
AijC44(zj)Az

kmVjm+
N
∑

j=1
DijC44(zj)Wjk = 0 for k = 1

N
∑

j=1

Nz
∑

m=1
AijC44(zj)Az

kmVjm+
N
∑

j=1
DijC44(zj)Wjk = 0 for k = NZ

(25)

Either Wik = 0, or

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N
∑

j=1

Nz
∑

m=1
AijC11(zj)Az

kmWjm+
N
∑

j=1
Dij C12(zj)Vjk +

N
∑

j=1
BijC12(zj)Ujk = 0, for k = 1

N
∑

j=1

Nz
∑

m=1
AijC11(zj)Az

kmWjm+
N
∑

j=1
Dij C12(zj)Vjk +

N
∑

j=1
BijC12(zj)Ujk = 0, for k = NZ

(26)
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For a unified treatment of the problem, the degrees of freedom (DOFs) can be divided
into the domain- and boundary-type DOFs, as follows:

Ud =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U12
U13
...
UN(Nz−1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, Vd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V12
V13
...
VN(Nz−1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, Wd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W12
W13
...
WN(Nz−1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

Ub =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U11
U21
...
UNNz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, Vb =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V11
V21
...
VNNz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, Wb =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W11
W21
...
WNNz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(27)

In which Wmn = Wm(zn, t), Vmn = Vm(zn, t), Umn = Um(zn, t).
This means that Equations (21)–(23) can be rearranged in matrix form as:

[
kbb kbd
kdb kdd

][
db
dd

]
= P

[
0 0

0 G

][
db
dd

]
(28)

where the stiffness quantities kbb, kdb, kbd, kdd refer to the boundary, b, and domain, d,
weighting coefficients of the plate respectively, [db dd]

T is the displacement vector, P refers
to the buckling load and G is the stability matrix due to the in-plane stresses.

At the same time, from Equations (23)–(26), the boundary weight coefficients can be
replaced by the domain weight coefficients as follows:

db = kbb
−1kbddd (29)

By substitution of db from Equation (29) into Equation (28), and considering the

harmonic solution

⎡
⎣ Ud

Vd
Wd

⎤
⎦ =

⎡
⎣ Ud

Vd
Wd

⎤
⎦eiwt, the governing equations of the problem can be

rewritten in terms of the domain unknowns, as follows:

K

⎡
⎣ Ud

Vd
Wd

⎤
⎦− PG

⎡
⎣ Ud

Vd
Wd

⎤
⎦ = 0 (30)

where K is the stiffness matrix, defined as:

K = Kdd − KdbKbb
−1Kbd (31)

The solution of Equation (30) corresponds to the critical buckling load of the structure
under in-plane conditions, labeled hereafter as λ.

In what follows, three different BCs for the buckling analysis of the plate structure
are considered:

(i) Simply supported BCs at all edges (SSSS):

w(0, y, z) = w(a, y, z) = w(x, 0, z) = w(x, b, z) = 0
u(0, y, z) = u(a, y, z) = v(x, 0, z) = v(x, b, z) = 0

(32)

(ii) Clamped BCs at edges parallel to the y-axis (i.e., at x = 0, a) and free BCs at edges
parallel to the x-axis (i.e., at y = 0, b) (CFCF):

u, v, w(0, y, z) = u, v, w(a, y, z) = 0 (33)
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(iii) Clamped BCs at edges parallel to the x-axis (i.e., at y = 0, b) and free BCs at edges
parallel to the y-axis (i.e., at x = 0, a) (FCFC):

u, v, w(x, 0, z) = u, v, w(x, b, z) = 0 (34)

Note that the (i)-type BC is considered for both uniaxial and biaxial loading conditions.

4. Numerical Investigation

The numerical study starts with a preliminary validation of the proposed formulation
against the classical FE results (Ansys Workbench). At the present stage, the porosity
coefficient is assumed to be zero (e0 = 0), together with a null Skempton coefficient,
a null Biot’s modulus M = 0, a null pore fluid pressure p = 0 and νu = ν = 1/3,
E1 = 210 GPa. The rectangular plate selected here for the analysis has b = 1 m, a/b = 2
and h = 0.1 m. Table 1 summarizes the results for the first three buckling loads (λ1, λ2, λ3),
as provided by our proposed FE-GDQ formulation and FEs, while considering the three
different BCs (32)–(34) alternatively, as well as a uniaxial or biaxial loading condition. To
model the problem in Ansys Workbench, the most accurate 20-node hexahedral quadratic
elements were chosen to mesh the plate. First, a linear static analysis for edge loads
equal to 1 Pa was performed in a static structural environment, and then the solutions
were transferred to an eigenvalue buckling environment. Based on the results from this
table, the good correspondence among predictions from the two alternative computational
strategies proves the reliability and accuracy of the proposed FE-GDQ method to handle
the problem. This is also confirmed in terms of mode shapes, as visible in the contour
plots of Figures 2 and 3, at least for the SSSS rectangular plate under a shear and biaxial
loading, respectively.

Table 1. Comparative evaluation of the first three buckling loads (10 GPa), as provided by our formulation and from FEM
for different boundary conditions.

FE-GDQ FE Difference (%)

BC λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3

Shear load CFCF 0.314 0.529 0.624 0.317 0.574 0.678 0.94 7.83 7.96
Shear load FCFC 1.405 1.406 2.168 1.430 1.430 2.117 1.74 1.67 2.35
Shear load SSSS 2.534 2.642 3.062 2.575 2.691 3.0628 1.59 1.82 0

Axial load (x-direction) SSSS 1.197 1.231 2.381 1.206 1.240 2.401 0.74 0.72 6.7
Biaxial load SSSS 0.259 0.489 0.790 0.264 0.494 0.794 1.89 1.01 0.506

After this validation step, the numerical study aimed at computing the buckling
load of FG-saturated porous plates in undrained conditions, accounting for the effects
of different BCs, aspect ratios, Skempton coefficients, porosity distributions and porosity
coefficients, while keeping the geometry and material properties of the structure fixed. In
Tables 2–4, the first four shear buckling loads are summarized for a FG-saturated plate
under the SSSS, FCFC and CFCF BCs respectively, while keeping the Skempton coefficient
constant. The systematic study starts by considering a square plate with aspect ratio
a/b = 1, thus extending the analysis to a rectangular plate with a/b = 2. In each case,
the porosity coefficient, e0, is gradually increased from 0.3 up to 0.6, by steps of 0.3, to
check for the sensitivity of the buckling response to porosity. As expected, when the
porosity coefficient increases, the stiffness of the structure decreases, and the buckling load
decreases as well. The results demonstrate that the maximum and minimum values of
the buckling load are associated with the symmetric (PNSD) and uniform (PUD) porosity
distributions respectively, due to the highest and lowest stiffness reached in the structure.
An intermediate buckling load level, instead, is always obtained for a PNND porosity
distribution within the material. It also seems that the effect of the porosity coefficient,
e0, on the buckling load becomes more pronounced for a uniform porosity distribution
than the other ones. Moreover, by increasing the aspect ratio a/b, the buckling load can
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decrease or increase, under the same assumptions of porosity coefficient and distribution,
depending on the selected BC. Differently from the FCFC case, a clear reduction of the
buckling load is noticed for a SSSS and CFCF porous plate with an increased aspect ratio.
This confirms the strict dependence of the stiffness on the geometrical dimensions and BCs
of the structural member.

(b) 1st mode (FE-GDQ)(a) 1st mode (FE)

(d) 2nd mode (FE-GDQ)(c) 2nd mode (FE)

(f) 3rd mode (FE-GDQ)(e) 3rd mode (FE)

Figure 2. Comparative evaluation of the first three buckling mode shapes for a SSSS homogenous plate under a shear
loading condition.

Table 2. First four shear buckling loads for a SSSS FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and porosity coefficients, e0, keeping β = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9

a/b = 1

λ1 2.666 1.935 1.226 2.674 1.961 1.263 2.269 1.212 0.275
λ2 2.666 1.936 1.226 2.674 1.961 1.263 2.269 1.212 0.275
λ3 2.958 2.255 1.442 2.998 2.265 1.390 2.595 1.482 0.354
λ4 2.984 2.261 1.447 3.016 2.266 1.390 2.607 1.483 0.354

a/b = 2

λ1 2.281 1.863 1.162 2.392 2.005 1.269 2.083 1.281 0.2952
λ2 2.339 1.865 1.162 2.438 2.029 1.271 2.105 1.282 0.2954
λ3 2.558 1.968 1.237 2.627 2.068 1.379 2.248 1.334 0.3464
λ4 2.719 2.044 1.307 2.761 2.094 1.388 2.350 1.356 0.3467
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(b) 1st mode (FE-GDQ)(a) 1st mode (FE)

(d) 2nd mode (FE-GDQ)(c) 2nd mode (FE)

(f) 3rd mode (FE-GDQ)(e) 3rd mode (FE)

Figure 3. Comparative evaluation of the first three buckling mode shapes for a SSSS homogenous plate under a
biaxial compression.

Table 3. First four shear buckling loads for a FCFC FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and porosity coefficients, e0, keeping β = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9

a/b = 1

λ1 1.143 0.897 0.536 1.199 0.978 0.692 1.020 0.636 0.177
λ2 1.150 0.900 0.543 1.208 0.983 0.693 1.020 0.645 0.182
λ3 1.653 1.267 0.773 1.705 1.337 0.845 1.455 0.865 0.219
λ4 1.664 1.275 0.778 1.717 1.343 0.849 1.464 0.868 0.219

a/b = 2

λ1 1.216 0.954 0.576 1.276 1.039 0.737 1.082 0.680 0.191
λ2 1.217 0.955 0.576 1.277 1.040 0.738 1.083 0.680 0.191
λ3 1.768 1.360 0.834 1.824 1.401 0.912 1.558 0.931 0.238
λ4 1.768 1.360 0.834 1.824 1.402 0.912 1.558 0.931 0.238

Table 4. First four shear buckling loads for a CFCF FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and porosity coefficients, e0, keeping β = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9

a/b = 1

λ1 1.143 0.897 0.536 1.199 1.006 0.692 1.020 0.636 0.177
λ2 1.150 0.900 0.543 1.208 1.007 0.693 1.020 0.645 0.182
λ3 1.653 1.267 0.773 1.705 1.434 0.845 1.455 0.865 0.219
λ4 1.664 1.275 0.778 1.717 1.350 0.849 1.464 0.868 0.219

a/b = 2

λ1 0.310 0.255 0.153 0.330 0.292 0.241 0.287 0.186 0.055
λ2 0.497 0.393 0.229 0.538 0.470 0.375 0.449 0.281 0.078
λ3 0.598 0.466 0.281 0.610 0.520 0.405 0.528 0.325 0.096
λ4 0.805 0.622 0.374 0.817 0.682 0.504 0.708 0.430 0.116
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The same parametric investigation was then repeated for a biaxial loading (Table 5)
and a uniaxial loading acting in the x-direction of a SSSS structure (Table 6). Based on
a comparative evaluation of results in Tables 5 and 6 with Table 2, a uniaxial or biaxial
loading condition clearly reduces the buckling load of the structure under the same values
of e0, a/b and porosity distribution.

Table 5. First four biaxial buckling loads for a SSSS FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and porosity coefficients, e0, keeping β = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9

a/b = 1

λ1 0.392 0.303 0.166 0.406 0.362 0.309 0.346 0.216 0.069
λ2 0.929 0.723 0.408 0.949 0.830 0.658 0.827 0.523 0.151
λ3 0.929 0.723 0.408 0.949 0.830 0.658 0.827 0.523 0.151
λ4 0.141 0.108 0.604 0.144 0.127 0.926 1.245 0.763 0.210

a/b = 2

λ1 0.233 0.186 0.106 0.240 0.221 0.193 0.209 0.138 0.0420
λ2 0.434 0.336 0.188 0.405 0.400 0.329 0.384 0.239 0.0680
λ3 0.698 0.564 0.333 0.703 0.634 0.519 0.634 0.426 0.120
λ4 0.778 0.603 0.341 0.804 0.702 0.570 0.688 0.427 0.131

Table 6. First four uniaxial buckling loads (in the x-direction) for a SSSS FG-saturated porous plate with different aspect
ratios, a/b, porosity distributions and porosity coefficients, e0, keeping β = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9

a/b = 1

λ1 0.781 0.603 0.330 0.808 0.721 0.614 0.690 0.430 0.122
λ2 0.981 0.774 0.446 0.983 0.875 0.703 0.879 0.568 0.168
λ3 1.554 1.225 0.724 1.526 1.320 0.981 1.394 0.895 0.261
λ4 2.147 1.688 1.017 2.081 1.856 1.218 1.925 1.225 0.350

a/b = 2

λ1 1.053 0.816 0.462 1.073 0.943 0.771 0.930 0.574 0.159
λ2 1.101 0.860 0.495 1.117 0.982 0.795 0.977 0.613 0.173
λ3 2.097 1.553 0.880 2.082 1.725 1.314 1.801 1.020 0.260
λ4 2.331 1.771 1.042 2.293 1.907 1.405 2.035 1.204 0.319

As expected, this reduction is much more pronounced for rectangular plates subjected
to a biaxial loading condition, due to the overall decay of the structural stiffness. A further
investigation considered the effect of the porosity distribution and Skempton coefficient
on the first four buckling loads of FG-saturated plates, as listed in Tables 7–9 (for a shear
loading condition), in Table 10 (for an axial loading condition) and in Table 11 (for a
biaxial loading condition), while keeping the porosity coefficient fixed at e0 = 0.6. The
same BCs from Table 1 are accounted here for the analyses. Based on a comparative
estimation of results from these tables, it is confirmed that the maximum and minimum
buckling loads are always associated with a symmetric (PNSD) and uniform (PUD) porosity
distribution, respectively.

