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Preface to ”Mathematical Methods, Modelling and

Applications”

Reality is more complex than it seems. The segmentation of science does not help capture reality;

each scientific point of view seems to be a partial mirror of the problem under consideration. A

model is an approximation to represent an actual phenomenon in a simplified way, disregarding some

factors but considering enough of them to achieve an acceptable answer. A mathematical model is an

idealization of the phenomenon one wishes to represent in mathematical terms, typically an equation.

The modelling process is divided in several parts:

i. Observations obtaining data and pattern recognition.

ii. Hypothesis, identification of variables. Building a mathematical model.

iii. Resolution of the model and applications.

The present book contains 21 articles accepted for publication in the Special Issue “Mathematical

Methods, Modelling and Applications” of the MDPI Mathematics journal. The contents of the book

are organized in the following way. Some papers are concerned with step (i) of the modelling process.

Other papers are linked to step (ii). All the remaining papers are related to step (iii), covering a

wide spectrum of methods, deterministic and random, algebraic and differential, in different fields of

hydrodynamics, physics, and health sciences.

We would like to thank the MDPI publishing editorial team, the scientific peer reviewers and

all the authors who contributed to this book. We are confident that the contents will be of value to

researchers, academics and professionals involved in the resolution of real-world nature and social

problems

Lucas Jódar and Rafael Company
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The reality is more complex than it seems. The segmentation of science does not help
capture the reality; each scientific point of view seems to be a partial mirror of the problem
under consideration. A model is an approximation to represent an actual phenomenon in
a simplified way, disregarding some factors but considering enough of them to achieve
an acceptable answer. A mathematical model is an idealization of the phenomenon one
wishes to represent in mathematical terms, typically an equation. The modelling process is
divided in several parts:

i. Observations obtaining data and Pattern Recognition.
ii. Hypothesis, identification of variables. Building the Mathematical Model.
iii. Resolution of the Model and applications.

The present book contains the 21 articles accepted for publication in the Special
Issue “Mathematical Methods, Modelling and Applications” of the MDPI “Mathematics”
journal. The contents of the book are organized in the following way. Papers [1–3] are
concerned with step (i) of the modelling process. Papers [4–6] are linked to step (ii). All
the remaining papers [7–21] are related to step (iii) covering a wide spectrum of methods,
deterministic and random, algebraic and differentials, in different fields Hydrodynamic,
Physics, Health Sciences.

We would like to thank the MDPI publishing editorial team, the scientific peer review-
ers and all the authors who contributed to this book. We are confident that the contents
will be of value to researchers, academics and professionals involved in the resolution of
real-world nature and social problems.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In recent years, groundwater levels have been decreasing due to the demand in agricultural
and industrial activities, as well as the population that has grown exponentially in cities. One method
of controlling the progressive lowering of the water table is the artificial recharge of water through
wells. With this practice, it is possible to control the amount of water that enters the aquifer through
field measurements. However, the construction of these wells is costly in some areas, in addition to
the fact that most models only simulate the well as if it were a homogeneous profile and the base
equations are restricted. In this work, the amount of infiltrated water by a well is modeled using a
stratified media of the porous media methodology. The results obtained can help decision-making by
evaluating the cost benefit of the construction of wells to a certain location for the recharge of aquifers.

Keywords: mathematical modeling; infiltration well; differential equations; porous medium; fractal
conductivity model

1. Introduction

Infiltration wells are used to contribute to the evacuation of rains in urban areas and also as
a mechanism to recharge aquifers in regions where they present an unsustainable abatement [1–4].
Their construction must be analyzed from several angles: objectives of artificial recharge, available
technological options, chemical quality of the water, social factors, place, quantity of water to contribute,
among others [5–9].

In the literature, several numerical and analytical solutions can be found to model the flow of
water in the porous medium, however, the models present restrictions to estimating the properties of
soils, in addition to considering the stratum of the soil well profile as a homogeneous medium [1,10–14].

The artificial recharge capacity in a well is measured as the amount of water that infiltrates the
soil during a specific period of time, and varies depending on the number of strata in the soil in which
it was built. In this way, if you want to know the amount of water that the entire well contributes, you
must evaluate the infiltration rate in all the strata to have a better knowledge about the contributions
to the aquifer and the behavior of the system as a whole.

The phenomenon of infiltration in porous media can be studied from the general principles of
the conservation of mass and momentum. The equation that results from the application of the first
principle is:

∂θ
∂t

= −∇ · →q. (1)

Mathematics 2020, 8, 1764; doi:10.3390/math8101764 www.mdpi.com/journal/mathematics
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Darcy’s law generalized to partially saturated porous media is used as a dynamic equation [15]:

→
q = −K∇H, (2)

where H is the hydraulic potential and is the sum of the pressure potential (ψ) and the gravitational
potential assimilated to the vertical coordinate (z) oriented, in this case, as positive upwards.
The pressure potential is positive in the saturated zone and negative in the unsaturated zone,
since it is agreed that the zero pressure corresponds to the atmospheric pressure; θ = θ (ψ) is the
volumetric water content, also called moisture content, and is a function of the water pressure, θ (ψ) is
known as the retention curve or soil moisture characteristic;

→
q = (qx, qy, qz) is the flow of water per

unit of soil surface or Darcy flow, with its components in a rectangular system; (x, y, z) are the spatial
coordinates in a rectangular or Cartesian system, t is time; ∇ is the gradient operator; K = K (ψ) is the
hydraulic conductivity as a function of the water pressure.

Thus, the general equation of flow in a porous medium results from the combination of Equations (1)
and (2):

∂θ
∂t

= ∇ · [K(ψ)∇(ψ+ z)]. (3)

This equation presents two independent variables, θ and ψ, but since there is a relationship
between them, the specific capacity defined as the slope of the retention curve is introduced. The chain
rule is applied and the equation with the dependent variable pressure is established, known as the
Richards equation [16]:

C(ψ)
∂ψ
∂t

= ∇ · [K(ψ)∇ψ] + ∂K
∂ψ
∂ψ
∂z

; C(ψ) =
∂θ
∂ψ

. (4)

In this work a methodology is presented to obtain the water infiltration rate by partially or totally
filled artificial recharge wells. The equations have been adapted to be used in a homogeneous stratified
medium, taking into account the soil characteristics of each strata in the profile of the well.

2. Materials and Methods

2.1. The Richards and Kirchhoff Equations in Spherical and Cylindrical Coordinates

In some problems the analysis is simplified if Equation (4) is written in cylindrical or spherical
coordinates. The Richards equation [16] in cylindrical coordinates (r, ϕ, z) is as follows:

C(ψ)
∂ψ
∂t

=
1
r
∂
∂r

[
rK(ψ)

∂ψ
∂r

]
+

1
r2
∂
∂ϕ

[
K(ψ)

∂ψ
∂ϕ

]
+
∂
∂z

[
K(ψ)

∂ψ
∂z

]
+
∂K
∂ψ
∂ψ
∂z

, (5)

where r is the radius and ϕ is the azimuth: r2 = x2 + y2, x = r cos ϕ, y = r sin ϕ.
In spherical coordinates (�, ϑ, ϕ) the Richards equation is written as:

C(ψ) ∂ψ∂t = 1
�2
∂
∂r

[
�2K(ψ) ∂ψ∂�

]
+ 1
�2 sinϑ

∂
∂ϑ

[
sin ϑK(ψ) ∂ψ∂ϑ

]
+ 1
�2 sin2 ϑ

∂
∂ϕ

[
K(ψ) ∂ψ∂ϕ

]
+ ∂K
∂ψ
∂ψ
∂z

(6)

where � is the radio, ϑ is the polar angle and ϕ is the azimuth: �2 = x2 + y2 + z2, x = � sin ϑ cos ϕ, y = �
sin ϑ sin ϕ, z = � cos ϑ.

In a symmetric well with respect to the z axis, the radius r takes this axis as its origin, and Equation (5)
is very useful for the infiltration analysis when it is assumed that the pressure does not depend on the
azimuth, that is, when the heterogeneity is presented by layers. In this case the equation simplifies to
the following:

4
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C(ψ)
∂ψ
∂t

=
1
r
∂
∂r

[
rK(ψ)

∂ψ
∂r

]
+
∂
∂z

[
K(ψ)

∂ψ
∂z

]
+
∂K
∂ψ
∂ψ
∂z

, (7)

which has only two spatial coordinates (r, z).
The equation in spherical coordinates presents a very particular importance when, in the analysis

of a problem, it is considered that the medium is homogeneous and isotropic, that is, when the
phenomenon does not depend on either the colatitude or the azimuth:

C(ψ)
∂ψ
∂t

=
1
�2
∂
∂�

[
�2K(ψ)

∂ψ
∂�

]
+
∂K
∂ψ
∂ψ
∂z

, (8)

in which only two spatial coordinates are presented (�, z).
Furthermore, in some particular problems involving homogeneous porous media, the analysis is

simplified if the potential Kirchhoff flow is defined by:

Φ =

ψ∫
−∞

K
(
ψ
)
dψ =

θ∫
θr

D
(
θ
)
dθ, (9)

from which it follows that:
dΦ
dψ

= K(ψ);
dΦ
dθ

= D(θ), (10)

where D (θ) is the hydraulic diffusivity, in analogy with the diffusion of gases, which is expressed as
D(θ) = K(θ)/C(θ), considering, now, that both the hydraulic conductivity and the specific capacity are
functions of the volumetric content moisture.

The water transfer equation in porous media as a dependent variable for moisture content,
Equation (3), is as follows:

∂θ
∂t

= ∇ · [D(θ)∇θ] + dK
dθ
∂θ
∂z

, (11)

which presents the structure of a nonlinear Fokker–Planck equation [17], the linear version of which is
widely known in diffusion problems.

In terms of the potential Kirchhoff flow, Equation (11) becomes:

1
D(Φ)

∂Φ
∂t

= ∇2Φ +
dK
dΦ
∂Φ
∂z

. (12)

Kirchhoff’s equation in cylindrical coordinates (r, ϕ, z), where r is the radius and ϕ is the azimuth,
is:

1
D(Φ)

∂Φ
∂t

=
1
r
∂
∂r

(
r
∂Φ
∂r

)
+

1
r2
∂2Φ
∂ϕ2 +

∂2Φ
∂z2 +

dK
dΦ
∂Φ
∂z

. (13)

In spherical coordinates (�, ϑ, ϕ) the Kirchhoff equation is written as follows:

1
D(Φ)

∂Φ
∂t = 1

�2
∂
∂�

(
�2 ∂Φ
∂�

)
+ 1
�2 sinϑ

∂
∂ϑ

(
sin ϑ∂Φ∂ϑ

)
+ 1
�2 sin2 ϑ

∂2Φ
∂ϕ2 +

dK
dΦ
∂Φ
∂z

. (14)

These formulations are only applicable in homogeneous media, and, if these are isotropic, they
are written respectively in cylindrical coordinates as follows:

1
D(Φ)

∂Φ
∂t

=
1
r
∂
∂r

(
r
∂Φ
∂r

)
+
∂2Φ
∂z2 +

dK
dΦ
∂Φ
∂z

, (15)

5
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and in spherical coordinates:

1
D(Φ)

∂Φ
∂t

=
1
�2
∂
∂�

(
�2 ∂Φ
∂�

)
+

dK
dΦ
∂Φ
∂z

. (16)

2.2. The Hydrodynamic Characteristics of Porous Media

In order to solve the mass or energy transfer equations of water in porous media, aside from
specifying the limit conditions, it is necessary to know the hydrodynamic characteristics formed by
the water retention curve θ (ψ) and the hydraulic conductivity curve either as a function of the water
pressure, K(ψ), or as a function of the moisture content K(θ). The analysis is greatly simplified if these
curves are represented with analytical functions.

The retention curve can be represented with the equation of van Genuchten [18]:

Θ(ψ) =

[
1 +
(
ψ

ψd

)n]−m

, (17)

where m > 0 and n > 0 are two shape parameters (dimensionless), ψd is a characteristic value of the
water pressure and Θ is the effective degree of saturation defined by:

Θ =
θ− θr

θs − θr
, (18)

in which θr is the residual moisture content defined such that K(θr) = 0 and θ(ψ→-∞) = θr [19]; θs is the
moisture content at saturation, assimilated to the total porosity of the soil (φ), when under saturation
conditions no air is trapped in the interstices of the porous medium: θs = φ. In general, θr = 0 can be
assumed [20].

A closed way to represent the conductivity curve can be obtained using prediction models of the
same from the retention curve. In the literature we can find various works, but given the condition of
the phenomenon we are studying, this work uses one of the fractal models proposed, calibrated and
validated by Fuentes et al. [20]. The results found by [20] shows a better adjustment between observed
and estimated data by the function given by:

K(Θ) = Ks

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Θ∫

0

ϑs−1dϑ∣∣∣ψ(ϑ)∣∣∣2s /

1∫
0

ϑs−1dϑ∣∣∣ψ(ϑ)∣∣∣2s

⎤⎥⎥⎥⎥⎥⎥⎥⎦
2

, (19)

where Ks is the hydraulic saturation conductivity and s = D/E, with D the fractal dimension of the
porous medium and E = 3 the Euclid dimension of the physical space where the medium is embedded,
related to the total porosity through the relation:

(1−φ)s +φ2s = 1. (20)

The introduction of Equation (17) in Equation (19) leads to the following equation to represent the
hydraulic conductivity curve, accepting the relationship between the parameters as indicated:

K(Θ) = Ks
[
1−
(
1−Θ1/m

)sm]2
; 0 < sm = 1− 2s/n < 1. (21)

The solution of the transfer equation in its different forms is generally numerical [21,22]. However,
in some simplified cases, characteristics of the solution can be obtained analytically [23–25].
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3. Results and Discussion

3.1. Conceptual Model

To analyze the infiltration in steady-state wells, it is necessary to write the Darcy flows in the
radial and vertical directions:

→
qr = −Ks

∂ψ
∂r

r̂, (22)

→
qz = −

(
Ks
∂ψ
∂z

+ Ks

)
k̂, (23)

where r̂ and k̂ are unitary vectors in the r and z directions respectively.
Flow through the wall and bottom of the well is defined by:

Qs =

∫
Ap

→
qr · dAp +

∫
Ab

→
qz · dAb, (24)

where dAp y dAb are, respectively, the differential areas in the wall and at the bottom of the well
defined by:

dAp = (2πRdz)r̂, (25)

dAb = (2πrDr)
(
−k̂
)
. (26)

Equation (24), considering Equations (22), (23), (25) and (26), is written as follows:

Qs = −2πRKs

H∫
0

∂ψ
∂r

∣∣∣∣∣
r=r

dz + 2πKs

R∫
0

∂ψ
∂z

∣∣∣∣∣
z=0

rdr + πKsR2. (27)

Introducing the dimensionless variables:

z∗ = z
H

; r∗ = r
R

; ψ∗ = ψ

H
; (28)

Equation (27) is written as follows:

Qs = Qo + πKsR2; Qo =
2πKsH2

C
; (29)

where C is a coefficient defined as:

1
C

= −
1∫

0

∂ψ∗
∂r∗
∣∣∣∣∣
r∗=1

dz∗ +
( R

H

)2 1∫
0

∂ψ∗
∂z∗
∣∣∣∣∣
z∗=0

r∗dr∗. (30)

To find this coefficient it is necessary to know ψ (r, z).

3.2. The Glover Model

According to Glover [26], in a first approximation, the steady-state pressure flow through an
infiltration well in a homogeneous and isotropic porous medium can be described with Laplace’s
equation in spherical coordinates that describes the pressure in the absence of gravitational gradients.
From Equation (8) we have:

∇2ψ =
1
�2
∂
∂�

(
�2 ∂ψ
∂�

)
= 0, (31)

7
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which must be subject to border conditions:

ψ = ψR; � = R (32)

ψ = 0; �→∞. (33)

Integration of Equation (31) leads to ψ = −c1�
−1 + c2, where c1 and c2 are integration constants;

the Equation (33) implies c2 = 0 and the Equation (32) c1 = −ψR R, ergo ψ = ψR (R/�). The Darcy flux is
q� = − Ks ∂ψ/∂� = Ks ψR (R/�2), when � = R, qR = Ks ψR/R; the flow through the surface of the sphere
of radius R is qo = 4πR2qR = 4πKsRψR; this flow from the point source in the center of the sphere is the
variable of interest. Since ψRR = qo/4πKs, it is better to set the pressure variation around the source
flow to continue with the Glover approach:

ψ =
qo

4πKs�
. (34)

If h represents the position of the center of the sphere from the base, then the spherical coordinate
(�) and the cylindrical coordinate (r) are related by:

� =

√
r2 + (z− h)2. (35)

The pressure in terms of the cylindrical coordinates is obtained by introducing Equation (35) into
Equation (34):

ψ =
qo

4πKs

√
r2 + (z− h)2

. (36)

To provide a series of point sources whose magnitude increases with depth, an expression similar
to that originally proposed by Glover, we have:

dqo = B(hc − h)dh, (37)

where B is a parameter to be determined and hc defines the range of the sources ho ≤ h ≤ hc and sinks
hc < h ≤ hs.

The total flow is found by integrating Equation (37):

Qo = B

hs∫
Ho

(hc − h)dh =
1
2

BH2
[
(h∗c − h∗o)

2 − (h∗c − h∗s)
2
]

(38)

hence parameter B is deduced:

B =
2Qo

H2
[
(h∗c − h∗o)

2 − (h∗c − h∗s)
2
] (39)

where h* = h/H for all subscripts.
From Equations (36), (37) and (39) we have:

dψ =
Qo(hc − h)

2πKsH2
[
(h∗c − h∗o)

2 − (h∗c − h∗s)
2
]√

r2 + (z− h)2
dh (40)

8
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the integration of which leads to:

ψ =
Qo

2πKsH2
[
(h∗c − h∗o)

2 − (h∗c − h∗s)
2
] [(hc − z)asinh

(z− h
r

)
+

√
r2 + (z−H)2

]h=ho

h=hs

, (41)

ergo:

ψ =
Qo

2πKsH2

⎡⎢⎢⎢⎢⎢⎢⎣ (hc − z)asinh
(

z−ho
r

)
− (hc − z)asinh

(
z−hs

r

)
+

√
r2 + (z− ho)

2 −
√

r2 + (z− hs)
2

⎤⎥⎥⎥⎥⎥⎥⎦[
(h∗c − h∗o)

2 − (h∗c − h∗s)
2
] . (42)

At the point on the boundary (r, z) = (R, 0) we have ψ = H, which allows obtaining the expression
of the flow, Equation (29):

Qo =
2πKsH2

C
, (43)

where the form coefficient is defined by:

C =
h∗c
[
asinh

(
H
R h∗s
)
− asinh

(
H
R h∗o
)]
+

√(
R
H

)2
+ h∗2o −

√(
R
H

)2
+ h∗s2

(h∗c − h∗o)
2 − (h∗c − h∗s)

2 . (44)

Glover formula is derived from Equation (44) by making h∗c = 1, h∗o = 0 y h∗s = 1:

C = asinh
(H

R

)
+

R
H
−
√( R

H

)2
+ 1. (45)

3.3. The Reynolds and Elrick Model

This model proposed by Reynolds and Elrick [27] assumes h∗c = 1/2, h∗i = 0 y h∗s = 1/2:

C = 4

⎡⎢⎢⎢⎢⎢⎢⎢⎣12asinh
( H

2R

)
+

R
H
−
√( R

H

)2
+

1
4

⎤⎥⎥⎥⎥⎥⎥⎥⎦. (46)

3.4. A Model for Stratified Porous Media

Glover’s model can be adapted for the case of stratified porous media. The well is considered to
be in a medium composed of N layers of thickness Pj, j = 1,2, . . . , N; the total hydraulic head, denoted
as HT, is the height of the water column counted from the base of the well to the upper border of the
N-th stratum.

The flow infiltrated by the walls of the j-th stratum is provided by Equation (43) modified as:

Qoj =
2πKsjp2

j

Cj
, (47)

where Ksj and Cj are the saturated hydraulic conductivity and the shape coefficient of the j-th
stratum, respectively.

The shape coefficient is derived from Equation (44) denoting by Hj the hydraulic head at the base
of the j-th stratum:

Cj = h∗pj

h∗Cj

[
asinh

(pj
R h∗sj

)
− asinh

(pj
R h∗oj

)]
+

√(
R
Pj

)2
+ h∗2oj −

√(
R
Pj

)2
+ h∗sj

2

(
h∗cj − h∗oj

)2 − (h∗cj − h∗sj

)2 , (48)

9
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where h∗Pj = Pj/Hj, h∗cj = hcj/Pj, h∗oj = hoj/Pj, h∗sj = hsj/Pj. It is noted that hcj, hoj y hsj are calculated from
the base of the j-th stratum.

The Reynolds and Elrick model assumes h∗c = 1/2, h∗o = 0 y h∗s = 1/2 and therefore:

Cj = 4

⎡⎢⎢⎢⎢⎢⎢⎣12asinh
( Pj

2R

)
+

R
pj
−
√(

R
Pj

)2
+

1
4

⎤⎥⎥⎥⎥⎥⎥⎦hPj. (49)

The total flow is obtained as:

Q =
N∑

j=1

Qoj + πR2Ks1 (50)

where the flow at the bottom of the well has been added.

3.5. Aplications

To show the versatility of the solution, data obtained from an infiltration well built on the Queretaro
Valley aquifer of radio are used: R = 0.3937 m (15.5′′) and depth PT = 36 m; Five strata were located in
the profile (Figure 1). As drilling was carried out, the infiltration tests per stratum were carried out
until the permanent regime was reached. The measured data are concentrated in Table 1, and the
saturated hydraulic conductivity calculated from Equation (43) is also shown.

Table 1. Calculation of hydraulic conductivity per stratum, Equation (43).

Stratum
H

(m/s)
Q

(L/s)
C

Ks

(m/d)

1 12 0.02841 4.9632 0.0134
2 4 0.33681 3.0113 0.8592
3 10 0.81158 4.6239 0.5142
4 6 1.01448 3.7017 1.4231
5 4 1.62317 3.0113 4.1405

Table 2 shows the flow rates calculated for each stratum when the well is full. In the last row is
the total flow, Equation (50), and the saturated hydraulic conductivity corresponding to an equivalent
homogeneous stratum.

Figure 1. Simplified well scheme.
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Table 2. Calculation of the flow per stratum corresponding to a full well, Equations (47) and (49).

Stratum
P

(m)
Ks

(m/d)
H

(m)
C

Q
(L/s)

1 12 0.0134 36 1.6544 0.085
2 4 0.8592 24 0.5019 1.992
3 10 0.5142 20 2.3119 1.617
4 6 1.4231 10 2.2210 1.677
5 4 4.1405 4 3.0113 1.600

Equivalent 36 0.5231 36 7.0749 6.972

The artificial volume that can be recharged to the aquifer is 6972 L/s (602.3808 m3/day), however,
stratum 1 only contributes 1.22% of the entire volume and is the deepest layer of the entire well (12 m).
With these data, the cost benefit is analyzed and the decision is made to drill wells to a depth of 24 m
with the understanding that we would contribute only 595.0318 m3/day to the aquifer but we reduce
time and money.

The time to drill the well up to 36 m is 27 days at a cost of 25,457 USD. Therefore, if you choose to
build two, the time taken would be 60 days with a total of 50,915 USD. Conversely, if you only drill
to a depth of 24 m, the time taken is 7 days and a cost of 13,376 USD, which gives us a total cost of
53,504 USD for four wells drilled in 30 days. This is due to the fact that the material in the last 12 m is
basalt and drilling progress is slower.

Regarding the volumes of recharge to the aquifer, with the four wells in the same area it would be
2380.1272 m3/day compared to 1204.7616 m3/day that we would obtain with only two at a depth of
36 m. Finally, the cost-benefit of annual recharge in the aquifer would be 16.24 m3/USD invested in
four wells, compared to the 8.64 m3/USD that you have if you choose two wells.

4. Conclusions

In recent years the construction of artificial wells to recharge aquifers has been very popular in
Mexico, however, as has been demonstrated in this work, the construction of a well at a greater depth
does not necessarily give us a greater volume of recharge. The lack of information to calculate the
total volumes has led to decisions being made with unscientific bases and, on several occasions, it has
resulted in not achieving the expectations for which they were built.

This work provides a tool for knowing the behavior of the water infiltration rate in the porous
medium in stratified media to artificially recharge an aquifer through wells. The analysis takes into
account all the characteristics of the soil profiles that construct the well, resulting in the cost-benefit
analysis of the complete operation to make a better decision.

It is widely demonstrated in the literature that several experimental tests are needed to know the
behavior of this phenomenon, and that in order to know the process in detail, other factors that are
not analyzed here must be taken into account: preferential flow in heterogeneous soils, trapped air,
sediment deposit, among others.

When exploration drilling is done to propose a series of wells to recharge the aquifer, the data
from the first layer is usually measured to simulate the behavior of the entire profile as a homogeneous
stratum. However, as verified in this work, it is necessary to know the behavior of the entire well by
stratum so that pertinent decisions are made, since a deeper well does not necessarily imply a greater
volume of recharge to the aquifer.
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Abstract: Mathematical analysis of rankings is essential for a wide range of scientific, public,
and industrial applications (e.g., group decision-making, organizational methods, R&D sponsorship,
recommender systems, voter systems, sports competitions, grant proposals rankings, web searchers,
Internet streaming-on-demand media providers, etc.). Recently, some methods for incomplete
aggregate rankings (rankings in which not all the elements are ranked) with ties, based on the
classic Kendall’s tau coefficient, have been presented. We are interested in ordinal rankings (that
is, we can order the elements to be the first, the second, etc.) allowing ties between the elements
(e.g., two elements may be in the first position). We extend a previous coefficient for comparing a
series of complete rankings with ties to two new coefficients for comparing a series of incomplete
rankings with ties. We make use of the newest definitions of Kendall’s tau extensions. We also offer a
theoretical result to interpret these coefficients in terms of the type of interactions that the elements
of two consecutive rankings may show (e.g., they preserve their positions, cross their positions,
and they are tied in one ranking but untied in the other ranking, etc.). We give some small examples
to illustrate all the newly presented parameters and coefficients. We also apply our coefficients to
compare some series of Spotify charts, both Top 200 and Viral 50, showing the applicability and utility
of the proposed measures.

Keywords: incomplete rankings; Kendall’s tau; permutation graph; competitive balance; Spotify

1. Introduction

The analysis of rankings of scores (cardinal rankings) or, particularly, rankings composed of natural
numbers (ordinal rankings), have been studied from different perspectives attending to the ultimate
goal of the researchers or practitioners (see [1]). When the interest is on obtaining a consensus score
that summarizes the opinion of various judges, the used mathematical tools are usually aimed to find
a ranking that minimizes a given distance metric (see the seminal paper [2,3] for some properties of
different metrics). In such a case, we say that a distance metric minimizes disagreement. We can place
in this area the methods called voter systems, ranking aggregation, and others (see the detailed review
in [4]).

When the interest is focused on comparing two series of rankings, one of the key points is to
obtain a measure that describes the evolution of the series. In this case, we have a series of rankings such
that each one of them prioritizes the elements based on the scores obtained at a particular time (see [5]).
For example, sports rankings belong to this category. Obviously, at the end of a season, there is no need
to find a consensus ranking since, by the nature of sports leagues, it is the last ranking that serves

Mathematics 2020, 8, 1828; doi:10.3390/math8101828 www.mdpi.com/journal/mathematics

15



Mathematics 2020, 8, 1828

to summarize the result of the overall season. The same happens with the Stock Market, the richest
people rankings made by the Fortune magazine [6], university rankings (e.g., [7,8]), songs rankings
based on the number of downloads, streaming, or sales (see [9]), etc. Our work is focused on a series
of rankings behavior.

The terminology applied to rankings is not unique. For example, in [10] the term partial is used
to indicate rankings in which ties are presented, while in [11] the term partial indicates that not all
the objects are compared. In this paper, we use the terminology coined in [4,12]. We talk of complete
rankings when all the objects are compared (as in a football league) and incomplete when there are
absent objects (as in a Top k ranking). We explicitly use the terms with ties or without ties to indicate
whether we consider the presence of tied objects in the rankings. We recall that in [11] the term linear
order is used when all objects are compared and no ties are allowed (that is, for us, complete rankings
with no ties) and the term weak ordering when all objects are compared, but ties are allowed (that is,
for us, complete rankings with ties).

Incomplete rankings appear in multiple areas. For example, in national or European grant calls,
judges evaluate only a subset of the applications, and therefore each judge handles an incomplete
ranking. The same happens in literary contests, where each judge only reads a small number of
manuscripts. In the case of the results shown by search engines, it is clear that only the first Top k web
pages are displayed, being, as a consequence, an incomplete ranking.

We use, and extend, the results of some previous papers. Some concepts are taken from [5],
where a method to compare series of complete rankings with no ties was presented, and from [13],
where a method to compare series of complete rankings with ties was analyzed. We also make
reference to [14], where some theoretical aspects where studied. In all these works, there are two
main ingredients:

1. The use of generalizations of the classical concept of Kendall’s τ coefficient of disagreement [15–17];
2. The use of graphs associated to the series of rankings as a tool to visualize and also to help in the

definition the coefficients that summarize the “behaviour” of the series of rankings.

Regarding to extensions of Kendall’s τ coefficient, the first attempt to incorporate an axiomatic
distance metric was in [2], followed by the works [11,18,19].

More recently, in [4] these previous works were revised and a new axiomatic framework for
incomplete rankings was introduced. To the best of our knowledge, the last paper devoted to an
axiomatic study for incomplete rankings is [12], where it is shown as an extension of Kendall’s τ

coefficient to the case of incomplete rankings with ties.
Kendall’s τ has been extensively used, and some extensions can be found in the literature up to

the present day on [10,12,20]. In particular, Kendall’s τ has been recently reviewed for ophthalmic
research in [21] and it is a tool used in neuroscience studies—e.g., [22]—and in bioinformatics [23].

Regarding the use of graphs to represent a series of rankings, we recall, in particular, that a
graph can be used to describe the crossings between two rankings. This graph is called a permutation
graph (see [24,25]). When a graph is defined to show the consecutive crossings between a series of m
rankings, it is called a Competitivity graph [5]. This concept corresponds to that of intersection graph of a
concatenation of permutation diagrams in graph theory (see [26]). For more relations on graphs associated
with rankings, see [14].

In this paper, we take some results of [4,12] as our starting point to develop two coefficients to
describe the evolution of a series of m ≥ 2 incomplete rankings with ties. When applied to the case of
only two rankings, our measures reduce to the measures given in [4,12].

We also extend the study of a series of complete rankings with ties developed in [13] to the case of
incomplete rankings with ties. We make use of the standard modern notation in the field of rankings
mainly based on [10,12,27], among others.

We take as our starting point the definition of τx of [12] that is based on the computation of a
certain sum of the form ∑n

i=1 ∑n
j=1 AijBij that involves the terms of some matrix A and B that indicate

16



Mathematics 2020, 8, 1828

the relative positions of the elements of two rankings. In Theorem 1, we give an expression of this sum
as a function of the type of interactions between a pair of elements {i, j} from one ranking to the next
one (e.g., interchanges from tie to untie, absence of one of the elements in one ranking, crossings, etc.).
This result allows for writing τx (and τ̂x) in terms of the interactions of the elements of the rankings.

On the one hand, this theoretical result also allows a computation of the sum ∑n
i=1 ∑n

j=1 AijBij
without computing explicitly the involved matrices. On the other hand, it allows for interpreting
the interactions of a series of rankings by using a permutation graph or, more generally speaking,
a competitivity graph. The edges are weighted to represent the weight of the corresponding interactions
and the whole series of rankings.

We define two coefficients τ•
ev and τ̂•

ev for series of incomplete rankings with ties by using an
analogy based on previous well-established definitions. We recall that, in the field of incomplete
rankings, “intuition” is usually used for some measures over others since when you handle an
incomplete ranking, there is no unique form to interpret the results (see this kind of reasoning in [4,12]).
In our case, our measures’ behaviour is checked by ensuring that they are well normalized and that
they reduce to well-known cases in limit situations.

Finally, other contributions of the paper are placed on a practical field. We give a methodology to
study the movements of rankings (of songs) in Spotify by using two different approaches: the cases of
series of incomplete rankings without ties and series of incomplete rankings with ties.

The structure of the paper is as follows. In Section 2, we recall Kendall’s τ and give the
fundamental relations that will be useful throughout the paper. In Section 3, we recall the notation and
basic results for the case of two incomplete rankings with ties allowed.

In Section 4, we give the fundamental theoretical result of the paper and some remarks that give
insight both into the validity and application of this result. In Section 5, we recall some definitions
from [13] to measure the evolution of m complete rankings with ties. In Section 6, we present two
coefficients, denoted as τ•

ev and τ̂•
ev to characterize the evolution of m incomplete rankings with ties and

some examples are given. In Section 7, we illustrate the applicability of the new coefficients by using
some real data obtained from Spotify charts. Finally, in Section 8, we outline the main conclusions of
the paper.

2. Preliminaries

In [16] it is shown that Kendall’s τ coefficient (also called measure of disarray) associated with two
rankings with the same number of elements n, can be written in the form

τ = 1 − 2s
1
2 n(n − 1)

(1)

where s is the minimum number of interchanges required to transform one ranking into the other.
This coefficient is a measure of the intensity of rank correlation. The coefficient can also be written as

τ =
P − Q

1
2 n(n − 1)

(2)

where P is the number of pair of elements that maintain its relative order when passing from the first
ranking to the second one (that is, the first element is above or below the second in both rankings) and
Q is the number of pairs of elements that interchange its order (that is, in one ranking, the first element
is above the second and, in the other ranking, the first element is below the second, or vice-versa).

Note that Q and s are equal. Furthermore, this quantity can be identified with the number of
crossings or inversions when passing from the first ranking to the second. For this reason, throughout
the paper, we will keep in mind that Equation (1) gives the equivalence between the number of
crossings and the associated τ. This will be important in what follows since we will deal with different
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extensions of Kendall’s τ coefficient and since one of our preferred tools will be counting the number
of crossings, as in [5].

We recall from [27] that a distance metric d(a, b) can be transformed into a correlation coefficient
τ(a, b) by the formula

τ(a, b) = 1 − 2d(a, b)

dmax(a, b)
(3)

where dmax(a, b) is the maximum possible distance between two rankings. We recall that a distance
metric between two rankings a and b is a non-negative real function f , such that it is symmetric
( f (a, b) = f (b, a), for any pair of rankings), regular ( f (a, b) = 0 ↔ a = b) and satisfying the triangle
inequality ( f (a, c) ≤ f (a, b) + f (b, c), for any rankings a, b, and c). Note that Equation (1) is of this
form, since n(n − 1)/2 is the maximum number of crossings between two given rankings. The same
happens with the Spearman’s ρ coefficient. In [16] the Spearman’s ρ for two ordinal complete rankings
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) with xi, yi ∈ N is defined by

ρ = 1 − 6 ∑n
i=1(xi − yi)

2

n3 − n

and this is of the form (3) since it is easy to show that the maximum value of ∑n
i=1(xi − yi)

2 occurs
when one ranking is the reverse of the other and, as a consequence, the maximum value of the distance
metric d(x, y) = ∑n

i=1(xi − yi)
2 is 1

3 (n
3 − n) (see [3] for this and other properties of distance metrics).

We also recall that a permutation graph (called competitivity graph in [5]) is associated with two
rankings over the same elements in such a way that the nodes represent the elements and two nodes
and are connected with an edge if they cross their positions when passing from one ranking to the other.

In this way, it is clear that the number of edges of this graph is, precisely, s. Furthermore, another
quantity (borrowed from graph theory) is also introduced in [5]: the Normalized Mean Strength NS;
that is, the normalized sum of the weights of the edges of a weighted graph. When considering only
two rankings and its corresponding competitivity graph, we have the following relation

NS =
1 − τ

2
(4)

that gives the equivalence between the Normalized Mean Strength and Kendall’s τ for two rankings.
Note that τ ∈ [−1, 1] and NS ∈ [0, 1]. We consider that the measure NS is more intuitive than τ since
it allows us to interpret the movements or activity of a series of rankings as a percentage.

3. Coefficients for Two Incomplete Rankings with Ties

In this section, we recall some definitions used in [4,12]. We will use the next three ingredients in
order to define a coefficient to compare two rankings:

1. A vector to define the ordinal ranking (including the description of absent elements and
tied elements);

2. A matrix to indicate the relative positions of the elements of the ranking (including absent and
tied elements);

3. A formula to define the coefficients for a pair of rankings by using the entries of their associate
matrices defined in the previous step.

Let V = {v1, v2, · · · , vn} be the objects to be ranked, with n > 1. The ranking is given by

a = [a1, a2, · · · , an] (5)
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where ai is the position of vi in the ranking. Note that if ai = aj, then vi and vj are tied. If vi is not
ranked, then it is denoted as ai = •. We also define the set

Va = {vi ∈ V | ai �= •}.

We define an n × n matrix A = (Aij), with entries Aij associated to a as follows:

Aij =

⎧⎪⎨⎪⎩
1 if ai ≤ aj

−1 if ai > aj
0 if i = j, ai = •, or aj = •

(6)

According to [12], we define the coefficients

τx(a, b) =
∑n

i=1 ∑n
j=1 AijBij

n(n − 1)
(7)

and, when n > 1

τ̂x(a, b) =
n(n − 1)
n(n − 1)

τx(a, b) (8)

where n is the number of common ranked elements vi to a and b. That is:

n = |Va ∩ Vb| (9)

Example 1. Let V = {1, 2, 3, 4, 5, 6, 7, 8}, and let us consider two rankings a and b. Then, a =

[6, 4, 5, 5, •, 2, 1, 3] represents the incomplete ranking with ties (7, 6, 8, 2, 3−4, 1), where 3−4 indicate tied
elements. Analogously, b = [3, 3, 2, 2, •, 1, •, 4] represents the ranking (6, 3−4, 1−2, 8). Note that n = 8 and
n = 6.

Note that τx with complete rankings and no ties reduces to the classic Kendall’s τ given by (1),
while τ̂x is a renormalization of τx, verifying |τ̂x| ≥ |τx|.

As we will see, Definition 6 in Section 6, is based on an analogy with Equation (1). To that end,
it will be necessary to count all the possible cases when passing from a to b (interactions between the
relative positions of pair of elements such as crossings, pass from tie to untie, from being in the ranking
to quitting it, etc.). We do this in the next section.

4. Main Result

The following result is the fundamental theoretical result of this paper. This result will allow us
to write τx and τ̂x in terms of the interactions of the rankings’ elements. It opens the possibility of
giving weights to the interactions, as is a common practice in modern definitions of Kendall’s tau [10].
This result also constitutes our starting point to define a coefficient for a series of more than two
incomplete rankings. This theorem also allows giving insight into the differences between τx and τ̂x.
Some other consequences are detailed in the remarks below and in Corollary 1.

Theorem 1. Given two vectors a, b representing incomplete rankings of n elements with ties, represented as
in (5), and their corresponding matrices A = (Aij) and B = (Bij) defined by (6), it holds that

n

∑
i=1

n

∑
j=1

AijBij = n(n − 1)− 4s − 2ntu − 2Ninc (10)
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where

Ninc =

(
n••
2

)
+

(
n∗•
2

)
+

(
n•∗
2

)
+ n••(n∗• + n•∗ + n∗∗) + n∗∗(n∗• + n•∗) + n∗•n•∗ (11)

s is the number of crossings—that is, the number of pairs {i, j}—such that ai < aj and bi > bj, or ai > aj
and bi < bj.
ntu is the number of pairs that are tied in only one ranking (from tie to untie or viceversa), that is,
such that ai = aj and bi �= bj, or ai �= aj and bi = bj.

In the definitions of s, and ntu, it is assumed that ai and bi are different from •. For the cases when one or
more • may appear, the following notation holds:

n•• is the number of entries such that ai = bi = •;
n•∗ is the number of entries, such that ai = • and bi �= •;
n∗• is the number of entries, such that ai �= • and bi = •.

Finally, it is also needed to define n∗∗ as the number of entries, such that ai �= • and bi �= •.

Proof of Theorem 1. For each pair {i, j} we will evaluate each term AijBij + AjiBji in the expression
∑n

i=1 ∑n
j=1 AijBij. The case i = j gives AiiBii + AiiBii = 0.

Thus, we focus on pairs {i, j} with i �= j. There is a total number of n(n − 1)/2 of these pairs. It is
useful to consider the basic cell of the pair {i, j} with i < j.(

ai bi
aj bj

)

where ak and bk can be natural numbers or a • if the element k is not ranked in a or b.
Let us study first the cases that can appear when no • is present in the basic cell.

The Complete Case (C):

That is ak �= •, bk �= •, for all k ∈ {1, 2, . . . n}. We distinguish four types of basic cells.

Type C.1: Not crossing, and no ties in a nor in b.

For example: (
1 3
2 4

)
or

(
2 4
1 3

)
.

So that, we have ai �= aj and bi �= bj and two cases can appear:

C.1.1. If ai < aj and bi < bj, then AijBij + AjiBji = 1 · 1 + (−1) · (−1) = 2.
C.1.2. If ai > aj and bi > bj, then AijBij + AjiBji = (−1) · (−1) + 1 · 1 = 2.

Type C.2: Crossing.
For example: (

1 4
2 3

)
or

(
2 3
1 4

)
.

Again, we have ai �= aj and bi �= bj and two more cases can appear:

C.2.1. If ai < aj and bi > bj, then AijBij + AjiBji = 1 · (−1) + (−1) · 1 = −2.
C.2.2. If ai > aj and bi < bj, then AijBij + AjiBji = (−1) · (1) + 1 · (−1) = −2.

Type C.3: From tie to untie or viceversa.
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For example: (
1 3
1 4

)
,

(
1 4
1 3

)
,

(
3 1
4 1

)
, or

(
4 1
3 1

)

We have ai = aj and bi �= bj or ai �= aj and bi = bj. Therefore, four cases can appear:

C.3.1. If ai = aj and bi < bj then AijBij + AjiBji = 1 · 1 + 1 · (−1) = 0.
C.3.2. If ai = aj and bi > bj then AijBij + AjiBji = 1 · (−1) + 1 · 1 = 0.
C.3.3. If ai < aj and bi = bj then AijBij + AjiBji = 1 · 1 + (−1) · 1 = 0.
C.3.4. If ai > aj and bi = bj then AijBij + AjiBji = (−1) · 1 + 1 · 1 = 0.

Type C.4: From tie to tie.

For example: (
1 2
1 2

)
That is, we have: ai = aj and bi = bj, and then AijBij + AjiBji = 1 · 1 + 1 · 1 = 2.

We denote the number of pairs of each case using the terminology of Table 1. Note that ntt is the
number of pairs that are tied in both rankings, that is, such that ai = aj and bi = bj. Note also that ntu is
the number of pairs that go from tie to untie or viceversa.

Table 1. Number of pairs {i, j} corresponding to each type for the complete cases.

Type Number of Pairs

C.1 nnc
C.2 s
C.3 ntu
C.4 ntt

The Incomplete Case (I):

There is at least one • in the basic cell. In other words, there is some k such that ak = •, or bk = •,
or both. We distinguish seven cases:

Type I.1: Four • That is ai = aj = bi = bj = •, or graphically(
• •
• •

)
Then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0. Let us denote by n•• the number of null rows that appear

in the matrix with columns a and b. Therefore, we have (n••
2 ) pairs {i, j} of this type.

Type I.2: Three •. That is, a cell of one of these forms(
• •
∗ •

)
,

(
∗ •
• •

)
,

(
• •
• ∗

)
, or

(
• ∗
• •

)

where ∗ is a number (not a •). Therefore, we have four cases, but all are similar to this one: ai �= • and
aj = bi = bj = 0. Then, AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.

Denoting n∗• the number of rows of the form (∗ •) in the n × 2 matrix (a b), and n•∗ the number
of rows of the form (• ∗) in the same matrix, it is clear that the number of pairs {i, j} of this type is:
n••(n∗• + n•∗).
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Type I.3: Two •, one on each ranking. That is, any cell of one of these forms(
• •
∗ ∗

)
,

(
∗ ∗
• •

)
,

(
• ∗
∗ •

)
, or

(
∗ •
• ∗

)

These four cases can be reduced to two:

I.3.1. If ai = bi = •, ai �= • and bj �= •, then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.
I.3.2. If ai = •, aj �= •, bi �= • and bj = •, then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.

Denoting by n∗∗ the number of rows of the form (∗ ∗) in the n × 2 matrix (a b), it is clear that the
number of pairs {i, j} of this type is n••n∗∗ + n∗•n•∗.

Type I.4: Tied in one ranking and two • in the other. For example,(
1 •
1 •

)
,

(
• 1
• 1

)

That is, we have two cases, which are similar to this ai = aj and bi = bj = •, and then AijBij + AjiBji =

0 · 0 + 0 · 0 = 0.
Let us denote by na the number of different natural numbers in a and by nb be the number

of different natural numbers in b. Let ni• be the number of rows of the form (i, •) in that matrix,
for i = 1, . . . , na and, analogoulsly, let n•i be the number of rows of the form (•, i) in the matrix (ab)

for i = 1, . . . , nb. Then, it is straightforward to see that the number of cases of this type is given by

na

∑
i=1

(
ni•
2

)
+

nb

∑
i=1

(
n•i
2

)
.

Type I.5: Tied in one ranking, one • in the other. For example(
1 •
1 2

)
,

(
1 2
1 •

)
,

(
• 1
2 1

)
,

(
2 1
• 1

)
.

We have the following 4 cases:

I.5.1. If ai = aj and bi = • and bj �= •, then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.
I.5.2. If ai = aj and bi �= • and bj = •, then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.
I.5.3. If ai = •and aj �= • and bi = bj, then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.
I.5.4. If ai �= •and aj = • and bi = bj, then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.

Let ni∗ be the number of rows of the form (i, ∗) (where ∗ can be i) in the same matrix, with i ∈
{1, 2, . . . na}.

Analogously, let n∗i be the number of rows of the form (∗, i) (where ∗ can be i) in the matrix (a b).
Then, it is straightforward to see that the number of cases of this type is given by

na

∑
i=1

ni∗ni• +
nb

∑
i=1

n∗in•i.

Type I.6: Two • in one ranking and different numbers in the other.

For example (
1 •
2 •

)
,

(
• 2
• 1

)
We have here only two cases:

22



Mathematics 2020, 8, 1828

I.6.1. If ai �= aj and bi = bj = • then AijBij + AjiBji = (±1) · 0 + (±1) · 0 = 0.
I.6.2. If ai = aj = • and bi �= bj then AijBij + AjiBji = 0 · (±1) + 0 · (±1) = 0.

Then, it is easy to see that the number of pairs {i, j} of this type is(
n∗•
2

)
+

(
n•∗
2

)
−

na

∑
i=1

ni∗ni• −
nb

∑
i=1

n∗in•i

where we have subtracted the number of cases of the type I.4.

Type I.7: Only one • and no ties.

For example, they are cases of the form(
1 1
2 •

)
,

(
1 •
2 1

)
,

(
1 1
• 2

)
,

(
• 2
1 1

)
We can have four cases that are similar to these

If ai < aj and bi �= •, bj = • then AijBij + AjiBji = 1 · 0 + (−1) · 0 = 0.
If ai > aj and bi �= •, bj = • then AijBij + AjiBji = (−1) · 0 + 1 · 0 = 0.

Let ni∗ be number of rows of the form (i, ∗) (where ∗ can be i) in the same matrix,
with i ∈ {1, 2, . . . , na} and, analogously, let n∗i be the number of rows of the form (∗, i) (where ∗
can be i) in the matrix (a b), with i ∈ {1, 2, . . . , na}. Then, the number of pairs {i, j} of this type is
given by

n∗∗(n∗• + n•∗)−
na

∑
i=1

ni∗ni• −
nb

∑
i=1

n∗in•i

where we have subtracted the number of cases of the type I.5.
In Table 2 we overview the number of cases for each type of the incomplete case.

Table 2. Number of pairs {i, j} corresponding to each type for the incomplete cases.

Type Number of Pairs {i, j}

I.1
(

n••
2

)
I.2 n••(n∗• + n•∗)
I.3 n••n∗∗ + n∗•n•∗

I.4
na

∑
i=1

(
ni•
2

)
+

nb

∑
i=1

(
n•i
2

)
I.5

na

∑
i=1

ni∗ni• +
nb

∑
i=1

n∗in•i

I.6
(

n∗•
2

)
+

(
n•∗
2

)
−

na

∑
i=1

(
ni•
2

)
−

nb

∑
i=1

(
n•i
2

)
I.7 n∗∗(n∗• + n•∗)−

na

∑
i=1

ni∗ni• −
nb

∑
i=1

n∗in•i

To end the proof, we add the contributions for all the cases, complete (C) and incomplete (I), to the
sum ∑n

i=1 ∑n
j=1 AijBij and we obtain

n

∑
i=1

n

∑
j=1

AijBij = 2nnc − 2s + 2ntt (12)
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Now, taking into account that all the cases must amount up to the total number of pairs we have

n(n − 1)
2

= nnc + s + ntt + ntu + Ninc (13)

where Ninc is the sum of all the cases in Table 2. By plugging nnc = n(n−1)
2 − s − ntt − ntu − Ninc

into (12), we finally get
n

∑
i=1

n

∑
j=1

AijBij = n(n − 1)− 4s − 2ntu − 2Ninc

where

Ninc =

(
n••
2

)
+

(
n∗•
2

)
+

(
n•∗
2

)
+ n••(n∗• + n•∗ + n∗∗) + n∗∗(n∗• + n•∗) + n∗•n•∗

In the next example, we illustrate the previous result.

Example 2. Given the rankings a = [1, •, 2, •, 3, 2, •, •, •, 1] and b = [2, •, 4, 2, •, 1, 3, 3, •, 2], then n = 10,
n•• = 2, n•∗ = 3, n∗• = 1, n∗∗ = 4, s = 2 (corresponding to the pairs {1, 6} and {6, 10}), ntu = 1
(corresponding to the pair {3, 6}) , ntt = 1 (corresponding to the pair {1, 10}), na = 3, nb = 4, n1• = n2• = 0,
n3• = 1, n•1 = 0, n•2 = 1, n•3 = 2, n•4 = 0, n1∗ = 2, n2∗ = 2, n3∗ = 0, n∗1 = 1, n∗2 = 2, n∗3 = 0, and,
n∗4 = 1.

From the parameters of Table 3, we obtain Ninc = 39. Thus, it is easy to check that ∑n
i=1 ∑n

j=1 AijBij =

n(n − 1)− 4s − 2ntu − 2Ninc = 2 as stated in Theorem 1.
The number of pairs {i, j} is 45, corresponding to the following cells

(
1 2
• •

)
,

(
1 2
2 4

)
,

(
1 2
• 2

)
,

(
1 2
3 •

)
,

(
1 2
2 1

)
,

(
1 2
• 3

)
,

(
1 2
• 3

)
,

(
1 2
• •

)

(
1 2
1 2

)
,

(
• •
2 4

)
,

(
• •
• 2

)
,

(
• •
3 •

)
,

(
• •
2 1

)
,

(
• •
• 3

)
,

(
• •
• 3

)
,

(
• •
• •

)

(
• •
1 2

)
,

(
2 4
• 2

)
,

(
2 4
3 •

)
,

(
2 4
2 1

)
,

(
2 4
• 3

)
,

(
2 4
• 3

)
,

(
2 4
• •

)
,

(
2 4
1 2

)

(
• 2
3 •

)
,

(
• 2
2 1

)
,

(
• 2
• 3

)
,

(
• 2
• 3

)
,

(
• 2
• •

)
,

(
• 2
1 2

)
,

(
3 •
2 1

)
,

(
3 •
• 3

)

(
3 •
• 3

)
,

(
3 •
• •

)
,

(
3 •
1 2

)
,

(
2 1
• 3

)
,

(
2 1
• 3

)
,

(
2 1
• •

)
,

(
2 1
1 2

)
,

(
• 3
• 3

)
(

• 3
• •

)
,

(
• 3
1 2

)
,

(
• 3
• •

)
,

(
• 3
1 2

)
,

(
• •
1 2

)
and the number of cases of each type for the incomplete case appearing on Theorem 1 are shown in Table 3.
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Table 3. Number of pairs {i, j} that have some •, corresponding to Example 2. Note that the sum of all
the types is, by definition in (11), Ninc.

Type Number of Pairs {i, j}

I.1
(

n••
2

)
= 1

I.2 n••(n∗• + n•∗) = 8
I.3 n••n∗∗ + n∗•n•∗ = 11

I.4
na

∑
i=1

(
ni•
2

)
+

nb

∑
i=1

(
n•i
2

)
= 1

I.5
na

∑
i=1

ni∗ni• +
nb

∑
i=1

n∗in•i = 2

I.6
(

n∗•
2

)
+

(
n•∗
2

)
−

na

∑
i=1

(
ni•
2

)
−

nb

∑
i=1

(
n•i
2

)
= 2

I.7 n∗∗(n∗• + n•∗)−
na

∑
i=1

ni∗ni• −
nb

∑
i=1

n∗in•i = 14

Remark 1. By using (10) and (7) we obtain

τx = 1 − 4(s + 1
2 ntu) + 2Ninc

n(n − 1)
(14)

that can be thought of an extension of (1) to the case of two incomplete rankings with ties. This formula is one of
the original contributions of this paper. Note that the term Ninc is known since it is given by (11). This formula
will be useful in Section 6 to define our measure of correlation for a series of incomplete rankings with ties.

Remark 2. For two complete rankings with ties allowed, Equation (10) simplifies to

n

∑
i=1

n

∑
j=1

AijBij = n(n − 1)− 4s − 2ntu (15)

If we recall the definition of the distance of Kemeny and Snell [2] depending on a matrix C(a) = Cij(a)

such that

Cij(a) =

⎧⎪⎨⎪⎩
1 if element i is preferred to element j

−1 if element j is preferred to element i
0 if i = j, or if both elements i and j are tied

(16)

by following a similar procedure as in the proof of Theorem 1 it is easy to show that

∑
ij

|Cij(a)− Cji(b)| = 4s + 2ntu (17)

and by using (15) we get
n

∑
i=1

n

∑
j=1

AijBij = n(n − 1)− ∑
ij

|Cij(a)− Cji(b)| (18)

that it is in agreement with the results shown in [27], but we obtain it as a particular case of Theorem 1.

Remark 3. The common number of ranked elements in a and b that we denote as n in (9) is precisely n∗∗.
Moreover, by using that

n•∗ + n∗• + n•• = n − n
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Let us check that Ninc given by (11) can be rewritten as

Ninc =

(
n
2

)
−
(

n
2

)
(19)

To that end, it is needed to use that n∗∗ = n and

n•∗ + n∗• + n•• = n − n (20)

To see how it is, we first note that(
n••
2

)
+

(
n∗•
2

)
+

(
n•∗
2

)
=

1
2

[
n2•• + n2∗• + n2•∗ − (n•• + n∗• + n•∗)

]
=

1
2

[
n2•• + n2∗• + n2•∗ − n + n

]
(21)

Second, we can simplify, by using (20)

n••(n∗• + n•∗ + n∗∗) = n••(n − n••) (22)

Third, note that, by using (20),

n∗∗(n∗• + n•∗) = nn − n2 − nn•• (23)

Now, by using (21)–(23) we have that Ninc given by (11) becomes

Ninc =
1
2

n2•• +
1
2
(n∗• + n•∗)2 +

1
2
(n − n) + n••(n − n•• − n) + n(n − n)

and since
1
2
(n∗• + n•∗)2 =

1
2

(
n2 − 2nn + n2 + 2nn•• − 2nn•• + n2••

)
we get

Ninc =
1
2
(n − n) +

1
2

(
n2 − 2nn + n2

)
+ nn − n2 =

n(n − 1)
2

+
n − n2

2
that is to say

Ninc =

(
n
2

)
−
(

n
2

)
and the proof is done. Note also that, by using (13), we have: (n

2) = nnc + s + ntt + ntu.

This last remark motivates the next result.

Corollary 1. Given two vectors a, b representing incomplete rankings of n elements with ties and their
corresponding matrices A = (Aij) and B = (Bij), it holds that

n

∑
i=1

n

∑
j=1

AijBij = n(n − 1)− 4s − 2ntu (24)

where n is the number of common ranked elements in both rankings—see (9)—s is the number of crossings,
that is, the number of pairs {i, j}, such that ai < aj and bi > bj or ai > aj and bi < bj, and ntu is the number
of pairs that are tied in only one ranking (from tie to untie or viceversa), that is, such that ai = aj and bi �= bj,
or ai �= aj and bi = bj.
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With (24), it is easy to obtain the maximum and minimum of the expression ∑n
i=1 ∑n

j=1 AijBij.
When s = 0 and ntu = 0 we have

n

∑
i=1

n

∑
j=1

AijBij = n(n − 1)

that is the maximum value of ∑n
i=1 ∑n

j=1 AijBij. Analogously, by taking s = (n
2), that is the maximum

number of crossings and consequently ntu = 0, we obtain from (24)

n

∑
i=1

n

∑
j=1

AijBij = n(n − 1)− 4
(

n
2

)
= −n(n − 1)

that is the minimum value of ∑n
i=1 ∑n

j=1 AijBij. These facts, that are in agreement with the results
shown in [12], explain why τ̂x defined by (8) takes values in [−1, 1].

Remark 4. By using (7) and (24) we obtain

τx =
n(n − 1)
n(n − 1)

− 4s + 2ntu

n(n − 1)
(25)

and from (8) and (25) we get

τ̂x = 1 − 4s + 2ntu

n(n − 1)
(26)

Remark 5. As we have pointed out in (3), a distance metric d(a, b) can be transformed into a correlation
coefficient τ(a, b) by the formula

τ(a, b) = 1 − 2d(a, b)

dmax(a, b)
(27)

Note that in expression (14), when Ninc �= 0, the quantity n(n − 1) is not the maximum value of the
distance metric d(a, b) = 2s + ntu + Ninc (see Example 6). This problem does not appear with the use of τ̂x

since, by using (26) we can identify a “distance metric” given by d̂(a, b) = 2s + ntu and its maximum value is
achieved when s = n(n − 1)/2 (and consequently ntu = 0) and has the value of

d̂max = n(n − 1)/2

Therefore, τ̂x should be preferred over τx in terms of normalization (see [12] for other considerations).
This fact will be useful for the definition that we will introduce in Section 6.

In the next examples, we illustrate the two previous remarks. Note that when s = 0 and ntu = 0
then, by (26), τ̂x = 1 and it is not affected by the presence of • in the rankings. By analogy with (4),
we denote the Normalized Mean Strength of a and b as

NS(a1, a2) =
(1 − τx)

2
, and N̂S(a1, a2) =

(1 − τ̂x)

2
.

Example 3. Let a1 = [1, 2, 3, •, •, •] and a2 = [1, •, 2, 3, •, •]. It is easy to obtain: Ninc(a1, a2) = 14,
τx(a1, a2) = 0.1556, NS(a1, a2) = 0.4222, τ̂x(a1, a2) = 1, and N̂S(a1, a2) = 0.0.

Example 4. Let a1 = [1, 2, 3, 4, •, •] and a2 = [1, •, 2, 3, 4, •]. It is easy to obtain: Ninc(a1, a2) = 12,
τx(a1, a2) = 0.2, NS(a1, a2) = 0.4, τ̂x(a1, a2) = 1, and N̂S(a1, a2) = 0.0.

The next example shows the results when a ranking is compared to itself and its reverse ranking
for the case of complete rankings (note that τx = τ̂x since n = n).
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Example 5. Let a1 = [1, 2, 3, 4, 5, 6] and a2 = [6, 5, 4, 3, 2, 1]. Then

a1 → a1 a1 → a2

Ninc 0 0
τx 1.0 −1.0
NS 0.0 1.0
τ̂x 1.0 −1.0
N̂S 0.0 1.0

The next example shows that τx does not take its limit values when the rankings are incomplete
and that τ̂x is not defined when there are no elements in common in both rankings.

Example 6. Let a1 = [1, 2, 3, •, •, •], a2 = [•, •, •, 3, 2, 1], a3 = [1, 2, 3, 4, •, •], and a4 =

[•, •, 4, 3, 2, 1], Then
a1 → a1 a1 → a2 a3 → a4

Ninc 12 15 14
τx 0.2 0.0 −0.0667
NS 0.4 0.5 0.5333
τ̂x 1.0 not defined −1.0
N̂S 0.0 not defined 1.0

Our main practical result in this paper is the definition of a measure to deal not only with two rankings
a1 and a2, as we have seen so far, but with a series of incomplete rankings with ties {a1, a2, . . . am} in which,
in practical situations, some kind of time evolution is presented (e.g., a sport ranking during a session
where there may be ties or inclusion/elimination of teams, charts of songs ordered on a daily/weekly
basis, etc.). In order to define this measure, it will be useful to recall some concepts defined for
complete rankings.

5. Treatment of More Than Two Complete Rankings. Known Results

To study the evolution of more than two rankings we will use the concept of Kendall distance
defined in [10], where some weights were introduced to measure the changes when passing from one
ranking to the next. After that, we will recall how to extend this definition to a series of m complete
rankings, as in [13].

5.1. Kendall Distance for Complete Rankings with Penalty Parameters

We recall the definition of Kendall distance with penalty parameters p and q from [10,13].

Definition 1. Let a and b be two complete rankings with ties of the set N = {1, . . . , n}, and penalty
parameters p ∈ [0, 1

2 ] and q ∈ [0, 1
2 ]. The Kendall distance with penalty parameters p and q is defined as

K(p, q)(a, b) = ∑
{i,j}∈N

K̄(p, q)
i,j (a, b) (28)

where K̄(p, q)
i,j (a, b) is computed according to the following cases:

Case 1: If i and j are not tied in a, nor in b. If they cross their positions when passing from a to b then
K̄(p, q)

i,j = 1. Otherwise, K̄(p, q)
i,j = 0.

Case 2: If i and j are tied in both a and b. Then K̄(p, q)
i,j = q.

Case 3: If i and j are tied only in one ranking. Then K̄(p, q)
i,j = p.
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Remark 6. The penalty parameters p and q are bounded and take into account the cases where there exist
tied elements in a, in b, or in both. For our purposes of measuring competitiveness, it is reasonable to assign
p = 1/2, to represent that they are tied in one ranking, and q = 0 to represent that they are tied in both of them.
These assignments are inspired by [10]. In particular, they proved that p ∈ [0.5, 1] in order to get that K(p,0)

was a metric.

Remark 7. Note that, by using the notation introduced in Theorem 1, it is easy to see that

K(p, q)
i,j (a, b) = s + p ntu + q ntt

where ntt is the number of pairs {i, j} that go from tie to tie. Therefore, by using (14) with Ninc = 0 we get

τx(a, b) = 1 − 4K(0.5, 0)(a, b)

n(n − 1)
(29)

that is, once more, a relation of the form (3). We see here another consequence of Theorem 1: it opens the
possibility of defining new metrics based on putting penalties to the cases n••, n•∗, etc. since it gives an explicit
expression on these cases.

With the previous definitions, we can deal with the general case of the study of a series of complete
rankings. We do this in the next section.

5.2. Series of Complete Rankings with Ties

In [13], it was shown how to extend Definition 1 to m complete rankings with ties in a natural
way. We recall these definitions here because they will be extended in Section 6 to a series of
incomplete rankings.

Definition 2. Given m complete rankings with ties a1, a2, . . . am of n elements, we define the evolutive Kendall
distance with penalty parameters p and q as

K(p,q)
ev (a1, a2, . . . , am) =

m−1

∑
i=1

K(p, q)(ai, ai+1). (30)

When handling m rankings it is natural to include a new case (see [13]) that consists of a series of
ties between a crossing (see Example 7 further on). Thus it is convenient to define a new case in the
definition of K(p,q)

ev (a1, a2, . . . , am) according to the following rule.

Definition 3. Given m complete rankings with ties a1, a2, . . . am of n elements, we define the crossing after
ties coefficient K̄cat

i,j (a1, a2, . . . , am) following the rule

Case 4. If there exists a maximal set of rankings at1 , . . . , atk such that for each � = 1, . . . , k the pair {i, j} is
not tied in at� , but is tied in at�+1, at�+2, . . . , at�+s, with s ≥ 1, it is not tied in at�+s+1 and, moreover,
{i, j} exchange their relative positions between at� and at�+s+1. In this case K̄cat

i,j (a1, a2, . . . , am) =

k, where k is the number of rankings in the maximal set of rankings at1 , . . . , atk verifying the
aforementioned property.
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Example 7. Given the rankings with ties

r1 r2 r3 r4 r5 r6

1 1, 2 1, 2 2 1, 2 1
2 3 3 1 3 2
3 4 4 3 4 3
4 4 4 4

the corresponding ai are
a1 a2 a3 a4 a5 a6

1 1 1 2 1 1
2 1 1 1 1 2
3 2 2 2 2 3
4 3 3 3 3 4

we have that the only nonzero crossing after ties coefficient is

K̄cat
1,2(a1, a2, . . . , a6) = 2

since we have the appearance of the two series

a1 a2 a3 a4

1 1 1 2
2 1 1 1

and
a4 a5 a6

2 1 1
1 1 2

that show a series of ties between a crossing of the pair {i = 1, j = 2}.

By including the cases given by Definition 3 in the sum defined in Definition 2, in [13] a corrected
evolutive distance in the following form is defined.

Definition 4. Given m complete rankings with ties a1, a2, . . . am of n elements we define the corrected evolutive
Kendall distance with penalty parameters p and q as follows:

K(p, q)
cev (a1, . . . , am) = K(p, q)

ev (a1, . . . , am) + ∑
{i,j}

K̄cat
i,j (a1, . . . , am), (31)

where the summation is over the pairs {i, j} that verify Case 4 in Definition 3.

Following the same argument as in [13], it is easy to show that

max[K(0.5, 0)
cev (a1, . . . , am)] =

1
2
(m − 1)n(n − 1) (32)

Now, in analogy with (3) and (14), the Kendall’s evolutive coefficient τev for a series of m complete
rankings with ties can be defined as

τev(a1, a2, . . . am) = 1 − 4K(0.5,0)
cev (a1, . . . , am)

(m − 1)n(n − 1)
∈ [−1, 1] (33)

With these previous definitions we can present the new coefficients for incomplete rankings
with ties.
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6. New Coefficients for Series of Incomplete Rankings with Ties

Given a series {a1, a2, . . . , am} of incomplete rankings with ties, for each pair of rankings ai and
aj we can use Definitions 1–4 straightforwardly to also apply for a series of incomplete rankings by
assuming that there is no penalty for the case of absent elements (regarding Definitions 1 and 2) and
that these absent elements (denoted by ‘•’) do not contribute to either ties or to crossings after ties
(regarding Definitions 3 and 4). That is, those definitions are applied as they are, ignoring the effect of
the absent elements.

Keeping this in mind and, in analogy with (14), given a series of m incomplete rankings we could
include the effect of the incomplete cases by defining

τ∗
ev = 1 − 2devol(a1, a2, . . . , am)

max(devol)
(34)

with

devol(a1, a2, . . . , am) = 2K(p=0.5,q=0)
cev (a1, . . . , am) +

m−1

∑
i=1

Ninc(ai, ai+1)

where Ninc(ai, ai+1) is the number of incomplete cases when passing from ranking ai to ranking ai+1.
Note that the explicit form of Ninc(ai, ai+1) for each pair of consecutive rankings is given by (11)
in Theorem 1 and Corollary 1. The value of max(devol) depends on Ninc(ai, ai+1). We have seen in
Remark 5 that the definition of τx corresponds to take dmax(a, b) as the value corresponding to Ninc = 0
(and that is the reason why τx is not well normalized). We can translate here the same reasoning and
formalize it in the next definition.

Definition 5. Given m incomplete rankings with ties a1, a2, . . . am of n elements we define the corrected
evolutive Kendall’s τ coefficient for the series with penalty parameters p = 0.5 and q = 0 as follows:

τ•
ev = 1 − 4K(0.5,0)

cev (a1, . . . , am) + 2 ∑m−1
i=1 Ninc(ai, ai+1)

(m − 1)n(n − 1)
(35)

where K(0.5,0)
cev (a1, . . . , am) is given by Definition 4, and Ninc(ai, ai+1) is given by (11).

Here we have the same drawback as we showed for τx in Remark 5: τ•
ev is not properly normalized

and it cannot get the values ±1 if any Ninc(ai, ai+1) �= 0. Therefore, in analogy with (26), we introduce
a new coefficient in the following definition.

Definition 6. Given m incomplete rankings with ties a1, a2, . . . am of n elements, such that ni,i+1 > 1, for all
i = 1, 2, . . . , m − 1, we define the scaled corrected evolutive Kendall’s τ coefficient for the series with penalty
parameters p = 0.5 and q = 0 as follows:

τ̂•
ev = 1 − 2K(0.5,0)

cev (a1, . . . , am)

max(K(0.5,0)
cev (a1, . . . , am))

(36)

where K(0.5,0)
cev (a1, . . . , am) is given by Definition 4 and with

max[K(0.5,0)
cev (a1, . . . , am)] =

1
2

m−1

∑
i=1

ni,i+1(ni,i+1 − 1) (37)

where ni,i+1 denotes the common ranked elements between ai and ai+1.

Note that we need that, for some i, ni,i+1 �= 0.
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Remark 8. In the limit case of m complete rankings with ties, note that Equation (37) collapses to
Equation (32). Note also that τ̂•

ev is affected by the crossings, the pass from tie to untie (or viceversa) and
the long crossings (crossings after ties given by K̄cat

i,j (a1, a2, . . . , am), given by Definition 3), due to the term

2K(p=0.5,q=0)
cev (a1, . . . , am). The effect of the elements that are out of the rankings appear explicitly by the term

ni,i+1 that does not take into account the position in ai nor in ai+1. τ̂•
ev is well normalized, that is τ̂•

ev ∈ [−1, 1].

Example 8. Let n = 6. Given the series of incomplete rankings with ties a1 = [1, 2, 3, 4, 5, 6], a2 =

[1, 2, 3, •, •, •], and a3 = [1, 2, •, •, •, •], an easy computation shows Kcev(a1, a2, a3) = 0 and thus τ̂•
ev = 1.

Note that τ•
ev = 0.1333.

Example 9. Let n = 6. Given the series of incomplete rankings with ties a1 = [1, 2, 3, 4, 5, 6], a2 =

[3, 2, 1, •, •, •], and a3 = [1, 2, •, •, •, •], it is easy to obtain that Kcev(a1, a2, a3) = 4 = max(Kcev) and thus
τ̂•

ev = −1. Note that τ•
ev = −0.1333.

As we have seen in the above definitions, the importance of Theorem 1 and Corollary 1 consists
of giving the explicit formula for Ninc(ai, ai+1) to allow for the computation of the coefficient τ̂•

ev for
the series of m incomplete rankings with ties. Note that τ̂•

ev ∈ [−1, 1]. For the particular case when
the rankings are complete, we have Ninc(ai, ai+1) = 0 for all the pairs of consecutive rankings and
ni,i+1 = n, for i = 1, 2, . . . , m − 1, and therefore Equation (36) reduces to the complete case given by
Equation (33), that is, τ̂•

ev collapses to τev.
Another contribution of Theorem 1 and Definition 6 is that they are useful to describe the behavior

of the series of m rankings in terms of a competitivity graph. We can define a weighted graph for each
one of the interactions between the elements when passing from ai to ai+1: crossings, passing from
tie to untie (or vice-versa), and crossing after ties. Moreover, for each kind of graph, we can add the
contributions of all the pairs of consecutive rankings to obtain a projected graph for any interaction
(crossings, passing from tie to untie (or vice-versa), and crossing after ties). The procedure is the
following: First, we construct an undirected graph for each pair of rankings ak, ak+1 by identifying
each element i as a node and defining an edge between i and j by the rule: there is an edge connecting
{i, j} with weight K̄(p, q)

i,j (ak, ak+1) when this weight is nonzero. By adding the m − 1 pairs of undirected

graphs we obtain a projected graph with a total sum of weights K(p=0.5,q=0)
cev (a1, . . . , am). By adding the

crossing after ties term to the projected graph we have all the ingredients appearing on Definition 6.
We show this procedure by using the next example with m = 6 and n = 8.

Example 10. Given the series of incomplete rankings with ties

r1 r2 r3 r4 r5 r6

5 2 4 6 2 1
7 1 8 1, 4 1, 4 5
3 8 3 3 6, 7 8
8 3 2, 6 8 5 3

1, 4 5, 7 5, 7 2 3 4
4 1 7 8

the corresponding ai are
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a1 a2 a3 a4 a5 a6

5 2 6 2 2 1
• 1 4 5 1 •
3 4 3 3 5 4
5 6 1 2 2 5
1 5 5 • 4 2
• • 4 1 3 •
2 5 5 6 3 •
4 3 2 4 6 3

In this example we have n = 8, and an easy computation leads to the parameters shown in Table 4. For each
pair of consecutive rankings it is easy to compute the parameters defined in Theorem 1: n••, n•∗, n∗•, n∗∗, s,
ntu, and ntt. Then, by using Equation (10) in Theorem 1 we can obtain, for any pair of rankings, the value Ninc.
n is the number of common elements, given by (9). The coefficient τ•

ev is given by (35), and the coefficient τ̂•
ev is

given by (36). In analogy with (4) we can define the corresponding normalized mean strengths given by

NS• =
(1 − τ•

ev)

2
(38)

and

N̂S
•
=

(1 − τ̂•
ev)

2
(39)

Finally, in Table 4 we include the coefficients τx and τ̂x given by (7) and (8), respectively. These last coefficients are
included to show that our new coefficients τ•

ev and τ̂•
ev reduce to them when only a pair of rankings are considered.

Table 4. Parameters for pairs of consecutive rankings. Example 10.

a1 → a2 a2 → a3 a3 → a4 a4 → a5 a5 → a6

n•• 1 0 0 0 0
n•∗ 1 1 0 1 0
n∗• 0 0 1 0 3
n∗∗ 6 7 7 7 5

s 9 12 8 9 4
ntu 2 0 2 1 1
ntt 0 0 0 0 0

Ninc 13 7 7 7 18
n 6 7 7 7 5

τ̂•
ev −0.3333 −0.1429 0.1429 0.0952 0.1000

N̂S
•

0.6667 0.5714 0.4268 0.4524 0.4500
τ•

ev −0.1786 −0.1071 0.1071 0.0714 0.0357
NS• 0.5893 0.5536 0.4464 0.4643 0.4821
τx −0.1786 −0.1071 0.1071 0.0714 0.0357
τ̂x −0.3333 −0.1429 0.1429 0.0952 0.1000

To compute our new coefficients τ•
ev and τ̂•

ev for the whole series of rankings a1 to a6 we need
some previous parameters. First, we need the value

5

∑
i=1

Ninc(ai, ai+1) = 52

To compute K(p=0.5,q=0)
cev (a1, . . . , a6), given by (31), we need to know, previously, the value of the crossing

after ties coefficients K̄cat
i,j (a1, . . . , a6), given by Definition 3. Note that the unique long crossing occurs

for the pair {1, 4}: the elements tagged as 1 and 4 are such that 4 is above 1 in r3, both elements are tied
in rankings r4 and r5, and, finally, 4 is below 1 in ranking r6. Note, for example, that the pair {5, 7}
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does not accomplish the conditions of crossing after ties. Therefore the only term that contributes to
∑{i,j} K̄cat

i,j is K̄cat
1,4(a1, . . . , a6) = 1.

With respect to K(p=0.5,q=0)
ev (a1, . . . , a6), given by (30), we need to compute the terms

K̄(p, q)
i,j (ai, ai+1), given by (28), for any pair of consecutive rankings. A detailed computation shows

that, in this example, we have 42 crossings and 6 cases of tie to untie or viceversa. The precise pairs of
elements that contribute to these cases are shown in the corresponding projected weighted graphs in
Figure 1. The crossing after ties case is represented in Figure 2.

Figure 1. Projected weighted graphs representing the pairs of elements that contribute to crossings
(left panel) and the pairs corresponding to the case tie to untie or viceversa (right panel), occurring in
Example 10.

Figure 2. Projected weighted graph representing the crossing after ties cases occurred in Example 10.

Therefore we have all the ingredients to compute K(p=0.5,q=0)
cev . That is

K(p=0.5,q=0)
cev (a1, . . . , a6) = K(p=0.5,q=0)

ev (a1, . . . , a6) + ∑
{i,j}

K̄cat
i,j (a1, . . . , a6)

=
5

∑
i=1

K(p, q)(ai, ai+1) + ∑
{i,j}

K̄cat
i,j (a1, . . . , a6)

and, by Remark (7), we know that

K(p, q)
i,j (a, b) = s + p ntu + q ntt
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Therefore, we have

K(p=0.5,q=0)
cev (a1, . . . , a6) = (9 + 12 + 8 + 9 + 4) + 0.5(2 + 0 + 2 + 1 + 1) + K̄cat

1,4(a1, . . . , a6)

= 42 + 3 + 1 = 46.

By using (35), we obtain

τ•
ev = 1 − 4 · 46 + 2 · 52

(6 − 1)8 · 7
= 1 − 1.0286 = −0.0286

that corresponds to an equivalent normalized mean strength

NS• =
(1 − τ•

ev)

2
= 0.5143

Finally, regarding τ̂•
ev, we have

τ̂•
ev = 1 − 2 · 46

1
2 (6 · 5 + 7 · 6 + 7 · 6 + 7 · 6 + 5 · 4)

= 1 − 4 · 46
176

= −0.0455

that corresponds to
N̂S

•
= 0.5227.

All in all, we conclude that τ̂•
ev is a proper coefficient for the evaluation of m incomplete rankings

with ties and can be considered as a natural extension of the coefficient τ̂x presented in [12]. In the next
section we apply the new coefficients τ•

ev and τ̂•
ev to real rankings appearing on Spotify charts.

7. Results

Spotify is one of the major music streaming services worldwide, with 299 million monthly active
users, as of July 2020 [28]. The company Spotify Technology S.A. has been listed on the New York
Stock Exchange since 2018. As of September 2020, the company offers a catalog of 60 million tracks and
operates in 92 countries from Albania to Vietnam [29]. Spotify divides the monthly active users into
four regions [30]: Europe (35%), North America (26%), Latin America (22%) and rest of the world (17%).
The app is available on several devices, such as computers, smartphones, tablets, wearable devices, etc.
The users can choose between a free service (called Freemium or Ad-Supported) or a Premium service.
In any case, the user can listen by streaming any song of the catalog (that is, the user does not own the
song’s digital file, but can listen to it). It is accepted that music streaming services have transformed
the entire music market—see [31]—and they have evolved very fast, changing their services and
capabilities. For example, Spotify has signed some partnerships with Microsoft [32], Sony [33] and
Facebook [34] among other big companies. There exists a large amount of literature about Spotify,
but it is mainly focused on Economics and Music. To the best of our knowledge, a small number of
papers are devoted to the mathematical aspects of the rankings produced by Spotify. Among these
papers, we have [35,36]. A paper that studies the relationship between personality and type of music
is [37]. See [38] for more details about Spotify.

Like other services on the Internet, Spotify provides some chart lists (song rankings) based on the
platform’s number of streamings. To this kind of rankings belongs the Top 200 (see [39–41]), that is
one of the topics of our study. Another ranking that we are interested in is called Viral 50 which is an
evolution of the original Social 50 ranking (see [42–44]) that incorporated in the song chart the effect
of the social sharing of a track by Spotify users. This sharing included platforms such as Facebook
and Twitter. It is not completely clear for us how this rank is computed, but it aims to gather fresh
songs that acquire high impact on social networks by new release promotions, special apparitions on
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tv-shows, music festivals, tours, etc. (see [45] for an example of how a viral song transformed into a
Top 100 song in 2013).

Due to the situation caused by the COVID-19 pandemic, the live music business reflected some
drawbacks, such as festivals being cancelled worldwide, a reduction in public-performance licensing,
and other related factors—see [46]. As an example, Warner Music Group Corp showed a total revenue
fall of 1.7% in the first quarter of 2020 compared to the first quarter of 2019 [47]. Spotify also reported
some impact on their business, but in the first quarter of 2020, it seemed that the consumption
recovered and monthly active users increased faster in the first quarter of 2020 than in the same
period of 2019 [30]. Some perturbations in Spotify streaming were also reported by the music analytic
company Chartmetric that observed a change in the type of consumption of Spotify streamings by
music genre in the period between 3 March 2020 to 9 April 2020, concluding that it seemed that it had
been a pandemic-induced lifestyle change [48].

With regard to the Top 50 viral, it is reasonable to think that the fact that many artists (such
as Lady Gaga, Alicia Keys, and Cardi B. [46]) have postponed big releases may have decreased the
movements in these charts.

7.1. Method to Convert Spotify Lists into Incomplete Rankings

Both Spotify Top 200 and Viral 50 lists can be treated as incomplete rankings since some elements
(songs) quit the list and some others that appear on the list (new songs). Let us call any of these
rankings as Top k rankings. In order to handle these Top k rankings, our methodology consists of the
following steps:

1. Select a set of m lists {v1, v2, . . . , vm} with k entries in each vi.
2. Denote as n the number of different songs that appear on these m lists. We tag these songs from 1

to n, following the order they first appear, reading the lists from the first to the last one, and each
list from top to bottom. Denote ti the tagged version of vi, for i = 1, 2, . . . , m, including all the
n songs.

3. Denote r1 a vector with entries from 1 to n. The first k values correspond to the elements in v1.
4. Construct the rankings ri for 2 = 1, . . . m, in the following form:

(a) The first k entries of ri are copied from ti;
(b) The rest of the entries form a vector si and come from the the elements that quit from ti−1

plus the elements that, being in si−1, are not included in ti.

These n − k elements preserve their relative order. This order is not important since these elements
are not included in the Top k ranking ti.

5. From each ti, we construct the corresponding incomplete ranking ai given by (5).

Example 11. Let us consider three Top 4 lists (v1, v2, v3) and construct the corresponding three rankings
(a1, a2, a3). Here we have m = 3 and k = 4.

v1 v2 v3

A B F
B C C
C E B
D A E

→
t1 t2 t3

s1 s2 s3

r1 r2 r3⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 2 6
2 3 3
3 5 2
4 1 5

⎫⎪⎪⎪⎬⎪⎪⎪⎭{
5 4 1
6 6 4

} −→

a1 a2 a3

1 4 •
2 1 3
3 2 2
4 • •
• 3 4
• • 1

We have denoted as si the elements beyond the k position in each ranking ri. The rankings ai are constructed
looking at ri from positions 1 to 4. Since the elements that do no belong to ti are in si, we tagged them as •.
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7.2. Comparison of Two Series of Top 200 Rankings

From the site [49] we downloaded the series of Top 200 (Global) rankings corresponding to the
following time intervals:

• 2019 Series: 18 weekly rankings ranging from 28 December 2018 to 3 May 2019.
• 2020 Series: 18 weekly rankings ranging from 27 December 2019 to 1 May 2020.

The term Global means that the charts were produced from streaming on Spotify from all over the
world. By using the methodology explained in the previous section, we convert the 18 downloaded
rankings to a series of incomplete rankings (with no ties) a1, . . . , a18, and we compute our parameters.
This is repeated for each considered year. The results are shown in Table 5.

Table 5. Parameters for two series of incomplete rankings obtained from Spotify Top 200 lists.

2019 Series 2020 Series

n 474 556
Ninc 1.6 × 106 2.4 × 106

< ni,i+1 > 182 175
τ•

ev 0.1256 0.0836
NS• 0.4372 0.4582
τ̂•

ev 0.8540 0.8421
N̂S

•
0.0730 0.0789

In Table 5 we have denoted by < ni,i+1 > the average of {ni,i+1} for i = 1, 2, . . . , 17, that is the
mean number of common elements from each pair of consecutive rankings. We see that the number
of songs involved in the 2019 series is n = 474, which is lower than the 2020 series number. This fact
could indicate that there was more activity in the 2020 series since more new songs appeared than the
previous year. By extension, we can also conclude that the activity on Spotify of the users was higher in
the 2020 series.

The same tendency is observed by looking at Ninc and ni,i+1. Our coefficients NS• and N̂S
•

corroborate this intuition since they take higher values in the 2020 Series than in the 2019 Series.
Analogously, by looking at τ•

ev and τ̂•
ev, we see a decrease when comparing the 2019 Series with the

2020 Series. Recall that the coefficients NS• and N̂S
•

introduced in this paper offer a measure of the
movements in the rankings, since they take into account the number of crossings and, in this case,
that we do not have ties, due to the effect of absent elements.

In the same manner, as we did in Example 10, we can construct the projected graph corresponding
to the crossings for each series. We show these graphs in Figure 3, that have been plotted with MATLAB
by using the option ”subspace”.
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Figure 3. Graph based on crossings corresponding to the giant connected component of Top 200
2019 Series (left panel, 360 nodes, 16,115 edges) and Top 200 2020 Series (right panel, 374 nodes,
16,564 edges).

7.3. Comparison of Two Series of Viral-50 Rankings

From the site [50], we downloaded the series of Viral 50 (Global) weekly rankings corresponding
to the following periods:

• 2019 Series: 18 weekly rankings ranging from 3 January 2019 to 2 May 2019.
• 2020 Series: 18 weekly rankings ranging from 2 January 2020 to 30 April 2020.

For each considered year, we convert the 18 downloaded rankings to a series of incomplete
rankings (with no ties) a1, . . . , a18, and we computed again the aforementioned parameters. The results
are shown in Table 6.

Table 6. Parameters for two series of incomplete rankings obtained from Spotify Viral 50 lists.

2019 Series 2020 Series

n 315 300
Ninc 8.3 × 105 7.5 × 105

< ni,i+1 > 33.6 35
τ•

ev 0.0067 0.0093
NS• 0.4966 0.4954
τ̂•

ev 0.6037 0.6922
N̂S

•
0.1982 0.1539

The number of songs involved in the 2019 series is n = 315, that is greater than the number
involved in the 2020 series. This fact could indicate that there was less viral activity in the 2020 series
since fewer new songs appeared than the previous year. The same tendency is observed at Ninc.
This intuition is corroborated by our coefficients. NS• and N̂S

•
since they take lower values in the

2020 series than in the 2019 series. We also see an increase in τ•
ev and τ̂•

ev when comparing the 2019
series with the 2020 series.

If we compare these results with those obtained in the previous section, we conclude that Spotify’s
viral activity was negatively affected by the Pandemic. This may seem reasonable since many
events that produce sharing in Social Networks, such as shows, new releases, and performances,
were postponed during these months, as we have already discussed. We again plot the projected graph
corresponding to the crossings for each series in Figure 4.
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Figure 4. Graph based on crossings corresponding to the giant connected component of Viral-50 2019
Series (left panel, 185 nodes, 1685 edges) and Viral-50 2020 Series (right panel, 186 nodes, 1447 edges).

7.4. Comparison of a Series of Top 200 and a Series of Viral 50 Rankings

Given that our coefficients τ•
ev, τ̂•

ev, NS•, and N̂S
•

are normalized, we can compare series of
rankings of different type. Looking at Tables 5 and 6, we conclude (e.g., looking at N̂S

•
) that the Viral-50

rankings present more activity than the Top 200 rankings. For example in the 2019 series the value
of N̂S

•
is 0.1982 for the Viral-50 rankings, and only 0.0730 for the Top 200 rankings. This conclusion

seems reasonable, taking into account that the Viral-50 rankings are constructed by looking at the
behaviours of songs that may rapidly change, since they are viral phenomena.

7.5. Comparison of the Evolution of Two Series of Incomplete Ranking with Ties

Spotify charts Top 200 do not present ties, but we can construct incomplete rankings with ties if
we take into account the Top 200 ranking and the rest of the songs that appear in the whole studied
interval. In detail, to obtain a series of incomplete rankings with ties from a Top 200 series on Spotify,
we will consider the whole list of tracks along with the m rankings and focus on what happens in
positions greater than 200. Using the terminology used in Example 11 we consider the elements that
appear on the rankings, denoted as s1, s2, . . .. In this ranking we consider the following:

(i) All the tracks in s1 are tied. That is a1 = [•1,200 1n−200] where •1,200 is a row vector of 200 entries
of the type •, and 1n−200 is the row vector of all-ones, with n − 200 entries, being n the total
number of different tracks in the m rankings.

(ii) For i = 2, 3 . . . m, we consider that in si we have (at most) two buckets of tied elements. In one
bucket we have the elements (if any) that come from ti−1. In the other bucket, we consider the
rest of the elements of si

The next example with a series of m = 7 Top 4 charts illustrates this methodology.

Example 12. Let us consider the series of seven Top 4 tracks vi with n = 10 elements {A, B, . . . , J} given by
the rankings

A A F G G G J
B B E H H I C
C E A C C B A
D F C E E A H
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from these rankings we construct the rankings ti and si to obtain the rankings in the form

ti

si

1 1 6 7 7 7 10
2 2 5 8 8 9 3
3 5 1 3 3 2 1
4 6 3 5 5 1 8
5 3 2 6 6 8 7
6 4 4 1 1 3 9
7 7 7 2 2 5 2
8 8 8 4 4 6 5
9 9 9 9 9 4 6
10 10 10 10 10 10 4

Now, we consider the rankings si as a series of incomplete rankings with ties with the convention explained
above and we compute the corresponding ai vectors to obtain the rankings

a1 a2 a3 a4 a5 a6 a7

• • • 1 1 • •
• • 1 2 1 • 1
• 1 • • • 1 •
• 1 2 2 1 2 2
1 • • • • 1 2
1 • • 1 1 2 2
1 2 2 • • • 1
1 2 2 • • 1 •
1 2 2 2 1 • 1
1 2 2 2 1 2 •

Note that, since there are at most two buckets, the entries of ai belong to the set {1, 2, •}. Note also that in
s5 there is only one bucket.

By using this methodology, we have converted the series of rankings studied in Section 7.2 to the
corresponding series ai with ties. The parameters obtained are shown in Table 7.

Table 7. Series of incomplete rankings with ties obtained from Spotify Top 200 charts.

2019 Series 2020 Series

n 474 556
Ninc 1.4 × 106 1.7 × 106

< ni,i+1 > 256 331
τ•

ev 0.2577 0.3108
NS• 0.3712 0.3446
τ̂•

ev 0.8848 0.8757
N̂S

•
0.0576 0.0621

If we look at n, Ninc, < ni,i+1 >, and N̂S
•

in Table 7, we conclude that there has been more
activity in the 2020 Series than in the 2019 Series. However, by looking at NS• (and τ•

ev), the conclusion
seems to be the reverse. Here we see, therefore, that τ•

ev and τ̂•
ev can present different tendencies. This is

related to the form in which they are normalized, as we have commented in Remark 5 and in Section 6.
These results provide an example of how the transformation from τ•

ev to τ̂•
ev is not linear, since τ•

ev
increases from 2019 to 2020 but τ̂•

ev decreases in the same period.
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In Figure 5, we show the plot of the giant component corresponding to the projected graph
showing the interactions of the form tie to untie or viceversa. That is, there is a link between elements
(nodes) i and j when the pair {i, j} goes from tie to untie (or vice versa) in any pair of consecutive
rankings ai and ai+1. We see many more interactions of this type in the 2020 series than in the
2019 series.

Figure 5. Graph based on crossings of the type from tie to untie or vice versa corresponding to the giant
connected component of 2019 Series (left, 377 nodes, 49,915 edges) and 2020 Series (right, 457 nodes,
82,051 edges). We also have 97 isolated nodes in the 2019 Series and 99 in the 2020 Series.

In Figure 6, we show the plot of the giant component corresponding to the projected graph
showing the interactions of the form tie to tie, that is, there is a link between elements (nodes) i and j
when the pair {i, j} goes from tie to tie in any pair of consecutive rankings ai and ai+1. We also see
many more interactions of this type in the 2020 series than in the 2019 series.

Therefore, and taking into account the values of Table 7, we can conclude (for this artificial model
of incomplete ranking with ties) that there was more activity in the 2020 series than in the 2019 series.

Figure 6. Graph based on crossings of the type from tie to tie corresponding to the giant connected
component of 2019 Series (left, 382 nodes, 65,269 edges) and 2020 Series (right, 462 nodes,
101,101 edges).

We have shown the application of the new coefficients introduced in this work, as long as the
utility of the visualizations based on the projected graph plots of the (evolutive) competitive graph
associated to a series of incomplete rankings with or without ties.
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8. Conclusions

We present the main conclusions of our work:

• We provide a theoretical result that allows for understanding, in terms of the type of interactions
between pairs of elements in a series of incomplete rankings with ties, two recently introduced
coefficients, given in [4,12].

• We have defined two new coefficients to characterize a series of incomplete rankings with ties in
terms of the interactions mentioned above.

• We have presented a methodology to treat Spotify charts (both Top 200 and Viral 50) as a series of
incomplete rankings. This methodology allows us to obtain conclusions about the movements in
the lists and, therefore, on the activity of the users of the app.

• We have obtained an artificial series of incomplete rankings with ties based on Spotify Top 200
lists, to apply our coefficients and show the applicability of the method.

• The main theoretical result (Theorem 1) may serve to define new coefficients by giving weight
to the interactions between pairs of elements when going from one ranking to the next one.
The applications can be of interest in other fields (neuroscience, sports, bioinformatics, etc.).
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Abstract: In this work, we introduce a class of generalized multistep collocation methods for solving
oscillatory Volterra integral equations, and study two kinds of convergence analysis. The error
estimate with respect to the stepsize is given based on the interpolation remainder, and the
nonclassical convergence analysis with respect to oscillation is developed by investigating the
asymptotic property of highly oscillatory integrals. Besides, the linear stability is analyzed with the
help of generalized Schur polynomials. Several numerical tests are given to show that the numerical
results coincide with our theoretical estimates.

Keywords: collocation; volterra integral equation; highly oscillatory; convergence

1. Introduction

In many practical problems, such as epidemic diffusion, population dynamics and reaction
processes, one may usually come across a class of Volterra integral equations (VIEs) (see [1] and
references therein). Noting that most VIEs cannot be solved in closed forms, many researchers have
made contributions to the numerical approaches to VIEs.

Particularly, the study of numerical solutions to VIEs with highly oscillatory Fourier or Bessel
kernels has attracted much attention during the past decade. In [2], Xiang and Brunner first investigated
Filon collocation approximations to highly oscillatory VIEs by employing the asymptotic property of
oscillatory integrals. They found that errors of Filon collocation solutions decayed fast as the frequency
increased. The third author presented an optimal convergence order for the direct Filon collocation
solution to the first kind of oscillatory VIE arising in acoustic scattering in [3]. The convergence
behavior of such kinds of numerical approaches was able to be revealed with the help of the detailed
study of the remainder for the error function. Besides, it is noted that numerical analysis with
respect to the frequency, which is usually done by solving error equations and extending van der
Corput lemma (see [4] p. 333), is able to detect the ability of the numerical method to solve highly
oscillatory VIEs. With these techniques in mind, several authors made great contributions to numerical
solutions to highly oscillatory VIEs. For example, Galerkin and collocation solutions for VIEs with
highly oscillatory trigonometric kernels were investigated in [5,6], highly oscillatory VIEs with weakly
singular kernels were studied in [7], the Hermite-type Filon collocation method was presented in [8],
and Clenshaw–Curtis–Filon qudrature for Cauchy singular integral equations was investigated in [9].

In this work, we consider the numerical computation of the following second-kind oscillatory VIE:

u(t) = f (t) +
∫ t

0
K(t, s)eiωg(t,s)u(s)ds, t ∈ [0, T], (1)

where K(t, s), g(t, s) and f (t) are sufficiently smooth, u(t) is unknown, and ω denotes the oscillation
parameter. When ω = 0, Equation (1) reduces to the classical VIEs. In the case of ω 
 1, the kernel
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in Equation (1) is highly oscillatory, and special quadrature rules should be employed in practical
computation.

In the remaining part, we are restricted to the following problems. In the forthcoming section,
we first develop a class of generalized multistep collocation methods (GMCk1,k2 M) for Equation (1)
with non-oscillatory kernels, that is, ω = 0. Then, classical convergence analysis and linear stability
analysis are implemented. In the third section, we study the numerical solution to VIE (1) when
the kernel changes rapidly, that is, ω 
 1, and present the frequency-explicit convergence analysis.
Some concluding remarks are given in Section 4.

2. GMCk1 ,k2
M in the Case of ω = 0

Frequently-used approaches for VIEs include collocation methods [10], the spectral collocation
method [11,12], the spectral Galerkin method [13,14], the Nyström method [15,16], and so on. Among
these numerical formulae, the collocation-based approach is one of the most important tools. In general,
the collocation solution is obtained by making the polynomial or piecewise polynomial satisfy
the collocation equation. For one-step collocation methods, one can find detailed analysis in [10].
To increase the convergence rate without adding collocation points, Conte and Paternoster studied
multistep collocation solutions with the help of employing approximations to numerical solutions
in computed steps in [17]. However, multistep methods usually tend to be unstable. Fazeli et al.
further investigated the stability of multistep collocation methods in [18], and found some super
implicit collocation solutions with wide stability regions. On the other hand, inspired by the study
of boundary value methodology for solving ODE (see [19]), several authors made contributions to
boundary value solutions to Volterra functional equations [20–22]. Based on interpolation outside
the current subinterval and approximated end values, the third author and Xiang devised CBVM
for second-kind VIEs in [22]. Furthermore, the third author extended said kind of methodology to
VIEs with weakly singular kernels by employing the fractional polynomial interplant in [23], and the
block CBVM for the first-kind VIE was investigated in [24]. In this section we first investigate the
construction of GMCk1,k2 M with the help of local polynomial interpolation. Then, the convergence
and linear stability analysis of GMCk1,k2 M are considered.

2.1. Discretization of VIE

Let the interval [0, T] be divided uniformly, that is,

Xh =
{

tj : tj = jh, j = 0, 1, · · · , N = T/h
}

.

Then define local basic functions

φ
k1,k2
j (s) =

k2+1

∏
i=−k1,i �=j

s − i
j − i

, j = −k1, · · · , k2 + 1, (2)

For the first k1 subintervals, that is, for any t ∈ [t0, tk1 ], the collocation polynomial is represented by

uh(tk1 + sh) =
k2+1

∑
i=−k1

yk1+iφ
k1,k2
i (s), s ∈ (−k1, 0], (3)

For k1 ≤ n ≤ N − k2 − 1, uh(t) over the interval [tn, tn+1] is rewritten as

uh(tn + sh) =
k2+1

∑
i=−k1

yn+iφ
k1,k2
i (s), s ∈ (0, 1], (4)
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In the last subinterval [tN−k2 , tN], we rewrite uh(t) as

uh(tN−k2−1 + sh) =
k2+1

∑
i=−k1

yN−k2−1+iφ
k1,k2
i (s), s ∈ (1, k2 + 1]. (5)

Finally, the collocation equation follows:

uh(tn) = f (tn) +
∫ tn

0
K(tn, s)uh(s)ds, tn ∈ Xh. (6)

A direct calculation leads to

yn − f (tn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h
∫ n−k1

−k1

K(tn, tk1 + sh)

(
k2+1

∑
i=−k1

yk1+iφ
k1,k2
i (s)

)
ds, n = 1, · · · , k1,

h
∫ 0

−k1

K(tn, tk1 + sh)

(
k2+1

∑
i=−k1

yk1+iφ
k1,k2
i (s)

)
ds

+h
n

∑
j=k1+1

∫ 1

0
K(tn, tj−1 + sh)

(
k2+1

∑
i=−k1

yj−1+iφ
k1,k2
i (s)

)
ds, n = k1 + 1, · · · , N − k2,

h
∫ 0

−k1

K(tn, tk1 + shsh)

(
k2+1

∑
i=−k1

yk1+iφ
k1,k2
i (s)

)
ds

+h
N−k2

∑
j=k1+1

∫ 1

0
K(tn, tj−1 + sh)

(
k2+1

∑
i=−k1

yj+i−1φk1,k2
i (s)

)
ds

+h
∫ n−N+k2+1

1
K(tn, tN−k2−1 + sh)

k2+1

∑
i=−k1

yN−k2−1+iφ
k1,k2
i (s)ds, n = N − k2 + 1, · · · , N.

(7)

Denoting

MOMb,d
a,c,i =

∫ b

a
K(tc, td + sh)φk1,k2

i (s)ds, (8)

we have for k = −k1, · · · , k2 + 1,

Ainitial
k = (a(k)i,j ) =

{
MOM

0,k1
−k1,n,j−k1−1, i ≤ N, j = k + k1 + 1,

0, others,

Amain
k = (b(k)i,j ) =

{
MOM

1,j−1
0,n,k , k1 < i ≤ N, i + k ≤ j ≤ i + k + min{0, n − N + k2 + 1},

0, others,

Aend
k = (c(k)i,j ) =

{
MOM

n−N+k2+1,N−k2−1
i,n,j−N+k2

, i > N − k2, j = N − k2 + k,
0, others.

Now we are able to rewrite Equation (6) in the closed form:

(I − hA(1 : N, 2 : N + 1))Y = F + hy0A(1 : N, 1), (9)

where I denotes the identity matrix, A =
k2+1

∑
k=−k1

Ainitial
k +

k2+1

∑
k=−k1

Amain
k +

k2+1

∑
k=−k1

Aend
k , Y =

[y1, y2, · · · , yN ]
T , and F = [ f (t1), f (t2), · · · , f (tN)]

T . By employing proper numerical integration
approaches such as Clenshaw–Curtis quadrature and applying iterative solvers to Equation (9), we are
able to obtain the collocation solution at the grid.
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2.2. Convergence Analysis with Respect to Stepsize

Now we turn to studying the convergence behavior of the piecewise collocation polynomial
computed by Equation (9). Firstly, we revisit some helpful results from approximation theory.

Lemma 1 ([10] p. 43). Consider the following assumption.

• Defining abscissa a ≤ ξ1 < ... < ξm ≤ b, we obtain the error between f (x) and the Lagrange
interpolation polynomial of degree m − 1 with respect to the given points {ξ j}.

εm( f ; x) = f (x)−
m

∑
j=1

Lj(x) f (ξ j), x ∈ [a, b],

where Lj(x) denotes Lagrange basis.
• Letting 1 ≤ d ≤ m, we suppose f (x) belongs to the space Cd[a, b].

Then we can represent the error function εm( f ; x) as follows.

εm( f ; x) =
∫ b

a
κd(x, t) f (d)(t)dt, x ∈ [a, b]. (10)

Here the kernel function κd(x, t) can be obtained by

κd(x, t) :=
1

(d − 1)!

{
(x − t)d−1

+ −
m

∑
j=1

Lj(x)(ξ j − t)d−1
+

}
,

and

(x − t)p
+ :=

{
0, x < t,

(x − t)p, x ≥ t.

Lemma 2 ([10] p. 81). Suppose that there a sequence {ki} with ki ≥ 0 and another sequence {εi} with ε0 ≤ ρ0.
Moreover, {ki} and {εi} satisfy

εn ≤ ρ0 +
n−1

∑
i=0

qi +
n−1

∑
i=0

kiεi, n ≥ 1,

with ρ0 ≥ 0, qi ≥ 0, i ≥ 0. Then

εn ≤
(

ρ0 +
n−1

∑
i=0

qi

)
e∑n−1

i=0 ki , n ≥ 1.

Existing studies show that we cannot compute collocation boundary value solutions by
recurrences. All numerical values should be computed simultaneously through solving linear systems.
Note that the element of hA(1 : N, 2 : N + 1) is bounded by

h(k1 + k2 + 1)K̄

∥∥∥∥∥ k2+1

∑
i=−k1

φ
k1,k2
i (t)

∥∥∥∥∥
∞

≤ hK̄2k1+k2+4,

where K̄ denotes the maximum of the kernel function K(t, s), and the above inequality is derived from
the Lesbegue constant of the polynomial interpolant (see [25]). We obtain hA(1 : N, 2 : N + 1) < 1
whenever h < (K̄2k1+k2+4)−1, which enables us to compute det(I − hA(1 : N, 2 : N + 1)) �= 0 by
Gaussian elimination, as is done in [22]. Therefore, the well-posedess of the solution computed by
GMCk1,k2 M is guaranteed. It is noted that when we encounter stiff problems, the maximum K̄ may be
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large, which implies we have to apply a particularly small stepsize h and restricts the application of the
collocation method. However, due to the compactness of Volterra integral operator, the spectrum of
hA(1 : N, 2 : N + 1) will be found in the neighborhood of 0 with a tolerance stepsize, and the multistep
collocation method is feasible in practical uses. In Figure 1, we show the discretized spectrum of
hA(1 : N, 2 : N + 1) by considering the kernel function K(t, s) = 50eiω(t−s) with the maximum 50.
It can be seen that eigenvalues are bounded by the unit circle when the stepsize decreases to 1/64,
which guarantees the solvability of the linear system.

Figure 1. The spectrum of hA(1 : N, 2 : N + 1) for various stepsizes h.

Furthermore, we arrive at the following theorem by employing Lemmas 1 and 2.

Theorem 3. Suppose that K(t, s), f (t) in VIE (1) are sufficiently smooth, that is, K ∈ Ck1+k2+2(D) and
f ∈ Ck1+k2+2(I). Furthermore, let uh(t) denote the collocation polynomial computed by GMCk1,k2 M with a
stepsize h. Then the collocation error eh(t) = u(t)− uh(t) in the collocation grid is bounded by

max
t∈Xh

|e(t)| ≤ Chk1+k2+2, (11)

where the constant C is independent of the stepsize h but depends on T.

Proof. Note that by

u(t) = f (t) +
∫ t

0
K(t, s)u(s)ds, t ∈ [0, T],

and

uh(t) = f (t) +
∫ t

0
K(t, s)uh(s)ds, t ∈ Xh,

we obtain the collocation error function eh(t) satisfying

eh(t) =
∫ t

0
K(t, s)eh(s)ds, t ∈ Xh. (12)

Let

Rk1,k2
n (v) :=

∫ k1+k2+1

0
κk2

k1
(v, z)u(k1+k2+2)(tn + zh)dz,
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where

κk2
k1
(v, z) :=

1
(k1 + k2 + 1)!

(
(v − z)k1+k2+1

+ −
k2+1

∑
j=−k1

φk1,k2
j (v)(j − z)+

)
.

For t ∈ [0, tk1 ], we have

eh(t) = eh(tk1 + sh) =
k2+1

∑
i=−k1

vk1+iφ
k1,k2
i (s) + hk1+k2+2Rk1,k2

0 (s), s ∈ [−k1, 0],

where vn := eh(tn). For t ∈ [tj, tj+1], j = k1, · · · , N − k2 − 1, we have

eh(t) = eh(tj + sh) =
k2+1

∑
i=−k1

vj+iφ
k1,k2
i (s) + hk1+k2+2Rk1,k2

j (s), s ∈ [0, 1].

For t ∈ [tN−k2 , tN ], we have

eh(t) = eh(tN−k2−1 + sh) =
k2+1

∑
i=−k1

vN−k2+iφ
k1,k2
i (s) + hk1+k2+2Rk1,k2

N−k2
(s), s ∈ [1, k2 + 1].

Furthermore, by letting

RESb,d
a,c,i =

∫ b

a
K(tc, td + sh)Rk1,k2

i (s)ds, (13)

we obtain

vn :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h
k2+1

∑
i=−k1

vi+k1 MOM
n−k1,k1
k1,n,0 + hk1+k2+3RES

n−k1,k1
k1,n,0 , n = 1, · · · , k1,

h
k2+1

∑
i=−k1

vi+k1 MOM
0,k1
−k1,n,i + hk1+k2+3RES

0,k1
−k1,n,0

+h
n−1

∑
l=k1

k2+1

∑
i=−k1

vl+iMOM1,l
0,n,i + hk1+k2+3

n−1

∑
l=k1

RES1,l
0,n,n−1 n = k1 + 1, · · · , N − k2,

h
k2+1

∑
i=−k1

vi+k1 MOM
0,k1
−k1,n,i + hk1+k2+3RES

k1,0
0,0,0

+h
N−k2−1

∑
l=k1

k2+1

∑
i=−k1

vl+iMOM1,l
0,n,i + hk1+k2+3

N−k2−1

∑
l=k1

RES1,l
0,n,l

+h
k2+1

∑
i=−k1

vi+N−k2 MOM
n−N+k2+1,n−k2−1
1,n,i

+hk1+k2+3RES
n−N+k2+1,N−k2−1
1,n,N−k2−1 n = N − k2 + 1, · · · , N.
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Suppose that MOMb,d
a,c,i and RESb,d

a,c,i are bounded by the constant B. It is easily noted from
Equations (8) and (13) that B does not depend on the stepsize. A direct calculation leads to

|vn| ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hB
k2+1

∑
i=−k1,i �=n−k1

|vi+k1 |+ h|vn|+ hk1+k2+3B, n = 1, · · · , k1,

hB
k2+1

∑
i=−k1,i �=n−k1

|vi+k1 |+ hk1+k2+3B + h(k1 + k2 + 2)|vn|

+hB
n−1

∑
l=k1

(
k2+1

∑
i=−k1,i �=n−l

|vl+i|+ hk1+k2+3B

)
, n = k1 + 1, · · · , N − k2,

hB
k2+1

∑
i=−k1,i �=n−k1

|vi+k1 |+ hk1+k2+3B + h(k1 + k2 + 2)|vn|

+hB
N−k2−1

∑
l=k1

(
k2+1

∑
i=−k1,i �=n−l

|vl+i|+ hk1+k2+3B

)

+hB
k2+1

∑
i=−k1,i �=n−N+k2+1

|vi+N−k2 |+ h|vn|+ hk1+k2+3B, n = N − k2 + 1, · · · , N.

