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Preface to ”Advances in Discrete Applied

Mathematics and Graph Theory”

Since its origins in the 18th century, graph theory has been a branch of mathematics that is both

motivated by and applied to real world problems. Research in discrete mathematics increased in the

latter half of the twentieth century mainly due to the development of digital computers. On the other

hand, the advances in technology of digital computers enables extensive application of new ideas

from discrete mathematics to real-world problems.

The present reprint contains twelve papers published in the Special Issue “Advances in Discrete

Applied Mathematics and Graph Theory, 2021” of the MDPI Mathematics journal, which cover

a wide range of topics connected to the theory and applications of Graph Theory and Discrete

Applied Mathematics. The focus of the majority of papers is on recent advances in graph theory

and applications in chemical graph theory. In particular, the topics studied include bipartite

and multipartite Ramsey numbers, graph coloring and chromatic numbers, several varieties of

domination (Double Roman, Quasi-Total Roman, Total 3-Roman) and two graph indices of interest in

chemical graph theory (Sombor index, generalized ABC index), as well as hyperspaces of graphs and

local inclusive distance vertex irregular graphs.
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Abstract: For a simple graph G = (V, E) with no isolated vertices, a total Roman {3}-dominating func-
tion(TR3DF) on G is a function f : V(G)→ {0, 1, 2, 3} having the property that (i) ∑w∈N(v) f (w) ≥ 3
if f (v) = 0; (ii) ∑w∈N(v) f (w) ≥ 2 if f (v) = 1; and (iii) every vertex v with f (v) �= 0 has a neighbor u
with f (u) �= 0 for every vertex v ∈ V(G). The weight of a TR3DF f is the sum f (V) = ∑v∈V(G) f (v)
and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman
{3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-
domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we
present a linear-time algorithm to compute the value of γt{R3} for trees.

Keywords: dominating set; total roman {3}-domination; NP-complete; linear-time algorithm

1. Introduction

Let G = (V, E) be a graph with vertex set V = V(G) and edge set E = E(G).
For every vertex v ∈ V, the open neighborhood NG(v) = N(v) = {u ∈ V(G) : uv ∈ E(G)}
and the closed neighborhood NG[v] = N[v] = N(v) ∪ {v}. We denote the degree of v
by dG(v) = d(v) = |NG(v)|. A vertex of degree one is called a leaf and its neighbor is a
support vertex, and a support vertex is called a strong support if it is adjacent to at least two
leaves. Let Sn be a star with order n. A tree T is an acyclic connected graph. G = (G1 ∪ G2)
is a union graph G such that V(G) = V(G1) ∪V(G2) and E(G) = E(G1) ∪ E(G2).

Given a graph G and a positive integer k, assume that f : V(G) → {0, 1, 2, ..., k} is
a function, and suppose that (V0, V1, .., Vk) is the ordered partition of V introduced by f ,
where Vi = {v ∈ V(G) : f (v) = i} for i ∈ {0, 1, ..., k}. Then we can write f = (V0, V1, .., Vk)
and ω f (V(G)) = ∑v∈V(G) f (v) is the weight of a function f of G.

A subset S of a vertex set V(G) is a dominating set of G if for every vertex v ∈ V(G) \ S,
there exists a vertex w ∈ S such that wv is an edge of G. The domination number of G
denoted by γ(G) is the smallest cardinality of a dominating set S of G [1]. A function
f : V(G)→ {0, 1} is called a dominating function(DF) on G if every vertex u with f (u) = 0
has a vertex v ∈ N(u) such that f (v) = 1 [2]. The dominating set problem(DSP) is to
find the domination number of G, which has been deeply and widely studied in recent
years [3–7].

A subset S of a vertex set V(G) is a total dominating set of G if
⋃

v∈S N(v) = V(G).
The total domination number of G denoted by γt(G) is the smallest cardinality of a total
dominating set S of G [8]. The literature on the subject of total domination in graphs has
been surveyed and provided in detail in a recent book [9]. Moreover, Michael A. Henning
et al. presented a survey of selected recent results on total domination in graphs [10].

The mathematical concept of Roman domination is originally defined and discussed
by Stewart et al. [11] and ReVelle et al. [12]. A Roman dominating function(RDF) on graph
G is a function f : V(G) → {0, 1, 2} such that every vertex v ∈ V(G) for which f (u) = 0
is adjacent to at least one vertex u with f (u) = 2 [13]. The Roman domination number of

Mathematics 2021, 9, 293. https://doi.org/10.3390/math9030293 https://www.mdpi.com/journal/mathematics1
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G is the minimum weight overall RDFs, denoted by γR(G) [14]. On the basis of Roman
domination, signed Roman domination [15], double Roman domination [16] and total
Roman domination [17] have been proposed recently.

The total Roman dominating function(TRDF) on G is an RDF f on G with an additional
property that every vertex v ∈ V(G) with f (v) �= 0 has a neighbor u with f (u) �= 0. Let
γtR(G) denote the minimum weight of all TRDFs on G. A TRDF on G with weight γtR(G)
is called a γtR(G)-function. The conception of TRDF was first defined by Hossein Ahangar
et al. [18]. In addition, Nicolás Campanelli et al. studied the total Roman domination
number of the lexicographic product of graphs [17] and Chloe Lampman et al. presented
some basic results of Edge-Critical Graphs [19].

The Roman {2}-dominating function (also named Italian domination) f [20] intro-
duced by Chellali et al. which is defined as follows: f : V(G) → {0, 1, 2} has the prop-
erty that ∑u∈N(v) f (u) ≥ 2 for f (v) = 0 [21]. Chellali et al. proved that the Roman
{2}-domination problem is NP-complete for bipartite graphs [21]. Hangdi Chen showed
that the Roman {2}-domination problem is NP-complete for split graphs, and gave a
linear-time algorithm for finding the minimum weight of Roman {2}-dominating function
in block graphs [22]. As a generalization of Roman domination, Michael A. Henning et al.
studied the relationship between Roman {2}-domination and dominating set parameters
in trees [20].

A Roman {3}-dominating function(R{3}DF) f defined by Mojdeh et al. [23], which is
defined as follows: f : V(G)→ {0, 1, 2, 3} has the property that for every vertex v ∈ V(G)
with f (v) ∈ {0, 1} and ∑u∈N(v) f (u) ≥ 3. Mojdeh et al. presented an upper bound on the
Roman {3}-domination number of a connected graph G, characterized the graphs attaining
upper bound and showed that the Roman {3}-domination problem is NP-complete, even
restricted to bipartite graphs [23] .

The total Roman {3}-domination [24] was studied recently . The total Roman {3}-dominating
function(TR3DF) on a graph G is an R{3}DF on G with the additional property that every
vertex v ∈ V(G) with f (v) �= 0 has a neighbor w with f (w) �= 0. The minimum weight of
a total Roman {3}-dominating function on G denoted by γt{R3}(G) is named the total Ro-
man {3}-domination number of G. A γt{R3}(G)-function is a total Roman {3}-dominating
function on G with weight γt{R3}(G). Doost Ali Mojdeh et al. showed the relationship
among total Roman {3}-domination, total domination, and total Roman{2}-domination
parameters. They also presented an upper bound on the total Roman {3}-domination
number of a connected graph G and characterized the graphs arriving this bound. Finally,
they investigated that total Roman {3}-domination problem is NP-complete for bipartite
graphs [24].

In this paper, we further investigate the complexity of total Roman {3}-domination
in planar graphs and chordal bipartite graphs. Moreover, we give a linear-time algorithm
to compute the γt{R3} for trees which answer the problem that it is possible to construct
a polynomial algorithm for computing the number of total Roman {3}-domination for
trees [24].

2. Complexity

In this section, we study the complexity of total Roman {3}-domination of graph. We
show that the total Roman {3}-domination problem is NP-complete for planar graphs and
chordal bipartite graphs. Consider the following decision problem.

Total Roman {3}-Domination Problem TR3DP.

Instance: Graph G = (V, E) , and a positive integer m.
Question: Does G have a total Roman {3}-function with weight at most m?

Please note that the dominating set problem is NP-complete for planar graphs [25]
and chordal bipartite graphs [26]. We show the NP-completeness results by reducing the
well-known NP-complete problem, dominating set, to TR3D.
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Let G be a graph on n vertices. Let Tv be the tree with V(Tv) = {v, va, vb, vc, vd, ve, v f , vp, vq},
E(Tv) = {vva, vavc, vcve, vcv f , vvb, vbvd, vdvp, vdvq}, as depicted in Figure 1.

Figure 1. The tree Tv.

Let G′ be the graph obtained by adding edges between v′ ∈ Tv′ and v′′ ∈ Tv′′ if
v′v′′ ∈ E(G) from the union of the trees Tv for v ∈ V(G). Please note that |V(G′)| =
n× |V(Tv)| = 9n and |E(G′)| = |E(G)|+ n× |E(Tv)| = |E(G)|+ 8n.

Lemma 1. If G is a planar graph or chordal bipartite graph , so is G′.

Lemma 2. ([24]) Let Sn be a star with n ≥ 3, then γt{R3}(Sn) = 4.

Lemma 3. Let g be a TR3DF of G. If v is a strong support vertex of G, then ωg(N[v]) ≥ 4.

Proof of Lemma 3. Let v1, v2, .., vk be leaves of v with k ≥ 2. Since g(N[vi]) ≥ 3 for
i ∈ {1, 2, .., k}, we have g(vi) ≥ 3 − g(v) for i ∈ {1, 2, .., k}. Then ωg(N[v]) = g(v) +
∑i∈{1,2,...,k} g(vi) ≥ g(v) + g(v1) + g(v2) ≥ 6− g(v). If g(v) ≤ 2, it is clear that ωg(N[v]) ≥
4. If g(v) = 3, there exists a vertex u ∈ N(v) with g(u) �= 0. Then ωg(N[v]) ≥ 4.

Lemma 4. If f is a DF of G with ω f (G) ≤ �, then there exists a TR3DF g of G′ with ωg(G′) ≤
�+ 8n.

Proof of Lemma 4. For each v ∈ V(G), we define g as follows: V(Tv) → {0, 1, 2, 3},
g(va) = g(vb) = 1, g(vc) = g(vd) = 3, g(v) = f (v), g(x) = 0 otherwise. It is clear that g is
a TR3DF of G′. Therefore we have that ωg(G′) = ω f (G) + 8n ≤ �+ 8n.

Claim 1. Let g be a TR3DF of G′, then ωg(T′v) ≥ 8.

Proof of Claim 1. By Lemmas 2, 3 and definition, we have that ωg(N[vc]) ≥ 4 and
ωg(N[vd]) ≥ 4. Since N(vc)

⋂
N(vd) = ∅, then we can reduce ωg(T′v) = ωg(N[vc]) +

ωg(N[vd]) ≥ 8.

Claim 2. If there exists a TR3DF h of G′ with h(va) + h(vb) ≥ 3 for va, vb ∈ V(Tv), then there
exists a TR3DF g of G′ such that ωg(G′) ≤ ωh(G′) and g(va) + g(vb) ≤ 2.

Proof of Claim 2. By the definition of TR3DF, we have ωh(N[ve]) ≥ 3 and ωh(N[vp]) ≥ 3,
then we have ωh(T′v) ≥ 9.

If h(v) = 0, then we define g : V(G′)→ {0, 1, 2, 3} such that g(ve) = g(v f ) = g(vp) =
g(vq) = 0, g(v) = g(va) = g(vb) = 1 , g(vc) = g(vd) = 3, g(x) = h(x) otherwise, seeing
Figure 2. Therefore g is a TR3DF of G′ such that g(va) + g(vb) ≤ 2 and ωg(G′) = ωh(G′).

If h(v) ≥ 1, then we define g : V(G′)→ {0, 1, 2, 3} such that g(ve) = g(v f ) = g(vp) =
g(vq) = 0, g(va) = g(vb) = 1 , g(vc) = g(vd) = 3, g(x) = h(x) otherwise. Therefore g is a
TR3DF of G′ such that g(va) + g(vb) ≤ 2 and ωg(G′) ≤ ωh(G′).

3
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Figure 2. Pre-labeling of g.

Lemma 5. If g is a TR3DF of G with ωg(G′) ≤ � + 8n, then there exists a DF f of G with
ω f (G) ≤ �.

Proof of Lemma 5. By Claim 2, w.l.o.g, let g be a TR3DF of G′ with g(va) + g(vb) ≤ 2 for
va, vb ∈ V(Tv), v ∈ V(G). Define f : V(G)→ {0, 1} such that f (v) = g(v) if g(v) ≤ 1, and
f (v) = 1 if g(v) ≥ 2. For each vertex v ∈ V(G), since g(va) + g(vb) ≤ 2, we have g(v) ≥ 1
or there exists a vertex u ∈ N(v) ∩V(G) such that g(u) ≥ 1. Therefore f is DSF of G and
ω f (G) ≤ ωg(G)− 8n ≤ � by Claim 1.

Theorem 1. By Lemmas 1, 4, 5, the total Roman {3}-domination problem is NP-complete for planar
graphs and chordal bipartite graphs.

3. A Linear-Time Algorithm for Total Roman {3}-Domination in Trees

In this section, we present a linear-time algorithm to compute the minimum weight of
total Roman {3}-dominating function for trees. First, we define the following concepts:

Definition 1. Let u be a vertex of G, and let F(i,j)
u,G on G be a function f : V(G) → {0, 1, 2, 3}

having the property that (i) f (u) = i, ∑w∈N(u) f (w) ≥ j; (ii) ∀v ∈ V(G) \ {u}, ∑p∈N[v] f (p) ≥
3 if f (v) ≤ 2 and ∑p∈N(v) f (p) ≥ 1 if f (v) = 3.

Definition 2. The minimum weight overall F(i,j)
u,G functions on G denoted by γ

(i,j)
tR3 (u, G) is the

F(i,j)
u,G number of G, and a γ

(i,j)
tR3 (u, G)-function is an F(i,j)

u,G function on G with weight γ
(i,j)
tR3 (u, G).

Definition 3. Let coil(x) be a function defined as follows: coil(x) =

{
x, x ≥ 0;
0, x < 0.

Lemma 6. For any graph G with specific vertex u, we have

γt{R3}(G) = min{γ
(0,3)
tR3 (u, G), γ

(1,2)
tR3 (u, G), γ

(2,1)
tR3 (u, G), γ

(3,1)
tR3 (u, G)}.

Lemma 7. Suppose T1 and T2 are trees with specific vertices v and u, respectively. Let T3 be the
tree with the specific vertex u, which is obtained by joining a new edge uv from the union of T1 and
T2, as depicted in Figure 3.

4
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Figure 3. T3.

Then the following statements hold for γ
(i,j)
tR3 (u, Tk).

(a) For i = 0, j ∈ {0, 1, 2, 3}, we have :

γ
(0,j)
tR3 (u, T3) = min{γ

(3,1)
tR3 (v, T1) + γ

(0,0)
tR3 (u, T2),

min{γ
(s,3−s)
tR3 (v, T1) + γ

(0,coli(j−s))
tR3 (u, T2)|s = 0, 1, 2}}

(b) For i ∈ {1, 2, 3}, j ∈ {0, 1, 2, 3}, we have :

γ
(i,j)
tR3 (u, T3) = min{γ

(s,coil(3−i−s))
tR3 (v, T1) + γ

(i,coil(j−s))
tR3 (u, T2)|s = 0, 1, 2, 3}

Proof of Lemma 7. Let V(T′1) = V(T1) ∪ {u}, E(T′1) = E(T1) ∪ {vu}, f be a γ
(i,j)
tR3 (u, G)-

function of T3, f ′ be the restriction of f on T′1 and f ′′ be the restriction of f on T2.

(a) If f is a γ
(0,j)
tR3 (u, T3)-function on T3 , for j ∈ {0, 1, 2, 3}. By the definition of

γ
(i,j)
tR3 (u, G)-function, we have that if f (v) = 3, then ∑w∈NT3\{u} f (w) ≥ 1. It follows from

the fact that f is a γ
(0,j)
tR3 (u, G)-function of T3 if and only if f = f ′′ ∪ f ′ , where at least

one of followings holds: (i) f ′′ is a γ
(0,0)
tR3 (u, G)-function of T2 , f ′ is a γ

(3,1)
tR3 (v, T1)-function

of T1 ; (ii) f ′′ is a γ
(0,coil(j−s))
tR3 (u, G)-function of T2 , f ′ is a γ

(s,3−s)
tR3 (v, T1)-function of T1,for

s ∈ {0, 1, 2}.
(b) It follows from the fact that f is a γ

(i,j)
tR3 (u, T3)-function of T3, for i ∈ {1, 2, 3},

j ∈ {0, 1, 2, 3} if and only if f = f ′′ ∪ f ′, where f ′′ is a γ
(i,coli(j−s))
tR3 (u, T2)-function of T2 and

f ′ is a γ
(t,coil(3−i−s))
tR3 (v, T1)-function of T1, for s ∈ {0, 1, 2, 3}.

Lemmas 6 and 7 give the following dynamic programming algorithm 1 for the total
Roman {3}-domination problem in trees.

Algorithm 1 Counting γt{R3} in trees.

Input: A tree T with a tree ordering [v1, v2, .., vn].
Output: the TR3D number γt{R3}(T) of T.

1 for p = 1 to n do

2 for i = 0 to 3, j = 0 to3 do

3 if j=0 then

4 γ(i,j)(vp)← i;

5 else

6 γ(i,j)(vp)← ∞;

7 for p = 1 to n− 1 do

8 let vq be the parent of vp
9 for i = 0 to 3 and j = 0 to 3 do

10 if i=0 then

11 γ(i,j)(vq)=min{min{γ(s,3−s)(vp) + γ(i,coil(j−s))(vq)|s = 0, 1, 2}; γ(3,1)(vp) + γ(i,0)(vq)};

12 else

13 γ(i,j)(vq)=min{γ(s,coil(3−i−s))(vp) + γ(i,coil(j−s))(vq)|s = 0, 1, 2, 3};

14 return min{γ(0,3)(vn), γ(1,2)(vn), γ(2,1)(vn), γ(3,1)(vn)}

5
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4. Conclusions

The total Roman {3}-domination problem was introduced and studied in [24] , and it
was proven to be NP-complete for bipartite graphs. In this paper , we prove that the total
Roman {3}-domination problem is NP-complete for planar graphs or chordal bipartite
graphs , and showed a linear-time algorithm for total Roman {3}-domination problem on
trees. For the algorithmic aspects of the total Roman {3}-domination problem , designing
exact algorithms or approximation algorithms on general graphs , or polynomial algo-
rithms for total Roman {3}-domination problem on some special classes graphs deserve
further research.
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1. Introduction

In this paper, we were only concerned with undirected, simple and finite graphs. We
followed [1] for terminology and notations not defined here. For a given graph G, we
denoted its vertex set, edge set, maximum degree and minimum degree by V(G), E(G),
Δ(G) and δ(G), respectively. For a vertex v ∈ V(G), we used degG (v) and NG(v) to denote
the degree and neighbours of v in G, respectively. The neighbourhood of a vertex v ∈ V(G)
are denoted by NG(v) = {u ∈ V(G) | uv ∈ E(G)} and NXj(v) = {u ∈ V(Xj) | uv ∈ E(G)}.

As usual, a cycle and a path on n vertices are denoted by Cn and Pn, respectively. A
complete graph on n vertices, denoted Kn, is a graph in which every vertex is adjacent, or
connected by an edge, to every other vertex in G. By a stripe mK2, we mean a graph on 2m
vertices and m independent edges. A clique is a subset of vertices such that there exists
an edge between any pair of vertices in that subset of vertices. An independent set of a
graph is a subset of vertices such that there exists no edges between any pair of vertices
in that subset. Let C be a set of colors {c1, c2, ..., cm} and E(G) be the edges of a graph G.
An edge coloring f : E → C assigns each edge in E(G) to a color in C. If an edge coloring
uses k color on a graph, then it is known as a k-colored graph. The complete multipartite
graph with the partite set (X1, X2, . . . Xj), |Xi| = s for i = 1, 2, . . . j, denoted by Kj×s. We
use [Xi, Xj] to denote the set of edges between partite sets Xi and Xj. The complement
of a graph G, denoted by G, is a graph with the same vertices as G and contains those
edges which are not in G. Let T ⊆ V(G) be any subset of vertices of G. Then, the induced
subgraph G[T] is the graph whose vertex set is T and whose edge set consists of all of the
edges in E(G) that have both endpoints in T.

Since 1956, when Erdös and Rado published the fundamental paper [2], major research
has been conducted to compute the size of the multipartite and bipartite Ramsey numbers.
A big challenge in combinatorics is to determining the Ramsey numbers for the graphs.
We refer to [3] for an overview on Ramsey theory. Ramsey numbers are related to other
areas of mathematics, like combinatorial designs [4]. In fact, exact or near-optimal values
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of several Ramsey numbers depend on the existence of some combinatorial designs like
projective planes, which have been studied to date. Many of these connections are briefly
described in [3,5]. There are many applications of Ramsey theory in various branches of
mathematics and computer science, such as number theory, information theory, set theory,
geometry, algebra, topology, logic, ergodic theory and theoretical computer science [6]. In
particular, multipartite Ramsey numbers have applications in decision-making problems
and communications [7]. There are many mathematicians who present the new results of
multipartite Ramsey numbers every year. As a result of this vast range of applications, we
were motivated to conduct research on multipartite Ramsey numbers.

For given graphs G1, G2, . . . , Gn and integer j, the size of the multipartite Ramsey
number mj(G1, G2, . . . , Gn) is the smallest integer t such that any n-coloring of the edges
of Kj×t contains a monochromatic copy of Gi in color i for some i, 1 ≤ i ≤ n, where
Kj×t denotes the complete multipartite graph having j classes with t vertices per each
class. G is n-colorable to (G1, G2, . . . , Gn) if there exist a t-edge decomposition of G say
(H1, H2, . . . , Hn), where Gi � Hi for each i = 1, 2, . . . , n.

The existence of such a positive integer is guaranteed by a result in [2]. The size of
the multipartite Ramsey numbers of small paths versus certain classes of graphs have
been studied in [8–10]. The size of the multipartite Ramsey numbers of stars versus
certain classes of graphs have been studied in [11,12]. In [13,14], Burger, Stipp, Vuuren,
and Grobler investigated the multipartite Ramsey numbers mj(G1, G2), where G1 and
G2 are in a completely balanced multipartite graph, which can be naturally extended to
several colors. Recently, the numbers mj(G1, G2) have been investigated for special classes:
stripes versus cycles; and stars versus cycles, see [10] and its references. In [15], authors
determined the necessary and sufficient conditions for the existence of multipartite Ramsey
numbers mj(G, H) where both G and H are incomplete graphs, which also determined
the exact values of the size multipartite Ramsey numbers mj(K1,m, K1,n) for all integers
m, n ≥ 1 and j = 2, 3. Syafrizal et al. determined the size multipartite Ramsey numbers of
path versus path [16]. m3(G, P3) and m2(G, P3) where G is a star forest, namely a disjoint
union of heterogeneous stars have been studied in [17]. The exact values of the size Ramsey
numbers mj(P3, K2,n) and mj(P4, K2,n) for j ≥ 3 computed in [18].

In [12], Lusiani et al. determined the size of the multipartite Ramsey numbers of
mj(K1,m, H), for j = 2, 3, where H is a path or a cycle on n vertices, and K1,m is a star of
order m + 1. In this paper, we computed the size of the multipartite Ramsey numbers
mj(K1,2, P4, nK2) for n, j ≥ 2 and mj(nK2, C7), for j ≤ 4 and n ≥ 2 which are the new results
of multipartite Ramsey numbers. Computing classic Ramsey numbers is very a difficult
problem, therefore we can use multipartite and bipartite Ramsey numbers to obtain an
upper bound for a classic Ramsey number. In particular, the first target of this work was to
prove the following theorems:

Theorem 1. mj(K1,2, P4, nK2) =  2n
j �+ 1 where j, n ≥ 2.

In [10], Jayawardene et al. determined the size of the multipartite Ramsey numbers
mj(nK2, Cm) where j ≥ 2 and m ∈ {3, 4, 5, 6}. The second goal of this work extends these
results, as stated below.

Theorem 2. Let j ∈ {2, 3, 4} and n ≥ 2. Then

mj(nK2, C7) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ j = 2, n ≥ 2,

2 (j, n) = (4, 2),

3 (j, n) = (3, 2), (4, 3),

n j = 3, n ≥ 3,

� n+1
2 � j = 4, n ≥ 4.
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We estimate that this value of mj(nK2, C7) holds for every j ≥ 2. We checked the proof
of the main theorems into smaller cases and lemmas in order to simplify the idea of the
proof.

2. Proof of Theorem 1

In order to simplify the comprehension, let us split the proof of Theorem 1 into small
parts. We begin with a simple but very useful general lower bound in the following lemma:

Lemma 1. mj(K1,2, P4, nK2) ≥  2n
j �+ 1 where j, n ≥ 2.

Proof. Consider G = Kj×t where t =  2n
j � with partition sets Xi, Xi = {xi

1, xi
2, . . . , xi

t} for

i ∈ {1, 2, . . . , j}. Consider x1
1 ∈ X1, decompose the edges of Kj×t into graphs G1, G2, and

G3, where G1 is a null graph and G2 = G3, where G3 is G[X1 \ {x1
1}, X2, . . . , Xj]. In fact G2

is isomorphic to K1,(j−1)t and:

E(G2) = {x1
1xr

i | r = 2, 3, . . . , j and i = 1, 2 . . . , t}.

Clearly E(Gt) ∩ E(Gt′) = ∅, E(G) = E(G1) ∪ E(G2) ∪ E(G3), K1,2 �⊆ G1 and P4 �⊆ G2.
Since |V(Kj×t)| = j ×  2n

j � ≤ 2n, we have |V(G3)| ≤ 2n − 1, that is, nK2 �⊆ G3, which

means that m3(K1,2, P4, nK2) ≥  2n
j �+ 1 and the proof is complete.

Observation 1. Let G = K2,3( or K4 − e). For any subgraph of G, say H, either H has a subgraph
isomorphism to K1,2 or H has a subgraph isomorphism to P4.

Proof. Let H ⊆ G = K2,3, for G = K4 − e the proof is same. Without loss of generality
(w.l.g.), let X = {x1, x2} and Y = {y1, y2, y3} be a partition set of V(G) and P be a maximum
path in H. If |P| ≥ 3, then H has a subgraph isomorphic to K1,2, so let |P| ≤ 2. If |P| = 1,
then H(= G) has a subgraph isomorphic to P4. Hence, we may assume that |P| = 2, w.l.g.,
and let P = x1y1. Since |P| = 2, x1y2, x1y3 and x2y1 are in E(H) and there is at least one
edge of {x2y2, x2y3} in H, in any case, P4 ⊆ H and the proof is complete.

We determined the exact value of the multipartite Ramsey number of m2(K1,2, P4, nK2)
for n ≥ 2 in the following lemma:

Lemma 2. m2(K1,2, P4, nK2) = n + 1 for n ≥ 2.

Proof. Let X = {x1, x2, . . . , xn+1} and Y = {y1, y2, . . . , yn+1} be a partition set of G =
Kn+1,n+1. Consider a three-edge coloring Gr, Gb and Gg of G. By Lemma 1, the lower bound
holds. Now, let M be the maximum matching in Gg. If |M| ≥ n, then the lemma holds, so
let |M| ≤ n− 1. If |M| ≤ n− 2, then we have K3,3 ⊆ Gg and by Observation 1, the lemma
holds, so let |M| = n − 1. W.l.g., we may assume that M = {x1y1, x2y2, . . . , xn−1yn−1}.
By considering the edges between {xn, xn+1} and Y \ {yn, yn+1} and the edges between
{yn, yn+1} and X \ {xn, xn+1}, we have K3,2 ⊆ Gr ∪ Gb. Hence, by Observation 1, the
lemma holds.

In the next two lemmas, we consider m3(K1,2, P4, nK2) for certain values of n. In partic-
ular, we proved that m3(K1,2, P4, nK2) = n, for n = 2, 3 in Lemma 3 and m3(K1,2, P4, 4K2) =
3 in Lemma 4.

Lemma 3. m3(K1,2, P4, nK2) = n for n = 2, 3.

Proof. Let Xi = {xi
1, xi

2, . . . , xi
n} for i ∈ {1, 2, 3} be a partition set of G = K3×n. Consider a

three-edge coloring Gr, Gb and Gg of G. By Lemma 1 the lower bound holds. Now, let M
be the maximum matching in Gg and consider the following cases:

11
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Case 1: n = 2. If |M| ≥ 2 then nK2 ⊆ Gg and the proof is complete. So let |E(M)| ≤ 1.
W.l.g., we may assume that x1

1x2
1 ∈ E(M), hence, we have K4 − e ∼= G[x1

2, x2
2, X3] ⊆ Gr ∪ Gb

and by Observation 1, the proof is complete.
Case 2: n = 3. In this case, if |E(M)| ≤ 1 or |E(M)| ≥ 3, then the proof is the same as

case 1. So let |E(M)| = 2 and w.l.g., we may assume that E(M) = {e1, e2}—considering
any e1 and e2 in E(G). In any case, we have Gr ∪ Gb has a subgraph isomorphic to K3,2,
hence, by Observation 1, the lemma holds. Therefore, we have m3(K1,2, P4, 3K2) = 3. Now,
through cases 1 and 2, the proof is complete.

Lemma 4. m3(K1,2, P4, 4K2) = 3.

Proof. Let Xi = {xi
1, xi

2, xi
3} for i ∈ {1, 2, 3} be a partition set of G = K3×3. By Lemma 1,

the lower bound holds. Consider a three-edge coloring (Gr, Gb, Gg) of G where 4K2 � Gg.
Let M be a maximum matching in Gg, if |M| ≤ 2, then the proof is same as Lemma 3.
Hence, we may assume that |M| = 3 and w.l.g., let E(M) = {e1, e2, e3}. By Observation 1,
there is at least one edge between X1 and X2 in Gg, say e1 = x1

1x2
1, and similarly, there is

at least one edge between X3 and {x1
2, x1

3} in Gg, say e2 = x1
2x3

1, otherwise K3,2 ⊆ Gr ∪ Gb

and the proof is complete. Now, by Observation 1, there is at least one edge between
{x1

3, x3
2, x3

3} and {x2
2, x2

3} in Gg, and let e3 be this edge. If x1
3 /∈ V(e3) (say e3 = x2

2x3
2 ), then

K3 ⊆ Gr ∪ Gb[x1
3, x2

3, x3
3].

Now, consider the vertex x1
1 and x2

1, since |M| = 3 and e1 = x1
1x2

1, it is easy to check
that x1

1x3
3, x2

1x3
3 ∈ E(Gg) and x1

1x2
3, x2

1x1
3 ∈ E(Gg), otherwise K4 − e ⊆ Gg and the proof

is complete. Similarly, we have x1
2x2

3, x3
1x2

3 ∈ E(Gg) and x1
2x3

3, x3
1x1

3 ∈ E(Gg). Now, by
considering the edges of G[X1, x2

1, x2
3, x3

1, x3
3], it is easy to check that K4 − e ⊆ Gr ∪ Gb and

the lemma holds. Hence, we have x1
3 ∈ V(e3) (say e3 = x1

3x2
2), in this case, and we have

K2,2 ∼= G[x2
2, x2

3, x3
2, x3

3] ⊆ Gr ∪ Gb, otherwise, if there exists at least one edge between
{x3

2, x3
3} and {x2

2, x2
3} in Gg, say e, then set e = e3 and the proof is the same. Hence, by

considering the vertex x1
1 and x2

1, since |M| = 3 and e1 = x1
1x2

1, it is easy to check that
K3,2 ⊆ Gr ∪ Gb and by Observation 1 the proof is complete.

Lemma 5. m3(K1,2, P4, nK2) ≤  2n
3 �+ 1 for each n ≥ 2.

Proof. Let Xi = {xi
1, xi

2, . . . , xi
t} for i ∈ {1, 2, 3} be a partition set of G = K3×t where

t =  2n
3 �+ 1. We will prove this Lemma by induction. For the base step of the induction,

since  2×2
3 �+ 1 = 2,  2×3

3 �+ 1 = 3 and  2×4
3 �+ 1 = 3, lemma holds by Lemmas 3 and 4.

Suppose that n ≥ 5 and m3(K1,2, P4, n′K2) ≤  2n′
3 �+ 1 for each n′ < n. We will show that

m3(K1,2, P4, nK2) ≤  2n
3 �+ 1. By contradiction, we may assume that m3(K1,2, P4, nK2) >

 2n
3 � + 1, that is, K3×( 2n

3 �+1) is three-colorable to (K1,2, P4, nK2). Consider a three-edge

coloring (Gr, Gb, Gg) of G, such that K1,2 �⊆ Gr, P4 �⊆ Gb and nK2 �⊆ Gg. By the induction
hypothesis and Lemma 1, we have m3(K1,2, P4, (n − 1)K2) =  2(n−1)

3 � + 1 ≤  2n
3 � + 1.

Therefore, since K1,2 �⊆ Gr and P4 �⊆ Gb, we have (n − 1)K2 ⊆ Gg. Now, we have the
following cases:

Case 1:  2n
3 � =  2(n−1)

3 �+ 1.

Since  2n
3 � =  2(n−1)

3 � + 1, we have a copy of H = K
3×( 2(n−1)

3 �+1)
in G. In other

words, for each i ∈ {1, 2, 3}, there is a vertex, say x ∈ Xi, such that x ∈ V(G) \ V(H).
W.l.g., we may assume that A = {x1

1, x2
1, x3

1} would be these vertices. Since H ⊆ G, we
have K1,2 �⊆ Gr[V(H)] and P4 �⊆ Gb[V(H)]. Hence, by the induction hypothesis, we have
M = (n − 1)K2 ⊆ Gg[V(H)] ⊆ Gg. We consider that the three vertices do not belong
to V(H), i.e., A. Since nK2 �⊆ Gg, we have G[A] ⊆ Gr ∪ Gb. Now, we consider the
following Claim:

Claim 1. n ∈ B ∪ D where B = {3k | k = 1, 2, ...} and D = {3k + 2 | k = 1, 2, ...}.

12
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Proof of the Claim. By contradiction, we may assume that n /∈ B ∪ D. In other words,
let n = 3k + 1, then we have:

2k = 6k
3
� = 6k

3
+

2
3
� = 6k + 2

3
� = 2(3k + 1)

3
�

= 2n
3
� = 2(n− 1)

3
�+ 1 = 2(3k)

3
�+ 1 = 2k + 1,

which is a contradiction implying that n ∈ B ∪ D.

Claim 2. There is at least one vertex in V(H) \V(M).

Proof of the Claim. Let M = (n− 1)K2 ⊆ Gg, then |V(M)| = 2(n− 1) = 2n− 2. Since
 2n

3 � =  2(n−1)
3 �+ 1, by Claim 1, if n ∈ B, we have n = 3k for k ≥ 2. Now, we have:

2(n− 1)
3

�+ 1 = 2(3k− 1)
3

�+ 1 = 2(3k)
3

− 2
3
�+ 1 = 2k− 1 + 1 = 2k.

Hence, we have |V(H)| = 3× (2k) = 6k = 2n and thus |V(H) \V(M)| = 2. If n ∈ D
then we have:

2(n− 1)
3

�+ 1 = 2(3k + 1)
3

�+ 1 = 2(3k)
3

+
2
3
�+ 1 = 2k + 1.

Hence, |V(H)| = 3× (2k + 1) = 6k + 3 = 2n− 1. Therefore, |V(H) \V(M)| = 1.
By Claim 2, let x ∈ V(H) \V(M). Since nK2 �⊆ Gg, we have K4 − e ∼= G[A ∪ {x}] ⊆

Gr ∪ Gb. Hence, by Observation 1, we again have a contradiction.
Case 2:  2n

3 � =  2(n−1)
3 �.

In this case, by Claim 1 we have n = 3k + 1. Since K1,2 �⊆ Gr and P4 �⊆ Gb, by the
induction hypothesis, we have M = (n− 1)K2 ⊆ Gg. Now, we have the following claim:

Claim 3. |V(G) \V(M)| = 3.

Proof of the Claim. Let M = (n− 1)K2 ⊆ Gg. Since |V(Xj)| =  2n
3 �+ 1 and n = 3k + 1,

we have  2n
3 �+ 1 =  2(3k+1)

3 �+ 1 =  6k
3 + 2

3�+ 1 = 2k + 1 and therefore, |V(G)| = 3×
(2k+ 1) = 6k+ 3 = 2(3k+ 1)+ 1 = 2n+ 1, that is, |V(G) \V(M)| = (2n+ 1)− (2n− 2) =
3.

By Claim 3, we have |V(G) \V(M)| = 3. W.l.g., we may assume that A′ = {x, y, z}
has three vertices, since nK2 �⊆ Gg, and we have G[A′] ⊆ Gr ∪ Gb. We consider the three
vertices belonging to A′, and now, we have the following subcases:

Subcase 2-1: A′ ⊆ Xj for only one j ∈ {1, 2, 3}. W.l.g. we may assume that A′ ⊆ X1
and E(M) = {ei | i = 1, 2, . . . , (n − 1)}. Since k ≥ 2 and 3k + 1 = n ≥ 7 we have
|Xj| ≥ 5 and |E(M) ∩ E(G[X2, X3])| ≥ 3, otherwise, K3,3 ⊆ Gr ∪ Gb and by Observation 1;
a contradiction. W.l.g. we may assume that {x2

i x3
i | i = 1, 2, 3} ⊆ (E(M) ∩ E(Gg[X2, X3])).

Consider G′ = G[A′, x2
1, x2

2, x2
3, x3

1, x3
2, x3

3]
∼= K3×3. Since nK2 �⊆ Gg, if M′ is a maximum

matching in G′g, then |M′| ≤ 3, otherwise we have nK2 = M \ {e1, e2, e3} ∪ M′ ⊆ Gg; a
contradiction again. Since m3(K1,2, P4, 4K2) = 3 and |M′| ≤ 3, we have K1,2 ⊆ G′r ⊆ Gr or
P4 ⊆ G′b ⊆ Gb; also a contradiction.

Subcase 2-2: |A′ ∩ Xj| = 1 for each j ∈ {1, 2, 3}. W.l.g., we may assume that x ∈
X1, y ∈ X2 and z ∈ X3. Hence G[A′] ∼= K3 ⊆ Gr ∪ Gb. Since |Xj| ≥ 5, we have |E(M) ∩
E(Gg[Xi, Xj])| ≥ 2 for each i, j ∈ {1, 2, 3}. W.l.g., we may assume that x′y′ ∈ E(M) ∩
E(Gg[X1 \ {x}, X2 \ {y}]), x′ ∈ X1 and y′ ∈ X2. If x′y and x′z ∈ E(Gr ∪ Gb) then we
have K4 − e ⊆ Gr ∪ Gb and by Observation 1; a contradiction. So let x′y or x′z ∈ E(Gg). If
x′y ∈ E(Gg), then, since nK2 �⊆ Gg, we have y′x, y′z ∈ E(Gr ∪Gb), that is, K4− e ⊆ Gr ∪Gb;
we have a contradiction again. So let x′z ∈ E(Gg) and x′y ∈ E(Gr ∪ Gb). Since nK2 �⊆ Gg,
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we have y′x ∈ E(Gr ∪ Gb). If |E(Gr) ∩ E(G[A′])| �= 0, then we have P4 ⊆ Gb. So let
xy, yz, zx ∈ E(Gb) and xy′, yx′ ∈ E(Gr). Since |E(M) ∩ E(Gg[Xi, Xj])| ≥ 2 there is at
least one edge, say y′′z′′ ∈ E(M) ∩ E(Gg[X2 \ {y}, X3 \ {z}]). W.l.g., we may assume that
y′′ ∈ X2 and z′′ ∈ X3. Since K1,2 �⊆ Gr and P4 �⊆ Gb we have y′′x, z′′y ∈ E(Gg). Hence, we
had a nK2 = M \ {y′′z′′} ∪ {y′′x, z′′y}; a contradiction.

Subcase 2-3: |A′ ∩ Xj| = 2 for only one j ∈ {1, 2, 3}. W.l.g., we may assume that x, y ∈
X1 and z ∈ X2. Hence, we have G′[A′] ∼= P3 ⊆ Gr ∪ Gb. Since k ≥ 2, we have |Xj| ≥ 5, that
is, |E(M) ∩ E(Gg[X2, X3])| ≥ 3. W.l.g., we may assume that vu, v′u′ ∈ E(M) ∩ Gg[X2, X3]
where v, v′ ∈ X2 and u, u′ ∈ X3. Now, we have the following claim:

Claim 4. |NGg(x) ∩ {v, v′}| = |NGg(y) ∩ {v, v′}| = 0.

Proof of the Claim. By contradiction, w.l.g., we may assume that xv ∈ E(Gg). Since
nK2 �⊆ Gg, we have yu, zu ∈ E(Gr ∪ Gb). Consider A′′ = {y, z, u} and M′ = M \ {vu} ∪
{xv}. Hence, M′ = (n− 1)K2 ⊆ Gg and |A′′ ∩ Xj| �= 0 for each j ∈ {1, 2, 3}; we have a
contradiction to subcase 2-2.

Now, by Claim 4, we have K2,3 = G[A′ ∪ {v, v′}] ⊆ Gr ∪ Gb. In this case, by
Observation 1, we have K1,2 ⊆ Gr or P4 ⊆ Gb; we have a contradiction again.

Therefore, by Cases 1 and 2, we have m3(K1,2, P4, nK2) ≤  2n
3 �+ 1 for n ≥ 2.

Now, by Lemmas 1 and 5, we have the following lemma:

Lemma 6. m3(K1,2, P4, nK2) =  2n
3 �+ 1 for n ≥ 2.

In the next two lemmas, we consider mj(K1,2, P4, nK2) for each values of n ≥ 2 and
j ≥ 4. In particular, we proved that mj(K1,2, P4, nK2) =  2n

j �+ 1 for n ≥ 2 and j ≥ 4. We
started with the following lemma:

Lemma 7. Let j ≥ 4 and n ≥ 2. Given that mj(K1,2, P4, (n− 1)K2) =  2(n−1)
j �+ 1, it follows

that mj(K1,2, P4, nK2) ≤  2n
j �+ 1.

Proof. Let j ≥ 4 and n ≥ 2. For i ∈ {1, 2, . . . , j} let Xi = {xi
1, xi

2, . . . , xi
t} be partition set

of G = Kj×t where t =  2n
j �+ 1. Assume that mj(K1,2, P4, (n − 1)K2) =  2(n−1)

j �+ 1 is

true. To prove mj(K1,2, P4, nK2) ≤  2n
j �+ 1. Consider three-edge coloring (Gr, Gb, Gg) of

G. Suppose that nK2 �⊆ Gg, we prove that K1,2 ⊆ Gr or P4 ⊆ Gb. Let M∗ be the maximum
matching in Gg. Hence, by the assumption, |M∗| ≤ n− 1, that is |V(Kj×t) ∩ V(M∗)| ≤
2(n− 1). Now, we have the following claim:

Claim 5. |V(Kj×t) \V(M∗)| ≥ 3.

Proof of the Claim. Consider the following cases:
Case 1: Let 2n = jk (2n ≡ 0(mod j)). In this case, we have:

|V(G)| = j× t = j× (2n
j
�+ 1) = j× 2n

j
�+ j = jk + j = j(k + 1).

Hence:

|V(G) \V(M∗)| ≥ j(k + 1)− 2(n− 1) = jk + j− 2n + 2 = j + 2 ≥ 6 (j ≥ 4).

Case 2: Let 2n = jk + r (2n ≡ r(mod j) where r ∈ {1, 2, . . . , j− 1}). In this case, we
have:

|V(G)| = j × ( 2n
j � + 1) = j × ( jk+r

j � + 1) = j × ( jk
j + r

j � + 1) = j ×  jk
j � + j =

jk + j.
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Hence we have:
|V(G) \ V(M∗)| ≥ j(k + 1) − 2(n − 1) = jk + j − 2n + 2 = jk + j − jk − r + 2 =

j− r + 2 ≥ 3.
By Claim 5, G contains three vertices, say x, y and z in V(Kj×t) \ V(M∗). Con-

sider the vertex set {x, y, z} and let {x, y, z} ⊆ A = V(G) \ V(M∗). Now, we have the
following cases:

Case 1: Let x ∈ X1, y ∈ X2 and z ∈ X3, where Xi for i = 1, 2, 3 are distinct partition
sets of G = Kj×t. Note that all vertices of A are adjacent to each other in Gg. Since t ≥ 2,
we have |Xi| ≥ 2. Consider the partition Xj for j ≥ 4. Since |Xj| ≥ 2, if |A ∩ Xj| ≥ 1 for
at least one j ≥ 4, then we have K4 ⊆ Gr ∪ Gb and the proof is complete by Observation
1. Now, let |A ∩ Xj| = 0 for each j ≥ 4. Hence, for x4

1 ∈ X4 there exists a vertex, say
u such that x4

1u ∈ E(M∗). Consider NGg(x4
1) ∩ {x, y, z}. If |NGg(x4

1) ∩ {x, y, z}| ≤ 1,
then we have K4 − e ⊆ Gr ∪ Gb and by Observation 1, the proof is complete. Therefore,
let |NGg(x4

1) ∩ {x, y, z}| ≥ 2. W.l.g., we may assume that {x, y} ⊆ NGg(x4
1) ∩ {x, y, z}.

In this case, we have |NGg(u) ∩ {x, y, z}| = 0. On the contrary, let xu ∈ E(Gg) and
set M′ = M∗ \ {x4

1u} ∪ {x4
1y, ux}. Clearly M′ is a match where |M′| > |M∗|, which

contradicts the maximality of M∗. Hence, we have |NGg(u) ∩ {x, y, z}| = 0. Therefore, we
have K4 − e ⊆ Gr ∪ Gb[x, y, z, u] and, by Observation 1, the proof is complete.

Case 2: Let x, y ∈ Xi and z ∈ Xi′ where Xi, Xi′ are distinct partition sets of G. W.l.g.,
let i = 1 and i′ = 2. Consider the partition Xj(j �= 1, 2). Since |Xj| ≥ 2, if |A∩ Xj| ≥ 1, then
we have K4 − e ⊆ Gr ∪ Gb and by Observation 1, the proof is complete. So let |A ∩ Xj| = 0
for each j ≥ 3. Now, we have the following claim.

Claim 6. Let e = v1v2 ∈ E(M∗), and w.l.g. let |NGg(v1) ∩ {x, y, z}| ≥ |NGg(v2) ∩ {x, y, z}|.
If |NGg(v1) ∩ {x, y, z}| ≥ 2, then |NGg(v2) ∩ {x, y, z}| = 0. If |NGg(v1) ∩ {x, y, z}| =
|NGg(v2) ∩ {x, y, z}| = 1, then v1, v2 has the same neighbor in {x, y, z}.

Proof of the Claim. Let |NGg(v1) ∩ {x, y, z}| ≥ 2. W.l.g., we may assume that {w, w′} ⊆
NGg(v1)∩{x, y, z}. By contradiction, let |NGg(v2)∩{x, y, z}| �= 0, w.l.g., let w′′ ∈ NGg(v2)∩
{x, y, z}. In this case, we set M′ = (M∗ \ {v1v2})∪{v1w, v2w′′}. Clearly M′ is a match with
|M′| > |M∗|, which contradicts the maximality of M∗. Thus, let |NGg(vi) ∩ {x, y, z}| = 1
for i = 1, 2, if vi has a different neighbor, then the proof is same.

Claim 7. There is at least one edge, say e = uiuj ∈ E(M∗), such that ui, uj /∈ X1, X2.

Proof of the Claim. If |Xj| ≥ 3, then there is at least one edge, say e = uiuj ∈ E(M∗),
such that ui, uj /∈ X1, X2. Otherwise, we have K3,2 ⊆ Gr ∪Gb[Xj, Xj′ ] where j, j′ ≥ 3 , hence,
by Observation 1; we have a contradiction. So, let |Xj| = 2. In this case, if j ≥ 5, then the
proof is same. Now, let j = 4. We have |M∗| ≤ 2, that is, n ≤ 3. Hence, there is at least one
vertex, say w ∈ (X3 ∪ X4) ∩ A; a contradiction to |A ∩ Xj| = 0.

By Claim 7, there is at least one edge, say e = uiuj ∈ E(M∗), such that ui, uj /∈ X1, X2.
W.l.g., let e = u1u2 ∈ E(M∗) such that ui /∈ X1, X2, also, w.l.g., assume that |NGg(u1) ∩
{x, y, z}| ≥ |NGg(u2) ∩ {x, y, z}|. If |NGg(u1) ∩ {x, y, z}| ≥ 2, then by Claim 7, we have
|NGg(u2) ∩ {x, y, z}| = 0. Hence, we have K4 − e ⊆ Gr ∪ Gb. So, let |NGg(u1) ∩ {x, y, z}| =
|NGg(u2)∩ {x, y, z}| = 1, in this case, by Claim 7, we have NGg(u1)∩ {x, y, z} = NGg(u2)∩
{x, y, z}, and if x or y is this vertex, then K4 − e ⊆ Gr ∪ Gb; otherwise, K3,2 ⊆ Gr ∪ Gb. In
any case, by Observation 1, the proof is complete.

Case 3: Let x, y, z ∈ Xi where Xi is a partition set of G = Kj×t, say i = 1. If there
exists a vertex, say w ∈ Xj ∩ A, where j �= 1, then the proof is the same as Case 2.
Hence, let |A ∩ Xj| = 0. Since |Xj| ≥ 3, there exists an edge, say e = vu ∈ E(M∗), such
that v, u /∈ X1. Consider the neighbors of vertices v and u in X1. W.l.g., let |NGg(v) ∩
{x, y, z}| ≥ |NGg(u) ∩ {x, y, z}|. If |NGg(v) ∩ {x, y, z}| = 0, then we have K3,2 ⊆ Gr ∪ Gb,
so let |NGg(v) ∩ {x, y, z}| ≥ 1. In this case, by Claim 7, we had |NGg(u) ∩ {x, y, z}| ≤ 1.
Hence, w.l.g., we may assume that yu and zu be in E(Gr ∪ Gb) and x ∈ NGg(v). Now, set
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M∗∗ = (M∗ \ {vu}) ∪ {vx} and A′ = (A \ {x}) ∪ {u}, the proof is the same as Case 2 and
the proof is complete.

According to the Cases 1, 2 and 3 we have mj(K1,2, P4, nK2) ≤  2n
j �+ 1.

The results of Lemmas 1, 2, 6 and 7, concludes the proof of Theorem 1.

3. Proof of Theorem 2

In this section, we investigate the size multipartite Ramsey numbers mj(nK2, C7)
for j ≤ 4 and n ≥ 2. In order to simplify the comprehension, let us split the proof of
Theorem 2 into small parts. For j = 2, since the bipartite graph has no odd cycle, we have
m2(nK2, C7) = ∞. For other cases, we start with the following proposition:

Proposition 1. m3(nK2, C7) = 3 where n = 2, 3.