Table 7. First four shear buckling loads for a SSSS FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and Skempton coefficients, β, while keeping e0 = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9

a/b = 1

λ1 1.839 1.935 1.941 1.954 1.961 1.982 1.196 1.212 1.303
λ2 1.913 1.944 1.951 1.957 1.961 1.986 1.196 1.212 1.303
λ3 2.216 2.255 2.264 2.236 2.265 2.274 1.478 1.480 1.486
λ4 2.240 2.261 2.273 2.250 2.266 2.275 1.478 1.483 1.486

a/b = 2

λ1 1.689 1.863 1.963 1.942 2.005 2.012 1.190 1.281 1.326
λ2 1.738 1.865 1.964 1.953 2.029 2.043 1.203 1.283 1.326
λ3 1.913 1.968 2.018 2.050 2.068 2.094 1.284 1.334 1.341
λ4 2.038 2.044 2.048 2.130 2.139 2.147 1.343 1.356 1.386

235



Appl. Sci. 2021, 11, 10434

Table 8. First four shear buckling loads for a FCFC FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and Skempton coefficients, β, while keeping e0 = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9

a/b = 1

λ1 0.848 0.897 0.955 0.969 0.978 0.989 0.583 0.636 0.709
λ2 0.853 0.900 0.967 0.978 0.983 0.993 0.583 0.645 0.728
λ3 1.231 1.267 1.299 1.329 1.337 1.346 0.831 0.865 0.878
λ4 1.240 1.275 1.306 1.338 1.343 1.371 0.836 0.868 0.879

a/b = 2

λ1 0.903 0.954 1.021 1.031 1.039 1.042 0.618 0.680 0.765
λ2 0.904 0.955 1.026 1.032 1.040 1.068 0.619 0.680 0.765
λ3 1.318 1.360 1.399 1.423 1.401 1.414 0.890 0.931 0.955
λ4 1.318 1.360 1.399 1.423 1.402 1.416 0.890 0.931 0.955

Table 9. First four shear buckling loads for a CFCF FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and Skempton coefficients, β, while keeping e0 = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9

a/b = 1

λ1 0.848 0.897 0.955 0.969 0.978 0.989 0.583 0.636 0.709
λ2 0.853 0.900 0.967 0.978 0.983 0.993 0.583 0.645 0.728
λ3 1.231 1.267 1.299 1.329 1.337 1.346 0.831 0.865 0.878
λ4 1.240 1.275 1.306 1.338 1.343 1.371 0.836 0.868 0.879

a/b = 2

λ1 0.237 0.255 0.280 0.284 0.292 0.296 0.164 0.186 0.222
λ2 0.367 0.393 0.425 0.494 0.470 0.482 0.254 0.281 0.314
λ3 0.458 0.466 0.500 0.520 0.524 0.529 0.302 0.325 0.387
λ4 0.600 0.622 0.615 0.682 0.689 0.798 0.404 0.430 0.465

Table 10. First four biaxial buckling loads for a SSSS FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and Skempton coefficients, β, while keeping e0 = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9

a/b = 1

λ1 0.288 0.303 0.325 0.361 0.362 0.389 0.198 0.216 0.246
λ2 0.683 0.723 0.781 0.825 0.830 0.846 0.472 0.523 0.603
λ3 0.683 0.723 0.781 0.825 0.830 0.846 0.472 0.523 0.603
λ4 0.103 0.108 0.146 0.123 0.127 0.131 0.711 0.763 0.843

a/b = 2

λ1 0.171 0.186 0.207 0.213 0.221 0.229 0.119 0.138 0.168
λ2 0.319 0.369 0.362 0.397 0.400 0.405 0.219 0.239 0.273
λ3 0.513 0.564 0.635 0.616 0.634 0.638 0.362 0.426 0.480
λ4 0.573 0.603 0.644 0.697 0.702 0.713 0.393 0.427 0.526

Results denote that in drained conditions (i.e., β = 0), the plate always features the
smallest buckling load, under a fixed aspect ratio, porosity coefficient and distribution. An
increasing value of the Skempton coefficient, instead, enables an increased buckling load,
because of a decreased compressibility of the fluid within pores. In other words, if the
compressibility of the pore fluid becomes high ( β → 0), the mechanical response of the
plate resembles that of a porous plate in drained conditions (i.e., in the absence of fluid). In
this condition, the structural stiffness reaches its minimum value along with the lowest
buckling load. Differently, when the compressibility of a pore fluid becomes small ( β → 1),
the plate behaves as a rigid solid, thus reaching its highest load magnitude. Furthermore,
the effect of the Skempton coefficient on the buckling load, for a uniform distribution,
seems to be more pronounced than other porosity distributions. By comparing Tables 2–6
with Tables 7–11, it is worth observing the higher sensitivity of the buckling response to the
porosity coefficient than the Skempton coefficient. The first four buckling mode shapes are
finally plotted in Figures 4–8, for a rectangular plate with a = 2 m, b = 1 m, under different
loading and boundary conditions, and a fixed value of e0 = β = 0.6. More specifically, in
Figures 4–6, the rectangular plate is subjected to a shear loading condition, with a clear
compatibility among the displacement field and the selected BCs (i.e., CFCF, FCFC and
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SSSS, respectively). Figures 7 and 8 plot the four mode shapes for the same plate under
a uniaxial (Figure 7) and biaxial (Figure 8) loading, where the kinematic response clearly
changes depending on the selected loading condition.

Table 11. First four uniaxial buckling loads (x-direction) for a SSSS FG-saturated porous plate with different aspect ratios,
a/b, porosity distributions and Skempton coefficients, β, while keeping e0 = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9

a/b = 1

λ1 0.572 0.603 0.648 0.719 0.721 0.737 0.394 0.430 0.491
λ2 0.722 0.774 0.848 0.867 0.875 0.884 0.502 0.568 0.672
λ3 1.147 1.225 1.331 1.318 1.320 1.384 0.796 0.895 1.046
λ4 1.589 1.688 1.817 1.756 1.856 1.878 1.100 1.225 1.403

a/b = 2

λ1 0.777 0.816 0.868 0.938 0.943 0.941 0.531 0.574 0.636
λ2 0.813 0.860 0.923 0.977 0.982 0.993 0.558 0.613 0.693
λ3 1.560 1.553 1.550 1.720 1.725 1.749 1.009 1.020 1.042
λ4 1.735 1.771 1.817 1.901 1.907 1.923 1.163 1.204 1.276

 

(a) 1st mode (b) 2nd mode 

  
(c) 3rd mode (d) 4th mode 

Figure 4. First four buckling mode shapes of a FG-saturated porous plate subjected to a shear load (CFCF, a = 2 m, b = 1 m).
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(a) 1st mode (b) 2nd mode 

  
(c) 3rd mode (d) 4th mode 

Figure 5. First four buckling mode shapes of a FG-saturated porous plate subjected to a shear load (FCFC, a = 2 m, b = 1 m).

 
(a) 1st mode (b) 2nd mode

Figure 6. Cont.
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(c) 3rd mode (d) 4th mode

Figure 6. First four buckling mode shapes of a FG-saturated porous plate subjected to a shear load (SSSS, a = 2 m, b = 1 m).

  
(a) 1st mode (b) 2nd mode 

  
(c) 3rd mode (d) 4th mode 

Figure 7. First four buckling mode shapes of a FG-saturated porous plate subjected to uniaxial load (SSSS, a = 2 m, b = 1 m).
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(a) 1st mode (b) 2nd mode 

  
(c) 3rd mode (d) 4th mode 

Figure 8. First four buckling mode shapes of a FG-saturated porous plate subjected to a biaxial load (SSSS, a = 2 m, b = 1 m).

5. Conclusions

The present work focused on the buckling behavior of FG-saturated porous rectan-
gular plates subjected to normal and shear loads, while adopting Biot’s constitutive law
and proposing a combined FE-GDQ as an efficient computational tool to solve the prob-
lem. This means that the in-plane problem has been discretized in the x–y-directions by
means of classical FEs, and follows a weak formulation. Along the thickness direction (the
z-direction), instead, the problem is defined in a strong form based on a GDQ approxima-
tion. This mixed method deals with a three-dimensional theory of elasticity without any
additional kinematic assumption for the plate deformability. Various numerical examples
have been considered and solved systematically to check for the reliability of the proposed
method against a pure FE response, as well as to study the sensitivity of the response to
some input parameters, i.e., the geometrical aspect ratio, the Skempton coefficients, the
porosity distribution and coefficient and the BCs. Based on the parametric analysis, the
main conclusions can be summarized as follows:

• The porosity coefficient more significantly affects the buckling load than the Skempton
coefficient. In detail, an increased porosity coefficient and a decreased Skempton
coefficient yield an overall decrease of the buckling load.

• Among different boundary and loading conditions, the maximum and minimum
values of the buckling load are reached for a FCFC plate under a shear loading and a
SSSS plate under a biaxial loading condition, respectively.
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• The influence of the porosity coefficient on the buckling load for a uniform distribution
is larger than other types of non-uniform porosity distributions.

• The effect of the Skempton coefficient on the buckling load, for a uniform distribution,
is larger than other types of porosity distributions.

• By increasing the ratio, the buckling load generally decreases, except for a FCFC plate
under a shear load and a SSSS plate under a normal uniaxial load, because of the
variability in stiffness of the overall structure.

• The proposed method is verified to be a reliable tool for the computational study of
saturated porous materials and structures, even from a design standpoint.
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Nomenclature

Fluid compressibility in pores CP
Solid compressibility in pores Cs
Shear modulus G
Porosity coefficient e0
Biot’s effective stress coefficient α

Skempton coefficient β

Variation of fluid volume content Ψ
Volumetric strain εkk
Poisson’s ratio ν

Undrained Poisson’s ratio νu
Lamè constant λ

Pore fluid pressure P
Bulk modules K
Undrained bulk modules Ku
Biot’s modulus M
Total strain potential energy U
Potential energy related to geometry Vg
Elasticity modulus E
Stress tensor [σij]

Strain tensor [εij]

Elasticity matrix [C]
Displacement components along x, y and z directions u, v, w
Global Lagrange interpolation functions ϕj(x, y)
Weighted coefficients at the grid nodes of the solution domain Az

ij, Bz
ij

Buckling load λ

Stability matrix due to the in-plane stresses G

Stiffness matrix K
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Abstract: This paper presents the steady-state stress analysis of single-layered and multilayered
plates and shells embedding Functionally Graded Material (FGM) layers under moisture conditions.
This solution relies on an exact layer-wise approach; the formulation is unique despite the geometry.
It studies spherical and cylindrical shells, cylinders, and plates in an orthogonal mixed curvilinear
coordinate system (α, β, z). The moisture conditions are defined at the external surfaces and evaluated
in the thickness direction under steady-state conditions following three procedures. This solution
handles the 3D Fick diffusion equation, the 1D Fick diffusion equation, and the a priori assumed linear
profile. The paper discusses their assumptions and the different results they deliver. Once defined,
the moisture content acts as an external load; this leads to a system of three non-homogeneous second-
order differential equilibrium equations. The 3D problem is reduced to a system of partial differential
equations in the thickness coordinate, solved via the exponential matrix method. It returns the
displacements and their z-derivatives as a direct result. The paper validates the model by comparing
the results with 3D analytical models proposed in the literature and numerical models. Then, new
results are presented for one-layered and multilayered FGM plates, cylinders, and cylindrical and
spherical shells, considering different moisture contents, thickness ratios, and material laws.

Keywords: functionally graded materials; 3D shell model; steady-state hygro-elastic analysis; Fick
moisture diffusion equation; moisture content profile; layer-wise approach

1. Introduction

The environmental conditions characterizing the service life of structural components
can be adverse in many applications. The aerospace field gives several examples of chang-
ing environments, which results in temperature gradients and moisture concentration
variability. It is crucial to consider such two factors and to include them in a proper struc-
tural analysis: the thermal and hygrometric fields induce an internal stress distribution,
which changes as soon as the environmental conditions change. As with any stress field,
it might induce failures on the structure [1], either on its own or because it sums up to
that caused by classical mechanical loads. Composite, multilayered, and FGM-embedding
structures require a special focus. Composite materials can also be degraded by moisture
absorption and the following diffusion through the matrix [2]; multilayered structures high-
light a strong heterogeneity in the hygro/thermal/mechanical properties; FGMs induce a
further complication due to non-constant terms in governing equations. However, their
boosted implementation in critical structural applications recently increased the attention
of the researchers on these effects.

Laminated structures and composite materials suffer from a clear variation of the
properties at the interfaces, which is the critical source of the delamination process [3]. Elim-
inating this discontinuity and substituting it with a smooth trend is the key achievement
of Functionally Graded Materials (FGMs). They are advanced composite materials made
by two or more different phases mixed with a continuous graded distribution. As a result,
they are heterogeneous materials, delivering optimized responses for each application: the
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advancements in processing technologies made it possible to control a unidirectional and
even multidirectional variation. Combinations of a metallic and a ceramic phase are classic
examples of FGMs finding application in severe thermal environments: they overcome the
differences in thermal properties of the two constituents and, at the same time, deliver a
reduced thermal stress distribution. Stiffness coefficients, hardness, thermal conductivity,
moisture diffusivity, and corrosion resistance are just some examples of the performance
characteristics that can be combined and enhanced [4].

Several recent and relevant works focused on structures embedding FG layers under-
line their importance in practical applications. From an analytical perspective, Sobhani
et al. recently proposed several analytical results in the frame of the vibration analysis
of FG shells. First, the governing equations followed the First-order Shear Deformation
Theory (FSDT); then, they used the Generalized Differential Quadrature Method (GDQM),
a semi-analytical solution method, to solve the system of partial differential equations.
They studied conical shells embedding hybrid matrix/fiber nanocomposites in [5]; the
approach was then extended to paraboloidal and hyperboloidal shells embedding polymer
matrix, carbon fiber, and graphene nanoplatelets in [6]. Using the same approach, they
studied sandwich conical-cylindrical-conical shells [7]. The layers are reinforced with
functionally graded carbon nanotubes and graphene nanoplatelets; they described the
elastic coefficients following an Equivalent Single Layer approach. They also studied five
different patterns of CNT fibers distribution inside of the matrix while defining the vibra-
tional behavior of coupled conical-conical shells [8]. They used the five-parameter shell
theory and solved the differential equations through GDQM. Three-phase nanocomposites
were also studied in hemispherical-cylindrical shells exploiting a similar approach [9] and
defining the governing equations through the first-order shear deformation theory. From a
numerical perspective, Rezaiee-Pajand et al. studied sandwich beams embedding FGM
in two ways: they applied the Ritz method and the principle of minimum total potential
energy within the framework of Timoshenko and Reddy beam theories in [10] to assess the
bending of beams with different cross sections; they also developed a four-node isopara-
metric beam element to study porous beams with FGM [11]. Concerning two-dimensional
geometries, the same authors proposed the nonlinear analysis of FG shells in [12,13] by
improving an isoparametric six-node TRIA element with strain interpolation functions; the
mechanical properties grading followed a power low. They also proposed a three-node
TRIA element [14] using a mixed strain finite element approach and demonstrated that it is
possible to get the exact response of the beams with a low number of elements under large
deformations.

The solutions available in the literature seem to be promising. However, the results
of a hygrometric stress analysis depend not only on the capabilities of the elastic model
implemented but also on how the moisture content field has been evaluated, given the
external boundary conditions. The hygrometric field acts as a field load; its quantification
necessarily influences the stress analysis results. Aerospace applications usually involve
thin components. Consequently, evaluating the moisture content field translates into deter-
mining its profile along with the thickness direction, generally coinciding with the grading
direction of the mechanical/hygrometric properties. Developing a mechanical/elastic
model for a thin component can be done at different levels of detail: 3D or 2D approaches,
coupled with an analytical or numerical method. However, this might not be sufficient
in defining the refinement of a model when hygrometric stresses are concerned. Even an
analytical, exact 3D model would give wrong results when fed from an inaccurate moisture
content field. The molecular diffusion depends on the gradient of the concentration and is
described by Fick’s law. A solid mathematical analogy between Fick’s law and the Fourier
heat conduction equation strongly simplifies the analysis and the dissertation. An exact
solution comes from resolving three-dimensionally the diffusion/conduction equations;
however, simplified solutions might benefit from their unidirectional simplification or
an assumed-linear profile. Those three situations require an external evaluation of the
moisture content field before the mechanical analysis. An alternative consists in defining a
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coupled hygro-mechanical model, in which the moisture content field is a primary variable
of the problem in analogy with the thermal field [15–20].

