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This book presents advanced research on AI theory and its applications in medicine, medically

oriented human biology, and general healthcare from a variety of multidisciplinary perspectives. AI

in biomedicine and clinical medicine, machine learning-based decision support, robotic surgery, data

analytics and mining, laboratory information systems, and AI in medical education are among the

themes covered. Following this are the results of a study on the “Convergence and Open Sharing

System” Project, supported by the Ministry of Education and National Research Foundation of Korea.
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1. Introduction

Advancements in artificial intelligence (AI) based on machine and deep learning
are transforming certain medical disciplines. When combined with the rapid progress in
high-performance computing, AI-based systems have enhanced the accuracy of diagnostics
and the efficiency of therapeutics in many specializations. Advanced AI algorithms can
extract features from a significant amount of healthcare data and then apply them to clinical
practice. Furthermore, depending on feedback, the algorithm’s accuracy is improved by
its self-correcting abilities. Consequently, an AI-based healthcare support system can help
physicians deliver optimal patient care by reducing diagnostic and therapeutic errors that
unavoidably occur in human-based clinical practice [1]. In addition, such AI-based systems
can extract meaningful information from a large patient population’s data to draw real-time
conclusions related to health risk alarms and health outcome projections.

According to experts, diverse healthcare sectors including chronic illness management
and clinical decision-making can expect to be substantially impacted by AI. While AI
algorithms are still in the early stages of deployment, they show promise in fields including
radiology, pathology, ophthalmology, and cardiology [2]. Such progress poses interesting
questions about whether AI will eventually displace clinicians, enhance their professional
prospects, or some combination of both.

This Special Issue’s objective is to advance research into a wide range of multidis-
ciplinary perspectives on AI theory and its applications in medicine, medically oriented
human biology, and general healthcare. The topics covered include (but are not limited to)
AI in biomedicine and clinical medicine, machine learning-based decision support, robotic
surgery, data analytics and mining, laboratory information systems, and AI in medical
education. We stress the practical aspects of each study, emphasizing the importance of
including a clinical evaluation of the utility and potential impact of the work.

2. Review of Issue Contents

This Special Issue presents ten original papers that cover the latest technologies and
advances in the design of intelligent medical systems and applications. Moreover, each
paper contributes to research that affords insights into the processing of medical data
collected from patients.

Visual acuity (VA) measures the ability to distinguish the shapes and details of objects
at a given distance. However, in some cases, such as unconsciousness or disease e.g.,
dementia, it may be impossible to measure VA using traditional chart-based methods. In [3],
Kim et al. propose a machine-learning-based VA measurement method that determines
VA from fundus images only. Three models, SVM, VGG-19, and EfficientNet-B7, were
ensembled to predict categories. This is a precedent for applying artificial intelligence in
medical practice to measure VA using fundus images.

Appl. Sci. 2022, 12, 4649. https://doi.org/10.3390/app12094649 https://www.mdpi.com/journal/applsci1
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Neuroimaging must often process a large amount of data with significantly fewer
cases than the number of variables, which results in overmatching. To prevent this prob-
lem, Belenguer-Llorens et al. [4] propose a new dual Bayesian linear regression model
with feature selection (DBL-FS) that effectively reduces the number of samples with high-
dimensional features. This relies on including an automatic relevance determination prior
(ARD) over the weight matrices, which automatically infers the features’ relevance in
the input feature space by assigning higher/lower relevance values when they contain
more/fewer relevant features.

In addition, the DBL-FS Bayesian approach facilitated prior expert knowledge to guide
the FS process and compensated for the limited number of samples available to train the
model. The advantage of using DBL-FS allowed the detection and characterization of
morphometric brain changes in a schizophrenic rodent model.

Image segmentation is used to analyze medical images quantitatively for diagnosis
and treatment planning. This is because manual segmentation requires considerable expert
effort and time. Ju et al. [5] propose a deep learning tool that easily creates training data to
mitigate this inconvenience. This study was performed using two types of information:
visual features and organ segment locations. The proposed model consists of two submod-
ules: a feature encoder and a kernel function. The kernel function incorporates feature
similarity density and Gaussian kernel density. The tool demonstrates competitive results
when compared to state-of-the-art segmentation algorithms, such as UNet and DeepNetV3.
The tool can be trained with minimal labeled data, uses anchor pixels from user interactions
to segment organs easily, and refines the segmentation results by modifying the thresholds.
Hofmann et al. [6] used machine learning to predict whether patients with schizophre-
nia exhibit aggressive behaviors. Up-sampling was used to process a small number of
categories to balance the data, reduce variables using the random forest algorithm, and
build machine learning models by including the logistic regression, trees, random forest,
gradient boosting, k-nearest neighbor (KNN), support vector machines (SVM), and naive
Bayes approaches. The performance of the SVM model was superior to the other machine
learning algorithms. Negative behavior towards other patients was identified as the most
indicative factor for distinguishing aggressive from non-aggressive patients. Its application
may enable clinicians to identify high-risk patients at an early stage, modify their treatment
accordingly, and prevent aggressive events during hospitalization.

Identifying the locations and extent of brain infarctions is essential for diagnosis and
treatment. In general, deep learning requires large amounts of training data. To overcome
this problem, Yoshida et al. [7] generated pseudo-patient images using CycleGAN, which
performed image transformation without paired images. First, CycleGAN was used for
data augmentation and to generate pseudo-cerebral infarction images from images of
healthy specimens. Finally, U-Net was used to segment the cerebral infarction region
using the CycleGAN-generated images. Regarding extraction accuracy, the U-Net-with-
CycleGAN images showed an improvement over those of U-Net without CycleGAN, were
efficient, and assisted in extracting the infarction area accurately while maintaining the
detection rate.

STHarDNet [8] is a novel segmentation model for magnetic resonance imaging (MRI).
In MRI segmentation, conventional approaches utilize U-Net models with encoder–decoder
structures, segmentation models using vision transformers, or models that combine a vision
transformer with an encoder–decoder model structure. However, conventional models
are large with low computation speeds, and, in vision transformer models, the amount
of computation sharply increases with the image size. To overcome these problems, the
STHarDNet model is proposed, which combines Swin transformer blocks and a lightweight
U-Net-type model that has a HarDNet block-based encoder–decoder structure. To maintain
the features of the hierarchical transformer and shifted windows approach of the Swin
transformer model, the Swin transformer is used in the first skip connection layer of the
encoder, instead of in the encoder–decoder bottleneck.
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STHarDNet improved the accuracy and speed of MRI image-based stroke diagnosis.
In general, combined, the Swin transformer blocks and lightweight U-Net type model
maintained the advantage of hierarchical feature extraction and demonstrated excellent
segmentation performance. The Swin transformer restricts the computation of attention to
each window, and this also maintains high calculation speeds.

The whole-slide image (WSI) is a digitized medical image. Processing WSIs to train
neural networks is often intricate and labor-intensive. Neuner et al. [9] developed an open-
source library dealing with recurrent tasks in the processing of WSIs and helped with the
training and evaluation of neuronal networks for classification tasks. First, a large WSI
is divided into multiple small tiles. Thereafter, the region of interest (ROI) is extracted
using a filtering algorithm that stores each WSI’s dimensions, ROI, and tile information. In
addition, evaluations are available at each level while preserving the hierarchical structure.
Neural network training continues using the fastai library, which applies filtered informa-
tion for learning, reduces storage space, and increases the processing speed. This approach
supplements the clinicopathological diagnoses of brain tumors.

Upper gastrointestinal endoscopy is widely performed to detect early gastric cancers
(GCs). The automated detection of early GCs from endoscopic images involves an object
detection model. However, the reduction of false positives involves challenges in the
detected results. Teramoto et al. [10] propose an object detection model, U-Net R-CNN,
based on a semantic segmentation technique that extracts target objects by performing local
analysis on the images. The candidate regions were extracted using U-Net; however, many
regions were over-detected in the detected candidate regions. Therefore, the candidate
region was cut and input to the CNN to classify the candidate region as a GC or a false
positive. Finally, the regions identified by the CNN were considered candidate regions.
DenseNet169 was used as the convolutional neural network for box classification, which
improved the detection performance compared with the previous method.

In [11] the authors verified that adversarial attacks were not negligible during open-
source development. Open-source deep neural networks (DNNs) for medical imaging are
significant in emergent situations, such as during the COVID-19 pandemic because they
accelerate the development of high-performance DNN-based systems. The COVID-Net
model, an open-source DNN model for detecting COVID-19 from chest X-ray images,
is susceptible to backdoor attacks that modify DNN models and cause misclassification
when a specific input trigger is added. The backdoor attacks are effective against models
fine-tuned from the backdoored COVID-Net models, although non-targeted attacks are
less successful. This indicates that the high-risk backdoored models can be spread by fine-
tuning, thereby becoming a significant security threat. The findings show that protection
must be emphasized during open-source development and in the practical application of
DNNs for COVID-19 detection.

Finally, in [12], Calnares et al. present an automatic system for modeling clinical
knowledge to follow a physician’s reasoning during medical consultation. Instance-based
learning was applied to provide suggestions for electronic medical records. A learning
method was applied to determine the case types that best match the clinical scenarios of
patients being evaluated according to an ad hoc similarity metric. A list of similar case
types was suggested during evaluation whenever the physician modified the patient’s
information. The list of similar case types was updated when introducing or removing any
clinical phase during medical consultation. This learning method can produce suggestions
within a reasonable timeframe, even when processing large volumes of data. It is a novel
tool that helps meet healthcare goals and reminds physicians to record essential data to
fulfill care goals.

3. Conclusions

AI is a frontier where powerfully disruptive computer science advances have the
potential to transform fundamentally the practice of medicine and healthcare delivery. It is
profoundly changing the traditional model of medicine and significantly improving the
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level of medical services to assure various aspects of human health. Ever broader prospects
are anticipated for the development of medical AI. Based on this trend, this special volume
presents new and innovative research addressing some of the many scientific challenges
associated with applying AI in medicine. We emphasize the need for a better understanding
of AI’s ongoing incorporation into routine medical practice. As such, the studies in this
volume provide valuable perspectives on AI’s future in healthcare, describe a roadmap for
building effective, reliable, and safe approaches to AI in medicine, and discuss potential
directions for developing AI-augmented healthcare systems.
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Abstract: Visual acuity (VA) is a measure of the ability to distinguish shapes and details of objects at
a given distance and is a measure of the spatial resolution of the visual system. Vision is one of the
basic health indicators closely related to a person’s quality of life. It is one of the first basic tests done
when an eye disease develops. VA is usually measured by using a Snellen chart or E-chart from a
specific distance. However, in some cases, such as the unconsciousness of patients or diseases, i.e.,
dementia, it can be impossible to measure the VA using such traditional chart-based methodologies.
This paper provides a machine learning-based VA measurement methodology that determines VA
only based on fundus images. In particular, the levels of VA, conventionally divided into 11 levels,
are grouped into four classes and three machine learning algorithms, one SVM model and two CNN
models, are combined into an ensemble method in order to predict the corresponding VA level from
a fundus image. Based on a performance evaluation conducted using randomly selected 4000 fundus
images, we confirm that our ensemble method can estimate with 82.4% of the average accuracy for
four classes of VA levels, in which each class of Class 1 to Class 4 identifies the level of VA with
88.5%, 58.8%, 88%, and 94.3%, respectively. To the best of our knowledge, this is the first paper on VA
measurements based on fundus images using deep machine learning.

Keywords: visual acuity; fundus images; machine learning; ophthalmology; deep learning; SVM

1. Introduction

According to World Health Organization (WHO) statistics, the number of people with
visual morbidity worldwide, as of 2020, is in excess of 299.1 million, of which 49.1 million
is blind [1]. Visual sight is closely related to the quality of daily human life, such as safe
walking, driving, and working; thus, regular eye health screening is essential to maintain
eye health. Visual Acuity (VA) is a measure of the ability of the eye to distinguish shapes
and the details of objects at a given distance. It is one of the essential indications of health.
It is the most commonly used intuitive measure of the visual system’s performance. The
measurement of VA provides a baseline recording of VA, aids examination and diagnosis
of eye disease or refractive errors, assesses any vision changes, and measures the outcomes
of cataract or other surgery.

VA may be measured in various ways, depending on various conditions, such as
illuminance. However, the measurement of VA needs to be consistent in order to detect
any changes in vision. The general ways of VA measurement are (1) multi-letter Snuellen
or E chart (2) plain occluder, card or tissue, (3) pinhole occluder, (4) touch or flashlight, or

Appl. Sci. 2022, 12, 3190. https://doi.org/10.3390/app12063190 https://www.mdpi.com/journal/applsci5
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(5) patient’s documentation. The general procedure for VA measurement recommended by
the US national library of medicine can be as follows [2]:

1. Position the patient, sitting or standing, at a distance of 6 m from the chart;
2. Test the eyes one at a time, at first without any spectacles (if worn);
3. Ask the patient to cover one eye with a plain occluder, card or tissue;
4. Ask the patient to read from the top of the chart and from left to right;
5. Record the VA for each eye in the patient‘s notes, stating whether it is with or without

correction (spectacles). For example, Right VA = 0.1 with correction, Left VA = 0.2
with correction.

6. ...

In this procedure, the communication between VA examiner and examinee is essential
to measure VA. However, it is not suitable or impossible to use the classical ways of
measuring VA in the following occasions:

• When the patient is unable to use the measurement tool due to mobility difficulties;
• When the patient is unconscious state or lack of cooperation during the evaluation;
• When malingering should be strongly suspected;
• When an infant or a very young patient requires the measurement of VA.

In particular, continuous visual acuity measurement is necessary to secure the quality
of life after regaining consciousness for patients who remain unconscious for a long
time. However, since the existing method of measuring vision requires the patient to
have a conversation with a tester, it is impossible to measure the vision of a prolonged
unconscious. In addition, in a situation, such as the recent COVID-19 pandemic, as social
isolation is prolonged, patients feel that it is harder to visit hospitals than before. For this
reason, it becomes challenging to manage people’s visual sight via the traditional method
of measuring eyesight.

This paper provides a vision measurement method using deep learning-based ensem-
ble methodology using fundus images. In this paper, we would overcome the following
two problems:

• How can we measure the VA from an examinee who cannot communicate with the
VA examiner or tries to present an incorrect VA value?

• How can we achieve a more accurate classifier when a dataset is fairly biased to certain
classes in terms of the number of sample data?

Fundus photography involves photographing the rear of an eye, which is also known
as the fundus. It is a photo image most popularly used in examining more than 38 types
of eye diseases, such as age-related macular degeneration, neoplasm of choroid, chorior-
retinal inflammation or scars, glaucoma, retinal detachment and defects, and so on. Fundus
imaging has been advanced to decrease preventable visual morbidity by allowing easy and
timely fundus screening. In particular, the usability and portability of fundus screening
have been continuously advanced for the last two decades. Furthermore, recently, there
have been significant technological advances that have radicalized retinal photography.
Improvements in telecommunications and smartphones are two remarkable breakthroughs
that have made ophthalmic screening in remote areas a realizable possibility [3].

We address the above first problem with the high availability of fundus images. We
would estimate the VA by capturing a fundus image from a VA examinee and using a VA
classifier based on a deep machine learning technique. In this paper, 11 levels from 0.0 to
1.0 (step by 0.1) of VA levels are grouped into four classes according to ophthalmologist
doctor’s needs.

To tackle the second problem, we adopt an ensemble approach consisting of three
machine learning models. In the medical field, it is very difficult to obtain a balanced size of
a medical dataset because the dataset of normal cases is much larger than those of abnormal
cases. The dataset of VA measurement results has the same issue; the cases of a lower VA
level, in reality, are much less than those of a higher VA level. For this reason, it is difficult
to adopt a classical CNN model for such unbalanced datasets of VA levels in a classical way.
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In our ensemble approach, three machine learning models and techniques are combined to
the classification of VA level groups or VA levels using their best classification performance.

The contributions of this paper are to

• to present a deep-learning-based VA measurement approach using fundus images;
• to demonstrate the feasibility and effectiveness of an ensemble approach to overcome

the difficulties of obtaining datasets with a balanced size, and
• to present a VA measurement alternative for the examinee who is not easy or has no

possible way to communicate with the VA examiner.

To the best of our knowledge, this is the first paper on the VA measurement based on
fundus images using machine learning.

This paper is organized as follows: In Section 2, we present related work relevant
to this work. In Section 3, we present a simple description on fundus images and the
datasets consisting of fundus image and VA measurement data that we obtain from hos-
pitals. Section 4 presents the main idea of our approach, a deep learning-based ensemble
methodology for VA Measurement. We discuss the reason why an ensemble method is
appropriate for our work and individual machine learning techniques comprising the en-
semble method. In Section 5, we present the validation results of our proposed 4-Class VA
classifier based on fundus images with various metrics of machine learning performance
evaluation and a comparison of our ensemble method against the VGG-19-based CNN
model. Finally, we conclude this paper in Section 6.

2. Related Work

Colenbrander [4] discusses the classical methods for VA measurement. Recently,
some approaches to VA measurement have presented using various tools and smart-
phones [5–7]. Recently, ML using DNN has been actively used to diagnose, predict, and
suggest medical treatment methods [8–12]. ML using DNN is also being actively used in
ophthalmology [13–18]. Closely related to this study, there are some VA measurements
using DNN [18–21]. For instance, Alexeeff et al. [21] develop a prediction model of final
corrected distance visual acuity (CDVA) after cataract surgery, using machine learning
algorithms based on electronic health record data. The fundus image is a universal and
most actively used ophthalmic image for the diagnosis of various ophthalmic diseases. For
this reason, recently, ML-based AI using this fundus image as training data are being ac-
tively studied for classification and prediction of eye diseases, such as diabetic retinopathy,
glaucoma, and age-related macular degeneration [22–27]. However, to our best knowl-
edge, no previous work presents ML for VA measurement, using fundus images and VA
measurements of personals.

3. Datasets: Fundus Images and Vision Measurements

In this study, a vision acuity classification model is implemented based on personal’s
vision data and the relevant fundus images.

Fundus photography involves taking pictures of the back of the eye, also known
as fundus. A special fundus camera consisting of a complex microscope attached to a
flash-enabled camera is used for fundus photography. The main structures that can be
visualized in fundus photography are the macula, the optic disc, and mid-peripheral retina
with retinal vessels.

In Figure 1, the retina is the innermost layer of light-sensitive tissue in most vertebrates
and some mollusks. The optics of the eye make the visual world concentrated on the retina
into a two-dimensional image, and the retina converts the image into an electrical nerve
stimulus to the brain to create a visual perception. The retina functions similarly to the
camera’s film or image sensor. The optic disc is the point where the axons of retinal
ganglion cells converge and leave the eye. The optic disc in the normal human eye carries
1–1.2 million afferent nerve fibers from the eye to the brain.The optic disc is also the
entry point for the major blood vessels that supply blood to the retina. The oval yellow
area surrounds the fovea near the center of the retina of the eye, the area of sharpest
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vision. The human macula is about 5.5 mm (0.22 inches) in diameter. The macula of the
human eye is where light is focused by the structures in front of the eye (cornea and lens).
The photoreceptor cells in the macula are connected to nerve fibers and transmit visual
information to the brain.

Figure 1. A normal fundus photograph of a right eye.

3.1. Datasets: Fundus Images and Patient’s Vision Data

The vision chart data and fundus images of patients are obtained from 79,798 patients
from February 2016 to January 2021 at the Department of Ophthalmology at Gyeongsang
National University Changwon Hospital. The procedures used in this study followed the
principles of the Declaration of Helsinki. The requirement for obtaining informed patient
consent was waived by the institutional review board of Gyeongsang National University,
Changwon Hospital (GNUCH 2021-05-007) due to the retrospective nature of the study.

The fundus images we used in this study are acquired in BMP files by an automation
program in AutoIt. A fundus image is selected after matching the personal ID of a fundus
image to a personal integrated vision information record. The original data used in this
study are anonymized before its use. In this study, retrieving personal vision information
necessary for machine learning is conducted in two stages: coupling fundus images and
personal vision information and pre-processing of fundus images. In the first stage, we
extract the vision acuity information from the medical charts of 79,798 patients with the
keywords ‘VA (Vision Acuity)’, ‘BCVA (Best Corrected VA)’, and ‘CVA (Corrected VA)’ and
reshape, for our purpose, personal vision datasets of 60,021 visual acuity information, of
which each has a corresponding fundus image.

Initially, we have a total of 102,237 fundus images coupled with individual personal
VA measurements. We use the personal id and the date of a funds image taken when
coupling a fundus image and personal vision data. Ultimately, we obtained 79,800 images
by this matching. Furthermore, 55,152 fundus images of them are used as data sets for
machine learning.

We abstract the classical 11 levels of VA measurements (0.0–1.0, step by 0.1) into four
groups as shown in Table 1. Class 1 consists of 2501 images with visual acuity of 0.0 to 0.05,
Class 2 consists of 3972 images with 0.1, 0.15, and 0.2, Class 3 consists of 16,104 images
with 0.3 to 0.7, and Class 4 consists of 32,575 images with 0.8 to 1.0. Table 1 shows the
characteristics of fundus image findings for each level of VA. In addition to fundus image
findings, visual acuity is dependent on optical and neural factors such as the sharpness of
the retinal image within the eye, the function of the retina, and the interpretative function
of the brain.

Table 2 shows three fundus images for each VA level and representative findings of
each image. It will help to understand the characteristics of each class.

Table 1. Our VA classification.

Conventional
VA Class

New
VA Classes

Features

0.0–0.05 Class 1

1. Macular pigmentation and depigmentation findings
2. Macular bleeding and ischemia findings
3. Severe Peripapillary Atrophy orand Optic Nerve Atrophy
4. Tortuosity and abnormal findings of blood vessels near the macula
5. Overall cloudy fundus picture
6. Partially poorly observed fundus picture
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Table 1. Cont.

Conventional
VA Class

New
VA Classes

Features

0.1, 0.15, 0.2 Class 2

1. Fundus findings similar to Class 1,
2. Fundus findings less cloudy than Class 1,
3. Less severe macular pigmentation and depigmentation and abnormal

findings than Class 1.

0.3–0.7 Class 3
1. Fundus findings similar to Class 4,
2. Fundus findings that are generally more cloudy than Class 4,
3. Fundus findings that are partially cloudy than Class 4.

0.8–1.0 Class 4
1. Normal macula,
2. No dyspigmentation and no bleeding,
3. Normal optic disc.

Table 2. Examples of collected fundus images of Classes 1–4 and their features.

VA Classes Fundus Images and Features

Class 1

(a) (b) (c)

(a) Macular pigmentation and depigmentation findings,
(b) Macular hemorrhage and ischemic findings, optic nerve peripapillary

atrophy and optic nerve atrophy,
(c) Tortuosity and abnormal findings of blood vessels near the macula.

Overall opinion: Overall cloudy fundus picture, partially obscured fundus
picture.

Class 2

(d) (e) (f)

(d) Macular rarely visible,
(e) Less cloudy than Class,
(f) Less severe macular pigmentation and depigmentation and abnormal

findings than Class 1.

Class 3

(g) (h) (i)

(g) Cloudy around macular,
(h) Generally cloudy than Class 4.
(i) Partially cloudy than Class 4.
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Table 2. Cont.

VA Classes Fundus Images and Features

Class 4

(j) (k) (l)

(j) Macula of normal shape,
(k) Normal optic disc,
(l) Abnormalities of the retina and blood vessels far from the macula.

3.2. Pre-Processing of Fundus Images

In the second step, fundus images are pre-processed with three filters and their
combination, as shown in Figure 2, to augment and generalize fundus image data.

(a) (b) (c)

(d) (e) (f)

Figure 2. Pre-processing of fundus images. (a) Original; (b) Salt and pepper; (c) Gamma correction;
(d) Remove noise; (e) Gamma correction + Salt and pepper; and (f) Gamma correction + Remove noise.

Table 3 summarizes the types and functions of pre-processing methods. Note that the
pre-processing methods provided in this section are randomly applied to augment fundus
images only for Classes 1 and 2.

Indeed, other pre-processing methods, such as shearing and shifting, may be helpful
to improve the performance of the VA classifier. The image processing methods, such as
shearing and shifting, that adjust the shape of images and the position of image features do
not work effectively to improve the classification accuracy of our trained machines. For
example, the shearing filter is not effective enough to improve the classification accuracy of
VA measurement in our experiments. It seems that, when a CNN is trained, tweaking of
the shape and shifting of the image location impair the shape of macular and optic nerve
papilla that the human doctor observes carefully to check the health of the eye. Rotation of
images is applied to augment fundus images from the datasets of Classes 1 and 2 which
are much less than the other classes, and rescaling is limitedly applied fitting to our needs
and purposes, such as transfer learning and SVM training.
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Table 3. Pre-processing methods.

Pre-Processing Features

Salt & Pepper
• It changes the pixel of an image to 0 or 255 with a certain probability.

Instead of adding or reducing the value to the pixel value of the original
image, the pixel exists in white or black with a specific probability.

Gamma correction

• It corrects brightness by changing pixel values if the image is too dark or
bright.

• The parameter is the gamma value γ. If 0 < γ < 1, the image darkens;
If γ = 1, the image changes the same as the original image; if γ < 1, the
image brightens.

Remove noise
• The median filter, one of the ways to remove noise, sorts the values of

surrounding pixels and changes the pixel value to the median value. It is
mainly used to remove salt and pepper.

3.3. Data Augmentation

Table 4 shows the size of datasets of each VA level for our machine learning. For
Classes 3 and 4, we do not augment or pre-process the datasets of Classes 3 and 4. The
datasets of Classes 1 and 2 are much less than those of Classes 3 and 4. For the reason,
we augment them in the following ways: first, we randomly select around 2500 from the
dataset of Class 2 to make it balanced with the dataset of Class 1. Then, the two datasets
of Classes 1 and 2 are augmented in the following way: the images of Classes 1 and 2 at
the rate of 45% to 50% are randomly selected and rotated at −10◦ to 10◦. Then, 25% to 30%
images of the rotated images of Classes 1 and 2 are applied for the filtering methods in
Section 3.2. Then, the datasets of Classes 1 and 2 are augmented the following way: the
images of Classes 1 and 2 are selected from the original datasets randomly at the rate of 45%
to 50% and rotated at −10◦ to 10◦. Then, the filtering methods in Section 3.2 are applied for
25% to 30% images from the rotated images of Classes 1 and 2.

For all images of Classes 1 to 4, each image is cropped so that the main part of the
macula and optic nerve papilla remains wholly highlighted, as shown in Figure 3, by
completely removing the black part of each image. The original size of each image may
not be identical to the others since they are captured in different fundus cameras. Thus, all
images are resized in the size of 300 × 300.

Fundus images in all classes may be resized again for their individual methods when
they are fed to CNN and SVM models for machine learning. For CNN models, the fundus
images are resized into 244 × 244 fitting to the input image size of CNNs for transfer
learning. For the SVM model, fundus images are resized into 32 × 32.

Table 4. The number of augmented datasets.

Class 1 Class 2 Class 3 Class 4

Initial Number of fundus images 2501 3972 16,104 32,575

The number of augmented datasets 7109 7115 16,104 32,575

(a) (b)

Figure 3. Before and after cropping fundus images. (a) before cropping; (b) after cropping.

11



Appl. Sci. 2022, 12, 3190

4. Deep Learning-Based Ensemble Method for VA Measurement

This study presents the measurement of VA based on only fundus images. The
conventional 11 classes of the VA (0.0–1.0, step by 0.1) are grouped into four classes. We
devise an ensemble method consisting of three machine learning models, two CNN models
and one SVM model, to overcome the quantity unbalance of the fundus images and improve
the accuracy of the VA classification.

4.1. Ensemble Methods

This section discusses the rationale for the use of Ensemble methods consisting of
three machine learning techniques: two deep neural network (DNN) models using transfer
learning of Convolution Neural Network (CNN) techniques based on VGG19 [28] and
EfficientNet-B7 [29], and Support Vector Machine (SVM).

We applied each technique of VGG19, EfficientNet-B7, and SVM for the original
fundus images for 4-level VA classification, and the accuracy of each model could not
exceed about 70%. Even after augmenting fundus images, the accuracy of the VA classifier
with individual machine learning models could not be more than about 80%. To identify
the cause of low accuracy of VA classification by each ML model, we analyzed confusion
matrices in Figure 4 generated from the VGG-19 model.

Figure 4 shows the confusion matrix that the 4-level VA classifier based on VGG-19
returns when applied for each class of 11 VA levels. When the 4-level VA classifier is
applied for Class-0.0 fundus images, the classification accuracy is 99% (Figure 4a). For
Class-0.1 fundus images, the classifier makes 84% right decisions (Figure 4b). In the case of
Class-0.4, only 53% of Class-0.3 fundus images are correctly classified (Figure 4e).

Based on our observation, we doubted that one of the main reasons for the misclas-
sifications problem is the quantity unbalance between each class of the original datasets:
The number of fundus images in Class 1 is 2501, 5% of the total datasets, while that of
Class 4 is 32,575, accounting for 59% of the total datasets. To solve this problem, we propose
an ensemble method, as shown in Figure 5. In this approach, a fundus image is classi-
fied in a hierarchical way, by different machine learning methods which perform the best
classification performance at each classification step.

In the following, Classes 1 and 2 with a small number of fundus images are labeled as
Class A, and Classes 3 and 4 with a large number of fundus images are labeled as Class B.
Our method consists of three steps: In Step-1, a given fundus image is classified into either
of Class A or Class B. In the following steps, the image classified into Class A is identified
into either of Class 1 or Class 2 (Step-2-1), and the image in Class B is identified into either
of Class 3 or Class 4 (Step-2-2).

We use three different ML models: VGG19-based CNN (implemented by Tensorflow),
EfficientNet-B7-based CNN (implemented by PyTorch), and SVM-RBF-kernel [30]. Table 5
shows the VA classification accuracy of each ML model when those ML models perform
each VA classification of 4-Class, Step-1, Step-2-1, and Step-2-2, respectively. We selected
the highest accuracy technique for each stage and completed the entire model of fundus
image’s VA classification machine learning based on these results.

In our ensemble method, a fundus image is first identified as either Class A (Classes 1
and 2) or Class B (Classes 3 and 4) by VGG19-based-CNN. The fundus image classified as
Class A (Classes 1 and 2) at Step 1 is identified, at Step-2-1, as either Class 1 or Class 2 by
the SVM-RBF-Kernel. Similarly, the image identified as Class B (Classes 3 and 4) is further
identified as either Class 3 or Class 4 by EfficientNet-B7-based CNN on Step-2-2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4. Confusion matrices from 4-Class VA Classifier’s classification results for 11 classes of fundus
images. (a) Class-0.0; (b) Class-0.1; (c) Class-0.2; (d) Class-0.3; (e) Class-0.4; (f) Class-0.5; (g) Class-0.6;
(h) Class-0.7; (i) Class-0.8; (j) Class-0.9; (k) Class-1.0.
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Figure 5. Proposed ensemble method.

Table 5. Classification accuracy when three machine learning models.

4-Class Classification Step-1 Step-2-1 Step-2-2

VGG19 (Tensorflow) 79% 94% 1 79% 78%

EfficientNet-B7 (PyTorch) 78% 92% 78% 79%

SVM (RBF kernel) 77% 91% 94% 79%
1 This accuracy number is the highest in this step (column).

4.2. ML Models and Classification Performances

Transfer learning is a machine learning technique that adopts the weight values of
the pre-trained model to another machine learning. It is practical, i.e., fast and accurate
when the number of training data are small because it reuses the weights of the pre-
trained model. The pre-trained models VGG19 and EfficientNet-B7 used in this paper have
a Convolutional Neural Networks (CNN) structure for image classification. The CNN
consists of a convolutional base that extracts image features and a classifier that identifies
the class of images based on the extracted features. In our transfer learning using VGG19
and EfficientNet-B7 models, the convolutional base is reused without any modification,
and the classifier layers are built by ourselves.

4.2.1. ML Model for Step-1: VGG19-Based CNN

The VGG19 model was developed to study how the depth of the network affects
the classification outcomes, such as accuracy and training speed. The convolutional base
of the VGG19 consisting of the convolution and pooling is composed of 19 layers. All
convolution layers are characterized by fewer parameters, using filters of 3 × 3. As a result,
it can effectively extract features of images with small parameters, which leads to securing
nonlinearity that can flexibly classify images. For Step-1, we build a VGG19 CNN model in
which the convolutional base for feature extraction is based on VGG19 by transfer learning
and the classification layers for the actual classification is built by ourselves, as shown in
Figure 6. Table 6 shows the parameters we use to train DNN of VGG19 and EfficientNet-B7.
We use a try-and-error approach to select the hyper-parameters after many experiments.

Figure 7a,b show the accuracy and loss changes of classifications during training
and testing of the VGG19-based CNN model. Figure 7c shows a confusion matrix for
4000 images consisting of 1000 randomly selected from each class (Classes 1 to 4) of the
original datasets, not augmented ones. The testing of VGG19-based CNN obtains 93% of
the classification accuracy. From this confusion matrix, it is observed that some of Class A
are identified as Class B. The reason might be inferred through the classification report in
Figure 7d: The precision, which is the ratio of the data that is a true positive of the data
determined to be positive, shows an accuracy of more than 80% in both Classes A and B.
On the other hand, the recall, the ratio of positive data among the true positive data, is 60%
for Class A compared to 98% for Class B. We believe that it is because of the data imbalance
problem of the original datasets, thus the training of the VGG19 model is biased to Class B
with a higher number of images. However, according to the f1-score in Figure 7d, which
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is the weight harmonic average of precision and recall and mainly used for unbalanced
datasets, it can be inferred that the overall learning is well done because Class A shows the
high accuracy of 70%.

Figure 6. VGG19-based CNN model for VA classification.

Table 6. Learning parameters for VGG19 and EfficientNet-B7.

Optimizer Learning Rate Batch Size Epoch

VGG19 CNN Adam 0.00002 128 500

EfficientNet-B7 Adam 0.00002 128 1000

(a) (b)

(c) (d)

Figure 7. Training results of VGG19-based CNN for Step-1. (a) Accuracy; (b) Loss; (c) Confusion
matrix; (d) Classification report.

4.2.2. ML Model for Step-2-1: SVM (RBF Kernel)

SVM is an algorithm based on statistical learning theory. It was initially devised to
solve binary classification and regression analysis problems and extended for multiple
classifications later. In addition, since the nonlinear separation between classes has been
possible to solve using the notion of kernel method [31], it is popularly being used for data
mining, artificial intelligence, prediction, and medical diagnosis.

In SVM, the learning data in a multidimensional space is expressed by:

{xi, yi}, i = 1, . . . , n, yi ∈ {+1,−1} (1)
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where xi is a set of data and yi is a label of xi. For such learning data, several hyperplanes
that separate the two classes can exist, but only one optimal hyperplane exists as shown in
Figure 8a.

(a) (b)

Figure 8. Hyperplanes in SVM. (a) Hard-margin; (b) soft-margin.

Such an optimal hyperplane maximizes the distance between the data closest to the
hyperplane separated among each class of data. A hyperplane is defined by:

ωT · x + b = 0 (2)

If data are linearly separable as shown in Figure 8a, the hyperplane that separates the
two classes can be defined by Equation (3):

∀i, yi(ω
T · xi + b)− 1 ≥ 0 (3)

where ω is a vector of weight.
The training data for these two hyperplanes is called a support vector. In addition,

since the margin between two hyperplanes must be maximized to obtain the hyperplanes of
two classes, it becomes an optimization problem like the following objective of Equation (4)
under Equation (3) as a constraint:

min{1
2
||ω||2} (4)

In most cases, the data do not satisfy the above constraint because they are not linearly
separable, as shown in Figure 8b. To solve this problem, the constraint is extended with a
slack variable ξ representing the distance from the hyperplane to misplaced data, and the
objective is extended with a penalty term c. As a result, we obtain an optimization problem
as follows:

objective : min{1
2
||ω||2 + c

n

∑
i=1

ξi} (5)

s.t : yi(ω
T · xi + b) > 1 − ξi (6)

For nonlinear data, a hyperplane of data having a nonlinear boundary can be obtained
by data space transformation using K(xi, xj) (Kernel function) for the features of data xi
and xj. The representative K(xj, xj) is defined by, respectively:

• Polynomial (Inhomogeneous): K(−→xi ,−→xj ) = (−→xi · −→xj + r)d;

• Radial basis function: K(−→xi ,−→xj ) = exp(−||−→xi −−→xj ||2
2σ2 );

• Sigmoid function: K(−→xi ,−→xj ) = tanh(κ−→xi · −→xj + c) for some (not every) κ > 0 and
c < 0, where κ is a gradient and c is a bias term (intercept).

Now, the SVM model using RBF kernel that we used for Step-2-1 is explained. First,
we resize all the images from 300 × 300 × 3 to 32 × 32 × 3, as shown in Figure 9, which

16



Appl. Sci. 2022, 12, 3190

shows the data shape and features that SVM-RBF-Kernel would use to reason the class of a
fundus image.

Figure 9. Fundus images compressed into 32 × 32 × 3 for SVM (RBF kernel).

Using the SVM class in the scikit-learn and the resized dataset above, the SVM-RBF-
Kernel model is trained by varying kernel functions, c that determines how much error the
model tolerates, and γ that determines how flexible the hyperplane is set. In this study,
we select the SVM model using the RBF kernel and train the model by setting γ to 0.1 and
increasing c from 1 to 100 by 20. The confusion matrix from the testing of SVM-RBF-Kernel
model is shown in Figure 10.

Figure 10. Confusion matrix of SVM-based classifier for Step-2-1.

In the confusion matrix from testing of an SVM-RBF-Kernel, the classification accuracy
is about 58% for Class 1 and about 38% for Class 2, so the overall classification accuracy is
about 96%. There are more Class 1 misclassified images than Class 2 misclassified images.
The reason might be that there are similar abnormalities such as picture blurring or macular
pigmentation and depigmentation in Class 2 as in Class 1.

4.2.3. ML Model for Step-2-2: EfficientNet-B7

EfficientNet is a state-of-the-art model with the best performance with a few param-
eters about image classification. The scaling-up method is often utilized to improve the
performance of CNN. For scaling-up, one can increase the number of layers, the number of
channels, or the input image’s resolution. EfficientNet finds the optimal combination of
the above three scaling-up methods through AutoML (Automated Machine Learning) by
uniformly adjusting the three methods using compound coefficients.

EfficientNet is composed of MBConv structured as shown in Figure 11. The MBConv
expands the channel through 1 × 1 convolution operation and performs a Depthwise
convolution operation that performs a convolution operation on each image channel.
Depthwise convolution performs a convolution operation with k× k kernel for each channel
of images. Each channel operated by Depthwise convolution becomes a feature map. Each
layer uses batch normalization and then goes through the Swish function as an activation
function. The Swish function prevents the gradient value from being saturated near zero
during learning, unlike the Sigmoid and Tanh functions. In addition, unlike Relu, the Swish
is less sensitive to the initial value and learning rate. For an enormous negative value, the
Swish function returns a value of 0, but it preserves the value to some extent for a small
negative value. Squeeze and Excitation Layer is composed of Global Average Pooling-Fully
Connected Layer-ReLU-Fully Connected Layer-Sigmoid. The two Fully Connected Layers
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prevent the number of parameters from increasing with a bottle-neck structure. Each
channel’s relative importance can be known through two Fully Connected Layers and
nonlinear activation functions (ReLU, Sigmoid). The extracted map can be multiplied by a
feature map that skips the Squeeze and Excitation Layer to highlight important features.
Finally, the channel is reduced by the 1 × 1 convolution operation. For channels reduced
to 1 × 1, using the activation function deletes sensitive information and it is less likely
that sensitive information exists on other channels. Therefore, only batch normalization
is used. In this way, the skip-connected input value is concatenated to the output value
passed through multiple layers. This concatenation can preserve the previously learned
information, learn additionally from it, and reduce memory usage.

(a) (b)

Figure 11. MBConv of EfficientNet [29]. (a) MBConv1; (b) MBConv6.

The EfficientNet-B7 model uses fewer parameters and provides the best performance
among various EfficientNet models. As shown in Figure 12, the final model we apply for the
VA classification in Step-2-2 is completed by transfer learning, in which the convolutional
base for feature extraction is reused and the classifier part is directly built by ourselves.

Figure 12. EfficientNet-B7 CNN model for VA classification in Step-2-2.

The parameters we used to train CNN based on EfficientNet-B7 are also given in
Table 6.

In Figure 13a, the classification accuracy of testing data are about 79%, and in Figure 13b,
the loss of testing data continues to drop, but the change of the loss value is insignificant
after epoch 300. The confusion matrix in Figure 13c is computed with 20% of each class data
randomly selected from the original datasets. In the classification report in Figure 13d, the
f1-score of Class 3 (Class 0.3–0.7) is 0.51 and that of Class 4 (Class 0.8–1.0) is 0.79. The total
f1-score is 0.70. The training of EfficientNet-B7-based CNN seems biased to Class 4, due
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to the imbalance of the data quantity, but the overall f1-score of the EfficientNet-B7-based
CNN shows that the training of the CNN model is well done.

(a) (b)

(c) (d)

Figure 13. Training results of EfficientNet-B7-based CNN for Step-2-2. (a) Accuarcy; (b) Loss;
(c) Confusion matrix; (d) Classification report.