Proof. Clearly, m3(nK2, C7) ≥ 3. Consider K3×3 with the partition set Xi = {xi
1, xi

2, xi
3} for

i = 1, 2, 3. Let G be a subgraph of K3×3. For n = 2, if 2K2 ⊆ G, then proof is complete, so
let 2K2 �⊆ G. In this case, we have K3,2,2 ⊆ G, hence C7 ⊆ G, that is, m3(2K2, C7) = 3. For
n = 3 by contradiction, we may assume that m3(3K2, C7) > 3, that is, K3×3 is 2-colorable
to (3K2, C7), say 3K2 �⊆ G and C7 �⊆ G. Since m3(3K2, C6) = 3 [10], and 3K2 �⊆ G, we have
C6 ⊆ G. Let A = V(C6) and Yi = A ∩ Xi for i = 1, 2, 3. If there exists i ∈ {1, 2, 3} such that
|Yi| = 0, say i = 1, then we have A = X2 ∪X3 and C6 ⊆ G[X2, X3]. Let C6 = w1w2 . . . w6w1.
Since C7 �⊆ G, for each xi ∈ X1 in G, xi cannot be adjacent to wi and wi+1 for i = 1, 2, . . . , 6.
Hence, we have |NG(xi) ∩ V(C6)| ≥ 3 for each xi ∈ X1. One can easily check that in
any case, we have 3K2 ⊆ G; a contradiction, hence, let |Yi| ≥ 1 for each i = 1, 2, 3. Set
B = (|Y1|, |Y2|, |Y3|). Now, we have the following cases:

Case 1: B = (3, 2, 1). let A = X1∪{x2
1, x2

2, x3
1}. In this case, we have C6 ∼= x1

1x2
1x1

2x2
2x1

3x3
1x1

1.
Consider the vertex set A′ = V(K3×3) \ A = {x2

3, x3
2, x3

3}. Since C7 �⊆ G, we have
|NG(x3

2) ∩ {x1
1, x2

1}| ≤ 1. Hence, |NG(x3
2) ∩ {x1

1, x2
1}| ≥ 1. W.l.g., let x3

2x1
1 ∈ E(G). By

similarity, we have |NG(x3
3) ∩ {x1

2, x2
2}| ≥ 1 and |NG(x2

3) ∩ {x1
3, x3

1}| ≥ 1, see Figure 1. In
any case, we have 3K2 ⊆ G; a contradiction again.

x2
3 x1

3 x2
2 x3

3

x3
1 x1

2

x1
1 x2

1

x3
2

Figure 1. B = (3, 2, 1).

Case 2: B = (2, 2, 2). W.l.g., let Yi = {xi
1, xi

2} for i = 1, 2, 3. In this case, we have
C6 ∼= w1w2w3w4w5w6w1. W.l.g., let w1 = x1

1, w2 = x2
1. Since |Y3| = 2 and w4w5 ∈ E(C6),

we have |{w3, w6} ∩Y3| ≥ 1. If |{w3, w6} ∩Y3| = 2, then considering Figure 2a, the proof is
the same as case 1. So let |{w3, w6}∩Y3| = 1. W.l.g., let w3 = x3

1, x3
2 = w5, x1

2 = w4, x2
2 = w6.

In this case, consider Figure 2b and the proof is the same as case 1. Hence, in any case, we
have 3K2 ⊆ G; again a contradiction.
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x2
3 x1

2 x2
2 x1

3

x3
2 x3

1

x1
1 x2

1

x3
3

x1
3 x3

2 x1
2 x2

3

x2
2 x3

1

x1
1 x2

1

x3
3

a b

Figure 2. (a) |{w3, w6} ∩Y3| = 2, (b) |{w3, w6} ∩Y3| = 1.

By Cases 1 and 2, we have 3K2 ⊆ G. Thus, the proof is complete and the proposition
holds.

We determine the exact value of the multipartite Ramsey number m3(nK2, C7) for
n ≥ 3 in the following lemma:

Lemma 8. For each n ≥ 3 we have m3(nK2, C7) = n.

Proof. First, we show that m3(nK2, C7) ≥ n. Consider the coloring given by K3×(n−1) =

Gr ∪ Gb where Gr ∼= Kn−1,n−1 and Gb ∼= Kn−1,2(n−1). Since |V(Gr)| = 2(n − 1) and Gb

is bipartite, we have nK2 �⊆ Gr and C7 �⊆ Gb, that is, m3(nK2, C7) ≥ n. For the upper
bound, consider K3×n with partite sets Xi = {xi

1, xi
2, . . . , xi

n} for i = 1, 2, 3. We will
prove this by induction. For n = 3, by Proposition 1, the lemma holds. Suppose that
m3(nK2, C7) ≤ n for each n ≥ 4. We will show that m3((n + 1)K2, C7) ≤ n + 1, as follows:
by contradiction, we may assume that m3((n + 1)K2, C7) > n + 1, that is, K3×(n+1) is 2-
colorable to ((n + 1)K2, C7), say (n + 1)K2 �⊆ G and C7 �⊆ G. Let X′

i = Xi \ {xi
1}. Hence,

by the induction hypothesis, we have m3(nK2, C7) ≤ n. Therefore, since |X′
i | = n and

C7 �⊆ G[X′
1, X′

2, X′
3], we have M = nK2 ⊆ G[X′

1, X′
2, X′

3]. If there exists i and j such that
xi

1xj
1 ∈ E(G), then we have (n + 1)K2 ⊆ G; a contradiction. Hence, we have xi

1xj
1 ∈ E(G)

for i, j ∈ {1, 2, 3}. Let A = V(K3×n) \ V(M). Hence, we have |A| = 3n− 2n = n. Since
(n + 1)K2 �⊆ G, we have G[A, x1

1, x2
1, x3

1] ⊆ G. Since |A| = n ≥ 4, one can easily check that,
in any case, we have H ⊆ G, where, H ∈ {K5,1,1, K4,2,1, K3,3,1, K3,2,2}. If H ∈ {K3,3,1, K3,2,2},
one can easily observe that we have C7 ⊆ H ⊆ G; a contradiction again. So let H ∈
{K5,1,1, K4,2,1} and consider the following cases:

Case 1: A ⊆ Xi for only one i, that is, H = K5,1,1. W.l.g., let A ⊆ X1 and {x1
2, x1

3, . . . , x1
5} ⊆

A. Then, we have Kn+1,1,1 ⊆ G and M ⊆ G[X2, X3]. Since n ≥ 4, we have |M| ≥ 4,
that is, there exists at least two edges, say e1 = x1y1 and e2 = x2y2 in E(M), where
{x1, x2, y1, y2} ⊆ X2 ∪ X3. W.l.g., let |NG(xi) ∩ A| ≥ |NG(yi) ∩ A| for i = 1, 2. One can
easily check that |NG(yi) ∩ A| ≤ 1, otherwise, we have (n + 1)K2 ⊆ G; a contradiction.
Since |NG(yi) ∩ A| ≤ 1 and |A| ≥ 5, we have |NG(yi) ∩ A| ≥ 4. Hence, we have |NG(y1) ∩
NG(y2) ∩ A| ≥ 3. W.l.g., we may assume that {x1

1, x1
2, x1

3} ⊆ NG(y1) ∩ NG(y2) ∩ A. In this
case, we have C7 ⊆ G[x1

1, x1
2, x1

3, x2
1, x3

1, y1, y2] ⊆ G; a contradiction again.
Case 2: H = K4,2,1. W.l.g., let |A∩X1| = n− 1 and |A∩X2| = 2. Let {x1

2, x1
3, . . . , x1

4} ⊆
A ∩ X1 and x2

2 ∈ A ∩ X2, that is, we have K4,2,1 ⊆ Kn,2,1 = G[A, x1
1, x1

2, x1
3] ⊆ G and

M ⊆ K1,n−1,n. That is, there exists at least one edge, say e = xy, where x ∈ X2 and y ∈ X3.
W.l.g., let |NG(x) ∩ A| ≥ |NG(y) ∩ A|. One can easily check that |NG(y) ∩ A| ≤ 1. Hence,
we have |NG(y) ∩ A| ≥ 3 and the proof is same as case 1.

By cases 1 and 2, we have the assumption that m3((n + 1)K2, C7) > n + 1 does not
hold. Now we have m3(nK2, C7) = n for each n ≥ 3. This completes the induction step
and the proof.

Lemma 9. For j ≥ 3 and n ≥ j, we have mj(nK2, C7) ≥ � 2n+2
j �.
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Proof. To show that mj(nK2, C7) ≥ � 2n+2
j �, assume that � 2n+2

j � ≥ 1. Consider the coloring

given by Kj×t0 = Gr ∪ Gb where t0 = � 2n+2
j � − 1 such that Gr ∼= K(j−1)×t0

and Gb ∼=
Kt0,(j−1)t0

. Since Gb is bipartite, we have C7 �⊆ Gb, and

|V(Gr)| = (j− 1)× t0 = (j− 1)(�2n + 2
j

� − 1) = (j− 1)(�2n + 2
j

�)− (j− 1)

≤ (j− 1)(
2n + 2

j
+ 1)− (j− 1) = j× (

2n + 2
j

)− 2n + 2
j

.

Since n ≥ j, we have |V(Gr)| < 2n. Hence, we have nK2 �⊆ Gr. Since Kj×t0 = Gr ∪ Gb,
we have mj(nK2, C7) ≥ � 2n+2

j � for n ≥ j ≥ 3.

Lemma 10. m4(4K2, C7) = 3.

Proof. By Lemma 9, we have m4(4K2, C7) ≥ 3. For the upper bound, consider the coloring
given by K4×3 = Gr ∪ Gb such that C7 �⊆ Gb. Since m3(3K2, C7) = 3, we have 3K2 ⊆
Gr[X1, X2, X3] ⊆ Gr. Let M = 3K2; hence, we have |V(X1 ∪ X2 ∪ X3) \ V(M)| = 3.
W.l.g., let A = {w1, w2, w3} be these vertices. If E(Gr) ∩ E(G[X4, A]) �= ∅, then we have
4K2 ⊆ Gr. So let K3,3 ⊆ G[X4, A] ⊆ Gb. Consider the edge e = v1v2 ∈ E(M), and it is
easy to show that |NGb(vi) ∩ X4| ≥ 2 for some i ∈ {1, 2}, otherwise, we have 4K2 ⊆ Gr.
In any case, one can easily check that C7 ⊆ Gb; which is a contradiction. Thus, we obtain
m4(4K2, C7) = 3.

Lemma 11. For n ≥ 4 we have m4(nK2, C7) = � n+1
2 �.

Proof. By Lemma 9, we have m4(nK2, C7) ≥ � n+1
2 �. To prove m4(nK2, C7) ≤ � n+1

2 �,
consider K4×t with partite set Xi = {xi

1, xi
2, . . . , xi

t} for i = 1, 2, 3, 4, where t = � n+1
2 �. We

will prove this by induction. For n = 4 by Lemma 10, the lemma holds. Now, we consider
the following cases:

Case 1: n = 2k, where k ≥ 3. Suppose that m4(n′K2, C7) ≤ � n′+1
2 � for each n′ < n.

We will show that m4(nK2, C7) ≤ � n+1
2 � as follows: by contradiction, we may assume

that m4(nK2, C7) > � n+1
2 �, that is, K4×t is 2-colorable to (nK2, C7), say nK2 �⊆ G and

C7 �⊆ G. Let X′
i = Xi \ {xi

1} for i = 1, 2, 3, 4. Hence, by the induction hypothesis, we
have m4((n− 1)K2, C7) ≤ � n

2 � = k. Therefore, since |X′
i | = k = n

2 and C7 �⊆ G, we have

M = (n − 1)K2 ⊆ G[X′
1, X′

2, X′
3, X′

4]. If there exists i, j ∈ {1, 2, 3, 4}, where xi
1xj

1 ∈ E(G),
then nK2 ⊆ G; a contradiction. Now, we have K4

∼= G[x1
1, x2

1, x3
1, x4

1] ⊆ Gg. Since nK2 �⊆ G
and � n+1

2 � = � 2k+1
2 � = k + 1, we have |V(K4×k) \ V(M)| = 2n − 2(n − 1) = 2, that is,

there exists two vertices, say w1 and w2 in V(K4×k) \ V(M). Since nK2 �⊆ G, we have
G[S] ⊆ G, where S = {xi

1 | i = 1, 2, 3, 4} ∪ {w1, w2}. Hence, we have the following claim:

Claim 8. Let e = v1v2 ∈ E(M) and w.l.g., we may assume that |NG(v1) ∩ S| ≥ |NG(v2) ∩ S|.
If |NG(v1) ∩ S| ≥ 2 then |NG(v2) ∩ S| = 0. If |NG(v1) ∩ S| = 1 then |NG(v2) ∩ S| ≤ 1. If
|NG(vi) ∩ S| = 1 then v1 and v2 have the same neighbor in S.

Proof of the Claim. By contradiction. We may assume that {w, w′} ⊆ NG(v1) ∩ S and
w′′ ∈ NG(v2) ∩ S, in this case, we set M′ = (M \ {v1v2}) ∪ {v1w, v2w′′}. Clearly, M′ is a
match with |M′| > |M| = n− 1, which contradicts the nK2 �⊆ G . If |NG(vi) ∩ S| = 1 and
vi has a different neighbor, then the proof is same.

Since n ≥ 4 and |M| ≥ 3. If {w1, w2} ⊆ Xi, say X1, then there is at least one edge, say
e = vu ∈ E(M) such that v, u /∈ X1. Otherwise, we have C7 ⊆ K3×3 ⊆ G[X2, X3, X4]; we
again have a contradiction. W.l.g., let |NG(v)∩ S| ≥ |NG(u)∩ S|. Now, by Claim 8 we have
|NG(u) ∩ S| ≤ 1. One can easily check that in any case, we have C7 ⊆ G[S ∪ {u}]; again a
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contradiction. So w.l.g., let w1 ∈ X1 and w2 ∈ X2. In this case, since |NG(u) ∩ S| ≤ 1, we
have C7 ⊆ G[S ∪ {u}]; a contradiction again.

Case 2: n = 2k + 1 where k ≥ 2, |Xi| = k + 1. Suppose that m4((n − 2)K2, C7) ≤
� n−2+1

2 � for n ≥ 2. We show that m4(nK2, C7) ≤ � n+1
2 � as follows: by contradiction,

we may assume that m4(nK2, C7) > � n+1
2 �, that is, K4×t is 2-colorable to (nK2, C7), say

nK2 �⊆ G and C7 �⊆ G. Let X′
i = Xi \ {xi

1}. By the induction hypothesis, we have
m4((n− 2)K2, C7) ≤ � n−1

2 � = � 2k
2 � = k. Therefore, since |X′

i | = k and C7 �⊆ G, we have
M = (n− 2)K2 ⊆ G[X′

1, X′
2, X′

3, X′
4] and thus, we have the following claim:

Claim 9. There exist two edges, say e1 = uv and e2 = u′v′ in E(M) = E((n− 2)K2), such that
v, v′, u and u′ are in different partites.

Proof of the Claim. W.l.g., assume that v ∈ X′
1 and u ∈ X′

2. By contradiction, assume
that |E(M) ∩ E(G[X′

3, X′
4])| = 0, that is, G[X′

3, X′
4] ⊆ G. Since |V(M)| = 2(n − 2) and

|X′
i | = k, we have |V(M) ∩ X′

i | ≥ k− 2. Since k ≥ 3, |V(M) ∩ X′
j| ≥ 1 (j = 3, 4). W.l.g., let

e′j = xjyj ∈ E(M) where xj ∈ V(M) ∩ X′
j. W.l.g., we may assume that y3 ∈ V(M) ∩ X′

1.
Hence, we have y4 ∈ V(M) ∩ X′

1. In other words, take e1 = x3y3 and e2 = x4y4 and
the proof is complete. Hence, we have |E(M) ∩ E(G[X′

2, X′
j])| = 0 for j = 3, 4, in other

words, if there exists e′′ ∈ E(M) ∩ E(G[X′
2, X′

j]), then set e1 = e′1 and e2 = e′′ and the
proof is complete. Therefore, for each e ∈ E(M) we have v(e) ∩ X′

1 �= ∅ which means that
|M| ≤ X′

1 = k; a contradiction to |M|.
Now, by Claim 9 there exist two edges, say e1 = uv and e2 = u′v′ in E(M) =

E((n − 2)K2), such that v, v′, u and u′ are in different partite. W.l.g., let e1 = x1x2 and
e2 = x3x4, since are these edges, and let xi ∈ X′

i for i = 1, 2, 3, 4. Set X′′
i = Xi \ {xi},

hence, we have |X′′
i | = k. Since C7 �⊆ G, we have C7 �⊆ G[X′′

1 , X′′
2 , X′′

3 , X′′
4 ]. Therefore, by

the induction hypothesis, we have (n− 2)K2 ⊆ G[X′′
1 , X′′

2 , X′′
3 , X′′

4 ]. Let M = (n− 2)K2 ⊆
G[X′′

1 , X′′
2 , X′′

3 , X′′
4 ], set M∗ = M ∪ {e1, e2} hence |M∗| = n, that is, nK2 ⊆ G; again a

contradiction. Hence, the assumption that m4(nK2, C7) > � n+1
2 � does not hold and we

have m4(nK2, C7) ≤ � n+1
2 �. This completes the induction step and the proof is complete.

By Cases 1 and 2, we have m4(nK2, C7) = � n+1
2 � for n ≥ 4.

The results of Proposition 1 as well as Lemmas 8 and 11 concludes the proof of
Theorem 2.

4. Concluding Remarks and Further Works

There are several papers in which the multipartite Ramsey numbers have been studied.
In this paper, as a first target, we compute the size of the multipartite Ramsey number
mj(K1,2, P4, nK2) for n, j ≥ 2. To approach this purpose, we prove four lemmas as follows:

1. mj(K1,2, P4, nK2) ≥  2n
j �+ 1 where j, n ≥ 2;

2. m2(K1,2, P4, nK2) = n + 1 for n ≥ 2;
3. m3(K1,2, P4, nK2) =  2n

3 �+ 1 for n ≥ 2;

4. Let j ≥ 4 and n ≥ 2. Given that mj(K1,2, P4, (n− 1)K2) =  2(n−1)
j �+ 1, it follows that

mj(K1,2, P4, nK2) ≤  2n
j �+ 1.

We computed the size of the multipartite Ramsey numbers mj(nK2, C7), for j ≤ 4 and
n ≥ 2 as the second purpose of this paper. This extended the result of [10]. To approach
this purpose, we proved the following:

1. m3(nK2, C7) = 3 where n = 2, 3;
2. For each n ≥ 3 we have m3(nK2, C7) = n;
3. For n ≥ 4 we have m4(nK2, C7) = � n+1

2 �; We estimated our result for mj(nK2, C7)
which holds for every j ≥ 2, so it could be a good problem to work on.

In addition, one can compute mj(K1,2, P4, m1K2, m2K2) and also mj(nK2, C7), for j ≥ 5
and n ≥ 2 in the future, using the idea of proofs in this paper.
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Abstract: In this work, we obtained new results relating the generalized atom-bond connectivity
index with the general Randić index. Some of these inequalities for ABCα improved, when α = 1/2,
known results on the ABC index. Moreover, in order to obtain our results, we proved a kind of
converse Hölder inequality, which is interesting on its own.

Keywords: ABC index; generalizedABC index; general Randić index; topological indices; converse
Hölder inequality

1. Introduction

Mathematical inequalities are at the basis of the processes of approximation, estima-
tion, dimensioning, interpolation, monotonicity, extremes, etc. In general, inequalities
appear in models for the study or approach to a certain reality (either objective or subjec-
tive). This reason makes it clear that when working with mathematical inequalities, we can
essentially find relationships and approximate values of the magnitudes and variables that
are associated with one or another practical problem.

In mathematical chemistry, a topological descriptor is a function that associates each
molecular graph with a real value; if it correlates well with some chemical property, it is
called a topological index. For additional information see [1], for application examples
see [2–7].

The atom-bond connectivity index of a graph G was defined in [8] as:

ABC(G) = ∑
uv∈E(G)

√
2(du + dv − 2)

dudv
=
√

2 ∑
uv∈E(G)

√
du + dv − 2

dudv
,

where uv denotes the edge of the graph G connecting the vertices u and v and du is the
degree of the vertex u.

The generalized atom-bond connectivity index was defined in [9] as:

ABCα(G) = ∑
uv∈E(G)

( du + dv − 2
dudv

)α
.

for any α ∈ R \ {0}. Note that ABC1/2 =
√

2
2 ABC and ABC−3 is the augmented Zagreb index.

There are many papers that have studied the ABC and ABCα indices (see, e.g., [9–15]).
In this paper, we obtained new inequalities relating these indices with the general Randić
index. Some of these inequalities for ABCα improved, when α = 1/2, known results on the
ABC index. In order to obtain our results, we proved a kind of converse Hölder inequality,
Theorem 3, which is interesting on its own.

Mathematics 2021, 9, 1151. https://doi.org/10.3390/math9101151 https://www.mdpi.com/journal/mathematics21
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Throughout this work, a path graph Pn is a tree with n vertices and maximum degree
two and a star graph Sn is a tree with n vertices and maximum degree n− 1.

2. Inequalities Involving ABCα

In 1998, Bollobás and Erdős [16] generalized the Randić index for α ∈ R \ {0},

Rβ(G) = ∑
uv∈E(G)

(dudv)
β.

The general Randić index, also called the variable Zagreb index in 2004 by Miličević and
Nikolić [17], was extensively studied in [18–20].

The next result relates the ABCα and Rβ indices.

Theorem 1. Let G be a graph with maximum degree Δ and minimum degree δ and α > 0,
β ∈ R \ {0}. Denote by m2 the cardinality of the set of isolated edges in G.

(1) If β/α ≤ −1 and δ > 1, then:

(2δ− 2)αδ−2α−2βRβ(G) ≤ ABCα(G) ≤ (2Δ− 2)αΔ−2α−2βRβ(G).

The equality in each bound is attained if and only if G is a regular graph.

(2) If β/α ≤ −1 and δ = 1, then:

2−α−β
(

Rβ(G)−m2
) ≤ ABCα(G) ≤ (2Δ− 2)αΔ−2α−2β

(
Rβ(G)−m2

)
.

The equality in the lower bound is attained if and only if G is a union of path graphs P3 and
m2 isolated edges. The equality in the upper bound is attained if and only if G is a union of a regular
graph and m2 isolated edges.

(3) If −1 < β/α ≤ −1/2 and δ > 1, then:

(2δ− 2)αδ−2α−2βRβ(G) ≤ ABCα(G).

The equality in the bound is attained if and only if G is a regular graph.

(4) If −1 < β/α ≤ −1/2 and δ = 1, then:

2−α−β
(

Rβ(G)−m2
) ≤ ABCα(G).

The equality in the bound is attained if and only if G is a union of path graphs P3 and m2
isolated edges.

(5) If β > 0 and δ > 1, then:

(2Δ− 2)αΔ−2α−2βRβ(G) ≤ ABCα(G) ≤ (2δ− 2)αδ−2α−2βRβ(G).

The equality in each bound is attained if and only if G is a regular graph.

(6) If β > 0, δ = 1 and 1 + α/β ≥ Δ, then:

(2Δ− 2)αΔ−2α−2β
(

Rβ(G)−m2
) ≤ ABCα(G) ≤ (Δ− 1)αΔ−α−β

(
Rβ(G)−m2

)
.

The equality in the lower bound is attained if and only if G is a union of a regular graph and
m2 isolated edges. The equality in the upper bound is attained if and only if G is a union of star
graphs SΔ+1 and m2 isolated edges.

(7) If β > 0, δ = 1 and 1 + α/β ≤ 2, then:

(2Δ− 2)αΔ−2α−2β
(

Rβ(G)−m2
) ≤ ABCα(G) ≤ 2−α−β

(
Rβ(G)−m2

)
.
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The equality in the lower bound is attained if and only if G is a union of a regular graph and
m2 isolated edges. The equality in the upper bound is attained if and only if G is a union of path
graphs P3 and m2 isolated edges.

(8) If β > 0, δ = 1 and 2 < 1 + α/β < Δ, then:

(2Δ− 2)αΔ−2α−2β
(

Rβ(G)−m2
) ≤ ABCα(G) ≤ ααββ

(α + β)α+β

(
Rβ(G)−m2

)
.

The equality in the lower bound is attained if and only if G is a union of a regular graph and
m2 isolated edges. The equality in the upper bound is attained if and only if α/β ∈ Z+ and G is a
union of star graphs Sα/β+2 and m2 isolated edges.

Proof. First of all, note that ABCα(P2) = 0 and Rβ(P2) = 1. Therefore, it suffices to
prove the theorem for the case m2 = 0, i.e., when G is a graph without isolated edges.
Hence, Δ ≥ 2.

We computed the extremal values (for fixed λ ∈ R) of the function f : [δ, Δ]× ([δ, Δ] \
[1, 2)) −→ R given by:

f (x, y) = (x + y− 2)(xy)−λ−1.

(1) and (2). If λ ≤ −1, then −λ− 1 ≥ 0 and f is a strictly increasing function in each
variable, and so,

(2δ− 2)δ−2λ−2 ≤ f (x, y) ≤ (2Δ− 2)Δ−2λ−2.

The equality in the lower (respectively, upper) bound is attained if and only if (x, y) =
(δ, δ) (respectively, (x, y) = (Δ, Δ)).

If δ = 1, then f (x, y) ≥ f (1, 2) = 2−λ−1, since x ∈ [1, Δ] and y ∈ [2, Δ], and the
equality in this inequality is attained if and only if (x, y) = (1, 2).

If λ = β/α, then:

(2δ− 2)αδ−2β−2α
(
dudv

)β ≤
( du + dv − 2

dudv

)α ≤ (2Δ− 2)αΔ−2β−2α
(
dudv

)β

for every uv ∈ E(G) and, consequently,

(2δ− 2)αδ−2α−2βRβ(G) ≤ ABCα(G) ≤ (2Δ− 2)αΔ−2α−2βRβ(G).

The previous argument shows that the equality in the upper bound is attained if and
only if du = dv = Δ for every uv ∈ E(G), i.e., G is regular. If δ > 1, then the equality in the
lower bound is attained if and only if du = dv = δ for every uv ∈ E(G), i.e., G is regular.

If λ = β/α and δ = 1, then:

2−β−α
(
dudv

)β ≤
( du + dv − 2

dudv

)α

for every uv ∈ E(G) and, consequently,

2−α−βRβ(G) ≤ ABCα(G).

The equality in this bound is attained if and only if {du, dv} = {1, 2} for every
uv ∈ E(G), i.e., G is a union of path graphs P3.

(3) and (4). In what follows, by symmetry, we can assume that x ≤ y. We have:

∂ f
∂y

(x, y) = x−λ−1(y−λ−1 + (x + y− 2)(−λ− 1)y−λ−2)
= x−λ−1y−λ−2(y + (x + y− 2)(−λ− 1)

)
.
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If −1 < λ ≤ −1/2, then −λ− 1 ≥ −1/2, and so,

∂ f
∂y

(x, y) ≥ x−λ−1y−λ−2
(

y− x + y− 2
2

)
= x−λ−1y−λ−2 y− x + 2

2
≥ x−λ−1y−λ−2 > 0.

Hence,
f (x, y) ≥ f (x, x) = (2x− 2)x−2λ−2 = g(x).

We have:
g′(x) = 2x−2λ−2 + (2x− 2)(−2λ− 2)x−2λ−3

= 2x−2λ−3(x + (x− 1)(−2λ− 2)
)

= 2x−2λ−3((−2λ− 1)x + 2λ + 2
)
.

Since 2λ + 2 > 0 and −2λ− 1 ≥ 0, we have:

g′(x) = 2x−2λ−3((−2λ− 1)x + 2λ + 2
)

≥ 2x−2λ−3(2λ + 2) > 0.

Thus, g(x) ≥ g(δ) and:

f (x, y) ≥ g(x) ≥ (2δ− 2)δ−2λ−2,

if δ ≥ 2.
If λ = β/α and δ > 1, then:

(2δ− 2)αδ−2β−2α
(
dudv

)β ≤
( du + dv − 2

dudv

)α

for every uv ∈ E(G) and, consequently,

(2δ− 2)αδ−2α−2βRβ(G) ≤ ABCα(G).

The previous argument shows that the equality in this bound is attained if and only if
du = dv = δ for every uv ∈ E(G), i.e., G is regular.

Assume that δ = 1. We proved that f (x, y) ≥ g(x) ≥ g(2) = 2−2λ−1 for every
x, y ∈ [2, Δ]. Since ∂ f /∂y(1, y) > 0 for every y ∈ [2, Δ], we have f (1, y) ≥ f (1, 2) = 2−λ−1

for every y ∈ [2, Δ]. Since λ < 0, we have 2−2λ−1 > 2−λ−1 and f (x, y) ≥ 2−λ−1 for every
x ∈ [1, Δ] ∩Z, y ∈ [2, Δ] ∩Z. Furthermore, the equality in this bound is attained if and only
if (x, y) = (1, 2).

If λ = β/α, then:

2−β−α
(
dudv

)β ≤
( du + dv − 2

dudv

)α

for every uv ∈ E(G) and, consequently,

2−α−βRβ(G) ≤ ABCα(G).

The equality in this bound is attained if and only if {du, dv} = {1, 2} for every
uv ∈ E(G), i.e., G is a union of path graphs P3.

(5). Assume now that λ > 0. Thus, −λ− 1 < −1 and:

∂ f
∂y

(x, y) = x−λ−1y−λ−2(y + (x + y− 2)(−λ− 1)
)

< x−λ−1y−λ−2(2− x),
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and:
∂ f
∂x

(x, y) < y−λ−1x−λ−2(2− y).

If δ > 1, then f is a strictly decreasing function in each variable, and so,

(2Δ− 2)Δ−2λ−2 ≤ f (x, y) ≤ (2δ− 2)δ−2λ−2. (1)

The equality in the lower (respectively, upper) bound is attained if and only if
(x, y) = (Δ, Δ) (respectively, (x, y) = (δ, δ)).

If β > 0 and λ = β/α, then:

(2Δ− 2)αΔ−2β−2α
(
dudv

)β ≤
( du + dv − 2

dudv

)α ≤ (2δ− 2)αδ−2β−2α
(
dudv

)β

for every uv ∈ E(G) and, consequently,

(2Δ− 2)αΔ−2α−2βRβ(G) ≤ ABCα(G) ≤ (2δ− 2)αδ−2α−2βRβ(G).

The equality in the lower bound is attained if and only if du = dv = Δ for every
uv ∈ E(G), i.e., G is regular. Furthermore, the equality in the upper bound is attained if
and only if du = dv = δ for every uv ∈ E(G), i.e., G is regular.

(6). Note that:

(Δ2

2

)λ+1
>

Δ2

2
≥ 2Δ− 2 ⇒ 2−λ−1 > (2Δ− 2)Δ−2λ−2. (2)

We also have:

Δλ+1 > Δ ≥ 2 ⇒ (Δ− 1)Δ−λ−1 > (2Δ− 2)Δ−2λ−2. (3)

Assume that δ = 1. If 2 ≤ x, y ≤ Δ, then f (x, y) ≤ f (2, 2) = 2−2λ−1. This inequality
and the lower bound in (1) give:

(2Δ− 2)Δ−2λ−2 ≤ f (x, y) ≤ 2−2λ−1, (4)

for every 2 ≤ x, y ≤ Δ.
Let us consider the function h(y) = f (1, y) = (y− 1)y−λ−1 with 2 ≤ y ≤ Δ. We have:

h′(y) = −λy−λ−1 + (λ + 1)y−λ−2 = y−λ−2(−λy + λ + 1),

and so, h strictly increases on (0, 1 + 1/λ) and strictly decreases on (1 + 1/λ, ∞).
If 1 + 1/λ ≥ Δ, then h strictly increases on (0, Δ] and:

2−λ−1 = h(2) ≤ h(y) ≤ h(Δ) = (Δ− 1)Δ−λ−1,

for every 2 ≤ y ≤ Δ. These inequalities and Equation (4) give:

min
{

2−λ−1, (2Δ− 2)Δ−2λ−2} ≤ f (x, y) ≤ max
{
(Δ− 1)Δ−λ−1, 2−2λ−1}.

for every x ∈ [1, Δ] ∩Z, y ∈ [2, Δ] ∩Z. Since we have in this case 2−λ−1 = h(2) ≤ h(Δ) =
(Δ− 1)Δ−λ−1, we conclude:

(Δ− 1)Δ−λ−1 ≤ max
{
(Δ− 1)Δ−λ−1, 2−2λ−1}

≤ max
{
(Δ− 1)Δ−λ−1, 2−λ−1} = (Δ− 1)Δ−λ−1.

Equation (2) gives:

min
{

2−λ−1, (2Δ− 2)Δ−2λ−2} = (2Δ− 2)Δ−2λ−2.

25



Mathematics 2021, 9, 1151

Hence,
(2Δ− 2)Δ−2λ−2 ≤ f (x, y) ≤ (Δ− 1)Δ−λ−1,

for every x ∈ [1, Δ] ∩ Z, y ∈ [2, Δ] ∩ Z. The equality in the lower (respectively, upper)
bound is attained if and only if (x, y) = (Δ, Δ) (respectively, (x, y) = (1, Δ)).

If β > 0 and λ = β/α, then we obtain:

(2Δ− 2)αΔ−2β−2α(dudv)
β ≤

(du + dv − 2
dudv

)α ≤ (Δ− 1)αΔ−β−α(dudv)
β,

(2Δ− 2)αΔ−2α−2βRβ(G) ≤ ABCα(G) ≤ (Δ− 1)αΔ−α−βRβ(G).

The equality in the lower bound is attained if and only if du = dv = Δ for every
uv ∈ E(G), i.e., G is regular. The equality in the upper bound is attained if and only if
{du, dv} = {1, Δ} for every uv ∈ E(G), i.e., G is a union of star graphs SΔ+1.

(7). If 1 + 1/λ ≤ 2, then h strictly decreases on [2, Δ] and:

(Δ− 1)Δ−λ−1 = h(Δ) ≤ h(y) ≤ h(2) = 2−λ−1,

for every 2 ≤ y ≤ Δ. These inequalities and Equation (4) give:

min
{
(Δ− 1)Δ−λ−1, (2Δ− 2)Δ−2λ−2} ≤ f (x, y) ≤ max

{
2−λ−1, 2−2λ−1},

for every x ∈ [1, Δ] ∩Z, y ∈ [2, Δ] ∩Z. Equation (3) gives:

(2Δ− 2)Δ−2λ−2 ≤ f (x, y) ≤ 2−λ−1,

for every x ∈ [1, Δ] ∩ Z, y ∈ [2, Δ] ∩ Z. The equality in the lower (respectively, upper)
bound is attained if and only if (x, y) = (Δ, Δ) (respectively, (x, y) = (1, 2)).

If β > 0 and λ = β/α, then we obtain for every uv ∈ E(G):

(2Δ− 2)αΔ−2β−2α(dudv)
β ≤

(du + dv − 2
dudv

)α ≤ 2−β−α(dudv)
β,

(2Δ− 2)αΔ−2α−2βRβ(G) ≤ ABCα(G) ≤ 2−α−βRβ(G).

The equality in the lower bound is attained if and only if du = dv = Δ for every
uv ∈ E(G), i.e., G is regular. The equality in the upper bound is attained if and only if
{du, dv} = {1, 2} for every uv ∈ E(G), i.e., G is a union of path graphs P3.

(8). If 2 < 1 + 1/λ < Δ, then:

h(y) ≥ min
{

h(2), h(Δ)
}
= min

{
2−λ−1, (Δ− 1)Δ−λ−1},

for every 2 ≤ y ≤ Δ. Furthermore,

h(y) ≤ h(1 + 1/λ) =
1
λ

(λ + 1
λ

)−λ−1
=

λλ

(λ + 1)λ+1 ,

for every 2 ≤ y ≤ Δ. These facts and (4) give:

min
{

2−λ−1, (Δ− 1)Δ−λ−1, (2Δ− 2)Δ−2λ−2} ≤ f (x, y)

≤ max
{ λλ

(λ + 1)λ+1 , 2−2λ−1
}

for every x ∈ [1, Δ] ∩Z, y ∈ [2, Δ] ∩Z.
Equations (2) and (3) give:

min
{

2−λ−1, (Δ− 1)Δ−λ−1, (2Δ− 2)Δ−2λ−2} = (2Δ− 2)Δ−2λ−2.
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Since h(2) ≤ h(1 + 1/λ), we obtain:

2−2λ−1 < 2−λ−1 ≤ λλ

(λ + 1)λ+1 ,

and so,

(2Δ− 2)Δ−2λ−2 ≤ f (x, y) ≤ λλ

(λ + 1)λ+1

for every x ∈ [1, Δ] ∩ Z, y ∈ [2, Δ] ∩ Z. The equality in the lower (respectively, upper)
bound is attained if and only if (x, y) = (Δ, Δ) (respectively, (x, y) = (1, 1 + 1/λ)).

If β > 0 and λ = β/α, then we obtain:

( λλ

(λ + 1)λ+1

)α
=

(β/α)β

(β/α + 1)β+α
=

ααββ

(α + β)α+β
,

and we have for every uv ∈ E(G):

(2Δ− 2)αΔ−2β−2α(dudv)
β ≤

(du + dv − 2
dudv

)α ≤ ααββ

(α + β)α+β
(dudv)

β,

(2Δ− 2)αΔ−2α−2βRβ(G) ≤ ABCα(G) ≤ ααββ

(α + β)α+β
Rβ(G).

The equality in the lower bound is attained if and only if du = dv = Δ for every
uv ∈ E(G), i.e., G is regular. The equality in the upper bound is attained if and only if
α/β ∈ Z+ and {du, dv} = {1, 1+ α/β} for every uv ∈ E(G), i.e., G is a union of star graphs
Sα/β+2.

Note that ABCα(G) is not well defined if α < 0 and G has an isolated edge. The
argument in the proof of Theorem 1 gives directly the following result for α < 0.

Theorem 2. Let G be a graph without isolated edges, with maximum degree Δ and minimum
degree δ, and α < 0, β ∈ R \ {0}.

(1) If β/α ≤ −1 and δ > 1, then:

(2Δ− 2)αΔ−2α−2βRβ(G) ≤ ABCα(G) ≤ (2δ− 2)αδ−2α−2βRβ(G).

The equality in each bound is attained if and only if G is a regular graph.
(2) If β/α ≤ −1 and δ = 1, then:

(2Δ− 2)αΔ−2α−2βRβ(G) ≤ ABCα(G) ≤ 2−α−βRβ(G).

The equality in the lower bound is attained if and only if G is a regular graph. The equality in
the upper bound is attained if and only if G is a union of path graphs P3.

(3) If −1 < β/α ≤ −1/2 and δ > 1, then:

ABCα(G) ≤ (2δ− 2)αδ−2α−2βRβ(G).

The equality in the bound is attained if and only if G is a regular graph.
(4) If −1 < β/α ≤ −1/2 and δ = 1, then:

ABCα(G) ≤ 2−α−βRβ(G).

The equality in the bound is attained if and only if G is a union of path graphs P3.
(5) If β < 0 and δ > 1, then:

(2δ− 2)αδ−2α−2βRβ(G) ≤ ABCα(G) ≤ (2Δ− 2)αΔ−2α−2βRβ(G).
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The equality in each bound is attained if and only if G is a regular graph.

(6) If β < 0, δ = 1 and 1 + α/β ≥ Δ, then:

(Δ− 1)αΔ−α−βRβ(G) ≤ ABCα(G) ≤ (2Δ− 2)αΔ−2α−2βRβ(G).

The equality in the lower bound is attained if and only if G is a union of star graphs SΔ+1.
The equality in the upper bound is attained if and only if G is a regular graph.

(7) If β < 0, δ = 1 and 1 + α/β ≤ 2, then:

2−α−βRβ(G) ≤ ABCα(G) ≤ (2Δ− 2)αΔ−2α−2βRβ(G).

The equality in the lower bound is attained if and only if G is a union of path graphs P3. The
equality in the upper bound is attained if and only if G is a regular graph.

(8) If β < 0, δ = 1 and 2 < 1 + α/β < Δ, then:

|α|α|β|β
|α + β|α+β

Rβ(G) ≤ ABCα(G) ≤ (2Δ− 2)αΔ−2α−2βRβ(G).

The equality in the lower bound is attained if and only if α/β ∈ Z+ and G is a union of star
graphs Sα/β+2. The equality in the upper bound is attained if and only if G is a regular graph.

Note that Theorems 1 and 2 generalize the classical inequalities:

2
√

δ− 1 R(G) ≤ ABC(G) ≤ 2
√

Δ− 1 R(G). (5)

Theorem 1 has the following consequence.

Corollary 1. Let G be a graph with minimum degree δ and m2 isolated edges.

(1) If δ > 1, then:

2

√
1− 1

δ
R−1/4(G) ≤ ABC(G).

The equality in the bound is attained if and only if G is a regular graph.

(2) If δ = 1, then
21/4(R−1/4(G)−m2

) ≤ ABC(G).

The equality in the bound is attained if and only if G is a union of path graphs P3 and m2
isolated edges.

Corollary 1 improves the inequality:

2
(

1− 1√
δ

)
R−1/4(G) ≤ ABC(G)

in ([21], Theorem 2.5).

In [22], Lemma 4, the following result appeared.

Lemma 1. Let (X, μ) be a measure space and f , g : X → R measurable functions. If there exist
positive constants ω, Ω with ω|g| ≤ | f | ≤ Ω|g| μ-a.e., then:

‖ f ‖2‖g‖2 ≤ 1
2

(√
Ω
ω

+

√
ω

Ω

)
‖ f g‖1. (6)

If these norms are finite, the equality in the bound is attained if and only if ω = Ω and
| f | = ω|g| μ-a.e. or f = g = 0 μ-a.e.
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We need the following converse Hölder inequality, which is interesting on its own.
This result generalizes Lemma 1 and improves the inequality in [23] (Theorem 2).

Theorem 3. Let (X, μ) be a measure space, f , g : X → R measurable functions, and 1 < p, q < ∞
with 1/p + 1/q = 1. If there exist positive constants a, b with a|g|q ≤ | f |p ≤ b|g|q μ-a.e., then:

‖ f ‖p‖g‖q ≤ Kp(a, b)‖ f g‖1, (7)

with:

Kp(a, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
p

( a
b

)1/(2q)
+

1
q

( b
a

)1/(2p)
, if 1 < p < 2,

1
p

( b
a

)1/(2q)
+

1
q

( a
b

)1/(2p)
, if p ≥ 2.

If these norms are finite, the equality in the bound is attained if and only if a = b and
| f |p = a|g|q μ-a.e. or f = g = 0 μ-a.e.

Remark 1. Since:

K2(a, b) =
1
2

( b
a

)1/4
+

1
2

( a
b

)1/4
,

Theorem 3 generalizes Lemma 1 (note that a = ω2 and b = Ω2).

Proof. If p = 2, then Lemma 1 (with ω = a1/2 and Ω = b1/2) gives the result. Assume
now p �= 2, and let us define:

kp(a, b) = max
{ 1

p

( a
b

)1/(2q)
+

1
q

( b
a

)1/(2p)
,

1
p

( b
a

)1/(2q)
+

1
q

( a
b

)1/(2p) }
.

We will check at the end of the proof that kp(a, b) = Kp(a, b).
Let us consider t ∈ (0, 1) and define:

Gt(x) := tx1−t + (1− t)x−t

for x > 0. Since:

G′
t(x) = t(1− t)x−t − t(1− t)x−t−1 = t(1− t)x−t−1(x− 1),

Gt is strictly decreasing on (0, 1) and strictly increasing on (1, ∞). Thus, if 0 < s ≤ S are
two constants and we consider s ≤ x ≤ S, then:

Gt(x) ≤ max{Gt(s), Gt(S)} =: A,

and if Gt(x) = A for some s ≤ x ≤ S, then x = s or x = S.
Note that if Gt(s) �= Gt(S), the following facts hold: if Gt(s) > Gt(S) and

Gt(x) = A = Gt(s), then x = s; if Gt(s) < Gt(S) and Gt(x) = A = Gt(S), then x = S.
If x1, x2 > 0 and sx2 ≤ x1 ≤ Sx2, then:

t
( x1

x2

)1−t
+ (1− t)

( x2

x1

)t ≤ A,

tx1 + (1− t)x2 ≤ Axt
1x1−t

2 .

By continuity, this last inequality holds for every x1, x2 ≥ 0 with sx2 ≤ x1 ≤ Sx2. If
the equality is attained for some x1, x2 ≥ 0 with sx2 ≤ x1 ≤ Sx2, then x1 = sx2 or x1 = Sx2
(the cases x1 = 0 and x2 = 0 are direct).
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Choose t = 1/p (thus, 1− t = 1/q), x = xt
1 = x1/p

1 and y = x1−t
2 = x1/q

2 . Thus,

xp

p
+

yq

q
≤ Axy (8)

for every x, y ≥ 0 with syq ≤ xp ≤ Syq. If the equality is attained for some x, y ≥ 0 with
syq ≤ xp ≤ Syq, then xp = syq or xp = Syq.

If ‖ f ‖p = 0 or ‖g‖q = 0, then a|g|q ≤ | f |p ≤ b|g|q μ-a.e. gives ‖ f ‖p = ‖g‖q = 0,
and the equality in (7) holds. Assume now that ‖ f ‖p �= 0 �= ‖g‖q.

Let us define the function:
h := (ab)1/(2q)|g|.

We have:√
a
b

hq = a|g|q,

√
b
a

hq = b|g|q,
√

a
b

hq ≤ | f |p ≤
√

b
a

hq.

If x = | f |, y = h, s = (a/b)1/2, and S = (b/a)1/2, then shq ≤ | f |p ≤ Shq and (8) gives:

1
p
| f |p + 1

q
hq ≤ A| f |h.

If the equality in this inequality is attained at some point, then:

| f |p =

√
a
b

hq or | f |p =

√
b
a

hq

at that point.
Note that:

G1/p(x) =
1
p

x1/q +
1
q

( 1
x

)1/p

and so,

A = max{Gt(s), Gt(S)} = max
{

G1/p
(
(a/b)1/2 ), G1/p

(
(b/a)1/2 )} = kp(a, b).

Hence,
1
p
| f |p + 1

q
hq ≤ kp(a, b)| f |h,

1
p
‖ f ‖p

p +
1
q
‖h‖q

q ≤ kp(a, b)‖ f h‖1.

Recall that these norms are well defined, although they can be infinite.
If these norms are finite and the equality in the last inequality is attained, then:

| f |p =

√
a
b

hq or | f |p =

√
b
a

hq

μ-a.e. Young’s inequality states that:

xy ≤ xp

p
+

yq

q

for every x, y ≥ 0, and the equality holds if and only if xp = yq. Thus,

‖ f ‖p‖h‖q ≤ 1
p
‖ f ‖p

p +
1
q
‖h‖q

q ≤ kp(a, b)‖ f h‖1.
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Therefore, by homogeneity, we conclude:

‖ f ‖p‖g‖q ≤ kp(a, b)‖ f g‖1.

Let us prove now that kp(a, b) = Kp(a, b). Consider the function Ht(x) := Gt(x)−
Gt(1/x) for t ∈ (0, 1) and x ∈ (0, 1]. We have:

H′
t(x) = G′

t(x) +
1
x2 G′

t

( 1
x

)
= t(1− t) x−t−1(x− 1) + t(1− t)

1
x2 xt+1

( 1
x
− 1

)
= t(1− t) x−t−1(x− 1) + t(1− t) xt−2(1− x)

= t(1− t)(1− x) x−t−1(x2t−1 − 1).

If t ∈ (0, 1/2), then 2t− 1 < 0 and H′
t(x) > 0 for every x ∈ (0, 1), and so, Ht(x) <

Ht(1) = 0 for every x ∈ (0, 1). Hence, Gt(x) < Gt(1/x) for every x ∈ (0, 1). If p > 2 and
a < b, then G1/p

(
(a/b)1/2 ) < G1/p

(
(b/a)1/2 ), and:

kp(a, b) =
1
p

( b
a

)1/(2q)
+

1
q

( a
b

)1/(2p)
.

If t ∈ (1/2, 1), then 2t− 1 > 0 and H′
t(x) < 0 for every x ∈ (0, 1), and so, Ht(x) >

Ht(1) = 0 for every x ∈ (0, 1). Hence, Gt(x) > Gt(1/x) for every x ∈ (0, 1). If 1 < p < 2
and a < b, then G1/p

(
(a/b)1/2 ) > G1/p

(
(b/a)1/2 ), and:

kp(a, b) =
1
p

( a
b

)1/(2q)
+

1
q

( b
a

)1/(2p)
.

Therefore, kp(a, b) = Kp(a, b).

If a = b and | f |p = a|g|q μ-a.e. or f = g = 0 μ-a.e., then a computation gives that the
equality in (7) is attained.

Finally, assume that the equality in (7) is attained. Seeking for a contradiction, assume
that a �= b. The previous argument gives that:

| f |p =

√
a
b

hq or | f |p =

√
b
a

hq

μ-a.e. Since we proved G1/p
(
(a/b)1/2 ) �= G1/p

(
(b/a)1/2 ) (recall that p �= 2 and a < b),

we can conclude that:

| f |p =

√
a
b

hq μ-a.e. or | f |p =

√
b
a

hq μ-a.e.

Hence,

‖ f ‖p
p =

√
a
b
‖h‖q

q or ‖ f ‖p
p =

√
b
a
‖h‖q

q.

Since the equality in Young’s inequality gives ‖ f ‖p
p = ‖h‖q

q, we obtain a = b, a contra-
diction. Therefore, a = b and | f |p = hq μ-a.e. Hence, | f |p = a |g|q μ-a.e.

Theorem 3 has the following consequence.
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Corollary 2. If 1 < p, q < ∞ with 1/p+ 1/q = 1, xj, yj ≥ 0 and ayq
j ≤ xp

j ≤ byq
j for 1 ≤ j ≤ k

and some positive constants a, b, then:

( k

∑
j=1

xp
j

)1/p( k

∑
j=1

yq
j

)1/q ≤ Kp(a, b)
k

∑
j=1

xjyj,

where Kp(a, b) is the constant in Theorem 3. If xj > 0 for some 1 ≤ j ≤ k, then the equality in the
bound is attained if and only if a = b and xp

j = ayq
j for every 1 ≤ j ≤ k.

The Platt number is defined (see, e.g., [24]) as:

F(G) = ∑
uv∈E(G)

(
du + dv − 2

)
.

Theorem 4. Let G be a graph with m2 isolated edges and 0 < α < 1.

(1) Then:
ABCα(G) ≤ F(G)α

(
R−α/(1−α)(G)−m2

)1−α.

The equality in this bound is attained for the union of any regular or biregular graph and m2
isolated edges; if G is the union of a connected graph and m2 isolated edges, then the equality in this
bound is attained if and only if G is the union of any regular or biregular connected graph and m2
isolated edges.

(2) If δ > 1, then:

ABCα(G) ≥ (Δ− 1)α/2Δα2/(1−α)(δ− 1)(1−α)/2δαF(G)αR−α/(1−α)(G)1−α

α(Δ− 1)1/2Δα/(1−α) + (1− α)(δ− 1)1/2δα/(1−α)
,

if α ∈ (0, 1/2], and:

ABCα(G) ≥ (δ− 1)α/2δα2/(1−α)(Δ− 1)(1−α)/2ΔαF(G)αR−α/(1−α)(G)1−α

α(δ− 1)1/2δα/(1−α) + (1− α)(Δ− 1)1/2Δα/(1−α)
,

if α ∈ (1/2, 1). The equality in these bounds is attained if and only if G is regular.