This paper discusses an hygro-elastic shell model, which relies on the exponential
matrix method. This model does not limit to a specific geometry or lamination scheme; on
the contrary, it handles plates, cylindrical, and spherical shells. Furthermore, it accepts one
or more FGM layers on their own or coupled with homogeneous layers (sandwiches give
an example). It extends the authors’ 3D exact thermo-elastic shell model discussed in [21] to
hygro-elastic stress analysis. The problem is defined under steady-state conditions only; the
solution requires the moisture content amplitudes at the top and bottom external surfaces to
be specified. As a first step, the solution evaluates the moisture content profile through the
thickness direction. The authors considered three possible options: the 3D Fick diffusion
law, its 1D simplified version, and an a priori assumed linear trend. Despite this, the model
handles the solution via a layer-wise approach and through the exponential matrix method.
The present authors are not the only ones using the exponential matrix method for solving
the differential equilibrium equations. Soldatos and Ye [22] already used it in analyzing
the free vibrations of cylinders; Messina [23] applied it to study multilayered plates. The
orthogonal mixed curvilinear coordinate system helped study spherical shells in [24] using
three transverse stress and three displacement components as primary variables of the
problem. The analytical procedure is in analogy with the free vibration analysis and
the static analysis under mechanical load discussed by the first author in [25–30]. Those
previous formulations already handled different materials and geometries but lacked
loads other than the mechanical ones. In those simpler cases, a set of three homogeneous
differential equations are at the basis of the problem. However, the hygrometric load
adds an additional term that makes them not homogeneous. The exponential matrix
method also handles this feature, as discussed in [21] for the thermoelastic stress analysis of
shells with FGMs. The closed-form solution of the problem is possible given the harmonic
forms imposed on the variables (displacements and hygrometric field) and the simply
supported boundary conditions. Moreover, the whole formulation benefits an orthogonal
mixed curvilinear coordinate system, following the suggestions in [31–34]. This strategy
introduces a set of curvature terms, the elements through which the equations automatically
adapt to the different geometries. Such terms are a function of the thickness coordinate,
together with the elastic and hygrometric coefficients in FGM layers. Introducing a set of
fictitious (mathematical) layers allows obtaining constant coefficients and using the method
discussed in [35] to solve the problem.

The literature overview offers different analytical and numerical 2D models handling
the hygrometric stress analysis; they specifically focus on multilayered structures. Far
fewer discuss the problem of structures embedding FGMs. The literature overview will
demonstrate that, to the authors’ knowledge, no analytical 3D shell model exists, in which
the structures are different, provided that they have constant radii of curvature, and the
moisture content evaluation follows three different approaches. Laoufi [36] studied rectan-
gular plates embedding FGMs when subjected to different boundary conditions, including
moisture content and temperature field. They developed an analytical method through the
hyperbolic shear deformation plate model, which satisfied the stress boundary conditions
and required no shear corrections. The volume fractions of the ceramic-metal constituents
were used to define the materials grading in the thickness direction following a power law.
The same power law was included in Inala’s work [37], devoted to studying how the hy-
grothermal environment affects the vibration characteristics of plates embedding FGMs. To
do this, the author developed a finite element model of the structures under investigation.
Dai [38] and his colleagues focused on circular plates with a variable thickness along with
the radial direction. They derived nonlinear governing equations for temperature, moisture
content, and displacement fields and solved them through the differential quadrature
method. Zenkour also studied how the thermal and hygrometric fields affect the bending
and the buckling of plates embedding FGMs [39]. In this case, also, the authors considered
a material grading in the thickness direction of the structure. Their formulation relies on an
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exponential shear deformation theory and applies to plates resting on elastic foundations.
Hamilton’s principle was used to derive the equilibrium equations, and Navier’s method
to obtain the results. Boukelf also studied plates resting on elastic foundations, embedding
FGMs [40]. The author developed a novel higher-order shear deformation theory model,
deducing the problem equations through the virtual work principle. Hygro, thermal, and
mechanical loads are all properties that can be handled. Analogously, Zidi [41] developed
a further model for the same issue. In this case, the author used a four-variable refined
plate theory. Analogous research has been proposed in [42] concerning functionally graded
beams. The author deepened the influence of moisture content field and temperature
on the bost-buckling response of beams. A nonlinear finite element solution was con-
sidered, in which the authors handled the kinematics of the bost-buckling through the
Lagrangian approach.

More substantial is the literature discussing the moisture content effects on isotropic,
orthotropic, and laminated structures. Chiba and Sugano [43] studied multilayered plates
and proposed a two-dimensional analytical solution for hygrothermal effects on multi-
layered plates. The Classical Lamination Plate Theory and an analytical 3D plate model
were compared in [44,45] while performing the hygro-thermal stress analysis. The CLT
also received the attention of Kalil [46] when he investigated composite plates. Kollar [47]
made an analytical investigation of composite cylindrical shells, while Shen [48] focused on
buckling and post-buckling behaviors. The CLT was found to be inadequate in hygrother-
mal mechanical analysis by Lee and his colleagues [49]. There is no shortage of numerical
models in this field; an example is given in [50], where plates with a central hole were
studied. Multilayered structures under hygrometric fields have been the target of the finite
element model by Khoshbakht et al. [51]; Kundu and Han studied buckling and vibration in
multilayered shells with double curvature [52] through a finite element model grasping the
hygrothermal effects. They extended this research to dynamic instability of doubly-curved
shells embedding composite materials through a nonlinear finite element under orthogonal
curvilinear coordinates [53]. Marques and Creus included the Fick diffusion law [54] into
a FE shell model devoted to isotropic and multilayered structures under a hygrothermal
environment. With the same aim, Naidu and Sinha [55] investigated cylindrical shell
panels under large deflections through a higher-order shear deformation theory. Patel also
proposed a higher-order FE for laminated parts [56]. Sereir et al. [57–59] considered the
elastic properties variation in composite plates with the temperature and the moisture
content and discussed a transient hygroscopic stress analysis. In [60–63], simplified solu-
tions for hygro-thermal stresses analysis of composite plates considering the variation in
elastic properties due to the hygrothermal environment are also considered. An analogous
evaluation devoted to dynamic behavior has been proposed in [64,65]. Ghosh [66] used a
FE model to investigate how a severe hygrothermal environment can affect the initiation
and progress of damages in composites.

The literature survey highlighted that the hygromechanical stress analysis of structures
embedding FGM layers still misses general and exact solutions as benchmarks in new
solutions. Instead, the only analytical models work on defined and specific boundary
conditions, laminations, and geometry. This paper intends to fill this gap by extending the
authors’ previous work on multilayered structures to FGMs. The manuscript is organized
as follows. Section 3 describes the hygro-elastic shell problem and its solution with the
exponential matrix method. Section 2 explores the moisture diffusion problem with the
three approaches introduced before. The Fick law of diffusion has the same mathematical
formulation of the Fourier heat conduction equation; the moisture diffusion problem and
the heat conduction problem are in analogy, indeed, as demonstrated in [67], and further
confirmed by Tay and Goh [68,69]. Therefore, Section 2 quantifies the moisture content
profiles. Solving the 3D Fick diffusion law is possible by exploiting the analogy with the heat
conduction problem. Tungikar and Rao [35] give a methodology that can also be applied
in this context; the unidimensional Fick diffusion law disregards the diffusion fluxes in
directions other than the thickness coordinate and can be calculated in analogy. Section 4
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gives two sets of results. The first set, labeled as Assessments, is introduced to validate
the problem. In the absence of 3D exact solutions for hygro-elastic problems in shells with
FGM layers, the section exploits existing results for thermal stress analysis. After validating
the present model and an additional FE model, the section uses this last FE model to verify
the results when the hygrometric load replaces the thermal one. The second set, labeled as
Benchmarks, discusses new results, which introduce further comments on the effects of
moisture content profiles, thickness ratio, material, and lamination scheme, together with
the impact of the geometry. The main conclusions and the further development are then
summarized in Section 5.

2. Fick Moisture Diffusion Equation

This model relies on a decoupled solution, which means that the moisture content
is evaluated separately and enters the elastic part of the problem as a known term. The
essential hypothesis to obtain exact closed-form solutions is that all the problem variables
have a harmonic form. For what concerns the moisture content, this means

Mk(α, β, z) = Mk(z)sin(ᾱα)sin(β̄β) , (1)

Mk(z) indicates the moisture content amplitude. Referring to Figures 1 and 2: m and n are
the half-wave numbers in the two in-plane directions α and β, respectively. a and b are the
shell dimensions referred to the mid-surface Ω0; they allow calculating the terms ᾱ = mπ

a
and β̄ = nπ

b . Note that the harmonic form of the moisture content reduces its assessment
to its profile along with the thickness direction z. What happens in α and β directions is
already defined through the sinusoidal functions.

0
,h

z z˜

FGM

B1 B2
+h/2

h/2

Figure 1. Geometrical data and coordinate system for plates and cylinders. The figure also shows the
stacking sequence used in Benchmarks 1 and 2.

The hygrometric boundary conditions are the moisture content amplitudes at the
bottom and the top of the shell, Mb, and Mt, respectively. Three approaches exist to evaluate
the moisture content profile; this solution implements all three, allowing a homogeneous
comparison among them and with other methods. The solution is accomplished in analogy
with what the authors achieved in [21] concerning the temperature field. Indeed, the
Fourier heat conduction equation, regulating the thermal phenomenon, features the same
mathematical expression of the Fick diffusion law, which applies to the moisture diffusion
problem. The three approaches are here listed:

• the moisture content profile is defined by solving the 3D Fick diffusion law; the
hygro-elastic model considering it takes the name of 3D(Mc,3D);

• the moisture content profile is defined by solving the 1D version of the Fick diffusion
law; the hygro-elastic model considering it takes the name of 3D(Mc,1D);

• the moisture content profile is “a-priori” assumed as linear along with the thickness
direction; the hygro-elastic model considering it takes the name of 3D(Ma).
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0
,

z z˜

FGM core

ceramic skinB3 B4

metallic skin

Figure 2. Geometrical data and coordinate system for cylindrical and spherical shell panels. The
figure also shows the stacking sequence used in Benchmarks 3 and 4.

All the acronyms report the term 3D: it states that the elastic part of the shell model
relies on a three-dimensional solution. Instead, the part of the acronym inside the paren-
theses defines how the moisture content profile has been quantified. “c” means calculated,
either via the 3D or the 1D Fick diffusion laws; “a” means linear assumed.

2.1. 3D Fick Equation

By analogy with the heat flux q, suppose to define a moisture flux g. Then, the
differential equation of moisture diffusion into a homogeneous solid, in the absence of
chemical reactions and under steady-state conditions ( ∂M

∂t = 0) reads:

∇· g(u1, u2, u3) = 0 . (2)

Equation (2) is written in a general orthogonal curvilinear coordinate system (u1, u2, u3);
however, in these conditions, the divergence of the moisture flux takes the following expression:

∇· g =
1
a

[
∂

∂u1

(
a
a1

g1

)
+

∂

∂u2

(
a
a2

g2

)
+

∂

∂u3

(
a
a3

g3

)]
, (3)

g1, g2, g3 express the components of the 3D flux in directions 1, 2, and 3; their explicit
form is

gi = −Di
1
ai

∂M
∂ui

, (4)

Di is the diffusion coefficient along with direction i; a1, a2, and a3 are the so-called scale
factors, with a the product of the three factors (a = a1 a2 a3 ). The problem takes place in a
mixed curvilinear orthogonal coordinate system (α, β, z); Povstenko [32] discussed that, in
this context, Equation (3) might be rewritten as follows:

1
HαHβ

[
∂

∂α

( HαHβ

Hα
D1

1
Hα

∂M
∂α

)
+

∂

∂β

( HαHβ

Hβ
D2

1
Hβ

∂M
∂β

)]
+D3

∂2M
∂z2 = 0 , (5)
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FGM layers distinguish from classical isotropic and orthotropic layers as the diffusion
coefficients D1(z), D2(z), and D3(z) are a function of the thickness coordinate z. Despite
the lamination scheme, Hα(z) and Hβ(z) are two parametric coefficients, defined as follows:

Hα(z) =
(

1 +
z

Rα

)
= Hα(z̃) =

(
1 +

z̃ − h/2
Rα

)
, (6)

Hβ(z) =
(

1 +
z

Rβ

)
= Hβ(z̃) =

(
1 +

z̃ − h/2
Rβ

)
. (7)

When considering shells with constant radii of curvature, Rα and Rβ, they are a linear
function of the thickness coordinate z, which varies from −h/2 to +h/2 or z̃, which varies
from 0 to h. h is the global thickness. The thickness coordinate z (or z̃) is rectilinear;
for consistency, a further coefficient might be defined: Hz = 1. Equation (5) points out
two main blocks; the second block has a simpler formulation as the third coordinate z
is rectilinear. Actually, this point is further confirmed by the work of Leissa [70], which
showed that

a1 = Hα, a2 = Hβ, a3 = Hz = 1 . (8)

The coefficients of Equation (5) are not constant even inside a k-th physical layer. This
issue is due to the parametric coefficients Hα and Hβ, a function of the thickness coordinate
z, and to D1, D2, and D3 which are not constant in FGM layers. A possible solution consists
in dividing each physical layer into sufficiently thin mathematical (fictitious) layers. There,
calculating the parametric and the diffusion coefficients at its middle allows moving the
differential operators to the moisture content only. Inside each mathematical layers it
holds that

D∗
1

j ∂2M
∂α2 +D∗

2
j ∂2M

∂β2 +D∗
3

j ∂2M
∂z2 = 0 . (9)

where

D∗
1

j =
D j

1

H2
α

j , D∗
2

j =
D j

2

H2
β

j , D∗
3

j = D j
3 . (10)

Equation (9) is automatically satisfied by the harmonic expression of the moisture
content M(α, β, z) already discussed in Equation (1). Still, the form of the moisture content
amplitude in the thickness direction M(z) needs to be clarified. A tentative function is

Mj(z) = Sj
1cosh(sj

1z) + Sj
2sinh(sj

1z) (11)

Each mathematical layer feature a coefficients sj and a pair of coefficients Mj
0. The first

can be computed, introducing the harmonic form of moisture content, provided with the
assumption of Equation (11) on its amplitude, in Equation (9):

sj
1,2 = ±

√√√√D∗
1

jᾱ2 +D∗
2

j β̄2

D∗
3

j , (12)

and choosing the positive solution, referred to as sj
1. Equation (11) shows that a pair of

coefficients per mathematical layer j is needed, in addition to sj
1. Each layer features its

own set of coefficients, which means that still 2 × G unknowns are involved. However, at
each interface between the fictitious layers, the following continuity conditions must hold:

M(j+1)
b = Mj

t , (13)
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D∗
3

j+1M(j+1)
,zb = D∗

3
j Mj

,zt . (14)

The physical meaning of both the equations is obvious; Equation (13) states that the
moisture content at the bottom of any (j + 1)-th layer must equal that at the top of the j-th
layer. Likewise, Equation (14) states that the moisture flux component in the thickness
direction at the bottom of any (j + 1)-th layer must equal that at the top of the j-th layer.
The matrix form of Equations (13) and (14) allows compacting the analysis:

[
S1
S2

]j+1

=

[
VM

j+1,j
1 VM

j+1,j
2

VM
j+1,j
3 VM

j+1,j
4

][
S1
S2

]j

. (15)

Both the continuity conditions hold at the interfaces between layers; consequently,
2 × (G − 1) conditions can be imposed. The recursive use of Equation (15) allows linking
the coefficients of the bottom layer (j = 1) with those of the top (j = G); such an idea can
be compacted by identifying the transfer matrices of Equation (15) with the name V (j+1,j)

M .