5. Results

In this section, we present the experiment results where the 4-Class VA classifier in
Figure 5 is applied for the validation datasets of the patient’s fundus image and VA infor-
mation. To figure out the accuracy of the overall model, we selected 1000 fundus images
with patient VA information for each class from the original datasets and conducted a
classification experiment. The selected fundus images are not pre-processed with any filter.

5.1. Validation of Classification of VGG19-Based CNN for Step-1

First, the VA classifier for Step-1 where Classes A and B are identified was tested by
using VGG19-based CNN, and the confusion matrix is as shown in Figure 14.

The classification between Classes A and B is performed by VGG19-based CNN, of
which the classification accuracy is around 94% as shown in Table 5. Our 4-Class VA classi-
fier at Step-1 adopts the VGG19-based CNN, thus it cannot outperform the classification
accuracy of VGG19-based CNN for VA classification.

In Figure 14a, the images in Class A are more misclassified than those in Class B. It is
in accordance with the fact that the recall of Class A is 60% in Figure 7d. We investigated
the probability value of Softmax of images misclassified in the confusion matrix and the
characteristics of these images. In Table 2, the images in Class A look generally blurred
and partially poorly observed. On the other hand, the images in Class B look relatively
cleaner than Class A, and the macula and optic disc are clearly observable. However, the
misclassified images of Class A in this experiment have the more observable optic disc and
macula images than the images of Class A Table 2.
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(a) (b)

Figure 14. Verification results of 4-Class VA Classifier. (a) Confusion matrix; (b) Classification report.

Figure 15 shows some misclassification examples where the fundus images in Class 1
or Class 2 of Class A are misclassified as Class B. Note that the decision probability of
Softmax of the fundus images in the first line is both close to 50%, and that means that they
can likely be misclassified. Furthermore, the macular in fundus images in the second line
look cleaner, in contrast to those in Table 2.

(a) (b)

Figure 15. Examples of misclassification of Class A and the probabilities of Softmax: The pair of
numbers in parenthesis are the probability values from Softmax. The first value is the probability that
the image is in Class A and the second value is the probability that the image is in Class B. (a) Class 1
of Class A; (b) Class 2 of Class A.

For the misclassification cases of Class B, the misclassified images in Class B look very
blurred or macularly unclear, as shown in Figure 16.

5.2. Validation of Classification of SVM-RBF-Kernel ML for Step-2-1

The fundus images of Class A identified in Step-1 by VGG19-based CNN are checked
if it is in either Class 1 (0.0–0.05) or Class 2 (0.1–0.2) by using the SVM-RBF-Kernel.

Figure 17 shows a confusion matrix, and AUC score and ROC curve. In the confusion
matrix, the classification accuracy for Classes 1 and 2 is about 58% and 38%, respectively,
and the overall classification accuracy is about 96%.
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(a) (b)

Figure 16. Examples of misclassification of Class B and the probabilities of Softmax: The pair of
numbers in parenthesis are the probability values from Softmax. (a) Class 3 of Class B; (b) Class 4 of
Class B.

(a) (b)

Figure 17. Validation results of SVM-RBF-Kernel classification for Step-2-1. (a) Confusion matrix;
(b) AUC (ROC) report.

Tbltbl:fp-cls-features shows the images that should be classified as Class 1 but mis-
classified as Class 2 or vice versa: The misclassified fundus images of Class 1 (0.0–0.05) are
cloudy, and each part of the fundus images is not easily identified. In addition, abnormal
findings such as pigmentation and depigmentation of the macula are shown. On the other
hand, Class 2 has fewer hazy fundus images and fewer abnormal findings such as macular
pigmentation and depigmentation than Class 1.

In this validation, as shown in Figure 18, the fundus images of Class 1 misclassified
as Class 2 are relatively clearer and have fewer abnormalities, such as pigmentation and
depigmentation in the macula, than images classified correctly. The fundus Images of
Class 2 misclassified as Class 1 look more blurred than images classified correctly, and
the abnormalities, such as pigmentation and depigmentation, in the macula, appear
more severe.
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(a) (b)

Figure 18. Examples of misclassification of Classes 1 and 2 by the SVM-RBF-Kernel. (a) Class 1;
(b) Class 2.

5.3. Validation of Classification of EfficientNet-B7-Based CNN for Step-2-2

For the fundus images identified as Class B in the previous step, EfficientNet-B7-based
CNN identifies the individual classes as either Class 1 or Class 2.

Figure 19 shows a confusion matrix and AUC score and ROC curve from the validation
of the classification by EfficientNet-B7-based CNN in Step-2-2. In the confusion matrix, the
classification accuracy for Classes 3 and 4 is about 44% and 48%, respectively, so the overall
classification accuracy is 92%.

(a) (b)

Figure 19. Validation results of EfficientNet-B7-based CNN classification for Step-2-2. (a) Confusion
matrix; (b) AUC (ROC) report.

In Table 2, the optic disc and macula of the fundus images in Class 3 look clean and
have no pigment abnormality or bleeding. On the other hand, the fundus images in Class 3
are an overall blurry image compared to Class 4. In the misclassification case of Class 3,
the fundus images, as shown in Figure 20a, have the optic disc and macula in clearer.
Meanwhile, in the misclassification case of Class 4, the optic disc and macula in the fundus
image are not clearly observed, and a lot of blurred images are observed.

The conclusion about the classification accuracy of the 4-Class VA Classifier using
fundus images is as follows: We randomly selected 1000 for each class and tested the
classifier with a total of 4000 fundus images and the relevant patient’s VA information.
Figure 21 is a confusion matrix for the classification accuracy of the entire model based
on the ensemble method. It combines Figures 14a, 17a and 19a and summarizes the
classification performance of the 4-Class VA classifier. This confusion matrix consists of
two types of quadrants: big quadrants and small quadrants. The big quadrants include the
classification accuracy rate for Classes A and B performed at Step-1. The small quadrants
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include the classification accuracy rate for Classes 1–4 performed at Step-2. Notice the
numbers on the diagonal in this confusion matrix, starting at the top left and flowing down
to the right. These numbers are the classification accuracy for 1000 fundus images from
each class from Class 1 to Class 4. It says that the classification accuracy of our approach
to VA measurement based on fundus images are 88.5%, 58.8%, 88.0% and 94.3% for each
classification of Class 1 to Class 4, respectively. We can say that the classification accuracy
of the 4-Class VA classifier is 82.4% on average.

Table 7 shows the comparison between the performance of VA classifiers based on our
ensemble method and VGG-19 in terms of four aspects: the overall average accuracy, each
class accuracy, sensitivity, and specificity. The reason why VGG-19 is selected to compare
against our ensemble method is that it shows the best performance of VA classification
as shown in Table 5. It shows that our ensemble method outperforms the VGG-19 VA
classifier in the overall accuracy, but the VGG-19 VA classifier shows higher accuracy in
VA- classification for Class-2 than our ensemble method. From the aspects of sensitivity
and specificity, they are not comparable because one of them does not outperform the other
in all classes.

(a) (b)

Figure 20. Examples of misclassification of Classes 3 and 4 by EfficientNet-B7. (a) Class 3; (b) Class 4.

Figure 21. Overall accuracy report of 4-Class VA classifier based on our ensemble method.
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Table 7. Comparison of VA classifiers’ performance based on our ensemble method and VGG-19.

VA Classes

Ensemble Method VGG-19

Average
Accuracy

Class
Accuracy

Sensitivity Specificity Average
Accuracy

Class
Accuracy

Sensitivity Specificity

1

82.4%

88.5% 0.885 0.038

78%

0.89 0.988 0.0042

2 58.8% 0.588 0.121 0.8 0.832 0.06

3 88.0% 0.88 0.04 0.69 0.563 0.137

4 94.3% 0.943% 0.024 0.74 0.764 0.079

6. Conclusions

Visual sight is one of the most sensing capabilities of humans. Visual Acuity (VA) is
a fundamental measure of the ability of the eye to distinguish shapes and the details of
objects at a given distance. It is a primary indicator of eye health and the results of medical
treatment for eye diseases. VA is typically measured using VA measuring tools, such as
Snellen or E-Chart. In particular, communication with the tester is essential. However,
it is not suitable or impossible to use the classical ways of measuring VA for patients
under mobility difficulties, unconscious states, or lack of cooperation, and an infant or very
young patient.

To solve those problems, we present an ensemble method based on machine learning
based on fundus images and VA information of patients. Fundus photography is one of the
most popularly used photo images for an eye examination and rarely needs the cooperation
of patients to obtain the image. In our approach, 11 classes in classical VA measurement are
abstracted into four classes, Classes 1–4, to overcome the discrepancy problem of fundus
image data quantity for each of 11 classes.

In the ensemble method, the VA is measured in two steps: In the first step, Classes 1–2
and Classes 3–4 are classified as either Class A or Class B. In the second step, the fundus
images in Class A is classified as either Class 1 or Class 2 and those in Class B is classified
as either Class 3 or Class 4.

We use three different machine learning techniques for each classification: VGG-19-
base CNN, EfficientNet-B7-based CNN, and SVM-RBF-Kernel. We evaluated the three
techniques for each classification of individual steps and selected one of them that shows
the best classification performance for each step. From our validation of the 4-Class VA
classifier using 4000 fundus images from each of the four classes, we obtained 88.5%, 58.8%,
88 %, and 94.3% of classification accuracy for each level of four classes, respectively, and
the classification accuracy of 82.4% on average.

To make our approach useful in practice, we have more challenges to overcome. For
example, the density of the background pigmentation of the fundus oculi is dependent
on race. We need to obtain more data from other countries and races to overcome this
problem. In addition, the examinee’s subjectivity in measuring vision acuity may degrade
the collected data quality. In addition, the fundus image shows the functional status of
the eye, thus measuring visual acuity with only fundus images have limitations since our
vision depends on both the function of the eye and the function of the brain.
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Abstract: In this paper, we propose a novel Machine Learning Model based on Bayesian Linear
Regression intended to deal with the low sample-to-variable ratio typically found in neuroimaging
studies and focusing on mental disorders. The proposed model combines feature selection capabilities
with a formulation in the dual space which, in turn, enables efficient work with neuroimaging
data. Thus, we have tested the proposed algorithm with real MRI data from an animal model of
schizophrenia. The results show that our proposal efficiently predicts the diagnosis and, at the same
time, detects regions which clearly match brain areas well-known to be related to schizophrenia.

Keywords: Bayesian learning; neuroimaging; feature selection; kernel formulation; mental disorders;
schizophrenia; MRI

1. Introduction

Neuroimaging has undergone a major breakthrough in recent years and has helped in
the diagnosis, prognosis, and treatment monitoring of psychiatric disorders. The clinical
diagnosis of these disorders is troublesome due to the lack of specific biomarkers [1] and
to the fact that many of them share clinical features, thus hindering an accurate diagnosis.
Specifically, schizophrenia is one of the most complex pathologies to diagnose [2] since
it is commonly confused with other psychotic disorders in up to 20% of cases [3]. As
consequence, new tools for the diagnosis of mental disorders are emerging [4,5].

Machine Learning (ML) techniques have emerged as a promising tool for the analysis
of neuroimaging data. These algorithms are capable of analyzing any data source, either
images (structural or functional), genetic information [6] or behavioral information [7], to
carry out an automatic diagnosis of the pathology. Recent approaches based on Support
Vector Machine algorithm (SVM) have been applied in Magnetic Resonance Imaging
(MRI), showing great results in this field and detecting relevant brain areas involved
in the pathology, as well as inferring new useful biomarkers for their diagnosis [8–10].
However, although these models have provided accurate results for automatic classification,
the lack of interpretability in their results prevents the characterization of the pathology.
In particular, in contexts where only a few features are relevant for the problem, it is
advisable to detect the informative variables and eliminate the useless ones. For this
reason, many authors combine ML models with Feature Selection (FS) approaches, such
as the Recursive Feature Elimination (RFE) [11], consisting of the direct elimination of
the less representative features, methods based on decision tree formulations, such as
Random Forest Importance (RFI) [12,13], or embedded approaches which include L1 or
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L1–L2 regularizations to promote sparsity, such as Lasso and elastic-net algorithms [14,15].
Nevertheless, in neuroimaging, we have to deal with large datasets, where the number of
cases is significantly smaller than the number of variables, and many of these approaches
fail in this scenario, tending to over-fit. To avoid this problem, some authors propose
Bayesian approaches but work over a reduced set of features [16–18], whereas others point
to the use of more refined techniques better adapted to the problem needs [19–21].

To overcome these limitations, we present a novel formulation for the Bayesian Linear
Regression model. Our proposal, called the Dual Bayesian Linear regression model with
Feature Selection (DBL-FS), is formulated to work efficiently with a reduced number of
samples characterized in high-dimensional spaces, e.g., neuroimaging data. For this pur-
pose, the model is formulated in the dual space and simultaneously includes an Automatic
Relevance Determination (ARD) prior over the primal weights to provide the model with
FS capabilities so that it can remove irrelevant input features. Here, we have tested our
formulation on rodent data in an animal model of schizophrenia that show similar brain
anatomical deficits than patients with schizophrenia [22–24]. One advantage of using ro-
dent data is a more solid knowledge of the ground truth due to the controlled experimental
induction of the pathology.

2. Materials

Rodent MRI data were obtained from the Biomedical Imaging and Instrumentation
Group (Biig) of the Gregorio Marañón Hospital. The dataset consisted of 53 rat brain MRI
images divided into two groups: healthy rats (N = 24) and pathological rats (N = 29). Pathol-
ogy was induced by the administration of the viral mimic polyriboinosinic-polyribocytidilic
acid (poly I:C) in gestational day 15 to pregnant Wistar rats, since maternal immune stimu-
lation (MIS) is associated with increased risk of onset of schizophrenia in the offspring, with
behavioral abnormalities as well as neurophysiological and morphological traits. Model
details can be found elsewhere [25–27].

All images were preprocessed following the standard preprocessing pipeline in neu-
roimaging research, using the processing toolbox of the Statistical Parametric mapping
software (SPM12) [28], as shown in Figure 1. Output consisted of: White Matter (WM),
Gray Matter (GM), and CerebroSpinal Fluid (CSF) regions, with 464,487, 582,467, and
30,702 voxels, respectively.

Figure 1. MRI pipeline for data processing [28]. First, images were corrected for field homogeneity,
resized by a factor of 10 and spatially normalized to create a custom template based on a Wistar rat
brain template [29]. All images were resliced to this custom template and were segmented into gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF). Later, all images were modulated
using the Jacobian determinants and smoothed with a 10-mm FWHM Gaussian kernel. Finally, the
segmented tissues were processed by the ML model to classify them into healthy and pathological
subjects and to identify the brain areas relevant to this decision.
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3. Methods

This section introduces the formulation of the proposed Dual Bayesian Linear re-
gression model with Feature Selection (DBL-FS). Later, we also introduce some reference
methods that we will use as baselines to show the advantages of the proposed approach
together to the experimental setup.

3.1. A Dual Bayesian Linear Regression Model with Feature Selection
3.1.1. Model Definition

The proposed model borrows some ideas from the Bayesian Principal Component
Analysis (BPCA) [30] and Bayesian Canonical Correlation Analysis (BCCA) [31] algorithms
to endow a Bayesian Linear Regression (BLR) [32] with a dual formulation able to carry
out automatic feature selection over the primal variables. This relies on including an
ARD prior over the weight matrices to automatically infer the feature relevance in the
input feature space by assigning higher/lower relevance values when there are more/less
relevant features. Meanwhile, the model works with a formulation in the dual space. In
turn, this allows the model to efficiently deal with large data problems by working in the
data space while it applies a feature selection over the variable space. In addition, we can
exploit the DBL-FS Bayesian formulation to facilitate including prior expert knowledge
to guide the FS process. This way, we can guide the learning process and compensate the
limited number of samples to train the model.

To define the model, let us consider X as the observation matrix with the MRI infor-
mation of N subjects; this way, each row, xn,: for n = 1, . . . , N, is a D-dimensional vector
containing the brain image of the n-th subject, and each column, x:,d for d = 1, . . . , D,
contains the information of the d-th voxel over the N subjects. On the other hand, the
column vector y represents the diagnosis labels (control or schizophrenic) for the N subjects
under study. Although each label, yn, belongs to the set {0, 1} (indicating the subject is
control or not), for the model formulation, we consider yn ∈ �, and thus, we will generalize
the model for regression problems. Later, we will apply a threshold over the model output
to classify each subject into one of two categories.

3.1.2. Generative Model

As the graphical model of Figure 2 shows, the generative model of DBL-FS considers
that each datum, xn,:, is combined with a weight vector w plus some Gaussian noise to
generate the output variable:

yn = xn,:w + η, (1)

where η is a Gaussian noise with zero mean and precision τ. In turn, the noise precision is
modeled with a gamma distribution with parameters aτ

0 , bτ
0 :

τ ∼ Γ(aτ
0 , bτ

0 ) (2)

In addition, DBL-FS considers that the weight associated to the d-th input feature
follows a normal distribution:

wd ∼ N
(

0, α−1
d

)
d = 1, . . . , D (3)

where its precision, αd, is modeled with a gamma distribution as:

αd ∼ Γ(aα
0, bα

0) d = 1, . . . , D (4)

This ARD prior over wd allows us to obtain the relevance over the elements of w, and
therefore, DBL-FS is capable of automatically setting to zero the features that are irrelevant
for the problem.

As the model will have to work with MRI data, composed by few samples (less than
100) and tens or hundreds of thousands of voxels, it is clear that working in the primal
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space is not the most efficient way to proceed. So, we propose to reformulate the model
making use of the Representer Theorem [33] (RT). That is, as the RT states that the primal
weights of any regression model resulting from minimizing an empirical error (risk) can be
expressed as a linear combination of the input data and its equivalent dual coefficients, we
can express w as:

w = XTa (5)

where a is a vector of length N containing the dual variables. As we will see later (see
Equation (19)), the lower bound that maximizes our variational inference is equivalent to
minimizing an empirical cost. This way, the model can be formulated to work in the dual
space as:

yn = kn,:a + η, (6)

where kn,: denotes to the n-th row of the linear kernel matrix K = XXT . This way, with the
dual formulation, the target variables yn, for n = 1, . . . , N, are modeled as:

yn ∼ N
(

kn,:a, τ−1
)

n = 1, . . . , N. (7)

With this new formulation, the model will be able to work in the space of a, where
only N parameters have to be inferred. Thus, model complexity and overfitting risks are
drastically reduced, as long as we are able to maintain the feature relevance determination
over w, providing the model with feature selection capabilities.

Finally, it is important to note that the model formulation does not need to specifically
include the distribution of a since the relation between w and a is deterministic, and
therefore, the statistical characterization of w is also characterizing a.

yn

xn,: wd,:

αd

a

τ

aα0
bα0

aτ0

bτ0

D

N

Figure 2. Plate diagram for the DBL-FS graphic model. Grey circles denote observed variables, white
circles unobserved variables. Model hyperparameters do not have a circle.

3.1.3. Variational Inference

Once the generative model is defined, we should evaluate the posterior distribution
of the variables to estimate their optimum values. Although, in this case, the posterior
distribution is not tractable, we can use variational inference together with the mean-field
technique [34] to find an approximation to this posterior q(Θ) ≈ p(Θ|y, X), where Θ

contains all model variables. Then, we can define a Lower Bound (LB) using the Kullback–
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Leibler divergence between the posterior and its approximation; so, maximizing this LB, we
can obtain the optimum model parameters. Therefore, using the mean-field approximation
to factorize over the posterior, we obtain:

p(Θ|y, X) ≈ q(Θ) = q(w)q(a)q(α)q(τ), (8)

and we can determine each approximated distribution by calculating:

ln(q∗j ) = E−qj [ln(p(X, y, Θ))] + const, (9)

where E−qj implies that we calculate the expectation over all random variables except the
j-th variable, and p(X, y, Θ) is the joint probability.

Therefore, we can apply (9) to the joint probability for each random variable to obtain
the model update rules. Firstly, the distribution of the dual weights a is:

q(a) = N (a|〈a〉, Σa), (10)

with mean and variance determined by:

〈a〉 = 〈τ〉ΣaKTy (11)

Σ−1
a = Xdiag(〈α〉)XT + 〈τ〉KTK, (12)

where diag(〈α〉) represents an identity matrix with vector α as the diagonal. The distribu-
tion of variable α is:

q(α) = Γ(α|aα, bα), (13)

with parameters

aα = aα
0 +

D
2

(14)

bα = bα
0 +

1
2

diag(XT〈aaT〉X), (15)

where αα
0 and βα

0 are hyperparameters, and the operator diagonal returns a column vector
formed by the main diagonal of the matrix. Moreover, the distribution of the noise precision
τ is given by:

q(τ) = Γ(τ|aτ , bτ), (16)

with parameters

aτ = aτ
0 +

N
2

(17)

bτ = bτ
0 +

1
2
(

N

∑
n=1

y2
n − 2Tr{yTK〈a〉}+ Tr{KTK〈aaT〉}), (18)

where ατ
0 and βτ

0 are hyperparameters, and Tr{}̇ is the trace operator. See Appendix A for
the full development of these mean field distribution approximations.

Once we have defined the different distributions, the model updates the different
random variables in an iterative coordinate-ascent-like optimization where the distribution
of each factor is obtained using (10) to (22). This optimization process is guided by the LB
cost function defined as:

LB = const +
N

∑
n=1

(
D
2
+ aα

0 + 1
)

ln (bα) −
(

D
2
+ aτ

0 + 1
)

ln (bτ) − D
2

ln (|Σa|), (19)

where we analyze its convergence to stop the distribution parameters update. See Appendix B
for the full development of the LB.

31



Appl. Sci. 2022, 12, 2571

For an efficient optimization of the model, in practice, we will work in the dual space
updating the Equations (10) to (18). However, when the model convergence is reached, we
can obtain the approximate posterior distribution of w as:

q(w) = N (w|〈w〉, Σw), (20)

with parameters
〈w〉 = 〈a〉X (21)

Σw = XTΣaX. (22)

Once the model is trained, we can analyze the distribution of w and check which
feature components are zero and, therefore, are eliminated, having an automatic selection
of the relevant input voxels. This is due to the fact that, despite working in the dual space,
the precision of w components, α, is considered in the distribution of a (see Equation (12)).

Moreover, the inclusion of a prior over α (see Equation (13)) in the generative model
has an additional advantage since we can use it to adapt the prior distribution of w and
include expert knowledge in the model. Thus, in case we want to add more relevance to a
particular region (for instance, a neurobiologically meaningful Region of Interest (ROI)),
we can initialize the parameters bα associated to the voxels of this region with higher
values than the rest to promote that the distribution of w has also higher values for these
voxels. Otherwise, if we do not want to include this expert knowledge, this variable will be
uniformly initialized over all voxels.

3.2. Baselines

Here, we present the baseline methods used during the experimental section, whose
performances will be compared with those of the proposed DBL-FS model. In particular, we
considered three approaches, one baseline aimed to solve regression problems (as DBL-FS)
and the other two methods specifically designed to solve classification tasks:

• As the first baseline, we included a regression Gaussian Process (GP) [35], using
the implementation provided by the GPy library (available at github accessed on
9 December 2021). We have selected this model since it allows us to define lineal
kernels with ARD, so that we can work in the dual space and learn the relevance of
the different input features.

• Next, we included an SVM [36] with a linear kernel using the scikit-learn library [37]
to also optimize the model in the dual space.

• The last selected baseline is the recently proposed adaptation of Sparse Semi-supervised
Heterogeneous Interbattery Bayesian Analysis (SSHIBA) [38] to work in the dual space,
the Kernelized SSHIBA (KSSHIBA) [39] is available at github accessed on 29 March
2021. This algorithm can simultaneously combine different data sources or views (in
our case, different tissues) in a common latent space providing a low-dimensional
representation of the data. In addition, this model can also include an additional
output view to categorically model the target variable (patient or control sample), as
well as a linear kernel with ARD coefficients over the input features (equivalent to the
GP configuration).

Both GP and KSSHIBA use an ARD to determine the relevance of the input features,
but they do not have a prior distribution or constraint to force their input weights to
be sparse and, therefore, obtain a real FS. Meanwhile, DBL-FS imposes sparsity with
the Gamma prior to actually promote zero values in the model weights which, in turn,
automatically eliminates the least relevant features.

Furthermore, it is important to mention that deep learning models are not included
in this study, as these methods are severely limited by the sample size required to learn
the model parameters. Therefore, although models such as convolutional neural networks
have promising results in image analysis, they also pose serious challenges when working
with datasets of small sample size. Furthermore, we have explored other baselines such as
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random forests but have not included the results due to their poor results. Nevertheless,
all the methods under study will be evaluated with different configurations to be able to
analyze different properties and, hence, to carry out an extensive study and analyze their
advantages and disadvantages in comparison to our model.

3.3. Experimental Setup

MRI data were standardized to zero mean and unitary standard deviation. As we
have a reduced number of subjects (only 53 samples), we have used a Leave-One-Out
(LOO) framework to evaluate the model performance. This way, we have trained as many
models as available samples, using in each training partition all the subjects except one,
which was used afterwards for testing. Then, to evaluate the model performance, we
present the results in terms of average accuracy, that is, the percentage of correctly classified
test subjects computed over all LOO iterations. Furthermore, since the performance of
some methods depends on their initialization we repeated the LOO process 10 times (with
different initializations) and depicted the average accuracy over them in order to obtain
more statically significant results.

To complete the performance analysis, the result table includes the final number of
voxels selected by each model (and their percentage with respect to the total), computed as
the average number of voxels used by each model for each LOO iteration and each run.

Regarding the different models under study, we considered several configurations
to carry out a more comprehensive analysis and more adequate evaluation of the differ-
ent methods.

For GPs, we have considered two versions: (1) the standard GP with a linear kernel,
denoted as GP, and (2) the previous GP but including ARD capabilities and an FS stage.
That is, we first trained a GP with ARD and analyzed the ARD coefficients to select the
most relevant features, and then trained a standard GP with the chosen features. Thus, this
two-step approach provided a GP with FS capabilities, denoted as GP+FS. For this pruning,
we selected the 25% most relevant features in order to compare the performance of this
method with DBL-FS. In addition, as both DBL-FS and GPs were formulated for regression
problems and our predictive task is a binary classification (0 or 1), we set the threshold
to 0.5.

We have implemented two different approaches for SVMs: (1) a standard SVM with
linear kernel and (2) an SVM with a Multi-Kernel Learning (MKL) strategy, denoted as
MKL-SVM. In the latter case, we independently considered the different tissues (GM,
CSF, and WM) and a different linear kernels for each of them, and subsequently, the
model learned the combination of these three kernels, including two parameters for their
combination. These parameters were defined as scalars multiplying each kernel term,
and a subsequent inner LOO was used to find their optimal values. Thus, the defined
combinations coefficients gave more or less relevance to each kernel (therefore, to each
tissue), providing additional flexibility to the model.

For KSSHIBA, we have included two versions, similarly to what was done in GP:
(1) the standard KSSHIBA model and (2) a two-stage version of KSSHIBA (denoted as
KSSHIBA+FS), in which KSSHIBA was first trained with ARD functionality, and subse-
quently, we selected the most relevant features to train the model using this subset of
features. For these experiments, we initially had 1000 latent factors, from which the model
will automatically prune the irrelevant ones. For FS, we kept the highest 25% of voxels
equivalently to the number of selected features from the DBL-FS model.

Finally, we have also defined two approaches for the DBL-FS model, with and without
expert knowledge. In the latter one, we have equally initialized the ARD prior for all
voxels, setting the parameters a and b of random variable α to 2 and 1, respectively. In the
expert knowledge case (denoted as DBL-FS+EK), we have initialized the parameters a and
b in such a way that the areas of the prefrontal cortex, ventral hippocampus, and lateral
ventricles (which are known to be more intensely affected [23]) had more relevance than
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the rest. In particular, parameter a was set to 50 and parameter b was fixed to either 1 or
0.001, depending on whether the voxel belonged to the indicated ROIs or not.

4. Experimental Results

Table 1 shows the LOO accuracy results for the classification problem together with
the number of selected voxels (the approaches without FS used 100%). Despite using
different initializations in the evaluated models, the results were stable across them with a
negligible standard deviation, showing that the initialization hardly influences the results.
For this reason, we did not include the standard deviation in Table 1. The results show that
GPs, KSSHIBA+FS, and MKL-SVM obtained the worst classification accuracies, while SVM
and KSSHIBA achieved the best performances among the baselines. However, DBL-FS
and DBL-FS+EK still obtained an improvement of 5.7% in terms of accuracy over the best
baseline while learning the most restrictive selection mask. From these results, we need to
highlight that (1) KSSHIBA obtained a predictive performance similar to that of SVM while
summarizing the information of the original data (distributed in more than 106 voxels)
in only nine latent variables, and (2) MKL-SVM showed worse results than the standard
SVM, probably due to the higher number of hyperparameters it needed to learn in order to
perform the MKL, which may be causing overfitting.

Table 1. Performance of the different methods under study showing the model accuracy and the
number of selected voxels (with their percentages with respect to the total). In addition, models
with the best accuracy have been highlighted in bold and placed at the bottom of the table, which
corresponds to the proposed DBL-FS approaches.

Experiment Accuracy # Selected Voxels

GP 67.9% 1,077,656 (100%)
GP+FS 67.9% 269,414 (25%)
SVM 71.6% 1,077,656 (100%)

MKL-SVM 67.9% 1,077,656 (100%)
KSSHIBA 69.8% 1,077,656 (100%)

KSSHIBA+FS 64.1% 269,414 (25%)
DBL-FS 77.3% 287,996 (26.72%)

DBL-FS+EK 77.3% 242,754 (22.52%)

Figure 3 shows the brain areas selected by the methods with FS capabilities. As each
voxel has an associated weight, the image masks represent the absolute value of these
weight magnitudes for the selected of voxels as an indicator of the voxel relevance. In
addition, since we have a model for each LOO iteration, Figure 3 displays the average
values of these relevances (over all LOO iterations) and includes a normalization of their
scales to the range (0, 1) to simplify their analysis. As a result, we can observe that the
GP-FS selected meaningless voxels in neurobiological terms while KSSHIBA detected
well-defined areas corresponding to only WM tissues. Finally,the DBL-FS and DBL-FS+EK
approaches obtained well-defined regions in the GM and WM tissues and the CSF, which are
interpretable in neurobiological terms. Although both methods provided similar selections,
DBL-FS+EK selected a reduced set of voxels.
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Figure 3. Brain masks obtained by the FS of each model. Colors are defined in a linear scale and
associated to the relevance of the voxel (white: more relevant; dark red: less relevant). GP-FS model
yields meaningless results in neurobiological terms, where no anatomical regions can be identified.
KSSHIBA-FS model only identifies brain areas related to WM deficits in schizophrenia. Both DBL-FS
and DBL-FS+EK learn similar relevance in WM, GM, and CSF brain areas of interest in schizophrenia,
such as the hippocampus (hipp), prefrontal cortex (PFC), amygdala (Aa), septum, lateral ventricles
(LV), corpus callosum (cc), WM cerebellar (WM Cb), and WM brainstem (WM BS) fibers.

5. Discussion

This study shows, for the first time, the great advantage of using DBL-FS for the
detection and characterization of the morphometric brain changes in a rodent model of
schizophrenia. This Bayesian model was adapted for neuroimaging data, characterized
by a low sample-to-variable ratio (53 samples vs. 1,077,656 voxels in our case) relying on
a dual formulation of the Bayesian Linear Regression model. Furthermore, as the main
novelty of this proposal, we combine this dual formulation with a prior over the primal
weights to learn the feature relevance over the input features, forcing an automatic FS.
Finally, we can exploit the Bayesian nature of the model to include specific prior knowledge
to guide the learning process and counterweight the limitations caused by the low sample
size of the problem.

Thus, the comparison in terms of performance with the baselines provides clear
evidence of the promising results of the proposed DBL-FS model in the characterization of
neuroimaging data in mental disorders. Note that DBL-FS is able to largely outperform
the baselines in prediction accuracy, showing an advantage of 5.7% in terms of accuracy
over the best baseline. In addition, DBL-FS is the only method capable of detecting regions
within the three brain tissues that are known to be relevant in the biology of schizophrenia.
In this sense, the relevance learned by the GPs is inconsistent between the different LOO
iterations, generating a scattered voxel selection and, therefore, a non-localized, unreliable,
and uninterpretable mask. On the other hand, KSSHIBA provides a consistent result but
only finds relevant regions within WM tissue and, therefore, ignores relevant regions and
includes some irrelevant areas.

Analyzing in detail the regions selected by the DBL-FS and DBL-FS+Ek models, we
can verify that these areas belong to brain regions whose morphometric changes have been
related to schizophrenia, based on the literature. First, as for CSF, the areas with the greatest
weight were the most frontal areas of the lateral ventricles and the third ventricle. One of
the morphometric hallmarks in schizophrenia is the enlargement of the ventricles [23,40],
which is consistent with the learned selection. Second, regarding GM, our model clearly
defined anatomical areas, such as the prefrontal cortex (PFC), hippocampus, amygdala,
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and septum, some of them in both hemispheres. Numerous studies have demonstrated the
relevance of the morphological changes of these areas in mental disorders [41,42] together
with the disconnection and lack of symmetry between both cerebral hemispheres [43,44].
Similar volumetric abnormalities have also been reported for the animal model used
in this study [24,45]. In addition, the method also detected the medial septum, which
plays a significant role in dopamine-related disorders such as schizophrenia [46,47] and
addictions [48–50], which highlights the relevance of this structure in mental disorders.
Regarding WM, the method found three well-defined brain areas, the frontal part of corpus
callosum and WM tracts of the brainstem and the cerebellum [51,52].

Regarding the inclusion of expert knowledge by means of the α prior, it reveals two
interesting behaviors. First, it demonstrates the robustness and potential of the standard
DBL-FS since it is able to obtain similar accuracy and roughly similar brain masks to its
DBL-FS+EK extension without the need for expert information. Second, the possibility of
including expert knowledge makes the model converge faster, and it also refines the brain
region selection. It is important to note that, although the expert knowledge guides the
inference process, the model is also learning from the data, allowing it to redefine the initial
expert knowledge into a specific set of voxels. For instance, looking at Figure 3, we can see
that using expert knowledge, we obtain a higher relevance associated with the core of the
WM brainstem and hippocampal areas.

6. Conclusions

This article shows a novel Bayesian approach using linear regression to characterize
neuroimaging data, tested in an animal model of schizophrenia. The proposed DBL-FS+EK
model allowed us to efficiently work with neuroimaging data, characterized by a low
sample-to-variable ratio. This is achieved by taking advantage of its Bayesian formulation to
work in the dual space while learning a voxel importance for feature selection. Furthermore,
the use of a specific prior to force sparsity can be combined with expert knowledge to
guide the model. The proposed model was analyzed using MRI data from a rodent model
of a schizophrenia database and compared to different baselines. The results provided
an outstanding classification performance of DBL-FS+EK, improving the accuracy of the
second best classifier, SVM, in ∼6%. Furthermore, looking at the selected voxels and their
associated relevance, we can confirm that the proposed model is able to detect biologically
relevant areas for the characterization of this disease, as it clearly agrees with known
literature.
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Appendix A. DBL-FS Variational Inference

This section explains in detail the development of the variational inference of the
proposed DBL-FS indicated in the Methods section. In particular, here we present the
calculation of the mean field approximation of the model parameters:

q(Θ) = q(w)q(a)q(α)q(τ), (A1)

where each term is calculated applying Equation (9) to the joint probability for each random
variable to obtain the updated model rules.

Appendix A.1. Mean Field Approximation of a

Using the mean field approximation over variable a, we find that the logarithm of its
approximate posterior is:

ln (q(a)) = E[ln (p(y|X, a, τ))] +E[ln (p(w|α, a))] + const. (A2)

If we develop the first term in the equation, we have:

ln (p(y|X, a, τ)) =
N

∑
n=1

lnp(yn|xn,:, a, τ) =
N

∑
n=1

lnN
(

xn,:X
Ta, τ−1

)

=
N

∑
n=1

(
1
2

ln (τ)− τ

2
(yn − aTXxT

n,:)(yn − xn,:X
Ta)) + const

=
N
2

ln (τ)− τ

2

N

∑
n=1

(
y2

n − 2ynxn,:X
Ta + aTXxT

n,:xn,:X
Ta

)
+ const, (A3)

and, calculating the expectation of this expression, we obtain:

Eτ [ln (p(y|X, a, τ))] =
N
2

ln(〈τ〉) + 〈τ〉yKa − 〈τ〉
2

aTKTKa + const. (A4)

Equivalently, the second term can be calculated as:

ln (p(w|α, a)) =
D

∑
d=1

lnp(wd|αd, a) =
D

∑
d=1

lnN
(

0, α−1
d

)

=
D

∑
d=1

(
1
2

ln (αd)− 1
2

aTx:,dαdxT
:,da

)
+ const

=
1
2

D

∑
d=1

ln (αd)− 1
2

D

∑
d=1

(
aTx:,dαdxT

:,da
)
+ const, (A5)

and, we if we use the expectation, we have:

Eα[ln (p(w|α, a))] =
1
2

D

∑
d=1

ln(〈αd〉)− 1
2

aTXdiag(〈α〉)XTa + const. (A6)

Now, joining Equations (A4) and (A6), we obtain:

ln (q(a)) = 〈τ〉yTKa − 〈τ〉
2

aTKTKa − 1
2

aTXdiag(〈α〉)XTa + const. (A7)
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Therefore, we can identify the parameters of the q distribution on this equation, having:

q(a) = N (a|〈a〉, Σa) (A8)

where the mean is:
〈a〉 = τΣaKTy (A9)

and the variance is:
Σ−1

a = Xdiag(〈α〉)XT + 〈τ〉KTK (A10)

Appendix A.2. Mean Field Approximation of α

Now, using the mean field approximation over variable α, we find that the logarithm
of its approximate posterior is:

ln (q(α)) = E[ln (p(w|α, a))] +E[ln (p(α))] + const (A11)

Developing the first term, we obtain:

ln (p(w|α, a)) =
1
2

D

∑
d=1

ln (αd)− 1
2

D

∑
d=1

Tr{aTx:,dαdxT
:,da}+ const, (A12)

and we can apply the expectation to obtain:

Ea,τ [p(w|α, a)] =
1
2

D

∑
d=1

ln (αd)− 1
2

D

∑
d=1

αdTr{xT
:,d〈aaT〉x:,d} (A13)

If we look at the second term, we have

ln (p(α)) =
D

∑
d=1

(− bα
0 αd + (aα

0 − 1) ln (αd)) + const, (A14)

where we can apply the expectation of the function as:

E[ln (p(α))] =
D

∑
d=1

ln(p(αd)) =
D

∑
d=1

(− bα
0 αd + (aα

0 − 1) ln (αd)) + const. (A15)

Now, if we sum Equations (A13) and (A15), we obtain:

ln(q(α)) =
D

∑
d=1

((
1
2
+ aα

0 − 1
)

ln(αd)− αd
2
(Tr{xT

:,d〈aaT〉x:,d}+ 2bα
0)

)
+ const. (A16)

Thus, if we identify terms on the variable distribution, we have:

q(αd) =
D

∏
d=1

Γ
(
αd|aαd , bαd

)
, (A17)

where the first parameter is:

aα =
1
2
+ aα

0, (A18)

and the second parameter can be expressed as:

bα = bα
0 +

1
2

diag(XT〈aaT〉X). (A19)
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Appendix A.3. Mean Field Approximation of τ

Following the same steps as in the two previous approaches, we use the mean field
approximation over variable τ to obtain the logarithm of the approximate posterior:

ln (q(τ)) = E[ln (p(y|X, a, τ))] + E[ln (p(τ))] + const. (A20)

Therefore, the first term on this equation is:

ln (p(y|X, a, τ)) =
N
2

ln(τ)− τ

2

(
N

∑
n=1

y2
n − 2Tr

{
yTKa

}
+ Tr

{
KTKaaT

})
+ const, (A21)

and, applying the expectation we obtain:

Ea[ln (p(y|X, a, τ))] =
N
2

ln(τ)

− τ

2

(
N

∑
n=1

y2
n − 2Tr

{
yT K〈a〉

}
+ Tr

{
KTK〈aaT〉

})
+ const. (A22)

The second term is defined as:

E[ln (p(τ))] = ln (p(τ)) = −bτ
0 τ + (aτ

0 − 1) ln (τ) + const. (A23)

Now, if we sum Equations (A22) and (A23), we obtain:

ln (q(α)) =
(

N
2
+ aτ

0 − 1
)

ln (τ)

− τ

2

(
N

∑
n=1

y2
n − 2Tr

{
yTK〈a〉

}
+ Tr

{
KTK〈aaT〉

}
+ 2bτ

0

)
+ const. (A24)

Therefore, following the same procedure as with the previous variables, we identify
terms from the distribution and obtain:

q(τ) = Γ(τ|aτ , bτ), (A25)

where the first parameter is:

aτ =
N
2
+ aτ

0 , (A26)

and the second one is:

bτ =
1
2
(

N

∑
n=1

y2
n − 2Tr

{
yTK〈a〉

}
+ Tr

{
KTK〈aaT〉

}
) + bτ

0 . (A27)

Appendix B. Lower Bound Inference

As mentioned in the Methods section, we use the Kullback–Leibler divergence to first
determine the similarities between two distribution where, for any two probability density
functions p(x) and q(x), we have:

DKL =
∫

q(x) ln
q(x)
p(x)

dx (A28)
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In our case, if we particularize for the true posterior and the posterior approximation,
the divergence can be expressed as:

DKL = −
∫

q(Θ) ln
(

q(Θ)

p(Θ|X)

)
dΘ =

∫
q(Θ) ln(q(Θ))dΘ −

∫
q(Θ) ln(p(Θ|X))dΘ

= Eq[ln(q(Θ))]−Eq[ln(p(Θ|X))]. (A29)

Developing the conditional probability we obtain:

DKL = Eq[ln(q(Θ))]−Eq[ln(p(Θ, X))] + ln(p(X)). (A30)

Due to the impossibility of working with this distribution because the marginal
distribution p(X) cannot be calculated, we use an Evidence Lower Bound (ELBO/LB) to
this expression [34]. The LB is the divergence of negative KL plus ln(p(X)); therefore, the
greatest similarity between the two functions is achieved by maximizing this new measure.
We can calculate the LB as:

Lq = −
∫

q(Θ) ln
(

q(Θ)

p(X, Θ)

)
dΘ =

∫
q(Θ) ln(p(X, Θ))dΘ −

∫
q(Θ) ln(q(Θ))dΘ

= Eq[ln(p(X, Θ))]−Eq[ln(q(Θ))] (A31)

In order to easily calculate this lower bound, we will separately calculate the terms
related to Eq[ln(p(X, Θ))] and to the entropy in the following subsections.