Hence, we have

(1 − h(k1 + k2 + 2))|vn| ≤ hk1+k2+2B + h(k1 + k2 + 2)B
n+k2

∑
i=n+1

|vi|+ h(k1 + k2 + 2)B
n−1

∑
i=1

|vi|.

Since 1 − h(k1 + k2 + 2) ≈ 1 for sufficiently small stepsize h, we obtain

|vn| ≤ hk1+k2+2B̃ + hk2(k1 + k2 + 2)B̃‖eh‖∞ + h(k1 + k2 + 2)B̃
n−1

∑
i=1

|vi|.

According to Lemma 2, we have

‖eh‖∞ ≤ e(k1+k2+2)B̃ B̃hk1+k2+2 + he(k1+k2+2)B̃(k1 + k2 + 2)k2B̃‖eh‖∞,

or equivalently,

‖eh‖∞ ≤ e(k1+k2+2)B̃ B̃
1 − he(k1+k2+2)B̃(k1 + k2 + 2)k2B̃

hk1+k2+2

for sufficiently small stepsize h.

Example 1. Let us solve VIE with GMCk1,k2 M

u(t) = et +
∫ t

0
2 cos(t − s)u(s)ds, t ∈ [0, 2] (14)

with the exact solution u(t) = (1 + t)2et.

In this example, we test the performance of GMCk1,k2 M. We mainly focus on two terms of data,
the maximum of error functions (INAE), and the convergence order. Computed results are shown in
Tables 1–3.
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Table 1. Collocation error and convergence order of GMCk1,k2 M for Example 1.

GMC1,2M GMC1,3M
Error Order Error Order

N = 8 4.10 × 10−3 – 1.20 × 10−3 –
N = 16 4.13 × 10−4 3.31 2.72 × 10−5 5.46
N = 32 1.59 × 10−5 4.70 6.76 × 10−7 5.33
N = 64 5.34 × 10−7 4.90 1.22 × 10−8 5.79
N = 128 1.72 × 10−8 4.96 2.03 × 10−10 5.91
N = 256 5.45 × 10−10 4.98 3.27 × 10−12 5.96
Referenced Order 5.00 6.00

Table 2. Collocation error and convergence order of GMCk1,k2 M for Example 1.

GMC2,1M GMC2,3M
Error Order Error Order

N = 8 1.57 × 10−2 – 9.39 × 10−4 –
N = 16 4.77 × 10−4 5.04 3.91 × 10−6 7.91
N = 32 1.61 × 10−5 4.89 2.62 × 10−8 7.22
N = 64 5.32 × 10−7 4.92 1.97 × 10−10 7.05
N = 128 1.71 × 10−8 4.96 1.51 × 10−12 7.03
Referenced Order 5.00 7.00

Table 3. Collocation error and convergence order of GMCk1,k2 M for Example 1.

GMC3,1M GMC3,2M
Error Order Error Order

N = 16 1.58 × 10−5 – 4.57 × 10−7 –
N = 32 5.54 × 10−7 4.83 1.51 × 10−8 4.92
N = 64 1.12 × 10−8 5.63 1.60 × 10−10 6.57
N = 128 1.95 × 10−10 5.85 1.38 × 10−12 6.86
Referenced Order 6.00 7.00

It can be seen from these tables that as the quantity of nodes increases, absolute errors decay fast,
and as k1 and k2 get bigger, the convergence order enlarges. Besides, numerical results illustrate that
GMCk1,k2 M achieves the expected order of the estimate given in Theorem 3.

Remark 1. When numerical solutions of evolution equations are considered, Courant proposes that the
combination of a consistent and stable numerical approach led to its convergence, which contributes to the
foundation of classical numerical analysis theory of numerical studies on differential equations. On the other
hand, the above convergence analysis is based on a fixed integration interval [0, T], which differs from the
convergence analysis for evolution problems where we usually consider the case of T → ∞. In addition, it should
be noted that the convergence result in Theorem 3 does not guarantee a feasible approximation in practical
computation for long-time integration, especially when we are met with stiff problems. Therefore, we give linear
stability analysis of the presented collocation method in the forthcoming subsection.

2.3. Linear Stability Analysis

For a long-time integration problem, round-off errors may dramatically affect the numerical
solution. In this subsection, we analyze the collocation solution’s linear stability originating from

52



Mathematics 2020, 8, 2004

the study of numerical solutions of ordinary differential equations, where one usually considers the
test equation

y′(t) = λy(t), Re(λ) < 0.

Particularly, Brugnano and Trigiante investigated multistep methods for solving differential
problems with the above scalar equation in [19]. For the general linear multistep formula

k

∑
j=0

αjyn+j − hλ
k

∑
j=0

β jyn+j = 0,

we can introduce two polynomials

ρ(z) =
k

∑
j=0

αjzj, σ(z) =
k

∑
j=0

β jzj,

and define the associated characteristic polynomial π(z, q) = ρ(z)− qσ(z) with q = hλ. When π(z, q)
is a Schur polynomial for fixed q, the method is absolutely stable at q. For the moment the definition of
the region of absolute stability is

D := {q ∈ C : π(z, q) is a Schur polynomial}

If C− ⊆ D, the method is said to be A−stable.
Since both of discretization of ODE and VIE result in difference equations, we can investigate

the generalized multistep collocation method with the help of stability studies of ODE. Consider the
following test equation:

u(t) = 1 + λ
∫ t

0
u(s)ds, t ∈ [0, T], Re(λ) < 0. (15)

We turn to study the linear stability of the collocation solution by investigating Equation (15).
By applying GMCk1,k2 M we have

yj = 1 + λ
∫ jh

0
uh(s)ds, j = k1 + 1, ..., N − k2. (16)

Next, noting the difference between yj and yj−1 in Equation (15) leads to

yj − yj−1 = hλ
k2+1

∑
i=−k1

yj−1+i

∫ 1

0
φk

i (s)ds, j = k1 + 1, ..., N − k2. (17)

Then the characteristic polynomial is defined by

πk1,k2(z, q) = zk1+1 − zk1 − q
k1+k2+1

∑
i=0

zi
∫ 1

0
φk1,k2

i−k1
(s)ds = ρ(z)− qσ(z). (18)

Before investigating the linear stability region, we introduce some helpful definitions and theorems
in the version of GMCk1,k2 M.

Definition 4 ([19]). For any complex number q := hλ, if the collocation solution uh to Equation (15) computed
by GMCk1,k2 M goes to 0 as T goes ∞ for fixed stepsize, then GMCk1,k2 M is said to be absolutely stable at q.

Definition 5 ([19]). For any z ∈ S, if GMCk1,k2 M is absolutely stable at z, then the set S is said to be the
linear stability region of GMCk1,k2 M. Particularly, if the left part of the complex plane is contained in S,
then GMCk1,k2 M is said to be A−stable.
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Theorem 6 ([19]). For any complex number q, if roots of Equation (18) satisfy

|zk
1| ≤ · · · ≤ |zk

k1
| < 1 < |zk

k1+1| ≤ ... ≤ |zk
k1+k2+1|, (19)

then GMCk1,k2 M is stable at q.

By a direct calculation, we find that roots of πk1,k2(z, q) do not satisfy the condition given in
Theorem 6 in the case of k1 = k2. Hence, the region of stability cannot be shown. In Figures 2 and
3, we list the boundary locus corresponding to various multistep collocation methods with k1 �= k2,
where the boundary Γ is defined by

Γ := {z ∈ C, z =
ρ(eiθ)

σ(eiθ)
, 0 ≤ θ < 2π}.

It can be seen that these trajectories are Jordan curves, which implies Γ is the boundary of
corresponding absolute stability region. The stability region in Figure 2 is the part outside the
boundary curves, while that in Figure 3 is the inside part. Therefore, we can conclude that GMCk1,k2 M
has wide stability region in the case of k2 > k1. In addition, the boundary trajectories of GMCk1,k2M
and GMCk2,k1M are symmetric with respect to virtual axis.

Figure 2. Linear stability region for GMC1,2 M, GMC1,3 M, GMC2,3 M.

Figure 3. Linear stability region for GMC2,1 M, GMC3,1 M, GMC3,2 M.
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3. GMCk1 ,k2
M in the Case of ω � 1

When the oscillation parameter ω 
 1 in Equation (1), classical quadrature usually results in
time-consuming algorithms. Hence, we first give an efficient numerical approach for moments in
Equation (6) in this section. Then the frequency-explicit convergence analysis is presented.

3.1. Fast Calculation of Moments

Numerical studies of highly oscillatory integrals (HOIs) have been intensively focused on in the
past few decades. High-order algorithms, such as Filon-type quadrature [26], Levin quadrature [27],
and the numerical steepest decent method [28], have been proposed. In this subsection, we consider
a composite quadrature rule based on Xiang’s modified Filon-type quadrature developed in [29].

Consider the computation of

Ma,b
ω,n :=

∫ b

a
K(tn, s)eiωg(tn ,s)φ(s)ds, n = 1, 2, · · · , N. (20)

When the phase has no stationary points, that is, g′(tn, s) �= 0 for any s ∈ [a, b], let {ck}v
k=0 be

the equispaced nodes on the interval [a, b], that is, ck = a +
k
v
(b − a) for k = 0, · · · , v. In addition,

let {mk}v
k=0 denote a set of positive integers associated with nodes {ck}v

k=0, which helps represent
Hermite interplant later. Furthermore, define the function

σk(s) =

⎧⎪⎪⎨⎪⎪⎩
K(tn, s)φ(s)

g′(tn, s)
, k = 1,

σ′
k−1(s)

g′(tn, s)
, k ≥ 2.

Then we can find a polynomial p(s) =
N̂

∑
q=0

aqsq with N̂ =
v

∑
k=0

mk − 1 satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(g(c0)) = σ1(c0)

· · ·
p(m0−1)(g(c0)) = σm0−1(c0)

p(g(c1)) = σ1(c1)

· · ·
p(m1−1)(g(c1)) = σm1−1(c1)

· · ·
p(g(cv)) = σ1(cv)

· · ·
p(mv−1)(g(cv)) = σmv−1(cv)

With the coefficients aq by solving the above linear system, we can approximate Ma,b
ω,n by

∫ g(tn ,b)

g(tn ,a)
p(s)eiωsds =

N̂

∑
q=0

aq

∫ g(tn ,b)

g(tn ,a)
sqeiωsds,

where
∫ g(tn ,b)

g(tn ,a)
sqeiωsds can be calculated by incomplete Gamma function.

In the case of g′(tn, s) = 0 for some s ∈ [a, b], suppose s = a without loss of generality. Then we
insert the grid points

a, a +
20

ω
, a +

2
ω

, a +
22

ω
, · · · , a +

2m

ω
, b,
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where m is the maximum integer less than log2 ω(b − a). Integration with Xiang’s Filon quadrature in
each subintervals results in the composite Filon quadrature. It is noted that the integral over the first
interval is non-oscillatory and we can employ classical quadrature such as Gauss or Clenshaw–Curtis
instead to avoid the stationary problem.

3.2. Convergence Analysis with Respect to the Frequency

Collocation methods with high-order quadrature usually lead to a class of fascinating algorithms,
which are able to provide high-precision collocation solutions in the case of high frequency. In this
subsection, we consider the general oscillator and investigate the convergence analysis for multistep
collocation solutions, where the convergence order is represented by the frequency parameter ω.

Firstly, let us restrict ourselves to considering the following set of functions.

Definition 7. Given any bivariate function g(t, s) defined on [0, T]× [0, T], suppose that g(t, s) has several
stationary points ξ1, · · · , ξnt over [0, T] for any fixed t, and⎧⎪⎪⎪⎨⎪⎪⎪⎩

g′(t, ξ1) = · · · = g(r1)(t, ξ1) = 0, g(r1+1)(t, ξ1) �= 0
g′(t, ξ2) = · · · = g(r2)(t, ξ2) = 0, g(r2+1)(t, ξ2) �= 0,
· · ·
g′(t, ξnt) = · · · = g(rN)(t, ξnt) = 0, g(rnt+1)(t, ξnt) �= 0.

Let ρ(t) = max
i=1,··· ,nt

{ri} and r = sup
t∈[0,T]

{ρ(t)}. Then g(t, s) is said to be in A(r).

Secondly, we give a slight extension of the classical van der Corput Lemma (see [4] p. 333).

Lemma 8. Suppose that g(t, s) ∈ A(r). Moreover, suppose φ(s) ∈ C1(a, b) and φ′(s) is integrable. We can
conclude that ∣∣∣∣∫ b

a
φ(s)eiωg(tn ,s)ds

∣∣∣∣ ≤ Cω−1/(r+1). n = 1, 2, · · · , N.

Here the constant C is independent of ω.

Finally, we are able to develop the convergence behavior of collocation polynomials computed by
GMCk1,k2 M in the highly oscillatory case.

Theorem 9. Assume both of g(t, s) ∈ A(r) and f are sufficiently smooth. Then the numerical solutions derived
from GMCk1,k2 M for VIE (1) satisfy

max
t∈Ih

{|u(t)− uh(t)|} = O(ω−1/(r+1)), ω → ∞. (21)

Proof. To begin with, we explore the boundedness of the solution u(t) to Equation (1) and its derivative.
By applying Picard iteration, we can rewrite u(t) as

u = f +
∞

∑
j=1

(Kj f ). (22)

Here K denotes the integral operator

(Kφ)(t) :=
∫ t

0
K(t, s)eiωg(t,s)φ(s)ds
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According to Lemma 8, we get that u(t) is bounded as ω → ∞. On the other hand, the derivative
can be rewritten by a direct calculation

u′(t) = f ′(t) +
∞

∑
j=1

(
K(t, t) f (t)eiωg(t,t)(Kj−1 f )(t) + iω

∫ t

0
K(t, s) f (s)g′(t, s)eiωg(t,s)(Kj−1 f )(s)ds

)

= f ′(t) +
∞

∑
j=1

(Ij + II j
)

,

where

Ij := K(t, t) f (t)eiωg(t,t)(Kj−1 f )(t), II j := iω
∫ t

0
K(t, s) f (s)g′(t, s)eiωg(t,s)(Kj−1 f )(s)ds.

By letting ω → ∞, Ij is bounded due to Lemma 8, and II j is bounded by noting that g′(t, s)
vanishes at s = 0.

When noting that the collocation error function eh(t) defined in the previous section satisfies

eh(t) =
∫ t

0
K(t, s)eiωg(t,s)eh(s)ds, t ∈ Xh, (23)

we obtain

(I − hA(1 : N, 2 : N + 1))eh = R, (24)

where

eh =

⎛⎜⎜⎜⎝
eh(t1)

eh(t2)

· · ·
eh(tN)

⎞⎟⎟⎟⎠ , R =

⎛⎜⎜⎜⎜⎜⎜⎝
hk1+k2+3RES1,0

0,0,0
hk1+k2+3RES2,0

0,0,0
· · ·

hk1+k2+3RES
k1,0
0,0,0 + hk1+k+2+3

N−k2−1

∑
l=k1

RES1,l
0,N,N + hk1+k2+3RES

k2+1,N−k2−1
0,n,N−k2−1

⎞⎟⎟⎟⎟⎟⎟⎠
Since both of u(t) and uh(t) are bounded as ω → ∞, employing Lemma 8 implies

|MOMb,d
a,c,i| ≤ Cω−1/(r+1), |RESb,d

a,c,i| ≤ Cω−1/(r+1).

Hence for fixed stepsize h, I − hA(1 : N, 2 : N + 1) is invertible for sufficiently large ω, and we
can represent eh by

eh = (I − hA(1 : N, 2 : N + 1))−1R.

By noting that maximum of R goes to 0 with a speed of O(ω−1/(r+1)) as ω goes to ∞, we obtain
the estimate (21).

In the following example, we test the convergence rate of GCM1,2M in the case of high frequency.

Example 2. In this example, we solve the following VIE with GCM1,2M,

u(t) +
∫ t

0
eiω(t−s)u(s)ds = et, t ∈ [0, 1]. (25)

The exact solution is u(t) =
(∫ t

0
(−ces)e−csds + 1

)
ect, c = iω − 1.

In Figure 4, we plot the scaled infinite norm of absolute error according to the corresponding
order by letting N = 32, and ω varies from 50 to 1000. The left part shows the infinite norm of the
error and the right part shows the absolute error scaled by corresponding rates. It can be seen that the
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increase of the frequency parameter ω makes the absolute error get smaller. This indicates as the kernel
becomes more highly oscillatory, computed approximation becomes more accurate. Considering the
right part of Figure 4, we find that when the frequency parameter ω reaches 150, the curve turns to a
horizontal straight line, which is in agreement with the estimate given in Theorem 9.

ω

×

ω

ω

Figure 4. GMCk1,k2 M for the highly oscillatory problem.

4. Final Remark

For VIEs with oscillatory and non-oscillatory kernels, we have investigated the generalized
multistep collocation solution to VIE (1). Detailed convergence properties with respect to the stepsize
and oscillation are presented. Noting that the new approach coupled with mild composite oscillatory
quadrature rules is able to produce high-order approximation as the frequency goes to infinity, we could
expect it is valuable to conduct further studies in related highly oscillatory problems, such as oscillatory
Riemann–Hilbert problems, spectral calculation of oscillatory Fredholm operators, and so on.
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Abstract: In the study of water transference in soil according to Darcy law, the knowledge
of hydrodynamic characteristics, formed by the water retention curve θ(ψ), and the hydraulic
conductivity curve K(ψ) are of great importance. The first one relates the water volumetric content (θ)
with the water-soil pressure (ψ); the second one, the hydraulic conductivity (K) with the water-soil
pressure. The objective of this work is to establish relationships between both curves using concepts
of probability theory and fractal geometry in order to reduce the number of unknown functions.
The introduction of four definitions used at the literature of the pore effective radius that is involve
in the general model has permitted to establish four new specials models to predict the relative
hydraulic conductivity. Some additional considerations related to the definitions of flow effective
area and the tortuosity factor have allow us to deduce four classical models that are extensively used
in different studies. In particular, we have given some interpretations of its empirical parameters in
the fractal geometry context. The resulting functions for hydrodynamic characteristics can be utilized
in many studies of water movement in the soil.

Keywords: areal porosity; volumetric porosity; fractal area-volume relationship; tortuosity factor;
joint probability

1. Introduction

Darcy’s law [1] establishes that the water flow in porous media is proportional to the hydraulic
gradient; the proportionality coefficient is denoted hydraulic conductivity (K). The law, discovered in
the context of water flow in saturated soils, has since been generalized to flow in unsaturated soil [2].
In saturated soils, conductivity is independent of water pressure, whereas in unsaturated soils it is a
highly nonlinear function of pressure (ψ), or volumetric water content (θ) [3–8].

The saturated hydraulic conductivity, denoted KS, is at most a function of spatial coordinates.
In unsaturated soils the hydraulic conductivity is a function of water pressure K(ψ) as well as spatial
coordinates. In such cases the soil-water retention curve θ(ψ) is needed to relate volumetric water
content to soil-water pressure. The two curves θ(ψ) and K(ψ) are known as the soil hydrodynamic
characteristics and are important to the study of mass and transfers such as infiltration, drainage and
evaporation, and groundwater recharge [2,9–12].

The aim of the present work is to establish relationships between the soil-water retention curve
and hydraulic conductivity curve, using concepts of probability theory and fractal geometry in order
to reduce the amount of unknown functions in the unsaturated soil zone. Soil here is considered as
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a set of Lebesgue measure different than zero. This does not consider sets which porosity is a unity,
such as Menger sponge, which may not represent natural soil.

2. Materials and Methods

2.1. A General Model of Hydraulic Conductivity

A conceptual model for the hydraulic conductivity based on Poiseuille law of water flow in
capillary tubes has been proposed at the literature [13–18]. The model has the general form:

K = fCf

∫
Ω

(R/T)2dω (1)

where Ω represents the water flow area divided by total area of the exposed face [13]; f = ρw g/η is the
fluidity, ρw is water density, η is the dynamical viscosity coefficient, g is the gravitational acceleration;
R is the pore radius; the non-dimensional coefficient (Cf) take in account the irregular shape of the
pore perimeter, for a circular pore Cf = 1/8; if R is taken as the hydraulic radius then Cf is called Koseny
coefficient [19] with Cf = 1/2 for a circle; T is the tortuosity factor defined as T = dzf/dz ≥ 1, where z
is the rectilinear path of water particles following macroscopic direction of the movement and zf is
the actual path of water particles [20]; ω is the water flow effective area relative to total area of soil or
partial effective areal porosity.

The effective area definition is established by Fuentes et al. [14–18] from the probabilistic idea of
Childs and Collis–George [21] and fractal geometry concepts. After a perpendicular cut to macroscopic
trajectory of water we obtain two faces, which are located at z and z + dz positions (Figure 1); the radii
of pores of the z-face are denoted by r and those of the z + dz-face are denoted by ρ. A water particle
in a pore of z-face can continue its trajectory by the same pore or by other pore of equal or different
radius. The introduction of the joint probability of the two faces at intermediate point z + 1/2 dz allows
the modeling of these possibilities.

Figure 1. A cross section in the perpendicular macroscopic direction of the water flow. In the z-face the
different pore radius are represented by r and in the z + dz-face the different pore radius are represented
by ρ, where dz is the pore size order.

We consider a completely saturated soil. Childs and Collis–George [21] assume that the pore
size distribution f(r) is the same at both faces and that dθ(r) = f(r)dr is the water content in the pore
interval containing r, (r − 1/2 dr, r + 1/2 dr), and dθ(ρ) = f(ρ)dρ is the water content in the pore interval
containing ρ, (ρ − 1/2 dρ, ρ + 1/2 dρ), at the other face. The completely random joint probability of
all the pores represented by these intervals is equal to the product of these probabilities, provided
that dz is of the order of a pore size and less than a characteristic particle size. The product of dθ(r)
and dθ(ρ) represents the flow effective area dω(r,ρ) = dθ(r)dθ(ρ) = f(r)dr f(ρ)dρ, which integration
over whole pore domain gives the total effective flow area μ = φφ = φ2, where μ represents also a
total effective areal porosity and φ the total volumetric porosity. In a parallel capillary system, a water
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particle moves always in the same capillary and the effective area is equal to volumetric porosity
dω(r) = dθ(r) = f(r)dr, which integration gives μ = φ [22].

In probabilistic terms, the Purcell model represents a complete correlation between the two
faces, whereas the Childs and Collis–George model represents a complete decorrelation, these models
represent the possible extreme behaviors. Mualem and Dagan [13] show that the Purcell model can be
formally deduced from the Childs and Collis–George model if the flow effective area is defined as
dω(r, ρ) = f(r)dr δ(ρ − r) dρ, where δ indicates the Dirac delta.

An intermediate approach between the Purcell and Childs and Collis–George models is proposed
by Millington and Quirk [23]. These authors suppose that, if the areal porosity at each face isφs, then the
effective areal porosity at intermediate point is μ = φsφs where s = 1/2 represent the Purcell model
and s = 1 the Childs and Collis–George model. Further, since φ2s ≤ φ, Millington and Quirk proposed
to add the larger solid area (1 − φ)s to φ2s, in order to obtain the total area, that is (1 − φ)s + φ2s = 1.
In most studies about soil structure, it is studied as a fractal object [16,17,24–28]. In this context,
we’ll offer an interpretation of the relationship (1 − φ)s + φ2s = 1.

In Euclidean geometry we have V ∝ L3 and A ∝ L2, where V, A, and L are the volume, area
and length in an object, respectively; for example in a sphere V = 4/3πr3, A = 4πr2, L = r; since
L ∝ V1/3 we have A ∝ V2/3. Using the Mandelbrot [29] area–volume relationship in fractal geometry we
have A ∝ VD/E, where D is the particle surface fractal dimension or the particle-pore interface fractal
dimension and E = 3 is the Euclidean dimension of the space where the object is embedded.

In a cross section, the total area is the sum of the solid cross-sectional area and the pore
cross-sectional area. If μs = 1 − μ is the solid cross-sectional area relative to the total area (call it
the areal solidity), and φs = 1 − φ is the solid volume relative to soil volume (call it volumetric
solidity), then μs = φs

s, or 1 − μ = (1 − φ)s, where s = D/E is the fractal dimension relative to Euclidean
dimension. Following the probabilistic idea, the areal and volumetric porosities relationship resulting
is μ = φsφs = φ2s; s = 1/2 corresponds to Purcell model and s = 1 to Childs and Collis–George model.
Notice that the solid area takes the exponent s rather than 1-s; this is because μs = φs

s is Hausdorff
measure of the solid phase. The exponent 1-s is important in the calculus of the parallel body volume
of a fractal [30].

The r-parallel body of a set F is defined by Pr(F) =
{
x ∈ �E :

∣∣∣x− y
∣∣∣≤ r, y ∈ F

}
where �E is the

E-cartesian product of real numbers and represents soil (both pores and solids), F is the solids and
�E − F the pores. Clearly, F is contained in Pr(F). The volume of a parallel body is obtained as the
product of the cover set’s volume, crE where c is a form coefficient (c= 1 if all covers are parallelepipeds),
and the number of covers; therefore: volE(Pr) = NrcrE. Considering that Nr ∝ r−D when r→ 0 ,
we obtain volE(Pr) ∝ rE−D. It must be noted that the body parallel volume of the solids is not the same
as the porous volume; it would, however, be the same if porosity tends to unity and if F were dense
in�E.

Since μs + μ = 1, the relationship between the relative fractal dimension and the total volumetric
porosity is defined implicitly by the equation:

(1 − φ)s + φ2s = 1 (2)

where s = D/E. It can be shown that μ ≤φ, s→1/2 when φ→0, and s→1 when φ→1, in other words
1/2 < s < 1 when 0 < φ < 1.

From mass additive property we deduce the relationship ρt = ρs φs + ρv φ, where ρt is the total
density of soil, ρs the density of solids, and ρv the density of pores; if this last one is considered
null, we get the classic φ = 1 − ρt/ρs formula for estimating porosity, where ρt becomes the total
density of dry soil. The comparison with Equation (2) allows us to deduce that ρs/ρt = φs−1

s and
ρv/ρt = φ2s−1. The first could also be written as ρs/ρt = φs−1

s /φs, which is the quotient of Hausdorff
measure and Lebesgue measure of solids. The second one can be interpreted as the quotient of the
pores Hausdorffmeasure and the pores parallel body volume if we write ρv/ρt = φs/φ1−s. It can be
shown that φs ≤ φ1−s

s / and φ ≤ φ1−s.
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Clearly the relation s(φ) defined by Equation (2) cannot by applied, for instance, to Menger sponge,
where φ= 1 and s = log20/3log3 � 0.9089; in other words, this relationship cannot be applied to any
abstract sets where Lebesgue measure is zero (φs = 0) and s < 1. Because relation s(φ) established a
one-to-one relationship between porosity and the fractal dimension of solid pore interphase, it may not
work for certain types of soils. However, their implications in the modeling of hydraulic conductivity
are being investigated.

For the modeling of the hydraulic conductivity of unsaturated soils we accept the classic hypothesis
that the water is contained in saturated pores with radius r, where 0 < r < R, for a given water content
θ(R). Consequently, the effective area of flux, or partial area porosity, is the generalization of μ = φs φs:

dω(r, ρ) = dθs(r)dθs(ρ) (3)

As concerns the tortuosity factor, it was demonstrated in Fuentes et al. [17] that R is the pore radius
measured perpendicularly to actual trajectory of the water particles (zf) and Rs is its projection in the
macroscopic direction (z), consequently Rs/R = dz/dzf = 1/T. According to the probabilistic idea
we have Rs ∝ RsRs = R2s, which we can write as an equality Rs/Rso = (R/Ro)

2s with Rso = Ro/To,
where Ro is a reference radius and To the associated tortuosity factor. The pore radius-tortuosity factor
relationship resulting is:

T(R) = To(Ro/R)δ (4)

where 0 < δ = 2s− 1 < 1.
The general hydraulic conductivity model results of the introduction of the Equations (2) and (4)

in the Equation (1):

K = f
Cf

T2
oR2(2s−1)

o

∫
Ω

R4s(r, ρ)dθs(r)dθs(ρ) (5)

The saturated hydraulic conductivity (Ks) is obtained from Equation (5), replace Ω by the total
pore domain ΩT.

2.2. Classical Models of Hydraulic Conductivity

Classic models reported in literature may be deduced from the proposed general
model, provided that certain hypotheses are introduced. From Equation (3) we can deduce
dω(r, ρ) = s2[θ(r)]s−1[θ(ρ)]s−1dθ(r)dθ(ρ), with 0 < r < R and 0 < ρ < R. Assuming that the
multiplicative function of the θ(r) and θ(ρ) differentials can be replaced by a medium value,
which clearly depends on a superior limit, we have:

dω(r, ρ; R) = [θ(R)]2s−2dθ(r)dθ(ρ) (6)

where the s2 term has been eliminated to satisfy:

R∫
0

R∫
0

dω(r, ρ; R) = ω = θ2s (7)

Likewise, tortuosity will depend only on the major radius, that of θ(R). We know that for a small
R θ(R) = φ(R/Ro)λ, where Ro is the radius of a reference pore and λ > 0 is an index of pores (Brooks
and Corey, 1964). From Equation (4) we obtain that:

T(R) = To

[
φ

θ(R)

]γ
with γ =

δ

λ
(8)

In several articles [24,25] has been suggested that partial volumetric porosity is proportional to the
volume of the parallel body, which means that θ(R)∝RE-D, where the fractal dimension D is estimated
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from soil-water retention curve, a result that’s valid when porosity tends to unity. If that’s the case,
we get:

λ = E−D (9)

Considering Equations (6) and (8), Equation (1) becomes:

K = f
Cf

T2
o
φ2s−2

[
θ

φ

]p∫
Ω

[R(r, ρ)]2dθ(r)dθ(ρ) with p = (2s− 2) + (2γ) (10)

In the power p, the first addend represents the global effects of the correlation among pores,
whereas the second represents the global effects caused by the tortuosity of flow trajectories.

For each relation between the effective radius R(r,ρ) and the radii r and ρ we can deduce a special
model of the hydraulic conductivity. We will obtain four models corresponding to four relations
R(r,ρ) utilized in models of the hydraulic conductivity reported at the literature: (i) ‘small pore’ model
R(r,ρ) =min(r,ρ) used by Childs and Collis–George [21]; (ii) ‘geometric pore’ model R(r, ρ) =

√
rρ used

by Mualem [31]; (iii) ‘neutral pore’ model R(r,ρ) = either r or ρ corresponding to Burdine (1953) model;
and iv) ‘large pore’ model R(r,ρ) =max(r,ρ) used by Fuentes [14]. Following the general indications of
Brutsaert [32] for the integration of the Equation (10), the resulting special models are:

Small pore model: R(r, ρ) = min(r, ρ).

K(θ) = f
2Cf

T2
o
φ2s−2

[
θ

φ

]p θ∫
0

[θ− ϑ]r2dϑ (11)

This is the model of Childs and Collis–George [21], with a correction factor [θ/φ]p.
Geometric pore model: R(r, ρ) =

√
rρ.

K(θ) = f
Cf

T2
o
φ2s−2

[
θ

φ

]p⎡⎢⎢⎢⎢⎢⎢⎢⎣
θ∫
0

rdϑ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
2

(12)

This model presents the structure of Mualem’s model [31] with p = 1/2.
Neutral pore model: R(r, ρ) = either r or ρ.

K(θ) = f
Cf

T2
o
φ2s−1

[
θ

φ

]p+1 θ∫
0

r2dϑ (13)

This model presents the structure of Burdine’s model [33] with p = 1.
Large pore model: R(r, ρ) = max(r, ρ).

K(θ) = f
2Cf

T2
o
φ2s−2

[
θ

φ

]p θ∫
0

r2ϑdϑ (14)

Childs and Collis–George [21] suppose that the resistance to the flow is determined by the
small pore. Whereas Fuentes [14] proposes that, to deduce the opposite behavior, the conductance
is determined by the pore of greater size [17]. Mualem [31] gives a little more weight to the large
pore by proposing the geometric mean. The Burdine model is deduced when the pores sizes have the
same weight.
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The classic models are reported for relative hydraulic conductivity [Kr(θ)] and they are in function
of the retention curve ψ(θ). These are obtained from Equations (11)–(14) with the rule Kr(θ)=K(θ)/K(θs),
and the introduction of the Young–Laplace–Jurin law for the capillary rise phenomena:

ψ = −�
2
L

R
cos(αc) (15)

where the scale or capillary number (�L) is defined by �L =
√

2σ/ρwg [34], σ is the interfacial tension,
�L � 0.386 cm at 20 ◦C; αc is the contact angle formed between the air–water interface and the solid
particles, assumed generally constant and equal to zero.

Classic models also consider the residual water content θr, defined by Brooks and Corey [35]
as K(θr) = 0. This can be incorporated in the precedent models replacing θ by the effective water
content θef = θ − θr, and φ by the effective volumetric porosity φef = φ − θr. The exponent s must be
calculated by replacing φ with effective porosity (φef) in Equation (3); θr is added to solid particles,
i.e., φsef = 1 − φef = φs + θr. In the classical conductivity models, the porosity φ is replaced by the
volumetric water content to natural saturation θs, when entrapped air is considered.

The power p that appears in models (11)–(14) has been considered as an empiric parameter.
This power (p = p1 + p2) is the result of the effects of correlation between pores, [θ(R)] p1 with
p1 = 2s − 2, and tortuosity T2(R) = T2

o[φ/θ(R)] p2 with p2 = 2(2s− 1)/λ. To know the order of
magnitude of the power p2 we assume that the particle surface fractal dimension is roughly equal to
the fractal dimension estimated from the soil-water retention curve, i.e., from Equation (9) λ � 3(1 − s),
hence p2 � 2(2s − 1)/3(1 − s). In consequence, the value of p may be estimated from porosity, some of
which are shown in Table 1.

Table 1. Predicted values of the exponent p of the classical hydraulic conductivity models, which
results from the effect of the pore correlation (p1) and the tortuosity factor (p2), for some values of the
total volumetric porosity.

φ S = D/3 p1 p2 p = p1 + p2

0 1/2 −1 0 −1
0.3671 2/3 −2/3 2/3 0

1/2 0.6942 −0.6115 0.8470 0.2355
0.6180 0.7202 −0.5596 1.0494 0.4898

1 1 0 ∞ ∞

The approximate value of p ≈ 1/2 was obtained by Mualem [31] from the calibration of Equation
(12) over the experimental data of 45 soils reported in different works, with total volumetric porosity
in the range of 0.4 < φ < 0.7. According to Table 1, these soils may be represented by a soil with an
average porosity of roughly 0.6.

3. Results and Discussion

3.1. Some New Models of Hydraulic Conductivity

We may obtain new hydraulic conductivity models from the general model established by
Equation (5), without the introductions of those hypotheses established in Equations (6) and (8) to
deduce the classic conductivity models, which may be restricted.

Each of the R(r,ρ) relationships mentioned above corresponds to a specific model of hydraulic
conductivity. And again, following Brutsaert [32] for the integration of the Equation (5), the resulting
special models are:
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Small pore model: R(r, ρ) = min(r, ρ)

K(R) = f
2Cf

T2
oR2(2s−1)

o

R∫
0

[θs(R) − θs(r)] r4sdθs(r) (16)

Geometric pore model: R(r, ρ) =
√

rρ.

K(R) = f
Cf

T2
oR2(2s−1)

o

⎡⎢⎢⎢⎢⎢⎢⎢⎣
R∫
0

r2sdθs(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
2

(17)

Neutral pore model: R(r, ρ) = r or R(r, ρ) = ρ.

K(R) = f
Cf

T2
oR2(2s−1)

o

θs(R)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
R∫
0

r4sdθs(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (18)

Large pore model: R(r, ρ) = max(r, ρ).

K(R) = f
2Cf

T2
oR2(2s−1)

o

R∫
0

r4sθs(r)dθs(r) (19)

Note that the Equations (17) and (18) can be generalized assuming R(r, ρ) = rαρ1−α,
where 0 ≤ α ≤ 1; the Equation (17) follow with α = 1/2 and the Equation (18) with α = 0 or α

= 1.
To obtain specific functions from new special models is necessary to provide the function θ(R).

This can be obtained from the soil-water retention curve θ(ψ), relating the soil-water content to
soil-water pressure, and the Laplace law, defined by the Equation (15).

From Equations (16)–(19) we can obtain the corresponding models to calculate the relative
hydraulic conductivity from the retention curve:

K(Θ)

Ks
=

Θ∫
0

(Θs − ϑs)
ϑs−1∣∣∣ψ(ϑ)∣∣∣4s

dϑ
/ 1∫

0

(1− ϑs)
ϑs−1∣∣∣ψ(ϑ)∣∣∣4s

dϑ (20)

K(Θ)

Ks
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Θ∫
0

ϑs−1∣∣∣ψ(ϑ)∣∣∣2s dϑ
/ 1∫

0

ϑs−1∣∣∣ψ(ϑ)∣∣∣2s dϑ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
2

(21)

K(Θ)

Ks
= Θs

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Θ∫
0

ϑs−1∣∣∣ψ(ϑ)∣∣∣4s
dϑ
/ 1∫

0

ϑs−1∣∣∣ψ(ϑ)∣∣∣4s
dϑ

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (22)

K(Θ)

Ks
=

Θ∫
0

ϑ2s−1∣∣∣ψ(ϑ)∣∣∣4s
dϑ
/ 1∫

0

ϑ2s−1∣∣∣ψ(ϑ)∣∣∣4s
dϑ (23)

where Θ = (θ− θr)/(θs − θr) is an effective degree of saturation.
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3.2. Applications

3.2.1. Brooks and Corey Equation

The equation proposed by Brooks and Corey [35] to represent the soil-water retention curve is:

Θ = (ψcr/ψ)λ (24)

if ψ < ψcr, and Θ = 1 if ψcr ≤ ψ; where ψcr is a critical pressure and λ > 0 is an index of the pore
distribution. The assumption λ = E − D [24,25] is not used here.

The introduction of the Equation (24) in the Equations (20)–(23) gives the same expression for the
relative hydraulic conductivity:

K(Θ)/Ks = Θ2s(2/λ+1) (25)

The saturated hydraulic conductivity is given by:

Ks = fCf(θs − θr)
2s(Ro/To)

2Λ (26)

where we have defined Ro = λL

(
λL/
∣∣∣ψcr

∣∣∣). The factor Λ is different for each model: small pore

Λs = 1/[2(2/λ+ 1/2)(2/λ+ 1)]; geometricpore Λg = 1/(2/λ+ 1)2; neutralpore ΛN = 1/[2(2/λ+ 1/2)];
and large pore ΛL = 1/(2/λ+ 1). The following inequalities are satisfied Λs < Λg < ΛN < ΛL,
the equalities are given at extremes (λ→ 0, ∞ ). When λ→ 0 we have: Λs = λ2/8 < Λg = λ2/4 <
ΛN = λ/4 < ΛL = λ/2.

The corresponding saturated hydraulic conductivity value satisfies the inequalities:
Kss < Ksg < KsN < KsL.

3.2.2. Generalized Power Function

One of the larger groups of models used to represent the soil–water retention curve is the following
power function [36]:

ψ = ψdΘ−1/λ
(
1−Θ1/m

)1/n
(27)

where ψd is a pressure scale; m > 0, n > 0 and λ > 0 are three form parameters.
In Equation (27), we can note when Θ→ 0 we obtain the Brooks and Corey [35] equation, and when

λ =mn we obtain the van Genuchten equation [37]:

Θ(ψ) =
[
1 + (ψ/ψd)

n
]−m

(28)

Introducing the Equation (27) in the Equations (20)–(23) we obtain, respectively:

K(Θ)

Ks
=

ΘsBI
(
Θ1/m; 4sm/λ+ sm, 1− 4s/n

)
− BI
(
Θ1/m; 4sm/λ+ 2sm, 1− 4s/n

)
B(4sm/λ+ sm, 1− 4s/n) − B(4sm/λ+ 2sm, 1− 4s/n)

(29)

K(Θ)/Ks =
[
βI

(
Θ1/m; 2sm/λ+ sm, 1− 2s/n

)]2
(30)

K(Θ)/Ks = ΘsβI

(
Θ1/m; 4sm/λ+ sm, 1− 4s/n

)
(31)

K(Θ)/Ks = βI

(
Θ1/m; 4sm/λ+ 2sm, 1− 4s/n

)
(32)

where βI(x; p, q) = BI(x; p, q)/B(p, q), BI(x; p, q) is the incomplete beta function of variable x and
parameters p > 0 and q > 0 and B(p,q) = BI(1:p,q) is the complete beta function.

We can obtain closed-form equations accepting the van Genuchten [37] idea consisting in to
assign integral values to parameter p of the beta function and specially p = 1; this conduces to
impose relationships between the form parameters of the soil–water retention curve. This idea is
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only applicable to models defined by Equations (30)–(32) because the unicity of these relationships.
From Equation (29) we can obtain only closed-form equations of the first or second integral of the
numerator, the result is an incomplete closed-form formula (semi closed-form) of the conductivity.

Small pore model:

K(Θ)

Ks
=

ΘsBI
(
Θ1/m; 1, 1− 4s/n

)
− BI
(
Θ1/m; 1 + sm, 1− 4s/n

)
B(1, 1− 4s/n) − B(1 + sm, 1− 4s/n)

, λ =
4sm

1− sm
(33)

K(Θ)

Ks
=

ΘsBI
(
Θ1/m; 1− sm, 1− 4s/n

)
− BI
(
Θ1/m; 1, 1− 4s/n

)
B(1− sm, 1− 4s/n) − B(1, 1− 4s/n)

, λ =
4sm

1− 2sm
(34)

with n > 4s and BI
(
Θ1/m; 1, 1− 4s/n

)
= (1− 4s/n)−1

[
1−
(
1−Θ1/m

)1−4s/n
]
.

Geometric pore model:

K(Θ)/Ks =
[
1−
(
1−Θ1/m

)1−2s/n
]2

, λ =
2sm

1− sm
(35)

with n > 2s.
Neutral pore model:

K(Θ)/Ks = Θs
[
1−
(
1−Θ1/m

)1−4s/n
]

, λ =
4sm

1− sm
(36)

with n > 4s.
Large pore model:

K(Θ)/Ks = 1−
(
1−Θ1/m

)1−4s/n
, λ =

4sm
1− 2sm

(37)

with n > 4s.
We can note that soil–water retention curves induced by Equations (33) and (34) are equals to

those induces by Equations (36) and (37), respectively.
The use of models (33)–(37) reduces the form parameters number of the soil–water retention curve

defined by Equation (27): the three independent parameters {m, n, λ} are reduced to two parameters
{m, n}.

The form parameters can even be reduced to one. If we assume λ = mn in the Equation (27)
we obtain van Genuchten equation, Equation (28), which makes the function Θ(ψ) explicit where
the form parameters {m, n} are still independent. If we accept the relationships between λ and
m used to obtain Equations (33)–(37), the Equation (27) will have only one form parameter (m).
The corresponding models of the conductivity associated to van Genuchten equation with a form
parameter are the following:

Small pore model:

K(Θ)

Ks
=

ΘsBI
(
Θ1/m; 1, sm

)
− BI
(
Θ1/m; 1 + sm, sm

)
B(1, sm) − B(1 + sm, sm)

, 0 < sm = 1− 4s/n < 1 (38)

K(Θ)

Ks
=

ΘsBI
(
Θ1/m; 1− sm, sm

)
− BI
(
Θ1/m; 1, sm

)
B(1− sm, sm) − B(1, sm)

, 0 < 2sm = 1− 4s/n < 1 (39)

Geometric pore model:

K(Θ)/Ks =
[
1−
(
1−Θ1/m

)sm]2
, 0 < sm = 1− 2s/n < 1 (40)
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Neutral pore model:

K(Θ)/Ks = Θs
[
1−
(
1−Θ1/m

)sm]
, 0 < sm = 1− 4s/n < 1 (41)

Large pore model:

K(Θ)/Ks = 1−
(
1−Θ1/m

)2sm
, 0 < 2sm = 1− 4s/n < 1 (42)

A first evaluation of the predictive capacity of the relative hydraulic conductivity models defined
by Equations (38)–(42), on fifty soils of the GRIZZLY database reported by Haverkamp et al. [38],
was presented by Fuentes et al. [18] with acceptable results.

The classical version of the models defined by Equations (21) and (22) corresponds to the
Mualem [31] and Burdine [33] models that are defined in Equations (12) and (13). The use of these
models has been proved by different authors [37]. We will show the capacity of prediction of the model
that corresponds to the hypothesis of the large pore defined in Equation (23) and in particular the
close-form equation of the relative hydraulic conductivity defined in Equation (42).

We use three of the five soils that van Genuchten [37] analyzes, holding the values θr and θs that
the author use and the parameter s is estimated from θs. In Table 2 we present some properties of
the three soils. The parameters ψd and m obtained by least squares method corresponding to three
different models are presented in Table 3.

Table 2. Some physical properties of the three analyzed soils.

Soil Name
θs

(cm3/cm3)
θr

(cm3/cm3)
Ks

(cm/day)
s

Hygiene sandstone 0.250 0.153 108.0 0.642
Touchet Silt Loam G.E.3 0.469 0.190 303.0 0.688
Silt Loam G.E.3 0.396 0.131 4.96 0.673

Table 3. Parameters values of the soil water retention curve of the three analyzed soils corresponding
to three different models, Equations (40)–(42).

Soil Name Geometric Pore Neutral Pore Large Pore

−ψd (cm) m −ψd (cm) m −ψd (cm) m

Hygiene sandstone 146.71 1.3176 142.23 1.1020 129.61 0.6000
Touchet Silt Loam G.E.3 213.94 1.1896 205.17 0.9554 185.86 0.5329
Silt Loam G.E.3 253.28 0.5421 176.75 0.2687 165.63 0.2197

Figures 2–4 present the fitted soil water retention curves, and the predicted relative hydraulic
conductivity curves by the geometric pore, neutral pore and large pore models for the three studied
soils. We can observe that the predictions are good enough in these three soils. In addition, in Figure 5
we illustrate the prediction capability of the small pore model using the relationships between m and n
provides by the neutral pore and large pore models.

The analysis performed on the classical models and the comparison between experimental and
predicted relative hydraulic conductivity with the four special new models allows us to show that the
different models may be used to estimate relative hydraulic conductivity.
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Figure 2. Observed and calculated curves of the soil hydrodynamic characteristics of hygiene sandstone,
Equations (40)–(42).

Figure 3. Observed and calculated curves of the soil hydrodynamic characteristics of Touchet silt loam
G.E.3, Equations (40)–(42).
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Figure 4. Observed and calculated curves of the soil hydrodynamic characteristics of silt loam G.E.3,
Equations (40)–(42).

Figure 5. Observed and calculated curves of the relative hydraulic conductivity with small pore model,
Equations (38) and (39).

4. Conclusions

The proposed hydraulic conductivity model has been deduced using classic probabilistic theory
and fractal geometry concepts in order to approach the flow effective area and the tortuosity of flow
trajectories for each pore radius. The introduction of four definitions used at the literature of the pore
effective radius that is involved in the general model has permitted to establish four new models to
predict the relative hydraulic conductivity.

Some additional considerations related to the definitions of flow effective area and the tortuosity
factor have allow us to deduce four classical models that are extensively used in different studies.
In particular, we have given some interpretations of its empirical parameters in the fractal geometry
context. The power function proposed by Brooks and Corey (1964) to represent the water retention
curve leads to a power function to represent the relative hydraulic conductivity. The difference between
the new models consists in the prediction of the relative hydraulic conductivity.
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We have studied a general power function with three form parameters to represent the water
retention curve reported by Braddock et al. [36], which presents as a special case the equation of Brooks
and Corey [35] with a form parameter and the van Genuchten equation [37] with two form parameters.
With this function we have gotten close-form equations of hydraulic conductivity with two and one
form parameter. The general power function of the soil water retention curve and the close-form
equations of hydraulic conductivity, obtained through special fractal models, may be used for the
study of mass and energy transferences through soil, as infiltration, drainage, evaporation and ground
water recharge.
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Abstract: Corrugated box printing machines are precision equipment produced by markedly few
manufacturers. They involve high investment cost and risk. Having a corrugated box precision
printing machine (CBPPM) supplier with a good reputation enables a corrugated box manufacturer to
maintain its competitive advantage. Accordingly, establishing an effective CBPPM supplier selection
model is crucial for corrugated box manufacturers. This study established a two-stage CBPPM
supplier selection model. The first stage involved the use of a modified Delphi method to construct
a supplier selection hierarchy with five criteria and 14 subcriteria. In the second stage, an analytic
network process was employed to calculate the weights of criteria and subcriteria and to determine
the optimal supplier. According to the results, the five criteria in the model, in descending order of
importance, are quality, commitment, cost, service attitude, and reputation. This model can provide
insights for corrugated box manufacturers formulating their CBPPM supplier selection strategy.

Keywords: corrugated box printing machine; modified Delphi method; analytic network process
(ANP); supplier

1. Introduction

The global e-commerce market is rapidly developing, with exponential growth in
online and TV shopping as well as demand for global shipping. Because most products
purchased online or through TV shopping channels (e-commerce) are packaged using
corrugated boxes for shipping, the development of e-commerce has contributed to the
growth of the corrugated box industry. According to Smithers Pira [1], the global packaging
market attained a value of US$917 billion in 2019. Research and Markets (2019) revealed
that the corrugated box market reached a value of US$184.377 billion in 2019. Corrugated
boxes have become the most adopted packaging materials in the packaging industry. With
the continuous and rapid development of the e-commerce market, corrugated boxes, as the
main packaging products, will inevitably grow rapidly accompanied with the development
of the packaging industry, thus driving the rapid growth of the corrugated box precision
printing machine equipment industry. For Tsao (2011) [2], the corrugated box precision
printing machine is accompanied by the development of the corrugated box packaging
industry. The main manufacturers of the corrugated box precision printing machine
industry are currently concentrated in Europe, the United States, Japan, South Korea,
Taiwan and China. Manufacturers with advanced production technology in Japan and
Taiwan in the Asian region, mainly in the high-tech field, provide the best marketing and
after-sales service system in the corrugated box printing machine manufacturers [3].

In the booming Internet and TV shopping consumption era, these consumer packaging
have gradually become a visible part of people’s lives. The increasing variety of consumer
products and complexity of shipping methods have contributed to the importance of
corrugated boxes as a packaging material. The demand for corrugated boxes is rapidly
growing worldwide, contributing to the development of the corrugated box precision
printing machine (CBPPM) industry. The sales value of the global CBPPM industry grew
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from US$5.499 billion in 2014 to US$7.312 in 2019, and the growth trend is expected to
continue (Figure 1). As people’s standard of living improves, they expect better appearance
and quality of paper boxes rather than just basic paper box packaging. These expectations
are closely related to the development of the CBPPM industry and spur market demands
for corrugated boxes and for corrugated box precision printing machines.

 

Figure 1. Global market size of corrugated box printing machines [4].

Despite such a large business opportunity in the global CBPPM industry, global
manufacturers face challenges such as high investment cost, long research and development
(R&D) periods, consumer demand for customization, and high risk. Accordingly, the
establishment of a decision-making model for the selection of CBPPM suppliers has become
critical for corrugated box manufacturers to maintain their competitive advantage.

The selection of suppliers is a crucial but complex decision-making problem, and
its ultimate goal is to find sustainable suppliers with the best potential of providing raw
materials and components within a cost budget. According to Ptak and Schragenhiem [5],
disruptions in the procurement process can undermine productivity, leading to serious
consequences such as bad reputation caused by late delivery or the loss of customers.
Therefore, suppliers play a crucial role in procurement activities. In the competitive global
environment, most businesses have revisited their procurement strategy and established
partnerships with their key suppliers. Despite its recognized importance, cost reduction is
not the only critical factor. This study can provide insights into decision making strategies
and sustainable operations that can be adopted by the CBPPM industry.

2. Literature Review

2.1. Supplier Selection

The selection of suppliers is critical. Having an appropriate supplier enables a com-
pany to offer competitive prices, deliver the correct quantity of products on time, produce
high-quality products, and enhance its corporate image and reputation. Labib [6] con-
sidered product quality and delivery to be of greater importance than cost. Tam and
Tummala [7] argued that the selection criteria for telecommunication service suppliers
include quality, cost, problem-solving skills, expertise, delivery time, the ability to satisfy
consumer needs, experience, and reputation. Liao and Kao [8] evaluated suppliers with the
following criteria: depth of relationship, quality, shipping ability, guaranteed standard, and
experience. Basnet [9] suggested that for both local and international businesses, quality,
the ability to deliver on time, and performance are the most critical elements in supply
chain management.

An excellent supplier satisfies a company’s demands for raw materials, products,
quality, and services. A company cannot find a high-quality and cost-efficient supplier
without having a plan. A critical competency of a procurement specialist is to, by using

76



Mathematics 2021, 9, 68

a rigorous and systematic method, find, evaluate, and select the most suitable supplier
for a company [10]. Hsu [11] proposed the following evaluation methods for supplier
selection: (a) benchmarking, (b) categorical method, (c) weighted-point method, (d) cost-
ratio method, and (e) unit total cost. Considering conflicts among supplier selection
indicators, Shirouyehzad [12] employed a strengths–weaknesses–opportunities–threats
analysis to evaluate suppliers qualitatively and quantitatively; Shirouyehzad used the
technique for order performance by “similarity to the ideal solution” to determine the
weights of indicators and adopted a linear planning method to allocate orders. Supplier
evaluation methods fall into three major categories: qualitative analyses, quantitative
analyses, and methods combining qualitative and quantitative analyses.

Chin [13] defined suppliers as business entities that provide products or services to a
buyer and charge the buyer with remuneration in return; such provision encompasses raw
materials, equipment, tools, and other resources. The management of suppliers involves
active attitudes gradually established in the process of communication and interaction with
the suppliers [14]. Shima Aghai [15] proposed a fuzzy multiobjective planning model that
incorporates a wide range of factors, namely qualitative, quantitative, risk, and volume
discount factors, in supplier selection; this model can be used to select suppliers and
optimize supply volume. Supplier selection largely determines subsequent endeavors
of establishing buyer–supplier partnerships and increasing supplier capabilities through
supplier development programs [16]. The importance of this process for companies is
reflected in the final price of products. The price of raw materials, as the main part
of the product, is crucial [17,18]. Supplier selection is among the key tasks of supply
management [19]. Accordingly, this study constructed a supplier selection model suitable
for CBPPM suppliers to help companies maintain competitive advantage.

2.2. Analytic Network Process

The analytic network process (ANP) involves using pairwise comparisons to reveal
the relative importance of decision-making features at each level on a 1–9 ratio scale.
Establishing a pairwise comparison matrix, calculating the eigenvalue and eigenvector,
and conducting a consistency test can avoid evaluation accuracy being undermined by
the decision maker’s adoption of multiple criteria. The levels are then aggregated to
yield a priority vector of the relative importance of alternatives; subsequently, the optimal
alternative is determined according to their relative weights as indicated in the vector. ANP,
whose theory and application were introduced by Saaty [20], is derived from the analytical
hierarchy process (AHP) and is aimed at solving problems involving dependence and
feedback among elements in decision making. Overall, the ANP is a mathematical theory
capable of solving dependence and feedback problems systematically.

The ANP comprises four steps: (1) constructing a hierarchical structure of the problem,
(2) establishing the pairwise comparison matrix and calculating the eigenvector, (3) obtain-
ing the supermatrices and weights, and (4) determining the optimal alternative.

Step 1: Constructing a Hierarchical Structure of the Problem

Determine the decision-making problem and construct a hierarchical structure for the
problem; and describe the problem in detail and divide it into a hierarchical network.

Saaty [21] divided the ANP into two parts. The first part involves evaluating the
network relationships between criteria and subcriteria; these relationships affect the re-
lationships within a system. The second part is constituted by the network relationships
between elements and clusters. According to a network system can be divided into various
clusters to form a complex network structure. Figure 2a,b conceptualizes the AHP and ANP,
respectively. Saaty [20] presented the interdependent relationships between clusters and
elements in a diagram and used arrows to indicate relationships and interaction between
them. For example, Figure 2b depicts interdependent elements.
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Figure 2. Conceptual diagrams of the analytical hierarchy process (AHP) and analytic network
process (ANP) [22].

Step 2: Establishing the Pairwise Comparison Matrix and Calculating the Eigenvector

Saaty [20] recommended the use of the 1–9 ratio scale in pairwise comparison. In ANP
pairwise comparisons, the limiting influence of each criterion is calculated to establish the
supermatrices.

The pairwise comparison matrix (A) is formed by experts making pairwise com-
parisons between criteria. Through a hierarchical analysis, the eigenvector (W) of the
maximum eigenvalue (λmax) is obtained to satisfy the equation A × W = λmax × W.
Then, λmax can be used to calculate the consistency index (CI); a satisfactory consistency
level is indicated by CI ≤ 0.1. According to Saaty [23], a CI < 0.1 suggests the judgments
made by experts are consistent. CI and consistency ratio are calculated using the following
equations:

CI =
λmax − n

n − 1
(1)

CR =
CI
RI

(2)

RI = random index.

Step 3: Obtaining the Supermatrices and Weights

The supermatrices comprise an unweighted supermatrix, a weighted supermatrix, and
a limiting supermatrix, which can be used to obtain the weights of criteria and subcriteria.

A supermatrix is composed of various submatrices, and each ratio scale in the subma-
trices represents the influence of elements in a cluster on elements in other clusters (i.e.,
outer dependence) or on other elements in the same cluster (i.e., inner interdependence).
Finally, the criteria and subcriteria of all dimensions are listed (respectively) at the left and
top of a matrix to form a complete supermatrix, as shown in (3).

Because an unweighted supermatrix (W) may not be column-stochastic (i.e., each
column does not sum to (1), it must be converted using the following process. No conver-
sion is needed if the dimension column is stomatic (sum = 1). For nonstochastic columns,
relative importance is applied on the submatrix of criteria columns to obtain the weighted
supermatrix (W’). Subsequently, the supermatrix is subject to a limiting process, namely
raising W’ to the power of 2k + 1 (k is an arbitrarily large number) until the interdependent
relationships converge, to obtain the relative weights of criteria [20].
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W =

C1

e11
e12
...

e1m1

C2

e21
e22
...

e2m2

Cn

en1

en2
...

enmn

C1
e11 · · · e1m1

C2
e21 · · · e2m2

· · · · · · Cn
en1 · · · enmn⎡⎢⎢⎢⎣

W11 W12 · · · W1n
W12 W22 · · · W2n

...
...

. . .
...

Wn1 Wn2 . . . Wnn

⎤⎥⎥⎥⎦
(3)

As an example, the following is the supermatrix (Wh) of a three-level hierarchical
structure [20]:

Wh =

⎡⎣ 0 0 0
W21 0 0

0 W32 I

⎤⎦ (4)

where W21 is the eigenvector of criteria under the decision-making goal, W32 is the eigen-
vector of the pairwise comparison matrix between alternatives under each criterion, and I
is the identity matrix; a 0 indicates the relationship between identical or two independent
elements or criteria without interdependences.

For interdependent criteria, a network structure must be used in place of a hierarchical
structure. Accordingly, the supermatrix is updated to Wn in (5), where W22 represents the
interdependence of the criteria [20].

Wn =

⎡⎣ 0 0 0
W21 W22 0

0 W32 W33

⎤⎦ (5)

This study employed the ANP to obtain the weights of elements and weights. There-
fore, Wn must be modified as W′

n, as presented in (6).
In (6), W22 and W33 respectively represent the interdependence weights of the elements

and criteria.

W′
n =

⎡⎣ 0 0 0
W21 W22 0

0 W32 W33

⎤⎦ (6)

The exponent of the matrix reaches an extremum where the matrix converges, thus
the extremum holds constant. To achieve matrix convergence, the weighted supermatrix is
raised to the power of 2k + 1, where k → ∞, as in (7). This yields a new matrix, the limiting
supermatrix (WANP; [20]), and the finalized weights of criteria and subcriteria can then
be obtained.

WANP = lim
k→∞

(
W′

n
)2k+1 (7)

Step 4: Determining the Optimal Alternative

According to the limiting supermatrix WANP in (7), the weights can be obtained
through multiple matrix calculations. These weights are then used as the basis for arranging
the priority of alternatives.

3. Proposed Model

This study established a two-stage CBPPM supplier selection model. In Stage 1, a
modified Delphi method and content validity ratio were used to determine the criteria
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and subcriteria for supplier selection as well as the interdependence between criteria and
subcriteria. In Stage 2, the ANP was used to calculate the weights of criteria and subcriteria.

The two-stage supplier selection model is as follows [24–26]:

3.1. Stage 1: Establish a Hierarchical Network

This stage involves the use of the modified Delphi method comprising four steps, as
follows [27,28]:

1. Step 1: Define the criteria.
2. Step 2: Convene an expert panel.
3. Step 3: Conduct a questionnaire survey on the panel.
4. Step 4: Determine the standard of consistency within the panel.

3.2. Stage 2: Select the Optimal Supplier with the ANP

This stage involves the four steps of ANP, as follows [18]:

1. Step 1: Establish the pairwise comparison matrix.
2. Step 2: Calculate the eigenvalue and eigenvector.
3. Step 3: Form the supermatrix and obtain the weights.
4. Step 4: Select the optimal procurement alternative.

4. Results and Discussion

SUNRISE, established in 1996 with a capital of NT$150 million, is a CBPPM manu-
facturer that sells machines mostly to paper box manufacturers in Taiwan, China, Europe,
Southeast Asia, Middle America, and the Middle East. With a revenue of US$36 million
in 2019, it is now the largest CBPPM manufacturer in Asia and the second largest in the
world. It has thus become the hidden champion of the industry in the Taiwanese market,
with patents in various countries. The high-capacity fixed-type CBPPM is its most pre-
cise, expensive, and sold machine. This CBPPM (Figure 3), which can print more than
300 color corrugated boxes per minute, contributes nearly 35% of the company’s revenue
(http://www.sunrisemachinery.com) [29].

 

Figure 3. High-capacity fixed-type corrugated box precision printing machine (CBPPM) (http:
//www.sunrisemachinery.com).

The CBPPM industry is relatively closed compared with other industries in Taiwan.
Despite the enormous business opportunity in CBPPM manufacturing, no more than
30 CBPPM manufacturers exist in Taiwan. The R&D of CBPPMs involve an extremely high
cost and a 3–5-year period (or longer). The R&D and sales expenses for a CBPPM total more
than US$3 million. Although a new CBPPM has a product life cycle of more than 10 years on
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average, its high investment cost and slow return on investment discourage new investors.
The industry also has high entry barriers because it involves (1) complex and specialized
technologies, (2) specialized assembly technicians who require extensive training, and (3)
a high level of working capital. A monthly working capital of more than US$120 million
is required for the warehousing of components alone. Accordingly, procurement plays a
critical role in the operation of a CBPPM manufacturer, which must establish a collaborative
supply chain management system that integrates upstream and downstream suppliers well
to shift from the red ocean strategy—which focuses on competition and price cuts—toward
the blue ocean strategy, manufacturing products of high value at low cost [30].

This study adopted SUNRISE as an example and optimized its supplier selection
process for the five firms that supply the most electronic control components to it. The
optimization was conducted using the modified Delphi method and ANP to verify the
feasibility of the study’s proposed supplier selection model based on these two methods.

This study used the five firms as alternatives to conduct a supplier selection process
as follows.

4.1. Stage 1: Establish a Hierarchical Network

Step 1: Define the Criteria

Six key members of SUNRISE (board director, director of plant operations, chief R&D
officer, chief procurement officer, junior procurement officer, and procurement specialist)
were invited to determine 11 criteria and 64 subcriteria for the supplier selection (Table 1).

Table 1. Criteria and subcriteria determined by six key members of SUNRISE.

Criteria Definition Subcriteria

Organization management

Effective process of realizing organizational goals
through interaction, coordination, collaboration, and

task delegation among all organization members,
facilitated by establishing organizational structure, job
roles or titles, and clear responsibilities and liabilities

(1) Emergency response
(2) Employer–employee relationship
(3) Government policy
(4) Competitor behavior
(5) Competitive analysis of the industry

Financial position
Management of asset purchases (investment), capital

loans (financing), operation cash flows (working
capital), and profit allocation given the overall goals

(1) Financial stability
(2) Property risk management
(3) Activity ratio
(4) Investment in derivatives

Quality Whether the product or service conforms to or
surpasses the client’s expectation

(1) Continuous improvement
(2) Product reliability
(3) Quality records
(4) Solving quality problems
(5) Quality management system for
substandard products
(6) Repair and compensation claims

Delivery

(1) The period between when an order is placed and
its delivery by the supplier

(2) Delivery = time spent in administrative procedure +
procurement + production + shipping + inspection +

other operations

(1) Stable supply of orders
(2) Commitment to the delivery of orders
(3) Accuracy and reliability of supply
(4) On-time delivery
(5) Ability to deliver orders at short notice
(6) Ability to manage inventory

Commitment A contract made with mutual agreement of all parties

(1) Commitment to orders
(2) Stable supply
(3) Accuracy and reliability
(4) Speed of delivery
(5) Commitment to the delivery time

81



Mathematics 2021, 9, 68

Table 1. Cont.

Criteria Definition Subcriteria

Cost

All costs incurred during a company’s acquisition of
products or services and all expenses, which are the

cost invested by a company in its business activities to
make profit

(1) Procurement cost
(2) Reflects real-time prices
(3) Transportation cost
(4) Price competitiveness
(5) Ability to negotiate prices
(6) Controlling price with volume
(7) Discounts for cash payment

Production capacity

The maximum volume of products produced or raw
materials processed by all fixed assets in a company

within the contract period and under the given
technological conditions

(1) Product stability
(2) Production capacity and output value
(3) Productivity
(4) Expected sales and production
capacity
(5) Contracting or outsourcing

Technical capability
The level of understanding of and familiarity with a

certain activity, particularly interaction with others, in
relation to a method, process, program, or technique

(1) Ability to continuously improve
(2) Ability to innovate techniques
(3) Ability to provide technical support
(4) Ability to change designs
(5) Core technical skills

Service attitude
An activity or a benefit that is provided by one party
to another, is intangible, and does not involve change

of rights in remuneration

(1) Continuously reporting back to client
(2) Attitude
(3) Ability to manage customer
complaints
(4) Ability to supply spare parts
(5) Negotiation with suppliers
(6) Ability to conduct training
(7) Maintenance of product safety
(8) After-sales repair
(9) After-sales services

Reputation
The sum of a company’s value-creation capabilities

generated from its acquisition of recognition by society
and then of resources, opportunities, and support

(1) Integrity
(2) Value of business reputation
(3) Business competitiveness
(4) Enhancement of corporate value
(5) Improvement of profit
(6) Corporate social responsibility
(7) Profit increase
(8) Financial robustness

Environmental protection
product management

Manufacturing, use, and processing of products,
conforming to environmental requirements, causing

no or very little harm to the environment and
conducive to resource circulation and product

repurposing

(1) RoHS Regulations on Banned
Substances in Components
(2) RoHS monitoring and documentation
on inbound materials
(3) RoHS training
(4) Provision of guarantee and a
third-party report

Step 2: Convene an Expert Panel

According to Murry and Hammons [28], the appropriate size of an expert panel is
more than 10 members, but an excessively large panel (with more than 30 members) can
complicate the research work and create difficulty for the panel to reach a conclusion. On
this basis and in consideration of feasibility and available research resources, the present
study determined that the expert panel size be 23 members from the industry, government,
and academia (Table 2).
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Table 2. Composition of the expert panel.

Expert Category Place of Employment Number of People Percentage (%)

Industry
Manufacturers specializing in the design, production, and
sale of CBPPMs (each with over 20 years of experience in

selling and manufacturing CBPPMs [note 1])
12 52.17

Government

Bureau of Foreign Trade (Ministry of Economic Affairs);
Industrial Development Bureau (Ministry of Economic
Affairs); Taiwan External Trade Development Council;
National Taiwan Bureau of Taipei (Ministry of Finance)

5 21.74

Academia Five from academic institutions; one from The Global
Logistics & Commerce Council of Taiwan 6 26.09

Total 23 100

Six manufacturers were interviewed; four completed a questionnaire.

Step 3: Conduct a Questionnaire Survey on the Panel

The first survey was administered to 23 experts who expressed their willingness to
participate through mail; 20 questionnaire responses were returned for a response rate of
86.96%. Subsequently, a second survey was administered to the 20 experts (i.e., excluding
the three who did not return a response) along with statistical charts for the first survey.
In the second survey, 20 questionnaires were distributed, and all were returned. This
study employed a two-round modified Delphi method, repeating the administration of the
survey until consensus was established (Table 3).

Table 3. Comparison of survey response rates in the two-round modified Delphi method.

Category First Round Second Round

Number of copies distributed 23 20
Number of responses 20 20

Response rate (%) 86.96 100

Step 4: Determine the Standard of Consistency within the Panel

After a preliminary version of the questionnaire was created, the modified Delphi
method was used to verify its content. A total of 20 experts from industry, government,
and academia were recruited to determine the validity of the items. The experts were
asked to rate each item on a 5-point Likert scale (1 = Very dissatisfied to 5 = Very satisfied)
according to its appropriateness and relevance to the research topic as well as to determine
the importance of each criterion and subcriterion. The content validity ratio (CVR) formula
proposed by Lawshe [31] was employed to calculate the level of agreement among the
experts. The ratings were used to calculate the CVR; in this study, a rating = 5 was
determined to be the standard. Specifically, the CVR for each expert was calculated by
dividing the number of items rated as 5 points by the total number of items. The CVRs
for the 20 experts ranged between 0.7 and 1.00. This indicated the content validity of the
questionnaire, with an average CVR ≥ 0.7 [32].

After deleting criteria and subcriteria with a CVR < 0.7, five criteria and 14 subcriteria
remained. The five criteria were quality, commitment, cost, service attitude, and reputation.
The 14 subcriteria were product reliability, quality management system for substandard
products, commitment to orders, stable supply, accuracy and reliability, on-time delivery,
price reduction, price competitiveness, attitude, ability to manage customer complaints,
negotiation with suppliers, after-sales services, integrity, and profit increase. On the basis
of the experts’ input, the criteria were interdependent (Figure 4); inner interdependence
was present between subcriteria (Table 4). According to these results, the CBPPM supplier
selection hierarchical network was established (Figure 5).
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Figure 4. Relationships among CBPPM supplier selection criteria.

Table 4. Relationships among CBPPM supplier selection subcriteria.

Criteria Subcriteria Relationship

Quality (C1)
Product reliability (C11) Interdependent with C21, C22, C23, C24, C31, and C32

Quality management system for
substandard products (C12) Interdependent with C21, C22, C23, C24, C31, and C32

Commitment (C2)

Commitment to orders (C21)
Interdependent with C11, C12, C31, and C32

Unilaterally dominant over C51 and C52

Stable supply (C22)
Interdependent with C11, C12, C31, and C32

Unilaterally dominant over C51 and C52

Accuracy and reliability (C23)
Interdependent with C11, C12, C31, and C32

Unilaterally dominant over C43 and C44

On-time delivery (C24)
Interdependent with C11, C12, C31, and C32

Unilaterally dominant over C41, C42, and C43

Cost (C3)

Price reduction (C31) Interdependent with C11, C12, C21, C22, C23, C24, C43,
and C52

Price competitiveness (C32) Interdependent with C11, C12, C21, C22, C23, C24, C42,
and C51

Service attitude (C4)

Attitude (C41) Unilaterally dominant over C11, C12, C31, C32, and C51

Ability to manage customer Complaints
(C42)

Interdependent with C32 and C51

Unilaterally dominant over C11, C12, C31, and C52

Negotiation with suppliers (C43)
Interdependent with C31 and C51

Unilaterally dominant over C11, C12, and C32

After-sales services (C44) Unilaterally dominant over C11, C12, C31, C32, and C51

Reputation (C5)

Integrity (C51)
Interdependent with C32, C43, and C52

Unilaterally dominant over C11, C12, C31, and C42

Profit increase (C52)
Interdependent with C31 and C51

Unilaterally dominant over C11, C12, and C32
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Figure 5. Hierarchical network for CBPPM supplier selection.

4.2. Stage 2: Select the Optimal Supplier with the ANP

Step 1: Establish the Pairwise Comparison Matrix

A panel of 20 experts was convened to determine the relative importance of each
criterion in the ANP questionnaire. Table 5 depicts the resulting pairwise comparison
matrix W21.

Table 5. Pairwise comparison matrix W21 and the eigenvector.

Criteria Quality (C1)
Commitment

(C2)
Cost (C3)

Service
Attitude (C4)

Reputation
(C5)

Eigenvector

Quality C1 1 2 5 5 3 0.4206
Commitment C2 0.5000 1 4 3 3 0.2827

Cost C3 0.2000 0.2500 1 3 0.5000 0.0985
Service attitude C4 0.2000 0.3333 0.3333 1 0.5000 0.0655

Reputation C5 0.3333 0.3333 2 2 1 0.1327

(1) λmax = 5.2394; (2) CI = 0.0598 and consistency ratio (CR) = 0.0534 ≤ 0.1.

Step 2: Calculate the Eigenvalue and Eigenvector

Super Decisions software was used to calculate the maximum eigenvalue λmax = 5.2394
and corresponding eigenvector x = (0.4206, 0.2827, 0.0985, 0.0655, 0.1327, rightmost column
of Table 5) for the pairwise comparison matrix.
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Equations (1) and (2) were used to obtain CI = 0.0598 and CR = 0.0534, both of which
indicate satisfactory consistency.

Step 3: Form the Supermatrix and Obtain the Weights

After calculating the weights for W21, the eigenvector matrix W32 was formed. For
example, the pairwise comparison matrix and eigenvector for subcriteria C11 and C12 under
criterion C1 are presented in Table 6. Table 7 compiles W21 and W32.

Table 6. Pairwise comparison matrix and eigenvector for subcriteria under criterion C1.

Subcriteria Under C1
Product Reliability

(C11)

Quality
Management System

for Substandard
Products (C12)

Eigenventor

Product reliability (C11) 1 4 0.8000
Quality management system for

substandard products (C12) 0.2500 1 0.2000

(1) λmax = 2.0000; (2) CI = 0 and CR = 0 ≤ 0.1.

Table 7. Weights for criteria and subcriteria.

Criteria Criteria Weight (W21) Subcriteria Subcriteria Weight (W32)

Quality (C1) 0.4206

Product reliability (C11) 0.8000

Quality management system for substandard
products (C12) 0.2000

Commitment (C2) 0.2827

Commitment to orders (C21) 0.0493

Stable supply (C22) 0.2075

Accuracy and reliability (C23) 0.2701

On-time delivery (C24) 0.4731

Cost (C3) 0.0985
Price reduction (C31) 0.1111

Price competitiveness (C32) 0.8889

Service attitude
(C4) 0.0655

Attitude (C41) 0.6642

Ability to manage customer complaints (C42) 0.0903

Negotiation with suppliers (C43) 0.0957

After-sales services (C44) 0.1498

Reputation (C5) 0.1327
Integrity (C51) 0.7500

Profit increase (C52) 0.2500

Matrix W22 represents the pairwise comparison results for the five criteria with the
presence of inner interdependence. The eigenvector matrix formed with the eigenvectors is
shown in (8). Matrix W33 is the eigenvector matrix representing the pairwise comparison
results for the 14 subcriteria with the presence of inner interdependence, as presented
in (10).

An unweighted supermatrix is formed by combining matrices W21, W22, W32, and
W33, as expressed in (9). Table 8 reveals the details of the supermatrix. In this study,
matrices W22 and W32 are each assigned a weight of 0.5 to obtain the weighted supermatrix
(Table 9).

Table 10 illustrates the limiting supermatrix, and Equation (11) provides the weights
of all subcriteria (WANP) [33].
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 C1 C2 C3 C4 C5 

 C1 0.4296 0 0 0 0.1779 
 C2 0 0.4806 0 0.1093 0.1982 
W22 =  C3 0.0784 0.1140 0.1655 0.1093 0.1402 
 C4 0.0820 0 0.6098 0.5725 0.2043 
 C5 0.4100 0.4054 0.2247 0.2090 0.2793 

 

(8)

Wn =

⎡⎣ 0 0 0
W21 W22 0

0 W32 W33

⎤⎦ (9)

 C11 C12 C21 C22 C23 C24 C31 C32 C41 C42 C43 C44 C51 C52 
C11 0.2808 0 0.2936 0.4116 0.1736 0.0479 0.2522 0.2176 0.3302 0.3702 0.3495 0.2489 0.0561 0.0466 

C12 0 0.4158 0.1587 0.0454 0.0645 0.0520 0.0442 0.0942 0.2869 0.2201 0.2409 0.0986 0.0346 0.0440 

C21 0.0292 0.0430 0.0497 0 0 0 0.1451 0.0725 0 0 0 0 0 0 

C22 0.1200 0.0459 0 0.1593 0.0341 0 0.1937 0.1582 0 0 0 0 0 0 

C23 0.3515 0.0853 0 0 0.1691 0 0.1535 0.1617 0 0 0 0 0 0 

C24 0.1004 0.1071 0 0 0.0545 0.1278 0.0921 0.1608 0 0 0 0 0 0 

C31 0.0586 0.1324 0.2257 0.0340 0.0447 0.0591 0.0257 0 0.0437 0.0253 0.0286 0.0339 0.0466 0.1211 

C32 0.0595 0.1706 0.1849 0.0533 0.0436 0.0513 0 0.0263 0.0437 0.0317 0.0534 0.0427 0.0581 0.2903 

C41 0 0 0 0.1261 0 0.1474 0 0 0.1143 0 0 0 0 0 

C42 0 0 0 0 0 0.3575 0 0.0420 0 0.0869 0 0 0.1663 0 

C43 0 0 0 0.1702 0.1860 0.1570 0.0339 0 0 0 0.0800 0 0.2076 0 

C44 0 0 0 0 0.2299 0 0 0 0 0 0 0.2475 0 0 

C51 0 0 0.0624 0 0 0 0 0.0666 0.1812 0.1449 0.2476 0.3284 0.3273 0.2687 

C52 0 0 0.0250 0 0 0 0.0596 0 0 0.1210 0 0 0.1033 0.2294 

W33  
(10)

  Goal 
 (C11) 0.2094 
 (C12) 0.1139 
 (C21) 0.0257 
 (C22) 0.0675 
 (C23) 0.1244 
 (C24) 0.0647 
WANP = (C31) 0.0578 
 (C32) 0.0692 
 (C41) 0.0204 
 (C42) 0.0424 
 (C43) 0.0680 
 (C44) 0.0380 
 (C51) 0.0763 
 (C52) 0.0222 

(11)
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Table 11 lists the weights of the five alternatives calculated according to the pairwise
comparison matrix for subcriterion C12 (quality management system for substandard
products).

Table 11. Weights of the five alternatives calculated using the pairwise comparison matrix
for subcriterion C12.

(C12)
Company

A
Company

B
Company

C
Company

D
Company

E
Weight

Company A 1 3 0.5 0.5 0.3333 0.1470
Company B 0.3333 1 1 0.3333 0.3333 0.1024
Company C 2 1 1 1 1 0.2154
Company D 2 3 1 1 1 0.2538
Company E 3 3 1 1 1 0.2814

(1) λmax = 5.3250; (2) CI = 0.0598 and CR = 0.0534 ≤ 0.1.

Table 12 presents the weights of the five alternatives calculated using the pairwise
comparison matrices of all subcriteria.

Table 12. Eigenvectors of five alternatives under each criterion.

Alternatives (C11) (C12) (C21) (C22) (C23) (C24) (C31) (C32) (C41) (C42) (C43) (C44) (C51) (C52)

Company A 0.3274 0.1470 0.2346 0.2183 0.2086 0.2909 0.1033 0.0957 0.0787 0.1421 0.0566 0.0718 0.1688 0.0877
Company B 0.1299 0.1024 0.1660 0.0986 0.2630 0.1470 0.1818 0.1599 0.1814 0.1459 0.1308 0.1388 0.1601 0.1498
Company C 0.1331 0.2154 0.1978 0.0888 0.0947 0.1062 0.1377 0.1733 0.1814 0.0878 0.1218 0.0988 0.1217 0.2148
Company D 0.2383 0.2538 0.1694 0.2730 0.2881 0.2479 0.2256 0.2428 0.3149 0.4103 0.5491 0.2862 0.2435 0.2739
Company E 0.1714 0.2814 0.2321 0.3213 0.1457 0.2080 0.3515 0.3283 0.2435 0.2139 0.1417 0.4045 0.3059 0.2739

Step 4: Select the Optimal Procurement Alternative

On the basis of (11) and Table 12, the priority vector of the five alternatives is obtained,
as shown in (12).

0.2094 

0.1139 

0.0257 

0.0675 

0.1244 

0.0647 

C11 C12 C21 C22 C23 C24 C31 C32 C41 C42 C43 C44 C51 C52 0.0578 

A  0.3274 0.1470 0.2346 0.2183 0.2086 0.2909 0.1033 0.0957 0.0787 0.1421 0.0566 0.0718 0.1688 0.0877 0.0692 0.1923 

B  0.1299 0.1024 0.1660 0.0986 0.2630 0.1470 0.1818 0.1599 0.1814 0.1459 0.1308 0.1388 0.1601 0.1498 0.0204 0.1532 

C  0.1331 0.2154 0.1978 0.0888 0.0947 0.1062 0.1377 0.1733 0.1814 0.0878 0.1218 0.0988 0.1217 0.2148 0.0424 = 0.1356 

D  0.2383 0.2538 0.1694 0.2730 0.2881 0.2479 0.2256 0.2428 0.3149 0.4103 0.5491 0.2862 0.2435 0.2739 0.0680 0.2801 

E  0.1714 0.2814 0.2321 0.3213 0.1457 0.2080 0.3515 0.3283 0.2435 0.2139 0.1417 0.4045 0.3059 0.2739 0.0380 0.2388 

0.0763 

0.0222 

(12)
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According to (12), in the supplier selection process, the companies were ranked as
follows: Company D (0.2801), Company E (0.2388), Company A (0.1923), Company B
(0.1532), and Company C (0.1356; Figure 6).

 

Figure 6. Ranking of alternatives for supplier selection.

5. Conclusions

The continuous, rapid development of the e-commerce market has contributed to
fast growth in the packaging industry and is allowing the CBPPM industry to thrive.
Accordingly, the establishment of an appropriate CBPPM supplier selection decision-
making model has become critical for corrugated box manufacturers to maintain their
competitive advantage.

According to the empirical results, Labib [6] considered product quality and delivery to
be of greater importance than cost. Basnet [9] suggested that for both local and international
businesses, quality, the ability to deliver on time, and performance are the most critical
elements in supply chain management. Tam and Tummala [7] argued that the selection
criteria for telecommunication service suppliers include quality, cost, problem-solving
skills, expertise, delivery time, the ability to satisfy consumer needs, experience, and
reputation. Four of the criteria obtained in this study are quality, commitment, cost and
reputation, which is the same as Tam and Tummala [7], the new model is of high practical
value and enables enterprises to consider and evaluate alternative solutions from multiple
perspectives, thus facilitating sustainable operation and development. A quality-oriented
company has an influence from higher managers to the employees of different functional
departments. It not only can prevent the problems facing the products but also improve the
current situation continuously. A corporate culture of having quality as the first priority
has always been regarded as one of the main elements of a successful implementation of
total quality management.

Through a rigorous research design, this study formed a panel of experts to build a
CBPPM supplier selection model, offering insight for the corrugated box industry. The
following conclusions were drawn:

1. This study convened a panel comprising 20 experts and scholars from the industry,
government, and academia and employed the ANP to determine the weights of
criteria as follows: quality (0.4206), commitment (0.2827), reputation (0.1327), cost
(0.0985), and service attitude (0.0655).

2. The three subcriteria assigned the most weight were product reliability (0.2094),
accuracy and reliability (0.1244), and quality management system for substandard
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products (0.1139), two of which belonged to the “quality” criteria. A CBPPM man-
ufacturer can face an enormous loss if it manufactures products using substandard
components. Scrupulous product inspection and component control practices guar-
antee a long, useful life and high quality of machines, which in turn enhances the
manufacturer’s commitment, service attitude, and reputation.

3. The proposed CBPPM supplier selection model was verified to be feasible. Addition-
ally, the robustness of this two-stage model was tested using the ranking of alternative
suppliers. The ranking remained the same according to a sensitivity analysis of the
five suppliers, which indicates the robustness of the model and its suitability for
adoption by companies for supplier selection.

4. A corporate culture emphasizing quality is commonly considered a main factor for
successful total quality management [34,35]. Quality orientation is the extent to which
companies emphasize quality, their attitude toward quality, and the effort they make
to enhance quality. The establishment of a quality-oriented philosophy within a
company creates a top-down drive for quality problem prevention and continuous im-
provement among company members at all levels. Forza and Filippini [36] researched
total quality management practice in companies and observed that companies im-
proved the consistency of product quality as well as customer satisfaction through
emphasis on quality, maintained raw material quality by strengthening connections
with suppliers, obtained improvement plans initiated by employees through em-
ployee education and training, and elevated the overall process control by enhancing
communication with suppliers and employees.
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Abstract: A new parametric class of iterative schemes for solving nonlinear systems is designed.
The third- or fourth-order convergence, depending on the values of the parameter being proven.
The analysis of the dynamical behavior of this class in the context of scalar nonlinear equations
is presented. This study gives us important information about the stability and reliability of the
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for solving the Hammerstein integral equation and the Fisher’s equation confirm the theoretical
results.

Keywords: nonlinear system; iterative method; divided difference operator; stability; parameter
plane; dynamical plane

1. Design of a Parametric Family of Iterative Methods

The need to find a solution x̄ of equations or systems of nonlinear equations of the
form F(x) = 0, where F : D ⊆ Rn → Rn, n ≥ 1, is present in many problems of applied
mathematics as a basis for solving other more complex ones. In general, it is not possible to
find the exact solution to this type of equations, so iterative methods are required in order
to approximate the desired solution.

The essence of these methods is to find, through an iterative process and, from an
initial approximation x(0) close to a solution x̄, a sequence {x(k)} of approximations such
that, under different requirements, limk→∞ x(k) = x̄.

It is well known that one of the most used iterative methods, due to its simplicity and
efficiency, is Newton’s scheme, whose iterative expression is

x(k+1) = x(k) − [F′(x(k))]−1F(x(k)), k = 0, 1, 2, . . . (1)

where F′(x(k)) denotes the derivative or the Jacobian matrix of function F evaluated in the
kth iteration x(k). In addition, this method has great importance in the study of iterative
methods because it presents quadratic convergence under certain conditions and has great
accessibility, that is, the region of initial estimates x(0) for which the method converges is
wide, at least for polynomials or polynomial systems.

Based on Newton-type methods and by using different procedures, many iterative
schemes for solving F(x) = 0 have been presented in the last years. Refs. [1,2] compile
many of the methods recently designed to solve this type of problem. These books give us
good overviews about this area of research.

In this paper, we use a convex combination of the methods presented by Chun et al.
in [3] and Maheswari in [4]. As the mentioned schemes are designed for nonlinear equa-
tions and they have as the first step Newton’s method, we use the following algebraic
manipulation in order to extend the mentioned schemes to nonlinear systems:
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f (y(k))
f (x(k))

=
f (y(k))

(x(k) − y(k)) f ′(x(k))
=

f (y(k))− f (x(k)) + f (x(k))
(x(k) − y(k)) f ′(x(k))

= − [x(k), y(k); f ]
f ′(x(k))

+ 1.

Therefore, the parametric family of iterative methods for solving nonlinear systems
that we propose has the following iterative expression:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y(k) = x(k) − F′(x(k))−1F(x(k)),

H(x(k), y(k), γ) = I +
γ

2
I + (1 − γ)B−1

k − (1 − γ)Bk(2I − Bk)− γ

2
F′(x(k))−1F′(y(k))

x(k+1) = x(k) − H(x(k), y(k), γ)F′(x(k))−1F(x(k))

for k = 0, 1, 2, . . . ,

(2)

where x(0) is the initial estimation, Bk = F′(x(k))−1P(k) and P(k) = [x(k), y(k); F] is the
divided difference operator defined as

[x, y; F](x − y) = F(x)− F(y), x, y ∈ Rn.

The rest of the paper is organized as follows: Section 2 is devoted to analyze the
convergence of family (2) in terms of the values of parameter γ. In Section 3, we study the
dynamical behavior of the class on quadratic polynomials in the context of scalar equations.
This study allows for selecting the members that are more stable in the family. In the
numerical section, (Section 4), we apply the proposed class on different examples such
as the Hammerstein integral equation and the Fisher’s equation in order to confirm the
theoretical results obtained in Sections 2 and 3. We finish the work with some conclusions
and the references used in it.

2. Convergence Analysis

Let us consider function F : D ⊆ Rn → Rn, differentiable in the convex set D ⊂ Rn

which contains a solution x̄ of the nonlinear equation F(x) = 0. From the Genochi–Hermite
formula (see [5]) of the divided difference operator

[x + h, x; F] =
∫ 1

0
F′(x + th)dt (3)

and by performing the Taylor’s expansion of F′(x + th) on the point x and integrating,
we obtain the following development:

[x + h, x; F] = F′(x) +
1
2

F′′(x)h +
1
6

F′′′(x)h2 + O(h3), (4)

which we will use in the proof of the following result, when the order of convergence of
family is established.

Theorem 1. Let F : D ⊆ Rn −→ Rn be a sufficiently Fréchet differentiable function in a convex
neighborhood D of x̄, being F(x̄) = 0. We suppose the Jacobian matrix F′(x) is continuous and
non-singular in x̄. Then, taking an initial estimate x(0) close enough to x̄, the sequence of iterates
{x(k)} generated with family (2) converges to x̄ with the following error equation:

ek+1 =
γ

2
(C3 + 4C2

2)e
3
k + (γC4 + (4− 13γ)C3

2 + 3γC2C3 + (−1+
5
2

γ)C3C2)e4
k +O(e5

k), (5)
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where Cj = 1
j! F′(α)−1F(j)(α) ∈ Lj(R

n,Rn), Lj(R
n,Rn) being the set of j-linear functions of

bounded functions, j = 2, 3, . . . and ek = x(k) − x̄. In the particular case in which γ = 0, the error
equation is

ek+1 = (4C3
2 − C3C2)e4

k + O(e5
k), (6)

and so the method has an order of convergence four.

Proof. We consider the Taylor’s expansion of F(x(k)) around x̄:

F(x(k)) = Γ
(

ek + C2e2
k + C3e3

k + C4e4
k + C5e5

k + O(e6
k)
)

, (7)

where Γ = F′(x̄), ek = x(k) − x̄ and Cj =
F′(x̄)−1F(j)(x̄)

j! ∈ Lj(R
n,Rn), j = 2, 3, . . .

In a similar way, the derivatives of F(x(k)) around x̄ take the form:

F′(x(k)) = Γ
[

I + 2C2ek + 3C3e2
k + 4C4e3

k + 5C5e4
k

]
+ O(e5

k),

F′′(x(k)) = Γ
[
2C2 + 6C3ek + 12C4e2

k + 20C5e3
k

]
+ O(e4

k),

F′′(x(k)) = Γ
[
6C3 + 24C4ek + 60C5e2

k

]
+ O(e3

k).

(8)

From the development of F′(x(k)) around x̄, we calculate the inverse

F′(x(k))−1 =
[

I + X2ek + X3e2
k + X4e3

k + X5e4
k

]
Γ−1 + O(e5

k), (9)

with X2, X3, X4 and X5 satisfying
[

F′(x(k))
]−1

F′(x(k)) = I.
Therefore,

• X2 = −2C2,
• X3 = 4C2

2 − 3C3,
• X4 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4,
• X5 = 16C4

2 + 9C2
3 + 8C2C4 + 8C4C2 − 12C2

2C3 − 12C2C3C2 − 12C3C2
2 − 5C5.

Applying (7) and (9), we obtain

F′(x(k))−1F(x(k)) = ek − C2e2
k + (−2C3 + 2C2

2)e
3
k + (−3C4 + 4C2C3 + 3C3C2 − 4C3

2)e
4
k + O(e5

k). (10)

Then, we obtain the error equation of the first step of the parametric family (2):

y(k) − x̄ = x(k) − x̄ − F′(x(k))−1F(x(k)) =

= C2e2
k + (2C3 − 2C2

2)e
3
k + (3C4 − 4C2C3 − 3C3C2 + 4C3

2)e
4
k + O(e5

k).
(11)

Substituting this expression in the Taylor expansion of F(y(k)) around x̄, we get:

F(y(k)) = Γ
[
C2e2

k + (2C3 − 2C2
2)e

3
k + (3C4 − 4C2C3 − 3C3C2 + 5C3

2)e
4
k

]
+ O(e5

k). (12)

Furthermore,

F′(y(k)) = Γ
[
I + 2C2

2e2
k + (4C2C3 − 4C3

2)e
3
k + (6C2C4 − 8C2

2C3 − 6C2C3C2 + 8C4
2 + 3C3C2

2)e
4
k
]
+ O(e5

k). (13)

Multiplying expressions (9) and (13), we obtain:

F′(x(k))−1F′(y(k)) = I − 2C2ek + (−3C3 + 6C2
2)e

2
k + (−4C4 + 10C2C3 + 6C3C2 − 16C3

2)e
3
k+

+(−5C5 + 14C2C4 + 9C2
3 − 28C2

2C3 + 8C4C2 − 18C2C3C2 − 15C3C2
2 + 40C4

2)e
4
k+

+O(e5
k).

(14)
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To obtain the development of the divided difference operator of (2), we use the
Taylor series expansion of (4), considering in this case x + h = y and, so, h = y − x =
−F′(x(k))−1F(x(k)). Therefore, substituting (8) and (10) in (4), we obtain

[x(k), y(k); F] = Γ[I + C2ek + (C3 + C2
2)e

2
k + (C4 + C3C2 + 2C2C3 − 2C3

2)e
3
k+

+(C5 + C4C2 + 2C2
3 − C3C2

2 + 3C2C4 − 4C2
2C3 − 3C2C3C2 + 4C4

2)e
4
k ] + O(e5

k).
(15)

To calculate the inverse of this operator, we search

[x(k), y(k); F]−1 =
[

I + Y2ek + Y3e2
k + Y4e3

k + Y5e4
k

]
Γ−1 + O(e5

k), (16)

with Y2, Y3, Y4 and Y5 satisfying [x(k), y(k); F]−1[x(k), y(k); F] = I.
Thus,

• Y2 = −C2,
• Y3 = −C3,
• Y4 = −C4 − C2C3 + 3C3

2,
• Y5 = −C5 − 2C2C4 − 9C4

2 − C2
3 + 2C3C2

2 + 6C2
2C3 + 5C2C3C2.

Now, using (9) and (15), we obtain Bk,

Bk = C2
2e2

k + (2C2C3 + 2C3C2 − 6C3
2)e

3+

+ (3C2C4 − 10C2C3C2 − 12C2
2C3 + 25C4

2 + 4C2
3 − 10C3C2

2 + 3C4C2)e4
k + O(e5

k),
(17)

and using (8) and (16), we calculate B−1
K ,

B−1
k = I + C2ek + (2C3 − 2C2

2)e
2
k + (3C4 − 4C2C3 − 2C3C2 + 3C3

2)e
3
k+

+ (4C5 − 6C2C4 − 2C4C2 − 4C2
3 − 3C4

2 + 2C3C2
2 + 3C2C3C2 + 6C2

2C3)e4
k + O(e5

k).
(18)

Substituting the expressions (10), (14), (17), and (18) in the scheme (2), we get the error
equation of the parametric family

ek+1 = x(k+1) − x̄ = γ
2 (C3 + 4C2

2)e
3
k + (γC4 + (4 − 13γ)C3

2 + 3γC2C3 + (−1 + 5
2 γ)C3C2)e4

k + O(e5
k). (19)

Finally, from the error equation, we conclude that the parametric family (2) has order 3 for
all γ �= 0 and order 4 for γ = 0, being in this last case the error equation

ek+1 = (4C3
2 − C3C2)e4

k + O(e5
k). (20)

In the next section, we analyze the dynamical behavior of the parametric family (2) on
quadratic scalar polynomials.

3. Complex Dynamics

The dynamical analysis of (2) is performed throughout this section in terms of complex
analysis. The order of convergence is not the only important criterion to study when
evaluating an iterative scheme. The validity of a method also depends on other aspects
such as knowing how it behaves based on the initial estimates that are taken, that is, how
wide the set of initial estimations is for which the method is convergent. For this reason, it
is necessary to introduce several tools that allow for a more exhaustive study.

The analysis of the dynamics of a method is becoming one of the most investigated
parts within the study of iterative methods since it allows for classifying the different
iterative schemes, not only from the point of view of their speed of convergence, but also
analyzing its behavior based on the initial estimate taken (see, for example, [6–13]). This
study allows for visualizing graphically the set of initial approximations that converge to a
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given root or to points that are not roots of the equation. In addition, it provides important
information about the stability and reliability of the iterative method.

In this paper, we focus on studying the complex dynamic of the parametric family
(2) on quadratic polynomials of the form p(z) = (z − a)(z − b), where a, b ∈ C. For
this study, we need to present the result called the Scaling Theorem, since it allows us
to conjugate the dynamical behavior of one operator with the behavior associated with
another, conjugated through an affine application, that is, our operator has the same
stability on all quadratic polynomials. This result will be of great use to us since we can
apply the Möbius transformation on the operator Rp,γ associated with our parametric
family acting on p(z), assuming that the conclusions obtained will be of general application
for any quadratic polynomial used.

Theorem 2 (Scaling Theorem for family (2)). Let f (z) be an analytic function in the Riemann
sphere Ĉ and let T(z) = αz + β be an affine transformation with α �= 0. We consider g(z) =
λ( f ◦ T)(z), λ �= 0. Let R f ,γ and Rg,γ be the fixed point operators of the family (2) associated with
the functions f and g, respectively, that is to say,

R f ,γ(z) = z +

⎡⎣−γ

2

(
3 − f ′(y)

f ′(z)

)
+ (1 − γ)

⎛⎝ 1
f (y)
f (z) − 1

−
(

f (y)
f (z)

)2
⎞⎠⎤⎦ f (z)

f ′(z) , (21)

Rg,γ(z) = z +

⎡⎣−γ

2

(
3 − g′(y)

g′(z)

)
+ (1 − γ)

⎛⎝ 1
g(y)
g(z) − 1

−
(

g(y)
g(z)

)2
⎞⎠⎤⎦ g(z)

g′(z) , (22)

where y = z − f (z)
f ′(z) and z ∈ C. Then, R f ,γ is analytically conjugated to Rg,γ through T, that is

to say,
(T ◦ Rg,γ ◦ T−1)(z) = R f ,γ(z).

Proof. Taking into account that T(x − y) = T(x)− T(y) + β, T(x + y) = T(x) + T(y)− β
and g′(z) = αλ f ′(T(z)), so

(T ◦ Rg,γ ◦ T−1)(z) = T(Rg,γ(T−1)(z)) =

= T

⎛⎝T−1(z) +

⎡⎣−γ

2

(
3 − g′(T−1(y))

g′(T−1(z))

)
+ (1 − γ)

⎛⎝ 1
g(T−1(y))
g(T−1(z)) − 1

−
(

g(T−1(y))
g(T−1(z))

)2
⎞⎠⎤⎦ g(T−1(z))

g′(T−1(z))

⎞⎠,

where y = z − g(z)
g′(z) , T(T−1(z)) = z and

T
(

T−1(y)
)
= T

(
T−1(z)− g(T−1(z))

g′(T−1(z))

)
= T

(
T−1(z)− f (z)

α f ′(z)

)
= z − T

(
f (z)

α f ′(z)

)
+ β = z − f (z)

f ′(z)
= y.

Therefore, substituting these equalities and simplifying, we have

(T ◦ Rg,γ ◦ T−1)(z) =

= T

⎛⎝T−1(z) +

⎡⎣−γ

2

(
3 − f ′(y)

f ′(z)

)
+ (1 − γ)

⎛⎝ 1
f (y)
f (z) − 1

−
(

f (y)
f (z)

)2
⎞⎠⎤⎦ f (z)

α f ′(z)

⎞⎠
= z + T

⎛⎝−γ

2

(
3 − f ′(y)

f ′(z)

)
+ (1 − γ)

⎛⎝ 1
f (y)
f (z) − 1

−
(

f (y)
f (z)

)2
⎞⎠ f (z)

α f ′(z)

⎞⎠− β

= z + T

⎡⎣−γ

2

(
3 − f ′(y)

f ′(z)

)
+ (1 − γ)

⎛⎝ 1
f (y)
f (z) − 1

−
(

f (y)
f (z)

)2
⎞⎠⎤⎦ f (z)

α f ′(z) ,
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then (T ◦ Rg,γ ◦ T−1)(z) = R f ,γ(z), that is to say, R f ,γ and Rg,γ are analytically conjugated
by T(z).

Now, we can apply the Möbius transformation on the operator associated with the
parametric family (2) in order to obtain an operator that does not depend on the constants
a and b and, thus, be able to study the dynamical behavior of this family for any quadratic

polynomial. The Möbius transformation, in this case, is h(z) = z−a
z−b and has the following

properties:
(i) h(∞) = 1 (ii) h(a) = 0 (iii) h(b) = ∞.

The fixed-point rational operator of family (2) on p(z) has the expression

Oγ(z) = (h ◦ Rp,γ ◦ h−1)(z) =
z3(2γz2 + 3γz + 2γ + z5 + 5z4 + 10z3 + 9z2 + 4z

)
2γz5 + 3γz4 + 2γz3 + 4z4 + 9z3 + 10z2 + 5z + 1

. (23)

We can also deduce from (23) that the order of the methods for quadratic polynomials
is 3 when γ �= 0 and 4 when γ = 0.

3.1. Fixed Points

The orbit of a point z ∈ C is defined (see, for example, [14,15]) as the set of the
successive applications of the rational operator, i.e.,{

z, Oγ(z), O2
γ(z), . . .

}
.

The performance of the orbit of z is deduced attending to its asymptotic behavior.
A point xT is said to be T-periodic if OT

γ(z) = z and Ot
γ(z) �= z, for t < T. For T = 1, this

point is a fixed point.
Therefore, a fixed point is one that is kept invariant by the operator Oγ, that is, it is

one that satisfies the equation Oγ(z) = z. All the roots of the quadratic polynomial are, of
course, fixed points of the Oγ operator. However, it may happen that fixed points appear
that do not correspond to any root; we call these points strange fixed points. These points
are not desirable from a numerical point of view because when an initial estimate is taken
that is in the neighborhood of a strange fixed point, there is a possibility that the numerical
method will converge to it, that is, to a point that is not a solution of the equation. Strange
fixed points often appear when iterative methods are analyzed and their presence can show
the instability of the method.

Fixed points can be classified according to the behavior of the derivative operator on
them; thus, a fixed point z∗ can be:

• Repulsor, if |O′
γ(z∗)| > 1;

• Parabolic, if |O′
γ(z∗)| = 1;

• Attracting, if |O′
γ(z∗)| < 1;

• Superattracting, if |O′
γ(z∗)| = 0.

Moreover, the basin of attraction A(z∗) of an attracting fixed point z∗ is the set of
initial guesses whose orbits tend to z∗. Therefore, the set of points whose orbit tends to
an attracting fixed point defines the Fatou set F (Oγ), while its complement is the Julia set
J (Oγ).

In what follows, we study what are the fixed points of operator Oγ and their character
depending on the value of parameter γ. The proof of the following result is straightforward,
as it only needs to solve the equation Oγ(z) = z.

Proposition 1. By analyzing the equation Oγ(z) = z, one obtains the following statements:

(i) z = 0 and z = ∞ are superattracting fixed points for each value of γ.

(ii) z = 1 is a strange fixed point when γ �= −29
7

.
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(iii) the roots of polynomial

k(t) = 1 + 6t + (16 − 2γ)t2 + (21 − 3γ)t3 + (16 − 2γ)t4 + 6t5 + t6, (24)

which we denote by Exi(γ), where i = 1, 2, . . . , 6, are also strange fixed points for each value
of γ.

We need the expression of the differentiated operator to analyze the stability of the
fixed points and to obtain the critical points:

O′
γ(z) =

z2(z + 1)4(γ(6z6 + 8z5 + 7z4 + 7z2 + 8z + 6
)
+ z
(
16z4 + 41z3 + 60z2 + 41z + 16

))(
2γz5 + (3γ + 4)z4 + (2γ + 9)z3 + 10z2 + 5z + 1

)2 ,

It is clear that 0 and ∞ are always superattracting fixed points because they come from
the roots of the polynomial, and the order of the iterative methods is higher than 2, but the
stability of the other fixed points can change depending on the values of parameter γ.

Proposition 2. The character of the strange fixed point z = 1 is as follows:

(a) If γ = −29
7

, then z = 1 is not a strange fixed point.

(b) If Re(γ) < −125
7

or Re(γ) >
67
7

, then z = 1 is an attracting point.

(c) If Re(γ) ∈
[
−125

7
,

67
7

]
and Im(γ)2 +

(
Re(γ) +

29
7

)2
>

9216
49

, then z = 1 is an

attracting point.
(d) z = 1 cannot be a superattracting point.

(e) If Re(γ) ∈
[
−125

7
,

67
7

]
and Im(γ)2 +

(
Re(γ) +

29
7

)2
=

9216
49

, then z = 1 is a parabolic

point.
(f) In another case, z = 1 is the repulsor.

Proof. We obtain that

|O′
γ(1)| =

∣∣∣∣ 96
7γ + 29

∣∣∣∣.
It is not difficult to check that |O′

γ(1)| cannot be 0, so z = 1 cannot be a superattractor,

and, when γ = −29
7

, z = 1 is not a fixed point.
Now, we are going to study when z = 1 is an attracting point. It is easy to check that

|O′
γ(1)| < 1 is equivalent to 962 < |29 + 7γ|2. Rewriting the last expression, we obtain the

following inequality:

8375 < 406Re(γ) + 49Re(γ)2 + 49Im(γ)2.

Let us see when this inequality is verified. When 8375 − 406Re(γ)− 49Re(γ)2 < 0,

that is,
(

Re(γ)− 67
7

)(
Re(γ) +

125
7

)
> 0, z = 1 is an attracting point, so we obtain

that z = 1 is an attracting point when Re(γ) >
67
7

or Re(γ) < −125
7

. When we have

Re(γ) ∈
[
−125

7
,

67
7

]
, we need Im(γ) to satisfy 8375 < 406Re(γ) + 49Re(γ)2 + 49Im(γ)2,

for z = 1 being a superattractor.
We are going to study when z = 1 is a parabolic point. z = 1 will be a parabolic point

when 8375 − 406Re(γ)− 49Re(γ)2 = 49Im(γ)2, that is, z = 1 is a parabolic point when

Re(γ) ∈
[
−125

7
,

67
7

]
and 49Im(γ)2 = −Re(γ)2 − 406Re(γ) + 8375.
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Now, we establish the stability of the strange fixed points that are roots of the polyno-
mial (24). To do this, we calculate these roots noting that this polynomial is a sixth degree
symmetric polynomial, that is, it is a polynomial that can be reduced to a third degree one,
and that satisfies the following properties:

• t = 0 is not the root;
• if t = α is the root, t = 1

α is also the root.

Performing the reduction of (24), we obtain:

1 + 6t + (16 − 2γ)t2 + (21 − 3γ)t3 + (16 − 2γ)t4 + 6t5 + t6 = 0

↔(
1
t3 + t3) + 6(

1
t2 + t2) + (16 − 2γ)(

1
t
+ t) + 21 − 3γ = 0

↔z3 + 6z2 + (13 − 2γ)z + 9 − 3γ = 0,

where z = 1
t + t, z2 − 2 = 1

t2 + t2 and z3 − 3z = 1
t3 + t3. Now, we calculate the roots of this

polynomial and obtain:

z1(γ) =

3
√

2
3 (2γ − 1)

3
√

−9γ +
√

3γ((75 − 32γ)γ − 78) + 93 + 9
+

3
√

−9γ +
√

3γ((75 − 32γ)γ − 78) + 93 + 9
3√232/3

− 2,

z2(γ) =

3
√

− 2
3 (1 − 2γ)

3
√

−9γ +
√

3γ((75 − 32γ)γ − 78) + 93 + 9
+

(−1)2/3 3
√

−9γ +
√

3γ((75 − 32γ)γ − 78) + 93 + 9
3√232/3

− 2,

z3(γ) =
(−1)2/3 3

√
2
3 (2γ − 1)

3
√

−9γ +
√

3γ((75 − 32γ)γ − 78) + 93 + 9
−

3
√

− 1
2

3
√

−9γ +
√

3γ((75 − 32γ)γ − 78) + 93 + 9

32/3 − 2.