[
S1
S2

]G

= V (G,G−1)
M V (G−1,G−2)

M ...........V (3,2)
M V (2,1)

M

[
S1
S2

]1

= V (G,1)
M

[
S1
S2

]1

. (16)

Two conditions are still missing to quantify all the 2 × G coefficients. However,
simply imposing the moisture content at the top and the bottom of the structure gives the
missing information. The coefficients for the external layers derive from this input and
Equation (16). Once they are known, Equation (15) allows calculating all the remaining
ones. Then, the moisture content profile is determined along with the thickness direction.
The 3D hygro-elastic model including this hygrometric profile is referred to as 3D(Mc,3D).

2.2. 1D Fick Equation

The three-dimensional problem of defining the moisture content field can be simplified
when the structure under investigation is thin enough; such condition is expressed through
sufficiently high thickness ratios. By recalling Equation (4) and the harmonic form for the
moisture content field, the three components of the moisture content flux inside a k-th
layer are

gk
1 = D∗

1
k(z)ᾱMk(z)cos(ᾱα)sin(β̄β) , (17)

gk
2 = D∗

2
k(z)β̄Mk(z)sin(ᾱα)cos(β̄β) , (18)

gk
3 = D∗

3
k(z)Mk

,z(z)sin(ᾱα)sin(β̄β) . (19)

As already seen, the diffusion coefficients are, in general, a function of the thickness
coordinate as they are not constant inside FGM layers. The relative weight of the moisture
content fluxes g1 and g2 decreases if compared to g3 the thinner is the shell. When this
happens, the first two components can be disregarded; Equation (19) now becomes

g3(z) =
(
D∗

3
∂M
∂z

)
= const. (20)

As already seen in the previous section, there is no practical difference between D∗
3

and D3 because the third coordinate 3 ≡ z is rectilinear, and its parametric coefficient
Hz equals 1. Equation (20) implies that g3(z) is actually constant along with z; it can
be specialized for a generic j-th mathematical layer. The coefficient D∗

3 does not change
inside it; this implies that the derivative of the moisture content to z is constant: the
moisture content is linear inside each mathematical layer. Consequently Equation (20) can
be simplified and rewritten in an algebraic form:

gj
3 = −D∗

3
j ∂Mj

∂z
= −D∗

3
j

hj (Mj
t − Mj

b) . (21)
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For the term D∗
3

j/hj, it is possible to exploit the analogy with the electrical conductance,
as already done in [21] where a sort of thermal conductance was defined: the layer diffuses
more, becoming thinner, increasing D∗

3 . This analogy is beneficial, as it enables defining an
equivalent moisture content diffusion resistance for the overall structure:

Rzeq =
G

∑
j=1

hj

D∗
3

j . (22)

The moisture flux in the thickness direction can now be easily quantified, as the
dissertation demonstrated it is constant and quantified the equivalent diffusion resistance.
Defined Mt the moisture content amplitude on the top external surface and Mb that on the
bottom, g3 is

g3 = − 1
Rzeq

(Mt − Mb) = const. (23)

As g3 is constant across all the layers, the moisture content at any interface (and even
at any z coordinate) is easily obtained:

gj
3 = −D∗

3
j (Mj

t − Mj
b)

hj = gj+1
3 = −D∗

3
j+1 (Mj+1

t − Mj+1
b )

hj+1 = g3 = const. , (24)

The coefficient D∗
3

j changes in the thickness direction when FGM layers are considered
in the stacking sequence. As a consequence, the moisture flux can keep constant only if
the slope of the moisture content profile modifies accordingly. In this perspective, the
effect of the material is considered (which means the stacking sequence and the FGM law),
but the impact of the thickness is disregarded. The 3D hygro-elastic model including this
hygrometric profile is referred to as 3D(Mc,1D).

2.3. Assumed Linear Moisture Content through the Thickness Direction

The analysis is further simplified if also the effect of the material is disregarded, in
addition to that of the thickness. A common assumption in the literature is that the moisture
content profile is linear throughout the thickness direction of the shell: it does not take
into account any change in the hygroscopic properties of the layers, as well as the fluxes
in α and β directions. It is close to reality only when the shell is really thin and embeds a
single layer or even different, but with homogeneous hygroscopic properties. The profile
is immediately determined once the top and bottom external sovra-temperatures are set.
The 3D hygroelastic model including this assumed hygrometric profile is referred to as
3D(Ma).

3. 3D Exact Shell Model for Hygro-Elastic Stress Analysis

The 3D equilibrium equations for shells are written in the orthogonal mixed curvilinear
coordinate system (α, β, z) shown in Figures 1 and 2. These equations are modified using 3D
constitutive equations for Functionally Graded Materials (FGMs) and general geometrical
relations for shells in (α, β, z) coordinates. Therefore, the system includes three differential
equations of second order in z, and the related coefficients are not constant because of the
radii of curvature and elastic coefficients for FGMs. A reasonable number of mathematical
layers is introduced to obtain constant-coefficient equations; redoubling the number of
variables allows reducing the order of the differential equations. Simply-supported sides
and harmonic variables allow the analytical calculation of the partial derivatives in α and β
directions. The final system, including the moisture content profile, has only first-order
partial derivatives in z, and the exponential matrix method allows determining both general
and particular solutions.

The investigated multilayered shells and plates subjected to a moisture content
M(α, β, z) at the external surfaces have k classical/composite layers and/or function-
ally graded material layers. Stains defined in an orthogonal mixed curvilinear reference
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system (α,β,z) are the algebraic summation of mechanical elastic parts (subscript m) and
hygroscopic parts (subscript M). The 6 × 1 vector (εk

αα, εk
ββ, εk

zz, γk
βz, γk

αz, γk
αβ) for each k

layer is defined as

εk
αα = εk

ααm − εk
ααM =

1
Hα(z)

∂uk

∂α
+

wk

Hα(z)Rα
− ηk

α(z)Mk , (25)

εk
ββ = εk

ββm − εk
ββM =

1
Hβ(z)

∂vk

∂β
+

wk

Hβ(z)Rβ
− ηk

β(z)Mk , (26)

εk
zz = εk

zzm − εk
zzM =

∂wk

∂z
− ηk

z(z)Mk , (27)

γk
βz = γk

βzm =
1

Hβ(z)
∂wk

∂β
+

∂vk

∂z
− vk

Hβ(z)Rβ
, (28)

γk
αz = γk

αzm =
1

Hα(z)
∂wk

∂α
+

∂uk

∂z
− uk

Hα(z)Rα
, (29)

γk
αβ = γk

αβm =
1

Hα(z)
∂vk

∂α
+

1
Hβ(z)

∂uk

∂β
, (30)

In the hygro-elastic strains, the three displacement components uk, vk, and wk and
the scalar moisture content Mk are defined in the reference system (α, β, z). Moisture
expansion coefficients ηk

α(z), ηk
β(z) and ηk

z(z) in the k physical layer could depend on the z
coordinate in the case of Functionally Graded Material (FGM) layers; they are defined in
the structural reference system (α, β, z) starting from the moisture expansion coefficients
ηk

1(z), ηk
2(z) and ηk

3(z) in the material reference system (1, 2, 3). The partial derivatives are
defined via the symbol ∂.

As anticipated, an essential hypothesis for exact closed-form solutions is the harmonic
forms for all the variables: displacement components and moisture content. While the
latter has already been discussed, for the displacement components it holds that

uk(α, β, z) = Uk(z)cos(ᾱα)sin(β̄β) , (31)

vk(α, β, z) = Vk(z)sin(ᾱα)cos(β̄β) , (32)

wk(α, β, z) = Wk(z)sin(ᾱα)sin(β̄β) , (33)

displacement amplitudes are indicated as (Uk(z), Vk(z), Wk(z)). As already described, m
and n are the half-wave numbers, a and b the mid-surface dimensions, and ᾱ = mπ

a and
β̄ = nπ

b .
The three-dimensional equilibrium equations for spherical shells having constant

radii of curvature Rα = Rβ and a total number NL of physical k (either classical or FGM)
layers are
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+ Hα(z)

∂σk
αβ

∂β
+ Hα(z)Hβ(z)

∂σk
αz

∂z
+ (

2Hβ(z)
Rα

+
Hα(z)

Rβ
)σk

αz = 0, (34)

Hβ(z)
∂σk

αβ

∂α
+ Hα(z)

∂σk
ββ

∂β
+ Hα(z)Hβ(z)

∂σk
βz

∂z
+ (

2Hα(z)
Rβ

+
Hβ(z)

Rα
)σk

βz = 0, (35)

Hβ(z)
∂σk

αz
∂α

+ Hα(z)
∂σk

βz

∂β
+ Hα(z)Hβ(z)

∂σk
zz

∂z
− Hβ(z)

Rα
σk

αα −
Hα(z)

Rβ
σk

ββ + (
Hβ(z)

Rα
+

Hα(z)
Rβ

)σk
zz = 0. (36)

Three-dimensional equilibrium equations for cylinders/cylindrical panels and plates
are obtained from Equations (34)–(36) when one of the two radii of curvature is infinite and
when both the radii of curvature are infinite, respectively.
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The constitutive equations are developed by considering the algebraic summation of
mechanical elastic strains and hygroscopic strains:

σk = Ck(z)εk = Ck(z)(εk
m − εk

M) , (37)

σk is the stress vector having a 6 × 1 dimension, Ck(z)is the 6 × 6 elastic coefficient ma-
trix and it could depend on the z coordinate in the case of a kth FGM layer. The strains
are included in the constitutive equations by using the form shown in Equations (25)–(30).
Closed-form solutions are possible when orthotropic angles are 0◦ or 90◦ to obtain
Ck

16(z) = Ck
26(z) = Ck

36(z) = Ck
45(z) = 0 in the structural reference system (α, β, z).

Therefore,

Ck(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ck
11(z) Ck

12(z) Ck
13(z) 0 0 0

Ck
12(z) Ck

22(z) Ck
23(z) 0 0 0

Ck
13(z) Ck

23(z) Ck
33(z) 0 0 0

0 0 0 Ck
44(z) 0 0

0 0 0 0 Ck
55(z) 0

0 0 0 0 0 Ck
66(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

The explicit form of the constitutive equations develops thanks to the introduction of
the geometrical Equations (25)–(30) into the constitutive Equation (37):

σk
αα =

Ck
11(z)

Hα(z)
uk

,α +
Ck

11(z)
Hα(z)Rα

wk +
Ck

12(z)
Hβ(z)

vk
,β +

Ck
12(z)

Hβ(z)Rβ
wk + Ck

13(z)w
k
,z − ξk

α(z)Mk , (39)

σk
ββ =

Ck
12(z)

Hα(z)
uk

,α +
Ck

12(z)
Hα(z)Rα

wk +
Ck

22(z)
Hβ(z)

vk
,β +

Ck
22(z)

Hβ(z)Rβ
wk + Ck

23(z)w
k
,z − ξk

β(z)Mk , (40)

σk
zz =

Ck
13(z)

Hα(z)
uk

,α +
Ck

13(z)
Hα(z)Rα

wk +
Ck

23(z)
Hβ(z)

vk
,β +

Ck
23(z)

Hβ(z)Rβ
wk + Ck

33(z)w
k
,z − ξk

z(z)Mk , (41)

σk
βz =

Ck
44(z)

Hβ(z)
wk

,β + Ck
44(z)v

k
,z −

Ck
44(z)

Hβ(z)Rβ
vk , (42)

σk
αz =

Ck
55(z)

Hα(z)
wk

,α + Ck
55(z)u

k
,z −

Ck
55(z)

Hα(z)Rα
uk , (43)

σk
αβ =

Ck
66(z)

Hα(z)
vk

,α +
Ck

66(z)
Hβ(z)

uk
,β , (44)

partial derivatives ( ∂
∂α ), ( ∂

∂β ), and ( ∂
∂z ) are indicated in Equations (39)–(44) through sub-

scripts (, α), (, β), and (, z), respectively. Terms ξk
α(z), ξk

β(z), and ξk
z(z) designate the hygro-

mechanical coupling coefficients in the structural reference system (α, β, z), and they could
depend on z in the case of FGM layers:

ξk
α(z) = Ck

11(z)η
k
α(z) + Ck

12(z)η
k
β(z) + Ck

13(z)η
k
z(z) , (45)

ξk
β(z) = Ck

12(z)η
k
α(z) + Ck

22(z)η
k
β(z) + Ck

23(z)η
k
z(z) , (46)

ξk
z(z) = Ck

13(z)η
k
α(z) + Ck

23(z)η
k
β(z) + Ck

33(z)η
k
z(z) . (47)

The final system is obtained thanks to the substitution of the harmonic form equations
for displacements and moisture content Equations (1)–(31) and the modified constitutive
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relations Equations (39)–(44) into the three-dimensional equilibrium Equations (34)–(36)
developed for spherical shells:

Aj
1Uj + Aj

2Vj + Aj
3Wj + Aj

4Uj
,z + Aj

5Wj
,z + Aj

6Uj
,zz + Lj

1 Mj = 0 , (48)

Aj
7Uj + Aj

8Vj + Aj
9Wj + Aj

10Vj
,z + Aj

11Wj
,z + Aj

12Vj
,zz + Lj

2 Mj = 0 , (49)

Aj
13Uj + Aj

14Vj + Aj
15Wj + Aj

16Uj
,z + Aj

17Vj
,z + Aj

18Wj
,z + Aj

19Wj
,zz + Lj

3 Mj
,z + Lj

4 Mj = 0. (50)

The above equations have no constant coefficients because the parametric coefficients
Hα and Hβ depend on z in the case of shell geometries and/or elastic and hygrometric
coefficients depend on z in FGM layers. For these reasons, each k physical layer is divided
into a suitable number of mathematical layers indicated with a new index j which changes
from 1 to the global number of mathematical layers G. In each j mathematical layer, the
parametric coefficients Hα and Hβ and the variable elastic and hygrometric coefficients for
FGM layers can be exactly defined by using the z coordinate in the middle of each j layer.
Therefore, coefficients Aj

s (s from 1 to 19) and Lj
r (r from 1 to 4) become constant terms in

the compact form of the system of differential equations in z defined in Equations (48)–(50).
Equations (48)–(50) indicate a system of three differential equations of second order in

z. The unknowns are the displacement and moisture content amplitudes and the associated
derivatives calculated to z. The derivatives in α and β have already been calculated via the
harmonic forms for displacements and moisture content previously introduced. In this
system, decoupling the variables is possible: this means a separate quantification of the
moisture content profile through the thickness direction z, addressed in an appropriate
section. Therefore, it becomes a known term.