Appendix B.1. Terms Associated to Eq[ln(p(X, y, Θ))]

This first term of the lower bound would be composed by the following terms:

Eq[ln(p(X, y, Θ))] = Eq[ln(p(X))] +Eq[ln(p(w | α, a))] +Eq[ln(p(α))]
+Eq[ln(p(y| a, X, τ))] +Eq[ln(p(τ))] (A32)

This way, the different elements of this equation can be calculated as:

Eq[ln(p(w | α, a))] = −D
2

ln(2π) +
D
2

D

∑
d=1

(
ψ
(
affd

)− ln
(
bffd

))

−
D

∑
d=1

(
affd

)
+ bα

0

D

∑
d=1

(
affd

bffd

)
(A33)

Eq[ln(p(α))] = (aα
0 ln(bα

0)− ln(Γ(aα
0)))

+
D

∑
d=1

(
−bα

0
affd

bffd

+ (aα
0 − 1)

(
ψ
(
affd

)− ln
(
bffd

)))
(A34)

Eq[ln(p(w, α))] =

(
D
2
+ aα

0 − 1
) D

∑
d=1

(
ψ
(
affd

)− ln
(
bffd

))− D
2

ln(2π)

+ (aα
0 ln(bα

0)− ln(Γ(aα
0)))−

D

∑
d=1

(
affd

)
(A35)
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Eq[ln(p(y| a, X, τ))] = − ND
2

ln(2π) +
D
2

N

∑
n=1

(
Eq[ln(τ)]

)

− 1
2
Eq[τ]

(
N

∑
n=1

y2
n −2 Tr

{
yT K〈a〉

}
+ Tr

{
〈a, aT〉KT K

})

= − ND
2

ln(2π) +
D
2
(ψ(aτ)− ln(bτ))− aτ +

aτ

bτ
bτ

0 (A36)

Eq[ln(p(τ))] = aτ
0 ln(bτ

0)− ln(Γ(aτ
0))− bτ

0
aτ

bτ
+ (aτ

0 − 1)(ψ(aτ)− ln(bτ)) (A37)

Eq[ln(p(y, τ| a, X))] = − ND
2

ln(2π)− aτ + aτ
0 ln(bτ

0)− ln(Γ(aτ
0))+(

D
2
+ aτ

0 − 1
)
(ψ(aτ)− ln(bτ)) (A38)

Appendix B.2. Terms of Entropy

The second term in the LB expression is the entropy of the model parameters:

Eq[ln(q(Θ))] = Eq[ln(q(w))] +Eq[ln(q(α))] +Eq[ln(q(τ))], (A39)

where the entropy of these parameters is:

Eq[ln(q(w))] =
D
2

ln(2πe) +
D
2

ln|Σw| (A40)

Eq

[
ln
(

q
(

α(m)
))]

=

Kc

∑
k=1

(
a

ff(m)
k

+ ln
(

Γ
(

a
ff(m)

k

))
−

(
1 − a

ff(m)
k

)
ψ

(
a

ff(m)
k

)
− ln

(
b

ff(m)
k

))
(A41)

Eq

[
ln
(

q
(

ø(m)
))]

= aø(m) + ln
(
Γ
(
aø(m)

))− (
1 − aø(m)

)
ψ
(
aø(m)

)− ln
(
bø(m)

)
(A42)

Appendix B.3. Complete Lower Bound

Finally, joining Equations (A32) and (A39), the complete lower bound is calculated as:

Lq = −
(

D
2
+ aα

0 − 1
) Kc

∑
k=1

(ln(bαk ))−
(

D
2
+ aτ

0 − 1
)
(ln(bτ))

− D
2

ln|Σw|+
Kc

∑
k=1

(ln(bαk )) + ln(bτ) + const (A43)
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Abstract: Image segmentation is used to analyze medical images quantitatively for diagnosis and
treatment planning. Since manual segmentation requires considerable time and effort from experts,
research to automatically perform segmentation is in progress. Recent studies using deep learning
have improved performance but need many labeled data. Although there are public datasets for
research, manual labeling is required in an area where labeling is not performed to train a model. We
propose a deep-learning-based tool that can easily create training data to alleviate this inconvenience.
The proposed tool receives a CT image and the pixels of organs the user wants to segment as inputs
and extract the features of the CT image using a deep learning network. Then, pixels that have similar
features are classified to the identical organ. The advantage of the proposed tool is that it can be
trained with a small number of labeled data. After training with 25 labeled CT images, our tool
shows competitive results when it is compared to the state-of-the-art segmentation algorithms, such
as UNet and DeepNetV3.

Keywords: medical image segmentation; CT image segmentation; deep learning; kernel density;
semi-automated labeling tool

1. Introduction

Image segmentation is used to analyze the medical image quantitatively for the
quantification of tissue volume, diagnosis, treatment planning, and computer-integrated
surgery [1]. However, it takes a lot of time and effort for a radiologist and doctor to conduct
segmentation on CT images of each patient. Therefore, the necessity for technology that
can accelerate segmentation on CT images has been highlighted consistently.

Over the past few decades, CNN-based deep learning techniques have made remark-
able success in computer vision tasks, and there have been attempts to apply CNN-based
methods in the field of medical image segmentation [2–6]. Afterward, UNet [7], which has
the U-shaped encoder-decoder architecture with skip-connection, significantly improved
the performance of the medical image segmentation task. Since the introduction of UNet,
many variants using its architecture have been studied for segmentation tasks on organs
and muscles of CT images in the medical field.

Although many deep learning models perform well enough to generate segmentation
on CT images, it is not easy for medical institutions to train a network fit for their purpose.
First, making public labeled data is difficult because the privacy of local data in medical
institutions is essential. In addition, it cannot be guaranteed that the network trained by
public data will conduct segmentation well on data owned by each institution since the
distribution of pixels in the CT image differs depending on radiography equipment. Finally,
the tedious work of labeling is needed whenever a segmentation task is conducted on an
unlabeled organ in a public dataset.

Appl. Sci. 2022, 12, 1328. https://doi.org/10.3390/app12031328 https://www.mdpi.com/journal/applsci45



Appl. Sci. 2022, 12, 1328

In this research, we propose a deep-learning-based tool that can help with the labeling
task, which is required to make the labeled data for a network performing segmentation
and reduce the time and effort of experts. The network used for our tool can be trained
with a small number of labeled data. After training, the tool shows the region of the organ
when the user puts a dot on the target organ to be segmented. The user can conveniently
adjust the threshold so that the labeling can be performed flexibly according to the data
distribution. We expect that the labeled data for the medical image segmentation model
would be easily made using our proposed labeling tool.

We compared our tool with two representative segmentation methods, UNet and
DeepLabV3, for evaluation. Our technique is challenging to compare with the automated
segmentation methods because a user has to annotate the pixels and set the threshold.
Therefore, we proceed with two preceding experiments to determine the number of input
anchors and the threshold for the experiment. For an efficient experiment, the anchors are
extracted from the ground truth. Finally, Dice Score and Hausdorff Distance are used to
measure the performance.

In this paper, our main contributions are as follows:

• We propose a novel labeling tool that can be trained with only a few labeled data by
incorporating visual features and locality information extracted from Feature Encoder
and Gaussian kernel.

• We utilize anchor pixels from user interactions for easily segmenting organs. The
pixels can be selected anywhere on the target organs, with no additional constraints,
such as annotating bounding-box, extreme points.

• Our tool provides an additional function to refine the segmentation result in detail by
modifying the threshold value.

The following section discusses recent deep-learning-based segmentation models,
interactive medical image segmentation models, and differences between the proposed
method and existing interactive segmentation models. Section 3 introduces the proposed
method, the dataset used for training, the metric for performance evaluation, and the
application that can conveniently perform segmentation using our model. The results of
measuring the performance of our method are presented in Section 4. Finally, Section 5
summarizes the proposed method and discusses future research directions.

2. Related Work

In this section, we study the recent work for image segmentation, which is categorized
into UNet, Transformer-based models, and interactive segmentation methods. While many
recent segmentation algorithms have adopted UNet and Transformer, they require a large
set of fully labeled segmentation images. In this work, we exploit both UNet-based model
architecture and an interactive segmentation strategy to generate a segmentation-labeled
image with little effort.

2.1. Deep-Learning-Based Medical Image Segmentation

After the success of UNet on medical image segmentation tasks, there have been many
studies trying to utilize its architecture or applying additional techniques to improve the
performance [8–11]. For example, UNet combined with self-attention gates [8] on coarsely
extracted feature maps from the encoding path is used for multi-organ segmentation. This
gating method relieved the noisy response in skip-connection, capturing more precise tex-
tural and structural information on the input image patches. Bottleneck Feature supervised
BS-UNet [9] connects its network with two UNets for liver and tumor segmentation. The
first network is UNet with no skip-connection, which works as an auto-encoder learning
the feature information from labeled data. The second network is the original UNet that
performs the segmentation task. GIU-Net [12] utilize a graph-cut algorithm for multi-organ
segmentation (skip-connection), which modified the structure of the skip-connection and
used it to solve the task. Targeting organs-at-risk (OARs) is also crucial work in medical
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facilities. In [11], the convolution layers of UNet are replaced in the context aggregation block to
learn from wide-range features to perform segmentation of OARs in cervical cancer.

Recently, research to improve medical image segmentation performance is still in
progress. For instance, some studies adapt the UNet architecture as the backbone and
exploit other deep learning techniques. UTNet [13] utilize a transformer encoder block and
a decoder block as the last part of each convolution layer. Ref. [14] extracts fine-grained
features by utilizing various sizes of the receptive field. It inserted a channel attention (CA)
block into skip connection and applied a hybrid dilated attention convolutional (HDAC)
layer to the last encoder output. X-Net [15] proposes an X-shaped network that can learn
in parallel using two different branches: the CNN branch and transformer branch. As
the Vision Transformer rises in various fields of the vision task, many studies utilizing
vision transformers as the backbone have been conducted for medical image segmentation.
In [16], a U-shaped network with a vision transformer base encoder for brain tumors and
abdominal organ segmentation of 3D image patches is proposed, and a network consisting
of pure transformers is introduced in [17]. The authors, inspired by Swin Transformer [18]
and UNet, built an encoder-decoder architecture composed of only transformers using
Swin Transformer blocks.

2.2. Interactive Medical Image Segmentation

Hence, interactive segmentation tools have been studied, which can assist in gen-
erating segmentation datasets on CT images with little effort. For instance, landmark
points [19] or bounding boxes [20] could be guides for segmentation. Nevertheless, these
studies still require many labeled data or careful guidance, which can make data collection
expensive, especially in the medical field. Therefore, to solve such drawbacks, we propose
an interactive labeling tool that can be helpful in the medical field, making it possible to
gather data with ease and less time.

In addition, the performance of active contour models is also improved. Ref. [21]
proposed an additive bias correction model to reduce the long execution time of the existing
bias correction model. Since these active contour models must designate the region of
interest (ROI) and detect the object’s boundary, the segmentation result can significantly
differ depending on the given ROI. Our study focused on users conveniently performing
segmentation on abdominal CT images.

3. Materials and Methods

We now define the dataset and propose our segmentation tool based on a deep
neural network. Initially, we explain the CT image dataset used in this paper. Next, we
introduce our model architecture consisting of a feature encoder and two kernel modules,
the used metrics, and the loss function. Finally, we show our application implemented
with these materials.

3.1. Dataset

We utilize the BTCV [22] dataset (https://www.synapse.org/#!Synapse:syn3193805/files/,
accessed on 1 September 2021). The dataset has 13 organs with segmentation performed by
a trained person and reviewed by a radiologist. In this study, we measured the performance
through four organs: liver, left kidney, right kidney, and spleen, located in the abdomen. In
Figure 1, we provide abdominal CT images of four different people; each organ has its colors
and textures, and the positions are relatively similar.

To build our dataset, we sampled 202 CT images that have 4 organs: liver, spleen, left
kidney, and right kidney. Among them, only 25 CT images were used for training and
177 CT images for testing. All CT images have segmentation labels. We exploited segmenta-
tion labels of the training set to randomly sample anchor pixels instead of manually picking
them. For preprocessing, we arranged the range of CT image pixels to [−1, 1] and applied
histogram equalization.
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Figure 1. CT image examples that show different colors and textures for each organs.

3.2. Proposed Method

We propose a semi-automated tool that generates organ segmentation. Given a CT
image, the radiologists annotate a few pixels—an anchor to specify the target organ. The
pixels near the anchor pixels, which have similar characteristics, are candidates of the target
organ to be segmented. To capture the segmentation region of the target organs, we utilize
two types of information: visual features and locality. In Figure 2, we provide a schematic
representation of our network. Our proposed model consists of two sub-modules: Feature
Encoder F and Kernel Function K. The Feature Encoder F extracts the feature vector for
each pixel, which is used to calculate the visual similarity between pixels. We exploit a
modified U-Net architecture to implement the Feature Encoder F .

(a)

(b) (c)

Figure 2. Model architecture that consists of 2 kernels. These kernels are used to compute the kernel
density, which has a high value in the region of the target organ: (a) Feature similarity kernel density;
(b) Gaussian kernel density; (c) Kernel density.

The Kernel Function K is used to capture both visual features and locality information.
In a CT image, let Mc be a set of anchor pixels that a user picks on the c-th organ. The Kernel
Function K computes the density for all pixels, which represents visual and positional
similarity. As illustrated in Figure 2c, the kernel density is made of two types of densities:
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feature similarity kernel density KFeature
c (shown in Figure 2a) and Gaussian kernel density

KGaussian
c (shown in Figure 2b). The kernel density Kc of a pixel p is computed as follows:

Kc(p) = ∑
mc∈Mc

KFeature
c (p, mc)KGaussian

c (p, mc) (1)

where p is an arbitrary pixel, and mc is an anchor pixel of the c-th organ. KFeature
c means

the feature similarity kernel density for the c-th organ. The feature similarity kernel density
measures the feature similarity of two pixels. KGaussian

c indicates the Gaussian kernel
density for the c-th organ. The Gaussian kernel density calculates the positional similarity
of two pixels.

The kernel density has a maximum value at each anchor pixel mc. In the other case, the
density value becomes high if a pixel p is closer to the anchor pixels Mc and has a similar
texture or color too. Therefore, we can figure out the region of the c-th organ, filtering
pixels with a high density.

If a pixel p has similar visual features to anchor pixels Mc, the pixel p is more likely
to belong to the c-th organ than other pixels. Using feature vectors F (p) for the pixel p
and F (mc) for an anchor pixel mc, we can calculate the feature similarity kernel density by
using the dot product between F (p) and F (mc) as follows:

KFeature
c (p, mc) = F (p)T · F (mc) (2)

where p is an arbitrary pixel, and mc is an anchor pixel in the c-th organ. The operator
· means dot product. If two pixels p and mc have similar features, the feature similarity
kernel density has high value.

Gaussian kernel quantified how close the pixel is to anchor points, that is, a pixel
closer to anchor pixels has a higher density value. This density is required not to capture
regions that have similar texture but are far from anchor points (in another organ). A pixel
p should be closer to anchor pixels for being classified as a target label. The Gaussian kernel
density is calculated as follows:

KGaussian
c (p, mc) = exp(−γc||p − mc||22) (3)

where γc is a trainable precision parameter used in Gaussian kernel for the c-th organ, and
|| · ||2 indicates L2 norm.

In practice, we exploit a modified UNet architecture used as the Feature Encoder.
We replace the convolution layers with the same padded convolution layers to fit the
output resolution to the input resolution. We changed the output feature map channel
to 128, which is the length of the feature vector of a pixel. Lastly, we utilize the Adam
optimizer [23] to train our model.

3.3. Loss Function

We utilize Noise Contrastive Estimation (NCE) [24] loss to build the objective function.
NCE loss uses negative sampling to optimize model parameters by forcing the density of
the positive sample to be high and the density of the negative sample to be low. Let P

pos
c be

a set of pixels in the c-th organ and P
neg
c be a set of pixels not in the c-th organ. We collected

positive pixels ppos
c by randomly sampling from P

pos
c and collected negative pixels pneg

c in
the same way from P

neg
c . Using these pixels, we formulate the NCE loss, whose form is

from InfoNCE loss [25], as follows:

LNCE = ∑
c
L(c) (4)
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where L(c) = Eppos
c ∼P

pos
c

⎡
⎣− log

exp(Kc(ppos
c ))

Epneg
c ∼P

neg
c

[
exp(Kc(pneg

c )
]
⎤
⎦ (5)

where Lc is the NCE loss for the c-th organ, ppos
c is a pixel in the c-th organ, and pneg

c is a
pixel not in the c-th organ. Kc(·) indicates the kernel density of a pixel, and E[·] means the
expectation.

3.4. Evaluation Metrics

To evaluate the performance of our model, we compare it with two baseline models:
UNet and DeepNet-V3. We benchmark the segmentation performance with two segmen-
tation measures: dice score and Hausdorff distance. Given the predicted region P and
ground truth region G, the dice score is computed as follows:

DICE =
2(P ∩ G)

|P|+ |G| (6)

where |P| and |G| mean the cardinality of P and G, respectively. The dice score indicates
overlapped area between the segmentation prediction and ground truth, penalizing the
missing prediction. In case the model prediction is more similar to ground truth in terms
of segmentation size, the dice score is more highly evaluated. The Hausdorff distance is
computed as follows:

HD(P, G) = max(max
p∈P

min
g∈G

‖ p − g ‖, max
g∈G

min
p∈P

‖ g − p ‖) (7)

In the inner terms, the first term calculates the maximum distance to the minimum
distance from the predicted pixel to the ground truth pixel, and the second term calculates
the distance. As a result, the Hausdorff distance represents the maximum distance between
two pixels and that each pixel belongs to the exclusive region, respectively.

3.5. The Application Generating Label

After training the proposed method with a little training data, a user can perform
organ segmentation on a CT image. Figure 3 shows our tool in use. It contains the input CT
image, anchor pixels entered by a user, threshold value, and segmented target organ image.
A user can create labels using our tool as following order:

1. Open a CT image to perform segmentation;
2. Select the target organ in category;
3. Pick anchor pixels on the target organ. Once anchor pixels are picked, proposed

model computes kernel density for all pixels;
4. Extract the segmentation label by filtering the density that is higher than a threshold

value.

To infer segmentation from a kernel density, a threshold value determines the lower
density bound of the segmentation label. The suitable threshold value can be different
for each organ since each organ has various sizes and shapes in a CT image. In order to
enable adjusting the threshold value, we added a slider in the bottom of the interface, as
illustrated Figure 3. Through the slider, a user can manipulate the threshold to generate a
proper segmentation label on input CT image.
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Figure 3. The user interface of our tool for reconstructing a segmentation label from a few anchor
pixels. The upper figure shows the segmentation result when the threshold is 18. The lower figure is
same as upper figure except for threshold value (which is 28).

4. Performance Tests

This section explains the experiment environment and results. This work was imple-
mented with PyTorch [26], and the user interface was built with PyQT. When implementing
evaluation metrics, we utilized the MONAI (https://monai.io/, accessed on 1 September
2021) library. The model training and inference are conducted on an Ubuntu machine with
NVIDIA GTX 1080 Ti GPU installed. We visualized our experiments using the Weight &
Bias [27] tool.

4.1. Performance Evaluation with Varying Threshold

A threshold value is a hyperparameter to draw segmentation results from a kernel
density. Because the quality of the result depends on the threshold, the appropriate threshold
value is required. To show the influence of the threshold value, we visualize segmentation
images and measure the metrics of the segmentation, varying the threshold values from 0
to 50.

Given the anchor pixels and threshold value, Figure 4 illustrates segmentation images
of each target organ. As a result, the lower threshold captures the region roughly, and
the higher value shrinks the area to narrow. The dice score and Hausdorff distance are
for measuring segmentation performance. As shown in Figure 5, the dice score reached

51



Appl. Sci. 2022, 12, 1328

0.81 when the threshold value was 18, and the Hausdorff distance achieved a minimum
distance of 11.96 when the threshold value was 33.

Figure 4. Segmentation Examples by Threshold. Each row represents each organ. First column shows
original CT images, and from the second to sixth columns, the segmentation generated from 5 anchor
pixels is shown. We visualize segmentation by different thresholds.

Figure 5. Dice score and Hausdorff distance by varying thresholds. Left graph demonstrates change
in dice score by changing thresholds. Right graph shows Hausdorff distance by varying thresholds.

We analyzed that the dice score tends to be high when there is an intersection region
between the predicted region and ground truth, even though a non-organ region is captured.
In contrast, the Hausdorff distance tends to be low when the boundary of the predicted
region is close to the ground truth. Our experiments focus more on capturing all regions of
the target organ than predicting its boundary. As a result, we fix the threshold value as 18
in the following experiments.

4.2. Performance Evaluation with Varying the Number of Anchor Pixels

The proposed model requires a few anchor pixels on the organ to be segmented. The
performance of the model can be affected by the number of anchor pixels picked by the user.
The anchors are sampled randomly in the ground truth for convenience in the experiments.
We tried to find out the best number of anchor pixels for our method.

As shown in Table 1, we measured the dice score and Hausdorff distance of our model
according to the number of anchor pixels for the proposed method. The dice score is the
lowest when using only one anchor pixel for each organ, and the dice score when using two
or more anchor pixels is almost similar. However, the Hausdorff distance instead increases
because other organs with similar textures to the target organ are often segmented.
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Table 1. Dice score and Hausdorff distance by changing the number of anchors.

Number of Anchor Pixels per Organs

Model 1 2 3 4 5
DICE SCORE 0.717 0.752 0.761 0.762 0.759
Hausdorff Distance 29.155 14.956 18.748 20.433 17.951

Figure 6 shows how the number of anchor pixels affects the segmentation recon-
structed from anchor pixels. As those figures illustrate, our model can find a segmentation
region with a missing area when we pick only one anchor pixel. However, as the number
of anchor pixels increases, the proposed method captured a more accurate region.

Figure 6. Case study to see how the generated segmentation is changed by a changing number of
anchor pixels. The first and third columns are original CT images with some anchor pixels (red
points). The second and fourth columns are generated segmentation using given anchor pixels.
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Generally, more anchor pixels give better segmentation than fewer anchor pixels.
However, we could find some exceptional cases that fewer anchor pixels show better
performance. We analyzed that the position of anchor pixels also affects the performance.
For instance, even if we have only one anchor pixel, the segmentation prediction is more
accurate when the anchor pixel exists around the center of the organ. If we have more than
one anchor pixel, but they are in the boundary, our model tends to capture only a part of
the region. Since we automated the process of picking anchor pixels by randomly sampling
them from pixels of the organ, the case that some anchor pixels cover the same region or
exist in the boundary region frequently occurred.

4.3. Tests On Segmentation Accuracy

In our case, we focus on making the model show acceptable performance when a
few labeled data are given. To verify the performance of our model, we measured the
evaluation metrics by varying the number of training data. The x-axis of Figure 7 represents
the number of people extracted from labeled images. In this experiment, we used only five
CT images per person.

Figure 7. Dice score and Hausdorff distance by changing size of training data (number of people in
training data).

Figure 7 shows the dice score and Hausdorff distance of the proposed model and
baseline models. As illustrated in Figure 7, our model is superior to baseline models in
terms of dice score. In particular, our model achieved a 0.6 dice score with training data of
only one person, whereas baseline models achieved only about 0.5 dice score.

However, our model has a higher Hausdorff distance than DeepLab-V3 because
segmentation generated by DeepLab-V3 is rarely scattered. In contrast, our method can
generate segmentation with some scattered points since our approach exploits the density
computed using visual similarity between pixels. If there are points that have similar
features with anchor pixels, these points can be classified as part of the target organ, even if
these pixels are apart from the target organ (this circumstance can also be found in Figure 4).
This drawback can be relieved by carefully picking anchor pixels and thresholding.

We also compared our model with other semi-automatic algorithms, such as the active
contour algorithm and the watershed algorithm. We exploited the true segmentation label
to construct informative seed for the watershed algorithm. However, we found that these
algorithms poorly detected the region of organs and achieved a dice score too low (0.04
and 0.07, respectively).

4.4. Ablation Study

This experiment explains the ablation study explain why these two kernel modules
are necessary. As shown in Table 2, if we have only the Gaussian kernel density, the perfor-
mance becomes lower than any other models in terms of both dice score and Hausdorff
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distance. At this point, we adjusted the threshold to 0.5 since the Gaussian kernel density
generally has a small value. The threshold value of 0.5 is selected by the experiment to
perform better. The performance drop is not huge when we take only the feature similarity
kernel density (feature-only model). However, as illustrated in Figure 8, the feature-only
model generates more scattered segmentation than ours. Therefore, utilizing the Gaussian
kernel density to generate segmentation labels is necessary in order to avoid scattering,
although the feature-only model has a tiny performance drop.

Table 2. Ablation study for kernels.

Gaussian Kernel Feature Kernel Dice Score Hausdorff Distance

O O 0.7590 23.31

O X 0.3795 31.08

X O 0.7370 23.85

Figure 8. Ablation Study: Importance of the Gaussian Kernel. The first and fifth columns are CT
images. The second and sixth columns are ground truth segmentation labels. The third and seventh
columns are predictions generated by the model without the Gaussian kernel. The fourth and last
columns are predictions generated by our model (Gaussian kernel + feature similarity kernel).

5. Conclusions

In this work, we proposed a tool that allows users to obtain segmentation labels by
picking a few pixel points on the organ. The tool cannot segment without giving a pixel
point but has the advantage that learning requires less labeled data than previous studies
and makes data collection easier. This tool calculates the kernel density for all pixels, finds
areas equal to or greater than a specific threshold value, and demonstrates its performance
through experiments. However, the proposed method has a constraint that some non-target
regions nearby a target organ could be classified as the same organ when the pixels have
similar visual characteristics to a target organ. Furthermore, if an organ has various textures
or multiple regions, our algorithm may miss some regions of the organ. Even though these
constraints can be mitigated by carefully adjusting the threshold value, we should improve
our algorithm in future work.
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Abstract: Linear statistical methods may not be suited to the understanding of psychiatric phenomena
such as aggression due to their complexity and multifactorial origins. Here, the application of machine
learning (ML) algorithms offers the possibility of analyzing a large number of influencing factors
and their interactions. This study aimed to explore inpatient aggression in offender patients with
schizophrenia spectrum disorders (SSDs) using a suitable ML model on a dataset of 370 patients.
With a balanced accuracy of 77.6% and an AUC of 0.87, support vector machines (SVM) outperformed
all the other ML algorithms. Negative behavior toward other patients, the breaking of ward rules,
the PANSS score at admission as well as poor impulse control and impulsivity emerged as the most
predictive variables in distinguishing aggressive from non-aggressive patients. The present study
serves as an example of the practical use of ML in forensic psychiatric research regarding the complex
interplay between the factors contributing to aggressive behavior in SSD. Through its application,
it could be shown that mental illness and the antisocial behavior associated with it outweighed
other predictors. The fact that SSD is also highly associated with antisocial behavior emphasizes the
importance of early detection and sufficient treatment.

Keywords: machine learning; advanced statistics; schizophrenia; aggression; forensic psychiatry

1. Introduction

With the rapid technological progress of the past few years, artificial intelligence
(AI) is increasingly being put to use in medical research. Often equated with human-like
robots by the general public, AI is ultimately any system that adapts its performance based
on its perception of the environment. This includes advanced statistics such as machine
learning (ML), which allows a variety of variables and their relationship to one another
to be analyzed through complex mathematical algorithms, as well as the quantification
of the quality of a statistical model [1–4]. When it comes to psychiatric research though,
statistical analyses are usually conducted using null hypothesis significance tests (NHSTs)
or simple linear regressions. This results in the following certain limitations: (I) mainly
linear relationships can be determined, and, with NHSTs, it is not even possible to exam-
ine the relationships between the variables themselves; (II) in order to avoid alpha error
accumulation, only a limited number of variables can be analyzed; and (III) the research
question must be precisely defined and rather constrained, as it can only be determined
whether a (null) hypothesis is true or not. However, this approach does not accommodate
psychiatric syndromes with their complex and often highly interdependent multifactorial
relationships. The genesis of psychiatric diseases and pathological behavioral disorders
is by no means a linear process influenced by only single, independent factors. This is
especially true for the generally under-researched field of forensic psychiatry, where the
interplay of psychopathology, offending, and aggression has yet to be comprehensively
understood. Consequently, to investigate such phenomena, modern statistical methods
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such as ML are necessary and already applied in psychiatric research areas regarding
pharmaceuticals or neuroimaging [5–9]. The following analysis should serve as an example
of the practical use of ML in the field of forensic psychiatry, specifically aggression and
schizophrenia spectrum disorders (SSDs). Factors linked to aggressive behavior outside the
clinical setting have recently been evaluated by means of ML and include higher PANSS
scores as well as younger age at SSD diagnosis [10–12]. For this study, we chose an explo-
rative approach, as aggression is considered to be a multifactorial, complex phenomenon,
mediated through a broad variety of parameters from different domains. This study now
aims to determine the most predictive factors of aggression within the institutional setting,
based on a unique group of forensic offenders with SSD, (objective I) and to quantify the
performance of the calculated model (objective II).

2. Materials and Methods

The files of 370 delinquent patients diagnosed with SSD according to ICD-9 (295.x) [13]
and ICD-10 (F20–29.x) [14], who were admitted to the Center for Inpatient Forensic Thera-
pies of the University Hospital of Psychiatry Zurich, were assessed retrospectively. This
comprehensive dataset included items from the following domains: social-demographic
data, childhood/youth experiences, psychiatric history, past criminal history, social/sexual
functioning, details on the offense leading to forensic hospitalization, prison data, and par-
ticularities of the current hospitalization and psychopathological symptoms. The latter was
defined by an adapted positive and negative symptom scale (PANSS), whereby symptoms
were divided into the usual 30 sub-categories and rated on a three-tier scale instead of a
seven-tier one (completely absent, discretely present, or substantially present). The dataset
has already been used in other studies as part of a larger, ongoing project with the goal
of providing insights into the complex field of SSD and offending. Although the same
database provides the basis for several analyses covering a wide range of objectives in
this research area, and although there are a few overlapping parameters, it still contains a
substantial number of unique variables, thus resulting in different theoretical and practical
conclusions and implications. An overview of the basic characteristics of the population is
provided in Table 1.

Table 1. Sociodemographic characteristics 1.

Characteristics
Total

n/N (%)
No Aggression

n/N (%)
Aggression

n/N (%)

Male sex 327/352 (92.9) 219/239 (91.6) 108/113 (95.6)

Age at admission
(mean, SD) 33.98 (10.206) 34.62 (10.014) 32.64 (10.519)

Native Country Switzerland 156/352 (44.3) 106/239 (44.4) 50/113 (44.2)

Single (at offense) 285/346 (82.4) 188/233 (80.7) 97/113 (85.8)
1 SD = standard deviation; N = total study population; n = subgroup with characteristic.

Parts of the following section were published in advance in a study by Günther et al. [15]
and is here partly replicated and extended by the methodology of the current research
question. For further information regarding data collection and processing, please refer
to previous publications [15–17]. Due to the explorative nature of this study, supervised
machine learning (ML) seemed to be the optimal approach to identify the most relevant
predictive factors out of numerous parameters and to determine the model providing the
best predictive power. An overview of the statistical steps can be seen in Figure 1 and is
further described below. All the steps were performed using R version 3.6.3. (R Project,
Vienna, Austria) and the MLR package v2.171 (Bischl, Munich, Germany). CI calculations
of the balanced accuracy were conducted using MATLAB R2019a (MATLAB and Statistics
Toolbox Release 2012, The MathWorks, Inc., Natick, Massachusetts, United States) with the
add-on “computing the posterior balanced accuracy” v1.0.
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Figure 1. Overview of statistical procedures: (Step 1)—Data Preparation: Multiple categorical
variables were converted to binary code. Continuous and ordinal variables were not manipulated.
Outcome variable violent behavior/no violent behavior and 507 predictor variables were defined.
(Step 2)—Data splitting: Split into 70% training dataset and 30% validation dataset. (Step 3a–e)
—Model building and testing on training data I: Imputation by mean/mode; up-sampling of outcome
“violent behavior” × 2; variable reduction via random forest; model building via ML algorithms
—logistic regression, trees, random forest, gradient boosting, KNN (k-nearest neighbor), support
vector machines (SVM) and naive Bayes; testing (selection) of best ML algorithm via ROC parameters.
(Step 4)—Model building and testing on training data II: Nested resampling with imputation, up-
sampling, variable reduction, and model building in inner loop and model testing on the outer loop.
(Step 5)—Model building and testing on validation data I: Imputation with stored weights from
Step 3a. (Step 6)—Model building and testing on validation data II: Best model identified in Step 3e
applied on imputed and validation dataset and evaluated via ROC parameters. (Step 7)—Ranking of
variables by indicative power.

All raw data were first processed for machine learning (see Figure 1, Step 1): Several
categorical variables were converted to binary code, while continuous and ordinal variables
were not adjusted. Due to the retrospective nature of the study and a large number of
variables included, there were missing values among variables. This especially applied to
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information on the broader biographical history of patients, although forensic records were
comprehensive. Variables with more than 33% missing values were eliminated, leaving a set
of 508 variables. The outcome variable “aggressive behavior during current hospitalization”
was dichotomized into (1) “aggressive behavior” and (0) “no aggressive behavior”. Acts of
aggression were defined as either verbal or physical attacks aimed toward staff or other
patients, as well as damage of property. After the exclusion of all patients with missing
information regarding their aggressive behavior from further analysis, a total of 352 patients
remained. Out of these patients, 113 (32.1%) were involved in an aggressive event, while
239 (67.9%) were not (see Table 1). “No Aggression” was defined as the positive class,
“Aggression” as the negative class.

After the completion of data preparation, the database was divided into one training
and one validation subset (see Figure 1, Step 2). The training subset, including 70% of all
cases (n = 246), was used for variable reduction and model building/selection. To enable
the flexible application of all ML algorithms, imputation of missing values was carried out
and imputation weights saved for later were reused on the validation subset (see Figure 1,
Step 3a). As the outcome variable was unevenly distributed (12.4:87.6%), a random up-
sampling at a rate of 2 was conducted, leading to a more balanced outcome (see Figure 1,
Step 3b). A major objective of the present study was to identify the most important predictor
variables from 507 possible variables. Additionally, a decrease in variables can counteract
overfitting and maintain computing times in initial model building at an acceptable level.
For this purpose, variable reduction to the 10 most important predictors was performed
using randomForestSRC implemented in the MLR package (see Figure 1, Step 3c). As the
database was relatively small for ML purposes and our focus lay on variable extraction
and prediction, we applied discriminative model building with logistic regression, trees,
random forest, gradient boosting, KNN (k-nearest neighbor), support vector machines
(SVM), and as an easily applicable generative model building, naive Bayes (see Figure 1,
Step 3d). No hyperparameters were optimized. The model performance of each model was
calculated and assessed in terms of its balanced accuracy (the average of true positive and
true negative rate, better suited for model evaluation and calculation of confidence intervals
in imbalanced data) and goodness of fit (measured with the receiver operating characteristic,
balanced curve area under the curve method, ROC balanced AUC). Specificity, sensitivity,
positive predictive value (PPV), and negative predictive value (NPV) were also evaluated.
As our training dataset was artificially balanced, the model with the highest AUC was
chosen for final model validation with the test subset (see Figure 1, Step 3e). The set
of identified variables was tested for multicollinearity to avoid dependencies between
the variables. Finally, a nested resampling approach was employed, thus preventing the
common obstacle of overfitting in ML. This was achieved using a nested resampling model
with the inner loop performing imputation, oversampling, variable filtration, and model
building within 5-fold cross-validation, and the outer loop for performance evaluation
also embedded in 5-fold cross-validation—a technique for artificially creating different
subsamples of a dataset (see Figure 1, Step 4).

As a next step, the validation subset, including 30% of all cases (n = 106), was applied to
evaluate the statistical model selected before (see Figure 1, Steps 5–7). As briefly mentioned
above, the previously stored imputation weights were reused on the validation subset
(see Figure 1, Step 5). Then the model selected through the application of the training
subset was applied for validation (see Figure 1, Step 6). The identified variables were finally
tested for multicollinearity and ranked by their indicative power (see Figure 1, Step 7).

3. Results

3.1. Model Calculation

An overview of the performance parameters of the different calculated models during
the nested resampling procedure can be found in Table 2. With a balanced accuracy of
77.6% and an AUC of 0.87, the support vector machines (SVM) outperformed all the other
ML algorithms (see Table 2).
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Table 2. Machine learning models and performance in nested cross-validation on training dataset 1.

Statistical
Procedure

Balanced
Accuracy (%)

AUC
Sensitivity

(%)
Specificity

(%)
PPV (%) NPV (%)

Logistic
Regression 74.9 0.85 77.8 72.1 85.7 60.6

Tree 74.7 0.80 72.6 76.8 86.2 56.7

Random
Forest 75.3 0.83 74.9 74.9 87.3 59.9

Gradient
Boosting

KNN 77.7 0.85 78.6 76.8 88.0 63.1

SVM 77.6 0.87 78.2 66.9 87.3 66.3

Naive Bayes 75.9 0.85 87.9 76.1 87.8 59.8
1 AUC = area under the curve (level of discrimination); PPV = positive predictive value; NPV = negative predictive
value; KNN = k-nearest neighbors; SVM = support vector machines.

The absolute and relative distribution of the 10 most predictive variables identified
during nested resampling and used for the model buildings can be seen in Table 3. They can
be grouped in the following two areas: (1) problematic or antisocial behavior during current
hospitalization, and (2) psychopathology. In the initial model including ten variables, the
time spent at a high-security level during current forensic hospitalization was the dominant
variable. However, the variable was omitted as it was considered circular. Further analysis
was, therefore, conducted with the remaining nine most predictive variables.

Table 3. Absolute and relative distribution of relevant predictor variables 1.

Variable Code Variable Description Aggressive Incidents
No

Aggressive Incidents

DZ1 Did the patient complain about the
hospital staff? 73/111 (65.8) 45/238 (18.9)

DZ2 Did the patient show negative behavior
toward other patients? 76/112 (67.9) 40/237 (16.9)

DZ7 Did the patient show dis/antisocial behavior? 90/111 (81.1) 73/238 (30.7)

DZ10 Did the patient break the rules of the ward
(e.g., substance abuse)? 61/112 (54.5) 36/238 (15.1)

R22c (mean, SD) Time spent at a high-security level during
current forensic hospitalization 48.36 (59.65)) 33.84 (45.22)

PA_A (mean, SD) Adapted PANSS at admission: Total score 30.19 (12.34) 22.05 (11.35)

PA7 Adapted PANSS at admission: Hostility

symptom absent 27/113 (23.9) 160/238 (67.2)

symptom discreet 22/113 (19.5) 45/238 (18.9)

symptom substantial 64/113 (56.6) 33/238 (13.9)

PA18 Adapted PANSS at admission: Tension

symptom absent 25/113 (22.1) 131/238 (55)

symptom discreet 25/113 (22.1) 54/238 (22.7)

symptom substantial 63/113 (55.8) 53/238 (22.3)

PA22 Adapted PANSS at admission:
Uncooperativeness
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Table 3. Cont.

Variable Code Variable Description Aggressive Incidents
No

Aggressive Incidents

symptom absent 22/113 (19.5) 144/238 (60.5)

symptom discreet 38/113 (33.6) 58/238 (24.4)

symptom substantial 53/113 (46.9) 36/238 (15.1)

PA28 Adapted PANSS at admission: Poor impulse
control

symptom absent 17/113 (15) 155/238 (65.1)

symptom discreet 33/113 (29.2) 40/238 (16.8)

symptom substantial 63/113 (55.8) 43/238 (18.1)
1 SD = Standard deviation; PANSS = positive and negative syndrome scale.

The quality of the final model in the validation step is shown in Table 4. As expected,
the balanced accuracy of 73.5 and the AUC of 0.84 were less than the results of the initial
training model but they were still meaningful. With a sensitivity of 84% and a specificity
of 59%, the patients involved in aggressive incidents were identified correctly in almost
three-quarters of events, while three-thirds of all the non-aggressive patients were identified
correctly (see Table 4).