(3) If δ = 1, then:

ABCα(G) ≥ 2α(Δ− 1)α/2Δα2/(1−α)F(G)α
(

R−α/(1−α)(G)−m2
)1−α

α(2Δ− 2)1/2Δα/(1−α) + (1− α)2α/(2−2α)
,

if α ∈ (0, 1/2], and:

ABCα(G) ≥ 2α2/(2−2α)Δα(2Δ− 2)(1−α)/2F(G)α
(

R−α/(1−α)(G)−m2
)1−α

α2α/(2−2α) + (1− α)(2Δ− 2)1/2Δα/(1−α)
,

if α ∈ (1/2, 1).

Proof. Since ABCα(P2) = 0 and Rβ(P2) = 1, it suffices to prove the theorem for the case
m2 = 0, i.e., when G is a graph without isolated edges. Hence, Δ ≥ 2.
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Hölder’s inequality gives:

ABCα(G) = ∑
uv∈E(G)

( du + dv − 2
dudv

)α

≤
(

∑
uv∈E(G)

(
(du + dv − 2)α

)1/α
)α(

∑
uv∈E(G)

( 1
(dudv)α

)1/(1−α))1−α

=
(

∑
uv∈E(G)

(
du + dv − 2

))α(
∑

uv∈E(G)

(
dudv

)−α/(1−α)
)1−α

= F(G)αR−α/(1−α)(G)1−α.

If G is a regular or biregular graph with m edges, then:

F(G)αR−α/(1−α)(G)1−α =
(
(Δ + δ− 2)m

)α(
(Δδ)−α/(1−α)m

)1−α

=
(Δ + δ− 2)α

(Δδ)α
m = ABCα(G).

Assume that G is connected and that the equality in the first inequality is attained.
Hölder’s inequality gives that there exists a constant c with:

du + dv − 2 = c(dudv)
−α/(1−α)

for every uv ∈ E(G). Note that the function H : [1, ∞) × [1, ∞) → [0, ∞) given by
H(x, y) = (x + y− 2)(xy)α/(1−α) is increasing in each variable. If uv, uw ∈ E(G), then:

c = (du + dv − 2)(dudv)
α/(1−α) = (du + dw − 2)(dudw)

α/(1−α)

implies dw = dv. Thus, for each vertex u ∈ V(G), every neighbor of u has the same degree.
Since G is a connected graph, this holds if and only if G is regular or biregular.

Assume now that δ > 1. If α ∈ (0, 1/2], then:

K1/α

(
(2δ− 2)δ2α/(1−α), (2Δ− 2)Δ2α/(1−α)

)
= α

(Δ− 1
δ− 1

)(1−α)/2(Δ
δ

)α
+ (1− α)

( δ− 1
Δ− 1

)α/2( δ

Δ

)α2/(1−α)

=
α(Δ− 1)(1−α)/2Δα(Δ− 1)α/2Δα2/(1−α) + (1− α)(δ− 1)α/2δα2/(1−α)(δ− 1)(1−α)/2δα

(Δ− 1)α/2Δα2/(1−α)(δ− 1)(1−α)/2δα

=
α(Δ− 1)1/2Δα/(1−α) + (1− α)(δ− 1)1/2δα/(1−α)

(Δ− 1)α/2Δα2/(1−α)(δ− 1)(1−α)/2δα
.

If α ∈ (1/2, 1), then a similar computation gives:

K1/α

(
(2δ− 2)δ2α/(1−α), (2Δ− 2)Δ2α/(1−α)

)
=

α(δ− 1)1/2δα/(1−α) + (1− α)(Δ− 1)1/2Δα/(1−α)

(δ− 1)α/2δα2/(1−α)(Δ− 1)(1−α)/2Δα
.

Since:

(2δ− 2)δ2α/(1−α) ≤ (du + dv − 2)(dudv)
α/(1−α) =

du + dv − 2
(dudv)−α/(1−α)

≤ (2Δ− 2)Δ2α/(1−α),
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Corollary 2 gives:

ABCα(G) = ∑
uv∈E(G)

( du + dv − 2
dudv

)α

≥
(

∑uv∈E(G)

(
du + dv − 2

))α(
∑uv∈E(G)

(
dudv

)−α/(1−α)
)1−α

K1/α

(
(2δ− 2)δ2α/(1−α), (2Δ− 2)Δ2α/(1−α)

)
=

F(G)αR−α/(1−α)(G)1−α

K1/α

(
(2δ− 2)δ2α/(1−α), (2Δ− 2)Δ2α/(1−α)

) .

This gives the second and third inequalities.
If the graph is regular, then:

F(G)αR−α/(1−α)(G)1−α

K1/α

(
(2δ− 2)δ2α/(1−α), (2Δ− 2)Δ2α/(1−α)

)
=

(
(2δ− 2)m

)α(
δ−2α/(1−α)m

)1−α

K1/α

(
(2δ− 2)δ2α/(1−α), (2δ− 2)δ2α/(1−α)

)
=

(2δ− 2)α

δ2α
m = ABCα(G).

If we have the equality in the second or third inequality, then Corollary 2 gives
(2δ − 2)δ2α/(1−α) = (2Δ − 2)Δ2α/(1−α). Since the function h(t) = (2t − 2)t2α/(1−α) is
strictly increasing on [1, ∞), we conclude that δ = Δ and G is regular.

Finally, assume that δ = 1. If α ∈ (0, 1/2], then:

K1/α

(
2α/(1−α), (2Δ− 2)Δ2α/(1−α)

)
= α (2Δ− 2)(1−α)/2

( Δ
21/2

)α
+ (1− α)

( 1
2Δ− 2

)α/2(21/2

Δ

)α2/(1−α)

=
α(2Δ− 2)(1−α)/2Δα(2Δ− 2)α/2Δα2/(1−α) + (1− α)2α2/(2−2α)2α/2

(2Δ− 2)α/2Δα2/(1−α)2α/2

=
α(2Δ− 2)1/2Δα/(1−α) + (1− α)2α/(2−2α)

2α(Δ− 1)α/2Δα2/(1−α)
.

If α ∈ (1/2, 1), then a similar computation gives:

K1/α

(
2α/(1−α), (2Δ− 2)Δ2α/(1−α)

)
=

α2α/(2−2α) + (1− α)(2Δ− 2)1/2Δα/(1−α)

2α2/(2−2α)Δα(2Δ− 2)(1−α)/2
.

Since:
2α/(1−α) ≤ (du + dv − 2)(dudv)

α/(1−α) =
du + dv − 2

(dudv)−α/(1−α)

≤ (2Δ− 2)Δ2α/(1−α),
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Corollary 2 gives:

ABCα(G) = ∑
uv∈E(G)

( du + dv − 2
dudv

)α

≥
(

∑uv∈E(G)

(
du + dv − 2

))α(
∑uv∈E(G)

(
dudv

)−α/(1−α)
)1−α

K1/α

(
2α/(1−α), (2Δ− 2)Δ2α/(1−α)

)
=

F(G)αR−α/(1−α)(G)1−α

K1/α

(
2α/(1−α), (2Δ− 2)Δ2α/(1−α)

) .

This gives the fourth and fifth inequalities.

Theorem 4 has the following consequence.

Corollary 3. Let G be a graph with m2 isolated edges.

(1) Then:
ABC(G) ≤

√
2F(G)

(
R−1(G)−m2

)
.

The equality in this bound is attained for the union of any regular or biregular graph and m2
isolated edges; if G is the union of a connected graph and m2 isolated edges, then the equality in this
bound is attained if and only if G is the union of any regular or biregular connected graph and m2
isolated edges.

(2) If δ > 1, then:

ABC(G) ≥ 2
√

2Δδ (Δ− 1)1/4(δ− 1)1/4F(G)1/2R−1(G)1/2

Δ
√

Δ− 1 + δ
√

δ− 1
.

The equality in this bound is attained if and only if G is regular.

(3) If δ = 1, then:

ABC(G) ≥ 2
√

2Δ (Δ− 1)1/4F(G)1/2(R−1(G)−m2
)1/2

Δ
√

Δ− 1 + 1
.

Theorem 5. If G is a graph with m edges and m2 isolated edges and α ∈ R, then:

ABCα(G) ≤ (m−m2 − 1)α
(

R−α(G)−m2
)
, if α > 0,

ABCα(G) ≥ (m− 1)αR−α(G), if α < 0 and m2 = 0.

The equality in the first bound is attained if and only if G is the union of a star graph and m2
isolated edges. The equality in the second bound is attained if and only if G is a star graph.

Proof. Since ABCα(P2) = 0 and Rβ(P2) = 1, it suffices to prove the theorem for the case
m2 = 0, i.e., when G is a graph without isolated edges.

In any graph, the inequality du + dv ≤ m + 1 holds for every uv ∈ E(G). If α > 0, then:(
du+dv−2

dudv

)α

(
1

dudv

)α = (du + dv − 2)α ≤ (m− 1)α,

(
du + dv − 2

dudv

)α

≤ (m− 1)α(dudv)
−α,

ABCα(G) ≤ (m− 1)αR−α(G).

If α < 0, then we obtain the converse inequality.
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If G is a star graph, then du + dv = m + 1 for every uv ∈ E(G), and the equality is
attained for every α.

If the equality is attained in some inequality, then the previous argument gives that
du + dv = m + 1 for every uv ∈ E(G). In particular, G is a connected graph. If m = 2,
then {du, dv} = {1, 2} for every uv ∈ E(G), and so, G = P3 = S3. Assume now m ≥ 3.
Seeking for a contradiction, assume that {du, dv} �= {m, 1} for some uv ∈ E(G). Since
du + dv = m + 1, we have 2 ≤ du, dv ≤ m− 1, and so, there exist two different vertices
u′, v′ ∈ V(G) \ {u, v} with uu′, vv′ ∈ E(G). Since vv′ is not incident on u and u′, we have
du + du′ < m + 1, a contradiction. Hence, {du, dv} = {m, 1} for every uv ∈ E(G), and so,
G is a star graph.

Corollary 4. If G is a graph with m edges and m2 isolated edges, then:

ABC(G) ≤
√

2(m−m2 − 1)
(

R(G)−m2
)
,

and the equality is attained if and only if G is the union of a star graph and m2 isolated edges.

Note that Theorem 5 (and Corollary 4) improves Items (1) and (2) in Theorems 1 and
2 for many graphs (when m < 2Δ− 1).

3. Conclusions

Topological indices have become a useful tool for the study of theoretical and practical
problems in different areas of science. An important line of research associated with
topological indices is to find optimal bounds and relations between known topological
indices, in particular to obtain bounds for the topological indices associated with invariant
parameters of a graph (see [1]).

From the theoretical point of view in this research, a new type of Hölder converse
inequality was proposed (Theorem 3 and Corollary 2). From the practical point of view,
this inequality was successfully applied to establish new relationships of the generaliza-
tions of the indexes ABC and R; in particular, it was applied to prove Theorem 4 and
Corollary 3. In addition, other new relationships were obtained between these indices
(Theorems 1, 2, and 5) that generalized and improved already known results.
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Abstract: An edge labeling of a graph G = (V, E) using every label from the set {1, 2, . . . , |E(G)|}
exactly once is a local antimagic labeling if the vertex-weights are distinct for every pair of neighboring
vertices, where a vertex-weight is the sum of labels of all edges incident with that vertex. Any local
antimagic labeling induces a proper vertex coloring of G where the color of a vertex is its vertex-weight.
This naturally leads to the concept of a local antimagic chromatic number. The local antimagic
chromatic number is defined to be the minimum number of colors taken over all colorings of G
induced by local antimagic labelings of G. In this paper, we estimate the bounds of the local antimagic
chromatic number for disjoint union of multiple copies of a graph.

Keywords: local antimagic labeling; local antimagic chromatic number; copies of graphs

MSC: 05C78; 05C69

1. Introduction

In this paper, we will consider only finite graphs without loops or multiple edges.
For graph theoretic terminology we refer to the book by Chartrand and Lesniak [1].

An antimagic labeling of a graph G = (V, E) is a bijection f from the set of edges of G
to the integers {1, 2, . . . , |E(G)|} such that all vertex-weights are pairwise distinct, where a
vertex-weight is the sum of labels of all edges incident with that vertex, i.e., for the vertex
u ∈ V(G) the weight wt(u) = ∑

uv∈E(G)
f (uv). A graph is called antimagic if it admits an

antimagic labeling.
The concept of antimagic labeling was introduced by Hartsfield and Ringel [2] who

conjectured that every simple connected graph, other than K2, is antimagic. This conjecture
is still open although for some special classes of graphs it was proved, see for instance [3–8].
Alon et al. [9] proved that large dense graphs are antimagic. Hefetz et al. [10] proved that
any graph on pk vertices that admits a Cp-factor, where p is an odd prime and k is a positive
integer, is antimagic. Perhaps the most remarkable result to date is the proof for regular
graphs of odd degree given by Cranston et al. in [11], which was subsequently adapted to
regular graphs of even degree by Bércz et al. in [12] and by Chang et al. in [13].

Recently, two groups of authors in [14,15] independently introduced a local antimagic
labeling as local version of the Hartsfield and Ringel’s concept of antimagic labeling. An
edge labeling using every label from the set {1, 2, . . . , |E(G)|} exactly once is a local antimagic
labeling if the vertex-weights wt(u) and wt(v) are distinct for every pair of neighboring
vertices u, v.

In [14] authors conjectured that any connected graph other than K2 admits a local
antimagic labeling. Bensmail et al. [15] propose the slightly stronger form of the previous
conjecture that every graph without component isomorphic to K2 has a local antimagic
labeling. This conjecture was proved by Haslegrave [16] using the probabilistic method.

Mathematics 2021, 9, 1230. https://doi.org/10.3390/math9111230 https://www.mdpi.com/journal/mathematics39
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Any local antimagic labeling induces a proper vertex coloring of G where the vertex-
weight wt(u) is the color of u. This naturally leads to the concept of a local antimagic
chromatic number introduced in [14]. The local antimagic chromatic number χla(G) is defined
to be the minimum number of colors taken over all colorings of G induced by local antimagic
labelings of G.

For any graph G, χla(G) ≥ χ(G), where χ(G) is the chromatic number of G as the min-
imum number of colors needed to produce a proper coloring of G. In [14] is investigated
the local antimagic chromatic number for paths, cycles, friendship graphs, wheels and
complete bipartite graphs. Moreover, there is proved that for any tree T with l leaves
χla(T) ≥ l + 1.

In this paper, we investigate the local antimagic chromatic number for disjoint union
of multiple copies of a graph G, denoted by mG, m ≥ 1, and we present some estimations
of this parameter.

Please note that G does not have to be necessarily connected. By the symbol xi
we denote the element (vertex or edge) corresponding to the element (vertex or edge) x
in the ith copy of G in mG, i = 1, 2, . . . , m.

2. Graphs with Vertices of Even Degrees

A graph G is called equally 2-edge colorable if it is possible to color its edges with two
colors c1, c2 such that for every vertex v ∈ V(G) the number of edges incident to the vertex
v colored with color c1 is the same as the number of edges incident to the vertex v colored
with color c2. This means that for any vertex v ∈ V(G) is n1(v) = n2(v), where ni(v)
denotes the number of edges incident to the vertex v and colored with color ci, i = 1, 2.
Trivially, if a graph G is equally 2-edge colorable then all vertices in G have even degrees.

Consider that G is an even regular graph. Then there exists an Euler circle in G.
If we alternatively color the edges in the Euler circle with colors c1 and c2 we obtain that
either for every vertex v in G holds n1(v) = n2(v), or there exists exactly one vertex in G,
say w, such that n1(w) = n2(w) + 2.

Consider a 2-edge coloring c of a graph G. Let c(G) denote the number of vertices in G
such that n1

c (v) �= n2
c (v) under the labeling c. In this case we say that c is a c(G)-equally

2-edge coloring of G.
Let c be any 2-edge coloring of G. Let f be any bijective mapping in G, f : E(G) →

{1, 2, . . . , |E(G)|}. We define an edge labeling g of mG, m ≥ 1 in the following way

g(ei) =

{
m( f (e)− 1) + i, if c(e) = c1 and i = 1, 2, . . . , m,
m f (e) + 1− i, if c(e) = c2 and i = 1, 2, . . . , m.

If an edge in G is labeled with the number t, 1 ≤ t ≤ |E(G)|, then the corresponding
edges in mG are labeled with numbers from the set {m(t− 1) + 1, m(t− 1) + 2, . . . , mt}.
Thus we immediately obtain that the labeling g is a bijective mapping that assigns numbers
1, 2, . . . , m|E(G)| to the edges of mG.

Moreover, for the weight of the vertex vi, i = 1, 2, . . . , m, in mG under the labeling g
we obtain the following

wtg(vi) = ∑
uv∈E(G)

g(uivi) = ∑
uv∈E(G): c(uv)=c1

g(uivi) + ∑
uv∈E(G): c(uv)=c2

g(uivi)

= ∑
uv∈E(G): c(uv)=c1

(
m( f (uv)− 1) + i

)
+ ∑

uv∈E(G): c(uv)=c2

(
m f (uv) + 1− i

)
=m ∑

uv∈E(G): c(uv)=c1

f (uv) + (i−m)n1
c (v)

+ m ∑
uv∈E(G): c(uv)=c2

f (uv) + (1− i)n2
c (v)

=m ∑
uv∈E(G)

f (uv) + (i−m)n1
c (v) + (1− i)n2

c (v)
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=m · wt f (v) + (i−m)n1
c (v) + (1− i)n2

c (v).

Thus, for every vertex v ∈ V(G) such that n1
c (v) = n2

c (v) = deg(v)/2 we obtain

wtg(vi) = m · wt f (v) +
(1−m)deg(v)

2
(1)

for i = 1, 2, . . . , m. This means that the corresponding vertices in different copies have the same
weights. Summarizing the previous we obtain the following lemma that will be used later.

Lemma 1. Let G be a graph and let c be a 2-edge coloring of G and let f , f : E(G) →
{1, 2, . . . , |E(G)|}, be a bijection. Let m, m ≥ 1, be a positive integer. Then there exists an edge
labeling g of mG such that the weights of vertices vi, i = 1, 2, . . . , m, corresponding to the vertex
v ∈ V(G) satisfying n1

c (v) = n2
c (v) = deg(v)/2 will be the same.

Immediately from the previous result we obtain the following theorem for equally
2-edge colorable graphs.

Theorem 1. Let m be a positive integer. Let G be an equally 2-edge colorable graph and let
f be a local vertex antimagic edge labeling of G that uses χla(G) colors. Let for every edge
uv ∈ E(G) be

mwt f (v) +
(1−m)deg(v)

2 �= mwt f (u) +
(1−m)deg(u)

2 .

Then
χla(mG) ≤ χla(G).

Proof. Let f be a local vertex antimagic edge labeling of G that uses χla(G) colors. Let c
be an equally 2-edge coloring of G. This means that for every vertex v ∈ V(G) is n1(v) =
n2(v) = deg(v)/2.
According to Lemma 1 and Equality (1) we obtain that there exists a labeling g of mG,
m ≥ 1, such that for every v ∈ V(G) and every i = 1, 2, . . . , m holds wtg(vi) = m ·wt f (v) +
(1− m)deg(v)/2. Thus, g is such labeling that the corresponding vertices in different
copies have the same weights. If for all adjacent vertices u, v ∈ V(G) holds

mwt f (v) +
(1−m)deg(v)

2 �= mwt f (u) +
(1−m)deg(u)

2 (2)

then also all adjacent vertices in mG have distinct weights.
Moreover, χla(mG) ≤ χla(G). This concludes the proof.

Note, if G is a regular graph then the condition (2) trivially holds. Results in the next
two theorems are based on the Petersen Theorem.

Proposition 1. (Petersen Theorem) Let G be a 2r-regular graph. Then there exists a 2-factor in G.

Notice that after removing edges of the 2-factor guaranteed by Petersen Theorem we have
again an even regular graph. Thus, by induction, an even regular graph has a 2-factorization.

Theorem 2. Let G be a 4r-regular graph, r ≥ 1. Then for every positive integer m

χla(mG) ≤ χla(G).

Proof. Let G be a 4r-regular graph. According to Petersen Theorem G is decomposable
into 2-factors F1, F2, . . . , F2r. Consider an edge coloring c of G defined such that

c(e) =

{
c1, if e ∈ E(Fj), j = 1, 2, . . . , r,
c2, if e ∈ E(Fj), j = r + 1, r + 2, . . . , 2r.
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Evidently, c is an equally 2-edge coloring of G. Thus, immediately according to Theorem 1
we obtain the desired result.

Theorem 3. Let G be a (4r + 2)-regular graph, r ≥ 0, containing a 2-factor consisting only from
even cycles. Then for every positive integer m

χla(mG) ≤ χla(G).

Proof. Let G be a (4r + 2)-regular graph containing a 2-factor consisting only from even
cycles. Denote this 2-factor by F1. Let us denote the edges in component F1 by the symbols
e1, e2, . . . , e|VG| arbitrarily in such a way that all cycles in F1 are of the form eses+1es+2 . . . es+t,
where s, t are odd integers. As all cycles in F1 are even, evidently every vertex in G
is incident with an edge in F1 with an even and also with an odd index.
According to Petersen Theorem the graph G− F1 is decomposable into 2-factors F2, F3, . . . ,
F2r+1. Consider an edge coloring c of G defined such that

c(e) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1, if e ∈ E(F1), e = e2i−1, i = 1, 2, . . . , |V(G)|
2 ,

or if e ∈ E(Fj), j = 2, 3, . . . , r + 1,

c2, if e ∈ E(F1), e = e2i, i = 1, 2, . . . , |V(G)|
2 ,

or if e ∈ E(Fj), j = r + 2, r + 3, . . . , 2r + 1.

It is easy to see that for every vertex v ∈ V(G) holds

n1(v) = n2(v) = 2r + 1.

This means that c is an equally 2-edge coloring of G. By Theorem 1 we obtain that
χla(mG) ≤ χla(G).

Corollary 1. Let n, m be positive integers, n ≥ 2, m ≥ 1. Then

χla(mC2n) = 3.

Proof. In [14] it was proved that χla(Ck) = 3 for every k ≥ 3. According to Theorem 3
we obtain that if k = 2n then for every positive integer m holds χla(mC2n) ≤ 3.
Now suppose there exists a local antimagic labeling f that induces a 2-coloring C of mC2n,
i.e., the set of the vertex weights consists of two numbers C1 and C2. As every edge label
contributes exactly once to the vertex weight of a vertex colored C1 we obtain

mn · C1 = 1 + 2 + · · ·+ 2nm.

However, every edge label contributes also exactly once to the vertex weight of a vertex
colored C2 thus

mn · C2 = 1 + 2 + · · ·+ 2nm.

A contradiction. Thus, χla(mC2n) ≥ 3.

Theorem 4. Let n, m be positive integers, n ≥ 1, m ≥ 1. Then

χla(mC2n+1) ≤ m + 2.

Proof. Let us denote the vertex set and the edge set of mC2n+1 such that V(C2n+1) =

{vj
i : i = 1, 2, . . . , 2n + 1, j = 1, 2, . . . , m} and E(C2n+1) = {vj

iv
j
i+1 : i = 1, 2, . . . , 2n, j =

1, 2, . . . , m} ∪ {vj
1vj

2n+1 : j = 1, 2, . . . , m}. Let ej
i = vj

iv
j
i+1, i = 1, 2, . . . , 2n, j = 1, 2, . . . , m

and let ej
2n+1 = vj

1vj
2n+1, j = 1, 2, . . . , m.
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We define an edge labeling f of mC2n+1 in the following way

f (ej
i) =

⎧⎨
⎩

m(i−1)
2 + j, if i = 1, 3, . . . , 2n + 1, j = 1, 2, . . . , m,

m
(

2n + 2− i
2

)
+ 1− j, if i = 2, 4, . . . , 2n, j = 1, 2, . . . , m.

For the weight of the vertex vj
i , i = 3, 5, . . . , 2n + 1, j = 1, 2, . . . , m we obtain

wt f (v
j
i) = f (ej

i−1) + f (ej
i) =

[
m
(

2n + 2− i−1
2

)
+ 1− j

]
+
[m(i−1)

2 + j
]
= m(2n + 2) + 1

and for i = 2, 4, . . . , 2n, j = 1, 2, . . . , m, we obtain

wt f (v
j
i) = f (ej

i−1) + f (ej
i) =

[m((i−1)−1)
2 + j

]
+
[
m
(

2n + 2− i
2

)
+ 1− j

]
=m(2n + 1) + 1.

The weight of the vertex vj
1, j = 1, 2, . . . , m, is

wt f (v
j
1) = f (ej

1) + f (ej
2n+1) =

[m(1−1)
2 + j

]
+
[m((2n+1)−1)

2 + j
]
= mn + 2j,

thus the weights are mn + 2, mn + 4, . . . , m(n + 2). Thus, all adjacent vertices have distinct
weights. Moreover we obtain χla(mC2n+1) ≤ m + 2.

Please note that a cycle C2n+1 is 1-equally 2-edge colorable. It is possible to gener-
alize the results from the previous section also for c(G)-equally 2-edge colorable graphs.
If we are able to guarantee that for every edge uv ∈ E(G) is

mwt f (u) + (i−m)n1
c (u)+(1− i)n2

c (u)

�= mwt f (v) + (i−m)n1
c (v) + (1− i)n2

c (v) (3)

then we can prove that

χla(mG) ≤ χla(G) + min{(m− 1)c(G) : c is a 2-edge coloring of G satisfying (3)}.

This condition is fulfilled for some graphs containing pendant vertices, thus also
for some trees.

Lemma 2. Let G be a graph with l leaves, l ≥ 0. Then

χla(G) ≥ l + 1.

Proof. The proof is similar to the proof in [14]. Let f be any local antimagic labeling of a graph
G. Then in the coloring induced by f , the color of a leaf v is f (uv), where uv ∈ E(G).
Hence all the leaves receive distinct colors. Moreover, for any non-leaf w incident with an
edge e with f (e) = |E(G)|, the color assigned to w is larger than |E(G)|. Hence the number
of colors in the coloring induced by f is at least l + 1.

Theorem 5. Let G be a graph without a component isomorphic to K2 such that all vertices in G
but leaves have the same even degree. If there exists a 2-edge coloring c of G such that for all vertices
v but leaves holds n1

c (v) = n2
c (v) = deg(v)/2, then

ml + 1 ≤ χla(mG) ≤ χla(G) + (m− 1)l,

where m is a positive integer and l is the number of leaves in G.
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Proof. Let G be a graph without a component isomorphic to K2 such that all its vertices
but leaves have the same even degree 2r. Let c be a 2-edge coloring of G such that for all
vertices v in G but leaves holds n1

c (v) = n2
c (v) = deg(v)/2 = r.

Let f be any local antimagic labeling of a graph G that uses χla(G) colors. Then using Equality
(1) we obtain that there exists an edge labeling g of mG, m ≥ 1, such that the weights of
non-leaf vertices vi, i = 1, 2, . . . , m, corresponding to a vertex v in G, are

wtg(vi) = m · wt f (v) + (1−m)r.

This means that the weights of corresponding non-leaf vertices in every copy of G are
the same. However, this also means that the adjacent non-leaf vertices in mG have dis-
tinct weights.

Now consider the edges wiui, i = 1, 2, . . . , m, where w is a leaf. For i = 1, 2, . . . , m
trivially holds

wtg(wi) = g(wiui) < ∑
uv∈E(G)

g(viui) = wtg(ui).

Which means that all adjacent vertices have distinct weights.
Combining the previous arguments we obtain

χla(mG) ≤ χla(G) + (m− 1)l.

The lower bound for χla(mG) follows from Lemma 2.

3. Trees

If the graph in Theorem 5 is a forest we immediately obtain the following result.

Theorem 6. Let T be a forest with no component isomorphic to K2 such that all vertices but leaves
have the same even degree. Then

ml + 1 ≤ χla(mT) ≤ χla(T) + (m− 1)l,

where m is a positive integer and l is the number of leaves in T.

Proof. Trivially, any graph containing K2 as a component cannot be local antimagic.
Let T be a forest with no component isomorphic to K2 such that all vertices but leaves
have the same even degree 2r. Clearly there exists a 2-edge coloring c of T such that for all
vertices v but leaves hold n1

c (v) = n2
c (v) = deg(v)/2 = r. Thus, according to Theorem 5

we are done.

Immediately from the previous theorem we obtain the result for copies of paths and
copies of some stars as χla(Pn) = 3 for n ≥ 3 and χla(K1,n) = n + 1 for n ≥ 2, see [14].

Corollary 2. Let Pn be a path on n vertices, n ≥ 3. Then for every positive integer m, m ≥ 1, holds

χla(mPn) = 2m + 1.

Corollary 3. Let K1,2n be a star, n ≥ 1. Then for every positive integer m, m ≥ 1, holds

χla(mK1,2n) = 2nm + 1.

Theorem 7. Let K1,2n+1 be a star, n ≥ 1. Then for every positive integer m, m ≥ 1, holds

χla(mK1,2n+1) =

{
(2n + 1)m + 1, if m is odd or if m is even and m ≥ n + 1,
(2n + 1)m + 2, if m is even and m < n + 1.
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Proof. Let us denote the vertices and the edges of mK1,2n+1 such that

V(mK1,2n+1) ={wi, vj
i : i = 1, 2, . . . , m, j = 1, 2, . . . , 2n + 1},

E(mK1,2n+1) ={wiv
j
i : i = 1, 2, . . . , m, j = 1, 2, . . . , 2n + 1}.

We consider two cases according to the parity of m.
Case 1: when m is odd.
We define an edge labeling g of mK1,2n+1 in the following way

g(wiv
j
i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i, if j = 1 and i = 1, 2, . . . , m,
3m+1

2 + i, if j = 2 and i = 1, 2, . . . , m−1
2 ,

m+1
2 + i, if j = 2 and i = m+1

2 , m+3
2 , . . . , m,

3m + 1− 2i, if j = 3 and i = 1, 2, . . . , m−1
2 ,

4m + 1− 2i, if j = 3 and i = m+1
2 , m+3

2 , . . . , m,
(j− 1)m + i, if j = 4, 5, . . . , n + 2 and i = 1, 2, . . . , m,
jm + 1− i, if j = n + 3, n + 4, . . . , 2n + 1 and i = 1, 2, . . . , m.

Evidently g is a bijection and the induced weights of the vertices wi, i = 1, 2, . . . , m, are

wtg(wi) =
2n+1

∑
j=1

g(wiv
j
i) =

(2n+1)(m(2n+1)+1)
2 .

As all vertices of degree 2n + 1 have the same weights and the weights of the leaves are
distinct we obtain χla(mK1,2n+1) ≤ (2n + 1)m + 1. The lower bound follows from Lemma 2.
Case 2: when m is even.
In this case consider a labeling f of mK1,2n+1 defined such that

f (wiv
j
i) =

{
j, if j = 1, 2, . . . , 2n + 1 and i = 1,

2n + 1 + g(wi−1vj
i−1), if j = 1, 2, . . . , 2n + 1 and i = 2, 3, . . . , m.

According to the properties of the labeling g, the labeling f is a bijective mapping that
assigns numbers 1, 2, . . . , m(2n + 1) to the edges of mK1,2n+1. The weights of vertices wi,
i = 2, 3, . . . , m, are all the same as

wt f (wi) =
2n+1

∑
j=1

f (wiv
j
i) =

2n+1

∑
j=1

[
2n + 1 + g(wi−1vj

i−1)
]
= (2n + 1)2 + (2n+1)(m(2n+1)+1)

2 .

The weight of the vertex w1 is

wt f (w1) =
2n+1

∑
j=1

f (w1vj
1) =

2n+1

∑
j=1

j = (n + 1)(2n + 1).

If the weight of the vertex w1 under the labeling f is the same as the weight of some leaf,
we obtain that χla(mK1,2n+1) ≤ (2n + 1)m + 1. This is satisfied when (n + 1)(2n + 1) ≤
m(2n + 1), that is if n + 1 ≤ m. The equality χla(mK1,2n+1) = (2n + 1)m + 1 holds because
the number of induced colors must be greater then the number of leaves, see Lemma 2.
Now consider that the weight of the vertex w1 under the labeling f is greater then the weight
of all leaves, i.e., n + 1 > m. Then labeling f induces (2n + 1)m + 2 colors for vertices.
To prove that it is not possible to obtain (2n + 1)m + 1 colors it is sufficient to consider
the fact, that the weight of any vertex of degree 2n + 1 is at least the sum of numbers
1, 2, . . . , 2n+ 1, thus it is at least (n+ 1)(2n+ 1). However, the weights of leaves are at most
(2n + 1)m. Thus if there exists an edge labeling that induces (2n + 1)m + 1 colors for ver-
tices, under this labeling all vertices wi, i = 1, 2, . . . , m must have the same color/weight,
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say c(w). However, in this case the sum of all edge labels must be equal to m multiple
of c(w), as every edge label contributes exactly once the weight of a vertex of degree 2n + 1.
Thus mc(w) = 1 + 2 + · · ·+ (2n + 1)m which implies

2c(w) =(2n + 1)((2n + 1)m + 1).

However, this is a contradiction as for m even the right side of the previous equation is
odd. This means that in this case χla(mK1,2n+1) = (2n + 1)m + 2.

Please note that Theorem 6 can be extended also for other trees (forests) such that their
non-leaf vertices have even degrees, not necessarily the same. We just need to guarantee
that the adjacent non-leaf vertices will have distinct weights. For some trees, for example for
spiders, we are able to do it. A spider graph is a tree with exactly one vertex of degree greater
than 2. By S(n1, n2, . . . , nl), 1 ≤ ni ≤ ni+1, i = 1, 2, . . . , l − 1, l ≥ 3, we denote a spider
obtained by identifying one leaf in paths Pni+1, i = 1, 2, . . . , l. In [17] was proved that if
n1 = 1 then χla(S(n1, n2, . . . , nl)) = l + 1 and if n1 ≥ 2 then χla(S(n1, n2, . . . , nl)) ≤ l + 2.
Moreover, for l ≥ 4 the described edge labeling induces for the root vertex, the vertex of degree
l, the largest weight over all other vertex weights. Using the presented results we obtain

Theorem 8. Let S(n1, n2, . . . , nl) be a spider graph. If l is even, l ≥ 4, and n1 = 1

χla(mS(n1, n2, . . . , nl)) = ml + 1.

If l is even, l ≥ 4, and n1 ≥ 2

ml + 1 ≤ χla(mS(n1, n2, . . . , nl)) ≤ ml + 2.

In [18] was proposed the following conjecture.

Theorem 9. Ref. [18] Let T be a tree other than K2 with l leaves. Then

l + 1 ≤ χla(T) ≤ l + 2.

In the light of the previous results trees, for copies of trees we conjecture

Theorem 10. Let T be a tree other than K2 with l leaves. Then for every positive integer m, m ≥ 1,

ml + 1 ≤ χla(mT) ≤ ml + 2.

4. Graphs with Chromatic Index 3

In this section we will deal with 3-regular graphs that admit a proper 3-edge coloring.

Theorem 11. Let G be a 3-regular graph with chromatic index χ′(G) = 3. Then for every odd
positive integer m, m ≥ 1, holds

χla(mG) ≤ χla(G).

Proof. Let c be a proper 3-edge coloring of G. Let f be a local vertex antimagic edge
labeling of G that uses χla(G) colors.
We define a new labeling g of mG, for m odd, in the following way.

g(ei) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m( f (e)− 1) + i, if c(e) = c1 and i = 1, 2, . . . , m,
m( f (e)− 1) + i + m+1

2 , if c(e) = c2 and i = 1, 2, . . . , m−1
2 ,

m( f (e)− 1) + i− m−1
2 , if c(e) = c2 and i = m+1

2 , m+3
2 , . . . , m,

m f (e) + 1− 2i, if c(e) = c3 and i = 1, 2, . . . , m−1
2 ,

m f (e) + m + 1− 2i, if c(e) = c3 and i = m+1
2 , m+3

2 , . . . , m.
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It is easy to see that if an edge in G is labeled with the number t, 1 ≤ t ≤ |E(G)|, then the cor-
responding edges in mG are labeled with numbers from the set {m(t− 1) + 1, m(t− 1) +
2, . . . , mt}. Thus, g is a bijection that assigns numbers 1, 2, . . . , m|E(G)| to the edges of mG.
Now we will calculate a vertex weight of the vertex vi in mG. Let x, y and z be the vertices
adjacent to v in G. Without loss of generality we can assume that c(xv) = c1, c(yv) = c2
and c(zv) = c3. Then for i = 1, 2, . . . , (m− 1)/2 we obtain

wtg(vi) =g(xivi) + g(yivi) + g(zivi)

=[m( f (xv)− 1) + i] +
[
m( f (yv)− 1) + i + m+1

2

]
+ [m f (zv) + 1− 2i]

=m( f (xv) + f (yv) + f (zv)) + 3−3m
2 = mwt f (v) + 3−3m

2 .

If i = (m + 1)/2, (m + 3)/2, . . . , m then

wtg(vi) =g(xivi) + g(yivi) + g(zivi)

=[m( f (xv)− 1) + i] +
[
m( f (yv)− 1) + i− m−1

2

]
+ [m f (zv) + m + 1− 2i]

=m( f (xv) + f (yv) + f (zv)) + 3−3m
2 = mwt f (v) + 3−3m

2 . (4)

Thus, in all copies the corresponding vertices have the same weights.
Moreover, as the set of weights of vertices in G under the labeling f consists of χla(G)
distinct numbers we immediately obtain that also the set of weights of vertices in mG
under the labeling g consists of χla(G) distinct numbers. Thus, χla(mG) ≤ χla(G).

Analogously, as it was possible to extend the results in Section 2 for graphs with leaves,
we can also extend Theorem 11 for some graphs with pendant vertices.

Theorem 12. Let G be a graph such that all vertices but leaves have degree 3. If there exists
a 3-edge coloring c of G such that for all vertices v but leaves hold n1

c (v) = n2
c (v) = n3

c (v) = 1,
then for every odd positive integer m, m ≥ 1,

ml + 1 ≤ χla(mG) ≤ χla(G) + (m− 1)l,

where l is the number of leaves in G.

Proof. Let G be a graph such that all its vertices but leaves have degree 3. Let c be a 3-edge
coloring of G such that for all vertices v in G but leaves hold n1

c (v) = n2
c (v) = n3

c (v) = 1.
Let f be any local antimagic labeling of a graph G that uses χla(G) colors. Then using Equality (4)
we obtain that there exists an edge labeling g of mG, m odd m ≥ 1, such that the weights of
non-leaf vertices vi, i = 1, 2, . . . , m, corresponding to a vertex v in G, are

wtg(vi) = mwt f (v) + 3−3m
2 .

This means that the weights of corresponding non-leaf vertices in every copy of G are the
same. However, this also means that the adjacent non-leaf vertices in mG
have distinct weights.
Now consider the edges wiui, i = 1, 2, . . . , m, where w is a leaf. Trivially holds

wtg(wi) = g(wiui) < ∑
uv∈E(G)

g(viui) = wtg(ui).

Which means that all adjacent vertices have distinct weights.
Combining the previous arguments we obtain

χla(mG) ≤ χla(G) + (m− 1)l.

The lower bound for χla(mG) follows from Lemma 2.
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Immediately for forests we obtain the following result.

Corollary 4. Let T be a forest such that all its vertices but leaves have degree 3. Then for every odd
positive integer m, m ≥ 1 holds

ml + 1 ≤ χla(mT) ≤ χla(T) + (m− 1)l,

where l is the number of leaves in T.

Proof. Let T be a forest such that all its vertices but leaves have degree 3. Trivially there
exists a 3-edge coloring c of T such that for all vertices v but leaves hold n1

c (v) = n2
c (v) =

n3
c (v) = 1. Using Theorem 12 we obtain the desired result.

The next theorem shows how it is possible to extend the previous result for regular
graphs that are decomposable into spanning subgraphs that are all isomorphic either
to even regular graphs or 3-regular graphs.

Theorem 13. Let G be a graph that can be decomposed into factors G1, G2, . . . , Gk, k ≥ 1, and let
every factor Gi, i = 1, 2, . . . , k, be isomorphic to a graph of the following types:

type I: a 4-regular graph,
type II: a 2-regular graph consisting of even cycles,
type III: a 3-regular graph with chromatic index 3.

If every factor Gi, i = 1, 2, . . . , k, is of type I or of type II then for every positive integer m, m ≥ 1, holds

χla(mG) ≤ χla(G).

If at least one factor Gi, i = 1, 2, . . . , k, is of type III then for every odd positive integer m, m ≥ 1, holds

χla(mG) ≤ χla(G).

Please note that the exact value of χla(Kn) is n, since χla(Kn) ≥ χ(Kn) = n. Immediately
from the previous theorem we obtain the following result for complete graphs Kn.

Corollary 5. Let Kn be a complete graph on n vertices, n ≥ 4. If n ≡ 1 (mod 4) then for every
positive integer m, m ≥ 1, and if n ≡ 0 (mod 4) then for every odd positive integer m, m ≥ 1, we
have χla(mKn) = n.

5. Conclusions

One interesting problem is to find a local antimagic chromatic number for disjoint
union of arbitrary graphs. According to results proved by Haslegrave [16] we obtain that
this parameter is finite for disjoint union of arbitrary graphs if and only if non of these
graphs contains an isolated edge as a subgraph. Moreover, Haslegrave [16] proved the
following result.

Theorem 14. Ref. [16] For every graph G with m edges, none of which is isolated, and for any
positive integer k, the edges of G may be labeled with a permutation of {k, k + 1, . . . , m + k− 1}
in such a way that the vertex sums distinguish all pairs of adjacent vertices.

Immediately from this result we obtain an upper bound for a local antimagic chromatic
number for disjoint union of arbitrary graphs.

Theorem 15. Let Gi, i = 1, 2, . . . , n, be a graph with no isolated edge. Then

χla

(
n⋃

i=1

Gi

)
≤ min

{
χla(Gt) +

n

∑
i=1

|V(Gi)| − |V(Gt)| : t = 1, 2, . . . , n

}
.
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For some graphs we can obtain a better upper bound.

Theorem 16. Let Gi, i = 1, 2, be a graph with no isolated edge. Let G2 be a graph such that all
vertices but leaves have the same degree. Then

χla(G1 ∪ G2) ≤ χla(G1) + χla(G2) + l2,

where l2 is the number of leaves in G2.

Proof. Let G2 be a graph such that all vertices but leaves have the same degree r, r ≥ 2
and let l2 be the number of leaves in G2. Let fi, i = 1, 2, be a local vertex antimagic edge
labeling of Gi that uses χla(Gi) colors. We define an edge labeling g of G1 ∪ G2 such that

g(e) =

{
f1(e), if e ∈ E(G1),
f2(e) + |E(G1)|, if e ∈ E(G2).

As f1 and f2 are bijections evidently also g is a bijection. For the vertex weights under the
labeling g we obtain the following. If v ∈ V(G1) then

wtg(v) = ∑
uv∈E(G1)

g(uv) = ∑
uv∈E(G1)

f1(uv) = wt f1(v).

Thus, the weights of adjacent vertices in G1 are distinct and they induce χla(G1) colors.
If v ∈ V(G2) and degG2

(v) = r then

wtg(v) = ∑
uv∈E(G2)

g(uv) = ∑
uv∈E(G2)

( f2(uv) + |E(G1)|)

= ∑
uv∈E(G2)

f2(uv) + r|E(G1)| = wt f2(v) + r|E(G1)|.

If v ∈ V(G2) and degG2
(v) = 1 then

wtg(v) = ∑
uv∈E(G2)

g(uv) = ∑
uv∈E(G2)

( f2(uv) + |E(G1)|) = f2(uv) + |E(G1)|

=wt f2(v) + |E(G1)|.

This means that also the weights of adjacent vertices in G2 are distinct. Moreover, we obtain
that the labeling g induces at most χla(G2) + l2 colors as the number of colors assigned to
the vertices of degree at least 2 is the same and all the leaves could be assigned with the
colors different from the colors of non leaves.
Combining the previous we obtain that the labeling g induces at most χla(G1)+χla(G2)+ l2
colors.

Theorem 17. Let G be a graph with no isolated edge and with l leaves. Then for every positive
integer m, m ≥ 1 holds

l + 2m + 1 ≤ χla(G ∪mP3) ≤ χla(G) + 2m + 1.

Proof. Let G be a graph with no isolated edge and with l leaves. The lower bound follows
from Lemma 2. The upper bound is based on the fact that there exists a local antimagic
labeling of mP3 that induces 2m + 1 colors such that the color of every vertex of degree
2 in mP3 will have the same color 2m + 1. Thus, the labeling g of mP3 ∪ G described
in the proof of Theorem 16 induces also 2m + 1 colors for vertices in mP3. These colors are
|E(G)|+ 1, |E(G)|+ 2, . . . , |E(G)|+ 2m and 2|E(G)|+ 2m + 1. In general, these colors are
distinct from colors of vertices in G1 induced by the labeling g. This concludes the proof.
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Abstract: Often for understanding a structure, other closely related structures with the former are
associated. An example of this is the study of hyperspaces. In this paper, we give necessary and
sufficient conditions for the existence of finitely-dimensional maximal free cells in the hyperspace
C(G) of a dendrite G; then, we give necessary and sufficient conditions so that the aforementioned
result can be applied when G is a dendroid. Furthermore, we prove that the arc is the unique arcwise
connected, compact, and metric space X for which the anchored hyperspace Cp(X) is an arc for
some p ∈ X.
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1. Introduction

In the study of a mathematical structure, sometimes other structures that allow for
visualizing problems in different ways are built.

One of the theories developed using this type of study is the Theory of Hyperspaces;
this theory began with the investigations of F. Hausdorff and L. Vietoris. Given a topological
space X, the 2X hyperspace of all nonempty and closed subsets of X was introduced by
L. Vietoris in 1922, and he proved basic facts about 2X—for example, compactness of X
implies compactness of 2X and vice versa; 2X is connected if and only if X is connected.
When X is a metric space, 2X can be endowed with the Hausdorff metric (defined by F.
Hausdorff in 1914).

The hyperspace of all nonempty, closed and connected subsets of X is denoted by
C(X) and considered as a subspace of 2X . In turn, the hyperspace of all nonempty, closed,
and connected sets of X containing a point p, which is denoted by Cp(X), is a subspace
of C(X).

The hyperspaces C(X) and Cp(X) are subjects of study for many researchers. Among
several topics about hyperspace, one of the most interesting is to recognize a hyperspace
as homeomorphic to some known space: Ref. [1] presents a special class of spaces X for
which C(X) is homeomorphic to the infinite cylinder X×R≥0. Another interesting topic is
to analyze topological properties: for compact, connected, and metric X, the hyperspaces
Cp(X) are locally connected for all p ∈ X [2].

Graphs have been widely and deeply studied (see [3–7]) and have proved to be an
excellent tool for representing and modeling different structures in several areas of discrete
mathematics and computation (see [8,9]). As far as hyperspace is concerned, there exist
some works relating both subjects. For example, Duda [10] proved that a space X is a finite
graph if and only if C(X) is a polyhedral. In a dendroid X smooth in a point p, Cp(X) is
homeomorphic to the Hilbert cube if and only if p is not in the interior of a finite tree in
X, a result due to Carl Eberhart [11]. Recently, Reyna et al. proved that, in a local space X,
Cp(X) is a polyhedral for all p if and only if X is a finite graph [12].

In this paper, we are concerned with fully determining the existence of maximal finite
dimensional free cells in the hyperspace C(X), first of a dendrite and then a dendroid X,
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Mathematics 2021, 9, 1627

as well as examining necessary and sufficient conditions for the hyperspace Cp(X) if an arc
provided X is an arc-wise connected space.

2. Definitions

Throughout this paper, the term space is meant to be a connected, compact, and metric
space, and a subspace is understood to be a subset of a space which is a space itself. Given a
space X, the symbol 2X denotes the hyperspace of non-empty closed subsets of X, and C(X)
is the hyperspace of non empty subspaces of X both endowed with the Hausdorff’s metric,
two models of hyperspaces are shown in Figure 1. Notice that X is naturally embedded in
2X via the map x �→ {x} (compare with ([13] [0.48]).

M C(M) M C(M)

Figure 1. The hyperspaces C(M) for the path P2 and the star S3.

Given a point p ∈ X, the anchored hyperspace of X at p, denoted by Cp(X), is the
subspace of C(X) consisting of those elements containing p. Note that Cp(X) is a subspace
of C(X), which in turn is a subspace of 2X .

A space X is unicoherent if, for any A, B ⊂ X subspaces such that X = A ∪ B, we
have that A ∩ B is connected. The space X is called hereditary unicoherent if each subspace
is unicoherent.

A graph G, consisting of a set V(G), called the vertices of G and a set E(G) of unordered
pairs of elements of V(G), called the edges of G. Letting G be a graph, if two vertices x and
y of G form an edge, we say that they are adjacent, and this is denoted by x ∼ y. This fact is
also expressed by saying that x and y are neighbors. A vertex of G is called a ramification
vertex if it has three or more neighbors and a terminal vertex if it has exactly one neighbor.
G is called simple if it contains no loops (a vertex adjacent to itself) and possesses at most
one edge between any two vertices. A path between two vertices u and v of G is a finite
sequence of consecutive adjacent vertices such that the first one is u and the last one is v.
G is connected if there is a path between any two vertices. A cycle in G is a finite sequence
of at least three consecutively adjacent vertices such that the first one and the last one are
adjacent. In this paper, we consider simple and connected graphs without cycles whose
vertices are ramification or terminal vertices, that is, there are no vertices with exactly
two neighbors.

In order to consider a graph G as a metric space, if we use the notation [u, v] for the
edge joining the vertices u and v, we must identify any edge [u, v] ∈ E(G) with the closed
interval [0, l] (if l := L([u, v]); therefore, any point in the interior of any edge is a point of
G and, if we consider the edge [u, v] as a graph with just one edge, then it is identified
with the closed interval [0, l]. A connected graph G is naturally equipped with a distance
defined on its points, induced by taking shortest paths in G. Then, we see G as a metric
graph (see [10,14]); according to this, a dendroid is a simple and connected graph without
cycles which is a hereditary unicoherent space; the comb and the harmonic fan are examples
of dendroids (see Figure 2). By dendrite, we mean a locally connected dendroid. Any tree,
the Fω, and the Gehmann dendrite are examples of these types of graphs (see Figure 3).
Throughout this paper, G denotes a dendroid or a dendrite.
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Figure 2. The comb and harmonic fan dendroids.

Figure 3. The Fω and Gehmann dendrites.

A point p ∈ G is called essential of type I if it is a vertex with infinitely many neighbors
or essential of type II if there exists an infinite sequence of ramification vertices (pn) such
that pn → p. We use the word essential to mean essential of type I or II. A point which
is not a vertex, nor an essential point, is called an ordinary point; we denote T(G), O(G),
R(G), and ES(G) the sets of terminal vertices, ordinary points, ramification vertices, and
essential points, respectively.

The order of a point x in a dendroid G is defined as follows:

oG(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if x is a terminal vertex;
2, if x is an ordinary point;
n, if x has exactly n neighbors;
∞, if x is an essential point.