The consequence of these choices is that the system contains second-order differential
equations only, in the displacement amplitudes Uj, Vj, Wj and their derivatives in z.
Redoubling the variables as proposed in [71,72] allows reducing the system into a first-
order one in z. In each j layer, the 3 × 1 vector of unknowns (Uj, Vj, Wj) becomes a 6 × 1

unknown vector (Uj, Vj, Wj, Uj
′
, Vj

′
, Wj

′
); superscript ′ indicates derivatives performed to

z (also written as ∂
∂z ). Terms Mj and Mj′ can be considered as known terms because they

can be opportunely calculated, as will be demonstrated in the next section:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aj
6 0 0 0 0 0

0 Aj
12 0 0 0 0

0 0 Aj
19 0 0 0

0 0 0 Aj
6 0 0

0 0 0 0 Aj
12 0

0 0 0 0 0 Aj
19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Uj

Vj

Wj

Uj
′

Vj
′

Wj
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 Aj
6 0 0

0 0 0 0 Aj
12 0

0 0 0 0 0 Aj
19

−Aj
1 −Aj

2 −Aj
3 −Aj

4 0 −Aj
5

−Aj
7 −Aj

8 −Aj
9 0 −Aj

10 −Aj
11

−Aj
13 −Aj

14 −Aj
15 −Aj

16 −Aj
17 −Aj

18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Uj

Vj

Wj

Uj
′

Vj
′

Wj
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−Lj
1 0 0 0 0 0

−Lj
2 0 0 0 0 0

−Lj
4 −Lj

3 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Mj

Mj
′

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (51)

By defining vectors U j = [Uj Vj Wj Uj
′
Vj

′
Wj

′
]T , U j

′
= ∂U j

∂z and M j

= [Mj Mj
′

0 0 0 0]T (where T means the transpose of a vector), the following compact
form is possible:

DjU j
′
= AjU j + Lj M j , (52)
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the above equation, thanks to the definitions A∗j
= Dj−1

Aj and L∗j
= Dj−1

Lj, can be
rewritten as

U j
′
= Dj−1

AjU j + Dj−1
Lj M j , (53)

U j
′
= A∗j

U j + L∗j
M j . (54)

The moisture content profile through the thickness direction z can be calculated using
one of the three methods proposed in the previous section. This profile can be reconstructed
using a linear approximation of the moisture content in each j mathematical layer. This
reconstruction can be defined as

Mj(z̃j) = aj
Mz̃j + bj

M , (55)

in a jth mathematical layer, aj
M and bj

M are two constant coefficients. The first represents the
slope of the moisture content profile inside a mathematical layer; the second the moisture
content at the bottom. z̃j is a local thickness coordinate for each j mathematical layer, and it
changes from 0 at the bottom of the considered j mathematical layer to the top value hj of
the same mathematical layer.

The system of first-order differential equations in z̃ or z shown in Equation (54) is not
homogeneous because the hygroscopic term L∗j

M j depends on z̃j or zj. In the case of a
generic system of non-homogeneous first-order differential equations having an unknown
G × 1 vector x, a G × G |A matrix containing constant coefficients, and a known function
vector f (t) = [ f1(t) ... fG(t)]T ,we can write

dx
dt

= Ax + f (t) , (56)

a possible solution of the Equation (56) can be obtained via the exponential matrix method:

x(t) = eA(t−t0)x0 +
∫ t

t0

eA(t−s) f (s)ds . (57)

The known term in Equation (54) can be given in the following complete form:

M∗j
= L∗j

M j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−L∗j

1 0 0 0 0 0
−L∗j

2 0 0 0 0 0
−L∗j

4 −L∗j

3 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

aj
Mz̃j + bj

M
aj

M
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−L∗j

1 (aj
Mz̃j + bj

M)

−L∗j

2 (aj
Mz̃j + bj

M)

−L∗j

4 (aj
Mz̃j + bj

M)− L∗j

3 aj
M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (58)

Therefore, Equation (54) can be rewritten as

U j
′
= A∗j

U j + M∗j
, (59)

M∗j
includes only linear and known functions in z̃j coordinate. The Equation (59) can be

solved through the exponential matrix method:

U j(z̃j) = e(A∗j
z̃j)U j(0) +

∫ z̃j

0
e(A∗j

(z̃j−s))M∗j
(s)ds . (60)

A∗∗j
= e(A∗j

hj) and L∗∗j
=

∫ hj

0 e(A∗j
(hj−s))M∗j

(s)ds must be opportunely defined for each j
layer having thickness hj. In this way, the displacement vector at the top of each j mathe-
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matical layer is calculated. Both terms are defined via the exponential matrix opportunely
expanded and evaluated in each j mathematical layer with thickness hj:

A∗∗j
= e(A∗j

hj) = I + A∗j
hj +

A∗j 2

2!
hj2 +

A∗j 3

3!
hj3 + · · ·+ A∗j N

N!
hj N

, (61)

L∗∗j
=

∫ hj

0
e(A∗j

(hj−s))M∗j
(s)ds =

∫ hj

0

(
I + A∗j

(hj − s) +
A∗j 2

2!
(hj − s)2 +

A∗j 3

3!
(hj − s)3+

· · ·+ A∗j N

N!
(hj − s)N

)
M∗j

(s)ds , (62)

where I is the 6× 6 identity matrix, and the integral given in Equation (60) can be calculated
in each j layer having thickness hj by using the exponential matrix and the same order
N already shown in Equation (61). By using Equations (61) and (62), Equation (60) is
modified as

U j(hj) = A∗∗j
U j(0) + L∗∗j

, (63)

where U j
t indicates U j(hj) and it is defined at the top t of each j layer, and U j

b indicates
U j(0) and it is defined at the bottom of each j layer. In this way, Equation (63) is defined as

U j
t = A∗∗j

U j
b + L∗∗j

. (64)

Using Equation (64) allows to connect displacements and their derivatives in z defined
at the top of the j mathematical layer with the same variables defined at the bottom of the
same j layer.

The general three-dimensional shell model is developed using a layer-wise approach.
Inter-laminar continuity conditions in displacements and transverse stresses must be
defined at each interface between the two adjacent mathematical layers. The inter-laminar
continuity conditions for displacements come through congruence hypotheses:

uj
b = uj−1

t , vj
b = vj−1

t , wj
b = wj−1

t . (65)

The inter-laminar continuity conditions for transverse shear and normal transverse
stresses are defined employing equilibrium hypotheses:

σ
j
zzb = σ

j−1
zzt , σ

j
αzb = σ

j−1
αzt , σ

j
βzb

= σ
j−1
βzt

. (66)

The formulation of this solution requires rewriting the inter-laminar continuity con-
ditions, Equations (65) and (66), in a displacement form. Achieving this task is possible
by recalling the constitutive Equations (39)–(44) and the harmonic form of the variables of
the problem, Equations (1) and (31)–(33). This procedure allows writing the inter-laminar
continuity condition in the amplitude displacements and their derivatives to the thickness
coordinate. Then, compacting the notation is possible, recalling the vectors U j and M j, and
introducing a pair of transfer matrices. The procedure is similar to that employed in [25];
exception made for an additional coefficient multiplying the moisture content amplitude:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U
V
W
U

′

V
′

W
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

j

b

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
T1 0 T2 T3 0 0
0 T4 T5 0 T6 0
T7 T8 T9 0 0 T10

⎤
⎥⎥⎥⎥⎥⎥⎦

j−1,j⎡⎢⎢⎢⎢⎢⎢⎢⎣

U
V
W
U

′

V
′

W
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

j−1

t

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

T11 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

j−1,j⎡
⎢⎢⎢⎢⎢⎢⎣

M
M

′

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

j−1

t

. (67)
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The first three rows of Equation (67) denote the displacement continuity equations; the
last three are the continuity conditions for stresses. The compact form of Equation (67) follows:

U j
b = T j−1,j

U U j−1
t + T j−1,j

M M j−1
t . (68)

Equation (68) expresses the link between the displacements and their z derivatives,
calculated at the bottom of the jth layer, with their corresponding values plus the moisture
content (and its z derivative), at the top of the (j − 1)th layer.

The harmonic form implemented in all the variables of the problem automatically
satisfies the simply supported boundary conditions, here reported for exhaustiveness:

w = v = 0, σαα = 0 for α = 0, a , (69)

w = u = 0, σββ = 0 for β = 0, b (70)

This solution extends the model already seen in [25] for the static analysis of shells
subjected to static loads. In that context, mechanical loads can act on the external top and
bottom surfaces, with components defined in the three directions α, β, and z. They are
grouped into vectors P = (Pα Pβ Pz)T ; the superscript G means the one acting on the top
surface; the one with superscript 1 identifies the one acting on the lower one. The effect of
the external loads affects the displacements:

BG
t UG

t = PG
t , (71)

B1
bU1

b = P1
b , (72)

more details are available in [25]. The hygro-elastic analysis does not involve anything
different; once applied, the moisture content induces an equivalent load, which sums up
the (possible) mechanical load. The matrices B convert the mechanical and/or hygrometric
loads into displacements. BG

t , in Equation (71) handles the top (t) of the last layer (G); B1
b,

in Equation (72), the bottom (b) of the first layer (1).
The algebraic system of Equations (71) and (72) can be reformulated into a matrix form,

rewriting the displacements UG
t = UG(hG) as a function of U1

b = U1(0). This rewriting is
possible through a recursive substitution of Equation (68) into Equation (64), linking the
displacements at the top of the last layer (and their z derivatives) to those at the bottom of
the first layer:

UG
t =

(
A∗∗GTG−1,G

U A∗∗G−1TG−2,G−1
U ...... A∗∗2T1,2

U A∗∗1

)
U1

b+

(
A∗∗GTG−1,G

U A∗∗G−1...... A∗∗2T1,2
U L∗∗1+

A∗∗GTG−1,G
U A∗∗G−1...... A∗∗3T2,3

U L∗∗2+

...

A∗∗GTG−1,G
U L∗∗G−1+ (73)

L∗∗G+

A∗∗GTG−1,G
U A∗∗G ...... A∗∗2T1,2

M M1
t +

A∗∗GTG−1,G
U A∗∗G ...... A∗∗3T2,3

M M2
t +

...

A∗∗GTG−1,G
U A∗∗G−1TG−2,G−1

M MG−2
t +

A∗∗GTG−1,G
M MG−1

t

)
.
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Equation (73) consists of two main blocks. The first has as a common multiplication
factor the bottom displacements of the first layer U1

b; the content in the brackets is a
6 × 6 matrix, which is identical to that defined Hm for classical elastic analysis in [25].
The hygrometric field brings with it additional terms included in the second block. The
terms L∗∗ j explicitly include the hygrometric profile; they are G as each mathematical
layer features its own profile. The terms M j

t set the moisture content at each interface;
consequently, they are G − 1. This block is a known and constant term; it takes the form
of a 6 × 1 vector, from now on referred to as HM. Therefore, the compact expression of
Equation (73) takes the following form:

UG
t = HmU1

b + HM . (74)

Given this result, Equation (71) can be rewritten in terms of U1
b:

BG
t HmU1

b = −BG
t HM . (75)

Equations (72) and (75) now share the same unknown; they can be put to system
as follows:

EU1
b = PM , (76)

where

E =

[
BG

t Hm
B1

b

]
(77)

and

PM =

[−BG
t HM
0

]
. (78)

One of the main advantages of this solution is that the dimensions of the matrix E keep
low, 6 × 6, despite the number G of mathematical layers and the layer-wise approach to the
problem. Furthermore, E is the same as that needed for the classical elastic analysis (see
in [25]). The vector PM adds the hygrometric load as an equivalent mechanical action and
sums up the (possible) mechanical load P. Solving the system allows getting the bottom
displacement components (and their z derivatives); Equations (64) and (68) allow then
calculating their values at any coordinate in the thickness direction.

4. Results

This section is of fundamental importance. First of all, it defines the properties of the
Functionally Graded (FM) layers, presenting the mechanical and hygrometric properties of
their constituents and the law defining their variation in composition. Then, it features two
subsections. The first one validates this exact 3D solution for shells embedding layers made
of FGM. Validations of new solutions are often conducted comparing the new outputs with
those already available in the literature. Besides verifying the accuracy of this solution,
this phase helps define how many mathematical layers should be used to consider with
confidence the effects of the curvature and those of the FGM law and the order of expansion
to use in the exponential matrix calculation. Strengthened by those results, the second
subsection presents a set of new results. The effect of the moisture content field is studied on
different geometries, featuring different stacking sequences, thickness ratios, and moisture
content boundary conditions.

In all the assessments and benchmarks, the FGM layers rely on two constituents: a
metal and ceramic. The metal is Monel, 70Ni30Cu, a nickel-based alloy; the ceramic is
Zirconia. An estimate of the mechanical properties is given in terms of the bulk modulus K
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and the shear modulus μ of the two materials; the moisture expansion coefficients η and
the moisture diffusion coefficients D are given explicitly:

Km = 227.24 GPa, μm = 65.55 GPa, ηm = 2 × 10−3 1
%

, Dm = 10−9 kg
ms

, (79)

Kc = 125.83 GPa, μc = 58.077 GPa, ηc = 1 × 10−3 1
%

, Dc = 10−10 kg
ms

, (80)

The metal and the ceramic phases are denoted by the subscripts m and c. The estimate
of the thermal properties is also given, as they will be necessary in the assessment phase:

γm = 15 × 10−6 1
K

, κm = 25
W

mK
(81)

γc = 10 × 10−6 1
K

, κc = 2.09
W

mK
(82)

γ denotes the thermal expansion coefficient, while κ the conductivity coefficient. This work
assumes that the volume fraction of the ceramic phase follows a power law of order p.
Introducing the thickness of the FG layer hFG and a local thickness coordinate z̃FG inside it
(0 at its bottom, h at its top), the FG law takes the following expression:

Vc = (z̃FG /hFG )
p (83)

At the bottom of the FG layer, where z̃FG = 0, Equation (83) implies Vc = 0, meaning
that it is made of metal only. At the top of the FG layer, where z̃FG = hFG , Equation (83)
implies Vc = 1, meaning that it is made of ceramic only. The bulk and the shear moduli of
the FG layer evolve along with the thickness direction following the Mori–Tanaka estimates:

K − Km

Kc − Km
=

Vc

1 + (1 − Vc)
Kc−Km

Km+ 4
3 μm

,
μ − μm

μc − μm
=

Vc

1 + (1 − Vc)
μc−μm
μm+ fm

, fm =
μm(9Km + 8μm)

6(Km + 2μm)
(84)

The same applies to the effective moisture expansion and moisture diffusion coeffi-
cients, by analogy with the estimates of Hatta and Taya for the corresponding thermal
properties:

D −Dm

Dc −Dm
=

Vc

1 + (1 − Vc)
Dc−Dm

3Dm

,
η − ηm

ηc − ηm
=

1
K − 1

Km
1

Kc
− 1

Km

(85)

The estimates reported in Equation (85) are also valid for the thermal properties,
following the parallel of the moisture diffusion coefficient D with the thermal conductivity
coefficient κ, and that of the moisture expansion coefficient η with the the thermal expansion
coefficient γ.