Table 4. Final SVM model performance measures on validation dataset.

Performance Measures % (95% CI)

Balanced Accuracy 73.5 (64.4–82.1)

AUC 0.84 (0.75–0.93)

Sensitivity 83.5 (83.3–83.8)

Specificity 59.4 (58.8–59.9)

PPV 83.5 (83.2–83.8)

NPV 59.4 (58.8–59.9)

3.2. Determinants of Aggressive Inpatient Behavior

The distribution of the importance of variables of the final validation model is pre-
sented in Figure 2 as a one-sided tornado graph. Negative behavior toward other patients was
identified as the most indicative factor in distinguishing aggressive and non-aggressive
patients, followed by breaking of ward rules, the PANSS score at admission, and poor impulse
control as well as hostility, also according to the PANSS. Complaints about hospital staff,
dis/antisocial utterances or attitudes, tension, and uncooperativeness were also identified as
factors influencing the model.
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Figure 2. Importance of variable of final model “aggression” vs. “no aggression”: DZ2 = patient
showed negative behavior toward other patients; DZ10 = patient broke ward rules; PA_A = PANSS
score at admission; PA28 = Adapted PANSS at admission: poor impulse control; PA7 = Adapted
PANSS at admission: hostility; DZ1 = patient complained about the hospital staff; DZ7 = Patient
showed dis/antisocial utterances or attitudes; PA18 = Adapted PANSS at admission: tension;
PA22 = Adapted PANSS at admission: uncooperativeness.

4. Discussion

The purpose of this study was to identify the factors that distinguish between offender
patients with SSD who show aggressive behavior within a hospitalized setting and those
who do not. The idea was to exploratively identify the most predictive factors in inpatient
violence. By applying ML algorithms to a large database, we were able to create an appro-
priate model consisting of nine factors. With a balanced accuracy of 73.5 and an AUC of
0.84, the model was able to correctly identify aggressive patients in nearly three-quarters
of events and non-aggressive patients in two-thirds of events. The variables related to psy-
chopathology and antisocial behavior proved to be the most predictive regarding inpatient
aggression. The aggressive patients in our population showed an increased occurrence
of negative behavior toward other patients. Patient/patient interaction is known to trigger
aggressive events on general psychiatric wards in about a quarter of cases [16–18]. It
seems obvious that this factor is all the more important in a forensic psychiatric hospital,
where severely ill patients with a high potential for violence come together in a confined
space with little opportunity for avoidance. This finding emphasizes the importance of
de-escalating skills among staff. Remarkably, in contrast to previous results regarding
acute general psychiatric wards, negative behavior toward staff was not identified as one of
the ten most predictive parameters [19–22]. This seems somewhat contradictory to the
fact that both failure to comply with the ward rules and complains about hospital staff were
highly relevant in distinguishing aggressive from non-aggressive patients: Pointing out or
insisting on adherence to ward rules and disciplining noncompliance often causes friction
between staff and patients. While such situations arise on a regular basis within a highly
institutionalized setting, such as forensic psychiatry, they do not seem to be obligatorily
linked to the development of a negative attitude toward the staff and may be tolerated in
the presence of a sustainable therapeutic relationship. Poor impulse control, tension, hostility,
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and uncooperativeness, measured using the corresponding PANSS scales, as well as the
overall PANSS score at admission, were also identified as key factors related to inpatient
aggression. While the results regarding a lack of impulse control, tension, and hostility
are in line with previous findings regarding inpatient aggression in SSD patients as well
as aggressive events prior to hospitalization, the link between overall symptomatology
represented by the total PANSS score and aggression remains controversial [10,23–25]. This
suggests that it is not the severity of disease alone that determines the development of
aggression, but rather the interplay of the various factors present [23,25]. In summary, the
factors that constitute aggression during hospitalization can be reduced to two domains,
psychopathology, and antisocial behavior. Interestingly, these two domains outweighed
all the other factors, for example, the parameters related to child development, social
contacts, and family situation. This was surprising as childhood poverty, for instance,
has been previously identified as a risk factor for violent offending [10,26,27]. This is
similarly true for comorbid substance abuse, which has been identified as a risk factor for
inpatient violence, especially in SSD patients, but did not prove to be of high influence in
our population [11,26–29]. One possible explanation for these phenomena is that the highly
structured and closely supervised setting of the forensic psychiatric institution compensates
for social and biographical factors, as patients have little exposure to a potentially harmful
original social environment (e.g., negative peer group, domestic conflicts, availability of
drugs). In addition, it is worth considering that as SSD progresses and becomes more
chronic, factors related to psychopathology may become more prominent than they are
at an earlier stage of the disease and then outweigh factors with greater influence. As
outlined above, in an initial analysis, the time spent at a high-security level during cur-
rent hospitalization was identified as the most predictive factor outweighing the other
variables by far. Since this was a circular argument, the item was omitted. Nevertheless,
it should be noted that aggressive behavior in the context of hospitalization leads to a
longer length of stay in high-security settings, which has both personal consequences for
the patient regarding their rehabilitation and economic consequences for the healthcare
system [30–32]. When interpreting these findings, the following two hypotheses deserve
to be discussed: On the one hand, a conglomerate of SSD and antisocial traits might be
present in the patients who display aggression in a highly institutionalized setting. The role
of a potential comorbid antisocial personality disorder in SSD patients in the development
of aggressive behavior has been extensively discussed in the literature [33–36]. On the
other hand, antisociality may not be an expression of a comorbid personality disorder, but
an expression of the underlying SSD. It is well known that positive psychotic symptoms
such as hallucinations or threat/control–override symptoms can contribute to violent be-
havior [37–39]. This seems contradictory to the fact that the PANSS, regarding positive
symptoms, was not identified as a risk factor in this study and further exploration is needed
to distinguish between psychopathology and antisociality. Regarding the limitations of
the present study, the most obvious lies in its retrospective design and, therefore, the
small possibility of collecting selected parameters in a standardized manner. This poses a
particular difficulty for the parameters that are hard to define, such as “antisocial behavior”,
since individual assessments of certain events may differ among different professionals.
To minimize the possible bias effects and to draw robust causal inferences, a replication
of the present findings in a prospective design is recommended. Furthermore, while a
sample size of 370 patients is rather large regarding the field of forensic psychiatry, it has
to be acknowledged that the dataset is a rather small one regarding medical research in
other disciplines using ML algorithms. It is, therefore, recommended to apply the model to
others. While the model was able to correctly identify aggressive patients in three-quarters
of events, it failed to identify a third of all the non-aggressive patients as such. Therefore,
one must be cautious when drawing definitive conclusions from the model, especially so if
it is applied to clinical practice, where the label “aggressive patient” may affect a course of
treatment, e.g., through a lower threshold for coercive measures. Thus, the question arises
as to what value the AUC must assume in order to be considered an acutely acceptable
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performance measure. This discourse must be conducted intensively, particularly in the
sensitive field of forensic psychiatry, since aggressive events occurring in such a setting
have far-reaching consequences for the patients concerned (for example, compulsory medi-
cation, restrictions on freedom in the form of isolation and restraint as well as prolongation
of hospitalization) [40].

5. Conclusions

Our findings expand the current research on factors influencing aggression within
forensic inpatient treatment in offender patients with SSD. The present study is a good
example of the practical use of artificial intelligence and illustrates that ML is instrumental
in analyzing a large dataset and understanding the complex interplay between the factors
that contribute to aggressive behavior in SSD. By applying ML, the 9 most predictive
variables could be singled out from 507 items, and their interactions could be analyzed
in an exploratory manner. A similar analysis with all 507 items would not have been
feasible using linear regressions or even multivariate analyses, as the item number exceeds
the capacities of those models, and the interplay of variables cannot be explored. In this
study, we could show that mental illness and the antisocial behavior associated with it
outweighed all the other factors. That these two groups have emerged as predictor domains
is encouraging in that they are clinically elicitable using fairly simple methods. Biographical
factors such as childhood trauma, on which psychiatrists are often focused when trying
to explain aggressive behavior, are, in contrast, rather difficult to assess if the patients are
not transparent and are also static, meaning they are perennially present regardless of the
patients’ individual development. Of course, these findings do not allow other known
risk factors to be disregarded—yet they are outweighed by mental illness and antisocial
behavior. The fact that SSD is also highly associated with antisocial behavior emphasizes
the importance of early detection and sufficient treatment. The prevention of aggressive
behavior toward fellow patients and staff members is a major concern in everyday clinical
practice. Above all, but not exclusively, this applies to forensic psychiatric institutions in
which a pre-selected group of patients with a particularly high risk of violence is treated. If
the predictive risk domains are screened for, a tailor-made treatment approach could be
designed for patients with an elevated risk. This may include closer monitoring by staff
and case management by well-experienced therapists, who could even proactively develop
skills counteracting aggressive impulses at an early stage with high-risk patients before the
occurrence of such events.

Based on the present findings, the authors are currently developing a clinical screening
tool for problematic inpatient behavior. Its application should enable clinicians to identify
high-risk patients at an early stage, modify their treatment accordingly (for example,
intensified monitoring), and ultimately prevent aggressive events during hospitalization.
However, keeping the ethical implications described above in mind, one has to be mindful
of the fact that despite this being a fairly large dataset in the niche subject of forensic
psychiatry, these data can, for now, only serve as pilot data and need further application and
exploration before a robust tool for detecting those patients with a high risk of aggressive
behavior during hospitalization can be developed. In the future, this could not only protect
staff and fellow patients from attacks, but also benefit the affected persons themselves,
e.g., by reducing the need for coercive measures, shorter hospitalization, and the possible
involvement of the judicial system.
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Abstract: Since recognizing the location and extent of infarction is essential for diagnosis and treat-
ment, many methods using deep learning have been reported. Generally, deep learning requires
a large amount of training data. To overcome this problem, we generated pseudo patient images
using CycleGAN, which performed image transformation without paired images. Then, we aimed to
improve the extraction accuracy by using the generated images for the extraction of cerebral infarction
regions. First, we used CycleGAN for data augmentation. Pseudo-cerebral infarction images were
generated from healthy images using CycleGAN. Finally, U-Net was used to segment the cerebral in-
farction region using CycleGAN-generated images. Regarding the extraction accuracy, the Dice index
was 0.553 for U-Net with CycleGAN, which was an improvement over U-Net without CycleGAN.
Furthermore, the number of false positives per case was 3.75 for U-Net without CycleGAN and 1.23
for U-Net with CycleGAN, respectively. The number of false positives was reduced by approximately
67% by introducing the CycleGAN-generated images to training cases. These results indicate that
utilizing CycleGAN-generated images was effective and facilitated the accurate extraction of the
infarcted regions while maintaining the detection rate.

Keywords: cerebral infarction; CycleGAN; deep learning

1. Introduction

Stroke is a leading cause of death globally [1]. Cerebral infarction, the most common
type of stroke [2], often has after-effects and affects the quality of life. Early detection
and treatment are essential for cerebral infarction because the infarcted region expands
over time.

Computed tomography (CT) and magnetic resonance imaging (MRI) are mainly used
to diagnose cerebral infarction. MRI is widely used today because of its high contrast
resolution and ability to visualize brain structures and lesions. MR modalities, such as
T2WI, FLAIR, and diffusion-weighted imaging (DWI), are mainly used to diagnose cerebral
infarction. DWI is excellent for detecting a stroke during the hyperacute phase due to the
high signal of reduced diffusion caused by cellular edema [3]. Therefore, the detection of
acute cerebral infarction by DWI is useful for prompt diagnosis and for treatment selection.
However, DWI has a lower resolution than other sequences, and its imaging principle
tends to cause artifacts and distortion, making it challenging to identify the presence or
absence, as well as the extent, of infarction. Moreover, stroke specialists are not always
present during emergencies, and it may be too complex to make an accurate diagnosis.

Here, we focus on computer-aided diagnosis (CAD). CAD uses image processing to
detect and analyze lesions and is used by physicians for second opinions on diagnoses. The
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beginning of CAD was mainly based on image analysis and machine learning [4]. Later, the
concept of deep learning was proposed [5], and its application fields have been broadened
to include speech recognition, natural language processing, and image recognition [6].
In the field of image recognition, it has been actively used for classification, regression, and
segmentation tasks [7]. In particular, segmentation has become an important task in the
medical field, to recognize organs and to understand the location and extent of lesions.
FCN [8], SegNet [9], and U-Net [10] are commonly used deep learning techniques for
segmentation. In particular, U-Net has shown good performance in segmenting medical
images, and has been applied to many regions [11–13].

Since recognizing the location and extent of infarction is essential for diagnosis and
treatment, several studies have been reported on the automatic detection and segmentation
of cerebral infarction [14–20]. Rajini et al. [14] proposed a method for detecting cerebral
infarction in CT images, and Barros et al. [15] proposed a method for segmenting the
infarcted cerebral region using a convolutional neural network (CNN). In addition, Chen
et al. [16] segmented the cerebral infarct region from a DWI using a CNN. Dolz et al. [17]
proposed a method for segmenting infarcted regions with U-Net using multiple image
sequences. Paing et al. [19] recently proposed automated segmentation of the infarcted
region using variational mode decomposition and U-Net. Segmentation performance was
evaluated using a total of 239 cases from a public dataset, and the results showed high
similarity to the gold standard. Furthermore, Zhang et al. [20] proposed stroke lesion
detection using a deep learning model for object detection.

Generally, deep learning requires a large amount of training data. However, the
collection of medical imaging data is sometimes limited by ethical and other issues. Data
augmentation is often used to prevent overfitting because of the small amount of data.
During data augmentation, the number of images is increased by image manipulations,
such as rotation, enlargement, contraction, contrast change, and the addition of noise.
However, data augmentation does not significantly change the nature of the lesion or the
target structure, and it is not expected to increase the amount of data.

To overcome this problem, we focussed on generative adversarial networks (GANs) [21].
GAN is a network model that generates images similar to training image data and was
proposed by Goodfellow et al. in 2014. Recently, deep convolutional GAN [22], information
maximizing GAN [23], Wasserstein GAN [24], and CycleGAN [25] have been developed as
derivative technologies for GANs. Among them, CycleGAN can transform images without
paired training data; it can convert MR images to CT images [26] and reduce noise [27].
Recently, several studies on the mutual conversion of images using CycleGAN have been
performed. However, to the best of our knowledge, only a few studies have reported
using CycleGAN-generated images for the extensive training of deep learning models. If
CycleGAN generates brain images from normal brain MR images, it is expected to improve
the accuracy of extraction and segmentation by increasing the variety of data.

In this study, we aimed to develop a novel method for virtually generating cerebral
infarction images from healthy images using CycleGAN and applying them to the U-Net
training model to improve the cerebral infarction automatic extraction accuracy by U-Net.

Hereafter, U-Net with CycleGAN represents an approach that uses CycleGAN-generated
images for training; U-Net without CycleGAN represents an approach that uses only
real images.

2. Materials and Methods

2.1. Outline

Figure 1 shows an outline of the proposed method. Normal brain MR images were
converted into cerebral infarction images using CycleGAN. Subsequently, U-Net is trained
using the CycleGAN-generated images and images of actual patients with cerebral infarc-
tion, and the infarcted regions were automatically extracted.
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Figure 1. Study outline schematic.

2.2. Image Dataset

This study collected DWI of MR images acquired at the Fujita Health University
Hospital and Daido Hospital, including 64 healthy cases (1280 images) and 160 cerebral
infarction cases (4788 images).

Figure 2 shows the distribution of the cases. The mean area of the infarcted region
was 922.54 ± 1169.25 mm2. The mean signal intensity was 91.78 ± 14.75 within the healthy
region and 161.70 ± 24.81 within the infarcted region. Figure 2a shows the distribution
of the differences between the signal intensities of the healthy and infarcted regions. The
difference between the signal intensities was calculated by subtracting the mean of the
pixel intensities within the infarcted and healthy regions. The mean difference between the
signal intensities of the infarcted and healthy regions was 69.91 ± 22.76.

As ground truth, a binary image was created. The pixel intensities of the infarcted
regions were set at 255, whereas the background was set at 0. The infarcted region was also
confirmed by a radiological technologist with more than 10 years of clinical experience. As a
basic data augmentation technique, the number of images was doubled by the left-right
flipping operation in this study. Examples of the collected images and ground truth are
shown in Figure 3.

(a) 

Figure 2. Cont.
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(b) 

Figure 2. Distribution of cases. (a) Distribution by difference in pixel values; (b) Distribution by area
of infarction.

Figure 3. Example of original images and ground truths. (a) Original image; (b) Ground truth.
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2.3. Generation of Pseudo Abnormal Images by CycleGAN

We generated a pseudo-patient image from a healthy image using domain transfor-
mation techniques. Domain translation techniques include Pix2Pix and CycleGAN, etc.
Pix2Pix requires paired images for training, but it is difficult to obtain paired images of a
healthy image and a diseased image. Therefore, we used CycleGAN, which can perform
image translation without paired images. The structure of CycleGAN is shown in Figure 4.

 

Figure 4. CycleGAN structure.

The CycleGAN structure used in this study followed the algorithm proposed by
Zhu et al. [25]. CycleGAN consists of two generators and two discriminators. The two
generators convert one image group to another. The discriminator determines whether
the data transformed by the generator and the actual data are real or fake. Once an image
has been detected as real or fake, the generator trains to perform a transformation that
will result in images as close to real as possible. CycleGAN uses cycle consistency loss,
in addition to the adversarial loss used in normal GANs. The cycle consistency loss was
calculated by comparing the distributions generated by the cycle based on the training data.

We prepared two image groups: 243 slices from 52 stroke patients with infarction and
300 slices in 15 of 64 healthy cases taken at the Daido Hospital. CycleGAN was trained to
convert images of the healthy and infarction cases. After training, the stroke pseudo-images
were generated following the provision of healthy images to the generator of the CycleGAN,
which converts images of healthy cases to those of infarction cases. Furthermore, we created
a ground truth on the generated pseudo infarction images. First, the infarcted region was
identified by subtracting the image before conversion from the generated image. Then, the
noise generated by the subtraction was manually removed. In addition, pixel value of the
infarct area was set to 255 and the background was set to 0 in a binary image, as in the
correct image of the real image.

A nine-block ResNet [28] was used for the CycleGAN generator, and the structure of
PatchGAN [29] was used as the discriminator. To train the CycleGAN, we implemented an
original python program using TensorFlow and Keras that are the deep learning libraries.
The number of epochs was set to 200. The learning rate was set to 0.0002, and the batch
size was set to 1. The training and testing were executed on a computer equipped with a
graphical processing unit (NVIDIA GeForce GTX TITAN X).

2.4. Extraction of Infarcted Region

To extract the infarcted region, U-Net, a deep learning model, was used for segmenta-
tion. In this study, we chose U-Net as a preliminary study because it had achieved many
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results in segmentation. The U-Net structure used in this study is shown in Figure 5. U-Net
is a semantic segmentation method that was presented at the Medical Image Computing
and Computer-Assisted Intervention in 2015. This network achieved good results during
the cell segmentation challenge of the International Symposium on Biomedical Imaging in
2015. This network is an extension of the Fully Convolutional Network and allows accurate
segmentation with less training data. The U-Net structure is shown in Figure 5, and it is
called U-Net because of its U-shaped network structure. The left half of the U-shape is
called the encoder, and the right half is called the decoder. The encoder was composed
of a convolutional and pooling layer. In the former layer, convolutional operations were
performed to extract features from the given image. Subsequently, the output was passed
through a rectified linear unit, an activation function. In the latter layer, max-pooling was
used to downscale the image features. Thus, the features were extracted and compressed
through several convolutional and pooling layers. In the decoder, they were upsampled by
deconvolution. The high-resolution features obtained from the encoder were combined
with the up-sampled output, and a convolutional operation was performed. Furthermore,
the decoder concatenated and cropped the output of the encoder at the same depth. This
process ensured that information was propagated from the encoder to the decoder at all
scales, and no information was lost during the down-sampling operations of the encoder.
The input was an image with a matrix size of height (H) = 256 and width (W) = 256; the
infarcted region had pixel intensity values >0. The training was performed on 100 cases of
cerebral infarction at the Daido Hospital and Fujita Medical University Hospital. Fifty test
cases were randomly selected from the Fujita Health University Hospital cases that were
not used for CycleGAN and U-Net training.

Figure 5. U-Net structure.

In this study, each convolutional layer of the encoder and decoder had five layers.
A batch normalization layer was added at the end of each layer. We developed an original
python program using TensorFlow and Keras for the training of the U-Net. The number of
epochs was set to 300, with a training rate of 0.0001 and a batch size of 32. The training and
testing were executed on a computer equipped with a graphical processing unit (NVIDIA
TITAN RTX).

2.5. Evaluation Metrics

The detection and segmentation accuracies were evaluated to verify the effectiveness
of the proposed method. First, we defined the criteria for evaluation as follows.

The infarcted region was detected if there was an overlap between the infarcted region
extracted by U-Net and the infarcted region in the ground truth. This evaluation was
conducted in 3D.

The number of false positives (FPs) was calculated using healthy images. We counted
the number of extracted regions divided by the number of cases to obtain the number of FPs
per case. The number of extracted regions was automatically calculated using 3D labeling.
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DI and Jaccard index (JI) were employed to evaluate the extraction accuracy. DI and JI
were used to assess the similarity between the extracted region and the ground truth (ideal
infarction region), and they were calculated using the following equations:

Dice index(A, B) =
2|A∩ B|
|A |+|B | (1)

Jaccard index(A, B) =
|A∩ B|
|A ∪ B| (2)

where A indicates the ground truth region and B indicates the extracted region of the
cerebral infarction.

3. Results

3.1. CycleGAN-Generated Images

Examples of the CycleGAN-generated cerebral infarction images are shown in Figure 6.
Figure 6a shows a healthy image before conversion by CycleGAN, Figure 6b shows a pseudo
cerebral infarction image using CycleGAN. Images with large infarct regions are shown in
case 1 and 2, and those with small infarct regions are shown in Figure 6 case 3. Figure 6
case 4 shows an example of failure in which an infarct was not generated, and the pixel
intensity values of the entire image were high.

Figure 6. Examples of cerebral infarction CycleGAN-generated images. (a) Healthy image; (b) Pseudo
cerebral infarction image. (The generated images are shown at each brain height. (Case 1) medulla
oblongata level; (Case 2) midbrain level; (Cases 3 and 4) cortical level.).
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3.2. Extraction of the Infarcted Regions

The results of the U-Net extraction of the infarcted region are shown in Figure 7. The
extraction accuracy and sensitivity of cerebral infarction are shown in Table 1. Regarding
extraction accuracy, the U-Net Dice index (DI) was 0.473 without CycleGAN and 0.553
with CycleGAN, showing an improvement of approximately 8%. Figure 8 compares
the extraction accuracies for different amounts of training cases. In the cases of 25 to
100 trainings, the extraction accuracy was higher when the CycleGAN-generated images
were added to the training cases.

Figure 7. Extraction outcomes of the infarcted region. (a) Original image; (b) Ground truth; (c) U-Net
without CycleGAN; (d) U-Net with CycleGAN.

Table 1. Extraction accuracy and sensitivity of cerebral infarction.

U-Net without CycleGAN U-Net with CycleGAN

Dice index 0.473 0.553
Jaccard index 0.360 0.433

Sensitivity 0.940 0.920
False positives per case 3.750 1.234
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Figure 8. Comparison of Dice index for different numbers of study cases.

The U-Net cerebral infarction sensitivity was 0.94 without CycleGAN and 0.92 with
CycleGAN. The detection results using 64 healthy cases with no infarcted regions are
shown in Figure 9. When only real images were used for training, the number of FPs
per case was 3.75. On the other hand, it was 1.23 when CycleGAN-generated images
were introduced. The number of FPs was reduced by approximately 67% by introducing
CycleGAN-generated images to the training cases.

Figure 9. Extraction outcomes of healthy cases. (a) Original image; (b) U-Net without CycleGAN;
(c) U-Net with CycleGAN.
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4. Discussion

The CycleGAN-generated images ranged from small infarcts, such as lacunar infarcts,
to large infarcts, such as cardiogenic cerebral emboli. Infarct images were also generated
from brain slices at different heights; infarcts along the lateral ventricles and cerebellum
were also generated. Most of the generated infarct images had high signal intensities
within the infarcted region, and infarcts with low signal intensity were not often generated.
The signal intensities of the infarcts used in the study tended to be high. In some of
the generated images, the signal intensities of the entire image increased, and no infarct
was generated.

We extracted the regions of cerebral infarction using the U-Net. Then, we compared the
accuracy and sensitivity of extracting infarcted regions when only actual cases of stroke pa-
tients were used for U-Net training and when CycleGAN-generated images and actual cases
were used. The DI for extraction accuracy was 0.473 and 0.553 when using only real cases
and CycleGAN-generated images, respectively. The extraction accuracy improved when us-
ing generated images for training. One of the reasons for the improvement in the extraction
accuracy is that the infarcted region characteristics extracted by U-Net changed when the
CycleGAN-generated images were used together. Most of the CycleGAN-generated images
had small and high-contrast infarcted regions. U-Net was trained using these images,
and the infarcted regions with a difference of more than 80 from the healthy region were
extracted, and the DI was 0.707. However, if the infarcted region was large and the signal
value within the infarcted region was uneven, only the high-signal region was extracted and
underestimated in some cases. The sensitivity for detecting infarcts was 0.940 when training
on real cases only and 0.920 when using CycleGAN-generated images. The combined use
of CycleGAN-generated images decreased the sensitivity because one small infarct was
missed that had been detected when only real cases were used. The sensitivity differed
depending on the size of the infarcted area and the difference in pixel values between the
normal parenchyma and the infarcted area, both in real cases alone and when CycleGAN-
generated images were used. The sensitivity of infarcts with diameters >10 mm and a pixel
difference >50 was 0.976. However, infarcts with sizes of <10 mm or faint infarcts with pixel
intensity differences of <50 were not extracted in some cases, and the sensitivity was 0.750.
It is challenging to recognize contrast with the surrounding normal parenchyma in cases
of small or low-contrast infarcts. Furthermore, when the number of FPs was compared,
the number of FPs per case was 3.750 when only real cases were used and 1.234 when
CycleGAN-generated images were used, a reduction of approximately 67% in the number
of FPs. FPs were caused by a slight signal increase in the brain parenchyma and linear
high-signal artifacts in the peripheral areas of the brain parenchyma due to DWI distortion.
In many cases, a region with a relatively high signal compared to the surrounding area in
the healthy brain parenchyma was mistakenly identified as the infarcted area. When the
CycleGAN-generated images were combined, a high-signal area in the brain parenchyma
was rarely identified as the wrong infarcted area. The CycleGAN introduced in this study
generated many patterns that resembled actual infarcts. Therefore, data could be collected
to more clearly separate the characteristics of FPs and infarct patterns, and U-Net, trained
on infarct patterns generated by CycleGAN and actual infarcts, could distinguish between
infarcts and FPs accurately. Although it is necessary to improve the detection of small and
low-contrast infarcts, including those detected when training was performed only in real
cases, the combined use of CycleGAN-generated images is highly effective in removing
FPs. This method can be said to be effective overall.

Studies using deep learning require several images for training, and studies using
large datasets, multi-sequence images, and 3D networks have been conducted to extract
cerebral infarctions [16,17,30]. The accuracy comparison with the other groups is shown in
Table 2. Among these, one study using a 3D network has a DI of nearly 0.8, which is inferior
to the 3D network in terms of extraction accuracy. Compared with Chen et al. [16], who
used DWI in the same 2D network, the extraction accuracy was lower, but the sensitivity
was the same, and the number of FPs was lower in our method. By performing region
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extraction using only DWI, which is almost always performed at any institution for acute
stroke diagnosis, the collection of cases is facilitated, and detection is not prevented due
to missing data. Some studies have been performed to improve CycleGAN accuracy [31].
However, no studies have generated pseudo-patient lesion images. The results of our
study suggest that performance can be improved even when only limited patient data are
obtained. The method used in this study can be applied to rare diseases, with only a few
reported cases.

Table 2. Comparison of accuracy with other groups.

Sensitivity DI FP

RF (Mitra et al. [32]) 0.53
FCM (Muda et al. [33]) 0.73 0.16
CNN (Chen et al. [16]) 0.94 0.67 3.27
U-Net (Dolz et al. [17]) 0.635
U-Net (Paing et al. [19]) 0.668

U-Net without CycleGAN 0.94 0.473 3.75
U-Net with CycleGAN 0.92 0.553 1.23

Regarding the limitations of this method, cases from two facilities were used. Still, the
images used for CycleGAN training were not used for the segmentation test data using
U-Net, so the U-Net test cases were cases obtained at a single facility only. In the future, it
will be necessary to increase the number of cases and collect data from multiple facilities
to verify the results. In addition, subjective and quantitative evaluation are considered
essential because we did not evaluate the detailed image quality of the generated images
in this study. Furthermore, in this study, U-Net and CycleGAN were introduced as a
preliminary study. In the future, it is necessary to use improved models of U-Net and
CycleGAN as well as other models to improve the accuracy.

5. Conclusions

We developed a method to extract infarcted regions from head MR images using
U-Net. Furthermore, the training images were augmented using CycleGAN. The results
showed that the use of CycleGAN-generated images was effective for accurately extracting
the infarcted region while maintaining the detection rate.
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Abstract: In magnetic resonance imaging (MRI) segmentation, conventional approaches utilize U-
Net models with encoder–decoder structures, segmentation models using vision transformers, or
models that combine a vision transformer with an encoder–decoder model structure. However,
conventional models have large sizes and slow computation speed and, in vision transformer models,
the computation amount sharply increases with the image size. To overcome these problems, this
paper proposes a model that combines Swin transformer blocks and a lightweight U-Net type model
that has an HarDNet blocks-based encoder–decoder structure. To maintain the features of the
hierarchical transformer and shifted-windows approach of the Swin transformer model, the Swin
transformer is used in the first skip connection layer of the encoder instead of in the encoder–decoder
bottleneck. The proposed model, called STHarDNet, was evaluated by separating the anatomical
tracings of lesions after stroke (ATLAS) dataset, which comprises 229 T1-weighted MRI images, into
training and validation datasets. It achieved Dice, IoU, precision, and recall values of 0.5547, 0.4185,
0.6764, and 0.5286, respectively, which are better than those of the state-of-the-art models U-Net,
SegNet, PSPNet, FCHarDNet, TransHarDNet, Swin Transformer, Swin UNet, X-Net, and D-UNet.
Thus, STHarDNet improves the accuracy and speed of MRI image-based stroke diagnosis.

Keywords: ATLAS; HarDNet; Swin transformer; segmentation; U-Net

1. Introduction

Strokes pose a threat to human health because of their high incidence, mortality rate,
and potential for causing disabilities. Strokes can be diagnosed using a variety of advanced
testing methods, among which brain computed tomography (CT) or magnetic resonance
imaging (MRI) are often used. The CT scan is the best method for classifying acute cerebral
infarction and brain hemorrhage and is performed first in patients suspected of having
strokes to determine initial treatment. In the case of cerebral infarction, it is displayed as
a low density, and in the case of a stroke, it is displayed as high density. However, the
infarction part does not appear well in the early stage of cerebral infarction. An MRI test is
similar to a CT scan, but it has the advantage that it can accurately find small lesions or
lesions in the brain region that are difficult to find in CT scans because it has much better
imaging power. Many studies have been conducted on stroke diagnosis using computer
vision technology to help doctors with diagnosis [1–3]. Conventional CT or MRI image-
based diagnoses have often used U-Net models [4] with encoder–decoder structure using
the convolution neural network (CNN) structure and obtained good results.

Recently, with the application of transformers to the computer vision field, many
segmentation models using transformers have also been proposed [5,6]. A transformer is a
successful example of applying the method of processing sequence data in natural language
processing (NLP) analysis to the field of computer vision. Transformers currently exhibit
good performance in the field of computer vision, including detection [7], segmentation [8],
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and classification [9]. Furthermore, models that have an encoder–decoder structure by
combining a CNN model and a vision transformer (ViT) model have also performed well
in medical image analysis [10,11]. Currently, many combination models of CNN and
ViT use transformers in the bottleneck of the CNN-based encoder–decoder model so that
parameters of the encoder and decoder can be delivered more effectively [12,13]. However,
CNN-based encoder–decoder models are large in size and slow in terms of calculation
speed, and ViT models have the problem that the calculation amount of the model increases
sharply as the image size increases. One of the reasons why the transformer is used in the
bottleneck in conventional combination models of CNN and ViT is to minimize the effect
that the transformer has on the overall calculation speed as the size of the input feature
map increases.

This study combines a HarDNet block [14], a lightweight model structure among
CNN models, and a Swin Transformer model, which solves the problem of the calculation
amount increasing sharply in the transformer model as the image size increases in the ViT
model. This is to solve the existing problem and, at the same time, obtain high performance.

To this end, an encoder–decoder model in the form of U-Net is constructed with
HarDNet blocks. Unlike a method that uses a transformer layer in the bottleneck of
the encoder–decoder in past studies, this study uses a Swin Transformer [15] model in
the first skip connection layer of the encoder model. As a result, the Swin Transformer
model maintains the advantages of shifted windows approach based on self-attention and
hierarchical feature extraction because a larger feature map is applied compared to when it
is used in the bottleneck. The STHarDNet model proposed in this study has the following
characteristics:

• Using HarDNet blocks, the proposed model improves slow computational speed, a
disadvantage of the conventional CNN-based encoder–decoder structure model.

• Using the Swin Transformer, the proposed model solves the problem in which the
memory use and computations increase as the image size increases in the ViT model.

• Using the first skip connection layer in the encoder of the Swin Transformer model
in the encoder–decoder model that has the U-Net structure, it accepts a feature map
larger than the bottleneck as input and maintains the Swin Transformer model’s shifted
windows approach and hierarchical transformer characteristics.

This study used the Anatomical Tracings of Lesions After Stroke (ATLAS) to conduct
comparative experiments of performance. The ATLAS dataset is a standardized open
dataset built for performance comparison of various algorithms that manually segment
lesion locations in the MRI images of 229 stroke patients. In the ATLAS data, the MRI
images of 177 patients were used as training data, and the data of the remaining 52 patients
were used as validation data to conduct the comparative experiments of performance with
existing state-of-the-art (SOTA) models. In the results, the proposed model’s Dice, IoU,
precision, and recall were 0.5547, 0.4185, 0.6764, and 0.5286, respectively, indicating that the
proposed model performed better than the conventional model. Furthermore, it showed
faster performance in the comparative calculation speed test of the models.

2. Related Work

2.1. HarDNet Block

The HarDNet Block consists of multiple harmonic dense blocks (HDBs). In the HarD-
Net Block, a depthwise-separable convolution layer is used for connection between HDBs.
This reduced the convolutional input/output (CIO) by 50% compared to when a 1 × 1
convolutional layer and a 2 × 2 average pooling layer were used in DenseNet [14]. In the
connection method between HDBs, when the value of k − 2n is larger than 0, and the value
of 2n

k is a natural number, the k-th layer is connected to the k − 2n-th layer, as shown in
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Equation (1). In Equation (1), k is the position of the layer in HDB, n is the layer connected
to k in the HDB, and N is a natural number.

Ck = k − 2n, i f
2n

k
∈ N, k − 2n ≥ 0 (1)

2.2. Swin Transformer Block

The Swin Transformer consists of Swin transformer blocks, which are created to be
suitable for detection and segmentation by introducing the concept of a hierarchical feature
map and shifted windows to ViT. In conventional transformers, self-attention is performed
by creating tokens with the same patch size, but the Swin Transformer uses a method of
merging adjacent patches gradually, starting from a patch size of 4 × 4, like the hierarchical
structure of the feature pyramid network. This allows using each hierarchical feature map’s
information, like U-Net. Figure 1 shows the patch merging process, where, in the figure,
a red box refers to a window, the small box (1–16) refers to a patch (token) with a size of
4 × 4, and patch merging merges 2 × 2 patches into one. In the process of patch merging,
the feature map’s size is down-sampled to (W/2, H/2).

 
Figure 1. Example of patch merging in windows of the Swin Transformer.

For Swin transformer blocks, self-attention is performed in respective windows only,
and merging is performed in the last feature map. This solves the problem of increasing
computations when the image size increases in conventional ViT. However, the positions
of the windows are fixed, and the relationship between the windows is not represented
because self-attention is performed in the fixed windows only. Therefore, to calculate the
relationship between two windows, the window is shifted to the right (→) and down (↓)
directions by window size/2, and the self-attention is performed once more [15]. As a result,
the Swin Transformer facilitates the analysis of the entire input image with self-attention
alone in respective windows.

Figure 2 shows an example of the shifted windows approach. In Figure 2, a red box
means a window, and a small box (1–16) means a patch (token) with a size of 4 × 4. In the
figure, there are four windows with a window size of 4. In Swin transformer block 2, the
windows are shifted based on Swin transformer block 1. In Swin transformer block 2, the
windows are shifted in the right (→) and down (↓) directions by the window size/2, and
the feature parts that the windows lack are supplemented, as shown in colors in the figure.

Figure 3 below shows a schematic diagram for connecting two Swin transformer
blocks. As shown in the figure, the standard windows-based, multi-head, self-attention
(W-MSA) module and shifted window-based, multi-head, self-attention (SW-MSA) module
are used sequentially in the Swin transformer block. There is LayerNorm (LN) in front and
back of S(W)-MSA, and the last MPL consists of two GELU non-linearities. Therefore, the
Swin transformer block is used in multiples of two [16].
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Figure 2. Example of a shifted window approach of the Swin Transformer.

 

Figure 3. Examples of connections of the Swin transformer blocks.

Connections of Swin transformer blocks can be expressed in Equations (2)–(5) below,
where ‘ẑl ’ is the output of (S)W-MSA, ‘zl ’ is the output of MLP, and ‘l’ denotes the position
of the Swin transformer block.

ẑl = W − MSA
(

LN
(

zl−1
))

+ zl−1 (2)

zl = MLP(LN(ẑ)) + ẑl (3)

ẑl+1 = SW − MSA
(

LN
(

zl
))

+ zl (4)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (5)

2.3. Past Studies on Models Constructed Based on the ATLAS Dataset

Qi et al. [17] proposed an X-Net with an encoder–decoder structure using 2D CNN to
analyze the ATLAS data. The X-block used in X-Net consisted of three (3 × 3) depthwise-
separable convolution layers, a 1 × 1 convolution layer, and one 1 × 1 convolution layer
that connects input and output. The size of the input and output of X-Net was 224 × 192,
and when training the model, the sum of Dice loss and cross-entropy loss was used in the
loss function. In the experimental results using the five-fold cross-validation method with
the ATLAS dataset, the following performances were obtained: a Dice of 0.4867, IoU of
0.3723, precision of 0.6, and recall of 0.4752.

Zhou et al. [18] proposed a dimension-fusion-UNet (D-UNet) of an encoder–decoder
structure that combined 2D and 3D CNNs. Zhou et al. [2] combined four grayscale images
into one 3D image, where the inputs of D-UNet were 192 × 192 × 4 in 2D form and
192 × 192 × 4 × 1 in 3D form. The output of D-UNet was 192 × 192 × 1, which was based
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on the ground truth value corresponding to the third MRI scan image in the four grayscale
images used for the generation of a 3D image. D-UNet was trained using the MRI scan
images of 183 patients in the ATLAS dataset and validated using the MRI scan images of 46
patients, obtaining a Dice of 0.5349.

Basak et al. [19] modified the CNN decoder in the D-UNet’s decoder into a parallel
partial decoder (PPD) and the obtained performances were Dice, IoU, precision, and
recall of 0.5457, 0.4015, 0.6371, and 0.4969, respectively. Zhang et al. [20] obtained good
performance by preprocessing the ATLAS data using the large deformation diffeomorphic
metric mapping (LDDMM) method and inputting them into U-Net. Furthermore, they
compared the performance of 2D U-Net and 3D U-Net with the same dataset and obtained
the following results: when the data without preprocessing was used, the Dice of 2D U-Net
was 0.4554, and that of 3D U-Net was 0.5296; when the preprocessed dataset was used,
the Dice of 2D U-Net was 0.4954, and that of 3D U-Net was 0.5672. Therefore, the model’s
performance improved when the ATLAS data were preprocessed using the LDDMM
method, and the performance of 3D U-Net was relatively better than that of 2D U-Net.
However, it was appropriate to conclude that a 3D model is better than a 2D model in MRI
image analysis because, in the experiment of [4], 3D U-Net received a 49 × 49 × 49 × 1
image as input, whereas 2D U-Net received a 233 × 197 × 1 image, showing significant
differences in the layer depth and parameter settings between the two models.

3. ATLAS Dataset

The ATLAS dataset is a standardized open dataset built to train and test algorithms
for segmenting lesions of strokes and compare performance [21,22]. The ATLAS dataset
was created by collecting 189 MRI scan images with a resolution of 197 × 233 pixels from
229 patients. Thus, in the ATLAS dataset, there are 189 MRI scans (which are 3D scans) and
43,281 slices are annotated with two classes: normal pixels, and pixels with a disease. In
this study, the MRI scan images of 177 patients were used (177 × 189 slices), where 80%
of the total data was randomly assigned as training data and the data of the remaining
52 patients was designated as validation data (52 × 189 slices).