An m-dimensional cell (or m-cell for short) in a space X is a subspace M homeomorphic
to [0, 1]m, the part of M homeomorphic to (0, 1)m is called the interior manifold of M, and
it is denoted by M◦, while M − M◦ is denoted with ∂M, and it is called the boundary
manifold of M. If it occurs that the interior manifold M◦ is actually an open set of X, then
M is called a free cell of X; Figure 4 shows a space with some free cells. In Theorem 2, we
establish sufficient and necessary conditions for the existence of a maximal free m-cell in the
hyperspace C(G) for a dendrite G. Furthermore, in Theorem 3, we establish sufficient and
necessary conditions so that Theorem 2 can be applied when G is an arbitrary dendroid.

Free 3-cell

Free 2-cell

Free 1-cell

Figure 4. Free cells.

3. Preliminaries

Given m ≤ n, let A and B be m, n-cells, respectively, with A ⊆ B. If m = n, A◦ is an
open subset of B◦. On the other hand, if m < n, then A◦ is not an open subset of B◦ because
non-empty neighborhoods of B◦ contain m-dimensional open balls, and none of these can
be contained in A◦. Therefore, the next lemma follows at once.
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Lemma 1. (a) If a cell is contained in a higher dimensional cell, then the first one is not a free cell.
(b) Each m-cell contained in a free m-cell is a free m-cell.

In order to show that the cells that we are going to locate in hyperspace C(G) of the
dendrite G are maximal, we need Corollary 1 and Lemmas 2–5; in all of these, except
Lemma 3, it is assumed that A ⊆ B are m-cells.

Recall that Int A and Bd A designate, respectively, the topological interior and topological
boundary of the set A.

Lemma 2. If ∂A = ∂B, then A = B.

Proof. Since A◦ ⊆ B◦, it remains to show that B◦ ⊆ A◦. Let x ∈ B◦ and suppose x /∈ A◦.
Now, if we take y ∈ A◦, then x, y ∈ B◦. Let α be an arc from x to y contained in B◦. Then,
the arc α contains an end point in B− A and the other end point in A◦. It necessarily occurs
that α ∩ ∂A �= ∅, and this is absurd.

Recall that the Borsuk–Ulam Theorem establishes that, for any continuous map f :
Sn → Rn, there must exist some point x ∈ Sn such that f (x) = f (−x). This theorem,
in particular, implies that no such maps can be one to one, and this is the key piece in the
proof of next lemma.

Lemma 3. The unique homemorphic copy of Sn contained in Sn is Sn itself.

Proof. Let A be a proper homeomorphic subspace of Sn; notice that we can suppose
that the North Pole is not contained in A (otherwise, apply a suitable rotation to Sn).
If ψ : Sn → A is a homeomorphism and σ is the usual stereographic projection of Sn to Rn

restricted to A, then σ ◦ ψ : Sn → Rn is a continuous one to one map, a contradiction.

Corollary 1. If ∂A ⊆ ∂B, then A = B.

Lemma 4. If B◦ ⊆ A, then A = B.

Proof. Let x ∈ ∂B and let U be a neighborhood of x in B. Since U ∩ B◦ �= ∅, U ∩ A �= ∅,
and hence x ∈ A = A.

Lemma 5. Let x ∈ ∂A, if x /∈ ∂B, then x ∈ Bd A.

Proof. Suppose x /∈ Bd A; then, x ∈ Int A and hence Int A ∩ B◦ is an open set in B
containing x. Thus, there must exist a neighborhood V of x homeomorphic to (0, 1)m

contained in Int A∩ B◦, and the latter shows that x cannot belong to any face of A. In other
words, x /∈ ∂A.

If J = [p1, p2] is an arc, it is a well known fact that C(J) is a 2-cell whose interior
manifold are all subsets in the form A = [a, b], where a �= b and none of these points equal
to p1 or p2 (see [10]).

4. Free Cells in Hyperspaces of Dendrites

4.1. The Case n = 2

We are close to announcing Theorem 2 where necessary and sufficient conditions
are given for the existence of a maximal finite dimensional free n-cells in the hyperspace
C(G) of a dendrite G. The free cell built in its proof has the property that all of their
elements contain a certain subspace A. In this particular case, the maximal free cells are the
hyperspaces C(J) with J an edge, and none of these cells have such a property. Therefore,
the case n = 2 needs to be treated separately. However, first, it is necessary to state the
following known property about locally connected topological spaces.
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Lemma 6. In any locally connected topological space, the components of open sets are open sets.

Theorem 1. The hyperspace C(G) of a dendrite G contains a maximal free 2-cell B if and only if
B = C(J) for some edge J of G.

Proof. Let J be an edge of G and p1, p2 their extremes, consider an element A = [a, b] ∈
(C(J))◦ and let ε > 0 such that Nε(A) ⊆ J◦ (where Nε(A) is the union of all open balls
B(x, ε) as x ranges over all points of A). Hence, if B(A, ε) is the open ball (in the Haus-
dorff metric of C(G)) centered at A, then B(A, ε) ⊆ (C(J))◦ and C(J) ⊂ C(G) is a free 2-cell.

Now, we see that the free cell C(J) is maximal. LetA be a free 2-cell in C(G) containing
C(J). If A ∈ ∂C(J), we have (i) A = [pj, x], (j = 1 or j = 2) or else (ii) A = {x} with
x ∈ [p1, p2]. We claim that A ∈ ∂A. If A is as (i), we have three sub-cases:

(1) The point pj is a ramification vertex. Suppose with no loss of generality that j = 1.
If A /∈ ∂A, then A ∈ A◦ and hence there must exist ε > 0 with B(A, ε) ⊆ A◦. Take
x1, x2 ∈ Nε(A)− A such that [x1, p1] ∩ [x2, p1] = {p1}, [xi, p1] ⊆ B(p1, ε) (i ∈ {1, 2})
and a point u ∈ (x, p2) such that [u, x] ⊆ B(x, ε). The set

B = {A ∪ [w1, p1] ∪ [w2, p1] ∪ [x, w3] | w1 ∈ [x1, p1], w2 ∈ [x2, p1], w3 ∈ [u, x]}

is a 3-cell (see [13] [Theorem 1.100]) contained in B(A, ε) ⊆ A◦, and this is absurd.
(2) The point pj is essential.

A similar analysis as the previous case shows that a 3-cell contained in B(A, ε) could
be built.

(3) The point pj is a terminal vertex, and x is an ordinary point or a terminal vertex. In this case,
we have A ∈ Int C(J), and this contradicts Lemma 5.

The above shows that A ∈ ∂A as desired. For the case ii), if we assume that A = {x}
and A /∈ ∂A, take H ∈ A◦ − C(J) (see Lemma 4) and notice that H does not contain
ramification points or essential points; otherwise, in a neighborhood of H contained in
A◦, 3-cells or even Hilbert cubes can be located (in the proof of Theorem 2, it is shown
in detail how is this possible). Hence, H is an arc and let q1 and q2 denote their end
points; according to this, it must be p1 ∈ [x, q1] or else p2 ∈ [x, q1]. Suppose p1 ∈ [x, q1],
and, using the fact that H �= {x} and A◦ is arcwise connected, take α ⊆ A◦ an arc
from {x} to H. We claim that there exists L ∈ α such that p1 ∈ L. Otherwise, we have
α ⊆ C(G)− Cp1(G). Let U be the component of G− {p1} containing x, let V be the union
of the remaining components and notice that H ⊆ V. By Lemma 6, U and V are open sets,
hence U = {B ∈ C(G) | B ⊆ U} and V = {B ∈ C(G) | B ⊆ V} are non-empty, disjoint
open sets in C(G)− Cp1(G) (compare with [15] [Theorem 4.5]) and therefore the sets α ∩ U
and α ∩ V form a separation of α, which is impossible, being α connected. This proves the
existence of the desired L.

The point p1 is a ramification vertex or an essential point; since L ∈ A◦, as in the
sub-cases (1) and (2) for some suitable ε′ > 0, it is possible to find a 3-cell contained in
B(L, ε′) ⊆ A◦, and this is a contradiction once again. Therefore, in this case, it must be
A ∈ ∂A and the result now follows from Corollary 1.

For the converse, let B ⊆ C(G) be a maximal free 2-cell and let A ∈ B◦. Notice that A
does not contain ramification vertices or essential points. The above remarks result in A
needing to be an arc; if J = [p1, p2] (where p1, p2 are vertices of G) is the edge containing
A, we claim that B ⊆ C(J). Otherwise, let B ∈ B − C(J). Hence, for each x ∈ B and for
each y ∈ A, it occurs that a) p1 ∈ [x, y] or b) p2 ∈ [x, y]. Suppose without loss of generality
that a) occurs and let α be an arc in B from B to A such that α− {B} ⊆ B◦. Since B ∈ C(J)
and A ∈ C(J), there must exist C ∈ α ∩ ∂C(J). Hence, C has the form [p1, a]. If ε > 0 is
such that B(C, ε) ⊆ B◦, then B(C, ε) contains a 3-cell (if p1 is a ramification point) or even a
Hilbert cube (if p1 is an essential point). This is a contradiction in any case. This shows that
B ∈ C(J) and therefore B = C(J).
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4.2. The Case n > 2

We need to introduce some terminology about the hyperspace C(K) for a tree K (for
more details, see [10,12]).

An internal tree T of a tree K is a subgraph which is a tree not containing terminal
vertices of K. Let IT(K) denote the set of internal trees of K. For T ∈ IT(K), let I1, . . . , In be
those edges of K such that Ii ∩ T �= ∅ and Ii is not contained in T. We define

D(1, T) = T ∪
(

n⋃
i=1

Ii

)
,

and we say that this is the canonical representation of D(1, T). Given an internal tree T ⊂ K,
let M(T) be the family of all subspaces of K in the form

((ci)
n
i=1)T = T ∪

(
n⋃

i=1

[0Ii , ci]

)
,

where 0Ii is the vertex of Ii contained in T, and [0Ii , ci] is the subarc of Ii joining 0Ii with ci.

Lemma 7. Let K be a tree, then

(i) For each internal tree T ⊂ K, the family M(T) is a n-cell.
(ii) The hyperspace of C(K) is

C(K) =

⎡
⎣ ⋃

T∈IT(K)

M(T)

⎤
⎦ ∪

⎡
⎣ ⋃

I∈E(K)

C(I)

⎤
⎦.

Theorem 2. The hyperspace C(G) of a dendrite G contains a maximal free n-cell (n > 2) if and
only if there exists a tree K ⊆ G satisfying the following conditions:

(i) T(K) = {p1, . . . , pn} ⊆ R(G) ∪ T(G) ∪ ES(G),
(ii) for all x ∈ K− T(K), oK(x) = oG(x).

Proof. For each pi ∈ T(K), let ri ∈ R(K) such that [ri, pi] ∩ R(K) = {ri}.

Put A = K −
(

n⋃
i=1

(ri, pi]

)
and for each x = (xi)

n
i=1 ∈

n

∏
i=1

[ri, pi] let Cx denote the set

A ∪
(

n⋃
i=1

[ri, xi]

)
. We claim that the family M(A) = {Cx | x ∈

n

∏
i=1

[ri, pi]} is a maximal free

n-cell in C(G).
That M(A) is actually a n-cell is due to [13], [Theorem 1.100]; therefore, we only need

to verify the maximal and free properties.
Let Cx ∈ (M(A))◦ and define L = (G − K) ∪ {p1, p2, . . . , pn}. Put α = d(Cx, L) =

in f {d(c, l) | c ∈ Cx, l ∈ L}, αi = d(xi, A), βij = d(xi, [rj, pj]), where i �= j and i, j ∈
{1, 2, . . . , n}. Since all these quantities are positive, take ε > 0 less than all those and
Y ∈ B(Cx, ε). For each i ∈ {1, 2, . . . , n}, choose zi ∈ B(xi, ε) ∩ Y and notice that zi /∈
A ∪ L ∪ [rj, pj] if i �= j, and hence zi ∈ (ri, pi). Now, if x ∈ A, there exists zi, zj which are in
different components of K−{x}. Then, x ∈ [zi, zj], which shows that A ⊆ ⋃

i,j
[zi, zj]; since Y

is arcwise connected,
⋃
i,j
[zi, zj] ⊆ Y and therefore A ⊆ Y; in particular, no point belonging

to A is a terminal vertex of Y.
We want to see that Y contains exactly n terminal vertices and these are contained in

the arcs (ri, pi). Let y ∈ Y be a terminal vertex of Y. Since y /∈ L, we have y �= pi for all
1 ≤ i ≤ n and y /∈ A gives y ∈ (ri, pi) for some i. For the above argument, it follows that

56



Mathematics 2021, 9, 1627

Y contains at most n terminal vertices; otherwise, two of them must belong to a same arc
(ri, pi) which is not possible.

Now, given 1 ≤ i ≤ n, Gi = Y ∪ [ri, pi] is a subspace of G. Since G is hereditary
unicoherent, Y ∩ [ri, pi] is connected and non-degenerate (i.e., contains more than one
point) because the arc [ri, zi] is contained in the intersection and therefore such intersection
is an arc whose extremes are ri and say yi. The point yi is a terminal vertex of Y. This
shows that Y contains at least n terminal vertices. We conclude Y = Cy ∈ (M(A))◦, where
y = (yi)

n
i=1.

Let us verify that n-cell M(A) is actually maximal; for this purpose, suppose there
exists a free n-cell A ⊆ C(G) such that M(A) ⊆ A with M(A) �= A. By Corollary 1, it
must occur that there exists some point Cx ∈ ∂M(A) such that Cx ∈ A◦. Take ε > 0 such
that B(Cx, ε) ⊆ A◦.

Now, there are several cases to consider about the point Cx. The first one arises when

we suppose Cx = A ∪
(

n⋃
i=1

[ri, xi]

)
, where, for some index, say i = 1, we have x1 = p1 is a

terminal vertex of K and, at the same time, a ramification vertex of the dendrite G.
Let ui ∈ [ri, xi] (for 2 ≤ i ≤ n) be points such that [ui, xi] ⊆ B(xi, ε) and let L1, Ln+1 be

two different edges of G such that L1 ∩ Ln+1 ∩ K = {p1}. Consider also points u1 ∈ L1 and
un+1 ∈ Ln+1 such that [u1, p1] ⊆ B(p1, ε) and [un+1, p1] ⊆ B(p1, ε).

For y1 ∈ [p1, u1], yi ∈ [ui, xi] (2 ≤ i ≤ n) and yn+1 ∈ [p1, un+1], let A1 = [p1, y1], Ai =

[ui, yi] and An+1 = [pi, yn+1]. The family of all subspaces of the form A ∪
(

n+1⋃
i=1

Ai

)
is an

(n + 1)-cell contained in B(Cx, ε) ⊆ A◦, and this is a contradiction. Similar considerations
show that, if xi is an essential point for some i, then it is possible find an (n + 1)-cell
contained in A◦.

A second case is obtained when, for some index i, say i = 1, it occurs that x1 = r1.
In this case, Cx can not belong to Int (M(A)) since this contradicts Lemma 5. However,

if Cx ∈ Fr(M(A)), consider the decomposition C(K) =

⎛
⎝ ⋃

T∈IT(K)

M(T)

⎞
⎠ ∪

⎛
⎝ ⋃

I∈E(K)

C(I)

⎞
⎠

of Lemma 7 (ii). We claim that we may suppose Cx ∈
⎛
⎝ ⋃

T �=A

M(T)

⎞
⎠ ∪

⎛
⎝ ⋃

I∈E(K)

C(I)

⎞
⎠,

where T runs over all internal trees of K different from A. Otherwise, there exists an open

set U of C(G) such that Cx ∈ U ⊆ C(G)−
⎛
⎝ ⋃

T �=A

M(T)

⎞
⎠ ∪

⎛
⎝ ⋃

I∈E(K)

C(I)

⎞
⎠.

Let N be the first positive integer such that B(Cx, 1
N ) ⊆ A◦ ∩ U . Thus, for each

m ≥ N, there exists Ym ∈ C(G)− C(K), such that H(Ym, Cx) <
1
m . For each m ≥ N, take

a point ym ∈ Ym − K and a point xm ∈ Cx such that d(ym, xm) <
1
m . Since G is compact,

the sequence (ym) contains a convergent subsequence. We can suppose without loss of
generality that (ym) is actually convergent, say, to y. We claim that y ∈ Cx. Indeed, given
ε > 0, choose M ∈ N such that ym ∈ B(y, ε

2 ) for all m ≥ M. If m ≥ M satisfies 1
m < ε

2 , then
d(xm, y) ≤ d(xm, ym) + d(ym, y) < 1

m + ε
2 < ε, that is, xm ∈ Cx ∩ B(y, ε). With ε > 0 being

arbitrary, we conclude that y ∈ Cx.
The above argument shows that y is a cluster point of G− K; this implies that y = pi

for some index i, where pi ∈ R(G) ∪ ES(G), and this case has already been analyzed.

Thus, we may suppose Cx ∈
⎛
⎝ ⋃

T �=A

M(T)

⎞
⎠ ∪

⎛
⎝ ⋃

I∈E(K)

C(I)

⎞
⎠. In fact, by [10], [6.2, 6.3]

or [12], [Lemma 2.6], we must suppose Cx ∈
⎛
⎝ ⋃

T �=A

∂M(T)

⎞
⎠∪

⎛
⎝ ⋃

I∈E(K)

∂C(I)

⎞
⎠. Supposing

first that Cx ∈ ∂C(I) since the points belonging to the boundary manifold of a cell are
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cluster points of their interior manifold, we must have A◦ ∩ (C(I))◦ �= ∅. Now, this
set is open in A, and, on the other hand, is contained in C(I); this is impossible since
Dim(A) = n > 2 = Dim(C(I)).

Suppose now Cx ∈ ∂M(T). Recall that A is the internal tree obtained from K by
removing their terminal edges. It follows by [10], [5.3, 7.1] that Dim(M(T)) < Dim(M(A)).
On the other hand, since Cx is a cluster point of (M(T))◦, it must occur that (A)◦ ∩
(M(T))◦ �= ∅ and notice that this set is open in C(G) and therefore open in A◦. Hence,
there exists a homeomorphic copy of [0, 1]n contained in (M(T))◦, which is impossible
regarding the dimension of M(T).

The final case to consider is obtained when, for some index i, xi = pi with pi ∈ T(G)
or else xi ∈ (ri, pi). In this case, it is not difficult see that Cx ∈ Int (M(T)) contradicting
Lemma 5. This shows that M(A) is a maximal free n-cell as desired.

Conversely, let A be a free n-cell, B ∈ A◦ and let us analyze how B looks. Let
T(B) = {p1, . . . , pk} and let r1, . . . , rs ∈ B− T(B) be the points such that oB(ri) < oG(ri).

Put αi = oG(ri)− oB(ri) and assume that k +
s

∑
i=1

αi = m > n. Consider ε > 0 such that

B(B, ε) ⊆ A◦ and for each 1 ≤ i ≤ s consider also arcs [ui1 , ri], . . . , [uiαi
, ri] such that

[uij , ri] ⊆ B(ri, ε) and [uij , ri] ∩ B = {ri}. In addition, take points vt on the terminal edges
of B such that [vt, pt] ⊆ B(pt, ε) for 1 ≤ t ≤ k.

Letting B1 = B−
(

n⋃
i=1

[pt, vt]

)
, we obtain that the family H of all subspaces of G has

the form:

B1 ∪
(

k⋃
t=1

[vt, xt]

)
∩
⎛
⎝ s⋃

i=1

⎛
⎝ αi⋃

j=1

[ri, yij ]

⎞
⎠
⎞
⎠,

where xt ∈ [vt, pt] and yij ∈ [ri, uij ] is a m-cell contained in A, which is absurd. Notice
that the above argument in particular shows that B− T(B) does not contain I-essential
points. A similar reasoning shows that B− T(B) also does not contain I I-essential points.
Now, assume that m < n. If p1, p2, . . . , pq are the terminal vertices of B which are ordinal
points of G, for each 1 ≤ t ≤ q, let Jt be the edge of G such that pt ∈ Jt and for each
i ∈ {1, . . . , s}, let Ii1 , Ii2 , . . . , Iiαi

be the edges of G such that Jij ∩ B = {ri}. Hence, the tree

K = B ∪
( q⋃

t=1

Jt

)
∪
⎛
⎝ s⋃

i=1

⎛
⎝ αi⋃

j=1

Iij

⎞
⎠
⎞
⎠ has m terminal points and satisfies conditions (i) and

(ii) and, by the only if part, we have already seen how to get a maximal free m-cell containing
the above m-cell H. Now, on the one hand, by Lemma 1, the cell H is free; on the other
hand, since H ⊆ A◦, Lemma 1 (a) gives that H is not a free cell and, again, this is absurd.
Thus, we conclude that m = n and K is the desired tree.

5. Free Cells in Hyperspace of Dendroids

In this section, necessary and sufficient conditions are given so that Theorem 2 can be
applied for dendroids. For this purpose, the notion of convergence space is required.

A non degenerated subspace A of a space X is called convergence space if there exists a
sequence An of subspaces of X such that:

(1) lim An = A,
(2) An ∩ A = ∅.

The subspaces An can be chosen to be mutually disjoint (see [13] [5.11]).

Theorem 3. Let G be a dendroid, a tree K ⊆ G, which satisfies the following conditions:

(i) T(K) = {p1, . . . , pn} ⊆ R(G) ∪ T(G) ∪ ES(G),
(ii) for all x ∈ K− T(K), oK(x) = oG(x).

58



Mathematics 2021, 9, 1627

If A is the tree obtained from K by removing their terminal edges, then A induces a maximal
free n-cell M(A) if and only if this cell does not contain convergence subspaces.

Proof. The cell M(A) is constructed as in the proof of Theorem 2. It is not hard to see that,
if Cx ∈ (M(A))◦ is a convergence subspace, then M(A) can not be a free n-cell. On the
other hand, if M(A) is not a free n-cell, then there exists Y = Cx ∈ (M(A))◦ such that,
for each ε > 0, there exists Z ∈ C(G)− (M(A))◦ with H(Y, Z) < ε.

Consider αi = d(Y, pi), β = H(Y, ∂(M(A))), γT′ = H(Y, (M(A))) and δI = H(Y, C(I))
(where T runs over the set of internal trees of K with T �= A and I runs over the set of
edges of K). Since all these quantities are positive, take ε > 0 less than all of them and take
Z1 ∈ C(X)− (M(A)) such that H(Z1, Y) < ε. If Z1 ∩Y �= ∅, we have the following cases:

(i) Z1 − K �= ∅,
in this case pi ∈ Z1 for some i. Hence, the ball B(pi, ε1) intersects Y, and this contra-
dicts the choice of ε1.

(ii) Z1 ⊆ K,

in this case, Z1 ∈ C(K) =

⎡
⎣ ⋃

T∈IT(K)

M(T)

⎤
⎦ ∪

⎡
⎣ ⋃

I∈E(K)

C(I)]

⎤
⎦.

If Z1 ∈ ∂M(A), Z1 ∈ M(T) with T �= A or Z1 ∈ C(I), again this contradicts the
choice of ε1. Therefore, Z1 and Y are disjoint. Taking 0 < ε2 < H(Z1, Y), in a similar way,
we can obtain a subspace Z2 with no points in common with Y and such that H(Z2, Y) < ε2.
Continuing with this process, we obtain a sequence (Zn) of mutually disjoint subspaces
convergent to Y.

6. Characterization of the Arc in Terms of Anchored Hyperspaces

The aim of this section is to prove that the arc is the unique arcwise connected space
X, for which Cp(X) is an arc for some p ∈ X (Theorem 4). An important tool in the proof
of this theorem is the use of order arcs. An order arc in 2X is an arc α contained in 2X such
that, for any A, B ∈ α, A ⊆ B or B ⊆ A. The concepts and results we use for order arcs can
be found in [13]. We use freely the notation found in there.

Proposition 1. The anchored hyperspace Cp(X) is an arc if and only if it is an order arc.

Proof. Let α an order arc in C(X) from {p} to X. Since p ∈ A for all A ∈ α, we have
α ⊆ Cp(CX). Now, it is sufficient to show that {p} and X are also the end points of
Cp(X), and this will be done by proving that neither {p} nor X are cut points of Cp(X)
(see [16], [Theorem 1, Pag. 179]). Take different points A, B ∈ Cp(X)− {p} if β and γ are
order arcs from A to A ∪ B and from B to A ∪ B respectively, then β ∪ γ ⊆ Cp(X)− {p}
is an arc containing the points A and B; this shows that {p} is not a cut point of Cp(X).
Similarly, if A, B ∈ Cp(X)− {X}, taking β and γ order arcs from {p} to A and from {p}
to B, one obtains that X is not a cut point either and therefore α = Cp(X). The converse is
obvious.

A point p of a space X is an irreducibility point of X if there exists another point q such
that no proper subspace contains both points. The following result is due to Kuratoski and
is a handy tool in the proof of Theorem 4.

Lemma 8 (Kuratoski’s Theorem, [15]). Let X be a space and let p ∈ X. Then, p is point of
irreducibility of X if and only if X is not the union of two proper subspaces both of which contain p.

Theorem 4. Let X be an arcwise connected space. Then, Cp(X) is an arc for some p ∈ X if and
only if X is an arc.

Proof. By Proposition 1, Cp(X) is an order arc from {p} to X. It follows that X is not the
union of two proper subspaces both containing the point p. By Lemma 8, it turns out that
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p is an irreducibility point of X, if q ∈ X is another point such that no proper subspace of
X contains the points p and q; the arcwise connectedness implies that X = [p, q].

For the converse, suppose without loss of generality that X = [0, 1]. Letting p = 0,
the map

x �→ [p, x],

is a homeomorphism from X to Cp(X).

The arcwise connectedness hypothesis is necessary in the above theorem (see [13]
[Example 1.1]).

7. Comparative Studies and Conclusions

Some of the main goals on hyperspace research from a theoretical approach are: to
obtain topological models corresponding to familiar or not difficult to handle spaces, to find
relations between hyperspaces and their underlying spaces, uniqueness of hyperspaces,
i.e., to investigate which spaces are the only ones whose hyperspaces possess a given
structure. Motivated by the studies carried out in [17,18], the present work was deemed
convenient by the authors. In the aforementioned works, the existence of cells in hyper-
spaces is characterized. Our work is carried out on infinite graphs and describes when
such cells are free.

In [19], the arc is characterized in terms of anchored hyperspaces within the class
of trees. In our work, we conduct a similar study but within a broader class of spaces,
the arc-connected spaces.

Question: If the class of anchored hyperspaces of an arcwise connected space X
matches the class of anchored hyperspaces of a connected graph G, does it follow that X
and G are homeomorphic?
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Abstract: Let G = (V, E) be a simple graph. A vertex labeling f : V(G)→ {1, 2, . . . , k} is defined to
be a local inclusive (respectively, non-inclusive) d-distance vertex irregular labeling of a graph G if
for any two adjacent vertices x, y ∈ V(G) their weights are distinct, where the weight of a vertex
x ∈ V(G) is the sum of all labels of vertices whose distance from x is at most d (respectively, at most
d but at least 1). The minimum k for which there exists a local inclusive (respectively, non-inclusive)
d-distance vertex irregular labeling of G is called the local inclusive (respectively, non-inclusive)
d-distance vertex irregularity strength of G. In this paper, we present several basic results on the local
inclusive d-distance vertex irregularity strength for d = 1 and determine the precise values of the
corresponding graph invariant for certain families of graphs.

Keywords: (inclusive) distance vertex irregular labeling; local (inclusive) distance vertex irregular
labeling

MSC: 05C15; 05C78

1. Introduction

All graphs considered in this paper are simple finite. We use V(G) for the vertex set
and E(G) for the edge set of a graph G. The neighborhood NG(x) of a vertex x ∈ V(G) is
the set of all vertices adjacent to x, which is a set of vertices whose distance from x is 1.
Otherwise, NG[x] denotes the set of all neighbors of a vertex x ∈ V(G) including x, which
is the set of vertices whose distance from x is at most 1. We are following the standard
notation and the terminology presented in [1].

The notion of the irregularity strength was introduced by Chartrand et al. in [2]. For a
given edge k-labeling α : E(G)→ {1, 2, . . . , k}, where k is a positive integer, the associated
weight of a vertex x ∈ V(G) is wα(x) = ∑y∈NG(x) α(xy). Such a labeling α is called irregular
if wα(x) �= wα(y) for every pair x, y of vertices of G. The smallest integer k for which an
irregular labeling of G exists is known as the irregularity strength of G. This parameter has
attracted much attention, see [3–5].

Inspired by irregularity strength and distance magic labeling defined in [6] and inves-
tigated in [7], Slamin [8] introduced the concept of a distance vertex irregular labeling of
graphs. A distance vertex irregular labeling of a graph is a mapping β : V(G)→ {1, 2, . . . , k}
such that the set of vertex weights consists of distinct numbers, where the weight of a
vertex x ∈ V(G) under the labeling β is defined as wtβ(x) = ∑y∈NG(x) β(y). The minimum
k for which a graph G has a distance vertex irregular labeling is called the distance vertex
irregularity strength of G and is denoted by dis(G).

In [8], Slamin determined the exact value of the distance vertex irregularity strength
for complete graphs, paths, cycles and wheels, namely dis(Kn) = n, for n ≥ 3, dis(Pn) =
�n/2�, for n ≥ 4, dis(Cn) = �(n + 1)/2�, for n ≡ 0, 1, 2, 3 (mod 8) and dis(Wn) =
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�(n + 1)/2�, for n ≡ 0, 1, 2, 5 (mod 8). Completed results for cycles and wheels are
proved in [9].

Bong et al. [10] generalized the concept of a distance vertex irregular labeling to
inclusive and non-inclusive d-distance vertex irregular labelings. The difference between
inclusive and non-inclusive labeling depends on the way whether the vertex label is
included in the vertex weight or not. The symbol d represents how far the neighborhood
is considered. Thus, an inclusive (respectively, non-inclusive) d-distance vertex irregular
labeling of a graph G is a mapping β such that the set of vertex weights consists of distinct
numbers, where the weight of a vertex x ∈ V(G) is the sum of all labels of vertices whose
distance from x is at most d (respectively, at most d but at least 1). The minimum k for which
there exists an inclusive (respectively, non-inclusive) d-distance vertex irregular labeling
of a graph G is called the inclusive (respectively, non-inclusive) d-distance vertex irregularity
strength of G. The non-inclusive 1-distance vertex irregularity strength of a graph G is
using Slamin’s [8] terminology known as the distance vertex irregularity strength of G,
denoted by dis(G). For the inclusive 1-distance vertex irregularity strength, we will use
notation idis(G).

In [10] is determined the inclusive 1-distance vertex irregularity strength for paths
Pn, n ≡ 0 (mod 3), stars, double stars S(m, n) with m ≤ n, a lower bound for caterpillars,
cycles, and wheels. In [11] is established a lower bound of the inclusive 1-distance vertex
irregularity strength for any graph and determined the exact value of this parameter for
several families of graphs, namely for complete and complete bipartite graphs, paths,
cycles, fans, and wheels. More results on triangular ladder and path for d ≥ 1 has been
proved in [12,13].

Motivated by a distance vertex labeling [8], an irregular labeling [2] and a recent paper
on a local antimagic labeling [14], we introduce in this paper the concept of local inclusive
and local non-inclusive d-distance vertex irregular labelings.

A vertex labeling f : V(G)→ {1, 2, . . . , k} is defined to be a local inclusive (respectively,
non-inclusive) d-distance vertex irregular labeling of a graph G if for any two adjacent vertices
x, y ∈ V(G) their weights are distinct, where the weight of a vertex x ∈ V(G) is the sum of
all labels of vertices whose distance from x is at most d (respectively, at most d but at least
1). The minimum k for which there exists a local inclusive (respectively, non-inclusive) d-
distance vertex irregular labeling of G is called the local inclusive (respectively, non-inclusive)
d-distance vertex irregularity strength of G and denoted by lidisd(G) (respectively, ldisd(G)).
If there is no such labeling for the graph G then the value of lidisd(G) is defined as ∞. In
the case when d = 1 the index d can be omitted, thus lidis1(G) = lidis(G) (respectively,
ldis1(G) = ldis(G)). In this paper, we only discuss the case for inclusive labeling with
d = 1. Note that the concept of a local non-inclusive distance vertex irregular labeling has
been introduced earlier in [15] with a different name. For more information about labeled
graphs see [16].

In this paper, we present several basic results and some estimations on the local
inclusive 1-distance vertex irregularity strength and determine the precise values of the
corresponding graph invariant for several families of graphs.

2. Basic Properties

In the following observations, we give several basic properties of lidis(G). The first
observation gives a relation between the local inclusive distance vertex irregularity strength,
lidis(G), and the inclusive distance vertex irregularity strength, idis(G). The second and
third observations give the requirement for giving the label of two vertices which have a
common neighbor.

Observation 1. For a graph G, it holds that lidis(G) ≤ idis(G).

Observation 2. If there exists an edge uv in a graph G such that NG(u)− {v} = NG(v)− {u},
then for any local non-inclusive distance vertex irregular labeling f of a graph G holds f (u) �= f (v).
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Observation 3. If there exists an edge uv in a graph G such that NG(u)− {v} = NG(v)− {u},
then lidis(G) = ∞.

The next theorem gives a sufficient and necessary condition for lidis(G) < ∞. Note
that the graph G is not necessarily connected.

Theorem 1. For a graph G, it holds that lidis(G) = ∞ if and only if there exists an edge
uv ∈ E(G) such that NG[u] = NG[v].

Proof. If there exists an edge uv ∈ E(G) such that NG[u] = NG[v], then immediately
follows Observation 3 and we obtain lidis(G) = ∞. On the other hand, if lidis(G) = ∞
then there exist at least two vertices u and v in G that have the same weight under any
vertex labeling. It is only happened if NG[u] = NG[v].

Immediately from the previous theorem we obtain the following result.

Corollary 1. If there exist two distinct vertices u, v in G such that degG(u) = degG(v) =
|V(G)| − 1, then lidis(G) = ∞.

Thus, for complete graphs we obtain

Corollary 2. Let n be a positive integer. Then

lidis(Kn) =

{
1, if n = 1,
∞, if n ≥ 2.

Now, we present a sufficient and necessary condition for lidis(G) = 1.

Theorem 2. Let G be a graph. Then lidis(G) = 1 if and only if for every edge uv ∈ E(G),
deg(u) �= deg(v).

Proof. Consider a labeling that assigns number 1 to every vertex of a graph G. Under this
labeling, the weight of any vertex v in G is wt(v) = degG(v) + 1. Thus, adjacent vertices
can have distinct weights if and only if they have distinct degrees.

The chromatic number of a graph G, denoted by χ(G), is the smallest number of
colors needed to color the vertices of G so that no two adjacent vertices share the same
color, see [1]. The following result gives a trivial lower bound for the number of distinct
induced vertex weights under any local inclusive distance vertex irregular labeling of a
graph G.

Theorem 3. For a graph G, the number of distinct induced vertex weights under any local inclusive
distance vertex irregular labeling is at least χ(G).

3. Local Inclusive Distance Vertex Irregularity Strength for Several Families of Graphs

In this section, we provide the exact values of local inclusive distance vertex irregu-
larity strengths of some standard graphs such as paths, cycles, complete bipartite graphs,
complete multipartite graphs, and caterpillars. We also give results on several products of
graphs, such as corona graphs, union graphs, and join product graphs.

Theorem 4. Let Cn be a cycle on n vertices n ≥ 3. Then

lidis(Cn) =

⎧⎪⎨
⎪⎩

∞, if n = 3,
2, if n is even,
3, if n is odd, n ≥ 5.
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Proof. Let V(Cn) = {vi : i = 1, 2, . . . , n} be the vertex set and let E(Cn) = {vivi+1 :
i = 1, 2, . . . , n− 1} ∪ {v1vn} be the edge set of a cycle Cn. The lower bound for the local
inclusive distance vertex irregularity strength of Cn follows from Theorem 3 as

χ(Cn) =

{
3, if n is odd,
2, if n is even.

As C3 is isomorphic to K3 we use Corollary 2 in this case.
For n even, we label the vertices of Cn as follows

f (vi) =

{
1, if i is odd,
2, if i is even.

Then, for the vertex weights we obtain

wt f (vi) =

{
5, if i is odd,
4, if i is even.

Thus, for n even we obtain lidis(Cn) = 2.
For n = 5, we label the vertices such that f (v1) = f (v2) = 1, f (v3) = 3 and f (v4) =

f (v5) = 2. Then, wt f (v1) = 4, wt f (v2) = wt f (v5) = 5, wt f (v3) = 6 and wt f (v4) = 7. Thus,
lidis(C5) = 3.

For n odd, n ≥ 7, the vertices are labeled in the following way

f (vi) =

⎧⎪⎨
⎪⎩

1, if i is odd, 1 ≤ i ≤ n− 4,
2, if i is even, 2 ≤ i ≤ n− 3,
3, if i = n− 2, n− 1, n.

The weights of vertices are

wt f (vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6, if i = 1, n− 3,
5, if i is odd, 3 ≤ i ≤ n− 4,
4, if i is even, 2 ≤ i ≤ n− 5,
8, if i = n− 2,
9, if i = n− 1,
7, if i = n.

As adjacent vertices have distinct weights we obtain lidis(Cn) = 3 for n odd. The
above explanation concludes the proof.

Corollary 3. Let Pn be a path on n vertices n ≥ 2. Then

lidis(Pn) =

{
∞, if n = 2,
2, if n ≥ 3.

Proof. Let V(Pn) = {vi : i = 1, 2, . . . , n} be the vertex set and let E(Pn) = {vivi+1 : i =
1, 2, . . . , n− 1} be the edge set of a path Pn. The result for n = 2 follows from Corollary 2.

For n ≥ 3, according to Theorem 3, the lidis(Pn) should be more than one. Using the
vertex labels for n even as in Theorem 4 and the corresponding vertex weights are

wt f (vi) =

⎧⎪⎨
⎪⎩

3, if i = 1, n,
4, if i is even, i �= n,
5, if i is odd, i �= 1 and i �= n.
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Thus, lidis(Pn) = 2.

The following result deals with complete multipartite graphs.

Theorem 5. Let Kn1,n2,...,nm be a complete multipartite graph, ni ≥ 1, i = 1, 2, . . . , m, m ≥ 2. Then,

lidis(Kn1,n2,...,nm) =

⎧⎪⎨
⎪⎩

∞, if 1 = n1 = n2,
1, if n1 < n2 < · · · < nm,
m, if 2 ≤ n1 = n2 = · · · = nm.

Proof. Let us denote the vertices in the independent set Vi, i = 1, 2, . . . , m of a complete
multipartite graph Kn1,n2,...,nm by symbols v1

i , v2
i , . . . , vni

i .
If 1 = n1 = n2, then the vertices v1

1 and v1
2 have the same degrees

deg(v1
1) = deg(v1

2) =
m

∑
j=3

nj + 1 = |V(Kn1,n2,...,nm)| − 1

and thus, by Corollary 1 we obtain lidis(Kn1,n2,...,nm) = ∞.
If n1 < n2 < · · · < nm, then all adjacent vertices have distinct degrees. More precisely,

the degree of a vertex vj
i , i = 1, 2, . . . , m, j = 1, 2, . . . , ni is deg(vj

i) = ∑m
j=1 nj − ni + 1. Thus,

by Theorem 2, we obtain lidis(Kn1,n2,...,nm) = 1.
If 2 ≤ n1 = n2 = · · · = nm = n consider a vertex labeling f of Kn1,n2,...,nm defined

such that
f (vj

i) = i

for i = 1, 2, . . . , m, j = 1, 2, . . . , n and the corresponding vertex weights are

wt f (v
j
i) =

nm(m+1)
2 − (n− 1)i.

Thus, all adjacent vertices have distinct weights. Thus, lidis(Kn1,n2,...,nm) ≤ m. Using
mathematical induction, it is not complicated to show that lidis(Kn1,n2,...,nm) ≥ m. This
concludes the proof.

The following corollary gives the exact value of the studied parameter for complete
bipartite graphs.

Corollary 4. Let Km,n, 1 ≤ m ≤ n, be a complete bipartite graph. Then

lidis(Km,n) =

⎧⎪⎨
⎪⎩

∞, if m = n = 1,
2, if m = n ≥ 2,
1, if m �= n.

The corona product of G and H is the graph G� H obtained by taking one copy of G,
called the center graph along with |V(G)| copies of H, called the outer graph, and making
the ith vertex of G adjacent to every vertex of the ith copy of H, where 1 ≤ i ≤ |V(G)|. For
arbitrary graphs G, we can prove the following result.

Theorem 6. Let r be a positive integer. Then, for r ≥ 2 holds

lidis(G� Kr) ≤ lidis(G).

Moreover, if G is a graph with no component of order 1 then also lidis(G� K1) ≤ lidis(G).
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Proof. If lidis(G) = ∞ then by Theorem 1 there exists at least one edge uv ∈ E(G) such
that NG[u] = NG[v]. However, as for r ≥ 2 or for r = 1 if G has no component of order 1,
in G� Kr all vertices have distinct closed neighborhood and thus lidis(G� Kr) < ∞.

Now, consider that lidis(G) < ∞ and let f be a local inclusive distance vertex irregular
labeling of G. We define a labeling g of G� Kr such that

g(v) = f (v), if v ∈ V(G),

g(v) =1, if degG�Kr
(v) = 1.

For the vertex weights, we obtain

wtg(v) =wt f (v) + r, if v ∈ V(G),

wtg(v) =1 + f (u), if degG�Kr
(v) = 1 and uv ∈ E(G� Kr).

Evidently, for r ≥ 2 or for r = 1 if G has no component of order 1, i.e., degG(v) ≥ 1 for
every v ∈ V(G), we obtain that under the labeling g the vertex weights of adjacent vertices
are different.

Moreover, we can prove that the parameter lidis(G�Kr) is finite except the case when
G� Kr contains a component isomorphic to K2.

Theorem 7. Let r be a positive integer. Then,

lidis(G� Kr) ≤ |V(G)|

except the case when r = 1 and the graph G contains a component of order 1.

Proof. Let us denote the vertices of a graph G by symbols v1, v2, . . . , v|V(G)| such that for
every i = 1, 2, . . . , |V(G)| − 1 holds

degG(vi) ≤ degG(vi+1)

and let vj
i , j = 1, 2, . . . , r be the vertices of degree 1 adjacent to vi, i = 1, 2, . . . , |V(G)|, in

G � Kr. Now, we define a labeling f that assigns 1 to every vertex of G. Thus, for every
i = 1, 2, . . . , |V(G)|

wt f (vi) = degG(vi) + 1.

We extend the labeling f of the graph G to the labeling g of the graph G� Kr in the
following way

g(vi) = f (vi), if i = 1, 2, . . . , |V(G)|,
g(vj

i) =i, if i = 1, 2, . . . , |V(G)|, j = 1, 2, . . . , r.

The induced vertex weights are

wtg(vi) =degG(vi) + 1 + ri, if i = 1, 2, . . . , |V(G)|,
wtg(v

j
i) =1 + i, if i = 1, 2, . . . , |V(G)|, j = 1, 2, . . . , r.

For r ≥ 2 and for r = 1 if the graph G has no component of order 1, i.e., deg(vi) ≥ 1
for every i = 1, 2, . . . , |V(G)|, we obtain that all adjacent vertices have distinct weights.

Note that the upper bound in the previous theorem is tight, since lidis(Kn � K1) = n.
Immediately, from Theorem 2, we have the following result

Theorem 8. For r ≥ 2 it holds lidis(G� Kr) = 1 if and only if lidis(G) = 1.
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Moreover, when G has no component of order 1 then lidis(G � K1) = 1 if and only if
lidis(G) = 1.

Now, we present results for corona product of paths, cycles, and complete graphs
with totally disconnected graph Kr, r ≥ 1. Combining Theorems 3 and 6, we obtain

Theorem 9. Let Pn be a path on n vertices n ≥ 2 and let r be a positive integer. Then

lidis(Pn � Kr) = 2.

Theorem 10. Let Cn be a cycle on n vertices n ≥ 3 and let r be a positive integer. Then

lidis(Cn � Kr) =

{
3, if n = 3 and r = 1,
2, otherwise.

Proof. Let

V(Cn � Kr) = {vi : i = 1, 2, . . . , n} ∪ {vj
i : i = 1, 2, . . . , n; j = 1, 2, . . . , r}

be the vertex set and let

E(Cn � Kr) ={vivi+1 : i = 1, 2, . . . , n− 1} ∪ {v1vn}
∪ {viv

j
i : i = 1, 2, . . . , n; j = 1, 2, . . . , r}

be the edge set of Cn � Kr.
For even n the result follows from Theorems 4 and 6. For n = 3 and r = 1 consider

the labeling illustrated on Figure 1.

1

1 1

1

2 3

Figure 1. A local inclusive distance vertex irregular labeling of C3 � K1.

For odd n and (n, r) �= (3, 1), we define a vertex labeling f of Cn � Kr such that

f (vi) =

{
2, for i = 1,
1, for i = 2, 3, . . . , n,

f (vj
i) =

{
2, for i = 2, 4, . . . , n− 1, n and j = 1,
1, otherwise.

The weights of vertices of degree r + 2 are

wt f (vi) =

⎧⎪⎨
⎪⎩

r + 3, for i = 3, 5, . . . , n− 2,
r + 4, for i = 1, 4, 6, . . . , n− 1,
r + 5, for i = 2, n.

As the weights of vertices of degree one are either 2 or 3, we obtain that adjacent
vertices have distinct weights.
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Theorem 11. Let n, r be positive integers. Then

lidis(Kn � Kr) =

{
∞, if n = 1, r = 1,

1 +
⌈

n−1
r

⌉
, otherwise.

Proof. As the graph K1 � K1 is isomorphic to the complete graph K2 we use Corollary 2 in
this case.

Let (n, r) �= (1, 1). Let the vertex set and the edge set of Kn � Kr be the following

V(Kn � Kr) ={vi, vj
i : i = 1, 2, . . . , n; j = 1, 2, . . . , r},

E(Kn � Kr) ={vivj : i = 1, 2, . . . , n− 1; j = i + 1, i + 2, . . . , n}
∪ {viv

j
i : i = 1, 2, . . . , n; j = 1, 2, . . . , r}.

We define a vertex labeling f of Kn � Kr such that

f (vi) =1 +
⌈

n−1
r

⌉
, if i = 1, 2, . . . , n,

f (vj
i) =

⎧⎨
⎩

1 +
⌈

i−1
r

⌉
, if i = 1, 2, . . . , n, j = 1, 2, . . . , Ai,

1 +
⌊

i−1
r

⌋
, if i = 1, 2, . . . , n, j = Ai + 1, Ai + 2, . . . , r,

where for every i = 1, 2, . . . , n the parameter Ai, 1 ≤ Ai ≤ r, is defined such that

i− 1 ≡ Ai (mod r).

For the vertex weights, we obtain

wt f (vi) =n(1 +
⌈

n−1
r

⌉
) + r + i− 1, if i = 1, 2, . . . , n,

wt f (v
j
i) =

⎧⎨
⎩
⌈

n−1
r

⌉
+ 2 +

⌈
i−1

r

⌉
, if i = 1, 2, . . . , n, j = 1, 2, . . . , Ai,⌈

n−1
r

⌉
+ 2 +

⌊
i−1

r

⌋
, if i = 1, 2, . . . , n, j = Ai + 1, Ai + 2, . . . , r.

Evidently adjacent vertices have distinct weights. Thus, as the maximal vertex label is
1 + �(n− 1)/r�, the proof is completed.

A caterpillar is a graph derived from a path by hanging any number of leaves from
the vertices of the path. We denote the caterpillar as Sn1,n2,...,nr , where the vertex set is
V(Sn1,n2,...,nr ) = {ci : 1 ≤ i ≤ r} ∪⋃r

i=1{uj
i : 1 ≤ j ≤ ni}, and the edge set is E(Sn1,n2,...nr ) =

{cici+1 : 1 ≤ i ≤ r− 1} ∪⋃r
i=1{ciu

j
i : 1 ≤ j ≤ ni}.

Theorem 12. For every caterpillar Sn1,n2,...,nr with at least 3 vertices holds lidis(Sn1,n2,...,nr ) ≤ 2.

Proof. For a regular caterpillar, thus the case n1 = n2 = . . . = nr = n, using Theorem 9,
we obtain that lidis(Sn,n,...,n) = 2.

For the other cases, label the vertices of a caterpillar Sn1,n2,...,nr using the following
algorithm.

Step 1: Label all vertices with 1.
Then the weights of vertices ci, i = 1, 2, . . . , r are deg(ci) and all vertices of degree 1
have weight 2.

Step 2: Find the smallest index s, 2 ≤ s ≤ r− 1, such that wt(cs+1) = wt(cs).
Step 3: If such number does not exist, it means that adjacent vertices have distinct degrees

and thus lidis(Sn1,n2,...,nr ) = 1. We are done.
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Step 4: If such number exists either relabel a leaf of adjacent to cs+1 (if a leaf exists) from 1
to 2 or relabel the vertex cs+2 from 1 to 2. Then wt(cs+1) = wt(cs) + 1.
Note that this relabeling will not have an effect on weights of vertices ci for every
i ≤ s.

Step 5: Find the smallest index t, s + 1 ≤ t ≤ r− 1, such that wt(ct+1) = wt(ct).
Step 6: If such number does not exist, it means that adjacent vertices have distinct degrees

and thus lidis(Sn1,n2,...,nr ) = 2. We are finished.
Step 7: If such number exists either relabel a leaf of adjacent to ct+1 (if a leaf exists) from 1

to 2 or relabel the vertex ct+2 from 1 to 2. Then wt(cs+1) = wt(ct) + 1.
Step 8: Return to Step 5.

After a finite number of steps, the algorithm stops and the weights of the vertices are
always different from the weights of their neighbors.

A similar algorithm can be used to obtain a result for closed caterpillars, which are
graphs where the removal of all pendant vertices gives a cycle. We denote the closed
caterpillar as CSn1,n2,...,nr , where the vertex set is V(CSn1,n2,...,nr ) = {ci : 1 ≤ i ≤ r} ∪⋃r

i=1{uj
i : 1 ≤ j ≤ ni}, and the edge set is E(CSn1,n2,...nr ) = {cici+1 : 1 ≤ i ≤ r − 1} ∪

{c1cr} ∪⋃r
i=1{ciu

j
i : 1 ≤ j ≤ ni}.

Theorem 13. For closed caterpillar CSn1,n2,...,nr holds

lidis(CSn1,n2,...,nr ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞, if r = 3 and {n1, n2, n3} = {n, 0, 0}, where n ≥ 0,
3, if r = 3 and (n1, n2, n3) = (1, 1, 1),
3, if r = 3 + 6k, k ≥ 1 and {n1, n2, . . . , nr} = {1, 0, . . . , 0},
≤ 2, otherwise.

The proof of the next result for the disjoint union of graphs, follows from the fact that
there are no edges between the distinct components.

Theorem 14. Let Gi, i = 1, 2, . . . , m be arbitrary graphs. Then

lidis

(
m⋃

i=1

Gi

)
= max{lidis(Gi) : i = 1, 2, . . . , m}.

Immediately from the previous theorem, we obtain the following result.

Corollary 5. Let n be a non-negative integer and let G be a graph. Then, lidis(G ∪ nK1) =
lidis(G).

The join G⊕ H of the disjoint graphs G and H is the graph G ∪ H together with all the
edges joining vertices of V(G) and vertices of V(H). Let Δ(G) denote the maximal degree
of the graph G.