To calculate the roots of polynomial (24) from the zi(γ), i = 1, 2, 3, we undo the

variable change since t =
zi(γ)±

√
zi(γ)2 − 4

2
. Therefore, we obtain the roots of the sixth

degree polynomial, which are conjugated two by two

Ex1(γ) =
z1(γ) +

√
z1(γ)2 − 4

2
, Ex2(γ) =

z1(γ)−
√

z1(γ)2 − 4
2

,

Ex3(γ) =
z2(γ) +

√
z2(γ)2 − 4

2
, Ex4(γ) =

z2(γ)−
√

z2(γ)2 − 4
2

,

Ex5(γ) =
z3(γ) +

√
z3(γ)2 − 4

2
, Ex6(γ) =

z3(γ)−
√

z3(γ)2 − 4
2

.

Now, we study when the roots of the polynomial (24) are superattractors. For them, we
solve |O′

γ(Exi(γ))| = 0 for all i = 1, . . . , 6, and we get the following relevant values of γ:

• γ1 = 0.8114608325277108,
• γ2 = 5.5908453191613585,
• γ3 = 0.7671008924094337 + 0.7784254153980097i,
• γ4 = 0.7671008924094337 − 0.7784254153980097i.

Next, we are going to study the character of the fixed points by analyzing those values
of γ close to the values of the parameter for which some Exi(γ) is a supertractor. To do this,
we study how |O′

γ(Exi(γ))| behaves near the four previous values, and we obtain regions
where some of the roots will be attractors. These regions are represented in Figure 1.
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(a) Neighbourhood of γ1

(b) Neighbourhood of γ2

(c) Neighbourhood of γ3

(d) Neighbourhood of γ4

Figure 1. Character of the roots of polynomial k(t): (a) γ1, (b) γ2, (c) γ3, (d) γ4.

3.2. Critical Points

The relevance of knowing that the free critical points (that is, critical points different
from the roots of the polynomial) is based on this known fact: each invariant Fatou
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component contains, at least, one critical point. Operator Oγ(z) has as critical points z = 0,
z = −1, z = ∞, and the roots of the polynomial

q(t) = 6γ + (16 + 8γ)t + (41 + 7γ)t2 + 60t3 + (41 + 7γ)t4 + (16 + 8γ)t5 + 6γt6,

which we denote by Zxi(γ), where i = 1, . . . , 6.
Let us remark that z = −1 is a preimage of the fixed point z = 1. We can see that

q(t) is a symmetric polynomial, so we can obtain the roots of q(t) obtaining roots of a
polynomial of degree 3. The polynomial reduced of q(t) is the following one that we obtain
analogously to the polynomial (24):

q̂(t) = 6γt3 + (16 + 8γ)t2 + (41 − 11γ)t + 28 − 16γ.

In order to calculate the roots z of q(t), we need to obtain the roots of q̂(t) and apply the

following expression to them
z ±√

z2 − 4
2

. Thus, the roots of q(t) are conjugated.
Now, we are going to study the asymptotic behavior of the critical points to establish

if there are different convergence basins than those generated by the roots. For the free
critical point −1, we have Oγ(−1) = 1, who is a strange fixed point, so the parameter plane
associated with this critical point is not significative, since we know the stability of z = 1.

The other free critical points are roots of a polynomial that depends on γ; for that,
we draw the parameter planes. As we have that the roots are conjugated, we will only
draw three planes. We use as an initial estimate a free critical point that depends on γ.
We establish a mesh in the complex plane of 500 × 500 points. Each point of the mesh
corresponds to a parameter value. In each of them, the rational function is iterated to
obtain the orbit of the critical point as a function of γ. If that orbit converges to z = 0 or to
z = ∞ in less than 40 iterations, that point of the mesh is painted red; otherwise, the point
appears in black.

As we can see, there are many values of the parameter γ that would result in a method
in which the free critical points converge to one of the two roots. As it is observed in
Figure 2, they are located in the red area on the right side of the plane. Moreover, some
black areas can be identified as the regions of stability of those fixed points that can be
attracting, such as Figure 1b, whose stability region appears in black on the right side of
Figure 2c.

Now, we select some stable (in red in parameter planes) and unstable values of γ (in
black) in order to show their performance.

In the case of dynamical planes, the value of the parameter γ is fixed. Each point in
the complex plane is considered as a starting point of the iterative scheme, and it is painted
in different colors depending on the point that it has converged to. In this case, we paint
in blue points what converged to ∞, and in orange points what converged to 0. These
dynamical planes have been generated with a mesh of 500 × 500 points and a maximum of
40 iterations per point. We mark strange fixed points with white circles, the fixed point
z = 0 with a white star, and free critical points with white squares (again, the routines used
appear in [6]).

One value of the parameter that would be an interesting value is γ = 0 because it is
the only one that obtains order 4. In that case, we obtain the dynamical plane that we can
see in Figure 3a. In this case, two free critical points are in each basin of attraction, and the
strange fixed points are in the boundary of both basins of attraction, so they are repulsive.
In that case, the method is stable, and, as we can see, almost every point converges to 0 or
∞ (Let us notice that, in practice, any initial estimation taken in the Julia set will converge
to 0 or to∞, due to the rounding error).

Other value for the parameter that we study is γ = 1, Figure 3b. As we can see, this
dynamical plane is similar to that of γ = 0, but, in this case, we obtain less free critical
points and less strange fixed points, due to the simplification of the rational function for
this value of γ.
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(a) First root of q̂(t) (b) Second root of q̂(t)

(c) Third root of q̂(t)

Figure 2. Parameter planes of Oγ(z).

(a) Dynamical plane for γ = 0
(b) Dynamical plane for γ = 1

Figure 3. Dynamical planes of γ = 0 and γ = 1.

Carrying out numerous experiments, we have realized that the simplest dynamics is
that of the methods with parameter γ = 0 and γ = 1. Next, we will see other dynamical
planes associated with other values of the parameter γ. Some of these planes do not have a
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bad dynamics, although it is not as simple as the previous ones. This is the case of γ = 2,
Figure 4b, or the case of γ = 2i, Figure 4a.

However, values such as γ = −10 + i, γ = −5 or γ = − 29
7 present a dynamical plane

with the same number of basins of attraction but with more complicated performance.
We can see some of these dynamical planes in Figures 5a,b and 6a. There are also parameter
values for which the number of basins of attraction increases, for example, γ = 5 (Figure 6b).
These cases should be avoided since our method may not converge to the roots and may
end up converging to other points.

(a) Dynamical plane for γ = 2i

(b) Dynamical plane for γ = 2

Figure 4. Dynamical planes of γ = 2i and γ = 2.
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(a) γ = −10 + i

(b) γ = −5

Figure 5. Dynamical planes of γ = −10 + i and γ = −5.
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(a) γ = − 29
7

(b) γ = 5

Figure 6. Dynamical planes of γ = − 29
7 and γ = 5.

4. Numerical Experiments

In this section, we compare different iterative methods of the parametric family (2),
solving two classical problems of applied mathematics: the Hammerstein integral equation
and the Fisher partial derivative equation. We are going to use elements for the proposed
class for which we have studied the dynamical plane because we want to verify that,

108



Mathematics 2021, 9, 86

although some of them have complicated dynamics, they can be methods that give good
numerical results.

For the computational calculations, Matlab R2020b with variable precision arithmetics
with 1000 digits of mantissa is used. From an initial estimation x(0), the different algorithms
calculate iterations until the stoping criterium ‖x(k+1) − x(k)‖ < tol is satisfied.

For the different examples and algorithms, we compare the approximation obtained,
the norm of the function in the last iterate, the norm of the distance between the last
two approximations, the number of iterations needed to satisfy the required tolerance,
the computational time and the approximate computational convergence order (ACOC),
defined by Cordero and Torregrosa in [16], which has the following expression:

p ≈ ACOC =
ln(‖x(k+1) − x(k)‖2/‖x(k) − x(k−1)‖2)

ln(‖x(k) − x(k−1)‖2/‖|x(k−1) − x(k−2)‖2)
.

4.1. Hammerstein Equation

In this example, we consider the well-known Hammerstein integral equation (see [5]),
which is given as follows:

x(s) = 1 +
1
5

∫ 1

0
F(s, t)x(t)3dt, (25)

where x ∈ C[0, 1], s, t ∈ [0, 1] and the kernel F is

F(s, t) =
{

(1 − s)t t ≤ s,
s(1 − t) s ≤ t.

We transform the above equation into a finite-dimensional nonlinear problem by using

the Gauss–Legendre quadrature formula given as
∫ 1

0 f (t)dt ≈ 7
∑

j=1
ωj f (tj), where the nodes

tj and the weights ωj are determined for n = 7 by the Gauss–Legendre quadrature formula.
In this case, the nodes and the weights are in Table 1.

Table 1. Weights and nodes of the Gauss–Legendre quadrature.

i Weight ωi Abscissa ti

1 0.0647424831 0.0254460438
2 0.1398526957 0.1292344072
3 0.1909150252 0.2970774243
4 0.2089799185 0.5
5 0.1909150252 0.7029225757
6 0.1398526955 0.8707655928
7 0.0647424831 0.9745539561

By denoting the approximations of x(ti) by xi (i = 1, . . . , 7), one gets the system of
nonlinear equations:

5xi − 5 −
7

∑
j=1

aijx3
j = 0,

where i = 1, . . . , 7 and

aij =

{
wjtj(1 − ti) j ≤ i,
wjti(1 − tj) i < j.

Starting from an initial approximation x(0) = (−1, . . . ,−1)T and with a tolerance
of tol = 10−15, we run the parametric family for different values of the parameter γ.
The numerical results are shown in Table 2.

109



Mathematics 2021, 9, 86

Table 2. Hammerstein results for different parameters.

Parameter γ v‖F(x(k+1))‖2 ‖x(k+1) − x(k)‖2 Iteration ACOC Time

0 5.40317 ×10−46 1.82600 ×10−184 4 3.99753 38.0469
1 1.1060 ×10−20 7.36657 ×10−63 4 2.85884 33.8594

−10 + i 4.02251 ×10−45 3.70484 ×10−135 6 2.98801 84.8594
−29/7 1.73829 ×10−32 1.18363 ×10−97 5 2.98095 44.0781
−5 8.18771 ×10−29 1.48807 ×10−86 5 2.97987 46.2500
5 6.98712 ×10−28 9.02414 ×10−84 5 2.97222 36.3281
2i 5.87285 ×10−47 2.22194 ×10−141 5 2.98606 35.3281
2 5.36968 ×10−17 8.93118 ×10−52 4 2.93508 25.8750

In all cases, we obtain as an approximation of the solution of Equation (25) the
following vector x(k+1) = (1.0026875, 1.0122945, 1.0229605, 1.0275616, 1.0229605, 1.0122945,
1.0026875)T .

In the case of the Hammerstein integral equation, we see that the numerical results of
the parametric family (2) for different values of γ are quite similar. The main difference
observed between the methods is that the ACOC for γ = 0 is 4, and, for the rest of
the methods, it is approximately 3. On the other hand, we note that the method with
γ = −10 + i needs to perform a larger number of iterations than the rest of the methods to
satisfy the required tolerance, so the time it takes to approximate the solution is also longer.
Finally, taking into account the columns that measure the error of the approximation, that
is, ‖F(x(k+1))‖2 and ‖x(k+1) − x(k)‖2, we see that iterative methods that get lower errors
are those associated with the parameters γ = 0 and γ = 2. These results confirm the
information obtained in the dynamical section.

4.2. Fisher Equation

In this second example, we are going to study the equation proposed in [17] by Fisher
to model the diffusion process in population dynamics. The analytical expression of this
partial derivative equation is as follows:

ut(x, t) = Duxx(x, t) + ru(x, t)
(

1 − u(x, t)
p

)
, x ∈ [a, b], t ≥ 0, (26)

where D ≤ 0 is the diffusion constant, r is the level of growth of the species, and p is the
carrying capacity.

In this case, we will study the Fisher equation for the values p = 1, r = 1, and D = 1
in the spatial interval [0, 1] and with the initial condition u(x, 0) = sech2(πx) and null
boundary conditions.

We transform the problem we just described in a set of nonlinear systems by applying
an implicit method of finite differences, providing the estimated solution in the instant tk

from the estimated one in tk−1. We denote the spatial step by h =
1

nx
and the temporal step

by k =
Tmax

nt
, where Tmax is the final instant and nx and nt are the number of subintervals in

x and t, respectively. Therefore, we define a mesh of the domain [0, 1]× [0, Tmax], composed
of points (xi, tj), as follows:

xi = 0 + ih, i = 0, . . . , nx, tj = 0 + jk, j = 0, . . . , nt.
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Our objective is to approximate the solution of problem (26) in these points of the
mesh, solving as many nonlinear systems as there are temporary nodes tj in the mesh.
For this, we use the following finite differences:

ut(x, t) ≈ u(x, t)− u(x, t − k)
k

uxx(x, t) ≈ u(x + h, t)− 2u(x, t) + u(x − h, t)
h2 .

We observe that, for the time step, we use first order backward divided differences
and for the spatial step they are second order centered divided differences.

By denoting ui,j as the approximation of the solution at (xi, tj), and, by replacing it in
the Cauchy problem, we get the system

kui+1,j + (kh2 − 2k − h2)ui,j − kh2u2
i,j + kui−1,j = −h2ui,j−1,

for i = 1, 2, . . . , nx − 1 and j = 1, 2, . . . , nt. The unknowns of this system are u1,j, u2,j, . . . , unx−1,j,
that is, the approximations of the solution in each spatial node for the fixed instant tj.

In this example, we are going to work with the parameters Tmax = 10, nx = 10 and
nt = 50. As we have said, it is necessary to solve as many systems as there are temporary
nodes tj; for each of these systems, we use the parametric family (2) to approximate its
solution. Thus, starting from an initial approximation ui,0 = sech2(πxi), i = 0, . . . , nx, with
a tolerance of 10−6, we execute the parametric family for different values of γ so that we
get Table 3.

Table 3. Fisher results for different parameters.

Parameter γ ‖F(x(k))‖2 ‖x(k+1) − x(k)‖2 Iteration ACOC Time

0 1.00166 ×10−8 1.12488 ×10−35 3 4.21099 213.4219
1 1.9199 ×10−16 5.88036 ×10−50 4 2.99609 248.7344

−10 + i 8.08037 ×10−9 4.65282 ×10−26 5 3.01506 352.6563
−29/7 1.8002 ×10−7 2.00583 ×10−22 4 2.86978 247.9844
−5 1.89574 ×10−19 2.9985 ×10−58 5 2.99569 267.2969
5 2.4177 ×10−17 6.2774 ×10−52 5 2.99654 275.7344
2i 2.27659 ×10−11 1.96645 ×10−34 4 2.97846 252.8438
2 9.67264 ×10−12 1.50906 ×10−35 4 3.00948 231.2188

In all cases, we obtain as an approximation of the solution of problem (26) the following
vector x(k+1) = (0,4.32639,0.708718,0.853425,0.918847,0.93729,0.918847,0.853425,0.708718,
0.432639,0)T .

In this case, it can seen that the results are very similar, although there are subtle
differences. For example, the method when γ = 0 uses a smaller number of iterations than
the rest to satisfy the required tolerance, although this does not make it much faster than
the rest of the methods since the difference in time is seconds. On the other hand, if we
look at the time column, we can see that there is a method that stands out for its slowness;
this is the case of γ = −10 + i. Again, we note that the ACOC of the methods roughly
match the theoretical predictions made throughout the article. Observing the columns of
the errors, we find similar results as well and that, in this case, having a higher tolerance
than in the first example, no great differences are observed in these results.

5. Conclusions

A parametric family of iterative methods for solving nonlinear systems is presented.
The dynamical analysis of the class on quadratic polynomials is done in order to select the
members of the family with better stability properties. We prove that there exist a wide
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set of real and complex values of the parameter for which the corresponding methods are
stable. That is, the set of initial estimations converging to the roots is very wide.In particular,
we have stated that those procedures with γ = 0, γ = 1, and γ = 2 are especially stable,
although some other ones can also show similar dynamical properties. Two numerical
examples related to Hammerstein’s equation and Fisher’s equation allow us to confirm the
theoretical results corresponding to the convergence and the stability of the proposed class.
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Abstract: In this paper, we consider random hyperbolic partial differential equation (PDE) problems
following the mean square approach and Laplace transform technique. Randomness requires not
only the computation of the approximating stochastic processes, but also its statistical moments.
Hence, appropriate numerical methods should allow for the efficient computation of the expectation
and variance. Here, we analyse different numerical methods around the inverse Laplace transform
and its evaluation by using several integration techniques, including midpoint quadrature rule,
Gauss–Laguerre quadrature and its extensions, and the Talbot algorithm. Simulations, numerical
convergence, and computational process time with experiments are shown.

Keywords: random hyperbolic model; random laplace transform; numerical integration; monte carlo
method; numerical simulation; talbot algorithm

1. Introduction

Random hyperbolic partial differential equations (PDEs) are mathematical models
that describe wave phenomena with applications in various fields: fluid mechanics [1,2],
electromagnetic radiation [3], geosciences [4], and many others. The theory of hyperbolic
problems has been well developed based on the assumption that parameters of the model,
such as coefficients or initial values are exactly known, which is not available in the real
world, where error measurement and the unavailability of the measurement occur. It
causes the increasing interest for the random models, which can estimate the impact of the
uncertainty to the predicted solution.

The solution is found numerically due to the complexity of random models. Following
the mean square approach [5], we can extend existing numerical methods for determin-
istic problems to the random case by applying the Monte Carlo method [6,7] in order to
approximate the statistical moments of the solution. Nevertheless, iterative numerical
methods require the storage of the preliminary results and huge number of repetitions,
which leads to the the necessity of enormous computational resources and makes them
not appropriated to deal with random models. Thus, it becomes urgent to search for an
accurate and fast numerical algorithm. Integral transform is a good alternative, as it allows
us to construct the solution at one fixed point, not necessarily in the whole domain as it
occurs in the case of the finite difference methods, as it is shown in the literature [8].

Integral transform methods convert the original random PDE to an ordinary differen-
tial equation (ODE), which can be solved analytically, in some cases, or numerically. Once
obtained the solution of the random ODE, the inverse transform is applied in order o
restore the solution of the original problem. This inverse transform can be done by the defi-
nition, i.e., integrating over the infinite domain, or by using some numerical techniques [9].
There are several widely used methods: Fourier Series, Stehfest approach [10], and Tal-
bot inverse algorithm [11]. Because the inverse Laplace transform is ill-posed problem,
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the regularization property of the numerical algorithm is necessary. In this sense, the Talbot
inverse becomes the best option, since it guarantees the regularization property, while
other numerical inversion schemes fail in dealing with noisy data [12].

In this work, we construct a numerical solution for random hyperbolic PDE models,
not only by constructing the approximating stochastic process solution, but also while
computing its expectation and variance. Thinking of practical applications, we deal with
random models where the uncertainty is described by stochastic processes (s.p.’s) having a
finite degree of randomness ([5], p. 37); this means that the involved s.p.’s take the form

g(x) = G(x, V1, V2, . . . , Vm), (1)

where Vi, 1 ≤ i ≤ m, are mutually independent random variables (r.v.’s).
We propose an analytic-numerical approach that is based on random integral trans-

form technique combined with various numerical integration methods, such as midpoint
rule, Gauss-quadratures, and Talbot inverse [11]. The Monte Carlo method is used for the
evaluations of the integrands involving the solution of random ordinary differential prob-
lems and also for the computation of the expectation and variance of the approximating
stochastic process solution. The oscillatory nature of the appearing integrands deserves
careful attention, because not all of the quadrature rules are advisable [13–15].

The proposed analytical–numerical approach for solving random hyperbolic PDE
problems considered in this paper includes known state of the art of numerical integration
methods, which are compared between themselves in terms of accuracy and compu-
tational time: the midpoint quadrature rule, the Talbot algorithm for Laplace inverse,
the Gauss–Laguerre quadrature, the Exponential-Fitting Gauss-Laguerre quadrature, and
the adaptative quadrature. This comparison is provided to highlight the advantages and
drawbacks of each method. Moreover, this complex approach is compared with standard
finite-difference methods for solving the random hyperbolic PDE problem. In all cases,
the Monte Carlo simulations are used in order to calculate the statistical moments of the
random solution process.

The rest of the paper is organized, as follows. In Section 2, the random hyperbolic
PDE problem is formulated and the random Laplace transform method is briefly described.
Section 3 proposes numerical integration methods for Laplace inverse, while Section 4 gives
an algorithm for Monte Carlo simulations. All of the proposed methods are compared by
the series of numerical tests in Section 5. Section 6 discusses the results.

All of the numerical tests have been carried out by MatLAB, version R2020a, for Win-
dows 10 Home (64-bit), Intel(R) Core(TM) i5-8265U CPU, 1.60 GHz.

2. Preliminaries and Integral Transform for Random Hyperbolic PDE

This section begins by recalling previous results and definitions [8,16]. Let us consider
a complete probability space (Ω,F ,R) and the set Lp with the p-norm of a real-values
random variable Y ∈ Lp(Ω), as defined by

‖Y‖p = (E[|Y|p])1/p, p ≥ 1, (2)

where the expectation E[|Y|p] < ∞, and Lp(Ω) is a Banach space [17]. By using
definition (2), the integrability, continuity, and differentiability of a function Y(t) ∈ Lp(Ω)
can be defined straightforwardly.

Note that, if p = 2, then it is a mean square (m.s.) case. Let C be the class of all m.s.
locally integrated two-stochastic processes (s.p.’s) h(t) defined in R such that h(t) = 0 , for
all negative arguments and the two-norm satisfies

∃c ≥ 0, M > 0 : ‖h(t)‖2 ≤ M exp(ct), ∀t ≥ 0. (3)
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Subsequently, for h(t) ∈ C, the m.s. integral

H(s) = L[h(t)](s) =
∫ ∞

0
h(t) exp(−st)dt, (4)

where s is a complex number with real part Re(s) > c0 ≥ 0, and it is called the random
Laplace transform of 2-s.p. h(t). The constant c0 is chosen, such that Re(s) > c0 specifies
the region where H(s) is analytic and it has some form of singularity on the line Re(s) = c0
[9]. If H(s) is known, then the random inverse transform for t > 0 is defined, as follows

h(t) =
1

2πi

∫ α+i∞

α−i∞
H(s) exp(st)ds, (5)

where i stands for the imaginary unit and α > c0 [16].
For the purposes of present study, we recall some of the important properties of the

random Laplace transform (4): if s.p. h(t) is twice m.s. differentiable and h′(t), h′′(t)
belong to C, then

L[h′(t)](s) = sH(s)− h(0+), L[h′′(t)](s) = s2H(s)− sh(0+)− h′(0+). (6)

In this paper, we consider a one-dimensional random hyperbolic PDE modelling the
s.p. of the vibrating string motion u(x, t), depending on the spatial variable x and time t,

utt(x, t)(ξ) = a(x)(ξ)uxx(x, t)(ξ) + b(x)(ξ)ux(x, t)(ξ) + c(ξ)u(x, t)(ξ), x ∈ [0, L], t > 0, ξ ∈ Ω, (7)

u(x, 0)(ξ) = f0(x)(ξ), ut(x, 0)(ξ) = f1(x)(ξ), (8)

u(0, t)(ξ) = g0(t)(ξ), u(L, t)(ξ) = g1(t)(ξ), (9)

where a(x)(ξ) > 0, b(x)(ξ) are m.s.-continuous stochastic processes with a finite degree
of randomness and absolutely integrable with respect to the spatial variable in R; c(ξ) is
a random variable (r.v.). The s.p.’s f0(x)(ξ), f1(x)(ξ), g0(t)(ξ), and g1(t)(ξ) are functions
depending on a finite number of r.v. that represent random initial and boundary conditions
with a finite degree of randomness.

The random hyperbolic partial differential equation (PDE) (7) is solved using an
analytic-numerical method that is based on Laplace transform combined with an appropri-
ate numerical integration technique. In this paper, we consider various quadratures for
inverse Laplace transform.

Following the ideas of [8,18], let us define the random Laplace transform with respect
to the temporal variable, as

U(x, s)(ξ) = L[u(x, t)(ξ)]. (10)

Because u(x, t)(ξ) is a twice m.s. differentiable s.p., one gets

L[utt(x, t)(ξ)] = s2U(x, s)(ξ)− su(x, 0)(ξ)− ut(x, 0)(ξ) = s2U(x, s)(ξ)− s f0(x)(ξ)− f1(x)(ξ). (11)

Subsequently, (7) is transformed to the following random non-homogeneous ordinary
differential equation (ODE) with respect to the spatial variable

a(x)(ξ)Uxx(x, s)(ξ) + b(x)(ξ)Ux(x, s)(ξ) + (c − s2)U(x, s)(ξ) = −[s f0(x)(ξ) + f1(x)(ξ)], (12)

for x ∈ [0, L], ξ ∈ Ω.
Assuming a(x)(ξ) > 0 for each event ξ ∈ Ω, one gets

Uxx(x, s)(ξ) +
b(x)(ξ)
a(x)(ξ)

Ux(x, s)(ξ) +
c − s2

a(x)(ξ)
U(x, s)(ξ) = − s f0(x)(ξ) + f1(x)(ξ)

a(x)(ξ)
. (13)
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Equation (13) is a linear second order ODE with respect to the spatial variable, which
can be analytically solved in some cases, or numerically in other cases. Because the
boundary conditions (9) for the PDE are functions on t, the boundary conditions for (13)
are the corresponding Laplace transforms of (9):

U(0, s)(ξ) = L[g0(t)(ξ)], U(L, s)(ξ) = L[g1(t)(ξ)]. (14)

Once obtaining the solution U(x, s)(ξ), a real-valued u(x, t)(ξ) is restored by while
using random inverse Laplace transform that is given by (5). Taking advantage of the
relationship between the inverse Laplace transform and Fourier cosine integrals, see [9],
the following formula is used

u(x, t)(ξ) =
2eαt

π

∫ ∞

0
Re[U(x, α + iw)(ξ)] cos(wt)dw, ξ ∈ Ω, (15)

where Re[·] stands for the real part of a complex number. Note that the integrand appearing
in (15) has an oscillatory kernel that deserves special care for the numerical integration.

3. Numerical Integration Methods

This section describes briefly acknowledged integration methods for the integrals of
the type (15).

THe numerical solution of Equation (7) is constructed in the domain Δ = [0; L]× [0; T]
for each fixed event ξ. Let us introduce a uniform grid {xj, tn}, such that

xj = jh, h =
L

Nx
, j = 0, . . . , Nx; tn = nk, k =

T
Nt

, n = 0, . . . , Nt. (16)

At each node (xj, tn), the numerical solution is defined by un
j (ξ) for each realization

of ξ and it is obtained by approximating the integral (15). Hence, at every fixed (xj, tn), the
following function is defined

f j,n(w) = f j,n(w, ξ) = Re
[
U(xj, α + iw)(ξ)

]
cos(wtn), (17)

where U(xj, α + iw)(ξ) is the numerical solution of ODE (13) at the point xj for fixed value
of s = α + iw. Now, we briefly describe all of the considered methods for numerical
integration.

3.1. Midpoint Quadrature Rule

The midpoint quadrature rule is a method of approximation of integral (15) based
on the Riemann sums, the simplest case of Newton–Cotes open formulas, for truncated
domain [0, R]. In the general case, the midpoint quadrature rule is written, as follows

∫ ∞

0
f (w)dw ≈

∫ R

0
f (w)dw =

N

∑
k=0

f (wk+1/2)hMP + O(h2), (18)

where wk+1/2 =
(

k + 1
2

)
hMP, hMP = R

N , k = 0, . . . , N − 1.
It is well known that the main advantage of this method is its simplicity of implemen-

tation and the consideration of all the information regarding the integrand, which makes it
applicable for a wider class of integrand functions [14]. However, the high accuracy of the
quadrature requires large enough value of N, leading to the increasing computational cost.
In the case of improper integral (in the infinite domain), the method can also be sensitive to
the choice of R.
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3.2. Gauss-Laguerre Quadrature

The novelty of Gauss quadratures is to choose nodes where the integrand is evaluated
in order to minimize the error of approximation. It is a good alternative to Newton–Cotes
formulas, especially when the evaluation of function itself requires a lot of computational
resources, because good accuracy can be reached with a small number, four or five, of nodes
if the integrand is well conditioned. This is not the case when the integrand is of oscillatory
type [19].

The improper integral is approximated by Gauss–Laguerre (GL) quadrature of NGL
nodes by the following sum, see [20],

∫ ∞

0
f (w)dw ≈

NGL

∑
k=1

γk f (wk)ewk , (19)

where wk is the k-th root of Laguerre polynomial LNGL(w), γk is the weight of the quadrature
given by

γk =
wk

(NGL + 1)2
[
LNGL+1(wk)

]2 , k = 1, . . . , NGL. (20)

3.3. Exponentially-Fitted Gauss-Laguerre Quadrature

Exponential fitting is an approach that is used in numerical differentiation, interpola-
tion, and integration for improving the accuracy of the methods. Because integrand in (15)
is oscillating, Exponentially-fitted Gauss–Laguerre quadrature (EF-GL), as proposed in [21],
could be a good option. For EF-GL, nodes and weights depend on integrand and cannot be
defined a priori. The computation of these NGL pairs of nodes and weights is based on the
solution of a nonlinear system of NGL equations, which leads to additional computational
cost. In [21], the numerical algorithm is described in details. Further, in Section 5, we
compare the accuracy and computational time of GL and EF-GL quadrature rules.

3.4. Talbot Inverse

The method of Talbot for the Laplace inversion problem [11] is based on numerical
contour integration. Instead of formula (15), the Bromwich integral is used

un
j (ξ) =

1
2πi

∫ α+i∞

α−i∞
estn

U(xj, s)ds. (21)

The contour deformation is used in order to obtain the Hankel contour and exploit the
exponential factor, which makes the integral suitable for further application of a Newton–
Cotes formula [22]. The Talbot inversion quadrature for NTI nodes is written, as follows

un
j (ξ) =

2
5tn

NTI−1

∑
k=0

Re
[
γkU(xj,

wk
tn )
]
, (22)

where wk are the nodes and γk are the weights defined by

w0 =
2NTI

5
, wk =

2πk
5

(
cot
(

kπ

NTI
+ i
))

, (23)

γ0 = 0.5 exp(w0), γk = exp(wk) ·
[

1 +
kπ

NTI

(
1 + cot2

(
kπ

NTI

)
− i cot

(
kπ

NTI

))]
. (24)

Here, the number of nodes NTI should be chosen in accordance with desired accuracy:
for n significant digits NTI = �1.7n�. It shows the flexibility of the method and the high
degree of accuracy with fast convergence. Moreover, as stated in [12], the main advantage of
the Talbot algorithm is the regularization property, which means the ability to handle noisy
data. It is important for the inverse Laplace transform problem due to its ill-posedness and
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it becomes even more urgent in the random case dealing with perturbed initial conditions
or parameters of the problem.

Summarizing, a numerical solution is constructed following the steps of Algorithm 1
for all of the described methods.

Algorithm 1: Numerical solution for deterministic string vibrating problem

Initialization: set the mesh {xj, tn} by (16);
Set initial conditions u(xj, 0) = f0(xj), j = 0, . . . , Nx;
Set α > c0;
Set number of nodes of the quadrature N;
Set n = 0;
while tn < T do

Increment n;
for j = 0, . . . , Nx do

Compute nodes and weigths {wk, γk} of the chosen quadrature
- Midpoint rule: uniform grid with N nodes ;
- GL quadrature: nodes wk are the roots of the Laguerre polynomial of N-th order, k = 1, . . . , N;
- EF-GL quadrature [21]: nodes wk and weights γk are found by solving nonlinear system of 2N equations;
- Talbot inverse: nodes wk and weights γk, k = 0, . . . , N − 1 are defined by (23)–(24);
Get the approximated value un

j :

- Midpoint rule: integral in (15) is approximated by (18);
- GL and EF-GL quadratures: integral in (15) is approximated by (19)–(20);
- Talbot inverse: formula (22) ;

end

end

4. Monte Carlo Method for Random Hyperbolic PDE

The coefficients of the random m.s. Equation (7) and corresponding initial and bound-
ary conditions (9) are stochastic processes (s.p’s) that are defined in a complete probability
space (Ω, F ,P), i.e., s.p.’s a(x), b(x), f0(x), f1(x), g0(x) and g1(x) are described as contin-
uous s.p.’s with with one-degree of randomness.

The solution of the random m.s. problem is approximated by using the the Monte
Carlo approach [6,7], when the expectation E[u(x, t)] is approximated by the average of a
sufficiently large number of realizations ξ ∈ Ω of the corresponding deterministic realized
transformed random ordinary differential problem. The Algorithm 2 describes the steps of
the numerical solution.

Algorithm 2: Numerical solution for random hyperbolic PDE problem

Initialization: set the mesh {xj, tn} by (16);
Set number of the MC realizations NMC;
Generate NMC random variables for s.p.’s a(x), b(x), f0(x), f1(x), g0(x);
Choose the method of numerical integration for m = 1, . . . NMC do

Define s.p.’s a(x), b(x), f0(x), f1(x), g0(x) for fixed realization;
Run Algorithm 1 to obtain the numerical solution um of the deterministic problem;
Increment m;

end

Compute E[u] = ∑NMC
m=1

um
NMC

;

Compute E[u2] = ∑NMC
m=1

u2
m

NMC
;

Compute
√

Var[u] =
√
E[u2]− (E[u])2
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5. Numerical Results

This section deals with the comparison of the above-described methods of numerical
integration and Laplace inversion for several test problems.

5.1. Deterministic PDE Problem with Constant Coefficients

We start with simple one dimensional deterministic problem with a known analytical
solution in order to check the viability of the proposed numerical integration techniques.
The deterministic example corresponds to one fixed event ξ ∈ Ω. Instead of the bounded
spatial domain [0; L], the whole real axis R is considered. Thus, no boundary conditions
are needed. We also assume that a > 0, b, and c are constants, i.e., the following wave
equation is considered

utt(x, t) = a2uxx(x, t) + bux(x, t) + cu(x, t), x ∈ R, t > 0, (25)

subject to initial conditions u(x, 0) = f0(x), ut(x, 0) = f1(x).
This problem admits an analytical solution that can be written in terms of Bessel

function of the first kind, see [23], p. 574, Equation 6.1.5, as follows

• for c − 1
4 a−2b2 = σ2 > 0:

u(x, t) =
1
2

f (x + at) exp
(

bt
2a

)
+

1
2

f (x − at) exp
(
− bt

2a

)

+
σt
2a

exp
(
− bx

2a2

) ∫ x+at

x−at
exp
(

bξ

2a2

) I1

(
σ
√

t2 − (x − ξ)2/a2
)

√
t2 − (x − ξ)2/a2

f (ξ)dξ

+
1
2a

exp
(
− bx

2a2

) ∫ x+at

x−at
exp
(

bξ

2a2

)
I0

(
σ
√

t2 − (x − ξ)2/a2
)

g(ξ)dξ,

(26)

where I0(z) and I1(z) are the modified Bessel function of the first kind;
• for c − 1

4 a−2b2 = −σ2 < 0:

u(x, t) =
1
2

f (x + at) exp
(

bt
2a

)
+

1
2

f (x − at) exp
(
− bt

2a

)

− σt
2a

exp
(
− bx

2a2

) ∫ x+at

x−at
exp
(

bξ

2a2

) J1

(
σ
√

t2 − (x − ξ)2/a2
)

√
t2 − (x − ξ)2/a2

f (ξ)dξ

+
1
2a

exp
(
− bx

2a2

) ∫ x+at

x−at
exp
(

bξ

2a2

)
J0

(
σ
√

t2 − (x − ξ)2/a2
)

g(ξ)dξ,

(27)

where J0(z) and J1(z) are Bessel function of the first kind.

In order to test the proposed numerical integration methods we apply Laplace trans-
form, as described in Section 2, and obtain a deterministic version of Equation (13):

Uxx(x, s) +
b
a2 Ux(x, s) +

c − s2

a2 U(x, s)(ξ) = − s f0(x) + f1(x)
a2 . (28)

Applying the non-unitary Fourier transform with angular frequency

Û(w, s) = F [U(x, s)] =
∫ ∞

−∞
U(x, s) exp(−ixw)dx, (29)

Equation (13) takes the following form

− w2Û(w, s) + iw
b
a2 Û(w, s) +

c − s2

a2 Û(w, s) = −F
[

s f0(x) + f1(x)
a2

]
. (30)
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Algebraic Equation (30) is solved directly

Û(w, s) =
−F
[

s f0(x)+ f1(x)
a2

]
−w2 + iw b

a2 +
c−s2

a2

. (31)

Hence, the solution U(x, s) of (28) can be obtained by applying inverse Fourier trans-
form to (31).

In the next Example 1, we consider a particular case of Equation (25) with constant
coefficients and trigonometric initial conditions.

Example 1. Let us consider deterministic problem (25) with coefficients a = 2, b = 1, c = 3,
and initial conditions f0(x) = cos(x) and f1(x) = sin(x).

Numerical solution is constructed in the truncated domain [0, L]× [0, T], L = 5, T = 1,
for discrete uniformly distributed nodes (16), Nx = 5, Nt = 10, by applying the described
in previous section methods, see Algorithm 1. We set α = 1.

Applying the inverse Fourier transform to (31), one obtains

U(x, s) =
1

2π

[
πe−xi(s + i)

a2 + bi + (s2 − c)
+

πexi(s − i)
a2 − bi + (s2 − c)

]
, s = α + iw, (32)

where i is the imaginary unit. Once the solution of ODE (28) is obtained, formula (15) is used
to restore the solution of the PDE while using various numerical integration techniques.

Note that Equation (25) admits the analytical solution, as described above. Because
the function u(x, t) is close to zero, we compute the relative error of the discrete numerical
solution at the mesh nodes in order to estimate the accuracy of the methods

RelErr(j, n) =
|uref(xj, tn)− Unum(xj, tn)|

|uref(xj, tn)| , (33)

where Unum is the matrix of numerical solution Unum = {un
j }, j = 0, . . . , Nx, n = 0, . . . , Nt,

as computed by Algorithm 1; uref(xj, tn) is the reference value at the point (xj, tn). In this
example, as the exact solution is known, the reference value is equal to this exact solution.
For other cases where the exact solution is not available, a reference value is obtained
using accurate finite difference method (FDM) for solving the original PDE (7). The total
computational time for the proposed methods are presented in Table 1, together with the
maximum of RelErr(j, n).

The adaptative quadrature (MatLAB function integral [24]) has the same order of
accuracy as the midpoint rule, but it requires greater computational resources. Thus, it will
not be considered in further more complicated examples.

For the Talbot algorithm M = 17 is chosen to guarantee the accuracy up to 10 sig-
nificant digits [22]. Even in that case, the method performs much faster than standard
numerical integration methods for (15). Thus, the Talbot inverse method is found to be the
most effective method for the deterministic case with constant coefficients.

Table 1. Comparison of various numerical methods for problem (25) with a = 2, b = 1 and c = 3
(Example 1).

Method Error CPU-Time, s

Midpoint rule (R = 104, hMQ = 0.1) 4.4700 × 10−7 0.59
Gauss-Laguerre (NGL = 25) 3.5551 × 10−1 0.05
EF-GL (five nodes) 7.9303 3.97
Talbot inverse (M = 17) 7.3457 × 10−11 0.02
Adaptative quadrature 4.8559 × 10−6 7.53
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The relative errors for Midpoint rule and Talbot inverse methods are plotted in
Figure 1. Because no boundary conditions are posed for the problem, the largest values of
the relative errors are situated at the boundary x = L.

Figure 1. Distribution of the relative error among space and time for midpoint rule (left) and Talbot inverse (right) methods
in Example 1.

Table 2 presents a comparison of GL and EF-GL quadratures in terms of the maximum
relative error and the CPU-time varying the number of nodes NGL. It is important to notice
that the CPU-time may vary from simulation to simulation, thus only the order should
be taken into account. In the case of GL quadrature, we find out that the computational
time is similar with increasing number of nodes, while the CPU-time for EF-GL method is
increasing exponentially. The convergence of the GL quadrature is shown, while taking the
results shown in Table 1 into account: the error reduces significantly with an increasing
number of nodes. The potential improvement of the GL method by the exponential fitting
expectedly has higher computational cost, due to the solution of the nonlinear system at
each point of the computational domain. However, the accuracy of the EF-Gl quadrature for
this example with oscillating integrand has not been improved when comparing with the
standard GL rule. Thus, it will not be considered in further more complicated examples.

Table 2. Gauss–Laguerre (GL) and Exponentially-fitted Gauss–Laguerre quadrature (EF-GL) methods
results, depending on number of nodes of the quadrature for Example 1.

NGL 3 5 8 15

GL Error 8.2739 7.4679 2.5601 1.4560
GL CPU-time, s 0.02 0.02 0.05 0.05

EF-GL Error 9.4937 7.9303 7.5438 3.9366 × 103

EF-GL CPU-time, s 0.44 1.84 15.84 430.89

The accuracy of the midpoint rule depends on the truncation R and step size hMP.
A bigger domain, as well as smaller step size, lead to an increased computational time.
Figure 2 presents the plots of errors and the CPU-time for fixed step size hMP = 10−1 with
respect to increasing domain. The accuracy in dependence on the step size hMP is also
studied. In Table 3, the maximum relative error is reported for various hMP and fixed
R = 104. The maximum relative error is decreasing with step size until 4.4699 × 10−7

(hMP = 1/16); further fragmentation of the step size does not reduce the error for R = 104.
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Table 3. The maximum relative error and computational time of the midpoint quadrature rule with
respect to step size hMP for Example 1.

hMP Error CPU-Time, s

1/1 2.8832 × 10−1 0.06
1/2 3.1862 × 10−2 0.06
1/4 7.0942 × 10−5 0.19
1/8 4.4700 × 10−7 0.22
1/16 4.4699 × 10−7 0.53
1/32 4.4699 × 10−7 1.03
1/64 4.4699 × 10−7 1.47
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Figure 2. Error and total computational time of the midpoint rule with respect to the domain size R with fixed h = 10−1 for
Example 1.

5.2. Deterministic PDE with Non-Constant Coefficients

In the case of non-constant coefficients in (13), the analytical solution is not always
available; thus, FDM is applied to construct a reference numerical solution. Note that the
function U(x, s) that is used in expression (17) means the value of the numerical solution
of the ODE (13) at the fixed point x for fixed parameter s.

Equation (13) is discretized by the central differences on the same mesh {xj}, j =
0, . . . , Nx, as follows

Uj+1 − 2Uj + Uj−1

h2 +
b(xj)

a(xj)

Uj+1 − Uj−1

2h
+

c − s2

a(xj)
Uj = − s f0(xj) + f1(xj)

a(xj)
, j = 1, . . . , Nx − 1, (34)

where Uj stands for the approximated value of U(x, s) at the node xj. The values at the
boundaries are found from the boundary conditions by applying the Laplace transform

U0 = L[g0(t)], UNx = L[g1(t)]. (35)

Hence, the integrand (17) has to be evaluated at each fixed node of the computational
grid in order to approximate integral (15), which provokes a significant augment of the
CPU-time. In the next example, we increase the complexity by regarding a variable
coefficients deterministic problem.

Because the analytical solution for the deterministic PDE problem in general form (7)
is not available, a numerical method has to be employed to obtain the reference numerical
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solution. We consider an explicitly centred in time and space finite difference scheme for
the mesh function un

j ≈ u(xj, tn):

un+1
j − 2un

j + un−1
j

(Δt)2 = a(xj)
un

j+1 − 2un
j + un

j−1

(Δx)2 + b(xj)
un

j+1 − un
j−1

2Δx
+ cun

j , (36)

where j = 1, . . . , Nx, n = 2, . . . , Nt. The initial conditions (8) are used in order to obtain
the solution at the first time levels t0 and t1. The derivative in (8) is approximated by
the forward difference. Because the considered scheme is conditionally stable, the step
sizes Δt and Δx are chosen to guarantee the stability. In order to obtain a good approxi-
mation, which could be considered as the reference solution, the mesh should be chosen
appropriately fine.

Example 2. Let us consider a deterministic vibrating string problem (7) on rectangle [0, L]×
[0, T], L = 0.5, T = 0.2. We set non-constant coefficients a(x) = 9x + 1, b = −ex, c = −5,
initial conditions f0(x) = x(x − L) and f1(x) = 0, and boundary conditions g0(t) = g1(t) = 0.

The numerical solution is constructed by the Algorithm 1, choosing Nx = 10, Nt = 5.
For the midpoint rule, N = 100 and R = 100 are used. Table 4 presents the comparison of
the methods in terms of maximum relative error and computational time. The reference
solution is the numerical solution that is computed by the FDM (36) in refined mesh
(Nx = 100, Nt = 16,000), which preserves the stability of the scheme. Because an explicit
method is used and no iterative procedures are needed for solving nonlinear system at
each time-level, the total computational time is comparably small: 0.15 s. Figure 3 plots
the reference solution.

Table 4. A comparison of various methods of numerical integration for Example 2.

Method Error CPU-Time, s

Midpoint quadrature 4.5628 × 10−2 116.38
Talbot inverse 7.1305 × 10−2 51.00
Gauss-Laguerre (9 nodes) 7.4450 × 10−1 5.00
Gauss-Laguerre (25 nodes) 7.9014 × 10−2 17.48

Figure 4 plots the solution at the moment t = T. The midpoint rule and Talbot inverse
method perform more accurately than GL quadrature of nine nodes, but they require
more computational time due to larger number of calls of integrand (17). However, taking
25 nodes in the GL quadrature, the accuracy has been improved significantly.
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Figure 3. Reference solution for Example 2 computed by the finite difference method (FDM) (36).
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Figure 4. Numerical solution for Example 2 at the moment t = T obtained by considered methods.

5.3. Random PDE with Constant Coefficients

In this subsection, we deal with random models with constant coefficient random
variables. It is remarkable that, in this case, we need not only the computation of the
approximation s.p. solution, but also the computation of its statistical moments.

Example 3. We consider a random version of problem (25), with a ∼ N (2, 0.25), b, c ∼
Beta(2, 5). In order to approximate the mean and variance of the solutions, the Monte Carlo
method with NMC simulations is used.

Expectation and variance of the exact solution for the random hyperbolic PDE (25)
are plotted in Figure 5. As in previous examples, we compare the proposed methods of
integration and Laplace inverse in terms of maximum relative error and computational time.
Table 5 presents the results for various NMC. The CPU-time refers to the total computational
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time for all NMC simulations. Note that, for 1000 simulations, the exact solution (26)–(27)
requires 28.41 s to perform the simulations. Thus, Midpoint rule (R = 100, h = 0.1), Talbot
inverse and GL quadrature require less computational time than calculation by the exact
formula. As expected, the computational time is increasing with the number of simulations
linearly, but errors preserve the order in most cases.

Figure 5. Expectation and variance of the exact solution for the random hyperbolic partial differential equation (PDE) (25)
with a ∼ N (2, 0.25), b, c ∼ Beta(2, 5), performed using the Monte-Carlo method with NMC = 103 simulations.

Table 5. Comparison of various methods of numerical integration for the random hyperbolic PDE
(25) with a ∼ N (2, 0.25), b, c ∼ Beta(2, 5).

Method Error of Mean Error of Variance CPU-Time, s

NMC = 500
Midpoint rule 5.6048 × 10−2 2.3034 × 10−2 4.88
Talbot inverse 5.0744 × 10−2 2.3032 × 10−2 6.83
GL quadrature (3 nodes) 1.9009 × 10−1 2.1436 × 10−1 2.92

NMC = 1000
Midpoint rule 4.1520 × 10−2 2.5102 × 10−2 7.52
Talbot inverse 4.0345 × 10−2 2.5102 × 10−2 12.67
GL quadrature 1.9086 × 10−1 2.1503 × 10−1 5.64

NMC = 2000
Midpoint rule 3.7210 × 10−2 1.2823 × 10−2 16.88
Talbot inverse 3.1905 × 10−2 1.2823 × 10−2 24.86
GL quadrature 1.9001 × 10−1 2.1443 × 10−1 11.30

NMC = 4000
Midpoint rule 4.6382 × 10−2 9.8022 × 10−3 32.89
Talbot inverse 4.1078 × 10−2 9.7971 × 10−3 51.09
GL quadrature 1.8993 × 10−1 2.1581 × 10−1 24.31

5.4. Random PDE with Non-Constant Coefficients

To complete the study, a random variable coefficient problem is considered.
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Example 4. The vibration of the string in [0, L] is described by Equation (7), subject to the initial
conditions f0(x) = x(x − L) and f1(x) = 0; and boundary conditions g0(t) = g1(t) = 0. We set
up the parameters:

L = 0.5, T = 0.2, a(x) = ϕx + 1, ϕ ∼ N (9, 0.5), b(x) = −ex, c ∼ Beta(2, 5). (37)

Unlike the deterministic Example 2 with non-constant coefficients where FDM pro-
vides a reference analytical solution, reference values are not available here due to the
computational complexity that arises in the evaluation of the statistical moments of the
approximate stochastic process when time step advances [18]. A survival reference FDM
solution is taking the Monte Carlo method for an appropriate set of realizations. In this
case, the number of realizations is NMC = 103 and CPU-time is 16,212 s.

Figure 6 plots the numerical solution. The zero-variance at the boundaries is caused by
the boundary conditions. Similar plots are obtained for the considered methods. Thus, we
compare them in terms of the maximum relative error, see Table 6. As it is expected from
the previous examples, the most accurate solution is obtained by the midpoint rule and
Talbot inverse, although this advantage pays the price of additional computational cost.

Figure 6. Expectation and variance of the numerical solution for the random hyperbolic PDE (25) with ϕ ∼
N (9, 0.5), b(x) = −ex, c ∼ Beta(2, 5), performed by using the Monte-Carlo method with NMC = 103 simulations.

Table 6. Comparison of various methods of numerical integration for Example 4, NMC = 1000.

Method Error of Mean Error of Variance CPU-Time, s

Midpoint rule 3.8216 × 10−2 2.2638 × 10−2 65, 385.00
Talbot inverse 3.4976 × 10−2 2.1375 × 10−2 28, 965.54
GL quadrature (9 nodes) 1.8671 × 10−1 2.5603 × 10−2 7192.14

6. Conclusions

The solution of a random hyperbolic PDE problem is a challenging task that is de-
manded in many practical applications. Computing an expression of the approximating
stochastic process makes the computation of its statistical moments available. In this paper,
we propose a combination of the random Laplace transform with the numerical integration
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techniques for its inverse, and the Monte Carlo method for the evaluation of numerical
solution of the transformed problem at a particular required point.

The Monte Carlo simulations require a fast and efficient basis numerical algorithm
for solving deterministic hyperbolic PDE problem, for every fixed realization. FDM could
not be an option due to the high computational cost and memory requirements. In order
to avoid the numerical differentiation of the PDE, Laplace transform is applied, which
results in ODE equation. In some cases, as it has been shown in present paper, the analytical
solution of ODE is known; thus, we use numerical integration methods for inverse Laplace
transform. If the solution of ODE is not available, then numerical techniques for boundary
value problem have to be employed.

Several numerical integration methods have been considered: midpoint rule and
GL-quadrature for improper integrals. However, due to the oscillatory behaviour of the
integrand function GL quadrature with a small number of nodes shows comparatively poor
results, while the midpoint rule is comparable with Talbot’s Laplace inverse for random
hyperbolic PDEs. The proposed complex analytic-numerical approach is compared with
the classical explicit FDM scheme for the original random PDE problem.
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Abstract: We combine the stochastic perturbation method with the maximum entropy principle
to construct approximations of the first probability density function of the steady-state solution
of a class of nonlinear oscillators subject to small perturbations in the nonlinear term and driven
by a stochastic excitation. The nonlinearity depends both upon position and velocity, and the
excitation is given by a stationary Gaussian stochastic process with certain additional properties.
Furthermore, we approximate higher-order moments, the variance, and the correlation functions of
the solution. The theoretical findings are illustrated via some numerical experiments that confirm
that our approximations are reliable.

Keywords: stochastic perturbations; random nonlinear oscillator; maximum entropy principle;
probability density function; stationary Gaussian noise

1. Introduction and Motivation

The analysis of stochastic perturbations in nonlinear dynamical systems is a hot topic
in applied mathematics [1,2] with many applications in apparently different areas such
as control [3], economy [4] and especially in dealing with nonlinear vibratory systems.
The study of systems subject to vibrations is encountered, for example, in Physics (in
the analysis of different types of oscillators) and in Engineering (in the analysis of road
vehicles, response of structures to earthquakes’ excitations or to sea waves). The nature of
vibrations in this type of systems is usually random because they are spawned by complex
factors that are not known in a deterministic manner but statistically characterized via
measurements that often contain errors and uncertainties. Although, oscillators in Physics
and Engineering systems have been extensively studied in the deterministic case [5,6],
and particularly, in the nonlinear case [7–9], due to the above-mentioned facts the stochastic
analysis is more suitable since provides better understanding of their dynamics.

Many vibratory systems are governed by differential equations with small nonlinear
terms of the following form,

Ẍ(t) + βẊ(t) + ω2
0(X(t) + εg(X(t))) = Y(t), t > 0. (1)

Here, X(t) denotes the position (usually of the angle w.r.t. an origin) of the oscil-
latory system at the time instant t, the parameter β is given by β := 2ξω0, being ξ the
damping constant and ω0 > 0 the undamped angular frequency, and finally, ε is a small
perturbation (|ε| � 1) affecting a nonlinear function of the position, g(X(t)). The expres-
sion X(t) + εg(X(t)) is referred to as the nonlinear restoring term. The right-hand side
term, Y(t), stands for an external source/forcing term (vibration) acting upon the system.
In the setting of random vibration systems, Y(t) is assumed to be a stochastic process,
termed stochastic excitation, having certain characteristics that in the present study will be
specified later.
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Notice that the nonlinear restoring term in Equation (1) involves the parameter ε,
which determines the magnitude of the nonlinear perturbation, whose shape is given by
g(X(t)). When ε = 0, Equation (1) describes a random linear oscillator. In [10], authors
analyze this class of oscillators considering two cases for the stochastic source term Y(t),
first when is Gaussian and, secondly, when it can be represented via a Karhunen–Loève
expansion. In the case that ε �= 0, the inclusion of the nonlinear term makes more difficult
(even simply impossible) to exactly solve Equation (1). An effective method to construct
reliable approximations of Equation (1) in the case that ε represents a small parameter
is the perturbation technique [11–15]. In the stochastic setting, this method has been
successfully applied to study different type of oscillators subject to random vibrations.
After pioneer contributions by Crandall [16,17], the analysis of random vibration systems
has attracted many researchers (see, for instance, in [15,18,19] for a full overview of this
topic). In [20], approximations of quadratic and cubic nonlinear oscillators subject to
white noise excitations are constructed by combining the Wiener–Hermite expansion and
the homotopy perturbation technique. The aforementioned approximations correspond
to the first statistical moments (mean and variance) because, as authors indicate in the
introduction section, the computation of the probability density function (PDF) is usu-
ally very difficult to obtain. In [21], the authors extend the previous analysis to compute
higher-order statistical moments of the oscillator response in the case the nonlinearity is
only quadratic. The previous methodology is extended and algorithmically automated
in [22]. In [23], the author considers the interesting scenario of an harmonic oscillator
with a random mass and analyses important dynamic characteristics such as the stochastic
stability and the resonance phenomena. To conduct that study, a new type of Brownian
motion is introduced. The perturbation technique has also been used to approximate
the first moments, mainly the mean and the variance, of some oscillators subject to small
nonlinearities. The computational procedures of this method often requires amendments to
the existing solution codes, so it is classified as an intrusive method. A spectral technique
that allows overcoming this drawback is non-intrusive polynomial chaos expansion (PCE)
in which simulations are used as black boxes and the calculation of chaos expansion coeffi-
cients for response metrics of interest is based on a set of simulation response evaluations.
In the recent paper [24], authors design an interesting hybrid non-intrusive procedure
that combine PCE with Chebyshev Surrogate Method to analyze a number of uncertain
physical parameters and the corresponding transient responses of a rotating system.

Besides computing the first statistical moments of the response or performing a
stability analysis of systems under stochastic vibrations, we must emphasize that the
computation of the finite distribution (usually termed “fidis”) associated to the stationary
solution, and particularly of the stationary PDF, is also a major goal in the realm of vibratory
systems with uncertainties. Some interesting contributions in this regard include [25,26].
In [25], the authors first present a complete overview of methods and techniques available
to determine the stationary PDF of nonlinear oscillators excited by random functions.
Second, nonlinear stochastic oscilators excited by a combination of Gaussian and Poisson
white noises are fully analyzed. The study is based on solving the forward generalized
Kolmogorov partial differential equation (PDE) using the exponential-polynomial closure
method. The theoretical analysis is accompanied with several illustrative examples. In the
recent contribution [26], authors propose a new method to compute a closed-form solu-
tion of stationary PDF of single-degree-of-freedom vibro-impact systems under Gaussian
white noise excitation. The density is obtained by solving the Fokker–Planck–Kolmogorov
PDE using the iterative method of weighted residue combined with the concepts of the
circulatory and potential probability flows. Apart from obtaining the density of the solu-
tions, it is worth to pointing out that in some recent contributions one also determines the
densities of key quantities, that belong to Reliability Theory, like the first-passage time for
vibro-impact systems with randomly fluctuating restoring and damping terms (see [27]
and references therein).

130



Mathematics 2021, 9, 204

In this paper, we address the study of random cross-nonlinear oscillators subject to
small perturbations affecting the nonlinear term, g, which depend on both the position,
X(t), and the velocity, Ẋ(t),

Ẍ(t) + 2ζω0Ẋ(t) + εg(X(t), Ẋ(t)) + ω2
0X(t) = Y(t). (2)

Here, the stochastic derivatives are understood in the mean square sense [28] (Chapter 4).
In our subsequent analysis, we will consider the case that g(X(t), Ẋ(t)) = X2(t)Ẋ(t) and
the excitation Y(t) is a mean square differentiable and stationary zero-mean Gaussian
stochastic process whose correlation function, ΓYY(τ), is known. On the other hand, assum-
ing that Y(t) is a stationary and Gaussian stochastic process is a rather intuitive concept,
which has been extensively used in both theoretical and practical studies [29,30]. Station-
arity means that the statistical properties of the process do not vary significantly over
time/space. This feature is usually met in a number of modeling problems as the surface
of the sea in both spatial and time coordinates, noise in time in electric circuits under
steady-state operations, homogeneous impurities in engineering materials and media,
for example [28] (Chapter 3).

Now, we list the main novelties of our contribution.

• We combine mean square calculus and the stochastic perturbation method to study a
class of nonlinear oscillators whose nonlinear term, g, involves both position, X(t),
as velocity, Ẋ(t), specifically, we consider the case g = g(X(t), Ẋ(t)) = X2(t)Ẋ(t).
This corresponds to the most complicated case, usually termed cross-nonlinearity.

• The oscillator is subject to random excitations driven by a stochastic process, Y(t),
having the following properties: Y(t) is mean square differentiable and stationary
zero-mean Gaussian.

• We compute reliable approximations, not only of the mean, the variance, and the
covariance (as is usually done), but also of higher moments (including the asymmetry
and the kurtosis) of the steady-state of the above-described nonlinear oscillator.

• We combine the foregoing information related to higher moments and the entropy
method to construct reliable approximations of the probability density function of
the steady-state solution. The approximation is quite accurate as it is based on
higher moments.

To the best of our knowledge, this is the first time that stochastic nonlinear os-
cillators with the above-described type of cross-nonlinearities is studied using our ap-
proach, i.e., combining mean square calculus and the stochastic perturbation method.
In this sense, we think that our approach may be useful to extend our study to stochastic
nonlinear oscillators having more general cross-nonlinearities, in particular of the form
g(X(t), Ẋ(t)) = Xn(t)Ẋm(t), for n ≥ 3 and m ≥ 2.

The paper is organized as follows. In Section 2, we introduce the auxiliary stochas-
tic results that will be used throughout the whole paper. This section is intended to
help the reader to better understand the technical aspects of the paper. Section 3 is di-
vided into two parts. In Section 3.1, we apply the perturbation technique to construct a
first-order approximation of the stationary solution stochastic process of model (2) with
g(X(t), Ẋ(t)) = X2(t)Ẋ(t). In Section 3.2, we determine expressions for the first higher-
order moments, the variance, the covariance, and the correlation of the aforementioned
first-order approximation. These expressions will be given in terms of certain integrals of
the correlation function of the Gaussian noise, Y(t), and of the classical impulse response
function to the linearized oscillator associated to Equation (2). In Section 4, we take advan-
tage of the results given in Section 3 to construct reliable approximations of the PDF of
the stationary solution using the principle of maximum entropy. In Section 5, we illustrate
all theoretical findings by means of several illustrative examples. Our numerical results
are compared with Monte Carlo simulations and with the application of Euler–Maruyama
numerical scheme, showing full agreement. Conclusions are drawn in Section 6.
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2. Stochastic Preliminaries

For the sake of completeness, in this section we will introduce some technical stochastic
results that will be required throughout the paper.

Hereinafter, we will work on a complete probability space (Ω,F ,P), i.e., Ω is a
sample space; F is a σ-algebra of sets of Ω, usually called events; and P is a probability
measure. To simplify, we will omit the sample notation, so the input and the solution
stochastic processes involved in Equation (2) will be denoted by Y(t) ≡ {Y(t) : t ≥ 0}
and X(t) ≡ {X(t) : t ≥ 0}, respectively, rather than {Y(t; ω) : t ≥ 0, ω ∈ Ω} and
{X(t; ω) : t ≥ 0, ω ∈ Ω}, respectively.

The following result will be applied to calculate some higher-order moments of the
solution stochastic process, X(t), of the random differential Equation (2), since as it shall
be seen later, X(t) depends on a product of the stochastic excitation, Y(t), evaluated at a
finite number of instants, say t1, t2, . . . , tn, Y(ti) = Yi, 1 ≤ i ≤ n.

Proposition 1 (p. 28, [28]). Let the random variables Y1, Y2, . . . , Yn be jointly Gaussian with
zero mean, E{Yi} = 0, 1 ≤ i ≤ n. Then, all odd order moments of these random variables vanish
and for n even,

E{Y1Y2 · · ·Yn} = ∑
m1,m2, ..., mn

E{Ym1Ym2}E{Ym3Ym4} · · ·E{Ymn−1Ymn}.

The sum above is taken over all possible combinations of n/2 pairs of n random variables.
The number of terms in the summation is 1 · 3 · 5 · · · (n − 3) · (n − 1).

The two following results permit interchange the expectation operator with the mean
square derivative and the mean square integral. In [28] (Equation (4.130) in Section 4.4.2),
the first result is established for n = 2 and then it follows straightforwardly by induction.

Proposition 2. Let {Y(t) : t ≥ 0} be a mean square differentiable stochastic process. Then,

E{Y(t1) · · ·Y(tn−1)Ẏ(tn)} =
∂

∂tn
(E{Y(t1) · · ·Y(tn)}), t1, . . . , tn ≥ 0,

provided the above expectations exists.

Proposition 3 (p. 104, [28]). Let {Y(t) : −∞ ≤ a ≤ t ≤ b ≤ +∞} be a second-order stochastic
process integrable in the mean square sense and h(t) a Riemann integrable deterministic function
on t ∈ (a, b). Then,

E

{∫ b

a
h(t)Y(t)dt

}
=
∫ b

a
h(t)E{Y(t)} dt .

The following is a distinctive property of Gaussian processes since they preserve
Gaussianity under mean square integration.

Proposition 4 (p. 112, [28]). Let {Y(t) : a ≤ t ≤ ∞} be a Gaussian process and let h(t) be a
Riemann integrable deterministic function on (a, t) such that the following mean square integral,

X(t) =
∫ t

a
h(t, τ)Y(τ)dτ,

exists, then {X(t) : t ≥ a} is a Gaussian process.

3. Probabilistic Model Study

As it has been indicated in Section 1, in this paper we will study, from a probabilistic
standpoint, the random cross-nonlinear oscillator

Ẍ(t) + 2ζω0Ẋ(t) + εX2(t)Ẋ(t) + ω2
0X(t) = Y(t). (3)
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The analysis will be divided into two steps. First, in Section 3.1 we will apply the per-
turbation technique to obtain an approximation, X̂(t), of the stationary solution stochastic
process, X(t). Then, in Section 3.2 we will take advantage of X̂(t) to determine reliable
approximations of the main statistical functions of X(t), namely, the first higher-order mo-
ments, E{Xn(t)}, n = 1, . . . , 5; the variance, V{X(t)}; the covariance, Cov{X(t1), X(t2)};
and the correlation, ΓXX(τ).

3.1. Perturbation Technique

Let us consider the Equation (3). The main idea of the stochastic perturbation tech-
nique is to consider that the solution X(t) can be expanded in the powers of the small
parameter ε (|ε| � 1),

X(t) = X0(t) + εX1(t) + ε2X2(t) + · · · (4)

Replacing expression (4) into Equation (3), yields the following sequence of linear
differential equations, with random inputs

ε0 : Ẍ0(t) + 2ζω0Ẋ0(t) + ω2
0X0(t) = Y(t),

ε1 : Ẍ1(t) + 2ζω0Ẋ1(t) + ω2
0X1(t) = −X2

0(t)Ẋ0(t),
ε2 : Ẍ2(t) + 2ζω0Ẋ2(t) + ω2

0X2(t) = −2X0(t)X1(t)Ẋ0(t)− X2
0(t)Ẋ1,

...
...

...
...

...

(5)

Notice that each equation can be solved in cascade. As usual, when applying the
perturbation technique, we take the first-order approximation

X̂(t) = X0(t) + εX1(t). (6)

This entails that in our subsequent development we will only need the two first
equations listed in (5).

As indicated in Section 1, now we will focus on the analysis of the steady-state solution.
Using the linear theory, the two first equations in (5) can be solved using the convolution
integral [31]:

X0(t) =
∫ ∞

0
h(s)Y(t − s)ds, (7)

and
X1(t) =

∫ ∞

0
h(s)

[
−X2

0(t − s)Ẋ0(t − s)
]

ds, (8)

where

h(t) =

⎧⎨⎩
(
ω2

0 − ζ2ω2
0
)− 1

2 e−ζω0t sin
[(

ω2
0 − ζ2ω2

0
) 1

2 t
]

if t > 0,

0 if t ≤ 0,
(9)

is the impulse response function for the underdamped case ζ2 < 1. This situation corre-
sponds to the condition in which damping of an oscillator causes it to return to equilibrium
with the amplitude gradually decreasing to zero (in our random setting it means that the
expectation of the amplitude is null); system returns to equilibrium faster but overshoots
and crosses the equilibrium position one or more times. Although, they are no treated here-
inafter, two more situations are also possible, namely, critical damping and overdamping.
The former corresponds to ζ2 = 1 and in that case the damping of an oscillator causes it to
return as quickly as possible to its equilibrium position without oscillating back and forth
about this position, while the latter corresponds to ζ2 > 1, and in this situation damping
of an oscillator causes it to return to equilibrium without oscillating; oscillator moves more
slowly toward equilibrium than in the critically damped system [32].
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3.2. Approximation of the Main Statistical Moments

This subsection is devoted to calculate the main probabilistic information of the
stationary solution stochastic process, X(t), of model (3). As it has been previously pointed
out, to this end, we assume that the input term Y(t) is a stationary zero-mean (E{Y(t)} = 0)
Gaussian stochastic process whose correlation function, ΓYY(τ), is given. We will further
assume that Y(t) is mean square differentiable. This additional hypothesis will be apparent
later. At this point, it is convenient to recall that for any stationary stochastic process its
correlation function is even, so ΓYY(τ) = ΓYY(−τ), (p. 47, [28]). This property will be
extensively applied throughout our subsequent developments.

To compute the mean of the approximation, we first take the expectation operator
in (6),

E{X̂(t)} = E{X0(t)}+ εE{X1(t)}. (10)

Therefore, we now need to determine both E{X0(t)} and E{X1(t)}. To compute the
E{X0(t)} we again use the expectation operator in (7),

E{X0(t)} = E

{∫ ∞

0
h(s)Y(t − s)ds

}
=
∫ ∞

0
h(s)E{Y(t − s)} ds = 0, (11)

where we have applied Proposition 3 and that E{Y(t)} = 0.
Now, we deal with the computation of E{X1(t)} in an analogous manner but using

the representation of X1(t) given in (8),

E{X1(t)} = E

{∫ ∞

0
h(s)

[
−X2

0(t − s)Ẋ0(t − s)
]

ds
}

=
∫ ∞

0
h(s)E

{[
−X2

0(t − s)Ẋ0(t − s)
]}

ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)E

{
Y(t − s − s1)Y(t − s − s2)Ẏ(t − s − s3)

}
ds3 ds2 ds1 ds

= 0.

(12)

Notice that the assumption of mean square differentiability of the input process Y(t)
appears naturally at this stage.

Let us justify the last step in expression (12). Let us denote u1 = t− s− s1, u2 = t − s − s2
and u3 = t − s − s3, then applying Propositions 2 and 1, both with n = 3, one gets

E
{

Y(t − s − s1)Y(t − s − s2)Ẏ(t − s − s3)
}
= E

{
Y(u1)Y(u2)Ẏ(u3)

}
=

∂

∂u3
E{Y(u1)Y(u2)Y(u3)} = 0.

Therefore, substituting (11) and (12) into (10), we obtain the expectation of the approx-
imation is null,

E{X̂(t)} = E{X0(t)}+ εE{X1(t)} = 0. (13)

From the approximation (6) and neglecting the term ε2, the second-order moment for
X̂(t) is given by

E
{

X̂2(t)
}
= E

{
X2

0(t)
}
+ 2εE{X0(t)X1(t)}. (14)

The first addend can be calculated using expression (7) and Fubini’s theorem,

E
{

X2
0(t)
}
=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)E{Y(t − s)Y(t − s1)} ds1 ds

=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)ΓYY(s − s1)ds1 ds .

(15)

Notice that we have used that Y(t) is a stationary process, so

E{Y(t − s)Y(t − s1)} = ΓYY(t − s1 − (t − s)) = ΓYY(s − s1).
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Now, we calculate the second addend in (14). To this end, we substitute the expressions
of X0(t) and X1(t) given in (7) and (8), respectively,

E{X0(t) X1(t)} =
∫ ∞

0
h(s)E{X0(t)[−X2

0(t − s)Ẋ0(t − s)]} ds

=
∫ ∞

0
h(s)E

{
−
∫ ∞

0
h(s1)Y(t − s1)ds1

∫ ∞

0
h(s2)Y(t − s − s2)ds2

∫ ∞

0
h(s3)Y(t − s − s3)ds3

∫ ∞

0
h(s4)Ẏ(t − s − s4)ds4

}
ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)E

{
Y(t − s1)Y(t − s − s2)Y(t − s − s3)Ẏ(t − s − s4)

}
ds4 ds3 ds2 ds1 ds

(I)
= −

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

(
ΓYY(s1 − s − s2)Γ′

YY(s3 − s4) + ΓYY(s1 − s − s3)Γ′
YY(s2 − s4)

+ Γ′
YY(s1 − s − s4)ΓYY(s2 − s3)

)
ds4 ds3 ds2 ds1 ds

(II)
= −

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

(
2ΓYY(s1 − s − s2)Γ′

YY(s3 − s4)

+ Γ′
YY(s1 − s − s4)ΓYY(s2 − s3)

)
ds4 ds3 ds2 ds1 ds .

(16)

Observe that in the step (I) of the above expression, we have first applied Proposition 2
and second Proposition 1. Indeed, let us denote by u1 = t− s1, u2 = t− s− s2, u3 = t − s − s3
and u4 = t − s − s4, then by Proposition 2, with n = 4, one gets

E
{

Y(t − s1)Y(t − s − s2)Y(t − s − s3)Ẏ(t − s − s4)
}
=

∂

∂u4
E{Y(u1)Y(u2)Y(u3)Y(u4)},

and now we apply Proposition 1, with n = 4, to the right-hand side. This yields

E
{

Y(t − s1)Y(t − s − s2)Y(t − s − s3)Ẏ(t − s − s4)
}
=

=
∂

∂u4

(
E{Y(u1)Y(u2)}E{Y(u3)Y(u4)}+E{Y(u1)Y(u3)}E{Y(u2)Y(u4)}+E{Y(u1)Y(u4)}E{Y(u2)Y(u3)}

)
=

∂

∂u4
(ΓYY(u2 − u1)ΓYY(u4 − u3) + ΓYY(u3 − u1)ΓYY(u4 − u2) + ΓYY(u4 − u1)ΓYY(u3 − u2))

= ΓYY(u)|u=s1−s−s2 Γ′
YY(u)|u=s3−s4 + ΓYY(u)|u=s1−s−s3 Γ′

YY(u)|u=s2−s4 + Γ′
YY(u)|u=s1−s−s4 ΓYY(u)|u=s2−s3 .

In step (II) of expression (16) we have taken advantage of the symmetry of the indexes.
Then, substituing (15) and (16) in (14) one gets

E
{

X̂2(t)
}
=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)ΓYY(s − s1)ds1 ds −2ε

(∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

·
(

2ΓYY(s1 − s − s2)Γ′
YY(s3 − s4) + Γ′

YY(s1 − s − s4)ΓYY(s2 − s3)
)

ds4 ds3 ds2 ds1 ds

)
.

(17)

Notice that E
{

X̂2(t)
}

does not depend on t. This is consistent with the fact that we
are dealing with the stochastic analysis of the stationary solution. The same feature will
hold when computing higher-order moments, E

{
X̂n(t)

}
, n > 2, later.

As E
{

X̂(t)
}

is null (see (13)), then the variance of the solution coincides with E
{

X̂2(t)
}

.

Now, we calculate the third-order moment of X̂(t) keeping up to the first-order term
of perturbation ε. Therefore,

E
{

X̂3(t)
}
= E

{
X3

0(t)
}
+ 3εE

{
X2

0(t)X1(t)
}

. (18)

Reasoning analogously as we have shown before, we obtain

E
{

X3
0(t)
}
=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)E{Y(t − s)Y(t − s1)Y(t − s2)} ds2 ds1 ds = 0, (19)
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where we have applied Proposition 1 in the last step.
The second addend in (18) is calculated using Propositions 1 and 2,

E
{

X2
0(t)X1(t)

}
=
∫ ∞

0
h(s)E

{
X2

0(t)
[
−X2

0(t − s)Ẋ0(t − s)
]}

ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)E

{
Y(t − s)Y(t − s1)Y(t − s − s3)Y(t − s − s4)

· Ẏ(t − s − s5)
}

ds5 ds4 ds3 ds2 ds1 ds = 0.

(20)

From (19) and (20), we obtain

E
{

X̂3(t)
}
= E{X3

0(t)}+ 3εE{X2
0(t)X1(t)} = 0.

Using again the first-order approximation of the perturbation ε, in general, it can be
straightforwardly seen that

E{X̂n(t)} = 0, n = 1, 3, 5, . . . . (21)

Indeed, we know that,

E
{

X̂n(t)
}
= E{Xn

0 (t)}+ n εE
{

Xn−1
0 (t)X1(t)

}
. (22)

On the one hand, let us observe that applying first Fubini’s theorem and Proposition 3,
and second Proposition 1 for n odd, one gets

E{Xn
0 (t)} = E

{(∫ ∞

0
h(s)Y(t − s)ds

)n}
=
∫ ∞

0
h(s1) · · ·

∫ ∞

0
h(sn)E{Y(t − s1) · · ·Y(t − sn)} dsn · · · ds1 = 0.

On the other hand, using the same reasoning as in (20),

E
{

Xn−1
0 (t)X1(t)

}
=
∫ ∞

0
h(s)E

{
Xn−1

0 (t)
[
−X2

0(t − s)Ẋ0(t − s)
]}

ds = 0,

where first we have applied Proposition 2, in order to put the first derivative out of the
expectation, and second, we have utilized that Xn−1

0 (t), X2
0(t − s) and Ẋ0(t − s) depend

upon n − 1, 2 and 1 terms of Y(·), respectively, together with Proposition 1 (notice that
n + 2 is odd as n is odd).

To complete the information of statistical moments of the approximation, we also
determine E

{
X̂4(t)

}
.

The fourth-order moment of X̂(t), based on the first-order approximation via the
perturbation method, is given by

E
{

X̂4(t)
}
= E

{
X4

0(t)
}
+ 4εE

{
X3

0(t)X1(t)
}

. (23)

Reasoning analogously as we have shown in previous sections, we obtain for the
first addend

E{X4
0(t)} = 3

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)ΓYY(s − s1)ΓYY(s2 − s3)ds ds1 ds2 ds3, (24)

and for the second addend

136



Mathematics 2021, 9, 204

E{X3
0(t)X1(t)} = −

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)

∫ ∞

0
h(s6)E{Y(t − s1)

· Y(t − s2)Y(t − s3)Y(t − s − s4)Y(t − s − s5)Ẏ(t − s − s6)} ds ds1 ds2 ds3 ds4 ds5 ds6

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)

∫ ∞

0
h(s6)

(
6 Γ′

YY(s5 − s6)

· ΓYY(s1 − s2)ΓYY(s3 − s − s4) + 3 Γ′
YY(s1 − s − s6)

(
2 ΓYY(s2 − s − s4)ΓYY(s3 − s − s5)

+ ΓYY(s2 − s3)ΓYY(s4 − s5)
))

ds ds1 ds2 ds3 ds4 ds5 ds6 .

(25)

Observe that in the last step of the above expression, first we have used Proposition 2,
and second, Proposition 1. From this last proposition, we know that exist 15 combinations,
but we can reduce the expression by the symmetry of involved indexes.

Now we deal with the approximation of the correlation function of X(t) via (6),
i.e., taking the first-order approximation of the perturbation expansion,

ΓX̂X̂(τ) = E{X̂(t)X̂(t + τ)} = E{X0(t)X0(t + τ)}+ ε[E{X0(t)X1(t + τ)}+E{X1(t)X0(t + τ)}]. (26)

The first addend in (26) corresponds to the correlation function of X0(t). It can be
expressed as

E{X0(t)X0(t + τ)} =
∫ ∞

0

∫ ∞

0
h(s)h(s1)E{Y(t − s)Y(t + τ − s1)} ds ds1

=
∫ ∞

0

∫ ∞

0
h(s)h(s1)ΓYY(τ − s1 + s)ds1 ds .

The two last addends in (26) represent the cross-correlation of X0(t) and X1(t). They
are given, respectively, by

E{X0(t)X1(t + τ)} =
∫ ∞

0
h(s)E

{
X0(t)[−X2

0(t + τ − s)Ẋ0(t + τ − s)]
}

ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

{
2 ΓYY(τ − s − s2 + s1)Γ′

YY(s3 − s4)

+ Γ′
YY(τ − s − s4 + s1)ΓYY(s2 − s3)

}
ds4 ds3 ds2 ds1 ds .

and

E{X1(t)X0(t + τ)} = E

{∫ ∞

0
−h(s)X2

0(t − s)Ẋ0(t − s)X0(t + τ)

}
ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

{
ΓYY(s1 − s2)Γ′

YY(τ − s4 + s + s3)

+ 2 Γ′
YY(s1 − s3)ΓYY(τ − s4 + s + s2)

}
ds4 ds3 ds2 ds1 ds .

Summarizing,
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ΓX̂X̂(τ) =
∫ ∞

0

∫ ∞

0
h(s)h(s1)ΓYY(τ − s1 + s)ds ds1

− ε
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

{
2 ΓYY(τ − s − s2 + s1)Γ′

YY(s3 − s4)

+ Γ′
YY(τ − s − s4 + s1)ΓYY(s2 − s3) + ΓYY(s1 − s2)Γ′

YY(τ − s4 + s + s3)

+ 2 Γ′
YY(s1 − s3)ΓYY(τ − s4 + s + s2)

}
ds4 ds3 ds2 ds1 ds .

(27)

As E{X̂(t)} = 0, we observe that the covariance and correlation functions of
X̂(t) coincide,

Cov{X̂(t1), X̂(t2)} = ΓX̂X̂(τ), τ = |t1 − t2|.

4. Approximating the PDF via the Maximum Entropy Principle

So far, we have calculated approximations of the moments E{X̂n(t)}, n = 1, . . . , 5
to the first-order approximation, X̂(t), via the perturbation method, of the steady-state
solution of the random nonlinear oscillator (3). Although this is an important information,
a more ambitious goal is the approximation of the PDF, say fX̂(t)(x), as from it one can
calculate key stochastic information as the probability that the output lies in a specific
interval of interest, say [a1, a2],

P
{

a1 ≤ X̂(t) ≤ a2

}
=
∫ a2

a1

fX̂(t)(x)dx,

for any arbitrary fixed time t. Furthermore, from the knowledge of the PDF one can easily
compute confidence intervals at a specific confidence level α ∈ (0, 1),

1 − α = P
{

μX̂(t)− kσX̂(t) ≤ X̂(t) ≤ μX̂(t) + kσX̂(t)
}
=
∫ μX̂(t)+kσX̂(t)

μX̂(t)−kσX̂(t)
fX̂(t)(x)dx,

where μX̂(t) = E{X̂(t)} = 0 (see (13)) and σX̂(t) =
√
V{X̂(t)}. Usually α is taken as

α = 0.05 so that 95% confidence intervals are built, and k > 0 must be determined numerically.
As we have calculated the approximations E{X̂n(t)}, n = 1, . . . , 5, a suitable method

to approximate the PDF, fX̂(t)(x), is the Principle of Maximum Entropy (PME), [33]. For t
fixed, the PME seeks for a PDF, fX̂(t)(x), that maximizes the so-called Shannon’s Entropy,

of random variable X̂(t) with support [a, b], defined via the following functional,

S
{

fX̂(t)(x)
}
= −

∫ b

a
fX̂(t)(x) log( fX̂(t)(x))dx, (28)

satisfying the following restrictions

∫ b

a
fX̂(t)(x)dx = 1, (29)

E
{

X̂n(t)
}
=
∫ b

a
xn fX̂(t)(x)dx = mn, n = 1, . . . , M. (30)

Condition (29) guarantees fX̂(t)(x) is a PDF, and the M conditions given in (30) impose

that the sampled moments, mn, match the moments, E
{

X̂n(t)
}

, obtained in our setting by
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the stochastic perturbation method. For each t fixed, the maximization of functional (28)
subject to the constrains (29)–(30) can be solved via the auxiliary Lagrange function

L
{

fX̂(t), λ0, . . . , λM

}
= S

{
fX̂(t)(x)

}
+

M

∑
i=0

λi

[
mi −

∫ b

a
xi fX̂(t)(x)dx

]
,

where m0 = 1. It can be seen that the form of the PDF is given by [33]

fX̂(t)(x) = �[a,b] e− ∑M
i=0 λi xi

,

where �[a,b] denotes the characteristic function on the interval [a, b].
In Section 3, we have approximated, via the stochastic perturbation technique, the mo-

ments E
{

X̂n(t)
}

for n = 1, 2, . . . , 5. Therefore, to apply the PME we will take M = 5 in
(30). Notice that, in practice, to calculate the parameters λi, i = 0, 1, . . . , 5, we will need to
numerically solve the system of nonlinear Equations (29) and (30).

5. Numerical Examples

This section is devoted to illustrate the theoretical findings obtained in previous sec-
tions. We take the following data for the parameters of the random nonlinear oscillator (3),
ζ = 0.05 (ζ2 < 1) and ω0 = 1.

Example 1. Let us consider as input excitation the trigonometric stochastic process defined by
Y(t) = ξ1 cos(t) + ξ2 sin(t), where ξ1, ξ2 ∼ N(0, 1) are independent. Observe that Y(t) satisfies
the hypotheses, i.e., E{Y(t)} = 0, Y(t) is Gaussian, mean square differentiable with respect to
t, and stationary, with its correlation being ΓYY(t1, t2) = cos(t1 − t2) or ΓYY(τ) = cos(τ).
Substituting this data into Equation (3), we obtain

Ẍ(t) + 0.1Ẋ(t) + εX2(t)Ẋ(t) + X(t) = ξ1 cos(t) + ξ2 sin(t), ξ1, ξ2 ∼ N(0, 1). (31)

Now we shall obtain approximations to the first moments, E{X̂i(t)}, i = 1, . . . , 5, the correla-
tion function and the variance, V{X̂(t)}, of the approximate solution X̂(t) of random nonlinear
oscillator (31).

As we have seen in the expression (21), the moments of odd order are null, so, in this case,
E{X̂(t)} = E{X̂3(t)} = E{X̂5(t)} = 0. Now, we sequentially derive some bounds for the
perturbation parameter ε using the positiveness of even order moments, i.e., E{X̂2(t)} > 0 and
E{X̂4(t)} > 0. First, it is easy to check that, using expression (17), the second-order moment is
given by

E{X̂2(t)} = 100 − 200000ε, (32)

so we obtain the bound ε < 0.0005. Since E{X̂(t)} = 0, observe that the variance of the first-order
approximation is given by (32). Second, using expressions (23)–(25),

E{X̂4(t)} = 30, 000 − 1, 153, 800, 000, 000
6409

ε. (33)

This provides a stronger bound, ε < 0.000166641.
Now, applying (27), we obtain the following approximation of the correlation function,

ΓX̂X̂(τ) = 100(1 − 2000ε) cos(τ). (34)

In Figure 1, we show the graphical representation of the correlation function, ΓX̂X̂(τ), given
in the expression (34) for different values of ε. We can see the higher the perturbation ε, the lower
the variability. This graphical behavior is in full agreement with the physical interpretation of the
oscillator dynamics. Indeed, let us rewrite Equation (31) as follows,

Ẍ(t) + (0.1 + εX2(t))Ẋ(t) + X(t) = ξ1 cos(t) + ξ2 sin(t).
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As ε > 0 increases, the damped coefficient 0.1+ εX2(t) does, so the mechanical system reduces
its oscillations. It should be noted that ε = 0.0004 only satisfies the first bound (ε < 0.0005);
however, we can observe that the corresponding approximation preserves symmetry of correlation
function. This might be due to the sample regularity of the random excitation, Y(t), which
is differentiable.

-10 -5 5 10

-100

-50

50

100

=0.0004

=0.0001

=0.00005

Figure 1. Correlation function ΓX̂X̂(τ) of X(t) for different values of ε. Example 1.

For the approximation of the PDF, fX̂(t)(x), we apply the results exhibited in Section 4
based on PME by taking ε = 0.00005, which satisfies the stronger bound previously determined
(ε < 0.000166641). We first compute the approximation based on the three first moments

fX̂(t)(x) = e−1−2.181+1.045·10−5x−0.005x2−4.9217·10−8x3
,

and, second, the approximation based on the five first moments

fX̂(t)(x) = e−1−2.243+2.552·10−8x−0.004x2−2.177·10−9x3−3.789·10−6x4+6.754·10−13x5
.

In Figure 2, we compare both graphical representations. From them, we can observe that both
plots are quite similar, so giving evidence that computations are consistent.

-50 50

0.01

0.02

0.03

0.04

third order

fifth order

Figure 2. Approximation of PDF, fX̂(t)(x), using until the third and the fifth-order moment for
ε = 0.00005 via the PME. Example 1.
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Finally, to check that our approximations are reliable, we compare the mean and standard devia-
tion of the approximate solution obtained via the perturbation method against the ones calculated by
Monte Carlo. The results are collected in Table 1. We can observe that both approximations agree.

Table 1. Comparison between perturbation method and Monte Carlo simulations using ε = 0.00005.
Example 1.

Perturbation
Method

Monte Carlo
(1000 Simulations)

Monte Carlo
(10,000 Simulations)

Mean 0 0.188808 −0.114379
Standard deviation 9.48714 9.31356 9.49534

Example 2. To previously perform our theoretical analysis, we have required the stationary Gaus-
sian stochastic excitation Y(t) be differentiable in the mean square sense (or equivalently, its cor-
relation function, ΓY(τ), be twice differentiable in the ordinary sense at τ = 0 [28] (Chapter 4)),
so having differentiable sample trajectories [34]. If we carefully revise our previous development,
we can notice this is an hypothesis coming from the fact the nonlinearity cross-term depends upon
Ẋ(t). In this second example, we shall show that using the general concept of differentiability, in the
sense of distributions, we can still obtain good results via the perturbation techniques when the
excitation is not differentiable. To this end, we have chosen, Y(t) = ξ(t), a Gaussian white-noise
process with zero-mean and correlation function ΓYY(τ) =

1
2 Wδ(τ), where δ(τ) is the Dirac delta

function and W is the noise power. This type of random noise has been extensively used in the
literature since the earliest contributions [17]. Observe that Y(t) = ξ(t) is a stationary zero-mean
Gaussian process but is not mean square differentiable (as its correlation function, given by the Dirac
delta function, is not differentiable) and, consequently, its sample trajectories are not differentiable
either. In this case, Equation (3) becomes

Ẍ(t) + 0.1Ẋ(t) + εX2(t)Ẋ(t) + X(t) = ξ(t). (35)

As in the previous example, we are going to obtain approximations to the five first moments,
E{X̂i(t)}, i = 1, . . . , 5, the correlation function and the variance, V{X̂(t)}, of the approximate
solution X̂(t) of Equation (35). To implement the corresponding formulas derived throughout
Section 3.2 saving computational time in Mathematica, we have taken into account the following
properties of Dirac delta function,∫ ∞

−∞
h(t)δ(t − s)dt = h(s),

∫ ∞

−∞
h(t)δ′(t − s)dt = −h′(s).

As mentioned in Example 1, the moments of odd order are null and using the positiveness
of even order moments we can obtain some bounds for the perturbation parameter ε. First, using
expression (17), the second-order moment is determined by

E{X̂2(t)} =
1
40

− ε

160
, (36)

so we obtain the bound ε < 4. Since E{X̂(t)} = 0, expression (36) is also the variance of the
first-order approximation. Second, using expression (23)–(25),

E{X̂4(t)} =
3

1600
− 759

644800
ε. (37)

This provides a stronger bound, ε < 1.59289.
Now, applying (27), we obtain the following approximation of the correlation function,
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ΓX̂X̂(τ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e−τ/20
(
−399(−399 + 5ετ) cos

(√
399τ
20

)
+

√
399(399 + 100ε) sin

(√
399τ
20

))
6, 368, 040

if τ ≥ 0,

eτ/20
(
−399(−399 + 5ετ) cos

(√
399τ
20

)
+

√
399(−399 + 100ε) sin

(√
399τ
20

))
6, 368, 040

if τ < 0.

(38)

In Figure 3, we show the plot of the correlation function, ΓX̂X̂(τ), given in the expression (38)
for different values of ε satisfying the weaker and the stronger bounds previously determined. We
can observe that for smaller values of ε the obtained approximation of the correlation function better
preserves the symmetry as expected.
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Figure 3. Correlation function ΓX̂X̂(τ) of X(t) for different values of ε. Example 2.

Applying the results presented in Section 4, we obtain the approximation of the PDF, fX̂(t)(x),
for ε = 0.5, which satisfies the stronger bound 1.59289. We first compute the approximation based
on the three first moments

fX̂(t)(x) = e−1+1.992+1.438·10−8x−22.857x2−2.197·10−7x3
,

and, second, the approximation based on the five first moments

fX̂(t)(x) = e−1+1.940−5.226·10−11x−17.837x2+1.580·10−9x3−42.679x4−7.904·10−9x5
.

In Figure 4, we compare both graphical representations. We can observe, again, the similarity
between them, thus showing full agreement in our numerical computations.

Finally, to check that our approximations are accurate, we compare the mean and standard
deviation of X̂(t) obtained via the perturbation method against the ones computed by Euler–
Maruyama numerical scheme [35]. The results are shown in Table 2. We can observe that both
approximations are similar.
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Figure 4. Approximation of PDF, fX̂(t)(x), using until the third and the fifth order moment for ε = 0.5
via the PME. Example 2.

Table 2. Comparison between perturbation method and Euler–Maruyama simulations using ε = 0.5.
Example 2.

Perturbation
Method

Euler-Maruyama
(1000 Simulations)

Euler-Maruyama
(10,000 Simulations)

Mean 0 0.00146868 0.00128423
Standard deviation 0.147902 0.157353 0.156475

6. Conclusions

We have studied, from a probabilistic standpoint, a family of oscillators subject to small
perturbations on the nonlinear term that depends both upon the position and the velocity
(cross-nonlinearity) and whose forcing source is driven by a mean square differentiable
stationary zero-mean Gaussian process. Despite the hypothesis of differentiability for the
stochastic excitation, we have checked, via a numerical example, the method also provides
good results when this hypothesis is not fulfilled, but involved computations are performed
using the concept of general differentiability in the sense of distributions. We must point
out that the majority of contributions dealing with this type of stochastic oscillators focus on
the computation of the mean, the variance and correlation function. Our main contribution
is the computation of reliable approximations of the probability density function of the
stationary solution, by combining the stochastic perturbation method and the principle
of maximum entropy. In this manner, we provide a fuller probabilistic description of the
solution since from the density one can determine any one-dimensional moment as well as
further probabilistic information of the steady-state. The proposed approach can be very
useful to open new avenues in the analysis to other kind of nonlinear oscillators subject
to small fluctuations and whose forcing term is a stochastic process that satisfies certain
hypotheses. In our future research, we will work to continue contributing in this direction.
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Abstract: This paper deals with the search for reliable efficient finite difference methods for the
numerical solution of random heterogeneous diffusion reaction models with a finite degree of
randomness. Efficiency appeals to the computational challenge in the random framework that
requires not only the approximating stochastic process solution but also its expectation and variance.
After studying positivity and conditional random mean square stability, the computation of the
expectation and variance of the approximating stochastic process is not performed directly but
through using a set of sampling finite difference schemes coming out by taking realizations of the
random scheme and using Monte Carlo technique. Thus, the storage accumulation of symbolic
expressions collapsing the approach is avoided keeping reliability. Results are simulated and a
procedure for the numerical computation is given.

Keywords: random mean square parabolic model; finite degree of randomness; monte carlo method;
random finite difference scheme

MSC: 35R60; 60H15; 65M06; 65M12

1. Introduction

Dealing with deterministic partial differential equations (PDE), finite difference meth-
ods (FD) are probably the most used because they are easy to apply and fairly efficient, [1,2].
Trying to capture real world problems, the models introduced uncertainty in several ways,
basically assuming that both data, parameters, initial and or boundary conditions are
stochastic processes instead of deterministic functions, [3,4]. The uncertainty appears not
only because of error measurements, but also considering heterogeneity of the media,
material impurities, or even the lack of access to measurements [5,6]. Independently of the
type of modelling the uncertainty, the consideration of partial differential equations models
(PDEM) has particular challenges. In fact, it is necessary to compute not only the stochastic
process solution or approximating stochastic process, but also their statistical moments,
mainly the expectation and the variance. Integral transforms methods are efficient tech-
niques to solve PDEM based on integration resources in fitting domains [7,8]. Another
powerful technique suitable for models with complex geometries is the finite element
method [9]. Iterative methods, for instance FD have particular troubles derived from the
storage accumulation of intermediate levels when the computer manages symbolically
the involved stochastic processes, [10–12]. This drawback of the iterative methods for
solving PDEM occurs in both approaches, the one based on Itô calculus [13] the so-called
stochastic differential approach (SDEA), as well as the one based on the mean square
calculus [14] also called random differential equations approach (RDEA). To face this
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Mathematics 2021, 9, 206

computational challenge we take a set of realizations of the model, then we solve each
sampled problem using FD method. Finally, we use Monte Carlo technique, [15,16] to
average the results of the deterministic sampled problems to compute the expectation and
the variance of the approximating solution stochastic process. In our model the involved
stochastic processes (s.p.’s) are defined in a complete probability space (Ω, F ,P) and have
n degrees of randomness [14] (p. 37), i.e., they only depend on a finite number n of random
variables (r.v.’s):

h(s) = F(s, A1, A2, . . . , An), (1)

where

Ai, i = 1, . . . , n, are mutually independent r.v.’s;

F is a differentiable real function of the variable s
(being s the spatial variable x or the temporal one t).

⎫⎪⎪⎬⎪⎪⎭ (2)

In addition, under this hypothesis, the s.p. h(s) has sample differentiable tra-
jectories (realizations), i.e., for a fixed event ω ∈ Ω, the real function h(s, ω) =
F(s, A1(ω), A2(ω), . . . , An(ω)) is a differentiable function of the real variable s. For
the sake of clarity in the presentation and to save notational complexity, we will as-
sume that involved s.p.’s in the coefficients and initial or boundary conditions, have
one degree of randomness, i.e., they have the form

h(s) = F(s, A) ,

with A a r.v. and F a differentiable real function of the variable s. Then the s.p. h(s)
has sample differentiable trajectories, i.e., for a fixed event ω ∈ Ω, the real function
h(s, ω) = F(s, A(ω)) is a differentiable function of the real variable s.

This paper deals with random parabolic partial differential models of the form

∂u(x, t)
∂t

=
∂

∂x

[
p(x)

∂u(x, t)
∂x

]
− q(x) u(x, t), 0 < x < 1, t > 0 , (3)

u(0, t) = g1(t), t > 0, (4)

u(1, t) = g2(t), t > 0, (5)

u(x, 0) = f (x), 0 ≤ x ≤ 1 , (6)

where the diffusion coefficient p(x), the reaction coefficient q(x), the boundary conditions
gi(t), i = 1, 2, and the initial condition f (x) are s.p.’s with one degree of randomness in
the sense as defined above. In addition we assume that p(x), q(x), f (x) and gi(t), i = 1, 2
are mean square continuous s.p.’s in variables x and t, respectively, p(x) is also a mean
square differentiable s.p. and the sample realizations of the random inputs p(x), q(x),
gi(t), i = 1, 2 and f (x) satisfy the following conditions denoting p′(x) as the mean square
derivative of p(x):

0 < a1 ≤ p(x, ω) ≤ a2 < +∞ , x ∈ [0, 1] , for almost every (a.e.) ω ∈ Ω , (7)

|p′(x, ω)|
p(x, ω)

≤ b < +∞ , x ∈ [0, 1] , for a.e. ω ∈ Ω , (8)

qmin ≤ q(x, ω) ≤ qmax , x ∈ [0, 1] , for a.e. ω ∈ Ω , (9)

gi(t, ω) ≥ 0 , i = 1, 2, t > 0 , for a.e. ω ∈ Ω , (10)
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0 ≤ f (x, ω) ≤ fmax , x ∈ [0, 1] , for a.e. ω ∈ Ω , (11)

This model is frequent in chemical engineering sciences and in heat and mass transfer
theory for reaction-diffusion problems with parameters depending on the spatial variables
as it occurs in heterogeneous and anisotropic solids, [17] (p. 455), [18] (p. 388), [19,20].

The paper is organized as follows. Section 2 deals with some preliminaries, defi-
nitions and notations about the mean square calculus as well as the construction of the
random mean square finite difference scheme (RMSFDS) resulting from the discretization
of model (3)–(6). Section 3 is addressed to the study of properties of the RMSFDS such as
positivity, stability and consistency. Throughout a sample approach, sufficient conditions
for stability and positivity of the random numerical solution s.p. in terms of the data
and discretization step-sizes are found. Consistency of the RMSFDS with Equation (3)
is also treated throughout a sample approach and the consistency of the corresponding
realized deterministic scheme for each fixed event ω ∈ Ω. In Section 4 we construct an
algorithm to perform the efficient computation of the expectation and the variance of the
numerical solution s.p. using Monte Carlo method and the solution of the sampled scheme.
Numerical simulations for a problem where the exact solution is known are performed
showing the efficiency of the proposed numerical method as well as the computations of
the expectation and the variance of the numerical approximated s.p. A conclusion Section
5 ends the paper.

2. Preliminaries and Construction of the Random Finite Difference Scheme

For the sake of clarity in the presentation, in this section we recall some definitions
and concepts related to the Lp-calculus, [14]. In a probability space (Ω, F , P), we denote
Lp(Ω) the space of all real valued r.v.’s U : Ω → R of order p, endowed with the norm

‖U‖p = (E[|U|p])1/p =

(∫
Ω
|U(ω)|p fU(ω)dω

)1/p
< +∞ , (12)

where E[·] denotes the expectation operator, fU the density function of the r.v. U and ω an
event of sample space Ω.

Given T ⊂ R, a family of t-indexed r.v.’s, say {V(t) : t ∈ T}, is called a stochastic
process of order p (p-s.p.) if for each t ∈ T fixed, the r.v. V(t) ∈ Lp(Ω). We say that a p-s.p.
{V(t) : t ∈ T} is p-th mean continuous at t ∈ T, if

‖V(t + h)− V(t)‖p → 0 as h → 0, t, t + h ∈ T .

Furthermore, if there exists a p-s.p. V′(t), such that∥∥∥∥V(t + h)− V(t)
h

− V′(t)
∥∥∥∥

p
→ 0 as h → 0, t, t + h ∈ T ,

then we say that the s.p. {V(t) : t ∈ T} is p -th mean differentiable at t ∈ T and V′(t) is
the p-derivative of V(t). In the particular case that p = 2, L2(Ω), definitions above leads
to the corresponding concept of mean square (m.s.) continuity and m.s. differentiability,
respectively.

In this section, we construct an explicit random finite difference scheme for solving
problem (3)–(6). Firstly, let us write Equation (3) into the following form

∂u(x, t)
∂t

= p(x)
∂2 u(x, t)

∂x2 + p′(x)
∂ u(x, t)

∂x
− q(x) u(x, t) , (13)

where p(x) ∈ Lp(Ω) is p-th mean continuous and differentiable, p′(x) is the p-derivative
of p(t) and q(x) ∈ Lp(Ω) is p-th mean continuous.

Let us consider the uniform partition of the spatial interval [0, 1], of the form xi = ih,
0 ≤ i ≤ M, with Mh = 1. For a fixed time horizon, T, we consider N + 1 time levels
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tn = nk, 0 ≤ n ≤ N with Nk = T. The numerical approximation of the solution s.p. of the
random problem (3)–(6) is denoted by un

i , i.e.,

un
i ≈ u(xi, tn) , 0 ≤ i ≤ M, 0 ≤ n ≤ N . (14)

By using a forward first-order approximation of the time partial derivative and centred
second-order approximations for the spatial partial derivatives in Equation (13) one gets
the following random numerical scheme for the spatial internal mesh points

un+1
i − un

i
k

= pi
un

i−1 − 2un
i + un

i+1
h2 + p′

i
un

i+1 − un
i−1

2h
− qi un

i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1 , (15)

where pi = p(xi), p′
i = p′(xi) and qi = q(xi). The resulting random discretized

problem (3)–(6) can be rewritten in the following form

un+1
i =

k
h2

(
pi − h

2
p′

i

)
un

i−1 +

(
1 − k qi − 2k

h2 pi

)
un

i +
k
h2

(
pi +

h
2

p′
i

)
un

i+1 ,

1 ≤ i ≤ M − 1 , 1 ≤ n ≤ N − 1 ,

un
0 = gn

1 , un
M = gn

2 , 1 ≤ n ≤ N ,

u0
i = fi , 0 ≤ i ≤ M ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(16)

where gn
1 = g1(tn), gn

2 = g2(tn), and fi = f (xi). Please note that all the inputs of the
random problem (16) are s.p.’s depending on one finite degree of randomness and lie
in Lp(Ω).

3. Properties of the Random Numerical Scheme: Positivity, Stability and Consistency

We are going to prove the positivity of the random numerical solution
{

un
i , 0 ≤ i ≤ M ,

0 ≤ n ≤ N} of the random scheme (16) and its ‖ · ‖p-stability in the sense of fixed station
respect to the time. We extend this type of stability to the random field.

Definition 1. A random numerical scheme is said to be ‖ · ‖p-stable in the fixed station sense in
the domain [0, 1]× [0, T], if for every partition with k = Δ t, h = Δ x such that N k = T and
M h = 1,

‖un
i ‖p ≤ C , 0 ≤ i ≤ M, 0 ≤ n ≤ N , (17)

where C is independent of the step-sizes h, k and the time level n.

First, we are going to find sufficient conditions on the spatial step-size h and the
temporal step-size k, so that the numerical solution {un

i (ω)} constructed by sampling
random scheme (16) for a fixed ω ∈ Ω

un+1
i (ω) =

k
h2

(
pi(ω)− h

2
p′

i(ω)

)
un

i−1 +

(
1 − k qi(ω)− 2k

h2 pi(ω)

)
un

i +
k
h2

(
pi(ω) +

h
2

p′
i(ω)

)
un

i+1 ,

1 ≤ i ≤ M − 1 , 1 ≤ n ≤ N − 1 ,

un
0 (ω) = gn

1 (ω) , un
M(ω) = gn

2 (ω) , 1 ≤ n ≤ N ,

u0
i (ω) = fi(ω) , 0 ≤ i ≤ M ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18)
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guarantee its positivity, i.e., un
i (ω) ≥ 0 for 0 ≤ i ≤ M and for each time level n, 0 ≤ n ≤ N.

We denote

Ai(h, k)(ω) =
k
h2

(
pi(ω)− h

2
p′

i(ω)

)
,

Bi(h, k)(ω) = 1 − kqi(ω)− 2k
h2 pi(ω) ,

Ci(h, k)(ω) = pi(ω) +
h
2

p′
i(ω) ,

(19)

then the sampling scheme (18) can be rewritten as follows

un+1
i (ω) = Ai(h, k)(ω) un

i−1(ω) + Bi(h, k)(ω) un
i (ω) + Ci(h, k)(ω) un

i+1(ω) .

To guarantee the positivity of the numerical approximation {un
i (ω)} it is sufficient to

impose the positivity of coefficients defined in (19). Please note that the simultaneously
positivity of coefficients Ai(h, k)(ω) and Ci(h, k)(ω) means that

−pi(ω) ≤ h
2

p′
i(ω) ≤ pi(ω) ,

that is

h ≤ 2pi(ω)

|p′
i(ω)| . (20)

Taking into account the bound condition (8) it follows that coefficients Ai(h, k)(ω)
and Ci(h, k)(ω), 1 ≤ i ≤ M − 1, are non-negative for a.e. ω ∈ Ω under condition

h ≤ 2
b

. (21)

Please note that for the particular case where pi(ω) is constant the positivity of coef-
ficients Ai(h, k)(ω) and Ci(h, k)(ω) defined in (19), is established for h > 0. To guarantee
the positivity of coefficient Bi(h, k)(ω) from (19) and bounds (7)–(9) note that

Bi(h, k)(ω) = 1 − k qi(ω)− 2k
h2 pi(ω) ≥ 1 − k qmax − 2k

h2 a2 . (22)

Thus, the positivity of Bi(h, k)(ω), 1 ≤ i ≤ M − 1, for a.e. ω ∈ Ω, is verified under
the conditions

k ≤ h2

2a2
, (If qmax < 0) , (23)

k ≤ h2

2a2 + h2qmax
, (If qmax ≥ 0) . (24)

Then taking into account the sufficient conditions (21), (23) and (24) over the discretiza-
tion step-sizes h and k, the positivity of all the coefficients (19) of sampling scheme (18)
for a.e. ω ∈ Ω is guaranteed and consequently the positivity of the numerical solution
{un

i (ω)}, 0 ≤ i ≤ M, for each time level n, 0 ≤ n ≤ N, (T = k N) is established.

Let us prove now that random numerical scheme (16) is ‖ · ‖p-stable in the sense of
Definition 1. In this study we need to distinguish two cases for the sampling parameter
qi(ω) for a fixed ω ∈ Ω.

Case 1. qi(ω) ≥ 0 , 0 ≤ i ≤ M.
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From (18) imposing conditions (21) and (24) one gets

un+1
i (ω) ≤ (Ai(h, k)(ω) + Bi(h, k)(ω) + Ci(h, k)(ω)) un

MAXi
(ω)

≤ (1 − kqi(ω)) un
MAXi

(ω)

≤ un
MAXi

(ω), 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1 , (25)

where
un

MAXi
(ω) = max

0≤i≤M
{un

i (ω)} . (26)

Using (11), the boundary conditions of (18) and (25) we have by recurrence

un+1
i (ω) ≤ max{gn+1

1 (ω), gn+1
2 (ω), un

MAXi
(ω)}

≤ max{gn+1
1 (ω), gn+1

2 (ω), gn
1 (ω), gn

2 (ω), un−1
MAXi

(ω)}
≤ · · ·
≤ max

1≤s≤n+1

{
gs

1(ω), gs
2(ω), u0

MAXi
(ω)
}

≤ max
0≤t≤(n+1)k

{
g1(t, ω), g2(t, ω), max

x∈[0,1]
{ f (x, ω)}

}
. (27)

We denote
G(T) = max

0≤t≤T
{g1,max(T), g2,max(T), fmax} , (28)

where
gi,max(T) = max

0≤t≤T
{gi(t, ω) , for a.e. ω ∈ Ω} , i = 1, 2 . (29)

Thus, from (27) and (28) we obtain the following upper bound for the numerical
solution of sampling scheme (18)

0 ≤ un
i (ω) ≤ G(T) , for a.e. ω ∈ Ω , (30)

for each level n, 0 ≤ n ≤ N = Tk, and for each spatial point xi, 0 ≤ i ≤ M.