4. Proposed Method: STHarDNet

4.1. HarDNet

HarDNet is a model of U-Net form with an encoder–decoder structure built with
the HarDNet block as a backbone. Figure 4 shows the structure of the HarDNet model.
The encoder refers to a process of extracting a feature map while reducing the image size
through the down-sampling process and the encoder consists of one convolution block,
four HarDNet blocks, and four down-sampling blocks. The convolution block consists of
a convolution layer where filter = 24, kernel size = 3, and stride = 2, and a convolution
layer where filter = 48, kernel size = 3, and stride = 1. A down-sampling block consists
of a convolution layer with kernel size = 1 and an AvgPoll2d layer with kernel size = 2
and stride = 2. The transition section (bottleneck) uses a HarDNet block to complete the
parameter transfer of the encoder and the decoder. The decoder up-samples the feature
map received from the bottleneck into the same size as the input and, at the same time, it
finds the disease region in the feature map and displays it in the output image. The decoder
outputs the final image of (W, H) size after going through four HarDNet blocks, five up-
sampling blocks, and the last convolution layer with kernel size = 1. An up-sampling block
consists of an interpolate function that uses the “bilinear” mode and a convolution layer
with kernel size = 1.

If an input image is expressed in terms of (W (width), H (height), and C (channels)),
the shape of the feature map calculated through the encoder’s convolution block is (W/2,
H/2, 48). The feature map of (W/32, H/32, 286) is output through four HarDNet blocks
and four down-sampling blocks. The decoder receives the feature map of (W/32, H/32,
320) output from the bottleneck as input and then outputs a feature map of (W, H, class) (the
class refers to the number of disease categories in the data). Table 1 shows the HarDNet’s
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detailed structure and output examples, where the output size column shows examples
where a grayscale image with a size of 224 × 224 is used as input.

Figure 4. Architecture of HarDNet.

Table 1. HarDNet’s structure and output examples.

Stage Block Name Details Output Size

Input 224 × 224 × 1

Encoder

Conv Block 2 × Convolution 112 × 112 × 48
HarDNet Block 4 × Convolution 112 × 112 × 48

Down-sampling Block 1 × Convolution
1 × AvgPool2d 56 × 56 × 64

HarDNet Block 4 × Convolution 56 × 56 × 78

Down-sampling Block 1 × Convolution
1 × AvgPool2d 28 × 28 × 96

HarDNet Block 8 × Convolution 28 × 28 × 160

Down-sampling Block 1 × Convolution
1 × AvgPool2d 14 × 14 × 160

HarDNet Block 8 × Convolution 14 × 14 × 214

Down-sampling Block 1 × Convolution
1 × AvgPool2d 7 × 7 × 286

Bottle Neck HarDNet Block 8 × Convolution 7 × 7 × 320

Decoder

Up-sampling Block 1 × Upsample
1 × Convolution -

HarDNet Block 8 × Convolution 14 × 14 × 214

Up-sampling Block 1 × Upsample
1 × Convolution -

HarDNet Block 8 × Convolution 28 × 28 × 160

Up-sampling Block 1 × Upsample
1 × Convolution -

HarDNet Block 4 × Convolution 56 × 56 × 78

Up-sampling Block 1 × Upsample
1 × Convolution -

HarDNet Block 4 × Convolution 112 × 112 × 48

Up-sampling Block 1 × Upsample
1 × Convolution -

Output Conv Block 1 × Convolution 224 × 224 × 2
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4.2. Swin Transformer Block

Figure 5 shows the structure of the Swin Transformer model used in this study. The
input image passes through the patch partition layer and is segmented into patches with a
4 × 4 size to generate patch tokens having a shape of (W/4, H/4, 4 × 4 × channel). The
generated patch tokens go through the linear embedding in stage 1. Afterward, they are
input into two connected Swin transformer blocks to generate tokens of (W/4, H/4, C)
where C refers to an arbitrary dimension. Stages 2 and 3 consist of patch merging and Swin
transformer blocks, respectively. In patch merging, adjacent 2 × 2 patches are merged into
one patch, and the tokens are down-sampled to 1/2, whereas C is doubled. In stages 2 and
3, the shape of the tokens is (W/8, H/8, 2C) and (W/16, H/16, 4C), respectively. In the
Swin Transformer’s last “Linear Projection”, the feature dimension is expanded to eight
times the input dimension, and after going through a 1 × 1 convolution, a feature map of
the same shape is output. The Swin Transformer model receives a 112 × 112 × 48 feature
map that was output from the first HarDNet block of the encoder, which is then connected
to the last HarDNet block of the decoder. The window size of the Swin Transformer model
used in this study is seven.

Figure 5. Architecture of the Swin Transformer.

4.3. STHArDNet: Combination of Swin Transformer with HarDNet

To combine the convolution with the vision transformer, this study proposes a STHarD-
Net model structure, as shown in Figure 6. STHarDNet consists of (1) the HarDNet with
the encoder–decoder structure of the U-Net form and (2) the Swin Transformer used in
skip connection that connects the encoder and the decoder.
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Figure 6. Architecture of the proposed STHarDNet model.

The Swin Transformer uses a hierarchical transformer to extract hierarchical feature
maps and uses the shifted windows approach to calculate the relationship between patches
in the whole feature map. Therefore, it has a more suitable model structure for segmentation
than the transformer. However, the hierarchical transformer down-samples the feature
map’s size by merging adjacent 2 × 2 patches to generate a hierarchical feature map.
Therefore, if the input feature map’s size is small, the Swin Transformer cannot extract a
deep hierarchical feature map.

Conventional combined models of CNN and transformer used the transformer in the
bottleneck of the encoder and the decoder; however, the bottleneck has a small size (7 × 7)
because its input is the feature map output at the end of the encoder. This is not suitable
for the purpose of using the hierarchical transformer of the Swin Transformer in this study.
Therefore, the Swin Transformer was not used at the bottleneck of the encoder and the
decoder in this study, but used it in the first skip connection, where the size of the feature
map was the largest among skip connections.

5. Experiments

5.1. Performance Evaluation Method

This study used four metrics—Dice, IoU (Intersection over Union, Jaccard index),
precision, and recall—to evaluate the model’s performance. Dice is a metric used to
measure the similarity between the predicted and actual values, and its value ranges from
0 to 1. The calculation equation is the same as that of F1-score, but there is a tendency to
emphasize Dice more in the medical image segmentation field. Dice is also expressed as
Dice coefficient, Dice similarity coefficient (DSC), and Dice score, depending on papers.
IoU is a performance metric used in object detection and semantic segmentation studies
and refers to the ratio of the intersection area to the union area for the predicted values
and the actual values. IoU has the same meaning as Jaccard index. Precision refers to the
percentage of the pixels predicted accurately in the prediction result of the model. Recall
refers to how well the model detected the ground truths.

Dice, IoU, precision, and recall can all be calculated using True Positive (TP), True Neg-
ative (TN), False Positive (FP), and False Negative (FN) of the classification confusion matrix.
Equations (6)–(9) show the calculation methods of the performance metrics, respectively.

Dice =
2TP

2TP + FP + FN
(6)
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IoU =
TP

TP + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

As explained in Section 3, the ATLAS dataset has 3D MRI scan images, and the model’s
performance was evaluated by measuring the performance at the patient level. In other
words, instead of measuring the performance in the prediction result of one image, the
disease of a patient was predicted using 189 MRI scan images captured for the patient
as the input values of the model. In this study, the data of 52 patients were used as the
validation data and obtained a total of 52 prediction results, which were then averaged

5.2. Experimental Setup and Parameter Settings

Table 2 shows the experimental setup used in this study. In the training process, the
size of the input images in every model was set to 224 × 224 and the batch size was set to 16.
Adam was used as an optimization function. The initial learning rate was set to 0.001, and
if the validation loss did not decrease in five epoch cycles, the learning rate was decreased
by 0.2 times. If the validation loss did not decrease in ten epoch cycles, early stopping was
executed. As regards the loss function, the sum of the Dice loss and cross-entropy was used
with the same weight.

Table 2. Experimental setup.

Device Specifications

OS Windows 10
CPU Intel Core i9-9900KF 3.6GHz
GPU NVIDIA GeForce RTX 2080Ti × 1
RAM 112GB

Storage 1TB SSD
Language Python 3.7, PyTorch = 1.5

5.3. Performance Comparison Experiments

To validate the model proposed in this study, performance comparison experiments
were conducted after selecting nine models that showed good performance in SOTA meth-
ods and the ATLAS dataset in past semantic segmentation studies. The SOTA models
used in the experiments were typical U-Net-based models (U-Net, SegNet, PSPNet, and
HarDNet) in the segmentation field with a CNN-based encoder–decoder structure; seg-
mentation models (Swin Transformer and Swin UNet) using vision transformers; a model
(TransHarDNet) that combined the CNN and vision transformer; and X-Net and D-UNet
constructed to analyze the ATLAS data.

Table 3 shows the experimental results. The performances shown in Table 3 were
obtained from the validation dataset after training the model with a separated dataset. In
Table 3, the column “input type” refers to the input image shape of the model, “2D” refers
to 2D grayscale images, and “3D” refers to 3D grayscale images. A 3D image was created
by combining consecutive MRI scan images and the “output type” of every model was a
2D image. The 2D output corresponding to a 3D image input was based on the target value
of the third image in the four consecutive MRI scan images that produced the 3D image
and was the same as the 3D input/output used in D-UNet [2].

93



Appl. Sci. 2022, 12, 468

Table 3. Performance comparison of models in the ATLAS dataset.

Model Name Input Type Output Type Dice IoU PrecisionRecall

U-Net [4] 2D 2D 0.4517 0.3333 0.4831 0.5118
SegNet [23] 2D 2D 0.3751 0.2675 0.4418 0.3767
PSPNet [24] 2D 2D 0.4465 0.3282 0.5653 0.4200

HarDNet [14] 2D 2D 0.5066 0.3774 0.7358 0.4331
TransHarDNet 2D 2D 0.5051 0.3816 0.5785 0.5176

Swin Transformer [15] 2D 2D 0.1640 0.1053 0.7306 0.1247
Swin UNet [16] 2D 2D 0.4034 0.2883 0.5871 0.3402

X-Net [17] 2D 2D 0.4859 0.3670 0.6277 0.4391
D-UNet [18] 2D+3D 2D 0.4759 0.3570 0.4780 0.5248
STHarDNet 2D 2D 0.5170 0.3866 0.6222 0.4979

STHarDNet (Proposed) 3D 2D 0.5547 0.4184 0.6764 0.5286

As shown in Table 3, the STHarDNet proposed in this study resulted in a Dice of 0.517,
IoU of 0.387, precision of 0.622, and recall of 0.498 when the “input type” and “output
type” were both 2D. These performances were higher than those of existing SOTA models
and stroke diagnostic models. Furthermore, when a 3D image was input and a 2D image
was output, the proposed STHarDNet showed a Dice of 0.5547, IoU of 0.4184, precision of
0.6763, and recall of 0.5286, showing higher performances compared to when a 2D image
was input. (The shape of the 3D input image of STHarDNet is 224 × 224 × 4).

The experimental results show that the Dice, IoU, precision, and recall performances of
the HarDNet built based on a single CNN or a single Swin Transformer-based segmentation
model were lower compared to those when the two models are all combined and used.
This proves that, if the ViT-based Swin Transformer model and the CNN-based HarDNet
model proposed in this study are combined, the performance can be improved compared
to when a single model is used.

5.4. Speed Comparison Experiments of Models

The golden time for strokes from the onset to diagnosis and treatment was less than one
hour. Therefore, not only the segmentation performance, but also the image process speed,
are critically important for stroke diagnosis models. Therefore, comparative experiments of
image processing speed were conducted with the STHarDNet and the models used in the
performance comparison experiments. In the experiments, the time consumed and frames
per second (FPS) were recorded when 100,000 images were processed, respectively, in the
same environment. Table 4 shows the results of the experiments on the speed comparison
of the models.

Table 4. Speed comparison of models.

Model Name Input Image Size
100,000 Frames

Seconds FPS

U-Net 224 × 224 475.109 210.477
SegNet 224 × 224 415.869 240.459
PSPNet 224 × 224 637.318 156.907

HarDNet 224 × 224 325.117 307.58
TransHarDNet 256 × 256 352.066 284.036

Swin Transformer 224 × 224 1353.657 73.873
Swin UNet 224 × 224 414.798 241.081

X-Net 224 × 192 982.462 101.785
D-UNet 192 × 192 572.719 174.605

STHarDNet (Proposed) 224 × 224 333.395 299.943

In Table 4, HarDNet showed the fastest speed with 307.58 FPS when processing
100,000 images, whilst STHarDNet was the second fastest with FPS of 299.943 FPS. STHarD-
Net was 2.48% slower than HarDNet when performing calculations with 100,000 images,

94



Appl. Sci. 2022, 12, 468

but the Dice and IoU performances were 9.49% and 10.89% better, respectively. Further-
more, when 100,000 images were calculated, the FPS was 42.5% faster than that of the U-Net,
71.78% faster than that of the D-UNet, and 5.6% faster than that of the TransHarDNet that
used the transformer in the bottleneck of the HarDNet.

6. Conclusions

This study proposed a STHarDNet structure by combining the Swin Transformer and
HarDNet and applied it to the segmentation of stroke MRI scan images. The STHarDNet
consists of two models: an encoder–decoder model in a lightweight U-Net shape that
consists of HarDNet blocks and a Swin Transformer model consisting of Swin transformer
blocks that connect the encoder and the decoder in the first skip connection. STHarDNet
has both the character of the CNN model that completes the task while simultaneously
looking at the constraining parts, and the character of the transformer that completes the
task while looking at the sequence data in all images. By applying the Swin Transformer to
the first skip connection in the model, it can receive a feature map larger than the bottleneck
as an input, thereby maintaining the advantage of hierarchical feature extraction and the
shifted windows approach of the Swin Transformer.

To prove the superiority of the proposed model, the MRI scan images of 177 patients
from the ATLAS dataset were used for training and the images of 52 patients were used
for validation to conduct the performance comparison experiments with existing SOTA
models in the segmentation field. When 224 × 224 × 1 grayscale images were used in the
experiments, STHarDNet showed a Dice of 0.517, IoU of 0.387, precision of 0.622, and recall
of 0.498, which was better than those of the existing SOTA models used in the experiment.
Furthermore, when 224 × 224 × 4 3D images that gathered four consecutive grayscale
images were entered as inputs, the proposed model showed a Dice of 0 0.5547, IoU of
0.4185, precision of 0.6764, and recall of 0.5286, showing higher performances compared
to when 2D images were input. Moreover, when 100,000 images were processed in the
comparative experiment of image processing speed with the existing SOTA models, the
STHarDNet model achieved 299.943 FPS, which was 2.48% slower than HarDNet and the
second fastest among the ten models. However, because the segmentation performance
of STHarDNet was 9.49% higher in terms of the Dice and 10.89% higher in terms of IoU
compared to that of HarDNet, it can be said that the proposed STHarDNet is the best when
the performances and speed were both considered.

Through the experiments in this study, the excellent segmentation performance of
STHarDNet that combined the Swin Transformer in the first skip connection of HarDNet
was demonstrated. Furthermore, it was proven that, even if the transformer is connected to
not only the bottleneck, but also the skip connection, the model’s performance could be
enhanced while maintaining a fast calculation speed.

In this study, the model was developed based on 2D layers. The input 3D image was
also analyzed with the 2D layers. In future research, we plan to modify the model with 3D
layers to improve its performance.
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Abstract: Background: Processing whole-slide images (WSI) to train neural networks can be intricate
and labor intensive. We developed an open-source library dealing with recurrent tasks in the process-
ing of WSI and helping with the training and evaluation of neuronal networks for classification tasks.
Methods: Two histopathology use-cases were selected and only hematoxylin and eosin (H&E) stained
slides were used. The first use case was a two-class classification problem. We trained a convolutional
neuronal network (CNN) to distinguish between dysembryoplastic neuroepithelial tumor (DNET)
and ganglioglioma (GG), two neuropathological low-grade epilepsy-associated tumor entities. Within
the second use case, we included four clinicopathological disease conditions in a multilabel approach.
Here we trained a CNN to predict the hormone expression profile of pituitary adenomas. In the same
approach, we also predicted clinically silent corticotroph adenoma. Results: Our DNET-GG classifier
achieved an AUC of 1.00 for the ROC curve. For the second use case, the best performing CNN
achieved an area under the curve (AUC) of 0.97 for the receiver operating characteristic (ROC) for
corticotroph adenoma, 0.86 for silent corticotroph adenoma, and 0.98 for gonadotroph adenoma. All
scores were calculated with the help of our library on predictions on a case basis. Conclusions: Our
comprehensive and fastai-compatible library is helpful to standardize the workflow and minimize
the burden of training a CNN. Indeed, our trained CNNs extracted neuropathologically relevant
information from the WSI. This approach will supplement the clinicopathological diagnosis of brain
tumors, which is currently based on cost-intensive microscopic examination and variable panels of
immunohistochemical stainings.

Keywords: brain; pituitary adenoma; dysembryoplastic neuroepithelial tumor; DNET; ganglioglioma;
deep learning; digital pathology; convolutional neural network; computer vision; machine learning;
convolutional neural network; CNN

1. Introduction

With the increasing availability of digital microscopy scanners and whole slide imag-
ing, digital pathology (DP) will continue to successfully grow into our daily routine diag-
nostic practice. Whole-slide images, as they are digitized slides, provide the intriguing
opportunity for the application of image analysis techniques for advanced tasks, such as
disease classification. Deep learning (DL) is the most commonly applied technology in
the realm of feature learning. The process involves the iterative improvement of learned
representations of regions of interest to achieve maximum class separability. Medical (and
nonmedical) image classification tasks have been remarkably successful utilizing DL. The
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area of computational image analysis of DP images has been already addressed by some
previous works. Successful examples range from utilization of different types of cancer
detection, classification, or grading [1,2]. Recent work has shown that the differentiation
of histologically similar lesions in Focal Cortical Dysplasia in human focal epilepsies is
possible [3]. What is more remarkable is that these pathologies differed only in genotype
and not in phenotype. Classification of liver cirrhosis, heart failure detection, and classi-
fication of Alzheimer’s plaques [4] have also been successfully tackled [5]. Lymph node
screening to search for metastatic breast cancer has been successfully performed with the
help of deep convolutional neuronal networks. Classification of skin lesions has also been
successfully performed with the help of DL and elegantly distributed to smartphones for
easy daily use of non-expert users [6]. Disease grading, prognosis prediction, and imaging
biomarkers for genetic subtype identification are more challenging tasks but have also been
successfully established [7–9].

All of these works have shown that deep learning in the context of pathology is
becoming more and more common.

However, a prerequisite to successfully apply deep learning requires domain-associated
knowledge in the field of DL and DP. Whereas many pathologists are not familiar with
the problem-specific tasks and technical issues for applying DL techniques, DL developers
most often have little experience with histology and histopathology-associated workflows.
In addition, currently available open-source tools and tutorials do not provide guidance for
the needs of both groups, and available programming libraries and tools (either open- or
closed-source) are not targeted for an application by a pathologist or clinician with little
experience in DL programming routine. This is a major obstacle for researchers to use or
extend the available technology and investigate their clinical use-case and hypotheses. We
developed, therefore, an open-source library specifically tuned and adjusted to the special
needs of digital pathology-associated analysis tasks in the context of DL. We showcase
the potential of our library by outlining two specific projects, each driven by a unique
clinical hypothesis.

1.1. Use Case 1: Classifying Low-Grade Epilepsy-Associated Brain Tumors

Dysembryoplastic neuroepithelial tumor (DNET) and ganglioglioma (GG) are slowly
growing tumors composed of both glial and neuronal cell elements and, histopathologically,
are often difficult to classify [10] (see Figure 1).

 

Figure 1. Histopathologic findings in DNET (left part) and Ganglioglioma (right part). The histo-
morphological pattern can be hard to tell apart in some cases.
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They account for 1–2% of all brain tumors and do not metastasize or spread beyond
the primary site of origin. These tumors occur mainly in children and young adults with
long-standing drug-resistant epilepsy. The average age at seizure onset was 12 years in
984 GG and 14 years in 565 DNET when reviewing a large European cohort of 9523 patients
who underwent epilepsy surgery. Seizures are commonly focal with or without secondary
generalization, and neurosurgical resection has proven as the most successful treatment
option. Malignant transformation has been reported for the group of GG [11,12], whereas
DNET rarely show this behavior [13]. Therefore, a precise histopathological diagnosis and
differentiation of these two tumor entities is important for clinical patient management [14].
The problem is that even in specialized medical centers the inter-rater agreement on the
diagnosis accounts for only 40% of these tumors [10]. The DL task was to develop, therefore,
a binary classifier distinguishing between the two entities.

1.2. Use Case 2: Prediction of Pituitary Adenoma Subtypes and Their Neuroendocrine Features

Better neuroimaging techniques and diagnostic modalities recognize more pituitary
adenomas than previously thought [15]. We consider three clinical subclasses: Pituitary
adenomas with A. prominent neuroendocrine symptoms, B. slowly developing, insidious,
nonspecific complaints delaying accurate diagnosis, or C. incidentally detected adenomas
being symptom-free. It remains, therefore, challenging to accurately determine the preva-
lence and incidence of pituitary adenomas in the general population. They account for 15%
of all intracranial neoplasms, being the third most frequent tumor type after meningiomas
and gliomas. In multiple postmortem studies, the mean prevalence of pituitary adenomas
was 14.4% [15] . The overall estimated prevalence of pituitary adenomas in the general
population was calculated as 16.7%. Radiography studies showed a higher prevalence
of 22.5% [15,16]. The tumor has its maximum age frequency in patients between 40 and
60 years of age. The frequency of different subtypes varies depending on the age and
gender of the patients [16] .

The WHO classification of pituitary adenoma from 2017 is based mainly on the
hormone and transcription factor expression of the adenoma cells [17] . In common
routine workup for adenomas of the pituitary gland, the morphological evaluation is based,
therefore, on H&E and a panel of immunohistochemical staining for all pituitary hormones
(adrenocorticotropic hormone (ACTH), luteinizing hormone (LH), follicle-stimulating
hormone (FSH), prolactin (PRL), thyroid-stimulating hormone (TSH), and somatotropic
hormone (STH)) and transcription factors. In our study, we focused on corticotroph and
gonadotroph adenomas (see Figure 2) since they represent the most common subtypes. We
labeled our tumor samples of corticotroph and gonadotroph adenomas accordingly, e.g.,
corticotroph adenoma, gonadotroph adenoma with the expression of LH, and gonadotroph
adenoma with the expression of FSH. As adenomas are often nonexclusively positive for
only one hormone, many cases received more than one label. Therefore, we chose to tackle
the problem as a multilabel approach, which means that the different classes are rated
and scored individually, and possible correlations must be learned by the CNN. To make
sure that the labels are correct for each tile, we manually reviewed the extracted regions
from the H&E slides with the corresponding regions in the immunohistochemically stained
images. In addition, we included those corticotroph adenomas as a separate class, in
which the patient does not show clinical symptoms of Morbus Cushing (silent corticotropic
adenoma). The DL tasks were to classify entities of adenomas of the pituitary gland from
H&E-stained slides as well as to predict the clinical parameter of asymptomatic or clinically
silent corticotroph adenomas.
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Figure 2. Histopathologic findings in gonadotropic (left part) and corticotropic (right part) pituitary
gland adenoma. A typical pattern in gonadotropic adenoma is the pseudo sinusoidal growth pattern.

What is new:
The depicted library enables users to perform DL with state-of-the-art techniques

without the burden of managing WSI-associated overhead, such as pyramid level control
or region-specific mapping, as it is kept away from the user. Additionally, the library is
fully compatible with one of the most popular deep learning frameworks “fastai” which is
based on “PyTorch”.

Related work:
In the context of neuropathology-related tasks, few works have been published. Some

work has been completed on classifying and detecting Alzheimer‘s associated lesions, such
as extracellular amyloid and intracellular tau deposits [4,18,19]. The latter approach has
also been used to classify other tauopathies such as Pick’s disease for example [20]. Addi-
tionally, with the help of deep learning new disease-correlating features were identified
in the white matter of different tauopathies [21]. Classifying glioma and differentiating
glioma subtypes from H&E-stained slides and molecular markers was another successful
task accomplished [22]. In our own recent project, we could discriminate between pheno-
typically very similar but genotypically different lesions of focal cortical dysplasia type IIb
and tuberous sclerosis complex [3].

2. Materials and Methods

2.1. The Library

Compared to common image datasets consisting of small files in, e.g., PNG or TIFF
format, WSI provide more challenges in the context of training a neural network with them.
First, there is the size. A WSI’s typical size in the realm of Neuropathology is 0.5–3 Gbyte.
Therefore, it is impossible to feed an entire WSI let alone a batch of WSI into a CNN, since
graphic processing units or graphic cards (GPUs) do not have enough memory. So WSI
need to be divided into smaller images usually referred to as tiles. WSI are also stored in
special file types and most WSI scanner manufacturers provide their own. Usually, WSI are
not independent of each other. A WSI belongs to a case, and a case belongs to a patient.
This is important for the dataset split and evaluation of the model after the training. It
is common practice to not mix data from one patient in the training, validation, and test
set. For evaluation, it is interesting how the model performs on tile level, but usually,
the performance on WSI, case or patient-level has a higher value in practice. So, these
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connections need to be tracked throughout the whole process from preprocessing until
postprocessing/evaluation. Our library [23] is meant to help with this common overhead
in preprocessing and the evaluation for training a classification model with WSI.

2.2. Tile Calculation

The first step is to split a WSI into multiple small tiles. A complete sample pipeline can be
found in the GitHub repository of the library (https://github.com/FAU-DLM/wsi_processing_
pipeline/tree/master/tile_extraction/example.ipynb, accessed on 15 December 2021) and the
repositories of the two use cases (https://github.com/ChristophNeuner/DNET_vs_Gangl
ioglioma/blob/main/dnet_vs_gg.ipynb, accessed on 15 December 2021) (https://github.c
om/ChristophNeuner/glioblastoma_methylation/blob/master/methylation_status_binar
y_classification.ipynb, accessed on 15 December 2021).

Usually, not all parts of a WSI are of interest for further processing. So, in general,
there are two main ways of making sure only the relevant parts are used: marking the
interesting regions manually or using some sort of filtering algorithms that, e.g., distinguish
tissue from the background, filter out pencil markings, or blurred tissue. Both ways are
supported by the library and will be further explained in the following lines.

2.3. Filters Applied on Complete WSI

Our library originated as a fork of Deron Eriksson’s GitHub repository “python-wsi-
preprocessing” (https://github.com/deroneriksson/python-wsi-preprocessing, accessed
on 15 December 2021), which was originally written and used for his and his team’s
participation in the Tumor Proliferation Assessment Challenge 2016 (TUPAC16) [24].

Most parts of this library have had a substantial rewrite, and many additions were
made since. However, the filters were mostly kept untouched. Documentation about them
can be found in Deron Erikson’s GitHub repository (https://github.com/deroneriksson/p
ython-wsi-preprocessing/blob/master/docs/wsi-preprocessing-in-python/index.md#ap
ply-filters-for-tissue-segmentation, accessed on 15 December 2021) [25] .

2.4. Calculation of Tile Locations

Our preferred way of defining the polygonal regions of interest (ROIs) in a WSI is
to use the program QuPath [26] (Supplement S7). The next step is to extract the coordi-
nates of the polygons’ vertices. We wrote a small QuPath script that can be used in the
“Automate” Tab in QuPath and exports the polygons’ vertices’ coordinates into a JSON
file (https://github.com/FAU-DLM/wsi_processing_pipeline/blob/master/QuPath_sc
ripts/polygon_points_to_json.groovy, accessed on 15 December 2021).

The next step is to convert this information into RegionOfInterestPolygon objects (http
s://github.com/FAU-DLM/wsi_processing_pipeline/blob/master/shared/roi.py#L66,
accessed on 15 December 2021). There is a convenience function if the ROIs were an-
notated and extracted with our script from QuPath. (https://github.com/FAU-DLM/wsi
_processing_pipeline/blob/master/shared/roi.py#L195, accessed on 15 December 2021)

It is important to notice that this part is completely optional. The ROI definition may
be skipped.

Subsequently, all relevant tile locations are calculated. For this process, the function
“WsisToTilesParallel” (https://github.com/FAU-DLM/wsi_processing_pipeline/blob/
8c5e4a360fa369221ce86dd35837e91f31817d30/tile_extraction/tiles.py#L1275, accessed on
15 December 2021) is used. It calls the function “WsiToTiles” for every WSI and runs in
parallel. It takes a few interesting parameters. We will elaborate on a few here; the rest is
covered in the function’s docstring.

“wsi_paths”:
First of all, a list with the paths to the WSI files has to be passed. Notice that not only

WSI files but also PNG files are supported. If one has already extracted the interesting
parts of the WSI as PNGs, one can use them without specifying ROI coordinates, as
described before.
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“grids_per_roi”, “optimize_grid_angles”, “angle_stepsize”, “minimal_tile_roi_int-
ersection_ratio”:

The library lays a grid of all possible tiles over each ROI (Supplement S8). If no ROI is
specified, the library internally creates one ROI, which simply spans the complete WSI.

The logic for this part of the pipeline resides in the tiles.py module, to be more
specific, in the Vertex, Rectangle, Grid, and GridManager classes. A Vertex object represents
one vertex of the polygonal ROI and provides simple arithmetic operations such as add,
subtract, and multiply with scalars and matrices. It also provides the functionality to rotate
itself around a specified point. This is performed by multiplying a rotation matrix with the
vertex coordinates represented as a 2×1 vector.

Rotation Matrix
x′
y′ =

[
cos(α) −sin(α)
sin(α) cos(α)

][
x
y

]

The Vertex class also provides a convenience function to change the WSI level of the
coordinates. Because of its size, a WSI is stored in a pyramid-like format (Supplement S10)
in multiple images per level. So particular regions of the image are loaded on-demand with
higher resolution while zooming in. Therefore during the process of tile calculations, it
is important to specify the zoom level for a given coordinate. So, it is often necessary to
convert various coordinate values to another zoom level. All the filtering steps for example
in our pipeline are performed on a scaled-down version by the factor 32 of the WSI to
enhance the speed and obtain the results in a reasonable time.

A Rectangle object represents the bounds of a tile. It also wraps necessary functionality,
such as rotation. The Grid class implements all the functionality to represent a grid of
Rectangles and, therefore, possible tile locations that are laid over a ROI. Finally, there
is the GridManager class. It creates as many Grid objects for each ROI as is specified in
“grids_per_roi” and contains some convenience functions for, e.g., visualization. It also
merges overlapping ROIs. The full spectrum of the functionality of these classes can be
seen on GitHub: https://github.com/FAU-DLM/wsi_processing_pipeline/blob/master
/tile_extraction/tiles.py#L78, accessed on 15 December 2021.

If “grids_per_roi” is greater than one, multiple slightly shifted grids are laid over
each ROI. This increases the number of tiles and therefore the amount of training data.
This means that the same tissue is present in multiple tiles but, nonetheless, all tiles are
unique. If “optimize_grid_angles” is true, the grid is rotated in an iterative approach by
“angle_stepsize” in each iteration, and the angle, which results in the most tiles per ROI, will
be used for further calculations. This is completed for each ROI individually. So the smaller
the “angle_stepsize” is, the closer the angle gets to the optimum, but the longer the process
takes. The last important parameter in this context is “minimal_tile_roi_intersection_ratio”.
If it is 1.0, only tiles that lay 100% in the ROI will be considered for further processing. The
closer it gets to 0.0, the more tiles can be outside of the ROI, but never completely, since 0.0
is outside of the possible range of this value.

2.5. Tile Filtering

Among these tiles, there might still be some, which are not worth keeping. If ROIs are
specified, this amount should be fairly small, but if no ROIs are specified, there should be
plenty to be filtered out. The user of the library can specify a tile scoring function that only
takes the tile in form of a PIL image as a parameter and returns a score for it. The user also
has to provide a threshold for that score. All tiles with a score above this threshold pass
filtering and will be considered for training.

The library provides a default tile scoring functionality that works for H&E-stained slides.

score = 1 − 10

10 + tissuePercentage∗colorFactor∗saturationAndValueFactor
1000
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The scoring formula generates good results for the images in the dataset and was
developed through experimentation with the training dataset.

The first criterion is the amount of tissue in a tile. To separate tissue from the back-
ground we applied four filters to a tile image (Supplement S9). First, the image was
converted to greyscale; then, its complement was created. After that Otsu’s threshold was
applied. Thresholding using Otsu’s method is a popular thresholding technique. This
technique was used in the image processing described in A Unified Framework for Tumor
Proliferation Score Prediction in Breast Histopathology [27].

The colorFactor value is used to weigh hematoxylin staining heavier than eosin
staining. Utilizing the Hue-Saturation-Value (HSV) color model, broad saturation and
value distributions are given more weight by the saturationAndValueFactor. The score is
scaled to a value from 0.0 to 1.0.

Tissue with hematoxylin staining is most likely preferable to eosin staining. Hema-
toxylin stains acidic structures such as DNA and RNA with a purple tone, while eosin
stains basic structures such as cytoplasm proteins with a pink tone.

Differentiating purplish shades from pinkish shades can be difficult using the RGB
color space [28]. Therefore, to compute the colorFactor value, we first convert the tile’s
RGB color space to an HSV color space [29]. In this color model, the hue is represented
as a degree value on a circle. Purple has a hue of 270 degrees and pink has a hue of
330 degrees. We remove all hues less than 260 and greater than 340. Next, we compute the
deviation from purple (270) and the deviation from pink (330). We compute an average
factor which is the squared difference of 340 and the hue average. Saturation and value
standard deviations should be relatively broad if the tile contains significant tissue. The
colorFactor is computed as the pink deviation times the average factor divided by the
purple deviation. It favors purple (hematoxylin stained) tissue over pink (eosin stained)
tissue. The information about one tile is then stored in a Tile object.

The result of the filtering process is a TileSummary object for each WSI. A TileSum-
mary object contains the information about the WSI including dimensions, scaled dimen-
sions, which were used for faster tile calculations, ROIs, the GridManager object, and all
tiles. It also implements some visualization methods to display the WSI with ROI and
tile boundaries.

In the next step, the PatientManager class in the wsi_processing_pipeline.shared.patient_
manager.py is important. Its main purpose is to manage the hierarchical structure of a
pathological dataset. A tile belongs to an ROI. An ROI belongs to a WSI. A WSI belongs to a
case, and a case belongs to a patient. It is good practice to split datasets on the patient level.
To measure the performance of a model after training, not only can model performance on
a tile level be evaluated, but also performance on the WSI or case level is easily assessable.
Therefore these relationships are conserved by the PatientManager. It is also responsible
for setting the labels of each tile. The PatientManager class additionally implements some
convenience functions for dataset splitting into a training, validation, and test set and
for a k-fold cross validation split. It can print out a class distribution and is capable of
undersampling the dataset.

In the next step, the fastai [30] library takes over for training the neural network.
During tile filtering, the user of our library can specify in the WsiToTiles function if each tile
should be extracted and stored to disc as a PNG file. We wrote a custom fastai ImageBlock
called TileImageBlock that works with fastai’s data block API. This allows renouncing
saving each tile to disc because the TileImageBlock can extract a tile image on the fly during
the training process given the spatial information about a tile that is stored in each Tile
object. This has the advantage of consuming less storage space and since it is usually
necessary to play around with the parameters that are used for filtering until only the
desired tiles are left, not saving the tiles is a huge speedup for this part of the process.

Our preferred library for training a neural network is fastai [30], which is built on top
of Facebook’s increasingly popular PyTorch [31] library.
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After training has finished, evaluating the performance of the model on the validation
or an unseen test set is crucial. For this use-case, we implemented the Predictor class,
which resides in wsi_processing_pipeline.postprocessing.predictor.py. It takes a fastai [30]
Learner and one of our library’s PatientManager class objects. In a first step, it calculates
predictions for each tile image in the desired dataset. In a second step, it calculates the
predictions for each WSI or case by calculating the mean raw prediction for all classes
for each tile and applying a threshold that can be specified for each class by the user of
the library.

The last step is to evaluate the performance of the model. We, therefore, implemented
the Evaluator class in wsi_processing_pipeline.postprocessing.evaluator.py.

Its constructor takes an instance of the abovementioned Predictor class as the only
argument. It implements a few commonly used methods to measure model performance. It
can calculate the per-class accuracy and plot receiver operating characteristic (ROC) curves,
precision-recall curves, confusion matrices (Figure 3), and probability histograms (Figure 4).
It can also print out sklearn’s classification report and print a list of tiles with the highest
losses or a list of cases, WSI, or tiles sorted by a user-specified metric calculated with the
predictions. It is also capable of creating Gradient-weighted Class Activation Mappings
(Grad-CAMs) [32].

Figure 3. Results Confusion Matrices from left to right: case level, slide level, tile level.
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Figure 4. Results | Histograms and ROC-Curves were calculated on a case basis. The predictions
were made for all 5 validation sets with the corresponding model that was not trained on that
validation set. So, the graphs represent the complete dataset.
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2.6. Dataset Preparation for Both Use-Cases

Histopathology slides from all patients of interest for the study design were retrieved
from the archives of the Dept. of Neuropathology (see below) and subsequently digitized
using a Hamamatsu S60 scanner with a 40× magnification. We included only H&E stain-
ings, thus, eliminating the need for more complex and expensive immunostainings. The
WSI of our dataset were reviewed by two expert neuropathologists of our institute.

Use case 1: For the DNET and ganglioglioma, classifier slides from 219 patients were
used. In total, 52 of them were DNETs and 167 were ganglioglioma. QuPAth was used
by two of our expert neuropathologists in epilepsy pathology to define polygonal ROIs
containing tumor tissue in the WSI, and we exported their coordinates to JSON files. These
JSON files were then used by the library to extract tiles from the relevant regions of the WSI.
In total 171,514 tiles from GG and 34,520 tiles from DNETs with a size of 1024 × 1024 pixels
were defined for further processing and training.

Use case 2: To train and evaluate the pituitary adenoma classifier, H&E and immuno-
histochemically stained (ACTH, LH, FSH) tissue slides of 410 patients were collected. In
total, 181 of these were diagnosed with corticotroph and 229 with gonadotroph adenoma
of the pituitary gland (Supplement S1 and S2). Overall, the dataset consisted of 431 H&E
(202 corticotroph and 229 gonadotroph) slides with the corresponding ACTH LH/FSH
whole-slide images for comparing and identifying the correct ROI (Figure 5). The ROIs
on an individual H&E slide were defined as regions, where the immunostainings showed
tumor expressions of the specific hormone. Care was taken that no normal pituitary gland
tissue was included (Figure 5). This time-consuming ROI selection process was necessary
to ensure the correct labeling of each tile and, therefore, the validity of the resulting models.
Otherwise, biases through wrong labeled areas could have worsened the performance. For
example, areas with only connective tissue were excluded. Moreover, the hormone expres-
sion of the adenoma is not homogeneously spread over the sample. This was particularly
important to consider for gonadotropic adenomas. When an adenoma expresses LH and
FSH that does not mean that all subregions express both hormones. So, there can be tiles
that are only labeled with LH or FSH, although the whole tumor expresses both. ROIs were
defined at 40× magnification level and cropped into smaller tiles of 1024 × 1024 pixels
to further preprocess and feed into our model (Figure 5). The tile extraction resulted in
206,517 gonadotropic and 63,893 corticotropic tiles.

2.7. Convolutional Neural Network Architecture

Use case 1: For the DNET-GG classifier, a ResNet50 was implemented, using the
open-source Python library fastai [30], which is based on PyTorch [31]. It was pretrained
on ImageNet [33,34], and the classification head was replaced to predict two (DNET
or GG) instead of the 1000 classes included in the ImageNet dataset (Supplement S3).
In our experience, ResNet50 is often a good starting point, since it is relatively fast to
train compared to more complex models with more parameters but nonetheless delivers
promising results. Since it performed well on the defined dataset, it was not necessary in
our view to try out another model.

Use case 2: For the pituitary gland classifier a ResNeXt-101-32x8d CNN architecture
also pretrained on ImageNet [33,34] was implemented. ResNeXt-101-32x8d [35,36] was
chosen, as it yielded the best results with the least overfitting out of a couple of state-of-
the-art network architectures including ResNet50, se_ResNeXt101_32x4d, xception, and
inceptionv4 (Supplement S5). The basic network architecture was not changed. Only a
customized classification head (Figure 6, Supplement S3) was used to predict four instead
of the 1000 ImageNet classes. It consisted of several pooling, batch normalization, dropout,
and fully connected layers with four final output channels with a sigmoid-activation
function with a threshold of 0.5 to produce individual output probabilities representing
the four classes of corticotropic adenoma, silent corticotropic adenoma, gonadotropic
adenoma with the expression of LH, and gonadotropic adenoma with the expression of
FSH (Figure 6).
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Figure 5. Tile Extraction. (a): We compared H&E- and immuno-stained slides and extracted only
those corresponding parts of the H&E-stained WSI with QuPath, where the immuno-stained WSI
showed the expression of the hormone. (b): We subdivided the image into 1024 × 1024 pixel tiles
and used complement filter and otsu thresholds to identify tissue and background. Then we only
extracted and saved those tiles that passed a scoring function that takes tissue percentage and color
characteristics into account.