Theorem 15. For any graph G holds

lidis(G⊕ K1) =

{
∞, if Δ(G) = |V(G)| − 1,
lidis(G), if Δ(G) < |V(G)| − 1.

Proof. Let w be the vertex of K1. In a graph G⊕ K1 the vertex w is adjacent to all vertices
in G we immediately get that lidis(G⊕ K1) ≥ lidis(G).

If Δ(G) = |V(G)| − 1 then in G⊕ K1 there are at least two vertices of degree |V(G)| =
|V(G⊕ K1)| − 1 and thus by Corollary 1 we have lidis(G⊕ K1) = ∞.

71



Mathematics 2021, 9, 1673

Let Δ(G) < |V(G)| − 1. If lidis(G) = ∞ then by Theorem 1 there exists at least two
vertices, say u and v in G such that NG[u] = NG[v]. However, these vertices have the same
closed neighborhood also in the graph G⊕ K1 as

NG⊕K1 [u] = NG[u] ∪ {w} = NG[v] ∪ {w} = NG⊕K1 [v].

However, this implies that

lidis(G⊕ K1) = ∞ = lidis(G).

Now, consider that lidis(G) < ∞ and let f be a corresponding local inclusive distance
vertex irregular graph of G. We define a labeling g of G⊕ K1 in the following way

g(v) =

{
1, if v = w,
f (v), if v ∈ V(G).

The induced vertex weights are

wtg(v) =

⎧⎨
⎩

∑
u∈V(G)

f (u) + 1, if v = w,

wt f (v) + 1, if v ∈ V(G).

As Δ(G) < |V(G)| − 1 we get that for any vertex v ∈ V(G) is

wt f (v) = ∑
u∈NG(v)

f (u) < ∑
u∈V(G)

f (u).

Thus, all adjacent vertices have distinct weights. This means that g is a local inclusive
distance vertex irregular labeling of G⊕ K1. As vertex w is adjacent to every vertex in G
we get lidis(G⊕ K1) = lidis(G) in this case. This concludes the proof.

The graph in the previous theorem is not necessarily connected.

Theorem 16. Let Gi, i = 1, 2, . . . , m, m ≥ 2 be arbitrary graphs. Then

lidis

((
m⋃

i=1

Gi

)
⊕ K1

)
= max{lidis(Gi) : i = 1, 2, . . . , m}.

Proof. The proof follows from Theorems 14 and 15.

A wheel Wn with n spokes is isomorphic to the graph Cn ⊕ K1. A fan graph Fn is
isomorphic to the graph Pn ⊕ K1, while a generalized fan graph is isomorphic to the graph
kPn ⊕ K1. The following results are immediate corollaries of the previous theorems.

Corollary 6. Let Wn be a wheel on n + 1 vertices n ≥ 3. Then

lidis(Wn) =

⎧⎪⎨
⎪⎩

∞, if n = 3,
2, if n is even,
3, if n is odd, n ≥ 5.

Corollary 7. Let Fn be a fan on n + 1 vertices n ≥ 2. Then

lidis(Fn) =

{
∞, if n = 2,
2, if n ≥ 3.
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Corollary 8. Let kPn ⊕ K1 be a generalized fan graph, k, n ≥ 2. Then

lidis(kPn ⊕ K1) = 2.

If lidis(G) = ∞ then by Theorem 1 there exist at least two vertices, say u and v
in G such that they have the same closed neighborhood NG[u] = NG[v]. Thus, we
immediately get

NG⊕Kr
[u] =NG[u] ∪ {wi : i = 1, 2, . . . , r}

=NG[v] ∪ {wi : i = 1, 2, . . . , r} = NG⊕Kr
[v],

where wi, i = 1, 2, . . . , r, are the vertices of Kr. Thus, lidis(G⊕ Kr) = ∞ for every positive
integer r. Now we will deal with the case when lidis(G) < ∞ and r ≥ 2.

Theorem 17. Let r ≥ 2 be a positive integer and let G be not isomorphic to a totally disconnected
graph. If lidis(G) < ∞ and r ≥ |V(G)| · lidis(G) then lidis(G⊕ Kr) = lidis(G).

Proof. Let us denote the vertices Kr by the symbols wi, i = 1, 2, . . . , r and let r ≥ 2.
Thus, V(G ⊕ Kr) = V(G) ∪ {wi : i = 1, 2, . . . , r}. In a graph G ⊕ Kr all the vertices wi,
i = 1, 2, . . . , r are adjacent to all vertices in G thus we immediately get that lidis(G⊕ Kr) ≥
lidis(G).

Let lidis(G) < ∞ and let f be a corresponding local inclusive distance vertex irregular
labeling of G. We define a labeling g of G⊕ Kr in the following way

g(v) =

{
1, if v = wi, i = 1, 2, . . . , r,
f (v), if v ∈ V(G).

Then, the vertex weights are

wtg(v) =

⎧⎨
⎩

∑
u∈V(G)

f (u) + 1, if v = wi, i = 1, 2, . . . , r,

wt f (v) + r, if v ∈ V(G).

Evidently, under the labeling g, all adjacent vertices in V(G) have distinct weights. We
need also to prove that no vertex in V(G) has the same weight as in V(Kr). Consider that

r ≥ |V(G)| · lidis(G).

As G is not isomorphic to a totally disconnected graph then for the weight of any
vertex v in V(G) we have

wtg(v) =wt f (v) + r ≥ 1 + |V(G)| · lidis(G) > 1 + ∑
u∈V(G)

f (u) = wtg(wi)

for every i = 1, 2, . . . , r. Thus, g is a local inclusive distance vertex irregular graph of G⊕Kr
and hence lidis(G⊕ Kr) ≤ lidis(G).

Note that for small r the previous theorem is not necessarily true. Consider the graph
G illustrated on Figure 2, evidently lidis(G) = 1. However, lidis(G⊕ K3) = 2.

1

1 1 11

1

Figure 2. A local inclusive distance vertex irregular labeling of a graph G.
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4. Conclusions

In this paper, we introduced the local inclusive distance vertex irregularity strength of
graphs and gave some basic results and also some constructions of the feasible labelings
for several families of graphs. We still have some open problems and conjecture as follows:

Problem 1. Find lidis(Kn1,n2,...,nm) for general case, which is for the case n1 ≤ n2 ≤ · · · ≤ nm,
where m > 2.

Problem 2. Characterize graphs for which lidis(G� Kr) = lidis(G).

Conjecture 1. For arbitrary tree T with T �= K2, lidis(T) = 1 or 2.
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Abstract: Domination theory is a well-established topic in graph theory, as well as one of the most
active research areas. Interest in this area is partly explained by its diversity of applications to
real-world problems, such as facility location problems, computer and social networks, monitoring
communication, coding theory, and algorithm design, among others. In the last two decades,
the functions defined on graphs have attracted the attention of several researchers. The Roman-
dominating functions and their variants are one of the main attractions. This paper is a contribution
to the Roman domination theory in graphs. In particular, we provide some interesting properties
and relationships between one of its variants: the quasi-total Roman domination in graphs.

Keywords: quasi-total Roman domination; total Roman domination; Roman domination

1. Introduction

Domination in graphs was first defined as a graph-theoretical concept in 1958. This
area has attracted the attention of many researchers due to its diversity of applications to
real-world problems, such as problems with the location of facilities, computing and social
networks, communication monitoring, coding theory, and algorithm design, among others.
In that regard, this topic has experienced rapid growth, resulting in over 5000 papers being
published. We refer to [1,2] for theoretical results and practical applications.

Given a graph G, a dominating set is a subset D ⊆ V(G) of vertices, such that every
vertex not in D is adjacent to at least one vertex in D. The minimum cardinality among all
dominating sets of G is called the domination number of G. The number of works, results and
open problems that exist on this parameter and its variants provide a very wide range of
work directions to consider, which come from their very theoretical aspects to a significant
number of practical applications, passing through a large number of relationships and
connections between some invariants of graph theory itself.

In the last two decades, the interest in research concerning dominating functions in
graphs has increased. One of the reasons for this is that dominating functions generalize the
concept of dominating sets. In particular, the Roman dominating functions (defined in [3],
due to historical reasons arising from the ancient Roman Empire and described in [4,5]),
and their variants, are one of the main attractions. At present, more than 300 papers have
been published on this topic.

In 2019, Cabrera García et al. [6] defined and began the study of an interesting variant
of Roman-dominating functions: the quasi-total Roman-dominating functions. This paper
deals precisely with this style of domination, and our goal is to continue with the study of
this novel parameter in graphs.

Definitions, Notation and Organization of the Paper

We begin this subsection by stating the main basic terminology which will be used in
the whole work. Let G = (V(G), E(G)) be a simple graph with no isolated vertex. Given

Mathematics 2021, 9, 2823. https://doi.org/10.3390/math9212823 https://www.mdpi.com/journal/mathematics75
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a vertex v ∈ V(G), N(v) = {x ∈ V(G) : xv ∈ E(G)} and N[v] = N(v) ∪ {v}. A vertex
v ∈ V(G) is called a leaf vertex if |N(v)| = 1. Given a set D ⊆ V(G), N(D) = ∪v∈D N(v),
N[D] = N(D) ∪ D and ∂(D) = N(D) \ D. Moreover, given a set D ⊆ V(G) and a vertex
v ∈ D, epn(v, D) = {u ∈ V(G) \ D : N(u) ∩ D = {v}}. Also, and as is commonly
defined, G− D denotes the graph obtained from G such that V(G− D) = V(G) \ D and
E(G− D) = E(G) \ {uv ∈ E(G) : u ∈ D or v ∈ D}. Moreover, the subgraph of G induced
by D ⊆ V(G) will be denoted by G[D].

We say that G is F-free if it contains no copy of F as an induced subgraph. A set
D ⊆ V(G) is a 2-packing if N[x] ∩ N[y] �= ∅ for every pair x, y ∈ D. The 2-packing number
of G, denoted by ρ(G), is defined as max{|D| : D is a 2-packing of G}. A 2-packing of
cardinality ρ(G) is called a ρ(G)-set. We will assume an analogous correspondence when
referring to the optimal sets or functions derived from other parameters used in the article.

Let f : V(G) → {0, 1, 2} be a function on G. Observe that f generates three sets
V0, V1 and V2, where Vi = {v ∈ V(G) : f (v) = i} for i ∈ {0, 1, 2}. In this sense, we will
write f (V0, V1, V2) to refer to the function f . Given a set D ⊆ V(G), f (D) = ∑v∈D f (v).
The weight of f is defined as ω( f ) = f (V(G)) = |V1| + 2|V2|. We shall also use the
following notations: V1,2 = {v ∈ V1 : N(v) ∩ V2 �= ∅}, V1,0 = {v ∈ V1 : N(v) ⊆ V0}
and V1,1 = V1 \ (V1,2 ∪ V1,0). A function f (V0, V1, V2) on G is a dominating function if
N(v) ∩ (V1 ∪ V2) �= ∅ for every vertex v ∈ V0. Moreover, f is a total dominating function
(TDF) if N(v) ∩ (V1 ∪ V2) �= ∅ for every vertex v ∈ V(G). Next, we highlight some
particular cases of known domination parameters, which we define here in terms of (total)
dominating functions.

• A set D ⊆ V(G) is a (total) dominating set of G if there exists a (total) dominating
function f (V0, V1, V2) such that f (x) > 0 if, and only if, x ∈ D. The (total) domination
number of G, denoted by (γt(G)) γ(G), is the minimum cardinality among all (total)
dominating sets of G. For more information on domination and total domination see
the books [1,2,7], the survey [8] and the recent works [9–11].

• A function f (V0, V1, V2) is a Roman-dominating function if N(v) ∩ V2 �= ∅ for every
v ∈ V0. The Roman domination number of G, denoted by γR(G), is the minimum weight
among all Roman-dominating functions on G. For more information on Roman
domination and its varieties, see the articles [3,12].

• A TDF f (V0, V1, V2) is a total Roman-dominating function (TRDF) on a graph G without
isolated vertices if N(v) ∩V2 �= ∅ for every vertex v ∈ V0. The total Roman domination
number, denoted by γtR(G), is the minimum weight among all TRDFs on G. For recent
results on the total Roman domination in graphs we cite [13–20].

• A quasi-total Roman-dominating function (QTRDF) on a graph G is a dominating function
f (V0, V1, V2) such that N(x)∩V2 �= ∅ for every x ∈ V0; and N(y)∩ (V1 ∪V2) �= ∅ for
every y ∈ V2. The minimum weight among all QTRDFs on G is called the quasi-total
Roman domination number, and is denoted by γqtR(G). This parameter was introduced
by Cabrera Martínez et al. [6].

As consequence of the above definitions and the well-known inequalities ρ(G) ≤ γ(G)
(see [1]), γt(G) ≤ γR(G) (see [21]) and γtR(G) ≤ γR(G) + γ(G) (see [14]), we establish an
inequality chain involving the previous parameters.

Theorem 1. If G is a graph with no isolated vertex, then

ρ(G) ≤ γ(G) ≤ γt(G) ≤ γR(G) ≤ γqtR(G) ≤ γtR(G) ≤ γR(G) + γ(G).

For instance, for the graphs G1 and G2 given in Figure 1 we deduce the next inequality
chains. In that regard, the labels of (gray and black) coloured vertices describe the positive
weights of a γqtR(Gi)-function, for i ∈ {1, 2}.

• ρ(G1) = 1 < 3 = γ(G1) < 4 = γt(G1) < 5 = γR(G1) < 6 = γqtR(G1) < 7 =
γtR(G1).

• ρ(G2) = 1 < 3 = γ(G2) < 4 = γt(G2) < 6 = γR(G2) < 7 = γqtR(G2) = γtR(G2).
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G1

1

2

2

1

G2

2

2 2

1

Figure 1. The labels of (gray and black) coloured vertices describe the positive weights of a γqtR(Gi)-
function, for i ∈ {1, 2}.

As mentioned before, the goal of this work is continue the study of the quasi-total
Roman domination number of graphs. In that regard, the paper is organized as follows.
First, we obtain new, tight bounds for this parameter. Such bounds can also be seen
as relationships between this novel parameter and several other classical domination
parameters such as the (total) domination and (total) Roman domination numbers. Finally,
and as a consequence of this previous study, we derive new results on the total Roman
domination number of a graph.

2. Bounds and Relationships with Other Parameters

Let G be a disconnected graph and let G1, . . . , Gr (r ≥ 2) be the components of G.
Observe that any QTRDF f (V0, V1, V2) on G satisfies that f restricted to V(Gj) is a QTRDF
on Gj, for every j ∈ {1, . . . , r}. Therefore, the following result is obtained for the case of
disconnected graphs.

Remark 1 ([6]). Let G1, . . . , Gr (r ≥ 2) be the components of a disconnected graph G. Then

γqtR(G) =
r

∑
i=1

γqtR(Gi).

As a consequence of the above remark, throughout this paper, we only consider
nontrivial connected graphs. Next, we give two useful lemmas, which provide some tools
to deduce some of the results.

Lemma 1. Let G be a nontrivial connected graph. If f (V0, V1, V2) is a γqtR(G)-function, then the
following statements hold.

(i) f ′(V′
0 = V0, V′

1 = V1 \V1,0, V′
2 = V2) is a γtR(G−V1,0)-function.

(ii) epn(v, V2) ∩V0 �= ∅, for every v ∈ V2.
(iii) If γqtR(G) = γR(G), then V1,2 = ∅.

Proof. Let f (V0, V1, V2) be a γqtR(G)-function. First, we proceed to prove (i). Notice that
G − V1,0 has no isolated vertex. Hence, the function f ′(V′

0, V′
1, V′

2), defined by V′
0 = V0,

V′
1 = V1 \ V1,0 and V′

2 = V2, is a TRDF on G − V1,0. Hence, γtR(G − V1,0) ≤ ω( f ′). Now,
if γtR(G − V1,0) < ω( f ′), then from any γtR(G − V1,0)-function and the set V1,0, we can
construct a QTRDF on G of weight less than ω( f ) = γqtR(G), which is a contradiction.
Therefore, the function f ′ is a γtR(G−V1,0)-function, as required.

Now, we proceed to prove (ii). Let v ∈ V2. Obviously, N(v) ∩V0 �= ∅. If epn(v, V2) ∩
V0 = ∅, then the function f ′(V′

0, V′
1, V′

2), defined by V′
1 = V1 ∪ {v}, V′

2 = V2 \ {v} and
V′

0 = V0, is a QTRDF on G of weight ω( f ′) < ω( f ) = γqtR(G), which is a contradiction.
Therefore, epn(v, V2) ∩V0 �= ∅, which completes the proof of (ii).

Finally, we proceed to prove (iii). Assume that γqtR(G) = γR(G). First, suppose that
V1,2 �= ∅. It is easy to see that the function f ′(V′

0, V′
1, V′

2), defined by V′
1 = V1 \V1,2, V′

2 = V2
and V′

0 = V0 ∪ V1,2, is a Roman-dominating function on G. Hence, γR(G) ≤ ω( f ′) <
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ω( f ) = γqtR(G), which is a contradiction. Therefore, V1,2 = ∅, which completes the proof
of (iii).

Lemma 2. Let G be a nontrivial connected graph. If f (V0, V1, V2) is a γqtR(G)-function such that
|V1| is minimum, then one of the following conditions holds.

(i) V1,0 = ∅.
(ii) V1,0 is a 2-packing of G.

Proof. Let f (V0, V1, V2) be a γqtR(G)-function, such that |V1| is minimal. Assume that
V1,0 �= ∅. It is clear by definition that V1,0 is an independent set. Now, suppose that
V1,0 is not a 2-packing of G. Therefore, two vertices u, v ∈ V1,0 exist at distance two. Let
w ∈ N(u) ∩ N(v). Notice that w ∈ V0 and N(w) ∩V2 �= ∅. With these conditions in mind,
observe that the function f ′(V′

0, V′
1, V′

2), defined by V′
1 = V1 \ {u, v}, V′

2 = V2 ∪ {w} and
V′

0 = V(G) \ (V′
1 ∪V′

2), is a QTRDF on G of weight ω( f ′) = ω( f ) and |V′
1| < |V1|, which

is a contradiction. Therefore, V1,0 is a 2-packing of G, which completes the proof.

We continue with one of the main results of this paper.

Theorem 2. If G is a nontrivial connected graph, then at least one of the following statements holds.

(i) γqtR(G) = γtR(G).
(ii) γqtR(G) = min{γtR(G− S) + |S| : S is a 2-packing of G}.

Proof. Let f (V0, V1, V2) be a γqtR(G)-function such that |V1| is minimum. If V1,0 = ∅,
then by Lemma 1-(i) we deduce that f is also a γtR(G)-function, which implies that
γqtR(G) = γtR(G). Hence, from now on, we assume that V1,0 �= ∅. By Lemma 2, it
follows that V1,0 is a 2-packing of G. Moreover, by Lemma 1-(i) we have the function
f ′(V′

0 = V0, V′
1 = V1 \ V1,0, V′

2 = V2) is a γtR(G − V1,0)-function. Therefore, γqtR(G) =
γtR(G − V1,0) + |V1,0| ≥ min{γtR(G − S) + |S| : S is a 2-packing of G}. We only need to
prove that γqtR(G) ≤ min{γtR(G − S) + |S| : S is a 2-packing of G}. In such a sense, let
S be a 2-packing of G for which γtR(G− S) + |S| is minimum, and let g′(W ′

0, W ′
1, W ′

2) be
a γtR(G − S)-function. Observe that the function g(W0, W1, W2), defined by W0 = W ′

0,
W1 = W ′

1 ∪ S and W2 = W ′
2, is a QTRDF on G. Therefore, γqtR(G) ≤ ω(g) = min{γtR(G−

S) + |S| : S is a 2-packing of G}, which completes the proof.

The next proposition is a direct consequence of Theorem 2.

Proposition 1. If G is a nontrivial connected graph, then

γqtR(G) ≥ γtR(G)− ρ(G).

Proof. If γqtR(G) = γtR(G), then the inequality holds. Assume that γqtR(G) < γtR(G).
By Theorem 2 there exists a 2-packing S of G such that γqtR(G) = γtR(G − S) + |S|.
Let f ′(V′

0, V′
1, V′

2) be a γtR(G − S)-function and let S′ ⊆ N(S) be a set of cardinality |S|
such that N(x) ∩ S′ �= ∅ for every vertex x ∈ S. Observe that the function f (V0, V1, V2),
defined by V2 = V′

2, V1 = V′
1 ∪ S ∪ (S′ \ V′

2) and V0 = V(G) \ (V1 ∪ V2), is a TRDF on G.
Therefore, γtR(G) ≤ ω( f ) ≤ ω( f ′) + |S|+ |S′| = γtR(G − S) + 2|S| = γqtR(G) + |S| ≤
γqtR(G) + ρ(G), which completes the proof.

The bound above is tight. For instance, it is achieved for the graph G given in the
Figure 2. Notice that this figure describes the positive weights of a γqtR(G)-function.
In addition, it is easy to see that ρ(G) = 2 and γtR(G) = 8. Hence, γqtR(G) = 6 =
γtR(G)− ρ(G), as required.
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1 12 2

Figure 2. The labels of (gray and black) coloured vertices describe the positive weights of a
γqtR(G)-function.

It is well-known that γtR(G) ≥ 2γ(G) ≥ γR(G) for any graph G with no isolated
vertex (see [3,15]). From this inequality chain, we deduce the following result.

Theorem 3. For any nontrivial connected graph G,

2γ(G)− ρ(G) ≤ γqtR(G) ≤ 3γ(G).

Proof. By combining the bound γtR(G) ≥ 2γ(G) and the bound given in Proposition 1,
we deduce that γqtR(G) ≥ 2γ(G)− ρ(G).

Now, from the bound γR(G) ≤ 2γ(G) and the inequality γqtR(G) ≤ γR(G) + γ(G)
given in Theorem 1 we obtain γqtR(G) ≤ γR(G) + γ(G) ≤ 3γ(G), as desired.

The lower bounds given in the two previous results are tight. We will show later
that, as a consequence of Lemma 3, the graphs Ga,0 ∈ G satisfy the equality established in
Proposition 1, while the graph G2,0 satisfies the equality given in Theorem 3.

With respect to the equality in the bound γqtR(G) ≤ 3γ(G) above, we can see that this
bound is tight. For instance, it is achieved for the graph G given in the Figure 3. Notice
that this figure describes the positive weights of a γqtR(G)-function, and as a consequence,
we deduce that γqtR(G) = 6 = 3γ(G), as required.

2 21 1

Figure 3. The labels of (gray and black) coloured vertices describe the positive weights of a
γqtR(G)-function.

In addition, we can deduce the following connection. To this end, we need to say that
a graph G is called a Roman graph if γR(G) = 2γ(G).

Proposition 2. If G is a graph such that γqtR(G) = 3γ(G), then G is a Roman graph.

Proof. From the proof of Theorem 3, we have that 3γ(G) = γqtR(G) ≤ γR(G) + γ(G) ≤
3γ(G). Thus, we have equalities in the inequality chain above. In particular, γR(G) =
2γ(G), which completes the proof.

Notice that the opposed to the proposition above is not necessarily true. For instance,
the graph G2 given in Figure 1 is a Roman graph, but it does not satisfy the equality
γqtR(G2) = 3γ(G2).

The following result gives a lower bound for the quasi-total Roman domination
number and characterizes the class of connected graphs for which γqtR(G) ∈ {γ(G) +
1, γ(G) + 2}.

Theorem 4. For any nontrivial connected graph G of order n,

γqtR(G) ≥ γ(G) + 1.
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Furthermore,

(i) γqtR(G) = γ(G) + 1 if and only if G ∼= P2.
(ii) γqtR(G) = γ(G) + 2 if and only if one of the following conditions holds.

(a) G �∼= P2 has a vertex of degree n− γ(G).
(b) G has two adjacent vertices u, v such that |∂({u, v})| = n− γ(G).

Proof. If G ∼= P2, then it is clear that γqtR(G) = γ(G) + 1. From now on, assume that
G �∼= P2. Let f (V0, V1, V2) be a γqtR(G)-function, such that |V1| is minimum. Note that
(V1 \ V1,2) ∪ V2 is a dominating set of G, and |V2| ≥ 1. Hence, γqtR(G) = 2|V2|+ |V1| ≥
(|V2|+ |V1 \V1,2|) + |V2| ≥ γ(G) + 1, and the lower bound follows.

Now, suppose that γqtR(G) = γ(G) + 1. So, we have equalities in the inequality chain
above. In particular, V1,2 = ∅ and |V2| = 1, which is a contradiction. Therefore, if G �∼= P2,
then γqtR(G) ≥ γ(G) + 2, and, as a consequence, (i) follows.

We next proceed to prove (ii). First, suppose that γqtR(G) = γ(G) + 2. Notice that,

γ(G) + 2 = ω( f ) ≥ (|V2|+ |V1 \V1,2|) + |V2| ≥ γ(G) + |V2|.

This implies that |V2| ∈ {1, 2}, and, in such a case, we consider the following two cases.

Case 1. |V2| = 1. In this case, we have that |V1| = γ(G). Let V2 = {v}. Now, as
|N(v) ∩ V1| = 1 and V0 ⊆ N(v), we deduce that |N(v)| = |V0|+ 1 = (n− |V1| − |V2|) +
1 = n− γ(G), which implies that condition (a) follows.

Case 2. |V2| = 2. Let V2 = {u, v}. In this case we have that |V1| = γ(G)− 2, and we have
equalities in the inequality chain above. As a consequence, V1,2 = ∅, which implies that
u and v are adjacent vertices. Hence, ∂({u, v}) = V0 and, therefore, |∂({u, v})| = |V0| =
n− |V1| − |V2| = n− γ(G). Therefore, condition (b) follows.

On the other hand, suppose that one of the conditions (a) and (b) holds. In such a
sense, we consider the next two cases. Recall that γqtR(G) ≥ γ(G) + 2 since G �∼= P2.

Case 1. Suppose that (a) holds. Let v ∈ V(G) such that |N(v)| = n− γ(G) and w ∈ N(v).
Notice that the function f ′(V′

0, V′
1, V′

2), defined by V′
2 = {v}, V′

0 = N(v) \ {w} and V′
1 =

V(G) \ (V′
0 ∪V′

2), is a QTRDF on G. Hence, γqtR(G) ≤ ω( f ′) = 2|V′
2|+ |V′

1| = 2 + γ(G),
which implies that γqtR(G) = γ(G) + 2, as required.

Case 2. Suppose that (b) holds. Let u, v be two adjacent vertices such that |∂({u, v})| = n−
γ(G). Observe that the function f ′′(V′′

0 , V′′
1 , V′′

2 ), defined by V′′
2 = {u, v}, V′′

0 = ∂({u, v})
and V′′

1 = V(G) \ (V′′
0 ∪V′′

2 ), is a QTRDF on G. Hence, γqtR(G) ≤ ω( f ′′) = 2|V′′
2 |+ |V′′

1 | =
4 + (γ(G)− 2) = γ(G) + 2, which implies that γqtR(G) = γ(G) + 2, as required.

Therefore, the proof is complete.

Cabrera Martínez et al. [6] in 2019, established that γqtR(G) ≤ n− ρ(G)(δ(G)− 2) for
any nontrivial graph G of order n and minimum degree δ(G). The following bounds for
the total Roman domination number and the domination number, respectively, are direct
consequences of the previous inequality, Proposition 1 and Theorem 3.

Theorem 5. The following statements hold for any nontrivial connected graph G of order n and
δ(G) ≥ 4.

(i) γtR(G) ≤ n− ρ(G)(δ(G)− 3).

(ii) γ(G) ≤ n−ρ(G)(δ(G)−3)
2 .

From Proposition 1 and Theorem 1, we obtain the following useful inequality chain.

γtR(G)− ρ(G) ≤ γqtR(G) ≤ γtR(G). (1)

An interesting question that arises from the inequality chain above is the following.
Can the differences γqtR(G)− (γtR(G)− ρ(G)) and γtR(G)− γqtR(G) be as large as possi-
ble? Next, we provide an affirmative answer to the previous question. For this purpose, we
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need to introduce the following family of graphs. Given two integers a, b ≥ 0 (a + b ≥ 2),
a graph Ga,b ∈ G is defined as follows.

• We begin with a nontrivial connected graph G of order |V(G)| = a + b with vertex set
V(G) = {u1, . . . , ua, v1, . . . , vb}.

• Attach a path P4 = x1x2x3x4 to every ui ∈ V(G), i ∈ {1, . . . , a}, by adding an edge
between ui and every vertex in {x1, x2, x4}.

• Attach a double star S1,2 to every vj ∈ V(G), j ∈ {1, . . . , b}, by adding an edge
between vj and every leaf vertex of S1,2.

The Figure 4 shows the graph G2,3 by taking G ∼= P5. We next give exact formulas for
the total Roman domination number, the quasi-total Roman domination number and the
packing number of the graphs of the family G. These results are almost straightforward to
deduce and, according to this fact, the proofs are left to the reader.

2 2 2 2 2

1 1 11 1

1 1 1

u1 u2 v1 v2 v3

Figure 4. The graph G2,3 by taking G as the path graph P5. The labels of (gray and black) coloured
vertices describe the positive weights of a γqtR(G2,3)-function.

Lemma 3. Let a, b ≥ 0 be two integers, such that a + b ≥ 2. If G is a connected graph such that
|V(G)| = a + b, then the following equalities hold.

(i) γtR(Ga,b) = 4a + 4b.
(ii) γqtR(Ga,b) = 3a + 4b.
(iii) ρ(Ga,b) = a + b.

According to the lemma above, for any integers a, b ≥ 0 (a + b ≥ 2), we obtain that
any graph Ga,b ∈ G satisfies

γqtR(Ga,b)− (γtR(Ga,b)− ρ(Ga,b)) = b and γtR(Ga,b)− γqtR(Ga,b) = a,

which provides the answer to our previous question. In addition, and as a consequence
of Lemma 3, we deduce that the lower and upper bounds given in Inequality chain (1)
are tight. For instance, any graph Ga,0 ∈ G satisfies that γqtR(Ga,0) = γtR(Ga,0)− ρ(Ga,0),
while any graph G0,b ∈ G satisfies that γqtR(G0,b) = γtR(G0,b).

It is well known that ρ(G) = 1 for every graph G with a diameter of, at most, two. In
this sense, and as direct consequence of the Inequality chain (1), we have that γqtR(G) ∈
{γtR(G)− 1, γtR(G)} for every graph G with diameter of, at most, two. We next show
some subclasses which satisfy the equality γqtR(G) = γtR(G). For this, we need to cite the
following result.

Theorem 6 ([6]). The following statements hold for any nontrivial graph G.

(i) γqtR(G) = 2 if and only if G ∼= P2.
(ii) γqtR(G) = 3 if and only if G �∼= P2 and γ(G) = 1.
(iii) γqtR(G) = 4 if and only if γt(G) = γ(G) = 2.

The join of two graphs G1 and G2, denoted by G1 + G2, is the graph obtained from G1
and G2 with vertex set V(G1 + G2) = V(G1) ∪V(G2) and edge set E(G1 + G2) = E(G1) ∪
E(G2) ∪ {uv : u ∈ V(G1), v ∈ V(G2)}. Observe that diam(G1 + G2) ≤ 2 by definition.
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The following result, which is a consequence of Theorem 6, shows that γtR(G1 + G2) =
γqtR(G1 + G2).

Theorem 7. For any nontrivial graphs G1 and G2,

γqtR(G1 + G2) = γtR(G1 + G2) =

{
3, if min{γ(G1), γ(G2)} = 1;
4, otherwise.

We continue analysing other subclasses of graphs with a diameter of two. The follow-
ing results consider the planar graphs with a diameter of two.

Theorem 8 ([22]). If G is a planar graph with diam(G) = 2, then the following statements hold.

(i) γ(G) ≤ 2 or G = G9, where G9 is the graph given in Figure 5.
(ii) γt(G) ≤ 3.

Figure 5. The planar graph G9 with diam(G9) = 2 and γt(G9) = γ(G9) = 3.

Theorem 9. For any planar graph G with diam(G) = 2,

γqtR(G) = γtR(G) =

⎧⎪⎪⎨
⎪⎪⎩

3, if γ(G) = 1;
4, if γ(G) = γt(G) = 2;
5, if γt(G) = γ(G) + 1 = 3;
6, if G = G9.

Proof. If G = G9, then it is easy to check that γqtR(G) = γtR(G) = 6. From now on, let G �=
G9 be a planar graph with diam(G) = 2. It is straightforward that γqtR(G) = γtR(G) = 3
if and only if γ(G) = 1. Hence, assume that γ(G) ≥ 2. By Theorem 8, it follows that
γ(G) = 2 and γt(G) ∈ {2, 3}. Next, we analyse these two cases.

Case 1. γt(G) = 2. By Theorems 6 and 1 and the well-known bound γtR(G) ≤ 2γt(G)
(see [15]) we obtain that 4 = γqtR(G) ≤ γtR(G) ≤ 2γt(G) = 4. Thus, γqtR(G) = γtR(G) = 4.

Case 2. γt(G) = 3. As a consequence of the Theorem 6 we have that γqtR(G) ≥ 5. Let {u, v}
be a γ(G)-set. Since γt(G) = 3 and diam(G) = 2, it follows that u and v are at distance
two. Let w ∈ N(u) ∩ N(v). Notice that the function f , defined by f (u) = f (v) = 2,
f (w) = 1 and f (x) = 0 for every x ∈ V(G) \ {u, v, w}, is a TRDF on G, which implies
that γtR(G) ≤ ω( f ) = 5. Hence, by the fact that γqtR(G) ≤ γtR(G) we deduce that
γqtR(G) = γtR(G) = 5.

Therefore, the proof is complete.

However, for the case of non-planar graphs with a diameter of two, there are graphs
that satisfy γqtR(G) = γtR(G) or γqtR(G) = γtR(G)− 1. For instance, for the graphs G1 and
G2 given in Figure 1 we have that γqtR(G1) = 6 = γtR(G1)− 1 and γqtR(G2) = 7 = γtR(G2).
In connection with this fact, we pose the following open problem.

Problem 1. Characterize the families of non-planar graphs G with diameter two for which
γqtR(G) = γtR(G) or γqtR(G) = γtR(G)− 1.

Notice that, as consequence of the Inequality chain (1), any new result for the total
Roman domination number gives us a new result for the quasi-total Roman domination
number and vice versa. In such a sense, we continue with two new bounds for the total
Roman domination number. Before this, we need to introduce the following definition.
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A set S of vertices of a graph G is a vertex cover if every edge of G is incident with at least
one vertex in S. The vertex cover number of G, denoted by β(G), is the minimum cardinality
among all vertex covers of G.

Theorem 10. For any K1,3-free graph G with δ(G) ≥ 3,

γtR(G) ≤ β(G) + γ(G).

Proof. Let D be a γ(G)-set and S a β(G)-set. Let f (V0, V1, V2) be a function defined by
V0 = V(G) \ (D ∪ S), V1 = (D ∪ S) \ (D ∩ S) and V2 = D ∩ S. Now, we proceed to prove
that f is a TRDF on G. We first note that S is a total dominating set because G is K1,3-free.
Hence, V1 ∪ V2 = D ∪ S is a total dominating set of G. Let v ∈ V0 = V(G) \ (D ∪ S). So,
N(v) ⊆ S and N(v) ∩ D �= ∅. Hence N(v) ∩ D ∩ S �= ∅, i.e., N(v) ∩ V2 �= ∅. Therefore,
f is a TRDF on G, as desired. Thus, γtR(G) ≤ ω( f ) ≤ |(D ∪ S) \ (D ∩ S)|+ 2|D ∩ S| =
β(G) + γ(G), which completes the proof.

Lemma 4 ([15]). If G is a graph with no isolated vertex, then there exists a γtR(G)-function
f (V0, V1, V2) such that either V2 is a dominating set of G, or the set S of vertices not dominated by
V2 satisfies G[S] = kK2 for some k ≥ 1, where S ⊆ V1 and ∂(S) ⊆ V0.

Theorem 11. If G is a {K1,3, K1,3 + e}-free graph such that δ(G) ≥ 3, then there exists a γtR(G)-
function f (V0, V1, V2) such that V2 is a dominating set of G, and, as a consequence,

γtR(G) ≥ γt(G) + γ(G).

Proof. Suppose that there is no γtR(G)-function f (V′
0, V′

1, V′
2) such that V′

2 is a dominating
set of G. By Lemma 4, there exists a γtR(G)-function f (V0, V1, V2) such that V1,1 satisfies
that G[V1,1] = kK2 for some k ≥ 1 and ∂(V1,1) ⊆ V0. We can assume that |V1| is minimum
among all γtR(G)-functions because it is a requirement for the existence of the function f
(see the proof of Lemma 4). Let u, v ∈ V1,1 be two adjacent vertices. Hence, ∂({u, v}) ⊆ V0.
Since δ(G) ≥ 3, there are two vertices w1, w2 ∈ N(v)∩V0, and as G is a {K1,3, K1,3 + e}-free
graph, we deduce that at least one of these vertices is also adjacent to u. Hence, and without
loss of generality, assume that {u, v} ⊆ N(w1). Observe that the function g(W0, W1, W2),
defined by W2 = V2 ∪ {w1}, W1 = V1 \ {u, v} and W0 = V(G) \ (W1 ∪W2), is a TRDF on G
of weight ω(g) = ω( f ) and |W1| < |V1|, which is a contradiction. Therefore, there exists a
γtR(G)-function f (V0, V1, V2) such that V2 is a dominating set of G. Since V1 ∪V2 is a total
dominating set of G, we deduce that γt(G) + γ(G) ≤ |V1 ∪ V2|+ |V2| = 2|V2|+ |V1| =
γtR(G), which completes the proof.

Observe that, if G is a {K1,3, K1,3 + e}-free graph of minimum degree at least three
with β(G) = γt(G), then the bounds given in the two previous theorems are achieved.
Moreover, let G be a (n− 2)-regular graph obtained from the complete graph Kn (n even)
by deleting the edges of a perfect matching. Notice that G is {K1,3, K1,3 + e}-free and
satisfies that γtR(G) = 4 = γt(G) + γ(G).

Theorem 12. If G is a connected {K1,3, K1,3 + e}-free graph such that δ(G) ≥ 3, then the
following statements hold.

(i) γt(G) + γ(G)− ρ(G) ≤ γqtR(G) ≤ β(G) + γ(G).
(ii) If γtR(G) = γR(G), then γqtR(G) = 2γt(G).

Proof. Statement (i) is a direct consequence of combining Inequality chain (1) and
Theorems 10 and 11. Finally, we proceed to prove (ii). By Theorem 11 there exists a γtR(G)-
function f (V0, V1, V2) such that V2 is a dominating set of G. Hence, V1,1 = ∅. Moreover, as
γtR(G) = γR(G), we deduce that f is also a γqtR(G)-function and Lemma 1 (iii)-(a) leads
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to V1,2 = ∅. Therefore V1 = ∅, which implies that V2 is a total dominating set of G. Hence,
2γt(G) ≤ 2|V2| = γqtR = γtR ≤ 2γt(G). Therefore, γqtR = 2γt(G), as required.

3. Conclusions and Open Problems

This paper is a contribution to the graph domination theory. We have studied the quasi-
total Roman domination in graphs. For instance, we have shown the close relationship
that exists between this novel parameter and other invariants, such as (total) domination
number, (total) Roman domination number and 2-packing number.

We conclude by proposing some open problems.

• Settle Problem 1.
• Characterize the graphs that satisfy the following equalities.

– γqtR(G) = γtR(G).
– γqtR(G) = γtR(G)− ρ(G).
– γqtR(G) = 3γ(G).

• We have shown that if G is a {K1,3, K1,3 + e}-free graph with minimum degree δ(G) ≥
3, then γqtR(G) ≥ γt(G) + γ(G)− ρ(G). We conjecture that the previous bound holds
for any graph with no isolated vertex.
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Abstract: A double Roman dominating function on a graph G = (V, E) is a function f : V → {0, 1, 2, 3}
satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex
assigned 3 or at least two vertices assigned 2, and every vertex u with f (u) = 1 is adjacent to at least
one vertex assigned 2 or 3. The weight of f equals w( f ) = ∑v∈V f (v). The double Roman domination
number γdR(G) of a graph G equals the minimum weight of a double Roman dominating function of
G. We obtain closed expressions for the double Roman domination number of generalized Petersen
graphs P(5k, k). It is proven that γdR(P(5k, k)) = 8k for k ≡ 2, 3 mod 5 and 8k ≤ γdR(P(5k, k)) ≤
8k + 2 for k ≡ 0, 1, 4 mod 5. We also improve the upper bounds for generalized Petersen graphs
P(20k, k).

Keywords: double Roman domination; generalized Petersen graph; discharging method; graph
cover; double Roman graph

1. Introduction

Double Roman domination of graphs was first studied in [1], motivated by a number
of applications of Roman domination in present time and in history [2]. The initial studies
of Roman domination [3,4] have been motivated by a historical application. In the 4th
century, Emperor Constantine was faced with a difficult problem of how to defend the
Roman Empire with limited resources. His decision was to allocate two types of armies
to the provinces in such a way that all the provinces in the empire will be safe. Some
military units were well trained and capable of moving rapidly from one city to another
in order to respond to any attack. Other legions consisted of a local militia and they were
permanently positioned in a given province. The Emperor decreed that no legion could
ever leave a province to defend another if in this case they left the province undefended.
Thus, at some provinces two units were stationed, a local militia units were stationed at
others, and some provinces had no army. While the problem is still of interest in military
operations research [5], it also has applications in cases where a time-critical service is to be
provided with some backup. For example, a fire station should never send all emergency
vehicles to answer a call.

Similar reasoning applies in any emergency service. Hence positioning the fire stations,
first aid stations, etc. at optimal positions improves the public services without increasing
the cost. A natural generalization, in particular in the case of emergency services, is
the k-Roman domination [6], where in the district not one, but k emergency teams are
expected to be quickly available in case of multiple emergency calls. Special case k = 2, the
double Roman domination, is considered in this work. It is well-known that the decision
version of the double Roman domination problem (MIN-DOUBLE-RDF) is NP-complete,
even when restricted to planar graphs, chordal graphs, bipartite graphs, undirected path
graphs, chordal bipartite graphs and to circle graphs [7–9]. It is therefore of interest to
study the complexity of the problem for other families of graphs. For example, linear time
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algorithms exist for interval graphs and block graphs [8], for trees [10], for proper interval
graphs [11] and for unicyclic graphs [9]. Another avenue of research that is motivated
by high complexity of the problem is to obtain closed expressions for the double Roman
domination number of some families of graphs. In particular, generalized Petersen graphs
and certain subfamilies of generalized Petersen graphs have been studied extensively in
recent years. The results listed in subsection on related previous work include closed
expressions for the double Roman domination number of some, and tight bounds for other
subfamilies [12–15]. For more results on double Roman domination we refer to recent
papers [16–19] and the references there.

The rest of the paper is organized as follows. In Section 2, we recall some basic
definitions and known results that will be used in the following sections. In the last part
of Section 2 our main results, Theorems 6 and 7, are presented. In Section 3, we present
upper and lower bounds for double Roman domination number in generalized Petersen
graphs P(5k, k). Finally, in Section 4, we give an improved upper bounds for double Roman
domination number of generalized Petersen graphs P(20k, k), using the notion of covering
graphs.

2. Preliminaries

2.1. Graphs and Double Roman Domination

Let G = (V, E) be a graph without loops and multiple edges. As usual, we denote
with V = V(G) the vertex set of G and with E = E(G) its edge set.

A set D ⊆ V(G) is a dominating set if every vertex in V(G) \ D has at least one
neighbor in D. The domination number γ(G) is the cardinality of a minimum dominating
set of G. A double Roman dominating function (DRDF) on a graph G = (V, E) is a function
f : V → {0, 1, 2, 3} with the following properties:

(1) every vertex u with f (u) = 0 is adjacent to at least one vertex assigned 3 or at least
two vertices assigned 2, and

(2) every vertex u with f (u) = 1 is adjacent to at least one vertex assigned 2 or 3 under f .

Define f (U) = ∑u∈U f (u) as the weight of f on an arbitrary subset U ⊆ V(G). Then,
the weight of f equals w( f ) = f (V(G)) = ∑v∈V(G) f (v). The double Roman domination
number γdR(G) of a graph G is the minimum weight of a double Roman dominating
function of G. A DRD function f is called a γdR-function of G if w( f ) = γdR(G).

For any double Roman dominating function f , defined on G we define a partition of
the vertex set V = V0 ∪V1 ∪V2 ∪V3, where Vi = V f

i = {u | f (u) = i}.
The study of the double Roman domination in graphs was initiated by Beeler et al. [1].

It was proved that 2γ(G) ≤ γdR(G) ≤ 3γ(G). Furthermore, Beeler at al. defined a graph G
to be double Roman if γdR(G) = 3γ(G), where γ(G) is the domination number of G. For a
later reference we recall the following result, also obtained by Beeler et al.

Proposition 1 ([1]). In a double Roman dominating function f of weight γdR(G), no vertex needs
to be assigned the value 1.

Domination in graphs with its many varieties has been extensively studied in the
past [20–23]. Roman domination and double Roman domination is a rather new variety of
interest [1,2,7,24–27].

2.2. Generalized Petersen Graphs

The generalized Petersen graph P(n, k) is a graph with vertex set U ∪V and edge set
E1 ∪ E2 ∪ E3, where U = {u0, u1, · · · , un−1}, V = {v0, v1, · · · , vn−1}, E1 = {uiui+1 | i =
0, 1, . . . , n − 1}, E2 = {uivi | i = 0, 1, . . . , n − 1}, E3 = {vivi+k | i = 0, 1, . . . , n − 1}, and
subscripts are reduced modulo n, see Figure 1. Thus, we identify integers i and j iff
i ≡ j mod n. (As usual, m ≡ r mod n means that m = kn + r, or equivalently, m− r = kn
for some integer k ∈ Z.
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Figure 1. A generalized Petersen graph P(n, k).

It is well known that the graphs P(n, k) are 3-regular unless k = n
2 and that P(n, k) are

highly symmetric [28,29]. As P(n, k) and P(n, n− k) are isomorphic, it is natural to restrict
attention to P(n, k) with n ≥ 3 and k, 1 ≤ k < n

2 .
Petersen graphs are among the most interesting examples when considering nontrivial

graph invariants. The domination and its variations (such as vertex domination, exact
domination, rainbow domination, double Roman domination and other) of generalized
Petersen graphs have been extensively studied in recent years, see for example [14,30–36].

2.3. Related Previous Work

The domination number for the generalized Petersen graphs P(ck, k) for integer con-
stants c ≥ 3 was studied by Zhao et al. [37]. They obtained upper bound on γ(P(ck, k)) for
general c.

Theorem 1 ([37]). For any k ≥ 1 and c ≥ 3

γ(P(ck, k)) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c
3

⌈
5k
3

⌉
, c ≡ 0 mod 3,⌈ c

3
⌉ ⌈ 5k

3

⌉
−
⌈

2k
3

⌉
, c ≡ 1 mod 3,⌈ c

3
⌉ ⌈ 5k

3

⌉
−
⌈

2k
3

⌉
+
⌈

k
3

⌉
, c ≡ 2 mod 3.

Shao et al. [14] determine the exact value of γdR(P(n, 1)), and Jiang et al. [13] deter-
mine γdR(P(n, 2)).

Theorem 2 ([13,14]). Let n ≥ 3. Then we have

γdR(P(n, 1)) =

⎧⎪⎪⎨
⎪⎪⎩

3n
2 , n ≡ 0 mod 4,

3n+3
2 , n ≡ 1, 3 mod 4,

3n+4
2 , n ≡ 2 mod 4

and for n ≥ 5

γdR(P(n, 2)) =

{ ⌈ 8n
5
⌉
, n ≡ 0 mod 5,⌈ 8n

5
⌉
+ 1, n ≡ 1, 2, 3, 4 mod 5.

Shao et al. in [14] obtained also a general lower bound on double Roman domination
numbers for arbitrary graphs of a maximum degree greater or equal one.

89



Mathematics 2022, 10, 119

Theorem 3 ([14]). If G is a graph of maximum degree � ≥ 1, then

γdR(G) ≥
⌈

3V(G)

�+ 1

⌉
.

Clearly, as the generalized Petersen graph P(n, k) is 3-regular and has 2n vertices.

Corollary 1 ([14]). In Petersen graphs P(n, k), γdR(P(n, k)) ≥ � 3n
2 �.

Gao et al. [12] determined the exact value of γdR(P(n, k)) for n ≡ 0 mod 4 and
k ≡ 1 mod 2, and presented an improved upper bound for γdR(P(n, k)) in other cases. The
results are summarized in the next theorem.

Theorem 4 ([12]). For k ≥ 3, γdR(P(n, k)) = 3n
2 , k ≡ 1 mod 2, n ≡ 0 mod 4.

⌈
3n
2

⌉
≤ γdR(P(n, k)) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3n
2 + 5k+5

4 , k ≡ 1 mod 4, n �≡ 0 mod 4,
3n
2 + 5k+7

4 , k ≡ 3 mod 4, n �≡ 0 mod 4,

3n
2

(3k+2)
(3k+1) , k ≡ 0 mod 4, n ≡ 0 mod (3k + 1),

� 3n
2

(3k+2)
(3k+1) �+ 5k+4

4 , k ≡ 0 mod 4, n �≡ 0 mod (3k + 1),

3n
2

(3k)
(3k−1) , k ≡ 2 mod 4, n ≡ 0 mod (3k− 1),

� 3n
2

(3k)
(3k−1) �+ 5k+6

4 , k ≡ 2 mod 4, n �≡ 0 mod (3k− 1).

Double Roman domination of families P(ck, k) has been studied recently for small
k, including c = 3, 4, and 5. Shao et al. [15] considered the double Roman domination
number in generalized Petersen graphs P(3k, k) and constructed solutions providing the
upper bounds, which gives exact values for γdR(P(3k, k)).

Theorem 5 ([15]).

γdR(P(3k, k)) =

{
5k + 1, k ∈ {1, 2, 4}
5k, otherwise

For small cases in the families P(4k, k) and P(5k, k), the known facts are summarized
in the next proposition.

Proposition 2. γdR(P(4, 1)) = 6, γdR(P(8, 2)) = 14 [13], γdR(P(12, 3)) = 18 and
γdR(P(5, 1)) = 9 [14], γdR(P(10, 2)) = 16 [13], 23 ≤ γdR(P(15, 3)) ≤ 26 [12].

Wang et al. in [38] showed that γ(P(4k, k)) =

{
2k; k ≡ 1 mod 2,
2k + 1; k ≡ 0 mod 2

, and

γ(P(5k, k)) = 3k for all k ≥ 1. Furthermore, recall the lower bound given in Corollary 1
and recall that Theorem 4 implies γdR(P(4k, k)) = 6k for k ≡ 1 mod 2. Thus, we can write
the known facts regarding γdR(P(4k, k)) and γdR(P(5k, k)) in the next two propositions.

Proposition 3. Let k ≥ 1. If k ≡ 1 mod 2, then γdR(P(4k, k)) = 6k, and if k ≡ 0 mod 2 then
6k ≤ γdR(P(4k, k)) ≤ 6k + 3.