Case 2. qmin ≤ min0≤i≤M{qi(ω)} < 0

From (18) imposing conditions (21) and (23) and using (25) and (26) we obtain

un+1
i (ω) ≤ (1 − k qi(ω)) un

MAXi
(ω)

≤ (1 + k |qmin|) un
MAXi

(ω), 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1 . (31)

Then using the boundary conditions of (18) and applying recurrently the bound
exhibits in (31) one gets

un+1
i (ω) ≤ max{gn+1

1 (ω), gn+1
2 (ω), (1 + k |qmin|)un

MAXi
(ω)}

≤ max{gn+1
1 (ω), gn+1

2 (ω), (1 + k |qmin|)max{gn
1 (ω), gn

2 (ω), (1 + k |qmin|)un−1
MAXi

(ω)}
≤ (1 + k |qmin|)2 max{gn+1

1 (ω), gn+1
2 (ω), gn

1 (ω), gn
2 (ω), un−1

MAXi
(ω)}

≤ · · ·
≤ (1 + k |qmin|)n+1 max

1≤s≤n+1

{
gs

1(ω), gs
2(ω), u0

MAXi
(ω)
}

. (32)

Taking into account the following inequality

(1 + k |qmin|)s ≤ (1 + k |qmin|)N < eT |qmin| , 0 ≤ s ≤ N ,
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and the notation introduced in (28), we obtain this upper bound for the numerical solution
of sample scheme (18)

0 ≤ un
i (ω) ≤ eT |qmin| G(T) , for a.e. ω ∈ Ω , (33)

for each level n, 0 ≤ n ≤ N = Tk, and for each spatial point xi, 0 ≤ i ≤ M.
Please note that both bounds (30) and (33) are independent of n, h and k.
Finally, under discretization step-size conditions (21), (23) and (24) and from the upper

bounds (30) and (33) it follows that

‖un
i ‖p =

(
E
[|un

i |p])1/p
=

(∫
Ω
|un

i (ω)|p fun
i
(ω) dω

)1/p
≤ α(T) G(T)

(∫
Ω

fun
i
(ω) dω

)1/p

︸ ︷︷ ︸
1

, (34)

where G(T) is defined in (28) and (29) and

α(T) =
{

1 if qmin ≥ 0 ,
eT|qmin| if qmin < 0 .

(35)

Consequently, random numerical scheme (16) is ‖ · ‖p-stable in the sense of Definition 1.
Summarizing, the following result was established.

Theorem 1. With the previous notation under conditions (21), (23) and (24) on the discretized
step-sizes h = Δx and k = Δt, the random numerical solution s.p. {un

i } of the RMSFDS (16)
for the random partial differential model (3)–(11) is positive for 0 ≤ i ≤ M at each time-level
0 ≤ n ≤ N with T = kN. Furthermore the RMSFDS (16) is ‖ · ‖p-stable in the fixed station sense
taking the value

C = α(T) G(T) ,

where constants G(T) and α(T) are defined in (28) and (35), respectively.

To prove the consistency of the random finite difference scheme (16) with the random
partial differential Equation (13) let us introduce the following definition inspired in the
well-known concept of consistency for deterministic PDEs, see [2].

Definition 2. Let us consider a RMSFDS F(un
i ) = 0 for a random partial differential equation

(RPDE) L(u) = 0 and let the local truncation error Tn
i (U(ω)) for a fixed event ω ∈ Ω be

defined by
Tn

i (U(ω)) = F(Un
i (ω))−L(Un

i (ω)),

where Un
i (ω) denotes the theoretical solution of L(u)(ω) = 0 evaluated at (xi, tn). We call

Tn
i (U) by

‖Tn
i (U)‖p =

(
E
[|Tn

i (U)|p])1/p
=

(∫
Ω
|Tn

i (U(ω))|p fTn
i (U)(ω) dω

)1/p
.

With previous notation, the RMSFDS F(un
i ) = 0 is said to be ‖ · ‖p-consistent with the

RPDE L(u) = 0 if

‖Tn
i (U)‖p → 0 as h = �x → 0, k = �t → 0.

Next result shows the consistency in the p-norm of RFDS (16) with RPDE (13).

Theorem 2. The RFDS (16) is ‖ · ‖p- consistent with the RPDE (13).

Proof. Please note that for each fixed ω ∈ Ω the local truncation error using (13) and (15)
is given by
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Tn
i (U(ω)) =

Un+1
i (ω)− Un

i (ω)

k
− ∂U(ω)

∂t
(xi, tn)− pi

Un
i−1(ω)− 2Un

i (ω) + Un
i+1(ω)

h2 +

pi
∂2 U(ω)

∂x2 (xi, tn)− p′
i

Un
i+1(ω)− Un

i−1(ω)

2h
+ p′

i
∂ U(ω)

∂x
(xi, tn).

Assuming that U(x, t)(ω) is four times continuously differentiable with respect to x
and two times continuously differentiable with respect to t and using Taylor expansions of
U(x, t)(ω) at (xi, tn) one gets

Tn
i (U(ω)) =

k
2

∂2U(ω)

∂t2 (xi, δ)− pi
h2

12
∂4 U(ω)

∂x4 (η1, tn)− p′
i
h2

6
∂3 U(ω)

∂x3 (η2, tn), (36)

where tn < δ < tn+1, xi−1 < ηj < xi+1, j = 1, 2.
Let us denote

E1(i, n)(ω) = max
{∣∣∣∣∂2U(ω)

∂t2 (xi, t)
∣∣∣∣, tn < t < tn+1

}
, (37)

E2(i, n)(ω) = max
{∣∣∣∣∂4U(ω)

∂x4 (x, tn)

∣∣∣∣, xi−1 < x < xi+1

}
, (38)

E3(i, n)(ω) = max
{∣∣∣∣∂3U(ω)

∂x3 (x, tn)

∣∣∣∣, xi−1 < x < xi+1

}
. (39)

As we are in the scenario of finite degree of randomness and the involved variables
have a truncated range, there exist Dj(i, n), j = 1, 2, 3, positive constants such that

Ej(i, n)(ω) ≤ Dj(i, n), 1 ≤ j ≤ 3, a.e. ω ∈ Ω. (40)

From Definition 2, condition (7) and (36)–(40) it follows that

‖Tn
i (U)‖p ≤

(∫
Ω

[
D1(i, n)

k
2
+

h2

12
(

pi D2(i, n) + 2|p′
i | D3(i, n)

)]p

fTn
i (U)(ω) dω

)1/p

=
k
2

D1(i, n) +
h2

12
(

pi D2(i, n) + 2|p′
i | D3(i, n)

)
= O(k) + O(h2). (41)

4. Algorithm

From a computational point of view, as it was commented on in the Introduction
Section, the handling of the random scheme (16) in a direct way makes unavailable the com-
putation of approximations beyond a few first temporal levels. This is because, throughout
the iterative temporal levels, n = 1, · · · , N, it is necessary to store the symbolic expres-
sions of all the previous levels of the iteration process collecting big and complex random
expressions with which the expectation and the standard deviation must be computed.
Furthermore, although the random expressions can be stored it does not guarantee that the
two first statistical moments could be computed in a numerical way. For this reason, we
propose using the random numerical scheme (16) together with the Monte Carlo technique
avoiding the described computational drawbacks. The procedure is as follows: to take a
number K of realizations of the random data involved in the random PDE (3)–(6) according
to their probability distributions; to compute the numerical solution, un

i (ωj), j = 1, · · · , K,
of the sampling deterministic difference schemes (18); to obtain the mean and the standard
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deviation of these K numerical solutions evaluated in the mesh points i = 1, · · · , M − 1, at
the last time-level N, denoted respectively by

EK
MC[u

N
i ] = μ

(
uN

i (ω1), uN
i (ω2), · · · , uN

i (ωK)
)

. (42)

√
VarK

MC[u
N
i ] = σ

(
uN

i (ω1), uN
i (ω2), · · · , uN

i (ωK)
)

. (43)

Algorithm 1 summarizes the steps to compute the stable approximations of the ex-
pectation and the standard deviation of the solution s.p., un

i , generated by means of the
sampling difference scheme (18) and the MC method.

Algorithm 1 Procedure to compute the approximations to the expectation and the standard deviation of the numerical
solution uN

i of the problem (3)–(6).

1: Consider random inputs p(x), q(x), gi(t), i = 1, 2, and f (x) as s.p.’s taking the form described in conditions (1) and (2).
2: Check that p(x) ∈ Lp(Ω) is m.s. continuous and m.s. differentiable for 0 < x < 1. Verify condition (7) and compute

the bounds a1 and a2.
3: Compute the m.s. derivative of p(x), p′(x), verify condition (8) and compute the bound b.
4: Check that coefficient q(x) ∈ Lp(Ω) being m.s. continuous s.p.’s for 0 < x < 1 and verifying condition (9).
5: Check that boundary conditions gi(t) ∈ Lp(Ω), i = 1, 2, being m.s. continuous s.p.’s for t > 0 and verifying

condition (10).
6: Check that initial condition f (x) ∈ Lp(Ω) being m.s. continuous s.p.’s for 0 ≤ x ≤ 1 and verifying condition (11).
7: Select a spatial stepsize h = Δx verifying condition (21).

8: Consider a partition of the spatial domain [0, 1] of the form xi = i h, i = 0, . . . , M, where the integer M =
1
h

is the

number of discrete points in [0, 1].
9: Select a temporal step-size k = Δt verifying condition (23) or (24).

10: Choose a time horizon T.
11: Consider a partition of the temporal interval [0, T] of the form tn = n k, n = 0, . . . , N, where the integer N = T

k is the
number of levels necessary to achieve the time T;

12: Take and carry out a number K of MC realizations, ωi, 1 ≤ i ≤ K, over the r.v.’s involved in the random data of the
problem (3)–(6).

13: for each realization ω�, 1 ≤ � ≤ K do
14: for i = 0 to M do
15: Evaluations of p(xi; ω�), p′(xi; ω�), q(xi; ω�), f (xi, ω�).
16: end for
17: end for
18: for each realization ω�, 1 ≤ � ≤ K do
19: for n = 0 to N do
20: Evaluations of g1(tn; ω�), g2(tn; ω�).
21: end for
22: end for
23: for each realization ω�, 1 ≤ � ≤ K do
24: for n = 0 to N do
25: Compute un

i (ω�) using the sampling deterministic difference scheme (18).
26: end for
27: end for
28: for i = 0 to M do
29: Compute the mean, μ, of the K-deterministic solutions obtained in the time level N using (42).
30: Compute the standard deviation, σ, of the K-deterministic solutions obtained in the time level N using (43).

31: end for

155



Mathematics 2021, 9, 206

4.1. Numerical Example

To illustrate the efficiency of our proposed method in this subsection we present a test
example where the exact solution s.p. is available. We consider the problem (3)–(6) with
the random coefficients

p(x) = a e−x , q(x) = −c , (44)

and the following boundary and initial conditions

g1(t) = ec t
(

1
2
+ a t

)
, g2(t) = ec t

(
e2

2
+ a e t

)
, f (x) =

e2x

2
, (45)

that is,

∂u(x, t)
∂t

= a e−x ∂2u(x, t)
∂x2 − a e−x ∂u(x, t)

∂x
+ c u(x, t), 0 < x < 1, t > 0 , (46)

u(0, t) = ec t
(

1
2
+ a t

)
, t > 0, (47)

u(1, t) = ec t
(

e2

2
+ a e t

)
, t > 0, (48)

u(x, 0) =
e2x

2
, 0 ≤ x ≤ 1 , (49)

where the r.v. a follows a Gaussian distribution of mean μ = 0.5 and standard deviation
σ = 0.1 truncated on the interval [0.4, 0.6], that is a ∼ N[0.4,0.6](0.5; 0.1), and the r.v. c > 0
has a beta distribution of parameters (2; 4) truncated on the interval [0.45; 0.55], that is
c ∼ Beta[0.45,0.55](2; 4). Hereinafter, we will assume that a and c are independent r.v.’s.
Please note that p(x) in (44) is a s.p. with one degree of randomness verifying condition (2)
and gi(t), i = 1, 2, in (45) are s.p.’s with two degree of randomness (because they involve
both r.v.’s a and c) verifying condition (2). Furthermore all random input data p(x),
q(x), g1(t), g2(t) and f (x) lie in L2(Ω) and they are m.s. continuous and p(x) is m.s.
differentiable too. In addition, conditions (7)–(11) are satisfied with

a1 = 0.4 e−1 , a2 = 0.6 e0 , −0.55 ≤ q(x, ω) ≤ −0.45 , ω ∈ Ω , 0 ≤ f (x, ω) ≤ 3.69453 , ω ∈ Ω.

From [18] (Section 3.8.5.) the exact solution of problem (46)–(49) when both parameters
a and c are deterministic, is given by

u(x, t) = ec t
(

a ext +
e2x

2

)
. (50)

In our context, both a and c are r.v.’s, and expression (50) must be interpreted as a
s.p. Then, using the independence between r.v.’s a and c, the expectation and the standard
deviation of s.p. (50) are given by

E[u(x, t)] = E
[
ect](E[a] ext +

e2x

2

)
, (51)√

Var[u(x, t)] =

√
E[(u(x, t))2]− (E[u(x, t)])2 , (52)

being

E[(u(x, t))2] = E
[
e2ct
](

E[a2] e2xt2 +E[a] e3x t +
e4x

4

)
. (53)

Figure 1 shows the evolution of the expectation (51) and the standard deviation (52)
and (53) of the exact solution s.p. (50) when both parameters a and c are considered as the
r.v.’s described above.
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Figure 1. (Left): Surface of the expectation of the exact solution (50), E[u(xi, tn)], computed according to (51). (Right):
Surface of the standard deviation of the exact solution (50),

√
Var[u(xi, tn)], computed according to (52) and (53). For both

statistical moments the parameters considered in (50) are a ∼ N[0.4,0.6](0.5; 0.1), c ∼ Beta[0.45,0.55](2; 4) and the plotted
domain corresponds to (xi = ih, tn = nk) ∈ [0 + h = 0.0125, 1 − h = 0.9875]× [0.05, 1] with the step-sizes h = Δx = 0.0125,
1 ≤ i ≤ 79, and k = Δt = 0.05, 1 ≤ n ≤ 20.

Numerical convergence of the expectation and the standard deviation of the approx-
imate solution s.p. generated by means the sampling difference scheme (18) using the
Monte Carlo (MC) technique shown in Algorithm 1, is illustrated in the following way. In
the first study, with a fixed time T, we have chosen both the spatial and temporal step-sizes
h and k, respectively, according to the stability conditions (21) and (23) and we have varied
the number of realizations, K, of the r.v.’s a and c involved in the random problem (46)–(49).
Then, at the temporal level N where the time T is achieved, we have computed the expec-

tation (mean), EK
MC[u

N
i ], and the standard deviation,

√
VarK

MC[u
N
i ], of the K-deterministic

solutions, uN
i , obtained to solve the K-deterministic difference schemes (18). Table 1 collects

the RMSEs (Root Mean Square Errors) computed at the time instant T = Nk = 1 with the
temporal step-size k = 0.0001 (N = 10,000) for M − 1 = 79 internal spatial points xi = ih,
1 ≤ i ≤ 79 with h = Δx = 0.0125 in the domain [0.0125, 1], using the following expressions

RMSE
[
EK

MC[u
N
i ]
]

=

√√√√ 1
M − 1

M−1

∑
i=1

(
E[u(xi, tN)]−EK

MC[u
N
i ]
)2 , (54)

RMSE
[√

VarK
MC[u

N
i ]

]
=

√√√√ 1
M − 1

M−1

∑
i=1

(√
Var[u(xi, tN)]−

√
VarK

MC[u
N
i ]

)2
, (55)

where E[u(xi, tN)] and
√

Var[u(xi, tN)] are given by (51)–(53), respectively.
The good behaviour of both approximations the expectation and the standard devia-

tion as the K simulations increases was observed. That is, the accuracy of the approxima-
tions to both statistical moments increases when the number of MC simulations is growing.
In this sense, Figure 2 reflects the improvement of the approximations considering the
study of the relative errors computed by the expressions

RelErr
[
EK

MC[u
N
i ]
]

=

∣∣∣∣∣E[u(xi, tN)]−EK
MC[u

N
i ]

E[u(xi, tN)]

∣∣∣∣∣, (56)
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RelErr
(√

VarK
MC[u

N
i ]

)
=

∣∣∣∣∣∣
√

Var[u(xi, tN)]−
√

VarK
MC[u

N
i ]√

Var[u(xi, tN)]

∣∣∣∣∣∣ . (57)

Table 1. Root mean square errors (RMSEs) at T = Nk = 1 with k = 0.0001 (N0 = 1000) for the
numerical expectation and the numerical standard deviation computed after solving the K-deterministic
difference scheme (18) for several Monte Carlo (MC) realizations K ∈ {50, 200, 800, 3200, 12,800}. The
spatial discretization have been considered on the domain [0 + h = 0.0125, 1 − h = 0.9875] with xi = ih,
1 ≤ i ≤ 79, h = 0.0125.

K RMSE
[
EK

MC[u
N
i ]
]

RMSE

[√
VarK

MC[u
N
i ]

]
50 1.45604 × 10−2 1.32856 × 10−2

200 1.11710 × 10−2 1.84435 × 10−3

800 1.08512 × 10−2 1.06139 × 10−3

3200 4.20138 × 10−3 6.01374 × 10−3

12,800 2.07183 × 10−4 1.69504 × 10−3

Table 2 shows the second complementary study, where we have fixed the number
of MC simulations K, K = 1600, and we have refined the step-sizes h and k attending
to the stability conditions (21) and (23). It is observed the decrease of the RMSEs of the
expectation (54) and an apparent stabilization in the RMSEs behaviour of the standard
deviation (55). Computations have been carried out by Mathematica© software version
12.0.0.0, [21] for Windows 10Pro (64-bit) AMD Ryzen Threadripper 2990WX, 3.00 GHz 32
kernels. The CPU times (in seconds) spent in the Wolfram Language kernel to compute,
in both experiments, the expectation (mean) and the standard deviation are included in
Tables 3 and 4. As a result, a good strategy to study the convergence of approximations
consists of choosing step-sizes h and k verifying the stability conditions and take a big
enough number of realizations K such that the error does not vary significantly when one
increases the number of realizations. For problems with no available solution the error is
changed by the deviation between two successive numerical solutions.
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Figure 2. Plot (a): Relative errors of the approximations to the expectation (mean), EK
MC[u

N
i ], (56). Plot (b): Relative errors

of the approximations to the standard deviation,
√

VarK
MC[u

N
i ], (57). For both graphics the fixed time horizon is T = 1 = Nk

with the temporal step-size k = 0.0001 (N = 10,000), the spatial domain xi ∈ [0 + h, 1 − h] with xi = ih, h = 0.0125, but
varying the number of MC simulations K ∈ {50, 3200, 12,800}.

Table 2. RMSEs at T = 1 and K = 1600 (MC simulations) for the expectation (54) and the standard
deviation (55). The considered step-sizes h and k verify stability conditions (21) and (23). T = Nk = 1,
N ∈ {125, 500, 2000, 8000}, the spatial domain is [0 + h, 1 − h] considering M − 1 internal points
xi = ih, 1 ≤ i ≤ M − 1 with M = 1/h.

h k RMSE
[
EK

MC[u
N
i ]
]

RMSE

[√
VarK

MC[u
N
i ]

]
0.1 0.008 5.29465 × 10−2 2.36145 × 10−3

0.05 0.002 3.19431 × 10−3 2.49070 × 10−3

0.025 0.0005 2.72452 × 10−3 2.52301 × 10−3

0.0125 0.000125 2.61957 × 10−3 2.53168 × 10−3

Table 3. CPU time (in seconds) spent to compute the approximations to the expectation (mean), EK
MC,

and the standard deviation,
√

VarK
MC in Table 1, for a fixed time horizon T = 1 and the step-sizes

h = 0.0125 and k = 0.0001 while the number of MC simulations, K, varies.

K CPU,s

[
EK

MC/
√

VarK
MC

]
50 630.516

200 982.375
800 2052.330

3200 6209.480
12,800 22,600.100

The use of MC method has allowed the obtainment of approximations to the ex-
pectation and the standard deviation of the solution s.p. uN

i of the random difference
scheme (16) at time horizon T = Nk for N not necessarily small. However, if we use
the random numerical scheme (16) directly in this example with the step-sizes h = 0.05
(M = 20) and k = 0.002 verifying the stability conditions (21) and (23), troubles appear in
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the early time-level n = 3, that corresponds to time tn = 0.006. In this case the symbolic
expressions for the random numerical solution un

i and (un
i )

2, for n = 3 are available and
their correspond expectations too. However, the Mathematica© software can not compute
the numerical expectation of

(
un

i
)2 for 2 ≤ i ≤ 18, n = 3, in consequence it is not possible to

compute the approximation of the standard deviation for these internal points at tn = 0.006
and hence at no other later time.

Table 4. CPU time (in seconds) spent to compute the approximations to the expectation (mean),

EK
MC, and the standard deviation,

√
VarK

MC in Table 2, for a fixed time horizon T = 1 and K = 1600
MC simulations but varying the temporal step-size k and the spatial step-size h in the domain
[0 + h, 1 − h].

h k CPU,s

[
EK

MC/
√

VarK
MC

]
0.1 0.008 11.4688

0.05 0.002 56.2344
0.025 0.0005 341.6410

0.0125 0.000125 2438.70000

5. Conclusions

The main target of this paper is to solve the challenge of storage accumulation and
further computational breakdown dealing with FD methods for solving random PDEM.
Our approach is based on a combination of Monte Carlo method and the solution of
sampled deterministic methods using explicit FD schemes. Explicitness is necessary to
compute the statistical moments of the approximate solution what disregards the implicit
FD methods. We here use the explicit classic difference method, but the Crank-Nicolson
semi-implicit approach could be tried, making an ad hoc analysis. Numerical analysis
provides sufficient conditions for positivity, stability and consistency for the proposed
RMSFDS. Numerical experiments illustrate the reliability of the approach.
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Abstract: We present the relativistic generalization of the classical harmonic oscillator suspended
within a uniform gravitational field measured by an observer in a laboratory in which the suspension
point of the spring is fixed. The starting point of this analysis is a variational approach based on the
Euler–Lagrange formalism. Due to the conceptual differences of mass in the framework of special
relativity compared with the classical model, the correct treatment of the relativistic gravitational
potential requires special attention. It is proved that the corresponding relativistic equation of motion
has unique periodic solutions. Some approximate analytical results including the next-to-leading-
order term in the non-relativistic limit are also examined. The discussion is rounded up with a
numerical simulation of the full relativistic results in the case of a strong gravity field. Finally,
the dynamics of the model is further explored by investigating phase space and its quantitative
relativistic features.

Keywords: relativistic harmonic oscillator; kinematics of a particle; special relativity; nonlinear
problems in mechanics; equations of motion in gravitational theory

MSC: 70B05; 83A05; 70K42; 70K99; 83C10

1. Introduction

The harmonic oscillator or mechanical spring, implementing Hooke’s Law, is one of
the standard textbook examples for introducing the student to Newtonian mechanics [1].
Treating classical motion under a Hookean potential is simplest, in spite of additional
difficulties when, e.g., velocity-dependent forces (as friction) are added. Remarkably, the
relativistic counterpart of an oscillator or a pendulum—which approximates to a harmonic
oscillator for small amplitudes—stationed within some supplementary force field has so
far been dealt with only scarcely.

A detailed discussion of relativistic effects on a simple pendulum without any ad-
ditional forces has been carried out by Erkal in 2000 [2]. In 2008, Torres shows that the
relativistic pendulum with friction possesses periodic solutions which are absent in the
classical case [3]. In a more recent publication of this area of research, in 2017, de la Fuente
and Torres focuses on relativistic extensions for the motion of the harmonic oscillator from
the view of the oscillating body, but without including any gravitational effects [4]. In all
these publications an appropriate laboratory frame is chosen where characteristic, preferred
points are fixed, i.e., the suspension points of the pendulum and the spring representing
the oscillator, respectively.

The present work fills an outstanding gap in the existing research literature by ex-
amining the relativistic effects of a harmonic oscillator in a uniform gravitational field,
adopting and extending the approach by Goldstein and Bender [5]. In the classical model,
the maximum velocity of the mass in motion can be arbitrarily large depending on the
displacement with respect to the equilibrium point of the spring. Relativistic mechanics
will adjust this behavior by only allowing a maximum speed less than the speed of light,
as accelerating a mass to higher velocities will in like manner increase its inertial mass
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(equivalent to an increase in kinetic energy). Although the oscillating mass point is not
considered to generate its own gravitational field and the uniform gravitational field shall
be caused by an external object, any variable inertial mass will also be subject to gravity.
This will inescapably lead to further nontrivial complications when studying relativistic
effects of gravity for the harmonic oscillator—even from the perspective of special relativity
without considering general relativity. Nonetheless, the present model may provide a
legitimate and satisfactory approximation for an oscillator close to a black hole, as on a
small scale the Schwarzschild spacetime at a sufficiently large distance from the event hori-
zon (where gravitational tidal effects can be ignored) approximates well a strong uniform
gravitational field.

The core of this paper is organized as follows. In Section 2, after a short introduction
to the variational principle [6,7] for the classical case of the harmonic oscillator, the Euler–
Lagrange formalism in the framework of special relativity [8,9] is used to set up the
equations of motion for a harmonic oscillator which will be subject to an external uniform
gravitational field and measured by an observer in a laboratory where the suspension
point of the spring is fixed. Generalizing from the classical to the relativistic regime is
not as trivial as it appears at first sight due to the particular, distinct nature of relativistic
mass—mass which attains a dynamical quality—and the fact that variable kinetic energy
itself is equivalent to additional mass which is susceptible to the external gravitational field.
Special care has to be taken to take these entirely relativistic effects into account.

Therefore, Section 3 concentrates on the full derivation of the correct relativistic
potential for the uniform gravitational field surrounding the harmonic oscillator. As
approximation in the case of weak gravitational fields, we consider the Taylor expansion of
the potential in the non-relativistic limit and some of its particular properties. Furthermore,
we examine the full relativistic results for the potential with strong gravity and, in particular,
identify its physically allowed regions. Although we are able to derive the relativistic
gravitational potential for the case at hand, and in closed analytical form, the final results
for the equation of motion become intangible for analytical evaluation.

In Section 4, we perform the numerical integration of the equation of motion to
simulate the dynamics of this model and explore some significant characteristics of the
system. In general, we prove that the equation of motion for the relativistic harmonic
oscillator also has unique periodic solutions. In the strong gravity case, we compare
relativistic with classical estimates for the oscillating amplitudes. For further analysis,
we present the corresponding phase-space trajectories and discuss its most prominent
characteristics.

2. Variational Principle and Equation of Motion

Robert Hooke (1635–1703) first pointed out that the mathematical description for
small oscillations of a body with mass m0 > 0 attached to an elastic spring with position
x = x(t) takes the form: m0 ẍ = −kx. The positive constant k > 0 depends on the elastic
properties of the spring in question. As a natural length scale serves the length of the
spring at its maximum elongation, denoted as � > 0. This mechanical system is termed
“harmonic oscillator”. Such systems are of utmost relevance in physics and engineering,
as any mass particle subject to a force in stable equilibrium will effectively operate as a
harmonic oscillator for small fluctuations—small fluctuations being displacements with
only a fraction of length �. Additional importance emerges in the dynamics of a continuous
classical field as it may be formulated as the dynamics of an infinite number of harmonic
oscillators. Furthermore, the quantum harmonic oscillator describes some of the most
important model systems in quantum mechanics.

Already for the elementary classical case of a spring extended in a uniform Newto-
nian gravitational field, the most efficient and powerful approach is the framework of
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Lagrangian mechanics [6,7], which is based on a variational principle. Accordingly, the
deterministic equations of motion will result from the following principle of least action

δ
∫

dt L = δ
∫

dt
[

1
2 m0 ẋ2 − 1

2 kx2 − m0gx
]
= 0 (1)

by varying over all possible paths x = x(t) and keeping the end points fixed. From
Equation (1), it becomes clear that we exclude the oscillating mass point (which has neg-
ligible mass) as possible source of a gravitational field. For practical purposes and as is
customary, the position x of the mass point and the external uniform gravitational field
with strength g > 0 are measured in the laboratory frame, where the suspension of the
spring at one end is fixed.

The integrand in Equation (1) is the Lagrangian function, L, which includes kinetic
energy T = 1

2 m0 ẋ2, the spring potential Vs(x) = 1
2 kx2, and the gravitational potential

Vg(x) = m0gx. Note that we consider spring elongations with respect to position x = 0
which is also the suspension point of the spring. In this laboratory frame, with the suspen-
sion point at rest, the oscillating device is stationed within a uniform gravitational field
(determined by the gravitational constant g > 0) in such a way that both are aligned. This
dynamical system is one-dimensional, and the corresponding Euler–Lagrange equation
amounts to solving a simple linear second-order differential equation deriving from(

d
dt

∂

∂ẋ
− ∂

∂x

)
L = 0. (2)

By substituting the Lagrangian L from Equation (1) into Equation (2), it is straightfor-
ward to reproduce the well-known general solution in closed analytical form:

x(t) = C1 cos

(√
k

m0
t

)
+ C2 sin

(√
k

m0
t

)
− m0g

k
, (3)

where C1 and C2 are the two integration constants depending on the initial values for the
differential equation.

However, the classical result, Equation (3), does not contemplate strong gravitational
fields and when velocities ẋ get closer to the speed of light c > 0. Furthermore, in special
relativity the mass is a dynamical quantity, dependent on the relative velocity ẋ of the
observer, such that m = γm0, where the usual relativistic factor is γ(ẋ) = 1/

√
1 − ẋ2/c2.

Consequently, Equation (3) will utterly fail in giving a faithful description of the physical
effects in the relativistic domain.

In order to generalize to a correct description in the relativistic domain, the best starting
point is to modify the classical principle of least action, Equation (1). As expected, the rest
mass m0 in Equation (1) will have to be divided by the factor γ to correctly incorporate
both rest mass and kinetic energy. Moreover, the spring potential Vs is unaltered, and the
relativistic gravitational potential Vg, however, is hitherto undetermined. Therefore, we
postulate the relativistic Lagrangian

L(x, ẋ) = −m0c2

γ(ẋ)
− 1

2 kx2 − Vg(x), (4)

which readily yields the relativistic action principle

δ
∫

dt

[
−m0c2

√
1 − ẋ2

c2 − 1
2 kx2 − Vg(x)

]
= 0. (5)

Note that Vg(x), as stressed before, gives the relativistic gravitational potential as measured
in the laboratory frame with fixed strength g > 0 and as a function of varying spring
elongation x.

165



Mathematics 2021, 9, 294

Complications for identifying Vg in Equation (5) arise, because mass in special relativ-
ity will change with its variable kinetic energy and thus simultaneously cause a change of
the mass which is subject to the external gravitational field. This effect can be taken into
account by using the relativistic ansatz

Vg(x) =
∫

dx mg = m0g
∫ dx√

1 − ẋ2

c2

. (6)

For a rigorous general definition of this potential see Goldstein & Bender [5].
As Vg, and thus L, do not explicitly depend on time, according to Noether’s theorem

total energy must be conserved. For this purpose, we carry out the Legendre transforma-
tion [6,7] of Equation (4) yielding the Lagrangian energy function

E(x, ẋ) =
m0c2√
1 − ẋ2

c2

+ 1
2 kx2 + Vg(x) =: E, (7)

which is just the constant total energy E of the system. Without loss of generality, but for
convenience, we assume for the remainder of the derivation that at position x = 0 the mass
particle be at rest, i.e., E = m0c2, or equivalently, we will assume that the following initial
conditions hold:

x(0) = 0 and ẋ(0) = 0. (8)

Furthermore, this immediately implies via Equation (7) that

Vg(0) = 0. (9)

Observe that condition Equation (9) is chosen to agree with the definition of the classical
potential and is nothing more than just fixing the arbitrary, and unphysical, integration
constant in Equation (6).

Applying the Euler–Lagrange formalism to Equation (5) produces the following
relativistic equation of motion,

d
dt

(
m0 ẋ√
1 − ẋ2

c2

)
+ kx +

d
dx

Vg(x) = 0, (10)

where Vg(x) is still unknown and needs to be determined. The next section focuses on
uncovering the explicit relativistic form of gravitational potential Vg(x).

3. Relativistic Potential for Uniform Gravitational Field

As already stressed, the problem of dealing with the relativistic model of the harmonic
oscillator in a uniform gravitational field is appreciably more complicated than the classical
case. The core problem originates from the fundamentally different concept of mass in
the classical or the relativistic description of the physical phenomena. The ansatz for the
gravitational potential given in Equation (6) naturally considers relativistic corrections of a
mass in relative motion with respect to the laboratory.

Moreover, from energy conservation, viz. Equation (7), with E = m0c2, and from
solving for the relativistic factor γ, it directly follows that

γ =
1√

1 − ẋ2

c2

=
m0c2 − 1

2 kx2 − Vg(x)
m0c2 ≥ 1, (11)

which constrains the physically admissible range of potential Vg.
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Now, substituting the relativistic factor of Equation (11) into Equation (6) gives the
integral equation

Vg(x) =
g
c2

∫
dx
[
m0c2 − 1

2 kx2 − Vg(x)
]
, (12)

or correspondingly, the differential equation

d
dx

Vg(x) =
g
c2

[
m0c2 − 1

2 kx2 − Vg(x)
]
> 0, Vg(0) = 0, (13)

where we have considered integration condition Equation (9). Furthermore, we indicated
the correct sign of gradient dVg/dx, since the gravitational force, Fg = −dVg/dx, is oriented
downwards the x-axis. It is important to notice that Equation (13) contains the constant
k > 0, considering that obviously the elastic property of the spring affects the speed of the
oscillating mass and enters Vg via the relativistic factor γ. This is in full agreement with
previous published results using a similar approach, e.g., for the relativistic pendulum
with a gravitational potential energy also depending on length of the pendulum, viz. (see
in [2], Equation (6)).

Equation (13) is an ordinary differential equation of type f ′(x) = a + bx2 + c f (x)
which can easily be solved. The solution is

Vg(x) =

[
m0c2 − k

(
c2

g

)2](
1 − e−

g
c2 x
)
+ 1

2 k
(

2c2

g
− x
)

x (14)

with derivative
d

dx
Vg(x) =

[
m0g − k

c2

g

]
e−

g
c2 x

+ k
(

c2

g
− x
)

. (15)

Some checks of Equation (15) are in order: Note that in the absence of any spring (k = 0),

the result Fg = −V′
g = −m0g e−

g
c2 x is recovered, which is in full agreement with the

calculations by Goldstein and Bender [5]. As a consequence, the classical result, Fg = −m0g
is obtained for x = 0, before the mass particle is set in motion, viz. Equation (8). Moreover,
in the weak gravity domain (g�/c2 � 1), to lowest order the gravitational force obviously
has to be independent of spring constant k, and it is Fg ≈ −m0g +O(g�/c2), with � being
the natural length scale of the spring, viz. Section 2. However, as gravity becomes stronger,
the harmonic force will entangle with gravity in the potential Vg due to the subtle relativistic
effects already mentioned. To see this, we expand Equation (14) in a power series and
obtain the expansion of Vg up to first order in the dimensionless scale parameter g�/c2:

Vg(x) = m0g x − kx3

6�

(
g�
c2

)
+O

(
g�
c2

)2
. (16)

Observe that the quantity g/c2 is a Lorentz scalar, representing an invariant for all
inertial frames. Obviously, the speed of light c is a Lorentz scalar, and g being an accelera-
tion is measured the same in all inertial frames with relative motion to the rest/laboratory
frame. Thus, the ratio g/c2 is also invariant under Lorentz transformations.

In Equation (16), the term of order O(g�/c2) already contains spring constant k.
Therefore, in first approximation for weak gravity, the odd powers indicate a symmetric
result, more precisely rotational symmetry with respect to rotations of 180◦ about the origin,
see Figure 1. In the full relativistic regime, including all orders of the expansion, symmetry
is broken. Observe also that in this expansion of the gravitational potential, the additional
next-to-leading-order term represents the main correction of special relativity. It bears some
similarity with the post-Newtonian approximation in general relativity. However, here in
our approach—within the framework of special relativity—the underlying spacetime is of
course Minkowskian, and thus flat.
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Figure 1. In the weak gravity case, when g�/c2 � 1, the approximation for the relativistic gravita-
tional potential Vg in the non-relativistic limit is most suitable (blue curve), see Equation (16). This
approximate result is symmetric with respect to rotations of 180◦ about the origin—a symmetry
property which is lost in the full relativistic case. The approximate model is only physically valid

well within the interval [−x0, x0], where x0 =
√

2m0
k c, so that sign-flips of the force field are avoided.

The non-relativistic, classical case is indicated by the straight gray line.

Figure 2 displays the full relativistic result for Vg in a strong gravitational field. Here,
to achieve g/c2 = 1 m−1 (measured in physical units m−1), all parameters are set to unity,
except for the spring constant which we chose to be k = 2 kg/s2 (measured in physical
units kg/s2). We also represent the gradient, V′

g = dVg/dx, for any position x ∈ [−1, 1].
Note that the gravitational force therefore will flip sign at x0, satisfying V′

g(x0) = 0 for
Equation (13), and is given by

x0 =
c2

g

⎡⎣W0

⎛⎝ m0g2

kc2 − 1
e

⎞⎠+ 1

⎤⎦, (17)

where W0 is the principal branch of Lambert’s W function (see in [10], §4.13). By including
higher orders up to O(g�/c2)3 in Equation (16), a reasonably good approximation for

Equation (17) is obtained: x0 ≈ m0g
k

(√
2c2k
m0g2 + 1 − 1

)
.

For the data in Figure 2, it is x0 ≈ 0.77 m, and thus all estimates for x > x0 are
unphysical. However, with initial conditions Equation (8) the mass particle will move only
on the negative axis, x ≤ 0, and thus will safely be in the physical region.
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Figure 2. The relativistic gravitational potential, Vg(x), for an oscillating body posted in a strong
uniform gravitational field. For the graphical representation we use m0 = 1 kg, g = 1 kg m/s2, and
k = 2 kg/s2. Further, the speed of light is normalized to c = 1 m/s. The dashed line marks below the
physically allowed region for Vg, viz. Equation (20). The gradient, V′

g(x), is also shown.

4. Model Dynamics and Numerical Simulation

With the exact analytical result for the relativistic gravitational potential Vg, given by
Equation (14), we are now in the position to complete the description of the dynamics of
the model at hand. Substituting its derivative V′

g, given by Equation (15), into the equation
of motion, Equation (10), readily yields the Euler–Lagrange equation—a nonlinear second-
order differential equation—which governs the physical system

γ3m0 ẍ +

[
m0g − k

c2

g

]
e−

g
c2 x

+ k
c2

g
= 0, (18)

where γ and e−
g

c2 x can be eliminated via Equations (11) and (14), respectively. After some
lengthy but straightforward simplification, we arrive at the following equivalent and for
numerical implementation more convenient form

α(x) ẍ + β(x)g = 0, (19a)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α(x) =

(
1 −

1
2 kx2 + Vg(x)

m0c2

)3

,

β(x) =

1
2 k
(

2c2

g
− x
)

x + m0c2 − Vg(x)

m0c2 ,

(19b)

where Vg is given by Equation (14). Observe that α, β are dimensionless factors, and in
particular it is α(0) = β(0) = 1, such that ẍ = −g at the initial position x = 0, as is
expected. Furthermore, we obtain ẍ = −g at all positions, when k = 0 and Vg ≡ 0. This
represents the non-relativistic case in the absence of harmonic forces, that is, classical
free fall. Similarly, for k > 0 and Vg ≡ 0, it is easily checked that the result reduces to
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that of a classical spring in a gravitational field: m0 ẍ = −kx − m0g with general solutions
Equation (3). Anyhow, Equations (19a) and (19b) embraces the full relativistic case provided
that constraint Equation (11) is satisfied. The constraint Equation (11) may simply be
rewritten as

Vg(x) ≤ − 1
2 kx2. (20)

Therefore, the physically relevant gravitational potential Vg always has to lie below this
concave down parabola. Figure 2 shows that this will approximately hold for the range
−x0 ≤ x ≤ 0, where no sign-flip for the gravitational force occurs. Recall that with the
aforementioned parameters (all set to unity except for k = 2 kg/s2), we found x0 ≈ 0.77 m,
viz. Equation (17).

The particular structure of the relativistic equation of motion, Equations (19a) and
(19b), also implies existence and uniqueness of periodic solutions. During the past two
decades, considerable progress has been made in the study of second-order differential
equations and the periodic properties of their solutions [11]. For a closer analysis, we recast
Equation (19a) into the form

ẍ(t) = − β(x)
α(x)

g =: f (x), (21)

where in this case the continuous function f (assuming α(x) �= 0) does not explicitly
depend on the variables t or ẋ. Moreover, recall that f (x(0)) = −g. To guarantee existence
and uniqueness, we have to check that f ′ is bounded by two continuous functions for all
t ∈ [0, T], with period T > 0 [11]. For this purpose, we also use the following general
results for the limits of Equation (19b) and its derivatives:

lim
x→∞

α = −∞, lim
x→∞

β =
k

m0

(
c
g

)2
,

lim
x→∞

α′ = −∞, lim
x→∞

β′ = 0,

and lim
x→∞

α′

α
= 0.

(22)

Now, we can conclude that

lim
x→∞

f ′ = lim
x→∞

α′β − αβ′

α2 g = 0. (23)

As f ′(x) and x(t) are continuous, f ′ necessarily has to be bounded by a lower and an upper
continuous function for t ≥ 0, and we affirm that the equation of motion, Equations (19a)
and (19b), has unique periodic solutions.

The series expansion in the non-relativistic limit of Equations (19a) and (19b) up to
first order in the dimensionless parameter g�/c2 gives

m0 ẍ + m0g + kx +

(
2m0g
�

x +
4k
�

x2 +
3k2

2m0g�
x3
)

g�
c2 = 0, (24)

and analytical integration is possible but will already yield a rather convoluted list of elliptic
integrals. Therefore, for the full relativistic result—including all higher orders—numerical
integration is the most appropriate, if not the only possible, open pathway.

For the actual numerical integration of Equations (19a) and (19b), we decided to
implement the code in the Julia programming language due to its efficiency and high per-
formance [12]. Figure 3 displays the computed amplitudes for the classical and relativistic
case over the time interval t ∈ [0, 50] in SI units of seconds, again with all parameters
set equal to unity, except for the spring constant k = 2 kg/s2. Using the Julia library
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DifferentialEquations.jl [13], we chose the algorithm based on first-order interpola-
tion with at least stepsize Δt = 0.05 s and a relative tolerance of 10−8 in the adaptive
timestepping. Note that a long-time analysis has shown that no significant numerical
errors materialize.

As shown in Figure 3, the difference between the simple classical result, resulting from
Equation (3) with conditions Equation (8),

x(t) =
m0g

k

[
cos

(√
k

m0
t

)
− 1

]
(25)

and the relativistic numerical estimate is quite pronounced—not only in amplitude but
also in phase, with a positive phase shift. The physical results for the relativistic oscillator
always possess longer amplitude and period than the classical analogue by cause of the
relativistic mass increase.
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Figure 3. Amplitudes for the relativistic harmonic oscillator compared to the classical model, both
suspended in a uniform gravitational field, either using the simple classical solution, viz. Equation (3),
or the relativistic estimates resulting by numerical integration of Equations (19a) and (19b). The
gravitational field is strong with g/c2 ∼ 1 m−1, choosing again all parameters unity, except for
k = 2 kg/s2, see Figure 2. The two initial conditions are x(0) = ẋ(0) = 0, see Equation (8).

For an extended time interval t ∈ [0, 100] in units of seconds, Figure 4 shows the dif-
ference between relativistic and classical predictions, Δx(t) = xrel(t)− xclas(t), as already
individually shown in Figure 3. As found before from the two curves in Figure 3, the
relativistic corrections—now more easily recognized—propagate with a positive phase
while significantly modulating the amplitude of the classical model. These contributions
are substantial and cannot be neglected. Remarkably, these relativistic corrections take the
shape of pronounced wave packets.

Figure 5 depicts the phase space for the relativistic harmonic oscillator with poten-
tial Vg in comparison with the classical model, using the same parameters as before, viz.
Figure 2. This phase portrait provides a global overview about the dynamics of the oscillat-
ing system and shows the quantitative difference between the two models.
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The relativistic phase-space trajectories emerge from the equation of motion,
Equation (18), with the preserved quantity

m0c2√
1 − ẋ2

c2

+ 1
2 kx2 + Vg(x) = E0 + m0c2, (26)

which represents energy conservation with total energy E0 + m0c2 in Equation (7). In the
non-relativistic limit, we may use γ ≈ 1+ 1

2
ẋ2

c2 and Vg(x) ≈ m0gx in Equation (26) to obtain

1
2 m0 ẋ2 + 1

2 kx2 + m0gx = E0, (27)

which is just the well-known result for the harmonic oscillator with uniform Newto-
nian gravity.

The classical solutions are then reproduced in the phase plane (x, ẋ) as the level
curves of Equation (27) by varying E0 ≥ 0. Similarly, we obtain the relativistic solutions
in the phase plane by drawing the level curves of Equation (26). With the chosen initial
conditions in Equation (8), we have E0 = 0 for both cases (which is equivalent to E = m0c2).
Figure 5 shows the two corresponding curves. Observe that Equations (26) and (27) always
produce phase-space trajectories (relativistically and classically) which are closed. As a
consequence, both types of solutions have to be periodic. The phase portraits of both cases
represent center stable dynamics. Another characteristic effect is that the phase-space path
for the relativistic case is larger than for the classical path—an effect which also has been
observed for the relativistic pendulum [2] and a harmonic oscillator satisfying a relativistic
isochronicity principle [4].
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Figure 4. Amplitude changes, Δx(t) = xrel(t)− xclas(t), characterizing the relativistic corrections
for the classical harmonic oscillator in a strong uniform gravitational field, corresponding to the
physical configuration of Figure 3, but for the larger time interval t ∈ [0, 100] in units of seconds.
These corrections are significant and modulate in both amplitude and phase.
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Figure 5. The phase-space diagrams for the harmonic oscillator in a uniform gravitational field
corresponding to the classical and the relativistic case. We are using the same parameters as in
Figure 2. The characteristics for both cases are similar: the closed trajectories represent periodic
solutions, and their phase portraits represent center stable dynamics.

5. Conclusions

We have derived and studied the relativistic generalization of an oscillating body
in motion under a Hookean potential and in parallel alignment with a uniform gravita-
tional field.

If gravity is strong, these relativistic corrections differ substantially from the classical
predictions and are relevant. These amplitude corrections can be pictured as fluctuating
wave packets traveling on top of the classically predicted oscillations.

Quantitatively, the relativistic oscillator always acquires longer amplitudes and peri-
ods than the classical analogue. This is the dynamical effect due to the increase in mass
of a moving object as dictated by special relativity. In spite of this fundamental difference
between the relativistic and non-relativistic framework, we have proven that the corre-
sponding relativistic equation of motion still maintains unique periodic solutions, similar
to the well-known classical case.

For practical purposes, we have also presented approximations in the non-relativistic
limit (keeping the next-to-leading-order term) for the relativistic gravitational potential
and for the equation of motion of the harmonic oscillator—an approximate equation which
could still be solved analytically in terms of elliptic integrals. However, all estimates in the
fully relativistic regime have to be solved by numerical integration. Toward this end, we
implemented the integration code with high precision in the Julia programming language
by using efficient first-order interpolation. This simulation also allowed to represent the
classical and relativistic phase space and to explore the dynamics of both models with their
common and quantitatively different features.
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Abstract: Plants are vital for man and many species. They are sources of food, medicine, fiber for
clothes and materials for shelter. They are a fundamental part of a healthy environment. However,
plants are subject to virus diseases. In plants most of the virus propagation is done by a vector. The
traditional way of controlling the insects is to use insecticides that have a negative effect on the
environment. A more environmentally friendly way to control the insects is to use predators that
will prey on the vector, such as birds or bats. In this paper we modify a plant-virus propagation
model with delays. The model is written using delay differential equations. However, it can also be
expressed in terms of biochemical reactions, which is more realistic for small populations. Since there
are always variations in the populations, errors in the measured values and uncertainties, we use
two methods to introduce randomness: stochastic differential equations and the Gillespie algorithm.
We present numerical simulations. The Gillespie method produces good results for plant-virus
population models.

Keywords: virus propagation; stochastic modeling; Gillespie algorithm

1. Introduction

Viruses cause a great number of diseases in plants. In [1] the authors gave a review
of the top ten viruses. In plants the most common way that viruses are propagated is
by means of a vector, usually insects. A carrier insect will bite an infected plant, thereby
infecting it [2]. Mathematical models of virus-caused diseases in plants can be used
to better understand the processes involved [3–7]. Viruses take time to propagate and
replicate. These effects can be taken into account by considering latent populations [8,9].
In this paper we present three different mathematical models of virus propagation in
plants with a predator used as a biological control of the insects that transmit the virus [10].
The description of the model is given in terms of differential equations and also biochemical
style reactions. Models based on differential equations are built on the assumption that the
number of individuals is very large, which is not always the case. The model that we use
incorporating delays in the spread of the virus in both plants and vectors is based on [11].
An extension to optimal control through the use of predators and insecticide is in [12].
The authors in [13] introduced a delay to the model in [8] to account for the incubation
period of the plants. In [14] there is a different model with delays. Populations have
variabilities and there are errors in measuring and estimating the parameters involved.
The variations and uncertainties in the populations and environmental conditions can be
modeled by introducing randomness or stochasticity into the models. One common way is
to use stochastic differential equations [15,16]. A second way is to consider that some of the
coefficients in the model are random variables, as in the method of polynomial chaos [17,18].
Another method is to consider discrete populations and work with Markov chains [19–21],
including working with the master equation [22]. Models based on continuous time
Markov chains usually use the stochastic simulation algorithm of Gillespie [23,24]. Very
complex models of plant viral assembly have been presented in [25,26]. Mathematical
models of populations involve a series of simplifying hypotheses [27]. One of them is that
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the individuals in each population group have the same properties. Another usual one is
that the populations are homogeneously distributed. A third one is that the number of
individuals is large. Based on these simplifications, the populations can be assumed to be
continuous and the model can be described in terms of differential equations or maybe
delay differential equations. An alternative method of developing mathematical population
models is to consider the interactions between individuals to be a reaction. For example,
an individual of the class susceptible S dying can be described by the following reaction:

S k−→ . Here the blank space denotes an empty population. Using differential equations, it
would be dS

dt = −kS. Additionally, the interaction between a susceptible S and an infective

I leading to a new infective is S + I
β/N−−→ I + I, while the corresponding differential

equation is dS
dt = −βSI/N. k is the death rate, β/N is the infection rate divided by the

total population N in the differential equations and both are the reaction rates in the
corresponding reactions. This is the formulation preferred by biology and chemistry
researchers. By dividing the time period of interest into subintervals and considering
that all the different reactions happen at the same instant in each subinterval, the reaction
system can be converted into a system of discrete equations giving the change of each
population in the time subinterval. By letting the length of the time subintervals go to zero,
a system of differential equations is obtained. However, if the number of individuals is
not very large, as is the case in our plant-virus propagation problem or in cell processes
in systems biology, the limiting process introduces errors, and the assumption that all
reactions occur simultaneously is not a good one. An alternative is to consider the reactions
as continuous time Markov chains [28]. This assumption leads to the stochastic simulation
algorithm, or Gillespie algorithm [23,24], and its variations.

We apply this method to a simple susceptibles (S), infectives (I) and recovereds (R)
(SIR) epidemic model and to a predator–prey model. The objective of presenting these two
simple models is to introduce the basic ideas of writing ordinary differential equations as
biochemical reactions. Then we apply them to our main interest, which is a model of virus
propagation consisting of six populations, susceptible plants, infective plants, recovered
plants, susceptible insects, infective insects and predators. For this virus propagation model,
we consider three cases: all the interactions are mass actions—some of them are saturated
and some are saturated with delays. The saturated interactions are modeled using Holling
type 2 functionals [29]. We also write the models as a system of reactions. Simulations
were performed using the stochastic simulation algorithm. For comparison purposes, the
corresponding system of differential equations is solve numerically, and finally white noise
is added to the differential equation systems to obtain stochastic differential equations and
simulate them numerically. The rest of the paper is organized as follows. In Section 2,
the development of the models is presented, as is the addition of stochasticity to the models
to take into account the variability in the populations and other uncertainties always
present in the processes modeled. Next, the virus propagation models and the numerical
methods are described. Section 3 shows sample numerical simulations. In Section 4, the
results are discussed. Finally there is a conclusions section.

2. Materials and Methods

2.1. Mathematical Modeling

Mathematical models for populations are usually given in terms of differential equa-
tions or difference equations. The differential equations may be ordinary, delay, partial
or even fractional. However, the models may also be given by describing the interactions
between the different population groups and the rate at which they happen. That is, they
may be described in terms of reactions with the same structure as biochemical reactions.
Therefore, we can write differential equations arising from mathematical biology as reac-

tions. For example dS
dt = −kS can be written as S kS−→ , where the ban space means that the

population disappears. As a second example, dS
dt = −βSI is equivalent to S + I

βSI−−→ I + I.
Sometimes the quantity written on top of the arrow is the number of times the reaction
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occurs in a population (propensity), and sometimes only the reaction rate constant is
included. We use the propensities.

As an illustration on the basic ideas of converting differential equations into biochemi-
cal reactions, consider the well known SIR model giving the interaction of susceptibles (S),
infectives (I) and recovereds (R) [27]:

dS
dt

= − βSI
N

dI
dt

=
βSI
N

− γI

dR
dt

= γI.

(1)

In writing the model as a system of reactions, we obtain a reaction for each distinct
term on the right hand-side of the differential equations. In this example we have two
such terms, βSI

N and γI. The first term has the reaction of S and I. The second gives the
change of I to another population. If the differential equation that has the derivative of
a population includes the given term on the right-hand side with a positive sign, then
the product of the reaction is that population. Hence, by writing the model as reactions
between the populations we have

I + S
SIβ/N−−−−→ 2I

I
γI−→ R.

(2)

The first reaction is the conversion of one S into one I, and the second one is the
conversion of one I into one R.

The system of reactions is not unique. This non-uniqueness has been established
by [30]. In this case a more complex system is

I + S
SIβ/N−−−−→ I

I + S
SIβ/N−−−−→ S + 2I

I
γI−→ R.

(3)

In this second set of reactions, S loses one member first and in the next reaction I gains
one. The reaction happens in two steps. We use the simpler formulation with S converting
directly into I. However, below we will show that both formulations give the same system
of differential equations.

To convert the model given in terms of reactions to a differential equation model,
consider a time interval [t, t + δt] and assume that all the reactions occur at the same instant
in this interval. For the reaction system (3) we have

I(t + δt) = I(t) + δt(S(t)I(t))β/N

S(t + δt) + 2I(t + δt) = S(t) + 2I(t) + δt(S(t)I(t))β/N

R(t + δt) = R(t) + I(t)γ.
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Assuming that the three populations are large enough, so that all the reactions happen
even for very small δt, we can take the limit as t → 0 to get

dI
dt

= (IS)β/N

d(S + 2I)
dt

= (IS)β/N

dR
dt

= γI.

By subtracting the first equation from the second, we obtain the original system of
differential Equation (1). Similarly, using the reactions in (2), we obtain (1) directly. In [31],
the authors used biochemical reactions to model SIR processes. Reference [32] also included
implementations of the Gillespie algorithm for the SIR model.

As a second example, consider a simple predator–prey model as given by Lotka and
Volterra [27]:

dx
dt

= (b − py)x

dy
dt

= (rx − d)y,
(4)

where x is the prey and y is the predator. The corresponding system of reactions is

x bx−→ 2x

x + y
pxy−−→ y

x + y
rxy−→ x + 2y

y
dy−→

(5)

The first reaction is the birth of new prey, the second reaction is the elimination of
prey by predators, the third one is the conversion of dead prey into new predators and the
last one is the death of predators. The conversion of prey into predators needs to be in two
reactions, since one killed prey does not convert into one new predator.

Even though it is straightforward to convert a population model based on differential
equations to one described by reactions, there exist software packages that will automate the
process. Biocham [33] http://lifeware.inria.fr/biocham4/ (accessed on 12 December 2020)
will convert systems of ordinary differential equations with general interactions between
populations written in xppauto format [34] to biochemical reactions. Moccasin [35] uses
biocham and adds an interface for the MATLAB format of differential equations. Both
programs write the equations in SBML [36], a widely used machine-readable description of
biochemical reactions.

2.2. Stochastic Modeling

In order to produce more realistic results, mathematical models need to take into
account the existence of errors in the observed or measured population data; variability in
the populations; and uncertainties such as missing data and lack of knowledge.

These uncertainties can be modeled using random differential equations wherein
it is considered that the parameters are random variables [37]. Another method is to
use discrete or continuous time Markov chain models [38,39]. A different method con-
sists of introducing the uncertainties as white noise and obtaining stochastic differential
equations [16,40]. In this paper we only consider the second and third methods.
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2.2.1. Continuous Time Markov Chain Models

As mentioned above, population models can be described in terms of biochemical-
type reactions. A Markov chain is a stochastic process in which the probability of an event
happening depends on a sequence of possible events, in which the probability of each
event depends only on the previous event [28,39]. In a discrete time Markov chain, the
changes of state happen at fixed points in time. In a continuous time Markov chain, the
changes of state can happen at any time. Each reaction is a random event that has a given
probability of happening. This probability is a function of the reaction rate and of the
numbers of individuals of the populations involved. Since the reactions can occur at any
time, the reactions are continuous time Markov chains. The master chemical equation for a
reaction is the time evolution equation for the probability distribution over the state space
of a Markov process. This is derived by substituting the transitional probability of the
Markov process into the Chapman–Kolmogorov equation [41,42]. For a system of reactions,
the master chemical equation is a system of ordinary differential equations that is hard to
solve either analytically or numerically [43,44]. An alternative is the stochastic simulation
algorithm (SSA) proposed by Gillespie [23] which produces numerical realizations. The
next reaction and the time until it occurs are determined by Monte Carlo simulations
involving the propensities of the reactions, and the process is repeated. The processes
are Poisson processes with exponentially distributed transition times. Improvements on
Gillespie’s direct method are given in [24,45]. The SSA works with populations which
should not be very small. Numerical implementations are, for example, in [46–48]

2.2.2. Stochastic Differential Equations

Randomness can be added to an ordinary differential equation dx = f (x, t)dt, x(t0) = x0
by including a white noise process [16,40]. A stochastic differential equation is given by

dX(t, ω) = f (X(t, ω), t) + g(X(t, ω), t)dW(t, ω),

where ω is an element of the sample space and X = X(t, ω) is a stochastic process.
The initial condition X(0, ω) = X0 is taken to be known with probability one. A Brownian
motion or Wiener process is formed by a sequence of random variables parameterized by
time that are independent and identically distributed (iid). A stochastic process W(t), t ∈
[0, ∞] is a Wiener process (or a standard Brownian motion) if it satisfies: (i) It is defined for
t ≥ 0 with W0 = 0; (ii) if 0 ≤ s < t < ∞, then W(t)− W(s) is normally distributed with
mean 0 and variance t − s, that is, W(t)− W(s) ∼ N(0, t − s); (iii) if 0 ≤ r < s < t < ∞,
the increments W(t)− W(s) and W(s)− W(r) are independent.

The noise term is called additive if it is independent of the population. This noise is
also called environmental noise. If the noise term is proportional to the population, it is
called multiplicative. These two are the most common types of white noise used, but they
can have more complicated forms [49–52]. For uniform populations the environmental
noise may be dominant. However, populations usually have variations. Demographic
stochasticity is usually defined as the variation in the time evolution of a small population
due to the randomness of individual birth, death, infection and other rates. However, the
term can also be used for populations of any size. It can be related to stochasticity with
multiplicative white noise by considering that the rates have a deterministic part plus a
stochastic one. Additionally, environmental fluctuations may be related to overpopulation
in ways such as shortage of food, increased aggression toward each other, etc. Therefore,
a reasonable way to modify the deterministic equation is to consider introducing random-
ness that is proportional to the size of the population. However, this is just an assumption
that needs to be verified, even though it has been commonly used, for example, in [53,54].
The best choice of white noise regarding its magnitude depends on the particular problem
and is still an open research question.
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2.3. A Plant-Virus Model with Biological Control

In this paper, we consider the application of the SSA and stochastic differential ap-
proaches to the model in [10]. We consider six different population groups: susceptible
plants S(t), infected plants I(t), recovered plants R(t), susceptible vectors X(t), infected
vectors Y(t) and predators P(t). Each variable represents the number of individuals in
the respective population group at time t. Susceptible plants are healthy but could get the
disease if infected with the virus. The infected plants have the virus but can only infect a
susceptible plant through a vector. Additionally, the death rate of infected plants is higher
than that of susceptible plants, since infected plants can also die from the viral infection. We
also assume that farm workers replace any dead plant immediately with a new susceptible
plant. Therefore, we can assume that the total plant population remains constant. We
will denote this constant by K. Using this assumption, we can simplify the model in the
deterministic case, since K = S(t) + I(t) + R(t) can be used to eliminate the recovered
population from the system of equations, and thus we can work with only five populations.
This cannot be done in the stochastic case. The virus is not present in susceptible insects
but they can be infected with it if they bite an infected plant. By biting a susceptible
plant, infected insects can transmit viruses to it. Another assumption is that there is no
vertical transmission of the virus in either plants or vectors. Moreover, we assume that
the the vector does not get sick from the virus and thus it does not defend against the
virus and will remain infected for the rest of its life. Therefore, there are no recovered
vectors. The predators feed on the vectors and use the resulting energy to increase the
number of predators. We also assume predators do not get infected by the virus even if
they eat an infected vector. There is also intra-species competition between predators for
the insects. A consequence of the infected vectors not being sick is that the predators feed
on the infected insects and susceptible insects at the same rate. The interactions between
vector and plant and predator and vector are assumed to have a limitation modeled by a
predator–prey Holling type 2 functional [29]. For a large number of vectors, the number
of infected plants due to the infected vectors tends to saturate as the number of infected
vectors increases, which is the behavior of the Holling type 2 functional. In other words,
for small number of vectors, doubling the population doubles the number of plants that
are infected by the vectors, but for large number of vectors, doubling this number does not
double the number of infected plants since there are not enough plants to be infected. Even
though there are many other functionals that can be used to model this saturation effect,
the Holling type 2 is a simple one.

After an infected vector bites a susceptible plant, it takes time for the plant to be
infected, since the virus has to enter the plant cells, replicate, burst the cell and spread
in the plant. It also takes time for the virus to spread inside a susceptible insect after it
bites an infected plant. Hence, we introduce two discrete delays: τ1, which is the time it
takes a plant to become infected after an infected bite, and τ2, the time it takes a vector to
become infected after biting an infected plant. τ1 is much larger than τ2 since the infection
process is more complex for plants. The assumptions used in the model are: the number of
plants is constant, so the recovered plant population can be eliminated from the system of
equations; plants die and are infected by infected vectors and converted into infected plants
after a delay; infected plants can recover and also die; susceptible vectors are recruited at
a constant rate, can die, are infected after biting an infected plant after a delay and can
be eaten by a predator; infected insects can die and be eaten by a predator; predators are
recruited at a constant rate, grow due to they eating vectors and can die; the interactions
between populations saturate according to a Holling type 2 functional.
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The model with the two discrete delays is

dS
dt

= μ(K − S) + dI − βY(t − τ1)

1 + αY(t − τ1)
S(t − τ1)

dI
dt

=
βY(t − τ1)

1 + αY(t − τ1)
S − (d + μ + γ)I

dX
dt

= Λ − β1 I(t − τ2)

1 + α1 I(t − τ2)
X(t − τ2)− c1X

1 + α3X
P − mX

dY
dt

=
β1 I(t − τ2)

1 + α1 I(t − τ2)
X(t − τ2)− c2Y

1 + α3Y
P − mY

dP
dt

= Λp +
α4c1X

1 + α3X
P +

α4c2Y
1 + α3Y

P − δP

(6)

The meanings of the parameters and the values used in the simulations to obtain the
results presented in Section 3 are in Table 1, which is based on the data in [11]. P-unit is the
number of individuals in the population group.

Table 1. Values for the parameters of the virus model.

Parameter Name Description Value

K Total plant host population 63 P-unit
β Infection rate of plants due to vectors 0.01/day/P-unit
β1 Infection rate of vectors due to plants 0.01/day/P-unit
α Saturation constant of plants due to vectors 0.2/P-unit
α1 Saturation constant of vectors due to plants 0.1/P-unit
μ Natural death rate of plants 0.01/day
m Natural death rate of vectors 0.2974/day
γ Recovery rate of plants 0.01/day
Λ Replenishing rate of vectors 10 P-unit/day
d Death rate of infected plants due to the disease 0.2/day
c1 Contact rate between predators and healthy insects 0.05/day/P-unit
c2 Contact rate between predators and infected insects 0.05/day/P-unit
δ Natural death rate of predators 0.05/day
α3 Saturation of predators due to insects 0.1/P-unit
Λp Recruiting rate of predators 0.4 P-unit/day
α4 Conversion rate of predators due to insects 0.1
τ1 Delay for plants 24 days
τ2 Delay for vectors 1 day
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The equivalent reactions-based system is

μK−→ S

S
μS−→

Y + S
k1−→ Y + I, where k1 =

βYS
1 + αY

I
μI−→

I dI−→ S
Λ−→ X

X + P
k4−→ P, where k4 =

α4c1X
1 + α3X

P

X mX−−→
I + X

k3−→ I + Y, where k3 =
β1 IX

1 + α1 I

Y + P
k5−→ P, where k5 =

α4c2Y
1 + α3Y

P

Y mY−→
Λp−→ P

X + P
k4−→ 2P + X

Y + P
k5−→ 2P + Y

P δ−→
I

γI−→ R

R
μR−→ .

(7)

Note that the delays do not appear explicitly in the reactions.
The stochastic differential equations for the virus model are given system (8).

dS = (μ(K − S) + dI − βY(t − τ1)

1 + αY(t − τ1)
S(t − τ1))dt + σ1SdW1

dI = (
βY(t − τ1)

1 + αY(t − τ1)
S − (d + μ + γ)I)dt + σ2dW2

dR = (γI − μR)dt + σ3RdW3

dX = (Λ − β1 I(t − τ2)

1 + α1 I(t − τ2)
X(t − τ2)− c1X

1 + α3X
P − mX)dt + σ4XdW4

dY = (
β1 I(t − τ2)

1 + α1 I(t − τ2)
X(t − τ2)− c2Y

1 + α3Y
P − mY)dt + σ5YdW5

dP = (Λp +
α4c1X

1 + α3X
P +

α4c2Y
1 + α3Y

P − δP)dt + σ6PdW6

(8)

2.4. Numerical Methods

Numerical methods for ordinary differential equations can be modified for delay
differential equations by integrating piece-wise over time intervals chosen such that they
are multiples of the delays [55,56]. A very good numerical solver based on Runge–Kutta
methods is given in [56]. In our numerical simulations we used the following values for our
parameters: K = 63, β = 0.01, β1 = 0.01, α = 0.2, α1 = 0.1, μ = 0.01, m = 0.2974, γ = 0.01, Λ = 10,
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d = 0.2, c1 = 0.05, c2 = 0.05, δ = 0.05, Λp = 0.4, α3 = 0.1 and α4 = 0.1. Additionally, we chose
the following initial conditions: S(0) = 59.8478, I(0) = 1.57612, X(0) = 14.6247478,
Y(0) = 19.5 and P(0) = 2. We considered the values of the delays to be τ1 = 24 and τ2 = 1.
The history for the delay equations is usually taken to be constant and equal to the initial
values. However, if we consider the model in terms of reactions, the delayed reactions do
not happen during the history, so we took the history to be equal to zero. The values of
most the parameters were taken from [7] and those referring to the delays and the predator
were from [10]. These are not implied to apply to specific plants, vectors and viruses. We
were not able to find real values for many of the parameters. Even for the well studied
maize streak virus, the model in [57], which uses the parameters presented in [58–60], some
of the values are assumed.

For stochastic differential equations using Ito calculus, two common methods are the
Euler–Murayama and Milstein methods [15]. Both can be easily modified to include delays
in a similar way as for ordinary differential equations [61]. The SSA can be modified to
include delays in the reactions by adding the corresponding delay to the time when the
reaction happens [62,63].

For the deterministic ordinary differential equations we used an Euler method im-
plemented in GNU octave [64]. For the stochastic differential equations the Milstein
method was also implemented in octave. Both methods are first order. For the reaction-
based method, we used the software stochPy [65], an open source program implemented
in Python.

3. Results

The first simulation is of the SIR model given by differential Equation (1) and reac-
tions (3). The values of the parameters were: N = 63, β = 0.2 and γ = 0.1. The initial values
were S(0) = 60, I(0) = 2 and R(0) = 1. Figure 1 shows the deterministic simulation on the
left and the SSA simulation on the right. For the SSA simulation, only the average values of
the populations are plotted. For the values of the parameters used, the populations tended
to the disease-free equilibrium for a large amount of time.

The next simulation was of the predator–prey model described by Equation (4) and
reactions (5). The parameter values used were p = 1, r = 1, b = 1 and d = 1. The initial
conditions were X(0) = 2 and Y(0) = 2. Figure 2 shows on the left the deterministic
simulation and on the right the simulation using SSA. For the SSA simulation only the
average values are plotted. Note that the deterministic solution is periodic but SSA is not
quite periodic.

Figure 1. Simulation of susceptibles (S), infectives (I) and recovereds (R) (SIR) model. (Left) deterministic. (Right) Stochastic
simulation algorithm (SSA); only the average values are shown.
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Figure 2. Simulation of the predator–prey model. (Left) deterministic. (Right) SSA; only the average values are shown.

The next simulations were for the plant-virus model given by Equation (6) and
reactions (7). The stochastic differential equations used were (8). The values of the parame-
ters used in the simulations are in Table 1.

We did three simulations of the plant-virus model. The first one was with mass action
kinetics and no delays. That is, α1, α2, α3, α4, τ1 and τ2 all being equal to zero. All the other
parameters were as given in Table 1, with the exception of σ1 to σ6. An open question is how
to determine the values of the σs. We did one simulation of the deterministic model, one of
the reaction model using the SSA and three of the stochastic differential equation model (8)
using three different values of the σ, 0.01. 0.025 and 0.05. Figure 3 shows the results of the
deterministic simulation on the left and of the SSA simulation on the right. The stochastic
simulation shows the plots for the mean and the mean +/− standard deviation for 1000
realizations. Figure 4 shows the stochastic differential equation simulations results for the
mean and the mean +/− one standard deviation for 1000 simulations with all σs equal
to 0.01 on the left and with the σs equal to 0.025 on the right. Figure 5 shows on the left
the mean and the mean +/− one standard deviation plots for the σs equal to 0.05. From
these figures we see that the σs equal to 0.025 gives a stochastic effect that is important but
does not overcome the deterministic part. The plots for the mean values of the stochastic
simulations were taken for 1000 realizations since the results for 500 and 1000 realizations
agree to at least three significant figures.

Figure 3. Plots for the virus plant model with mass action interactions and no delays. (Left) deterministic. (Right) SSA with
only the average values included.
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Figure 4. Plots for the plant-virus model with mass action interactions and no delays using the stochastic differential
equations model. The solid lines are the mean values, and the dashed lines are the mean value plus or minus one standard
deviation. (Left) σs equal to 0.01. (Right) σs equal to 0.025.

The next simulation for the plant-virus model is with Holling type 2 saturation
kinetics and no delays. So α1, ..., α4 are nonzero with their values and the values of the other
parameters given in Table 1 and τ1 = τ2 = 0. Figure 6 has the plots of the deterministic
simulation. Figure 7 has the plots of simulations using the SSA (left) and stochastic
differential equation s (right). For the SSA, the vertical lines represent the intervals [mean
− 1 standard deviation, mean + 1 standard deviation]. For the stochastic differential
equations plot the mean is given by the solid lines and the dashed lines give the mean +/−
one standard deviation for 1000 realizations for the stochastic simulations. On the left for
the SSA simulation and on the right for the stochastic differential equation run with σs
equal to 0.025.

Figure 5. Plots for the plant-virus model for mass action interactions and no delays using the
stochastic differential model. The solid lines are the mean values, and the dashed lines are the mean
values +/− one standard deviation. The σs are equal to 0.05.
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Figure 6. Plots for the virus plant model with saturations and no delays for the deterministic model.

The final simulation was for the plant-virus model with both saturation and delays.
All the parametrer values are given in Table 1 and the delays were τ1 = 24 and τ2 = 1.
Figure 8 has the plot of the deterministic simulation. Figure 9 has the plots of the mean and
of the mean +/− one standard deviation for 1000 realizations for the stochastic simulations.
On the left are the results for the SSA simulation, and the vertical lines represent the
intervals (mean − 1 standard deviation, mean + 1 standard deviation). On the right are
the plots for the stochastic differential equation run with σ equal to 0.025. The solid lines
represent the mean values and the dashed lines the mean +/− one standard deviation.

Figure 7. Plots for virus plant models with saturation and no delays. (Left) SSA; the vertical lines denote the inter-
vals (mean − 1 standard deviation, mean + 1 standard deviation). (Right) Stochastic differential equations simulation—
mean values (solid lines) and mean values +/− 1 standard deviation (dashed lines).
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Figure 8. Plots for the virus plant model with saturations and delays for the deterministic model.

Figure 9. Plots for mean values and the mean values +/− 1 standard deviation for the virus plant model with saturation and
delays. (Left) SSA with the vertical lines giving the intervals (mean − 1 standard deviation, mean + 1 standard deviation).
(Right) Stochastic differential equations with the solid lines giving the mean values and the dashed lines the means +/− 1
standard deviation.

4. Discussions

The numerical simulations in all cases gave similar results for the differential equation,
the stochastic differential and the reaction models. The differential equation simulations
give one trajectory and do not take into account the variations in the populations and
environment, or the errors in measurements of parameters. However, they are the easiest
simulations to implement and the fastest. The stochastic differential equations include
variations of the populations when multiplicative noise is added, as we did. By doing
multiple simulations, they give the mean values and the standard deviations of the so-
lutions, which are more realistic. However, there are other types of white noise and we
need to estimate the size of the noise. The reaction model simulations using the Gillespie
algorithm also give the means and standard deviations of the solutions when run for
multiple simulations. It has a more solid theoretical base for small populations, and this
is our case. Through both the stochastic differential equation method and the Gillespie
algorithm there are some outcomes with different behavior than what comes from the
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deterministic method. For some realizations the disease may not disappear for very long
time periods, and in future work it may be worth estimating the probability.

5. Conclusions

Mathematical population models based on differential equations give realistic results
even when the populations are not very large. However, models based on biochemical
reactions are more realistic. Models given in terms of reactions are usually easier to under-
stand for biologists, ecologists and other specialists without backgrounds in mathematics.
The stochastic simulation algorithm has solid theoretical backing for its use for small pop-
ulations, and there is a wide variety of existing software implementing it. As with all
stochastic simulations, there is the question of how many realizations to use. In our case
we did one hundred and then one thousand realizations, and the results have at least three
significant digits of agreement. The results for the stochastic differential equations depend
on the type and magnitude of the white noise term, and it is usually not obvious which
one should be used.

Even though from the first epidemic models it has been known that the models can be
written in terms of biochemical reactions [66], their use and the use of Gillespie’s algorithm
should be more frequent, since in epidemic models the populations are many times not
very large and the continuity hypothesis is not justified. Second, this method is easy to
implement and does not require one—as the stochastic differential method does—to decide
on the type and magnitude of the white noise. There are many papers dealing with the use
of Gillespie’s algorithm for epidemic models and others on using biochemical reactions and
other methods. For example, in [67] the authors used a biochemical reactions formulation
and cellular automata. In [68], the authors mentioned that epidemic models can be de-
scribed as chemical reactions but then used a stochastic model based on binomial drawing
for certain terms. In [31] the equivalent reactions for a SIR model are given. In some
other papers the Gillespie algorithm was applied to variations of the SIR method [69–71].
Reference [72] presents continuous time Markov chain and stochastic differential equation
models, including an SIR model and a four-population model for malaria. For this last
model, the author approximated the branching process by working with the forward
and backward Kolmogorov equations. In [70] the model used was an SEIR (Susceptible,
Exposed, Infectious, Recovered) with added numbers of patients hospitalized and killed
regarding Ebola. To the best of my knowledge, the publications about the applications
of the Gillespie algorithm to epidemic models do not include models with saturation
interaction terms, particularly with Holling type 2 functionals, or epidemic models with
discrete delays; they also do not involve plant diseases caused bv viruses and spread by
vectors. The comparison of the results for the model using stochastic equation simulations
with different sizes for the white noise is also new. Future work will include applying the
application to more complex models and to models with time varying rates.
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Abstract: In this article, a new numerical scheme for the solution of the multidimensional fragmen-
tation problem is presented. It is the first that uses the conservative form of the multidimensional
problem. The idea to apply the finite volume scheme for solving one-dimensional linear fragmen-
tation problems is extended over a generalized multidimensional setup. The derivation is given in
detail for two-dimensional and three-dimensional problems; an outline for the extension to higher
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solving conservative one-dimensional multi-fragmentation equation is extended to solve multidi-
mensional problems. The accuracy and efficiency of both proposed schemes is analyzed for several
test problems.
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1. Introduction

Fragmentation, breakage or attrition, describe processes in which a single object
is separated into at least two new objects. The reasons for breakage can be manifold
but are often linked to some kind of stress exerted on the object, for instance thermal
stress from heating and rapid cooling (or vice versa and cyclically)—a natural process
specifically observed in deserts, leading to disintegration of rocks; or mechanical stress,
applied for millenia in the process of grain milling. Nowadays, fragmentation plays a key
role in several industrial sectors like mineral processing (e.g., comminution of ores [1–4]),
reaction engineering (e.g., break-up of bubbles in reacting bubble columns for separation
processes [5–8] or steel-casting [9]) or pharmaceutical industries (e.g., milling of active
pharmaceutical ingredients to increase their solubility and uptake capacity in the human
or animal body [10–12]).

Many objects, e.g., particles, bubbles or even rain drops, consist of different com-
ponents resulting in their anisotropic structure. The probability of fragmentation upon
stress therefore depends on the distribution of the components within the objects, i.e.,
each component adds an independent dimension to the fragmentation problem. In an
attempt to describe these complex processes and make them accessible for model- and
knowledge-based process design, optimization and control, multidimensional fragmen-
tation equations have been proposed and used in different fields of application, see, for
instance, the works [13–17].

Theoretical aspects on the existence of scaling solutions and their behavior at the onset
of “shattering” transition have been discussed for instance in the works of [18–21]. Fragmen-
tation models are particularly challenging as they consist of partial-integro differential
equations as will be shown in the following. Analytical results are scarce and often of very
limited practical relevance, strongly motivating the development of numerical methods for
approximation of the solution to (multidimensional) fragmentation problems.
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As a prototype, consider the conservative formulation of the multiple fragmentation
equation given by [22,23]: The initial value problem for t ≥ 0 is formulated as

∂g(t, x)
∂t

=
∂H(t, x)

∂x
, where x ∈ R+ := (0, ∞), (1)

with the initial condition

g(x, 0) = g0(x) (≥ 0), for x ∈ R+. (2)

The flux function H(t, x) is defined by

H(t, x) :=
∫ ∞

x

∫ x

0

u
v

b(u, v)S(v)g(t, v)dudv, x ∈ R+. (3)

In Equation (1), the internal variables x and t denote the particle property and the
time component, respectively. On the left hand side, the function g(t, x) is defined by
g(t, x) := x f (t, x), where f (t, x) denotes the distribution of particle volume x in a system
at time t. The rate of selection of an x-volume cluster to undergo breakage is denoted by
S(x), and the distribution of daughter particles y due to the breakage of large particle x is
denoted by b(y, x). The breakage function b(y, x) satisfies the following relations:∫ ∞

0
b(y, x)dy = ν(x), and

∫ x

0
yb(y, x)dy = x. (4)

The first relation defines that ν(x) number of fragments are produced during the
breakup of a large x-cluster, and the second relation defines that the total volume of the
daughter y-clusters is exactly the same as the volume of the mother x-cluster. Note that the
formulation (1) is well-known in the literature as the volume conservative form. Integration
of Equation (1) over the volume variable x from 0 to ∞, with the help of relation (4), yields

d
dt

∫ ∞

0
g(t, x)dx = 0. (5)

It should be noted that Equation (1) is a first-order hyperbolic, initial value partial
differential equation. In this regard, the representation (1) gathered importance because the
divergent nature allows the model to obey the volume conservation laws. The coefficient
S belongs to L∞

loc([0, ∞)) and g0, b ∈ L1((0, ∞)) ∩ L1((0, ∞), xdx). Here and below, the
notation L1(R+, xdx) stands for the space of the Lebesgue measurable real-valued functions
on R+ which are integrable with respect to the measure xdx.

In most of the previous studies it is assumed that a single parameter, which is usually
volume, mass or size of the particle, is sufficient to describe the particle property (readers
can refer to [24] for further details). However, a single parameter is not always sufficient to
describe various physical systems. For example, fragment mass distribution obtained by
crushing gypsum or glass depends on the initial geometry of the particles. On the other
hand, the degradation of polyelectrolyte may depend upon both their mass and excitation
(or kinetic) energy. Therefore, the fragmentation dynamics need to be represented by
including additional variables to the mathematical model. These variables are equivalently
classified as the degrees of freedom of the dynamical system and hence, the multidimen-
sional formulation of the fragmentation equations becomes necessary to represent such
cases. The purpose of this article is to take in account more than one particle property
and present an efficient numerical model which estimates them with high accuracy. In
particular, we present the mathematical representations of two-dimensional and three-
dimensional volume conservative linear fragmentation equations. Further extension of the
mathematical formulation can be done in a similar manner.

For the population balance models, the moment functions of the particle property
distribution play a major role as some of them describe a significant physical property
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of the system. Therefore, before we proceed further, let us first gather some important
information about the moment functions in a generalized multidimensional setup.

1.1. Moment Functions

Let x := {x1, x2, . . . , xn}, with xi−s representing different particle properties like,
mass, entropy, moisture content, shape factor, etc. and thus the function f (t, x) denotes the
distribution of particle property x at some instance t. The formal definition of the moment
functions for a general n-dimensional population balance problem is written as follows:

Mp1,p2,...,pn(t) :=
∫ ∞

0

(
n

∏
r=1

xpr
r

)
f (t, x)dx, (6)

where the integrations are defined as∫ ∞

0
(·)dx :=

∫ ∞

0
dx1 · · ·

∫ ∞

0︸ ︷︷ ︸
n−times

(·)dxn.

In Equation (6), p1, p2, . . . , pn are nonnegative integers. As mentioned earlier, the
moment functions play an important role to define various physical properties of the
system. Like the zeroth moment, M0,0,...,0(t) defines the total number of particles present
in the system. The first-order moment M0,...,1,...,0(t) (1 is the rth position) denotes the
total content of the xrth component in the system, which can be equivalently represented
as the total volume of xrth property. Hence, for a multidimensional system, the volume
conservation of the system can be defined as the total conservation of all the first-order

moments taken together. Thus, defining φ(x) :=
n

∑
r=1

xr, the volume conservation law for

the n-dimensional system is expressed as

d
dt

∫ ∞

0
φ(x) f (t, x)dx = 0. (7)

Furthermore, the n-th order cross moment is defined by M1,...,1,...,1(t) and it represents
the particle geometry or hypervolume. Therefore, to preserve the initial geometry of the
particles, we need to preserve the cross moments; hence, the hypervolume preservation
law is written as

d
dt

∫ ∞

0
ψ(x) f (t, x)dx = 0, (8)

where ψ(x) :=
n

∏
r=1

xr.

Similarly, other higher order moments can be defined using the formulation (6),
and depending upon the problem they may correlate to some physical properties of the
system. For example, in a pipeline flow for the transport of natural gas from seabed, the
breakage of hydrate particles often takes place. In this event, if the first moment M1,...,0(t)
is proportional to the mean radius of the hydrate particle, then the corresponding second
order moment M2,...,0(t) and third order moment M3,...,0(t) are proportional to the total
area and the volume concentration of the hydrate particles, respectively. In general, only
the zeroth, first-order and the cross-moments bear the same meaning for any population
balance models.However, it should not be misunderstood that higher order moments
should always correspond to certain physical characteristics.

In the literature, a limited number of articles are dedicated to the numerical study
of multidimensional fragmentation events, and therefore several aspects of study still
remain unexplored. The articles of [25–29] discuss the development of different numerical
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schemes to approximate the fragmentation problems. To note that, unlike the methods,
e.g., cell average technique, fixed pivot techniques, method of moments, etc., the finite
volume methods have gained popularity because the latter are robust to be applied on
a multidimensional setup. Moreover, the underlying stencil of the finite volume scheme
is simpler, and easy to compute (the readers can refer to the articles of [23,29] for further
details on the computational advantage of finite volume schemes).

The article is organized in the following manner. In the next section, we present the
mathematical representations of the continuous two- and three-dimensional equations. In
this regard, the three-dimensional model is represented using vector notation, which will
also provide an outline to extend the equations into further higher dimensions. In Section 3,
step-by-step derivation of the numerical schemes are presented. An interesting outcome
of this presentation includes the multidimensional extension of the finite volume scheme
presented in [23]. Section 4 contains the numerical validation of the proposed models over
some standard empirical test problems. Finally some conclusions and a summary of the
work are presented.

2. Continuous Equations in Two- and Three-Dimensions

2.1. Conservative Formulations in Two-Dimensions

In Equation (1), the variable x represents a single particle property which can be
considered as the particle volume. Therefore, the first moment always corresponds to the
total volume of the particle in the system, and hence Equation (1) is simply coined as the
volume-conservative model. However, the representation is not that simple in the case of a
multidimensional fragmentation event. Depending on the definition of volume and hy-
pervolume, the mathematical model changes, and thus we get two different mathematical
equations representing the two conservative formulations in the multidimensional setup.
For example, consider two independent particle properties kinetic energy and moisture
content that are defined by the variables x and y, respectively and we set x := (x, y). Then
f (t, x) is the two-dimensional particle properties distribution function at time t. Now refer-
ring to the Equations (7) and (8), the solutions corresponding to the volume-conservative
and hypervolume conservative formulations are defined as n(t, x) := φ(x) f (t, x) and
m(t, x) := ψ(x) f (t, x), respectively.

In accordance with the above definition, the two-dimensional or bivariate volume-
conservative fragmentation equation is written as,

∂n(t, x)

∂t
=

∂F (t, x)

∂x
+

∂G(t, x)

∂y
− ∂2H(t, x)

∂x∂y
, (9)

with the initial data

n(0, x) = n0(x) ≥ 0, for all x > 0. (10)

Here, the functions F , G and H denote the flux flow at the cell boundaries. In this
regard, we first define the following notations to be used for defining the fluxes. Let
u := (u, v), ε := (ε, ξ), then∫ ∞

x
(·)du :=

∫ ∞

x

∫ ∞

y
(·)dvdu, and

∫ x

0
(·)du :=

∫ x

0

∫ y

0
(·)dvdu.

With the help of the above notations, the flux functions are defined as follows:

F (t, x) :=
∫ ∞

x

∫ x

0

φ(ε, y)
φ(u)

b(ε, y|u)S(u)n(t, u)dεdu, (11)

G(t, x) :=
∫ ∞

x

∫ y

0

φ(x, ξ)

φ(u)
b(x, ξ|u)S(u)n(t, u)dξdu, (12)
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and

H(t, x) :=
∫ ∞

x

∫ x

0

φ(ε)

φ(u)
b(ε|u)S(u)n(t, u)dεdu. (13)

In the above expressions, S(x) is the selection function which defines the rate at which
particles of properties x to undergo further fragmentation, and the breakage function b(ε|u)
corresponds to the distribution of daughter fragments ε formed due to the fragmentation
of u-cluster. In the multidimensional fragmentation setup, the breakage function b plays
a key role to govern the system to obey either volume-conservation (7) or hypervolume
conservation (8) laws. For the volume conservative formulation, it is assumed that the
breakage function b(ε|u) should satisfy∫ u

0
φ(ε)b(ε|u)dε = φ(u). (14)

The relation (14) is significant as it controls the system to follow volume conservation
property (7). Therefore, with the above assumption it can easily be calculated that

d
dt

∫ ∞

0
n(t, x)dx =

d
dt

[M1,0(t) +M0,1(t)] = 0, (15)

that is, the volume conservation laws are perfectly obeyed.
Note that the flux function H (13) in the bivariate Equation (9) is the straightforward

extension of the flux in univariate model (1). Additionally, the bivariate model (9) contains
two flux functions F (11) and G (12) as compared to its one-dimensional counterpart
Equation (1). Here, F defines the distribution of the daughter particles along the x-
component, while keeping the y-component fixed. Similarly, the flux G is defined along
y-component.

We now present the continuous hypervolume conservative formulation of the pure bi-
variate fragmentation model. It is expressed in a manner similar to the volume conservative
model (9), and reads as

∂m(t, x)

∂t
=

∂F̄ (t, x)

∂x
+

∂Ḡ(t, x)

∂y
− ∂2H̄(t, x)

∂x∂y
, (16)

with the flux functions F̄ , Ḡ and H̄ redefined as follows

F̄ (t, x) :=
∫ ∞

x

∫ x

0

ψ(ε, y)
ψ(u)

b(ε, y|u)S(u)m(t, u)dεdu, (17)

Ḡ(t, x) :=
∫ ∞

x

∫ y

0

ψ(x, ξ)

ψ(u)
b(x, ξ|u)S(u)m(t, u)dξdu, (18)

and

H̄(t, x) :=
∫ ∞

x

∫ x

0

ψ(ε)

ψ(u)
b(ε|u)S(u)m(t, u)dεdu. (19)

In this case, the breakage function satisfies condition∫ u

0
ψ(ε)b(ε|u)dε = ψ(u), (20)
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and hence, integrating Equation (16), one can easily obtain that the hypervolume conserva-
tion law is properly obeyed, that is

d
dt

∫ ∞

0
m(t, x)dx =

dM1,1(t)
dt

= 0. (21)

2.2. Conservative Formulations in Three-Dimensions

In a similar manner as discussed above, we now present the three-dimensional repre-
sentations of the fragmentation equations which obey the (i) volume conservation laws,
and (ii) hypervolume conservation laws. In this part, we present the mathematical model
using vector notation to pave the way for higher dimensional extension.

Let the particle property distribution be written as f (t, x) where the vector x :=
{x1, x2, x3} represents different particle properties, and n(t, x) := φ(x) f (t, x). Using the
extended form of all the above-mentioned notations, the three-dimensional volume conser-
vative formulation is written as follows

∂n(t, x)

∂t
=

∂F (1)(t, x)

∂x1
+

∂F (2)(t, x)

∂x2
+

∂F (3)(t, x)

∂x3

− ∂2G(1)(t, x)

∂x2∂x3
− ∂2G(2)(t, x)

∂x1∂x3
− ∂2G(3)(t, x)

∂x1∂x2
+

∂3H(t, x)

∂x1∂x2∂x3
,

(22)

with the flux flows being functions of both t, x and are defined as

F (1)(t, x) =
∫ ∞

x

∫ x1

0

(u1 + x2 + x3)

φ(y)
b(u1, x2, x3|y)S(y)n(t, y)du1dy, (23)

F (2)(t, x) =
∫ ∞

x

∫ x2

0

(x1 + u2 + x3)

φ(y)
b(x1, u2, x3|y)S(y)n(t, y)du2dy, (24)

F (3)(t, x) =
∫ ∞

x

∫ x3

0

(x1 + x2 + u3)

φ(y)
b(x1, x2,3 |y)S(y)n(t, y)du3dy, (25)

G(1)(t, x) =
∫ ∞

x

∫ x2

0

∫ x3

0

(x1 + u2 + u3)

φ(y)
b(x1, u2, u3|y)S(y)n(t, y)du2du3dy, (26)

G(2)(t, x) =
∫ ∞

x

∫ x1

0

∫ x3

0

(u1 + x2 + u3)

φ(y)
b(u1, x2, u3|y)S(y)n(t, y)du3du1dy, (27)

G(3)(t, x) =
∫ ∞

x

∫ x1

0

∫ x2

0

(u1 + u2 + x3)

φ(y)
b(u1, u2, x3|y)S(y)n(t, y)du2du1dy, (28)

H(t, x) =
∫ ∞

x

∫ x

0

φ(u)

φ(y)
b(u|y)S(y)n(t, y)dudy. (29)

In a similar manner, we can represent the three-dimensional hypervolume conser-
vation equations. Consider that m(t, x) := ψ(x) f (t, x) is the solution function, and the
breakage function follows the relation (20). Then simply by replacing the function φ by ψ
and simultaneously taking care of all the corresponding changes in the Equation (22), one
can easily represent the three-dimensional hypervolume conservative model. Furthermore,
one can extend the conservative formulations for problems with n-number of particle
property components.
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3. Numerical Formulations

3.1. Two-Dimensional Model

In this section, we present the discretized form of Equation (9). For this purpose,
the truncated rectangular domain considered is V :=]0, X1]×]0, X2]. Let I1 and I2 be
two positive integers, and V is further discretized in (I1 × I2) number of rectangular
subcells Vi :=

]
xi1−1/2, xi1+1/2

]× ]xi2−1/2, xi2+1/2
]
, where i := (i1, i2), I := (I1, I2) such

that 1 ≤ i ≤ I along with x1/2 = y1/2 = 0, and xI1+1/2 = X1, xI2+1/2 = X2. Let Δi1 :=
xi1+1/2 − xi1−1/2, Δi2 := xi2+1/2 − xi2−1/2 and Δi := Δi1 Δi2 . Further, let xi :=

(
xi1 , xi2

)
be

the pivot or representative of the cell Vi, and the components of xi are defined by

xi1 :=
xi1+1/2 − xi1−1/2

2
, xi2 :=

xi2+1/2 − xi2−1/2

2
.

Under the above considerations, the flux flow at the right boundaries of the cell are
given by F(xi1+1/2, xi2 , t

)
, G(xi1 , xi2+1/2, t

)
and H(xi1+1/2, xi2+1/2, t

)
, and similarly the

flux flow at the other boundaries are defined.
Let ni be the average value of the solution n(t, x) over the cell Vi, and is defined by

ni =
1
Δi

∫
Vi

n(t, x)dx. (30)

Consider that n̂i(t) denotes the numerical approximation of ni. For notational conve-
nience, we drop the argument of the t from n̂i(t) in further discussions and simply denote
it as n̂i.

Let us now evaluate the numerical approximation of the flux F(xi1+1/2, xi2 , t
)
.

F(xi1+1/2, xi2 , t
)
=
∫ X1

xi1+1/2

∫ X2

xi2

[∫ xi1+1/2

0

(
ε + xi2

)
b
(
ε, xi2 |u

)
dε

]
S(u)
φ(u)

n(t, u)du

=
I1

∑
k1=i1+1

∫ xk1+1/2

xk1−1/2

I2

∑
k2=i2

∫ xk2+1/2

β(i2,k2)

[
i1

∑
l1=1

∫ xl1+1/2

xl1−1/2

(
ε + xi2

)
b
(
ε, xi2 |u

)
dε

]

× S(u)
φ(u)

n(t, u)du,

Here,

β(i2, k2) :=
{

xk2 , when i2 = k2,
xk2−1/2, otherwise.

Applying quadrature formulae to the integrals, the numerical flux is given by

Fi1+1/2,i2 :=
I1

∑
k1=i1+1

I2

∑
k2=i2

n̂kAβ
k

i1

∑
l1=1

Bl1,i2|kΔl1 Δk, (31)

where k := (k1, k2), l := (l1, l2),

Bl1,i2|k :=
(

xl1 + yi2
)
b
(

xl1 , yi2 |xk

)
, and Aβ

k :=
∫ xk1+1/2

xk1−1/2

∫ yk2+1/2

β(i2,k2)

S(u)
φ(u)

du.

In a similar manner, under the following notations

Bi1,l2|k :=
(

xi1 + xl2
)
b
(

xi1 , xl2 |xk

)
, Bl|k :=

(
xl1 + xl2

)
b
(
xl1 , yl2 |xk

)
,

Aα
k :=

∫ xk1+1/2

α(i1,k1)

∫ xk2+1/2

xk2−1/2

S(u)
φ(u)

du, and Ak :=
∫ xk1+1/2

xk1−1/2

∫ yk2+1/2

yk2−1/2

S(u)
φ(u)

du,
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with

α(i1, k1) :=
{

xk1 , when i1 = k1,
xk1−1/2, otherwise.

the other numerical fluxes at the cell interfaces are written as

Gi1,i2+1/2 :=
I1

∑
k1=i1

I2

∑
k2=i2+1

n̂kAα
k

i2

∑
l2=1

Bi1,l2|kΔl2 Δk, (32)

and

Hi+1/2 :=
I

∑
k=i+1

n̂kAk

i

∑
l=1

Bl|kΔlΔk. (33)

Therefore, the semi-discrete finite volume representation of Equation (9) is written as

dn̂i

dt
Δi =

[Fi1+1/2,i2 −Fi1−1/2,i2
]
Δi2 +

[Gi1,i2+1/2 − Gi1,i2−1/2
]
Δi1

− [Hi1+1/2,i2+1/2 −Hi1+1/2,i2−1/2 −Hi1−1/2,i2+1/2 +Hi1−1/2,i2−1/2
]
.

(34)

The above scheme (34) obeys the discrete volume conservation law (the detailed calcu-
lations are given in Appendix A). However, in the subsequent section, we shall numerically
validate that scheme (34) fails to predict the evolution of total number of fragments with
good accuracy. In this context, the flux functions are redefined by introducing a weight
function which enables the model to obey volume conservation laws, as well as predict
the zeroth moment with high accuracy. The newly proposed semi-discrete formulation is
written as follows:

dn̂i

dt
Δi =

[F̂i1+1/2,i2 − F̂i1−1/2,i2
]
Δi2 +

[Ĝi1,i2+1/2 − Ĝi1,i2−1/2
]
Δi1

− [Ĥi1+1/2,i2+1/2 − Ĥi1+1/2,i2−1/2 − Ĥi1−1/2,i2+1/2 + Ĥi1−1/2,i2−1/2
]
,

(35)

where the modified fluxes at the cell boundaries are defined as follows:

F̂i1+1/2,i2 :=
I1

∑
k1=i1+1

I2

∑
k2=i2

n̂kδkAβ
k

i1

∑
l1=1

Bl1,i2|kΔl1 Δk, (36)

Ĝi1,i2+1/2 :=
I1

∑
k1=i1

I2

∑
k2=i2+1

n̂kδkAα
k

i2

∑
l2=1

Bi1,l2|kΔl2 Δk, (37)

Ĥi+1/2 :=
I

∑
k=i+1

n̂kδkAk

i

∑
l=1

Bl|kΔlΔk, (38)

and δ is the weight factor, defined by

δk :=
Sk[ν(xk)− 1]

Ak ∑k
i=1(φ(xk)− φ(xi))Bi|k

, (39)

along with δ1,1 = 1. In the above definition of the weight, the terms Sk and ν(xk) denote
the discrete selection function and the number of fragments, respectively.

In the following section, we will numerically validate that the two-dimensional
scheme (35) is consistent with the zeroth moment and it also obeys the volume conservation
law. The proof of this claim follows similar to that of the model (34) and can easily be
followed from the outline given in Appendix A.
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In a similar manner, a new scheme preserving the cluster hypervolume and estimating
the continuous model (16) along with the zeroth moment can be defined as follows:

dm̂i

dt
Δi =

[
ˆ̄Fi1+1/2,i2 − ˆ̄Fi1−1/2,i2

]
Δi2 +

[
ˆ̄Gi1,i2+1/2 − ˆ̄Gi1,i2−1/2

]
Δi1

−
[

ˆ̄Hi1+1/2,i2+1/2 − ˆ̄Hi1+1/2,i2−1/2 − ˆ̄Hi1−1/2,i2+1/2 +
ˆ̄Hi1−1/2,i2−1/2

]
,

(40)

where the discrete flux functions at the cell boundaries are defined by

ˆ̄Fi1+1/2,i2 :=
I1

∑
k1=i1+1

I2

∑
k2=i2

m̂kωkAβ
k

i1

∑
l1=1

B̄l1,i2|kΔl1 Δk, (41)

ˆ̄Gi1,i2+1/2 :=
I1

∑
k1=i1

I2

∑
k2=i2+1

m̂kωkAα
k

i2

∑
l2=1

B̄i1,l2|kΔl2 Δk, (42)

ˆ̄Hi+1/2 :=
I

∑
k=i+1

m̂kωkAk

i

∑
l=1

B̄l|kΔlΔk, (43)

with the discrete breakage function as

B̄i|k := ψ(xi)b(xi|xk),

and ω is the weight factor, defined by

ωk :=
Sk[ν(xk)− 1]

Ak ∑k
i=1(ψ(xk)− ψ(xi))B̄i|k

, (44)

Remark 1. In the proposed two-dimensional model (10), there are three numerical fluxes operating
at the cell boundaries. An interesting feature of the new two-dimensional model is that a single
weight function is sufficient for redefining the modified scheme to become consistent with the zeroth-
and the first-order moments.

Remark 2. It is to be noted that the finite volume scheme (34) is obtained by direct application of
the midpoint quadrature rules to the continuous Equation (9). Thus, it represents the numerical
model of [23] with two degrees of freedom.

3.2. Three-Dimensional Model

In this part, we present the three-dimensional finite volume scheme approximating
the multi-fragmentation model. Here, the scheme is expressed using vector notation, which
will give an outline for further extension of the proposed scheme in higher dimensions.

Similar to the two-dimensional model, the computational domain considered is

V :=
3

∏
r=1

]0, Xr] which is further divided into a finite number of sub-cells

Vi :=
3

∏
r=1

[xir−1/2, xir+1/2]

with ir = 1, 2, . . . , Ir. Let n̂i be the numerical approximation of n(t, x) over the cell Vi.
Further, let Δi denote the volume of the cell Vi, and the the cell representative is de-
fined by xi :=

{
xi1 , xi2 , xi3

}
. Consider that the breakage function obeys the conserva-

tive Formula (14), then the three-dimensional extension of the newly proposed volume-
conservative formulation (33) is written as
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dn̂i

dt
Δi =

[
F̂ (1)

i1+1/2,i2,i3
− F̂ (1)

i1−1/2,i2,i3

]
Δi2,i3 +

[
F̂ (2)

i1,i2+1/2,i3
− F̂ (2)

i1,i2−1/2,i3

]
Δi1,i3

+
[
F̂ (3)

i1,i2,i3+1/2 − F̂ 3
i1,i2,i3−1/2

]
Δi1,i2

−
[
Ĝ(1)

i1,i2+1/2,i3+1/2 − Ĝ(1)
i1,i2−1/2,i3+1/2 − Ĝ(1)

i1,i2+1/2,i3−1/2 + Ĝ(1)
i1,i2−1/2,i3−1/2

]
Δi1

−
[
Ĝ(2)

i1+1/2,i2,i3+1/2 − Ĝ(2)
i1−1/2,i2,i3+1/2 − Ĝ(2)

i1+1/2,i2,i3−1/2 + Ĝ(2)
i1−1/2,i2,i3−1/2

]
Δi2

−
[
Ĝ(3)

i1+1/2,i2+1/2,i3
− Ĝ(3)

i1−1/2,i2+1/2,i3
− Ĝ(3)

i1+1/2,i2−1/2,i3
+ Ĝ(3)

i1−1/2,i2−1/2,i3

]
Δi3

+
[Ĥi1+1/2,i2+1/2,i3+1/2 − Ĥi1+1/2,i2+1/2,i3−1/2 − Ĥi1+1/2,i2−1/2,i3+1/2

+ Ĥi1+1/2,i2−1/2,i3−1/2 − Ĥi1−1/2,i2+1/2,i3+1/2 + Ĥi1−1/2,i2−1/2,i3+1/2

+Ĥi1−1/2,i2+1/2,i3−1/2 − Ĥi1−1/2,i2−1/2,i3−1/2
]
. (45)

Considering k := (k1, k2, k3) and l := (l1, l2, l3), the redefined flux functions are
written as follows:

F̂ (1)
i1+1/2,i2,i3

:=
I1

∑
k1=i1+1

(I2,I3)

∑
(k2,k3)=(i2,i3)

n̂kωkAβ,γ
k Δk

i1

∑
l1=1

Bl1,i2,i3|kΔl1 , (46)

F̂ (2)
i1,i2+1/2,i3

:=
I2

∑
k2=i2+1

I1,I3

∑
(k1,k3)=(i1,i3)

n̂kωkAα,γ
k Δk

i2

∑
l2=1

Bi1,l2,i3|kΔl2 , (47)

F̂ (3)
i1,i2,i3+1/2 :=

(I1,I2)

∑
(k1,k2)=(i1,i2)

I3

∑
k3=i3+1

n̂kωkAα,β
k Δk

i3

∑
l3=1

Bi1,i2,l3|kΔl3 , (48)

Ĝ(1)
i1,i2+1/2,i3+1/2 :=

I1

∑
k1=i1

(I2,I3)

∑
(k2,k3)=(i2+1,i3+1)

n̂kωkAα
kΔk

i2,i3

∑
(l2,l3)=1

Bi1,l2,l3|kΔl2,l3 , (49)

Ĝ(2)
i1+1/2,i2,i3+1/2 :=

(I1,I3)

∑
(k1,k3=(i1+1,i3+1)

I2

∑
k2=i2

n̂kωkAβ
kΔk

i1,i3

∑
(l1,l2)=1

Bl1,l2,i3|kΔl1,l2 , (50)

Ĝ(3)
i1+1/2,i2+1/2,i3

:=
I1

∑
k1=i1+1

(I2,I3)

∑
(k2,k3)=(i2+1,i3+1)

n̂kωkAγ
kΔk

i1,i2

∑
(l1,l2)=1

Bl1,l2,i3|kΔl2,l3 , (51)

Ĥi+1/2 :=
I

∑
k=i

n̂kωkAkΔk

i

∑
l=1

Bl|kΔl. (52)

Here, δk is the weight factor, defined by

δk :=
Sk[ν(xk)− 1]

Ak ∑k
i=1[φ(xk)− φ(xi)]Bi|k

, (53)

and the factors Aα,β
k , Aβ,γ

k and Aα,γ
k are defined as follows:

Aα,β
k :=

∫ xl1+1/2

α(i1,l1)

∫ xl2+1/2

β(i2,l2)

∫ xl3+1/2

xl3−1/2

S(u)
φ(u)

du,
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Aβ,γ
k :=

∫ xl1+1/2

xl1−1/2

∫ xl2+1/2

β(i2,l2)

∫ xl3+1/2

γ(i3,l3)

S(u)
φ(u)

du,

Aα,γ
k :=

∫ xl1+1/2

α(i1,l1)

∫ xl2+1/2

xl2−1/2

∫ xl3+1/2

γ(i3,l3)

S(u)
φ(u)

du,

along with Aα
k, Aβ

k, Aγ
k, Ak and α(i1, l1), β(i2, l2), γ(i3, l3) being defined in a similar manner

as done before.
Following the same trail, one can easily define the three-dimensional hypervolume

preserving numerical model. In this case, the numerical solution will be given by m̂i, which
is the approximation of m(t, x) over the cell Vi and the breakage function will obey the
hypervolume conservation law (20). Thus, the weight function will be defined as

ωk :=
Sk[ν(xk)− 1]

Ak ∑k
i=1[ψ(xk)− ψ(xi)]B̄i|k

. (54)

4. Results

In this section, we validate the efficiency of the newly proposed finite volume models
with the standard finite volume scheme over several test problems. Since the new models
are defined with the help of a weight factor, we call it weighted finite volume scheme
(WFVS). On the other hand, Remark 2 indicates that the standard forms of the schemes
which are directly derived from the continuous equations were initially proposed by [23]
for fragmentation models with one degree of freedom. Therefore, for future reference, we
call the standard models the existing finite volume schemes (EFVS). However, we need to
mention that the two-dimensional extension of EFVS is not available in the literature to
date, and this article not only proposes an improved model, but also extends the existing
finite volume schemes for multidimensional fragmentation events.

For one-dimensional fragmentation problems, Ref. [30,31] has obtained the exact
solutions for a certain class of fragmentation kinetics. However, exact solutions in closed
forms are very rare in the multidimensional setup. In order to validate the accuracy of
the proposed schemes, we choose four test problems with two degrees of freedom, and
two test problems with three degrees of freedom. For all the test problems, exact solutions
in closed form are not always available in the literature. However, the zeroth and the
first-order moments can be computed exactly, which is sufficient to validate the accuracy
of the new schemes. Therefore, in the following section we discuss the efficiency of the
WFV scheme to predict the different physically important moment functions over the
EFV scheme. Our study builds up on both qualitative and quantitative assessments. The
qualitative accuracy is represented through graphical representation of the different entities
whereas, the qualitative analysis is performed by computing relative errors of the moment
functions over different grid points.