4.1. Assessments

The present solution handles several geometries and different load cases. As discussed,
it can study plates, cylinders, cylindrical and spherical shells under mechanical, thermal,
and hygrometric load. Furthermore, it is not limited to isotropic monolayer structures, but
it also handles orthotropic and multi-layered lamination schemes, and it can go up to layers
embedding FGM. However, confident use of the model is possible only after validated
against established solutions already offered in the literature. The authors did not find
hygro-elastic results from exact 3D solutions in the literature which were applied to FGMs.
For this reason, the validation process of the model is built by separately validating its
different sections against the results provided by other researchers, exploiting the parallel
of the moisture content field and the thermal field, and complementing this process with
the assistance of 3D FE (Finite Element) models. A static 3D FE model is solved through
the Nastran solver SOL101. IsoMesh meshed the geometry of each plate with 3D HEX8
elements; the mesh did not change with the thickness ratio and included 25 elements in the
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thickness direction and 30 in both the in-plane ones. Solid elements were necessary to define
the mechanical properties evolution in the thickness direction and build significant thermal,
hygrometric, and mechanical variables profiles. Depending on the geometry, the coordinate
system of the model has one, two, or none curvilinear coordinate. For consistency with the
analytical model, the displacement-related boundary conditions are defined on the lateral
surfaces of the structure following the harmonic form hypotheses: a pair of displacement
coordinates is set 0 on each surface. First, the harmonic thermal/hygrometric field is
introduced in an equation, following Equation (1). It is applied to the top and bottom
surfaces of the structure; the preprocessor automatically calculates the field values at each
node of the external surfaces through their coordinates. The first run solves the thermal
part of the problem and returns the temperature (or moisture content) at each node. This
field is then applied to a further (and identical) FE model, which solves the elastic part. The
thermal, hygrometric, and mechanical properties of the FGM layer are given imagining
to split the structures into a number of fictitious layers coinciding with the number of
elements in the thickness direction. The properties of each fictitious layer are calculated at
its midpoint, following Equations (83)–(85). Needless to say, they are not exact solutions,
but they can guide in benchmarking the proposed model.

The first assessment considers a simply-supported one-layered FGM square plate. It
investigates different thickness ratios (a/h = 4, 10, 50) in plates with in-plane dimensions
of a = b = 100 m. The FGM layer relies on a metallic constituent, and a ceramic one, whose
mechanical, thermal, and hygrometric properties are defined at the beginning of Section 4.
The volume fraction power law considers p = 2 as the exponent. An external sovra-
temperature field acts on the top (θt = +1 K) and bottom (θb = 0 K) surfaces. The thermal
field has a harmonic form, with half-wave numbers m = n = 1. The reference solution
is the asymptotic method of Reddy and Cheng [73], which considers a 3D temperature
profile along with thickness direction. Table 1 proposes a pair of results for each thickness
ratio at different coordinates along with direction z in terms of a displacement, w or
u, and an in-plane shear component, σαα. The results show that the 3D shell model
always coincides with Reddy and Cheng’s asymptotic method, despite the thickness
ratio and the considered variable, when the number of mathematical layers is sufficiently
high. NL = 300, coupled with an order of expansion N = 3 for the exponential matrix,
always delivers the correct results. Therefore, this assessment verified that the 3D shell
model correctly handles the thermomechanical analysis of FGM plates. Furthermore, it
simultaneously assessed the 3D FE model, which will be helpful in the following assessment
to validate the hygromechanical analysis.

The second assessment is meant to validate the hygroelastic part of the 3D solution
for plates embedding an FGM layer. To this end, it considers the previous test case as a
reference and removes the thermal field in favor of a hygrometric one. Consequently, it
focuses on a simply-supported one-layered FGM square plate; the in-plane dimensions
are a = b = 100 m, the thickness varies to obtain different thickness ratios (a/h = 4, 10,
50). The FGM layer relies on the same metallic and ceramic constituents, whose volume
fraction follows the same power-law with p = 2. An external hygrometric field acts on
the top (Mt = 1.0%) and bottom (Mb = 0.5%) surfaces; it has a harmonic form, with
half-wave numbers m = n = 1. The reference results are obtained through the same 3D
FE model of the previous assessment, in which the hygrometric field replaces the thermal
one. Its previous validation allows considering it as a reliable source for reference results.
Table 2 proposes a pair of results for each thickness ratio at different coordinates along
with direction z in terms of a displacement, w or u, and an in-plane shear component, σαα.
Consistent with the previous test case, the results show that the 3D shell model always gives
comparable results with the 3D FE model, despite the thickness ratio and the considered
variable, when the number of mathematical layers is sufficiently high. NL = 300, coupled
with an order of expansion N = 3 for the exponential matrix, always delivers the correct
results. Therefore, this assessment confirmed the capabilities of the 3D shell model in
handling the hygromechanical analysis of FGM plates.
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Table 1. First assessment. One-layered FGM square plate (a/b = 1), featuring different thickness ra-
tios. The volume fraction power law considers p = 2 as the exponent. An external sovra-temperature
field acts on the top (θt = +1 K) and bottom (θb = 0 K) surfaces; m = n = 1. The reference solution is
the asymptotic method of Reddy and Cheng [73], considering a 3D temperature profile along with
thickness direction. A 3D FE model is also assessed. The results of the present solution are obtained
with N = 3 and for a varying number of mathematical layers NL.

Present Solution
3D FEM Ref. 3D [73]

NL → 10 50 100 200 300

a/h = 4

w̃ at z = h
3D(θa) 4.2943 4.2842 4.2838 4.2837 4.2836

3.067 3.0433D(θc, 1D) 3.3331 3.2130 3.2083 3.2071 3.2068
3D(θc, 3D) 3.1791 3.0482 3.0431 3.0418 3.0415

σ̃αα at z = 0
3D(θa) 288.99 290.12 290.21 290.23 290.24

−75.57 −73.533D(θc, 1D) −27.47 −22.16 −21.92 −21.85 −21.84
3D(θc, 3D) −81.37 −73.99 −73.67 −73.58 −73.57

a/h = 10

ũ at z = h/2
3D(θa) −1.3433 −1.3417 −1.3417 −1.3417 −1.3417

−0.7910 −0.78623D(θc, 1D) −0.8287 −0.8026 −0.8016 −0.8014 −0.8014
3D(θc, 3D) −0.8134 −0.7871 −0.7861 −0.7859 −0.7858

σ̃αα at z = h
3D(θa) −599.6 −490.7 −476.4 −469.2 −466.8

−1058 −10063D(θc, 1D) −1102 −1021 −1006 −999.3 −996.7
3D(θc, 3D) −1117 −1036 −1021 −1014 −1011

a/h = 50

w̃ at z = h/2
3D(θa) 35.97 35.81 35.80 35.80 35.80

28.57 28.453D(θc, 1D) 29.64 28.50 28.46 28.45 28.45
3D(θc, 3D) 29.64 28.50 28.45 28.44 28.44

σ̃αα at z = h/2
3D(θa) −759.3 −730.7 −726.8 −724.9 −724.2

−250.4 −251.23D(θc, 1D) −269.9 −255.3 −253.5 −252.5 −252.2
3D(θc, 3D) −269.3 −254.7 −252.9 −252.0 −251.7

The third assessment considers a simply-supported one-layered FGM cylindrical shell.
Again, the dimensions of the reference surface are fixed, as in the previous cases; they are
a = 1 m and b = π

3 Rβ, with Rβ = 10 m. This test case also considers different thickness
ratios Rβ = 50, 1000) to evaluate their influence on the performance of the solution. The
constituents of the FGM layer are the same as those defined at the beginning of Section 4
and considered in the previous assessments. The power law is also the same, with p = 2.
The top and bottom external surfaces are subjected to an external sovra-temperature field
with amplitudes θt = +1 K and θb = 0 K. The half-wave numbers of the thermal field are
m = n = 1. The reference solution is a refined 2D layer-wise solution based on the Unified
Formulation [74], which considers a 3D temperature profile along with thickness direction.
Table 3 proposes six results for each thickness ratio: the transverse displacement w and an
in-plane displacement, evaluated at three different coordinates along with direction z. The
table also assesses a 3D FE model, solved through the Nastran solver, which helps evaluate
the hygroelastic analysis of the following assessment. IsoMesh meshed the geometry of
each shell with 3D HEX8 elements; the mesh did not change with the thickness ratio and
included 25 elements in the thickness direction and 30 in both the in-plane ones. Solid
elements were necessary to define the mechanical properties evolution in the thickness
direction and build significant thermal and mechanical variables profiles. The results
show that the 3D shell model always coincides with the quasi-3D method [74], despite the
thickness ratio and the considered variable, when the number of mathematical layers is
sufficiently high. NL = 300, coupled with an order of expansion N = 3 for the exponential
matrix, always delivers the correct results. Therefore, this assessment verified that the 3D
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shell model correctly handles the thermomechanical analysis of FGM shells. Furthermore, it
simultaneously assessed the 3D FE model, which will be helpful in the following assessment
to validate the hygromechanical analysis.

Table 2. Second assessment. One-layered FGM square plate (a/b = 1), featuring different thickness
ratios. The geometry, materials, and FGM power law are the same as the first assessment. The
thermal load is substituted by an external moisture content acting on the top (Mt = 1.0%) and bottom
(Mb = 0.5%) surfaces; m = n = 1. The reference solution is the 3D FE model, already validated in the
previous assessment. The results of the present solution are obtained with N = 3 and for a varying
number of mathematical layers NL.

Present Solution
3D FEM

NL → 10 50 100 200 300

a/h = 4

w̃ at z = h
3D(Ma) 227.5 225.7 225.6 225.6 225.6

143.33D(Mc, 1D) 177.9 171.1 170.8 170.7 170.7
3D(Mc, 3D) 151.0 141.9 141.6 141.5 141.5

σ̃αα at z = 0
3D(Ma) −32,309 −32,391 −32,383 −32,380 −32,380

−751,6623D(Mc, 1D) −53,262 −53,245 −53,234 −53,230 −53,230
3D(Mc, 3D) −75,532 −75,561 −75,551 −75,548 −75,548

a/h = 10

ũ at z = h/2
3D(Ma) −262.4 −262.1 −262.1 −262.1 −262.1

−226.03D(Mc, 1D) −231.9 −230.5 −230.4 −230.4 −230.4
3D(Mc, 3D) −227.3 −225.8 −225.7 −225.7 −225.7

σ̃αα at z = h
3D(Ma) −55,689 −35,256 −32,575 −31,224 −30,772

−63,8253D(Mc, 1D) −83,669 −64,410 −61,712 −60,336 −59,873
3D(Mc, 3D) −87,250 −68,062 −65,359 −63,979 −63,515

a/h = 50

ũ at z = 0
3D(Ma) −257.3 −258.1 −258.1 −258.1 −258.1

−236.83D(Mc, 1D) −236.0 −237.0 −237.0 −237.0 −237.0
3D(Mc, 3D) −235.9 −236.8 −236.8 −236.9 −236.9

σ̃αα at z = h/2
3D(Ma) −145,561 −137,645 −136,589 −136,056 −135,878

−105,1493D(Mc, 1D) −114,235 −107,530 −106,648 −106,203 −106,054
3D(Mc, 3D) −114,035 −107,338 −106,457 −106,013 −105,865

The fourth assessment is meant to validate the hygro-elastic part of the 3D solution for
shells embedding an FGM layer. To this end, it considers the previous test case as a reference
and removes the thermal field in favor of a hygrometric one. Consequently, it focuses
on a simply-supported one-layered FGM square shell. The dimensions of the reference
surface are a = 1 m and b = π

3 Rβ, with Rβ = 10 m, the thickness varies to obtain different
thickness ratios (Rβ = 50, 100). The FGM layer relies on the same metallic and ceramic
constituents of the previous test cases, whose volume fraction follows the same power-
law with p = 2. An external hygrometric field acts on the top (Mt = 1.0%) and bottom
(Mb = 0.5%) surfaces; it has a harmonic form, with half-wave numbers m = n = 1. The
reference results are obtained through the same 3D FE model of the previous assessment,
in which the hygrometric field replaces the thermal one. Its previous validation allows
considering it as a reliable source for reference results. Table 4 proposes six results for each
thickness ratio: the transverse displacement w and an in-plane displacement, evaluated at
three different coordinates along with direction z. Consistent with the previous test case, the
results show that the 3D shell model always gives comparable results with the 3D FE model,
despite the thickness ratio and the considered variable, when the number of mathematical
layers is sufficiently high. NL = 300, coupled with an order of expansion N = 3 for
the exponential matrix, always delivers the correct results. Therefore, this assessment
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confirmed the capabilities of the 3D shell model in handling the hygromechanical analysis
of FGM shells.

Table 3. Third assessment. One-layered FGM cylindrical shell (Rβ = 10 m), featuring different
thickness ratios. The volume fraction power law considers p = 2 as the exponent. An external
sovra-temperature field acts on the top (θt = +1 K) and bottom (θb = 0 K) surfaces; m = n = 1.
The reference solution is a refined 2D layer-wise solution based on the Unified Formulation [74],
considering a 3D temperature profile along with thickness direction. A 3D FE model is also assessed.
The results of the present solution are obtained with N = 3 and for a varying number of mathematical
layers NL.

Present Solution
3D FEM Ref. [74]

NL → 10 50 100 200 300

Rβ/h = 50

w̃ at z = h
3D(θa) 9.8080 9.7773 9.7762 9.7759 9.7759

7.2722 7.13373D(θc, 1D) 7.5570 7.2809 7.2703 7.2676 7.2671
3D(θc, 3D) 7.4312 7.1467 7.1358 7.1330 7.1325

w̃ at z = h/2
3D(θa) 8.6672 8.6375 8.6365 8.6362 8.6362

6.5284 6.41313D(θc, 1D) 6.7886 6.5371 6.5274 6.5250 6.5245
3D(θc, 3D) 6.6843 6.4250 6.4150 6.4125 6.4120

w̃ at z = 0
3D(θa) 8.1689 8.1401 8.1391 8.1388 8.1388

6.2996 6.19423D(θc, 1D) 6.5471 6.3026 6.2932 6.2908 6.2903
3D(θc, 3D) 6.4582 6.2058 6.1960 6.1936 6.1931

ũ at z = h
3D(θa) −5.3944 −5.3825 −5.3821 −5.3820 −5.3820

−3.6252 −3.54663D(θc, 1D) −3.7791 −3.6488 −3.6438 −3.6426 −3.6423
3D(θc, 3D) −3.6863 −3.5527 −3.5476 −3.5463 −3.5461

ũ at z = h/2
3D(θa) −2.5669 −2.5643 −2.5642 −2.5642 −2.5642

−1.4900 −1.45323D(θc, 1D) −1.5635 −1.5150 −1.5131 −1.5127 −1.5126
3D(θc, 3D) −1.5046 −1.4554 −1.4536 −1.4531 −1.4530

ũ at z = 0
3D(θa) 0.0300 0.0239 0.0237 0.0236 0.0236

0.4816 0.48333D(θc, 1D) 0.4850 0.4578 0.4567 0.4564 0.4564
3D(θc, 3D) 0.5136 0.4846 0.4835 0.4832 0.4831

Rβ/h = 1000

w̃ at z = h
3D(θa) 69.477 69.348 69.344 69.343 69.342

44.402 43.5903D(θc, 1D) 45.154 43.661 43.604 43.589 43.587
3D(θc, 3D) 45.150 43.657 43.600 43.586 43.583

w̃ at z = h/2
3D(θa) 69.424 69.294 69.290 69.289 69.289

44.364 43.5533D(θc, 1D) 45.116 43.624 43.567 43.553 43.550
3D(θc, 3D) 45.113 43.620 43.563 43.549 43.546

w̃ at z = 0
3D(θa) 69.417 69.287 69.283 69.282 69.282

44.365 43.5543D(θc, 1D) 45.117 43.625 43.568 43.554 43.551
3D(θc, 3D) 45.114 43.621 43.564 43.550 43.547

ũ at z = h
3D(θa) −2.994 −2.991 −2.990 −1.990 −2.990

−1.8211 −1.78683D(θc, 1D) −1.848 −1.789 −1.787 −1.786 −1.786
3D(θc, 3D) −1.847 −1.789 −1.787 −1.786 −1.786

ũ at z = h/2
3D(θa) −1.903 −1.901 −1.901 −1.901 −1.901

−1.1238 −1.10213D(θc, 1D) −1.138 −1.103 −1.102 −1.102 −1.102
3D(θc, 3D) −1.138 −1.103 −1.102 −1.102 −1.102

ũ at z = 0
3D(θa) −0.8129 −0.8132 −0.8132 −0.8132 −0.8132

−0.4269 −0.41783D(θc, 1D) −0.4298 −0.4183 −0.4179 −0.4177 −0.4177
3D(θc, 3D) −0.4297 −0.4182 −0.4178 −0.4177 −0.4177
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Table 4. Fourth assessment. One-layered FGM cylindrical shell (Rβ = 10 m) featuring different
thickness ratios. The geometry, materials, and FGM power law are the same as the third assessment.
The thermal load is substituted by an external moisture content acting on the top (Mt = 1.0%) and
bottom (Mb = 0.5%) surfaces; m = n = 1. The reference solution is the 3D FE model, already
validated in the previous assessment. The results of the present solution are obtained with N = 3
and for a varying number of mathematical layers NL.