 

Figure 6. Prediction Pipeline. A tile is forwarded through the model, and the model outputs four
independent probabilities for each class. If the probability is over a certain threshold (0.5), the tile
obtains the label. All tiles of one case are evaluated, and if more than 50% of the tiles are labeled with
one class, the case is also labeled with that class (majority voting).

2.8. Preprocessing and Data Augmentation

Image preprocessing is an important step in every computer vision task to augment
the number of samples, to prevent overfitting, and to support the model against invari-
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ant aspects that are not correlated with the label [37,38]. First, the tiles were resized to
512 × 512 pixel images to increase the possible batch size. Following this approach, we
made sure to have a wider field of view per tile instead of the maximum possible resolu-
tion. In our approach, we used a pipeline of several augmentation techniques performed
batch-wise on the GPU consisting of a random crop with reflection padding, randomly
flipping (horizontal or vertical), and rotating by a multiple of 90 degrees, a random sym-
metric warp with a magnitude between −0.2 and 0.2, a random rotation between −10 and
+10 degrees, a random zoom with a zoom factor between 1.0 and 1.1, and a random change
in brightness with a factor between 0.4 and 0.6, where a factor of 0 will transform the image
to black, a factor of 1 will transform the image to white, and a factor of 0.5 doesn’t adjust
the brightness. Furthermore, an augmentation on the contrast of the image was applied
with a factor between 0.8 and 1.25, where a factor of 0 will transform the image to grey, a
factor over 1 will transform the picture to super-contrast, and a factor = 1 does not adjust
the contrast. These augmented images were then normalized. The augmentations were
applied on the fly with a randomness factor for reproducibility for every batch so that there
was no need to save augmented images and one image could be augmented in multiple
ways. This whole approach ensures that out of one image multiple new images of the same
class can be obtained by multiplying the number of images available for training the neural
network. We tried to apply as little data augmentation as possible to avoid changing special
characteristics of the tissue.

2.9. Training and Evaluation

The training was performed with 16-bit precision floating-point numbers [39] using
the Adam-Optimizer [40], and the initial learning rate was determined by using fastai’s
learning rate finder (Supplement S4). The learning rate was adjusted during the training
according to the one-cycle policy [41]. The batch size was twelve for the pituitary adenoma
classifier and 35 for the DNET-GG classifier. At first, only the randomly initialized custom
head (Figure 6, Supplement S3) was trained for five epochs with a maximum learning rate
of 10−3 (Supplement S4) in both projects to not interfere with the pretrained weights of
the CNN’s body. Thereafter the body’s layers were unfrozen, and the complete network
was trained for ten epochs with differential learning rates between 10−9 and 10−6 for the
pituitary gland adenoma classifier and between 10−8 and 10−6 for the DNET-GG classifier
(Supplement S4) where earlier layers were trained with a lower learning rate than the
later ones. The idea behind this is to maintain the basic image-classification patterns of
the pretrained model and prevent overfitting. Training performance was controlled using
accuracy with a threshold of 0.5 as a metric per tile, and the used loss function was binary
cross-entropy loss. Model parameters were saved every epoch and the weights of the epoch
with the best results were used for evaluation. We further evaluated model performance
with five-fold cross-validation, without having any training- and validation-slide and
patient overlap. After the training, predictions on the five validation sets were calculated
with the corresponding model based on the combined predictions of all tiles of a case. The
prediction for a case was calculated using majority voting for the pituitary gland adenoma
classifier and the arithmetic mean of the raw predictions (between 0.0 and 1.0) of all the
case’s tiles for the DNET-GG classifier. These results were then combined and used to
calculate true and false-positive rates, which were then used to plot Receiver Operating
Characteristic curves, true/false positive frequency histograms, and in conjunction with
false-negative rates to plot precision-recall curves.

Since silent corticotroph adenomas only made up 9.7% of the dataset, we decided
to train a second neural net on an undersampled training set. The original training set
(80% of the complete dataset) consisted of 226,422 tiles of which 59% were positive for
LH, 62% for FSH, 22% for ACTH, and 9.4 % were silent corticotroph adenomas. After the
undersampling procedure, 54,713 tiles were left of which 43% were positive for LH, 43%
for FSH, 43% for ACTH, and 39 % were silent corticotroph adenomas. We assured that at
least 30 tiles per WSI were left after undersampling. Again, we used the resnext101_32x8d
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architecture. The head was trained for five epochs with a maximum learning rate of
10−3. The complete model was then trained for ten epochs with maximum discriminative
learning rates ranging from 10−7 to 10−5. In both cases, the one-cycle learning rate policy
was used with minimum learning rates of 1/25 of the maximum learning rates.

2.10. Hardware

We implemented our approach on a local server running Ubuntu (18.04 LTS) with
one NVIDIA GeForce GTX 1080Ti and one NVIDIA Titan XP, AMD CPU (AMD Ryzen
Threadripper 1950X 16 × 3.40 GHz), 128 Gb RAM, CUDA 10.2, and cuDNN 7.

2.11. Availability and Implementation

The datasets generated and analyzed during the presented study are not publicly
available, but parts of the pipeline used in this project including training and visualization
are available on our Project Homepage.

https://github.com/FAU-DLM/wsi_processing_pipeline, accessed on 15
December 2021.

https://github.com/ChristophNeuner/pituitary_gland_adenomas, accessed on
15 December 2021.

https://github.com/ChristophNeuner/DNET_vs_Ganglioglioma, accessed on
15 December 2021.

3. Results

3.1. Use Case 1: DNET-GG Classifier

We evaluated the performance on the validation set, which made up 20% of the whole
dataset and was not used for training. It consisted of 24 slides of ganglioglioma and seven
slides of DNET. In total, 29,333 tiles were extracted from the GG slides and 6597 tiles
were extracted from the DNET slides for evaluation. No hyperparameter tweaking was
performed, which could have led to overfitting on the validation set. On a tile level, the
accuracy was 0.936 and on a slide level 0.968. The Brier score on the tile level was 0.053
and 0.022 on the slide level. The AUC on the tile level was 0.93 and 1.00 on the slide level
for the ROC curve. The average precision calculated from precision and recall was 0.88 for
DNET and 0.97 for GG on the tile level. On the slide level, it was 1.00 for DNET and GG.
(Figures 7 and 8)

Model calibration was also evaluated on tile level (Figure 9). We observed tiles that
were overconfidently classified by the model as DNET but were in fact GG. DNETs typically
contain mucus and have a loosened-up structure. Tiles from GGs which were wrongly
classified as DNETs also had a loosened-up structure, which was only artificial.
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Figure 7. Results | ROC (left) and precision recall curves (right) on tile level.

Figure 8. Results | ROC (left) and precision recall curves (right) on slide level.
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Figure 9. Results|Calibration plot.

3.2. Use Case 2: Pituitary Adenoma Classifier

All CNN were trained to classify the ROIs containing adenoma and surrounding
tissue. First, we performed a study to determine which model to use for our classification
task. We tested ResNet50, ResNet101, ResNet152, DenseNet121, Xception, Inceptionv4,
se_ResNext101_32x4d and ResNext101_32x8d. We compared those models on a predefined
validation set with accuracy calculated on a case basis for each class with a threshold of
0.5 (Supplement S5). Inceptionv4, se_ResNext101_32x4d and ResNext101_32x8d showed
similar promising results. We decided upon ResNext101_32x8d because of the slightly
better test-set results. During training validation, accuracies mostly stayed above training
accuracies, and validation loss stayed below training loss values, indicating little to no
overfitting on the training dataset. We finally evaluated our model via five-fold cross-
validation. For each model within the process of cross-validation, we took 80% of the
dataset as training data and 20% as validation data. There was no overlap between these
five validation sets. All five validation sets showed similar AUCs with no significant
outliers (Supplement S6). Then predictions were made for all tiles of the five validation
sets with the respectively corresponding model that was not trained on that particular
validation set. Via majority voting with a threshold of 0.5, we then calculated the labels on
a case basis and computed AUCs of ROC curves for each class. If more than 50% of the tiles
of one case were labeled with the class ACTH, the whole case received the label ACTH.

For ACTH the Brier score was 0.054, for silent ACTH 0.046, for LH 0.069, and for
FSH 0.10.

For ACTH the AUC of the ROC curve was 0.97 with a proportion of 44.7% of all cases.
The AUC for silent ACTH was 0.86 with a proportion of 9.7%. The AUC for gonadotropic
(LH and/or FSH) was 0.98 with a proportion of 55.3%. The AUCs of LH and FSH alone were
0.96 and 0.93 with proportions of 48.1% and 43.8% (Figure 4). Since the silent ACTH cases
only made up 9.7% of the dataset, the AUC of 86% of the ROC curve could have simply
been a result of guessing. Therefore, we also calculated a precision-recall curve (Figure 10),
which resulted in an AUC of 0.71, and, furthermore, trained another neural net on an
undersampled dataset as described in the last paragraph of “Training and Evaluation”. We
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reached an accuracy of 88.6% and an AUC of 0.83 for the ROC curve on the validation set
for the silent ACTH class (Figure 11).

Figure 10. Results|Precision-recall curve for the class silent corticotropic adenoma of the models
from the 5-fold cross-validation, which were trained on the unevenly distributed training set, in
which silent-corticotroph adenoma made up only 9.7% of the tiles.

Figure 11. Results|Probability Histogram and ROC-Curve for the class silent corticotroph adenoma
of the model that was trained on an undersampled training set in which all four classes were
evenly distributed.

We also evaluated the calibration state of our model for the four different classes on
slide level (Figure 12). We identified WSI for which the model’s prediction differed the
most from the true label. Tile quantity and tissue quality had the most influence on the
quality of the prediction. If there was only little amount of adenoma present and this tissue
was infused with non-pituitary cells, such as blood, connective tissue, or bone, the model
had problems predicting the correct class.
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Figure 12. Results|Calibration plot.

4. Discussion

We developed a whole slide image processing library [23] addressing the needs of
researchers to assess different DL tasks without the hurdles of complex dataset management.
The large size of WSI and annotation of multiple regions of interest tend to increase such
technical obstacles. It is also desirable to extract all tiles on the fly during training and only
save their spatial information but not the images. This pipeline has the advantage of being
more flexible. It is not necessary anymore to repeatedly store extracted tiles as images
to disc, saving space and time. Moreover, the evaluation of the trained model requires
more steps when dealing with WSI. Results on the tile level are only of limited significance.
They have to be transformed into predictions for the complete WSI and the entire case. For
histopathologists or expert clinicians addressing a clinical hypothesis, these hurdles may
become a real burden. Further, DL experts familiar with the usage of DL frameworks may
underestimate the specific handling of digital pathology-associated tasks. The new library
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provides convenient ways of dealing with WSI in the realm of Neuropathology, thereby
facilitating access to DL for both groups of researchers.

Access from and to different levels of magnification, region of interest definition, and
handling, as well as dataset splitting, are essential mechanisms and tend to be technically
intricate. The library manages these crucial steps and offers default parameters enabling the
user to focus on the problem-specific tasks. For the specific use-cases addressed in this study,
the library facilitated the management of pre-extracted image patches for a given patient
as well as extraction of image patches on the fly from predefined ROI. Our evaluation of
different state-of-the-art model architectures to identify the most suitable model for the
problem-specific tasks, i.e., best classification results and least overfitting, resulted in the
selection of resnet50 for the first use-case and the resnext101_32x8d [35,37] architecture for
the second use-case. We believe that these rather large networks with lots of parameters
worked well, because of their large input image size of 512 × 512 pixels. On smaller images,
networks with fewer parameters tend to work better in our experience [3]. A crucial step
in our pipeline was the way of image preprocessing. One part of this aspect was image
augmentation to increase the variance presented to the network [42]. Normalization of
the input data was performed with the mean and standard deviation of our own dataset.
Fastai [30] does this conveniently for the user.

Use-case 1: In the first use-case, we developed a DL approach to distinguish between
two epilepsy-associated tumors, the GG and the DNET. Since unlike DNET, some GG
can undergo malignant transformation [11,12], a precise distinction between these two
entities is crucial. We were able to demonstrate that a CNN can differentiate between these
two entities with a very high accuracy only using H&E-stained slides. This confirms the
potential of DL in assisting pathologists in their decision-making diagnostic process and to
eventually reducing the necessity for further stains.

Use-case 2: In the second use-case addressed, we developed a DL approach to help to
diagnose the entity of pituitary adenomas without the necessity of additional immunohis-
tochemical stainings. Additionally, we could show that even a clinical parameter, such as
the clinical occurrence of M. Cushing of corticotroph adenomas, might be hidden within
the tissue; however, it could successfully be recognized by our neural network approach.
This evidence supports the hypothesis that clinical parameters can be found within his-
tomorphology, and that distinct features may be revealed by DL in terms of imaging
biomarkers. Guided Grad-CAMs [32] could now be used to visualize the decision making
and to teach pathologists which morphological structures are crucial for the network in its
decision-making process.

We addressed the classification task on predictions per tile and collected all votes for
the given slides of a patient’s case. We then obtained the final diagnosis by majority voting
to obtain predictions on a case basis. If more than 50% of the tiles of one case were labeled
with one class, the case was given that class label. We chose that option for two reasons.

First, different from finding metastasis in lymph nodes where high sensitivity is
needed, histological slides from pituitary adenomas usually contain massive adenoma;
hence, most of the tissue on the slide belongs to the tumor. Second, time was not a major
concern. We could simply take and analyze all possible tiles instead of only taking a
representative batch for inference.

Limitations and Potential Solutions Moving into the Future

A well-recognized obstacle in digital pathology represents batch effects including
variation in staining intensity or fixation artifacts [4,43]. We contained such batch effects in
our input data through hand-picked ROI and normalization. We did not directly address
the problem of stain normalization [44]for this dataset, because all staining was performed
in a single lab, and only one device was used for scanning. For further usage of our model
in a production environment with whole slide images from other institutes, this would
be crucial. We are continuously working on this issue to make our models more robust in
the future.
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Histopathology analysis represents a gold standard in tumor diagnosis as it often
directs further treatment. Adenomas of the pituitary gland, although routinely classified
by immunohistochemical profiling of their neuroendocrine axis, are in urgent need of
a clinically meaningful histopathology classification of their risk for relapse. This was
partially addressed by the WHO classification from 2004 and 2016. The criteria of atypia to
label more aggressive adenomas has been removed, however, as it has not proved a pre-
dictive marker [17,45]. The “silent” corticotroph class of our dataset did represent another
clinical parameter of interest and was remarkably well recognized by our network, even in
the evenly distributed dataset. The good classification result of the “silent” corticotroph
class in our study shows that neuronal networks are capable of revealing such clinical
information hidden within tissue slides and, hence, it may also be possible to extract a
clinical relapse parameter from tissue slides via DL. However, due to the lack of datasets
stained at different labs, digitized from different scanners, and the size of the dataset, our
well-performing models may be unsuitable for clinical practice yet.

In conclusion, we developed a convenient open-access library compatible with fastai
to support hypothesis-driven DL research projects in the realm of neuropathology.

It helps in managing the dataset by assigning hierarchy levels such as patients, cases,
and slides, thereby making it easily possible to split the dataset for training and evaluation.
The library consists of building blocks fully compatible with fastai for easy integration and
usage of the full spectrum of fastai functionality. Additionally, many visualization methods
for evaluation are implemented.

Both use-cases demonstrated the successful diagnosis of adenoma of the pituitary
gland and distinguishing between DNET and GG by H&E-stained slides only and without
the necessity of cost- and labor-intense immunohistochemistry staining.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.
3390/app12010013/s1, Supplement S1: Dataset, Supplement S2: Class Distribution, Supplement S3:
Custom head (Pytorch), Supplement S4: Learning rate finder pituitary adenoma classifier, Supplement
S5: Evaluated Networks, Supplement S6: AUCs of the ROC-curves for the five validation sets of 5-fold
cross-validation, Supplement S7: QuPath, Supplement S8: ROIs with overlaid grids, Supplement S9:
Tissue filtering.
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Abstract: Upper gastrointestinal endoscopy is widely performed to detect early gastric cancers. As
an automated detection method for early gastric cancer from endoscopic images, a method involving
an object detection model, which is a deep learning technique, was proposed. However, there
were challenges regarding the reduction in false positives in the detected results. In this study, we
proposed a novel object detection model, U-Net R-CNN, based on a semantic segmentation technique
that extracts target objects by performing a local analysis of the images. U-Net was introduced as a
semantic segmentation method to detect early candidates for gastric cancer. These candidates were
classified as gastric cancer cases or false positives based on box classification using a convolutional
neural network. In the experiments, the detection performance was evaluated via the 5-fold cross-
validation method using 1208 images of healthy subjects and 533 images of gastric cancer patients.
When DenseNet169 was used as the convolutional neural network for box classification, the detection
sensitivity and the number of false positives evaluated on a lesion basis were 98% and 0.01 per image,
respectively, which improved the detection performance compared to the previous method. These
results indicate that the proposed method will be useful for the automated detection of early gastric
cancer from endoscopic images.

Keywords: gastric cancer; endoscopy; deep learning; convolutional neural network

1. Introduction

1.1. Background

Gastric cancer (GC) is one of the most common malignant tumors of the stomach
mucosa. According to global statistics, GC is the second leading cause of cancer deaths,
and the number of patients with GC is increasing due to changes in dietary habits and
longer life expectancy [1,2]. GC may be effectively treated if detected early. Therefore, early
detection and treatment of gastric cancer are essential.

Radiography and endoscopy are used to screen for GC. During endoscopy, a specialist
inserts an endoscope through the patient’s mouth or nose and directly observes the mucous
membrane of the digestive tract to detect abnormalities. The detection sensitivity of GC
by endoscopy is high, and if lesions are found during the examination then tissue may be
collected and simple treatment can be given [3].

However, specialists who perform the procedure need to detect abnormalities while
operating the endoscope, making the examination process sophisticated and complicated.
This results in widely varying diagnostic accuracy, and some studies have reported that
lesions were missed in 22.2% of cases [4]. If physicians could use the results of computerized
image analysis and detect abnormalities during the examination, they could solve some of
these problems and detect GC at an early stage. Deep learning, an artificial intelligence
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technology, has recently been confirmed to have high capability for image recognition by
several studies that were conducted in the medical field [5–10]. Therefore, we focused on
the automated detection of GC in endoscopic images using a computer-aided diagnostic
method based on deep learning technology.

1.2. Related Works

There are many studies on deep learning for the diagnosis of GC using endoscopic
images, including studies on the classifications between GC and healthy subjects and the
automated recognition of GC regions.

Shichijo et al. investigated the prediction of Helicobacter pylori infection using a
convolutional neural network (CNN) and obtained a sensitivity of 88.9% and specificity of
87.4% [11]. Li et al. developed a method to discriminate between GC and normal tissue
using magnified narrow-band imaging (NBI) [12]. They used Inception-v3 as the CNN
model for classification and obtained a sensitivity of 91.18% and specificity of 90.64%.
Zhang et al. developed a method to classify precancerous diseases (polyp, ulcer, and
erosion) using CNN and obtained a classification accuracy of 88.9% [13].

Hirasawa et al. developed a single-shot multi-box detector (SSD), an object detection
model, for the automated detection of early-stage GC [14]. The sensitivity of detection was
92.2% and the positive predictive value was 30.6%. Sakai et al. also developed a method
for object detection of GC by classifying GC regions and normal regions using micropatch
endoscopic images [15]. The detection sensitivity and specificity of the method were 80.0%
and 94.8%, respectively.

We proposed a method for extracting the presence and invasive regions of early
GC using Mask R-CNN, which can perform both object detection and segmentation [16].
We showed that the automated detection sensitivity for early GC was 96.0% and that
the segmentation concordance was 71%. Although the method had sufficient detection
sensitivity, the average number of false positives (FP) was 0.10 per image (3.0 per patient).
The Mask R-CNN used in this study introduced an object detection model for common
natural images. It captured the clear contour of the object in the image, so that lesions with
a relatively clear shape that caused unevenness were detected correctly. On the other hand,
many lesions of early GC, in which only the surface of the gastric mucosa was cancerous,
were not detected correctly by the object detection model because contours were unclear.

A CNN used for segmentation rather than object detection analyzes patterns in
the local regions of the image and divides the entire image into regions by determining
whether they match the patterns to be extracted. This behavior involved in determining
individual regions while observing details is similar to that used by an expert physician
when observing the gastric cavity, and segmentation techniques may be able to improve the
accuracy of automated lesion detection. On the other hand, many small regions are often
observed in the segmentation output by CNNs. Excluding these using the FP reduction
technique may greatly reduce the number of FPs and improve detection performance.
Therefore, segmentation techniques that exclude small excess regions are effective for the
automated detection of GC and identification of the extent of invasion.

1.3. Objective

In this study, we develop a deep learning model that may accurately detect the
presence of GC and its extent of invasion using endoscopic images. We propose a novel
deep learning model, U-Net R-CNN, which is a combination of the U-Net segmentation
process and CNN for image classification to eliminate FPs. The efficacy of this method is
confirmed using endoscopic images of early GC and healthy subjects.

2. Methods

2.1. Outline

The outline of the GC detection by U-Net R-CNN proposed in this study is shown
in Figure 1. The endoscopic images were given to the U-Net, the initial candidate regions

122



Appl. Sci. 2021, 11, 11275

of the GC were extracted, and the bounding box of each extracted region was obtained.
The obtained image patterns in the bounding boxes were subjected to a CNN to classify
FPs and the final candidates (box classification). The final candidate regions where FPs are
excluded were outputs used for diagnosis.

Figure 1. Outline of the proposed method.

2.2. Image Dataset

The image dataset used in this study was same as that used in our previous study.
Patient details and other information may be found in our previous study [16]. For this
study, 42 healthy and 93 cases (94 lesions) of GC for preoperative examinations were
collected between 16 July 2013 and 30 August 2017 at the Fujita Health University Hospital.
The numbers of images for the above two categories were 1208 and 533, respectively. The
endoscopic images were obtained from multiple directions if a lesion was found during the
examination. Table 1 shows the characteristics of gastric cancer patients and lesions [16].
Regarding the healthy subjects, we reassessed the cases endoscopists diagnosed without
any abnormalities. When we did not find a specific lesion, such as a tumor, polyps, or
gastritis, and a regular arrangement of collecting venules was observed in the mucosa, we
considered this as “healthy” [17].

Table 1. Clinical characteristics of gastric cancer lesions in the dataset.

Characteristics Number of Cases

Tumor position
Lower third 33
Middle third 52
Upper third 9

Macroscopic classification
Type 0-I 0

Type 0-IIa 10
Type 0-IIb 0
Type 0-IIc 63
Type 0-III 0

Type 0 mixed (0-IIa + IIc and IIc + III) 21
Depth of tumor invasion

T1a (mucosa) 71
T1b (submucosa) 23

Histopathological classification
Undifferentiated 13

Differentiated 75
Mixed 6

We obtained images using upper endoscope units (EG-L600ZW7; Fujifilm Corp.,
Tokyo, Japan; GIF-290Z, GIF-HQ290, GIF-XP290N, GIF-260Z; Olympus Medical Systems,
Co., Ltd., Tokyo, Japan) and standard endoscopic video systems (VP-4450HD/LL-4450,
Fujifilm Corp., Tokyo, Japan; and EVIS LUCERA CV-260/CLV-260; EVIS LUCERA ELITE
CV-290/CLV-290SL; Olympus Medical Systems, Tokyo, Japan).

All images were captured using standard white light and stored in JPEG file format.
The matrix size of the images ranged from 640 × 480 to 1440 × 1080 pixels. To make the
matrix size consistent, we resized all images to 512 × 512 pixels. The circular field of view
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was adopted to avoid differences among the endoscopic instruments and to facilitate data
augmentation, before being trimmed as a circle.

The expert endoscopist (TS), who was certified by the Japan Gastroenterological
Endoscopy Society, made the ground truth of a label image. To make the label images, we
used the original Python software.

2.3. Data Augmentation

Rotation and inversion invariance can be established because the endoscope may
capture images of the gastric condition from various angles. Therefore, various images
may be created by rotating or flipping each of the collected images. In this study, to ensure
stable deep learning performance, we prepared, rotated, and flipped original images for
data augmentation and used them for training. Using our in-house software, we generated
images by setting the rotation pitch of the images of GC and healthy subjects to 6◦ and 10◦,
respectively, so that the numbers of images of GC and healthy subjects were equal [16].

2.4. Initial Detection

We extracted the candidate regions for early GC from endoscopic images. For this task,
we employed U-Net, a semantic segmentation technique [18], which was first proposed
in 2015 as a method for extracting cell regions in microscopic images and widely used
in fields other than medical imaging since. The network structure is shown in Figure 2.
U-Net consists of five convolutional and pooling layers, followed by five encoder layers
(upscaling layers). When an image is given to the input layer, the encoder layer in the first
half extracts the features of the image. Then, the decoder layer in the second half outputs
a segmented label image based on the extracted features. In addition, the encoder and
decoder layers are connected to each other and the high-resolution information from the
encoder layer is delivered directly to the decoder layer on the other side, thereby increasing
the resolution of the label image. U-Net provides an initial candidate region for early GC
corresponding to the input image. As for the U-Net parameters, the Dice coefficient was
used as the loss function (the definition of the Dice index is described in Section 2.6), with
the Adam algorithm [19] as the optimization algorithm, 0.0001 as the learning coefficient,
100 as the number of training sessions, and 8 as the batch size.

Figure 2. Architecture of U-Net.

2.5. Box Classification

The detected candidate regions included many over-detected regions (FPs). These
FPs may be recognized and reduced using a different approach from the segmented U-Net
for segmentation. In the box classification part of the proposed U-Net R-CNN, FPs are
eliminated from the candidate regions by another CNN (Figure 3).
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Figure 3. Architecture of the box classification.

First, the input image was provided to U-Net and the output labeled image of U-Net
was automatically binarized by Otsu’s method [20], followed by the labeling process to pick
up individual candidate regions. The bounding box of the candidate region was then cut
out and input to the CNN to classify the candidate region as GC or false positive. Finally,
the regions that the CNN identified as GC were used as the final detection results.

For the CNN architecture, we introduced VGG-16 [21], Inception v3 [22], and
ResNet50 [23], as well as DenseNet121, 169, and 201 [24], then selected the best model by
comparing them. These CNN models were pretrained using the ImageNet dataset, which
has a much larger number of training image samples than our original dataset. For the
classification of GC and FPs, we replaced the fully connected layers of the original CNN
models with three layers having 1024, 256, and 2 units.

For the input of the CNN, the image of the candidate region was resized to 224 × 224 pixels
and the optimization algorithm was the Adam algorithm with a learning rate of 0.0001 and
200 training epochs. For data augmentation, vertical and horizontal image flipping were
performed randomly.

2.6. Evaluation Metrics

We defined the evaluation metrics to assess the detection and segmentation perfor-
mance of the proposed method. As for the detection sensitivity, when the GC region
obtained by the proposed method and the ground truth region specified by a gastrointesti-
nal specialist overlapped, we evaluated that the target GC was detected correctly. In the
endoscopic examination, the same GC region was often observed in a number of images
because images were taken from many angles. Among these images, some images may
have subtle patterns that are difficult to identify. Therefore, we evaluated the performance
of two counting methods. The first method involved simply counting the number of im-
ages for which GC was detected correctly (image-based sensitivity), while second method
determined whether one lesion was correctly detected in at least one image (lesion-based
sensitivity). Regarding the FPs, the total number of detected healthy regions in healthy
cases were counted; we calculated FPs per case by dividing them by the total number of
healthy subjects.

Although the main task of this study was to detect objects to recognize the presence
of GC, U-Net may extract object regions. Therefore, we evaluated the accuracy of region
extraction using Dice and Jaccard coefficients.

Di and Ji were calculated using the following formulas to evaluate the similarity
between the detected region and the ground truth created by a gastrointestinal specialist:

Di = 2|A∩B|/(|A| + |B|) × 100 [%] (1)

Ji = |A∩B|/|A∪B| × 100 [%] (2)

where A and B are two sets. Here, A indicates the ground truth GC region specified by a
specialist and B indicates the detected region identified by the proposed method.

Di and Ji were evaluated in the two groups. First, all images containing GC areas were
used to evaluate the overall extraction accuracy. In the second method, only the regions
detected by the method were evaluated to confirm the accuracy of the invasion area when
GC was detected.

125



Appl. Sci. 2021, 11, 11275

In the evaluation, we used a cross-validation method [25]. In this method, the dataset
was split into k groups (called k-fold cross-validation). The network was trained using
the k-1 subset; the remaining subset was used for the test. By repeating the above process
k times, the test results for all data can be obtained. The overall model accuracy can be
calculated by summarizing all test results. In our evaluation, five-fold cross-validation
(k = 5) was introduced; 137 cases were randomly divided into five groups. Here, the images
of the same case were not assigned to both training and test data.

This study was approved by the institutional review board of Fujita Health University,
informed consent was obtained from the patients in the form of an opt-out in the endoscopic
center of Fujita Health University Hospital, and all data were anonymized (No. HM17-226).
This study was conducted in accordance with the World Medical Association Declaration
of Helsinki.

The calculations of the initial detection and FP reduction were performed using
original Python software using an AMD Ryzen9 3950X processor (16 CPU cores, 4.7 GHz)
with 128 GB of DDR4 memory. Trainings of CNN phases were accelerated by NVIDIA
Quadro RTX 8000 GPU (48 GB memory).

3. Results

3.1. Initial Detection

Using the proposed method, we obtained the results for the initial detection before
performing FP elimination. Figure 4 shows a lesion detected in the initial detection process
(a−d) and an example of a missed lesion (e,f). The right image in Figure 4c,d shows those
lesions that were missed by our previous technique but detected by the proposed method.
As a result of the automated detection of all 1741 images using the cross-validation method,
lesions were detected in 491 out of 533 images that contained lesions, while no lesions were
detected in 42 images. When the detection sensitivity was evaluated on a lesion basis, the
presence of GC was detected in at least one image in 98.9% (93/94) of patients, while 1.1%
(1/94) of GCs were not detected in any patient. FPs were detected in 42 of 1208 images in
the healthy group, resulting in an FP count of 0.035 per image.

3.2. False Positive Reduction

Box classification was performed on 533 images (491 true positives and 42 FPs) de-
tected in the initial detection to eliminate the FPs. Figure 5 shows an example of a cropped
image to be given to the CNN for FP reduction. Table 2 shows the detection sensitivity
and the numbers of FPs per image and per lesion when an FP reduction was performed
with six different CNN architectures. DenseNet169 showed the highest ability to eliminate
FPs. Examples of FPs that could be removed by DenseNet169 and those that could not
are shown in Figure 6. The results of the calculation of Di and Ji for GC cases are shown
in Table 3.

Table 2. Comparison of CNN architectures for false positive reduction.

Classifier
Detection Sensitivity False

Positives/ImageLesion-Based Image-Based

None 0.989 0.942 0.0348
VGG16 0.989 0.942 0.0348

ResNet50 0.989 0.932 0.0281
DenseNet121 0.978 0.916 0.0273
DenseNet169 0.989 0.897 0.0108
DenseNet201 0.989 0.901 0.0240
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Figure 4. Lesions detected and missed in the initial detection process: (a,b) correctly detected by
both the previous and the proposed method; (c,d) correctly detected only by the proposed method;
(e,f) missed by the proposed method.

Figure 5. Example of the cropped images for false positive reduction: (a) Cropped images of cancer
lesions; (b) Cropped images of false positives.
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Figure 6. Examples of false positive reduction: (a,b) false positives correctly eliminated by the
proposed method; (c,d) FPs that were not eliminated by the proposed method; (e,f) gastric cancer
lesions eliminated by false positive reduction. Arrows indicate the labeled regions.

Table 3. Evaluation results of Di and Ji for cancer segmentation.

Evaluation Using All Gastric Cancer Cases Evaluation Using the Detected Gastric Cancer Cases

Di Ji Di Ji

Previous method [16] 0.542 0.371 0.720 0.494
Proposed method 0.555 0.427 0.602 0.463

4. Discussion

In this study, we proposed a U-Net RCNN that combines U-Net and an FP reduction
method for object detection and performs automatic detection of GC cases. Using the
output images of U-Net, individual candidate regions were recognized by conventional
thresholding and labeling techniques and bounding boxes were obtained. To eliminate FPs,
candidate regions were classified as true GC cases and FPs by CNN.

The lesion-based sensitivity for initial detection by this method was 0.989, while the
number of FPs per image was 0.035, which was much better than the previous study
(sensitivity, 0.957; number of FPs per image, 0.105). The Mask R-CNN introduced in our
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previous method was able to accurately detect visually distinct objects such as unevenness
due to the principles of the object detection model; however, it was difficult to detect
subtle changes in the mucosal surface. On the other hand, U-Net, which was employed
in this study, could analyze local regions in an image. A detailed analysis of the gastric
mucosa in endoscopic images was performed and patterns that differed from normal were
accurately recognized.

In the second stage, we compared the performance of six different CNN architectures
and found that DenseNet169 showed the best performance, reducing FPs by approximately
30% to 0.011, while maintaining a lesion-based detection sensitivity of 0.989.

When evaluated in an image-based manner, the detection sensitivity dropped by
approximately 4% from 0.942 to 0.897. As shown in Figure 5e,f, most of the images that
remained undetected were taken from angles and distances that were difficult to see, and
other images in the case were able to compensate for the detection.

The accuracy of extracting the invasive region of GC was evaluated by Di and Ji and
the results were 0.55 and 0.42, respectively, for all GC images; and 0.60 and 0.46, respectively,
when the evaluation was limited to the correctly detected images. The proposed method
was more accurate than the previous study using Mask R-CNN when evaluating all GC
images, while the previous study was more accurate when evaluating only the detected
regions. This indicates that our method may detect subtle lesions but is not able to extract
the exact shapes. To improve the extraction accuracy, it is necessary to improve the CNN
model used for the initial detection and to add post-processing, such as region growing, to
the extracted images.

Because the proposed method provides a sensitivity of 98% in detecting GC while
keeping FPs at an acceptable level, it may be useful for maintaining high examination
accuracy in screening for GC by covering differences in the experience of physicians.

Although we could not compare our results accurately because a different dataset was
used, the proposed method using U-Net and FP reduction techniques had a better detection
sensitivity than those in previous studies using a SSD [14] and Mask R-CNN [16]. Fur-
thermore, a previous study using SSD detected lesions with a bounding box, whereas the
proposed method segments the GC regions. The detection and segmentation capabilities
of the proposed method are significantly improved compared to the previous methods.

The major limitation of the proposed method is the small number of images. Training
and evaluation of the proposed method were carried out using the data collected at a single
facility only for comparison with our previous method. We plan to expand the dataset by
including data from external facilities.

5. Conclusions

In this study, we developed a deep learning model that can accurately detect the
presence of GC and its invasive area using endoscopic images. In this paper, as a deep
learning model, we proposed a novel U-Net R-CNN that combines the U-Net segmentation
process with a CNN for image classification to eliminate FPs. As a result of the evaluation
using the endoscopic images of early-stage GC and healthy subjects, the proposed method
showed a higher detection ability than the previous techniques. These results indicate that
our method is effective for the automated detection of early GC in endoscopy.
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Abstract: Open-source deep neural networks (DNNs) for medical imaging are significant in emergent
situations, such as during the pandemic of the 2019 novel coronavirus disease (COVID-19), since
they accelerate the development of high-performance DNN-based systems. However, adversarial
attacks are not negligible during open-source development. Since DNNs are used as computer-aided
systems for COVID-19 screening from radiography images, we investigated the vulnerability of the
COVID-Net model, a representative open-source DNN for COVID-19 detection from chest X-ray
images to backdoor attacks that modify DNN models and cause their misclassification when a specific
trigger input is added. The results showed that backdoors for both non-targeted attacks, for which
DNNs classify inputs into incorrect labels, and targeted attacks, for which DNNs classify inputs into
a specific target class, could be established in the COVID-Net model using a small trigger and small
fraction of training data. Moreover, the backdoors were effective for models fine-tuned from the
backdoored COVID-Net models, although the performance of non-targeted attacks was limited. This
indicated that backdoored models could be spread via fine-tuning (thereby becoming a significant
security threat). The findings showed that emphasis is required on open-source development and
practical applications of DNNs for COVID-19 detection.

Keywords: deep neural networks; medical imaging; backdoor attacks; security and privacy; COVID-19

1. Introduction

Deep neural networks (DNNs) demonstrate high performance in image recognition.
Hence, they promise to achieve faster and more reliable decision-making in clinical environ-
ments as diagnostic medical imaging systems [1] since their diagnostic performance is high
and equivalent to that of health care professionals [2]. For emerging infectious diseases
such as the coronavirus disease 2019 (COVID-19) [3], DNNs are expected to effectively fa-
cilitate the screening of patients to reduce the spread of the epidemic. For instance, positive
real-time polymerase chain reaction tests are generally used for COVID-19 screening [4].
However, they are often time-consuming and laborious and involve complicated manual
processes. Thus, chest X-ray imaging has become an alternative screening method [5,6].
However, it is difficult to detect COVID-19 cases from chest X-ray images since visual differ-
ences in images between COVID-19 and non-COVID-19 pneumonias are subtle. Only a few
expert radiologists have accurately detected COVID-19 from chest X-ray images, forming a
bottleneck for faster screening based on radiographic images. DNNs can overcome this
limitation due to the fact that they exhibit high performance for pneumonia classification
based on chest X-ray images [7]. DNNs are now used to support radiologists in achieving
a rapid and accurate interpretation of radiographic images for COVID-19 screening [8–15].

Specifically, the COVID-Net open-source initiative [8] demonstrates remarkable results.
COVID-Net is a deep convolutional neural network designed to detect COVID-19 cases
from chest X-ray images and is one of the first open-source network designs that detects
COVID-19. To date, computer-based systems in medical science have generally been
developed using closed sources in terms of security. However, this initiative considers
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open science; both researchers and citizen data scientists accelerate the development
of high-performance DNN-based systems for detecting COVID-19 cases. Inspired by
COVID-Net models, several researchers [16–18] have proposed DNN-based systems for
COVID-19 screening from chest X-ray images. Moreover, large-scale datasets of chest
radiography images of COVID-19 have been constructed [8,9,19,20]. Such open-source
projects are encouraging not only for developing high-performance DNN solutions, but
also for ensuring transparency and reproducibility in DNN models [21], although only
deep learning models (model weights) may be provided [22] as an alternative to sharing
patient data with regard to preserving patient privacy [23].

However, adversarial attacks hinder the development of open-source DNNs. In
particular, DNNs are vulnerable to adversarial examples [24–26], which are input images
contaminated with specific small perturbations that cause misclassifications by DNNs.
Adversarial examples include evasion attacks in adversarial attacks. Many evasion attack
methods (i.e., methods for generating adversarial examples) have been proposed, such as
the fast gradient sign method [24] and DeepFool [27]). Since disease diagnosis involves
high-stake decisions, adversarial attacks can cause serious security problems [28] and
various social problems [29]. Thus, the vulnerability of DNNs to evasion attacks has been
investigated in medical imaging [29,30]. For COVID-19 detection, adversarial attacks
may hinder strategies for public health (i.e., minimizing the spread of the pandemic) and
the economy. For open-source DNNs such as the COVID-Net model, adversaries can
easily generate adversarial examples since they can access the model parameters (the
model weights and gradient of the loss function) and training images. We previously [31]
demonstrated that universal adversarial perturbation (UAP) [32,33], an evasion attack
using a single (input image agnostic) perturbation can fail most classification tasks of the
COVID-Net model.

Nevertheless, backdoor attacks [34], which are different types of adversarial attacks,
must be considered to obtain a more comprehensive understanding of security threats
to open-source DNNs since previous studies have only focused on evasion attacks (i.e.,
manipulating inputs to cause DNN misclassifications). In backdoor attacks, a backdoor
is established in DNN models (i.e., model poisoning) to misclassify them; specifically,
backdoor attacks are performed by fine-tuning existing DNN models with contaminated
data that are generated by assigning backdoor triggers (e.g., a pixel pattern that appears
in the corner of the images) and incorrect labels to a small fraction of the original data.
In this case, backdoored DNN models correctly classify inputs without triggers into their
actual labels. However, they incorrectly predict the actual labels for inputs with triggers.
Depending on the manner in which incorrect labels are assigned to contaminated data, both
non-targeted attacks, for which DNNs classify inputs into incorrect labels, and targeted
attacks, for which DNNs classify inputs into a specific target class, can be implemented. It
is difficult to immediately discriminate whether backdoors are established in DNN models
since DNN models appear to function correctly for inputs without backdoor triggers and
exhibit complex architectures. Open-source software development relies on collaboration
among researchers, engineers, citizen data scientists, etc. and it may be outsourced. In
this situation, an unspecified number of people can be involved in development. Thus,
anyone can establish a backdoor in DNN models via the above procedures. Moreover, it is
difficult to determine who establishes the backdoor. Backdoor attacks are a serious security
threat for open-source software development [34]. Therefore, they have been evaluated
in handwritten digit recognition tasks, traffic sign detection tasks, and well-used sources
for pretrained DNN models [34]. However, the vulnerability of existing open-source
software in medical imaging (e.g., the COVID-Net model) to backdoor attacks has not been
evaluated comprehensively at present, although a previous study [35] considered backdoor
attacks on medical imaging based on DNN models trained by the authors themselves.