The computational domain V = [0, 1]× [0, 1] is considered for all the two-dimensional
test problems. The domain V is discretized into 15 × 15 nonuniform subintervals bearing
the geometric relation xi+1/2 = rxi−1/2 where r := 3.9811 is the geometric ratio. Addition-
ally, all the test problems are supported by a mono-dispersed initial condition

f (x1, x2, 0) = δ(x1 − 1)δ(x2 − 1).

Similar extensions of the above data are considered for the three dimensional models. The
semi-discrete schemes (7) and (8) are solved using MATLAB-2019B software in a standard
PC with i5-7500 CPU processor @ 3.41 GHz and 8 GB RAM.
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4.1. Examples in Two-Dimensions
4.1.1. Volume Conservation Problems

In the first instance, we consider test problems with constant particle selection rate,
that is S(x, y) = 1 and two different daughter distribution functions

b1(x, y|x′, y′) = 2
x′y′ and b2

(
x, y|x′, y′) = 2δ

(
x − x′

2

)
δ

(
y − y′

2

)
.

The first breakage function b1 is a size-independent function of its arguments and
physically represents random scission of particles. On the other hand, the second breakage
function b2 represents size-dependent distribution of daughter fragments, choosing the
daughter-particles exactly half the size of the parent particle. The exact solution in closed
form for the above set of fragmentation kernels are not available in the literature. However,
we can calculate the zeroth M0,0(t), first M1,0(t)+M0,1(t) and the cross moments M1,1(t)
exactly for both the problems (calculations of the exact moments are given in Appendix B).
In this regard, the exact moments are given in the Table 1.

Table 1. Exact moment functions for S = 1 and breakage functions b1, b2.

Selection Function Breakage Function Exact Moments

S(x, y) = 1 b1(x, y|x′, y′) = 2
x′y′ Mk,l(t) = Mk,l(0) exp

[(
2

(k+1)(l+1) − 1
)

t
]

S(x, y) = 1 b2(x, y|x′, y′) = 2δ
(

x − x′
2

)
δ
(

y − y′
2

)
Mk,l(t) = Mk,l(0) exp

[(
21−k−l − 1

)
t
]

Figures 1 and 2 represent the numerical moments obtained from EFVS and WFVS
against their exact values with breakage functions b1 and b2, respectively. More precisely,
Figures 1a and 2a present the comparison of zeroth and first-order moment functions, and
Figures 1b and 2b presents the first-order cross moment function M1,1(t). In order to
obtain a clear visibility of different markers, we plot Figures 1a and 2a on a semilogarithmic
scale with respect to the y-axis. In both the cases, it is observed that WFVS estimates the
zeroth-order, first-order and the cross moments with high accuracy, whereas the EFVS
conserves the total volume but fails to produce a good estimate of the other moments.

(a) Zeroth- and first-order moments.
Figure 1. Cont.
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(b) First-order cross moments.

Figure 1. Comparison of different moments with selection function S = 1, and breakage function b1.

(a) Zeroth- and first-order moments.

(b) First-order cross moments

Figure 2. Comparison of different moments with selection function S = 1, and breakage function b2.
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In the Table 2, the relative error of the moment functions for S = 1 and b1 are calculated
at t = 10 over three different grid sizes. The geometric ratios to generate 10 × 10, 15 × 15
and 20 × 20 grids are 7.9433, 3.9811 and 2.8184, respectively. The discrete L1-error norm

error :=
I

∑
i=1

∣∣∣∣Mexact −Mnum

Mexact

∣∣∣∣
is used to calculate the errors. Similarly, the relative error acquired while computing the
moments for S = 1 and b2 over different grid points are represented in Table 3.

Table 2. Relative error for the weighted moments at different grid points for the test case with S = 1 and breakage functions
b1 at t = 10.

Grids

WFVS EFVS

M0,0(t) M1,0(t) +
M0,1(t) M1,1(t) CPU

Time
M0,0(t) M1,0(t) +

M0,1(t) M1,1(t) CPU
Time

10 × 10 2.2714 × 10−9 1.2589 × 10−1 6.6331 × 10−3 3 s 9.9946 × 10−1 1.2589 × 10−1 3.6744 × 10−2 2 s
15 × 15 1.3878 × 10−9 2.5123 × 10−1 6.2981 × 10−3 11 s 9.9492 × 10−1 2.5119 × 10−1 9.0704 × 10−3 7 s
20 × 20 1.1027 × 10−9 3.5483 × 10−1 5.7431 × 10−3 22 s 9.7599 × 10−1 3.5481 × 10−1 2.8711 × 10−3 11 s

Table 3. Relative error for the weighted moments at different grid points for the test case with S = 1 and breakage functions
b2 at t = 10.

Grids

WFVS EFVS

M0,0(t) M1,0(t) +
M0,1(t) M1,1(t) CPU

Time
M0,0(t) M1,0(t) +

M0,1(t) M1,1(t) CPU
Time

10 × 10 4.8517 × 10−8 3.5481 × 10−1 6.7058 × 10−3 41 s 2.5560 × 10−1 3.5481 × 10−1 6.0140 × 10−3 2 s
15 × 15 4.8517 × 10−8 3.8986 × 10−1 6.7163 × 10−3 60 s 2.1835 × 10−1 3.8986 × 10−1 5.6563 × 10−3 31 s
20 × 20 4.8517 × 10−8 4.3652 × 10−1 6.7229 × 10−3 82 s 1.2736 × 10−1 4.3652 × 10−1 4.8956 × 10−3 40 s

In the second instance, we choose two problems by setting the size-dependent selection
function S(x, y) = x + y, along with the previously chosen particle daughter distribution
functions b1 and b2. In this case, also the exact solutions are not available in the literature,
however only the zeroth- and first-order moment functions can be calculated exactly. In
both the cases, the moment functions are given as

M1,0(t) +M0,1(t) = 1, and M0,0(t) = 1 + 2t.

The following Figure 3a,b represent the efficiency of the WFV scheme over the EFV
scheme to estimate the zeroth- and the first-order moments. It is observed that both the
schemes obey the volume conservation laws with high accuracy, but the WFV scheme
is highly accurate to predict the evolution of total number of particles. Tables 4 and 5
represent the relative errors over different grid points at time t = 10.
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(a) breakage function b1

(b) breakage function b2

Figure 3. Comparison of zeroth- and first-order moments with selection function S = x + y, and
breakage functions b1, b2.

Table 4. Relative error for the weighted moments at different grid points for the test case with S = x + y and breakage
function b1 at t = 10.

Grids
WFVS EFVS

M0,0(t) M1,0(t) +M0,1(t) CPU Time M0,0(t) M1,0(t) +M0,1(t) CPU Time

10 × 10 9.9944 × 10−1 1.2589 × 10−1 2 s 9.9983 × 10−1 1.2589 × 10−1 1 s
15 × 15 9.9939 × 10−1 2.5119 × 10−1 5 s 9.9969 × 10−1 2.5119 × 10−1 2 s
20 × 20 9.9934 × 10−1 3.5481 × 10−1 11 s 9.9957 × 10−1 3.5481 × 10−1 5 s

Table 5. Relative error for the weighted moments at different grid points for the test case with S = x + y and breakage
function b2 at t = 10.

Grids
WFVS EFVS

M0,0(t) M1,0(t) +M0,1(t) CPU Time M0,0(t) M1,0(t) +M0,1(t) CPU Time

10 × 10 1.8625 × 10−1 3.5481 × 10−1 21 s 7.6213 × 10−1 3.5481 × 10−1 10 s
15 ×15 1.8658 × 10−1 3.8986 × 10−1 28 s 5.2710 × 10−1 3.8986 × 10−1 17 s
20 × 20 1.8698 × 10−1 4.3652 × 10−1 41 s 2.7194 × 10−1 4.3652 × 10−1 21 s
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4.1.2. Hypervolume Conservation Problems

In this part, the considered breakage functions b should satisfy the hypervolume
conservation rule (8). In this regard, we choose the following breakage functions

b3(x, y|x′, y′) = 4
x′y′ , and b4(x, y|x′, y′) = x′δ(x − x′) + y′δ(y − y′)

x′y′ . (55)

The breakage function b3 is independent of the daughter-particle size, whereas b4
represents the particle breakage along the longer side of the rectangular structure. Similar
to the examples of volume conservation models, we choose two types of selection functions:
(i) size-independent kernels S(x, y) = 1, and (ii) size-dependent kernels S(x, y) = xy.

Like before, the exact solutions are not available in the literature, however we can
calculate three moment functions exactly, and they are given in Table 6.

Table 6. Exact moment functions for S = 1 and breakage functions b3, b4.

Selection Function Breakage Function Exact Moments

S(x, y) = 1 b3(x, y|x′, y′) = 4
x′y′ Mk,l(t) = Mk,l(0) exp

[(
4

(k+1)(l+1) − 1
)

t
]

S(x, y) = 1 b4
(
x, y|x′, y′) = x′δ(x − x′) + y′δ(y − y′)

x′y′
M1,1(t) = 1, M0,0(t) = exp(t),
M1,0(t) +M0,1(t) = exp(t/2)

In Figure 4a, we plot the zeroth- and the cross-moment functions and observe that
the new WFV scheme predicts the corresponding moments with high accuracy. On the
other hand, we plot the first-order moment in Figure 4b. In this case also, the weighted
scheme exhibits high accuracy to estimate the moment compared to the standard model.
In Figure 4b, we take the the axes in loglog scale for a distinct visibility of the plots. In
this problem, Figure 4c represents the comparison of hypervolume distribution functions
with the numerical values obtained from the two schemes. We follow the flat pictorial
representation to plot the hypervolume distribution as presented in [32]. For the other
problems, only the exact moment functions can be calculated for comparison with the
numerical models.

The relative errors over different grid points are presented at Table 7.
In the second instance, we consider the size-dependent selection function S(x, y) = 1

and b4 as the daughter distribution function. The exact solution is not available for this
problem, but we can evaluate the zeroth and cross moments exactly. From the Figure 5
and Table 8, we can see that the newly proposed WFV scheme predicts the moments with
high accuracy.

Table 7. Relative error for the weighted moments at different grid points for the test case with S = 1 and breakage functions
b3 at t = 10.

Grids

WFVS EFVS

M0,0(t) M1,0(t) +
M0,1(t) M1,1(t) CPU

Time
M0,0(t) M1,0(t) +

M0,1(t) M1,1(t) CPU
Time

10 × 10 1.9052 × 10−8 9.5538 6.8292 × 10−1 6 s 1.0000 2.2013 × 101 6.8309 × 10−1 2 s
15 × 15 1.7344 × 10−8 6.5432 6.0859 × 10−1 19 s 1.0000 2.1890 × 101 6.0863 × 10−1 8 s
20 × 20 1.6682 × 10−8 4.9080 5.4110 × 10−1 32 s 1.0000 2.1353 × 101 5.4112 × 10−1 14 s
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(a) Zeroth- and first-order cross moment.
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(b) First-order moments
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(c) Particle size distribution.

Figure 4. Comparison of different moments with selection function S = 1, and breakage function b3.
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(a) Zeroth- and first-order cross moment
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(b) First-order moments

Figure 5. Comparison of different moments with selection function S = 1, and breakage function b4.

Table 8. Relative error for the weighted moments at different grid points for the test case with S = 1 and breakage functions
b4 at t = 10.

Grids

WFVS EFVS

M0,0(t) M1,0(t) +
M0,1(t) M1,1(t) CPU

Time
M0,0(t) M1,0(t) +

M0,1(t) M1,1(t) CPU
Time

10 × 10 4.5211 × 10−10 2.2694 6.8309 × 10−1 4 s 9.9946 × 10−1 1.4453 × 102 6.8309 × 10−1 2 s
15 × 15 2.2036 × 10−10 2.8531 × 10−1 6.0863 × 10−1 10 s 9.9489 × 10−1 1.3513 × 102 6.0863 × 10−1 5 s
20 × 20 1.6944 × 10−10 4.7015 × 10−2 5.4112 × 10−1 22 s 9.7532 × 10−1 1.1682 × 102 5.4112 × 10−1 10 s

Next, we consider two problems with size-dependent selection function S(x, y) = xy
and the breakage functions b3 and b4. Only the zeroth- and first-order moment functions
can be calculated in closed form, and are given in the Table 9.

Table 9. Exact moment functions for S = xy and breakage functions b3, b4.

Selection Function Breakage Function Exact Moments

S(x, y) = xy b3(x, y|x′, y′) = 4
x′y′ M1,1(t) = 1, M0,0(t) = 1 + 3t

S(x, y) = xy b4
(
x, y|x′, y′) = x′δ(x − x′) + y′δ(y − y′)

x′y′
M1,1(t) = 1, M0,0(t) = 1 + t
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Numerical evaluation of the moments using the WFV and EFV schemes are presented
in Figure 6 and Tables 10 and 11. The improved accuracy of the new scheme is observed.
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(a) Breakage function b3.
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(b) breakage function b4

Figure 6. Comparison of different moments with selection function S = xy, and breakage functions
b3, b4.

Table 10. Relative error for the weighted moments at different grid points for the test case with S = xy and breakage
function b3 at t = 10.

Grids
WFVS EFVS

M0,0(t) M1,1(t) CPU Time M0,0(t) M1,1(t) CPU Time

10 × 10 5.4678 × 10−1 6.8309 × 10−1 1 s 8.8071 × 10−1 6.8309 × 10−1 1 s
15 × 15 5.5130 × 10−1 6.0863 × 10−1 1 s 8.0374 × 10−1 6.0863 × 10−1 1 s
20 × 20 5.5418 × 10−1 5.4112 × 10−1 3 s 7.4013 × 10−1 5.4112 × 10−1 2 s
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Table 11. Relative error for the weighted moments at different grid points for the test case with S = xy and breakage
function b4 at t = 10.

Grids
WFVS EFVS

M0,0(t) M1,1(t) CPU Time M0,0(t) M1,1(t) CPU Time

10 × 10 3.3663 × 10−1 6.8309 × 10−1 1 s 7.6014 × 10−1 6.8309 × 10−1 1 s
15 × 15 1.3416 × 10−1 6.0863 × 10−1 1 s 7.9649 × 10−1 6.0863 × 10−1 1 s
20 × 20 5.4011 × 10−1 5.4112 × 10−1 2 s 7.4013 × 10−1 5.4112 × 10−1 2 s

4.2. Three-Dimensional Examples

Volume conservative problems: In this section, we consider two test problems with
size-dependent selection function S(y) = φ(y). The three-dimensional extension of the
above-mentioned breakage functions b1 and b2, that is,

b5(x|y) = 2
ψ(y)

, and b6(x|y) = 2δ
(

x1 − y1

2

)
δ
(

x2 − y2

2

)
δ
(

x3 − y3

2

)
are considered here. Like before, we can only calculate the zeroth and first moments exactly
and they are given in the following Table 12.

Table 12. Exact moment functions for S = φ(y) and breakage functions b5, b6.

Selection Function Breakage Function Exact Moments

S(y) = φ(y) b5(x|y) = 2
ψ(y)

Mk1,k2,k3 (t) = Mk1,k2,k3 (0) exp
[(

8
k1k2k3

− 1
)

t
]

S(y) = φ(y) b6(x|y) = 2δ
(

x1 − y1
2

)
δ
(
x2 − y2

2

)
δ
(
x3 − y3

2

) M1,0,0(t) +M1,0,0(t) +M1,0,0(t) = 1,
M0,0(t) = 1 + 3t

From Figure 7 and Tables 13 and 14, we can observe that the WFV scheme estimates
the moment functions more accurately as compared to the EFV scheme.

(a) Breakage function b5

Figure 7. Cont.
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(b) Breakage function b6

Figure 7. Comparison of zeroth- and first-order moments with selection function S = φ(x), and
different breakage functions b5, b6.

Table 13. Relative error for the weighted moments at different grid points for the test case with S = φ(x) and breakage
function b5 at t = 10.

Grids

WFVS EFVS

M0,0,0(t) M1,0,0(t) +
M0,1,0(t)+M0,0,1(t)

CPU
Time

M0,0,0(t) M1,0,0(t) +
M0,1,0(t)+M0,0,1(t)

CPU
Time

10 × 10 × 10 9.9302 × 10−15 6.8884 × 10−1 52 s 7.1010 × 10−1 6.8884 × 10−1 34 s
15 × 15 × 15 1.1192 × 10−15 8.0464 × 10−1 198 s 5.7788 × 10−1 8.0464 × 10−1 78 s
20 × 20 × 20 2.8756 × 10−16 8.7678 × 10−1 505 s 5.0076 × 10−1 8.7678 × 10−1 292 s

Table 14. Relative error for the weighted moments at different grid points for the test case with S = φ(x) and breakage
function b6 at t = 10.

Grids

WFVS EFVS

M0,0,0(t) M1,0,0(t) +
M0,1,0(t)+M0,0,1(t)

CPU
Time

M0,0,0(t) M1,0,0(t) +
M0,1,0(t)+M0,0,1(t)

CPU
Time

10 × 10 × 10 3.7623 × 10−1 1.8500 × 10−1 73 s 2.9725 × 10−1 5.0569 × 10−1 36 s
15 × 15 × 15 1.4588 × 10−1 3.5055 × 10−2 294 s 2.0743 × 10−1 3.8846 × 10−1 139 s
20 × 20 × 20 9.6814 × 10−2 3.0046 × 10−2 660 s 1.1094 × 10−1 1.9000 × 10−1 335 s

Hypervolume conservation: In this instance, we consider the size-independent daugh-

ter distribution function b7(x|y) =
8

ψ(y)
along with the constant selection S = 1 and

size-dependent selection S(y) = ψ(y). The exact moments are calculated in the Table 15.

Table 15. Exact moment functions for S(y) = 1, S = ψ(y) and breakage function b7.

Selection Function Breakage Function Exact Moments

S(y) = 1 b7(x|y) = 8
ψ(y)

M0,0,0(t) = exp(7t), M1,1,1(t) = 1,
M1,0,0(t) +M0,1,0(t) +M0,0,1(t) = exp(3t)

S(y) = ψ(y) b7(x|y) = 8
ψ(y)

M0,0,0(t) = 1 + 7t, M1,1,1(t) = 1
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Figure 8 and Table 16 exhibit the improved accuracy obtained from the WFV scheme
over the standard scheme to predict the above mentioned three moments.
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(a) Zeroth and cross moments.
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(b) First-order moments.

Figure 8. Comparison of zeroth- and first-order moments with selection function S = 1, and breakage
functions b7.

Table 16. Relative error for the weighted moments at different grid points for the test case with S = 1 and breakage functions
b7 at t = 10.

Grids

WFVS EFVS

M0,0,0(t)
M1,0,0(t) +
M0,1,0(t) +
M0,0,1(t)

M1,1,1(t) CPU
Time

M0,0,0(t)
M1,0,0(t) +
M0,1,0(t) +
M0,0,1(t)

M1,1,1(t) CPU
Time

10 × 10 × 10 5.8045 × 10−8 2.8046 1.5759 × 10−1 164 s 1.0000 1.0013 × 101 8.2160 × 10−1 44 s
15 × 15 × 15 5.7040 × 10−8 1.7385 × 10−1 3.7535 × 10−2 605 s 1.0000 1.0000 7.8233 × 10−1 272 s
20 × 20 × 20 5.6751 × 10−8 1.4056 × 10−1 1.9838 × 10−2 1500 s 1.0000 9.9999 × 10−1 7.5516 × 10−1 650 s

On the other hand, Figure 9 and Table 17 represent the comparison of the above
moments as predicted by the WFV and EFV schemes.
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Figure 9. Comparison of zeroth and cross moments with selection function S = ψ(x), and breakage
function b7.

Table 17. Relative error for the weighted moments at different grid points for the test case with S = ψ(x) and breakage
function b7 at t = 10.

Grids
WFVS EFVS

M0,0,0(t) M1,1,1(t) CPU Time M0,0,0(t) M1,1,1(t) CPU Time

10 × 10 × 10 3.9509 × 10−16 8.2160 × 10−1 5 s 8.0112 × 10−1 8.2160 × 10−1 3 s
15 × 15 × 15 6.5640 × 10−16 7.8233 × 10−1 24 s 7.1237 × 10−1 7.8233 × 10−1 11 s
20 × 20 × 20 9.7932 × 10−16 7.5516 × 10−1 70 s 6.4883 × 10−1 7.5516 × 10−1 30 s

5. Conclusions

In this article, we have proposed finite volume schemes for solving multidimensional
fragmentation problems. In addition to the one-dimensional scheme of [23], it is also
extended in the multidimensional setup. It is observed that a careful reconstruction of the
standard multidimensional scheme leads to the development of very accurate schemes.
The newly proposed schemes obey the conservation laws and also predict several physical
moment functions with high accuracy. Several empirical test problems in two- and three-
dimensions are collected from the literature to validate the efficiency of the new schemes.
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Appendix A. Proof of Conservation Laws in Two-Dimensions

We first calculate the difference Fi+1/2 −Fi−1/2.

Fi+1/2,j −Fi−1/2,j =
I

∑
l1=i+1

J

∑
m1=j

nl1,m1A
β
l1,m1

i

∑
l2=1

Bl2,j|l1,m1
Δl2 Δl1,m1

−
I

∑
l1=i

J

∑
m1=j

nl1,m1A
β
l1,m1

i−1

∑
l2=1

Bl2,j|l1,m1
Δl2 Δl1,m1

=
I

∑
l1=i

J

∑
m1=j

nl1,m1A
β
l1,m1

Bi,j|l1,m1
ΔiΔl1,m1

−
J

∑
m1=j

ni,m1A
β
i,m1

i

∑
l2=1

Bl2,j|i,m1
Δl2 Δi,m1 . (A1)

In a similar manner, calculating and simplifying the difference Gi+1/2 − Gi−1/2.

Gi,j+1/2 − Gi,j−1/2 =
I

∑
l1=i

J

∑
m1=j+1

nl1,m1Aα
l1,m1

j

∑
m2=1

Bi,m2|l1,m1
Δm2 Δl1,m1

−
I

∑
l1=i

J

∑
m1=j

nl1,m1Aα
l1,m1

j−1

∑
m2=1

Bi,m2|l1,m1
Δm2 Δl1,m1

=
I

∑
l1=i

J

∑
m1=j

nl1,m1Aα
l1,m1

Bi,j|l1,m1
ΔjΔl1,m1

−
I

∑
l1=i

nl1,jAα
l1,j

j

∑
m2=1

Bi,m2|l1,jΔm2 Δl1,j. (A2)

Next, we calculate the following flux,

Hi+1/2,j+1/2 −Hi+1/2,j−1/2 − Hi−1/2,j+1/2 −Hi−1/2,j−1/2

=
I

∑
l1=i+1

J

∑
m1=j+1

nl1,m1Al1,m1

i

∑
l2=1

j

∑
m2=1

Bl2,m2|l1,m1
Δl2,m2 Δl1,m1

−
I

∑
l1=i+1

J

∑
m1=j

nl1,m1Al1,m1

i

∑
l2=1

j−1

∑
m2=1

Bl2,m2|l1,m1
Δl2,m2 Δl1,m1

−
I

∑
l1=i

J

∑
m1=j+1

nl1,m1Al1,m1

i−1

∑
l2=1

j

∑
m2=1

Bl2,m2|l1,m1
Δl2,m2 Δl1,m1

+
I

∑
l1=i

J

∑
m1=j

nl1,m1Al1,m1

i−1

∑
l2=1

j−1

∑
m2=1

Bl2,m2|l1,m1
Δl2,m2 Δl1,m1 .

=−
I

∑
l1=i+1

nl1,jAl1,j

i

∑
l2=1

j

∑
m2=1

Bl2,m2|l1,jΔl2,m2 Δl1,j

+
I

∑
l1=i+1

J

∑
m1=j

nl1,m1Al1,m1

i

∑
l2=1

Bl2,j|l1,m1
Δl2,jΔl1,m1

+
I

∑
l1=i

nl1,jAl1,j

i−1

∑
l2=1

j

∑
m2=1

Bl2,m2|l1,jΔl2,m2 Δl1,j

−
I

∑
l1=i

J

∑
m1=j

nl1,m1Al1,m1

i−1

∑
l2=1

Bl2,j|l1,m1
Δl2,jΔl1,m1 . (A3)
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Further rearrangement and simplification of the terms gives

Hi+1/2,j+1/2 − Hi+1/2,j−1/2 −Hi−1/2,j+1/2 −Hi−1/2,j−1/2

=
I

∑
l1=i

J

∑
m1=j

nl1,m1Al1,m1Bi,j|l1,m1
Δi,jΔl1,m1 −

I

∑
l1=i

nl1,jAl1,j

j

∑
m2=1

Bi,m2|l1,jΔi,m2 Δl1,j

−
J

∑
m1=j

ni,m1Ai,m1

i

∑
l2=1

Bl2,j|i,m1
Δl2,jΔi,m1 + ni,jAi,j

i

∑
l2=1

j

∑
m2=1

Bl2,m2|i,jΔl2,m2 Δi,j. (A4)

Therefore, substituting relations (A1), (A2) and (A4) in the discrete formulation (34)
and simplifying, we get

dni,jΔi,j

dt
=

I

∑
l1=i

J

∑
m1=j

nl1,m1A
β
l1,m1

Bi,j|l1,m1
Δi,jΔl1,m1 −

J

∑
m1=j

ni,m1A
β
i,m1

i

∑
l2=1

Bl2,j|l1,m1
Δl2,jΔl1,m1

+
I

∑
l1=i

J

∑
m1=j

nl1,m1Aα
l1,m1

Bi,j|l1,m1
Δi,jΔl1,m1 −

I

∑
l1=i

nl1,jAα
l1,j

j

∑
m2=1

Bi,m2|l1,m1
Δi,m2 Δl1,m1

−
I

∑
l1=i

J

∑
m1=j

nl1,m1Al1,m1Bi,j|l1,m1
Δi,jΔl1,m1 +

I

∑
l1=i

nl1,jAl1,j

j

∑
m2=1

Bi,m2|l1,jΔi,m2 Δl1,j

+
J

∑
m1=j

ni,m1Ai,m1

i

∑
l2=1

Bl2,j|i,m1
Δl2,jΔi,m1 − ni,jAi,j

i

∑
l2=1

j

∑
m2=1

Bl2,m2|i,jΔl2,m2 Δi,j

=
I

∑
l1=i+1

J

∑
m1=j+1

nl1,m1Al1,m1Bi,j|l1,m1
Δi,jΔl1,m1 − ni,jAi,j

i−1

∑
l2=1

j−1

∑
m2=1

Bl2,m2|i,jΔl2,m2 Δi,j. (A5)

Temporal evolution of total volume: Taking sum over i and j of Equation (A5), we get

d
dt

[M1,0 +M0,1] =
I

∑
i=1

J

∑
j=1

I

∑
l1=i+1

J

∑
m1=j+1

nl1,m1Al1,m1Bi,j|l1,m1
Δi,jΔl1,m1

−
I

∑
i=1

J

∑
j=1

ni,jAi,j

i−1

∑
l2=1

j−1

∑
m2=1

Bl2,m2|i,jΔl2,m2 Δi,j.

Changing the order of summation in the first term, we get

d
dt

[M1,0 +M0,1] =
I

∑
i=1

I

∑
l1=i+1

J

∑
m1=1

l1−1

∑
i=1

m1−1

∑
j=1

nl1,m1Al1,m1Bi,j|l1,m1
Δi,jΔl1,m1

−
I

∑
i=1

J

∑
j=1

ni,jAi,j

i−1

∑
l2=1

j−1

∑
m2=1

Bl2,m2|i,jΔl2,m2 Δi,j

=0.

Hence, the volume conservation law is obeyed.
Temporal evolution of zeroth moment: Dividing both sides of Equation (A5) by(

xi + yj
)
, and taking sum over i, j, we get

dM0,0

dt
=

I

∑
i=1

J

∑
j=1

1(
xi + yj

) I

∑
l1=i+1

J

∑
m1=j+1

nl1,m1Al1,m1Bi,j|l1,m1
Δi,jΔl1,m1

−
I

∑
i=1

J

∑
j=1

ni,jAi,j(
xi + yj

) i−1

∑
l2=1

j−1

∑
m2=1

Bl2,m2|i,jΔl2,m2 Δi,j.
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Changing order of summation in the first term, we get

dM0,0

dt
=

I

∑
l1=1

J

∑
m1=1

nl1,m1Al1,m1 Δl1,m1

l1−1

∑
i=1

m1−1

∑
j=1

[
1

xi + yj
− 1

xl1 + ym1

]
Bi,j|l1,m1

Δi,j

=
I

∑
l1=1

J

∑
m1=1

nl1,m1Al1,m1

φ
(
xl1 , ym1

) Δl1,m1

l1−1

∑
i=1

m1−1

∑
j=1

[
φ
(

xl1 , ym1

)
φ
(

xi, yj
) − 1

]
Bi,j|l1,m1

Δi,j.

Appendix B. Exact Moments

The temporal evolution of zeroth moment M0,0(t) is given by

dM0,0(t)
dt

=
∫ ∞

0

∫ ∞

0

1
x + y

[
∂F (t, x, y)

∂x
+

∂G(t, x, y)
∂y

− ∂2H(t, x, y)
∂x∂y

]
dydx. (A6)

For S(x, y) = 1 and b
(
x, y|x′, y′) = 2

x′y′ , we have

∂F (t, x, y)
∂x

= −
∫ x

0

∫ ∞

y

ε + y
x + v

2
xv

n(t, x, v)dvdε +
∫ ∞

x

∫ ∞

y

x + y
u + v

2
uv

n(t, u, v)dvdu,

∂G(t, x, y)
∂y

= −
∫ ∞

x

∫ y

0

x + ξ

u + y
2

uy
n(t, u, y)dξdu +

∫ ∞

x

∫ ∞

y

x + y
u + v

2
uv

n(t, u, v)dvdu,

and

∂2H(t, x, y)
∂x∂y

=
∫ x

0

∫ y

0

ε + ξ

x + y
2

xy
n(t, x, y)dxidε −

∫ ∞

x

∫ y

0

x + ξ

u + y
2

uy
n(t, u, y)dξdu

−
∫ x

0

∫ ∞

y

ε + y
x + v

2
xv

n(t, x, v)dvdε +
∫ ∞

x

∫ ∞

y

x + y
u + v

2
uv

n(t, u, v)dvdu.

Now substituting in Equation (A6) and simplifying, we get

dM0,0(t)
dt

=
∫ ∞

0

∫ ∞

0

1
x + y

[∫ ∞

x

∫ ∞

y

2(x + y)
uv(u + v)

n(t, u, v)dvdu

−
∫ x

0

∫ y

0

2(ε + ξ)

xy(x + y)
n(t, x, y)dξdε

]
dydx

=
∫ ∞

0

∫ ∞

0

∫ u

0

∫ v

0

2
uv

dxdy f (t, u, v)dvdu −
∫ ∞

0

∫ ∞

0
f (t, x, y)dydx

=M0,0(t).

Solving these equations, we get

M0,0(t) = M0,0(0) exp(t). (A7)

Similarly, one can calculate the exact moment functions corresponding to the different
selection and breakage functions.
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Abstract: Porous media with low/moderate regional velocities can exhibit a complex dynamic of
contamination plumes, in which advection and molecular diffusion are comparable. In this work, we
present a two-dimensional scenario with a constant concentration source and impermeable upper and
lower boundaries. In order to characterise the plume patterns, a detailed discriminated dimensionless
technique is used to obtain the dimensionless groups that govern the problem: an aspect ratio of the
domain including characteristic lengths, and two others relating time and the horizontal length of
the spread of contamination. The monomials are related to each other to enable their dependences
to be translated into a set of new universal abacuses. Extensive numerical simulations were carried
out to check the monomials and to plot these type curves. The abacuses provide a tool to directly
manage the contamination process, covering a wide spectrum of possible real cases. Among other
applications of interest, they predict the maximum horizontal and transversal plume extensions and
the time-spatial dependences of iso-concentration patterns according to the physical parameters of
the problem.

Keywords: contamination plume; advection-diffusion; universal curves

1. Introduction

There are many non-stationary scenarios in large extension water-saturated porous
media in which the existence of both the regional velocity and molecular diffusion of a
solute in the fluid are combined. The primary interest in eventual processes of pollutant
spreading is to determine the spatial and temporal evolution of the contaminant plumes in
order to plan actions of control. The environmental effects involve aquifer contamination,
a problem that has been widely treated in the scientific literature since the middle of
the last century. Specific aspects that range from the mathematical-physical theoretical
description of the process [1] to real cases that generally cause socio-economic impacts [2]
have been addressed.

The objective of this work, as in other works where similar methodologies have been
applied [3–8], is to obtain dimensionless groups that govern the expansive dynamics of
the plumes caused by the simultaneous effects of advection and diffusion. These groups
will collect the preponderance of one phenomenon over another, and they are the mono-
mials according to which the temporal evolution of the horizontal and transversal plume
extensions can be described and represented graphically by means of a universal abacus.

From a practical point of view, these type curves or universal abacuses allows hy-
drogeologists and engineers to confront contamination problems in groundwater systems
through direct analyses to gain rapid predictions using curve matching and interpolation
techniques, making computer simulations or field testing unnecessary. Although the accu-
racy of the results depends, to a great extent, on the experimental parameters, which could
be difficult to obtain when time or economic variables are present, the universal curves can
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establish a range of spatial-temporal contamination extensions based on the reliability of
the field data introduced as input, which must be set as a starting hypothesis. These type
curves can also be used to obtain a preliminary idea of the spread of the contamination
when planning in–situ trace tests, which require setting the location of control points [9,10]
as well as delimiting the time-dependent perimeters when establishing different types of
land use [11,12].

To limit the scope of the work, large 2D rectangular scenarios in which the extension
of the contamination is far from reaching the boundaries of the domain have been de-
vised. The regional flow has been implemented from left to right and the horizontal faces
of the domain are impervious to both flow and solute, simulating a narrowly-confined
layer of 1m in depth parallel to the horizontal surface. The methodology described in
this work to obtain the proper monomials consisted of, firstly, applying the discriminated
dimensionless technique to the governing equations to obtain the dimensionless groups
(a standard objective of dimensional analysis [13–18]), secondly, defining the interdepen-
dences among monomials or unknowns using the Pi theorem [19] and, finally, providing
extensive numerical simulations to verify the reliability of the groups and to depict the
universal abacuses.

It is worth mentioning that in the first step of the protocol, the use of a standard
non-discriminated technique to obtain dimensionless groups in the mathematical model
that govern this problem is a topic of heated debate among researchers [20,21]. The classic
techniques used to obtain the dimensionless groups, once the governing equation has been
written in its dimensionless form, would not, in fact, lead to a proper characterisation of
the problem. These techniques do not generally introduce the hidden magnitudes (which
are the unknowns of interest) or the time factor into the process, so that such unknowns
cannot be derived from the groups by applying the Pi theorem. Instead, the proposed
dimensionless protocol (discriminated and normalised nondimensionalisation of the gov-
erning equation) leads directly to the least number of independent groups and to the
function of dependence between the unknowns and the physical and geometric param-
eters of the problem. By means of mathematical approximations and manipulation, the
protocol associates to each addend of the equation a numerical coefficient of a dimensional
character which balances with the rest, deducing the groups as independent ratios between
these coefficients.

It should also be noted that the dimensionless group that characterises this type of
coupled problem (advection and molecular diffusion) is the so-called Peclet number [22].
A dimensional study of the equation has been carried out in some research with different
transport and flow conditions in dispersive scenarios, depicting type curves that are
dependent on the Peclet number [23,24]. Despite the fact that hydrodynamic dispersion
effects can be neglected when regional velocities are small enough, in the scenario presented
here, this number cannot be defined a priori since the extensions of the domain (length
or width) are not relevant to the study of the dynamics of contamination. As mentioned
above, in this work we consider instead the time needed for the contamination plume to
reach the boundaries. The dimensionless groups deduced, all of which contain unknowns,
allow us to establish the functional relationships that we are interested in.

As for the second step in the methodology, once the Pi theorem has been applied and
the dependences of the unknowns have been deduced, the direct quotient between the
regional velocity (vo) and the molecular diffusivity (D) emerges as a determining factor
in the prevalence of the transport phenomenon over diffusion. It is a dimensional factor
(vo/D) whose unit is the inverse of a length (m−1) with no apparent physical meaning.
Indeed, the unknowns (horizontal and transversal extensions of the contamination plume
or global isoline pattern) are also dependent on a time factor. The expression of this
dependence allows us to separate the effect of the quotient (vo/D) and the product voτ (τ
is time) to substantially simplify the universal representation.

Finally, the numerical simulations are performed with SEAWAT [25], a widely recog-
nised and reliable software package used for theoretical [26,27] and practical-technical
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purposes [28,29]. A large number of numerical simulations has allowed us to develop a
wide set of universal abacuses that provide relevant information on the space-time dynam-
ics of the contamination plume. The physical variables of the problem cover a range of
solutions which are fully representative of all the cases that may occur in practice, including
those asymptotic cases of negligible diffusion versus advection, and vice versa. The limit
of negligible diffusivity allows us to represent new universal curves to characterise pure
advective processes. The use of universal graphs is illustrated with examples.

The hypotheses assumed in the physical model are the following: (i) velocities small
enough to neglect the effect of hydrodynamic dispersion, (ii) the Darcy flow (negligible
inertial forces and laminar flow), (iii) isotropic and uniform hydraulic conductivity, (iv)
viscosity independent of concentration, (v) two-dimensional geometry and the absence of
gravitational effects, (vi) isothermal conditions, (vii) water-saturated porous media, (viii)
the absence of sources and/or sinks for flow, (ix) fully miscible single-phase fluid with
negligible compressibility for both the fluid and the porous matrix (constant porosity) and
(x) non-reactive solute transport.

2. Nomenclature

ao numerical constant (dimensionless)
c fluid concentration (kg/m3)
co constant fluid concentration at a certain point (kg/m3)
D molecular diffusivity coefficient (m2/d)
g gravity acceleration (m/s2)
h hydraulic head (energy per unit of specific weight)
H height of the domain (m)
hl, hr hydraulic head at the left and right boundaries, respectively
k permeability (m2)
K hydraulic conductivity (m/d)
l length (m)
L horizontal length of the domain (m)
L length of the domain (m)
H vertical length of the domain (m)
p pressure at the point (Pa)
q specific discharge or Darcy velocity (m/d)
v fluid velocity (m/d)
vo regional Darcy velocity (m/d)
xo location of the constant concentration point (m)
x,y horizontal and transversal coordinates (m)
θ porosity (dimensionless)
μ dynamic viscosity (kg m−1s−1)
π dimensionless groups
ρ fluid density (kg/m3)
ρo density of the fluid with zero concentration (Kg/m3)
τ time (days)
τc time factor (days)
Ψ identifies a general unknown function
~ denotes the same order of magnitude
≡ denotes equivalence for dimensionless groups
Subscripts

1,2, . . . used to identify the dimensionless groups
x,y related with coordinate direction
left refers to the left of the focus
Superscripts
′ denotes the dimensionless variable
* denotes characteristic values of a given quantity
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3. Mathematical Model

Under the conditions mentioned at the end of Section 1, the mathematical model is
composed of the mass conservation equations for the fluid and for the contaminant [30,31].
In mathematical terms, these read as follows:

− [∇·(ρq)] = θ
∂(ρ)

∂τ
(1)

[∇·D(∇c)]−∇·(vc) =
∂c
∂τ

(2)

The relationship between the specific discharge and the actual fluid velocity is given
by q = vθ, with θ being the porosity of the medium. Thanks to the coupling, according to
Equation (2), the velocity of the fluid in the porous medium causes continuous redistri-
bution of the concentration and, therefore, of the density of the solution, which affects its
movement through Equation (1).

Equation (1) can be solved in terms of hydraulic potential or pressure by means of
Darcy’s law (i.e., a stationary momentum equation), expressed by Muskat [32] as follows:

q = − k
μ
∇p (3)

Since the global pressure distribution depends on the global density distribution,
the qx and qy components of the specific discharge are affected by spatial variations in

density. In terms of the hydraulic head, h = P
ρg , and assuming that the fluid viscosity is

not dependent on concentration, Darcy´s equation is written as q = −K ∂h
∂x , with K being

hydraulic conductivity, a physical parameter of the porous medium, which is decisive for
velocity, included in the mathematical model.

We consider a two-dimensional water-saturated rectangular domain with a 2:1 aspect
ratio, according to the schematics of Figure 1.

Figure 1. Porous domain and boundary conditions.

The parameters of the soil that will later be shown to influence the values of the mono-
mials have values of between 2.5 and 20 m/d (equivalent to fine sand or silty sand) for the
hydraulic conductivity K, an effective porosity of 0.15 and a molecular diffusivity coefficient
D ranging between 0.0003 and 0.0012 m2/d (representative of different salt species).

A zero-concentration regional flow, with a constant velocity vo and constant density ρo,
enters from the boundary on the left due to a fixed hydraulic potential drop between the left
and right-hand boundaries. The upper and lower horizontal boundaries are impermeable
(zero normal velocity) and do not let the concentration go through by diffusion (zero
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normal concentration gradient). In the position (x = xo, y = 0), which we will call focus,
there is a cell of constant concentration co, representing the source of contaminant. The
boundary conditions can be summarised as follows:

Hydraulic head:

h(x=0,y,τ) = hl, h(x=L, y,τ) = hr,
∂h
∂y (y=± H

2 ,τ)
= 0 (4)

Concentration:

c(x=xo, y=yo,τ=0) = co, c(x ,y,τ=0) = 0 (at the rest of the domain) (5)

Under these conditions, we will study the non-stationary pattern of concentrations
when H is large compared to the transversal dimension of the contamination plume. The
isolines of the concentration pattern are deformed ellipsoids that widen in the horizon-
tal and vertical directions of the domain due to the coupled processes of diffusion and
advection. These ellipsoids surround the focus and finally keep its left end in a fixed
position. As long as the contamination plume does not reach the right and upper (or lower)
boundaries of the domain, the problem is not stationary (except for the small region to the
left of the focus) so we expect the vertical and horizontal extent of the plume to depend on
the parameters of the problem and on time. The interaction between the advection and
diffusion phenomena is not easily predictable, even though each equation is linear in its
unknown, as the position of the plume and isolines are complex non-linear functions of the
velocities, pressure, and their gradients.

In the following section, we rewrite this mathematical model in its dimensionless
form and, after some algebraic manipulations and the application of the Pi theorem, the
dependences between the variables of interests and the physical parameters of the problem
are obtained.

4. Dimensionless Groups

4.1. Deduction of the Dimensionless Groups

Before deriving the dimensionless groups for the coupled diffusion and advection
problems or for purely advective problems, it is worth mentioning the easier problem of
pure diffusion for which analytical solutions have been established [33]. Some comments
should be made regarding the applied protocol.

The procedure followed to deduce the dimensionless groups that rule a given problem
based on the Pi theorem consists of reducing the governing equations to their dimensionless
normalised forms and obtaining such groups by comparing the coefficients that multiply
the derivatives of each addend of the equation. These coefficients, which are physically
or dimensionally homogeneous, are of the same order of magnitude in the normalised
equation so their ratios are the dimensionless groups that are sought. In recent years, a
formal procedure of nondimensionalising has been proposed and successfully applied to
many complex problems in different areas to obtain new universal solutions. For example,
it is worth citing the consolidation problem in soil mechanics, flow and (heat or solute)
transport in porous media, and a variety of mechanical problems, all of which are coupled
and nonlinear [7,8,34]. It should be noted that since the dimensionless numbers for most
engineering or scientific problems are already found in the literature, the former procedure
is generally avoided, and classical known numbers are directly used in the Pi theorem.
This, however, generally leads to poorer predictive capabilities compared to the approach
presented here.

The first step carried out to deduce the dimensionless governing equation is to choose a
suitable list of reference quantities to define the dependent and independent dimensionless
variables. These are chosen either from the input parameters of the problem or (as in this
case) by introducing suitable unknowns whose order of magnitude will later be deduced
as a consequence of the application of the Pi theorem. The only criterion with which these
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reference quantities should be chosen is that the range of values of the normalised variables
is as bounded as possible to the interval [0, 1]. This criterion allows the derivatives of these
variables to be averaged to a value of the order of the unit throughout the entire length
of the scenario. In addition, the discrimination must be applied [35,36]. This means that
vector variables such as position or velocity must be made dimensionless by means of
different references according to their spatial direction. In this way, dimensionless groups
commonly called “aspect ratios” or ”form factors” do not necessarily emerge directly as
independent groups.

As in other problems of similar complexity, the procedure requires good physical
knowledge of the problem and some experience to find the unknowns introduced as refer-
ences, their order of magnitude (by application of the Pi theorem) and their exact solution
through the universal curves obtained by a large number of precise numerical simulations.
This procedure has some advantages over the classical dimensional analysis. Firstly, the
dimensionless groups emerging in the process, some containing unknowns and others
without unknowns, are formally obtained and the relationship between them constitutes
the direct application of the Pi theorem. Secondly, the groups have a unitary order of mag-
nitude since they are obtained as balances between the addends of the governing equation.
Groups of an order of magnitude higher (or lower) than unity, can be neglected in the
governing equation, which simplifies the problem. Thirdly, this procedure incorporates the
dimensionless physical parameters into the deduced monomials, thus reducing the global
number of groups and making the characterisation more precise. The resulting groups are
the proper parameters to represent universal solutions.

4.2. Coupled Advection and Diffusion Case

We assume isotropic molecular diffusivity, the porosity θ to be constant, and we
neglect the transversal velocity (vy) and its spatial derivatives (since they are of an order of
magnitude much lower than the regional velocity and its changes). Therefore, it follows
that vx ≈ vo and ∂vx

∂x is negligible, and Equation (2) in rectangular 2D coordinates is
reduced to:

∂c
∂τ

= −vo
∂c
∂x

+ D
∂2c
∂x2 + D

∂2c
∂y2 (6)

Dimensionless variables for x, y, c, vx, and τ are defined (discriminately) as

x′ = x
l∗x

y′ = y
l∗y

c′ = c
co

τ′ = τ

τ∗ (7)

In these definitions, co and vo are known parameters, while l∗x, l∗y and τ∗ are unknown
parameters related to each other. For a given time characteristic (τ∗), l∗x and l∗y define the
extension of the solute plume from the constant concentration point. For example, they can
be defined as the region in which the concentrations are above a certain percentage of co.
With this choice, dimensionless variables may be considered normalised since they vary in
the range [0, 1]. Substituting (7) in (6), the last equation becomes dimensionless:

co

τ∗

(
∂c′

∂τ′

)
= −covo

l∗x

(
∂c′

∂x′

)
+

coD
l∗2
x

(
∂2c′

∂x′2

)
+

coD
l∗2
y

(
∂2c′

∂y′2

)
(8)

Assuming the derivatives between brackets to be of the order of one, four coefficients
are found to describe the solution (or patterns) of the equation in the domain defined by l∗x,
l∗y and time τ∗. These are:

co

τ∗ ,
covo

l∗x
,

coD
l∗2
x

coD
l∗2
y

(9)

These coefficients have to be of the same order of magnitude since their terms in the
equation balance each other. The independent ratios between these coefficients, chosen for
suitability, are the dimensionless groups. We choose them as follows:

224



Mathematics 2021, 9, 725

π1 =

coD
l∗2
y

coD
l∗2
x

=
l∗2
x

l∗2
y

≡ l∗x
l∗y

π2 =
vol∗x

D
π3 =

voτ
∗

l∗x
(10)

To characterise the solution in the better way, each of the unknowns l∗x, l∗y and τ∗ must
appear only in one group, unless this is not possible (which is the case of l∗x). Therefore,
group π3 can be substituted for the product of groups π2 and π3. This finally leads to the
alternative solution:

π1 =
l∗y
l∗x

π2 =
vol∗x

D
π3 =

vo
2τ∗

D
(11)

Group π1 is an aspect ratio of the domain and provides information about the relation
between l∗x and l∗y. The other groups allow us to relate time and the horizontal length of
the transition or salt contaminated region measured from the focus. According to the Pi
theorem, the solution π2 = Ψ(π3) leads to:

l∗x =
D
vo

Ψ
(

vo
2τ∗

D

)
(12)

with Ψ an unknown function of its arguments. Writing the solution in the following way:

l∗x =

(
D
vo

)
Ψ
{(vo

D

)
voτ

∗
}

(13)

we obtain interesting and useful information. As expected, each iso-concentrated line of the
pattern (defined by the dimensional value c′) depends on time (τ∗), regional velocity (vo)
and molecular diffusivity (D), and for the same values of vo

D and voτ
∗, the concentration

isoline is the same. Equation (13) shows detailed information about this kind of dependence.
Firstly, keeping the ratio vo

D constant, the patterns for each c′ are the same for all the times
so that voτ

∗ is also constant. This means that if we take two scenarios, the first with the
pair of values (vo,D) and the second with the pair (aovo,aoD), the patterns of dimensionless
isolines ( c′) at a given time τ∗ for the first scenario is the same as that of the second one
at time τ∗

ao
. In this way, scenarios of the same value of the ratio vo

D , for a given time τ∗
contain the information from the patterns corresponding to all the regional velocity values.
This allows us to depict a set of abacuses, one for each value of the ratio vo

D , in which the
extension of each concentration isoline, l∗x( c′) may be represented as a function of time τ∗,
choosing c′ as the parameter of the abacus. To use this information, the time has to be
suitably corrected according to the value of the regional velocity. In the following section
related to the construction of the universal curves, this will be further clarified.

With regards to the characteristic transversal length, the group π1 =
l∗y
l∗x

allows us to
write l∗y∼ l∗x, which is equivalent to the dependence

l∗y =

(
D
vo

)
Ψ
{(vo

D

)
voτ

∗
}

(14)

with Ψ being a new function of its argument. The same discussion made above for l∗x
applies here.

Finally, we can expect that the part of the pattern which is located to the left of the
focus (xo, y = 0) will be a steady-state pattern after a relatively short time characteristic for
which each isoline defined by c′ is located at a characteristic distance from (xo,0), l∗x(left).

Indeed, deleting the addend ∂c
∂t from Equation (6) and assuming changes only in the x

coordinate, the only emerging dimensionless group is π =
vol∗x(left)

D . Then, the solution is
given as:

l∗x(left) =

(
D
vo

)
(15)
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The solutions provided by Equations (13)–(15), and the universal curves that make use
of them, constitute an important management tool since they provide the level of global
contamination of the domain and its gradation, at every instant.

4.3. Pure Advection

For this scenario, with the same assumptions as the coupled problem and using the
same dimensionless variables defined in (7), Equation (2) is reduced to:

− covo

l∗x

(
∂c′

∂x′

)
=

co∂c′

τ∗∂ t′ (16)

which leads to two coefficients, covo
l∗x

and co
τ∗ and one single dimensionless group π1 = voτ

∗
l∗x

.
This results in the following dependence:

l∗x = voτ
∗ (17)

As in the former analysis, each isoline defined by its dimensionless concentration c′
has its particular solution. So, l∗x(c′) is the horizontal extension at time τ∗, going from the
furthest point of the isoline to the constant concentration position imposed by the inner
boundary condition. This length is proportional to the regional velocity but changes from
one isoline to another

l∗x
τ∗ = vo Ψ

(
c′
)

(18)

The function Ψ(c′) is universal and may be depicted by a single numerical simulation.
The region of concentration is a slender arrow in which the advancing fronts of the lower
concentration isolines are ahead of the higher concentration fronts. The distance between
the fronts of any pair of isolines c′1 and c′2, increases with time and depends on their
concentrations according to the expression:

l∗x (c′1)
− l∗x (c′2)

= voτ
∗ {Ψ

(
c′1
)− Ψ

(
c′2
)}

(19)

This result can also be conveniently represented by a universal abacus.

4.4. Perspectives

It is interesting to discuss here what can be deduced from the previous results in
finite domains and large time periods in which contamination reaches the boundaries of
the scenario. Although this is not the main subject of this work, the treatment of finite
scenarios adds new dimensionless groups and makes the solution more complex. For
example, a finite scenario in the horizontal direction (but very large in the transversal
direction) introduces the extension L in the dimensionalising process, giving rise to a new
dimensionless group. In contrast, if the scenario is finite in the transversal direction (and
very extensive in the horizontal one), the extension H of the domain must be considered,
which also gives rise to the appearance of a new group. Finally, if the scenario is finite in
both directions, the introduction of L and H would create two new dimensionless groups.

In this way, the introduction of any new condition like a sink or source (an injection
or abstraction well), or reactive transport (degradation tracers), increases the number of
monomials and, thus, the universal solutions are translated into a set of abacuses in a way
that each one is set according to a specific value of a selected dimensionless group. A
scenario similar to the one here presented but introducing an abstraction well located at
a specific distance would be an interesting case for further research. From the practical
point of view, this represents an often-used procedure in field testing to estimate the
physical parameters of soils. The use of universal abacuses will contribute to obtaining
these parameters by means of an inverse protocol.
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5. Verification by Numerical Simulations

The numerical simulations have been carried out using the programme SEAWAT
V.4 [37]. The following figures illustrate some of the simulated scenarios created to obtain
the universal graphs. For example, Figure 2 shows the iso-concentration patterns in
a large 2D scenario with a focus or constant concentration point located near the left-
hand boundary, in which advection and diffusion effects are coupled. The data are:
vo = 0.0006 m/d, D = 0.0006 m2/d and co = 1000 kg/m3. The concentrations of the isolines
are 10, 200. . . kg/m3, which correspond to 10%, 20%. . . of co. The vertical extension of
each pattern has been trimmed to reduce the size of the figure. As shown, the patterns
progressively extend the contaminated region in vertical and horizontal directions. The
deformation of the isolines (more pronounced for small concentration isolines) with respect
to the circular shape that they would have with pure diffusion is due to the advective effect.

 

Figure 2. Iso-concentration patterns for different times in a large scenario with advection and
diffusion. t = 500, 2000, 6000 and 10,000 days. The blue lines and grey network represent piezometric
lines and cell extension (1 m2), respectively.

In contrast, the patterns for a scenario with only the advection effect is shown in
Figure 3. The data are: vo = 0.05 m/d, D = 0 and co = 1000 kg/m3. In this scenario, the
focus has been converted into a vertical segment to better appreciate the progress of the
concentration fronts (of equal length to that of the segment) of each isoline. It can be seen
that the velocities of each front depend on the concentration of the isoline, with values
greater than the regional velocity (vo) for the small concentration isolines and lower for
those with higher concentrations.

Figures 4 and 5 show the evolution of the isoline fronts in x direction (for vo = 0.05 m/d)
when D = 0 and advection dominates. The first one shows the temporal evolution of the
width of the region of variable concentration; that is, the area affected by significant con-
tamination, defined as the distance between the isolines of concentration 100 and 900 (10%
and 90% of co, respectively). The solution for an identical scenario with a 2co concentration
has been superimposed. The separation between isolines of the same relative concentration
(10% and 90%) has the same evolution. The different lines depicted in Figure 5 establish
the distance to the focus of any iso-concentration line (defined as a percentage in respect to
the contamination source) as a function of time. As previously mentioned, the velocity of
each front is constant but increases as the concentration diminishes; that is, the variation in
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the inclination of different lines indicates that low concentration isolines spread faster than
high concentration values.

 

Figure 3. Iso-concentration patterns for times 50, 200, 500 and 1000 days in a large horizontal scenario
due to advection (without diffusion).

 

Figure 4. Distance between the fronts of concentrations 0.1co and 0.9co as a function of time.
co = 1000 and 2000 kg/m3, vo = 0.05 m/d.
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Figure 5. Location of the isoline fronts as a function of time. vo = 0.05 m/d.

Continuing with the illustration of the coupled diffusion and advection effects, Figure 6a–c
show the typical concentration profiles for different ratios of vo/D and co = 1000 kg/m3.
These figures can be contemplated as a different and more complete configuration of
Figures 2 and 3; the x-y axis distribution of concentration for specific times is now plotted
on the vertical axis of concentration (z coordinate) in Figure 6a–c. Figure 6a is the case of
no diffusion, with c = 1000 kg/m3 and vo = 0.0006 m/a, a velocity that corresponds to the
front of the isoline of concentration 0.5co. The profiles gradually decrease their negative
slope, increasing the distance from the small concentration isolines to those of higher
concentration. Below the legend, the spreading of contamination in the x-y coordinates
corresponding to the curve t = 6000 days is represented. Positions of concentrations 900
and 100 are represented as normalised with the 0.9 and 0.1 values in coordinate z (vertical
axis in the chart). Figure 6b is a comparison between the profiles after 80 days for a
pure diffusion process (D = 0.0006 m2/d), pure advection (vo = 0.0006 m/d) and coupled
advection-diffusion (D = 0.0006 m2/d, vo = 0.0006 m/d). The profile corresponding to the
combination of both effects presents two marked inflection points, depending on the vo/D
ratio. This is a consequence of the coupling between both effects.

Finally, Figure 6c shows the profiles for a coupled problem with D = 0.0006 m2/d
and vo = 0.0003 m/d for different times. For this ratio, vo/D = 2 as well as for ratios that
are larger than unity, the profiles present an interesting result. If we consider the same
concentration value in all the profiles (for example 0.3, which corresponds to c = 300 kg),
the point of the domain with this concentration moves to the right more and more slowly
until it stops at a certain distance from the focus at a certain time. This distance is set by
the curve corresponding to the last time studied. The lower the chosen concentration, the
greater the distance and time at which the concentration is fixed, and vice versa. As will
be seen in the next section, similar phenomena occur in the transversal direction. As in
Figure 6a, an x-y coordinate image of iso-concentration lines for t=14,000 days has been
included below the legend so it can be compared with the concentration values of the same
line in the z coordinate (or vertical axis in the chart).
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(a) 

 
(b) 

 
(c) 

Figure 6. Concentration profiles. (a) Only advection, c = 1000 kg/m3 and vo = 0.0006 m/d. (b) For τ = 80 days, pure
diffusion (D = 0.0006 m2/d), pure advection (vo = 0.0006 m/d) and advection-diffusion (D = 0.0006 m2/d, vo = 0.0006 m/d).
(c) Coupled problem, D = 0.0003 m2/d and vo = 0.0006 m/d.
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All these results, which have been qualitatively described, will be represented by
universal curves in the following section, after a large number of numerical simulations
have been made. All this will verify the mathematical dependences derived through the
non-dimensionalisation process followed in Section 4.

6. Universal Solutions

6.1. Scenarios with Only Advective Flow

For these scenarios, the only universal curve comes from expression (18), which we
rewrite in the form of:

l∗x/τ∗

vo
=

vc′

vo
= Ψ

(
c′
)

(20)

This relationship represents the ratio between the velocity of the front of the dimen-
sionless concentration c′, and the regional velocity vo. c′ is the ratio between the actual
concentration of the front (c) and the constant concentration of the source. Figure 7 shows
the universal dependence vc′

vo
, or Ψ(c′), on c′. The c′ = 0.5 front travels at the regional

Darcy velocity. For a wide range of concentrations, c′ ∈ [0.15–0.85], the velocities of the
fronts deviate very little from the value of vo (less than 10%). Only for very small or very
large values of c′, the velocities are somewhat higher (up to 1.3vo) or lower (0.7vo) than vo,
respectively.

 
Figure 7. Universal dependence vc′

vo
= Ψ(c′) (only advective effect).

6.2. Scenarios with Coupled Diffusion and Advection

The universal curves presented in this sub-section derive from the expressions (13)–(15).
The first expresses the longitudinal extension measured from the source of contamination
of each concentration isoline, the second, the maximum transversal extension, and the
third, the horizontal extension of the polluted region to the left of the focus. Each isoline
is characterised by its dimensionless concentration, taking that of the focus as a reference.
The way in which these characteristic lengths depend on the physical parameters of the
problem, vo and D, allows us to organise the universal curves in the form of an abacus, with
a specific value for the relationship vo/D for each one. Every curve in Figure 8 represents
the horizontal extension (vertical axis) of the isolines of dimensionless concentration c′
(l∗x(c′)) against a time factor τc (horizontal axis), for vo

D = 1. The simulations to determine
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the function of the dependence (13) have been carried out for values vo = 0.0006 m/d and
D = 0.0006 m2/d. In this way, the time factor (τc) is related to real time (τ∗) by

τc =

(
0.0006

vo

)
τ∗ (21)

Thus, for the same ratio ( vo
D =1) and different values of vo and D, the extension of any

isoline (l∗x(c′)) associated with a real time τ∗ is obtained by entering the abscissa axis with
the value τc given by expression (21). For greater detail, the time factor has been separated
into two intervals with ranges [100–2000 days] and [10–100 days], Figure 8a,b, respectively.
For longer times, the contaminated regions stabilise for successively increasing values
of c′. The lower the concentration is, the sooner the stabilisation occurs. Figure 8c,d
show the extensions of some isolines for times of [2000–20,000 days] and [2000–8000 days],
respectively.

The abacus corresponding to the monomials vo
D = 2, 5 and 10 are shown in Figures 9–11,

respectively, with details similar to the previous ones. Numerical solutions have been
obtained by retaining the regional velocity (vo = 0.0006 m/d) and changing the diffusivity
to successive values D = 3·10−4, 1.2·10−4 and 3·10−4 m2/d. In this way, the time factor is
related to real time through the same expression as the former abacus (21).

 
(a) 

 
(b) 

Figure 8. Cont.
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(c) 

 
(d) 

Figure 8. Universal curve l∗x(c′) as a function of time factor τc. Parameter of the abacus vo
D = 1, vo = 0.0006 m/d. (a) τc ∈

[100–2000 days], (b) τc ∈ [10–100 days], (c) τc ∈ [2000–20,000 days], (d) τc ∈ [2000–8000 days].

 
(a) 

Figure 9. Cont.
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(b) 

 
(c) 

 
(d) 

Figure 9. Universal curve l∗x(c′) as a function of time factor τc. Parameter of the abacus vo
D = 2. vo = 0.0006 m/d.

(a) τc ∈ [100–2000 days], (b) τc ∈ [10–100 days], (c) τc ∈ [2000–20,000 days], (d) τc ∈ [2000–8000 days].
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Universal curve l∗x(c′) as a function of time factor τc. Parameter of the abacus vo
D = 5.

vo = 0.0006 m/d. (a) τc ∈ [100–2000 days], (b) τc ∈ [10–100 days], (c) τc ∈ [2000–8000 days],
(d) τc ∈ [2000–20,000 days].
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(a) 

 
(b) 

 
(c) 

Figure 11. Universal curve l∗x(c′) as a function of time factor τc. Parameter of the abacus vo
D = 10. vo = 0.0006 m/d.

(a) τc ∈ [100–2000 days], (b) τc ∈ [10–100 days], (c) τc ∈ [2000–20,000 days].
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Similarly, the abacus corresponding to values vo
D = 0.5 and 0.1, made with vo = 0.0003

and 0.00006 m/d, are shown in Figures 12 and 13, respectively. Accordingly, the time
factors and real time are related by:

τc =

(
0.0003

vo

)
τ∗, τc =

(
0.00006

vo

)
τ∗ (22)

 
(a) 

 
(b) 

 
(c) 

Figure 12. Cont.
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(d) 

Figure 12. Universal curve l∗x(c′) as a function of time factor τc. Parameter of the abacus vo
D = 0.5. vo = 0.0003 m/d.

(a) τc ∈ [100–2000 days], (b) τc ∈ [10–100 days], (c) τc ∈ [2000–10,000 days], (d) τc ∈ [2000–20,000 days].

 
(a) 

 
(b) 

Figure 13. Cont.
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(c) 

 
(d) 

Figure 13. Universal curve l∗x(c′) as a function of time factor τc. Parameter of the abacus vo
D = 0.1. vo = 0.00006 m/d.

(a) τc ∈ [100–2000 days], (b) τc ∈ [10–100 days], (c) τc ∈ [2000–20,000 days], (d) τc ∈ [2000–20,000 days].

In relation to the largest transversal extension (l∗y(c′=0.1)) given by dependence (17), the
curves depicted in Figure 14 show this parameter (vertical axis) for isoline c′ = 0.1, which
represents 10% of the concentration of the focus, as a function of time factor τc (horizontal
axis) for vo

D = 0.1, 0.5, 1, 2, 5 and 10. As in the former figures, the time factor scale and

real time are related by expressions τc =
(

0.0006
vo

)
τ∗ for the curves vo

D = 1, 2, 5 and 10,

τc =
(

0.0003
vo

)
τ∗ for the curve vo

D = 0.5 and τc =
(

0.00006
vo

)
τ∗ for the curve vo

D = 0.1. The lack
of monotony in the slope of the curves is a consequence of the coupling between advection
and diffusion, which occurs at different times according to the relative influence of one
effect or the other. The patterns tend to stabilise when the advective and diffusive processes
balance each other, while the preponderance of the diffusive process clearly establishes
an unsteady pattern. There is a relationship between this maximum transversal extension
(l∗y(c′=0.1)) and the horizontal location (l∗∗x(c′=0.1)) measured from the focus (f) at which such
extension occurs. Figure 15 shows this dependence, in addition to that of the dimensionless
concentration c′ = 0.1 and the same ratios of vo

D .
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Figure 14. Universal curve l∗y(c′=0.1) as a function of time factor τc.

 
Figure 15. Universal curve l∗∗x(c′=0.1) as a function of time factor τc.

To finish, the universal curve corresponding to the location of the stationary contami-
nation fronts to the left of the focus, defined by the extension l∗x(left,c′), is shown in Figure 16
for the general case vo

D = 1, in which advection and diffusion process are equally balanced.
According to Equation (15), the curve is independent of the regional velocity as long as
the ratio vo

D remains constant. The period of time necessary to achieve this stationary
distribution of concentration profiles, estimated from different simulations, is expressed as
t = 1.8

vo
and varies from 750 to 6000 days, depending on the regional velocity (vo = 0.0024 to

6000 m/d, respectively). Further research may aim to establish new curves as a function
of the vo

D ratio as well as to define the characteristic stabilisation time as a function of this
ratio and the regional velocity.
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Figure 16. Universal curve c′ as a function of longitudinal position for vo = 0.0006 and 0.0012 m/d.

7. Conclusions and Final Comments

The parametric dimensionless characterisation following a discriminated and nor-
malised dimensionless protocol of the governing equations has allowed us to deduce
precise information about the dynamics of contaminant plumes in extensive 2D scenarios
with a constant concentration focus under the effects of advection and molecular diffu-
sion. The proposed non-dimensionalised procedure as well as the application of the Pi
theorem have resulted in accurate expressions of the unknown functions of interest (that is,
the horizontal and transversal extensions of the plume) on the physical and geometrical
parameters of the problem. In the most complex case, the lengths that define the pattern of
the plume extension depend on three parameters: the dimensionless concentration of the
isoline, the ratio between molecular diffusivity and regional velocity and a time corrected
by the regional Darcy velocity. Based on these results and thanks to a sufficient number
of numerical simulations, the functions can be universally represented by means of an
easy-to-use abacus that facilitates the monitoring and management of the contamination
plume in most real cases.

In the proposed protocol for the search of the dimensionless groups, normalisation
makes it possible to approximate the changes or partial derivatives of the dependent
variables to the unit when these are averaged over the entire domain of the problem, while
discrimination prevents the emergence of monomials of the type of geometric shape factors
that unnecessarily increase the number of dimensionless groups.

The coupling of the diffusive and advective flows is not intuitive since the cross values
of the variables and their derivatives are combined in the governing equation. Small
diffusivities versus advection (to the magnitude of unity, at the most) advance the dragging
effect by redistributing the concentration in the posterior or central area of the plume before
it affects the diffusive effect. However, if diffusion predominates over advection, it will
produce a redistribution of the concentration by diffusion and, over this dampened field of
concentrations, advection occurs.

The scenario addressed here is only a sample of the problems of contaminant flow
and transport in porous media. First, the geometry of the scenario may be different or
finite, including the effects associated with gravity flow. In addition, scenarios with a
constant initial concentration (not maintained), with a non-constant concentration or with
a contaminated fluid injection well could be tackled. Finally, the study of the dynamics of
contaminants under the effects of advection and hydrodynamic dispersion (in general, with
negligible molecular diffusivity) is another pending issue to characterise and for which to
propose new universal solutions.
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Abstract: Herein, we considered the Schrödinger operator with a potential q on a disk and the map
that associates to q the corresponding Dirichlet-to-Neumann (DtN) map. We provide some numerical
and analytical results on the range of this map and its stability for the particular class of one-step
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1. Introduction

Let Ω ⊂ R2 be a bounded domain with smooth boundary ∂Ω. For each q ∈ L∞(Ω),
consider the so called Dirichlet-to-Neumann map (DtN) given by:

Λq : H1/2(∂Ω) → H−1/2(∂Ω)

f → ∂u
∂n |∂Ω.

(1)

where u is the solution of the following problem:{
Δu + q(x)u = 0, x ∈ Ω,
u = f , ∂Ω,

(2)

and ∂u
∂n |∂Ω denotes the normal derivative of u on the boundary ∂Ω.
Note that the uniqueness of u as solution of (2) requires that 0 is not a Dirichlet

eigenvalue of Δ + q. A sufficient condition to guarantee that Λq is well defined is to
assume q(x) < λ1, the first Dirichlet eigenvalue of the Laplace operator in Ω, since, in this
case, the solution in (2) is unique. We assume that this condition holds and lets us define
the space

L∞
<λ1

(Ω) = {q ∈ L∞(Ω), s. t. q(x) < λ1, a. e. }.

In this work, we were interested in the following map:

Λ : L∞
<λ1

(Ω) → L(H1/2(∂Ω); H−1/2(∂Ω))

q → Λq.
(3)

This has an important role in inverse problems, where the aim is to recover the
potential q from boundary measurements. In practice, these boundary measurements
correspond to the associated DtN map, and therefore, the mathematical statement of the
classical inverse problem consists of the inversion of Λ.

It is known that Λ is one-to-one as long as q ∈ Lp with p > 2 (see [1]). Therefore,
the inverse map Λ−1 can be defined in the range of Λ. There are, however, two related
important and difficult questions that are not well understood: A characterization of the
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range of Λ and its stability, i.e., a quantification of the difference of two potentials, in the L∞

topology in terms of the distance of their associated DtN maps. Obviously, this stability will
affect the efficiency of any inversion or reconstruction algorithm to recover the potential
from the DtN map (see [2] and [3].

The first question, i.e., the characterization of the range of Λ is widely open. Tothe
best of our knowledge, the further result is due to [4], where a characterization is obtained
for the adherence, with respect to the weak topology in �2

−1, of the sequence of eigenvalues
associated with the orthogonal basis of eigenvectors {eink}k∈Z. Here, �2

α is the space of
sequences {cn}n∈Z, such that ∑n∈Z |n|2α|cn|2 < ∞. This topology is not the usual one in
L(H1/2(∂Ω); H−1/2(∂Ω)) and it is not easy to interpret how the adherence enlarges this set.
Furthermore, the characterization does not give much practical information on the range,
as, for instance, the convexity or accurate bounds on the eigenvalues. In fact, characterizing
such properties is one of the main motivations of this work, since we could establish
easily a priori if a desired linear map in L(H1/2(∂Ω); H−1/2(∂Ω)) can be associated with a
DtN map. On the contrary, we have to take into account that in practice, the DtN map is
estimated from physical measurements, which are subject to errors and may provide only
partial information. A precise knowledge of the range of Λ is useful to find the best DtN
map that fits the measurements and to design an inversion algorithm in such situations.

Concerning the stability, it is well known that the problem is ill posed and that the most
we can expect is logarithmic stability in general (see [5]). There are more explicit results
when we assume that the potential q has some smoothness. In particular, if q ∈ Hs(Ω)
with s > 0, the following log −stability condition is known (see [1]):

‖q1 − q2‖L∞ ≤ V(‖Λq1 − Λq2‖L(H1/2;H−1/2)), (4)

where V(t) = C log(1/t)−α for some constants C, α > 0. Stronger stability conditions are
known in some particular cases. For example, in [6], it was shown that when q is piecewise
constant and the components where it takes a constant value are fixed and satisfy some
technical conditions, the stability is Lipschitz, i.e., there exists a constant C > 0, such that:

‖q1 − q2‖L∞ ≤ C‖Λq1 − Λq2‖L(H1/2;H−1/2). (5)

In this work, we tried to understand better the situation by considering the simplest
case of a disk with one-step radial potentials q. More precisely, we provide some results
on the range of Λ and its stability when we restrict to the particular case Ω = B(0, 1) ={

x ∈ R2 : r = |x| < 1
}

and q ∈ F ⊂ L∞(Ω) given by:

F = {q ∈ L∞(Ω) : q(r) = γχ(0,b)(r), r = |x|, b ∈ (0, 1), γ ∈ [0, 1]}, (6)

where χ(0,b)(r) is the characteristic function of the interval (0, b). Note that F is a two-
parametric family depending on γ and b.

It is worth mentioning that, as we show below, the solution of (2) is unique for all
b ∈ (0, 1) and γ ≥ 0, and therefore, the DtN map is well defined for all of these one-step
potentials. In other words, 0 is not an eigenvalue of the operator Δ + q and, in particular,
we do not need to restrict ourselves to the constraint q(x) < λ1. However, we still restrict
ourselves to the bounded set F to simplify.

Even in this simple case, a complete analytic answer to the previous questions (range
of the DtN map and sharp stability conditions) is unknown. Therefore, we also considered
a numerical approach based on a discrete sampling of the set F. Given an integer N > 0,
we define h = 1/N and:

Fh = {q ∈ L∞(Ω) : q(r) = γχ(0,b)(r), b = hi, γ = hj,

i = 1, . . . , N − 1, j = 0, . . . , N}. (7)
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Note that Fh has N(N − 1) + 1 functions from F. As h → 0, we can obtain a better
description of F and, in particular, we should recover the properties for q ∈ F.

The main contributions of this paper are given below:

1. Concerning the stability of Λ, we show that it fails in the sense that inequality (4) does
not hold for any continuous function V(t) with V(0) = 0. The proof is an adaptation
of the analogous result for the conductivity problem obtained in [7]. In fact, we
consider—as potential—the same piecewise constant radial conductivity used in [7].
The stability constant blows up when the support of the inner disk where the value of
the potential is constant becomes zero.

2. We obtain estimates for the Lipschitz stability constant in (5), in terms of b, γ ∈ (0, 1).
However, the stability constant in (5) depends on b−4 and therefore blows up as b → 0.

3. We now consider γ ∈ [0, 1] fixed and we define the set Gγ ⊂ F as:

Gγ = {q ∈ L∞(Ω) : q(r) = γχ(0,b)(r), b ∈ (0, 1)}. (8)

We prove that if b ≥ b0 > 0, there is stability of the DtN map with respect to the
position of the discontinuity b for potentials in Gγ. More precisely, we obtain a
stability constant depending on γ−1b−3, which is uniformly bounded for b > b0 and
fixed γ (see Theorem 3 below). Note, however, that this constant blows up as γ → 0.
This stability result does not give information about the stability with respect to the
L∞ norm of the potentials, but it provides stability with respect to the L1 norm, which
is sensitive to the position of the discontinuities, when b > b0 > 0 and γ > γ0 > 0.
In fact, we show numerical evidence of such stability when considering potentials
in F.

4. For the range of Λ, we give a characterization in terms of the first two eigenvalues of
the DtN map. We also analyze the region where the stability constant is larger, and,
therefore, the potentials for which any recovering algorithm for q from the DtN map
will have more difficulties.

We mention that a similar analysis can be conducted for the closely related—and more
classical—conductivity problem, where (2) is replaced by:{ − div a(x)∇v = 0, x ∈ Ω,

v = f , ∂Ω,
(9)

and the Dirichlet-to-Neumann map, or voltage-to-current map, is given by:

Λa : H1/2(∂Ω) → H−1/2(∂Ω)

f → a ∂v
∂n |∂Ω.

(10)

In this case, the relationship between piecewise constant radial conductivities and the
eigenvalues of the DtN map is known [8] through a suitable recurrence formula. However,
there is not a direct transformation that relates both problems, and the analysis must be
done specifically for this case.

We refer to the review paper [9] and the references therein for theoretical results on
the DtN map in this case.

The rest of this paper is divided as follows: In Section 2 below, we characterize the
DtN map in terms of its eigenvalues using polar coordinates. In Sections 3 and 4, we
analyze the stability and range results, respectively. In Section 5, we briefly describe the
main conclusions, and finally, Section 5 contains the proofs of the theorems stated in the
previous sections.
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2. The Dirichlet-to-Neumann Map

In this section, we characterize the Dirichlet-to-Neumann map in the case of a disk.
System (2) in polar coordinates reads:⎧⎪⎨⎪⎩

r2 ∂2v
∂r2 + r ∂v

∂r +
∂2v
∂θ2 + r2q(r)v = 0, (r, θ) ∈ (0, 1)× [0, 2π),

limr−→0,r>0 v(r, θ) < ∞,
v(1, θ) = g(θ), θ ∈ [0, 2π),

(11)

where v(r, θ) = u(r cos θ, r sin θ) and g(θ) = f (cos θ, sin θ) is a periodic function.
An orthonormal basis in L2(0, 2π) is given by {einθ}n∈Z. Here, we use this complex

basis to simplify the notation, but in the analysis below, we only consider the subspace of
real valued functions. Therefore, any function g ∈ L2(0, 2π) can be written as:

g(θ) = ∑
n∈Z

gneinθ , gn =
1

2π

∫ 2π

0
g(t)e−intdt, (12)

and ‖g‖2
L2(0,2π)

= ∑n∈Z |gn|2. Associated with this basis, we define the usual Hilbert
spaces: Hα

# , for α > 0, as

Hα
# = {g : ‖g‖2

α = ∑
n∈Z

(1 + n2)α|gn|2 < ∞}.

The Dirichlet-to-Neumann map in this case is defined as:

Λq : H1/2
# (0, 2π) → H−1/2

# (0, 2π)

g → ∂v
∂r (1, ·), (13)

where v is the unique solution of (11).
In the above basis, the Dirichlet-to-Neumann map turns out to be diagonal. In fact,

we have the following result:

Theorem 1. Let Ω be the unit disk and q ∈ F. Then:

Λq

(
einθ
)

= cneinθ , n ∈ Z, (14)

where:

c0 =
−b

√
γJ1(

√
γb)

b log b
√

γJ1(
√

γb) + J0(
√

γb)
, (15)

cn = c−n = n
Jn−1(

√
γb)− b2n Jn+1(

√
γb)

Jn−1(
√

γb) + b2n Jn+1(
√

γb)
, n ∈ N, (16)

and Jn(r) are the Bessel functions of the first kind.

Note that the range of Λ, when restricted to F, is characterized by the set of sequences
{cn}n≥0 of the form (15) and (16) for all possible b, γ. In particular, when q = 0, we have:

cn = n, n = 0, 1, 2, . . . , (17)

and this sequence must be in the range of Λ.
The norm of Λq, when restricted to F, is given by:

‖Λq‖L(H1/2
# ;H−1/2

# )
= sup

n≥0

|cn|
1 + n2 . (18)
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Proof of Theorem 1. We first compute c0 in (14). As the boundary data at r = 1 in (11)
is the constant g(θ) = 1, we assume that v(r, θ) is radial, i.e., v(r, θ) = a0(r). Then, a0
should satisfy: {

r2a′′0 + ra′0 + r2q(r)a0 = 0, 0 < r < 1,
a0(1) = 1, limr−→0,r>0 a0(r) < ∞.

(19)

For r ∈ (0, b), we solve the ODE with the boundary data at r = 0, while for r ∈ (b, 1),
we use the boundary data at r = 1. In the first case, the ODE is the Bessel ODE of order 0,
and therefore, we have:

a0(r) =
{

A0 J0(
√

γr), r ∈ (0, b),
1 + C0 log r, r ∈ (b, 1),

where J0 is the Bessel function of the first kind and A0 and C0 are constants. These are
computed by imposing continuity of a0 and a′0 at r = b. In this way, we obtain:{

A0 J0(
√

γb) = 1 + C0 log b
A0

√
γJ′0(

√
γb) = C0

1
b .

Solving the system for A0 and C0 and taking into account that Λq(1) = ∂v
∂r (1, θ) =

a′0(1) = C0, we easily obtain (14).
Similarly, to compute cn in (14), we have to consider g(θ) = einθ in (11), and therefore,

we assume that the solution v(r, θ) can be written in separate variables, i.e., v(r, θ) =
an(r)einθ . Then, an must satisfy:{

r2a′′n + ra′n +
(
r2q(r)− n2)an = 0, 0 < r < 1,

an(1) = 1, limr−→0,r>0 an(r) < ∞, n ≥ 1.
(20)

As in the case of c0, for r ∈ (0, b), we solve the ODE with the boundary data at r = 0,
while for r ∈ (b, 1), we use the boundary data at r = 1. We have:

an(r) =
{

An Jn(
√

γr), r ∈ (0, b),
Cn(rn − r−n) + rn, r ∈ (b, 1),

where An and Cn are constants. These are computed by imposing continuity of an and a′n
at r = b. In this way, we obtain:{

An Jn(
√

γb) = Cn(bn − b−n) + bn

An
√

γJ′n(
√

γb) = nCn(bn−1 + b−n−1) + nbn−1.

Solving the system for An and Cn, we obtain, in particular:

Cn =
−bn J′n(

√
γb) + n bn−1√

γ Jn(
√

γb)

−(b−n−1 + bn−1) n√
γ Jn(

√
γb)− (b−n − bn)J′n(

√
γb)

.

We simplify this expression using the well-known identity:

2J′n(r) = Jn−1(r)− Jn+1(r),

and we obtain:

Cn =
−Jn+1(

√
γb)

b−2n Jn−1(
√

γb) + Jn+1(
√

γb)
.

Now, taking into account that Λq(einθ) = ∂v
∂r (1, θ) = a′n(1)einθ = (2nCn + n)einθ , we

easily obtain (14).
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Remark 1. In this proof of Theorem 1, we do not use the restriction γ ≤ 1 that satisfies the
potentials in F. In fact, the statement of the theorem still holds for any step potential, as in F,
but with any arbitrary large γ ≥ 0.

3. Stability

In this section, we focus on the stability results for the map Λ. Some results are
analytical and they are stated as theorems. The proofs are given in Appendix A. We
divided this section in three subsections, where we consider the negative stability result for
q ∈ F norm, and some partial results when we consider the subsets Fb defined by:

Fb =
{

q ∈ L∞(Ω) : q(r) = ξ(0,b)(r), γ ∈ [0, 1]
}

,

and Gγ defined in (8).

3.1. Stability for q ∈ F

The first result in this section is the lack of any stability property when q ∈ F. In par-
ticular, we prove that inequality (4) fails for any continuous function V(t) with V(0) = 0.

Theorem 2. Given q0 ∈ F, there exists a sequence {qk}k≥1 ⊂ F, such that ‖q0 − qk‖L∞ = γ > 0
for all k ≥ 1, while:

‖Λq0 − Λqk‖L(H1/2
# ;H−1/2

# )
→ 0, as k → ∞. (21)

This result contradicts any possible stability result of the DtN map at q0 ∈ F. Roughly
speaking, the idea is that the eigenvalues of Λ, given in Theorem 1 above, depend contin-
uously on b, unlike the L∞ norm of the potentials. A detailed proof of the Theorem 2 is
given in the Appendix A below.

3.2. Partial Stability

We now give two partial stability results when we fix b and γ, respectively.

Theorem 3. Given b ∈ (0, 1) and q1, q2 ∈ Fb, we have:

‖q1 − q2‖L∞ ≤ 15.0756
b4 ‖Λq1 − Λq2‖L(H1/2

# ;H−1/2
# )

. (22)

On the contrary, given γ ∈ (0, 1] and q1, q2 ∈ Gγ, we have:

|b1 − b2| ≤ 3.7489
γb3 ‖Λq1 − Λq2‖L(H1/2

# ;H−1/2
# )

, (23)

where b = min{b1, b2}.

The proof of this theorem is in the Appendix A below.
Inequality (22) provides a Lipschitz stability result for Λ when b is fixed. This result

is not new, since this situation enters in the framework in [6], as q takes constant values
in fixed regions. The contribution here is in the dependence of the Lipschitz constant on
the parameter b, which is associated with the size of the region, where q takes a different
constant value. An estimate (22) shows also that the lack of Lipschitz stability is related to
variations in the position of the discontinuity, which is the main idea in the negative result
given in Theorem 2.

A numerical quantification of this Lipschitz stability for b fixed is easily obtained. We
fix b = b0 and consider:

Fh,b0 = {q ∈ L∞(Ω) : q(r) = γχ(0,b)(r), b = b0, γ = hj, j = 1, ..., 1/h − 1}.
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and for q0 ∈ Fh,b0 :

C2(h, q0, b0) = max
q∈Fh,b0

q �=q0

‖q0 − q‖L∞

‖Λq0 − Λq‖L(H1/2
# ;H−1/2

# )

, (24)

then, C2(h, q0, b0) remains bounded as h → 0 for all q0 ∈ Fh. In Figure 1, we show the
behavior of C2(h, q0, b0) when h = 10−4 for different values of b0. To illustrate the behavior
with respect to b0 → 0, we plot on the left-hand side of Figure 1 the graphs of the functions:

C2,min(b0) = min
q∈Fh,b0

C2(10−4, q, b0), and C2,max(b0) = max
q∈Fb0

C2(10−4, q, b0). (25)

We see that both constants become larger for small values of b. We also see that both graphs
are close in this logarithmic scale. However, the range of the interval [C2,min(b), C2,max(b)] is
not small, as shown on the right-hand side of Figure 1.

Figure 1. Numerical estimate of the stability constant C2 in (24) for h = 10−4. To illustrate the
behavior on b, we plotted the maximum and minimum value when q ∈ Fh,b with respect to b in
logarithmic scale (left), and its range in normal scale (right).

Concerning inequality (23) in Theorem 3, it provides a stability result for Λ with
respect to the position of the discontinuity. In particular, this provides Lipschitz stability if
we consider a norm for the potentials that is sensitive to the position of the discontinuity.
This is not the case for the L∞ norm, but it is true for the Lp-norm for some 1 ≤ p < ∞.
For example, when p = 1:

‖q1 − q2‖L1 = γπ|b2
1 − b2

2| ≤ 2πγ|b1 − b2| ≤ 7.4978π

b3 ‖Λq0 − Λq‖L(H1/2
# ;H−1/2

# )
.

We can also check this numerically:

C2(h, γ0, b) = max
q∈Gh,γ0

‖q0 − q‖L1

‖Λq0 − Λq‖L(H1/2
# ;H−1/2

# )

, (26)

is bounded as h → 0 and b ≥ b0 > 0, where:

Gh,γ0 = {q ∈ L∞(Ω) : q(r) = γχ(0,b)(r), γ = γ0, b = hj, j = 1, ..., 1/h − 1}.

In Figure 2, we show the values when h = 10−4. We can observe that the constant
blows up as b → 0.
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Figure 2. C2(h, q) for b > b0 when h = 10−4.

4. Range of the DtN Map

In this section, we are interested in the range of Λ when q ∈ F, i.e., the set of sequences
{cn}n≥0 of the form (15) and (16) for all possible b, γ ∈ [0, 1]× [0, 1].

As F is a bi-parametric family of potentials, it is natural to check if we can characterize
the family {cn}n≥0 with only the first two coefficients c0 and c1. In this section, we give
numerical evidence of the following facts:

1. The first two coefficients, c0 and c1, in (15) and (16) are the most sensitive with respect
to (b, γ) and, therefore, are the more relevant ones to identify b and γ from the DtN
map.

2. The function:

Λh : Fh → R2 (27)

q → (c0, c1),

is injective. This means, in particular, that the DtN map can be characterized by the
coefficients c0 and c1, when restricted to functions in Fh. We also illustrate the set of
possible coefficients c0, c1.

3. The lack of stability for Λ is associated with a higher density of points in the range of
Λh. This occurs when either b or γ is close to zero.

4.1. Sensitivity of cn

To analyze the relevance and sensitivity of the coefficients cn = cn(b, γ) to identify the
parameters (b, γ), we computed their range when (b, γ) ∈ [0, 1]× [0, 1], and the norm of
their gradients. As we can see in Table 1, the range decreases for large n. This means that,
for larger values of n, the variability of cn is smaller and they are likely to be less relevant
to identify q.

However, even if the range of cn becomes smaller for large n, they could be more
sensitive to small perturbations in (b, γ) and this would make them useful to distinguish
different potentials. However, this is not the case. In Figure 3, we show that for the given
values of γ = 0.1, 0.34, 0.67, 0.99 and b ∈ (0, 1], the gradients of the first two coefficients,
with respect to (b, γ), are larger than the others. Therefore, we conclude that the two first
coefficients, c0 and c1, are the most sensitive and, therefore relevant to identify the potential
q.
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We also see in Figure 3 that these gradients are very small for b << 1. This means,
in particular, that identifying potentials with small b from the DtN map should be
more difficult.

Table 1. Range of the coefficients, i.e., for each cn, the range is defined as maxq∈Fh cn − minq∈Fh cn.

Coefficient Range

c0 0.5523
c1 0.2486
c2 0.1588
c3 0.1157
c4 0.0904
c5 0.0736

Figure 3. Norm of the gradient of the coefficients cn(γ, b) in terms of b ∈ (0, 1) for different values of
γ. We can see that the gradients of higher coefficients n ≥ 2 are smaller than those of the first two.
We can also observe that these gradients become small for small values of b.

4.2. Range of the DtN in Terms of c0, c1

Now, we focus on the range of the DtN in terms of the relevant coefficients (c0, c1),
i.e., the range of the map Λh in (27): R(Λh). In Figure 4, we show this range.

Figure 4. Range of the discrete Dirichlet-to-Neumann (DtN) map in (27) (h = 10−2).
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Coordinate lines for fixed γ and b are given in Figure 5. We can observe that R(Λh) is
a convex set between the curves:

rlow : {(c0(γ, 1), c1(γ, 1)), with γ ∈ [0, 1]},

rup : {(c0(1, b), c1(1, b)), with b ∈ [0, 1]}.

Note also that in the c0, c1 plane, the length of the coordinate lines associated with
b constant are segments that become smaller as b → 0. Analogously, the length of those
associated with constant γ become smaller as γ → 0. Thus, the region where either b or γ

are small produces a higher density of points in the range of Λh. This corresponds to the
upper left part of its range (see Figure 4). On the contrary, this Figure provides numerical
evidence of the injectivity of Λh as well. In fact, any point inside R(Λh) is the intersection
of two coordinate lines associated with some unique b0 and γ0.

Figure 5. Coordinate lines of the map Λh defined in (27) (h = 10−2). The upper figure contains the
coordinate lines associated with b constant, while the lower one corresponds to γ constant.

The higher density of points in the upper left hand-side of the range of Λh should
correspond to potentials q with a large stability constant C2(h, q), defined as:

C2(h, q) = max
q∈F

‖q0 − q‖L1

‖Λq0 − Λq‖L(H1/2
# ;H−1/2

# )

.

In Figure 6, we show the level sets of C2(h, q) for h = 10−4 and different q ∈ Fh.
The region with a larger constant corresponds to small values of b (upper right figure) and
larger values of c1 (upper left and lower figures). On the contrary, the region with a lower
stability constant is for b close to b = 1, which corresponds to the lower part of the range of
Λh when c0 is small.
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Figure 6. Level sets of the C2(b, γ) for q ∈ Fh and h = 10−4 in terms of (b, γ) (upper left) and in
terms of (c0, c1) (upper right), and a close up of the upper left region in this last figure is in the lower
figure. Regions separated by level sets are indicated: Region I corresponds to the potentials with a
stability constant larger that 107, region II corresponds to those with a stability constant lower that
107 but larger than 106, and so on.

It is interesting to analyze the set of potentials with the same coefficient c0 or c1. We
provide, in Figure 7, the coordinate lines of the inverse map (Λh)−1. When increasing
the value of either c0 (light lines) or c1 (dark lines), we obtain lines closer to the left part
of the (b, γ) region. We can see that the angle between coordinate lines becomes very
small for small b. In this region, close points could be the intersection of the coordinate
lines associated with not so close parameters (b, γ). This agrees with the region where the
stability constant is larger.

Figure 7. Coordinate lines of the map (Λh)−1 defined in (27).

5. Conclusions

We considered the relationship between the potential in the Schrödinger equation
and the associated DtN map in one of the simplest situations, i.e., for a subset of radial
one-step potentials in two-dimension. In particular, we focused on two difficult problems:
The stability of the map Λ (defined in (3)) and its range. In this case, the map Λ is easily
characterized in terms of the Bessel functions and this allows us to give some analytical
and numerical results for these problems. We proved the lack of any possible stability
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result by adapting the argument in [7] [Alessandrini, 1988] for the conductivity problem.
We also obtained some partial Lipschitz stability when the position of the discontinuity
is fixed in the potential, as well as numerical evidence of the stability with respect to the
L1 norm. Finally, we characterized numerically the range of Λ in terms of the first two
eigenvalues of the DtN map and provided some insight into the regions where the stability
of Λ is worse. As a future line of work, it could be interesting to consider the problem in a
more complicated stage, for instance, one can study not only one-step radial potentials q in
the problem, but could add more steps into the definition of the potentials.
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Appendix A

To prove Theorems 2 and 3, we need the following technical results regarding the the
Bessel functions.

Lemma A1. Let Jμ(r) be the Bessel functions of the first kind of order μ > − 1
2 . It is well known

(see [10]) that:

Jμ(r) =
rμ

2μΓ(μ + 1)
+ Sμ(r),

where:

Sμ(r) =
rμ

2μΓ
(

μ + 1
2

)
Γ
(

1
2

) ∫ 1

−1
(cos rt − 1)

(
1 − t2

)μ− 1
2 dt.

For n = 0, 1, 2, · · · and r ∈ (0, 1), the following holds:

− rn+2

2n+1Γ
(
n + 3

2
)√

π

∫ 1

0

(
1 − t2

)n+ 1
2 dt ≤ Sn(r) (A1)

≤ − rn+2 cos r
2n+1Γ

(
n + 3

2
)√

π

∫ 1

0

(
1 − t2

)n+ 1
2 dt,

0 <
rn

2n+1n!
≤ Jn(r) ≤ rn

2nn!
, (A2)

and:
0 <

rn

2n+2n!
≤ J′n+1(r) ≤

rn

2n+1n!
. (A3)

More explicit estimates for S0(r) and S2(r) are given by:

− r2

4
≤ S0(r) ≤ − r2 cos r

4
≤ 0, (A4)
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− r4

15π
0.4909 ≤ S2(r) ≤ − r4 cos r

15π
0.4909. (A5)

Proof. To prove (A1), we use:

r2t2

2
cos r ≤ 1 − cos(rt) ≤ r2t2

2
, r, t ∈ (0, 1), (A6)

and: ∫ 1

0
t2
(

1 − t2
)n− 1

2 dt =
1

2
(

n + 1
2

) ∫ 1

0

(
1 − t2

)n+ 1
2 dt.

From (A1) and the well-known identities:

Γ
(

1
2

)
=

√
π,

Γ(r + 1) = rΓ(r), r > 0,
2J′n+1(r) = Jn(r)− Jn+2(r), r > 0,

(see [11]), we get (A2), (A3), (A4), and (A5).

The following lemma is used in the proof of Theorem 3.

Lemma A2. For 0 < r ≤ s < 1 and n = 0, 2, we have:∫ 1

0
(1 − cos(rt))

(
1 − t2

)n− 1
2 dt ≤ πr2

28n + 8
,

and: ∫ 1

0
(cos(rt)− cos(st))

(
1 − t2

)n− 1
2 dt ≤ π(s2 − r2)

28n + 8
.

Proof. The previous estimates are a consequence of (A6) and the inequality:

cos r − cos s = 2 sin
s + r

2
sin

s − r
2

≤ s2 − r2

2
.

Proof of Theorem 2. We take γ = 1 without loss of generality. For b0 ∈ (0, 1), we consider
the fixed potential:

q0(r, θ) =

{
1, 0 < r < b0,
0, b0 ≤ r < 1,

and a positive integer k(b0) satisfying b0 +
1

k(b0)
< 1. We define the potentials:

qk(r, θ) =

{
1, 0 < r < bk,
0, bk ≤ r < 1,

k = 1, 2, · · ·, (A7)

with bk = b0 +
1

k(b0)+k .

We have ‖q0 − qk‖L∞ = 1 and to have (21), we have to prove for g ∈ H1/2
# that:

‖(Λq0 − Λqk

)
g‖2

H−1/2
#

≤ C|b0 − bk|2‖g‖2
H1/2

#
≤ C

k2 ‖g‖2
H1/2

#
, (A8)

where C is a constant independent of k and g.
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If g(θ) = ∑n∈Z gneinθ , by (15) and (16), we have:

‖(Λq0 − Λqk

)
g‖2

H−1/2
#

≤
∣∣∣∣ bk J1(bk)

bk J1(bk) log bk + J0(bk)
− b0 J1(b0)

b0 J1(b0) log b0 + J0(b0)

∣∣∣∣2|g0|2

+
∞

∑
n=1

∣∣∣∣∣ Jn−1(bk)− b2n
k Jn+1(bk)

Jn−1(bk) + b2n
k Jn+1(bk)

− Jn−1(b0)− b2n
0 Jn+1(b0)

Jn−1(b0) + b2n
0 Jn+1(b0)

∣∣∣∣∣
2

(1 + n2)1/2
(
|gn|2 + |g−n|2

)
= I2

0 |g0|2 +
∞

∑
n=1

I2
n(1 + n2)1/2

(
|gn|2 + |g−n|2

)
.

We start by estimating I0.
From (A2), (A1), and (A4) J1(r) ≤ r

2 , when r ∈ (0, 1) and:

rJ1(r) log r + J0(r) ≥ r2 log r
2

+ 1 − r2

4
, r ∈ (0, 1).

Since r2 log r
2 + 1 − r2

4 is a decreasing function in (0, 1), we have:

rJ1(r) log r + J0(r) ≥ 3
4

, r ∈ (0, 1). (A9)

A simple calculation and this inequality gives us:

I0 � bkb0 J1(bk)J1(b0)|log bk − log b0|+ J1(bk)J0(b0)|bk − b0|

+b0 J0(bk)|J1(bk)− J1(b0)|+ b0 J1(bk)|J0(bk)− J0(b0)|,
where the symbol � denotes that the left-hand side is bounded by a constant times the
right-hand one. Thus, combining the mean value theorem, the identity J′0(r) = −J1(r), the
fact that bk, b0 ∈ (0, 1) and (A2), we easily get:

I0 � 1
b0

|bk − b0|. (A10)

Now, we deal with Ik, k = 1, 2, · · · . We use the mean value Theorem, bk, b0 ∈ (0, 1),∣∣b2n
k − b2n

0

∣∣ � |bk−b0|
n , (A2), and (A3) to obtain:

In � Jn+1(bk)Jn−1(b0)
∣∣b2n

k − b2n
0

∣∣+ b2n
0 Jn−1(b0)|Jn+1(bk)− Jn+1(b0)|

Jn−1(bk)Jn−1(b0)

+
b2n

k Jn+1(b0)|Jn−1(bk)− Jn−1(b0)|
Jn−1(bk)Jn−1(b0)

� bk − b0

n
≤ bk − b0.

From this estimate and (A10), we have (A8).

Remark A1. Theorem 2 can be extended to the case that q0 is null. In this case, we take in (A7)
k(b0) = 0 and from (17):

‖(Λq0 − Λqk

)
g‖2

H−1/2
#

≤
∣∣∣∣ bk J1(bk)

bk J1(bk) log bk + J0(bk)

∣∣∣∣2|g0|2

+
∞

∑
n=1

∣∣∣∣∣1 − Jn−1(bk)− b2n
k Jn+1(bk)

Jn−1(bk) + b2n
k Jn+1(bk)

∣∣∣∣∣
2

(1 + n2)1/2
(
|gn|2 + |g−n|2

)
,
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by using bk ∈ (0, 1), (A9), and (A2):

� b4
k |g0|2 +

∞

∑
n=1

b4n
k J2

n+1(bk)

J2
n−1(bk)

(1 + n2)1/2
(
|gn|2 + |g−n|2

)
,

� b4
k |g0|2 +

∞

∑
n=1

b2n+4
k

n(n + 1)
(1 + n2)1/2

(
|gn|2 + |g−n|2

)
� 1

k4 ‖g‖2
H1/2

#
.

Proof of Theorem 3. Let q1(x) = γ1χB(0,b1)
(x), q2(x) = γ2χB(0,b2)

(x) in Fb and g(θ) =
1

21/4 eiθ .

‖Λq1 − Λq2‖2
L(H1/2

# ;H−1/2
# )

≥ ‖(Λq1 − Λq2

)
g‖2

H−1/2
#

=

∣∣∣∣∣ J0(b1
√

γ1)− b2
1 J2(b1

√
γ1)

J0(b1
√

γ1) + b2
1 J2(b1

√
γ1)

− J0(b2
√

γ2)− b2
2 J2(b2

√
γ2)

J0(b2
√

γ2) + b2
2 J2(b2

√
γ)

∣∣∣∣∣
2

(A11)

≥ 4II2(
1 + b4

1γ1
8

)2(
1 + b4

2γ2
8

)2 ,

where:
II =

∣∣∣b2
2 J0(b1

√
γ1)J2(b2

√
γ2)− b2

1 J0(b2
√

γ2)J2(b1
√

γ1)
∣∣∣,

and we used (A2) for n = 0, 2. On the contrary:

II ≥ 1
8

∣∣∣b4
2γ2 − b4

1γ1

∣∣∣− J1 − J2 − J3, (A12)

where:
J1 =

∣∣∣b2
2S2(b2

√
γ2)− b2

1S2(b1
√

γ1)
∣∣∣, (A13)

J2 =
1
8

∣∣∣b4
2γ2S0(b1

√
γ1)− b4

1γ1S0(b2
√

γ2)
∣∣∣, (A14)

and:
J3 =

∣∣∣b2
2S0(b1

√
γ1)S2(b2

√
γ2)− b2

1S0(b2
√

γ2)S2(b1
√

γ1)
∣∣∣. (A15)

To estimate Ji, i = 1, 2, 3, we use (A2), (A4), (A5), and Lemma A2. We get:

J1 ≤ b4
2γ2

2

∣∣b2
1 − b2

2

∣∣
30π

+
b2

1
(
b2

2γ2 + b2
1γ1
)∣∣b2

2γ2 − b2
1γ1
∣∣

96
. (A16)

J2 ≤ b2
1γ1
∣∣b4

2γ2 − b4
1γ1
∣∣

32
+

b4
1γ1
∣∣b2

2γ2 − b2
1γ1
∣∣

32
. (A17)

J3 ≤ b2
1b4

2γ1γ2
2

∣∣b2
2 − b2

1

∣∣
120π

+
b6

1γ2
1

∣∣b2
1γ1 − b2

2γ2
∣∣

36π
3
2

+
b4

1b4
2γ1γ2

∣∣b2
1γ1 − b2

2γ2
∣∣

36π
3
2

(A18)

+
b2

1b4
2γ1γ2

2

∣∣b2
1γ1 − b2

2γ2
∣∣

480π
3
2

.
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Proof of (22). We suppose that b1 = b2 = b > 0. We obtain:

J1 ≤ b6

96 |γ1 − γ2| ≤ 0.01041b4‖q1 − q2‖L∞(B(0,1)),

J2 ≤
(

b6

32 + b6

32

)
|γ1 − γ2| ≤ 0.0625b4‖q1 − q2‖L∞(B(0,1)),

J3 ≤
(

b8

36π
3
2
+ b10

36π
3
2
+ b8

480π
3
2

)
|γ1 − γ2| ≤ 0.01004b4‖q1 − q2‖L∞(B(0,1)),

and from (A11) and the above estimates, we get that:

II ≥ 0.042b4‖q1 − q2‖L∞ .

Since γ1, γ2, and b are less than 1, (5.11) and the above estimate gives us:

‖Λq1 − Λq2‖2
L(H1/2

# ;H−1/2
# )

≥ 4
84

94 (0, 042)2b8‖q1 − q2‖2
L∞ = 0, 0044b8‖q1 − q2‖2

L∞ ,

this implies (22).

Proof of (23). Now γ1 = γ2. Let us define:

M(γ, b1, b2) = γ
(

b3
1 + b2

1b2 + b1b2
2 + b3

2

)
.

It is easy to check that:

1
8

∣∣b4
2γ2 − b4

1γ1
∣∣ = 1

8 M(γ, b1, b2)|b2 − b1|,

J1 ≤
(

1
30π + 1

9π
3
2

)
M(γ, b1, b2)|b2 − b1|,

J2 ≤
(

1
32 + 1

256π
1
2

)
M(γ, b1, b2)|b2 − b1|,

J3 ≤
(

1
120 + 1

18π
3
2
+ 1

420π
3
2

)
M(γ, b1, b2)|b2 − b1|,

therefore:

‖Λq1 − Λq2‖L(H1/2
# ;H−1/2

# )
≥ 2(

1 + 1
8

)2

(γ

8

∣∣∣b4
1 − b4

2

∣∣∣− J1 − J2 − J3

)

≥ 2(
1 + 1

8

)2 0, 04216M(γ, b1, b2)|b2 − b1| ≥ 0, 2665γb3|b2 − b1|,

and we obtain (23).
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Abstract: Political corruption is a universal phenomenon. Even though it is a cross-country reality,
its level of intensity and the manner of its effect vary worldwide. In Spain, the demonstrated political
corruption cases that have been echoed by the media in recent years for their economic, judicial and
social significance are merely the tip of the iceberg as regards a problem hidden by many interested
parties, plus the shortage of the means to fight against it. This study models and quantifies the
population at risk of committing political corruption in Spain by identifying and quantifying the
drivers that explain political corruption. Having quantified the problem, the model allows changes
to be made in parameters, as well as fiscal, economic and legal measures being simulated, to quantify
and better understand their impact on Spanish citizenship. Our results suggest increasing women’s
leadership positions to mitigate this problem, plus changes in the political Parties’ Law in Spain and
increasing the judiciary system’s budget.

Keywords: contagion effect; difference equation; elections; labor condition; mathematical compart-
mental discrete model; political corruption; revolving doors; sensitivity analysis; simulation

1. Introduction

Political corruption is a universal phenomenon which, even though the times, ideas,
laws and cultures of different countries have evolved, has remained unchanged since
ancient times [1]. As long as we can remember, political corruption has accompanied
the evolution of human kind through its different cultural stages or civilizations. Early
referrals to the concept date back to the Pharaonic Egypt period [2], with later evidence
indicating that Roman politics hit the bottom due to its corruption in the Republic times of
Roman civilization (70 and 50 BC), and as a result the legal code “Twelve Tables” [3] being
passed, which imposed the death penalty on judges who accepted bribes and politicians
who attempted to influence election results through bribery or other forms of “soft power”.
This concept lies in the ability to shape others’ preferences based on culture and intangible
assets, such as the credibility and trustworthy of individuals and institutions [4].

As the political corruption concept is susceptible to ambiguity, we must specify it.
Political corruption can be defined as any act or legal or illegal omission of someone who,
based on a public office (elected or appointed) embracing political positions, but also on a
position in a labor union or business association, favors a particular interest that causes
public (not necessarily monetary) harm [5–7]. Hence political corruption can be for private
and group enrichment, and also for power preservation, purposes [8,9]. According to [10],
these two forms of political corruption are often connected.

The concept given for political corruption highlights two relevant points: first, that
which motivates political corruption; that is, the search for self-enrichment, ego and power
maintenance (as opposed to a non-corrupt political leader’s concern for citizenship’s
well-being); second, the consequences of political corruption: national impoverishment,
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institutional decay, arbitrary power, authoritarian tendencies and less freedom and democ-
racy [11–13].

Political corruption decelerates social growth and economic activity [14,15], diverts
resources from basic services [16], reduces innovation [17] and, consequently, also the intro-
duction of new products and technologies because innovators and entrepreneurs usually
lack political connection [18]. In general, foreign direct investments decrease [19–21], and
national firms’ value drops [22–25]. Thus, industry must pay more to lenders given the
perceived political instability impacting the credit market [26–28]. At those countries where
the state institutions are weaker, corruption is often linked to violence, whereas in the so
called mature democracies, corruption means the increase of economic and social insecurity
and also the opportunity for the privilege to get richer at the expense of everyone else [29]

Hence, literature has analyzed the types of political corruption, its causes or conse-
quences from a theoretical perspective or even empirically focusing on indicators built
using historical information. This work means a contribution to the literature and bridges
the gap in the literature by: (i) mathematical modeling the political corruption in a free
market economy in which democracy does not serve as a warranty of policy making
responds to the public interest and (ii) quantifying the total population at risk of commit-
ting political corruption. Following, the study identifies the drivers of the problem and
highlights the main novelties of the research in terms of methodology employed, data and
its contributions.