Proposition 4. Let k ≥ 3. Then 7k +
⌈

k
2

⌉
≤ γdR(P(5k, k)) ≤ 9k.
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2.4. Our Results

The main result of our paper are either exact values or narrow bounds for the double
Roman domination numbers of all Petersen graphs P(5k, k). More precisely, we will show
that the following theorem holds.

Theorem 6. Let k ≥ 2.

8k ≤ γdR(P(5k, k)) ≤
{

8k, k ≡ 2, 3 mod 5

8k + 2, otherwise

As mentioned earlier, a graph G is double Roman if γdR(G) = 3γ(G). Using the
known equality γ(P(5k, k)) = 3k for all k ≥ 1 [38], we can conclude that the only double
Roman graph in the set of generalized Petersen graphs P(5k, k) is P(5, 1).

Corollary 2. There is no double Roman graphs in the set of generalized Petersen graphs P(5k, k)
for k ≥ 2. The graph P(5, 1) is a double Roman graph.

We also show that certain generalized Petersen graphs are covering graphs of other
generalized Petersen graphs (Proposition 7). This provides a method for establishing new
upper bounds, see Proposition 8. In particular, we elaborate the case P(20k, k) to obtain
exact values in some, and tight bounds in other cases.

Theorem 7. γdR(P(20, 1)) ≤ 40, γdR(P(40, 2)) ≤ 64, γdR(P(60, 3)) ≤ 96.
Furthermore, let k > 3. Then, for odd k, we have

γdR(P(20k, k)) = 30k (1)

and for k even,
30k ≤ γdR(P(20k, k)) ≤ 30k + 15. (2)

By Proposition 1, we can only consider the DRDF of a graph G with no vertex assigned
the value 1.

3. Constructions and Proofs

In this section, the constructions of double Roman dominating functions providing
upper bounds for the double Roman dominating numbers are given. We start by intro-
ducing some convenient notation for representing the DRDFs and providing some basic
constructions.

In order to present the double Roman dominating functions of generalized Petersen
graphs as concise as possible we use two different notations. For smaller graphs, we use
the notation in brackets, showing weights on outer and inner cycles in two lines:(

f (u0) f (u1) . . . f (un−1)
f (v0) f (v1) . . . f (vn−1)

)
.

For example, a DRD function showing γdR(P(4, 1)) = 6 is the following:(
0 0 3 0
3 0 0 0

)
.

For bigger graphs we use the notation that provides only the values on the outer cycle,
see Table 1. (In this case, the assignment on the inner cycles is completed such that the
weight is minimal, see Lemma 1 for details.)

The columns correspond to the sets Ui = {ui, ui+k, ui+2k, . . . , ui+(c−1)k}, and we as-
sume that the inner cycles, sets Vi = {vi, vi+k, vi+2k, . . . , vi+(c−1)k}, are completed such that
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the whole assignment presents a DRD function. As we can see from Table 1 below, the first
two and the last two columns provide the same information on DRD function, namely the
values at U0 = Uk, and U1 = Uk+1. We will use this property observing certain patterns
appearing in case of optimal assignment —it will hold exactly when columns 0 and k will
match, taking into account the shift of rows as indicated in Table 1.

Table 1. A DRD function of Ui for P(4k, k).

f (u0) f (u1) . . . f (ui) . . . f (uk−1) f (uk) f (uk+1) . . .

f (uk) f (uk+1) . . . f (uk+i) . . . f (u2k−1) f (u2k) f (u2k+1) . . .

f (u2k) f (u2k+1) . . . f (u2k+i) . . . f (u3k−1) f (u3k) f (u3k+1) . . .

f (u3k) f (u3k+1) . . . f (u3k+i) . . . f (u4k−1) f (u4k) = f (u0) f (u1) . . .

0 1 . . . i . . . k− 1 k k + 1 . . .

To better understand the notation in tables, consider the pattern in Table 2 that
provides DRDF(double Roman dominating function) for P(12, 3) and P(28, 7).

Table 2. An optimal DRDF(double Roman dominating function) of Ui for P(4k, k). The first column
provides a DRD function for P(4, 1), the first 3 columns provide a DRD function for P(12, 3), and the
first 7 columns provide a DRD function for P(28, 7).

0 0 3 0 0 0 3 0 . . .

0 0 0 3 0 0 0 3 . . .

3 0 0 0 3 0 0 0 . . .

0 3 0 0 0 3 0 0 . . .

0 1 2 3 4 5 6 7 . . .

Considering closely the graph P(12, 3) and using the fact that the columns 0 and 4
correspond to the same set of vertices, U0 = U4, and that the column 4 equals column 0
shifted one row downwards (see Table 1), we can see that the pattern is well defined on the
outer cycle of P(12, 3). Obviously, the vertices on the inner cycles could be assigned with
three more weights of 3, so we have a DRDF of P(12, 3) of weight 9 + 9 = 18. Similarly,
regarding P(28, 7), we have U0 = U7, and the same reasoning applies. Recalling Theorem 4,
the constructions are best possible (compare the bounds in Theorem 3.)

3.1. Basic Constructions for P(5k, k).

Recall that γdR(P(5, 1)) = 9 [14]. A simple DRD function showing γdR(P(5, 1)) ≤ 9 is
the following: (

3 0 0 0 3
0 0 3 0 0

)
.

For larger graphs among P(5k, k), we are going to use the notation introduced in Table 3.

Table 3. A DRD function of Ui for P(5k, k).

f (u0) f (u1) . . . f (ui) . . . f (uk−1) f (uk) f (uk+1) . . .

f (uk) f (uk+1) . . . f (uk+i) . . . f (u2k−1) f (u2k) f (u2k+1) . . .

f (u2k) f (u2k+1) . . . f (u2k+i) . . . f (u3k−1) f (u3k) f (u3k+1) . . .

f (u3k) f (u3k+1) . . . f (u3k+i) . . . f (u4k−1) f (u4k) f (u4k+1) . . .

f (u4k) f (u4k+1) . . . f (u4k+i) . . . f (u5k−1) f (u5k) = f (u0) f (u1) . . .

0 1 . . . i . . . k− 1 k k + 1 . . .
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The next two examples provide constructions of DRDF that show γdR(P(10, 2)) ≤ 16
and γdR(P(35, 7)) ≤ 56.

We proceed with two comments on Table 4.

• First, note that the columns in Table 4 have the following properties: each column
has two consecutive vertices that are assigned two legions: say ui and ui+k for some
i. Then, in the column i, vertices ui+2k and ui+4k have one neighbor and the vertex
ui+3k has two neighbors in the outer cycle that are assigned 2. Clearly, the missing
legions can be provided by assigning weight 2 to vertices vi+2k and vi+4k on the inner
cycle. In this assignment, each of the vertices ui+2k, ui+3k and ui+4k is adjacent to two
vertices of weight 2. Hence we have weight 8 for each column.

• Second, observe that columns 2 and 7 coincide. Recalling the convention given in
Table 3, note that for k = 2, column 2 is column 0 shifted one row upwards (cyclicaly).
Similarly, for k = 7, and columns 0 and 7.

Table 4. A DRDF of Ui that implies γdR(P(10, 2)) ≤ 16 and γdR(P(35, 7)) ≤ 56.

2 0 2 0 0 2 0 2 . . .

2 0 0 2 0 2 0 0 . . .

0 2 0 2 0 0 2 0 . . .

0 2 0 0 2 0 2 0 . . .

0 0 2 0 2 0 0 2 . . .

0 1 2 3 4 5 6 7 8 . . .

These constructions are optimal, which will follow from the lower bound that will
be proved below. Recall that γdR(P(10, 2)) = 16 [13], therefore the RDF for γdR(P(10, 2))
given in Table 4 is best possible.

A symmetrical construction, given in Table 5 shows γdR(P(15, 3)) ≤ 24 and
γdR(P(40, 8)) ≤ 64.

Table 5. A DRDF of Ui that implies γdR(P(15, 3)) ≤ 24 and γdR(P(40, 8)) ≤ 64.

2 0 0 2 0 2 0 0 2 . . .

2 0 2 0 0 2 0 2 0 . . .

0 0 2 0 2 0 0 2 0 . . .

0 2 0 0 2 0 2 0 0 . . .

0 2 0 2 0 0 2 0 2 . . .

0 1 2 3 4 5 6 7 8 . . .

3.2. Double Roman Domination in P(5k, k)—Upper Bounds

Observe that the patterns used in Tables 4 and 5 have period five (columns). This
implies the next proposition.

Proposition 5. Let k ≡ 2 mod 5 or k ≡ 3 mod 5. Then γdR(P(5k, k)) ≤ 8k.

Proof. Recall from previous considerations (Table 4) that γdR(P(10, 2)) ≤ 16 and
γdR(P(35, 7)) ≤ 56. Observe that if we repeat the columns 2-6 in Table 4, we obtain a DRDF
showing γdR(P(60, 12)) ≤ 96. By induction, it follows that γdR(P(5(5i + 2), (5i + 2)) ≤
8(5i + 2) for all integers i ≥ 0. Thus, γdR(P(5k, k)) ≤ 8k for k ≡ 2 mod 5.

The statement for k ≡ 3 mod 5 follows from Table 5 by analogous argument.

The next table provides a DRDF for P(25, 5). It is obtained from Table 4 by deleting
columns 3 and 4 and altering only one entry in the original column 5, see Table 6.
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Table 6. A DRDF of Ui that implies γdR(P(25, 5)) ≤ 42.

2 0 2 2 0 2 . . .

2 0 0 2 0 0 . . .

0 2 0 2 2 0 . . .

0 2 0 0 2 0 . . .

0 0 2 0 0 2 . . .

0 1 2 3,4,5 6 7 . . . merged columns

0 1 2 3 4 5 . . . columns renamed

It is straightforward to check that the table provides a DRDF. Observe that we can in
this way delete two columns and alter one column to obtain a DRDF of γdR(P(5(5i), 5i) ≤
8(5i) + 2 from γdR(P(5(5i + 2), 5i + 2) ≤ 8(5i + 2) for all integers i ≥ 0.

The same idea, applied to Table 5 gives a DRDF of P(30, 6) of weight 50. We omit the
details. Using the periodicity of the basic pattern, we have a construction that gives RDF
showing γdR(P(5(5i+ 1), 5i+ 1) ≤ 8(5i+ 1)+ 2 from γdR(P(5(5i+ 3), (5i+ 3)) ≤ 8(5i+ 3)
for all integers i ≥ 0.

Similarly, inserting two columns in the pattern comes with additional cost of 8 + 8 + 2 = 18
legions, thus increasing the total weight by 18. For example, see Table 7.

Table 7. An alternative DRDF of Ui that shows γdR(P(25, 5)) ≤ 42 and γdR(P(50, 10)) ≤ 82.

2 0 0 2 0 2 0 2 0 0 2 . . .

2 0 2 0 2 0 0 2 0 2 0 . . .

0 0 2 0 2 0 2 0 0 2 0 . . .

0 2 0 2 0 0 2 0 2 0 0 . . .

0 2 0 2 0 2 0 0 2 0 2 . . .

0 1 2 3’ 2’ 3 4 5 6 7 8 . . .

0 1 2 3 4 5 6 7 8 9 10 columns renamed

For completeness, in Table 8 we give a RDF of P(20, 4) proving that γdR(P(20, 4)) ≤ 34.
The construction starts with RDF of weight 16 for γdR(P(10, 2)), and inserts two columns
as in Table 7. In more detail, note that column 4 is a copy of column 2 and column 3 is
a copy of column 1. Then, additional two legions are assigned to vertex u17 in column 1.
It follows that γdR(P(5(5i + 4), (5i + 4)) ≤ 8(5i + 4)+2 for all integers i ≥ 0.

Table 8. A DRDF of Ui that implies γdR(P(20, 4)) ≤ 34.

2 0 2 0 2

2 0 0 0 0

0 2 0 2 0

0 2 0 2 0

0 2 2 0 2

0 1’ 2’ 1 2

0 1 2 3 4 columns renamed

Summarizing the arguments, we have a proof of the next proposition.

Proposition 6. Let k ≡ 0, 1, 4 mod 5. Then γdR(P(5k, k)) ≤ 8k + 2.
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3.3. Double Roman Domination in P(5k, k)—Lower Bound

The proof of lower bound in Theorem 8 is based on several technical lemmas. In
all proofs below we assume that f is a DRDF and there are no vertices with f (v) = 1.
As before, let Ui = {ui, ui+k, ui+2k, ui+3k, ui+4k} and Vi = {vi, vi+k, vi+2k, vi+3k, vi+4k}. Let
us denote with Wi the weight of Hi = Vi ∪Ui, Wi = f (Hi) = f (Vi ∪Ui).

Lemma 1. Let f be DRDF f . Then

if f (Ui) = 0 then f (Vi) ≥ 6 and Wi ≥ 6,
if f (Ui) = 2 then f (Vi) ≥ 5 and Wi ≥ 7,
if f (Ui) = 3 then f (Vi) ≥ 5 and Wi ≥ 8,
if f (Ui) = 4 then f (Vi) ≥ 4 and Wi ≥ 8,
if f (Ui) = 5 then f (Vi) ≥ 4 and Wi ≥ 9,
if f (Ui) = 6 then f (Vi) ≥ 3 and Wi ≥ 9,
if f (Ui) = 7 then f (Vi) ≥ 4 and Wi ≥ 11,
if f (Ui) = 8 then f (Vi) ≥ 3 and Wi ≥ 11, and
if f (Ui) ≥ 9 then Wi ≥ 12.

Proof. We will list all possible examples (up to the isomorphism), using the following no-
tation: (

f (ui) f (ui+k) f (ui+2k) f (ui+3k) f (ui+4k)
f (vi) f (vi+k) f (vi+2k) f (vi+3k) f (vi+4k)

)
.

• Case f (Ui) ≥ 9. First, assume f (Ui) = 9. Excluding weights 1, the sum 9 can be
achieved as 9 = 3 + 3 + 3 or 9 = 3 + 2 + 2 + 2. In the first case, three vertices among
five can be chosen in two ways, either the two zeros are at adjacent columns or not.
Similarly, in the second case, the 0 can either be next to 3, or not. Thus, we have 4
cases listed below. The values on Vi are chosen so that the total weight is minimal.(

3 3 3 0 0
0 0 0 3 0

)
,
(

3 3 0 3 0
0 0 0 3 0

)
,
(

3 2 2 2 0
0 0 2 0 2

)
,
(

3 2 2 0 2
0 1 0 2 0

)
.

In all cases we have f (Vi) ≥ 3, thus Wi ≥ 9 + 3 = 12.
Furthermore, if f (Ui) = 10 or f (Ui) = 11 then observe that f (Vi) ≥ 2, and hence
Wi ≥ 12.

• Case f (Ui) = 8. Possible subcases with 8 = 3 + 3 + 2 = 2 + 2 + 2 + 2 are(
3 3 2 0 0
0 0 0 3 0

)
,
(

3 3 0 2 0
0 0 0 3 0

)
,
(

3 2 3 0 0
0 0 2 0 2

)
,
(

3 2 0 3 0
0 0 2 0 2

)

and (
2 2 2 2 0
0 2 0 0 2

)
.

In all cases, f (Vi) ≥ 3, thus Wi ≥ 8 + 3 = 11.
• Case f (Ui) = 7. There is only one possibility, 7 = 3 + 2 + 2, and we have the

following subcases:(
3 2 2 0 0
0 0 2 0 2

)
,
(

3 2 0 2 0
0 0 2 0 2

)
,
(

3 2 0 0 2
0 0 2 2 0

)
,
(

3 0 2 2 0
0 2 0 0 2

)
.

It is obvious that f (Vi) ≥ 4 and Wi ≥ 7 + 4 = 11.
• Case f (Ui) = 6. This sum can be achieved as 6 = 3 + 3 = 2 + 2 + 2. There are

four subcases:(
3 3 0 0 0
0 0 0 3 0

)
,
(

3 0 3 0 0
0 2 0 0 3

)
,
(

2 2 2 0 0
0 0 2 0 2

)
,
(

2 2 0 2 0
0 0 2 0 2

)
.
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In all cases the value f (Vi) is at least 3, which implies Wi ≥ 6 + 3 = 9.
• Case f (Ui) = 5. We have 5 = 3 + 2, and two possibilities.(

3 2 0 0 0
0 0 2 0 2

)
,
(

3 0 2 0 0
0 2 0 3 0

)
.

Clearly, in both cases f (Vi) must be at least 4, which implies Wi ≥ 5 + 4 = 9.
• Case f (Ui) = 4. As 4 = 2 + 2, we have two cases:(

2 2 0 0 0
0 0 2 0 2

)
,
(

2 0 2 0 0
0 2 0 3 0

)
.

As f (Vi) ≥ 4 in both cases, we have Wi ≥ 4 + 4 = 8.

• Case f (Ui) = 3. There is only one possible subcase
(

3 0 0 0 0
0 0 3 0 2

)
with f (Vi) = 5,

thus Wi ≥ 3 + 5 = 8.

• Case f (Ui) = 2. The only possible subcase is
(

2 0 0 0 0
0 2 0 3 0

)
with f (Vi) = 5, thus

Wi ≥ 2 + 5 = 7.
• Case f (Ui) = 0 has two possible subcases,(

0 0 0 0 0
0 3 0 0 3

)
,
(

0 0 0 0 0
2 2 0 2 0

)
,

with f (Vi) = 6, thus Wi ≥ 0 + 6 = 6.

This concludes the proof of lemma.

In order to prove the lower bound in Theorem 8, we will need to consider the Hi
with Wi < 8, thus by Lemma 1, the cases Wi = 7 ( f (Ui) = 2, and f (Ui) = 0) or Wi = 6
( f (Ui) = 0). In the Figure 2 below all cases (up to the isomorphism) with Wi = 6 and
Wi = 7 are drawn.

vi

vi+k
vi+2k

vi+3k vi+4k

ui

ui+k

ui+2k

ui+3k ui+4k

0

3

0

0 2

0

0

0

2 0

Figure 2. The standard drawing of Hi (left) and the case f (Hi) = Wi = 7 with f (Ui) = 2 (right).

First we consider the cases where two adjacent Hi have weights less than 8. Note that
the proof of the next lemma also implies that it is not possible to have a DRDF with more
that two consecutive Wi < 8.

Lemma 2.

(a) If Wi = 6 and Wi+1 = 6 then Wi−1 ≥ 12 and Wi+2 ≥ 12.
(b) If Wi = 7 and Wi+1 = 7 then Wi−1 ≥ 11 and Wi+2 ≥ 11.
(c) If Wi = 6 and Wi+1 = 7 then Wi−1 ≥ 11, Wi+2 ≥ 11, and Wi−1 + Wi+2 ≥ 23.
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Proof. The proof will be derived in several steps using the notation introduced in Table 3.
We only give the values on the outer cycle, and in addition, in some cases (for sets Hi and
Hi+1) the values on the inner cycles are provided in parenthesis, as f(uj)( f (vj)). For other
neighbor sets H∗, we will assume that the inner cycles V∗ are completed such that the whole
assignment is a DRD function. The weights Wi are estimated using the results of Lemma 1.

(a) Case Wi = 6 and Wi+1 = 6 obviously implies that f (Ui) = 0 and f (Ui+1) = 0. There
are two cases (see Figure 3), for which Table 9 (columns A1 and A2) show the minimal
demands that the two neighboring vertices in Ui−1 ∪Ui+1 have to fulfil. Without loss
of generality, consider first Hi. Since f (Ui+1) = 0, we read from Table 9 that at least
three vertices of Ui−1 must have weights 3, thus f (Ui−1) ≥ 9 and Wi−1 ≥ 9 + 3 = 12.
By analogous reasoning, Wi+2 ≥ 9 + 3 = 12.

(b) Case Wi = 7 and Wi+1 = 7 (see Figure 4). First, consider the case when f (Ui+1) = 0.
Then, from Table 9 (columns A3 and A4) there are at least two vertices of Ui−1 which
must have weights 3, and two more vertices with weights at least two, thus f (Ui−1) ≥
10 and Wi−1 ≥ 12. By symmetry, f (Ui) = 0 implies Wi+2 ≥ 12.
Therefore, we may assume that f (Ui) = 2 and f (Ui+1) = 2. The DRDF for Hi is in
Figure 2 (right). Considering neighbor sets Hi−1 and Hi+2 we have all subcases listed
in Tables 10 and 11.
In Tables 10 and 11, we fix DRDF on Hi (second column), and consider all possible
DRDF with Wi+1 = 7 and f (Ui+1) = 2 (third column). The first and fourth columns
provide the minimal f values in Hi−1 and Hi+2, respectively. The labeled graph Hi+1
in this case has no symmetries, hence we have to consider five rotations, and in each
case two cases due to reflexion. Thus, we have ten cases in total, b1 to b10, outlined in
Tables 10 and 11.

0

3

0

0 3

0

0

0

0 0

2

2

0

2 0

0

0

0

0 0

Figure 3. The two cases with f (Hi) = Wi = 6.
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Figure 4. The two cases with f (Hi) = Wi = 7 and f (Ui) = 0.
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Table 9. Demands for Ui−1 ∪Ui+1 when Wi = 6 or Wi = 7 and f (Ui) = 0.

(A1) (A2) (A3) (A4)
0(0) 3+0/2+2 0(2) 0+2 0(0) 3+0/2+2 0(0) 3+0/2+2
0(3) 0 0(2) 0+2 0(3) 0 0(3) 0
0(0) 3+0/2+2 0(0) 3+0/2+2 0(0) 3+0/2+2 0(2) 2+0
0(0) 3+0/2+2 0(2) 0+2 0(2) 2+0 0(0) 3+0/2+2
0(3) 0 0(0) 3+0/2+2 0(2) 2+0 0(2) 2+ 0

Table 10. Subcases of f (Ui−1), f (Ui), f (Ui+1) and f (Ui+2) with Wi = 7, Wi+1 = 7 and f (Ui+1) = 2
(first part).

(b1) (b2) (b3) (b4) (b5)
0 2(0) 2(0) 0 0 2(0) 0(0) 2 0 2(0) 0(3) 0 0 2(0) 0(0) 2 0 2(0) 0(2) 0
2 0(2) 0(2) 2 0 0(2) 2(0) 0 2 0(2) 0(0) 3 2 0(2) 0(3) 0 2 0(2) 0(0) 3
3 0(0) 0(0) 3 3 0(0) 0(2) 2 2 0(0) 2(0) 0 3 0(0) 0(0) 3 3 0(0) 0(3) 0
0 0(3) 0(3) 0 0 0(3) 0(0) 3 0 0(3) 0(2) 2 0 0(3) 2(0) 0 0 0(3) 0(0) 3
3 0(0) 0(0) 3 3 0(0) 0(3) 0 3 0(0) 0(0) 3 3 0(0) 0(2) 2 3 0(0) 2(0) 0

Table 11. Subcases of f (Ui−1), f (Ui), f (Ui+1) and f (Ui+2) with Wi = 7, Wi+1 = 7 and f (Ui+1) = 2
(second part).

(b6) (b7) (b8) (b9) (b10)

0 2(0) 0(2) 2 0 2(0) 0(0) 2 0 2(0) 0(3) 0 0 2(0) 0(0) 2 0 2(0) 2(0) 0
2 0(2) 2(0) 0 0 0(2) 0(2) 2 2 0(2) 0(0) 3 2 0(2) 0(3) 0 2 0(2) 0(0) 3
3 0(0) 0(0) 3 3 0(0) 2(0) 0 2 0(0) 0(2) 2 3 0(0) 0(0) 3 3 0(0) 0(3) 0
0 0(3) 0(3) 0 0 0(3) 0(0) 3 0 0(3) 2(0) 0 0 0(3) 0(2) 2 0 0(3) 0(0) 3
3 0(0) 0(0) 3 3 0(0) 0(3) 0 3 0(0) 0(0) 3 3 0(0) 2(0) 0 3 0(0) 0(2) 2

From Tables 10 and 11 using the results of Lemma 1 we can estimate the weights
Wi: (b1) Wi−1 ≥ 8 + 4 = 12, Wi+2 ≥ 8 + 4 = 12, (b2) Wi−1 ≥ 6 + 5 = 11, Wi+2 ≥
7 + 4 = 11, (b3) Wi−1 ≥ 7 + 4 = 11, Wi+2 ≥ 8 + 4 = 12, (b4) Wi−1 ≥ 8 + 4 = 12,
Wi+2 ≥ 7 + 4 = 11, (b5) Wi−1 ≥ 8 + 4 = 12, Wi+2 ≥ 6 + 5 = 11, (b6) Wi−1 ≥
8 + 4 = 12, Wi+2 ≥ 8 + 4 = 12, (b7) Wi−1 ≥ 6 + 5 = 11, Wi+2 ≥ 7 + 4 = 11, (b8)

Wi−1 ≥ 7 + 4 = 11, Wi+2 ≥ 8 + 4 = 12, (b9) Wi−1 ≥ 8 + 4 = 12, Wi+2 ≥ 7 + 4 = 11,
(b10) Wi−1 ≥ 8 + 4 = 12, Wi+2 ≥ 8 + 4 = 12.

(c) Case Wi = 6 and Wi+1 = 7. First, observe that in the case when f (Ui+1) = 0, the
reasoning in case (a) and (b) implies that Wi−1 ≥ 12 and Wi+2 ≥ 11. So we can assume
that f (Ui+1) = 2. As seen in Figure 3, three vertices in Vi could have weights 2 or
two of them have weights 3. As we know, one vertex in Ui+1 has weight 3 and the
other one (two steps further) has weight 2, see Figure 2. We thus fix the assignment in
Hi (second column), add all possible assignments in Hi+1 (third column) and write
the minimal weights on Hi−1 and Hi+2 in the first and fourth column. As each of
the two assignments of Hi is reflexion symmetric, it is clear that there are exactly
10 different cases. All possible outcomes for sets Hi−1 ∪ Hi ∪ Hi+1 are given below,
Tables 12 and 13.
In Table 12, we find all subcases (c1 to c5) when two vertices in Vi have weights 3.

Table 12. First five subcases of f (Ui−1), f (Ui), f (Ui+1) and f (Ui+2) with Wi = 6 and Wi+1 = 7.

(c1) (c2) (c3) (c4) (c5)
2 0(0) 2(0) 0 3 0(0) 0(2) 2 3 0(0) 0(0) 3 3 0(0) 0(3) 0 3 0(0) 0(0) 3
0 0(3) 0(0) 3 0 0(3) 2(0) 0 0 0(3) 0(2) 2 0 0(3) 0(0) 3 0 0(3) 0(3) 0
3 0(0) 0(3) 0 3 0(0) 0(0) 3 2 0(0) 2(0) 0 3 0(0) 0(2) 2 3 0(0) 0(0) 3
3 0(0) 0(0) 3 3 0(0) 0(3) 0 3 0(0) 0(0) 3 2 0(0) 2(0) 0 3 0(0) 0(2) 2
0 0(3) 0(2) 2 0 0(3) 0(0) 3 0 0(3) 0(3) 0 0 0(3) 0(0) 3 0 0(3) 2(0) 0

In Table 13, we have all subcases (c6 to c10) when three vertices in Vi have weights 2.
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Table 13. Second five subcases of f (Ui−1), f (Ui), f (Ui+1) and f (Ui+2) with Wi = 6 and Wi+1 = 7.

(c6) (c7) (c8) (c9) (c10)
0 0(2) 2(0) 0 2 0(2) 0(2) 2 2 0(2) 0(0) 3 2 0(2) 0(3) 0 2 0(2) 0(0) 3
2 0(2) 0(0) 3 0 0(2) 2(0) 0 2 0(2) 0(2) 2 2 0(2) 0(0) 3 2 0(2) 0(3) 0
3 0(0) 0(3) 0 3 0(0) 0(0) 3 2 0(0) 2(0) 0 3 0(0) 0(2) 2 3 0(0) 0(0) 3
2 0(2) 0(0) 3 2 0(2) 0(3) 0 2 0(2) 0(0) 3 0 0(2) 2(0) 0 2 0(2) 0(2) 2
3 0(0) 0(2) 2 3 0(0) 0(0) 3 3 0(0) 0(3) 0 3 0(0) 0(0) 3 2 0(0) 2(0) 0

Similarly, as in case (b), we can estimate the weights Wi from Tables 12 and 13
using the results of Lemma 1: (c1) Wi−1 ≥ 8 + 3 = 11, Wi+2 ≥ 8 + 4 = 12, (c2)

Wi−1 ≥ 9 + 3 = 12, Wi+2 ≥ 8 + 4 = 12, (c3) Wi−1 ≥ 8 + 4 = 12, Wi+2 ≥ 8 + 4 = 12,
(c4) Wi−1 ≥ 8+ 4 = 12, Wi+2 ≥ 8+ 4 = 12, (c5) Wi−1 ≥ 9+ 3 = 12, Wi+2 ≥ 8+ 4 = 12,
(c6) Wi−1 ≥ 10 + 4 = 14, Wi+2 ≥ 8 + 4 = 12, (c7) Wi−1 ≥ 10 + 4 = 14, Wi+2 ≥
8 + 4 = 12, (c8) Wi−1 ≥ 11 + 4 = 15, Wi+2 ≥ 8 + 4 = 12, (c9) Wi−1 ≥ 10 + 4 = 14,
Wi+2 ≥ 8 + 4 = 12, (c10) Wi−1 ≥ 11 + 4 = 15, Wi+2 ≥ 8 + 4 = 12.

Lemma 3.

(a) If Wi = 6 and Wi−1 ≥ 8, Wi+1 ≥ 8 then either (Wi−1 + Wi+1 ≥ 20)
or (Wi−2 + Wi−1 ≥ 19, Wi+1 + Wi+2 ≥ 19, and Wi−2 + Wi−1 + Wi+1 + Wi+2 ≥ 39).

(b) If Wi = 7 and Wi−1 ≥ 8, Wi+1 ≥ 8 then either (Wi−1 + Wi+1 ≥ 18)
or (Wi−2 + Wi−1 ≥ 18 and Wi+1 + Wi+2 ≥ 18).

Proof. As in the proof of Lemma 2, we will use the notation introduced in Table 3. We give
only the values on the outer cycle, and in some cases the values on the inner cycles are
provided in parenthesis, as f(uj)( f (vj)). For other neighbor sets H∗ we will assume that
the inner cycles V∗ are completed such that the whole assignment is a DRD function.

(a) Case Wi = 6 implies f (Ui) = 0 (Figure 3). Recall that either three vertices in Vi have
weight 2 or two of them have weight 3, and that Table 9 gives the demands that need to
be fulfilled by the neighboring H∗. As Wi−1 ≥ 8 and Wi+1 ≥ 8, according to lemma 1,
we have f (Ui−1) ≥ 3 and f (Ui+1) ≥ 3. We may also assume that f (Ui−1) ≤ f (Ui+1).
Thus, we have f (Ui−1) ∈ {3, 4, 5, 6}, and all cases are analyzed in Tables 14–16. Note
that there is only one case for f (Ui−1) = 6 = 2 + 2 + 2 (and f (Ui+1) = 6 = 2 + 2 + 2),
because if f (Ui−1) = 6 = 3 + 3 then f (Ui+1) = 3 < 6.

Table 14. Subcases of f (Ui−1), f (Ui) and f (Ui+1) with Wi = 6 = 3 + 3.

(A1-1)∗ (A1-2)∗ (A1-3)∗ (A1-4)∗
3 0(0) 0 0 0(0) 3 0 0(0) 3 0 0(0) 3
0 0(3) 0 0 0(3) 0 0 0(3) 0 0 0(3) 0
0 0(0) 3 3 0(0) 0 3 0(0) 0 2 0(0) 2
0 0(0) 3 0 0(0) 3 2 0(0) 2 2 0(0) 2
0 0(3) 0 0 0(3) 0 0 0(3) 0 0 0(3) 0

(A1-5)∗ (A1-6) (A1-7) (A1-8)
3 0(0) 0 2 0(0) 2 2 0(0) 2 2 0(0) 2
0 0(3) 0 0 0(3) 0 0 0(3) 0 0 0(3) 0
2 0(0) 2 3 0(0) 0 2 0(0) 2 2 0(0) 2
0 0(0) 3 0 0(0) 3 0 0(0) 3 2 0(0) 2
0 0(3) 0 0 0(3) 0 0 0(3) 0 0 0(3) 0

Reading Table 14 we observe that weights are (A1-1)∗ Wi−1 ≥ 3 + 5 = 8, Wi+1 ≥
6 + 3 = 9, (A1-2)∗ Wi−1 ≥ 3 + 5 = 8, Wi+1 ≥ 6 + 5 = 11, (A1-3)∗ Wi−1 ≥ 5 + 4 = 9,
Wi+1 ≥ 5 + 5 = 10, (A1-4)∗ Wi−1 ≥ 4 + 4 = 8, Wi+1 ≥ 7 + 4 = 11, (A1-5)∗ Wi−1 ≥
5 + 5 = 10, Wi+1 ≥ 5 + 4 = 9, (A1-6) Wi−1 ≥ 5 + 5 = 10, Wi+1 ≥ 5 + 5 = 10, (A1-7)

Wi−1 ≥ 4 + 5 = 9, Wi+1 ≥ 7 + 4 = 11, (A1-8) Wi−1 ≥ 6 + 4 = 10, Wi+1 ≥ 6 + 4 = 10,
so in cases (A1-6), (A1-7), and (A1-8), Wi−1 + Wi+1 ≥ 20. However, in the first five
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cases (labelled with asterisk), Wi−1 + Wi+1 < 20, and therefore we need to consider
Hi−2 and Hi+2 to conclude the proof of assertion (a) of Lemma 3, see Table 15.

Table 15. Subcases∗ of f (Ui−2), f (Ui−1), f (Ui), f (Ui+1) and f (Ui+2) with Wi−1 + Wi+1 < 20.

(A1-1)∗ (A1-2)∗ (A1-3)∗
0 3(0) 0(0) 0(3) 0 3 0(0) 0(0) 3(0) 0 3 0(0) 0(0) 3(0) 0
3 0(0) 0(3) 0(0) 3 2 0(2) 0(3) 0(0) 3 2 0(2) 0(3) 0(0) 3
0 0(3) 0(0) 3(0) 0 0 3(0) 0(0) 0(3) 0 0 3(0) 0(0) 0(3) 0
3 0(0) 0(0) 3(0) 0 3 0(0) 0(0) 3(0) 0 0 2(0) 0(0) 2(0) 0
2 0(2) 0(3) 0(0) 3 0 0(3) 0(3) 0(2) 2 2 0(2) 0(3) 0(2) 2

(A1-4)∗ (A1-5)∗
3 0(0) 0(0) 3(0) 0 0 3(0) 0(0) 0(0) 3
2 0(2) 0(3) 0(2) 2 2 0(2) 0(3) 0(2) 2
0 2(0) 0(0) 2(0) 0 0 2(0) 0(0) 2(0) 0
0 2(0) 0(0) 2(0) 0 0 0(3) 0(0) 3(0) 0
2 0(2) 0(3) 0(2) 2 3 0(0) 0(3) 0(2) 2

From Table 15 we can estimate weights (A1-1)∗ Wi−2 ≥ 8 + 4 = 12, Wi−1 ≥ 3 + 5 = 8,
Wi+1 ≥ 6 + 3 = 9, Wi+2 ≥ 6 + 5 = 11, (A1-2)∗ Wi−2 ≥ 8 + 4 = 12, Wi−1 ≥ 3 + 5 = 8,
Wi+1 ≥ 6 + 5 = 11, Wi+2 ≥ 5 + 5 = 10, (A1-3)∗ Wi−2 ≥ 7 + 4 = 11, Wi−1 ≥ 5 + 4 = 9,
Wi+1 ≥ 5 + 5 = 10, Wi+2 ≥ 5 + 5 = 10, (A1-4)∗ Wi−2 ≥ 7 + 4 = 11, Wi−1 ≥ 4 + 4 = 8,
Wi+1 ≥ 7 + 4 = 11, Wi+2 ≥ 4 + 5 = 9, (A1-5)∗ Wi−2 ≥ 5 + 5 = 10, Wi−1 ≥ 5 + 5 = 10,
Wi+1 ≥ 5 + 4 = 9, Wi+2 ≥ 7 + 4 = 11. Here, in all cases, Wi−2 + Wi−1 ≥ 19,
Wi+1 + Wi+2 ≥ 19 and Wi−2 + Wi−1 + Wi+1 + Wi+2 ≥ 39.

Table 16. Subcases of f (Ui−1), f (Ui) and f (Ui+1) with Wi = 6 = 2 + 2 + 2.

(A2-1) (A2-2) (A2-3) (A2-4) (A2-5)
0 0(2) 2 0 0(2) 2 2 0(2) 0 0 0(2) 2 0 0(2) 2
0 0(2) 2 0 0(2) 2 0 0(2) 2 0 0(2) 2 0 0(2) 2
3 0(0) 0 2 0(0) 2 2 0(0) 2 2 0(0) 2 2 0(0) 2
0 0(2) 2 2 0(2) 0 0 0(2) 2 0 0(2) 2 0 0(2) 2
3 0(0) 0 2 0(0) 2 2 0(0) 2 2 0(0) 2 3 0(0) 0

(A2-6) (A2-7) (A2-8) (A2-9) (A2-10)
0 0(2) 2 2 0(2) 0 0 0(2) 2 2 0(2) 0 2 0(2) 0
0 0(2) 2 0 0(2) 2 0 0(2) 2 0 0(2) 2 2 0(2) 0
3 0(0) 0 3 0(0) 0 3 0(0) 0 2 0(0) 2 2 0(0) 2
2 0(2) 0 0 0(2) 2 0 0(2) 2 2 0(2) 0 0 0(2) 2
0 0(0) 3 0 0(0) 3 0 0(0) 3 0 0(0) 3 0 0(0) 3

(A2-11) (A2-12) (A2-13) (A2-14) (A2-15)
0 0(2) 2 2 0(2) 0 2 0(2) 0 2 0(2) 0 2 0(2) 0
0 0(2) 2 0 0(2) 2 2 0(2) 0 0 0(2) 2 2 0(2) 0
2 0(0) 2 2 0(0) 2 0 0(0) 3 0 0(0) 3 0 0(0) 3
2 0(2) 0 0 0(2) 2 2 0(2) 0 2 0(2) 0 0 0(2) 2
0 0(0) 3 0 0(0) 3 0 0(0) 3 0 0(0) 3 0 0(0) 3

Reading Table 16 we observe that (A2-1) Wi−1 ≥ 6 + 5 = 11, Wi+1 ≥ 6 + 4 = 10,
(A2-2) Wi−1 ≥ 6 + 4 = 10, Wi+1 ≥ 8 + 4 = 12, (A2-3) Wi−1 ≥ 6 + 4 = 10, Wi+1 ≥
8 + 4 = 12, (A2-4) Wi−1 ≥ 4 + 5 = 9, Wi+1 ≥ 10 + 4 = 14, (A2-5) Wi−1 ≥ 5 + 5 = 10,
Wi+1 ≥ 8 + 4 = 12, (A2-6) Wi−1 ≥ 5 + 4 = 9, Wi+1 ≥ 7 + 4 = 11, (A2-7) Wi−1 ≥
5 + 5 = 10, Wi+1 ≥ 7 + 4 = 11, (A2-8) Wi−1 ≥ 3 + 5 = 8, Wi+1 ≥ 9 + 3 = 12, (A2-9)

Wi−1 ≥ 6+ 4 = 10, Wi+1 ≥ 7+ 4 = 11, (A2-10) Wi−1 ≥ 6+ 4 = 10, Wi+1 ≥ 7+ 4 = 11,
(A2-11) Wi−1 ≥ 4 + 4 = 8, Wi+1 ≥ 9 + 4 = 13, (A2-12) Wi−1 ≥ 4 + 5 = 9, Wi+1 ≥
9 + 4 = 13, (A2-13) Wi−1 ≥ 6 + 4 = 10, Wi+1 ≥ 6 + 5 = 11, (A2-14) Wi−1 ≥ 4 + 5 = 9,
Wi+1 ≥ 8 + 4 = 12, (A2-15) Wi−1 ≥ 4 + 4 = 8, Wi+1 ≥ 8 + 4 = 12, so in all cases
Wi−1 + Wi+1 ≥ 20, which proves the assertion (a) of Lemma 3.

(b) Case Wi = 7. First, assume that f (Ui) = 2 (see Figure 2), so one vertex in Ui has
weight 3 and the other one has weight 2. Possible (due to symmetry) solutions for the
whole set Hi−1 ∪ Hi ∪ Hi+1 are considered in the following Table 17.
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Table 17. Possible values for f (Ui−1), f (Ui) and f (Ui+1) with Wi = 7 and f (Ui) = 2.

(B1)

- 0 2(0) 0 -

- 2/0 0(2) 0/2 -

- 0/3/2 0(0) 3/0/2 -

- 0 0(3) 0 -

- 0/3/2 0(0) 3/0/2 -

i−2 i−1 i i+1 i+2

Without loss of generality, assume that f (Ui−1) ≤ f (Ui+1). As Wi−1 ≥ 8 and Wi+1 ≥ 8
we have the following subcases (see Table 18).

Table 18. Subcases of f (Ui−1), f (Ui) and f (Ui+1) with Wi = 7, f (Ui) = 2, Wi−1 ≥ 8 and Wi+1 ≥ 8.

(B1-1) (B1-2) (B1-3) (B1-4)∗
0 2(0) 0 0 2(0) 0 0 2(0) 0 0 2(0) 0
2 0(2) 0 2 0(2) 0 2 0(2) 0 0 0(2) 2
0 0(0) 3 0 0(0) 3 2 0(0) 2 0 0(0) 3
0 0(3) 0 0 0(3) 0 0 0(3) 0 0 0(3) 0
3 0(0) 0 2 0(0) 2 0 0(0) 3 3 0(0) 0

(B1-5) (B1-6)
0 2(0) 0 0 2(0) 0
0 0(2) 2 0 0(2) 2
3 0(0) 0 2 0(0) 2
0 0(3) 0 0 0(3) 0
0 0(0) 3 2 0(0) 2

Reading Table 18 we observe that in all cases except one (B1-4) we have Wi−1 +Wi+1 ≥
18. Indeed, in (B1-1) Wi−1 ≥ 5 + 5 = 10, Wi+1 ≥ 3 + 5 = 8, (B1-2) Wi−1 ≥ 4 + 5 = 9,
Wi+1 ≥ 5 + 5 = 10, (B1-3) Wi−1 ≥ 4 + 4 = 8, Wi+1 ≥ 5 + 5 = 10, (B1-4)∗ Wi−1 ≥
3 + 5 = 8, Wi+1 ≥ 5 + 4 = 9, (B1-5) Wi−1 ≥ 3 + 5 = 8, Wi+1 ≥ 5 + 5 = 10, (B1-6)

Wi−1 ≥ 4 + 5 = 9, Wi+1 ≥ 6 + 4 = 10. In case (B1-4) we need to consider weights on
Hi−2 and Hi+2 to conclude the proof of assertion (b) of Lemma 3.
As seen from Table 19, in case (B1-4) we can confirm Wi−2 + Wi−1 ≥ 18 and Wi+1 +
Wi+2 ≥ 18.

Table 19. Subcase (B1-4) with Wi−2 ≥ 7 + 4 = 11, Wi−1 ≥ 3 + 5 = 8, Wi+1 ≥ 5 + 4 = 9 and
Wi+2 ≥ 5 + 4 = 9.

(B1-4)∗

2 0(0) 2(0) 0(2) 0

0 0(3) 0(2) 2(0) 0

3 0(0) 0(0) 3(0) 0

2 0(2) 0(3) 0(2) 2

0 3(0) 0(0) 0(0) 3

Finally, if f (Ui) = 0 (see Figure 4), then observe that in comparison to the case
f (Ui) = 2, there must be at least one more vertex of weight 2 in Ui−1 ∪Ui+1. We omit
detailed analysis of the cases that confirm Wi−1 + Wi+1 ≥ 18.

Theorem 8. For all k we have γdR(P(5k, k)) ≥ 8k.
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Proof. We use the discharging method (see [14]). The basic idea is as follows. Assume that
we have a DRDF. Consider certain subgraphs, in our case the subgraphs Hi, that are induced
on Vi ∪Ui. Define some rules how the weights of heavy subgraphs are discharged to the
neighbors such that the total weight does not change. Observe the weights of subgraphs
after discharging.

In our case, the discharging rule is simple: If f (Hi) = Wi > 8 then Hi sends 1
2 (Wi − 8)

to Hi−i and to Hi−i. The new charge of Hi is thus 8. We denote the charges after the first
round by W∗

i .
Now we show that if f (Hi) < 8 then, after at most four rounds of discharging, the new

charge W∗∗∗∗
i of Hi is at least 8. Note that once the charge of Hi is at least 8, discharging

will never decrease its charge below 8.

First, let us consider the cases of Lemma 2.

(a) If Wi = 6 and Wi+1 = 6 then Wi−1 ≥ 12 and Wi+2 ≥ 12. After discharging, W∗
i = 8

and W∗
i+1 = 8, as needed.

(b) If Wi = 7 and Wi+1 = 7 then Wi−1 ≥ 11 and Wi+2 ≥ 11. After discharging we have
W∗

i = 7 + 3
2 ≥ 8 and W∗

i+1 = 7 + 3
2 ≥ 8.

(c) If Wi = 6 and Wi+1 = 7 then Wi−1 ≥ 11, Wi+2 ≥ 11, and Wi−1 + Wi+2 ≥ 23.
Assume that Wi−1 ≥ 11, Wi+2 ≥ 12. After the first round of discharging, we get
W∗

i ≥ 6 + 3
2 = 7 + 1

2 and W∗
i+1 ≥ 7 + 2 = 9. However, after the second round of

discharging, we have W∗∗
i ≥ 7 + 1

2 + 1
2 = 8.

If Wi−1 ≥ 12, Wi+2 ≥ 11, then observe that already W∗
i ≥ 8 and W∗

i+1 ≥ 8.

Next, we consider the cases of Lemma 3.

(a) Wi = 6 and Wi−1 ≥ 8, Wi+1 ≥ 8. If Wi−1 + Wi+1 ≥ 20, then W∗
i ≥ 6 + (20−16)

2 = 8,
and we are done. Otherwise, by Lemma 3, Wi−2 + Wi−1 ≥ 19, Wi+1 + Wi+2 ≥ 19, and
Wi−2 + Wi−1 + Wi+1 + Wi+2 ≥ 39. Assume that Wi−2 + Wi−1 = 19 and distinguish
two cases.

(a11) Wi−1 = 9 and Wi−2 = 10. In the first round of discharging, Hi receives 1
2 from

Hi−1, and W∗
i−1 = 9− 2 · 1

2 + 1 = 9. In the second round of discharging, Hi again
receives 1

2 from Hi−1, and in total Hi receives charge 1 from the left side.
(a12) Wi−1 = 8 and Wi−2 = 11. After the first round of discharging, W∗

i−1 = 8 + 3
2 . In

the second round of discharging, Hi−1 sends 3
4 to its neighbors. Thus, Hi receives

3
4 from the left side.

Recall that by Lemma 3, Wi−2 +Wi−1 = 19 implies Wi+1 +Wi+2 ≥ 20, and distinguish
two cases.

(a21) Wi+1 = 9 and Wi+2 ≥ 11. In the first round of discharging, Hi receives 1
2 from

Hi+1, and W∗
i+1 = 9− 2 · 1

2 + 3
2 = 8 + 3

2 . In the second round of discharging, Hi

again receives 3
4 from Hi+1, so in total Hi receives charge 5

4 from the right side.
(a22) Wi+1 = 8 and Wi+2 ≥ 12. After the first round of discharging, W∗

i+1 ≥ 8+ 2 = 10.
In the second round of discharging, Hi receives charge 1 from Hi+1, and also
W∗∗

i+2 ≥ 8 + 1 = 9. Thus, after the third round W∗∗∗
i+1 ≥ 8 + 1

2 , and, in the fourth
round Hi receives charge 1

4 from Hi+1. So, in total Hi receives charge 5
4 from the

right side.

Summarizing, Hi receives charge at least 3
4 from the left side, and at least 5

4 from the
right side. Hence W∗∗∗∗

i ≥ 6 + 2 = 8, as claimed.
(b) Wi = 7 and Wi−1 ≥ 8, Wi+1 ≥ 8. If Wi−1 + Wi+1 ≥ 18 then W∗

i ≥ 7 + (18− 16) 1
2 = 8,

as needed. Otherwise, Wi−2 + Wi−1 ≥ 18 and Wi+1 + Wi+2 ≥ 18. We now show that
Wi−2 + Wi−1 = 18 implies that Hi will in two rounds receive at least 1

2 charge from
the left side. Consider two cases.

(b1) Wi−1 = 9. In the first round of discharging, Hi receives 1
2 from the left side.

(b2) If Wi−1 = 8, then Wi−2 ≥ 10. After the first round of discharging, W∗
i−1 ≥ 8 + 1.

In the second round of discharging, Hi−1 sends at least 1
2 to its neighbors.
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Thus, Hi receives at least 1
2 from the left side. By analogous reasoning, Wi+1 + Wi+2 ≥

18 implies that Hi receives at least 1
2 from the right side. Consequently, in total Hi

receives at least 1
2 + 1

2 , as claimed.

Therefore, after discharging, each subgraph Hi has weight Wi at least 8, and conse-
quently, the total weight is at least 8k, as claimed.

4. Domination in Generalized Petersen Graphs P(20k, k)

In this section, we discuss how the constructions, and the corresponding upper bounds
can be extended from P(c0k, k) to P((hc0)k, k), for h = 2, 3, . . . . In particular, we obtain
improved upper bounds for P(20k, k) from upper bounds for P(4k, k) and P(5k, k).

First, we recall the notion of covering graph and h-lift to observe that P(20k, k) is a
covering graph of both P(4k, k) and P(5k, k). For basic information on covering graphs
see [39]. Here we follow the approach used in [40]. Let G = (V1, E1) and H = (V2, E2) be
two graphs, and let p : V2 → V1 be a surjection. We will call p a covering map from H to
G if for each v ∈ V2, the restriction of p to the neighborhood of v ∈ V2 is a bijection onto
the neighborhood of p(v) in G. In other words, p maps edges incident to v one-to-one onto
edges incident to p(v). H is called a covering graph, or a lift, of G if there exists a covering
map from H to G. Assuming H is a lift of G with a covering map p. If p has a property that
for every vertex v ∈ V(G), its fiber p−1(v) has exactly h elements, we call H a h-lift of G.

Obviously, a long cycle may be a covering graph of shorter cycles. For example, the
cycle C100 is a 2-lift of C50, considering the surjection p(vi) = vi mod 50. Furthermore, C100 is
also a 25-lift of C4, etc.

Proposition 7. Let k ≥ 1, c0 ≥ 3, and h ≥ 2. Petersen graph P((hc0)k, k) is a h-lift of P(c0k, k).

Proof. Consider the surjection p : V(P((hc0)k, k)) → V(P(c0k, k)) defined by p(vi) =
vi mod h, and p(ui) = ui mod h.

Proposition 8. γdR(P((hc0)k, k)) ≤ hγdR(P(c0k, k)).

Proof. Let f be a DRDF of P(c0k, k). Define f̃ as f̃ (v) = f (p(v)) and observe that f̃ is a
DRDF of P((hc0)k, k). Clearly, the weight f̃ (P((hc0)k, k)) is exactly h f̃ (P((c0k, k)). We omit
the details.