Present Solution
3D FEM

NL → 10 50 100 200 300

Rβ/h = 50

w̃ at z = h
3D(Ma) 557.35 551.43 551.22 551.17 551.16

411.973D(Mc, 1D) 440.34 423.22 422.60 422.44 422.41
3D(Mc, 3D) 417.06 398.20 397.51 397.34 397.31

w̃ at z = h/2
3D(Ma) 399.25 393.43 393.22 393.16 393.15

279.923D(Mc, 1D) 303.27 287.38 286.80 286.66 286.63
3D(Mc, 3D) 285.49 268.05 267.42 267.26 267.23

w̃ at z = 0
3D(Ma) 228.40 222.78 222.58 222.53 222.52

131.173D(Mc, 1D) 148.66 133.28 132.72 132.58 132.55
3D(Mc, 3D) 136.53 119.68 119.07 118.91 118.88

ũ at z = h
3D(Ma) −654.1 −651.9 −651.8 −651.8 −651.8

−538.013D(Mc, 1D) −563.3 −555.6 −555.3 −555.2 −555.2
3D(Mc, 3D) −539.7 −531.1 −530.8 −530.7 −530.7

ũ at z = h/2
3D(Ma) −515.9 −515.5 −515.5 −515.5 −515.5

−435.013D(Mc, 1D) −456.3 −453.7 −453.6 −453.6 −453.6
3D(Mc, 3D) −438.5 −435.4 −435.3 −435.3 −435.3

ũ at z = 0
3D(Ma) −424.7 −426.0 −426.0 −426.1 −426.1

−380.503D(Mc, 1D) −392.8 −394.8 −394.9 −394.9 −394.9
3D(Mc, 3D) −379.6 −381.7 −381.8 −381.8 −381.8

Rβ/h = 1000

w̃ at z = h
3D(Ma) 11,564 11,545 11,544 11,544 11,544

10,1283D(Mc, 1D) 10,150 10,065 10,062 10,061 10,061
3D(Mc, 3D) 10,149 10,064 10,061 10,060 10,060

w̃ at z = h/2
3D(Ma) 11,558 11,539 11,538 11,538 11,538

10,1233D(Mc, 1D) 10,145 10,060 10,057 10,056 10,056
3D(Mc, 3D) 10,144 10,059 10,056 10,055 10,055

w̃ at z = 0
3D(Ma) 11,551 11,532 11,531 11,531 11,531

10,1173D(Mc, 1D) 10,139 10,054 10,051 10,050 10,050
3D(Mc, 3D) 10,138 10,053 10,050 10,049 10,049

ũ at z = h
3D(Ma) −589.0 −588.5 −588.5 −588.5 −588.5

−520.373D(Mc, 1D) −521.1 −518.0 −517.9 −517.8 −517.8
3D(Mc, 3D) −521.1 −517.9 −517.8 −517.8 −517.8

ũ at z = h/2
3D(Ma) −407.4 −407.2 −407.2 −407.2 −407.2

−361.323D(Mc, 1D) −361.8 −359.9 −359.9 −359.9 −359.8
3D(Mc, 3D) −361.7 −359.9 −359.8 −359.8 −359.8

ũ at z = 0
3D(Ma) −225.9 −226.0 −226.0 −226.0 −226.0

−202.423D(Mc, 1D) −202.5 −202.0 −202.0 −202.0 −202.0
3D(Mc, 3D) −202.5 −202.0 −201.9 −201.9 −201.9

4.2. New Benchmarks

This section proposes a set of four benchmarks; those new results examine simply sup-
ported structures that undergo different moisture content profiles in steady-state conditions.
They follow the harmonic form previously defined, precondition to get an exact solution to
the problem. The assessments of the previous subsection validated the results of this new
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3D shell model when applied to FGM layers: the results converge and are exact when the
order of expansion N = 3 for the exponential matrix is coupled with a minimum number
of M = 300 mathematical layer for the through the thickness mechanical properties and
curvature approximation. The results of all the following benchmarks consider N = 3 and
M = 300 as an a priori prerequisite for results accuracy.

The first benchmark studies a square plate with a single FGM layer and simply-
supported sides. The plate has a = b = 10 m as in-plane dimensions but comes with
several and different thicknesses, which allow the effect of this geometrical parameter to be
evaluated. In fact, the thickness ratio goes from a/h = 2 to a/h = 100, thus ranging from
very thick to very thin plates. In this benchmark, the volume fraction Vc of the ceramic
phase evolves linearly: p = 1 is set in the material law defined through Equation (83).
This relation also implies a fully ceramic top surface and a fully metallic bottom one.
The moisture content is imposed on the top and the bottom external surfaces; it has a
harmonic form on both with amplitudes Mt = 1.0% and Mb = 0.0%, on top and bottom,
respectively. The harmonic form of the moisture content has m = n = 1 as half-wave
numbers in α and β directions, respectively. The elastic and hygroscopic properties of
the metallic and ceramic phases are the same as those introduced at the beginning of this
section. The FGM nature of the layer makes its mechanical properties evolve through the
thickness direction; Figure 3a,b, respectively, shows how the volume fraction Vc and the
bulk modulus K evolve with respect to non-dimensional thickness coordinate z̃/h. Note
that K is not linear as Vc due to Equation (85). Table 5 and Figures 4 report an extract
of the main results. The results in tabular form give the amplitude of some variables
of the problem; they reflect the three different ways of evaluating the moisture content.
3D(Ma) implies the assumed linear moisture content profile; 3D(Mc, 1D) relies on the 1D
version of the Fick moisture diffusion equation; finally, 3D(Mc, 3D) relies on a 3D solution
of the moisture diffusion problem. The prefix 3D underlines that the elastic part of the
solution is three-dimensional in all three models. Such an analysis allows grasping the
differences between the three approaches. The 3D(Mc, 3D) shell model considers both the
mechanical/hygrometric properties evolution through z and the three-dimensional nature
of the problem. As discussed in the previous section, it always delivers an accurate result.
Table 5 underlines that the 3D(Mc, 1D) model results get closer to those of the 3D(Mc, 3D)
model as the thickness decreases. It considers how the mechanical/hygrometric properties
evolve through z but disregards the moisture diffusion through alpha and beta direction,
which have a negligible weight in thin structures. The results of the 3D(Ma) model are
always unreliable, as they are built on a moisture content profile that is far from the actual
scenario in a layer embedding an FGM. Figure 3c,d further facilitates understanding these
concepts; it compares the three moisture content profiles for a thick and a thin plate. In
thick structures, the difference between the three profiles is very pronounced: the three-
dimensionality of the problem and the mechanical/hygrometric properties variability in
the thickness direction make the 3D profile differ from the linear assumption. Even the
1D profile differs from the linearity: the hygrometric properties vary through z, reflecting
on the moisture content at different thickness coordinates. These concepts also apply to
thin structures; however, the three-dimensionality of the problem is insignificant, and the
3D and 1D profiles coincide. Figure 4 shows the complete profile of the tree displacement
components, two stresses, and a strain. Note that all the quantities evolve with continuity,
which is essential as it demonstrates both the graded elastic/hygrometric properties and
the correct introduction of the continuity conditions. The transverse stress σzz and the
transverse shear strain γβz satisfy the external mechanical boundary conditions: it equals 0
at both the top and the bottom surfaces as no external load acts on them.
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Figure 3. First benchmark: one-layered FGM (p = 1) square plate with an imposed moisture content
on the top and bottom surfaces. The figures show the volume fraction of the ceramic phase, the bulk
modulus, and the moisture content profiles for a thick and a thin structure through their thickness.
(a) Volume fraction of the ceramic phase Vc. (b) Bulk modulus K. (c) Moisture content profile of the
a/h = 2 plate. (d) Moisture content profile of the a/h = 100 plate.
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Figure 4. First benchmark: one-layered FGM square plate with an imposed moisture content on the
top and bottom surfaces. The results are calculated for a moderately thick (a/h = 4) structure via the
3D(Mc, 3D) model. (a) Amplitude of u displacement component. (b) Amplitude of v displacement
component. (c) Amplitude of w displacement component. (d) Amplitude of σzz stress component.
(e) Amplitude of σαα stress component. (f) Amplitude of γβz strain component.
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Table 5. First benchmark: square plate with a single FGM layer subject to an external moisture
content applied to the top and bottom surfaces. The results of all the 3D models consider N = 3 and
NL = 300.

a/h 2 4 10 50 100

M at (α = a/2, β = b/2; z̃ = 4h/5)[−]

3D(Ma) 0.8000 0.8000 0.8000 0.8000 0.8000
3D(Mc, 1D) 0.5595 0.5595 0.5595 0.5595 0.5595
3D(Mc, 3D) 0.4351 0.5197 0.5525 0.5592 0.5594

v at (α = a/2, β = 0; z̃ = 4h/5) [mm]

3D(Ma) −2.094 −2.089 −2.087 −2.086 −2.086
3D(Mc, 1D) −1.454 −1.461 −1.462 −1.462 −1.462
3D(Mc, 3D) −1.148 −1.362 −1.445 −1.462 −1.462

w at (α = a/2, β = b/2; z̃ = h/2) [mm]

3D(Ma) 1.226 2.661 6.791 34.07 68.16
3D(Mc, 1D) 1.103 2.405 6.144 30.83 61.68
3D(Mc, 3D) 1.008 2.336 6.113 30.83 61.67

σzz at (α = a/2, β = b/2; z̃ = h/5) [kPa]

3D(Ma) −5915 −982.6 −127.7 −4.879 −1.218
3D(Mc, 1D) −1197 44.77 26.65 1.217 0.3054
3D(Mc, 3D) 515.5 173.0 30.09 1.222 0.3057

σαα at (α = a/2, β = b/2; z̃ = h) [MPa]

3D(Ma) −7.939 −34.86 −43.94 −45.68 −45.73
3D(Mc, 1D) −63.24 −3.08 −89.55 −90.74 −90.78
3D(Mc, 3D) −90.78 −90.95 −90.83 −90.79 −90.79

γβz at (α = a/2, β = 0; z̃ = h/3) [10−6]

3D(Ma) −173.7 −57.29 −18.35 −3.489 −1.741
3D(Mc, 1D) −39.06 3.440 4.709 1.072 0.5379
3D(Mc, 3D) 19.67 12.49 5.321 1.076 0.5384

The second benchmark focuses on a closed cylinder, featuring a single FGM layer
and simply-supported sides. The dimensions of the reference mid-surface, a = 2πRα and
b = 30 m, are a function of the radii of curvature of the shell, one of which is infinite:
Rα = 10 m and Rβ = ∞. Different thicknesses have been considered; the thickness ratio
Rα/h is expressed with respect to Rα and ranges from 2 to 100 also in this second case
study. The material volume fraction of the ceramic phase is a quadratic function of the
thickness coordinate; the material law defined through Equation (83) consider p = 2.
Given that a single layer is considered, the cylinder is metallic in the inner surface and
ceramic in the outer. The moisture content is imposed on the outer external surface,
Mt = 1.0%, and on the inner one, Mb = 0.0%. The half wave numbers of both the
harmonic forms are the same, m = 2 and n = 1. The elastic and hygroscopic properties of
both the phases introduced previously also apply here. Figure 5a,b, respectively, shows the
volume fraction Vc and moisture diffusion coefficient D vs. the non-dimensional thickness
coordinate z̃/h. Vc follows a power-law of order p = 2, D follows Equation (85). Table 6
and Figure 6 summarize an extract of the main results. This second benchmark also reports
three different sets of results: the elastic model is the same (prefix 3D), but the moisture
content profile follows the different approaches. This leads to models 3D(Ma), in which the
moisture content is a priori assumed, and 3D(Mc, 1D)–3D(Mc, 3D), in which the profile
is calculated following a monodimensional or three-dimensional approach. This analysis
allows highlighting the distinctions between the three methods. The last one is the only
model in which no assumptions are made concerning the three-dimensionality of the
problem as the moisture content amplitude derives from Fick’s law of diffusion. The
results coming from 3D(Ma) are always wrong because the moisture content evaluation is
inaccurate. The differences between 3D(Mc, 1D) and 3D(Mc, 3D) are less pronounced if
compared with the previous benchmark and decrease with the thickness. The differences
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in the three moisture content profiles are shown in Figure 5c,d for two different cylinders:
a thick and a thin one. The discrepancies between the calculated and assumed fields are
really pronounced; the 1D and 3D computed profiles do not significantly differ, which
is even more true as the thickness ratio increases. Figure 6 shows the profiles of the tree
displacement components: two stresses and a strain. There is continuity in all the plots:
this qualifies the correct introduction of the continuity conditions and elastic/hygrometric
properties grading. No external mechanical loads are applied, and this is coherent with the
transverse stress values at the bottom and top surfaces, 0.
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Figure 5. Second benchmark: one-layered FGM (p = 2) cylinder with an imposed moisture content
on the top and bottom surfaces. The figures show the volume fraction of the ceramic phase, the
diffusion coefficient, and the moisture content profiles for a thick and a thin structure through their
thickness. (a) Volume fraction of the ceramic phase Vc. (b) Diffusion coefficient D. (c) Moisture
content profile of the Rα/h = 2 cylinder. (d) Moisture content profile of the Rα/h = 100 cylinder.
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Figure 6. Second benchmark: one-layered FGM closed cylinder with an imposed moisture content
on the top and bottom surfaces. The results are calculated for a moderately thin (Rα/h = 5) structure
via the 3D(Mc, 3D) model. (a) Amplitude of u displacement component. (b) Amplitude of v
displacement component. (c) Amplitude of w displacement component. (d) Amplitude of σzz stress
component. (e) Amplitude of σββ stress component. (f) Amplitude of γαβ strain component.
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Table 6. Second benchmark: closed cylinder with a single FGM layer subject to an external moisture
content applied to the top and bottom surfaces. The results of all the 3D models consider N = 3 and
NL = 300.