1.1. Political Corruption in Spain

Even though political corruption is a cross-country reality, its level of intensity and
the manner of its effect vary from one nation to another [18]. In this way, [30] since
1995 CPI 2020 has annually issued the corruption perception index to measure from 0
to 100 the perceived level of corruption in the public sector worldwide in accordance
with businesspeople and experts. It has become the leading global indicator of public
sector corruption. Hence, [30] CPI argues that public sector transparency is the key to
ensure public resources being appropriately spent. However, the 2020 annual report shows
that more than two thirds of 180 countries score below 50. In particular, Spain ranked
32 worldwide with 63 points, while Western Europe and the European Union scored 66
on average. Denmark had the highest score with 88 points, and Romania the lowest with
44 [30–32].

Thus, identifying the factors that explain political corruption is essential for under-
standing the trends and differences of this phenomenon among countries. The factors
explaining the persistence of political corruption in Spain are discussed below in accor-
dance with previous research [33]. Culture, and particularly religion [34], explain why
corruption rates are higher in south than in northern Europe. In Latin America, the culture
of the former was inherited from Spanish and Portuguese cultures.

Second, political corruption is explained by the nature of the Spanish political party
system and the Parties’ Law that guarantees continuity of the establishment [35,36]. In
relation to the laws regulating the parties, there is the opacity of financing political parties,
which are not obliged to publish their financial information [37]. Indeed, Spain does
not enforce political parties disclosing their financial information or candidate funding
in their reports, while 93% of OECD countries do [38], even though institutionalized
transparency and accountability are the main aspects that promote the integrity and
fairness of public decision making [39]. This situation is connected to previous scandals of
political corruption that have affected the two longest-standing parties: PP (right-wing) and
PSOE (left-wing) [40,41], which resulted in the end of a two-party system [42,43], and in the
appearance of new political parties during general and local elections campaigning with
vows to get rid of what they brand a “corrupt political elite”. However, the most vindictive
of these emergent accuser parties has also been prosecuted by irregular financing [44], and
thus perpetuates the same phenomenon: political corruption in Spain.
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Thus, analyzing the functioning and structure of Spanish political parties would
evidence the fulltime politicians whose professional career involves occupying a seat at
office for the long term, but lack experience in the wider world [45,46]. This fact fosters
patronage as an expression of political corruption; that is, recruiting public sector employees
based on political connections rather than on their skills and formal qualifications [47].
Indeed, merit-based bureaucracy, as opposed to one in which politicians appoint employees
at will, is expected to reduce corruption [48].

However, on the aforementioned factor, an important connotation is found in gender
terms given the systematic differences in how men and women perceive corruption [49,50].
Several studies have empirically evidenced a negative relation between women’s presence
in politics and its effect on corruption [51,52]. This can be explained by different gender
behavior as women are generally more collaborative than men, but also more altruistic and
ready to engage in “helping” behavior [53,54]. Moreover, in accordance with [51], political
corruption is a deterrent to women’s representation because it reinforces “clientelist”
networks that privilege men.

In order to commit any crime, two conditions are needed simultaneously [55], suffi-
cient aggressiveness to dare and moral disconnection to bear the thought of our conscience.
The evolution of the species [56] has developed a distribution of social roles and habits,
which are transmitted genetically, in which males have primarily devoted themselves to
tasks related to aggressiveness and are more trained and accustomed, such as counterfeit-
ing, big animals, defense of the territory and war. These social habits make men, in general,
more aggressive than women, and for this reason, more prone to commit any crime, and
in particular for political corruption. This aggressive training of men makes them have
less social shame than women, men care less than women about being discovered in crime.
From this, it follows that, at least for a long time, women are less at risk of committing
corruption. This implies promoting the presence of women in politics and, consequently,
in office as a tool to fight corruption. Moreover, Ref. [57] argues that the longer women
remain in office, the lower the corruption levels are, which contrasts with how men in
office impact political corruption.

The next factor that aggravates the situation is highly politicized Spanish media [58,59]
based on ideological alignments; as Refs. [60,61] argue, presently the media’s role does not
involve promoting knowledge and defending public interest, but is instead a strategy for
political action. In fact, in an attempt to control journalism and the media, political parties
run communication and news offices. Indeed, Spanish politicians calling press conferences
without allowing questions, and refusing camera operators and reporters admission to
election campaigns, have become common practices [62].

The last relevant factor to correlate with political corruption is lack of independence
among judiciary, executive and legislative powers. Judiciary Councils are institutions
created to protect judges’ autonomy. However, according to [63], 36% of Spanish judges
perceive their Judiciary Council as not respectful of their independence. This rate was
the worst result of the survey carried out by European Network of Judiciary Councils
during the 2014–2015 period. This situation is explained by the politicization of the General
Council of the Judicial power reported by Nieto [64], which means that the political parties
in office control the nomination of the candidates appointed by the parliament.

Thus, imperfect judicial and media independence does not favor the end of the
problem [65,66], and even less so when political parties are unable to make decisions
against their partisan interests, even when these decisions are for the good of Spanish
society and the country’s socio-economic future. Likewise, an intoxicating and generalized
state of moral relaxation has been established in Spanish society, which excuses the political
corruption phenomenon as being inevitable and inherent to the political class and is,
therefore, irremediable. Not only does this not slow the problem down, it perpetuates it
and amplifies its dimension [55,67], which indiscriminately affects all social chain links [68].

The effect of Spanish political corruption is corrosive because it deteriorates the
country’s image: economy drops, especially for a country like Spain that is so dependent
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on tourism [69], with citizens mistrusting the national institution [70], which affects foreign
investors and citizens’ quality of life, and makes the country’s future worse [71,72]. Lack
of trust in institutions generates moral disengagement, which makes it easier for citizens to
excuse the political class’s corruption, who consider it alien, but use it at the same time as
an excuse to commit themselves [55]. This kind of contagion is very counterproductive
given its social, economic and moral impact on society [73].

The most important factors to explain the current situation are the party system and
its laws, where political offices do not respond to citizens, but to the political leader who
has appointed them, and where lack of self-criticism, transparency and accountability come
into play.

1.2. Novelties of the Study and the Paper’s Structure

The demonstrated cases of political corruption that have been echoed by the media in
recent years for their economic, judicial and social significance are merely the tip of the
iceberg of a problem hidden by many interested parties, and also due to the shortage of the
means to fight it. Particularly for Spain, and in accordance with [69,74], political corruption
emerged (more than 200 reported cases) during the economic boom between 2000 and 2011,
while almost no local corruption was previously registered.

In this work, we quantify the level of risk of committing political corruption for the
population living in Spain aged between 16 and 70 years old. Individual behavior is
unpredictable, but aggregate behavior can be predicted by mimetic contagious and herding
human behavior [75–78]. According to [67], humans are driven by emotions. Unlike
previous studies that have centered on political corruption [79,80], we managed a political
corruption concept that is not only limited to individuals in the political scenario, but also
embraces the rest of the population.

This study is a novel contribution to the literature and bridges the gap in the literature
about modeling and quantifying the total population of Spain in accordance with its risk
of committing political corruption. It also identifies four levels of risk of committing
political corruption. Apart from classifying the population according to their level of risk
of committing political corruption, this study also takes into account their employment
situation at the time the analysis was carried out.

Our model allowed us to predict the risk of political corruption in Spain given the
mimetic nature of humans by constructing a discrete finite epidemiological model [81] that
classifies and quantifies citizenship in Spain into subpopulations according to their risk of
committing political corruption. Despite previous theoretical approaches to the problem
that focus on diagnosing the causes or processes of political corruption cases [82,83], our
model is dynamic and classifies the population on an annual basis according to their level
of risk of committing political corruption over time during the 2015–2023 period [35,84–86].

Previous studies have employed surveys or historical statistical data to quantify the
corruption perceived by different stakeholders at cross-country, national or local levels
by building indicators or regression models [6,42,87,88]. In contrast, we study subpopula-
tion trends during the study period by quantifying the annual dynamic transits among
subpopulations. These transits are produced by an individual’s occupational status at the
time the analysis was performed, combined with the following external variables that were
quantified for each period: elections, time in office, gender, moral disconnection, economy,
religion and the “revolving doors” effect [89]. This effect is the transfer of professionals
from the government and public administrations to private companies or social entities,
which leads to conflicts of interest and the possibility of corruption [90].

Thus, at each given time point, we quantified the number of individuals by their risk
of committing political corruption in Spain. To the best of our knowledge, this is the first
study to dynamically score political corruption by levels and sizes in a given country. The
relevance of this study lies in reporting the problem to the public authorities responsible
for addressing policies to stop this trend.
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This article is arranged as follows: Section 2 describes the hypotheses and methodol-
ogy. Section 3 presents the model construction. Section 4 shows the results and simulations.
Section 5 offers the discussion of the results and conclusions.

2. Hypotheses and Methodology

2.1. Subpopulation Definition

The political corruption risk concept is defined in previous sections as the risk of legal
or illegal acting or omission by someone based on a public office (elected or appointed) that
favors self-interest (or a third party’s interest), which causes public damages, which is not
necessarily monetary, and should be understood as the suboptimal results obtained from
their management. In this definition, the term “public office” embraces political positions,
but also includes any management position in labor unions or business associations.

With this political corruption definition, we posed some hypotheses that led to the
model’s construction.

The target population included residents in Spain aged 16–70 years. This target
population was divided into 20 subpopulations by taking into account their level of risk of
committing political corruption, and their alternative or complementary professional life
to hold public office for year n:

P(level of risk, labor condition, time) (1)

Four levels of risk of committing political corruption were established: zero risk
(people who do not hold or are not in contact with public offices); low risk (less than 10%),
individuals likely to collaborate with public offices (member of political parties, unions
or business associations); medium risk (up to 25%), people who are directly or indirectly
elected public representatives, and manage public budgets; high risk (more than 50%), high
positions who handle large budgets and/or have relevant decision-making capacity, and
have remained in office since previous administrations.

Zj(n) = Zero-risk subpopulation

Bj(n) = Low-risk subpopulation

Mj(n) = Medium-risk subpopulation

Aj(n) = High-risk subpopulation

where j is the occupational status, which can take the values in Table 1.

Table 1. Occupational status classifications.

j Definition (Age Range)

1 pre-labor (young people aged under 26 years old)
2 unemployed (26, 70)
3 self-employed or employed by a private company (26,70)
4 employed by a public company or public administration (26,70)
5 civil servant (26,70)

2.2. Hypotheses and Initial Subpopulations

The model transits and initial subpopulations at n = 0 (July 2015) were drawn by
assuming the following hypotheses:

Hypothesis H1. Individual behavior is not predictable, but aggregated behavior might be [73].

Hypothesis H2. Human behavior is driven by desire and fear [86].
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Hypothesis H3. The combination of drivers makes subpopulations evolve from one category to
another.

Hypothesis H4. Mimetic human behavior and herding [67,75–78,91].

Hypothesis H5. Subpopulation transits can occur to higher, but also to lower risk categories [67].

Hypothesis H6. Retirees (proxy age > 70 years) are assumed to not participate in corruption as
only those of working age can accept political positions.

Hypothesis H7. The immigrants who reach political management positions are negligible.

The initial subpopulations are obtained from Spanish statistical data [92,93] according
to the following assumptions:

First, some specific labor groups were ruled out from the initial data because of their
unavailable access to political management positions. Therefore, the retired population
younger than 71 years (L(0) = 2,239,500) was not taken into account [93]. The initial data did
not consider the house-keeping population in age intervals (16,70) (H(0) = 2,975,400) [93].
Finally, pensioners (and widows/widowers with tax-paying pensions) and the disabled
subpopulation with fixed incomes younger than 71 years (non tax-paying pensions) [92]
were removed from the initial data; W(0) = 553,800 + 1,961,300 = 2,515,100.

The zero-risk subpopulation was obtained according to the data of the Spanish Na-
tional Statistics Institute [93] and the Statistical Bulletin of the Personnel at the Service
of Public Administrations, corresponding to January 2016 and published by the Spanish
Ministry of Finance and Civil Services [94].

For the low-risk subpopulation, we considered members of political parties and unions
to be susceptible, along with those individuals belonging to public or private entities that
collaborate or incite corruption, including advisers and trust positions. Therefore, labor
subpopulations Bj(0) were obtained as follows (data collected from the Spanish Association
of Industrial Participations, and websites of political parties and trade unions):

• B1(0): Youths of political parties and unions, age interval (16,25).
• B3(0): 3/10 Members of left-wing parties and unions + 3/10, and of right-wing and

center political parties + 1/3 trade union members, aged (26,70) self-employed or
employed by private firms.

• B4(0): 3/10 Members of left-wing parties and unions +3/10 and right-wing and center
political parties + 1/3 union members, aged (26,70) employed by public firms or public
administrations.

• B5(0): 3/10 Members of left-wing parties and union +3/10 and right-wing and center
political parties +1/3 trade union members + 1/10 members only of leftwing parties
and are civil servants aged (26,70).

We considered members to be anyone paying a fee.
The medium-risk subpopulation was formed by individuals serving in office (Local

Government, Regional or Central Governments) occupying top management posts of public
companies and entities (water management entities, hospitals, public TV, universities).
Note that according to the subpopulation definition, M1(0) and M20) equaled zero. Thus,
the labor subpopulations Mj(0) were calculated as:

• M3(0): 94% Union members aged (26,70) working for private companies.
• M4(0): Local governments (City mayor and council) being paid income under 1000

euro/month.
• M5(0): 6% Union members who are civil servant + local governments being paid

income under 1000 euros/month who are civil servants.

Finally, individuals in management positions related to public budgets (local, regional
or central governments), and the managers of large public organizations (water companies,
hospitals, public TV, universities) who have remained in office since previous adminis-
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trations, are assumed at a high risk of political corruption. Note that according to the
subpopulation definition, A1(0) and A2(0) equaled zero. Hence, the labor subpopulations
Aj(0) were obtained as:

• A3(0): Manager positions of business associations (CEOE), advisors and board mem-
bers of private companies.

• A4(0): Local governments (City Mayor/Mayoress + council employees with incomes
over 1000 euro/month), members of regional governments, members of the National
Parliament, managers of trade unions, managers of public entities, advisors employed
by public administrations.

• A5(0): CFO and rectors of public universities.

Note that the total population in Spain aged between 16 and 70 years old at n = 0 is
P(0) = 23,985,102. According to the percentages in Table 2, the total risk subpopulations
amounted to Σ Zj(0) = 20,701,24, Σ Bj(0) = 2,941,579, Σ Mj(0) = 267,872 and Σ Aj(0) = 74,427.

Table 2. Initial subpopulations in percentages per occupational status, n = 0 (July 2015).

j = 1 j = 2 j = 3 j = 4 j = 5

Zj(0) = 86.3% 21.4% 24.9% 50.7% 0.3% 2.8%
4,432,952 5,149,000 10,489,575 54,035 575,662

Bj(0) = 12.3% 2.6% 0.0% 36.5% 28.4% 32.5%
77,870 - 1,072,500 836,639 954,570

Mj(0) = 1.1% 0.0% 0.0% 88.7% 5.2% 6.0%
- - 237,700 14,000 16,172

Aj(0) = 0.3% 0.0% 0.0% 8.4% 91.4% 0.2%
- - 6,225 68,020 182

TOTAL 100% 18.8% 21.5% 49.2% 4.1% 6.4%

j = occupational condition: j = 1: pre-labor (young people under 26 years old); j = 2: unemployed; j = 3: self-
employed or employed by a private company; j = 4: employed by a public company or public administration;
j = 5: civil servant.

3. Model Construction

3.1. Transit Coefficients

This section is divided into subheadings. It should provide a concise and precise
description of the experimental results along with their interpretation, and the experimental
conclusions that can be drawn. The dynamic population model [78,81,95,96] quantifies the
amount of people aged 16–70 years old at risk of committing political corruption in Spain.

Individuals transit to lower or higher levels of probably committing political cor-
ruption by the conjunction of factors (Figure 1). The following transit vectors appear:
demography, time in office, contagion effect, elections, fear of losing office and the “re-
volving doors” effect. Other environmental factors, such as gender, culture and religion,
economy, lack of political transparency, controlled press and lack of independent justice,
can reinforce or encourage dynamics.

In addition, the political chronogram of the study period conditioned the evolution of
subpopulations (Figure 2).

Let us define the demographic vector by taking the transit coefficients as constant
for the study period (2015–2023). The demographic transit is obtained by adding some
incomers (individuals who reached the age of 16 years) and some outgoers (deaths and
labor/political retirements).

- A total of I = 427,394 individuals reached the age of 16 years in July 2016 [93]. We
distributed incomers between Z1 and B1 as I1 = βZ1 I; IB1 = βB1 I, where βZ1 = 0.98;
βM1 = 0.02 are the rates of incomers per level of risk of committing corruption.

- Let us take death rate dj as d1 = 0.000222; dj = 0.0034808, ∀ j �=1. Data as of 2015 [93].
- Let us define rij as the retirement rate from labor and political career at 71 years. There-

fore, by considering that a total ΣRij = 426,626 individuals over 70 years old (January
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2015, [93] would leave the model, rates were estimated according to subpopulations’
initial weights by taking ri1 = 0; rij > 0; ∀ j �= 1.

 

Figure 1. Transits diagram.

 

Figure 2. Chronogram.

The economic factor had two opposing effects. On the one hand, when the economy
is favorable, transits to higher risk subpopulations increase due to the appeal of accessing
positions that manage larger budgets. During the study period, this effect was not included
in the model because it did not involve an extensive economic situation in Spain. On the
other hand, in bad economic situations, voters’ dissatisfaction tends to favor a change of
government and alternation of office (hereafter the election effect [97]), as well as loss of
party and union members.

As regards the election effect, transits from Aj to Bj occur as a result of change in
election results and individuals leaving political seats, while the same amount of transits
occurs from Bj to Mj with new political parties appearing and new politic positions being
assigned [35]. Therefore, the transit can be assumed as going from Aj to Mj (Aj →Bj→ Mj).
This transit only occurs with elections (2015, 2019) and takes place at n + 1 election year
(July 2016 and 2020). Let us call μ(n) the election effect parameter that takes the value
μ(1) = μ(5) = 0.6 as 40% of positions remain in office after elections [89,98]. Parameter
μ(n) = 0 for n �= 1, 5.

The disaffiliation transit is defined in the model as γ. The economic factor leads to loss
of members of traditional parties and trade unions because of members’ dissatisfaction
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and/or their inability to pay fees. So it is assumed that in relation to an economic crisis
situation, 1% of members of traditional parties and trade unions (i.e., CCOO, UGT, PSOE,
PP; 81% of members in 2015) transit from Bj to Zj. Thus, γ = 0.81 × 0.01 = 0.0081 is the
population rate from Bj that annually leave.

Let us take the effect of time in office (τj(n)) as a detrimental factor because it favors
training and access to situations that lead to inappropriate behavior developing when
managing public budgets. The effect of this transit takes place at n + 1 election year (2016,
2020). By considering that 40% of politicians keep their seat, the politicians who do not
keep their seat transit from Aj to Bj, while 50% of politicians who keep their seat transit to
a higher category; from Mj to Aj. For those new incomers in office, with political renewal
and bipartisanship ending, when a position is renewed and a new individual enters, they
transit from Mj to Aj, but in smaller proportions, which increase over time. By considering
election years 2015 and 2019 (n = 0 and n = 4, respectively) and that transits take place at
n + 1 election year (n = 1, n = 5), we can assume that new elected officers need at least 1
year to start their corrupt practices. Thus, τj(1) = 0, ∀ j and τj(5) = 0, ∀ j. The time in
office parameter per labor subpopulation takes the following values for the next 3 years of
term of office:

• second term of office, τ3(2) = 2.5%, τ4(2) = 2.5%, τ5(2) = 1.25%,
• third term of office, τ3(3) = 5%, τ4(3) = 5%, τ5(3) = 2.5%,
• fourth term of office, τ3(4) = 10%, τ4(4) = 10%, τ5(4) = 5%.

In addition, we have to consider the possibility of unemployment leading to indi-
viduals’ fear. Civil servants and pre-labor individuals do not face such pressure or fear.
However, for those at low- and medium-risks, lack of an alternative professional career
(j = 2,3,4) and the possibility of losing one’s seat in office brings about fear and promotes
corrupt behaviors. In line with this, divergence between labor productivity and compen-
sation may increase the tendency to prefer a seat in office [99]. Thus, let us define ρij as
fear of losing one’s seat, which takes the value ρi1, ρi5 = 0 and, given the assumption that
the probability of that transit being double for Mj compared to Bj and lower for j = 4, the
parameter takes the following values: for transits from low- to medium-risk subpopula-
tions ρB2 = 0.005, ρB3 = 0.005, ρB4 = 0.0025; and for transits from medium- to high-risk
subpopulations ρM2 = 0.01, ρM3 = 0.01, ρM4 = 0.005.

Human behavior is characterized by an irrational component. Decision making is driven
by isomorphism and contagion from individuals in the near environment [55,75–77,100]. This
contagion might imply moral disengagement and the normalization of some unethical
behaviors in individuals. Indeed religion and ethical codes may cushion the contagion
effect [5,6]. We define αi as the moral disengagement coefficient which affects 90% of the
population, excluding the 10% of religious and/or ethical people who are not affected.
This factor affects all the subpopulations, but to a lesser extent to the zero-risk individuals.
Hence, the parameters are obtained as ∝Z = 0.005 × 0.9 = 0.0045 and ∝B = ∝M = 3∝Z
= 0.135.

Finally, the “revolving doors” effect is a political factor that needs to be considered.
“Revolving doors” are defined as the situation in which an individual leaves his/her politi-
cal seat and takes a board seat in a large company (e.g., IBEX 35 companies in Spain) [90].
This situation brings about a transit from the high-risk to low-risk subpopulations [98].
Let us define Dj as the “revolving doors” effect parameter, which is calculated by these
assumptions: this transit only affects j = 2,3,4; according to the Office of Conflicts of Inter-
est [89], 23 positions per year leave their political seats and take a board seat. However,
“revolving doors” affect the politician, and at least one near advisor. In this way, the real
individuals affected are at least twice those accounted for. Therefore, Dj = 0 for j = 1,5 and
Dj = 15 for j = 2,3,4.

3.2. Mathematical Model

The study period goes from July 2015 to July 2023. The model considers annual
transits, where n is the time parameter in years. Thus, n = 0 corresponds to July 2015 and
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n = 8 to July 2023. Let P(n) be the total population of the individuals in Spain within the
contemplated age range (16,70) at risk of committing political corruption.

Thus,
P(n) = Z(n) + B(n) + M(n) + A(n), (2)

where:
Z(n) = Z1(n) + Z2(n) + Z3(n) + Z4(n) + Z5(n), (3)

B(n) = B1(n) + B2(n) + B3(n) + B4(n) + B5(n), (4)

M(n) = M1(n) + M2(n) + M3(n) + M4(n) + M5(n), (5)

A(n) = A1(n) + A2(n) + A3(n) + A4(n) + A5(n). (6)

The compartmental difference equations model for the risk of committing political
corruption dynamics in Spain is presented in the following system for every labor group j,

Z1(n + 1)− Z1(n) = (Iz1 − Rz1)− d1Z1(n)− ∝1 Z1(n) + γB1(n),
B1(n + 1)− B1(n) = (IB1 − RB1)− d1B1(n)− ∝B B1(n)+ ∝Z Z1(n)− γB1(n),
M1(n + 1)− M1(n) = −RM1 − d1M1(n) + αBB1(n)− αM M1(n) + μ(n)A1(n),

A1(n + 1)− A1(n) = −RA1 − d1 A1(n)− μ(n)A1(n)+ ∝M M1(n),
Z2(n + 1)− Z2(n) = (Iz2 − Rz2)− d2Z2(n)− ∝Z Z2(n) + γB2(n),

B2(n + 1)− B2(n) = (IB2 − RB2)− d2B2(n)− ∝B B2(n)+ ∝Z Z2(n)− ρB2B2(n) + D2 A2(n)− γB2(n),
M2(n + 1)− M2(n) = −RM2 − d2M2(n) + αBB2(n)− αM M2(n)− ρM2M2(n) + ρB2B2(n) + μ(n)A2(n),

A2(n + 1)− A2(n) = −RA2 − d2 A2(n)− μ(n)A2(n)+ ∝M M2(n) + ρM2M2(n)− D2 A2(n),
Z3(n + 1)− Z3(n) = (Iz3 − Rz3)− d3Z3(n)− ∝Z Z3(n) + γB3(n),

B3(n + 1)− B3(n) = (IB3 − RB3)− d3B3(n)− ∝B Bj(n)+ ∝Z Zj(n)− ρB3Bj(n) + D3 Aj(n)− γB3(n),
M3(n + 1)− M3(n) = −RM3 − d3M3(n) + αBB3(n)− αM M3(n)− τ3(n)M3(n)− ρM3M3(n) + ρB3B3(n) + μ(n)A3(n),

A3(n + 1)− A3(n) = −RA3 − d3 A3(n)− μ(n)A3(n) + τ3(n)M3(n)+ ∝M M3(n) + ρM3M3(n)− D3 A3(n),
Z4(n + 1)− Z4(n) = (Iz4 − Rz4)− d4Z4(n)− ∝Z Z4(n) + γB4(n),

B4(n + 1)− B4(n) = (IB4 − RB4)− d4B4(n)− ∝B B4(n)+ ∝Z Z4(n)− ρB4B4(n) + D4 A4(n)− γB4(n),
M4(n + 1)− M4(n) = −RM4 − d4M4(n) + αBB4(n)− αM M4(n)− τ4(n)M4(n)− ρM4M4(n) + ρB4B4(n) + μ(n)A4(n),

A4(n + 1)− A4(n) = −RA4 − d4 A4(n)− μ(n)A4(n) + τ4(n)M4(n)+ ∝M M4(n) + ρM4M4(n)− D4 A4(n),
Z5(n + 1)− Z5(n) = (Iz5 − Rz5)− d5Z5(n)− ∝Z Z5(n) + γB5(n),

B5(n + 1)− B5(n) = (IB5 − RB5)− d5B5(n)− ∝B B5(n)+ ∝Z Z5(n)− γB5(n),
M5(n + 1)− M5(n) = −RM5 − d5M5(n) + αBB5(n)− αM M5(n)− τ5(n)M5(n) + μ(n)A5(n),

A5(n + 1)− A5(n) = −RA5 − d5 A5(n)− μ(n)A5(n) + τ5(n)M5(n)+ ∝M M5(n).

(7)

This can be written in a vector compact form as follows:

V(n + 1) = G(n)V(n) + C, (8)

where V(n) ∈ R20x1 is the model’s unknown vector, including all the subpopulations per
labor group at time n, as follows:

V(n) = [Z1(n), B1(n), M1(n), A1(n), Z2(n), B2(n), M2(n), A2(n), Z3(n), B3(n), M3(n),
A3(n) Z4(n), B4(n), M4(n), A4(n), Z5(n), B5(n), M5(n), A5(n)]

T

Note that matrix G(n) =
(

gpq(n)
) ∈ R20x20, where

gpq = 1 − dx− ∝z, for p = q = 1, 5, 9, 13, 17 and x = 0.75 + p/4;
g12 = g56 = g910 = g1314 = g1718 = γ;
g21 = g65 = g109 = g1413 = g1817 =∝Z;
g34 = g78 = g1112 = g1516 = g1920 = μ(n);
g68 = D2, g1012 = D3, g1416 = D4;
g44 = 1 − d1 − μ; g2020 = 1 − d5 − μ; gpq = 1 − dx − μ − Dx, for p = q = 8, 12, 16 and

x = p/4;
g32 =∝B; g1918 =∝B +ρBx; for p = q + 1 = 7, 11, 15 and x = 0.5 + q/4;
g43 =∝M; g87 =∝M +ρM2; g1211 = τ3(n)+ ∝M +ρM3; g1615 = τ4(n)+ ∝M +ρM4;

g2019 = τ5(n)+ ∝M;
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g22 = 1 − d1− ∝B −γ; g1818 = 1 − d5− ∝B −γ; gpq = 1 − dx− ∝B −ρBx − γ, for
p = q = 6, 10, 14 and x = 0.5 + p/4;

g33 = 1 − d1 − αM; g77 = 1 − d2 − αM − ρM2; g1919 = 1 − d5 − αM − τ5(n); gpq =
1 − dx − αM − τx(n)− ρMx, for p = q = 11, 15 and x = 0.25 + p/4;

and all the other gpq(n) equal zero.
C ∈ R20x1 is the demographic independent vector given by:
C = [Iz1 − Rz1, IB1 − RB1, −RM1, −RA1, Iz2 − Rz2, IB2 − RB2, −RM2, −RA2, Iz3 − Rz3,

IB3 − RB3, −RM3, −RA3, Iz4 − Rz4, IB4 − RB4, −RM4, −RA4, Iz5 − Rz5, IB5 − RB5, −RM5,
−RA5]

T ;
C = [418, 846, 8548, 0, 0, −112, 800, 0, 0, 0, −229, 797, −23, 495, −5207, −136, −1184,

−18, 328, −307, −1490, −12, 611, −20, 912, −354, −4]T .

4. Results

With the mathematical model, we computed solutions from the initial subpopulations
(n = 0) for every n until n = 8, (Table 3, Panel A).

Table 3. Numerical results after the 2015 elections (year 2016, n = 1), panel A = individuals, panel
B = percentage.

Panel A

TOTAL j = 1 j = 2 j = 3 j = 4 j = 5

Zj 20,648,347 4,206,758 5,291,150 10,355,955 228,273 566,212
Bj 2,901,249 97,178 28,352 1,067,261 795,750 912,708
Mj 346,885 1051 0 249,704 67,587 28,543
Aj 33,930 0 0 7904 25,739 287

TOTAL 23,930,412 4,304,987 5,319,502 11,680,824 1,117,349 1,507,749

Panel B

TOTAL j = 1 j = 2 j = 3 j = 4 j = 5

Zj 86.3% 20.4% 25.6% 50.2% 1.1% 2.7%
Bj 12.1% 3.3% 1.0% 3.4% 28.4% 31.0%
Mj 1.4% 0.3% 0.0% 81.4% 8.9% 9.4%
Aj 0.1% 0.0% 0.0% 23.3% 75.9% 0.8%

TOTAL 100.0% 18.0% 2.2% 48.8% 4.7% 6.3%

Thus, we can see how the numerical results show political renovation in 2016 (n = 1)
after elections, with a lower percentage for the high-risk subpopulation from 0.3% to 0.1%
(Table 3, Panel B). However, the low-risk and medium-risk subpopulations increase from
2015 to 2016.

The results show how the population at high risk of committing political corruption
grows for the study period and represents 0.7% of the Spanish population in 2023 (Table 4,
Panel B). Even though this percentage may seem low, the socio-economic and moral impact
on the Spanish society would be dramatic.

Table 4. Numerical results in n = 2023, panel A = individuals, panel B = percentage.

Panel A

TOTAL j = 1 j = 2 j = 3 j = 4 j = 5

Zj 20,250,555 3,329,507 5,900,978 9,382,973 1,136,106 500,991
Bj 2,684,850 127,717 250,884 1,036,815 599,419 670,015
Mj 441,168 8,039 16,038 233,271 103,937 79,882
Aj 174,554 609 742 110,872 47,910 14,420

TOTAL 23,551,127 3,465,872 6,168,643 10,763,931 1,887,372 1,265,309
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Table 4. Cont.

Panel B

TOTAL j = 1 j = 2 j = 3 j = 4 j = 5

Zj 86.0% 16.4% 29.1% 46.3% 5.6% 2.5%
Bj 11.4% 4.8% 9.3% 38.6% 22.3% 25.0%
Mj 1.9% 1.8% 3.6% 52.9% 23.6% 18.1%
Aj 0.7% 0.3% 0.4% 63.5% 27.4% 8.3%

TOTAL 100% 14.7% 26.2% 45.7% 8.0% 5.4%

4.1. Gender Effect Simulation

The literature evidences gender differences in social behavior. Women are more risk-
averse [101], more inequality-averse and more cooperative and altruistic than men [49–57].

According to previous evidence, we posit the hypothesis that women are less prone to
corruption either because they are subject to more control and expectations or their own
attitude toward public service, social engagement and education prevents them from doing
so [53,54]. Moreover, in accordance with [52], we considered two different scenarios and
computed the results for 2023.

The first simulation considered that women in power are incorruptible. This hypothe-
sis affected the time in office parameter (τj(n)). As women occupy 40% of power seats, the
time in office parameter would affect only 60% of the population.

As Table 5 shows, the proportion of the population at high risk of committing political
corruption drops to almost half its previous value due to the presence of women in top
management positions (j = 2 and j = 4)

Table 5. Gender simulation I. Subpopulations for 2023.

TOTAL j = 1 j = 2 j = 3 j = 4 j = 5

Zj 86.31% 20.4% 25.6% 50.2% 1.1% 2.7%
Bj 12.09% 3.0% 1.0% 36.9% 27.6% 31.5%
Mj 1.20% 0.4% 0.0% 80.8% 9.0% 9.8%
Aj 0.39% 0.0% 0.0% 27.5% 71.6% 0.9%

TOTAL 100.0% 17.9% 22.2% 48.8% 4.7% 6.3%

We considered a less extreme scenario, in which women in power are less incorruptible.
In this way, 50% of the women serving in office would not become corrupt (20% people
in power). According to this hypothesis, the time in office parameter would affect 80%
of the population. As Table 6 shows, even when not considering an extreme impact of
women in office, the Spanish population at risk of committing political corruption would
considerably drop.

Table 6. Numerical results as percentages for n = 2023 for gender simulation 2.

TOTAL j = 1 j = 2 j = 3 j = 4 j = 5

Zj 86.59% 20.4% 25.6% 50.2% 1.1% 2.7%
Bj 11.82% 2.5% 0.4% 36.6% 28.2% 32.2%
Mj 1.18% 0.4% 0.0% 80.6% 9.1% 9.9%
Aj 0.42% 0.0% 0.0% 30.9% 68.1% 1.0%

TOTAL 100% 17.9% 22.2% 48.8% 4.7% 6.3%

4.2. Sensitivity Analysis

We estimated the sensitivity of all the subpopulations to variation in the α parameter.
Figure 3a shows how the differences in the high-risk subpopulation increased over time as
the α parameter increased. However, those differences were not so big compared to the
evolution of all the subpopulations (Figure 3b).
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(a) (b) 

Figure 3. Sensitivity analysis: the α parameter. (a) Evolution of the high-risk subpopulations with different α parameter
values; (b) subpopulations in 2023 according to the α parameter.

5. Discussion and Conclusions

This study quantifies the population at risk of committing political corruption in Spain
by identifying and quantifying the drivers that explain political corruption.

Having quantified the problem, the model allowed the implementation of changes in
parameters, as well as the simulation of fiscal, economic and legal measures to be simulated
in order to quantify and better understand their impact on Spanish citizenship.

One of the potential advantages of the model is its applicability to other geographical
areas using local data. However, its application to other areas requires the careful reworking
and adaptation to each region’s idiosyncrasies.

Stopping this social problem requires policy makers’ action. Specifically, changing
the Spanish electoral law of parties is advisable to increase politicians’ transparency and
accountability. This could be much better controlled by hiring “advisers” in office, but
by also regulating local administration’s wages (small town councils). In addition, the
“revolving doors” effect needs to end [102].

Political corruption risk consequences are numerous, starting with economic ones as
they involve more reluctance from investors to flow capitals in unstable political environ-
ments, but are also negative for industry in general and social development [50], and are
particularly relevant for the Spanish economy because tourism is one of the main economic
engines of Southern Europe that is negatively affected by political corruption [103]. Com-
bating public corruption can not only directly improve Spanish business performance, but
can also facilitate it via access to credit [27]. It is also necessary to distance political and
managerial spheres.

Our model shows the importance of women’s empowerment as their presence in
leadership roles and their representation in government are useful for mitigating the
political corruption phenomenon, which falls in line with [51,104]. Thus, women’s capacity
to deliver a more relational leadership style gives better results than the self-critical style
linked with men [104].

Finally, increasing funding for open government initiatives [105], building capacity
toward strategic planning and performance evaluation [106], rather than investing in
entities of doubtful nature like non-profit organizations and/or public companies [107],
plus devoting more funds to the judicial system (district attorneys and judges) [108], and
information technology for open innovation [109] are recommended.
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As authors in [110] claim, the need to encourage a type of press that favors inter-
pretative contribution is urgent because it would allow citizenship to understand and
comprehend corruption.

Further research deserves attention to claiming for suitable changes in order to limit
or reduce both the possibilities of committing political corruption and also reducing
the impact. These measures are local, depend on culture and cannot be implemented
without willpower, or at least with citizens’ pressure through their votes. The case of Spain
would require:

(i) Changes in the electoral law to allow the transparency and accountability of elected
political representatives.

In fact, the present Spanish Political Parties and Electoral Laws are a closed system
with a block list of candidates provided for each political party. This means that citizens
must accept all the listed people, but they cannot select some of them. This procedure
eliminates the accountability of political actions taken and decisions made by representa-
tives. They are simply accountable to the political party’s leader, but not to citizens. This
fact is a double source of corruption: one is lack of the representative’s transparency and
independency because they have no freedom to voice their opinion against that of the
party’s leader. The other is the party’s leader is potentially, and at least, a commander or
political boss, and even a dictator.

(ii) Not increasing bureaucracy measures.
These measures have a paralyzing effect on the Administration, reduce labor motiva-

tion and are used to produce new sources of corruption.
(iii) Selecting independent inspectors of parties’ accounts.
(iv) Introducing new laws that forbid financial support from the national budget for

private communication companies.
(v) Measures that address cutting public expenses spent on political advisors based

on confidence criteria.
There is no way to discriminate between political favor and other forms of selection

that make corruption possible.
(vi) Bearing in mind that the higher the public GDP, the more possible corruption is

because public money is not administrated like private money.
(vii) Albeit difficult, implementing a measure because it is not acceptable for inexperi-

enced persons who administer personal budgets to have the capacity to administer public
budgets. Implementing some minimum level of capacity to manage public budgets.
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Abstract: A personalized medical approach can make diabetic retinopathy treatment more effective.
To select effective methods of treatment, deep analysis and diagnostic data of a patient’s fundus
are required. For this purpose, flat optical coherence tomography images are used to restore the
three-dimensional structure of the fundus. Heat propagation through this structure is simulated
via numerical methods. The article proposes algorithms for smooth segmentation of the retina for
3D model reconstruction and mathematical modeling of laser exposure while considering various
parameters. The experiment was based on a two-fold improvement in the number of intervals and
the calculation of the root mean square deviation between the modeled temperature values and the
corresponding coordinates shown for the convergence of the integro-interpolation method (balance
method). By doubling the number of intervals for a specific spatial or temporal coordinate, a decrease
in the root mean square deviation takes place between the simulated temperature values by a factor
of 1.7–5.9. This modeling allows us to estimate the basic parameters required for the actual practice
of diabetic retinopathy treatment while optimizing for efficiency and safety. Mathematical modeling
is used to estimate retina heating caused by the spread of heat from the vascular layer, where the
temperature rose to 45 ◦C in 0.2 ms. It was identified that the formation of two coagulates is possible
when they are located at least 180 μm from each other. Moreover, the distance can be reduced to
160 μm with a 15 ms delay between imaging.

Keywords: mathematical modeling; numerical methods; integro-interpolation method; splitting
method; convergence of models; standard deviation of the error; diabetic retinopathy; ocular fundus;
laser coagulation; optical coherence tomography; image processing; segmentation; safe treatment

1. Introduction

The assessment of both the result of a service rendered to a person and the way
it is provided is becoming extremely relevant; however, this approach seems far from
being well developed, though modern computing systems have allowed the customization
of unique patient treatment parameters by taking into account patient-specific features.
This helps to increase treatment efficiency and patient opinion regarding the course of
treatment. The application of personalized methods and means in treatment, both in
diagnosis and monitoring, ensures the maximum treatment effect. In a broad sense, the
concept of personalized medicine can be applied to specific diseases. In particular, taking
into account the structure of a patient’s fundus and the parameters of laser exposure will
help to increase the number of successful operations in the future.
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Laser coagulation of the retina in the treatment of a diabetic macular edema is
widespread today [1]. It involves multiple exposures to the edema to form coagulates [2];
however, coagulate deposition may have negative effects. When choosing unsuitable laser
exposure parameters and locations for coagulates, the coagulation can lead to retinal dam-
age and complete blindness [3]. This is because the use of a laser with increasing intensity
leads to strong heating of a large area beyond the boundaries of the diabetic macular edema
area, which, in turn, leads to the formation of a coagulum in the healthy retina during its
critical heating. The maximum therapeutic effect becomes significantly complicated with
an increase in the distance between coagulates, as well as under the conditions of lasers
acting on blood vessels, retinal hemorrhages, and “solid” exudates [4]. These drawbacks
in treatment, one way or another, often lead to irreversible decreases in vision. The best
treatment can be obtained when coagulates are located at the same distance from each
other and do not extend beyond the edema area, where the anatomical structures of the
retina are not affected by the laser exposure.

Three modes provide the formation of coagulants under laser action on the fundus [5]:
manual, semiautomatic, and navigation. Manual mode implies pointed laser shots which
form respective coagulates in units. Semi-automatic mode denotes a series of shots leading
to the formation of a group of coagulates in accordance with preset template areas. Thus,
the locations of coagulates significantly affect treatment effectiveness; however, it is clear
that a universal plan for their arrangement does not exist. The most effective one to
date depends on the specific fundus structure and the location of the diabetic macular
edema. The effectiveness of the placement is estimated by the locations of the centers of
the coagulates formed. The most advanced means for arranging coagulates today is the
Navilas unit, which provides high therapeutic efficiency. Operation in navigation mode
requires the use of a preliminary coagulate arrangement plan based on a fundus image [6].

This approach does not solve at least two problems. The first is how to build a pre-
liminary plan for coagulates, and the second is defining the optimal power and time of
exposure for the ocular fundus. To solve the first problem, algorithms must be developed
for the analysis of optical coherence tomography (OCT) images to isolate sensitive areas in
the fundus, detect diabetic macular edema areas, and then choose the locations for coagu-
lates [7]. For this purpose, various algorithms for pattern recognition, object detection, and
image segmentation [8–11] can be used. To cope with the second problem, mathematical
modeling has been proposed to specify the laser exposure parameters [12]. Indeed, on the
one hand, it is necessary to achieve a predetermined temperature in the area of a diabetic
macular edema for the formation of a coagulum. On the other hand, it is required to
ensure a permissible temperature in the healthy area of the retina and other elements of
the fundus to avoid negative effects. Consequently, the use of a mathematical model for
heat propagation along the fundus should lead to an ideal temperature distribution in
the fundus in a certain period, depending on the locations of coagulates, the power and
duration of laser exposure, the duration of pauses between shots, etc.

Today, special attention in research is directed to the development of algorithms for
processing fundus images [13–17]. Most importantly, the analysis of patient images using
computer vision techniques in the treatment of diabetic retinopathy makes the process
personalized and therefore more efficient and safer. We briefly consider the current state of
research in the field of laser therapy.

In Reference [18], the estimation of parameters for laser coagulation was considered,
but for the treatment of varicose veins. The authors noted unsafe treatments at high power
radiation in the range of 8–20 W with a wavelength of 810–980 nm and 5–15 W for electro-
magnetic waves with a 1470–1550 nm wavelength. The study simulated the laser action of a
solid-state laser. The advantages of the approach in comparison with real experiments was
noted. Based on the obtained temperature values, the range of the permissible exposure
power was identified. The lower and upper power levels were set accordingly. At the
low level, the required effect was achieved, i.e., thrombus formation. The upper level had
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power peaks, which caused irreversible damage to veins. The disadvantage of this work is
that the model describes the operation of only one laser of a specific type and brand.

A detailed review of various lasers was presented in Reference [19]. The authors
carried out an in-depth analysis of studies of various characteristics of lasers around the
world. They mainly compared argon or diode lasers, as well as lasers based on panretinal
photocoagulation (PRP) technology. The analysis showed that argon lasers, which have
been considered the standard in the treatment of diabetic retinopathy for a long time, today
no longer always provide the best effects.

The work in Reference [20] was conducted to assess anatomical and functional out-
comes for patients undergoing treatment for diabetic retinopathy with a 532 nm laser PRP
method (Supra Scan® Quantel Medical) and laser pinpoint coagulation at a wavelength
of 532 nm (PASCAL® Topcon). The study was carried out with 48 patients and aimed
to identify the correlation of their comfort with the laser exposure parameters, thereby
showing the advantage of a multipoint laser.

A study of the thickness of the layer of retinal nerve fibers in the context of laser
action was reported in Reference [21]. The article discusses lasers based on PRP technology.
The effectiveness of red laser radiation treatment was compared to that of green laser
treatment. The red laser showed an increase in the thickness of the retinal nerve fiber layer
by 3–10 microns, which is 1.5 times higher than the green laser facilitated. The study also
showed that the increase in thickness usually does not coincide with age or the number
of burns.

In addition, Reference [22] showed that when comparing pain scores for patients with
diabetic retinopathy, new systems, such as the novel navigated laser (NNL) system, have
an advantage over conventional PRP-based systems.

The work of Reference [23] concerns laser action efficiency in terms of promoting the
therapeutic treatment of diabetic retinopathy. Single-spot laser (SSL) and pre-stabilized
laser (PSL) methods were compared, where the latter showed the best performance in
terms of pain and effectiveness of treatment.

The analysis of the literature has shown that a limited number of works have been
devoted to the problem of the mathematical modeling of fundus laser exposure. Neverthe-
less, this problem can now be solved via the use of numerical methods. In Reference [24],
numerical methods based on an implicit difference scheme were considered. Such meth-
ods are often used to obtain fuzzy wave equations. The main idea of the work was the
formulation of a new space of coordinates with respect to time using implicit schemes
and the theory of fuzzy sets. The use of fuzzy sets allowed the authors to perform fuzzy
analysis of the resulting equations and ensured function convergence. The use of numerical
methods allowed the authors to reduce the time required for constructing wave equations
with minimal losses in accuracy when describing real processes. The confirmation of
the convergence of the methods made it possible to assess the possibility of using such
mathematical models with a given error.

Indirectly, thermal energy distribution and transfer mechanics were studied in Refer-
ence [25], where a model of the flow of dusty nanofluid Cu-Al2O3/water was developed.
Using numerical methods, the authors obtained ordinary differential equations (ODEs)
that described the physical process of such a flow. In this case, double solutions were
obtained, which were investigated for convergence and after which only one solution was
chosen as a reliable one. On that basis, various parameters of the process were evaluated.
For example, it has been found that nanosized particles (Cu) have a significant effect on
heat transfer.

Finally, Reference [26] also studied heat propagation; however, the authors investi-
gated the dynamics of micropolar fluids using numerical methods. Two edge conditions
were investigated: an isothermal wall and isothermal flow. On the basis of numerical
methods, the authors considered systems of nonlinear ODEs which were solved using
the sequential relaxation method and Simpson’s rule. They investigated different mesh
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dimensions using numerical methods. The increase in the dimensions allowed the authors
to gradually obtain more accurate solutions.

Despite the widespread use of numerical methods, including the integro-interpolation
method, to solve various applied problems, their application to 3D modeling of fundus laser
exposure involves significant computational difficulties. The development of algorithms
that efficiently use modern High Performance Computing resources allowed us to make
significant progress in resolving this problem.

In the article, we discuss algorithms and methods for analyzing OCT images of
the fundus and propose algorithms for the mathematical modeling of laser exposure
to the fundus to estimate the appropriate parameters for safe and effective treatment.
Moreover, this article is the first to study the convergence of the integro-interpolation
method for the problem of mathematical modeling of laser exposure to the fundus. Thus,
we developed a new 3D fundus structure model based on processing of OCT images and
using approximating functions to describe the boundaries of the retina. One of the most
important factors determining the safety of treatment is the distance between coagulates
and the delay between laser shots. In this case, one of the options for evaluating safe
parameters is mathematical modeling. Indeed, simulating heat propagation at various
values with the noted parameters allowed us to estimate the basic parameters required
for the actual practice of diabetic retinopathy treatment while optimizing for efficiency
and safety.

2. Materials and Methods

2.1. Research Material

A diabetic macular edema is one of the most unfavorable consequences of diabetic
retinopathy, and can cause blindness. Figure 1 shows diagnostic images of a healthy fundus
and a fundus damaged by macular edema.

  
(a) (b) 

Figure 1. Fundus images: (a) healthy fundus; (b) fundus damaged by diabetic macular edema.

The fundus has a three-dimensional structure. For this reason, flat image analysis
may not always be effective. Currently, the OCT scanning of the fundus provides sections
of the retinal image obtained in the oXZ plane. As a result, 85 cross-sectional images are
issued for different positions of the Y coordinate. Thus, the three-dimensional structure of
the fundus can be reconstructed using the data of a sequence of images, given the exact Y
value in each OCT image. Figure 2 shows one of the sections obtained by OCT registration
and also schematically shows the laser contacting the fundus.

The edge condition is an area where the laser action has no effect on the vascular layer.
The presence and positioning of such an area is extremely important for laser exposure
modeling. As the analysis of the subject area has shown, the identification of new methods
of effective treatment for diabetic retinopathy is possible when a sufficiently large number
of fundus images can be analyzed. Additional features can be extracted from the analysis
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of OCT images. This requires a lengthy and thorough analysis of a sample of images with
the involvement of medical experts.

 

Figure 2. The structure of the retina as it pertains to laser exposure: 1—edge conditions, 2—vitreous,
3—retina, 4—vascular layer, 5—laser radiation.

The collection of a large database for the assessment of laser exposure effects on the
fundus seems to be a great challenge. At present, the only way to assess the effective
parameters of laser exposure is to carry out laser coagulation and fix the values under
various conditions. This approach requires an excessively large number of patients as
samples, since the physician cannot test different laser exposure parameters on real patients
to study the effectiveness of the laser coagulation. A small sample of treated patients may
not contain enough information to identify safe parameters. One approach is recommended
that would require a small patient base containing heterogeneous fundus structures. As
a result, the optimal material for research is a mathematical model that describes the
spread of heat along the fundus in three-dimensional space, depending on the laser power,
the duration of the exposure, etc. Having defined the temperature inside the fundus
under normal conditions and the temperature of the formation of coagulates, the optimal
parameters of laser exposure can be determined, including the target area. This makes
it possible to explore various changes in the action of an object by replacing it with a
mathematical model.

2.2. OCT Image Analysis and Reconstruction of 3D Fundus Structure Model

To assess the parameters of laser exposure, the preliminary analysis of OCT images
may be required. Greater accuracy in determining the main layers on the cross-sections of
the fundus images will result in a more suitable reconstructed model of the fundus surface.
The reconstructed 3D model is needed to estimate the heat propagation.

At present, there are no universal methods for registering a fundus that allow obtaining
undistorted images of parts of the eye. For various reasons, the recorded areas of the eye’s
surface in the original image may contain additional interference (Figure 3a).

Consequently, the first task is to highlight different layers in the noisy fundus image.
The preprocessing stage may include the filtering procedures. For example, as mentioned
earlier, median filtering ensures the elimination of strong impulse noise by brightness
replacement with the median value in a certain neighborhood. If the noise is additively
distributed over all pixels in the form of additive Gaussian white noise (AGWN), then it is
possible to use recurrent Kalman filtering [27].
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(a) (b) (c) 

Figure 3. The result of the optical coherence tomography (OCT) fundus image processing: (a) original OCT image
against the background of noise; (b) preliminary segmentation of the retinal layer; (c) fundus image model based on
parametric functions.

Thus, preprocessing does not solve a specific applied problem but improves the quality
of the solution obtained in the course of the main image processing. Based on the image
shown in Figure 3a, the segmentation of three layers is required: the vitreous, retinal, and
epithelial (vascular) layers; however, using the a priori knowledge that the retina always
separates the other two layers, the task is simplified to binary segmentation, where the
retinal layer will be highlighted. With segmentation, it is important to take into account
that the retinal layer must be evenly filled and distributed over the entire width of the
image. In the image, every pixel inside the retina should have zero brightness, and every
pixel outside the retina should have maximum brightness. At the first stage, the manual
selection of borders and filling of the corresponding area can be performed. Figure 3b
shows the result of such processing as a binary image.

The analysis of Figure 3b shows a rather complex structure of the boundaries of
the retinal layer, which can lead to significant difficulties in the reconstruction of a three-
dimensional model. Therefore, the next processing step is the generation of a binary image,
for which the boundary lines of the retinal layer can be approximated using mathematical
functions and have a smooth appearance. Continuous parametric functions are used to
describe the upper and lower boundaries of the retinal layer. Figure 3c shows the resulting
image after approximation.

As can be seen from Figure 3c, in addition to smoothing, three areas of the fundus are
segmented separately in the final modeled image.

Thus, after preliminary processing, the considered algorithm will consist of the fol-
lowing five steps [28]:

Step 1. Constructing a halftone image.
Step 2. Detection of the contour lines of the retina.
Step 3. Selection of a group of points located on contour lines.
Step 4. Approximation of contour lines through selected points.
Step 5. Construction of the image with selected layers based on smoothed contour lines.

The sequential processing of all OCT images for the fundus allows one to obtain a
set of approximating functions and use them to restore the three-dimensional structure
of the fundus from OCT images. Figure 4 shows an example of such reconstruction. The
processing of OCT images and reconstruction of a 3D model was performed using an
implementation of the proposed algorithm in MATLAB.
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Figure 4. Fundus model reconstructed from OCT images.

Using 3D fundus models, based on the modeling of laser exposure, it is possible to
analyze to what temperature this or that point of the fundus will be heated during laser
exposure with certain parameters. This allows the prediction of the formation of coagulates
in accordance with the chosen plan and to assess the likelihood of unwanted side effects,
including heating the retinal layer to a critical temperature.

The analysis of Figure 4 shows that the use of approximating functions for two-
dimensional OCT images makes it possible to reconstruct three-dimensional models of
the fundus.

2.3. Heat Propagation Modeling

In the mathematical modeling of laser exposure, it is necessary to take into account
the fact that energy is converted in such a model, i.e., a laser light pulse (light energy) leads
to heating of the fundus (thermal energy). Indeed, the electromagnetic energy of the laser
action is converted into heat when interacting with the vascular layer [29,30].

The intensity of light energy is described by Equation (1):

I(r) =
P

πa2 e−( r
a )

2
, (1)

where r is the distance from the light source, a is the spot radius, and P is the light
source’s power.

Using Equation (2), the temperature distribution in three-dimensional space can be
determined after the end of the laser exposure:

ψ(x, y, z) =
e
−

z∫
0

β(x,y,ξ)dξ

βI(r)Δt
Cv

+ Tc, (2)

where Tc is the temperature at the time of the laser shot, β = β(x, y, z) is the environ-
ment absorption function, Cv = Cv(x, y, z) is a function of the environment volumetric

heat capacity at a fixed timestamp, r =
√
(x − x0)

2 + (y − y0)
2 + (z − z0)

2 is the distance
to the point (x0, y0, z0) where the laser coagulation was initialized, and Δt is the laser
exposure duration.

Considering very small values of Δt, it is possible to neglect the diffraction of light [27].
Since this is indeed the case in practice, the model of the heat propagation after laser
exposure can be rewritten in the form of Equation (3):
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⎧⎨⎩
Cv

∂T
∂t = div

[
k · gradxyz(T)

]
,

T|t=0 = ψ(x, y, z),
T|E = T0,

(3)

where T = T(x, y, z, t) is temperature distribution depending on the spatial and time
coordinates, k = k(x, y, z, T) is a function of thermal conductivity of the environment
in space and time, Cv = Cv(x, y, z, T) is a function of the environment volumetric heat
capacity which changes during heating or cooling, E is the edge laser exposure influence on
temperature, div is a vector field divergence operator, gradxyz is an operator for calculating
the gradient of a function by coordinates x, y, z, and T0 is the temperature at the edge region.

When using Equation (3), it is necessary that the region of determination of the thermal
field in space is large enough to ensure that, under laser action, the propagation of heat
only occurs up to the edge through which the laser passes. Two methods can be used to
meet this condition.

First, the function ψ(x, y, z) must be specified at the bearing edge, i.e., one that changes
over time. In addition, it is necessary to perform a special linear replacement in order to
reduce the task to fixed (or zero) edge conditions. Thus, the thermal conductivity will be
described by an inhomogeneous differential equation. Solution retrieval is possible via
expansion into a solution for the corresponding homogeneous equation with the initial
edge and initial conditions. Next, a solution to the inhomogeneous equation is found for
which a zero edge and initial conditions are provided. Consequently, the final solution will
be found from an equation in the form of Equation (3).

Nevertheless, several difficulties usually arise when searching for such a replacement
and solving an inhomogeneous equation. Therefore, in this work, it was decided to use
the second method. This method is based on the fact that it is necessary to artificially
expand the domain of definition, and then, based on the resulting extension, divide it into
informative and non-informative areas. In this case, for the first region, the condition of
a relatively negligible pulse duration is satisfied, which makes it possible to describe the
temperature distribution at the initial moment of time in accordance with Equation (2).
Determining the spread of heat in a non-informative area will not be difficult, since for
solving this problem it will be sufficient to use a symmetric display; however, the already
fixed temperature value will correspond to the border in the uninformative area. At the
same time, when analyzing a mathematical model, it will be possible to use only data in
the informative area which further simplifies the task.

Unfortunately, due to the dependence of the volumetric heat capacity and temperature-
conductivity on temperature, the task will be nonlinear. Nevertheless, it is possible to
assess the change in the shape of the retina based on the temperature values of its layers,
i.e., by assessing the given layer and temperature. Equation (4) is similar to Equation (3) in
which the functions of the volumetric heat capacity Cv and thermal diffusivity k depend
only on spatial coordinates.

The analysis of Equation (4) shows that it is not difficult to obtain zero edge conditions.
Indeed, by replacing T = T̃ + T0, where T̃ describes the simulated temperature in the form
of the direct effect of laser exposure (i.e., how much a given point of the fundus has heated
as a result of laser exposure). Absolute temperatures on the fundus surface T are defined
as the sum of the heating temperature and the initial temperature T0.⎧⎪⎪⎨⎪⎪⎩

Cv(x, y, z) ∂T
∂t = div

[
k(x, y, z) · gradxyz(T)

]
,

T
∣∣∣∣t=0 = e−β(x,y,z)z β(x,y,z)I(r)Δt

Cv(x,y,z) + Tc,

T|E = T0.

(4)

A normal tissue temperature (~36.5 ◦C) can be used as the starting temperature. The
solution of Equation (4) makes it possible to obtain a model of the temperature change
after the application of a laser with a given power at the point (x0, y0, z0) throughout the
structure of the fundus. Then, by combining the resulting model with a three-dimensional
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fundus model, it is possible to predict the absolute temperature at each point of the recon-
structed model. The temperature on the retina is estimated based on this alignment. If, at
some point in the retinal layer, the value exceeds the critical temperature (Tsr = 38 − 40 ◦C),
then treatment with the given parameters may be unsafe. Otherwise, the temperature in
the area of the diabetic macular edema is estimated. If this temperature exceeds 39 ◦C, then
a coagulum will appear and the treatment can be considered effective.

The solution of the task in an analytical form is not possible; however, the temperature
distribution can be estimated using numerical methods [31]. For example, based on the
splitting scheme, it is possible to go from a multidimensional task to a one-dimensional
one. This allows the use of an implicit scheme without solving the linear relationship
system. The application of a sweep method significantly speeds up the solution retrieval
for this task.

To use the splitting method, it is necessary to rewrite Equation (4) in the form of
Equation (5). ⎧⎪⎪⎪⎨⎪⎪⎪⎩

sv(x, y, z) ∂T
t = ∂

∂x (k(x, y, z) ∂T
∂x )+

+ ∂
∂y (k(x, y, z) ∂T

∂y ) +
∂
∂z (k(x, y, z) ∂T

∂z ),
T|t=0 = ψ(x, y, z),

T|E = T0.

(5)

The numerical solution of Equation (5) using the splitting method is described in a
more convenient form below. The idea behind the method is that sampling with the same
step must first be performed for a given time segment. After that, the solution is reduced
to solving iterative Equations (6) and (7). At the first stage, the coordinate is split off along
the oY axis, since this is the main axis of the OCT images.⎧⎪⎨⎪⎩

cv(x, y, z) ∂W
∂t = ∂

∂y (k(x, y, z) ∂W
∂y ),

W
∣∣t=tk = T

∣∣t=tk ,
W|E = 0

(6)

⎧⎪⎪⎨⎪⎪⎩
sv(x, y, z) ∂V

∂t = ∂
∂x (k(x, y, z) ∂V

∂x )+

+ ∂
∂z (k(x, y, z) ∂V

∂z ),
V
∣∣t=tk = W

∣∣t=tk ,
V|E = 0.

(7)

The iterative solutions for these tasks are given as follows: First, a solution to Equa-
tion (6) is sought on the time interval [tk, tk+1]. In this case, the initial condition of Equa-
tion (6) at moment tk coincides with the solution to Equation (5) at the same time. Further,
for Equation (7), a solution is sought under the condition that the initial condition at the
moment tk is nothing more than the result of solving Equation (6) at the time tk+1 or Wtk+1 .
It should be noted that for the splitting method the solution to the main problem, namely,
temperature distribution at time tk+1, can be represented as a solution to task (7), i.e.,
T|t=tk+1

≈ V|t=tk+1
.

It is necessary to understand that Equation (6) describes a set of tasks taking into
account the dependence of the sought functions on all spatial coordinates. Similar depen-
dencies are observed for Equation (7). The solution to Equation (6) can be obtained using
the finite difference method based on an implicit difference scheme.

To summarize, the three-dimensional problem is reduced to solving Equations (6)
and (7). In this case, the resulting two-dimensional task can also be decomposed into
one-dimensional tasks or solved using numerical methods.

To carry out computational experiments of laser exposure to the fundus, the proposed
algorithm for heat propagation modeling was implemented in C++.

3. Results

Several important results were obtained as a result of solving the laser exposure
mathematical modeling task on the basis of numerical methods. First, the modeling of the
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laser action of the fundus was carried out while taking into account its three-dimensional
structure. Figure 5 shows the result of this simulation. In addition, the simulation results
can be used to estimate the parameters of laser exposure. By superimposing the obtained
three-dimensional model of heat distribution at a given moment in time on the fundus
model under the condition of normal tissue temperature, it is possible to estimate the
absolute values of temperature at a given moment in time. Moreover, it is possible to
estimate how quickly the temperature is restored to normal after the termination of the
laser action. In Figure 5, some heat dissipation can be observed in the vicinity of the center
point of the shot.

 

Figure 5. Three-dimensional model of laser exposure.

The use of numerical methods, generally speaking, can lead to different simulation
results for different mesh sizes. Moreover, the larger the mesh size is, the longer the
simulation will take. This gives rise to the problem of investigating the convergence
of solutions.

The presence of discontinuities in the coefficients of thermal conductivity and vol-
umetric heat capacity leads to the absence of the existence of derivatives at points of
discontinuity. The integro-interpolation method (IIM) [31,32] aims at eliminating this
problem, and consists of calculating integrals over the limits of the neighborhoods of the
grid nodes for the main equation of the problem and the initial and boundary conditions.
As a result of calculating the integrals, a difference scheme is formed which is considered
to be resistant to discontinuities. It is very difficult to analytically show the effectiveness of
the IIM in comparison with the finite difference method, as existing works have only been
aimed at analyzing particular problems related to heat conduction [24–26]; however, there
is a way to experimentally evaluate the convergence of the method. This method involves
the numerical simulation of the coagulation process for two grids in which the first grid
consist of N intervals and the second one consist of 2N intervals.

Since the modeling is performed with three spatial coordinates and one time coordi-
nate, a convergence study was carried out on the basis of modeling at different sampling
steps along one of the axes. At the same time, for all nodes available in two neighboring
models, the temperature discrepancies were estimated and the standard deviation or root
mean square (RMS) values were calculated. The results of the convergence study are
shown in Tables 1–4. Here I, J, K are the numbers of intervals in spatial coordinates x, y, z,
respectively, and S is number of intervals in time coordinate t.
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Table 1. Convergence for different mesh sizes along the oX axis.

I J K S RMS

60 200 500 1000 0.015130427
120 200 500 1000 0.002634052
240 200 500 1000 0.00050212
480 200 500 1000 0.000172598

Table 2. Convergence for different mesh sizes along the oY axis.

I J K S RMS

200 60 500 1000 0.015772823
200 120 500 1000 0.003441242
200 240 500 1000 0.001191759
200 480 500 1000 0.000531296

Table 3. Convergence for different mesh sizes along the oZ axis.

I J K S RMS

200 200 60 1000 0.025006277
200 200 120 1000 0.004207547
200 200 240 1000 0.002474279
200 200 480 1000 0.001344305
200 200 960 1000 0.000694162

Table 4. Convergence for different mesh sizes along the time axis.

I J K S RMS

200 200 500 200 0.000323827
200 200 500 400 0.000186017
200 200 500 800 0.000103741
200 200 500 1600 0.00005.58805
200 200 500 3200 0.00002.92848

Analysis of the results presented in Tables 1–4 shows that with an increase in the
number of grid dimensions, the results of mathematical modeling converge; however,
different convergence rates are set for different coordinates. For example, for the oX axis,
an increase in the number of intervals from 60 to 480 (8 times) leads to a decrease in the
standard deviation by 87 times—but 29 times for the oY axis and less than 36 times for the
oZ axis. A halving in the number of steps along the spatial coordinates leads on average to
decreases in the standard deviation by 2.9–5.7 times along the oX axis, 2.2–4.5 times along
the oY axis, and 1.7–5.9 times along the oZ axis. A stable decrease in the standard deviation
indicates the convergence of the IIM. Most discontinuities exist in the oZ direction and the
convergence is slow there. In the presence of discontinuities, the standard deviation usually
decreases by no more than 50%. There are discontinuities in the oX and oY directions which
are not as pronounced as in the Z direction. In these directions, the standard deviation
can decrease by more than 50%, which is shown in the tables above. When studying the
influence of the dimensions when passing from 200 intervals to 3200 intervals, a decrease
in the deviation by a factor of 11 was observed; however, in terms of absolute values, the
results showed far lower values for spatial coordinates with a value of approximately
5 ◦C. Reducing the sampling time step by a factor of two led to a decrease in the standard
deviation of no more than 50%. On average, as can be seen in Table 4, the standard deviation
decreased by 1.8 times. Thus, the algorithm has good convergence; that is, an increase in
the grid dimension size will lead to an improvement in the accuracy of the solution.
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Heat propagation with various laser displacements was also simulated. In particular,
the coordinates along the oY and oZ axes were fixed as y0 and z0, and research was
carried out for different x0 values. Figure 6 shows the results of such simulations for three
different x0 scenarios. It should be noted that the assessment was carried out with absolute
parameters characterizing the displacement distance x0 from the left edge, where x0 = 0.

   
(a) (b) (c) 

Figure 6. Simulation of thermal propagation at various coordinates for the point of influence along the oX axis: (a) 200 μm;
(b) 350 μm; (c) 500 μm.

Analysis of the simulation results presented in Figure 6 shows that the structure
(shape) of the retina had little effect on the spread of heat. For the considered example, the
thickness of the retinal layer was approximately the same for all displacements; however,
there were slight differences in the spread of heat along the fundus under the influence
of different displacements. This difference should be taken into account when forming
several coagulates side by side in order to prevent reaching a critical temperature on the
retinal layer. Figure 7 shows the results of modeling the temperature distribution on the
retinal layer after laser exposure at different points in time.

Figure 7. Simulation of temperature versus time.

Figure 7 shows that the retina heats up rather quickly. It should be noted that the
value at time zero is associated with laser action on the adjacent layer.

It can be seen that within 0.24 ms, due to the spread of heat from the vascular layer, the
temperature on the retina could reach 44.9 ◦C, after which there would be a slow decrease
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in temperature with a limit trending to the normal temperature of the tissue. It is clear that
if one more shot is fired during these 0.24 ms, then the peak temperature may even exceed
44.9 ◦C. Based on this model, the required delay time between shots can be estimated.

The resulting model allowed us to simulate two shots in the area of the epithelial
layer. Figure 8 shows an example of the implementation of the model. The coordinate
along the oY axe was fixed, and the points of the shot were specified with different offsets
along the oX and oZ axes. It should be noted that the different colors correspond to heating
temperatures, so the figure can be interpreted in the same way in K and ◦C.

Figure 8. Modeling of laser action for the formation of two coagulates: 1—vitreous layer, 2—retinal
layer, 3—epithelial layer, 4—vascular layer.

Analysis of Figure 8 shows that as a result of each shot, heat spread from the epithelial
layer to the retinal layer. A short time after exposure, the temperature of the retina can
increase by 5 ◦C due to the spread of heat from one shot. The second shot, taking into
account the proximity of the distance between the coagulates, will also contribute to the
spread of heat in the local neighborhood. During treatment, it is impossible to allow a
critical temperature on the retinal layer to be reached.

In this regard, in order to identify safe treatment parameters, heat propagation was
simulated for various distances between the centers of coagulates and delay times between
shots. In particular, the situations of laser exposure with two shots with different displace-
ments and delay times were simulated. Figure 9 shows the results of such a simulation at
different coordinates along the oX axis. It should be noted that the temperature is calculated
as the maximum temperature over the entire area as a result of simulating two laser shots.

Analysis of Figure 9 shows that a safe distance between coagulates is about 180 μm.
Another option to ensure safe treatment is to increase the delay time between shots to
15 ms; the distance can be reduced by increasing the delay between shots. A distance of
around 160 μm may be used with a delay greater than 15 ms.

Thus, the main results here are the mathematical models of laser exposure which make
it possible to estimate the parameters of safe treatment. Notably, these models feature the
property of convergence.
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Figure 9. Dependence of the maximum temperature on the epithelial layer during the implementation of two shots on the
delay between shots and the coordinates of the shots.

4. Discussion

The results obtained within the framework of the study can be taken into account for
the treatment of diabetic retinopathy, and the models developed can be used in treatment
to select parameters of laser exposure that will provide the maximum therapeutic effect.
The use of the proposed fundus models and laser exposure parameters is another step
towards personalized medical care. Indeed, the OCT images make it possible to restore
the three-dimensional structure of the fundus where the laser exposure is simulated. The
modeling of heating the retinal, vascular, and epithelial layers allows conclusions to be
formed regarding safe shifts between laser shots and pause durations.

Many quantitative results have been obtained. In particular, at a given laser power, a
safe pause of 15 ms was revealed with a distance between coagulates of 160 μm. In addition,
a minimum safe distance between shots was 180 μm, which did not depend on the delay
between shots. Convergence of the numerical methods used in modeling has been established
with a decrease in the sampling step size by a factor of two, where the standard deviation
stably decreases. A decrease in the step size by 50% along the spatial coordinates leads, on
average, to decreases in the standard deviation of 2.9–5.7 times along the oX axis, 2.2–4.5 times
along the oY axis, and 1.7–5.9 times along the oZ axis. A stable decrease in the standard
deviation indicates the convergence of the integro-interpolation method. This becomes
especially important when arranging coagulates not as a single formation, but as a group.
Moreover, on the basis of mathematical modeling, it is potentially possible to adjust the plans
of coagulates in order to maximize the therapeutic effects. In the future, we plan to study the
placement of a group of coagulates, as well as the performance of the proposed algorithms.
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Abstract: In the present paper, we delve into the study of nodal systems on the unit circle that meet
certain separation properties. Our aim was to study the Hermite interpolation process on the unit
circle by using these nodal arrays. The target was to develop the corresponding interpolation theory
in order to make practical use of these nodal systems linked to certain mechanical models that fit
these distributions.

Keywords: Hermite interpolation; nodal systems; unit circle; convergence

1. Introduction

Hermite polynomial interpolation problems on the real line and on the bounded inter-
val have been widely studied by many researchers. Most of the main contributions have
been obtained by using as nodal points the zeros of the classical orthogonal polynomials
and some of their generalizations (see [1–3]). When the nodal points are zeros of general
orthogonal polynomials, the papers of Freud [4,5] (see [6]) deserve to be mentioned. The
first attempt to use nodal systems not linked to measures and therefore to orthogonal
polynomials was carried out by Fejér who introduced the so-called normal systems. In
the same direction, we must mention the contributions of Grünwald who introduced
in [7] the strongly normal nodal systems. Unfortunately, the use of these systems has not
been consolidated and has not been continued. More recently, some nodal systems called
well-spaced ones have been used for studying Lagrange interpolation problems. Although
they are not connected with measures, any reasonable choice of interpolation nodes fulfills
the conditions of being well spaced (see [8]). Thus, if one wants to work on the bounded
interval with nodal systems that are not connected with measures, it seems convenient
that the nodes have a distribution that is not far from the Chebyshev distribution. This
closeness can be established in terms of suitable separation properties. The advantages of
using these types of nodal systems is that they can be obtained through a random uniform
distribution (see the examples given in [9]).

During the last few decades, several problems related to Hermite polynomial inter-
polation on the unit circle have been studied in depth. In some cases, the study has been
connected to the Hermite interpolation on the interval and to the trigonometric inter-
polation. The nodal systems usually employed were the equispaced ones, that is those
constituted by the n roots of complex numbers with modulus one. It is well known that
there are methods to compute the Laurent polynomials of Hermite interpolation in an
efficient way, when considering equally spaced nodal points on the unit circumference. By
using these nodal systems, the convergence of the Hermite–Fejér interpolation polynomials
related to continuous functions was studied in [10], obtaining a Fejér-type theorem. The
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convergence of the Hermite interpolation polynomials taking nonvanishing conditions for
the derivatives was studied in [11] giving several versions of the second Fejér-type theorem.

Other more general nodal systems that have been used are those formed by the
zeros of para-orthogonal polynomials, associated with good measures on the unit cir-
cle. We recall that a polynomial Qn(z) of degree n is para-orthogonal if it satisfies that
Qn(z) = znQn(1/z) and it is orthogonal to {zk}n−1

k=1 with respect to a measure on the unit
circle. It deserves to mention measures in the Baxter class or analytic measures and, in
particular, measures in the Szegő class with the Szegő function having an analytic exten-
sion outside the unit disk (see [12,13]). In these cases, the nodal points are characterized
by satisfying suitable separation properties, and it is possible to obtain the properties of
the nodal polynomials without the need to compute their zeros explicitly. Most of these
properties play an important role in the results for convergence and related problems that
were studied.

The use of another type of nodal system adds complexity to the problem due mainly
to the difficulty of computing their zeros. In this sense, some advances have been made by
using nodal polynomials that are close to the equispaced ones in the unit circumference
and that can be obtained through a perturbation of the uniform random distribution. The
starting point is to ask the nodes for some separation properties that allow obtaining the
main properties of the nodal polynomials playing a fundamental role in the interpola-
tion processes.

If the arguments of the nodal points are θj, j = 1, · · · , n, we recall that in the Baxter
class, the separation property satisfied by the nodal points is θj+1 − θj = 2π

n + O( 1
n )

(see [14]). When the nodal points are the zeros of para-orthogonal polynomials with
respect to analytic weights on the unit circle or with respect to measures in the Szegő
class having an analytic extension outside the unit disk, then the separation property is
θj+1 − θj =

2π
n +O( 1

n2 ) (see [15]). Thus, the nodal points behave like perturbations of the
roots of complex unimodular numbers.

In [9], we changed the focus of the interpolation problem, and our starting point was
to use nodal systems that were not related to measures and that were only characterized
to fulfil certain separation properties between the nodes. Thus, we studied the Lagrange
interpolation problem on the unit circle by using nodal systems that are not connected
with any measure, and they are only characterized by satisfying a separation property of
the type: θj+1 − θj =

2π
n +O( 1

n2 ). In the aforementioned paper, a detailed study of their
properties was done. Moreover, the Lebesgue constant of the process was obtained, as
well as some results for the convergence and the rate of convergence for different smooth
continuous functions.

In the present paper, we studied nodal systems like those used in [9] that meet the
separation properties mentioned above, and we present mechanical models that fit these
distributions. The aim of this work was to study the Hermite interpolation process on the
unit circle by using these nodal systems characterized by a separation property between
the nodes. The target was to develop the corresponding interpolation theory that allows us
to make practical use of these nodal systems linked to certain mechanical models. Thus,
in the first part of the paper (see Sections 2 and 3), we recall the properties given in [9]
satisfied by the nodal system, and we obtain some new ones that play an important role in
the Hermite process. Our main result was to prove a new version of Fejér’s theorem for
continuous functions on the unit circle by using these nodal systems. We also studied the
complete problem, that is the Hermite interpolation problem with nonvanishing conditions
for the derivatives, giving a sufficient condition on the derivatives in order to assure
convergence. These results are gathered in Section 4, with the study of the convergence of
the Hermite interpolation polynomial related to analytic and smooth functions (see [16]),
and finally, in Section 5 we obtain the corresponding results on the bounded interval.
Indeed, we transformed the problem into a new one on the bounded interval studying
the Hermite interpolation problem related to continuous functions on [−1, 1] and by
using nodal points characterized by some separation properties. In Section 6, we present
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some mechanical models generating the nodal systems according to our distribution,
as well as some numerical examples by applying our results. Finally, Section 7 gathers
the main notation concerning the different classes of polynomials used throughout the
paper; Section 8 briefs the materials and methods used and Section 9 offers a discussion of
the problem.

2. Preliminaries

The aim of this paper was to study Hermite interpolation problems on the unit
circle T = {z ∈ C : |z| = 1} by using nodal systems satisfying some suitable separation
properties, which are not connected with orthogonality nor para-orthogonality with respect
to any measure.

We denote the nodal polynomials by Wn(z) and their zeros by {αj,n}n
j=1, that is, we

assumed that Wn(z) = Πn
j=1(z − αj,n), where |αj,n| = 1 for j = 1, · · · , n, and αj,n �= αk,n for

j �= k. For simplicity, we omit the subscript n and write αj instead of αj,n for j = 1, · · · , n.
First, we recall some well-known definitions related to interpolation problems on the unit
circle. We work in the space of Laurent polynomials and, in particular, in the subspaces
Λp,q[z] = span{zk : p ≤ k ≤ q}, with p and q integers p ≤ q.

If {uj}n
j=1 and {vj}n

j=1 are arbitrary complex numbers and Wn(z) is the nodal polyno-
mial, then the Hermite interpolation problem consists of determining the Laurent polyno-
mial H−n,n−1(z) satisfying the interpolation conditions:

H−n,n−1(αj) = uj, H′
−n,n−1(αj) = vj, for j = 1, · · · , n.

This polynomial can be rewritten as H−n,n−1(z) = HF−n,n−1(z) + HD−n,n−1(z),
where the Hermite–Fejér interpolation polynomial satisfies that:

HF−n,n−1(αj) = uj, HF′
−n,n−1(αj) = 0, for j = 1, · · · , n, (1)

and HD−n,n−1(z) satisfies that

HD−n,n−1(αj) = 0, HD′
−n,n−1(αj) = vj, for j = 1, · · · , n. (2)

If f is a function, uj = f (αj) and vj = 0, we denote the corresponding Laurent
polynomial HF−n,n−1( f , z). In the same way, if uj = 0, vj = f ′(αj), we denote the cor-
responding Laurent polynomial by HD−n,n−1( f , z) and also denote by H−n,n−1( f , z) =
HF−n,n−1( f , z) + HD−n,n−1( f , z). In the case, when uj = f (αj) and vj is arbitrary, if
γn = (vj)

n
j=1, we denote by H−n,n−1( f , γn, z) = HF−n,n−1( f , z) +HD−n,n−1(z).

Let us recall that the preceding polynomials can be computed by using the following
expressions (see [17]).

HF−n,n−1(z) =
n

∑
k=1

hk,n(z)uk (3)

and

HD−n,n−1(z) =
n

∑
k=1

kk,n(z)vk, (4)

where hk,n and kk,n are the fundamental polynomials of Hermite interpolation given by:

hk,n(z) =
(Wn(z))2

zn
1

(W ′
n(αk))2

[
αn

k
(z − αk)2 +

αn−1
k

(z − αk)

(
n − αkW ′′

n (αk)

W ′
n(αk)

)]
, (5)

and:

kk,n(z) =
(Wn(z))2

zn
αn

k
(W ′

n(αk))2
1

(z − αk)
. (6)

We can obtain more suitable expressions of these polynomials by using the
following relations:
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If z, αk ∈ T, then (z− αk)
2 = −zαk|z− αk|2, and therefore, if Wn(z) =

n
∏

k=1
(z− αk), then

we get (Wn(z))2 = (−1)nzn(
n
∏

k=1
αk)|Wn(z)|2. Moreover, since W ′

n(αk) =
n
∏

j=1,j �=k
(αk − αj),

then (W ′
n(αk))

2 = (−1)n−1αn−2
k (

n
∏
j=1

αj)|W ′
n(αk)|2.

Hence, by substituting these relations in (5) and (6), we obtain:

hk,n(z) =
|Wn(z)|2
|W ′

n(αk)|2
[

αk
z|z − αk|2

− αk
(z − αk)

(
n − αkW ′′

n (αk)

W ′
n(αk)

)]
, (7)

and:

kk,n(z) = − |Wn(z)|2
|W ′

n(αk)|2
α2

k
(z − αk)

, (8)

and therefore, we have the following desired expressions for the Hermite interpolation
polynomials:

HF−n,n−1(z) =
n

∑
k=1

|Wn(z)|2
|W ′

n(αk)|2
[

αk
z|z − αk|2

− αk
(z − αk)

(
n − αkW ′′

n (αk)

W ′
n(αk)

)]
uk, (9)

and

HD−n,n−1(z) = −
n

∑
k=1

|Wn(z)|2
|W ′

n(αk)|2
α2

k
(z − αk)

vk. (10)

In practice, it is more convenient to use the barycentric expressions for computing the
interpolation polynomials. Thus, in what follows, we obtain these types of formulas.

By taking into account that H−n,n−1(z) = HF−n,n−1(z) + HD−n,n−1(z) and 1 =
HF−n,n−1(1, z), then we get:

H−n,n−1(z) =
HF−n,n−1(z) +HD−n,n−1(z)

HF−n,n−1(1, z)
.

Thus, if we use (3) and (4), we have:

H−n,n−1(z) =

n

∑
k=1

hk,n(z)uk +
n

∑
k=1

kk,n(z)vk

n

∑
k=1

hk,n(z)
.

On the one hand, if we apply (5) and (6), we obtain the following barycentric expression:

H−n,n−1(z) =

n

∑
k=1

αn−1
k

(W ′
n(αk))2

[[ αk
(z − αk)2 +

1
(z − αk)

(
n − αkW ′′

n (αk)

W ′
n(αk)

)]
uk +

αk
(z − αk)

vk

]
n

∑
k=1

αn−1
k

(W ′
n(αk))2

[ αk
(z − αk)2 +

1
(z − αk)

(
n − αkW ′′

n (αk)

W ′
n(αk)

)] .

On the other hand, if we use Equations (7) and (8) instead of (5) and (6), we obtain the
equivalent barycentric expression:

H−n,n−1(z) =

n

∑
k=1

1
|W ′

n(αk)|2
[[ αk

z|z − αk|2
− αk

(z − αk)

(
n − αkW ′′

n (αk)

W ′
n(αk)

)]
uk −

α2
k

(z − αk)
vk

]
n

∑
k=1

1
|W ′

n(αk)|2
[

αk
z|z − αk|2

− αk
(z − αk)

(
n − αkW ′′

n (αk)

W ′
n(αk)

)] . (11)
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Proceeding in a similar way, we can obtain the two following barycentric expressions
for the Hermite–Fejér interpolation polynomial:

HF−n,n−1(z) =

n

∑
k=1

αn−1
k

(W ′
n(αk))2

[ αk
(z − αk)2 +

1
(z − αk)

(
n − αkW ′′

n (αk)

W ′
n(αk)

)]
uk

n

∑
k=1

αn−1
k

(W ′
n(αk))2

[ αk
(z − αk)2 +

1
(z − αk)

(
n − αkW ′′

n (αk)

W ′
n(αk)

)] ,

HF−n,n−1(z) =

n

∑
k=1

1
|W ′

n(αk)|2
[ αk

z|z − αk|2
− αk

(z − αk)

(
n − αkW ′′

n (αk)

W ′
n(αk)

)]
uk

n

∑
k=1

1
|W ′

n(αk)|2
[

αk
z|z − αk|2

− αk
(z − αk)

(
n − αkW ′′

n (αk)

W ′
n(αk)

)] . (12)

3. The Focus: The Nodal System

Throughout the paper, we assume that the zeros of the nodal polynomials Wn(z)
satisfy the following separation property: there exists a positive constant A, A < π such
that the length of the shortest arc between two consecutive nodes αj and αj+1 satisfies:

̂αj − αj+1 =
2π

n
+

A(j)
n2 with |A(j)| ≤ A, ∀j = 1, · · · , n, (13)

where αn+1 = α1. As we said before, we denote the length of the shortest arc between any
two points of the unit circle, z1 and z2, by ẑ1 − z2.

If we use Landau’s notation for complex sequences, denoting by an = O(bn) if | an
bn
| is

bounded, then the preceding property can be formulated as follows:

̂αj − αj+1 =
2π

n
+O(

1
n2 ).

We use the same O to denote different sequences. Unless we mention it explicitly, the
limits we obtained from (13) were uniform.

We also considered other nodal polynomials, W̃n,j(z), j = 1, · · · , n, well connected
with Wn(z). We define W̃n,j(z) = zn − λj, with λj = αn

j , and we denote their zeros by

βk,j = n
√

λj, k = 1, · · · , n, and it holds β1,j = αj.

In what follows, we take for simplicity j = 1, that is we work with W̃n,1(z) = zn − λ1,
and in order to simplify the notation, we denote W̃n,1(z) by W̃n(z) and its zeros βk,1 by βk
for k = 1, · · · , n, with β1,1 = β1 = α1.

Hence, it is clear that the separation property satisfied by the zeros {β j} of W̃n(z) is:

̂β j − β j+1 =
2π

n
, ∀j = 1, · · · , n, (14)

where βn+1 = β1.
In this section, we present the properties satisfied by these nodal polynomials Wn(z)

that play an important role in our interpolatory scheme.
First, we recall the following well-known relation between arcs and strings that we

use to obtain the nodal properties based on the convex character of the arcsin function:
If z1 and z2 belong to T, then:

2
π
(ẑ1 − z2) ≤ |z1 − z2| ≤ (ẑ1 − z2). (15)

Secondly, we recall a separation property, given in [9], between both nodal systems
Wn(z) and W̃n(z).
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If {αj}n
j=1 and {β j}n

j=1, with α1 = β1, are the nodal points satisfying the separation
properties (13) and (14), respectively, and we assume they are numbered in the clockwise
sense, then:

α̂j − β j ≤ (j − 1)
A
n2 , for j ≥ 1, and ̂αn−j − βn−j ≤ (j + 1)

A
n2 , for j ≥ 0.

Notice that we can write the preceding relations as follows:

α̂j − β j = (j − 1)O(
1
n2 ), for j ≥ 1, and ̂αn−j − βn−j = (j + 1)O(

1
n2 ), for j ≥ 0. (16)

In the next propositions, we present the main properties of the nodal polynomials
Wn(z) involved in the interpolatory schemes of Lagrange and Hermite.

Proposition 1.

(i) For every n, it holds:

|Wn(z)| < 2eA and
|W ′

n(z)|
n

< 2eA, ∀z ∈ T. (17)

(ii) There exists a positive constant C > 0 such that for n large enough:

|W ′
n(αj)|
n

> C, ∀j = 1, · · · , n. (18)

(iii) There exists a positive constant D > 0 such that for every n:

|Wn(z)|2
n2

n

∑
j=1

1
|z − αj|2 < D, ∀z ∈ T. (19)

Proof. See [9].

We finish the section with the next property, which turns out to be the key property to
study the convergence of the Hermite interpolation polynomials.

Proposition 2. There exists a positive constant E > 0 such that for every n:

|nW ′
n(αj)− αjW ′′

n (αj)| < En log n, ∀j = 1, · · · , n. (20)

Proof. Since |nW ′
n(αj)− αjW ′′

n (αj)| = |W ′
n(αj)||n − αjW ′′

n (αj)

W ′
n(αj)

|, by applying (17), we obtain

that |nW ′
n(αj)− αjW ′′

n (αj)| ≤ 2neA|n − αjW ′′
n (αj)

W ′
n(αj)

|.
Thus, we prove that there exists a positive constant F such that:

|n − αjW ′′
n (αj)

W ′
n(αj)

| ≤ F log n,

and for simplicity and without loss of generality, we took, in what follows, j = 1. If we

write Wn(z) = (z − α1)Pn−1(z), with Pn−1(z) =
n

∏
j=2

(z − αj), then W ′
n(α1) = Pn−1(α1) =

n

∏
j=2

(α1 − αj) and W ′′
n (α1) = 2P′

n−1(α1) =
n

∑
k=2

n

∏
j=2,j �=k

(α1 − αj). Hence:
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α1W ′′
n (α1)

W ′
n(α1)

=
2α1P′

n−1(α1)

Pn−1(α1)
= 2

n

∑
j=2

1

1 − (
αj
α1
)

. (21)

Since αj = β je
i ̂(β j−αj), then

αj

α1
=

β j

β1
ei ̂(β j−αj) = δje

i ̂(β j−αj), j = 2, · · · , n, where {δj}n
j=2

are the n-th roots of the unity different from one. By taking into account (16), we have that:

1 − αj

α1
= 1 − δje

i(j−1)O( 1
n2 ) = 1 − δj − (j − 1)O(

1
n2 ),

where O( 1
n2 ) =

An
n2 , with |An| ≤ A. Hence, (21) can be rewritten as:

α1W ′′
n (α1)

W ′
n(α1)

= 2
n

∑
j=2

1
1 − δj − (j − 1)O( 1

n2 )
. (22)

In order to simplify the calculus in the preceding sum, we used the identity:

A
B +D =

A
B − AD

B(B +D)
(23)

taking A = 1, B = 1 − δj, and D = −(j − 1)O( 1
n2 ). To analyze B = 1 − δj, we took into

account that:
2
π

̂(1 − δj) ≤ |1 − δj| ≤ ̂(1 − δj),

that is,
4
n
(j − 1) ≤ |1 − δj| ≤ 2π

n
(j − 1).

Hence, 1 − δj = (j − 1)O1(
1
n ), where O1(

1
n ) = Bn

n , with 4 < |Bn| < 2π. Now, by
applying (23) in Equation (22), we can rewrite (21) as follows:

α1W ′′
n (α1)

W ′
n(α1)

= 2
n

∑
j=2

(
1

1 − δj
+

(j − 1)O( 1
n2 )

(j − 1)O1(
1
n )[(j − 1)O1(

1
n )− (j − 1)O( 1

n2 )]

)

Hence, if we use that 2 ∑n
j=2

1
1−δj

= n − 1, then:

α1W ′′
n (α1)

W ′
n(α1)

− n = −1 + 2
n

∑
j=2

O( 1
n2 )

(j − 1)O1(
1
n )[O1(

1
n )−O( 1

n2 )]

and therefore:∣∣∣∣α1W ′′
n (α1)

W ′
n(α1)

− n
∣∣∣∣ =
∣∣∣∣∣−1 + 2

n

∑
j=2

An
n2

(j − 1) Bn
n ( Bn

n − An
n2 )

∣∣∣∣∣ ≤ 1 + 2
n

∑
j=2

|An|
(j − 1)|Bn(Bn − An

n )| <

1 +
A
2

n

∑
j=2

1
(j − 1)|Bn − An

n | .

Since |Bn − An
n | ≥ |Bn| − |An |

n > 4 − A
n > 4 − π, then:∣∣∣∣α1W ′′

n (α1)

W ′
n(α1)

− n
∣∣∣∣ < 1 +

A
2(4 − π)

n

∑
j=2

1
j − 1

= 1 +
A

2(4 − π)
(log(n − 1) + C + εn−1),

with εn−1 = o(1). Therefore, it is immediate that the last expression is O(log n), and thus,
the proposition is proven. Notice that for another nodal point αj with j �= 1, one can
proceed in a similar way.
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Remark 1. In [17], we considered as nodal polynomials the para-orthogonal polynomials related
to measures in the Szegő class with the Szegő function having an analytic extension outside the
unit disk (see [12,13]). In this situation, Condition (13) is satisfied (see [15]) and Properties (17),
(18), and (19) also hold, but Property (20) was different. Now, in the present paper, we had that
|nW ′

n(αj)− αjW ′′
n (αj)| < En log n, while in [17], the relation was |nW ′

n(αj)− αjW ′′
n (αj)| < En.

4. Hermite–Fejér and Hermite Processes

4.1. Convergence of Hermite–Fejér Interpolation in the Case of Continuous Functions

Next, by following the ideas given in [10] for extending Fejér’s theorem for continuous
functions (see [18]) to the unit circle, we obtained our main result. Reference [10] was the first
extension in the case when the nodal points are the n roots of a complex number unimodular.
In [17], Fejér’s theorem was proven when the nodal polynomial was para-orthogonal with
respect to appropriate measures or when it satisfied certain properties. Now, we give a new
version of Fejér’s theorem for continuous functions on the unit circle with nodal systems
satisfying (13).

Theorem 1. If F is a continuous function on T, then HF−n,n−1(F, z) converges to F uniformly
on T.

Proof. Since HF−n,n−1(F, z) = ∑n
k=1 hk,n(z)F(αk) and F(z) = F(z)∑n

k=1 hk,n(z), then
we have:

|F(z)−HF−n,n−1(F, z)| ≤
n

∑
k=1

|hk,n(z)||F(z)− F(αk)|. (24)

By taking into account that for ε > 0, there exists δ > 0 such that if |z − y| < δ, then
|F(z)− F(y)| < ε, let us take n such that 1

4√n
< δ.

Thus, we rewrite the last term of (24) as follows:

n

∑
k=1

|hk,n(z)||F(z)− F(αk)| = ∑
k∈I1,n

|hk,n(z)||F(z)− F(αk)|+ ∑
k∈I2,n

|hk,n(z)||F(z)− F(αk)|,

where I1,n = {k ∈ {1, · · · , n} : |z − αk| < 1
4√n

} and I2,n = {k ∈ {1, · · · , n} : |z − αk| ≥ 1
4√n

}.

On the one hand, ∑
k∈I2,n

|hk,n(z)||F(z)− F(αk)| ≤ 2 ‖ F ‖∞ ∑
k∈I2,n

|hk,n(z)|, and by using

(7), (18), (20), and (17), respectively, we get:

∑
k∈I2,n

|hk,n(z)| ≤

|Wn(z)|2 ∑
k∈I2,n

1
|W ′

n(αk)|2|z − αk|2
+ |Wn(z)|2 ∑

k∈I2,n

1
|z − αk|

|nW ′
n(αk)− αkW ′′

n (αk)|
|W ′

n(αk)|3
≤

|Wn(z)|2 ∑
k∈I2,n

1
n2C2

1
|z − αk|2

+ |Wn(z)|2 ∑
k∈I2,n

1
|z − αk|

E log n
n2C3 ≤

4e2A ∑
k∈I2,n

1

C2n
3
2
+ 4e2A ∑

k∈I2,n

E log n

C3n
7
4

≤ 4e2A
(

1

C2n
1
2
+

E log n

C3n
3
4

)
,

(25)

which goes to zero for n large enough. On the other hand, we also obtain ∑
k∈I1,n

|hk,n(z)||F(z)−

F(αk)| ≤ ε ∑
k∈I1,n

|hk,n(z)|, and by applying (7), (18), (20), (17), and (19), respectively, we get:
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∑
k∈I1,n

|hk,n(z)| = ∑
k∈I1,n

|Wn(z)|2
|W ′

n(αk)|2
∣∣∣∣ αk
z|z − αk|2

− αk
(z − αk)

(
n − αkW ′′

n (αk)

W ′
n(αk)

)∣∣∣∣ ≤
∑

k∈I1,n

|Wn(z)|2
|z − αk|2

(
1

|W ′
n(αk)|2

+
|z − αk||nW ′

n(αk)− αkW ′′
n (αk)|

|W ′
n(αk)|3

)
≤

∑
k∈I1,n

|Wn(z)|2
|z − αk|2

(
1

C2n2 +
1

4
√

n
En log n

C3n3

)
< D

(
1

C2 +
E log n
C3 4

√
n

)
.

(26)

Therefore, ∑
k∈I1,n

|hk,n(z)||F(z)− F(αk)| ≤ εT, for some positive constant T and n large

enough. Hence the Hermite–Fejér-type theorem is proven.

Corollary 1. There exists a positive constant L > 0 such that for every F bounded on T, it
holds that:

|HF−n,n−1(F, z)| ≤ L ‖ F ‖∞,

for every z ∈ T.

Next, we studied the complete problem, that is the Hermite interpolation problem
with nonvanishing conditions for the derivatives. In [17], under suitable conditions for
the nodal systems, we gave a sufficient condition on the derivatives, which cannot be
improved, in order to obtain convergence for continuous functions. Now, we prove that
the same condition works.

Proposition 3. Let F be a continuous function on T, and assume that γn = (v1, · · · , vn) satisfies

that lim
n→∞

‖ γn ‖2

n
= 0, then H−n,n−1(F, γn, z) converges to F uniformly on T.

Proof. If we apply Expression (10), we get:

|HD−n,n−1(z)| = |
n

∑
k=1

− |Wn(z)|2
|W ′

n(αk)|2
α2

k
(z − αk)

vk| ≤ |Wn(z)|2
n

∑
k=1

1
|W ′

n(αk)|2
|vk|

|z − αk| ≤

|Wn(z)|2
C2n2

n

∑
k=1

|vk|
|z − αk| ≤ |Wn(z)|2

C2n2

(
n

∑
k=1

1
|z − αk|2

) 1
2
(

n

∑
k=1

|vk|2
) 1

2

≤

≤ |Wn(z)|
C2n

(
n

∑
k=1

|Wn(z)|2
n2|z − αk|2

) 1
2

‖ γn ‖2<
2eA

C2n

√
D ‖ γn ‖2,

(27)

which goes to zero uniformly on T. Hence, if we take into account H−n,n−1(F, γn, z) =
HF−n,n−1(F, z) +HD−n,n−1(z) joint with Theorem 1, then the result is proven.

Notice that following the ideas given in [11], it is possible to give other sufficient
conditions.

4.2. Convergence of Hermite Interpolation in the Case of Smooth Functions

This section is devoted to studying the convergence of the Hermite interpolation
polynomials related to analytic functions and certain types of smooth functions.

Proposition 4. If F is an analytic function in an open annulus containing T, then H−n,n−1(F, z)
uniformly converges to F on T, and the order of convergence is geometric.
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Proof. F can be written F(z) =
∞

∑
j=−∞

Ajzj, with |Aj| ≤ Pr|j| for some P > 0 and 0 <

r < 1. Thus, if we decompose F(z) = F1,n(z) + F2,n(z) + F3,n(z), with F1,n(z) =
n−1

∑
j=−n

Ajzj,

F2,n(z) =
∞

∑
j=n

Ajzj, and F3,n(z) =
−n−1

∑
j=−∞

Ajzj, then it is clear that H−n,n−1(F1,n, z) = F1,n(z).

Now, to obtain our result, first we studied the behavior of the difference |H−n,n−1(F2,n, z)−
F2,n(z)|. Indeed:

|H−n,n−1(F2,n, z)− F2,n(z)| = |
∞

∑
j=n

Ajzj −
∞

∑
j=n

AjH−n,n−1(zj, z)| =

|
∞

∑
j=n

Ajzj −
∞

∑
j=n

Aj

n

∑
k=1

hk,n(z)α
j
k −

∞

∑
j=n

Aj

n

∑
k=1

kk,n(z)jαj−1
k | =

|
∞

∑
j=n

Aj

(
zj −

n

∑
k=1

hk,n(z)α
j
k −

n

∑
k=1

kk,n(z)jαj−1
k

)
| ≤

∞

∑
j=n

|Aj|
(

1 +
n

∑
k=1

|hk,n(z)|+
n

∑
k=1

j|kk,n(z)|
)

.

By taking into account (25) and (26), we get that:

n

∑
k=1

|hk,n(z)| ≤ 4e2A
(

1

C2n
1
2
+

E log n

C3n
3
4

)
+ D

(
1

C2 +
E log n
C3 4

√
n

)
≤ M + Q

log n√
n

, (28)

for some positive constants M and Q.
In the same way, by using (6) and (27) with γn = (1, · · · , 1), we have:

n

∑
k=1

|kk,n(z)| = |Wn(z)|2
n

∑
k=1

1
|W ′

n(αk)|2
1

|z − αk| ≤ 2eA

C2n

√
D
√

n ≤ R√
n

, (29)

for some positive constant R.
Hence:

|H−n,n−1(F2,n, z)− F2,n(z)| ≤
∞

∑
j=n

|Aj|
(

1 + M + Q
log n√

n
+ j

R√
n

)
≤

∞

∑
j=n

Prj
(

1 + M + Q
log n√

n
+ j

R√
n

)
≤

P
rn

1 − r

(
1 + M + Q

log n√
n

+
(n(1 − r) + r)

(1 − r)
R√
n

)
≤ Srn

1 ,

for some positive constant r1 such that r < r1 < 1. Then, it is clear that it goes to zero
uniformly on T, and the order of convergence is geometric.
Finally, one can obtain an analogous result for the difference |H−n,n−1(F3,n, z)− F3,n(z)|,
and hence, the result is proven.

Proposition 5. If F(z) =
∞

∑
j=−∞

Ajzj is a function defined on T with |Aj| ≤ K 1
|j|c , for some

positive constant K, j �= 0, c > 2, then H−n,n−1(F, z) converges to F(z) uniformly on T.
Moreover, the order of convergence is O( 1

(n−1)c−2 ).
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Proof. If we decompose F(z) = F1,n(z) + F2,n(z) + F3,n(z), with F1,n(z) =
n−1

∑
j=−n

Ajzj,

F2,n(z) =
∞

∑
j=n

Ajzj, and F3,n(z) =
−n−1

∑
j=−∞

Ajzj, then:

H−n,n−1(F, z) = H−n,n−1(F1,n, z) +H−n,n−1(F2,n, z) +H−n,n−1(F3,n, z).

Since H−n,n−1(F1,n, z) = F1,n(z), then:

|H−n,n−1(F, z)− F(z)| ≤ |H−n,n−1(F2,n, z)− F2,n(z)|+ |H−n,n−1(F3,n, z)− F3,n(z)|,

and we have to study the behavior of the differences |H−n,n−1(Fi,n, z)− Fi,n(z)|, i = 2, 3, to
obtain the uniform convergence of H−n,n−1(F, z) to F.
Indeed, if z ∈ T:

|H−n,n−1(F2,n, z)− F2,n(z)| = |H−n,n−1(
∞

∑
j=n

Ajzj, z)−
∞

∑
j=n

Ajzj| =

|
∞

∑
j=n

AjH−n,n−1(zj, z)−
∞

∑
j=n

Ajzj| = |
∞

∑
j=n

Aj(zj −H−n,n−1(zj, z))| =

|
∞

∑
j=n

Aj(zj −
n

∑
k=1

hk,n(z)α
j
k −

n

∑
k=1

kk,n(z)jαj−1
k )| ≤

∞

∑
j=n

|Aj|(1 +
n

∑
k=1

|hk,n(z)|+ j
n

∑
k=1

|kk,n(z)|).

If we apply (28) and (29) in the preceding proposition, we get

|H−n,n−1(F2,n, z)− F2,n(z)| ≤
∞

∑
j=n

|Aj|(1 + M + Q
log n√

n
+ j

R√
n
) ≤

∞

∑
j=n

|Aj|S +
∞

∑
j=n

j|Aj| R√
n

≤ SK
∞

∑
j=n

1
jc +

RK√
n

∞

∑
j=n

1
jc−1 =

SK(H(c)− Hn−1,c) +
RK√

n
(H(c − 1)− Hn−1,c−1) ≤

SK
(c − 1)(n − 1)c−1 +

RK√
n(c − 2)(n − 1)c−2 ,

for some positive constant S, with H(c) being the sum of the harmonic series ∑∞
j=1

1
jc and

Hn−1,c its (n − 1)-partial sum.
Hence, |H−n,n−1(F2,n, z) − F2,n(z)| goes to zero, and the order of convergence is

O( 1
(n−1)c−2 ). Notice that the same result is valid for |H−n,n−1(F3,n, z)− F3,n(z)|, and hence,

the result is proven.

Remark 2. Notice that for smooth functions, we obtained closed results to those given in [16]
related to the Chebyshev process on the bounded interval. In particular, for the functions studied
in the previous proposition, we obtained an accuracy of O( 1

(n−1)c−2 ), while the Chebyshev-related

result was O( 1
(n−1)c−1 ), which is a better result. However, for analytic functions, we obtained a

quite similar result.

5. The Case of the Bounded Interval

In this section, we consider nodal systems in the interval [−1, 1], which are closely
connected with those considered on the unit circle in Section 3. Indeed let us consider the
nodal array {xj}n

j=1 ⊂ [−1, 1] numbered as follows −1 ≤ xn < xn−1 < · · · < x2 < x1 ≤ 1.
We distinguished four cases depending on x1 = 1 or x1 �= 1 and xn = −1 or xn �= −1. In
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all the cases, we assumed that there exists a positive constant A < π such that one of the
following separation properties holds:

(i) x1 = 1, xn = −1, and arccos xj+1 − arccos xj = π
n + a(j)

n2 , with |a(j)| ≤ A, ∀j =
1, · · · , n − 1.

(ii) x1 < 1, xn = −1, arccos xj+1 − arccos xj =
π
n + a(j)

n2 , with |a(j)| ≤ A, ∀j = 1, · · · , n −
1, and 2 arccos x1 = π

n + a(0)
n2 , with |a(0)| ≤ A.

(iii) x1 = 1, xn > −1, arccos xj+1 − arccos xj =
π
n + a(j)

n2 , with |a(j)| ≤ A, ∀j = 1, · · · , n −
1, and 2(π − arccos xn) =

π
n + a(n)

n2 , with |a(n)| ≤ A.

(iv) x1 < 1, xn > −1, arccos xj+1 − arccos xj =
π
n + a(j)

n2 , with |a(j)| ≤ A, ∀j = 1, · · · , n −
1, 2 arccos x1 = π

n + a(0)
n2 , with |a(0)| ≤ A, and 2(π − arccos xn) = π

n + a(n)
n2 , with

|a(n)| ≤ A.

Our aim was to study Hermite interpolation problems on the interval with these nodal
systems. First, we considered a real function f continuous on [−1, 1], and we studied the
convergence of the Hermite interpolation polynomial h2n−1( f , x) satisfying the conditions:

h2n−1( f , xj) = f (xj), h′
2n−1( f , xj) = vj, with vj ∈ R, j = 1, · · · , n. (30)

Proposition 6. Let {xj}n
j=1 be a nodal system on [−1, 1] satisfying one of the separation properties

(i), (ii), (iii), or (iv) given before. Let f be a real continuous function on [−1, 1], and assume that
{vj}n

j=1 satisfies:

lim
n→∞

‖ (v1

√
1 − x2

1, · · · , vn
√

1 − x2
n) ‖2

n
= 0.

Then, the Hermite interpolation polynomials fulfilling (30) converge uniformly to f on [−1, 1].

Proof. To fix the ideas, we assumed that {xj}n
j=1 satisfies Case (iv).

To prove the result, we transformed our interpolation problem in [−1, 1] into the inter-
polation problem on the unit circle studied in the previous sections. First of all, we trans-
formed the nodal systems through the Szegő transformation, obtaining the transformed

system {αj}n
j=1
⋃{αj}n

j=1 such that xj =
αj + αj

2
, j = 1, · · · , n. If wn(x) =

n

∏
j=1

(x − xj),

then wn(
z+ 1

z
2 ) =

n

∏
j=1

(
z + 1

z
2

−
αj +

1
αj

2
) =

1
2n

1
zn

n

∏
j=1

(z − αj)(z − αj), which implies that the

transformed nodal polynomial is W2n(z) =
n

∏
j=1

(z − αj)(z − αj) = 2nznwn(
z + 1

z
2

), with

z ∈ T. If we renumber the zeros of W2n(z) as follows αn+1 = αn, · · · , α2n = α1, then

W2n(z) =
2n

∏
j=1

(z − αj). Now, it is immediate that the nodal points αj = eiθj , j = 1, · · · , 2n,

with θn+1 = −θn, · · · , θ2n = −θ1 satisfy:

θj+1 − θj =
2π

2n
+

A(j)
n2 ,

with |A(j)| ≤ A, j = 1, · · · , 2n and θ2n+1 = θ1, that is their arguments satisfy Property (13).

We define a continuous function F on T by F(z) = F(z) = f (x) for z ∈ T, being x =
z+ 1

z
2 ∈

[−1, 1], and we pose the Hermite interpolation problem of finding the Laurent polynomial
H−2n,2n−1(F, z) satisfying the interpolation conditions:

H−2n,2n−1(F, αj) = H−2n,2n−1(F, αj) = f (xj), j = 1, · · · , n, and
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H′
−2n,2n−1(F, αj) = vj

√
1 − x2

j αji, H′
−2n,2n−1(F, αj) = −vj

√
1 − x2

j αji, j = 1, · · · , n.