This study’s aim is to evaluate the vulnerability of the COVID-Net model, a represen-
tative open-source software used in medical imaging, for backdoor attacks. Specifically, we
evaluate whether backdoors for non-targeted and targeted attacks can be established in the
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COVID-Net models. Moreover, the effectiveness of the backdoors in DNN models fine-
tuned from backdoored models is analyzed. Backdoor attacks cause a significant problem
when fine-tuned models are obtained from backdoored models. In medical imaging, users
often consider obtaining highly accurate DNN models by fine-tuning pretrained models
with their own datasets since the amount of medical image data is often limited [1]. Users
may perceive that they have obtained highly accurate fine-tuned DNN models from back-
doored models since the models function correctly for clean inputs. However, adversaries
can foil or control the tasks of fine-tuned DNN models using backdoor triggers. Therefore,
we evaluated whether the backdoor triggers enabled non-targeted and targeted attacks for
DNN models fine-tuned from backdoored models.

2. Materials and Methods

2.1. COVID-Net Model and Chest X-ray Images

We obtained a COVID-Net model and chest X-ray images based on a previous
study [31]. In particular, the COVIDNet-CXR4-A model was downloaded from the GitHub
repository on the COVID-Net Open Source Initiative (https://github.com/lindawangg/
COVID-Net) on 20 November 2020. This model was selected since its prediction ac-
curacy was the highest (94.3%) at that time. Moreover, we downloaded the COVIDx5
dataset, which was constructed using several open-source chest radiography datasets,
on 19 November 2020, following the description in the COVID-Net repository (see
https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md (accessed
on 19 November 2020) for details). In particular, the dataset consisted of COVID-19 image
data collection [36], COVID-19 Radiography Database [37,38], hospital-scale chest X-ray
database (ChestX-Ray8) [39], The Radiological Society of North America International
COVID-19 Open Radiology Database (RICORD) [40], etc. The images were in grayscale
with a pixel resolution of 480× 480 pixels and a pixel intensity ranging between 0 pixels
and 255 pixels. The chest X-ray images in the dataset were classified into three classes:
normal (no pneumonia), pneumonia (non-COVID-19 pneumonia; e.g., viral and bacterial
pneumonia), and COVID-19 (COVID-19 viral pneumonia). The COVIDx5 dataset com-
prised 13,958 training images (7966 normal, 5475 pneumonia, and 517 COVID-19) and
300 test images (100 images per class).

The COVIDx5 dataset was classified into two datasets: Datasets 1 and 2. Dataset 1
contained 6978 training images (3983 normal, 2737 pneumonia, and 258 COVID-19) and
150 test images (50 images per class), which were randomly selected from the COVIDx5
dataset. These training and test images were used to establish a backdoor in the COVID-Net
model (i.e., to generate a backdoor COVID-Net model) and to evaluate the performance of
the backdoor attacks. The remainder of the COVIDx5 dataset corresponded to Dataset 2,
which contained 6980 training images (3983 normal, 2738 pneumonia, and 259 COVID-19)
and 150 test images (50 images per class). These training and test images were used
to obtain a fine-tuned model from the backdoor COVID-Net model and to evaluate the
performance of backdoor attacks on the fine-tuned model.

2.2. Backdoor Attacks

The procedure for establishing a backdoor in the COVID-Net model was based on
a previous study [34]. To obtain a contaminated training dataset, a backdoor trigger was
applied to 698 (~10%) images (398 normal, 273 pneumonia, and 25 COVID-19) that were
randomly selected from the training images in Dataset 1. The trigger was set to a square
measuring 5 × 5 pixels (~1% height and width of the images) and a pixel intensity of 250,
and it was placed at the lower right corner [near pixel coordinated (398, 398)] of the images.
For each image x, image xt (the trigger) was generated by applying the trigger to x using
the matrix of a 480× 480 image mask, m, which assumed a value of 1 at the coordination
where the trigger was located, and 0 otherwise: xt = τ(x) = x ◦ (1 − m) + 250m, where ◦
indicated the element-wise product and 1 was the 480× 480 matrix in which all elements
were 1. Figure 1 shows the examples of normal, pneumonia, and COVID-19 images, with
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and without the trigger. Furthermore, incorrect labels were assigned to the images with the
trigger. For non-targeted attacks, we assigned pneumonia, COVID-19, and normal labels
to normal images, pneumonia images, and COVID-19 images, respectively. For targeted
attacks, a target label was assigned to all the images.

Figure 1. Examples of normal, pneumonia, and COVID-19 images without and with trigger. Example images were randomly
selected per class.

Using the contaminated training dataset, we fine-tuned the COVID-Net model with
batch sizes of 32 and 50 epochs. The other settings (e.g., learning rate and optimizer) were
the same as those used for training the original COVID-Net model.

2.3. Model Fine-Tuned from Backdoor Model

We obtained a fine-tuned model for COVID-19 detection using the backdoor COVID-
Net model. Specifically, using the training images in Dataset 2, we fine-tuned the backdoor
model with batch sizes of 32 and 20 epochs. The other settings (e.g., learning rate and
optimizer) were the same as those used for training the original COVID-Net model.

2.4. Evaluating Performance of Backdoor Attacks

The performance of the backdoor attacks with the trigger was evaluated based on the
attack success rates. Specifically, based on previous studies [31,41], we used the fooling
rate R f and targeted attack success rate Rs to evaluate the performance of non-targeted and
targeted attacks, respectively. Let C(x) and yx be an output (class or label) of a classifier
(DNN) and the actual label for an input image x, respectively; R f was defined as the fraction
of cases in which the labels predicted from images with the trigger differed from those from
their images without the trigger for all images in set X: R f = |X|−1 ∑

x∈X
I(yx �= C(τ(x))),

where I(A) was 1 if condition A was true, and 0 otherwise. Rs was defined as the ratio
of images with the trigger classified into a target class K to all images in set X: Rs =

|X|−1 ∑
x∈X

I(C(τ(x)) = K). To evaluate the change in the predicted labels for each class due

to the trigger, confusion matrices were obtained. R f , Rs, and the confusion matrices were
computed using the test images in Datasets 1 and 2 to evaluate the performance of the
backdoor attacks on the backdoor model and the model fine-tuned from the backdoor
model, respectively.
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3. Results

First, we investigated whether backdoors for non-targeted and targeted attacks could
be established in the COVID-Net model. The prediction accuracies (Table 1) and confusion
matrices (the upper panels in Figure 2) indicated that the backdoor models of the COVID-
Net model demonstrated high prediction performance for clean images (i.e., images without
the trigger (see the upper panels in Figure 1)), although their accuracies were slightly lower
than those of the original COVID-Net model (e.g., the backdoor models for targeted attacks
tended to classify some of the clean COVID-19 images as pneumonia (see the upper panels
in Figure 2a–c)). However, the backdoor models classified the images with the trigger
into target labels for targeted attacks and incorrect labels for non-targeted attacks (see
bottom panels in Figure 2). The attack success rates (Rs or R f ) were between 85% and 100%
(Table 1). The results indicated that backdoors were established in the COVID-Net model
using a small trigger.

Table 1. Attack success rates (Rs for targeted attacks and R f for non-targeted attacks; %) for back-
doored COVID-Net models and prediction accuracies (%) of backdoored models on clean images.

Attack Type Attack Success Rate (Rs or Rf)Accuracy

Targeted
normal 99.3% 88.7%

pneumonia 99.3% 78.7%
COVID-19 100.0% 87.3%

Non-targeted 86.7% 91.3%

 

Figure 2. Confusion matrices for backdoored COVID-Net models on test images without any trigger (clean images; upper
panels) and with trigger (bottom panels). Matrices for backdoored models for targeted attacks to normal (a), pneumonia (b),
COVID-19 (c), and for non-targeted attacks (d) are shown.

Further, we evaluated whether backdoor attacks were effective for models fine-tuned
from backdoored models. It was assumed that other users, not adversaries, obtained the
fine-tuned models from the backdoored models using clean images, and used a publicly
available DNN model to obtain their own models without knowing whether a backdoor
was established in the DNN model. The prediction accuracies (Table 2) and confusion
matrices (the upper panels in Figure 3) indicated that the fine-tuned models demonstrated
high prediction performance for the clean images, and that their prediction accuracies
were almost similar to those of the original COVID-Net model. Nevertheless, the backdoor
attacks were effective in the fine-tuned models. Specifically, the success rates (Rs) for
targeted attacks were between 60% and 80% (Table 2). However, the Rs of the fine-tuned
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models were lower than those of the backdoored models. In particular, the normal and
COVID-19 images were difficult to misclassify, although the trigger was added to the
images (the bottom panels in Figure 3a–c). Moreover, the performance of the non-targeted
attacks was limited. In particular, R f was approximately 10% (see the bottom panel in
Figure 3d).

Table 2. Attack success rates (Rs for targeted attacks and R f for non-targeted attacks; %) for fine-
tuned models from backdoored COVID-Net models and prediction accuracies (%) of fine-tuned
models on clean images.

Attack Type Attack Success Rate (Rs or Rf)Accuracy

Targeted
normal 80.7% 91.3%

pneumonia 60.0% 96.0%
COVID-19 73.3% 90.7%

Non-targeted 86.7% 11.3%

 

Figure 3. Confusion matrices for models fine-tuned from backdoored COVID-Net models on test images without any
trigger (clean images; upper panels) and with trigger (bottom panels). Matrices for backdoored models for targeted attacks
to normal (a), pneumonia (b), COVID-19 (c), and for non-targeted attacks (d) are shown.

4. Discussion

The results (Table 1 and Figure 2) show that the backdoors for both the non-targeted
and targeted attacks were easily established in the COVID-Net model by assigning a small
trigger and incorrect labels to a small fraction of training data. Similar to evasion attacks
using UAPs [31], backdoor attacks also achieved high attack success rates (85% to 100%),
indicating that the COVID-Net model was vulnerable to model poisoning. Users (e.g.,
developers except for adversaries) might not be easily detected, whereas the training
data were contaminated due to the small number of training images with the trigger and
incorrect labels. Hence, they might render the backdoor models publicly available. Other
users fine-tuned the backdoored models using their training data to obtain their own DNN
models for COVID-19 detection. Subsequently, fine-tuned models with high prediction
performances were obtained (Table 2). Nonetheless, the backdoors for the targeted attacks
remained effective for the fine-tuned models (Table 2 and Figure 3). The fine-tuned models
would be used in real-world environments since they functioned correctly for inputs
without a trigger. The spread of backdoor models via fine-tuning might pose a significant
security threat. In particular, adversaries could easily attack several fine-tuned models from
the backdoored models using typical triggers to cause both false positives and negatives
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in COVID-19 diagnosis. This might cause problems for public health and the economy,
as mentioned in a previous study [31]. False positives in the diagnosis due to backdoor
attacks might cause undesired mental stress in patients. False negatives in the diagnosis
due to the attacks might have facilitated the spread of the pandemic. Moreover, backdoor
attacks could be used to adjust the number of COVID-19 cases. Therefore, they might
complicate the estimation of the number of COVID-19 cases. These disturbances due to
backdoor attacks affected the individual and social awareness of COVID-19 (e.g., voluntary
restraint and social distancing) and therefore hindered the spread of the pandemic.

However, backdoor attacks on the COVID-Net model were less effective. For the
backdoor models, their prediction accuracies on clean images were slightly lower than
those of the original COVID-Net model. In particular, some of the clean COVID-19 images
were classified as pneumonia (Figure 1). This might be due to the fact that the visual
differences in chest X-ray images between COVID-19 and non-COVID-19 pneumonia were
insignificant. The decision boundary between COVID-19 and pneumonia might have
been altered due to the backdoor trigger. For the fine-tuned models, the performance of
backdoor attacks was lower than that of the backdoored models. Specifically, normal and
COVID-19 images with the trigger were difficult to misclassify (Figure 2a–c). This might
be due to the significant visual differences in chest X-ray images between non-pneumonia
and COVID-19 pneumonia. The decision boundary between normal and COVID-19 that
was altered due to the backdoor trigger might have returned to the original state since
fine-tuning was performed using clean images. Furthermore, the backdoor for non-targeted
attacks was not effective for the fine-tuned model. This might be due to the fact that it was
difficult to assign incorrect labels to the images with the trigger. In particular, the decision
boundary for each class was altered using backdoor triggers. However, this alteration
might have been difficult when using only a single trigger.

Explainability might be a useful indicator for determining whether backdoors were
established in DNN models. Gradient class activation mapping (Grad-CAM) [42] was
useful in this context [43]. It provided saliency maps that indicated the importance of
each pixel in the input images for the model outputs (i.e., prediction results) using the
gradients of the outputs with respect to activation functions until the final convolution
layer. The saliency maps of the backdoored models differed from those of the clean models.
Specifically, pixels at unexpected coordinates (e.g., near a backdoor trigger) contributed
to model predictions. Nwadike et al. [35] detected backdoor attacks on medical imaging
using DNN models trained by themselves using Grad-CAM saliency maps, inspired by the
fact that explainability techniques were typically used in medical imaging applications [44].
However, adversarial defenses against backdoor attacks based on explainability might be
limited since explainability could be easily deceived [45]. Specifically, adversaries could
fine-tune DNN models to allow explainability methods (e.g., Grad-CAM) to yield their
desired saliency maps. Moreover, explainabiltiy-based defenses had failed to combat
imperceptible backdoor attacks based on image warping [46] and physical reflection [47].
Adversarial attacks and defenses were cat-and-mouse games [29]. Hence, it might be
difficult to defend against backdoor attacks.

The vulnerability to backdoor attacks demonstrated here was limited to the COVID-
Net model. This was due to the fact that the number of reproducible open-source projects
on DNN-based COVID-19 detection was limited at that time. However, we believed that
vulnerability was a general property of DNN models, given that backdoor attacks were
effective in DNN models for various types of classification tasks [34,35]. The vulnerability
of other DNN models for COVID-19 detection to backdoor attacks needs to be further
investigated; however, the procedures used here might be useful as a standard framework
for evaluating the vulnerability of DNN models.

5. Conclusions

The vulnerability of the COVID-Net model, an open-source DNN, for backdoor attacks
was demonstrated. Collaboration among researchers, engineers, and citizen data scientists
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were expected in open-source projects to accelerate the development of high-performance
DNNs. However, the risk of backdoor attacks was inevitable. Although many DNN-
based systems for COVID-19 detection were developed, the abovementioned risks were
disregarded. Our findings highlighted that careful consideration is required in open-source
development and practical applications of DNNs for COVID-19 detection.
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Abstract: This article presents an automatic system for modeling clinical knowledge to follow
a physician’s reasoning in medical consultation. Instance-based learning is applied to provide
suggestions when recording electronic medical records. The system was validated on a real case
study involving advanced medical students. The proposed system is accurate and efficient: 2.5×
more efficient than a baseline empirical tool for suggestions and two orders of magnitude faster than a
Bayesian learning method, when processing a testbed of 250 clinical case types. The research provides
a framework to implement a real-time system to assist physicians during medical consultations.

Keywords: computational intelligence; medical assistance; instance-based learning; healthcare;
clinical decision support systems

1. Introduction

The search for better medical practices is a perpetual challenge for modern medicine.
In this regard, computational intelligence has emerged as a promising subject for de-
veloping smart systems in healthcare practice [1]. Computational intelligence allows
implementing automatic tools, enabling physicians to provide patients with a better quality
of attention by performing early and accurate diagnosis and improving treatment. Fur-
thermore, automatic systems and technologies based on computational intelligence have
proven to be useful solutions to be applied in clinical practice. Some important advantages
of intelligent automatic methods over traditional ones include better efficiency, accuracy,
consistency, more time available for face-to-face consultation, and more time for critical
tasks and critical cases, among others [2].

A specific subject where the learning capabilities of computational intelligence meth-
ods is very helpful to improve medical practice is analyzing and processing electronic
medical records (EMRs). EMRs refer to digital records, collected by the individual medical
practice, that contain the general health information of patients [3]. They usually consist of
several types of health data, including, but not limited to, demographics, medical family
history, medication, allergies, test results, and radiology images.

Currently, the majority of medical history recording products are based on prede-
fined templates, which provide very limited freedom for writing patients medical records.
Structured data entry is a hindrance to the usability of medical record applications, and
is frowned upon by physicians who usually prefer to document using free text [4]. In
addition, structured data entry systems do not take into account the particularities of the
annotations of each physician, failing to effectively record the singularities of medical
consultations. Alerts and suggestions offered by conventional products are generally based
on previously defined rules, or according to mechanisms whose behavior remains the
same throughout its operational life. The dissatisfaction of physicians with actual medical
history recording products is increasing as they gain knowledge about automatic assistant
tools. Consequently, physicians are increasingly aspiring to have sophisticated tools that
help facilitate their clinical practice during medical consultations.
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The research reported in this article is motivated by the need to further explore new
ways of capturing, storing, and fostering medical reasoning. Thus, a formal proposal
must be conceived to provide an accurate tool capable of following medical reasoning,
aiming at helping physicians during medical consultations. In this line of work, this
article presents a novel approach to represent clinical knowledge, which supports an
appropriate methodology to follow reasoning in medical consultation. Likewise, the
proposed representation does not pose formal restrictions to physicians, as they usually
find when using common clinical data entry systems. An instance-based learning method
is also introduced to provide suggestions in order to help during the process of registering
a medical consultation. The developed system extends Praxis [5], a software used to follow
medical reasoning with no templates, based on the accumulation of case types used to
provide suggestions for subsequent cases.

The proposed approach was evaluated for a case study in which more than 50 ad-
vanced medical students had collaborated. Students tested the feasibility of the approach
by using a proof-of-concept prototype. The performance of the proposed learning method
was found to be satisfactory after being evaluated on 250 real instances constructed by the
students. Results showed that the learning method was able to produce suggestions in a
reasonable time frame, even when processing large volumes of data. The results suggest
that the proposed approach was useful to accelerate the process of taking notes, since a
convergence towards a high speed of completed medical records was observed. A high
potential impact on clinical care may be projected, considering that the results showed that
the proposed approach was appropriate to follow physician reasoning, especially during
medical consultations. As a benchmark, 62% of the students were able to speed up writing
time during medical consultations.

The main contributions of the research reported in this article include: (i) a formal
structure to accurately represent clinical knowledge, and support the main flows of medical
consultations; (ii) an instance-based learning method able to help reduce the time it takes to
write notes; and (iii) a novel tool to help meet healthcare goals, which reminds physicians
to record essential data to fulfilling care goals.

The article is structured as follows. Section 2 introduces learning models for assis-
tance in medical consultation. A review of related work on learning models for assisting
medical professionals is presented in Section 3. Section 4 describes a model proposed for
representing clinical knowledge and patient history. Several flows to address relevant
scenarios of medical consultations are presented in Section 5. The main implementation
details of the proposed instance-based learning method are described in Section 6. Sample
results from the evaluation are presented in Section 7. Section 8 discusses the usability of
the proposed method and main strategies to improve the results and reduce uncertainties.
Finally, Section 9 presents the main conclusions of the research.

2. Learning Models for Assistance in Medical Consultation

Despite the fact that physicians are becoming increasingly familiar with electronic
medical records, they continue to have difficulties in dealing with long lists of pre-conceived
variables, usually included in EMR systems. Although conventional EMR systems are
useful to achieve legible, accessible, and complete documentation of medical consultations,
they are causing several difficulties for physicians who adopt them. In many cases, physi-
cians spend a lot of time searching for an option that allows them to record what they really
want to write. Unfortunately, conventional EMR systems are template-based products that
generate poor quality data, due to long search mechanisms and excessive mandatory fields,
which often add noise to the relevant patient information [4]. Worse, the time required to
enter clinical information sometimes exceeds the time required to write it on paper. The
rigid structure of the templates to be filled-in during medical consultations does not fit the
reasoning of physicians, nor their way of thinking.

Improvements in medical consultation assistance could be achieved by taking advan-
tage of systems that allow better management of clinical information. To achieve better
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assistance, physicians should be provided with new healthcare tools, considering that
healthcare assistance during medical consultations is improved when the physician is
able to:

(i) Efficiently record all the information of a medical consultation, by reducing the time
spent on mere data entry in order to gain more time to interact with the patient.

(ii) Use automatic clinical suggestions to reach an accurate diagnostics, or an appropriate
indication of treatments.

(iii) Reduce medical errors, resulting from the human condition of the professional.
(iv) Record each medical consultation considering the special relevance of the interoper-

ability of clinical information.
(v) Reuse recorded information for statistical and research purposes.

Computational intelligence can be applied to solve the deficiencies of current EMRs.
Machine learning methods can be used to learn features from previous registered health-
care data sets, in order to provide suggestions for diagnoses and treatments based on
information previously registered. By applying computational intelligence, systems can
automatically identify solutions of similar clinical cases and can subsequently incorporate
the knowledge gained to assist physicians during medical consultations. Learning methods
can also contribute to reduce error-prone steps during the sequence of clinical tasks and
decisions. Inevitable errors of human-based clinical practice may be reduced, such as drug
contraindications, medication allergies, adverse drug reactions, and forgetting recurrent
aspects of chronic patients. Furthermore, machine learning methods can progressively
enhance their accuracy based on feedback provided by their own use.

An effective medical informatics support system must be adapted to the real health
environment. In addition, a clinical evaluation of the usefulness of the system in real
clinical work should be considered to determine its real capacity during clinical practice.

3. Related Works

This section reviews related works regarding learning models that assist medical
professionals during their clinical activities.

Decision support systems can detect patterns, provide recommendations, and predict
future behaviors for clinical practice. Wang et al. [6] proposed an Intelligent Self-Learning
EMR (ISLEMR) system used to generate treatment recommendations based on learning
and patient similarity. ISLEMR considers a group of ad hoc similarity metrics, consid-
ering patient diagnoses, demographic data, vital signs, structured lab test results, and
information from external systems. The patient information is used to present an ordered
menu with inferred recommendations for treatment plans. The system was validated
on a real case study in Beijing, China in 2014, considering data from twelve-thousand
patients. Precision results up to 80% were achieved for the first 10 items of the recom-
mended menu; however, the applied learning algorithm only considered structured data,
which implies less precision in determining similarities of clinical cases. Klann et al. [7]
proposed a learning approach based on Bayesian networks (BN) to generate adaptive and
context-specific treatment menus from past clinical information of patients. Each menu
recommends a starting point for physicians, suggesting an initial draft to treat a specific
situation. The BN models the probabilistic relationships among orders and diagnoses,
covering typical scenarios from different aspects of medicine. The system was evaluated on
a hospital simulation, demonstrating accurate predictive capabilities and outperforming
a similar association rule mining approach, especially over less frequent cases. Support
vector machines (SVM) have also been applied as learning models for medical assistance.
Nakai et al. [8] applied SVM to predict clinical practices to be prescribed by using the
information from previous practices of the same patient. The validation over real data from
the Japanese system for medical billing proved the high precision of the model when facing
frequent clinical cases; however, low precision results were obtained when dealing with
less common cases. Barbantan et al. [9] proposed a medical decision support system using
SVM and natural language processing to discover relations between medical concepts.
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The model was successfully used to identify relations between medical concepts to help
diagnoses, medication predictions, and to detect health patterns in Boston, USA. Shen
et al. [10] proposed a multi-agent case-based reasoning approach for clinical decisions. The
system searches clinical cases by identifying important words and terminologies, whereas
medication allergies, adverse drug reactions, coexisting diseases, and other complications
are evaluated to discard candidate cases. The system achieved a 78% matching rate for
illnesses with simple syndromes. Installé et al. [11] developed a clinical data miner software
framework for supporting clinical diagnostic using electronic case report forms (eCRF)
based on templates and spreadsheets. Machine learning techniques are applied over the
information gathered by the eCRF. A survey indicated that the system was considered user-
friendly, and all physicians approved the possibility of using it in their own future works.
Zieba [12] proposed a service-oriented support decision system for the diagnose of medical
problems using web services with learning capabilities applying SVM. The system was
evaluated using ontological datasets and it was able to predict a diagnosis by generating
decision rules with acceptable accuracy values. Benmimoune et al. [13] designed a hybrid
medical platform to assist physicians during their clinical reasoning process using rule-
based reasoning (RBR) for general clinical cases and case-based reasoning (CBR) for clinical
experiences. The proposed platform gathers relevant information about the patient status
using an adaptive questionnaire and searches for the most similar stored case, following the
CBR approach. If no similar case is found, the platform applies an RBR approach to deduce
a solution according to rules defined by medical experts. Neither the implementation nor
the prototype of the proposed system was described. Wilk et al. [14] proposed a framework
to assist patients with multi-morbidity conditions, considering patient preferences for
suggesting customized clinical practice guidelines. Clinical guidelines are modeled using
actionable graphs and first-order logic, and a secondary medical knowledge component
is used to identify adverse interactions resulting from conflicting therapies. A high-level
proof of concept implementation was presented to show the feasibility of the proposed
framework but no real evaluation was proposed.

Praxis is an electronic medical records application, developed to streamline the entry
of clinical data and improve medical practice [5]. It emulates the processes that physicians
follow when they are recording clinical information. The software uses previously entered
information to offer recommendations for registering a new consultation, according to the
past practice of the physician user (i.e., suggesting a set of cases similar to the one being
evaluated). Praxis applies an empirical approach and has been gradually improved over
more than twenty-five years, to fit the North American medical system. Praxis does not
apply computational intelligence to build an expert system for the recommendation of
diagnoses and treatments.

A summary of related works reviewed in this section is presented in Table 1, reporting
for each article the methods applied, the most relevant features of each research, and any
identified weaknesses.

The analysis of related works allowed identifying several proposals applying compu-
tational intelligence and other learning-based methods for diverse health scenarios. Most
existing systems focuses on providing suggestions for treatments and diagnoses, based on
similarity metrics regarding relevant information from past medical assistance. Reviewed
works are able to identify similar clinical cases in order to provide suggestions for diag-
noses, prognosis, and treatments. Furthermore, they contribute to reducing error-prone
steps during the clinical process. The system presented in this article contributes to this
line of research, including specific differences with existing related works: it supports
non-structured free text information to be used in the learning process, instead of just struc-
tured information [6]; a more effective learning approach is applied, which outperforms a
Bayesian learning method such as the ones that have been previously used in the related
literature [7]; suggestions are generated considering all similar case types (of different
patients), instead of just previous information of the same patient [8]; and it does not rely
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on complex rules based on natural language processing, which limits the applicability of
other suggestion systems [9].

Table 1. Summary of reviewed works.

Work Method(s) Relevant Features Weaknesses

Wang et al. [6] Ad hoc patient similarity
algorithm.

Menu of inferred
recommendations, real-time
feedback.

Only considers structured
data.

Klann et al. [7] Bayesian networks. Suggest initial drafts, reduce
workload of physicians.

Relies on a small set of orders
and diagnoses.

Nakai et al. [8] Linear support vector
machine.

Use information from previous
practices, high precision for
common cases.

Low precision when dealing
with less common cases.

Barbantan et al. [9]
Natural language processing,
support vector machine
classifier.

Medical structured-related
concept model, detect patterns
about patient health.

Only evaluated on clinical
phrases with more than one
medical concept.

Shen et al. [10] Language analysis, ad hoc
matching.

Suggest diagnoses, prognosis and
treatments.

Knowledge representation
fails to analyze evolutionary
contexts.

Installé et al. [11] Preprocessing, machine
learning techniques.

Reduce error-prone steps during
diagnostics, user-friendliness.

Variable length array types
not supported, not useful for
longitudinal data capture.

Zieba [12] Cost-sensitive support vector
machine.

Web services with learning
capabilities, generate decision
rules.

Only acceptable accuracy
values of decision rules.

Benmimoune et al. [13]
Rules for generic cases,
case-based reasoning
component.

Adaptive questionnaire according
to patient profile.

No prototype was
implemented.

Wilk et al. [14] Actionable graphs.
first-order logic.

Clinical guidelines for
multi-morbidity conditions,
considers patient preferences.

No real evaluation.

4. Clinical Knowledge Model to Follow Physician Reasoning

A formal model is proposed for representing clinical knowledge and patient history,
including medical records.

4.1. Clinical Knowledge Base

A bottom-up modeling approach is used to present the proposed clinical knowledge
model. Several entities are defined in order to specify a clinical knowledge base that de-
scribes information of real medical case types. All entities included in a clinical knowledge
base are described in the following subsections.

4.1.1. Unit of Thought

As defined by Low [15], a unit of thought is a statement that describes a basic clinical
idea. Let UTM be a unit of thought registered by physician M. UTM is denoted as UTM =
<ptext, uqcn, uqpt, exph, terms, inuse, ctSchedule, M>, where ptext denotes a string capable of
containing structured or random data, uqcn indicates if the unit refers to information to be
used only in a unique consultation, uqpt indicates if the unit refers to unique information of
a specific patient, exph indicates if the unit contains exclusive data for physician use, terms
detail associations with health terminological standards, inuse denotes if the unit is in use
during a consultation, and ctSchedule indicates the frequency that a unit appears in a case
type. A unit of thought used in a case type will reappear each time the case type is used,
unless a specific frequency is defined by its ctSchedule attribute.
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The set of all units of thought registered by physician M is denoted as UTM
T . Let UTM

1
= <ptext1, uqcn1, uqpt1, exph1, terms1, inuse1, ctSchedule1, M> and UTM

2 = <ptext2, uqcn2,
uqpt2, exph2, terms2, inuse2, ctSchedule2, M> be units of thought registered by physician M.
A constraint on units of thought is defined in Equation (1), implying that each basic clinical
idea is represented by a unique unit of thought.

Considering that text variations do not change the meaning of a basic clinical idea,
an ad hoc function equal (defined in Equation (2)) is necessary to identify if two phrases
represent the same clinical idea. The same clinical idea can be instanced containing both
structured information and random data, which implies that two different text strings can
represent the same clinical idea.

UTM
1 ∈ UTM

T

UTM
2 ∈ UTM

T

equal(ptext1, ptext2)

⎫⎪⎬
⎪⎭ ⇒ UTM

1 = UTM
2 (1)

equal(t1, t2) =

⎧⎪⎨
⎪⎩

true if t1 and t2 describe
the same clinical idea.

f alse, otherwise.

(2)

4.1.2. Conceptual Element

A conceptual element is composed of a set of units of thought grouped to represent a
broader concept. Several attributes are used to model all possible features of a conceptual
element. Let CEM be a conceptual element registered by physician M. CEM is denoted
as CEM = <name, display, chron, setDesc>, where name denotes the name of the element,
display indicates the default display mode of its units of thought, chron indicates if the
element refers to a chronic condition, and setDesc denotes a set of possible descriptors of
the conceptual element. The set setDesc = {[desc1, subset1(UTM

T )], ..., [desck, subsetk(UTM
T )]} is

composed of several pairs, each one is used to model a possible option to describe a real
condition of a conceptual element.

Two constraints are defined on conceptual elements. The constraint presented in
Equation (3) implies that a conceptual element is identified by its name.

CEM
1 =< name1, display1, chron1, setDesc1 >

CEM
2 =< name2, display2, chron2, setDesc2 >

name1 = name2

⎫⎪⎬
⎪⎭ ⇒ CEM

1 = CEM
2 (3)

The constraint presented in Equation (4) implies the uniqueness of each descriptor into
a conceptual element. Several units of thought can be labeled under the same descriptor to
define an identified sub set, describing a real condition of an element.

[desc1, subset1(UTM
T )] ∈ setDesc

[desc2, subset2(UTM
T )] ∈ setDesc

desc1 = desc2

⎫⎪⎬
⎪⎭ ⇒ subset1(UTM

T ) = subset2(UTM
T ) (4)

4.1.3. Conceptual Component

A conceptual component is composed of a set of conceptual element references,
grouped to define sections of clinical information. Each conceptual component represents
a typical clinical data section, in which a physician generally groups the information of a
medical consultation.

Let CCM = <id, secType, activeElems> be a conceptual component defined by physician
M, identified by its id attribute. The secType attribute is used to represent the type of data
section, such as physical examination, medicines, and laboratory indications. Each secType
must belong to the ALL-SECTION-TYPES set, which models all possible sections of the
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patient medical records. The set activeElems = {[elemName1, activeDesc1], ..., [elemNamek,
activeDesck]} indicates which descriptor is used for each conceptual element referenced in a
conceptual component.

Two constraints are defined on the conceptual components domain. The constraint
presented in Equation (5) implies that a conceptual component is identified by its id
attribute.

CCM
1 =< id1, secType1, activeElems1 >

CCM
2 =< id2, secType2, activeElems2 >

id1 = id2

⎫⎪⎬
⎪⎭ ⇒ CCM

1 = CCM
2 (5)

A second constraint presented in Equation (6) ensures the referential integrity of
names and descriptors of the active elements, referenced from a conceptual component.

CCM =< id, secType, activeElems >

[elemName, activeDesc] ∈ activeElems

}
⇒

∃ conceptual element e =< name, ..., setDesc > �

e.name = elemName ∧ ∃ d ∈ setDesc,

d.desc = activeDesc

(6)

4.1.4. Case Type

Several conceptual components can be grouped by a unique name to label a complex
scenario, representing a real case type that can occur during a physician’s workday. Let
CTM be a case type registered by physician M. CTM is denoted as CTM=<name,{CCM

1 , ...,
CCM

n }, chron, chronicComponents>, where name indicates the name of the case type, the set
{CCM

1 , ..., CCM
n } describes a specific group of conceptual components, chron indicates if

the case type is marked as chronic, and chronComponents denotes all components used to
monitor chronic conditions.

Three constraints are defined on case types domain. The constraint presented in
Equation (7) implies that a case type is identified by its name.

CTM
1 =< name1, chron1, comps1, chronComponents1 >

CTM
2 =< name2, chron2, comps2, chronComponents2 >

name1 = name2

⎫⎪⎬
⎪⎭ ⇒ CTM

1 = CTM
2 (7)

The second constraint presented in Equation (8) implies that each conceptual compo-
nent of a case type models a different section of the clinical information.

CTM =< nc, {CCM
1 , ..., CCM

n }, chron, chComps >

CCM
i =< idi, secTypei, subseti) >

CCM
j =< idj, secTypej, subsetj) >

⎫⎪⎪⎬
⎪⎪⎭ ⇒

secTypei = secTypej

⇔

i=j ∀i, j ∈ {1, n}
(8)

The third constraint presented in Equation (9) implies that each chronic conceptual
component models a different section of chronic clinical information.

CTM =< nc, comps, true, {CCM
chron1

, ..., CCM
chronm

} >

CCM
chroni

=< idi, secTypei, subseti) >

CCM
chronj

=< idj, secTypej, subsetj) >

⎫⎪⎪⎬
⎪⎪⎭ ⇒

secTypei = secTypej

⇔

i=j ∀i, j ∈ {1, m}
(9)

Finally, the clinical knowledge base (CKB) of a physician M is defined as CKBM =
n⋃

i=1
CTM

i . i.e., the union of all case types registered by physician M.
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4.2. Patient Representation

A data structure is used to organize the information of each patient, considering
the most relevant groups of personal data sets. The proposed structure includes medical
records of a patient’s history, and it also considers the chronic information of each patient.

4.2.1. Patient Structure

Each patient is modeled as P = <personalData, MRP, chronicElems, chronicCaseTypes>
where personalData denotes personal data (sush as patient and family background), MRP

denotes all medical records of the patient P, chronicElems indicates associations with chronic
conceptual elements, and chronicCaseTypes indicates associations with chronic case types.
The chronicElems set is defined as chronicElems = {[elemName1, chronDesc1], ..., [elemNamej,
chronDescj]}, and it is used to remember the descriptors of the elements that describe the
chronic conditions of a patient. Additionally, the set chronicCaseTypes = {caseTypeName1,
..., caseTypeNamek} is used to remember all chronic case types associated with a specific
patient P.

4.2.2. Patient Medical Records

The set of medical records of a patient P is denoted by MRP and contains all records
included in the medical history of the patient. A medical record of patient P created
at time t is denoted as mrP

t and it is defined as mrP
t = <content,p,t>, where content is a

set of [phrase, unit] pairs, each one includes a unit of thought associated with a clinical
phrase. Consequently, MRP= {mrP

t1
, mrP

t2
, mrP

tk
} describes the history of a patient, containing

k medical records.
Let mrP

t = <content,p,t> be a specific patient medical record, where content = {[phrase1,
unit1], ..., [phrasen, unitn]} is composed by one or more pairs of clinical information. A
function showRecord is used to print the content of a medical record, taking into account
all phrases included in the content of a medical record. Function showRecord only prints
clinical phrases, no unit of thought is shown.

4.2.3. New Medical Record

Let CKBM
t = {CTM

1 , CTM
2 , ..., CTM

n } be the composition of the clinical knowledge base
of physician M at time t. A medical record mrP

t is generated as a result of the interaction of
physician M and patient P, during a consultation at time t.

Since a physician usually takes a case type CTM
x as basis to record a specific consulta-

tion, a transformation T∗ can be applied to generate a new medical record. Consequently, a
record mrP

t = T∗(CTM
x ) is created, taking into account the active information of a selected

case type. The active information of a case type is defined by the units of thought with
inuse attribute in true. Transformation T∗: CKBM → MRP is defined as T∗(CT) = mr, where
mr is generated by applying Algorithm 1.
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Algorithm 1 New medical record of patient P
1: units ← getAllUnitsIncludedIn(CT)

2: content ← ∅

3: for unit in units do

4: if unit.inuse then

5: if not (unit.uqpt or unit.exph) then

6: itemCont ← [copyCurrentText(unit.ptext), unit]

7: content ← content
⋃

{itemCont}

8: end if

9: end if

10: end for

11: mrP
t ← <content,P,t>

Algorithm 1 starts by getting all units of thought referenced in a case type CT (line 1).
The algorithm iterates over all referenced units to identify units of thought marked with
inuse attribute (lines 3–4). Further, units marked with uqpt or exph attributes are not taken
into account for creating a new medical record (line 5). A new data pair is created for
each identified unit (line 6), each pair includes the identified unit of thought, and a copy
of its current text presentation. All new pairs are joined to build the full content of the
consultation record (line 7). Finally, mrP

t is created as a new medical record, containing the
full description of the consultation of patient P at time t.

5. Medical Consultation Flows

Different flows for address the most relevant scenarios that arise during medical
consultations are presented. These scenarios describe usual situations of physician workday,
including multiple diagnoses, and the attention of chronic patients.

5.1. Starting Attention of a Patient

Algorithm 2 details the first steps which occur during a medical consultations.

Algorithm 2 Start attention of patient P
1: showPersonalInfo(P.personalData)

2: showChronicElementDescriptors(P.chronicElems)

3: chronicCTs ← getCaseTypesByNames(P.chronicCaseTypes)

4: if chronicCTs �= ∅ then

5: All case types included in chronicCTs are suggested to physician

6: Physician select CTM
chron1

, ..., CTM
chronk

to be used as basis

7: CTM
merge is build by merging CTM

chron1
, ..., CTM

chronk
(Algorithm 8)

8: applyCaseType(P, CTM
merge) is called (Algorithm 3)

9: end if

10: Show message agents according its trigger conditions

11: Physician continues with patient attention

The physician starts the attention of patient P by opening a registry editor to record
the information of the new medical consultation. Personal information is loaded (line 1) to
introduce the patient. All descriptors of chronic elements (line 2) and all chronic case types
(line 3) associated with the patient are presented and suggested to the physician, who can
select the chronic case types that are appropriate to being applied into the consultation
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(lines 4–9). Before the physician continues with patient attention, all message agents are
evaluated and shown according to its trigger conditions (line 10).

5.2. Selecting an Already Defined Case Type

The selection of an already defined case type allows the physician to efficiently reuse
previously registered information. Algorithm 3 details how to apply a case type during a
medical consultation.

Algorithm 3 starts by evaluating the chronic attribute of a case type CTM (lines 1–2). If
the case type is identified as chronic, a specific method for applying a chronic case is called
(line 3). Otherwise, all elements referenced in the components attribute are determined,
and its units of thought are marked as in use according setUnitsInUse auxiliary procedure.
The auxiliary procedure encapsulates the logic of how units of thought are activated. The
algorithm continues by showing all units marked as in use, and highlighting the units that
are exclusive for physician use (lines 8–9). Finally, each message agent that has CTM as a
trigger condition is presented to the physician (line 10).

Procedure setUnitsInUse iterates over all conceptual elements of a case type (line 12).
All units included in each conceptual element are identified (line 13), and each unit of
thought is marked as in use according the values of its attributes (lines 14–25).