Rα/h 2 4 10 50 100

M at (α = a/2, β = b/2; z̃ = h/2)[−]

3D(Ma) 0.5000 0.5000 0.5000 0.5000 0.5000
3D(Mc, 1D) 0.2627 0.2627 0.2627 0.2627 0.2627
3D(Mc, 3D) 0.2439 0.2577 0.2619 0.2626 0.2627

u at (α = 0, β = b/2; z̃ = h/3) [mm]

3D(Ma) 8.248 7.982 7.370 6.902 6.844
3D(Mc, 1D) 5.538 5.125 4.582 4.210 4.161
3D(Mc, 3D) 5.332 5.067 4.573 4.210 4.161

w at (α = a/2, β = b/2; z̃ = h/2) [mm]

3D(Ma) 14.95 15.14 14.72 14.32 14.27
3D(Mc, 1D) 9.600 9.488 9.056 8.714 8.667
3D(Mc, 3D) 9.187 9.371 9.037 8.713 8.666

σzz at (α = a/2, β = b/2; z̃ = 2h/3) [MPa]

3D(Ma) 4.442 4.370 2.346 0.5349 0.2716
3D(Mc, 1D) 7.308 5.035 2.383 0.5161 0.2605
3D(Mc, 3D) 7.578 5.055 2.384 0.5161 0.2605

σββ at (α = a/2, β = b/2; z̃ = h) [MPa]

3D(Ma) 37.63 −6.103 −36.31 −52.37 −54.33
3D(Mc, 1D) −53.79 −85.52 −106.3 −116.9 −118.2
3D(Mc, 3D) −60.83 −87.15 −106.5 −116.9 −118.2

γαβ at (α = 0, β = 0; z̃ = 0) [10−6]

3D(Ma) 516.7 292.5 119.2 23.61 11.78
3D(Mc, 1D) 390.8 209.0 82.62 16.12 8.025
3D(Mc, 3D) 381.8 207.4 82.50 16.11 8.205

The third benchmark considers a cylindrical sandwich shell panel with an FGM core
and simply-supported edges. The top and the bottom skin are in line with the FGM law:
the top skin is ceramic as the top surface of the core is; at the same time, the bottom skin is
metallic as the bottom surface of the core is. p = 0.5 is the coefficient for the volume fraction
law across the FGM core, which defines how the elastic and hygrometric properties evolve
in the thickness direction. The elastic and hygroscopic properties of both the phases already
introduced in the assessments also apply here. The radii of curvature are coherent with
those proposed in the previous benchmark, Rα = 10 m and Rβ = ∞. The dimension of the
reference mid-surface in α direction is a function of the radius of curvature Rα and equals
a = π

3 Rα; the dimension in the remaining direction β is fixed and equals b = 30. m = 2
and n = 0 have been chosen as half-wave numbers for the harmonic form of the moisture
content imposed at the bottom and the top of the shell. The amplitude of the external fields
discussed so far are as follows: the moisture content amplitude is Mt = 1.0% on the top
and Mb = 0.0% on the bottom. This third case study also considers different thickness
ratios to evaluate the effects of this parameter; as in the previous case, it is expressed with
respect to Rα and ranges from 2 to 100. The volume fraction Vc of the ceramic phase runs
from 0 to 1 inside the core; it equals 0 inside the bottom skin as it is fully metallic, 1 inside
the top coat as it is fully ceramic. This is visible in Figure 7a,b, showing the volume fraction
and the shear modulus along with the thickness coordinate z; the shear modulus of the
top skin coincides with that of the ceramic; the shear modulus of the bottom skin coincides
with that of the metal. The amplitudes of some variables are reported for all the thickness
ratios and at different thickness coordinates in Table 7; Figure 8 explores six variables
and shows their trend through z. The Figures rely on the 3D calculated moisture content
profile; the table also reports the results obtained through Ma and Mc, 1D. The differences
between the three models can be already seen at the moisture content level and directly
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reflect the mechanical quantities. Figure 7c,d compares the three moisture content profiles
for a thick and a thin cylindrical shell panel and confirms that the differences are sharp not
only at a specific thickness coordinate, but throughout all the thickness. The 3D(Mc, 1D)
model results get closer to those of the 3D(Mc, 3D) model as the thickness decreases, and
this is clear from the results of Table 7. Figure 8 gives the profile of the tree displacement
components, two stresses, and a strain. As in the previous cases, all the quantities evolve
with continuity: the mechanical properties are introduced into the model with continuity.
The transverse stress σzz satisfies the external mechanical boundary conditions: it equals 0
at both the top and the bottom surfaces as no external load acts on them.
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Figure 7. Third benchmark: cylindrical sandwich shell panel featuring an FGM (p = 0.5) core
with an imposed moisture content on the top and bottom surfaces. The figures show the volume
fraction of the ceramic phase, the shear modulus, and the moisture content profiles for a thick and
a thin structure through their thickness. (a) Volume fraction of the ceramic phase Vc. (b) Shear
modulus μ. (c) Moisture content profile of the Rα/h = 2 shell. (d) Moisture content profile of the
Rα/h = 100 shell.
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Figure 8. Third benchmark: cylindrical sandwich shell panel featuring an FGM (p = 0.5) core
with an imposed moisture content on the top and bottom surfaces. The results are calculated for a
thick (Rα/h = 4) structure via the 3D(Mc, 3D) model. (a) Amplitude of u displacement component.
(b) Amplitude of v displacement component. (c) Amplitude of w displacement component. (d) Am-
plitude of σzz stress component. (e) Amplitude of σββ stress component. (f) Amplitude of γαz strain
component.
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Table 7. Third benchmark: cylindrical sandwich shell panel with an FGM core subject to an external
moisture content applied to the top and bottom surfaces. The results of all the 3D models consider
N = 3 and NL = 300.

Rα/h 2 4 10 50 100

M at (α = a/2, β = b/2; z̃ = h/2)[−]

3D(Ma) 0.5000 0.5000 0.5000 0.5000 0.5000
3D(Mc, 1D) 0.2087 0.2087 0.2087 0.2087 0.2087
3D(Mc, 3D) 0.1014 0.1672 0.2008 0.2083 0.2086

u at (α = a/2, β = 0; z̃ = 3h/4) [10−3 mm]

3D(Ma) −16.26 −15.23 −11.79 11.86 41.40
3D(Mc, 1D) −10.53 −9.736 −6.559 15.20 42.34
3D(Mc, 3D) −7.942 −8.844 −6.416 15.20 42.34

w at (α = a/2, β = b/2; z̃ = h/2) [10−5 mm]

3D(Ma) 0.5350 1.184 3.310 17.49 35.22
3D(Mc, 1D) 0.5000 1.152 3.125 16.16 32.44
3D(Mc, 3D) 0.4660 1.116 3.102 16.16 32.44

σzz at (α = a/2, β = b/2; z̃ = h/4) [kPa]

3D(Ma) −108.2 −7.415 0.3735 0.2473 0.1354
3D(Mc, 1D) 0.6797 5.001 −1.110 −0.5867 −0.3135
3D(Mc, 3D) 30.91 6.099 −1.162 −0.5875 −0.3136

σββ at (α = 0, β = 0; z̃ = 0) [kPa]

3D(Ma) 298.9 142.1 87.89 81.26 81.57
3D(Mc, 1D) −3.571 −92.06 −116.7 −116.9 −116.3
3D(Mc, 3D) −77.09 −112.7 −120.0 −117.0 −116.3

γαz at (α = a/2, β = 0; z̃ = h/3) [10−8]

3D(Ma) −191.6 −51.36 −11.08 −1.956 −0.9857
3D(Mc, 1D) 0.9706 46.64 26.65 5.584 2.790
3D(Mc, 3D) 81.83 61.98 27.77 5.593 2.791

The fourth and last benchmark proposes a sandwich spherical shell panel, which
embeds an FGM core and features simply supported edges. The lamination scheme is
analogous to that discussed in the third benchmark: the bottom skin is metallic, and the top
ceramic. Then, the volume fraction of the ceramic phase evolves inside the core through
the thickness direction following an exponential law with p = 0.5 as chosen coefficients.
The hygrometric and elastic properties of the sandwich skin are the same proposed in the
previous benchmark and assessments for the metallic and ceramic phases, respectively;
those of the core follow the volume fraction law. The exponential trend of the volume
fraction Vc vs. the non-dimensional thickness coordinate z̃/h can be seen in Figure 9a; for
completeness, the evolution of the moisture expansion coefficient η through the thickness
direction is also given in Figure 10. The spherical shell panel is the only structure among
those studied in which both the radii of curvature are non-infinite; furthermore, they take
the same value, which equals Rα = Rβ = 10 m. Furthermore, the dimensions of the
reference mid-surface are the same in α, and β directions as both are a function of the radii
of curvature; it holds a = π

3 Rα and b = π
3 Rβ. Those dimensions are fixed; however, a

wide range of thinner/thicker shells is considered by choosing different thickness ratios:
Rα/h ranges from 2 to 100. The amplitude of the moisture content is imposed on the
top and the bottom surfaces; it equals Mt = 1.0% and Mb = 0.0%, respectively. As
discussed, the external fields are required to have a harmonic form in order for the problem
to be exactly solved; m = 2 and n = 2 are the half-wave numbers considered in this
last case study. Table 8 and Figures 9 and 10 summarize an extract of the main results.
This fourth benchmark also reports three different sets of results: the elastic model is
the same (prefix 3D), but the moisture content profile follows the different approaches.
This analysis highlights the distinctions between the three methods. The 3D one is the
only model in which no assumptions are made concerning the three-dimensionality of
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the problem as the moisture content amplitude derives from Fick’s law of diffusion. The
results coming from 3D(Ma) are always wrong because the moisture content evaluation
is inaccurate. Considerable differences are present between the calculated and assumed
fields. The moisture content profiles of Figure 9c,d once again demonstrate that the 1D
and 3D moisture fields get closer in thin structures; despite the thickness, they always
differ from the assumed profile, which completely disregards the physics of the problem.
This reflects on the results in terms of displacements, strains, and stresses: the differences
are high, and 3D(Ma) does not provide a reasonable estimate. 3D(Mc, 1D) provides
acceptable results, but only when the shell is sufficiently thin. As in the previous cases,
three displacement components, two stresses, and a strain are shown in their entirety along
with the thickness direction. Figure 10 further qualifies the correct introduction of the
continuity conditions, elastic/hygrometric properties grading, and mechanical boundary
conditions. The transverse stresses σβz and σzz satisfy the external mechanical boundary
conditions: they equal 0 at both the top and the bottom surfaces as no external load acts on
them. All the quantities are continuous throughout the thickness; this qualifies the division
into fictitious layers: they are thin enough to describe the mechanical properties evolution
with continuity.
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Figure 9. Fourth benchmark: spherical sandwich shell panel featuring a FGM (p = 0.5) core with an
imposed moisture content on the top and bottom surfaces. The figures show the volume fraction of
the ceramic phase, the moisture expansion coefficient, and the moisture content profiles for a thick
and a thin structure through their thickness. (a) Volume fraction of the ceramic phase Vc. (b) Moisture
expansion coefficient η. (c) Moisture content profile of the Rα/h = 2 shell. (d) Moisture content
profile of the Rα/h = 100 shell.
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Figure 10. Fourth benchmark: spherical sandwich shell panel featuring a FGM (p = 0.5) core with
an imposed moisture content on the top and bottom surfaces. The results are calculated for a thin
(Rα/h = 50) structure via the 3D(Mc, 3D) model. (a) Amplitude of u displacement component.
(b) Amplitude of v displacement component. (c) Amplitude of w displacement component. (d) Am-
plitude of σzz stress component. (e) Amplitude of σβz stress component. (f) Amplitude of εαα strain
component.
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Table 8. Fourth benchmark, sandwich spherical shell panel with an FGM core subject to an external
moisture content applied to the top and bottom surfaces. The results of all the 3D models consider
N = 3 and NL = 300.

Rα/h 2 4 10 50 100

M at (α = a/2, β = b/2; z̃ = h/2)[−]

3D(Ma) 0.5000 0.5000 0.5000 0.5000 0.5000
3D(Mc, 1D) 0.2087 0.2087 0.2087 0.2087 0.2087
3D(Mc, 3D) 0.0612 0.1376 0.1933 0.2080 0.2085

v at (α = a/2, β = 0; z̃ = h/3) [10−3 mm]

3D(Ma) −3.894 −2.822 −1.076 1.741 1.182
3D(Mc, 1D) −1.004 −0.628 0.4564 1.626 1.003
3D(Mc, 3D) 0.2033 −0.1980 0.5091 1.625 1.003

w at (α = a/2, β = b/2; z̃ = h/2) [10−3 mm]

3D(Ma) 4.294 9.003 24.12 59.21 58.93
3D(Mc, 1D) 3.366 7.349 18.73 38.36 36.02
3D(Mc, 3D) 2.910 6.711 18.31 38.31 36.00

σzz at (α = a/2, β = b/2; z̃ = h/3) [kPa]

3D(Ma) −337.9 −31.28 −0.2497 6.395 4.422
3D(Mc, 1D) −32.33 35.10 10.25 5.996 3.714
3D(Mc, 3D) 85.74 45.62 10.43 5.991 3.713

σβz at (α = a/2, β = 0; z̃ = 2h/3) [kPa]

3D(Ma) 240.7 125.3 61.39 −8.396 −9.287
3D(Mc, 1D) 83.57 25.04 7.627 −17.21 −12.08
3D(Mc, 3D) 13.41 3.374 5.225 −17.22 −12.08

εαα at (α = a/2, β = b/2; z̃ = h) [10−6]

3D(Ma) 0.5547 −0.8651 −1.008 −2.249 −3.381
3D(Mc, 1D) −1.988 −3.376 −3.732 −5.260 −6.114
3D(Mc, 3D) −3.912 −4.182 −3.909 −5.268 −6.116

5. Conclusions

The authors proposed a closed-form 3D shell solution that handles the hygro-elastic
stress analysis of plates, cylinders, cylindrical shells, and spherical shells while embedding
Functionally Graded Material (FGM) layers. First, the author imposed the external moisture
content on the top and the bottom surfaces. The moisture conditions act in steady state
as an external load; calculating the moisture content profile is a prerequisite. The authors
showed that three approaches might be used to determine the moisture content profile
along the thickness direction and coupled them with a consolidated elastic solution. The
results demonstrated the importance of a correct moisture content profile evaluation in the
thickness direction. The 3D Fick’s law of diffusion is the only way to obtain exact results
when the structures embed FG layers; it is also necessary when the structures are sufficiently
thick. On the other hand, the 1D Fick’s law of diffusion comes closer to it only when
structures are thin; as a rule of thumb, the results of the two models are almost coinciding
only from a thickness ratio of 50. The problem relies on a set of differential equations in
the thickness direction. The authors demonstrated that the exponential matrix method
is a reliable way to solve it, provided that the structures are divided into a sufficiently
high number of mathematical layers. This layer-wise approach is critical to get a reliable
description of the material properties grading; as a rule of thumb, 300 mathematical layers
always deliver the correct results. This achievement is general and does not depend on the
geometry, FGM law, and lamination sequence/scheme.
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