Now, we can apply Proposition 3 by taking:

γ2n = (v1

√
1 − x2

1 α1i, · · · , vn

√
1 − x2

n αni, −vn

√
1 − x2

n αni, · · · , −v1

√
1 − x2

1 α1i).

Since lim
n→∞

‖ γ2n ‖2

2n
= 0, we obtain that H−2n,2n−1(F, z) uniformly converges to F on T.

If we define:

h2n−1( f , x) =
H−2n,2n−1(F, z) +H−2n,2n−1(F, 1

z )

2
,

it is clear that h2n−1( f , x) satisfies (30) and converges to f uniformly on [−1, 1].
The other cases, (i), (ii), and (iii), can be obtained in a similar form.

Remark 3. Conditions (i), (ii), (iii), and (iv) on the nodal systems in [−1, 1], given before, can be
substituted by other equivalent conditions.

Indeed, arccos xj+1 − arccos xj =
π
n + a(j)

n2 , with |a(j)| ≤ A, ∀j = 1, · · · , n − 1, is equiv-

alent to xj

√
1 − x2

j+1 − xj+1

√
1 − x2

j = sin(π
n ) +O( 1

n2 ), or alternatively to xj

√
1 − x2

j+1 −
xj+1

√
1 − x2

j =
π
n +O( 1

n2 ), ∀j = 1, · · · , n − 1.

In the same way, 2 arccos x1 = π
n + a(0)

n2 , with |a(0)| ≤ A, is equivalent to
√

1 − x2
1 =

sin( π
2n ) +O( 1

n2 ), or alternatively to
√

1 − x2
1 = π

2n +O( 1
n2 ).

Finally, 2(π − arccos xn) = π
n + a(n)

n2 , with |a(n)| ≤ A, is equivalent to
√

1 − x2
n =

sin( π
2n ) +O( 1

n2 ), or alternatively to
√

1 − x2
n = π

2n +O( 1
n2 ).

Proceeding as in the previous Proposition 6, we can study Hermite interpolation
problems by using these nodal systems, obtaining results for the convergence, as well as
the order of convergence when we deal with analytic functions.

Proposition 7. Let {xj}n
j=1 be a nodal system on [−1, 1] satisfying one of the separation properties

(i), (ii), (iii), or (iv) given at the beginning of this section, and let f be a real function analytic on
[−1, 1]. Then, the Hermite interpolation polynomials h2n−1( f , x) fulfilling:

h2n−1( f , xj) = f (xj), h′
2n−1( f , xj) = f ′(xj), for j = 1, · · · , n. (31)

converge uniformly to f on [−1, 1], and the order of convergence is geometric.

Proof. We proceed as in Proposition 6, transforming the nodal system {xj}n
j=1 fulfilling

(iv) into the nodal system {αj}n
j=1
⋃{αj}n

j=1 satisfying Property (13).
We applied to f the following result that can be seen in [13]: if f is analytic on [−1, 1],

then its expansion in Fourier–Chebyshev series f (x) ∼ ∑∞
k=0 akTk(x) converges to f in the

interior of the greatest ellipse with foci ±1, in which f is regular. The expansion diverges in
the exterior of this ellipse, and the sum R of the semi-axes of the ellipse is R = lim inf 1

n
√

|an |
.

Then, if we define F(z) = ∑∞
k=0 akzk, it holds that F is analytic on the open disk D(0, R),

and therefore, the function G(z) = 1
2 (F(z) + F( 1

z )) is analytic in the annulus 1
R < |z| < R.

Clearly, for z ∈ T and x =
z+ 1

z
2 ∈ [−1, 1], it holds that G(z) = f (x), and thus, G(αj) =

G(αj) = f (xj) for j = 1, · · · , n. In the same way:

f ′(x) =
∞

∑
k=1

kakUk−1(x) =
∞

∑
k=1

kak

(
zk − z−k

z − z−1

)
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and therefore, (z2−1)
2z2 f ′(x) = G′(z) for z ∈ T and x =

z+ 1
z

2 . Hence, G′(αj) = 1
2 (1 −

αj
2) f ′(xj) and G′(αj) =

1
2 (1 − αj

2) f ′(xj) for j = 1, · · · , n.
Let us consider the Hermite interpolation problem of finding a Laurent polynomial

H−2n,2n−1(G, z) satisfying the interpolation conditions:

H−2n,2n−1(G, αj) = H−2n,2n−1(G, αj) = f (xj), for j = 1, · · · , n, and

H′−2n,2n−1(G, αj) =
1
2
(1 − αj

2) f ′(xj), H′−2n,2n−1(G, αj) =
1
2
(1 − αj

2) f ′(xj), for j = 1, · · · , n.

By applying Proposition 4, we have that H−2n,2n−1(G, z) uniformly converges to G on
T with the geometrical order of convergence. If we define the polynomial:

h2n−1( f , x) =
H−2n,2n−1(G, z) +H−2n,2n−1(G, 1

z )

2
,

it is clear that h2n−1( f , x) satisfies (31) and converges to f uniformly on [−1, 1] with the
geometrical order of convergence.

Notice that for the other cases (i), (ii), and (iii), one can proceed in a similar way.

6. Mechanical Models and Numerical Examples

In the previous section, our results were transferred to the real case, that is to the
bounded interval, but the natural process is to arrive at the trigonometric case, which we
do not detail due to its simplicity. Certainly, it is in this last situation where we can find
many examples using our nodal systems.

Example 1. A certain periodic phenomenon of period T = 2π is observed using a certain measuring
device. An essential element of this device is a pair of facing disks, one of which (Disk 1) rotates at an
angular constant speed of 2π(n+1)

T . The other disk (Disk 2) is driven by a Cardan transmission with
a β angle (0 ≤ β < π

2 ) whose driving shaft rotates with an angular speed of 2π
T . Originally, the idea

was to take measurements at evenly spaced times. For last-minute indications, the measurements
are made when the light inside the device is at its maximum. Considering the moments in which
this happens allows for additional video recording, and it occurs when the holes located on the discs
are facing each other (event), as initially. Both discs have a hole at the same distance from the center.
Therefore, the question is: Could we use the new scheme with the same properties of convergence?

The Cardan transmission is a well-known device, and the equations that govern the angular
displacement for the driving and driven shafts can be found in books on mechanics, such as [19]
(Section 2.6) and [20]. With Θ2(t) denoting the angular displacement of Disk 2 and supposing that
Θ2(0) = 0, we can state that:

Θ2(t) = arctan

(
sin( 2πt

T )

cos( 2πt
T ) cos β

)
and w2(t) =

d Θ2(t)
d t

=
2π

T
cos β

(1 − sin2β) cos2
( 2πt

T
) .

The last equation above shows one characteristic of the considered Cardan joint: it is not
homokinetic. Indeed, d Θ2(t)

d t is not constant, and there exist positive numbers A and B, with B < 1,
such that:

(1 − B)
2π

T
= cos β

2π

T
≤ 2π

T
(1 − C(t)) = w2(t) ≤ 1

cos β

2π

T
= (1 + A)

2π

T
(32)

with 1 − C(t) > 0 and bounded.
On the other hand, we denote the angular displacement of Disk 1 by Θ1(t), and if we suppose

that Θ1(0) = 0, we have Θ1(t) = 2π(n+1)
T t. After t = T, the hole of Disk 1 reaches that of

Disk 2 n times. Moreover, we can bound the time between two of these events. For Δt, the angle
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of displacement for Disk 1 is 2π(n+1)
T Δt and for Disk 2 is w2(t1)Δt (t1 is an intermediate value

between the t values for both events). Since the first displacement is 2π radians greater than the
second one, we have:

2π =
2π(n + 1)

T
Δt − w2(t1)Δt ⇒ Δt =

2π
2π(n+1)

T − (1 − C(t1))
2π
T

=
T

n + C(t1)
⇒

Δt =
T
n

− C(t1)T
n(n + C(t1))

. (33)

In other words, we have:

Δt =
T
n
+O

(
1
n2

)
=

2π

n
+O

(
1
n2

)
.

When the period is T �= 2π, we can change the independent variable t by the new variable
t′ = 2π

T t and use the previous analysis. As can be seen, holes would only face each other for evenly
spaced times for a null angle, that is for homokinetic joints. Notice that the nodal system determined
by the events satisfies the separation relation (13).

We must point out that we can use the interpolation scheme on the unit circle to perform
trigonometrical interpolation on the interval [0, 2π] for periodic functions. The idea is quite similar
to that developed in Section 5. Here, we must consider the change z = eiθ; in particular, the change
z = eit. In this case, the nodal system satisfies (13), and we can confidently use the interpolation
methods. To compute the interpolation polynomials, we used the barycentric representation given
by (11).

We obtained a nodal system employing for the previous scheme n = 40 and β = π
7 . As a

test function, we used
∞
∑

k=1

2
k6 cos(kθ) which led to f (z) =

∞
∑

k=1

1
k6 (zk + z−k). The left-hand side in

Figure 1 shows the real part of the interpolator along with the interpolated function. We observed
that they were indistinguishable. On the right-hand side, we represent the real part of the error. The
imaginary parts in both cases are irrelevant.

Figure 1. Left: representation of f (z) and �(H−n,n−1( f , z)). Right: representation of

�(H−n,n−1( f , z))− f (z), with f (z) =
∞
∑

k=1

1
k6 (z

k + z−k), z = eiθ , θ ∈ [0, 2π], and n = 40.

Example 2. A certain periodic magnitude of period T = 2π is observed using a certain measuring
device with which n measurements are taken. Each one is intended to be obtained just after a
countdown of 2π

n , this time needed for the correct performance of the device. It includes an automatic
repair of four possible errors. Every error has a probability of p, and they are independent. Each
repair requires a time of 1

n2 , which can lead to the fact that between two measures, the time is greater
than or equal to 2π

n .
Thus, in this case, we cannot ensure evenly spaced measurements. Between two of them, we

have Δt = 2π
n + A

n2 where A is random. Indeed, it is a binomial variable B(4, p) and 0 ≤ A ≤ 4 in

the way that Δt = 2π
n +O

(
1

n2

)
. Again, the nodal system satisfies the separation property (13).
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Naturally, the rest of the ideas of the previous example can be applied. Consequently, we can be
confident when using Hermite or Hermite–Fejér interpolation based on the corresponding random
nodal systems.

We obtained a particular nodal system using for the previous scheme n = 400 and p = 0.6. As
a test function, we used the continuous non-derivable function cos t sin( 1

cos t ), which led to f (z) =
z+ 1

z
2 sin

(
2

z+ 1
z

)
, and we performed Hermite–Fejér interpolation. To obtain the corresponding

interpolator, we used the barycentric formula (12). The left-hand side in Figure 2 shows the real
part of the interpolator together with the interpolated function on [π

2 , 3π
4 ]. On the right-hand side,

we represent the same pair in a quite small interval. We point out the characteristic shape of the
Hermite–Fejér interpolation on the nodes. The imaginary parts in both cases are irrelevant.

Figure 2. f (z) and �(HF−n,n−1( f , z)) with the nodes marked on the lines, f (z) = z+ 1
z

2 sin
(

2
z+ 1

z

)
,

n = 400, and z = eiθ . Left: θ ∈ [π
2 , 3π

4 ]. Right: θ ∈ [π
2 , 9π

16 ].

Example 3. An artificial satellite takes measurements of a periodic phenomenon of period T1 that
has its origin at the point at infinity of the perpendicular to its elliptical orbit of period T around a
star. The satellite can rotate on itself, and it can vary its speed of rotation, although not its orbit.
The orbit was intended to be circular, but ended up being elliptical. Observations have to be taken
when one particular point of the satellite is in its solar noon, that is when the center of the star, the
center of the satellite, and the point are aligned (event).

In this scenario, we can successfully apply the ideas in Section 4. Let us suppose that at Time
0, the satellite is at its aphelion and at its solar noon. By using the laws of the two-body problem, we
can know its true anomaly φ at time T1 and adjust the rotation of the satellite so that the point is at
its (n) solar noon, having rotated (n + 1)2π + φ. Logically, the time lapse between two solar noons
would be equal if the orbit were circular. However, as a consequence of Kepler’s second law, the rate
of variation of the angular velocity of the satellite (in orbit) w1 is a variable that oscillates between
the values that it takes at aphelion and perihelion. Note that if T1 = T, the satellite would rotate at
an angular speed of 2π(n+1)

T leading to Equation (29). Furthermore, C(t) would be bounded, the
mean w1 value being 2π

T . Thus, it is possible to ensure that the times between the satellite noons are
variable, but with the form T1

n +O( 1
n2 ), that is the nodal system fulfills Relation (13). Using the

new variable t′ given by t′ = 2π
T1

t, we have a Hermite or Hermite–Fejér interpolation problem based
on a nodal system satisfying (13). Hence, we can use the mechanism.

When determining the noon of the satellite, we must use some elements of the mechanics of
elliptical orbits. The ideas are quite similar to those of Example 1. However, in this case, we must
use equations related to elliptical orbits. The true anomaly is determined by t, T and the eccentricity
of the orbit e. The algorithm can be found in [21] (Chapter 3, Section 4).

We obtained a particular nodal system using the previous scheme with n = 1000, e = 0.25,
and for simplicity, T1 = T = 8,640,000. We used 1

[1+(1.02)2−2.04 cos θ][1+(1.2)2+2.4 sin θ]
as the test

function, which led to f (z) = 1
(z−1.02)( 1

z −1.02)(z+1.2ı)( 1
z −1.2ı)

. The left-hand side in Figure 3 shows

the real part of the interpolator with the interpolated function near z = 1, the most problematic area.
We obtained the interpolator by using the formula (11). We observed that they were indistinguishable.
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On the right-hand side, we represent the real part of the error. The imaginary parts in both cases
are irrelevant.

Figure 3. Left: representation of f (z) and �(H−n,n−1( f , z)). Right: representation of
�(H−n,n−1( f , z))− f (z), with f (z) = 1

(z−1.02)( 1
z −1.02)(z+1.2ı)( 1

z −1.2ı)
, z = eiθ , and n = 1000.

7. Notation

Next, we summarize the notation related to the polynomials used throughout the paper:
Wn(z) = ∏n

j=1(z − αj) is the nodal polynomial.
The Laurent polynomials of Hermite interpolation are denoted by:
H−n,n−1(z) for the values {uj}n

j=1 and {vj}n
j=1.

HF−n,n−1(z) for the values {uj}n
j=1 and {0}n

j=1.
HD−n,n−1(z) for the values {0}n

j=1 and {vj}n
j=1.

Clearly, H−n,n−1(z) = HF−n,n−1(z) +HD−n,n−1(z).
H−n,n−1( f , z) for the values { f (αj)}n

j=1 and { f ′(αj)}n
j=1.

HF−n,n−1( f , z) for the values { f (αj)}n
j=1 and {0}n

j=1.
HD−n,n−1( f , z) for the values {0}n

j=1 and { f ′(αj)}n
j=1.

Clearly, H−n,n−1( f , z) = HF−n,n−1( f , z) +HD−n,n−1( f , z).
H−n,n−1( f , γn, z) for the values { f (αj)}n

j=1 and {vj}n
j=1, where γn = {vj}n

j=1.

8. Materials and Methods

To perform the three numerical experiments (arrays, interpolators, and plots) included
in the previous section, we used the formulae included in the paper, and we elaborated
three programs that could be obtained, with public access, at the url https://www.dropbox.
com/sh/0cx9chq3jfzov2w/AAA_SvL2i7HlC7ChMGpuG-Ata?dl=0 (accessed on 22 March
2021). Actually, these programs are notebooks (files with the names cardan, kepler, and
random, which have as the extension .nb) elaborated with Mathematica (Mathematica is a
trademark property of Wolfram Research). Mathematica is a quite standard software for
mathematical computing. In particular, we used Version 12 Release 2. We do not hesitate to
state that the programs (notebooks) run correctly in recent previous versions and in future
versions because we used quite simple commands. Moreover, we did not use compiled
routines nor other software.

9. Discussion

The nodal systems usually used for interpolation problems on the real line and the
unit circle are related to measures. Normally, the zeros of orthogonal or para-orthogonal
polynomials with respect to measures on the real line or the circumference, respectively,
are considered as nodal points.

In the previous paper [9], new nodal systems were introduced, which in the case of the
circumference proceeded from a perturbation of the roots of unity. Moreover, the Lagrange
interpolation theory based on these nodal points was developed. In [9], the study of other
types of interpolation was also suggested by using these nodal arrays as a future new
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research line. By following this idea, in the present paper, we developed the corresponding
Hermite polynomial interpolation theory on the circle, as well as on the bounded interval.

The new nodal systems, whose study was completed in this paper, are very suitable
to solve Hermite interpolation problems that appear in practice, most of which are linked
to interesting mechanical models.

These nodal systems have not been used before in the Hermite interpolation due to
the lack of a convergence theory to support their use. Thus, in this article, we dedicated a
section to the study of the convergence of Hermite–Fejér interpolants in the case of contin-
uous functions and the convergence of Hermite interpolants for smooth functions. With
the theory developed in this paper, we are in conditions to use these nodal distributions
for those models that fit to them. Taking into account these ideas, we presented three
mechanical models for which the application of our results is very suitable.

The nodal system of the first example appeared as a consequence of a Cardan move-
ment. We used the Hermite scheme given in Section 4.2 to recover an analytic function.
The nodal system of the second example was a consequence of a random process. In this
case, we used the Hermite–Fejér interpolator to approximate a quite variable continu-
ous function. The convergence of this process is guaranteed by the results in Section 4.1.
The last example is linked to a planetarium movement and to recovering a smooth non-
analytic function following Section 4.2. Clearly, the examples only pretend to visualize the
theoretical results previously obtained.

A possible future research line connected with this work could be the study of the
corresponding Gibbs–Wilbraham phenomena.
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Abstract: In this paper, the problem of fluid–structure interaction of a circular membrane under
liquid weight loading is formulated and is solved analytically. The circular membrane is initially
flat and works as the bottom of a cylindrical cup or bucket. The initially flat circular membrane will
undergo axisymmetric deformation and deflection after a certain amount of liquid is poured into the
cylindrical cup. The amount of the liquid poured determines the deformation and deflection of the
circular membrane, while in turn, the deformation and deflection of the circular membrane changes
the shape and distribution of the liquid poured on the deformed and deflected circular membrane,
resulting in the so-called fluid-structure interaction between liquid and membrane. For a given
amount of liquid, the fluid-structure interaction will eventually reach a static equilibrium and the
fluid-structure coupling interface is steady, resulting in a static problem of axisymmetric deformation
and deflection of the circular membrane under the weight of given liquid. The established governing
equations for the static problem contain both differential operation and integral operation and the
power series method plays an irreplaceable role in solving the differential-integral equations. Finally,
the closed-form solutions for stress and deflection are presented and are confirmed to be convergent
by the numerical examples conducted.

Keywords: circular membrane; fluid-structure interaction; differential-integral equations; power
series method; closed-form solution

1. Introduction

Elastic membrane structures or structural components have applications in various
fields [1–5]. These applications have provided an impetus for scholars to investigate the
phenomena of large deflection of membrane [6–8]. Such investigations usually give rise
to nonlinear equations with differential and even integral operation. These somewhat
intractable nonlinear equations may present serious analytical difficulties when applied to
boundary value problems [9–13].

The usually so-called circular membrane problem refers to the problem of axisymmet-
ric deformation and deflection of an initially flat, peripherally fixed circular membrane
subjected to transverse loads. Three main loading forms of transverse loads are involved
in the existing studies: 1© the uniformly distributed loads applied to the entire circular
membrane [14–22], 2© the uniformly distributed loads applied to the central portion of the
circular membrane [23], and 3© the concentrated force applied to the center of the circu-
lar membrane [24–28]. Hencky was the first scholar to deal with the circular membrane
problem concerning the first loading form of transverse loads and presented a closed-
form solution in the form of power series [14]. A computational error in reference [14]
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was corrected by Chien [15] and Alekseev [16], respectively. The problem originally dealt
with by Hencky is usually called the well-known Hencky problem; i.e., the problem of
axisymmetric deformation and deflection of an initially flat, peripherally fixed circular
membrane under the action of a uniformly distributed transverse loads, where the weight
of the circular membrane is usually ignored because it is usually very small in comparison
with the transverse loads. The solution of the well-known Hencky problem is usually
called the well-known Hencky solution, which is the first solution of the circular mem-
brane problem and is often cited in some studies of related issues [15–22]. Chien et al. [23]
analytically dealt with the symmetrical deformation of circular membrane under the action
of uniformly distributed loads in its central portion, i.e., the circular membrane problem
concerning the second loading form of transverse load. As for the third loading form, the
concentrated force applied to the center of the circular membrane, it is, in fact, the limit
case of the second loading form of transverse loads.

If an initially flat circular membrane is used as the bottom of a cylindrical cup or bucket
and a certain amount of liquid is poured into the cylindrical cup or bucket, then the initially
flat circular membrane will undergo axisymmetric deformation and deflection. The amount
of the liquid poured determines the deformation and deflection of the circular membrane,
while in turn, the deformation and deflection of the circular membrane changes the shape or
distribution of the liquid over the deformed and deflected circular membrane. This results
in an interaction between the liquid and the membrane, which is often referred to as a fluid–
structure interaction. Obviously, for a given amount of liquid, the interaction between
the liquid and the membrane will eventually reach a static equilibrium and a steady
fluid–solid coupling interface will appear. Our main interest here is the static problem of
axisymmetric deformation and deflection of the circular membrane under the given liquid
weight loading. The closed-form solution of this static problem is expected to be used in
the development of a new rain gauge [29–31]. However, such a fluid–structure coupling
problem will give rise to governing equations containing both differential operation and
integral operation. The power series method plays a unique and key role in solving these
kinds of differential-integral equations analytically, as will be seen later.

The paper is organized as follows: in Section 2, the governing equations are established
and the closed-form solutions for stress and deflection are presented. In Section 3, the
numerical examples are conducted to show the differences between the presented solution
and the well-known Hencky solution, and the convergence of the power-series solution for
deflection and stress is verified. The concluding remarks are shown in Section 4.

2. Membrane Equation and Its Solution

An initially flat circular unstretched membrane with Young’s modulus of elasticity E,
Poisson’s ratio ν, thickness h and radius a is fixed at the lower end of a vertically placed
rigid round tube of finite length to form a cylindrical cup or bucket of inner radius a having
a closed soft bottom with elastic deformation capability, and then a colored liquid with
density ρ is slowly poured into the cup until the height of liquid reaches H, as shown in
Figure 1, where H is the distance from the liquid level to the plane in which the initially flat
circular membrane is located, wm denotes the maximum deflection of the deflected circular
membrane at static equilibrium. Based on the anticipated use of this study for rain gauge,
only the case of H ≥ 0 is considered here.

Let us take out a free body of a piece of circular membrane with radius r (0 ≤ r ≤ a)
from the central portion of the whole deformed circular membrane, to study the static
problem of equilibrium of this free body under the joint actions of the external force F(r)
produced by the transverse distributed loads q(r) within r and the total force 2πrσrh
produced by the membrane force σrh acting on the boundary r, as shown in Figure 2; where
a cylindrical coordinate system (r, ϕ, w) is introduced, the polar coordinate plane (r, ϕ)
is located in the plane in which the geometric middle plane of the initially flat circular
membrane is located; o denotes the origin of the cylindrical coordinate system (r, ϕ, w),
which is placed in the centroid of the geometric intermediate plane, r denotes the radial
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coordinate, w denotes the axial coordinate of the cylindrical coordinate system (r, ϕ, w)
as well as the transverse displacement of a point on the deflected circular membrane, θ
denotes the slope angle of the deflecting membrane, and σr denotes the radial stress, while
the angle coordinate ϕ is not represented in Figure 2.

Figure 1. Geometry of the circular membrane under prescribed liquid along a diameter.

 
Figure 2. Free body diagram of the deformed circular membrane with radius 0 ≤ r ≤ a.

Obviously, the external force F(r) produced by q(r) within radius r is equal to the
weight of the liquid within radius r, and is given by

F(r) = ρg
∫ r

0
[w(r) + H] · 2πrdr = 2πρg

∫ r

0
w(r)rdr + ρgπr2H, (1)

where g is the acceleration of gravity and w(r) is the transverse displacement at r. Equation
(1) is the usually so-called fluid-structure coupling equation at static equilibrium. The
direction of the external force F(r) is always perpendicular to the plane in which the
initially flat circular membrane is located and vertically downward. Right here, the vertical
upward force is 2πrσrh sin θ, that is, the vertical component of the total membrane force
2πrσrh at r. Therefore, after ignoring the weight of the circular membrane, the equilibrium
condition in the vertical direction, i.e., the so-called out-of-plane equilibrium equation, is
given by

2πrσrh sin θ = F(r) = 2πρg
∫ r

0
w(r)rdr + ρgπr2H, (2)

where
sin θ ∼= tan θ = −dw

dr
. (3)
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Substituting Equation (3) into Equation (2) yields

2rσrh
dw
dr

+ 2ρg
∫ r

0
w(r)rdr + ρgr2H = 0. (4)

In the horizontal direction, there are two horizontal forces, the circumferential mem-
brane force σth and the horizontal component of the radial membrane force σrh, where
σt denotes the circumferential stress. Then, the equilibrium condition in the horizontal
direction (i.e., the so-called in-plane equilibrium equation) is [23]

d
dr

(rσrh)− σth = 0. (5)

Suppose that the radial strain is er, the circumferential strain is et and the radial
displacement at r is u(r). Then, the relations of the strain and displacement, the so-called
geometric equations, may be written as [23]

er =
du
dr

+
1
2
(

dw
dr

)
2

(6)

and
et =

u
r

. (7)

The relations of the stress and strain (i.e., the so-called physical equations) are [23]

σr =
E

1 − ν2 (er + νet) (8)

and
σt =

E
1 − ν2 (et + νer). (9)

Substituting Equations (6) and (7) into Equations (8) and (9) (to eliminate er and et in
Equations (8) and (9)) yields

σr =
E

1 − ν2 [
du
dr

+
1
2
(

dw
dr

)
2
+ ν

u
r
] (10)

and

σt =
E

1 − ν2 [
u
r
+ ν

du
dr

+ ν
1
2
(

dw
dr

)
2
]. (11)

By means of Equations (10), (11) and (5), one has

u
r
=

1
Eh

(σth − νσrh) =
1

Eh
[

d
dr

(rσrh)− νσrh]. (12)

Eliminating u from Equations (10) and (12) yields

r
d
dr

[
1
r

d
dr

(r2σrh)] +
Eh
2
(

dw
dr

)
2
= 0. (13)

Equation (13) is usually called a consistency equation. Equations (4) and (13) are two
equations for the solutions of σr and w.

The boundary conditions, under which Equations (4) and (13) may be solved, are

dw
dr

= 0 at r = 0, (14)

u
r
=

1
Eh

[
d
dr

(rσrh)− νσrh] = 0 at r = a (15)
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and
w = 0 at r = a. (16)

Let us introduce the following nondimensionalization:

W =
w
a

, Sr =
σr

E
, St =

σt

E
, x =

r
a

, H0 =
H
a

, G =
ρga2

Eh
, (17)

and transform Equations (4), (13), (5), (14), (15) and (16) into

2xSr
dW
dx

+ 2G
∫ x

0
W(x)xdx + x2GH0 = 0, (18)

x2 d2Sr

dx2 + 3x
dSr

dx
+

1
2
(

dW
dx

)
2
= 0, (19)

St = Sr + x
dSr

dx
, (20)

dW
dx

= 0 at x = 0, (21)

u
r
= (1 − ν)Sr + x

dSr

dx
= 0 at x = 1 (22)

and
W = 0 at x = 1. (23)

In view of the physical phenomenon that the values of stress and deflection are both
finite at x = 0, Sr and W can be expanded into the power series of x; i.e., let

Sr =
n

∑
i=0

cixi (24)

and

W =
n

∑
i=0

dixi. (25)

After substituting Equations (24) and (25) into Equations (18) and (19), it is found, by
using the mathematical software Maple 2018, that, ci ≡ 0 and di ≡ 0 when i = 1, 3, 5, . . .,
and when i = 2, 4, 6, . . ., the coefficients ci and di can be expressed into the polynomial with
regard to the coefficients c0 and d0 (see Appendices A and B).

The remaining two coefficients c0 and d0 are called undetermined constants, which
can be determined by using the boundary conditions Equations (22) and (23) as follows.
From Equation (24), Equation (22) gives

(1 − ν)
n

∑
i=0

ci +
n

∑
i=1

ici = 0, (26)

and from Equation (25), Equation (23) gives

n

∑
i=0

di = 0. (27)

For a concrete problem, the values of a, h, E, ν, ρ and H are known in advance.
Therefore, after substituting all expressions of ci and di (which are expressed by c0 and d0,
see Appendices A and B) into Equations (26) and (27), we can obtain a system of equations
containing only c0 and d0. The undetermined constants c0 and d0 can be determined
by solving this system of equations. Furthermore, with the known c0 and d0, the other
coefficients ci and di (i = 2, 4, 6, . . .) can easily be determined and the expressions of Sr and
W can also be determined. The problems dealt with here are thus solved.
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3. Results and Discussions

It is obvious that the boundary condition Equation (14), i.e., dw/dr = 0 at r = 0, has
not been used yet. Now, let us see whether the closed-form solution obtained in Section 2
meets this boundary condition. From Equations (17) and (25) the dimensional form of the
deflection w can be written as

w =
∞

∑
i=0

di

ai−1 ri, (28)

and the first derivative of Equation (28) is

dw
dr

=
∞

∑
i=1

idi

ai−1 ri−1. (29)

Equation (29) gives dw/dr = d1 at r = 0. Therefore dw/dr ≡ 0 at r = 0, due to d1 ≡ 0
(see the description after Equation (25)). It indicates that Equation (14) can be automatically
satisfied, which, to some extent, proves the validity of the closed-form solution obtained in
Section 2.

3.1. Comparison with the Well-Known Hencky Solution

It is well known that the well-known Hencky solution applies only to the case where
the transverse loads applied to the whole deflected circular membrane must, regardless
of the deflection of the membrane, be uniformly distributed [14]. Obviously, the more
uneven the distribution of the transverse loads is, the greater the error caused by using
the well-known Hencky solution. It is not hard to imagine from Figure 1 that, for a given
amount of liquid (keep the liquid level H constant), the thinner or softer the membrane
is, the greater the deflection of the membrane is, while the greater the deflection of the
membrane is, the more uneven the distribution of the liquid over the whole deflected
circular membrane is. On the other hand, for a given circular membrane, the uniformity
of liquid distribution will also change with the increase of the liquid level H. Now, let us
consider a numerical example to examine the difference between using the well-known
Hencky solution and the solution obtained in Section 2. When the well-known Hencky
solution is used, its uniformly distributed transverse loads q are given here by q = ρgH.

Suppose that a circular rubber membrane with radius a = 20 mm, thickness h = 0.1 mm,
Young’s modulus of elasticity and Poisson’s ratio ν = 0.47 is subjected to a liquid with
a density of ρ = 1 × 10−6 kg/mm3. After the fluid–structure interaction reaches a static
equilibrium, the liquid level H is assumed to be equal to 0.5 mm, 50 mm and 200 mm,
respectively. The acceleration of gravity is assumed to be g = 10 m/s2. The deflection and
radial stress curves along radius are shown in Figures 3 and 4, respectively, where the solid
lines represent the results calculated by the solution obtained in Section 2 and the dotted
lines by the well-known Hencky solution. The concrete values of the maximum deflection
and radial stress are listed in Table 1, where the “errors” are given by the absolute value of
the results by the well-known Hencky solution minus the results by the solution presented
in this paper and then divided by the results by the solution presented in this paper.
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0.5mmH

[mm]w

[mm]r

H 50mm

H 200mm

Figure 3. Deflection w along radius r when H takes 0.5 mm, 50 mm and 200 mm, respectively, where the
solid lines by the solution presented in this paper and the dotted lines by the well-known Hencky solution.

[MPa]r

[mm]r

0.5mmH

H 200mm

H 50mm

Figure 4. Radial stress σr along radius r when H takes 0.5 mm, 50 mm and 200 mm, respectively,
where the solid lines represent the solution presented in this paper and the dotted lines represent the
well-known Hencky solution.

Table 1. Maximum deflection and radial stress values at different H calculated by the solution
presented in this paper and the well-known Hencky solution.

H

Maximum Deflection [mm] Maximum Radial Stress [MPa]

Presented
Solution

Hencky
Solution Errors Presented

Solution
Hencky

Solution Errors

0.5 0.8169 0.6089 25.5% 0.0184 0.0091 50.8%
50 2.8733 2.7977 2.6% 0.2005 0.1911 4.7%
200 4.5161 4.5013 0.3% 0.4969 0.4947 0.4%

From Figures 3 and 4, it can be easily seen that the distance between the dotted line
and the solid line decreases as the liquid level H increases. When H = 0.5 mm, the distance
between the dotted line and the solid line is the largest and the error between the results
calculated by the solution presented in this paper and the well-known Hencky solution
are also the largest (see Table 1), while H = 200 mm, both the distance and the error are
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very small. This means that when H = 0.5 mm, the distribution of the liquid over the
whole deflected circular membrane is the most uneven, and consequently the difference
between using the well-known Hencky solution and the solution presented in this paper is
the most obvious (the maximum value of relative error is about 25.5% for deflection and
50.8% for radial stress; see the first row in Table 1). The main reason behind this is that
the uniformly distributed transverse loads q used for the well-known Hencky solution are
given by q = ρgH (where H takes 0.5 mm); while H = 0.5 mm, the actual height of the
liquid over the whole deflected circular membrane is 0.5 mm at the edge of the circular
membrane and is about 1.3169 (0.5 + 0.8169) mm (see the first column in Table 1) at the
center of the circular membrane (the relative error is about (1.3169 − 0.5)/0.5 = 163.38%).
Therefore, the distribution of the liquid over the whole deflected circular membrane
is actually very uneven. Just as stated above, the more uneven the distribution of the
transverse loads is, the greater the error caused by using the well-known Hencky solution.
On the other hand, when H = 200 mm, the actual height of the liquid over the whole
deflected circular membrane is 200 mm at the edge of the circular membrane and is about
204.5161 (200 + 4.5161) mm at the center of the circular membrane (the relative error is
about (204.5161 − 200)/200 = 2.26%). Therefore, in this case, the distribution of the liquid
over the whole deflected circular membrane is actually very uniform. In other words, in this
case, the external force F(a) produced by q(r) within radius a, which is applied to the whole
deflected circular membrane, is largely determined by ρgπa2H, and the contribution of the
fluid–structure interaction 2πρg

∫ a
0 w(r)rdr can be ignored, see Equation (1). In addition,

the phenomenon that the results calculated by the solution presented in this paper gradually
converge to the results by the well-known Hencky solution as the liquid level H increases
also proves to some extent that the closed-form solution obtained in Section 2 are basically
reliable, as far as the well-known Hencky solution is considered to be a reliable solution.

3.2. Verification of Convergence of the Power Series Solution

In this section, the convergence of the power series solution obtained in Section 2 will
be discussed. In general, it is better to discuss the convergence of the general solution
rather than that of the special solution, because the special solution will converge if the
general solution converges. However, we here have to discuss the convergence of the
special solution, because the discussion on the convergence of the general solution cannot
be conducted due to the complexity of the coefficients ci and di (i = 2, 4, 6, . . . ) expressed
by the undetermined constants c0 and d0 (see Appendices A and B). From the derivation
in Section 2, we know that the undetermined constants c0 and d0 can be determined by
simultaneous solutions of Equations (26) and (27); the special solutions for Sr(x) and
W(x) can be easily obtained as long as the undetermined constants c0 and d0 can be
determined. When calculating the undetermined constants c0 and d0, we have to substitute
the partial sum of former n terms of Equations (24) and (25), rather than the infinite series of
Equations (24) and (25), into Equations (26) and (27), otherwise the resulting Equations (26)
and (27) will contain two infinite series and are thus difficult to be solved. Therefore, it
seems that the terms n will determine the values of the undetermined constants c0 and d0,
and different n will determine the different values of c0 and d0. Hence, the discussion on
the convergence of the special solution should focus on giving the variations of c0 and d0
with terms n. If the undetermined constants c0 and d0 converge as the terms n increase,
then the special solution can be concluded to converge as well.

We will continue with the numerical example given in Section 3.1. A circular rubber
membrane with radius a = 20 mm, thickness h = 0.1 mm, Young’s modulus of elasticity
E = 7.84 MPa and Poisson’s ratio ν = 0.47 is subjected to the liquid weight loading with
the liquid level H = 50 mm. We start the numerical calculations of c0 and d0 from n = 4;
that is, start from the partial sum of the former four terms of Equations (24) and (25).
The variations of c0 and d0 with terms n are shown in Figures 5 and 6, respectively. From
Figures 5 and 6, we may see that with the increase of the terms n, the values of c0 and
d0 are gradually close to some certain values (i.e., their exact values), and are almost no
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longer changed when the terms n reach around 14, which indicates that the undetermined
constants c0 and d0 converge reasonably well. Therefore, we here show only the results
of the coefficients ci and di when n ≤ 24, which are listed in Tables 2 and 3, and when
n = 24, the variations of the coefficients ci and di with i (i = 0, 2, 4, . . . , 24) are shown in
Figures 7 and 8. From Figures 7 and 8, it can be seen that c24 and d24 are already very close
to 0, which means that the values of Sr and W are already very close to their exact values
when n = 24.

0c

n

Figure 5. Variation of c0 with n.

0d

n

Figure 6. Variation of d0 with n.

Table 2. (a) The values of ci at different n; (b) The values of ci at different n; (c) The values of ci at
different n; (d) The value of c24 at n = 24.

(a) The values of ci at different n

n c0 c2 c4 c6

4 2.5216650 × 10−2 −4.4711868 × 10−3 −4.5313948 × 10−4 -
6 2.5484214 × 10−2 −4.3775807 × 10−3 −4.2827528 × 10−4 −7.5232361 × 10−5

8 2.5550954 × 10−2 −4.3544054 × 10−3 −4.2226218 × 10−4 −7.3567411 × 10−5

10 2.5569445 × 10−2 −4.3479638 × 10−3 −4.2060234 × 10−4 −7.3110446 × 10−5

12 2.5574842 × 10−2 −4.3460754 × 10−3 −4.2011702 × 10−4 −7.2977069 × 10−5

14 2.5576464 × 10−2 −4.3455055 × 10−3 −4.1997075 × 10−4 −7.2936900 × 10−5

16 2.5576960 × 10−2 −4.3453305 × 10−3 −4.1992585 × 10−4 −7.2924572 × 10−5

18 2.5577114 × 10−2 −4.3452760 × 10−3 −4.1991189 × 10−4 −7.2920739 × 10−5

20 2.5577163 × 10−2 −4.3452589 × 10−3 −4.1990751 × 10−4 −7.2919536 × 10−5

22 2.5577178 × 10−2 −4.3452535 × 10−3 −4.1990612 × 10−4 −7.2919156 × 10−5

24 2.5577183 × 10−2 −4.3452518 × 10−3 −4.1990568 × 10−4 −7.2919035 × 10−5
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Table 2. Cont.

(b) The values of ci at different n

n c8 c10 c12 c14

8 −1.5488504 × 10−5 - - -
10 −1.5357045 × 10−5 −3.5823498 × 10−6 - -
12 −1.5318738 × 10−5 −3.5710160 × 10−6 −8.9013785 × 10−7 -
14 −1.5307207 × 10−5 −3.5676061 × 10−6 −8.8910802 × 10−7 −2.3216086 × 10−7

16 −1.5303669 × 10−5 −3.5665600 × 10−6 −8.8879213 × 10−7 −2.3206398 × 10−7

18 −1.5302569 × 10−5 −3.5662349 × 10−6 −8.8869395 × 10−7 −2.3203386 × 10−7

20 −1.5302224 × 10−5 −3.5661328 × 10−6 −8.8866314 × 10−7 −2.3202441 × 10−7

22 −1.5302115 × 10−5 −3.5661005 × 10−6 −8.8865339 × 10−7 −2.3202143 × 10−7

24 −1.5302080 × 10−5 −3.5660903 × 10−6 −8.8865029 × 10−7 −2.3202047 × 10−8

(c) The values of ci at different n

n c16 c18 c20 c22

16 −6.2711514 × 10−8 - - -
18 −6.2702167 × 10−8 −1.7397329 × 10−8 - -
20 −6.2699234 × 10−8 −1.7396410 × 10−8 −4.9288360 × 10−9 -
22 −6.2698306 × 10−8 −1.7396119 × 10−8 −4.9287442 × 10−9 −1.4203606 × 10−9

24 −6.2698011 × 10−8 −1.7396027 × 10−8 −4.9287150 × 10−9 −1.4203513 × 10−9

(d) The value of c24 at n = 24

n c24 - - -

24 −4.1511468 × 10−10 - - -

Table 3. (a) The values of di at different n; (b) The values of di at different n; (c) The values of di at
different n; (d) The value of d24 at n = 24.

(a) The values of di at different n

n d0 d2 d4 d6

4 1.4389897 × 10−1 −1.3373387 × 10−1 −1.0165102 × 10−2 -
6 1.4380527 × 10−1 −1.3232658 × 10−1 −9.7095072 × 10−3 −1.7991832 × 10−3

8 1.4373309 × 10−1 −1.3197584 × 10−1 −9.5986248 × 10−3 −1.7643172 × 10−3

10 1.4368872 × 10−1 −1.3187818 × 10−1 −9.5679741 × 10−3 −1.7547332 × 10−3

12 1.4367240 × 10−1 −1.3184954 × 10−1 −9.5590098 × 10−3 −1.7519351 × 10−3

14 1.4366673 × 10−1 −1.3184090 × 10−1 −9.5563083 × 10−3 −1.7510923 × 10−3

16 1.4366481 × 10−1 −1.3183824 × 10−1 −9.5554791 × 10−3 −1.7508337 × 10−3

18 1.4366417 × 10−1 −1.3183741 × 10−1 −9.5552212 × 10−3 −1.7507533 × 10−3

20 1.4366395 × 10−1 −1.3183716 × 10−1 −9.5551403 × 10−3 −1.7507281 × 10−3

22 1.4366388 × 10−1 −1.3183707 × 10−1 −9.5551147 × 10−3 −1.7507201 × 10−3

24 1.4366386 × 10−1 −1.3183705 × 10−1 −9.5551066 × 10−3 −1.7507175 × 10−3

(b) The values of di at different n

n d8 d10 d12 d14

8 −3.9431453 × 10−4 - - -
10 −3.9128051 × 10−4 −9.6550465 × 10−5 - -
12 −3.9039607 × 10−4 −9.6267818 × 10−5 −2.5251202 × 10−5 -
14 −3.9012984 × 10−4 −9.6182775 × 10−5 −2.5223804 × 10−5 −6.8962634 × 10−6

16 −3.9004815 × 10−4 −9.6156686 × 10−5 −2.5215401 × 10−5 −6.8935385 × 10−6

18 −3.9002276 × 10−4 −9.6148576 × 10−5 −2.5212789 × 10−5 −6.8926917 × 10−6

20 −3.9001479 × 10−4 −9.6146031 × 10−5 −2.5211969 × 10−5 −6.8924259 × 10−6

22 −3.9001227 × 10−4 −9.6145227 × 10−5 −2.5211710 × 10−5 −6.8923419 × 10−6

24 −3.9001147 × 10−4 −9.6144970 × 10−5 −2.5211627 × 10−5 −6.8923151 × 10−6
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Table 3. Cont.

(c) The values of di at different n

n d16 d18 d20 d22

16 −1.9420161 × 10−6 - - -
18 −1.9417401 × 10−6 −5.5954589 × 10−7 - -
20 −1.9416535 × 10−6 −5.5951754 × 10−7 −1.6411662 × 10−7 -
22 −1.9416261 × 10−6 −5.5950858 × 10−7 −1.6411368 × 10−7 −4.8827855 × 10−8

24 −1.9416174 × 10−6 −5.5950573 × 10−7 −1.6411274 × 10−7 −4.8827547 × 10−8

(d) The value of d24 at n = 24

n d24 - - -

24 −1.4698279 × 10−8 - - -

 

(a) (b) 

Figure 7. The values of ci when n = 24: (a) for i = 0, 2, 4, 6, . . . , 24; (b) for i = 2, 4, 6, . . . , 24.

(a) (b) 

Figure 8. The values of di when n = 24: (a) for i = 0, 2, 4, 6, . . . , 24; (b) for i = 2, 4, 6, . . . , 24.

4. Concluding Remarks

In this paper, we analytically solved the problem of axisymmetric deformation and
deflection of a circular membrane under liquid weight loading and presented the closed-
form solution for stress and deflection. The following conclusions can be drawn from
this study:

i. The power series method is effective for the analytical solution to differential-
integral equations.

ii. When the amount of liquid applied onto the circular membrane is large enough, the
difference between the solution presented in this paper and the well-known Hencky
solution will become relatively small. If the requirement for calculation accuracy is
not too high, the problem of axisymmetric deformation of the circular membrane
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under liquid self-weight loading may be treated as the well-known Hencky problem;
the fluid–structure interaction may be neglected.

iii. When the amount of liquid applied onto the circular membrane is relatively small, the
solution presented in this paper will be quite different from the well-known Hencky
solution. For a higher calculation accuracy, the fluid–structure interaction should be
taken into account.

iv. The numerical example conducted shows that the closed-form solution obtained in
this paper has good convergence.

The work presented here could further be combined with the research and develop-
ment of new rain gauges.
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Nomenclatures

a Radius of the circular membrane
h Thickness of the circular membrane
E Young’s modulus of elasticity
ν Poisson’s ratio
H Height of the liquid poured into the cup
ρ Density of the poured liquid
g Acceleration of gravity
r Radial coordinate of the cylindrical coordinate system
ϕ Circumferential coordinate of the cylindrical coordinate system

w
Axial coordinate of the cylindrical coordinate system as well as transverse
displacement of a point on the deflected circular membrane

u Radial displacement of a point on the deflected circular membrane
wm Maximum deflection of the deflected circular membrane

q(r)
Transverse distributed loads over the circular membrane produced by the gravity
of the liquid within radius r

F(r) External force produced by q(r) within radius r
σr Radial stress
σt Circumferential stress
er Radial strain
et Circumferential strain
θ Slope angle of the deflected membrane
π Pi (ratio of circumference to diameter)
W Dimensionless transverse displacement (w/a)
Sr Dimensionless radial stress (σr/E)
St Dimensionless circumferential stress (σt/E)
H0 Dimensionless height of liquid (H/a)
G Dimensionless quantity (ρga2/Eh)
x Dimensionless radial coordinate (r/a)
ci Coefficients of the power series for Sr
di Coefficients of the power series for W
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9c0

8d0
+13416386399438745600G5H0

8c0
8d0

2 + 35777030398503321600G5H0
7c0

8d0
3

+62609803197380812800G5H0
6c0

8d0
4 + 75131763836856975360G5H0

5c0
8d0

5

+62609803197380812800G5H0
4c0

8d0
6 + 35777030398503321600G5H0

3c0
8d0

7

+13416386399438745600G5H0
2c0

8d0
8 + 2981419199875276800G5H0c0

8d0
9

+298141919987527680G5c0
8d0

10 − 440975944806858752G4H0
8c0

10

−3527807558454870016G4H0
7c0

10d0 − 12347326454592045056G4H0
6c0

10d0
2

−24694652909184090112G4H0
5c0

10d0
3 − 30868316136480112640G4H0

4c0
10d0

4

−24694652909184090112G4H0
3c0

10d0
5 − 12347326454592045056G4H0

2c0
10d0

6

−3527807558454870016G4H0c0
10d0

7 − 440975944806858752G4c0
10d0

8

+304616960657457152G3H0
6c0

12 + 1827701763944742912G3H0
5c0

12d0
+4569254409861857280G3H0

4c0
12d0

2 + 6092339213149143040G3H0
3c0

12d0
3

+4569254409861857280G3H0
2c0

12d0
4 + 1827701763944742912G3H0c0

12d0
5

+304616960657457152G3c0
12d0

6 − 75883562624090112G2H0
4c0

14

−303534250496360448G2H0
3c0

14d0 − 455301375744540672G2H0
2c0

14d0
2

−303534250496360448G2H0c0
14d0

3 − 75883562624090112G2c0
14d0

4

+3486326154330112GH0
2c0

16 + 6972652308660224GH0c0
16d0

+3486326154330112Gc0
16d0

2 − 1972530839552c0
18)

,

c24 = − G13(H0+d0)
2

859719997953483281703576608440320000c35
0
(GH2

0 + 2GH0d0 + Gd2
0 − 8c2

0)

(10470550396840625G10H0
20 + 209411007936812500G10H0

19d0
+1989404575399718750G10H0

18d0
2 + 11936427452398312500G10H0

17d0
3

+50729816672692828125G10H0
16d0

4 + 162335413352617050000G10H0
15d0

5

+405838533381542625000G10H0
14d0

6 + 811677066763085250000G10H0
13d0

7

+1318975233490013531250G10H0
12d0

8 + 1758633644653351375000G10H0
11d0

9

+1934497009118686512500G10H0
10d0

10 + 1758633644653351375000G10H0
9d0

11

+1318975233490013531250G10H0
8d0

12 + 811677066763085250000G10H0
7d0

13

+405838533381542625000G10H0
6d0

14 + 162335413352617050000G10H0
5d0

15

+50729816672692828125G10H0
4d0

16 + 11936427452398312500G10H0
3d0

17

+1989404575399718750G10H0
2d0

18 + 209411007936812500G10H0d0
19

+10470550396840625G10d0
20 − 302621805505979000G9H0

18c0
2

−5447192499107622000G9H0
17c0

2d0 − 46301136242414787000G9H0
16c0

2d0
2

−246939393292878864000G9H0
15c0

2d0
3 − 926022724848295740000G9H0

14c0
2d0

4

−2592863629575228072000G9H0
13c0

2d0
5 − 5617871197412994156000G9H0

12c0
2d0

6

−9630636338422275696000G9H0
11c0

2d0
7 − 13242124965330629082000G9H0

10c0
2d0

8

−14713472183700698980000G9H0
9c0

2d0
9 − 13242124965330629082000G9H0

8c0
2d0

10

−9630636338422275696000G9H0
7c0

2d0
11 − 5617871197412994156000G9H0

6c0
2d0

12
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−2592863629575228072000G9H0
5c0

2d0
13 − 926022724848295740000G9H0

4c0
2d0

14

−246939393292878864000G9H0
3c0

2d0
15 − 46301136242414787000G9H0

2c0
2d0

16

−5447192499107622000G9H0c0
2d0

17 − 302621805505979000G9c0
2d0

18

+3566092425128384960G8H0
16c0

4 + 57057478802054159360G8H0
15c0

4d0
+427931091015406195200G8H0

14c0
4d0

2 + 1997011758071895577600G8H0
13c0

4d0
3

+6490288213733660627200G8H0
12c0

4d0
4 + 15576691712960785505280G8H0

11c0
4d0

5

+28557268140428106759680G8H0
10c0

4d0
6 + 40796097343468723942400G8H0

9c0
4d0

7

+45895609511402314435200G8H0
8c0

4d0
8 + 40796097343468723942400G8H0

7c0
4d0

9

+28557268140428106759680G8H0
6c0

4d0
10 + 15576691712960785505280G8H0

5c0
4d0

11

+6490288213733660627200G8H0
4c0

4d0
12 + 1997011758071895577600G8H0

3c0
4d0

13

+427931091015406195200G8H0
2c0

4d0
14 + 57057478802054159360G8H0c0

4d0
15

+3566092425128384960G8c0
4d0

16 − 22064961114736215040G7H0
14c0

6

−308909455606307010560G7H0
13c0

6d0 − 2007911461440995568640G7H0
12c0

6d0
2

−8031645845763982274560G7H0
11c0

6d0
3 − 22087026075850951255040G7H0

10c0
6d0

4

−44174052151701902510080G7H0
9c0

6d0
5 − 66261078227552853765120G7H0

8c0
6d0

6

−75726946545774690017280G7H0
7c0

6d0
7 − 66261078227552853765120G7H0

6c0
6d0

8

−44174052151701902510080G7H0
5c0

6d0
9 − 22087026075850951255040G7H0

4c0
6d0

10

−8031645845763982274560G7H0
3c0

6d0
11 − 2007911461440995568640G7H0

2c0
6d0

12

−308909455606307010560G7H0c0
6d0

13 − 22064961114736215040G7c0
6d0

14

+76935695715733790720G6H0
12c0

8 + 923228348588805488640G6H0
11c0

8d0
+5077755917238430187520G6H0

10c0
8d0

2 + 16925853057461433958400G6H0
9c0

8d0
3

+38083169379288226406400G6H0
8c0

8d0
4 + 60933071006861162250240G6H0

7c0
8d0

5

+71088582841338022625280G6H0
6c0

8d0
6 + 60933071006861162250240G6H0

5c0
8d0

7

+38083169379288226406400G6H0
4c0

8d0
8 + 16925853057461433958400G6H0

3c0
8d0

9

+5077755917238430187520G6H0
2c0

8d0
10 + 923228348588805488640G6H0c0

8d0
11

+76935695715733790720G6c0
8d0

12 − 150811020027895349248G5H0
10c0

10

−1508110200278953492480G5H0
9c0

10d0 − 6786495901255290716160G5H0
8c0

10d0
2

−18097322403347441909760G5H0
7c0

10d0
3 − 31670314205858023342080G5H0

6c0
10d0

4

−38004377047029628010496G5H0
5c0

10d0
5 − 31670314205858023342080G5H0

4c0
10d0

6

−18097322403347441909760G5H0
3c0

10d0
7 − 6786495901255290716160G5H0

2c0
10d0

8

−1508110200278953492480G5H0c0
10d0

9 − 150811020027895349248G5c0
10d0

10

+156446903803372371968G4H0
8c0

12 + 1251575230426978975744G4H0
7c0

12d0
+4380513306494426415104G4H0

6c0
12d0

2 + 8761026612988852830208G4H0
5c0

12d0
3

+10951283266236066037760G4H0
4c0

12d0
4 + 8761026612988852830208G4H0

3c0
12d0

5

+4380513306494426415104G4H0
2c0

12d0
6 + 1251575230426978975744G4H0c0

12d0
7

+156446903803372371968G4c0
12d0

8 − 74687799413960605696G3H0
6c0

14

−448126796483763634176G3H0
5c0

14d0 − 1120316991209409085440G3H0
4c0

14d0
2

−1493755988279212113920G3H0
3c0

14d0
3 − 1120316991209409085440G3H0

2c0
14d0

4

−448126796483763634176G3H0c0
14d0

5 − 74687799413960605696G3c0
14d0

6

+12147792181792342016G2H0
4c0

16 + 48591168727169368064G2H0
3c0

16d0
+72886753090754052096G2H0

2c0
16d0

2 + 48591168727169368064G2H0c0
16d0

3

+12147792181792342016G2c0
16d0

4 − 309052965610586112GH0
2c0

18

−618105931221172224GH0c0
18d0 − 309052965610586112Gc0

18d0
2

+55837796073472c0
20)
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Appendix B

d2 = −G(H0+d0)
4c0

,

d4 = −G2(H0+d0)

512c4
0

(GH2
0 + 2GH0d0 + Gd2

0 − 8c2
0),

d6 = −G3(H0+d0)

147456c7
0
(GH2

0 + 2GH0d0 + Gd2
0 − 8c2

0)(5GH2
0 + 10GH0d0 + 5Gd2

0 − 8c2
0),

d8 = − G4(H0+d0)

75497472c10
0
(GH2

0 + 2GH0d0 + Gd2
0 − 8c2

0)(55G2H4
0 + 220G2H3

0 d0 + 55G2d4
0

+330G2H2
0 d2

0 + 220G2H0d3
0 − 224GH2

0 c2
0 − 448GH0c2

0d0 − 224Gc2
0d2

0 + 64c4
0)

d10 = − G5(H0+d0)

30198988800c13
0
(GH2

0 + 2GH0d0 + Gd2
0 − 8c2

0)(525G3H6
0 + 3150G3H5

0 d0

+7875G3H4
0 d2

0 + 10500G3H3
0 d3

0 + 7875G3H2
0 d4

0 + 3150G3H0d5
0 − 14128G2H0c2

0d3
0

+525G3d6
0 − 3532G2H4

0 c2
0 − 14128G2H3

0 c2
0d0 − 21192G2H2

0 c2
0d2

0 − 3532G2c2
0d4

0
+4544GH2

0 c4
0 + 9088GH0c4

0d0 + 4544Gc4
0d2

0 − 256c6
0)

,

d12 = − G6(H0+d0)
34789235097600c0

16 (GH0
2 + 2GH0d0 + Gd0

2 − 8c0
2)(15375G4H0

8

+123000G4H0
7d0 + 430500G4H0

6d0
2 + 861000G4H0

5d0
3 + 1076250G4H0

4d0
4

+861000G4H0
3d0

5 + 430500G4H0
2d0

6 + 123000G4H0d0
7 + 15375G4d0

8

−145364G3H0
6c0

2 − 872184G3H0
5c0

2d0 − 872184G3H0c0
2d0

5

−2180460G3H0
4c0

2d0
2 − 2907280G3H0

3c0
2d0

3 − 2180460G3H0
2c0

2d0
4

−145364G3c0
2d0

6 + 360864G2H0
4c0

4 + 1443456G2H0
3c0

4d0
+2165184G2H0

2c0
4d0

2 + 1443456G2H0c0
4d0

3 + 360864G2c0
4d0

4

−194304GH0
2c0

6 − 388608GH0c0
6d0 − 194304Gc0

6d0
2 + 2048c0

8)

,

d14 = − G7(H0+d0)
109099041266073600c0

19 (GH0
2 + 2GH0d0 + Gd0

2 − 8c0
2)(1278825G5H0

10

+12788250G5H0
9d0 + 57547125G5H0

8d0
2 + 153459000G5H0

7d0
3

+268553250G5H0
6d0

4 + 322263900G5H0
5d0

5 + 268553250G5H0
4d0

6

+153459000G5H0
3d0

7 + 57547125G5H0
2d0

8 + 12788250G5H0d0
9

+1278825G5d0
10 − 15624872G4H0

8c0
2 − 124998976G4H0

7c0
2d0

−437496416G4H0
6c0

2d0
2 − 874992832G4H0

5c0
2d0

3

−1093741040G4H0
4c0

2d0
4 − 874992832G4H0

3c0
2d0

5

−437496416G4H0
2c0

2d0
6 − 124998976G4H0c0

2d0
7

−15624872G4c0
2d0

8 + 58775168G3H0
6c0

4 + 352651008G3H0
5c0

4d0
+881627520G3H0

4c0
4d0

2 + 1175503360G3H0
3c0

4d0
3

+881627520G3H0
2c0

4d0
4 + 352651008G3H0c0

4d0
5

+58775168G3c0
4d0

6 − 71685120G2H0
4c0

6

−286740480G2H0
3c0

6d0 − 430110720G2H0
2c0

6d0
2

−286740480G2H0c0
6d0

3 − 71685120G2c0
6d0

4 + 17813504GH0
2c0

8

+35627008GH0c0
8d0 + 17813504Gc0

8d0
2 − 32768c0

10)

,

d16 = − G8(H0+d0)
223434836512918732800c0

22 (GH0
2 + 2GH0d0 + Gd0

2 − 8c0
2)

(71612125G6H0
12 + 859345500G6H0

11d0 + 4726400250G6H0
10d0

2

+15754667500G6H0
9d0

3 + 35448001875G6H0
8d0

4 + 56716803000G6H0
7d0

5

+66169603500G6H0
6d0

6 + 56716803000G6H0
5d0

7 + 35448001875G6H0
4d0

8

+15754667500G6H0
3d0

9 + 4726400250G6H0
2d0

10 + 859345500G6H0d0
11

+71612125G6d0
12 − 1074406560G5H0

10c0
2 − 10744065600G5H0

9c0
2d0

−48348295200G5H0
8c0

2d0
2 − 128928787200G5H0

7c0
2d0

3

−225625377600G5H0
6c0

2d0
4 − 270750453120G5H0

5c0
2d0

5

−225625377600G5H0
4c0

2d0
6 − 128928787200G5H0

3c0
2d0

7

−48348295200G5H0
2c0

2d0
8 + 305919828480G4H0

5c0
4d0

3

−10744065600G5H0c0
2d0

9 − 1074406560G5c0
2d0

10 + 5462854080G4H0
8c0

4

+43702832640G4H0
7c0

4d0 + 152959914240G4H0
6c0

4d0
2

+382399785600G4H0
4c0

4d0
4 + 305919828480G4H0

3c0
4d0

5

+152959914240G4H0
2c0

4d0
6 − 217917767680G3H0

3c0
6d0

3

+43702832640G4H0c0
4d0

7 + 5462854080G4c0
4d0

8 − 10895888384G3H0
6c0

6
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−65375330304G3H0
5c0

6d0 − 163438325760G3H0
4c0

6d0
2

−163438325760G3H0
2c0

6d0
4 − 65375330304G3H0c0

6d0
5

−10895888384G3c0
6d0

6 + 43822227456G2H0
2c0

8d0
2

+7303704576G2H0
4c0

8 + 29214818304G2H0
3c0

8d0
+29214818304G2H0c0

8d0
3 + 7303704576G2c0

8d0
4 − 866254848GH0

2c0
10

−1732509696GH0c0
10d0 − 866254848Gc0

10d0
2 + 262144c0

12)

,

d18 = − G9(H0+d0)
289571548120742677708800c0

25 (GH0
2 + 2GH0d0 + Gd0

2 − 8c0
2)

(2596581625G7H0
14 + 36352142750G7H0

13d0 + 236288927875G7H0
12d0

2

+945155711500G7H0
11d0

3 + 2599178206625G7H0
10d0

4

+5198356413250G7H0
9d0

5 + 7797534619875G7H0
6d0

8

+7797534619875G7H0
8d0

6 + 8911468137000G7H0
7d0

7

+5198356413250G7H0
5d0

9 + 2599178206625G7H0
4d0

10

+236288927875G7H0
2d0

12 + 36352142750G7H0d0
13

−46223906500G6H0
12c0

2 − 554686878000G6H0
11c0

2d0
−3050777829000G6H0

10c0
2d0

2 + 2596581625G7d0
14 + 945155711500G7H0

3d0
11

−10169259430000G6H0
9c0

2d0
3 − 22880833717500G6H0

8c0
2d0

4

−36609333948000G6H0
7c0

2d0
5 − 42710889606000G6H0

6c0
2d0

6

−36609333948000G6H0
5c0

2d0
7 − 22880833717500G6H0

4c0
2d0

8

−10169259430000G6H0
3c0

2d0
9 − 3050777829000G6H0

2c0
2d0

10

−554686878000G6H0c0
2d0

11 − 46223906500G6c0
2d0

12

+297379154880G5H0
10c0

4 + 2973791548800G5H0
9c0

4d0
+13382061969600G5H0

8c0
4d0

2 + 35685498585600G5H0
7c0

4d0
3

+62449622524800G5H0
6c0

4d0
4 + 74939547029760G5H0

5c0
4d0

5

+62449622524800G5H0
4c0

4d0
6 + 35685498585600G5H0

3c0
4d0

7

+13382061969600G5H0
2c0

4d0
8 + 2973791548800G5H0c0

4d0
9

+297379154880G5c0
4d0

10 − 838832062208G4H0
8c0

6

−6710656497664G4H0
7c0

6d0 − 23487297741824G4H0
6c0

6d0
2

−46974595483648G4H0
5c0

6d0
3 − 58718244354560G4H0

4c0
6d0

4

−46974595483648G4H0
3c0

6d0
5 − 23487297741824G4H0

2c0
6d0

6

−6710656497664G4H0c0
6d0

7 − 838832062208G4c0
6d0

8

+995841536000G3H0
6c0

8 + 5975049216000G3H0
5c0

8d0
+14937623040000G3H0

4c0
8d0

2 + 19916830720000G3H0
3c0

8d0
3

+14937623040000G3H0
2c0

8d0
4 + 5975049216000G3H0c0

8d0
5

+995841536000G3c0
8d0

6 − 388074553344G2H0
4c0

10

−1552298213376G2H0
3c0

10d0 − 2328447320064G2H0
2c0

10d0
2

−1552298213376G2H0c0
10d0

3 − 388074553344G2c0
10d0

4

+22064398336GH0
2c0

12 + 44128796672GH0c0
12d0

+22064398336Gc0
12d0

2 − 1048576c0
14)

,

d20 = − G10(H0+d0)
463314476993188284334080000c0

28 (GH0
2 + 2GH0d0 + Gd0

2 − 8c0
2)

(118334925625G8H0
16 + 1893358810000G8H0

15d0
+14200191075000G8H0

14d0
2 + 66267558350000G8H0

13d0
3

+215369564637500G8H0
12d0

4 + 516886955130000G8H0
11d0

5

+947626084405000G8H0
10d0

6 + 1353751549150000G8H0
9d0

7

+1522970492793750G8H0
8d0

8 + 1353751549150000G8H0
7d0

9

+947626084405000G8H0
6d0

10 + 516886955130000G8H0
5d0

11

+215369564637500G8H0
4d0

12 + 1893358810000G8H0d0
15

+66267558350000G8H0
3d0

13 + 14200191075000G8H0
2d0

14

+118334925625G8d0
16 − 2438867435750G7H0

14c0
2

−34144144100500G7H0
13c0

2d0 − 221936936653250G7H0
12c0

2d0
2

335
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−887747746613000G7H0
11c0

2d0
3 − 2438867435750G7c0

2d0
14

−2441306303185750G7H0
10c0

2d0
4 − 4882612606371500G7H0

9c0
2d0

5

−7323918909557250G7H0
8c0

2d0
6 − 8370193039494000G7H0

7c0
2d0

7

−7323918909557250G7H0
6c0

2d0
8 − 4882612606371500G7H0

5c0
2d0

9

−2441306303185750G7H0
4c0

2d0
10 − 887747746613000G7H0

3c0
2d0

11

−221936936653250G7H0
2c0

2d0
12 − 34144144100500G7H0c0

2d0
13

+19021198932112G6H0
12c0

4 + 228254387185344G6H0
11c0

4d0
+1255399129519392G6H0

10c0
4d0

2 − 69963325870208G5H0
10c0

6

+4184663765064640G6H0
9c0

4d0
3 + 9415493471395440G6H0

8c0
4d0

4

+15064789554232704G6H0
7c0

4d0
5 + 17575587813271488G6H0

6c0
4d0

6

+15064789554232704G6H0
5c0

4d0
7 + 9415493471395440G6H0

4c0
4d0

8

+4184663765064640G6H0
3c0

4d0
9 + 1255399129519392G6H0

2c0
4d0

10

+228254387185344G6H0c0
4d0

11 + 19021198932112G6c0
4d0

12

−699633258702080G5H0
9c0

6d0 − 3148349664159360G5H0
8c0

6d0
2

−8395599104424960G5H0
7c0

6d0
3 − 14692298432743680G5H0

6c0
6d0

4

−17630758119292416G5H0
5c0

6d0
5 − 14692298432743680G5H0

4c0
6d0

6

−8395599104424960G5H0
3c0

6d0
7 − 3148349664159360G5H0

2c0
6d0

8

−699633258702080G5H0c0
6d0

9 − 69963325870208G5c0
6d0

10

+123048169851904G4H0
8c0

8 − 92437077204992G3H0
6c0

10

+984385358815232G4H0
7c0

8d0 + 3445348755853312G4H0
6c0

8d0
2

+6890697511706624G4H0
5c0

8d0
3 + 8613371889633280G4H0

4c0
8d0

4

+6890697511706624G4H0
3c0

8d0
5 + 3445348755853312G4H0

2c0
8d0

6

+984385358815232G4H0c0
8d0

7 + 123048169851904G4c0
8d0

8

−554622463229952G3H0
5c0

10d0 − 1386556158074880G3H0
4c0

10d0
2

−1848741544099840G3H0
3c0

10d0
3 − 1386556158074880G3H0

2c0
10d0

4

−554622463229952G3H0c0
10d0

5 − 92437077204992G3c0
10d0

6

+21592071405568G2H0
4c0

12 − 582969982976GH0
2c0

14

+86368285622272G2H0
3c0

12d0 + 129552428433408G2H0
2c0

12d0
2

+86368285622272G2H0c0
12d0

3 + 21592071405568G2c0
12d0

4

−1165939965952GH0c0
14d0 − 582969982976Gc0

14d0
2 + 4194304c0

16)

,

d22 = − G11(H0+d0)
3587907309835250073883115520000c0

31 (GH0
2 + 2GH0d0 + Gd0

2 − 8c0
2)

(26479758670625G9H0
18 + 476635656071250G9H0

17d0
+4051403076605625G9H0

16d0
2 − 620277594363700G8H0

16c0
2

+21607483075230000G9H0
15d0

3 + 81028061532112500G9H0
14d0

4

+226878572289915000G9H0
13d0

5 + 491570239961482500G9H0
12d0

6

+842691839933970000G9H0
11d0

7 + 1158701279909208750G9H0
10d0

8

+1287445866565787500G9H0
9d0

9 + 1158701279909208750G9H0
8d0

10

+842691839933970000G9H0
7d0

11 + 491570239961482500G9H0
6d0

12

+226878572289915000G9H0
5d0

13 + 81028061532112500G9H0
4d0

14

+21607483075230000G9H0
3d0

15 + 4051403076605625G9H0
2d0

16

+476635656071250G9H0d0
17 + 26479758670625G9d0

18

−9924441509819200G8H0
15c0

2d0 − 74433311323644000G8H0
14c0

2d0
2

−347355452843672000G8H0
13c0

2d0
3 − 1128905221741934000G8H0

12c0
2d0

4

−2709372532180641600G8H0
11c0

2d0
5 − 4967182975664509600G8H0

10c0
2d0

6

−7095975679520728000G8H0
9c0

2d0
7 − 7982972639460819000G8H0

8c0
2d0

8

−7095975679520728000G8H0
7c0

2d0
9 − 4967182975664509600G8H0

6c0
2d0

10

−2709372532180641600G8H0
5c0

2d0
11 − 1128905221741934000G8H0

4c0
2d0

12

−347355452843672000G8H0
3c0

2d0
13 − 74433311323644000G8H0

2c0
2d0

14

−9924441509819200G8H0c0
2d0

15 − 620277594363700G8c0
2d0

16

+5691966058468800G7H0
14c0

4 + 79687524818563200G7H0
13c0

4d0
+517968911320660800G7H0

12c0
4d0

2 + 2071875645282643200G7H0
11c0

4d0
3

336
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+5697658024527268800G7H0
10c0

4d0
4 + 11395316049054537600G7H0

9c0
4d0

5

+17092974073581806400G7H0
8c0

4d0
6 + 19534827512664921600G7H0

7c0
4d0

7

+17092974073581806400G7H0
6c0

4d0
8 + 11395316049054537600G7H0

5c0
4d0

9

+5697658024527268800G7H0
4c0

4d0
10 + 2071875645282643200G7H0

3c0
4d0

11

+517968911320660800G7H0
2c0

4d0
12 + 79687524818563200G7H0c0

4d0
13

+5691966058468800G7c0
4d0

14 − 25932933890948096G6H0
12c0

6

−311195206691377152G6H0
11c0

6d0 − 1711573636802574336G6H0
10c0

6d0
2

−5705245456008581120G6H0
9c0

6d0
3 − 12836802276019307520G6H0

8c0
6d0

4

−20538883641630892032G6H0
7c0

6d0
5 − 23962030915236040704G6H0

6c0
6d0

6

−20538883641630892032G6H0
5c0

6d0
7 − 12836802276019307520G6H0

4c0
6d0

8

−5705245456008581120G6H0
3c0

6d0
9 − 1711573636802574336G6H0

2c0
6d0

10

−311195206691377152G6H0c0
6d0

11 − 25932933890948096G6c0
6d0

12

+61322321008062464G5H0
10c0

8 + 613223210080624640G5H0
9c0

8d0
+2759504445362810880G5H0

8c0
8d0

2 + 7358678520967495680G5H0
7c0

8d0
3

+12877687411693117440G5H0
6c0

8d0
4 + 15453224894031740928G5H0

5c0
8d0

5

+12877687411693117440G5H0
4c0

8d0
6 + 7358678520967495680G5H0

3c0
8d0

7

+2759504445362810880G5H0
2c0

8d0
8 + 613223210080624640G5H0c0

8d0
9

+61322321008062464G5c0
8d0

10 − 71614989018365952G4H0
8c0

10

−572919912146927616G4H0
7c0

10d0 − 2005219692514246656G4H0
6c0

10d0
2

−4010439385028493312G4H0
5c0

10d0
3 − 5013049231285616640G4H0

4c0
10d0

4

−4010439385028493312G4H0
3c0

10d0
5 − 2005219692514246656G4H0

2c0
10d0

6

−572919912146927616G4H0c0
10d0

7 − 71614989018365952G4c0
10d0

8

+35312095237242880G3H0
6c0

12 + 211872571423457280G3H0
5c0

12d0
+529681428558643200G3H0

4c0
12d0

2 + 706241904744857600G3H0
3c0

12d0
3

+529681428558643200G3H0
2c0

12d0
4 + 211872571423457280G3H0c0

12d0
5

+35312095237242880G3c0
12d0

6 − 5025844518977536G2H0
4c0

14

−20103378075910144G2H0
3c0

14d0 − 30155067113865216G2H0
2c0

14d0
2

−20103378075910144G2H0c0
14d0

3 − 5025844518977536G2c0
14d0

4

+63454920572928GH0
2c0

16 + 126909841145856GH0c0
16d0

+63454920572928Gc0
16d0

2 − 67108864c0
18)

,

d24 = − G12(H0+d0)
4133269220930208085113349079040000c0

34 (GH0
2 + 2GH0d0 + Gd0

2 − 8c0
2)

(891919562511250G10H0
20 + 17838391250225000G10H0

19d0
+169464716877137500G10H0

18d0
2 + 1016788301262825000G10H0

17d0
3

+4321350280367006250G10H0
16d0

4 + 13828320897174420000G10H0
15d0

5

+34570802242936050000G10H0
14d0

6 + 69141604485872100000G10H0
13d0

7

+112355107289542162500G10H0
12d0

8 + 149806809719389550000G10H0
11d0

9

+164787490691328505000G10H0
10d0

10 + 149806809719389550000G10H0
9d0

11

+112355107289542162500G10H0
8d0

12 + 69141604485872100000G10H0
7d0

13

+34570802242936050000G10H0
6d0

14 + 13828320897174420000G10H0
5d0

15

+4321350280367006250G10H0
4d0

16 + 1016788301262825000G10H0
3d0

17

+169464716877137500G10H0
2d0

18 + 17838391250225000G10H0d0
19

+891919562511250G10d0
20 − 23407785060336525G9H0

18c0
2

−421340131086057450G9H0
17c0

2d0 − 3581391114231488325G9H0
16c0

2d0
2

−19100752609234604400G9H0
15c0

2d0
3 − 71627822284629766500G9H0

14c0
2d0

4

−200557902396963346200G9H0
13c0

2d0
5 − 434542121860087250100G9H0

12c0
2d0

6

−744929351760149571600G9H0
11c0

2d0
7 − 1024277858670205660950G9H0

10c0
2d0

8

−1138086509633561845500G9H0
9c0

2d0
9 − 1024277858670205660950G9H0

8c0
2d0

10

−744929351760149571600G9H0
7c0

2d0
11 − 434542121860087250100G9H0

6c0
2d0

12

−200557902396963346200G9H0
5c0

2d0
13 − 71627822284629766500G9H0

4c0
2d0

14

−19100752609234604400G9H0
3c0

2d0
15 − 3581391114231488325G9H0

2c0
2d0

16

−421340131086057450G9H0c0
2d0

17 − 23407785060336525G9c0
2d0

18
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+247234276374827672G8H0
16c0

4 + 3955748421997242752G8H0
15c0

4d0
+29668113164979320640G8H0

14c0
4d0

2 + 138451194769903496320G8H0
13c0

4d0
3

+449966383002186363040G8H0
12c0

4d0
4 + 1079919319205247271296G8H0

11c0
4d0

5

+1979852085209619997376G8H0
10c0

4d0
6 + 2828360121728028567680G8H0

9c0
4d0

7

+3181905136944032138640G8H0
8c0

4d0
8 + 2828360121728028567680G8H0

7c0
4d0

9

+1979852085209619997376G8H0
6c0

4d0
10 + 1079919319205247271296G8H0

5c0
4d0

11

+449966383002186363040G8H0
4c0

4d0
12 + 138451194769903496320G8H0

3c0
4d0

13

+29668113164979320640G8H0
2c0

4d0
14 + 3955748421997242752G8H0c0

4d0
15

+247234276374827672G8c0
4d0

16 − 1346957387631448192G7H0
14c0

6

−18857403426840274688G7H0
13c0

6d0 − 122573122274461785472G7H0
12c0

6d0
2

−490292489097847141888G7H0
11c0

6d0
3 − 1348304345019079640192G7H0

10c0
6d0

4

+1979852085209619997376G8H0
10c0

4d0
6 + 2828360121728028567680G8H0

9c0
4d0

7

+3181905136944032138640G8H0
8c0

4d0
8 + 2828360121728028567680G8H0

7c0
4d0

9

+1979852085209619997376G8H0
6c0

4d0
10 + 1079919319205247271296G8H0

5c0
4d0

11

+449966383002186363040G8H0
4c0

4d0
12 + 138451194769903496320G8H0

3c0
4d0

13

+29668113164979320640G8H0
2c0

4d0
14 + 3955748421997242752G8H0c0

4d0
15

+247234276374827672G8c0
4d0

16 − 1346957387631448192G7H0
14c0

6

−18857403426840274688G7H0
13c0

6d0 − 122573122274461785472G7H0
12c0

6d0
2

−490292489097847141888G7H0
11c0

6d0
3 − 1348304345019079640192G7H0

10c0
6d0

4

−2696608690038159280384G7H0
9c0

6d0
5 − 4044913035057238920576G7H0

8c0
6d0

6

−4622757754351130194944G7H0
7c0

6d0
7 − 4044913035057238920576G7H0

6c0
6d0

8

−2696608690038159280384G7H0
5c0

6d0
9 − 1348304345019079640192G7H0

4c0
6d0

10

−490292489097847141888G7H0
3c0

6d0
11 − 122573122274461785472G7H0

2c0
6d0

12

−18857403426840274688G7H0c0
6d0

13 − 1346957387631448192G7c0
6d0

14

+4032118651150257152G6H0
12c0

8 + 48385423813803085824G6H0
11c0

8d0
+266119830975916972032G6H0

10c0
8d0

2 + 887066103253056573440G6H0
9c0

8d0
3

+1995898732319377290240G6H0
8c0

8d0
4 + 3193437971711003664384G6H0

7c0
8d0

5

+3725677633662837608448G6H0
6c0

8d0
6 + 3193437971711003664384G6H0

5c0
8d0

7

+1995898732319377290240G6H0
4c0

8d0
8 + 887066103253056573440G6H0

3c0
8d0

9

+266119830975916972032G6H0
2c0

8d0
10 + 48385423813803085824G6H0c0

8d0
11

+4032118651150257152G6c0
8d0

12 − 6532826241815068672G5H0
10c0

10

−65328262418150686720G5H0
9c0

10d0 − 293977180881678090240G5H0
8c0

10d0
2

−783939149017808240640G5H0
7c0

10d0
3 − 1371893510781164421120G5H0

6c0
10d0

4

−1646272212937397305344G5H0
5c0

10d0
5 − 1371893510781164421120G5H0

4c0
10d0

6

−783939149017808240640G5H0
3c0

10d0
7 − 293977180881678090240G5H0

2c0
10d0

8

−65328262418150686720G5H0c0
10d0

9 − 6532826241815068672G5c0
10d0

10

+5266104159343345664G4H0
8c0

12 + 42128833274746765312G4H0
7c0

12d0
+147450916461613678592G4H0

6c0
12d0

2 + 294901832923227357184G4H0
5c0

12d0
3

+368627291154034196480G4H0
4c0

12d0
4 + 294901832923227357184G4H0

3c0
12d0

5

+147450916461613678592G4H0
2c0

12d0
6 + 42128833274746765312G4H0c0

12d0
7

+5266104159343345664G4c0
12d0

8 − 1744290367546064896G3H0
6c0

14

−10465742205276389376G3H0
5c0

14d0 − 26164355513190973440G3H0
4c0

14d0
2

−34885807350921297920G3H0
3c0

14d0
3 − 26164355513190973440G3H0

2c0
14d0

4

−10465742205276389376G3H0c0
14d0

5 − 1744290367546064896G3c0
14d0

6

+152409464354373632G2H0
4c0

16 + 609637857417494528G2H0
3c0

16d0
+914456786126241792G2H0

2c0
16d0

2 + 609637857417494528G2H0c0
16d0

3

+152409464354373632G2c0
16d0

4 − 884560174776320GH0
2c0

18

−1769120349552640GH0c0
18d0 − 884560174776320Gc0

18d0
2 + 134217728c0

20)

.
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Abstract: A hybrid model for the time series of complex structure (HMTS) was proposed. It is
based on the combination of function expansions in a wavelet series with ARIMA models. HMTS
has regular and anomalous components. The time series components, obtained after expansion,
have a simpler structure that makes it possible to identify the ARIMA model if the components are
stationary. This allows us to obtain a more accurate ARIMA model for a time series of complicated
structure and to extend the area for application. To identify the HMTS anomalous component,
threshold functions are applied. This paper describes a technique to identify HMTS and proposes
operations to detect anomalies. With the example of an ionospheric parameter time series, we show
the HMTS efficiency, describe the results and their application in detecting ionospheric anomalies.
The HMTS was compared with the nonlinear autoregression neural network NARX, which confirmed
HMTS efficiency.

Keywords: time series model; wavelet transform; ARIMA model; neural network NARX; iono-
spheric parameters

1. Introduction

Time series modeling and analysis are important bases for the methods of studying
the processes and phenomena of different natures. They are used in various spheres of
human activity (physics, biology, medicine, economics, etc.). Methods of data modeling
and analysis aimed at detecting and identifying anomalies are of special actuality. The
examples are the problems of the recognition of anomalies in geophysical monitoring
data, such as the detection of magnetic and ionospheric storms [1–4], earthquakes [5,6],
tsunamis [7,8], geological anomalies [9] and other catastrophic natural phenomena. The
need to detect anomalies often arises in the medical field, for example, to detect and to
identify clinical conditions of patients [10]. An important property of such methods is their
ability to adapt, providing the possibility to detect and identify rapid changes in the system
or object state, indicating anomaly occurrences.

As a rule, time series of empirical data have a complex non-stationary structure
and contain local features of various forms. The methods for the time series analy-
sis include deterministic [11], stochastic [12–14] approaches and their various combina-
tions [15–19]. Traditional methods for data time series modeling and analysis (AR models,
ARMA [20,21], exponential smoothing [22], stochastic approximation [13], etc.) do not
allow us to describe the time series of complex structure adequately [23]. At present, hybrid
approaches [16,17,19,23–28] are widely applied. They make it possible to improve the effi-
ciency of the procedure of data analysis in case of its complicated structure. For example,
in [19], on the basis of wavelet decomposition, a technique was developed to estimate the
coefficients of turbulent diffusion and power exponents from single Lagrangian trajectories
of particles. Wavelet transform is a flexible tool and was applied in the paper [29] to study
the relationship between vegetation and climate in India. The 2D empirical wavelet filters
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developed by the authors of [30] are effective in image processing applications. Currently,
neural network methods are also widely used [4,15,23,31]. They allow us to approximate
complex nonlinear relationships in data and are easily automated. However, the reliability
and accuracy of neural networks depend on data representativity and it is very laborious
to adapt them. For example, the authors of the paper [31] proposed a neural network
structure, based on the LSTM paradigm, which allowed them to obtain an accurate forecast
of time series for web traffic on a limited data set. The authors of the paper [23] considered
combinations of wavelet transform with neural networks to analyze hydrological data.

Due to these aspects and despite the intensive development of machine learning
methods and their active application in various fields of artificial intelligence, classical
models of time series, in particular, ARIMA models [4,15,32,33], are popular. The obvious
advantages of ARIMA models are their mathematical validity, a formalized methodology
for model identification and verification for its adequacy. However, the ARIMA model
construction is based on the assumption that the process has a normal distribution and is
stationary (or stationary in differences). If these assumptions are not satisfied, the model
accuracy is significantly reduced. In order to improve the ARIMA efficiency, a number
of papers [16,17,26,27,34,35] suggested a hybrid approach to the time series analysis. For
example, the paper [17] proposed to apply ARIMA together with discrete wavelet transform
and neural network LSTM. The authors of the paper [17] showed that the combination of
ARIMA and LSTM with a discrete wavelet transform allowed them to improve the accuracy
of ARIMA and LSTM models in order to make forecasts of a monthly precipitation time
series. A combination of the discrete wavelet transform with ARIMA and neural network
was also proposed in [35] to forecast a hydrological time series.

In this paper, we propose a hybrid model for a time series of complex structure (HMTS).
The model includes regular and anomalous components. The HMTS identification is based
on the combination of function expansion in a wavelet series [36] with ARIMA models [20].
The time series components obtained after expansion have a simpler structure allowing us
to identify ARIMA models in the case of components stationarity. This makes it possible
to obtain a more accurate ARIMA model for the time series of a complex structure and
expands the field of its application. The HMTS anomalous component describes irregular
(sporadic) changes in time series. It is identified on the basis of threshold functions.
A large dictionary of wavelet bases allows us to identify models for the time series of
complex structure [9,36,37], including local features of various forms. The paper describes
a method of HMTS identification and suggests algorithms for anomaly detection. The
HMTS efficiency is illustrated on the example of an ionospheric parameter time series. The
results and their application in detecting ionospheric anomalies of different intensities are
presented. The paper also compares the HMTS with the nonlinear autoregressive neural
network NARX, which also confirmed the HMTS efficiency.

2. Materials and Methods

2.1. Description of the Method

The time series of a complex structure may be represented as

f (t) = AREG(t) + U(t) + e(t) = ∑
μ=1,T

αμ(t) + U(t) + e(t), (1)

where AREG(t) = ∑
μ=1,T

αμ(t) is a regular component, which is a linear combination of

the components αμ(t), μ is the component number; U(t) is the anomalous component
including local features of various forms occurring at random times, e(t) is the noise
component, t is time.
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2.2. Wavelet Series Expansion and Determination of the Model Regular Components

It is assumed that f ∈ L2(R)(L2(R) is Lebesgue space) there is a unique representa-
tion [36]

f (t) = . . . + g−1(t) + g0(t) + g1(t) + . . . ,

where gj ∈ Wj, j ∈ Z (Z is the set of integers), gj(t) = ∑
k

dj,kΨj,k(t), Ψj,k =
{

Ψj,k

}
k∈Z

is the

basis of the space Wj, the coefficients dj,k =
〈

f , Ψj,k

〉
, Ψj,k = 2j/2Ψ

(
2jt − k

)
are considered

as a result of mapping f into the space Wj with resolution j. If Ψ ∈ L2(R) is R-function

and the sequence
{

Ψj,k

}
is a Riesz basis [37] in L2(R), space L2(R) expansion structure

generated by the wavelet Ψ ∈ L2(R) is

L2(R) =
•

∑
j∈Z

Wj := . . .
•
+ W−1

•
+ W0

•
+ W1

•
+ . . . , (2)

where Wj := closL2(R)

(
Ψj,k; k ∈ Z

)
, the dots above the summation sign and above the plus

signs denote the direct sum.
Using expansion (2), we obtain a sequence of nested and closed subspaces Vj ∈

L2(R), j ∈ Z defined as

Vj = . . .
•
+ Wj−2

•
+ Wj−1 (3)

where the space Vj = closL2(R)

(
φ
(
2jt − k

))
, φ is the scaling function. Based on (2) and (3),

we obtain space L2(R) expansion:

L2(R) = Vj
•
+ Wj

•
+ Wj+1

•
+ . . . ,

in case of an orthogonal wavelet Ψ, we have

L2(R) = Vj ⊕ Wj ⊕ Wj+1 ⊕ . . . , (4)

where ⊕ is the orthogonal sum.
Considering the space Vj = closL2(R)

(
φ
(
2jt − k

))
with j = 0 as the base space f , and

using (4) m times, we obtain the following expansion [36]:

V0 = W−1 ⊕ W−2 ⊕ . . . ⊕ W−m ⊕ V−m.

In this case, for f0 we have the following representation:

f0(t) = g−1(t) + g−2(t) + . . . + g−m(t) + f−m(t) =
−m

∑
j=−1

gj(t) + f−m(t) (5)

where f−m ∈ V−m, gj ∈ Wj, f−m(t) = ∑
k

c−m,kφ−m,k(t) is the smoothed component, c−m,k =〈
f0, φ−m,k

〉
, φ−m,k(t) = 2−m/2φ(2−mt − k) is the scaling function, gj(t) = ∑

k
dj,kΨj,k(t) are

the detailing components, dj,k =
〈

f0, Ψj,k

〉
, Ψj,k(t) = 2

j
2 Ψ
(
2jt − k

)
is the wavelet.

Note that, when the scaling function φ has L zero moments, i.e.,
+∞∫
−∞

tϑφ(t)dt = 0, ϑ =

_____
1, L and f ∈ CL (CL is the space of functions continuously differentiable by L times), then
for t near 2mk [38]:

c−m,k =
〈

f , φ−m,k
〉 ∼= 2−m/2 f (2mk) (6)

It follows from (6) that the component f−m ∈ V−m gives approximation f with
resolution 2m (it approximates the trend). The detailing component gj has the resolution
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2−j, and approximates the local features of the scale j. Figure 1 shows the amplitude–
frequency characteristics (AFC) of the scaling function (solid line) and the wavelet (dashed
line) for different m, obtained for the 3rd-order Daubechies wavelet.

Figure 1. AFC of the scaling function and the wavelet for m = 1, 2, 3, 4 obtained for the 3rd-order
Daubechies wavelet.

Thus, we can obtain different representations of f0 in the form (5) for different m.
Obviously, it is necessary to determine the level of expansion mr, for which the component
f−mr is regular. It is natural to assume that the component f−m is regular if it is strictly
stationary. In this case, the problem of determining regular components is reduced to the
problem of obtaining representation (5) for which the component f−m is strictly stationary.
The condition of stationarity of the component f−m will allow us to identify the ARIMA
model for it. Following the theory by Box and Jenkins [20], a time series is strictly stationary
if its autocorrelation function (ACF) damps rapidly during average and large delays. To
determine the model type (AR, MA, ARMA) and the order, ACF and partial ACF (PACF)
are studied [20]. Taking into account the fact that the f resolution decreases with the m
increase, we define mr sequentially:

The components f−mr and gjr obtained on the basis of Algorithm 1 describe the regular
changes of the time series. Then from (1) and (5), we have the representation:

f0(t) = ∑
μ=1,T

αμ(t) + U(t) + e(t) = f−mr (t) + ∑
jr

gjr (t) + ∑
j∈Pj

gj(t), (7)

where AREG(t) = ∑
μ=1,T

αμ(t) = f−mr (t) + ∑
jr

gjr (t), and we assume that f−mr (t) = α1(t), gjr (t)

= αμ(t), μ = 2, T, T is the number of regular components; Pj =
{

j = −1, −(mr − 1)
∣∣∣j �= jr

}
.
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Algorithm 1:

1. We map (5) for the expansion level m = 1 for f0: f−m(t) = ∑
k

c−m,kφ−m,k(t), m = 1;

2. We check the condition of strict stationarity for the component f−m by estimating the
numerical characteristics (analysis of ACF and PACF [20]);

3. In the case of strict stationarity of the component f−m, we assume that it describes regular
data changes (m = mr) and go to step 5, otherwise go to step 4;

4. If m < M, where M is the maximum level of expansion: M ≤ log2 N (N is the time series
length), we increase the expansion level by 1: m = m + 1 and return to step 2; if, m ≥ M we
terminate the algorithm execution;

5. We check the condition of strict stationarity for the detailing components
gj(t) = ∑

k
dj,kΨj,k(t), j = −1, −mr by estimating the numerical characteristics (analysis of

ACF and PACF [20]). If the condition of strict stationarity is satisfied for the component gj,
we take j = jr and assume that the component gjr is regular.

2.3. Estimation of the Parameters for the Model Regular Component

The components f−mr and gjr are strictly stationary, thus, we can estimate ARIMA
models of order (p, ν, h) for them [20]. Then for the component f−mr (t) = ∑

k
c−mr ,kφ−mr ,k(t)

for brevity, we omit index r and obtain

ω−m,k = γm
1 ω−m,k−1 + . . . + γm

p ω−m,k−p − θm
1 a−m,k−1 − . . . − θm

h a−m,k−h (8)

where ω−m,k = ∇νc−m,k, ∇ν is the difference operator of order ν; p, γm
1 , . . . , γm

p are the
order and the parameters of autoregression, respectively; h, θm

1 , . . . , θm
h are the order and

parameters of the moving average, respectively; a−m,k are residual errors.
In a similar way, for the component gjr (t) = ∑

k
djr ,kΨjr ,k(t) we omit index r and obtain

ωj,k(t) = γ
j
1ωj,k−1 + . . . + γ

j
zωj,k−z − θ

j
1aj,k−1 − . . . − θ

j
uaj,k−u (9)

where ωj,k = ∇νj dj,k, ∇νj is the difference operator of order νj, z,, γ
j
1, . . . , γ

j
z are the order

and the parameters of autoregression, respectively; u,, θ
j
1, . . . , θ

j
u are the order and the

parameters of the moving average, respectively; aj,k are residual errors.
From (7) to (9) we obtain the representation:

AREG(t) = ∑
μ=1,T

∑
k=1,Nμ

sμ
j,kbμ

j,k(t) , (10)

where sμ
j,k =

pμ

∑
l=1

γ
μ
l ω

μ
j,k−l −

hμ

∑
n=1

θ
μ
n aμ

j,k−n is the estimated value of the parameters of a regular

μ-th component, pμ, γ
μ
l are the order and the parameters of autoregression of the μ-th

component, hμ, θ
μ
n are the order and the parameters of the moving average of the μ-th

component, ω
μ
j,k = ∇νμ δ

μ
j,k, νμ is the order of the μ-th component difference, δ1

j,k = c−m,k,

δ
μ
j,k = dj,k, μ = 2, T, T is the number of modeled components, aμ

j,k are the residual errors

for the μ-th component model, Nμ is the μ-th component length, b1
j,k = φ−m,k, φ is the

scaling function, bμ
j,k = Ψj,k?,μ = 2, T, Ψ is the wavelet.

The identification of the ARIMA model for the μ-th component requires the deter-
mination of the different order νμ and the identification of the resulting ARMA process
(model order and parameter estimation). The ARIMA model identification is described in
detail in [20] and is not presented in the paper.

The diagnostic verification of each of the components f−mr and gjr models can be
based on the analysis of the model residual errors. Commonly used tests based on the
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analysis of model residual errors are the cumulative fitting criterion [20] and the cumulative
periodogram test [20].

2.4. Anomalous Component of the Model

The anomalous component U(t) of model (1) includes local features of various shapes
occurring at random times. Therefore, the application of the parametric approach to
identify it is ineffective.

2.4.1. Application of Threshold Functions

In the case of a nonparametric approach, following the results of [37], the function U
can be approximated by threshold functions:

U(t) = ∑
j,k

Pj

(
dj,k

)
Ψj,k(t), (11)

Pj

(
dj,k

)
=

⎧⎨⎩ 0, i f
∣∣∣dj,k

∣∣∣ ≤ Tj

dj,k, i f
∣∣∣dj,k

∣∣∣ > Tj

In this case, from (7) and (10), we obtain the hybrid model of time series (HMTS)

f0(t) = AREG(t) + U(t) + e(t) = ∑
μ=1,T

∑
k=1,Nμ

sμ
j,kbμ

j,k(t) + ∑
j,k

Pj

(
dj,k

)
Ψj,k(t) + e(t) , (12)

It was shown in [37] that the mappings (11) allow us to obtain approximations close
to optimal ones (by minimizing the minimax risk) for a complex structure function. More-
over, the equivalence of discrete and continuous wavelet expansions [36,38] provides
the opportunity to analyze a function on any resolution. In its turn, the increase in the
amplitudes of the wavelet coefficients

∣∣∣dj,k

∣∣∣ in the vicinity of local features of a function
(Jaffard’s theorem [39]) will provide, based on (11), their mapping into the component U of
model (12).

Obviously, by applying different orthogonal wavelets Ψ we can obtain different
representations (12).

We should note that due to the random nature of U, application of any thresholds Tj
(see (11)) is inevitably associated with erroneous decisions. In this case, the thresholds can
be chosen by minimizing the posteriori risk [40].

The threshold divides the F value space of the function under analysis into two
nonintersecting domains F1 and F2 determining anomalous and non-anomalous states,
respectively. For the specific state hb, the loss average can be estimated as [40]

Rb( f ) =
2

∑
z=1

∏
bz

P{ f ∈ Fz|hb}, (13)

where ∏bz is the loss function, P{ f ∈ Fz|hb} is the conditional probability of falling within
the domain Fz if the state hb actually exists, b �= z, b, z are the state indices (“|” denotes
conditional probability).

Averaging the conditional function of the risk over all the states hb we obtain the
average risk

R =
2

∑
b=1

pbRb, (14)

where pb is a priori probability of the state hb.
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If we do not know priori probabilities of the states pb, then having statistical (priori)
data, we can determine posteriori probabilities P{hb| f }, b = 1, 2. Then, applying a simple
loss function

∏
bz

=

{
1, b �= z,
0, b = z,

from (13) and (14), a posteriori risk equals

R = ∑
b �=z

P{hb| f ∈ Fz}. (15)

2.4.2. Analysis of the Model’s Regular Component Errors and Detection of Anomalies

Obviously, during anomalous periods, the residual errors of the model regular compo-
nent AREG (see (10)) increase. Then anomaly detection can be based on the conditional test

ε
μ
j =

Qμ

∑
q=1

∣∣∣aμ
j,k+q

∣∣∣ > Hμ,

where q ≥ 1 is the data lead step, aμ
j,k are the residual errors of the μ-th component model,

Qμ is the data lead length.
We can estimate the confidence interval of the predicted data [20], which is why it is

logical to define the thresholds Hμ as

Hμ

(
Qμ

)
=

{
1 +

Qμ−1

∑
q=1

(
ψ

μ
q

)2
}1/2

σaμ

where σ2
aμ is the variance of residual errors of the μ-th component model; ψ

μ
q are the

weighting coefficients of the μ-th component model, they are determined from the equa-
tion [20] (

1 − ϕ
μ
1 B − ϕ

μ
2 B2 − . . . − ϕ

μ
pμ+νμ

Bpμ+νμ

)(
1 + ψ

μ
1 B + ψ

μ
2 B2 + . . .

)
=

=
(

1 − θ
μ
1 B − θ

μ
2 B2 − . . . − θ

μ
hμ Bhμ

)
,

where ϕ
μ
j = γμ(B)(1 − B)νμ is the generalized autoregressive operator, B is the back shift

operator: Blω
μ
j,k = ω

μ
j,k−l .

It is also possible to use the following probability limits:

Hμ

(
Qμ

)
= uξ/2

{
1 +

Qμ−1

∑
q=1

(
ψ

μ
q

)2
}1/2

σaμ ,

where uε/2 is the quantile of the level (1 − ε/2) of standard normal distribution.

3. Results of the Model Application

3.1. Modeling of Ionospheric Parameter Time Series

The ionosphere is the upper region of the earth’s atmosphere. It is located at heights
from 70 to 1000 km and higher, and affects radio wave propagation [41]. Ionospheric
anomalies occur during extreme solar events (solar flares and particle ejections) and mag-
netic storms. They cause serious malfunctions in the operation of modern ground and
space technical equipment [42]. An important parameter characterizing the state of the
ionosphere is the critical frequency of the ionospheric F2-layer (foF2). The foF2 time series
have a complex structure and contain seasonal and diurnal components, as well as local
features of various shapes and durations occurring during ionospheric anomalies. Intense
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ionospheric anomalies can cause failures in the operation of technical systems. Therefore,
their timely detection is an important applied problem.

In the experiments, we used hourly (1969–2019) and 15-min (2015–2019) foF2 data
obtained by the method of vertical radiosonding of the ionosphere at Paratunka station
(53.0◦ N and 158.7◦ E, Kamchatka, Russia, IKIR FEB RAS). The proposed HMTS was
identified separately for foF2 hourly and 15-min data.

To identify HMTS regular components, we used the foF2 data recorded during the
periods of absence of ionospheric anomalies. The application of Algorithm 1 showed that
the components f−3 and g−3 are stationary (having damping ACF), thus ARIMA models
can be identified for them. Figures 2 and 3 show ACF and PACF of foF2 initial time series,
as well as the components f−3 and g−3. The results confirm stationarity of the components
f−3 and g−3. An analysis of PACF shows the possibility to identify the AR models of
orders 2 and 3 for the first differences of these components. The results in Figures 2 and 3
also illustrate that foF2 initial time series are non-stationary and, therefore, it is impossible
to approximate them by ARIMA model without wavelet decomposition operation.

Figure 2. The analyzed period is from 4 January 2014 to 29 January 2014 (high solar activity): (a) ACF
of the original signal; (b) ACF of the component f−3; (c) ACF of the component g−3; (d) PACF of the
1st difference of the original signal; (e) PACF of the 1st difference of the component f−3; (f) PACF of
the 1st difference of the component g−3.

Figure 3. The analyzed period is from 9 February 2008 to 27 February 2008 (low solar activity):
(a) ACF of the original signal; (b) ACF of the component f−3; (c) ACF of the component g−3;
(d) PACF of the 1st difference of the original signal; (e) PACF of the 1st difference of the component
f−3; (f) PACF of the 1st difference of the component g−3.

According to ratio (10) and based on the PACF of the first differences of the components
f−3 and g−3 (Figure 3e,f), we obtain the HMTS regular component

AREG(t) = f−3(t)+ g−3(t) = ∑
k

c−3,kφ−3,k(t)+∑
k

d−3,kΨ−3,k(t) = ∑
μ=1,2

∑
k=1,Nμ

sμ
−3,kbμ

−3,k(t),
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where sμ
−3,k =

pμ

∑
l=1

γ
μ
l ω

μ
−3,k−l, μ = 1, 2, ω1

−3,k = ∇c−3,k, ω2
−3,k = ∇d−3,k, b1

−3,k = φ−3,k,

b2
−3,k = Ψ−3,k. Estimated parameters for s1

−3,k and s2
−3,k are presented in Table 1. The parame-

ters were estimated separately for different seasons and different levels of solar activity.

Table 1. HMTS regular component parameters.

Period Solar Activity Parameters of s1
−3,k Parameters of s2

−3,k

γ1
1 γ1

2 γ1
3 γ2

1 γ2
2

winter low and high −0.6 −0.6 0.4 −0.9 −0.9

summer low −0.8 −0.7 − −0.9 −0.9
high −0.5 −0.6 − −0.9 −0.8

Based on the data from Table 1 we obtain

(1) for wintertime:
s1
−3,k = −0.6ω1

−3,k−1 − 0.6ω1
−3,k−2 + 0.4ω1

−3,k−3 + a1
−3,k,

s2
−3,k = −0.9ω2

−3,k−1 − 0.9ω2
−3,k−2 + a2

−3,k,
(2) for summertime and high solar activity:

s1
−3,k = −0.5ω1

−3,k−1 − 0.6ω1
−3,k−2 + a1

−3,k,
s2
−3,k = −0.9ω2

−3,k−1 − 0.8ω2
−3,k−2 + a2

−3,k,
(3) for summertime and low solar activity:

s1
−3,k = −0.8ω1

−3,k−1 − 0.7ω1
−3,k−2 + a1

−3,k,
s2
−3,k = −0.9ω2

−3,k−1 − 0.9ω2
−3,k−2 + a2

−3,k.

Figure 4 shows the modeling results for HMTS regular components ( f−3 and g−3) dur-
ing the absence of ionospheric anomalies. The model errors do not exceed the confidence
interval that indicates their adequacy.

 
Figure 4. Modeling of the components f−3 and g−3: (a) foF2 data (8 February 2011–12 February
2011); (b) component f−3 (black) and its model values s1

−3,k (blue dashed line); (c) component g−3

(black) and its model values s2
−3,k (blue dashed line); (d) errors of s1

−3,k; (e) errors of s2
−3,k. On the

graphs (d,e) the dashed lines show 70% confidence intervals.
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Tables 2 and 3, and Figure 5 show the results of validation tests for the obtained
models. The tests were carried out for the foF2 data that were not used at the stage of
model identification. In order to verify the models, we used the cumulative fitting criterion
(Tables 2 and 3), analysis of model residual error ACF (Figure 5a,b) and normalized
cumulative periodogram (Figure 5c,d).

Table 2. Cumulative fitting criterion for the winter season.

Periods Y for s1−3 Table Value χ0.1
2/χ0.05

2 Y for s2−3 Table Value χ0.1
2/χ0.05

2

12.15.1970–12.29.1970 18.36

24.8/27.6

28.44

26.0/28.9
02.07.2002–02.25.2002 22.08 26.40
01.30.2012–02.11.2012 16.20 13.50
02.04.2013–02.18.2013 25.90 23.76
02.19.2016–03.05.2016 19.50 21.06

Table 3. Cumulative fitting criterion for the summer season.

Periods Y for s1−3 Table Value χ0.1
2/χ0.05

2 Y for s2−3 Table Value χ0.1
2/χ0.05

2

06.03.1971–06.22.1971 27.26

26.0/28.9

17.39

26.0/28.9
07.11.1990–07.27.1990 16.92 18.33
08.03.2002–08.17.2002 24.84 23.76
06.15.2016–06.27.2016 20.70 21.90

Figure 5. Results of model verification: ACF of residual errors: (a) a1
−3,k; (b) a2

−3,k; cumulative periodogram of residual
errors: (c) a1

−3,k; (d) a2
−3,k.

Based on the cumulative fitting criterion [20], the fitted model is satisfactory if

Y = n
Z

∑
z=1

y2
z(a)

is distributed approximately as χ2(Z − p − h), where Z are the considered first autocorre-
lations of model errors, p is the AR model order, h is the MA model order, yz(a) are the
autocorrelations of model error series, n = N − ν, N is the series length, ν is the model
difference order.

According to the criterion, if the model is inadequate, the average Y grows. Conse-
quently, the model adequacy can be verified by comparing Y with the table of χ2 distri-
bution. The results in Tables 2 and 3 show that the Y values of the estimated models, at
a significance level α = 0.05, do not exceed the table χ2 values. The model adequacy is
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also confirmed by the analysis of residual error ACF (Figure 5a,b) and the normalized
cumulative periodogram (Figure 5c,d).

Figure 6a,b shows the results of modeling of the hourly foF2 data during the magnetic
storm on 18 and 19 December 2019. Figure 6c shows the geomagnetic activity index K
(K-index), which characterizes geomagnetic disturbance intensity. The K-index represents
the values from 0 to 9, estimated for the three-hour interval. It is known that during
increased geomagnetic activity (K > 3), anomalous changes are observed in ionospheric
parameters [43]. The analysis of the results in Figure 6 shows an increase in the model
errors during the increase in K-index and magnetic storm occurrence (Figure 6b). This
indicates ionospheric anomaly occurrences. The results show that the HMTS allows us to
detect ionospheric anomalies successfully.

Figure 6. Modeling of foF2 data for the period from 17 December 2019 to 24 December 2019. (a) foF2
data (black), HMTS (blue); (b) errors of s1

−3,k (black) and s2
−3,k (green), dashed lines show 70%

confidence intervals; (c) K-index values.

Figure 7 shows the results of the application of operation (11) to 15-min foF2 data
during the same magnetic storm. Based on operation (11), ionospheric anomaly occurrences
are determined by the threshold function Pj

(
dj,k

)
with the thresholds Tj.

In this paper, we used the thresholds

Tj = V ∗
√√√√ 1

Φ − 1

Φ

∑
k=1

(
dj,k − dj,k

)2

where the coefficient V = 2.3 was estimated by minimizing a posteriori risk (ratio (15)),
dj,k is the average value calculated in a moving time window with the length Φ = 480 (it
corresponds to the interval of 5 days).

351



Mathematics 2021, 9, 1122

Figure 7. Modeling of foF2 data for the period from 17 December 2019 to 22 December 2019.
(a) 15-minute data of foF2; (b) positive (red) and negative (blue) ionospheric anomalies; (c) iono-
spheric anomaly intensity; (d) K-index values.

Positive (Pj

(
dj,k

)
> 0) and negative (Pj

(
dj,k

)
< 0) anomalies were considered

separately. Positive anomalies (shown in red in Figure 7b) characterize the anomalous
increase in foF2 values. Negative anomalies (shown in blue in Figure 7b) characterize
anomalous decrease in foF2 values. To evaluate the intensity of ionospheric anomalies we
used the value

Ik = ∑
j

Pj

(
dj,k

)
Assessment of the intensity of positive I+k (Pj

(
dj,k

)
> 0) and negative I−k (Pj

(
dj,k

)
< 0)

ionospheric anomalies is shown in Figure 7c, positive anomalies are shown in red, negative
ones are shown in blue. Figure 7d shows the K-index values. The results show the
occurrence of a negative ionospheric anomaly during the initial and the main phases of
the magnetic storm (18 December 2019), and a positive ionospheric anomaly during the
recovery phase of the storm (19 December 2019). The observed dynamics of the ionospheric
parameters are characteristic of the periods of magnetic storms [43]. The results show the
efficiency of HMTS application for detecting ionospheric anomalies of different intensities.