Corollary 3. γdR(P(20k, k)) ≤ 5γdR(P(4k, k)) ≤ 30k + 15.

As γdR(P(20k, k)) ≥ 3
2 20k = 30k by Corollary 1, we also have

Corollary 4. If k ≡ 1 mod 2, then γdR(P(20k, k)) = 30k.

Applying Proposition 8 to the case P(20k, k) and P(5k, k), we obtain another Corollary.

Corollary 5. γdR(P(20k, k)) ≤ 4γdR(P(5k, k)) = 32k + 8.

Clearly, the upper bound in Corollary 5 is only better for k = 1, 2, and 3. In these cases,
we obtain

γdR(P(20, 1)) ≤ 40, γdR(P(40, 2)) ≤ 64, γdR(P(60, 3)) ≤ 96, (3)

which, together with Corollary 3 and Theorem 3 implies Theorem 7.
Note that this bound is a considerable improvement over the general bounds given in

Theorem 4 [12]. Indeed, the upper bound (2) grows as O(30k). The bounds in Theorem 4
are of the from 3

2 (20k)F(k) + 5k
4 + C, where limk→∞ F(k) = 1, so the asymptotic growth is

O(30k + 5k
4 ).
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5. Conclusions and Future Work

In this paper, we have extended the known results on double Roman domination of
families P(ck, k) of generalized Petersen graphs, by adding either exact values or bounds
with gap at most 2 for the family P(5k, k). This naturally continues previous work, where
the families P(3k, k) and P(4k, k) were studied.

There are several interesting related questions that open avenues for future work.
For example:

• Find closed expressions or good lower and upper bounds for γdR(P(6k, k)). Which
graphs among P(6k, k) are double Roman?

• The method used here to improve bounds for γdR(P(20k, k)) using γdR(P(4k, k)) and
γdR(P(5k, k)) may be used to improve bounds for γdR(P(ck, k)) for larger c.

• Can the small gaps between lower and upper bounds for γdR(P(5k, k)) (and, also for
γdR(P(4k, k))) be resolved by finding and proving exact values?

The authors believe that this study has solved the problem on P(5k, k) to the limits
of the standard method. These methods may be sufficient to handle the problem, e.g., on
P(6k, k), but probably can not be applied to much larger c. Covering graphs, as indicated
in Section 4, may provide a tool to provide improved bounds for larger c. On the other
hand, the gaps between the lower and upper bounds in some cases may be solved by other
methods, see for example [41] and the references there.

More generally, this work again shows the power of the discharging method. The
discharging method is most well known for its central role in the proof of the four color
theorem. This proof technique was extensively applied to study various graph coloring
problems, in particular on planar graphs. In [14], it is shown that a suitably altered
discharging technique can also be used on domination type problems and is illustrated on
the double Roman domination on some generalized Petersen graphs. Here, we apply the
method to another family of graphs and the same problem. This may encourage future
applications to other domination type problems.
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Abstract: Recently, a novel degree-based molecular structure descriptor, called Sombor index
was introduced. Let G = (V(G), E(G)) be a graph. Then, the Sombor index of G is defined as

SO(G) = ∑
uv∈E(G)

√
d2

G(u) + d2
G(v). In this paper, we give some lemmas that can be used to compare

the Sombor indices between two graphs. With these lemmas, we determine the graph with maximum
SO among all cacti with n vertices and k cut edges. Furthermore, the unique graph with maximum
SO among all cacti with n vertices and p pendant vertices is characterized. In addition, we find the
extremal graphs with respect to SO among all quasi-unicyclic graphs.

Keywords: topological index; vertex degree; Sombor index; cactus; quasi-unicyclic graph

1. Introduction

In this paper, we only consider simple undirected graphs. Let G = (V(G), E(G)) be
a graph with n vertices and m edges. If m = n + k− 1, then G is called a k-cyclic graph. A
1-cyclic graph is usually called a unicyclic graph. The complement Gc of G is the graph with
the vertex set V(G), and xy ∈ E(Gc)⇔ xy �∈ E(G). The degree of a vertex v in G, denoted
by dG(v), is the number of edges incident with v. A vertex of degree one is called a pendant
vertex of G, while the edge incident with a pendant vertex is known as a pendant edge. The
vertex adjacent to a pendant vertex is usually called a support vertex. To subdivide an edge e
is to delete e, add a new vertex x, and join x to the end-vertices of e. Suppose D ⊆ E(G).
Then, denote by G − D the graph obtained from G by deleting all the elements in D. If
D = {e}, we write G − e for G − {e} for simplicity. For a connected graph G, if G − e is
disconnected, then e is called a cut edge. If D ⊆ E(Gc), denote by G + D the graph obtained
from G by adding all of elements in D to the graph G.

A graph invariant is a numerical quantity which is invariant under graph isomorphism.
It is usually referred to as a topological index in chemical graph theory. It is shown that
some topological indices can be used to reflect physico-chemical and biological properties of
molecules in quantitative structure–activity relationship (QSAR) and quantitative structure-
property relationship (QSPR) studies [1–3]. Among various topological indices, degree-based
and distance-based topological indices have been extensively investigated (see in [4–7]).

In 2021, a novel degree-based topological index was introduced by I. Gutman in [8],
called the Sombor index. It was inspired by the geometric interpretation of degree-radii of
the edges and defined as

SO(G) = ∑
uv∈E(G)

√
d2

G(u) + d2
G(v)

for a graph G. I. Gutman [8] also defined the reduced Sombor index as

SOred(G) = ∑
uv∈E(G)

√
(dG(u)− 1)2 + (dG(v)− 1)2.
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Later, K. C. Das et al. [9] proposed the following index:

SO‡(G) = ∑
uv∈E(G)

√
(dG(u) + 1)2 + (dG(v) + 1)2.

We name it as the increased Sombor index in this paper.
Recently, the Sombor index has received a lot of attention within mathematics and

chemistry. For example, the chemical applicability of the Sombor index, especially the
predictive and discriminative potentials was investigated in [10,11]. The results indicate that
the Sombor index may be successfully applied for the modeling of thermodynamic properties
of compounds and confirm the suitability of this new index in QSPR analysis. For more
chemical applications, the readers may see in [12–14] for reference. K. C. Das et al. [15,16]
obtained some lower and upper bounds on SO in terms of graph parameters. They also
presented some relations between SO and the Zagreb indices. The relations between SO and
other degree-based indices were examined in [17]. Graphs having maximum Sombor index
among all connected k-cyclic graphs of order n, where 1 ≤ k ≤ n− 2, were investigated
in [9,18]. R. Cruz et al. [19] characterized the extremal graphs with respect to SO over all
(connected) chemical graphs, chemical trees, and hexagonal systems. H. Liu [20] determined
the extremal graphs with maximum SO among all cacti with fixed number of cycles and
perfect matchings. N. Ghanbari et al. [21] studied this index for certain graphs and also
examined the effects on SO(G) when G is modified by operations on vertex and edge of G.
Inspired by these works, we establish some new extremal results of the Sombor index.

Recall that a connected graph is a cactus if any two of its cycles have at most one
common vertex. A connected graph G is called a quasi-unicyclic graph if there is a vertex
v ∈ V(G) such that G − v is unicyclic. Let G1 and G2 be two graphs with no vertices in
common. The join of G1 and G2, denoted by G1 ∨ G2, is the graph with V(G1 ∨ G2) =
V(G1) ∪V(G2) and E(G1 ∨ G2) = E(G1) ∪ E(G2) ∪ {x1x2 : x1 ∈ V(G1), x2 ∈ V(G2)}. Let
Pn, Cn and Sn be the path, cycle and the star with n vertices, respectively.

This paper is organized as follows. In Section 2, some lemmas are introduced to
compare the Sombor indices between two graphs. As applications, in Section 3, the unique
graph with maximum SO among all cacti with n vertices and k cut edges is determined.
Furthermore, the unique graph with maximum SO among all cacti with n vertices and p
pendant vertices is characterized. In Section 4, we present the minimum and maximum SO
of quasi-unicyclic graphs.

2. Preliminaries

For convenience, let f (x, y) =
√

x2 + y2, where x, y ≥ 1. For f (x, y), we have the
following result.

Lemma 1 ([20,22]). Let h(x, y) be defined for x ≥ 1, y ≥ 1 as

h(x, y) = f (x + 1, y)− f (x, y) =
√
(x + 1)2 + y2 −

√
x2 + y2.

Then, for any value of y ≥ 1, h is increasing as a function of x; for any value of x ≥ 1, h is
decreasing as a function of y.

Let P = uu1 · · · uk be a path in a graph G with dG(u) ≥ 3, dG(u1) = · · · = dG(uk−1) =
2 and dG(uk) = 1. Then, P is called a pendant path in G and u is called the origin of P. In [23],
B. Horoldagva et al. showed the following transformation.

Lemma 2 ([23]). Let P and Q be two pendant paths with origins u and v in graph G, respec-
tively. Let x be a neighbor vertex of u who lies on P and y be the pendant vertex on Q. Denote
G′ = (G− ux) + xy. Then, SO(G) > SO(G′).
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Now, we introduce some new transformations which increase the Sombor index of
a graph.

Lemma 3. Let G be a graph and e = uv an edge of G with NG(u) ∩ NG(v) = ∅. Let G′ be the
graph obtained from G by first deleting the edge e and identifying u with v, and then attaching
a pendant vertex w to the common vertex (see Figure 1). If dG(u) ≥ 2 and dG(v) ≥ 2, then
SO(G) < SO(G′).

��
��

��
���u v �

��
��

��
���
�

vu

w

G G′

Figure 1. Graphs G and G′.

Proof of Lemma 3. Suppose dG(u) = p + 1, dG(v) = q + 1, NG(u) = {v, u1, u2, . . . , up}
and NG(v) = {u, v1, v2, . . . , vq}. Then, p, q ≥ 1. Therefore,

SO(G
′
)− SO(G) = f (p + q + 1, 1)− f (p + 1, q + 1)

+
p

∑
i=1

[ f (p + q + 1, dG′(ui))− f (p + 1, dG(ui))]

+
q

∑
i=1

[ f (p + q + 1, dG′(vi))− f (q + 1, dG(vi))]

> f (p + q + 1, 1)− f (p + 1, q + 1)

> 0.

Lemma 4. Let G be a graph and Gu,v(p, q) the graph obtained from G by attaching p and q pendant
edges to u and v, respectively, where u, v ∈ V(G) and p ≥ q ≥ 1. Suppose |NG(u) \ {v}| =
|NG(v) \ {u}| = a. Let NG(u) \ {v} = {x1, x2, . . . , xa} and NG(v) \ {u} = {y1, y2, . . . , ya}.
If dG(xi) = dG(yi) for each 1 ≤ i ≤ a, then SO(Gu,v(p, q)) < SO(Gu,v(p + 1, q− 1)).

Proof of Lemma 4. If uv ∈ E(G), then by Lemma 1,

SO(Gu,v(p + 1, q− 1))− SO(Gu,v(p, q))

= f (a + p + 2, a + q)− f (a + p + 1, a + q + 1)

+
a

∑
i=1

[ f (a + p + 2, dG(xi))− f (a + p + 1, dG(xi))]

+
a

∑
i=1

[ f (a + q, dG(yi))− f (a + q + 1, dG(yi))]

+(p + 1) f (a + p + 2, 1)− p f (a + p + 1, 1) + (q− 1) f (a + q, 1)− q f (a + q + 1, 1)

>
a

∑
i=1

[h(a + p + 1, dG(xi))− h(a + q, dG(yi))] + f (a + p + 2, 1)− f (a + q, 1)

+p[ f (a + p + 2, 1)− f (a + p + 1, 1)]− q[ f (a + q + 1, 1)− f (a + q, 1)]

≥ f (a + p + 2, 1)− f (a + q, 1) + ph(a + p + 1, 1)− qh(a + q, 1)

> 0.

Now, suppose uv �∈ E(G). Then dG(u) = dG(v) = a. Therefore,
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SO(Gu,v(p + 1, q− 1))− SO(Gu,v(p, q))

=
a

∑
i=1

[ f (a + p + 1, dG(xi))− f (a + p, dG(xi))]

+
a

∑
i=1

[ f (a + q− 1, dG(yi))− f (a + q, dG(yi))]

+(p + 1) f (a + p + 1, 1)− p f (a + p, 1) + (q− 1) f (a + q− 1, 1)− q f (a + q, 1)

=
a

∑
i=1

[h(a + p, dG(xi))− h(a + q− 1, dG(yi))] + f (a + p + 1, 1)− f (a + q− 1, 1)

+p[ f (a + p + 1, 1)− f (a + p, 1)]− q[ f (a + q, 1)− f (a + q− 1, 1)]

≥ f (a + p + 1, 1)− f (a + q− 1, 1) + ph(a + p, 1)− qh(a + q− 1, 1)

> 0.

Lemma 5. Let G be a graph and C4 = v1v2v3v4v1 a 4-cycle in G. Suppose NG(v1) ∩ NG(v3) =
{v2, v4}. Let NG(v1) \ {v2, v4} = {v11, v12, . . . , v1n1} and NG(v3) \ {v2, v4} = {v31, v32,
. . . , v3n3}, where n1 = dG(v1) − 2 > 0 and n3 = dG(v3) − 2 > 0. Let G′ = (G −
{v1v11, . . . , v1v1n1}) + {v3v11, . . . , v3v1n1}. Then, SO(G) < SO(G′).

Proof of Lemma 5. Suppose dG(v2) = n2 + 2 and dG(v4) = n4 + 2, where n2, n4 ≥ 0. By
Lemma 1,

SO(G
′
)− SO(G)

=
n1

∑
i=1

[ f (n1 + n3 + 2, dG(v1i))− f (n1 + 2, dG(v1i))]

+
n3

∑
j=1

[ f (n1 + n3 + 2, dG(v3j))− f (n3 + 2, dG(v3j))]

+ f (n1 + n3 + 2, n2 + 2)− f (n3 + 2, n2 + 2)− [ f (n1 + 2, n2 + 2)− f (2, n2 + 2)]

+ f (n1 + n3 + 2, n4 + 2)− f (n3 + 2, n4 + 2)− [ f (n1 + 2, n4 + 2)− f (2, n4 + 2)]

> f (n1 + n3 + 2, n2 + 2)− f (n3 + 2, n2 + 2)− [ f (n1 + 2, n2 + 2)− f (2, n2 + 2)]

+ f (n1 + n3 + 2, n4 + 2)− f (n3 + 2, n4 + 2)− [ f (n1 + 2, n4 + 2)− f (2, n4 + 2)]

=
n1+1

∑
i=2

[h(n3 + i, n2 + 2)− h(i, n2 + 2)] +
n1+1

∑
i=2

[h(n3 + i, n4 + 2)− h(i, n4 + 2)]

> 0.

Lemma 6. Let G be a graph and C3 = v1v2v3v1 be a 3-cycle in G. Suppose NG(v1) ∩ NG(v2) =
{v3}. Let NG(v1) \ {v2, v3} = {v11, v12, . . . , v1n1} and NG(v2) \ {v1, v3} = {v21, v22, . . . , v2n2},
where n1 = dG(v1)− 2 > 0 and n2 = dG(v2)− 2 > 0. Denote G′ = (G−{v1v11, . . . , v1v1n1}) +
{v2v11, . . . , v2v1n1}. Then, SO(G) < SO(G′).

Proof of Lemma 6. Suppose dG(v3) = n3 + 2, where n3 ≥ 0. By Lemma 1,
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SO(G
′
)− SO(G) =

n1

∑
i=1

[ f (n1 + n2 + 2, dG(v1i))− f (n1 + 2, dG(v1i))]

+
n2

∑
j=1

[ f (n1 + n2 + 2, dG(v2j))− f (n2 + 2, dG(v2j))]

+ f (n1 + n2 + 2, 2)− f (n1 + 2, n2 + 2)

+ f (n1 + n2 + 2, n3 + 2)− f (n2 + 2, n3 + 2)

−[ f (n1 + 2, n3 + 2)− f (2, n3 + 2)]

> f (n1 + n2 + 2, n3 + 2)− f (n2 + 2, n3 + 2)

−[ f (n1 + 2, n3 + 2)− f (2, n3 + 2)]

=
n1+1

∑
i=2

[h(n2 + i, n3 + 2)− h(i, n3 + 2)]

> 0.

Remark 1. By the definitions of SO and SO‡, it is easy to see that Lemmas 3–6 also hold if we
replace SO with SO‡ in these lemmas.

By Remark 1, we easily get the following result which will be used later.

Theorem 1. Let G be the graph with maximum increased Sombor index among all unicyclic graphs
of order n. Then G ∼= C3(n − 3, 0, 0), where C3(n − 3, 0, 0) is obtained from a 3-cycle C3 by
attaching n− 3 pendant vertices to one vertex of C3.

Proof of Theorem 1. By considering the version of SO‡ of Lemma 3, each cut edge of G is
pendant and the girth of G is 3. Moreover, all pendant vertices are adjacent to one common
vertex by Lemma 6. Therefore, G ∼= C3(n− 3, 0, 0).

3. Sombor Index of Cacti

Denote by Ck
n the set of all cacti of order n with k cut edges, and C(n, p) the set of all

cacti of order n with p pendant vertices. Then, 0 ≤ k ≤ n− 1 and k �= n− 2. In this section,
we investigate the maximal values of the Sombor index over the sets Ck

n and C(n, p).
Given two integers k and n with 0 ≤ k ≤ n− 1 and k �= n− 2, if n− k is even, denote

by G1 the graph obtained from a star Sn−1 by first adding n−k−2
2 new edges between its

pendant vertices such that no two of the new edges are adjacent, and then subdividing one
new edge; if n− k is odd, denote by G2 the graph obtained from a star Sn by adding n−k−1

2
new edges between its pendant vertices such that no two of the new edges are adjacent
(see Figure 2).

� �
� � � �

� � �
�� �

� � �
� �

� � �
�

G1 G2

v v

Figure 2. Graphs G1 and G2.

The following theorem shows that the graph Sn has maximum Sombor index over
Cn−1

n . Therefore, we assume k �= n− 1 in the following.
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Theorem 2 ([8]). For any tree T of order n,

SO(Pn) ≤ SO(T) ≤ SO(Sn).

Equality holds if and only if T ∼= Pn or T ∼= Sn.

Theorem 3. For graphs in Ck
n, where 0 ≤ k ≤ n− 3,

(1) if n− k is even, G1 is the unique graph with maximum Sombor index;
(2) if n− k is odd, G2 is the unique graph with maximum Sombor index, where G1 and G2 are

depicted in Figure 2.

Proof of Theorem 3. Let G be the graph with maximum Sombor index in Ck
n. By Lemma 3,

each cut edge of G is pendant. We show that the following propositions hold for G.

Proposition 1. Each cycle in G is of length 3 or 4.

Proof of Proposition 1. Suppose to the contrary that G has a cycle C = v1v2 · · · vtv1 of
length t ≥ 5. Without loss of generality, we assume that dG(v1) = max{dG(vi)|1 ≤ i ≤ t}.
Define G′ = (G− v3v4) + {v1v3, v1v4}. Then, G′ ∈ Ck

n and

SO(G
′
)− SO(G)

> f (dG′(v1), dG′(v3)) + f (dG′(v1), dG′(v4))− f (dG(v3), dG(v4))

= f (dG(v1) + 2, dG(v3)) + f (dG(v1) + 2, dG(v4))− f (dG(v3), dG(v4))

> 0,

a contradiction to the choice of G. Therefore, Proposition 1 holds.

Proposition 2. Each 4-cycle has at most one vertex of degree larger than 2 in G.

Proof of Proposition 2. Suppose there is a 4-cycle C = v1v2v3v4v1 containing at least
two vertices of degree larger than 2. Since G has maximum Sombor index, any two
vertices of C with degree larger than 2 must be adjacent by Lemma 5. Thus, C contains
exactly two adjacent vertices of degree 2. Without loss of generality, we assume that
dG(v1) = n1 + 2 > 2, dG(v2) = n2 + 2 > 2 and dG(v3) = dG(v4) = 2. Suppose NG(v1) \
{v2, v4} = {v11, v12, . . . , v1n1} and NG(v2) \ {v1, v3} = {v21, v22, . . . , v2n2}. Let G′ = (G−
{v2v21, v2v22, . . . , v2v2n2}) + {v1v21, v1v22, . . . , v1v2n2}. Then, G′ ∈ Ck

n and

SO(G
′
)− SO(G) > f (n1 + n2 + 2, 2)− f (n1 + 2, n2 + 2)

+ f (n1 + n2 + 2, 2)− f (n1 + 2, 2)− [ f (n2 + 2, 2)− f (2, 2)]

= f (n1 + n2 + 2, 2)− f (n1 + 2, n2 + 2) +
n2+1

∑
i=2

[h(n1 + i, 2)− h(i, 2)]

> 0,

a contradiction.
By Lemma 6, each 3-cycle has at most one vertex of degree larger than 2. Combining

it with Propositions 1 and 2, G is obtained from s copies of C4 and t copies of C3 by
first taking one vertex of each of them and fusing them together into a new common
vertex v, and then attaching k pendant vertices at v, where 3s + 2t + k + 1 = n. Suppose
s ≥ 2. Then, there are at least two 4-cycles C = vx1y1z1v and C′ = vx2y2z2v. Let G′ =
(G − {x1y1, x2y2}) + {x1x2, y1v, y2v}. Then G′ ∈ Ck

n and SO(G
′
)− SO(G) > (6 f (dG(v) +

2, 2) + 3 f (2, 2))− (4 f (dG(v), 2) + 4 f (2, 2)) > 0, a contradiction. This implies 0 ≤ s ≤ 1.
Therefore, s = 1 if n − k is even and s = 0 otherwise, i.e., G ∼= G1 if n − k is even and
G ∼= G2 otherwise.
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Next, we find the maximal graph with respect to the Sombor index among C(n, p)
with n vertices and p pendant vertices. As Sn−1 is the only graph with n − 1 pendant
vertices, we assume 0 ≤ p ≤ n− 2 in the following. Before we give our main result, we
show a lemma.

Lemma 7. Let G be a graph and e = uv ∈ E(G) with NG(u) ∩ NG(v) = ∅. Suppose NG(u) \
{v} = {x1, . . . , xs, w1, . . . , wp} and NG(v) \ {u} = {y1, . . . , yt, z1, . . . , zq}, where d(x1) =
· · · = d(xs) = 2, d(w1) = · · · = d(wp) = 1, d(y1) = · · · = d(yt) = 2 and d(z1) =
· · · = d(zq) = 1. Suppose s ≥ 2. Let G′ be obtained from G by first deleting the edge e and
identifying u with v, and then subdividing the edge ux1. If t + q ≥ 2, or t = 0 with q = 1, then
SO(G) < SO(G′).

Proof of Lemma 7. By direct calculation, we get

SO(G
′
)− SO(G)

= (p + q) f (s + p + t + q, 1)− p f (s + p + 1, 1)− q f (t + q + 1, 1)

+(s + t) f (s + p + t + q, 2)− s f (s + p + 1, 2)− t f (t + q + 1, 2)

+ f (2, 2)− f (t + q + 1, s + p + 1)

≥ q[ f (s + p + t + q, 1)− f (t + q + 1, 1)] + s[ f (s + p + t + q, 2)− f (s + p + 1, 2)]

+t[ f (s + p + t + q, 2)− f (t + q + 1, 2)] (1)

−[ f (t + q + 1, s + p + 1)− f (2, s + p + 1) + f (s + p + 1, 2)− f (2, 2)]

= q
s+p

∑
i=2

h(t + q + i− 1, 1) + t
s+p

∑
i=2

h(t + q + i− 1, 2)−
s+p

∑
i=2

h(i, 2)

+s[ f (s + p + t + q, 2)− f (s + p + 1, 2)]

−[ f (t + q + 1, s + p + 1)− f (2, s + p + 1).

We denote the right side of equation (1) by A. Then, by Lemma 1,

A > s[ f (s + p + t + q, 2)− f (s + p + 1, 2)]

−[ f (t + q + 1, s + p + 1)− f (2, s + p + 1)]

= s
t+q

∑
i=2

h(s + p + i− 1, 2)−
t+q

∑
i=2

h(i, s + p + 1)

> 0

if t + q ≥ 2. Now, suppose t = 0 and q = 1. Then, A = ∑
s+p
i=2 [h(i, 1) − h(i, 2)] > 0 by

Lemma 1, which completes the proof.

Denote by DSp,q the double star obtained from a star Sp+2 by attaching q pendant
vertices to one pendant vertex. Then DSp,q has n = p + q + 2 vertices.

Theorem 4. For graphs in C(n, p), where 0 ≤ p ≤ n− 2 and n ≥ 5,
(1) if p = n− 2, DSn−3,1 is the unique graph with maximum Sombor index;
(2) if p ≤ n− 3 and n− p is even, G1 is the unique graph with maximum Sombor index;
(3) if p ≤ n− 3 and n− k is odd, G2 is the unique graph with maximum Sombor index, where

G1 and G2 are depicted in Figure 2.

Proof of Theorem 4. If p = n− 2, then any graph in C(n, p) is a double star. By Lemma 4,
DSn−3,1 is the unique graph with maximum Sombor index. Now suppose p ≤ n− 3. Let G
be the graph with maximum Sombor index in C(n, p). Then, the following claims hold.

Claim 1. G must contain a cycle.
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Proof of Claim 1. Suppose not. Then, G is a tree. As p ≤ n − 3, there are two non-
pendant vertices u and v of G with uv �∈ E(G). Let G′ = G + uv. Then, G′ ∈ C(n, p) and
SO(G′) > SO(G), a contradiction to the choice of G.

By the same argument as that of Theorem 3, each cycle in G is of length 3 or 4.
Moreover, each cycle of G has at most one vertex of degree larger than 2. Let T be the graph
obtained from G by deleting all vertices of degree 2 in each cycle. Then, T is a tree. Let d(T)
be the diameter of T.

Claim 2. d(T) ≤ 3.

Proof of Claim 2. Suppose d(T) ≥ 4. Then there are two non-pendant vertices u and
v of T with uv �∈ E(T). Let G′ = G + uv. Then G′ ∈ C(n, p) and SO(G′) > SO(G), a
contradiction, which implies Claim 2 holds.

Similarly, we have

Claim 3. For any two cycles C1 and C2 in G, the length of the path connecting them is 0 or 1.

Proof of Claim 3. Suppose there are two cycles C1 and C2 such that the length of the
path P connecting them is larger than 1. Let P = u0u1 · · · ul , where u0 ∈ V(C1) and
ul ∈ V(C2). Then l > 1. Define G′ = G + u0ul . Then G′ ∈ C(n, p) and SO(G′) > SO(G), a
contradiction, which implies Claim 3 holds.

Claim 4. Any two cycles of G have one common vertex.

Proof of Claim 4. Suppose there are two cycles C1 and C2 having no vertices in common.
Then by Claim 3, the length of the path P connecting them is 1. Suppose P = u1v1, where
u1 ∈ V(C1) and v1 ∈ V(C2). As each cycle of G has at most one vertex of degree larger
than 2, NG(u1) ∩ NG(v1) = ∅.

We show that for each vertex w ∈ (NG(u1) \ {v1}) ∪ (NG(v1) \ {u1}), dG(w) ∈ {1, 2}.
Without loss of generality, suppose there is a vertex w ∈ NG(v1) \ {u1} with dG(w) ≥
3. Then w ∈ V(T). Let G′ = G + u1w. Then, G′ ∈ C(n, p) and SO(G′) > SO(G), a
contradiction.

Now let u2 ∈ V(C1) ∩ NG(u1). Let G′ be obtained from G by first deleting the edge
u1v1 and identifying u1 with v1, and then subdividing the edge u1u2. Then G′ ∈ C(n, p)
and SO(G′) > SO(G) by Lemma 7, a contradiction. Therefore, Claim 4 holds.

Claim 5. All pendant vertices in G are adjacent to u, where u is the common vertex of all cycles
in G.

Proof of Claim 5. Suppose there is a support vertex v �= u. Let dG(u, v) be the distance
between u and v in G. Then dG(u, v) ∈ {1, 2} by Claim 2. If dG(u, v) = 2, by letting
G′ = G + uv, we get G′ ∈ C(n, p) and SO(G′) > SO(G), a contradiction. Therefore,
dG(u, v) = 1.

Suppose for each vertex w ∈ NG(v) \ {u}, dG(w) = 1. Then by Claim 1, there are at
least two vertices of degree 2 adjacent to u except v. Let u1 ∈ NG(u) \ {v} with dG(u1) = 2.
Denote by G′ the graph obtained from G by first deleting the edge uv and identifying u with
v, and then subdividing the edge uu1. Then G′ ∈ C(n, p) and SO(G′) > SO(G) by Lemma 7,
a contradiction. Therefore, we may assume that there is a vertex v1 ∈ NG(v) \ {u} with
dG(v1) ≥ 2. Let G′ = G + uv1. Then G′ ∈ C(n, p) and SO(G′) > SO(G), a contradiction.
This completes the proof of Claim 5.

By the same argument as that of Theorem 3, there is at most one 4-cycle in G. Therefore,
G is obtained from s copies of C4 and t copies of C3 by first taking one vertex of each of
them and fusing them together into a new common vertex u, and then attaching p pendant
vertices at u, where 3s + 2t + p + 1 = n and 0 ≤ s ≤ 1. Therefore, s = 1 if n− p is even and
s = 0 otherwise, i.e., G ∼= G1 if n− p is even and G ∼= G2 otherwise.
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4. Sombor Index of Quasi-Unicyclic Graphs

Let QU (n) be the set of all quasi-unicyclic graphs of order n. Denote by ∞(p, l, q) the
graph obtained from two cycles Cp and Cq by connecting a vertex u ∈ V(Cp) and a vertex
v ∈ V(Cq) by a path v0v1 · · · vl of length l (identifying u with v if l = 0), where v0 = u,
vl = v and p + q + l = n + 1. Let Θ(s, t, r) be a union of three paths Ps+1, Pt+1, Pr+1 resp.
with common end vertices, where s + t + r + 1 = n, s ≥ t ≥ r ≥ 1 and at most one of them
is 1.

Theorem 5. Let G ∈ QU (n) be the graph with minimum Sombor index, where n ≥ 4. Then
G ∼= Θ(s, t, 1) or ∞(p, 1, q), and SO(G) = (2n− 5)

√
2 + 4

√
13.

Proof of Theorem 5. As G ∈ QU (n), there is a vertex vn in G such that G − vn = H is a
unicyclic graph. Let dG(vn) = k. Then k ≥ 2. As G has the minimum Sombor index, k = 2.
Let NG(vn) = {v1, v2}.

We first show that H has at most two pendant vertices. Suppose H has at least three
pendant vertices. If max{dH(v1), dH(v2)} ≥ 2, then G has at least two pendant paths, say
P = uu1 · · · us and Q = ww1 · · ·wt, where dG(u), dG(w) ≥ 3. Let G′ = (G − uu1) + u1wt.
Then, G′ ∈ QU (n) and SO(G′) < SO(G) by Lemma 2, a contradiction. Therefore, we
may assume that dH(v1) = dH(v2) = 1. Then, there is a pendant path P = xx1 · · · xl
in G, where dG(x) = a ≥ 3, dG(x1) = · · · = dG(xl−1) = 2 and dG(xl) = 1. Define
G′ = (G − {xx1, v1vn}) + {v1x1, xlvn}. Then, G′ ∈ QU (n). By direct calculation, we get
SO(G′)− SO(G) < f (2, 2)− f (1, a) < 0 if l = 1, and

SO(G′)− SO(G) < 2 f (2, 2)− ( f (a, 2) + f (1, 2))

= f (2, 2)− f (1, 2)− [ f (a, 2)− f (2, 2)]

= h(1, 2)−
a−1

∑
i=2

h(i, 2)

< 0

if l ≥ 2. This contradicts to the definition of G. Therefore, there are at most two pendant
vertices in H.

Now, we show that every pendant vertex in H is adjacent to vn in G. Suppose there
is a pendant vertex v in H with v �∈ {v1, v2}. Then there is one vertex in {v1, v2}, say v1,
such that dG(v1) = a ≥ 3. Let w be the neighbor of v in G. Obviously, dG(w) = b ≥ 2.
If w ∈ {v1, v2}, let G′ = (G − wvn) + vvn. Then, G′ ∈ QU (n) and SO(G′) < SO(G) by
Lemma 3, a contradiction. Therefore, w �= v1, v2. Now, let G′ = (G − vnv1) + vnv. Then,
G′ ∈ QU (n) and

SO(G′)− SO(G) < f (2, 2) + f (2, b)− [ f (2, a) + f (1, b)]

= f (2, b)− f (1, b)− [ f (a, 2)− f (2, 2)]

= h(1, b)−
a−1

∑
i=2

h(i, 2)

< 0,

a contradiction.
From the above, G is a bicyclic graph with no pendant vertices. i.e., G ∼= Θ(s, t, r)

or ∞(p, l, q). By direct calculation, we have SO(Θ(s, t, r)) = (n − 5) f (2, 2) + 6 f (2, 3)
if r ≥ 2, SO(Θ(s, t, r)) = (n − 4) f (2, 2) + 4 f (2, 3) + f (3, 3) if r = 1, SO(∞(p, l, q)) =
(n − 3) f (2, 2) + 4 f (2, 4) if l = 0, SO(∞(p, l, q)) = (n − 5) f (2, 2) + 6 f (2, 3) if l ≥ 2 and
SO(∞(p, l, q)) = (n− 4) f (2, 2)+ 4 f (2, 3)+ f (3, 3) if l = 1. Since (n− 3) f (2, 2)+ 4 f (2, 4) >
(n − 5) f (2, 2) + 6 f (2, 3) > (n − 4) f (2, 2) + 4 f (2, 3) + f (3, 3), we get G ∼= Θ(s, t, 1) or
∞(p, 1, q), and SO(G) = (n− 4) f (2, 2) + 4 f (2, 3) + f (3, 3) = (2n− 5)

√
2 + 4

√
13.
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Here, we recall some theory of majorization.
A subset X ⊆ Rn is a convex set if for any x, y ∈ X and any λ with 0 < λ < 1,

λx + (1− λ)y ∈ X. Let X ⊆ Rn be a convex set. For a function f : X → R, if for any
x, y ∈ X and any λ with 0 < λ < 1, f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y), then f is
called a convex function. If the inequality above is strict for all x, y ∈ X with x �= y, then f is
a strictly convex function. Let I be an interval and f : I → R be a real twice-differentiable
function on I, then it is well-known that f is convex if and only if f ′′(x) ≥ 0 for all x ∈ I,
and f is strictly convex if f ′′(x) > 0 for all x ∈ I.

For each vector x = (x1, x2, . . . , xn) ∈ Rn, consider the decreasing rearrangement of it,
i.e., we always assume that x1 ≥ x2 ≥ · · · ≥ xn. Then we have the following definition and
majorization inequality.

Definition 1 ([24]). For x, y ∈ Rn,

x ≺ y if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k

∑
i=1

xi ≤
k

∑
i=1

yi, k = 1, 2, . . . , n− 1,

n

∑
i=1

xi =
n

∑
i=1

yi.

When x ≺ y, x is said to be majorized by y (y majorizes x).

Lemma 8 ([25]). Let I ⊆ R be an interval and f : I → R a strictly convex function. Let
c = (c1, c2, . . . , cn) and d = (d1, d2, . . . , dn) be two vectors in Rn with ci, di ∈ I for each
i = 1, 2, . . . , n. If c ≺ d, then ∑n

i=1 f (ci) ≤ ∑n
i=1 f (di), with equality if and only if c = d.

Theorem 6. Let G ∈ QU (n). Then,

SO(G) ≤ 2(n− 4)
√
(n− 1)2 + 4 + 4

√
(n− 1)2 + 9 + (n + 2)

√
2,

with equality if and only if G ∼= C3(n − 4, 0, 0) ∨ K1, where C3(n − 4, 0, 0) is obtained from a
3-cycle C3 by attaching n− 4 pendant vertices to one vertex of C3.

Proof of Theorem 6. Let vn be a vertex in G such that G− vn = H is a unicyclic graph. Let
V(H) = {v1, v2, . . . , vn−1} and dG(vn) = k. Then, 2 ≤ k ≤ n− 1. By the definition of the
Sombor index, we get

SO(G) ≤
n−1

∑
i=1

√
(n− 1)2 + (dH(vi) + 1)2 + ∑

vivj∈E(H)

√
(dH(vi) + 1)2 + (dH(vj) + 1)2.

Moreover, the equality holds if and only if dG(vn) = n − 1. First we consider the

maximum value of ∑vivj∈E(H)

√
(dH(vi) + 1)2 + (dH(vj) + 1)2. By Theorem 1,

∑
vivj∈E(H)

√
(dH(vi) + 1)2 + (dH(vj) + 1)2 = SO‡(H) ≤ SO‡(C3(n− 4, 0, 0)),

with equality if and only if H ∼= C3(n− 4, 0, 0).

Now, we calculate the maximum value of
n−1
∑

i=1

√
(n− 1)2 + (dH(vi) + 1)2. Consider

the function
g(x) =

√
(n− 1)2 + (x + 1)2, 1 ≤ x ≤ n− 2.
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Then, g′′(x) = 2(n−1)2+(x+1)2

2((n−1)2+(x+1)2)
3
2

> 0, 1 ≤ x ≤ n − 2. Therefore, g(x) is strictly

convex on 1 ≤ x ≤ n − 2. Note that H is a unicyclic graph and
n−1
∑

i=1
dH(vi) = 2(n − 1),

by [26], the degree sequence d(H) = (dH(v1), (dH(v2), . . . , (dH(vn−1)) satisfies d(H) ≺
(n− 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸

n−4

). By Lemma 8,
n−1
∑

i=1
g((dH(vi)) ≤ g(n− 2) + 2g(2) + (n− 4)g(1), that is,

n−1

∑
i=1

√
(n− 1)2 + ((dH(vi) + 1)2

≤
√
(n− 1)2 + (n− 2 + 1)2 + 2

√
(n− 1)2 + (2 + 1)2

+(n− 4)
√
(n− 1)2 + (1 + 1)2

= (n− 1)
√

2 + 2
√
(n− 1)2 + 9 + (n− 4)

√
(n− 1)2 + 4.

Moreover, equality holds if and only if d(H) = (n − 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−4

), i.e., H ∼=

C3(n− 4, 0, 0).
Based on the above,

SO(G)

≤ (n− 1)
√

2 + 2
√
(n− 1)2 + 9 + (n− 4)

√
(n− 1)2 + 4

+(n− 4)
√
(n− 1)2 + 22 + 2

√
(n− 1)2 + 32 +

√
32 + 32

= 2(n− 4)
√
(n− 1)2 + 4 + 4

√
(n− 1)2 + 9 + (n + 2)

√
2

Moreover, the equality holds if and only if G ∼= C3(n− 4, 0, 0) ∨ K1.

5. Conclusions

As graph invariants, topological indices are used for QSAR and QSPR studies. There-
fore, it is very important to study the extremal graphs with respect to topological indices
in chemical graph theory. Until now, many topological indices have been introduced and
several of them have been found various applications. As a novel index, the Sombor
index has received a lot of attention within mathematics and chemistry. In this paper, we
give some transformations to compare the Sombor indices between two graphs. With
these transformations, we present the maximum Sombor index among cacti Ck

n and C(n, p).
Moreover, the maximum and minimum Sombor index among all quasi-unicyclic graphs
are characterized. It is interesting to consider the minimum Sombor index of cacti with
some graph parameters. We will consider it for future study.
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Abstract: The bipartite Ramsey number B(n1, n2, . . . , nt) is the least positive integer b, such that any
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Keywords: Ramsey numbers; bipartite Ramsey numbers; Zarankiewicz number

1. Introduction

The bipartite Ramsey number B(n1, n2, . . . , nt) is the least positive integer b, such that
any coloring of the edges of Kb,b with t colors will result in a monochromatic copy of Kni ,ni

in the i-th color, for some i, 1 ≤ i ≤ t. The existence of such a positive integer is guaranteed
by a result of Erdős and Rado [1].

The Zarankiewicz number z(Km,n, t) is defined as the maximum number of edges in
any subgraph G of the complete bipartite graph Km,n, such that G does not contain Kt,t as a
subgraph. Zarankiewicz numbers and related extremal graphs have been studied by many
authors, including Kóvari [2], Reiman [3], and Goddard, Henning, and Oellermann in [4].

The study of bipartite Ramsey numbers was initiated by Beineke and Schwenk in 1976 [5],
and continued by others, in particular Exoo [6], Hattingh, and Henning [7]. The following
exact values have been established: B(2, 5) = 17 [8], B(2, 2, 2, 2) = 19 [9], B(2, 2, 2) = 11 [6].
In the smallest open case for five colors, it is known that 26 ≤ B(2, 2, 2, 2, 2) ≤ 28 [9]. One
can refer to [2,9–14] and it references for further studies. Collins et al. in [8] showed that
17 ≤ B(2, 2, 3) ≤ 18, and in the same source made the following conjecture:

Conjecture 1 ([8]). B(2, 2, 3) = 17.

We intend to get the exact value of the multicolor bipartite Ramsey numbers B(2, 2, 3).
We prove the following result:

Theorem 1. B(2, 2, 3) = 17.

In this paper, we are only concerned with undirected, simple, and finite graphs. We
follow [15] for terminology and notations not defined here. Let G be a graph with vertex set
V(G) and edge set E(G). The degree of a vertex v ∈ V(G) is denoted by degG(v), or simply
by deg(v). The neighborhood NG(v) of a vertex v is the set of all vertices of G adjacent to v
and satisfies |NG(v)| = degG(v). The minimum and maximum degrees of vertices of G are
denoted by δ(G) and Δ(G), respectively. Additionally, the complete bipartite graph with
bipartition (X, Y), where |X| = m and |Y| = n, is denoted by Km,n. We use [X, Y] to denote
the set of edges between the bipartition (X, Y) of G. Let G = (X, Y) be a bipartite graph
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and Z ⊆ X or Z ⊆ Y, the degree sequence of Z denoted by DG(Z) = (d1, d2, . . . , d|Z|), is
the list of the degrees of all vertices of Z. The complement of a graph G, denoted by G, is
a graph with same vertices such that two distinct vertices of G are adjacent if and only if
they are not adjacent in G. H is n-colorable to (H1, H2, . . . , Ht) if there exists a t-coloring of
the edges of H such that Hi � Hi for each 1 ≤ i ≤ t, where Hi is the spanning subgraph of
H with edges of the i-th color.

2. Some Preliminary Results

To prove our main result—namely, Theorem 1—we need to establish some preliminary
results. We begin with the following proposition:

Proposition 1 ([8,13]). The following results about the Zarankiewicz number are true:

• z(K17,17, 2) = 74.
• z(K16,17, 2) ≤ 71.
• z(K17,17, 3) ≤ 141.
• z(K16,17, 3) ≤ 133.
• z(K13,17, 3) ≤ 110.
• z(K12,17, 3) ≤ 103.
• z(K11,17, 3) ≤ 96.

Proof of Proposition 1. By using the bounds in Table 3 and Table 4 of [8] and Table C.3
of [13], the proposition holds.

Theorem 2 ([8]). 17 ≤ B(2, 2, 3) ≤ 18.

Proof of Theorem 2. The lower bound witness is found in Table 2 of [8]. The upper bound
is implied by using the bounds in Table 3 and Table 4 of [8]. We know that z(K18,18, 2) = 81,
z(K18,18, 3) ≤ 156, and 2× 81 + 156 = 318 < 324 = |E(K18,18)|.

Suppose that (Gr, Gb, Gg) is a 3-edge coloring of K17,17, where K2,2 � Gr, K2,2 � Gb

and K3,3 � Gg; in the following theorem, we specify some properties of the subgraph with
color g. The properties are regarding Δ(Gg), δ(Gg), E(Gg), and degree sequence of vertices
X, Y in the induced graph with color g.

Theorem 3. Assume that (Gr, Gb, Gg) is a 3-edge coloring of K17,17, where K2,2 � Gr, K2,2 � Gb,
and K3,3 � Gg. So:

(a) |E(Gg)| = 141.
(b) Δ(Gg) = 9 and δ(Gg) = 8.
(c) DGg(X) = DGg(Y) = (9, 9, 9, 9, 9, 8, 8, . . . , 8).

Proof of Theorem 3. Assume that X = {x1, x2, . . . , x17}, Y = {y1, y2, . . . , y17} is a partition
set of K = K17,17 and (Gr, Gb, Gg) is a 3-edge coloring of K, where K2,2 � Gr, K2,2 � Gb,
and K3,3 � Gg. Since |E(K)| = 289, if |E(Gg)| ≤ 140 then |E(Gg)| ≥ 149—that is, either
|E(Gr)| ≥ 75 or |E(Gb)| ≥ 75. In any case, by Proposition 1, either K2,2 ⊆ Gr or K2,2 ⊆ Gb,
a contradiction. Hence, assume that |E(Gg)| ≥ 141. If |E(Gg)| ≥ 142 then by Proposition 1,
K3,3 ⊆ Gg, a contradiction again; that is, |E(Gg)| = 141 and part (a) is true.

To prove part (b), since |E(Gg)| = 141 by part (a), we can check that Δ(Gg) ≥ 9.
Assume that there exists a vertex of V(K) say x, such that |NGg(x)| ≥ 10—that is, Δ(Gg) ≥
10. Consider x and set Gg

1 = Gg \ {x}, hence by part (a), |E(Gg
1 )| ≤ 141 − 10 = 131.

Therefore, since |E(K16,17)| = 272, so |E(Gg
1 )| ≥ 141—that is, either |E(Gr

1)| ≥ 71 or
|E(Gb

1)| ≥ 71. In any case, by Proposition 1 either K2,2 ⊆ Gr
1 ⊆ Gr or K2,2 ⊆ Gb

1 ⊆ Gb, a
contradiction. So, Δ(Gg) = 9. To prove δ(Gg) = 8, assume that M = {x ∈ X, |NGg(x)| =
9} and N = {x ∈ X, |NGg(x)| = 8}; by part (a) one can say that |M| ≥ 5, if |M| = 6,
then δ(Gg) ≤ 7—that is, there is a vertex of X (say x) such that |NGg(x)| ≤ 7; therefore,
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|N| ≤ 10. If |N| = 10, then |E(Gg[M ∪ N, Y])| = 134, so by Proposition 1, K3,3 ⊆ Gg, a
contradiction. Now assume that |N| ≤ 9, thus |E(Gg)| ≤ (6× 9) + (9× 8) + (2× 7) = 140,
a contradiction again. For |M| = 7 if |N| ≥ 6, then |E(Gg[M ∪ N′, Y])| = 111, where
N′ ⊆ N and |N′| = 6, so by Proposition 1, K3,3 ⊆ Gg, a contradiction. Hence assume that
|N| ≤ 5; therefore, |E(Gg)| ≤ (7× 9) + (5× 8) + (5× 7) = 138, a contradiction again.
For |M| = 8 if |N| ≥ 5, then |E(Gg[M ∪ N′, Y])| = 112, where N′ ⊆ N and |N′| = 5;
therefore, by Proposition 1, K3,3 ⊆ Gg, a contradiction, so assume that |N| ≤ 4—that is,
|E(Gg)| ≤ (8× 9) + (4× 8) + (5× 7) = 139, a contradiction again. For |M| = 9 if |N| ≥ 3,
then |E(Gg[M∪N′, Y])| = 105, where N′ ⊆ N and |N′| = 3, so by Proposition 1, K3,3 ⊆ Gg,
a contradiction. Thus |N| ≤ 2—that is, |E(Gg)| ≤ (9× 9) + (2× 8) + (6× 7) = 139, which
is a contradiction again. For |M| = 10, if |N| ≥ 1, then |E(Gg[M ∪ N′, Y])| = 98, where
N′ ⊆ N and |N′| = 1; so, by Proposition 1 K3,3 ⊆ Gg, a contradiction. Thus, assume that
|N| = 0, so |E(Gg)| ≤ (10× 9) + (7× 7) = 139, a contradiction again. Therefore, |M| = 5
and |N| = 12—that is, δ(Gg) = 8, and part (b) is true.

Now, by parts (a) and (b) it is straightforward to say that DGg(X) = DGg(Y) =
(9, 9, 9, 9, 9, 8, 8, . . . , 8)—that is, part (c) is true, and this completes the proof.

3. Proof of the Main Theorem

In this section, by using the results of Section 2, we will prove the main theorem.
Suppose that (Gr, Gb, Gg) is a 3-edge coloring of K17,17, where K2,2 � Gr, K2,2 � Gb

and K3,3 � Gg. In the following theorem, we discuss the maximum number of common
neighbors of Gg(x) and Gg(x′) for x, x′ ∈ X.

Theorem 4. Assume that (Gr, Gb, Gg) is a 3-edge coloring of K17,17, where K2,2 � Gr, K2,2 � Gb

and K3,3 � Gg. Let |NGg(x)| = 9 and NGg(x) = Y1; the following results are true:

(a) For each x ∈ X \ {x1}, we have |NGg(x) ∩Y1| ≤ 5.

(b) Assume that n =
i=17
∑

i=1
|NGg(xi) ∩Y1|, then 72 ≤ n ≤ 73.

Proof of Theorem 4. Assume that X = {x1, x2, . . . , x17}, Y = {y1, y2, . . . , y17} is a partition
set of K = K17,17, and (Gr, Gb, Gg) is a 3-edge coloring of K, where K2,2 � Gr, K2,2 � Gb and
K3,3 � Gg. Without loss of generality (W .l.g.) assume that x = x1 and Y1 = {y1, . . . , y9}.
To prove part (a), by contrast assume that there exists a vertex of X \ {x1} (say x) such that
|NGg(x) ∩Y1| ≥ 6. W.l.g., suppose that x = x2 and Y2 = {y1, y2, . . . , y6} ⊆ NGg(x2). Since

K3,3 � Gg, for each x ∈ X \ {x1, x2}, so |NGg(x) ∩ Y2| ≤ 2—that is,
i=17
∑

i=1
|NGg(xi) ∩ Y2| ≤

6 + 6 + (15× 2) ≤ 42. Now, since |E(Gg[X, Y2])| ≤ 42, one can check that there exists at
least one vertex of Y2 (say y), such that |NGg(y)| ≤ 7, a contradiction to part (c) of Theorem
3. Hence, |NGg(x) ∩Y1| ≤ 5 for each x ∈ X \ {x1}—that is, part (a) is true.

To prove part (b), if n ≤ 71, then by part (c) of Theorem 3, it can be checked that there
exists at least one vertex of Y1 (say y), such that |NGg(y)| ≤ 7, a contradiction. Therefore,

n ≥ 72. Assume that n ≥ 74 and let DGg(Y1) = (d1, d2, . . . , d9). Since
i=17
∑

i=1
|NGg(xi) ∩Y1| ≥

74, there exist at least two vertices of Y1 (say y′, y′′), such that |NGg(y′)| = |NGg(y′′)| = 9.
Since n ≥ 74 and |X \ {x1}| = 16, there exists at least one vertex of X \ {x1} (say x′), such
that |NGg(x′)∩Y1| = 5. W.l.g., suppose that x′ = x2 and NGg(x2)∩Y1 = Y2 = {y1, . . . , y5}.
Now we have the following claims:

Claim 1. For each x ∈ X \ {x1, x2}, we have |NGg(x) ∩Y2| = 2 and DGg(Y2) = (8, 8, 8, 8, 8).