Algorithm 3 applyCaseType(P, CTM)

1: CTM = <name, components, chronic, chronicComponents> is selected

2: if chronic then

3: applyChronicCaseType(P, CTM) (Algorithm 4)

4: else

5: elements ← getAllElementsIncludedIn(components)

6: setUnitsInUse(elements,CTM)

7: end if

8: Show all units with isuse attribute in true

9: Highlight all units with exph attribute in true

10: Show message agents that have CTM as a trigger condition

11: procedure setUnitsInUse(elements,CTM)

12: for element in elements do

13: units ← getAllUnitsIncludedIn(elements)

14: for unit in units do

15: switch ()

16: case unit.exph:

17: unit.inuse = true

18: case isTime(unit.ctSchedule, CTM):

19: unit.inuse = true

20: case element.display ∧ isEmpty(unit.ctSchedule):

21: unit.inuse = true

22: case otherwise:

23: unit.inuse = false

24: end switch

25: end for

26: end for
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5.3. Chronic Patients Flow

A case type CTM can be marked as a chronic case type CTM
chron at any time. When

a CTM
chron is marked as chronic, its chron attribute is activated and its chronicComponents

attribute is initialized with an empty set. The chronic components are defined the first time
that the case type is used to monitor a chronic patient. Algorithm 4 details how a physician
can apply a chronic case type CTM

chron.
Algorithm 4 analyzes if it is the first time that a chronic case type CTM

chron is used with
a patient being evaluated (lines 1–2). In that case, elements referenced in usual conceptual
components are determined, and its units of thought are activated by calling setUnitsInUse
procedure (lines 3–4). If CTM

chron was used in any previous consultation of the same patient
(line 6), then its chronic components are taken into account each time the physician decides
to apply the case type, since chronic components are used to monitor the evolution of a
chronic condition. However, the first time that CTM

chron is used to monitor the evolution
of a patient, the physician needs to define all entities that they want to use as monitoring
items (lines 7–12). In addition, it is mandatory that the physician specify the frequency of
each new unit of thought, included in an element of a chronic component (lines 13–16).
All entities defined in new chronic components are used to monitor the patient’s chronic
condition in subsequent consultations (line 17). Finally, the units of thought of the elements
referenced in chronic components are marked as in use by applying setUnitsInUse procedure
(lines 19–20).

Algorithm 4 applyChronicCaseType(P, CTM
chron)

1: A chronic case type CTM
chron = <name, components, true, chronicComponents> is selected

2: if name /∈ P.chronicCaseTypes then

3: elements ← getAllElementsIncludedIn(components) � First time of case type for patient P

4: setUnitsInUse(elements,CTM
chron)

5: else

6: if chronicComponents = ∅ then

7: Evolution component CCEvolution emerges � Chronic components defined by physician

8: Physician defines all conceptual elements included in CCEvolution

9: CCothers can be defined to better monitor the chronic condition

10: CCsnew = CCEvolution
⋃

CCothers

11: newMonitorElems ← getAllElementsIncludedIn(CCsnew)

12: newChronUnits ← getAllUnitsIncludedIn(newMonitorElems)

13: for newChronUnit in newChronUnits do

14: Physician needs to specify the frequency of newChronUnit

15: newChronUnit.ctSchedule is updated

16: end for

17: chronicComponents ← CCsnew the chronic case type is updated

18: end if

19: elements ← getAllElementsIncludedIn(chronicComponents)

20: setUnitsInUse(elements,CTM
chron)

21: end if

5.4. Usual Attention Flow

During an attention flow, a physician can take advantage of an already registered
case type. Algorithm 5 shows how a case type can be used to record a frequent medical
consultation scenario.
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In Algorithm 5, a procedure waits until the physician selects a case type and applies
it to the current consultation (lines 1–2). After a case type is applied, the physician can
also make modifications in order to describe the accurate information of the entire clinical
meeting (line 3). Each unit of thought marked as unique to the patient being evaluated
is stored as personal data, and is removed from the current case type (lines 4–6). The
algorithm continues by applying T∗ transformation, which generates a new medical record
for the patient’s history (lines 7–8). All chronic conceptual elements used in the case type
are associated with the patient. Furthermore, if the case type is chronic, it is associated as
permanent patient data (lines 9–13). Each unit of thought marked as unique to the current
consultation is removed before updating the CKBM of the physician (line 14). To update
CKBM, the physician needs to specify if the current case type refers to a new workday
scenario, or it is only an improvement over the previously selected case type (lines 14–21).
Two data sets are modified after the usual attention flow: physician CKBM and patient
history, including an MRP increment.

Algorithm 5 Usual attention flow of a patient P

1: CTM ← selectSimilarCT()

2: applyCaseType(P, CTM) is called

3: Physician M define CT′M by modifying the selected CTM

4: personalInfo ← getUqptUnits(CT′M)

5: P.personalData.add(personalInfo)

6: CT′M ← removeUqptUnits(CT′M) units marked with uqpt are removed

7: mrP
t ← T∗(CT′M)

8: MRP ← MRP ⋃
{mrP

t }

9: chronElemts ← getAllActiveChonicElementsInludedIn(CT′M)

10: P.chronicElems.add(chronElemts)

11: if isChronic(CT′M) then

12: P.chronicCaseTypes.add(CT′M.name)

13: end if

14: CT′M ← removeUqcnUnits(CT′M) units marked with uqcn are removed

15: if CT′M is saved as an improvement then

16: CTM ← CT′M

17: CKBM is updated with the new version of CTM

18: else

19: CTM
new ← CT′M is saved as a new case type

20: CKBM ← CKBM ⋃
{CTM

new} the base is incremented

21: end if

5.5. New Case Type Flow

Algorithm 6 details the flow followed by the physician when they need to address a
new case type that is not included in their CKB.

Since there is no case type to be re-used, Algorithm 6 needs to create an empty
case type in which the new workday scenario can be detailed (lines 1–2). To define a
new case type CTM

new, the physician can re-use any predefined unit of thought, and can
also create units of thought specifying new clinical phrases. Furthermore, predefined
conceptual elements can be re-used and new elements can be created (lines 3–4). Each
element defined by the physician is referenced from one clinical section. Therefore, new
conceptual components are created in order to group elements sharing the same section
type (lines 5–11). It is mandatory that the physician assigns a name to the new clinical
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case type. The case type can also be marked as chronic, and in that case, the physician
needs to specify the chronic attribute of each new element, created while defining the new
case type (lines 12–21). All units of thought marked as unique to the patient are stored
as personal data, and are removed from CTM

new (lines 22–24). Then, T∗ transformation is
applied to generate a new medical record in the patient’s history (lines 25–26). All chronic
conceptual elements of CTM

new are associated with the patient, and if the case type is chronic
it is associated as permanent patient data (lines 27–31). Finally, all units of thought marked
as unique to current consultation are removed from the case type, and the clinical data base
of the physician is enriched by including the new case type.

Algorithm 6 New case type flow for the attention of patient P

1: There is no CTM selected by physician

2: CTM
new ← <“new-name”, ∅, false, ∅ > is created automatically

3: Physician creates new units UTsnew and new elements CEsnew

4: Physician defines sections, by using UTsnew and CEsnew or pre-defined

5: secTypes ← ALL-SECTION-TYPES

6: newComponents ← ∅

7: for secTypei in secTypes do

8: activeElemsi ← [elementName, activeDescriptor] pairs in sectioni

9: CCnewi ← < maxCCId() + 1, secTypei, activeElemsi >

10: newComponents ← newComponents
⋃

{CCnewi }

11: end for

12: Physician assigns a unique name to attribute name of CTM
new

13: Physician can mark CTM
new as chronic

14: if CTM
new is marked as chronic then

15: for elem in CEsnew do

16: Physician needs to specify the value of elem.chron

17: end for

18: CTM
new ← <name, newComponents, true, ∅ >

19: else

20: CTM
new ← <name, newComponents, false, ∅ >

21: end if

22: personalInfo ← getUqptUnits(CTM
new)

23: P.personalData.add(personalInfo)

24: CTM
new ← removeUqptUnits(CTM

new)

25: mrP
t ← T∗(CTM

new)

26: MRP ← MRP ⋃
{mrP

t }

27: chronElemts ← getAllActiveChonicElementsInludedIn(CTM
new)

28: P.chronicElems.add(chronElemts)

29: if isChronic(CTM
new) then

30: P.chronicCaseTypes.add(CTM
new.name)

31: end if

32: CTM
new ← removeUqcnUnits(CTM

new)

33: CKBM ← CKBM ⋃
{CTM

new} the base is incremented
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5.6. Temporal Case Type Flow

By applying a temporal case type, the history of patient P is updated, and the MRP

set is incremented with a new patient medical record. However, there is no change in
physician CKBM. Algorithm 7 details the use of a temporal case type.

Algorithm 7 Temporal case type flow for the attention of patient P

1: CTM ← selectSimilarCT()

2: applyCaseType(P, CTM) is called

3: Physician M define CT′M by modifying the selected CTM

4: Physician M marks CT′M as a temporal case type

5: personalInfo ← getUqptUnits(CT′M)

6: P.personalData.add(personalInfo)

7: CT′M ← removeUqptUnits(CT′M)

8: mrP
t ← T∗(CT′M)

9: MRP ← MRP ⋃
{mrP

t }

10: chronElemts ← getAllActiveChonicElementsInludedIn(CT′M)

11: P.chronicElems.add(chronElemts)

12: CT′M is deleted

Algorithm 7 is triggered after the physician assigns a temporal mark over an applied
and modified case type (lines 1–4). As any other case type, all units marked as unique
to the patient are stored as personal data, and are removed from the temporal case type
(lines 5–7). T∗ transformation is also applied to create a new medical record (lines 8–9).
Each chronic conceptual element referenced in the temporal case is permanently associated
with the patient being evaluated (lines 10–11). The temporal case type is finally removed,
since it is marked to be not re-used (line 12).

5.7. Multiple Case Types Flow

A physician can use more than one case type as the basis during the same medical
consultation. Several rules are used to combine all conceptual components of each case
type involved. To combine conceptual components, their active conceptual elements are
accurately merged. The merge process takes into account the active elements described in
the usual components, and active elements described in chronic components. Algorithm 8
details the method used to merge different case types.

Algorithm 8 starts by identifying the conceptual components included in each case
type (lines 1–4). An ad hoc merge function is used to combine all identified components
(line 5). Function merge is also applied over chronic conceptual components (lines 6–8). The
algorithm continues by creating a case type CTM

merge, which includes all merged components
(lines 9–14). Then, the case type is applied and can be modified by the physician (lines 15–
17). Each unit of thought marked as unique to the patient is taken into account as usual,
it is stored as personal data and removed from the case type (lines 18–20). Likewise, a
new medical record is created by applying T∗ transformation (lines 21–22). Each chronic
conceptual element referenced in CTM

merge is permanently associated with the patient being
evaluated, as well as any original chronic case type (lines 23–30). Finally, the used case
type is deleted after concluding the consultation (line 31).
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Algorithm 8 Multiple case types flow for the attention of patient P

1: CTM
1 ← selectSimilarCT()

2: CTM
2 ← selectSimilarCT()

3: comps1 ← getAllComponents(CTM
1 )

4: comps2 ← getAllComponents(CTM
2 )

5: compsmerge ← merge(comps1, comps2)

6: chronComps1 ← getAllChronicComponents(CTM
1 )

7: chronComps2 ← getAllChronicComponents(CTM
2 )

8: chronCompsmerge ← merge(chronComps1, chronComps1)

9: namemerge ← concat(CT1.name,CT2.name)

10: if chronCompsmerge �= ∅ then

11: CTM
merge = <namemerge,compsmerge, true, chronCompsmerge >

12: else

13: CTM
merge = <namemerge,compsmerge, false, ∅ >

14: end if

15: CTM
merge is auto-selected

16: applyCaseType(P, CTM
merge) is called

17: Physician M define CT′M
merge by modifying CTM

merge.

18: personalInfo ← getUqptUnits(CT′M
merge)

19: P.personalData.add(personalInfo)

20: CT′M
merge ← removeUqptUnits(CT′M

merge)

21: mrP
t ← T∗(CT′M

merge)

22: MRP ← MRP ⋃
{mrP

t }

23: chronElemts ← getAllActiveChonicElementsInludedIn(CT′M
merge)

24: P.chronicElems.add(chronElemts)

25: if isChronic(CTM
1 ) then

26: P.chronicCaseTypes.add(CTM
1 .name)

27: end if

28: if isChronic(CTM
2 ) then

29: P.chronicCaseTypes.add(CTM
2 .name)

30: end if

31: CT′M
merge is deleted

6. Instance-Based Learning

A learning method is proposed in order to generate suggestions for physicians. The
proposed method is based on an ad hoc similarity metric, designed to compare the similarity
between clinical case types.

6.1. Instance-Based Learning Method

An instance-based learning method is designed with the aim to provide suggestions
for physicians. The proposed method takes into account the clinical knowledge base
of a physician, in order to present suggestions based on previously defined case types.
A register editor where a physician can take advantage of the proposed instance-based
learning method is also introduced.
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6.1.1. Register Editor

The register editor is an interface in which a physician can register a consultation ap-
pointment. The register editor presents personal information of the patient being evaluated,
and includes an area for writing all details of a medical consultation. The main features of
the register editor are illustrated in Figure 1, including a list of case type suggestions.

Figure 1. Main features of register editor.

The input area of the register editor is designed with the aim of registering a consul-
tation in an organized structure, grouping information by clinical section types. When a
physician writes in the input area, a case type CTcurrent is automatically created, based on
the information included in each section type. As a relevant feature, a list of similar case
types is included in the register editor as suggestions for the physician. The suggested list
is based on the top best values of a similarity metric, applied to compare the information of
CTcurrent against all case types previously registered.

6.1.2. Learning Method

A learning method is applied to determine the case types that best match with the
clinical scenario of the patient being evaluated, according to an ad hoc similarity metric. A
list of similar case types is suggested each time the physician modifies the information of
the patient being evaluated. The list of similar case types is updated when introducing or
removing any clinical phase during a medical consultation.

The proposed learning method implements a lazy approach [16], since the training
stage of learning is delayed until a new case type draft must be evaluated. To evaluate a
new case type draft, all previously defined case types are processed as training examples,
and a similarity metric is applied to determine the most similar candidates. Algorithm 9
details how the instance-based learning method is implemented, seeking to suggest similar
case types.

The learning method described in Algorithm 9 is triggered each time the physician
modifies any aspect of the consultation being evaluated. An auxiliary case type CTcurrent is
created based on the information detailed by the physician in their register editor (line 1).
Sentences without any meaningful word are not taken into account by the learning method
(line 2). A step to remove duplicate units of thought is applied, since a physician could
write duplicate clinical phrases in their register editor (line 3). Moreover, an array used to
identify top best similarity metrics is initialized with empty values (line 4). The algorithm
continues by iterating over all case types included in the physician clinical knowledge
base (line 5). For each iteration, the similarity between CTcurrent and any other case type
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is calculated in order to update the array of top best metrics (lines 6–9). Finally, the case
types with top best metrics are returned as suggestions to the physician (lines 11–12).

Algorithm 9 Instance-based learning method

1: CTcurrent ← new CT(registerEditor.content)

2: CTcurrent ← removeNonMeaningfulUnits(CTcurrent)

3: CTcurrent ← removeDuplicateUnits(CTcurrent)

4: topBest ← Initialize array with t empty values

5: for CTi in CKBM do

6: similarityMetric ← similarity(CTcurrent,CTi)

7: if similarityMetric is better that worstSimilarity(topBest) then

8: topBest ← replaceWorst(topBest,CTi)

9: end if

10: end for

11: topBest ← removeEmptyValues(topBest)

12: return topBest

6.1.3. Using Suggested Case Types

A physician can select a suggested case type as a basis of writing a medical consulta-
tion. After a case type is applied, the input area of the register editor is updated by using
the information defined in the selected case type. By using suggested case types, previously
registered phases are re-used and the time spent writing the details of a consultation is
reduced. Suggested case types can also remind physicians to verify important clinical
aspects of their patients. Moreover, taking advantage of previously written sentences is
useful when physicians need to address recurrent aspects of chronic patients.

6.2. Similarity Metric

A similarity metric is introduced in order to compare two case types of a clinical
knowledge base. The proposed metric takes into account the similarity between conceptual
components of different case types. Consequently, the similarity value between two case
types is determined by the weighted similarities of their conceptual components.

6.2.1. Similarity Metric Definition

Sadegh-Zadeh [17] introduced the concept of diagnostic relevance, which applies fuzzy
logic to evaluate the relevance of causal events associated with a clinical diagnosis. The
proposed method is based on a similar idea, where the concept of medical relevance is
considered to evaluate the relevance of conceptual components associated with a clinical
case type.

Let compi,sec be a conceptual component of case type CTi defined with sec section type,
where sec belongs to ALL-SECTION-TYPES. The set ALL-SECTION-TYPES is introduced in
Section 4 as a set that defines all possible clinical sections of the patient medical records. The
similarity between two case types is denoted as similarity, and is defined by Equation (10).

similarity(CT1, CT2) = ∑
sec

wsec × similarityCCsec(comp1,sec, comp2,sec) (10)

In Equation (10), each wsec defines the weight of a component with sec section type.
Consequently, the conceptual components of case types influence the similarity metric
according to their sec section type. The similarity weight of a clinical section type is
determined by its medical relevance. The medical relevance is used to define the weight
of each section type belonging to ALL-SECTION-TYPES = {sec1, ..., secn}, as Wsec =
medRelevance(sec)/ ∑secn

sec1
medRelevance(seci).
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The medical relevance of clinical section types must be defined based on background
knowledge of the health area. Accurate weights of conceptual components provide a
mechanism for reducing the impact of irrelevant features in the similarity metric [16].
As an example, health background knowledge suggests that the section for excuse notes
should weigh less than the diagnosis section.

The following subsection presents the similarityCC function, introduced in Equation (10)
for comparing two conceptual components of different case types.

6.2.2. Similarity between Components

To compare conceptual components, the similarity metric takes into account the units
of thought included in all elements of conceptual components. The similarity between con-
ceptual components is defined by Equation (11), which is aimed at comparing components
sharing the same section type sec.

similarityCCsec(cc1, cc2) =

{
0, if cc1.secType �= sec ∨ cc2.secType �= sec

includedUTs(units(cc1), units(cc2)), otherwise
(11)

Function includedUTs: UT×UT → [−1,1] is applied to compare two sets of units of
thought. Equation (12) presents includedUTs by considering different scenarios.

includedUTs(units1, units2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if units1 = ∅
−1, if units1 �= ∅ ∧ units2 = ∅

max{ ∑
u1∈units1

belongs(u1,units2)
|units2| , −1}, otherwise

(12)

If the first parameter units1 of function includedUTs is an empty set, there is no unit
of thought that can contribute as similarity data, then zero value is returned. Another
exceptional case occurs when units2 does not describe any information. If the second
parameter is an empty set, the worst value of similarity must be returned because units1
details clinical data not considered by units2. A complex scenario arises when function
includedUTs evaluates non-empty parameters. In that case, each unit of units1 is analyzed
in order to evaluate its inclusion into units2, and a positive weight is determined for units
that belong to both sets. In addition, a limit of maximum deference could be applied if
units1 and units2 are significantly different and units1 is bigger than units2.

An auxiliary function belongs(unit, units) presented by Equation (13) is required to
determine if a specific unit of thought belongs to a set of units. A unit that contradict the
ideas represented by the units set is negatively weighted.

belongs(unit, units) =

{
1, if ∃ usame ∈ units �equal(unit, usame)

−1, otherwise.
(13)

6.2.3. Similarity Metric Algorithm

The metric detailed in Algorithm 10 calculates the similarity of a case type CTcurrent re-
garding any other case type. To achieve the final value of the similarity metric, Algorithm 10
needs to calculate similarity values of several conceptual components.

Algorithm 10 starts by initializing the similarity metric with a neutral value (line 2).
Then, all section types of conceptual components included in analyzed case types are
identified (line 3). After identifying the section types that influence the similarity metric,
a relative weight factor is determined in order to accurately weigh the influence of each
identified section type (line 4). Each section type with a positive weight of similarity is
taken into account to calculate the value of the metric (lines 5–6).
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Algorithm 10 Similarity metric

1: function similarity(CTcurrent, CTi)

2: similarity ← 0

3: involvedSecTypes ← sectionTypesOf(CTcurrent)
⋃

sectionTypesOf(CTi)

4: relativeWeight ← relativeWeightFactor(involvedSecTypes)

5: for sec in involvedSecTypes do

6: if sec.weight �= 0 then

7: cachedSimilarityCC ← getSimilarityCCValueFromCache(sec, CTi)

8: if cachedSimilarityCC is hitted then

9: similarityCC ← cachedSimilarityCC

10: else

11: unitscurrent ← getUnitsBySectionType(sec,CTcurrent)

12: unitsi ← getUnitsBySectionType(sec,CTi)

13: if unitscurrent �= ∅ then

14: if unitsi �= ∅ then

15: includedUTs ← 0

16: for unitcurrent in unitscurrent do

17: belongs ← belongs(unitcurrent, unitsi)

18: if belongs then

19: includedUTs ← includedUTs + 1
|unitsi |

20: else

21: includedUTs ← includedUTs − 1
|unitsi |

22: end if

23: end for

24: similarityCC ← max{includedUTs, −1}

25: else

26: similarityCC ← −1

27: end if

28: else

29: similarityCC ← 0

30: end if

31: putSimilarityCCValueInCache(similarityCC,sec,CTi)

32: end if

33: similarity ← similarity + (relativeWeight * similarityCC)

34: bestRemain ← upperBound(sec, involvedSecTypes)

35: if similarity + bestRemain < worstSimilarity(topBest) then

36: invalidateSimilarityCCValuesOnCache(CTi)

37: throw discard-low-similarity

38: end if

39: end if

40: end for

41: return similarity
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For each identified section type, the similarity of components sharing the same section
type must be calculated. A cache containing values of similarity between conceptual
components is used to improve the performance of the proposed metric (lines 7–9). To cal-
culate the similarity between conceptual components, the sets of units of thought included
in each component are determined. Algorithm 10 implements the rules introduced by
Equation (12) for calculating the similarity between two sets of units of thought, including
the general scenario (lines 15–24) for non-empty sets, and exceptional scenarios (line 26
and line 29) to address singular situations of empty sets. Moreover, the calculated value of
component similarity is cached, to be used in the future (line 31). The partial value of the
similarity metric is updated after calculating the similarity between each pair of conceptual
components. For each pair of components, the partial similarity is affected by the similarity
of the components according to a relative weight factor (line 33).

To detect low values of similarity, an upper bound is calculated in order to determine
a maximum possible value of similarity (line 34). If the similarity between two case types
is detected early as low, it is not required to calculate its exact value. All case types with
low similarity are discarded early, and their partial values of component similarity are
removed from the cache as they are not fully calculated (lines 35–37). At last, a final value
of similarity is returned after iterating over all involved section types (line 41).

6.3. Implementation of Similarity Metric

The similarity metric is an essential feature of the proposed learning method. The
metric must be able to accurately compare the similarity between clinical case types, and
it also needs to execute as quickly as possible. The similarity metric is highly demanded
in virtue of the lazy approach of the learning method. Therefore, several techniques of
indexing and cache are applied for reducing the metric execution time. All optimizations
implemented to reduce the execution time of the similarity metric are presented in the
following paragraphs.

Compare units by canonical form. The operator equal for units of thought is used to
determine if two different sentences represent the same clinical idea. To implement the
equal operator, a canonical transformation is applied over the units being compared. Two
transformations are applied by comparing a pair of units of thought. For each unit of
thought, structured information and random data are removed, in order to achieve the
canonical form. Finally, a raw string comparison between both canonical forms is evaluated.
Original units of thought are identified as equal only if they coincide in their canonical form.

Zero similarity value. Function similarity(CT1, CT2) is called to calculate the similarity
between a case type CT1 and another case type CT2. Both case types are composed by
conceptual components that influence the similarity metric according to its section type
weights. However, an empty component of CT1 cannot provide similarity information
since it does not have associations with units of thought. If a conceptual component of
CT1 is empty, its similarity in regard to any other component is zero. No calculation is
performed over the empty components of CT1, rather all computational effort is performed
over its non-empty components.

Comparing with empty components. All components of a case type CT1 are analyzed
when calculating the similarity of CT1 in regard to another case type CT2. Each conceptual
component of CT1 should be compared against a component of CT2 with the same section
type. If CT2 does not include a conceptual component with the same section type, then
a value representing the biggest difference of similarity is returned without performing
additional calculations.

Cache of previous similarity values. The proposed similarity metric provides a mecha-
nism for comparing different case types. However, the metric is not based on case types
themselves, but on their conceptual components. Due to the high need of obtaining simi-
larities between conceptual components, a cache is designed for containing pre-calculated
values of component similarities. Figure 2 shows the structure used to maintain recent
values of similarities, and how similarity values are cached for each case type included in
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the clinical knowledge base of a physician. The proposed structure is able to cache the last
value of similarity of all conceptual components of each case type.

Figure 2. Cache structure for similarity between components. The clinical knowledge base is
composed of case types, each one containing similarity cached values of its conceptual components.

After evaluating the similarity between a specific case type in regard to any other case
type, all values of component similarities are stored in the cache. Figure 3 introduces a
scenario in which a “Case type A” is slightly modified, by only changing the information
described in one of its conceptual components. Several highlighted values of component
similarities are obtained from the cache. Furthermore, a high cache hit ratio should be
achieved after re-using any other case type and applying a few modifications.

(a) First similarity evaluation (b) Similarity evaluation with cache

Figure 3. Use of similarity cache values.

Discard non-promising candidates. The proposed learning method is designed to suggest
the best case types that can be applied during a medical consultation. Top best case types
are identified according to best similarity metric values, and only t best case types are
presented to the physician.

The similarity function separates the first k section types from the rest of the ALL-
SECTION-TYPES set, as described in Equation (14).
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similarity(CT1, CT2) =
secN

∑
sec=sec1

wsec × similarityCCsec

=
seck

∑
sec=sec1

wsec × similarityCCsec +
secN

∑
sec=seck+1

wsec × similarityCCsec

≤
seck

∑
sec=sec1

wsec × similarityCCsec +
secN

∑
sec=seck+1

wsec =
seck

∑
sec=sec1

wsec × similarityCCsec + Rk+1
constant

(14)

Equation (15) presents an upper bound inferred by simplifying (14), which can be
used for discarding case types with low similarity values.

similarity(CT1, CT2) ≤
seck

∑
sec=sec1

wsec × similarityCCsec + Rk+1
constant (15)

Several component similarity values (similarityCCs) need to be computed to obtain
the final value of similarity(CT1, CT2). An upper bound is identified after determining the
value of similarityCCseck . After calculating the similarity of the kth conceptual component,
it is possible to use an upper bound to discard a case type with a low similarity value.
Each case type whose upper bound of similarity is lower than the worst element of the top
best metrics is considered a non-promising candidate, and no more computational effort is
expended to calculate its final similarity value.

7. Experimental Validation

This section presents the experimental validation of the proposed approach on a real
case study, which served as a basis for evaluating the practical aspect of this research.

7.1. Problem Instances

The source Clinical cases in primary care [18] was used for evaluating the proposed
approach. The source is a multi-authored publication that covers a wide range of clinical
scenarios of primary care.

7.1.1. Prerequisites for Building Case Type Instances

The collaboration of advanced medical students was requested with the intention of
registering as many clinical scenarios as possible. Students were instructed to record the
primary care scenarios described in Clinical cases in primary care as new clinical CTs. In
order to group all the information recorded, it was necessary to implement procedures
for exchanging clinical CTs. The export and import procedures were used to exchange
different CTs.

A procedure to export a given CT was implemented. The procedure extracts a CT
from a specific clinical knowledge base CKB, and it also anonymizes any information that
refers to the person who wrote (owner) the CT. The import procedure consolidates the
information of a specific CT into a target CKB. A new CT is inserted into the target CKB,
replacing any anonymized reference of the original owner with the person who owns the
target CKB. Importing a CT is a complex procedure, which must avoid the generation of
duplicate units of thought, and has to merge the conceptual elements of the new CT with
those existing in the target CKB.

7.1.2. Building Case Type Instances

The set of clinical cases specified in the publication Clinical cases in primary care was
distributed to be evaluated by 50 advanced medical students. Each student had to evaluate
three different cases, and each clinical case was assigned to at least one student. Further-
more, each student was instructed to contribute two additional clinical cases, defined as
variants of those presented in the clinical source.
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All scenarios of primary care detailed in the clinical source were successfully registered
by the group of students, including variants of repeated clinical scenarios. Algorithm 11 de-
tails how a single CKB was loaded with 250 scenarios of primary care, based on information
registered by students.

Algorithm 11 Building case types

1: for i = 1 to length(STUDENT-LIST) do

2: studenti ← STUDENT-LIST[i]

3: CKBstudenti
← ∅

4: for j = 1 to 3 do

5: k-index ← mod(3(i − 1) + j, length(CASE-SOURCE))

6: CTij ← studenti records case number k-index of CASE-SOURCE

7: CKBstudenti
← CKBstudenti

⋃
{CTij }

8: end for

9: CTiv1
← first variant of case type included in CKBstudenti

10: CKBstudenti
← CKBstudenti

⋃
{CTiv1

}

11: CTiv2
← second variant of case type included in CKBstudenti

12: CKBstudenti
← CKBstudenti

⋃
{CTiv2

}

13: end for

14: CKBall ← ∅

15: for i = 1 to length(STUDENT-LIST) do

16: studenti ← STUDENT-LIST[i]

17: for j = 1 to 5 do

18: CTijexported ← export(j,CKBstudenti
)

19: import(CTijexported, CKBall)

20: end for

21: end for

22: return CKBall

Algorithm 11 starts by initializing all CKBs of the students (STUDENT-LIST) selected
for recording new CTs (lines 1–3). Each student is expected to treat three fictitious patients
suffering from one of the specific conditions of the clinical source (lines 5–6). Moreover,
two variants contributed by each student are also registered (line 9 and line 11). Therefore,
the CKB of each student is enriched with five new CTs (line 7, line 10, and line 12). The
algorithm continues by initializing a single CKBall that groups all information recorded by
all students (line 14). Each registered CT is exported using the export procedure, and the
import procedure is applied to consolidate the exported CT into the CKBall (lines 15–21).
Finally, the CKBall which contains all the 250 registered CTs (five contributed by each of
the 50 students) is returned (line 22).

7.2. Parameter Settings of Similarity Weight

For the purposes of the experimental evaluation, the set of clinical section types was
defined following the Uruguayan health model. The set of clinical section types was
defined as ALL-SECTION-TYPES = {Diagnosis, Consultation reason, Current illness, Physical
examination, Medication, Studies, Procedures, Referral, Message agents, Advisors, Excuse notes,
Observations}.

The similarity weight of a clinical section type is given by its medical relevance. A
simple medical relevance criteria was applied to give greater weight to the most important
section types. Four levels of importance were defined in order to consider qualitative
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ranges of medical relevance. The level scale used to define medical relevance was: very
important, fairly important, important, and slightly important. Table 2 presents the weight
values of the clinical section types used in the experimental evaluation, grouped by level of
medical relevance. Table 2 shows that the weight of the diagnosis section was defined with
a high value of WDiagnosis = 0.16. On contrary, the excuse notes section was defined with a
lower weight of WExcuses = 0.04.

Table 2. Weight of conceptual component types.

Very Important Fairly Important Important Slightly Important
(Weight 0.16) (Weight 0.12) (Weight 0.08) (Weight 0.04)

Diagnosis Consultation reason Medication Message agents
Current illness Studies Advisors
Physical examination Procedures Excuse notes

Referral Observations

All weights presented in Table 2 influence the calculation of the similarity metric of
the learning method. Equation (16) shows the consistency of presented weights used for
the similarity metric.

secn

∑
sec1

Wsec = ∑
very important

Wsecv + ∑
fairly important

Wsec f + ∑
Important

Wseci + ∑
slightly important

Wsecs

secn

∑
sec1

Wsec = 0.16 + 3 · 0.12 + 4 · 0.08 + 4 · 0.04 = 1

(16)

7.3. Performance Evaluation

An experimental evaluation was conducted in order to analyze the lazy nature of the
proposed learning method. In the learning approach, a similarity metric between clinical
CTs is calculated by using all previously recorded CTs as training examples. Since the
problem-solving ability of the proposed method is increased with each newly defined CT,
it is important to analyze the performance of the proposed learning method when faced
with CKBs with a great number of CTs.

7.3.1. Execution Platform of Performance Evaluation

The execution time analysis was performed on an Intel(R) Core(TM) i7-4700MQ CPU
@ 2.40 GHz, 16 GB RAM, and running 64-bit Windows 10 Pro.

7.3.2. Execution Time

The efficiency of the learning method was evaluated when faced with CKBs of different
sizes. To make a realistic evaluation, the 250 CTs registered by students were considered as
input data, and the average time of 50 executions was measured for each CKB analyzed.

Figure 4 presents the average execution time of the proposed method when using
different CKB sizes. The algorithm was executed on CKBs containing from 25 to 250 CTs.

Figure 4 shows how the size of a CKB has a direct influence on the execution time of
the proposed method. Results also demonstrate that the proposed learning method is able
to process 250 CTs in less than 90 milliseconds.
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Figure 4. Average execution time of the proposed learning method regarding different CKB sizes.

7.3.3. Execution Time Projection

In order to estimate the efficiency of the learning method when facing larger CKBs,
auxiliary CTs were generated based on the information recorded by the students. Although
the auxiliary CTs were artificially built and do not reflect real clinical scenarios, they can
be used to evaluate the performance of the learning method as they have the same data
dimension as the CTs written by the students. The graphic in Figure 5 reports the average
time of the proposed method regarding CKB sizes.

Figure 5. Average execution time of the proposed learning method when facing larger CKBs.

Figure 5 shows that the learning method generated suggestions in less than 1.25 s,
even when facing larger CKBs with a great number of CTs. Given that 3000 represents a
suitable bound for the number of CTs included in a physician CKB, the proposed method
is able to produce suggestions in reasonable execution times, even when processing real
CKBs with several workday scenarios.

7.3.4. Comparison with a Bayesian Learning Approach

To further analyze the applicability of the proposed approach, this subsection presents
a comparison of the proposed instance-based learning method with a Bayesian learning
method, which is based on a classical algorithm described by Mitchell [16] for classifying
text documents.

The implemented Bayesian learning method works under the assumption that the
occurrence probability of a word is independent of its position within a document. During
the learning task, all medical records are examined as training examples, aiming at extract-
ing the vocabulary of all words appearing in patient histories. After that, the frequency of
each word is computed on all case types, to obtain the probability estimates of the Bayesian
approach. Finally, to classify a new draft of the register editor, the probability estimates are
used to determine the most likely case type to be applied.
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Figure 6 reports the average execution time of both the Bayesian method and the
instance-based method, regarding different CKB sizes, when processing the testbed of
250 CTs registered by students.

The graphic in Figure 6 uses a logarithmic scale to highlight the difference of two
orders of magnitude between the execution times of both learning methods. The efficiency
results reveal that the Bayesian learning method is difficult to apply due to high execution
times, even when processing small volumes of data. Execution time results also reaffirm
the benefits of the instance-based learning method, which significantly outperforms the
Bayesian approach in terms of efficiency.

Figure 6. Average execution time comparison: instance-based learning vs. Bayesian learning method.

7.4. Testing the Applicability of the Instance-Based Learning Approach

In order to test the applicability of the proposed approach, a prototype was developed
and deployed on Google Compute Engine, the Infrastructure as a Service component of
the Google Cloud Platform. The prototype was evaluated by advanced medical students in
their last year of training at Universidad de la República, Uruguay.

7.4.1. Comparison with Praxis

Praxis reports the average time required to write a CT starting from an empty CKB [15].
In order to compare the proposed approach with the original implementation of Praxis, the
average time to write a CT using the prototype was measured. Figure 7 illustrates both
average writing times starting from an empty CKB, by considering the medical attendance
of the first 50 patients.

Figure 7. Average time of 50 medical students to write the notes of a case type (continuous line).
Average time according to Praxis reports (dotted line). Both evaluations start with an empty CKB.
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Although Praxis presents shorter registering times for the first two medical consulta-
tions, more than 50 evaluations are needed to achieve a convergence point. The proposed
approach significantly reduces registration times from the third case registered onwards,
converging quickly to less than three minutes of writing consultations. The proposed learn-
ing method demanded 210 min to register 50 consultations (i.e., 4.2 min per consultation),
while using Praxis requires 519 min (10.4 min per consultation). The overall time reduction
factor is 2.5×.

7.4.2. Improvement Using a Pre-Loaded CBK

The time needed to register a medical consultation can be reduced by using previously
registered information. The average time to record a CT was measured in a context in
which medical students could use a pre-loaded CKB. Figure 8 shows the average time to
write a CT taking advantage of a pre-loaded CKB containing typical workday scenarios.
As a relevant result, the use of a pre-loaded CKB implied a reduction of up to five minutes
for recording the notes of the first six medical consultations. Furthermore, a pre-loaded
CKB also accelerated the convergence to three minutes of writing consultations.

Figure 8. Average time of 50 medical students starting with an empty CKB (continuous line). Average
time of 50 medical students taking advantage of a pre-loaded CKB (dotted line).

Regarding the scalability of the incremental processing of new case types, results
suggest a convergence towards a short writing time for medical consultations, even when
processing large volumes of data.

7.4.3. Survey about the Proposed Approach

More than 50 medical students from different editions of the Medical Informatics
course were surveyed after using the prototype of the proposed approach. The advanced
medical students have tested the prototype during course editions from 2016 to 2020.
Figure 9 summarizes the best features identified by students.

Results show that 43% of the surveyed students mentioned that the learning curve
was steep before they could benefit from the proposed learning method. As a relevant
result, more than 73% of the students considered the prototype as an appropriate tool for
medical practice, especially at medical consultations. Moreover, 62% of the students were
able to speed up writing time during medical consultations.
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Figure 9. Best features of the proposed approach, according to the survey performed on students.

7.5. Interoperability of Health Information

Health terminological standards were taken into account due to the relevance of the
interoperability of information in the Medical Informatics area. In particular, the national
drug dictionary of Uruguay and a terminology server provided by the Hospital Italiano de
Buenos Aires (HIBA) were integrated into the proposed approach.

7.5.1. Integrating the National Drug Dictionary of Uruguay

A National Drug Dictionary (DNMA) is defined by Salud.uy in order to standardize
the information and vocabulary for clinical and logistical use applied to pharmaceutical
and related products. DNMA acts as a standard of drug reference terminology for the
network of healthcare service providers in Uruguay. Access permissions were requested
from the DNMA in order to import the national dictionary of medicines into the proposed
approach. Importing the national drug dictionary helped build a functional model, in
which physicians can make pharmacological indications using a wide range of drugs.

7.5.2. Using the Terminology Server of Hospital Italiano de Buenos Aires

A terminology server allows linking the free text entered by a physician in a medical
record to different health classifications, such as ICD9-CM, ICD10, or LOINC [4]. The use
of a terminology server allows clinical information to be recorded in a structured form,
using clinical terminology standards. Terminology standards enable interoperability of
clinical information, and also allow information to be re-used for other purposes, such as
clinical decision support, data analysis, and research.

The proposed system is able to use the terminology server supported by HIBA. The
terminology server publishes its terminological terms grouped in different domains. This
work has been successful in using terminology services for the domains that cover: reasons
for consultation, diagnoses, procedures, and studies, which are required for the Uruguayan
medical records model.

8. Discussion

The experimental evaluation of the proposed instance-based learning method focused
on the practical aspect of the research. Thus, the evaluation was performed on a real
use scenario, where the proposed approach demonstrated advantages over the original
implementation of Praxis. Additionally, results were better in terms of writing times when
using a pre-loaded CKB, containing typical workday clinical scenarios. Regarding the
usability of the proposed system, a survey performed on a group of advanced medical
students showed a high rate of approval. The implemented prototype was highlighted as
an appropriate tool for medical practice and useful at medical consultations. Furthermore,
and despite the lazy nature of the proposed method, the results showed that the learning
approach was able to produce suggestions in reasonable execution times, even when
dealing with large volumes of data.

Specific strategies can be applied to reduce uncertainties, including using expert
knowledge to design and generate useful realistic instances for learning, and expanding
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the similarity metrics considered for the comparison of clinical information. In this regard,
a recommendation for the practical aspect of the research is gathering and organizing
as much information as possible about clinical practice in a systematic way, in order to
help the automatic system to expand its base of knowledge to generate more accurate
suggestions. In turn, a physician should be properly trained to register all the relevant data
for the proposed learning-based system, without omitting any important information.

In this context, the main research lines for future work are related to evaluate the
proposed system in a professional work environment of healthcare attention, with the aim
of improving the accuracy of the learning method based on professional feedback. Thus, a
future work line includes studying the proposed approach with the help of professional
physicians. Another possibility for future work is related to enhance the accuracy of the
learning method by improving the comparison between units of thought (clinical phrases).
The weights of the clinical sections of case types used in the experimental analysis were
defined simply, according to qualitative ranges of medical relevance. Consequently, a
future work is to enhance the results by considering more accurate weights of medical
relevance.

9. Conclusions

This work presented a novel approach to represent clinical knowledge, which sup-
ports an appropriate methodology for recording medical consultations. An instance-based
learning method was also proposed, aiming at providing pertinent suggestions for physi-
cians. Different scenarios of medical consultations were modeled to address the diversity
of situations of physician workday, including multiple diagnoses and the attention of
chronic patient. The proposed formal structure was also designed to use standard health
terminology and codification. The approach was validated on a real case study involving
250 real instances constructed by advanced medical students. The proposed instance-based
learning method was able to generate suggestions in reasonable execution times, even
faced with large volumes of data. A total of 62% of the participants reduced the writing
time of their medical consultations, which demonstrated that the approach was useful to
accelerate the clinical registration process. Furthermore, results indicated it was appropri-
ate to follow physician reasoning, especially during medical consultations. More than 73%
of the participants approved a prototype following the proposed approach for assistance
during consultations.

The proposed clinical representation supported by the learning method contributed
to generate medical records faster than when using mainstream EMR systems. Overall,
the proposed approach is a first step to explore new ways to foster physician thinking,
overcoming difficulties of template-based clinical systems that are not designed from the
medical point of view.
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