3.2. Comparison of HMTS with NARX Neural Network

To evaluate the HMTS efficiency, we compared it with the NARX neural network [44].
The NARX network is a non-linear autoregressive neural network, and it is often used to
forecast time series [44–47]. The architectural structure of recurrent neural networks can
take different forms. There are NARX with a Series-Parallel Architecture (NARX SPA) and
NARX with a Parallel Architecture (NARX PA) [44,45].

The dynamics of the NARX SPA model is described by the equation

y(k + 1) = F
[
x(k), x(k − 1), . . . , x(k − lx), y(k), y(k − 1), . . . , y

(
k − ly

)]
,
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where F(·) is the neural network display function, y(k + 1) is the neural network output,
x(k), x(k − 1), . . . , x(k − lx) are neural network inputs, y(k), y(k − 1), . . . , y

(
k − ly

)
are past

values of the time series.
In NARX PA, the network input takes the network outputs ŷi = ŷ(i) instead of the

past values of the time series yi = y(i), i = k, k − ly.
The neural networks were trained separately for different seasons and different levels

of solar activity. During the training, we used the data for the periods without ionospheric
anomalies. We obtained the networks with delays lx = ly = 2 and lx = ly = 5 for each
season. The results of the networks are shown in Figure 8. Table 4 shows the standard
deviations of errors (SD) of networks, which were determined as

S =

√
1
n

n

∑
i=1

(yi − ŷi)
2.

Figure 8. Network errors: (a,e) foF2 data (blue), NARX PA output (black); (b,f) NARX PA errors; (c,g) foF2 data (blue),
NARX SPA output (black); (d,h) NARX SPA errors.

Table 4. Standard deviations of neural network errors.

SD of NARX SPA SD of NARX PA

Season
Delays:
lx=ly=2

Delays:
lx=ly=5

Delays:
lx=ly=2

Delays:
lx=ly=5

Winter (low solar activity) 0.48 0.43 0.57 0.49
Summer (low solar activity) 0.41 0.36 0.46 0.39
Winter (high solar activity) 0.49 0.48 0.78 0.74

Summer (high solar activity) 0.42 0.36 0.45 0.36

The analysis of the results (Figure 8, Table 4) shows that the NARX SPA predicts
the data with fewer errors than the NARX PA. Sending the past time series values to the
NARX SPA network input (rather than network outputs) made it possible to obtain a more
accurate data prediction. The comparison results of the NARX SPA with the HMTS are
presented below.

Figure 9 shows the results of ionospheric data modeling based on HMTS and NARX
SPA during the periods of absence of ionospheric anomalies. The results show that the
model errors have similar values for the winter and summer seasons, and vary within the
interval of [−1,1], both for HMTS and NARX SPA.
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Figure 9. Errors of HMTS and NARX SPA for summer (from 6 June 2019 to 16 June 2019) and winter (from 15 February
2019 to 23 February 2019) seasons: (a,e) foF2 data; (b,f) HMTS errors; (c,g) NARX SPA errors (network delays lx = ly = 2);
(d,h) NARX SPA errors (network delays lx = ly = 5).

Figure 10 shows the results of the application of HMTS and NARX SPA for hourly
foF2 data during magnetic storms that occurred on 21–22 November 2017 and 5–6 August

2019. NARX SPA errors were calculated in a 3-h moving time window: εi =
i+1
∑

i=i−1
|yi − ŷi|.

Figure 10e,j shows the geomagnetic activity Dst-index, which characterizes geomagnetic
disturbance intensity during magnetic storms. Dst-index takes negative values during
magnetic storms. The increases in HMTS and NARX SPA errors during the analyzed
magnetic storms (Figure 10b–d,g–i) indicate ionospheric anomaly occurrences. The results
show that HMTS and NARX SPA allow us to detect ionospheric anomalies successfully.
However, an increase in NARX SPA errors is also observed in wintertime on the eve and
after the magnetic storm (Figure 10c,d). This shows the presence of false alarms.

Figure 10. Modeling of hourly foF2 data: (a,f) recorded foF2 data (black), foF2 median (blue); (b,g) errors of s1
−3,k (black) and

s2
−3,k (green), dashed lines show 70% confidence intervals; (c,h) NARX SPA errors (network delays lx = ly = 2); (d,i) NARX

SPA errors (network delays lx = ly = 5); (e,j) Dst-index of geomagnetic activity.
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The results of detecting ionospheric anomalies based on HMTS and NARX SPA are
shown in Tables 5–8. The estimates were based on statistical modeling. The HMTS results
are shown for the 90% confidence interval. The analysis of the results shows that NARX
SPA efficiency exceeds that for HMTS during high solar activity. However, the frequency
of false alarms for HMTS is significantly less than that for NARX SPA.

Table 5. Results for wintertime and high solar activity.

HMTS NARX SPA

Signal/Noise

Detected/False Detected/False

Component f−3 Component g−3
Delays:
lx=ly=2

Delays:
lx=ly=5

1.3 95%/0% 78%/2% 86%/5% 96%/4%
1 92%/0% 74%/7% 76%/8% 94%/9%

0.8 85%/3% 74%/11% 75%/12% 84%/12%

Table 6. Results for wintertime and low solar activity.

HMTS NARX SPA

Signal/Noise

Detected/False Detected/False

Component f−3 Component g−3
Delays:
lx=ly=2

Delays:
lx=ly=5

1.3 97%/0% 90%/5% 81%/1% 89%/2%
1 96%/2% 89%/12% 73%/12% 84%/12%

0.8 85%/6% 89%/17% 70%/19% 82%/18%

Table 7. Results for summertime and high solar activity.

HMTS NARX SPA

Signal/Noise

Detected/False Detected/False

Component f−3 Component g−3
Delays:
lx=ly=2

Delays:
lx=ly=5

1.3 79%/0% 80%/2% 79%/5% 81%/7%
1 70%/0% 65%/4% 71%/15% 72%/14%

0.8 55%/1% 63%/10% 64%/18% 64%/17%

Table 8. Results for summertime and low solar activity.

HMTS NARX SPA

Signal/Noise

Detected/False Detected/False

Component f−3 Component g−3
Delays:
lx=ly=2

Delays:
lx=ly=5

1.3 94%/0% 83%/3% 92%/2% 93%/3%
1 90%/0% 80%/9% 90%/6% 91%/9%

0.8 86%/2% 80%/13% 85%/11% 84%/15%

4. Conclusions

The paper proposes a hybrid model of time series of complex structure. The model
is based on the combination of function expansions in a wavelet series with ARIMA
models. Ionospheric critical frequency data were used to estimate the HMTS efficiency.
The estimates showed:
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1. The HMTS regular component adequately describes ionospheric parameter time
series during the periods without ionospheric anomalies. Application of wavelet
decomposition allows us to detect regular components of ionospheric parameter time
series and to use the ARIMA model;

2. Analysis of HMTS regular component errors allows us to detect ionospheric anomalies
during a magnetic storm;

3. The HMTS anomalous component allows us to detect ionospheric anomalies of
different intensities by threshold functions.

Comparison of HMTS with NARX with Series-Parallel Architecture confirmed the
HMTS efficiency to detect anomalies in the ionospheric critical frequency data. The results
of the experiments showed that the efficiency of the NARX neural network slightly exceeds
that of HMTS (about 2–3%) during high solar activity. However, the frequency of false
alarms in NARX is significantly higher (about 15%). During the periods of low solar activity,
the efficiency of HMTS exceeds that of NARX.

The HMTS can be used for modeling and analysis of time series of complex structure,
including seasonal components and local features of various forms.

Author Contributions: Conceptualization, O.M.; methodology, O.M. and N.F.; software, N.F. and
Y.P.; formal analysis, O.M., Y.P. and N.F.; project administration, O.M. All authors have read and
agreed to the published version of the manuscript.

Funding: The work was carried out according to the Subject AAAA-A21-121011290003-0 “Physical
processes in the system of near space and geospheres under solar and lithospheric influences” IKIR
FEB RAS.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The work was carried out by the means of the Common Use Center “North-
Eastern Heliogeophysical Center” CKP_558279”, “USU 351757. The authors are grateful to the
Institutes that support the ionospheric stations data that were used in the work. We would like to
thank anonymous Reviewers for their greatly appreciated efforts helping to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Song, R.; Zhang, X.; Zhou, C.; Liu, J.; He, J. Predicting TEC in China based on the neural networks optimized by genetic algorithm.
Adv. Space Res. 2018, 62, 745–759. [CrossRef]

2. Bailey, R.L.; Leonhardt, R. Automated detection of geomagnetic storms with heightened risk of GIC. Earth Planets Space 2016,
68, 99. [CrossRef]

3. Mandrikova, O.V.; Solovev, I.S.; Zalyaev, T.L. Methods of analysis of geomagnetic field variations and cosmic ray data. Earth
Planets Space 2014, 66, 148. [CrossRef]

4. Tang, R.; Zeng, F.; Chen, Z.; Wang, J.-S.; Huang, C.-M.; Wu, Z. The Comparison of Predicting Storm-Time Ionospheric TEC by
Three Methods: ARIMA, LSTM, and Seq2Seq. Atmosphere 2020, 11, 316. [CrossRef]

5. Perol, T.; Gharbi, M.; Denolle, M. Convolutional neural network for earthquake detection and location. Sci. Adv. 2018, 4, e1700578.
[CrossRef]

6. Tronin, A.A. Satellite Remote Sensing in Seismology. A Review. Remote Sens. 2009, 2, 124–150. [CrossRef]
7. Chierici, F.; Embriaco, D.; Pignagnoli, L. A new real-time tsunami detection algorithm. J. Geophys. Res. Ocean. 2017, 122, 636–652.

[CrossRef]
8. Kim, S.-K.; Lee, E.; Park, J.; Shin, S. Feasibility Analysis of GNSS-Reflectometry for Monitoring Coastal Hazards. Remote Sens.

2021, 13, 976. [CrossRef]
9. Alperovich, L.; Eppelbaum, L.; Zheludev, V.; Dumoulin, J.; Soldovieri, F.; Proto, M.; Bavusi, M.; Loperte, A. A new combined

wavelet methodology: Implementation to GPR and ERT data obtained in the Montagnole experiment. J. Geophys. Eng. 2013,
10, 25017. [CrossRef]

10. Amigó, J.M.; Small, M. Mathematical methods in medicine: Neuroscience, cardiology and pathology. Philos. Trans. R. Soc. A Math.
Phys. Eng. Sci. 2017, 375. [CrossRef]

356



Mathematics 2021, 9, 1122

11. Chen, J.; Heincke, B.; Jegen, M.; Moorkamp, M. Using empirical mode decomposition to process marine magnetotelluric data.
Geophys. J. Int. 2012, 190, 293–309. [CrossRef]

12. Chen, L.; Han, W.; Huang, Y.; Cao, X. Online Fault Diagnosis for Photovoltaic Modules Based on Probabilistic Neural Network.
Eur. J. Electr. Eng. 2019, 21, 317–325. [CrossRef]

13. Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400–407. [CrossRef]
14. Vasconcelos, J.C.S.; Cordeiro, G.M.; Ortega, E.M.M.; De Rezende, É.M. A new regression model for bimodal data and applications

in agriculture. J. Appl. Stat. 2021, 48, 349–372. [CrossRef]
15. Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural

network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2013, 476, 433–441. [CrossRef]
16. Li, S.; Wang, Q. India’s dependence on foreign oil will exceed 90% around 2025—The forecasting results based on two hybridized

NMGM-ARIMA and NMGM-BP models. J. Clean. Prod. 2019, 232, 137–153. [CrossRef]
17. Wu, X.; Zhou, J.; Yu, H.; Liu, D.; Xie, K.; Chen, Y.; Hu, J.; Sun, H.; Xing, F. The Development of a Hybrid Wavelet-ARIMA-LSTM

Model for Precipitation Amounts and Drought Analysis. Atmosphere 2021, 12, 74. [CrossRef]
18. Miljkovic, D.; Shaik, S.; Miranda, S.; Barabanov, N.; Liogier, A. Globalisation and Obesity. World Econ. 2015, 38, 1278–1294.

[CrossRef]
19. Ivanov, L.; Collins, C.; Margolina, T. Reconstruction of Diffusion Coefficients and Power Exponents from Single Lagrangian

Trajectories. Fluids 2021, 6, 111. [CrossRef]
20. Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control, Rev. ed.; Holden-Day Series in Time Series Analysis and

Digital Processing; Holden-Day: San Francisco, CA, USA, 1976; ISBN 978-0-8162-1104-3.
21. Liu, J.; Kumar, S.; Palomar, D.P. Parameter Estimation of Heavy-Tailed AR Model with Missing Data via Stochastic EM. IEEE

Trans. Signal Process. 2019, 67, 2159–2172. [CrossRef]
22. Chatfield, C.; Koehler, A.B.; Ord, J.K.; Snyder, R.D. A New Look at Models for Exponential Smoothing. J. R. Stat. Soc. Ser. D 2001,

50, 147–159. [CrossRef]
23. Estévez, J.; Bellido-Jiménez, J.A.; Liu, X.; García-Marín, A.P. Monthly Precipitation Forecasts Using Wavelet Neural Networks

Models in a Semiarid Environment. Water 2020, 12, 1909. [CrossRef]
24. Mbatha, N.; Bencherif, H. Time Series Analysis and Forecasting Using a Novel Hybrid LSTM Data-Driven Model Based on

Empirical Wavelet Transform Applied to Total Column of Ozone at Buenos Aires, Argentina (1966–2017). Atmosphere 2020, 11, 457.
[CrossRef]

25. Mehdizadeh, S.; Fathian, F.; Adamowski, J.F. Hybrid artificial intelligence-time series models for monthly streamflow modeling.
Appl. Soft Comput. 2019, 80, 873–887. [CrossRef]

26. Shishegaran, A.; Saeedi, M.; Kumar, A.; Ghiasinejad, H. Prediction of air quality in Tehran by developing the nonlinear ensemble
model. J. Clean. Prod. 2020, 259, 120825. [CrossRef]
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Abstract: Currently, there is a lack of accurate simulation tools for the thermal performance mod-
eling of courtyards due to their intricate thermodynamics. Machine Learning (ML) models have
previously been used to predict and evaluate the structural performance of buildings as a means of
solving complex mathematical problems. Nevertheless, the microclimatic conditions of the building
surroundings have not been as thoroughly addressed by these methodologies. To this end, in this
paper, the adaptation of ML techniques as a more comprehensive methodology to fill this research
gap, covering not only the prediction of the courtyard microclimate but also the interpretation of
experimental data and pattern recognition, is proposed. Accordingly, based on the climate zoning
and aspect ratios of 32 monitored case studies located in the South of Spain, the Support Vector
Regression (SVR) method was applied to predict the measured temperature inside the courtyard.
The results provided by this strategy showed good accuracy when compared to monitored data. In
particular, for two representative case studies, if the daytime slot with the highest urban overheating
is considered, the relative error is almost below 0.05%. Additionally, values for statistical parameters
are in good agreement with other studies in the literature, which use more computationally expensive
CFD models and show more accuracy than existing commercial tools.

Keywords: courtyard; climate change; microclimate; Support Vector Regression (SVR); machine
learning

1. Introduction

According to the latest forecasts, two trends will become progressively reinforced over
the present century. The first one is the gradual increase in average surface temperatures
mainly due to global greenhouse gas emissions [1]. The second is the concentration of
the population in cities [2]. This combination of factors, rising temperatures, and high
population concentration will accentuate other environmental problems related to human
thermal comfort, such as the so-called Urban Heat Island (UHI) effect. Urban Heat Islands
(UHIs) are defined as urban areas with higher air temperatures than their surrounding
rural areas [3]. The causes of the UHI effect are classified differently by Givoni [4] as due
either to meteorological factors or to urban parameters [5].

Several urban dynamics converge to generate this overheating. Apart from domestic
and industrial anthropogenic impacts, some of these factors are related to built-up topog-
raphy and urban features: firstly, the constructed zones offer more surface area for heat
absorption, radiating it slowly during the night; secondly, the canyon effect [6], which
causes the thermal energy to remain in the ground by the influence of multiple horizontal
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reflections and absorption of incoming radiation provoked by tall buildings. UHI is also
linked to a capsule of city gases that absorbs heat from the sun. In the city, buildings
obstruct the wind and the capsule remains in place [7]. Finally, the urban albedo, which
could be defined as the aptitude of construction materials to reflect solar radiation [8].

Considering the need to achieve the medium-term goal of nearly zero-energy buildings
and cities [9], different passive strategies have been evaluated to counteract this urban
overheating without resorting to energy-dependent cooling systems [10]. Like other animal
colonies, cities are usually adapted to the climate as kinds of human termite mounds,
perforating the urban fabric to regulate direct solar radiation. On a different scale than
other public spaces, such as urban canyons and squares, courtyards have traditionally acted
as passive cooling resources in cities around the world and not exclusively in hot and warm
climates. One study on low-rise housing in the Netherlands shows how courtyards improve
the energy efficiency of the building [11]. Previous research performed on courtyards in
Spain has quantified the courtyard tempering effect, which enables improving thermal
comfort and helping to reduce cooling energy consumption in buildings [12]. Due to
the growing interest in strategies capable of achieving more climate-resilient cities, many
studies have examined the microclimatic performance of the courtyard. Furthermore,
several literature reviews compiling research on this topic have been published [13–15].
The courtyard microclimate can be explained in terms of the thermodynamic effects that
occur within it, i.e., convection, radiation, stratification, and flow patterns. Among the
different parameters affecting these microclimatic conditions, most of the studies emphasize
the importance of courtyard geometry [13–29], in many cases considered the Aspect Ratio
(AR), which is the ratio between the height and the width of the courtyard.

AR =
Height
Width

(1)

Courtyard location, implying climatic conditions and specifically outdoor temper-
ature ranges, is another key factor that is becoming commonplace in a large number of
publications [14–21,25–30].

The perforation of the urban block with courtyards responds to light, ventilation, and
thermal needs. Different field monitoring campaigns in the existing literature have proved
the thermal tempering potential of courtyards to lower the outdoor temperature, in some
cases by up to 15 ◦C [23]. Many simulation methods and tools are currently available for
the thermal performance modeling of indoor spaces [22]. Notwithstanding, the alternatives
for simulating outdoor ones are more limited. This is mainly due to the complexity of these
outdoor spaces’ thermodynamics, which involve multiple variables and entails enormous
challenges to be modeled with enough accuracy. However, new software means have
emerged in recent years that are capable, to some extent, of simulating their microclimatic
conditions [31]. One of the most widely used tools is ENVI-met, based on CFD simula-
tion [32]. Other outdoor modeling software alternatives are Urban Weather Generator
(UWG), based on energy conservation principles [33]; SOLWEIG, which can simulate
spatial variations of 3D radiation fluxes and mean radiant temperatures [34]; Open FOAM,
which has been used in previous research to simulate urban wind flows [35]; FreeFem++,
employed to perform courtyard microclimate modelling [17,36]; and ANSYS Fluent, which
has been applied for the simulation of wind flows in outdoor spaces [17,36]. Most of these
tools present adequate accuracy for predicting urban outdoor microclimates, but they tend
to show a larger error range when they are used to model the microclimate of smaller-scale
spaces, such as courtyards, with greater dependence on the built environment [12,36].

Consequently, in this work, a new tool is proposed to predict this specific microclimate
inside courtyards based on Machine Learning (ML) techniques [37,38]. In the computers
and information era, a large amount of data are being generated in many different fields,
such as science, finance, engineering, and industry. Thus, statistical problems have grown
in size and complexity and the statistical analysis tries to understand these data. This is
what is called learning from data or ML. Some examples of ML problems are the following:
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predict the price of a stock for 6 months from now, based on company performance
measures and economic data; identify the numbers in a handwritten ZIP code from a
digitized image, or estimate the amount of glucose in the blood of a diabetic person from
the infrared absorption spectrum of that person’s blood [38]. ML models have been shown
previously to be useful for predicting and assessing structural performance [39].

ML problems are categorized as supervised or unsupervised. In supervised learning,
the aim is to predict the value of an outcome measure based on a certain number of input
measures (also known as features, attributes, or covariates). It is called supervised because
of the presence of the outcome variable to guide the learning process. In unsupervised
learning, there is no outcome measure, and the goal is to describe the associations and
patterns among a set of input measures. Mathematical optimization has played a crucial
role in supervised learning [37–40]. Support Vector Machine (SVM) and Support Vector
Regression (SVR) are some of the main applications of mathematical optimization for
supervised learning [41–46]. These are geometrical optimization problems that can be
written as convex quadratic optimization problems with linear constraints, solvable by
some nonlinear optimization procedure.

The present paper’s main goal is to implement the ML methodology as a suitable
and accurate system for predicting courtyard thermal patterns. To achieve this, the most
relevant features regarding courtyards’ thermoregulatory performance according to the
literature, i.e., geometry and outdoor temperature, have been considered. The advantages
of using ML techniques over conventional modeling tools are twofold: on the one hand,
they allow the identification of the fundamental variables, simplifying the calculation
processes; on the other hand, they are perfectible methodologies that make it possible
to increase the accuracy of predictions by providing feedback from monitored data by
increasing the size of the training dataset. In fact, despite presenting work based on an
extensive set of field-monitoring campaigns, the case studies monitored could be consid-
ered an initial limitation of the study. Nevertheless, the proposed methodology achieves
an accuracy level comparable to, and in some cases superior to, other outdoor thermal
modeling methods. The overall structure of the paper can be framed in a three-phase
procedure. Firstly, the case studies used to validate the thermal predictions are selected
and monitored. Secondly, simulations based on SVR and correlated employing MATLAB
interpolations are performed. Finally, different error ranges are verified and compared
with other tools simulation errors in the thermal patterns’ prediction of the courtyard mi-
croclimate. Note that the interpolation technique is applied when characteristic parameters
are within an appropriate range, defined by training data. Outside of this range, other
prediction techniques are needed.

2. Materials and Methods

Regarding specifically the application of the ML methodology, it was sequenced into
four steps. First, the reference study cases are defined and characterized. Second, the field
monitoring campaigns are characterized. Third, the problem setup is detailed. Fourth,
the SVR method is described. In particular, the following variables are considered: time
(hours), outside courtyard measured temperature (CMT), wind speed and direction, with
the aim of searching for a function that provides the temperature inside the courtyard all
along the week. This problem was solved using the statistical software R. Finally, using the
library of predicted data obtained from the ML method, the measured temperature inside
a given courtyard is predicted, based on its climate zone, year´s season, and ARs. This will
be done in two phases by an interpolation technique implemented in the scientific software
MATLAB.

2.1. Location, Climate and Cases Study

In this research, the thermal performance of 22 selected courtyards in a total of 12
different locations in three different Thermal Ranges (TR) are analyzed as case studies.
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The study was carried out in Mérida (Badajoz, Spain), Córdoba (Córdoba, Spain) and
Seville (Seville, Spain), located in south-western Spain. All three cities are characterized
by a hot climate in summer and a mild climate in winter. The specific Spanish regulations
CTE-DB-HE [47], characterize them as C4, B4, and B4, respectively. The letter (A–D)
represents the winter climate severity ranging from A for mild temperatures to D for very
cold climates, and the number (1–4) represents the summer climate severity, being 1 for
mild climates and 4 for very hot climates.

The selected case studies are intended to be analyzed in the warm season, so they
all belong to the same climatic zone in summer. According to the Köppen classification,
the selected cities are defined as Csa, with dry summers with low rainfall and very hot
summers. Many case studies were analyzed over an extended period, always exceeding
the minimum two-week monitoring period established by previous research [48].

Previous studies have shown the influence of outdoor temperature and geometry
on the thermal tempering potential of the courtyard [49] and their thermal sensation [50],
so for this research, a selection of case studies with different outdoor temperatures and
different AR (Equation (1), defined in (1)) are analyzed. Therefore, two values, ARI and
ARII, are defined. In Table 1, the main characteristics of the case studies selected for this
research are shown, including the longitude, latitude and meters above sea level (MASL)
of each case study.

Table 1. Location of monitored courtyards in this work.

Courtyard TR Location Longitude Latitude MASL Climate
Zone

Floor Area
(m2)

Dimensions
(m)

Height
(m)

AR I AR II

CS1 TR1 M 38.90◦ 6.35◦ 229 C4 34.1 5.2 6.5 5.9 1.14 0.91
CS2 TR1 M 38.92◦ 6.93◦ 229 C4 25.2 4.1 6.1 6.3 1.54 1.04
CS3 TR1 M 38.91◦ 6.34◦ 229 C4 34.7 5.2 6.7 6.3 1.21 0.95
CS4 TR1 M 38.92◦ 6.35◦ 229 C4 36.5 3.2 11.5 10.8 3.41 0.94
CS5 TR2 S 37.39◦ 5.96◦ 16 B4 35.9 6.9 5.2 5 0.72 0.96
CS6 TR2 C 37.88◦ 4.78◦ 106 B4 14.6 4.3 3.4 6.3 1.47 1.85
CS7 TR2 S 37.40◦ 6.00◦ 16 B4 101.2 11 9.2 12 1.1 1.3
CS8 TR2 S 37.39◦ 5.96◦ 16 B4 35.9 6.9 5.2 5 0.72 0.96
CS9 TR2 S 37.36◦ 5.99◦ 16 B4 48.2 7.3 6.6 14 1.92 2.12
CS10 TR2 S 37.40◦ 6.00◦ 16 B4 22.4 5.6 4 8.5 1.5 2.12
CS11 TR2 S 37.39◦ 5.96◦ 16 B4 35.9 6.9 5.2 5 0.72 0.96
CS12 TR2 S 37.36◦ 5.99◦ 16 B4 48.2 7.3 6.6 14 1.92 2.12
CS13 TR2 S 37.28◦ 5.92◦ 16 B4 75.9 11 6.9 8.9 0.81 1.29
CS14 TR2 2 37.39◦ 5.96◦ 16 B4 35.9 6.9 5.2 5 0.72 0.96
CS15 TR2-3 S 37.28◦ 5.93◦ 16 B4 99 13.2 7.5 10.7 0.81 1.43
CS16 TR3 C 37.88◦ 4.78◦ 106 B4 65.5 8.4 7.8 6.8 0.81 0.87
CS17 TR3 C 37.88◦ 4.77◦ 106 B4 14.6 4.3 3.4 6.3 1.47 1.85
CS18 TR3 S 37.36◦ 5.99◦ 16 B4 48.2 7.3 6.6 14 1.92 2.12
CS19 TR3 C 37.88◦ 4.78◦ 106 B4 65.5 8.4 7.8 6.8 0.81 0.87
CS20 TR3 S 37.35◦ 5.99◦ 16 B4 48.2 7.3 6.6 14 1.92 2.12
CS21 TR3 C 37.88◦ 4.77◦ 106 B4 14.6 4.3 3.4 6.3 1.47 1.85
CS22 TR3 C 37.89◦ 4.78◦ 106 B4 65.5 8.4 7.8 6.8 0.81 0.87

2.2. Field Monitoring Campaign

As previously mentioned, in this research, numerous monitoring campaigns have
been carried out in courtyards with diverse geometries (AR) and with different outdoor
temperatures (TR). For both boundary conditions, AR and TR, the selected ranges are
based on previous studies [23].

Some campaigns were carried out over several months to select similar outdoor
temperature ranges in all case studies. One week was selected as a representative sample
for each courtyard. During the monitoring campaigns, outdoor climatological parameters
were analyzed, and simultaneously, the temperature inside the courtyards was recorded.
According to the U.S. National Weather Service [51], dry-bulb temperature (DBT), can be
measured using a normal thermometer freely exposed to the air but shielded from solar
radiation and moisture. The thermometer will be affected by thermal radiation from the
courtyard walls, so we will refer to the DBT as the Courtyard Measured Temperature (CMT)
rather than the air temperature. In the case of outdoor environment analysis, portable
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weather stations model PCE-FWS 20 were used, the technical data of which are shown in
Table 2. The weather station was located on the roof of the building, fully exposed, with
no nearby high-rise buildings that could affect data collection. Data, such as courtyard
measured temperature and wind speed and direction, were recorded with a measurement
interval of 15 min.

Table 2. Technical data of the measurement equipment.

Sensor Situation Variable Resolution Range Accuracy

PCE-FWS 20 Outdoor
Wind - 0–180 km/h ±1 m/s

Dry bulb Temp 0.1 ◦C −40 to +65 ◦C ±1 ◦C
RH 1% 12–99% ±5%

TESTO 174H/T Courtyard Dry bulb Temp 0.1 ◦C −20 to +70 ◦C ±0.5 ◦C
RH 2% 0–100% ±0.1%

Simultaneously, the temperatures in the courtyards of the selected case studies were
recorded with sensors’ model TESTO 174 H and TESTO 174 T, whose technical data
are shown in Table 2. The sensors were placed vertically suspended from the roof of
the building on the north-facing façade of the courtyard so that solar radiation would
not influence the results. In addition, they were protected with a reflective shield to
prevent overheating and to allow ventilation of the measuring equipment (Figure 1). As the
sensors’ measured temperature would vary throughout the courtyard due to several factors,
including stratification and infrared radiation, all the sensors were placed at +1.00 m and
+2.00 m, referring to the height of the courtyard inhabited by users.

Figure 1. Location of the measurement instruments: (a) Weather station PCE-FWS 20; (b,c) sensors TESTO 174.

2.3. Problem Setup

In this article, the variables selected to predict the value of the temperature inside
a courtyard are the two most relevant according to the literature review, namely, TR—
considering climate location zone and year´s season, and AR—as a numerical parameter
synthesizing courtyard geometry. To perform the modeling, two stages were considered.

In the first stage, work was accomplished with the data from 22 monitored courtyards
in every hour of one week, from different periods of the year, in various courtyards located
in the Spanish cities of Badajoz, Córdoba and Seville.
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The SVM method was used to create the library with some of these training data
along one week in different courtyards. After that, we consider courtyards with different
characteristic parameters, such as ARI and ARII, which are not included in the training
data and use interpolation techniques to obtain the prediction for a week.

2.4. Support Vector Regression Method

Support Vector Machines (SVMs) were introduced in the 90s by Vapnik and his
collaborators [45] in the framework of statistical learning theory. Although originally,
SVMs were thought to solve binary classification problems, they are currently used to solve
various types of problems, for example, regression problems [44], on which this research
has focused.

In this first stage, the predicted value of the measured temperature inside a courtyard
using some information related to it has been obtained. In particular, the time (hour of
the day), the outside CMT, the wind speed and direction have been considered. More
specifically, the following has been considered: x =

(
x1, x2, x3, x4), where,

• x1 = time (hour of the day);
• x2 = outside temperature;
• x3 = wind speed;
• x4 = wind direction.

Searching for a function f : R4 → R, such that y = f (x) provides the temperature
inside the courtyard was the goal in this step.

To find this function f for each courtyard, the m-collection of experimental data
associated with it was used. The idea of the SVR method [6] is to obtain a function such
that for every sample (xi, yi), i = 1, . . . , m, it is satisfied that | f (xi)− yi| ≤ ε, for some
ε > 0 small. Concretely, given ε, γ and C > 0, the following optimization problem is
considered:

max

{
−1

2

m

∑
i,j=1

(αi − α∗
i )
(

αj − α∗
j

)
exp
(
−γ ‖ xi − xj ‖2

)
− ε

m

∑
i,j=1

(αi + α∗
i ) +

m

∑
i,j=1

yi(αi − α∗
i )

}
,

subject to ∑m
i,j=1(αi − α∗

i ) = 0, for αi, α∗
i ∈ [0, C].

This problem was solved using the statistical software R. In particular, we used
the E1071 library [52], a software package designed to solve classification and regression
problems, using Support Vector Machines, which can be easily installed in R. The solution
provides a possible candidate function as follows:

f (x) =
m

∑
i=1

(αi − α∗
i ) exp

(
−γ ‖ xi − x ‖2

)
+ b,

where the constant b ∈ R can be computed by forcing the Karush–Kuhn–Tucker (KKT)
condition [53]. The function K(x, x′) = exp

(−γ ‖ x − x′ ‖2) is called the radial basis kernel.
It holds that | f (xi)− yi| ≤ ε, for all i = 1, . . . , m. The quality of function f depends on the
choice of the parameters ε, γ and C. In order to select the best parameters, Cross-Validation
(CV) technique was used to obtain the parameter values: γ = 0.1, C = 10 and ε = 0.1, with a
CV error around 1% for all test cases.

2.5. Predicted Temperature of a Courtyard

In the first stage, through the monitoring data and the SVR method, a library of
predicted temperatures inside various courtyards located in different cities of the south of
Spain was obtained. In this second stage, by using this library, the predicted temperature
inside a given courtyard was obtained.

In this section, given that the definition of AR is two-dimensional, two ARs were
measured: the first one, ARI was defined as the relation between the width and the height,
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and the second one, ARII was defined as the relation between the length and the height,
as follows:

ARI = hmax/W and ARII = hmax/L,

where hmax is the maximum height, W represents the width and L the length of the
courtyard.

Once both ARs were fixed, the predicted temperature inside a given courtyard in two
different ways was performed. First, the courtyards library was classified considering
three different TRs, depending on the range of temperatures of the courtyards and an
interpolation technique to predict the temperature inside a courtyard of the same class by
using ARs data was used, as it is explained in Section 2.5.1.

Second, the courtyards library was classified into different groups, depending on the
courtyards AR range and an interpolation technique to predict the temperature inside a
courtyard of the same class by using the maximum and minimum temperature data was
used. Two cases (AR.1 and AR.2) were considered: first, the classification by considering
ARI, and second, ARII was performed.

2.5.1. Fixed Temperature Range, Interpolation Using the ARs

In this case, the courtyards library was classified into three different TR, depending on
the range of temperatures inside the courtyard. These TRs correspond to statistical climatic
records in the locations where case studies are placed. The first group corresponds to the
hottest days of spring or autumn, the second, to a typical summer season and, the third, to
a summer heatwave.

TR1: (15◦, 35◦).
TR2: (20◦, 40◦).
TR3: (25◦, 45◦).
In the following Table 3, the courtyards are classified within these different TR. Note

that some courtyards are in more than one TR because the temperature range in the
courtyard changed from one week to another. This is because the courtyard, as a thermal
tempering device, performs differently depending on the outdoor temperature.

Table 3. Classification of courtyards within temperature range classes.

Thermal Range Courtyards

TR1 CS1, CS2, CS3, CS4

TR2 CS5, CS6, CS7, CS8, CS9, CS10, CS11, CS12,
CS13, CS14

TR3 CS16, CS17, CS18, CS19, CS20, CS21, CS22

For a given courtyard, its range of temperature is first estimated, being classified as
TR1, TR2 or TR3, and its AR, being classified as ARI or ARII.

Once courtyards are classified, the temperature prediction is verified through the SVR
method; by an interpolation technique, it can be obtained a prediction of the temperature
inside a courtyard of the same class. To achieve these data, MATLAB function scattered-
Interpolant was used, which performs interpolation on a 2D dataset of scattered data. In
particular, it returns the interpolant F for the given dataset such that we can evaluate F at a
set of query points in 2D to produce interpolated values Tq = F (ARIq, ARIIq), obtaining
the temperature inside the courtyard Tq.

2.5.2. Fixed the ARs, Interpolation Using Minimum and Maximum Temperatures

In this section, two different cases, depending on whether we fix ARI or ARII,
are considered.

First, the courtyards library was classified into two different classes, depending
on ARI:

ARI.1: (0, 1).
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ARI.2: (1, 2).
In the following Table 4, the courtyards are classified within these different classes. Note

that CS4 has not been taken into account, as its ARI is out of the considered ranges (3.41).

Table 4. Classification of courtyards within ARI range class.

ARI Range Class Courtyards

ARI.1 CS5, CS8, CS11, CS13, CS14, CS15, CS16, CS19, CS22

ARI.2 CS1, CS2, CS3, CS6, CS7, CS9, CS10, CS12, CS17, CS18,
CS20, CS21

Thus, for a given courtyard, we measure the ARI and classify it into ARI.1 or ARI.2.
Then, given the minimum and maximum temperature, Tmin and Tmax, respectively, of

some courtyards in the same class and their corresponding predicted temperatures through the
SVR method, by an interpolation technique implemented in the scientific software MATLAB, it
can be obtained a prediction of the temperature inside a courtyard of the same class. To do the
interpolation, we have used again the MATLAB function scatteredInterpolant, which performs
interpolation on a 2D dataset of scattered data. In this case, we obtained Tq = F

(
Tmin,q, Tmax,q

)
,

obtaining the temperature inside the courtyard Tq.
Second, we classified the courtyards library into two different classes, depending

on ARII:
ARII.1: (0, 1).
ARII.2: (1, 2.5).
In the following Table 5, we classify the courtyards within these different classes:

Table 5. Classification of courtyards within ARII range class.

ARII Range Class Courtyards

ARII.1 CS1, CS3, CS4, CS5, CS8, CS11, CS14, CS16, CS19, CS22

ARII.2 CS2, CS6, CS7, CS9, CS10, CS12, CS13, CS15, CS17, CS18,
CS20, CS21

Thus, for a given courtyard, first it was measured the ARII, being classified as ARII.1
or as ARII.2. To do the interpolation, the same procedure as in the case of ARI was followed,
using now ARII instead.

3. Results

3.1. Fixed Temperature Range, Interpolation Using AR

In this section, it is shown the predicted temperature obtained by the method proposed
in Section 2.5.1 in one courtyard of each temperature range class. The predicted temperature
in comparison to the monitored temperature inside the courtyard, as well as the outdoor
temperature, are both represented. In addition, a quantitative analysis was carried out. On
the one hand, it was evaluated the relative error of the predicted temperature with respect
to the monitored temperature in different discrete norms:

L1 (%) =
∑N

i=1

∣∣∣Tmonit. − Tpred.

∣∣∣(ti)

∑N
i=1 Tmonit.(ti)

· 100,L2 (%) =

[
∑N

i=1 (Tmonit. − Tpred.)
2(ti)

∑N
i=1 T2

monit.(ti)

]1/2

· 100,

where it is denoted by Tmonit.(ti) (resp, Tpred.(ti)), the monitored temperature (resp., the
predicted temperature) at time ti, i = 1, . . . , N (hours, (h)). Moreover, the percentage
in time for which the obtained absolute error within the predicted and the monitored
temperature is less than or equal to a fixed tolerance tol = 2 ◦C was evaluated. On the
other hand, the following statistical parameters were computed: the correlation coefficient
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R, the Root Mean Square Error (RMSE) and the Mean Absolute Percentage Error (MAPE).
The formulas for these parameters are as follows:

R =
∑N

i=1(Tmonit.(ti)− Tmonit.)
(

Tpred.(ti)− Tpred.

)
[

N
∑

i=1
(Tmonit.(ti)− Tmonit.)

2 N
∑

i=1
(Tpred.(ti)− Tpred.)

2
]1/2 ,

RMSE (oC) =

[
∑N

i=1 (Tmonit. − Tpred.)
2(ti)

N

]1/2

,

MAPE (%) =
1
N ∑N

i=1

∣∣∣Tmonit. − Tpred.

∣∣∣(ti)

Tmonit.(ti)
· 100,

where, in the formula for the correlation coefficient R, the mean monitored temperature
(resp., the mean predicted temperature) is denoted by Tmonit. (resp, Tpred.). The values of
the relative and absolute errors and the statistical parameters are shown in Tables 6 and 7
for the CMT in each selected courtyard of each temperature range class.

Table 6. Example 3.0.1. Relative and absolute errors for the courtyard measured temperature in each
selected courtyard of each TR.

Thermal Range L1 (%) L2 (%) Absolute Error ≤tol (%)

TR1 5.09 6.10 91.67
TR2 4.93 6.62 84.28
TR3 3.50 4.31 89.88

Table 7. Example 3.0.1. Statistical parameters for the courtyard measured temperature in each
selected courtyard of each TR.

Thermal Range R RMSE (◦C) MAPE (%)

TR1 0.96 1.24 5.17
TR2 0.88 1.62 4.82
TR3 0.89 1.21 3.52

For the class TR1, the courtyard CS1, located in Badajoz was considered. The predic-
tion is performed for the dates 20 to 26 May. In the graph (Figure 2), simulation versus
monitoring results of this courtyard with mild and very irregular temperatures is shown.
There is hardly any thermal gap, and the prediction shows good accuracy. The obtained
results are specified in Tables 6 and 7 (first row).

For the class TR2, the courtyard CS5, located in Seville, was considered. The prediction
is performed for the date 7 to 13 September. The obtained results are represented in Figure 3
and Tables 6 and 7 (second row). Note that the prediction for the second half of the last day
is not represented in this plot. This is due to the fact that some of the training data used for
this prediction had fewer points than the 168 needed for the whole week. However, to be
consistent with the other cases, we decided to keep the whole week in this plot.
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Figure 2. Example 3.0.1. Predicted temperature versus monitored and outdoor temperatures inside a
TR1 courtyard.

Figure 3. Example 3.0.1. Predicted temperature versus monitored and outdoor temperatures inside a
TR2 courtyard.

For the class TR3, the courtyard CS17, located in Córdoba, was considered. The
prediction is performed for the date 26 July to 1 August. Unlike the previous case shown
in Figure 2, in this one (Figure 4), the outside temperature is higher and there is a large
thermal gap. The predicted results show similarly good accuracy, particularly on days
of maximum outdoor temperature. The obtained results are detailed in Tables 6 and 7
(third row).

3.2. Fixed AR, Interpolation Using Minimum and Maximum Temperature

In this section, the predicted temperature obtained by the method proposed in
Section 2.5.2 in one courtyard of each AR range class is shown. First, the ARI range
class is considered, representing the predicted temperature in comparison to the monitored
temperature inside the courtyard, as well as the outdoor temperature. Additionally, a
quantitative analysis was carried out. On the one hand, the relative error of the predicted
temperature with respect to the monitored temperature in different discrete norms (L1 and
L2) was evaluated, as done in Section 3.1. Moreover, the percentage in time for which the
obtained absolute error within the predicted and the monitored temperature is less than or
equal to a fixed tolerance tol = 2 ◦C was also evaluated. On the other hand, the following
statistical parameters were computed: R, RMSE and MAPE. The values of the relative and
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absolute errors and the statistical parameters are shown in Tables 8 and 9 for the courtyard
measured temperature in each selected courtyard of each ARI range class.

Figure 4. Example 3.0.1. Predicted temperature versus monitored and outdoor temperatures inside a
TR3 courtyard.

Table 8. Example 3.0.1. Statistical parameters for the courtyard measured temperature in each
selected courtyard of each temperature range class.

ARI Range Class L1 (%) L2 (%) Absolute Error ≤tol (%)

ARI.1 5.79 7.05 61.45
ARI.2 5.09 6.10 91.67

Table 9. Example 3.0.2. Statistical parameters for the courtyard measured temperature in each
selected courtyard of each ARI range class.

ARI Range Class R RMSE (◦C) MAPE (%)

ARI.1 0.92 2.30 5.99
ARI.2 0.96 1.24 5.17

For the ARI.1, the courtyard CS16, located in Córdoba, was considered. The prediction
is performed for the date 26 July to 1 August. The obtained results are represented in
Figure 5 and Tables 7 and 8 (first row).

For the class ARI.2, the courtyard CS1, located in Badajoz, was considered. The
prediction is performed for the date 20 to 26 May. The obtained results are represented in
Figure 6 and Tables 7 and 8 (second row).

Finally, the ARII range class was considered and the predicted temperature was
represented in comparison to the monitored temperature inside the courtyard as well
as the outdoor temperature. As before, a quantitative analysis was carried out. On the
one hand, the relative error of the predicted temperature with respect to the monitored
temperature in different discrete norms (L1 and L2) was evaluated, as done in Section 3.1.
Moreover, the percentage in time for which the obtained absolute error within the predicted
and the monitored temperature is less than or equal to a fixed tolerance tol = 2 ◦C was
also evaluated. On the other hand, the following statistical parameters were computed:
R, RMSE and MAPE. The values of the relative and absolute errors, and the statistical
parameters are shown in in Tables 10 and 11 for the courtyard measured temperature in
each selected courtyard of each ARII range class.
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Figure 5. Example 3.0.2. Predicted temperature versus monitored and outdoor temperatures inside
an ARI.1 courtyard.

Figure 6. Example 3.0.2 Predicted temperature versus monitored and outdoor temperatures inside
an ARI.2 courtyard.

Table 10. Example 3.0.2. Relative and absolute errors for the courtyard measured temperature in
each selected courtyard of each ARII range class.

ARII Range Class L1 (%) L2 (%) Absolute Error ≤tol (%)

ARII.1 10.10 12.69 58.33
ARII.2 4.80 5.87 80.72

Table 11. Example 3.0.2. Statistical parameters for the courtyard measured temperature in each
selected courtyard of each ARII range class.

ARII Range Class R RMSE (◦C) MAPE (%)

ARII.1 0.64 2.65 9.78
ARII.2 0.79 1.46 4.86

For the class ARII.1, the courtyard CS4, located in Badajoz, was considered. The
prediction is performed for the date 20 to 26 May. In this case, as can be seen in Figure 7,
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the courtyard has a different thermal performance than in the previously described case
studies. This is mainly due to the overheating that occurs in the early morning hours
due to the low AR. The predicted results do not show such a tight accuracy under these
conditions. The obtained results are detailed in Tables 9 and 10 (first row).

Figure 7. Example 3.0.2. Predicted temperature versus monitored and outdoor temperatures inside a
ARII.1 courtyard.

For the class ARII.2, the courtyard CS9, located in Seville, was considered. The
prediction is performed for the date 4 to 10 September. The obtained results are represented
in Figure 8 and Tables 9 and 10 (second row).

Figure 8. Example 3.0.2. Predicted temperature versus monitored and outdoor temperatures inside
an ARII.2 courtyard.

3.3. Relative Errors Calculation

The main goal of this work is the accurate thermal modeling of the courtyard for
its optimization as a resilient strategy against climate change and urban overheating.
Therefore, the specific performance of courtyard thermodynamics was considered for the
evaluation of the model errors. The courtyard´s thermal tempering performance increases
as a function of the Thermal Gap (from now on, TG), that is, the difference between the
exterior monitored temperature and the monitored temperature inside the courtyard. TG
usually increases as the outside temperature rises. Accordingly, in this section, relative
errors from two different and representative case studies with different TRs are selected,
comparing statistical parameters more in detail.
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The first selected case study corresponds to the predicted temperature inside the TR1
courtyard CS1 (Figure 2), and the second case corresponds to the predicted temperature
inside the TR3 courtyard CS17 (Figure 4). These cases were selected since, in the first case,
monitored and predicted temperatures inside the courtyard are rather close to the exterior
monitored one, while in the second case, monitored and predicted temperatures inside the
courtyard are quite far from the exterior monitored one.

Conversely, the relative and absolute errors, as well as the statistical parameters
considered in the previous section, were computed. Then, the daily computations all along
the week were performed. The obtained results are given in Tables 12 and 13.

Table 12. Relative error CS1.

Errors + Stat. Param.\Day 1 2 3 4 5 6 7

L1 (%) 5.70 5.55 4.77 5.67 4.57 3.62 5.55
L2 (%) 6.79 6.95 5.62 6.40 5.30 4.42 6.52

Absolute error ≤ tol (%) 95.83 83.33 87.50 91.67 95.83 100 87.50
R 0.92 0.95 0.98 0.97 0.91 0.97 0.96

RMSE (◦C) 1.30 1.41 1.25 1.44 1.03 0.80 1.32
MAPE (%) 5.82 5.84 4.91 5.90 4.54 3.57 5.60

Table 13. Relative Error CS17.

Errors + Stat. Param.\Day 1 2 3 4 5 6 7

L1 (%) 2.16 2.68 2.71 5.10 2.40 3.23 5.95
L2 (%) 3.26 3.14 3.03 5.48 2.65 3.92 7.02

Absolute error ≤ tol (%) 95.83 95.83 100 83.33 100 95.83 58.33
R 0.91 0.96 0.96 0.92 0.97 0.91 0.89

RMSE (◦C) 0.90 0.87 0.85 1.54 0.76 1.12 1.93
MAPE (%) 2.42 2.65 2.74 5.18 2.42 3.30 5.91

On the other hand, bearing in mind the obtained results, the best predicted day in
each week was selected. In the first case, the day that gives better performances is the 6th
one, while in the second case, it is the 5th one. Then, the relative error of the predicted
temperature was computed hourly and represented in two ways. In the first way, with
respect to the TG and in the second way, with respect to the monitored temperature.
The graphics corresponding to CS1 and CS17 are included in Figure 9a,b, respectively.
The graphic represented in Figure 9a corresponds to the relative error of the predicted
temperature with respect to TG, and the graphic in Figure 9b corresponds to the relative
error of the predicted temperature with respect to the monitored temperature inside the
courtyard. In addition, the segment of the day in which critical urban overheating is
concentrated is indicated in each graph. These hours, according to climate records [54],
are between 13:00 and 19:00. On the left, considering CS1 plotted in Figure 9a, it can be
observed that the relative error with respect to TG is always below 3%, except for two peaks,
corresponding to time slots where the exterior temperature and the monitored temperature
inside the courtyard almost coincide. Considering CS17 in Figure 9a, it was obtained a very
low relative error with respect to TG in the central time slot of the day, that is, between
13:00 and 19:00, where TG is large. On the right, regarding the relative error with respect
to the courtyard measured temperature (CMT) in Figure 9b, it can be observed that the
plotted relative error for CS1 is below 0.1%, while for CS17, this relative error is always
below 0.05%. For both case studies, if the daytime slot with the highest urban overheating
is considered, the relative error is always below 0.05%.
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Figure 9. Relative errors CS1 and CS17 according to: (a) TG (b) CT.

4. Discussion

In this section, the results that were obtained in Section 3 are discussed. Regarding the
results obtained in Sections 3.1 and 3.2, on the one hand, it can be appreciated in Tables 6, 8
and 10 that the values for the relative errors in different discrete norms are around 5% and in
almost all cases are below 10%, and the percentage in time for which the obtained absolute
error w.r.t. the CMT is less than or equal to tol = 2 ◦C is superior to 80%, except for the cases
of Example 3.0.2, the ARI.1 range class and the ARII.1 range class. For the first critical case,
reasonable values for the relative errors in different discrete norms (within 5% and 8%) were
obtained, and the percentage in time for which the obtained absolute error w.r.t. the CMT
is less than or equal to tol = 2 ◦C is 61.45%. However, that case is rather special since it can
be observed at relatively high temperatures w.r.t. the other experiments. In any case, if the
tolerance parameter is increased to tol = 3 ◦C for that case, a higher percentage of up to 80.72%,
can be obtained. For the second critical case, the relative errors in different discrete norms are
within 10% and 13%, and the percentage in time for which the obtained absolute error w.r.t.
the CMT is less than or equal to tol = 2 ◦C is 58.33%. In any case, if the tolerance parameter is
increased to tol = 3 ◦C for that case, we obtain the higher percentage 74.40%. On the other
hand, the values for the statistical parameters that indicate that the simulation is accurate are
R → 1, RMSE → 0, MAPE → 0 [36,42–44,50–52]. The values of these parameters for the
courtyard measured temperature in the present courtyards for each simulation confirm that
the used strategy is rather accurate. In particular, in Tables 7, 9 and 11 it can be observed that
the correlation coefficient R is quite close to 1 for all range classes (superior to 0.85, except for
the cases Example 3.0.2 ARII.1 and ARII.2 range classes for which it is within 0.6 and 0.8). The
RMSE values are around 1.5 ◦ C and the MAPE values are around 5%, except for the critical
cases identified above for which the RMSE values are around 2.5 ◦C and the MAPE values
are within 5% and 10%.

Finally, in Section 3.3, relative and absolute errors as well as the statistical parameters
in two selected cases were computed daily. The case where the predicted CMT inside the
courtyard is rather close to the exterior one, and the case where the predicted CMT inside
the courtyard is quite far from the exterior one were chosen. The obtained results are given
in Tables 12 and 13, respectively. It can be observed that the values for the relative errors
in different discrete norms are around 6% in the first case, and around 3% in the second
case, and in almost all cases are below 7%. Moreover, the percentage in time for which
the obtained absolute error w.r.t. the CMT is less than or equal to tol = 2 ◦C is superior to
80% all the days except for the 7th day of the second case, arriving to 100% in the 6th day
of the first case and on the 3rd and 5th day of the second case. With respect to statistical
parameters, the correlation coefficient R is quite close to 1, being larger than 0.89 in all
cases. The RMSE values are around 1.25 ◦C in the first case and 1 ◦C in the second one,
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and the MAPE values are around 5% in the first case and 3% in the second case. Thus,
mostly, the results obtained in Section 3.3 daily in these selected cases improve the global
results computed for the whole week in Sections 3.1 and 3.2.

In brief, apart from the critical cases identified above, the values of the statistical pa-
rameters considered are in a similar range than those obtained in [36] for a similar problem.
In that work, the authors performed a very accurate courtyard thermal simulation based
upon a Computational Fluid Dynamics (CFD) FreeFEM 3D model, which is much more
computationally expensive than the ML technique SVR used in this work. In particular, the
computation of one-week temperature through the SVR method takes around one minute,
while the CFD method takes around four minutes per one day of simulation.

5. Conclusions

In the present work, the applicability of a supervised ML model as a suitable tool for
predicting microclimatic performance inside courtyards has been evaluated. For this pur-
pose, among the ML models developed as supervised learning, Support Vector Machines
(SVM) were selected. The model was fed and validated with empirical data from 22 case
studies in southern Spain.

The results provided by this strategy showed good accuracy when compared to
monitored data. In particular, we selected two representative and highly meaningful
case studies with different TGs. The final results for both cases showed that, when the
daytime slot with the highest urban overheating is considered, the relative error is almost
below 0.05%. Additionally, values for statistical parameters are in good agreement with
other studies in the literature that use more computationally expensive CFD models and
show more accuracy than existing commercial tools. Indeed, the present strategy shows
a Root Mean Square Error (RMSE) around 1 ◦C for the two representative case studies
selected, which is in a similar range to the values obtained in [36] for a similar problem by
a more computationally expensive CFD model, while corresponding values for existing
commercial software are typically around 3 ◦C.

Based on the results obtained, it can be stated that the new application proposed for
the ML method is useful for the development of design and measurement tools capable
of modeling the complex microclimate of courtyards. Furthermore, the accuracy of the
predictions for the analyzed case studies increases as a function of the courtyard thermal
tempering potential linked to the intensification of the outdoor temperature.

The enhancement of the proposed methodology with the inclusion of other com-
plementary microclimatic strategies, such as shading devices or vegetation as new ML
features as well as establishing a balance between an over fitted and under fitted ML model
considering the optimal number of training data, can be considered as future ways to
develop this research.
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Nomenclature

UHI Urban Heat Island
AR Aspect Ratio
ML Machine Learning
SVM Support Vector Machine
SVR Support Vector Regression
CS Case Study
TR Thermal Range
CFD Computational Fluids Dynamics
TG Thermal Gap
CMT Courtyard Measured Temperature

References

1. IPCC. Proposed Outline of the Special Report in 2018 on the Impacts of Global Warming of 1.5 ◦C above Pre-Industrial Levels
and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of
Climate cha. Ipcc—Sr15. Available online: www.environmentalgraphiti.org (accessed on 10 March 2021).

2. United Nations, Department of Economic and Social Affairs PD. The World ’s Cities in 2018; United Nations: New York, NY, USA,
2018; p. 34.

3. Bombardelli, F.A. Handbook of Environmental Fluid Dynamics; Apple Academic Press: Cambridge, MA, USA, 2012; Volume 2.
4. Taleb, D.; Abu-Hijleh, B. Urban heat islands: Potential effect of organic and structured urban configurations on temperature

variations in Dubai, UAE. Renew. Energy 2013, 50, 747–762. [CrossRef]
5. Climate Considerations in Building and Urban Design|Wiley. Available online: https://www.wiley.com/en-us/Climate+

Considerations+in+Building+and+Urban+Design-p-9780471291770 (accessed on 10 March 2021).
6. Vardoulakis, S.; Fisher, B.E.; Pericleous, K.; Gonzalez-Flesca, N. Modelling air quality in street canyons: A review. Atmos. Environ.

2003, 37, 155–182. [CrossRef]
7. Ulpiani, G. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a

conceptual framework. Sci. Total Environ. 2020, 751, 141727. [CrossRef] [PubMed]
8. Carpio, M.; González, Á.; González, M.; Verichev, K. Influence of pavements on the urban heat island phenomenon: A scientific

evolution analysis. Energy Build. 2020, 226, 110379. [CrossRef]
9. Villa-Arrieta, M.; Sumper, A. Economic evaluation of Nearly Zero Energy Cities. Appl. Energy 2019, 237, 404–416. [CrossRef]
10. ZEBRA 2020—NEARLY ZERO-ENERGY BUILDING STRATEGY 2020 Strategies for a nearly Zero-Energy Building Market

Transition in the Euro-Pean Union. 2020. Available online: https://zebra2020.eu/ (accessed on 10 May 2021).
11. Taleghani, M.; Tenpierik, M.; Dobbelsteen, A.V.D. Energy performance and thermal comfort of courtyard/atrium dwellings in the

Netherlands in the light of climate change. Renew. Energy 2014, 63, 486–497. [CrossRef]
12. López-Cabeza, V.; Galán-Marín, C.; Rivera-Gómez, C.; Roa-Fernández, J. Courtyard microclimate ENVI-met outputs deviation

from the experimental data. Build. Environ. 2018, 144, 129–141. [CrossRef]
13. Al-Masri, N.; Abu-Hijleh, B. Courtyard housing in midrise buildings: An environmental assessment in hot-arid climate. Renew.

Sustain. Energy Rev. 2012, 16, 1892–1898. [CrossRef]
14. Taleghani, M. Outdoor thermal comfort by different heat mitigation strategies—A review. Renew. Sustain. Energy Rev. 2018, 81,

2011–2018. [CrossRef]
15. Zamani, Z.; Heidari, S.; Hanachi, P. Reviewing the thermal and microclimatic function of courtyards. Renew. Sustain. Energy Rev.

2018, 93, 580–595. [CrossRef]
16. Xu, X.; Luo, F.; Wang, W.; Hong, T.; Fu, X. Performance-Based Evaluation of Courtyard Design in China’s Cold-Winter Hot-

Summer Climate Regions. Sustainability 2018, 10, 3950. [CrossRef]
17. Rojas-Fernández, J.; Galán-Marín, C.; Rivera-Gómez, C.; Fernández-Nieto, E.D. Exploring the Interplay between CAD and

FreeFem++ as an Energy Decision-Making Tool for Architectural Design. Energies 2018, 11, 2665. [CrossRef]
18. Taleghani, M.; Tenpierik, M.; Dobbelsteen, A.V.D.; Sailor, D.J. Heat mitigation strategies in winter and summer: Field measure-

ments in temperate climates. Build. Environ. 2014, 81, 309–319. [CrossRef]
19. Shahidan, M.F.; Jones, P.J.; Gwilliam, J.; Salleh, E. An evaluation of outdoor and building environment cooling achieved through

combination modification of trees with ground materials. Build. Environ. 2012, 58, 245–257. [CrossRef]
20. Muhaisen, A.S. Shading simulation of the courtyard form in different climatic regions. Build. Environ. 2006, 41, 1731–1741.

[CrossRef]

375



Mathematics 2021, 9, 1142

21. Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; Dobbelsteen, A.V.D. Outdoor thermal comfort within five different urban forms in
the Netherlands. Build. Environ. 2015, 83, 65–78. [CrossRef]

22. Choi, J.-H. Investigation of the correlation of building energy use intensity estimated by six building performance simulation
tools. Energy Build. 2017, 147, 14–26. [CrossRef]

23. Rivera-Gómez, C.; Diz-Mellado, E.; Galán-Marín, C.; López-Cabeza, V. Tempering potential-based evaluation of the courtyard
microclimate as a combined function of aspect ratio and outdoor temperature. Sustain. Cities Soc. 2019, 51. [CrossRef]

24. Huang, L.; Hamza, N.; Lan, B.; Zahi, D. Climate-responsive design of traditional dwellings in the cold-arid regions of Tibet and a
field investigation of indoor environments in winter. Energy Build. 2016, 128, 697–712. [CrossRef]

25. Ghaffarianhoseini, A.; Berardi, U.; Ghaffarianhoseini, A. Thermal performance characteristics of unshaded courtyards in hot and
humid climates. Build. Environ. 2015, 87, 154–168. [CrossRef]

26. Soflaei, F.; Shokouhian, M.; Abraveshdar, H.; Alipour, A. The impact of courtyard design variants on shading performance in
hot-arid climates of Iran. Energy Build. 2017, 143, 71–83. [CrossRef]

27. Rodríguez-Algeciras, J.; Tablada, A.; Chaos-Yeras, M.; De la Paz, G.; Matzarakis, A. Influence of aspect ratio and orientation on
large courtyard thermal conditions in the historical centre of Camagüey-Cuba. Renew. Energy 2018, 125, 840–856. [CrossRef]

28. Nasrollahi, N.; Hatami, M.; Khastar, S.R.; Taleghani, M. Numerical evaluation of thermal comfort in traditional courtyards to
develop new microclimate design in a hot and dry climate. Sustain. Cities Soc. 2017, 35, 449–467. [CrossRef]

29. Guedouh, M.S.; Zemmouri, N. Courtyard Building’s Morphology Impact on Thermal and Luminous Environments in Hot and
Arid Region. Energy Procedia 2017, 119, 153–162. [CrossRef]

30. Rojas-Fernández, J.; Galán-Marín, C.; Roa-Fernández, J.; Rivera-Gómez, C. Correlations between GIS-Based Urban Building
Densification Analysis and Climate Guidelines for Mediterranean Courtyards. Sustainability 2017, 9, 2255. [CrossRef]

31. Mauree, D.; Naboni, E.; Coccolo, S.; Perera, A.; Nik, V.M.; Scartezzini, J.-L. A review of assessment methods for the urban
environment and its energy sustainability to guarantee climate adaptation of future cities. Renew. Sustain. Energy Rev. 2019, 112,
733–746. [CrossRef]

32. ENVI-Met—Decode Urban Nature with ENVI-Met Software. Available online: http://www.envi-met.com (accessed on 10 March
2011).

33. Bueno, B.; Norford, L.; Hidalgo, J.; Pigeon, G. The urban weather generator. J. Build. Perform. Simul. 2013, 6, 269–281. [CrossRef]
34. Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0—Modelling spatial variations of 3D radiant fluxes and mean radiant

temperature in complex urban settings. Int. J. Biometeorol. 2008, 52, 697–713. [CrossRef]
35. Kastner, P.; Dogan, T. A cylindrical meshing methodology for annual urban computational fluid dynamics simulations. J. Build.

Perform. Simul. 2019, 13, 59–68. [CrossRef]
36. López-Cabeza, V.; Carmona-Molero, F.; Rubino, S.; Rivera-Gómez, C.; Fernández-Nieto, E.; Galán-Marín, C.; Chacón-Rebollo, T.

Modelling of surface and inner wall temperatures in the analysis of courtyard thermal performances in Mediterranean climates. J.
Build. Perform. Simul. 2021, 14, 181–202. [CrossRef]

37. Kondarasaiah, M.H.; Ananda, S. Kinetic and Mechanistic Study of Ru(III)-Nicotinic Acid Complex Formation by Oxidation of
Bromamine-T in Acid Solution. Oxid. Commun. 2004, 27, 140–147.

38. Grant, P. Assessment and Selection. The Business of Giving. 2014. Available online: https://www.amazon.co.uk/Business-Giving-
Philanthropy-Grantmaking-Investment-ebook/dp/B009AQUSHU (accessed on 10 March 2021).

39. Sun, H.; Burton, H.V.; Huang, H. Machine learning applications for building structural design and performance assessment:
State-of-the-art review. J. Build. Eng. 2021, 33, 101816. [CrossRef]

40. Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004.
41. Fletcher, R. Practical Methods of Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2013. [CrossRef]
42. Moguerza, J.M.; Muñoz, A. Support Vector Machines with Applications. Stat. Sci. 2006, 21, 322–336. [CrossRef]
43. Chen, H.-F. In SilicoLogPPrediction for a Large Data Set with Support Vector Machines, Radial Basis Neural Networks and

Multiple Linear Regression. Chem. Biol. Drug Des. 2009, 74, 142–147. [CrossRef]
44. Vapnik, V.; Golowich, S.E.; Smola, A. Support vector method for function approximation, regression estimation, and signal

processing. Adv. Neural Inf. Process. Syst. 1997, 281–287.
45. Baumann, S.; Groß, S.; Voigt, L.; Ullrich, A.; Weymar, F.; Schwaneberg, T.; Dörr, M.; Meyer, C.; John, U.; Ulbricht, S. Pitfalls in

accelerometer-based measurement of physical activity: The presence of reactivity in an adult population. Scand. J. Med. Sci. Sports
2017, 28, 1056–1063. [CrossRef]

46. Platt, J.C. Fast training of support vector machines using sequential minimal optimization. Adv. Kernel Methods 1999, 185–208.
47. Documento, B.E. Introducción I Objeto. 2017. Available online: https://www.codigotecnico.org/images/stories/pdf/

ahorroEnergia/DBHE.pdf (accessed on 10 March 2021).
48. Diz-Mellado, E.; López-Cabeza, V.P.; Rivera-Gómez, C.; Roa-Fernández, J.; Galán-Marín, C. Improving School Transition Spaces

Microclimate to Make Them Liveable in Warm Climates. Appl. Sci. 2020, 10, 7648. [CrossRef]

376



Mathematics 2021, 9, 1142

49. Diz-Mellado, E.M.; Galán-Marín, C.; Rivera-Gómez, C.; López-Cabeza, V.P. Facing climate change overheating in cities through
multiple ther-moregulatory courtyard potential case studies appraisal. In REHABEND; University of Cantabria, Santander
(Spain)—Building Technology R&D Group: Santander, Spain, 2020; pp. 1645–1652.

50. Callejas, I.A.; Durante, L.C.; Diz-Mellado, E.; Galán-Marín, C. Thermal Sensation in Courtyards: Potentialities as a Passive
Strategy in Tropical Climates. Sustainability 2020, 12, 6135. [CrossRef]

51. National Weather Service. Available online: https://www.weather.gov/source/zhu/ZHU_Training_Page/definitions/dry_wet_
bulb_definition/dry_wet_bulb.htm (accessed on 6 May 2021).

52. Hornik, K.; Weingessel, A.; Leisch, F. Davidmeyerr-Projectorg, M.D.M. Package ‘E1071’. 2020. Available online: https://cran.r-
project.org/web/packages/e1071/e1071.pdf (accessed on 6 May 2021).

53. Luenberger, G.; Mateos, M.L. Programación Lineal y no Lineal. Number 90C05 LUEp; Addison-Wesley Iberoamericana: Madrid,
Spain, 1989.

54. Revista espasa.planetasaber. Condiciones Atmosféricas De Un Lugar Clima. Available online: http://espasa.planetasaber.com/
theworld/gats/article/default.asp?pk=793&art=59 (accessed on 6 May 2021).

377





mathematics

Article

Advances in the Approximation of the Matrix
Hyperbolic Tangent

Javier Ibáñez 1, José M. Alonso 1, Jorge Sastre 2, Emilio Defez 3 and Pedro Alonso-Jordá 4,*

Citation: Ibáñez, J.; Alonso, J.M.;

Sastre, J.; Defez, E.; Alonso-Jordá, P.

Advances in the Approximation of

the Matrix Hyperbolic Tangent.

Mathematics 2021, 9, 1219. https://

doi.org/10.3390/math9111219

Academic Editor: Mariano Torrisi

Received: 23 March 2021

Accepted: 20 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Av. dels Tarongers,
14, 46011 Valencia, Spain; jjibanez@dsic.upv.es (J.I.);
jmalonso@dsic.upv.es (J.M.A.)

2 Instituto de Telecomunicación y Aplicaciones Multimedia, Universitat Politècnica de València, Ed. 8G,
Camino de Vera s/n, 46022 Valencia, Spain; jsastrem@upv.es

3 Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Ed. 8G, Camino de Vera s/n,
46022 Valencia, Spain; edefez@imm.upv.es

4 Department of Computer Systems and Computation, Universitat Politècnica de València, Ed. 1F,
Camino de Vera s/n, 46022 Valencia, Spain

* Correspondence: palonso@upv.es

Abstract: In this paper, we introduce two approaches to compute the matrix hyperbolic tangent.
While one of them is based on its own definition and uses the matrix exponential, the other one is
focused on the expansion of its Taylor series. For this second approximation, we analyse two different
alternatives to evaluate the corresponding matrix polynomials. This resulted in three stable and
accurate codes, which we implemented in MATLAB and numerically and computationally compared
by means of a battery of tests composed of distinct state-of-the-art matrices. Our results show that
the Taylor series-based methods were more accurate, although somewhat more computationally
expensive, compared with the approach based on the exponential matrix. To avoid this drawback,
we propose the use of a set of formulas that allows us to evaluate polynomials in a more efficient way
compared with that of the traditional Paterson–Stockmeyer method, thus, substantially reducing
the number of matrix products (practically equal in number to the approach based on the matrix
exponential), without penalising the accuracy of the result.

Keywords: matrix functions; matrix hyperbolic tangent; matrix exponential; Taylor series; matrix
polynomial evaluation

1. Introduction and Notation

Matrix functions have been an increasing focus of attention due to their applications
to new and interesting problems related, e.g., to statistics [1], Lie theory [2], differential
equations (the matrix exponential function eAt can be considered as a classical example
for its application in the solution of first order differential systems Y′(t) = AY(t) with
A ∈ Cn×n and for its use in the development of exponential integrators for nonlinear ODEs
and PDEs, see [3] for example), approximation theory, and many other areas of science and
engineering [4].

There are different ways to define the notion of the function f (A) of a square matrix A.
The most common are via the Jordan canonical form, via the Hermite interpolation, and via
the Cauchy integral formula. The equivalence among the different definitions of a matrix
function can be found in [5]. Several general methods have been proposed for evaluating
matrix functions, among which, we can highlight the Taylor or Padé approximations and
methods based on the Schur form of a matrix [4].

Among the most well-known matrix functions, we have the matrix hyperbolic cosine
and the matrix hyperbolic sine functions, respectively defined in terms of the matrix
exponential function eA by means of the following expressions:

Mathematics 2021, 9, 1219. https://doi.org/10.3390/math9111219 https://www.mdpi.com/journal/mathematics379
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cosh (A) =
1
2

(
eA + e−A

)
, sinh (A) =

1
2

(
eA − e−A

)
. (1)

These matrix functions are applied, e.g., in the study of the communicability analysis
in complex networks [6], or to construct the exact series solution of coupled hyperbolic
systems [7]. Precisely due to their applicability, the numerical computation of these func-
tions has received remarkable and growing attention in recent years. A set of state-of-the-art
algorithms to calculate these functions developed by the authors can be found in [8–11].

On the other hand, we have the matrix hyperbolic tangent function, defined as

tanh (A) = sinh (A)(cosh (A))−1 = (cosh (A))−1 sinh (A), (2)

and used, for instance, to give an analytical solution of the radiative transfer equation [12],
in the heat transference field [13,14], in the study of symplectic systems [15,16], in graph
theory [17], and in the development of special types of exponential integrators [18,19].

In this work, we propose and study two different implementations that compute the
matrix hyperbolic tangent function: the first uses the matrix exponential function whereas
the second is based on its Taylor series expansion. In addition, for the second approach, we
use and compare two different alternatives to evaluate the matrix polynomials involved in
the series expansion.

1.1. The Matrix Exponential Function-Based Approach

This first option is derived from the matrix hyperbolic tangent function definition as
expressed in Equations (1) and (2), from which the following matrix rational expression is
immediately deduced:

tanh (A) =
(

e2A − I
)(

e2A + I
)−1

=
(

e2A + I
)−1(

e2A − I
)

, (3)

where I denotes the identity matrix with the same order as A. Equation (3) reduces the
approximation of the matrix hyperbolic tangent function to the computation of the ma-
trix exponential e2A.

There exists profuse literature (see e.g., [4,20]) about the approximation of the matrix
exponential function and the inconveniences that its calculation leads to [21]. The most
competitive methods used in practice are either those based on polynomial approximations
or those based on Padé rational approaches, with the former, in general, being more
accurate and with lower computational costs [22].

In recent years, different polynomial approaches to the matrix exponential function
have been proposed, depending on the type of matrix polynomial used. For example,
some approximations use the Hermite matrix polynomials [23], while others derived from
on Taylor polynomials [22,24]. More recently, a new method based on Bernoulli matrix
polynomials was also proposed in [25].

All these methods use the scaling and squaring method based on the identity

eA =
(

e2−s A
)2s

,

which satisfies the matrix exponential. In the scaling phase, an integer scaling factor s is
taken, and the approximation of e2−s A is computed using any of the proposed methods so
that the required precision is obtained with the lowest possible computational cost. In the
squaring phase, we obtain eA by s repeated squaring operations.
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1.2. The Taylor Series-Based Approach

The other possibility for computing the matrix hyperbolic tangent function is to use
its Taylor series expansion

tanh (z) = ∑
k≥1

22k(22k − 1)B2k
(2k)!

z2k−1, |z| < π

2
,

where B2k are the Bernoulli’s numbers.
As in the case of the matrix exponential, it is highly recommended to use the scaling

and squaring technique to reduce the norm of the matrix to be computed and, thus, to obtain
a good approximation of the matrix hyperbolic tangent with an acceptable computational
cost. Due to the double angle formula for the matrix hyperbolic tangent function

tanh(2A) = 2
(

I + tanh2(A)
)−1

tanh(A), (4)

which is derived from the scalar one

tanh(2z) =
2 tanh(z)

1 + tanh2(z)
,

it is possible to compute Ts = tanh(A) by using the following recurrence:

T0 = tanh(2−s A),

Ti = 2
(

I + T2
i−1(A)

)−1
Ti−1(A), i = 1, . . . , s.

(5)

Throughout this paper we will denote by σ(A) the set of eigenvalues of matrix
A ∈ Cn×n and by In (or I) the matrix identity of order n. In addition, ρ(A) refers to the
spectral radius of A, defined as

ρ(A) = max{|λ|; λ ∈ σ(A)}.

With �x�, we denote the value obtained by rounding x to the nearest integer greater
than or equal to x, and �x is the value obtained rounding x to the nearest integer less than
or equal to x. The matrix norm || · || will stand for any subordinate matrix norm and, in
particular, || · ||1 denotes the 1-norm.

This work is organised as follows. First, Section 2 incorporates the algorithms corre-
sponding to the different approaches previously described for approximating the matrix
hyperbolic tangent and for computing the scaling parameter and the order of the Taylor
polynomials. Next, Section 3 details the experiments carried out to compare the numerical
properties of the codes to be evaluated. Finally, in Section 4, we present our conclusions.

2. Algorithms for Computing the Matrix Hyperbolic Tangent Function

2.1. The Matrix Exponential Function-Based Algorithm

The first algorithm designed, called Algorithm 1, computes the matrix hyperbolic
tangent by means of the matrix exponential according to Formula (3). In Steps 1 and 2,
Algorithm 2 from [26] is responsible for computing e2−sB by means of the Taylor approxima-
tion of order mk, being B = 2A. In Step 3, T ! tanh(2−sB) is worked out using Formula (3).
In this phase, T is computed by solving a system of linear equations, with

(
e2−sB + I

)
being

the coefficient matrix and
(

e2−sB − I
)

being the right hand side term. Finally, through
Steps 4–8, tanh(A) is recovered from T by using the squaring technique and the double
angle Formula (5).
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Algorithm 1: Given a matrix A ∈ Cn×n, this algorithm computes T = tanh(A)
by means of the matrix exponential function.

1 B = 2A
2 Calculate the scaling factor s ∈ N∪ {0}, the order of Taylor polynomial

mk ∈ {2, 4, 6, 9, 12, 16, 20, 25, 30} and compute e2−sB by using the Taylor
approximation /* Phase I (see Algorithm 2 from [26]) */

3 T =
(

e2−sB + I
)−1(

e2−sB − I
)
/* Phase II: Work out tanh(2−sB) by (3) */

4 for i = 1 to s do /* Phase III: Recover tanh(A) by (5) */
5 B = I + T2

6 Solve for X the system of linear equations BX = 2T
7 T = X
8 end

Algorithm 2: Given a matrix A ∈ Cn×n, this algorithm computes T =
tanh(A) by means of the Taylor approximation Equation (8) and the Paterson–
Stockmeyer method.

1 Calculate the scaling factor s ∈ N∪ {0}, the order of Taylor approximation
mk ∈ {2, 4, 6, 9, 12, 16, 20, 25, 30}, 2−s A and the required matrix powers of 4−sB
/* Phase I (Algorithm 4) */

2 T = 2−s APmk (4
−sB) /* Phase II: Compute Equation (8) */

3 for i = 1 to s do /* Phase III: Recover tanh(A) by Equation (5) */
4 B = I + T2

5 Solve for X the system of linear equations BX = 2T
6 T = X
7 end

2.2. Taylor Approximation-Based Algorithms

Let

f (z) = ∑
n≥1

22n(22n − 1)B2n

(2n)!
z2n−1 (6)

be the Taylor series expansion of the hyperbolic tangent function, with the radius of
convergence r = π/2, where B2n are the Bernoulli’s numbers, defined by the recursive
expression

B0 = 1 , Bk = −
k−1

∑
i=0

(
k
i

) Bi
k + 1 − i

, k ≥ 1.

The following proposition is easily obtained:

Proposition 1. Let A ∈ Cn×n be a matrix satisfying ρ(A) < π/2. Then, the matrix hyperbolic
tangent tanh(A) can be defined for A as the Taylor series

tanh(A) = f (A) = ∑
n≥1

22n(22n − 1)B2n

(2n)!
A2n−1. (7)

From [4] Theorem 4.7, this series in Equation (7) converges if the distinct eigenvalues
λ1, λ2, · · · , λt of A satisfy one of these conditions:

1. |λi| < π/2.
2. |λi| = π/2 and the series f (ni−1)(λ), where f (z) is given by Equation (6) and ni is the

index of λi, is convergent at the point λ = λi, i = 1, . . . , t.
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To simplify the notation, we denote with

tanh(A) = ∑
k≥0

q2k+1 A2k+1,

the Taylor series (7), and with

T2m+1(A) =
m

∑
k=0

q2k+1 A2k+1 = A
m

∑
k=0

pkBk = APm(B), (8)

the Taylor approximation of order 2m + 1 of tanh(A), where B = A2.
There exist several alternatives that can be applied to obtain Pm(B), such as the

Paterson–Stockmeyer method [27] or the Sastre formulas [28], with the latter being more
efficient, in terms of matrix products, compared with the former.

Algorithm 2 works out tanh(A) by means of the Taylor approximation of the scaled
matrix 4−sB Equation (8). In addition, it uses the Paterson–Stockmeyer method for the ma-
trix polynomial evaluation, and finally it applies the recurrence Equation (5)
for recovering tanh(A).

Phase I of Algorithm 2 is in charge of estimating the integers m and s so that the Taylor
approximation of the scaled matrix B is computed accurately and efficiently. Then, in
Phase II, once the integer mk has been chosen from the set

M = {2, 4, 6, 9, 12, 16, 20, 25, 30, . . . },

and powers Bi, 2 ≤ i ≤ q are calculated, with q =
⌈√

mk
⌉

or q = �√mk as an integer
divisor of mk, the Paterson–Stockmeyer method computes Pmk (B) with the necessary
accuracy and with a minimal computational cost as

Pmk (B) = (((pmk Bq + pmk−1Bq−1 + pmk−2Bq−2 + · · ·+ pmk−q+1B + pmk−q I)Bq

+ pmk−q−1Bq−1 + pmk−q−2Bq−2 + · · ·+ pmk−2q+1B + pmk−2q I)Bq

+ pmk−2q−1Bq−1 + pmk−2q−2Bq−2 + · · ·+ pmk−3q+1B + pmk−3q I)Bq

. . .

+ pq−1Bq−1 + pq−2Bq−2 + · · ·+ p1B + p0 I.

(9)

Taking into account Equation (9), the computational cost of Algorithm 2 is
O
((

2k + 4 + 8s
3
)
n3) flops.

Finally, in Phase III, the matrix hyperbolic tangent of matrix A is recovered by squaring
and repeatedly solving a system of linear equations equivalent to Equation (4).

With the purpose of evaluating Pm(B) in Equation (8) in a more efficient way com-
pared with that offered by the Paterson–Stockmeyer method, as stated in the Phase II of
Algorithm 2, the formulas provided in [28] were taken into consideration into the design
of Algorithm 3. Concretely, we use the evaluation formulas for Taylor-based matrix poly-
nomial approximations of orders m = 8, 14+, and 21+ in a similar way to the evaluation
described in [22] (Sections 3.1–3.3) for the matrix exponential function. Nevertheless, the
Paterson–Stockmeyer method is still being used for orders equal to m = 2 and m = 4.

Following the notation given in [22] (Section 4) for an order m, the suffix “+” in
m = 14+ and m = 21+ means that these Taylor approximations are more accurate than
those approximations of order m = 14 and m = 21, respectively, since the former will
be composed of a few more polynomial terms. The coefficients of these additional terms
will be similar but not identical to the corresponding traditional Taylor approximation
ones. It is convenient to clarify that we have used the order m = 14+, instead of the
order m = 15+, because we have not found a real solution for the coefficients of the
corresponding evaluation formula with order m = 15+.
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The evaluation formulas for the order m = 8 that comprise the system of non-linear
equations to be solved for determining the unknown coefficients ci, i = 1, . . . , 6, are:

B = −A2,

B2 = B2,

y0(B) = B2(c1B2 + c2B), (10)

y1(B) = A((y0(B) + c3B2 + c4B)(y0(B) + c5B2) + c6y0(B)

+2B2/15 + B/3 + I),

where
y1(B) = T17(A) = AP8(B),

and T17(A), or AP8(B), refers to the Taylor polynomial of order 17 of function tanh(A)
given by Equation (8).

Algorithm 3: Given a matrix A ∈ Cn×n, this algorithm computes T = tanh(A)
by means of the Taylor approximation Equation (8) and the Sastre formulas.

1 Calculate the scaling factor s ∈ N∪ {0}, the order of Taylor approximation
mk ∈ {2, 4, 8, 14, 21}, 2−s A and the required matrix powers of 4−sB /* Phase I
(Algorithm 5) */

2 T = 2−s APmk (4
−sB) /* Phase II: Compute Equation (8) */

3 for i = 1 to s do /* Phase III: Recover tanh(A) by Equation (5) */
4 B = I + T2

5 Solve for X the system of linear equations BX = 2T
6 T = X
7 end

Regarding the non-linear equations for order m = 14+ and its unknown coefficients
ci, i = 1, . . . , 13, we have

y0(B) = B2(c1B2 + c2B),

y1(B) = (y0(B) + c3B2 + c4B)(y0(B) + c5B2) + c6y0(B), (11)

y2(B) = A((y1(B) + c7y0(B) + c8B2 + c9B)(y1(B) + c10B2 + c11B)

+c12y1 + c13B2 + B/3 + I),

where
y2(B) = A(P14 + b15B15 + b16B16),

and AP14 represents the Taylor polynomial of order 29 of function tanh(A) given by
Equation (8). If we denote as p15 and p16 the Taylor polynomial coefficients corresponding
to the powers B15 and B16, respectively, the relative error of coefficients b15 and b16 with
respect to them, with two decimal digits, are:

|(b15 − p15)/p15| = 0.38,

|(b16 − p16)/p16| = 0.85.

Taking
B3 = B2B,
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the evaluation formulas related to the system of non-linear equations for order m = 21+
with the coefficients ci, i = 1, . . . , 21 to be determined are

y0(B) = B3(c1B3 + c2B2 + c3B),

y1(B) = (y0(B) + c4B3 + c5B2 + c6B)(y0(B) + c7B3 + c8B2) (12)

+c9y0(B) + c10B3,

y2(B) = A((y1(B) + c11B3 + c12B2 + c13B)(y1(B) + c14y0(B)

+c15B3 + c16B2 + c17B) + c18y1 + c19y0(B) + c20B3

+c21B2 + B/3 + I),

where
y2(B) = A(P21 + b22B22 + b23B23 + b24B24),

and AP21 stands for the Taylor polynomial of order 43 of the function tanh(A) given by
Equation (8). With two decimal digits of accuracy, the relative error made by the coefficients
b22, b23, and b24 with respect to their corresponding Taylor polynomial coefficients p22, p23,
and p24 that accompany their respective powers B22, B23, and B24, are the following:

|(b22 − p22)/p22| = 0.69,

|(b23 − p23)/p23| = 0.69,

|(b24 − p24)/p24| = 0.70.

Similarly to [22] (Sections 3.1–3.3), we obtained different sets of solutions for the coef-
ficients in Equations (10)–(12) using the vpasolve function (https://es.mathworks.com/
help/symbolic/vpasolve.html, accessed on 7 March 2020) from the MATLAB Symbolic
Computation Toolbox with variable precision arithmetic. For the case of m = 21+, the
random option of vpasolve has been used, which allowed us to obtain different solutions
for the coefficients, after running it 1000 times. From all the sets of real solutions provided,
we selected the most stable ones according to the stability check proposed in [28] (Ex. 3.2).

2.3. Polynomial Order m and Scaling Value s Calculation

The computation of m and s from Phase I in Algorithms 2 and 3 is based on the
relative forward error of approximating tanh(A) by means of the Taylor approximation
Equation (8). This error, defined as Ef =

∥∥∥tanh (A)−1(I − T2m+1)
∥∥∥, can be expressed as

Ef = ∑
k≥2m+2

ck Ak,

and it can be bounded as (see Theorem 1.1 from [29]):

Ef =

∥∥∥∥∥ ∑
k≥2m+2

ck Ak

∥∥∥∥∥ =
∥∥∥∥∥ ∑

k≥m+1
c̄kBk

∥∥∥∥∥ ≤ ∑
k≥m+1

|c̄k|βk
m ≡ hm(βm),

where βm = max
{
||Bk||1/k : k � m + 1, c̄m+1 �= 0

}
.

Let Θm be

Θm = max

{
θ ≥ 0 : ∑

k≥m+1
|c̄k|θk ≤ u

}
,

where u = 2−53 is the unit roundoff in IEEE double precision arithmetic. The values of Θm
can be computed with any given precision by using symbolic computations as is shown in
Tables 1 and 2, depending on the polynomial evaluation alternative selected.

Algorithm 4 provides the Taylor approximation order mk ∈ M, lower ≤ k ≤ upper,
where mlower and mupper are, respectively, the minimum and maximum order used, the
scaling factor s, together with 2−s A, and the necessary powers of 4−sB for computing T in
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Phase II of Algorithm 2. To simplify reading this algorithm, we use the following aliases:
βk ≡ βmk and Θk ≡ Θmk .

Algorithm 4: Given a matrix A ∈ Cn×n, the values Θ from Table 1, a minimum order
mlower ∈ M, a maximum order mupper ∈ M, with M = {2, 4, 6, 9, 12, 16, 20, 25, 30}, and
a tolerance tol, this algorithm computes the order of Taylor approximation m ∈ M,
mlower ≤ mk ≤ mupper, and the scaling factor s, together with 2−s A and the necessary
powers of 4−sB for computing Pmk (4

−sB) from (9).

1 B1 = A2; k = lower; q = �√mk�; f = 0
2 for j = 2 to q do
3 Bj = Bj−1B1

4 end

5 Compute βk ≈ ∥∥Bmk+1
∥∥1/(mk+1) from B1 and Bq ; /* see [30] */

6 while f = 0 and k < upper do
7 k = k + 1
8 if mod (k, 2) = 1 then
9 q =

⌈√
mk
⌉

10 Bq = Bq−1B1
11 end

12 Compute βk ≈ ‖Bmk+1‖1/(mk+1) from B1 and Bq ; /* see [30] */
13 if |βk − βk−1| < tol and βk < Θk then
14 f = 1
15 end

16 end

17 s = max
(

0,
⌈

1
2 log2(βk/Θk)

⌉)
18 if s > 0 then

19 s0 = max
(

0,
⌈

1
2 log2(βk−1/Θk−1)

⌉)
20 if s0 = s then
21 k = k − 1
22 q =

⌈√
mk
⌉

23 end
24 A = 2−s A
25 for j = 1 to q do

26 Bj = 4−sjBj
27 end

28 end

29 m = mk

In Steps 1–4 of Algorithm 4, the required powers of B for working out Pmk (B) are
computed. Then, in Step 5, βk is obtained by using Algorithm 1 from [30].

As lim
t→∞

||Bt||1/t = ρ(B), where ρ is the spectral radius of matrix B, then lim
m→∞

|βm −
βm−1| = 0. Hence, given a small tolerance value tol, Steps 6–16 test if there is a value
βk such that |βk − βk−1| < tol and βk < Θk. In addition, the necessary powers of B for
computing Pmk (B) are calculated. Next, the scaling factor s ≥ 0 is provided in Step 17:

s = max
(

0,
⌈

1
2

log2
βk
Θk

⌉)
.

With those values of mk and s, we guarantee that:

Ef (2
−s A) ≤ hmk (4

−sβk) < hmk (Θk) < u, (13)

i.e., the relative forward error of T2mk+1(2−s A) is lower than the unit roundoff u.
Step 18 checks whether the matrices A and B should be scaled or not. If so, the

algorithm analyses the possibility of reducing the order of the Taylor polynomial, but at
the same time ensuring that Equation (13) is verified (Steps 19–23). For this purpose, the
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scaling value corresponding to the order of the Taylor polynomial immediately below the
one previously obtained is calculated as well. If both values are identical, the polynomial
order reduction is performed. Once the optimal scaling parameter s has been determined,
the matrices A and B are scaled (Steps 24–27).

Algorithm 5 is an adaptation of Algorithm 4, where the orders in the set M =
{2, 4, 8, 14, 21} are used. Steps 1–15 of Algorithm 5 are equivalent to Steps 1–16 of
Algorithm 4. Both values β1 and β2 are computed in the same way in both algorithms
while values β3, β4, and β5 are worked out in Algorithm 5 for the polynomial orders
m3 = 8, m4 = 14, and m5 = 21, respectively. Steps 16–31 of Algorithm 5 correspond to
Steps 17–29 of Algorithm 4.

Algorithm 5: Given a matrix A ∈ Cn×n, the values Θ from Table 2, M = {2, 4, 8, 14, 21}
and a tolerance tol, this algorithm computes the order of Taylor approximation mk ∈ M

and the scaling factor s, together with 2−s A and the necessary powers of 4−sB for
computing 2−s APmk (4

−sB) from (10), (11) or (12).

1 B1 = −A2; B2 = B2
1

2 Compute β1 ≈ ∥∥B3
∥∥1/3 from B1 and B2

3 f = 0; k = 1
4 while f = 0 and k < 5 do
5 k = k + 1
6 if k < 5 then

7 Compute βk ≈ ‖Bmk+1‖1/(mk+1) from B1 and B2
8 else
9 B3 = B1B2

10 Compute β5 ≈ ∥∥B22
∥∥1/22 from B1 and B3

11 end
12 if |βk − βk−1| < tol and βk < Θk then
13 f = 1; s = 0
14 end

15 end
16 if f = 0 then

17 s = max
(

0,
⌈

1
2 log2(βk/Θk)

⌉)
18 end
19 if s > 0 then

20 s0 = max
(

0,
⌈

1
2 log2(βk−1/Θk−1)

⌉)
21 if s0 = s then
22 k = k − 1
23 end
24 A = 2−s A
25 B1 = 4−sB1
26 B2 = 16−sB2
27 if k = 5 then
28 B3 = 64−sB3
29 end

30 end

31 m = mk
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Table 1. Values of Θmk , 1 ≤ k ≤ 9, for polynomial evaluation by means of the Paterson–Stockmeyer
method.

m1 = 2 1.1551925093100 × 10−3

m2 = 4 2.8530558816082 × 10−2

m3 = 6 9.7931623314428 × 10−2

m4 = 9 2.3519926145338 × 10−1

m5 = 12 3.7089935615781 × 10−1

m6 = 16 5.2612365603423 × 10−1

m7 = 20 6.5111831924355 × 10−1

m8 = 25 7.73638541973549 × 10−1

m9 = 30 8.68708923627294 × 10−1

Table 2. Values of Θmk , 1 ≤ k ≤ 5, for polynomial evaluation using the Sastre formulas.

m1 = 2 1.1551925093100 × 10−3

m2 = 4 2.8530558816082 × 10−2

m3 = 8 1.88126704493647 × 10−1

m4 = 14+ 4.65700446893510 × 10−1

m5 = 21+ 6.84669656651721 × 10−1

3. Numerical Experiments

The following codes have been implemented in MATLAB to test the accuracy and the
efficiency of the different algorithms proposed:

• tanh_expm: this code corresponds to the implementation of Algorithm 1. For obtaining
m ∈ {2, 4, 6, 9, 12, 16, 20, 25, 30} and s and computing e2A, it uses function exptaynsv3
(see [26]).

• tanh_tayps: this development, based on Algorithm 2, incorporates Algorithm 4
for computing m and s, where m takes values in the same set than the tanh_expm
code. The Paterson–Stockmeyer method is considered to evaluate the Taylor matrix
polynomials.

• tanh_pol: this function, corresponding to Algorithm 3, employs Algorithm 5 in the
m and s calculation, where m ∈ {2, 4, 8, 14, 21}. The Taylor matrix polynomials are
evaluated by means of Sastre formulas.

Three types of matrices with distinct features were used to build a battery of tests
that enabled us to compare the numerical performance of these codes. The MATLAB
Symbolic Math Toolbox with 256 digits of precision was used to compute the “exact” matrix
hyperbolic tangent function using the vpa (variable-precision floating-point arithmetic)
function. The test battery featured the following three sets:

(a) Diagonalizable complex matrices: one hundred diagonalizable 128 × 128 complex
matrices obtained as the result of A = V · D · V−1, where D is a diagonal matrix (with
real and complex eigenvalues) and matrix V is an orthogonal matrix, V = H/

√
n,

being H a Hadamard matrix and n is the matrix order. As 1-norm, we have that
2.56 ≤ ‖A‖1 ≤ 256. The matrix hyperbolic tangent was calculated “exactly” as
tanh (A) = V · tanh (D) · VT using the vpa function.

(b) Non-diagonalizable complex matrices: one hundred non-diagonalizable 128 × 128
complex matrices computed as A = V · J · V−1, where J is a Jordan matrix with
complex eigenvalues whose modules are less than 5 and the algebraic multiplicity
is randomly generated between 1 and 4. V is an orthogonal random matrix with
elements in the interval [−0.5, 0.5]. As 1-norm, we obtained that 45.13 ≤ ‖A‖1 ≤ 51.18.
The “exact” matrix hyperbolic tangent was computed as tanh (A) = V · tanh (J) · V−1

by means of the vpa function.
(c) Matrices from the Matrix Computation Toolbox (MCT) [31] and from the Eigtool

MATLAB Package (EMP) [32]: fifty-three matrices with a dimension lower than or
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equal to 128 were chosen because of their highly different and significant characteris-
tics from each other. We decided to scale these matrices so that they had 1-norm not
exceeding 512. As a result, we obtained that 1 ≤ ‖A‖1 ≤ 489.3. The “exact” matrix
hyperbolic tangent was calculated by using the two following methods together and
the vpa function:

• Find a matrix V and a diagonal matrix D so that A = VDV−1 by using the
MATLAB function eig. In this case, T1 = V tanh(D)V−1.

• Compute the Taylor approximation of the hyperbolic tangent function (T2), with
different polynomial orders (m) and scaling parameters (s). This procedure is
finished when the obtained result is the same for the distinct values of m and s
in IEEE double precision.

The “exact” matrix hyperbolic tangent is considered only if

‖T1 − T2‖
‖T1‖ < u.

Although MCT and EMP are really comprised of 72 matrices, only 53 matrices of
them, 42 from MCT and 11 from EMP, were considered for our purposes. On the one hand,
matrix 6 from MCT and matrix 10 from EMP were rejected because the relative error made
by some of the codes to be evaluated was greater or equal to unity. This was due to the
ill-conditioning of these matrices for the hyperbolic tangent function. On the other hand,
matrices 4, 12, 17, 18, 23, 35, 40, 46, and 51 from MCT and matrices 7, 9, 16, and 17 from
EMP were not generated because they did not satisfy the described criterion to obtain the

“exact” matrix hyperbolic tangent. Finally, matrices 8, 13, 15, and 18 from EMP were refused
as they are also part of MCT.

For each of the three previously mentioned sets of matrices, one test was respectively
and independently carried out, which indeed corresponds to an experiment to analyse the
numerical properties and to account for the computational cost of the different implemented
codes. All these experiments were run on an HP Pavilion dv8 Notebook PC with an
Intel Core i7 CPU Q720 @1.60 Ghz processor and 6 GB of RAM, using MATLAB R2020b.
First, Table 3 shows the percentage of cases in which the normwise relative errors of
tanh_expm are lower than, greater than, or equal to those of tanh_tayps and tanh_pol.
These normwise relative errors were obtained as

Er =
‖ tanh(A)− ˜tanh(A)‖1

‖tanh(A)‖1
,

where tanh(A) represents the exact solution and ˜tanh(A) stands for the approximate one.

Table 3. The relative error comparison, for the three tests, between tanh_expm vs. tanh_tayps and
tanh_expm vs tanh_pol.

Test 1 Test 2 Test 3

Er(tanh_expm)<Er(tanh_tayps) 32% 0% 22.64%

Er(tanh_expm)>Er(tanh_tayps) 68% 100% 77.36%

Er(tanh_expm)=Er(tanh_tayps) 0% 0% 0%

Er(tanh_expm)<Er(tanh_pol) 44% 0% 30.19%

Er(tanh_expm)>Er(tanh_pol) 56% 100% 69.81%

Er(tanh_expm)=Er(tanh_pol) 0% 0% 0%

As we can appreciate, from the point of view of the accuracy of the results, tanh_tayps
outperformed tanh_expm in 68% of the matrices for Test 1 and 100% and 77.36% of them
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for Tests 2 and 3. On the other hand, tanh_pol obtained slightly more modest results with
improvement percentages equal to 56%, 100%, and 69.81% for Tests 1, 2, and 3, respectively.

Table 4 reports the computational complexity of the algorithms. This complexity was
expressed as the number of matrix products required to calculate the hyperbolic tangent of
the different matrices that make up each of the test cases. This number of products includes
the number of matrix multiplications and the cost of the systems of linear equations that
were solved in the recovering phase, by all the codes, together with one more in Step 2 of
Algorithm 1 by tanh_expm.

The cost of each system of linear equations with n right-hand side vectors, where n
denotes the size of the square coefficient matrices, was taken as 4/3 matrix products. The
cost of other arithmetic operations, such as the sum of matrices or the product of a matrix
by a vector, was not taken into consideration. As can be seen, the lowest computational
cost corresponded to tanh_expm, followed by tanh_pol and tanh_tayps. For example,
tanh_expm demanded 1810 matrix products to compute the matrices belonging to Test 1,
compared to 1847 by tanh_pol and 2180 by tanh_tayps.

Table 4. Matrix products (P) corresponding to the tanh_expm, tanh_tayps, and tanh_pol functions
for Tests 1–3.

Test 1 Test 2 Test 3

P(tanh_expm) 1810 1500 848

P(tanh_tayps) 2180 1800 1030

P(tanh_pol) 1847 1500 855

Respectively, for the three experiments, Figures 1–3 illustrate the normwise relative
errors (a), the performance profiles (b), the ratio of the relative errors (c), the lowest and
highest relative error rate (d), the ratio of the matrix products (e), and the polynomial
orders (f) for our three codes to be evaluated.

Figures 1a, 2a and 3a correspond to the normwise relative error. As they reveal, the
three methods under evaluation were numerically stable for all the matrices that were
computed, and all of them provided very accurate results, where the relative errors incurred
were always less than 10−11. The solid line that appears in these figures traces the function
ktanhu, where ktanh (or cond) stands for the condition number of the matrix hyperbolic
tangent function [4] (Chapter 3), and u represents the unit roundoff.

It is clear that the errors incurred by all the codes were usually quite close to this
line for the three experiments and even below it, as was largely the case for Tests 1 and 3.
For the sake of readability in the graphs, normwise relative errors lower than 10−20 were
plotted with that value in the figures. Notwithstanding, their original quantities were
maintained for the rest of the results.

Figures 1b, 2b and 3b depict the performance profile of the codes. In them, the α
coordinate on the x-axis ranges from 1 to 5 in steps equal to 0.1. For a concrete α value, the
p coordinate on the y-axis indicates the probability that the considered algorithm has a
relative error lower than or equal to α-times the smallest relative error over all the methods
on the given test.

The implementation of tanh_tayps always achieved the results with the highest
accuracy, followed closely by tanh_pol. For Tests 1 and 2, Figures 1b and 2b indicate
that the results provided by them are very similar, although the difference in favour of
tanh_tayps is more remarkable in Test 3. As expected from the percentages given in
Table 3, tanh_expm computed the hyperbolic tangent function with the worst accuracy,
most notably for the matrices from Tests 2 and 3.
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Figure 1. Experimental results for Test 1.

Precisely, the relationship among the normwise relative errors incurred by the codes
to be examined is displayed in Figures 1c, 2c and 3c. All these ratios are presented in
decreasing order with respect to Er(tanh_tayps)/Er(tanh_expm). This factor is less than 1
for the great majority of the matrices, which indicates that tanh_tayps and tanh_pol are
more accurate codes than tanh_expm for estimating the hyperbolic tangent function.

These data are further corroborated by the results shown in Figures 1d, 2d and 3d.
These graphs report the percentages of the matrices, for each of the tests, in which each
code resulted in the lowest or highest normwise relative error among the errors provided
by all of them. Thus, tanh_tayps exhibited the smallest relative error in 44% of the matrices
for Test 1 and in 47% of them for Test 3, followed by tanh_pol in 29% and 36% of the cases,
respectively. For all the other cases, tanh_expm was the most reliable method. For Test 2,
tanh_pol was the most accurate code in 53% of the matrices, and tanh_tayps was the
most accurate in 47% of them. In line with these results, tanh_expm was found to be the
approach that led to the largest relative errors in 51% of the cases in Test 1, in 100% of them
in Test 2, and in 64% for Test 3.
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Figure 2. Experimental results for Test 2.

In contrast, although tanh_expm proved to be the most inaccurate code, it is also evi-
dent that its computational cost was usually the lowest one, as Table 4 and
Figures 1e, 2e and 3e reported. The ratio between the number of tanh_tayps and tanh_expm
matrix products ranged from 0.82 to 1.43 for Test 1, was equal to 1.20 for Test 2, and ranged
from 0.82 to 1.8 for Test 3. Regarding tanh_pol and tanh_expm, this quotient varied from
0.82 to 1.13 for Test 1, from 0.68 to 1.2 for Test 3, and was equal to 1 for Test 2.

Table 5 lists, in order for Tests 1, 2, and 3, the minimum, maximum, and average
values of the degree of the Taylor polynomials m and the scaling parameter s employed by
the three codes. Additionally, and in a more detailed way, Figures 1f, 2f and 3f illustrate
the order of the polynomial used in the calculation of each of the matrices that compose
the testbed. The value of m allowed to be chosen was between 2 and 30 for tanh_expm
and tanh_tayps and between 2 and 21 for tanh_pol. As we can see, the average value
of m that was typically used varied from 25 and 30 for tanh_expm. It was around 25 for
tanh_tayps, and it ranged from 14 to 21 for tanh_pol.
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Figure 3. Experimental results for Test 3.

Table 5. The minimum, maximum, and average parameters m and s employed for Tests 1–3, respec-
tively.

m s
Min. Max. Average Min. Max. Average

tanh_expm 16 30 27.41 0 5 3.55
tanh_tayps 9 30 25.09 0 6 4.65
tanh_pol 14 21 15.47 0 6 4.83
tanh_expm 30 30 30.00 2 2 2.00
tanh_tayps 25 25 25.00 3 3 3.00
tanh_pol 21 21 21.00 3 3 3.00
tanh_expm 2 30 26.23 0 8 2.77
tanh_tayps 9 30 24.38 0 9 3.74
tanh_pol 4 21 15.36 0 9 3.87

Having concluded the first part of the experimental results, we continue by comparing
tanh_tayps and tanh_pol, the Taylor series-based codes that returned the best accuracy
in the results. Table 6 presents the percentage of cases in which tanh_tayps gave place to
relative errors that were lower than, greater than, or equal to those of tanh_pol. According
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to the exposed values, both methods provided very similar results, and the percentage of
cases in which each method was more accurate than the other was approximately equal to
50% for the different tests.

Table 6. The relative error comparison for the three tests between tanh_tayps vs. tanh_pol.

Test 1 Test 2 Test 3

Er(tanh_tayps)<Er(tanh_pol) 56% 47% 50.94%

Er(tanh_tayps)>Er(tanh_pol) 44% 53% 45.28%

Er(tanh_tayps)=Er(tanh_pol) 0% 0% 3.77%

Figures 4–6 incorporate the normwise relative errors (a), the ratio of relative errors
(b), and the ratio of matrix products (c) between tanh_tayps and tanh_pol. The graphs
corresponding to the performance profiles and the polynomial orders are not included
now since the results match with those already shown in the previous figures. All this
information is also complemented by Table 7, which collects, respectively for each test, the
minimum, maximum, and average relative errors incurred by both methods to be analysed,
together with the standard deviation.
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Figure 4. Experimental results for Test 1.

As Table 6 details, for Tests 1 and 3, tanh_tayps slightly improved on tanh_pol in
the percentage of matrices in which the relative error committed was lower, although it
is true that the difference between the results provided by the two methods was small in
most cases. However, when such a difference occurred, it was more often in favour of
tanh_tayps than the other way around, in quantitative terms.

With all this, we can also appreciate that the mean relative error and the standard
deviation incurred by tanh_pol were lower than those of tanh_tayps. For matrices that
were part of Test 2, the numerical results achieved by both methods were almost identical,
and the differences between them were not significant.
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Figure 5. Experimental results for Test 2.
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Figure 6. Experimental results for Test 3.

To conclude the analysis and with regard to the computational cost of both codes, such
as depicted in Figures 4c, 5c and 6c, it simply remains to note that tanh_tayps performed
between 1 and 1.43 more matrix products compared with tanh_pol for Test 1, 1.2 more for
Test 2, and between 1.06 and 1.5 more for Test 3. Therefore, tanh_pol computed the matrix
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tangent function with a very similar accuracy in the results compared to tanh_tayps but
with a considerably lower computational cost.

Table 7. The minimum, maximum, and average values and the standard deviation of the relative
errors committed by tanh_tayps and tanh_pol for Tests 1–3.

Minimum Maximum Average
Standard
Deviation

tanh_tayps 4.84 × 10−16 6.45 × 10−12 1.22 × 10−13 7.40 × 10−13

tanh_pol 4.55 × 10−16 3.64 × 10−12 8.48 × 10−14 4.69 × 10−13

tanh_tayps 9.71 × 10−16 9.06 × 10−14 1.25 × 10−14 1.41 × 10−14

tanh_pol 9.92 × 10−16 9.35 × 10−14 1.26 × 10−14 1.47 × 10−14

tanh_tayps 1.09 × 10−254 1.10 × 10−10 2.26 × 10−12 1.52 × 10−11

tanh_pol 1.09 × 10−254 1.16 × 10−11 4.10 × 10−13 1.96 × 10−12

4. Conclusions

Two alternative methods to approximate the matrix hyperbolic tangent were ad-
dressed in this work. The first was derived from its own definition and reduced to the
computation of a matrix exponential. The second method deals with its Taylor series ex-
pansion. In this latter approach, two alternatives were developed and differed on how the
evaluation of the matrix polynomials was performed. In addition, we provided algorithms
to determine the scaling factor and the order of the polynomial. As a result, we dealt
with a total of three MATLAB codes (tanh_expm, tanh_tayps, and tanh_pol), which were
evaluated on a complete testbed populated with matrices of three different types.

The Taylor series-based codes reached the most accurate results in the tests, a fact
that is in line with the recommendation suggested in [33] of using a Taylor development
against other alternatives whenever possible. However, codes based on Taylor series can be
computationally expensive if the Paterson–Stockmeyer method is employed to evaluate the
polynomial, as we confirmed with the tanh_tayps implementation. One idea to reduce
this problem is to use Sastre formulas, as we did in our tanh_pol code, resulting in an
efficient alternative that significantly reduced the number of matrix operations without
affecting the accuracy.

The results found in this paper demonstrated that the three codes were stable and
provided acceptable accuracy. However, and without underestimating the other two
codes, the tanh_pol implementation proposed here offered the best ratio of accu-
racy/computational cost and proved to be an excellent method for the computation of
the matrix hyperbolic tangent.
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