Proof of Claim 1. Since K3,3 � Gg for each x ∈ X \ {x1, x2}, thus |NGg(x) ∩Y2| ≤ 2—that

is,
i=17
∑

i=1
|NGg(xi)∩Y2| ≤ 5+ 5+(15× 2) ≤ 40. Now, since |E(Gg[X, Y2])| ≤ 40 and |Y2| = 5,

if there exists a vertex of X1 )(say x′), such that |NGg(x) ∩ Y2| ≤ 1, then |E(Gg[X, Y2])| ≤
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39; therefore, there exists at least one vertex of Y2 (say y), such that |NGg(y)| ≤ 7, a
contradiction to part (c) of Theorem 3. So, |NGg(x) ∩ Y2| = 2 and ∑

y∈Y2

|NGg(y)| = 40,

therefore by part (c) of Theorem 3 DGg(Y2) = (8, 8, 8, 8, 8), and the proof of the claim is
complete.

Claim 2. DGg(X1) = (5, 4, 4, . . . , 4) where X1 = X \ {x1}, in other word |NGg(xi) ∩ Y1| = 4
for each i ∈ {3, 4, . . . , 17}.

Proof of Claim 2. By contradiction, assume that there exists a vertex of X \ {x1, x2} (say
x), such that |NGg(x) ∩Y1| = 5. W.l.g suppose that x = x3 and NGg(x3) ∩Y1 = Y3, now by
Claim 1, |NGg(x3) ∩ Y2| = 2. W.l.g., assume that Y3 = {y1, y2, y6, y7, y8}, thus by Claim 1,
DGg(Y3) = (8, 8, 8, 8, 8)—that is, |NGg(y)| = 8 for each y ∈ Y1 \ {y9}. Since Δ(Gg) = 9, we

can check that n =
i=17
∑

i=1
|NGg(xi) ∩Y1| =

i=9
∑

i=1
|NGg(yi)| ≤ (8× 8) + 9 = 73, a contradiction.

So, DGg(X1) = (5, 4, 4, . . . , 4), and the proof of the claim is complete.

Assume that NGg(x2) ∩ Y1 = Y2 = {y1. . . . , y5}, by Claim 1 DGg(Y2) = (8, 8, 8, 8, 8).
Since there exist at lest two vertices of Y1 (say y′, y′′), such that |NGg(y′)| = |NGg(y′′)| = 9,
thus y′, y′′ ∈ {y6, y7, y8, y9}. W.l.g., we can suppose that y′ = y6 and NGg(y6) = X2 =
{x1, x3, . . . , x10}. By Claim 2, |NGg(x) ∩ Y1| = 4 and |NGg(x) ∩ Y2| = 2 for each x ∈
X2 \ {x1}—that is, |NGg(x)∩ {y7, y8, y9}| = 1 for each x ∈ X2 \ {x1}. Since |X2 \ {x1}| = 8
and |NGg(x) ∩ {y7, y8, y9}| = 1, by the pigeon-hole principle, there exists a vertex of
{y7, y8, y9} (say y), such that |NGg(y) ∩ X2 \ {x1}| ≥ 3. W.l.g., we can suppose that y = y7
and {x3, x4, x5} ⊆ NGg(y7) ∩ X2 \ {x1}. As |Y2| = 5 and |NGg(xi) ∩ Y2| = 2 for i = 3, 4, 5,
there exist i, i′ ∈ {3, 4, 5}, such that |NGg(xi) ∩ NGg(xi′) ∩Y2| �= 0. W.l.g., suppose that i =
3, i′ = 4 and y1 ∈ NGg(x3) ∩ NGg(x4) ∩Y2. Therefore, K3,3 ⊆ Gg[{x1, x3, x4}, {y1, y6, y7}], a
contradiction. So, n ≤ 73 and the proof of the theorem is complete.

In part (b) of Theorem 4, we showed that 72 ≤ n =
i=17
∑

i=1
|NGg(xi) ∩Y1| ≤ 73. Now we

consider these two cases independently.

3.1. The Case That n = 73

In the following theorem, we prove that in any 3-edge coloring of K17,17 (say (Gr, Gb, Gg),
where K2,2 � Gr, K2,2 � Gb), if there exists a vertex of V(K) (say x), such that |NGg(x)| = 9
and ∑

xi∈X\{x}
|NGg(xi) ∩ NGg(x)| = 64, then K3,3 ⊆ Gg.

Theorem 5. Assume that (Gr, Gb, Gg) is a 3-edge coloring of K = K17,17, such that K2,2 � Gr,
K2,2 � Gb. Assume that there exists a vertex of V(K) (say x), such that |NGg(x)| = 9. If

i=17
∑

i=1
|NGg(xi) ∩Y1| = 73 where Y1 = NGg(x), then K3,3 ⊆ Gg.

Proof of Theorem 5. By contradiction, assume that K3,3 � Gg. Therefore, by Theorem 3
and Theorem 4, we have the following results:

(a) |E(Gg)| = 141.
(b) Δ(Gg) = 9 and δ(Gg) = 8.
(c) DGg(X) = DGg(Y) = (9, 9, 9, 9, 9, 8, 8, . . . , 8).
(d) For each x′ ∈ X \ {x} we have |NGg(x) ∩ NGg(x′)| ≤ 5.
(e) If A = {x ∈ X, |NGg(x)| = 9}, then |A| = 5 and 72 ≤ ∑

y∈NGg (x)
|NGg(y)| ≤ 73, for

each x ∈ A.

Assume that X = {x1, x2, . . . , x17}, Y = {y1, y2, . . . , y17} is the partition set of K =
K17,17, and (Gr, Gb, Gg) is a 3-edge coloring of K, where K2,2 � Gr, K2,2 � Gb and K3,3 � Gg.
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W.l.g., assume that x = x1, Y1 = {y1, y2, . . . , y9}, and n =
i=17
∑

i=1
|NGg(xi) ∩ Y1| = 73. Since

n = 73, by (c) we can say that DGg(Y1) = (d1, d2, . . . , d9) = (9, 8, 8, . . . , 8)—that is, there
exists a vertex of Y1 (say y), such that |NGg(y)| = 9. By (d), |NGg(x1) ∩ NGg(x)| ≤ 5 for
each x ∈ X{\x1}. Set C = {x ∈ X, |NGg(x) ∩ NGg(x1)| = 5}. Now by argument similar to
the proof of Claim 1, we have the following claim:

Claim 3. Assume that x ∈ C and NGg(x) ∩ Y1 = Y′, then for each x′ ∈ X \ {x1, x}, we have
|NGg(x′) ∩Y′| = 2 and DGg(Y′) = (8, 8, 8, 8, 8).

Here there exists a claim about |C| as follows:

Claim 4. |C| ≤ 2.

Proof of Claim 4. By contradiction, assume that |C| ≥ 3. W.l.g., suppose that {x2, x3, x4} ⊆
C and NGg(x2) ∩ Y1 = Y2 = {y1, . . . , y5}. By Claim 3, |NGg(x) ∩ Y2| = 2 for each
x ∈ X \ {x1, x2}. W.l.g., suppose that NGg(x3) ∩ Y1 = Y3 = {y1, y2, y6, y7, y8}. Since
x4 ∈ C and |NGg(x4) ∩ Yi| = 2 for i = 2, 3, y9 ∈ NGg(x4) ∩ Y1. Hence, for each y ∈ Y1,
there is at least one i ∈ {2, 3, 4} such that y ∈ NGg(xi); therefore, by Claim 3, DGg(Y1) =

(8, 8, 8, 8, 8, 8, 8, 8, 8), which is in contrast to
i=17
∑

i=1
|NGg(xi) ∩ Y1| =

i=9
∑

i=1
|NGg(yi)| = 73, so

|C| ≤ 2.

Now by considering |C| there are three cases as follows:
Case 1: |C| = 0. Since n = 73, |Y1| = 9 and |C| = 0, DGg(X \ {x1}) = (4, 4, . . . , 4, 4),

DGg(Y1) = (9, 8, 8, 8, 8, , 8, 8, 8, 8),
i=17
∑

i=1
|NGg(xi)∩Y′| = 68, and DGg(Y′) = (9, 9, 9, 9, 8, 8, 8, 8),

where Y′ = Y \Y1. Set B = {y ∈ Y′, |NGg(y)| = 9}, so |B| = 4.
Now we are ready to prove the following claim:

Claim 5. There exists a vertex of A \ {x1} (say x), such that:

∑
y∈NGg (x)

|NGg(y)| ≥ 74,

in which A = {x ∈ X, |NGg(x)| = 9}.

Proof of Claim 5. DGg(X1) = (4, 4, . . . , 4, 4) and DGg(Y1) = (9, 8, 8, 8, 8, , 8, 8, 8, 8) for each
x ∈ A \ {x1}; thus:

∑
y∈NGg (x)∩Y1

|NGg(y)| ≥ 32

As |Y′| = 8, |B| = 4, and |NGg(xi) ∩Y′| = 5 for each x ∈ A \ {x1}, there exists at least
one vertex of A \ {x1} (say x), such that |NGg(x) ∩ B| ≥ 2, otherwise K3,3 ⊆ Gg[A, Y′ \ B],
a contradiction. Hence, w.l.g., suppose that x2 ∈ A, where |NGg(x2) ∩ B| ≥ 2. So:

∑
y∈NGg (x2)∩Y′

|NGg(y)| ≥ 42.

That is,

∑
y∈NGg (x2)

|NGg(y)| = ∑
y∈NGg (x2)∩Y′

|NGg(y)|+ ∑
y∈NGg (x)∩Y1

|NGg(y)| ≥ 42 + 32 = 74.

Now by considering x2 and NGg(x2) and by (e) (or part (b) of Theorem 4) K3,3 ⊆ Gg, a
contradiction again.
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Case 2: |C| = 1. W.l.g., suppose that C = {x2}, NGg(x2) ∩ Y1 = Y2 = {y1, . . . , y5}.
By Claim 3, |NGg(x2) ∩ NGg(x) ∩ Y1| = 2 for each x ∈ X \ {x1, x2} and |NGg(yi)| = 8 for
each i ∈ {1, 2, . . . , 5}. Since there exists a vertex of Y1 named y, such that |NGg(y)| = 9,
w.l.g. we can suppose that y = y6 and NGg(y6) = {x1, x3, x4 . . . , x10}. Since n = 73
and |C| = 1, DGg(X1) = (5, 4, 4, . . . , 4, 3)—that is, there exist at least seven vertices of
NGg(y6) \ {x1} (say X3 = {x3, x4 . . . , x9}), such that |NGg(x) ∩ Y1| = 4 for each x ∈ X3.
Since |X3| = 7, |Y2| = 5, |NGg(x) ∩ Y1| = 4 and |NGg(xi) ∩ Y2| = 2 for each x ∈ X3,
|NGg(x) ∩ {y7, y8, y9}| = 1 for each x ∈ X3. Therefore, by the pigeon-hole principle
there exists a vertex of {y7, y8, y9} (say y′), such that |NGg(y′) ∩ X3| ≥ 3. W.l.g., suppose
that y′ = y7 and {x3, x4, x5} ⊆ NGg(y7). Therefore, since |Y2| = 5, there exists i, i′ ∈
{3, 4, 5} such that |NGg(xi) ∩ NGg(xi′) ∩ Y2| �= 0. W.l.g., suppose that i = 3, i′ = 4 and
y1 ∈ NGg(x3) ∩ NGg(x4) ∩ Y2. Therefore, K3,3 ⊆ Gg[{x1, x3, x4}, {y1, y6, y7}], which is a
contradiction.

Case 3: |C| = 2. W.l.g., suppose that C = {x2, x3}, NGg(x2) ∩ Y1 = Y2 = {y1, . . . , y5}.
By Claim 3, |NGg(x2) ∩ NGg(x3) ∩ Y1| = 2. So, w.l.g. we can suppose that NGg(x3) ∩
Y1 = Y3 = {y1, y2, y6, y7, y8}. Now, by Claim 3, |NGg(yi)| = 8 for each i ∈ {1, 2, . . . , 8}.
Since there is a vertex of Y1 named y, such that |NGg(y)| = 9, y = y9. W.l.g., we can
assume that NGg(y9) = X2 = {x1, x4, x5 . . . , x11}. Since n = 73 and |C| = 2, DGg(X1) =
(5, 5, 4, 4, . . . , 4, 3, 3)—that is, there exist two vertices of X (say x, x′), such that |NGg(x) ∩
Y1| = 3. If |NGg(y9)∩ {x, x′}| ≤ 1, then there exist at least seven vertices of NGg(y9) \ {x1},
such that |NGg(x) ∩ Y1| = 4; in this case, the proof is the same as Case 1. Hence, assume
that x, x′ ∈ NGg(y9). Since |NGg(x) ∩ Y2| = |NGg(x′) ∩ Y2| = 2, one can check that
|NGg(x) ∩ {y6, y7, y8}| = |NGg(x′) ∩ {y6, y7, y8}| = 0. Assume that Xi = NGg(yi) for i =
6, 7, 8. Since |Xi| = 8 and x, x′ /∈ Xi, then for each x ∈ Xi \ {x1} we have |NGg(x) ∩Y1| = 4.
Therefore, by considering Xi \ {x1} and yi for each i ∈ {6, 7, 8}, the proof is the same as
Case 1 and K3,3 ⊆ Gg, a contradiction again.

Therefore, by Cases 1, 2, and 3 the assumption does not hold—that is, K3,3 ⊆ Gg and
this completes the proof of the theorem.

3.2. The Case That n = 72

In the following theorem, we prove that in any 3-edge coloring of K17,17 (say (Gr, Gb, Gg),
where K2,2 � Gr, K2,2 � Gb), if there exists a vertex of V(K) (say x), such that |NGg(x)| = 9
and ∑

xi∈X\{x}
|NGg(xi) ∩ NGg(x)| = 63, then K3,3 ⊆ Gg.

Theorem 6. Assume that (Gr, Gb, Gg) is a 3-edge coloring of K = K17,17, where K2,2 � Gr,
K2,2 � Gb. Suppose that there exists a vertex of V(K) (say x), such that |NGg(x)| = 9. If

i=17
∑

i=1
|NGg(xi) ∩Y1| = 72, where Y1 = NGg(x), then K3,3 ⊆ Gg.

Proof of Theorem 6. By contradiction, assume that K3,3 � Gg. Therefore, by Theorems 3
and 4, we have the following results:

(a) |E(Gg)| = 141.
(b) Δ(Gg) = 9 and δ(Gg) = 8.
(c) DGg(X) = DGg(Y) = (9, 9, 9, 9, 9, 8, 8, . . . , 8).
(d) For each x ∈ X \ {x1}, we have |NGg(x) ∩Y1| ≤ 5.
(e) If A = {x ∈ X, |NGg(x)| = 9}, then |A| = 5 and 72 ≤ ∑

y∈NGg (x)
|NGg(y)| ≤ 73, for

each x ∈ A.

Assume that X = {x1, x2, . . . , x17}, Y = {y1, y2, . . . , y17} is a partition set of K = K17,17,
and (Gr, Gb, Gg) is a 3-edge coloring of K, where K2,2 � Gr, K2,2 � Gb and K3,3 � Gg.

W.l.g., assume that x = x1, Y1 = {y1, y2, . . . , y9}, and n =
i=17
∑

i=1
|NGg(xi) ∩ Y1| = 72. Since
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n = 73, by (c) we can say that DGg(Y1) = (d1, d2, . . . , d9) = (8, 8, 8, . . . , 8). Set C = {x ∈
X, |NGg(x) ∩ NGg(x1)| = 5}. Define D and E as follows:

D = {x ∈ X \ {x1}, such that |NGg(x) ∩Y1| = 5}

E = {x ∈ X \ {x1}, such that |NGg(x) ∩Y1| = 3}.

Here we have a claim about |D| and |E| as follows:

Claim 6. |D| ≤ 3 and |E| ≤ 4.

Proof of Claim 6. By contradiction, suppose that |D| ≥ 4. W.l.g., assume that {x2, x3, x4, x5} ⊆
D, NGg(x2) ∩ Y1 = Y2 = {y1, . . . , y5}. Now, by Claim 3, |NGg(x) ∩ Y2| = 2 for each
x ∈ X \ {x1, x2}. W.l.g., we can suppose that NGg(x3) ∩ Y1 = Y3 = {y1, y2, y6, y7, y8}.
Consider NGg(xi) ∩ Y1(i = 4, 5). Since |NGg(xi) ∩ Yj| = 2 (i = 4, 5, j = 2, 3) and
xi ∈ A, |NGg(xi) ∩ {y3, y4, y5}| = 2, |NGg(xi) ∩ {y6, y7, y8}| = 2, and y9 ∈ NGg(xi)
for i = 4, 5; otherwise, if there exists a vertex of {x4, x5} (say x), such that |NGg(xi) ∩
{y1, y2}| �= 2, then K3,3 ⊆ Gg[{x1, xi, x}, Y1] for some i ∈ {1, 2}, a contradiction. There-
fore, since |{y3, y4, y5}| = |{y6, y7, y8}| = 3 and x4, x5 ∈ A, by the pigeon-hole prin-
ciple |NGg(x4) ∩ NGg(x5) ∩ {y3, y4, y5}| ≥ 1 and |NGg(x4) ∩ NGg(x5) ∩ {y6, y7, y8}| ≥ 1.
W.l.g., we can suppose that y3, y6 ∈ NGg(x4) ∩ NGg(x5), since y9 ∈ NGg(x4) ∩ NGg(x5),
so K3,3 ⊆ Gg[{x1, x4, x5}, {y3, y6, y9}], a contradiction. Therefore, |D| ≤ 3. Now, as
i=17
∑

i=2
|NGg(xi) ∩ Y1| = 63 and |D| ≤ 3, we can say that |E| ≤ 4 and the proof of the

claim is complete.

Now, by considering |D|, there are three cases as follows:
Case 1: |D| = 0. Since n = 72 and |D| = 0, DGg(X \ {x1}) = (4, 4, . . . , 4, 3), DGg(Y1) =

(8, 8, 8, 8, 8, 8, 8, 8, 8),
i=17
∑

i=1
|NGg(xi) ∩ Y′| = 69 and DGg(Y′) = (9, 9, 9, 9, 9, 8, 8, 8), where

Y′ = Y \Y1. Set B = {y ∈ Y′, |NGg(y)| = 9}, hence |B| = 5.
Now, we have the following claim:

Claim 7. There exists a vertex of A \ {x1} (say x), such that:

∑
y∈NGg (x)

|NGg(y)| ≥ 75,

in which A = {x ∈ X, |NGg(x)| = 9}.

Proof of Claim 7. Since DGg(X1) = (4, 4, . . . , 4, 3) and DGg(Y1) = (8, 8, 8, 8, 8, , 8, 8, 8, 8), so
for at least three vertices of A \ {x1},

∑
y∈NGg (x)∩Y1

|NGg(y)| ≥ 32.

Therefore, since |NGg(xi) ∩ Y′| = 5 for each x ∈ A \ {x1} and DGg(Y′) = (9, 9, 9,
9, 9, 8, 8, 8), there exists at least one vertex of A \ {x1} (say x), such that |NGg(x) ∩ B| ≥ 3;
otherwise, K3,3 ⊆ Gg[A, Y′ \ B], a contradiction. Hence, w.l.g., suppose that x2 ∈ A and
|NGg(x2) ∩ B| ≥ 3; therefore:

∑
y∈NGg (x)∩Y′

|NGg(y)| ≥ 3× 9 + 2× 8 = 43.

That is, we have:

∑
y∈NGg (x2)

|NGg(y)| = ∑
y∈NGg (x2)∩Y′

|NGg(y)|+ ∑
y∈NGg (x)∩Y1

|NGg(y)| ≥ 43 + 32 = 75.
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Now, by considering x2 and NGg(x2) and by (e) (or by part (b) of Theorem 4), K3,3 ⊆
Gg, a contradiction again.

Case 2: |D| = 1 (for the case that |D| = 2, the proof is same). W.l.g., assume that
D = {x2}, NGg(x2)∩Y1 = Y2 = {y1, . . . , y5}. Since n = 72, |D| = 1 and |NGg(x)∩Y1| ≤ 5,
|E| = 2. As |NGg(x) ∩ Y2| = 2 for each x ∈ X \ {x1, x2} and |E| = 2, there exists a vertex
of {y6, y7, y8, y9} (say y), such that for each vertex of NGg(y) ∩ X \ {x1} (say x), |NGg(x) ∩
Y1| = 4. W.l.g., we can suppose that y = y6, NGg(y6) ∩ X \ {x1} = {x3, x4, . . . , x9}.
Since |NGg(y6) ∩ X \ {x1}| = 7 and |NGg(x) ∩ Y2| = 2 for each x ∈ NGg(y6) ∩ X \ {x1},
|NGg(x) ∩ {y7, y8, y9}| = 1. Therefore, by the pigeon-hole principle there exists a vertex
of {y7, y8, y9} (say y′), such that |NGg(y6) ∩ NGg(y′) ∩ X \ {x1}| ≥ 3. W.l.g., suppose
that y′ = y7 and {x3, x4, x5} ⊆ NGg(y6) ∩ NGg(y7) ∩ X \ {x1}. Therefore, since |Y2| = 5
and |NGg(x) ∩ Y2| = 2, there exist at least two vertices of {x3, x4, x5} (say x′, x′′), such
that |NGg(x′) ∩ NGg(x′′) ∩ Y2| �= 0. W.l.g., suppose that x′ = x3, x′′ = x4 and y1 ∈
NGg(x3) ∩ NGg(x4). Therefore, K3,3 ⊆ Gg[{x1, x3, x4}, {y1, y6, y7}], a contradiction.

Case 3: |D| = 3. W.l.g., suppose that D = {x2, x3, x4}, NGg(x2) ∩ Y1 = Y2 =
{y1, . . . , y5}. By Claim 3, |NGg(x2) ∩ NGg(x3) ∩ Y1| = 2. W.l.g., we can assume that
NGg(x3) ∩ Y1 = Y3 = {y1, y2, y6, y7, y8}. Since x4 ∈ D and |NGg(x4) ∩ Yi| = 2 for i = 2, 3,
y9 ∈ NGg(x4). If |NGg(x4) ∩ {y1, y2}| �= 0, as |NGg(x2) ∩ NGg(x4) ∩ Y1| = 2 and x4 ∈ D,
one can check that |NGg(x4) ∩ {y6, y7, y8}| = 2—that is, K3,3 ⊆ Gg[{x1, x3, x4}, Y1], a
contradiction. Hence, |NGg(x4) ∩ {y1, y2}| = 0. Therefore, |NGg(x4) ∩ {y3, y4, y5}| = 2
and |NGg(x4) ∩ {y6, y7, y8}| = 2. W.l.g., we can suppose that NGg(x4) ∩ Y1 = Y4 =
{y3, y4, y6, y7, y9}. Since |D| = 3, so |E| = 4. W.l.g., suppose that E = {x5, x6, x7, x8}.
Here, we have a claim as follows:

Claim 8. |NGg(y9) ∩ E| = 0.

Proof of Claim 8. By contradiction, suppose that |NGg(y9) ∩ E| �= 0. Assume that x5 ∈
NGg(y9) ∩ E—that is, x5y9 ∈ E(Gg). Since x5 ∈ E and {x2, x3, x4} = D, by Claim 3,
|NGg(x5) ∩ NGg(xi)| = |NGg(x5) ∩ Yi| = 2 for i = 2, 3, 4. Consider NGg(x5) ∩ Y2, assume
that NGg(x5) ∩ Y2 = {y′, y′′}, if {y′, y′′} = {y1, y2}, then |NGg(x5) ∩ Y4| = 1, a contradic-
tion. Therefore, we can assume that |{y′, y′′} ∩ {y1, y2}| ≤ 1. If |{y′, y′′} ∩ {y1, y2}| = 0,
then |NGg(x5) ∩ Y3| = 0, and if |{y′, y′′} ∩ {y1, y2}| = 1, then |NGg(x5) ∩ Y3| ≤ 1. In any
case there exists a vertex of D (say x′), such that |NGg(x5) ∩ NGg(x′)| = 1, a contradiction.
So, the assumption does not hold and the claim is true.

Therefore, by Claim 8, since |NGg(y9) ∩ D| = 0, we can say that for any vertex of
NGg(y9) ∩ X \ {x1} (say x), |NGg(x) ∩ Y1| ≥ 4; therefore, by considering Y2 and y9, as
|NGg(y9)∩X \ {x1}| = 7 and |NGg(x)∩Y1| ≥ 4 for each x ∈ NGg(y9)∩X \ {x1}, the proof
is similar to Case 1, a contradiction.

Therefore, by Cases 1, 2, and 3 the assumption does not hold—that is, K3,3 ⊆ Gg and
the proof of the theorem is complete.

Now, combining Theorems 3–6 yields the proof of Theorem 1.

4. Discussion

There are several papers in which the bipartite Ramsey numbers have been studied.
In this paper, we proved the conjecture on B(2, 2, 3), which was proposed in 2015 and
states that B(2, 2, 3) = 17. We proved this conjecture by a combinatorial argument with no
computer calculations. This is significant because computing the exact value of Ramsey
numbers is a challenge. To approach the proof of this conjecture, we proved four theorems
as follows:

1. Assume that (Gr, Gb, Gg) is a 3-edge coloring of K17,17, where K2,2 � Gr, K2,2 � Gb

and K3,3 � Gg. Hence, we have:

(a) |E(Gg)| = 141.
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(b) Δ(Gg) = 9 and δ(Gg) = 8.
(c) DGg(X) = DGg(Y) = (9, 9, 9, 9, 9, 8, 8, . . . , 8).

2. Assume that (Gr, Gb, Gg) is a 3-edge coloring of K17,17, where K2,2 � Gr, K2,2 � Gb

and K3,3 � Gg. Let |NGg(x)| = 9 and NGg(x) = Y1, the following results are true:

(a) For each x ∈ X \ {x1}, we have |NGg(x) ∩Y1| ≤ 5.

(b) Assume that n =
i=17
∑

i=1
|NGg(xi) ∩Y1|, then 72 ≤ n ≤ 73.

3. Assume that (Gr, Gb, Gg) is a 3-edge coloring of K = K17,17, such that K2,2 � Gr,
K2,2 � Gb. Assume that there exists a vertex of V(K) (say x), such that |NGg(x)| = 9. If

i=17
∑

i=1
|NGg(xi) ∩Y1| = 73, where Y1 = NGg(x), then K3,3 ⊆ Gg.

4. Assume that (Gr, Gb, Gg) is a 3-edge coloring of K = K17,17, where K2,2 � Gr,
K2,2 � Gb. Assume that there exists a vertex of V(K) (say x), such that |NGg(x)| = 9. If

i=17
∑

i=1
|NGg(xi) ∩Y1| = 72, where Y1 = NGg(x), then K3,3 ⊆ Gg.

One might also be able to compute B(n1, . . . , nm) for small i, ni like B(2, 3, 3, 3) or
B(3, 3, 3, 3) in the future, using the idea of proofs laid out in this paper.
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Abstract: The Total Coloring Conjecture (TCC) states that every simple graph G is totally (Δ + 2)-
colorable, where Δ denotes the maximum degree of G. In this paper, we prove that TCC holds
for dumbbell maximal planar graphs. Especially, we divide the dumbbell maximal planar graphs
into three categories according to the maximum degree: J9, I-dumbbell maximal planar graphs and
II-dumbbell maximal planar graphs. We give the necessary and sufficient condition for I-dumbbell
maximal planar graphs, and prove that any I-dumbbell maximal planar graph is totally 8-colorable.
Moreover, a linear time algorithm is proposed to compute a total (Δ + 2)-coloring for any I-dumbbell
maximal planar graph.

Keywords: total coloring; dumbbell maximal planar graphs; I-dumbbell maximal planar graphs;
dumbbell transformation; total coloring algorithm

1. Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow [1]
for the terminologies and notations not defined here. For any graph G, we denote by V(G),
E(G), Δ(G) and δ(G) (or simply V, E, Δ and δ) the vertex set, the edge set, the maximum
degree and the minimum degree of G, respectively. If uv ∈ E(G), then u is said to be a
neighbor of v. We use N(v) to denote the set of neighbors of v. The degree of v, denoted by
d(v), is the number of neighbors of v, i.e., d(v) = |N(v)|. A k-vertex is a vertex of degree k.
Given a set X ⊆ V, we denote by G[X] the subgraph of G induced by X. A k-cycle is a cycle
of length k, and a 3-cycle is usually called a triangle. We use Kn to denote the complete
graph of order n. For a disjoint union of G and H, the joining of G and H, denoted by
G ∨ H, is the graph obtained by joining every vertex of G to every vertex of H. The joined
Cn ∨ K1 of a cycle and a single vertex is a wheel with n spokes, denoted by Wn, where Cn
and K1 are called the cycle and center of Wn, respectively.

A total k-coloring of G is a mapping φ : V ∪ E → {1, 2, · · · , k} such that φ(x) �= φ(y)
is for any two adjacent or incident elements x, y ∈ V ∪ E. A graph G is totally k-colorable
if it admits a total k-coloring. The total chromatic number χ′′(G) is the smallest integer
k, such that G has a total k-coloring. Behzad [2] and Vizing [3] posed independently the
following famous conjecture, known as the Total Coloring Conjecture (TCC).

Conjecture 1. For any graph G, Δ(G) + 1 ≤ χ′′(G) ≤ Δ(G) + 2.

Obviously, the lower bound is trivial. The upper bound is still unproved. To date,
TCC has been confirmed for general graphs with Δ ≤ 5 [4–7] and for planar graphs with
Δ ≥ 7 [8–11]. Therefore, for planar graphs, the only open case is Δ = 6. Nevertheless,
scholars have studied the total coloring of planar graphs under some restricted condi-
tions [12–17]. Among these, Sun et al. [13] proved that TCC is true for planar graphs
without adjacent triangles. Here, adjacent triangles are two triangles that share a common
edge. Zhu and Xu [17] gave a stronger statement that TCC holds for planar graphs G with
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Δ(G) = 6, if G does not contain any subgraph isomorphic to a 4-fan. Regardless of the
results in [13] or in [17], the graph G cannot contain adjacent triangles. This leads us to
study the total coloring and total chromatic number of maximal planar graphs, whose faces
are all triangles. In [18], we study the total coloring of recursive maximal planar graphs
and prove that TCC is true for recursive maximal planar graphs. Moreover, (2,2)-recursive
maximal planar graphs are totally (Δ + 1)-colorable.

A maximal planar graph is a planar graph to which no edges can be added without
violating the planarity. Let G be a maximal planar graph and C be a cycle of G with |C| ≥ 4.
We call the subgraph of G induced by the vertices on C and the vertices located inside (or
outside) C a semi-maximal planar graph based on C, which is denoted by GC

in (or GC
out). In

fact, a semi-maximal planar graph is a triangulated disc.
According to the vertex coloring, maximal planar graphs can be partitioned into three

categories: purely tree-colorable, purely cycle-colorable and impure colorable, refer to [19].
In [20], Xu et al. proposed the purely tree-colorable graphs conjecture, which states that
a maximal planar graph is purely tree-colorable if and only if it is the icosahedron or a
dumbbell maximal planar graph. They further studied the structures and properties of
dumbbell maximal planar graphs in [19]. Then, what is the total coloring of dumbbell
maximal planar graphs? This problem has aroused our concern.

We aim to study the total coloring of dumbbell maximal planar graphs in this paper.
The remainder of this paper is organized as follows. In Section 2, we introduce the dumbbell
transformation and study the structures and properties of dumbbell maximal planar graphs.
In particular, we classify the dumbbell maximal planar graphs into three categories. In
Section 3, we prove that any dumbbell maximal planar graph is totally (Δ + 2)-colorable. In
Section 4, we propose an algorithm with linear time complexity to compute a total (Δ + 2)-
coloring for any I-dumbbell maximal planar graph. In Section 5, we make a conclusion for
the paper.

2. Dumbbell Maximal Planar Graphs

We study the structures and properties of dumbbell maximal planar graphs in this
section. Before this, we need to introduce the dumbbell transformation given by Xu [19].

2.1. Dumbbell Transformation

In order to give the dumbbell transformation, we introduce the extending 3-wheel
and 4-wheel operations first.

The extending 3-wheel operation. The extending 3-wheel operation acts on a triangle
of a maximal planar graph, specifically, adding a new vertex in the face and joining it to
every vertex of the triangular face, as shown in Figure 1.

Figure 1. The extending 3-wheel operation.

The extending 4-wheel operation. The object of the extending 4-wheel operation is
a path of length 2. Specifically, an extending 4-wheel operation based on path v1v2v3
means: split the vertex v2 into v2 and v′2, and split the edges v1v2 and v2v3 into v1v2, v1v′2
and v2v3, v′2v3, respectively. Hence, the vertices v1, v′2, v3 and v2 form a cycle of length 4.
Then, add a new vertex x in this cycle and make x adjacent to vertices v1, v′2, v3 and v2,
respectively. The process is shown in Figure 2.
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Figure 2. The extending 4-wheel operation.

A dumbbell is a graph consisting of two triangles �v1v2u and �uv3v4 with exactly
one common vertex u, and it is denoted by X = �v1v2u ∪�uv3v4, as shown in the left
of Figure 3. Obviously, a 4-wheel contains exactly two dumbbells, as shown in the right
of Figure 3, where X1 = �v1v2u ∪ �uv3v4 and X2 = �v1v3u ∪ �uv2v4. In this paper,
dumbbells considered are ones contained in a 4-wheel without special assertion.

Figure 3. The dumbbell and a 4-wheel.

The dumbbell transformation. For a given dumbbell X = �v1v2u ∪�uv3v4. First,
add two 3-vertices x1 and x2 on the two triangular faces of X, respectively. Then, implement
the extending 4-wheel operation on path x1ux2, the newly added 4-vertex is denoted by v,
as shown in Figure 4.

Figure 4. The dumbbell transformation.

Xu et al. [20] gave the following theorem:

Theorem 1. Let G be a maximal planar graph with a 4-wheel W4. Then the graphs obtained from
G by implementing the dumbbell transformations on two dumbbells of W4 are isomorphic.

2.2. Structure and Property of Dumbbell Maximal Planar Graphs

The first maximal planar graph with order 9, denoted by J9, is shown in Figure 5 and is
called a dumbbell maximal planar graph, which is the dumbbell maximal planar graph with
the minimum order. A graph is a dumbbell maximal planar graph if one of the following
conditions is satisfied: (1) it is isomorphic to J9; (2) it can be obtained from another dumbbell
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maximal planar graph by the dumbbell transformation. In general, if J4k+1(k ≥ 2) is a
dumbbell maximal planar graph, we call the maximal planar graph obtained from J4k+1 by
implementing a dumbbell transformation a dumbbell maximal planar graph. Implement
the dumbbell transformation on each unidentical 4-wheel in J4k+1, then we can obtain
dumbbell maximal planar graphs with order 4k + 5. As shown in Figure 5, we give the
dumbbell maximal planar graphs with orders 9, 13, 17 and 21, respectively.

Figure 5. The dumbbell maximal planar graphs with orders 9, 13, 17 and 21.

J9 contains exactly three vertices of degree 4. By the definition of dumbbell maximal
planar graphs, Xu et al. [20] obtained the following observation.

Observation 1. (1) Any dumbbell maximal planar graph has order 4k + 1, where k ≥ 2; (2) Any
dumbbell maximal planar graph contains exactly three vertices of degree 4.

We give the following theorem on the maximum degrees of dumbbell maximal pla-
nar graphs.

Theorem 2. Except for J9, the maximum degree of a dumbbell maximal planar graph J4k+1(k ≥ 3)
is 6 or 7.

Proof. Obviously, the maximum degree of J9 is 5. As shown in Figure 4, for each dumbbell
transformation, the degree of each vertex on the cycle of the original 4-wheel is increased
by 1, and that of the new 4-wheel is 5. As shown in Figure 5, the maximum degree of J13
is 6; the two non-isomorphic dumbbell maximal planar graphs J17, which are obtained
from J13 by implementing the dumbbell transformation on the two unidentical 4-wheels,
have the maximum degrees 6 and 7, respectively; the three dumbbell planar graphs J21
obtained from J17 have the maximum degree 6, 7 and 7, respectively. It is observed that the
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degrees of vertices on the wheels of all 4-wheels in these three dumbbell maximal planar
graphs with order 21 are 5 and 6, and the maximum degree of each dumbbell maximal
planar graph obtained by implementing the dumbbell transformation does not exceed 7.
By analogy, the maximum degree of a dumbbell maximal planar graph with higher order
is always 6 or 7.

For the dumbbell maximal planar graph with maximum degree 6, we have

Theorem 3. The maximum degree of a dumbbell maximal planar graph G is 6 if and only if G
is obtained from J9 by continuously implementing the dumbbell transformation, and each trans-
formation is implemented on the new 4-wheel generated by the previous transformation (The first
dumbbell transformation is implemented on an arbitrary 4-wheel in J9).

The proof of Theorem 3 is obvious and therefore omitted.
We call the dumbbell maximal planar graphs with maximum degree 6 described in

Theorem 3 I-dumbbell maximal planar graphs (The I-dumbbell maximalplanar graphs
we define here are dumbbell maximal planar graphs of maximum degree 6, so of course
J9 is not included) and dumbbell maximal planar graphs with maximum degree 7 II-
dumbbell maximal planar graphs. For I-dumbbell maximal planar graphs, we obtain the
following observation.

Observation 2. For any I-dumbbell maximal planar graph, the degrees of vertices on the cycle of
the newly generated 4-wheel are all 5. Furthermore, the other two 4-wheels do not have this property.

Figure 6 shows the generation process of I-dumbbell maximal planar graphs.

Figure 6. The schematic diagram of the generation process of I-dumbbell maximal planar graphs.

3. Total Coloring of Dumbbell Maximal Planar Graphs

In Section 2, the dumbbell transformation and dumbbell maximal planar graphs were
introduced. In this section, we study the total coloring of dumbbell maximal planar graphs
based on structural characteristics.

From the previous section, we know that any dumbbell maximal planar graph has
exactly 3 vertices of degree 4, and the maximum degree of a dumbbell maximal planar
graph is 6 or 7, except for J9. Furthermore, we draw an important conclusion about the
structure of the dumbbell maximal planar graphs.

According to the maximum degree, dumbbell maximal planar graphs can be divided
into the following three categories: J9, I-dumbbell maximal planar graphs and II-dumbbell
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maximal planar graphs. In Figure 7, we give a total 7-coloring of J9. Sanders and Zhao [11]
proved that planar graphs with Δ = 7 are totally 9-colorable. Therefore, we only need to
consider dumbbell maximal planar graphs with maximum degree 6, that is, I-dumbbell
maximal planar graphs.

Figure 7. A total 7-coloring of J9.

Theorem 4. Any I-dumbbell maximal planar graph is totally 8-colorable.

Proof. J13 is the I-dumbbell maximal planar graph with the minimum order, and J13 is
totally 8-colorable, as shown in Figure 8.

Figure 8. A total 8-coloring of J13.

Since the I-dumbbell maximal planar graphs are obtained from J9 by continuously
implementing the dumbbell transformation at a unique 4-wheel only, without loss of
generality, we assume that all I-dumbbell maximal planar graphs are obtained by imple-
menting the dumbbell transformation at the 4-wheel located at the bottom of J9, as shown
in Figure 6. For convenience, we denote the cycle of the 4-wheel located at the bottom of J9

by C4 = v1v2v3v4v1. Then, for any I-dumbbell maximal planar graph G, G = GC4
in
⋃

GC4
out,

where GC4
in and GC4

out are the two semi-maximal planar graphs based on C4. In the following,
we give a total coloring scheme of any I-dumbbell maximal planar graph G. We color
GC4

out the same way in J13 and color GC4
in according to the parity of the number of dumbbell

transformations, which is denoted by l.
When l is odd, the coloring scheme is:
The colors of vertices v1, v2, v3, v4 on the cycle of the initial 4-wheel are 1, 2, 3 and 4,

and the colors of the edges are 5, 6, 7 and 8, respectively;
After the first dumbbell transformation, starting from the vertex opposite the edge

colored with 5, color the vertices on the cycle of newly generated 4-wheel with 5, 6, 7 and 8,
and the corresponding edges with 1, 2, 3 and 4 in clockwise order;

The colors of edges between the newly generated 4-wheel and the initial 4-wheel are
3, 4, 7, 8, 1, 2, 5 and 6 in clockwise order;
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After the second dumbbell transformation, starting from the vertex opposite the edge
colored with 1, color the vertices on the cycle of newly generated 4-wheel with 1, 2, 3 and 4,
and the corresponding edges with 5, 6, 7 and 8, in clockwise order;

The colors of the edges between the newly generated 4-wheel and the previous 4-wheel
are 7, 8, 1, 4, 5, 6, 3 and 2 in clockwise order;

After the i-th (3 ≤ i ≤ l) dumbbell transformation, the colors of vertices and edges on
the cycle of the newly generated 4-wheel, and the colors of edges between the newly gener-
ated 4-wheel and the previous 4-wheel, are the same as the first dumbbell transformation
when i is odd; the colors of vertices and edges on the cycle of the newly generated 4-wheel,
and the colors of edges between the newly generated 4-wheel and the previous 4-wheel,
are the same as the second dumbbell transformation when i is even;

After the last dumbbell transformation, we specify the color of the wheel center as
1, and the colors of the spokes as 6, 5, 8 and 7 from whose end point is colored with 5 in
clockwise order. Of course, the readers can also use other appropriate colors;

When l is even, the coloring scheme is similar to that when l is odd, except that the
color of the wheel center is 5, and the colors of the spokes are 3, 4, 2 and 1 from whose end
point is colored with 1 in clockwise order;

So, we obtain a total 8-coloring scheme of any I-dumbbell maximal planar graph, and
the proof is completed.

As shown in Figure 9, we give the coloring scheme for l = 3 (on the left) and l = 4 (on
the right), respectively.

Figure 9. The coloring diagram for l = 3 and l = 4.

Therefore, we obtain the following theorem.

Theorem 5. The TCC holds for dumbbell maximal planar graphs.

4. Total Coloring Algorithm for I-Dumbbell Maximal Planar Graphs

In this section an algorithm with linear time complexity is proposed, which computes
a total (Δ + 2)-coloring for any I-dumbbell maximal planar graph. It is known that an
arbitrary I-dumbbell maximal planar graph can be obtained from J13 by continuously
implementing the dumbbell transformation on the newly generated 4-wheel. We introduce
the concept of dumbbell-recursive generation sequence to formalize the generation process.

Definition 1 (Dumbbell-Recursive Generation Sequence). Let J4l+13(l ≥ 0) be an I-dumbbell
maximal planar graph with Wl

4 � J4l+13[{vl
1, vl

2, vl
3, vl

4, vl}] as the newly generated 4-wheel, where
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vl
1, vl

2, vl
3, and vl

4 denote vertices on the cycle and vl denotes the wheel center, respectively. Starting
from J13, each time we implement the dumbbell transformation, an I-dumbbell maximal planar
graph J4i+13 is obtained, where i = 1, 2, · · · , l. Then, the dumbbell-recursive generation sequence
of J4l+13 is defined as Φ(J4l+13) = {J13; W0

4 , W1
4 , · · · , Wl

4}.

Now, we give a total coloring algorithm for I-dumbbell maximal planar graphs, as
shown in the following Algorithm 1, which consists of two stages.

Algorithm 1 Total Coloring Algorithm for I-dumbbell Maximal Planar Graph

1: Input: An I-dumbbell maximal planar graph J4l+13.
2: Output: The total coloring dictionary U.
3: Stage 1. Dumbbell-recursive generation sequence generation.
4: Φ ← empty list, i ← l.
5: while i is not 0 do
6: Choose the newly generated 4-wheel Wi

4 according to Observation 2.
7: Implement the inverse process of dumbbell transformation and obtain J4(i−1)+13.
8: Store Wi

4 to Φ.
9: i ← i− 1.

10: end while
11: Store W0

4 and J13 to Φ.
12: Φ ← reverse(Φ).
13: Stage 2. Total coloring based on Φ.
14: Take out J13 from Φ.
15: Color J13 as shown in Figure 8, and store the coloring information to U.
16: i ← 0.
17: while Φ is not empty do
18: Take out the first element Wi

4 from Φ.
19: Implement dumbbell transformation on Wi

4 and obtain J4(i+1)+13, Wi+1
4 .

20: if (i + 1) is odd then
21: U[vi+1]← 1.
22: Color other vertices of Wi+1

4 and the associated edges according to Theorem 4.
23: Store the coloring information of Wi+1

4 to U.
24: else
25: U[vi+1]← 5.
26: Color other vertices of Wi+1

4 and the associated edges according to Theorem 4.
27: Store the coloring information of Wi+1

4 to U.
28: end if
29: i ← i + 1.
30: end while
31: return U.

In the first stage, given an arbitrary I-dumbbell maximal planar graph J4l+13, we com-
pute the dumbbell-recursive generation sequence Φ(J4l+13). As mentioned in Observation 2,
we can easily find the newly generated 4-wheel according to the degrees of vertices on
the cycle. Then, the inverse process of dumbbell transformation is implemented to obtain
the previous dumbbell maximal planar graph. By repeating the procedure and storing the
structure information, we obtain the dumbbell-recursive generation sequence.

In the second stage, we give a total (Δ + 2)-coloring of J4l+13 based on the dumbbell-
recursive generation sequence Φ(J4l+13). More precisely, for J4l+13 with V(J4l+13) =
{v1, v2, · · · , vn} and E(J4l+13) = {e1, e2, · · · , em}, let C(J4l+13) = {1, 2, · · · , Δ(J4l+13) + 2}
be the color set.

The dictionary structure U = {v1 : φ(v1), · · · , vn : φ(vn), e1 : φ(e1), · · · , em : φ(em)}
is used to store the total coloring scheme, where φ(vi), φ(ej) ∈ C(J4l+13), i = 1, · · · , n,
j = 1, · · · , m. Firstly, take out the initial graph J13 and color its vertices and edges as shown
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in Figure 8, and store the corresponding coloring information in U. Then, take out the
generation operation information Wi

4 stored in Φ in turn. The dumbbell transformation
is implemented and the coloring information of the newly generated Wi+1

4 is stored to U
according to l’s parity. Finally, a total (Δ + 2)-coloring of any I-dumbbell maximal planar
graph can be obtained iteratively.

During the execution of Stage 1 and Stage 2, the order of J4i+13 varies by 4 at each step.
Furthermore, the number of sequence generation and coloring operations is constant at
each step. Therefore, the time complexity of this algorithm is linear.

5. Conclusions

Total coloring is an important and representative problem in the field of graph coloring.
Even for planar graphs, the total coloring conjecture is still open for the case Δ = 6. In this
paper, we prove that the Total Coloring Conjecture holds for dumbbell maximal planar
graphs, which are generated by implementing the dumbbell transformation continuously.
According to the maximum degree, we divide the dumbbell maximal planar graphs into
three categories: J9, I-dumbbell maximal planar graphs and II-dumbbell maximal pla-
nar graphs. Furthermore, we give the necessary and sufficient condition for I-dumbbell
maximal planar graphs and prove that any I-dumbbell maximal planar graph is totally
8-colorable. Moreover, an algorithm with linear time complexity is presented to compute a
total (Δ + 2)-coloring of any I-dumbbell maximal planar graph. For future work, we will
further focus on the relationship between the structure and coloring of dumbbell maximal
planar graphs and discuss the condition in which the dumbbell maximal planar graphs are
totally (Δ + 1)-colorable.
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Abstract: A domination coloring of a graph G is a proper vertex coloring of G, such that each vertex
of G dominates at least one color class (possibly its own class), and each color class is dominated
by at least one vertex. The minimum number of colors among all domination colorings is called
the domination chromatic number, denoted by χdd(G). In this paper, we study the complexity of
the k-domination coloring problem by proving its NP-completeness for arbitrary graphs. We give
basic results and properties of χdd(G), including the bounds and characterization results, and further
research χdd(G) of some special classes of graphs, such as the split graphs, the generalized Petersen
graphs, corona products, and edge corona products. Several results on graphs with χdd(G) = χ(G)

are presented. Moreover, an application of domination colorings in social networks is proposed.

Keywords: domination coloring; domination chromatic number; split graphs; generalized Petersen
graphs; corona products; edge corona products

MSC: 05C15; 05C69

1. Introduction and Preliminary

1.1. Introduction

Coloring and domination are two important fields in graph theory, and both have rich
research results. For comprehensive results of coloring and domination in graphs, refer
to [1–17], respectively. Moreover, graph coloring and domination problems are often in
relation. Chellali and Volkmann [18] showed some relations between the chromatic number
and some domination parameters in a graph. For a graph G = (V, E), a vertex v ∈ V
dominates a set S ⊆ V if it is adjacent to every vertex of S, meanwhile, we say that v is a
dominator of S, and S is dominated by v. Hedetniemi et al. [19] introduced the concept of a
dominator partition of a graph. A dominator partition is a partition π = {V1, V2, · · ·, Vk} of
V(G), such that every vertex v ∈ V is a dominator of at least one block Vi of π. Motivated
by [19], Gera et al. [20] proposed the dominator coloring in 2006.

Definition 1 ([20]). A dominator coloring of a graph G is a proper coloring, such that every vertex
of G dominates at least one color class (possibly its own class). The dominator chromatic number of
G, denoted by χd(G), is the minimum number of colors among all dominator colorings of G.

Gera researched further in [21,22]. More results on the dominator coloring can be
found in [23–26]. Kazemi [27] proposed the concept of total dominator coloring in 2015,
which is a proper coloring, such that each vertex of the graph is adjacent to every vertex of
some (other) color class. For more results on the total dominator coloring, refer to [28–30].
In 2015, Merouane et al. [31] proposed the dominated coloring:

Definition 2 ([31]). A dominated coloring of a graph G is a proper coloring such that every color
class is dominated by at least one vertex. The dominated chromatic number of G, denoted by
χdom(G), is the minimum number of colors among all dominated colorings of G.
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More results on the dominated coloring can be found in [32–34].
For problems mentioned above, the domination property is defined either on vertices

or on color classes. Indeed, each color class in a dominator coloring is not necessarily
dominated by a vertex, and each vertex in a dominated coloring does not necessarily
dominate a color class. In this paper, we introduce the domination coloring that both of the
vertices and color classes should satisfy the domination property.

Definition 3. A domination coloring of a graph G is a proper vertex coloring of G, such that
each vertex of G dominates at least one color class (possibly its own class), and each color class is
dominated by at least one vertex. The domination chromatic number of G, denoted by χdd(G), is
the minimum number of color classes in a domination coloring of G.

The domination coloring problem is to find a domination coloring of G, such that the
number of color classes is minimized. Here, we describe a possible application for the
domination coloring problem in the following scenario. In a social network, social actors
are represented as vertices and their relationships as edges (two actors are adjacent if they
are friends). Two strangers can become friends by their mutual friend (i.e., intermediary).
Then, each actor wants to develop interpersonal relationships in the social network by
some intermediaries, meanwhile, each actor wants to be the important intermediary of
other strangers. The domination coloring problem involves finding the minimum groups
of actors in the social network with the below properties:

1. Actors in the same group are strangers;
2. Actors in the same group can become friends by at least one common intermediary;
3. Each actor is an intermediary of at least one actor (stranger) group.

We proceed as follows. In the rest of Section 1, we recall some basic definitions that
will be used in the following sections. In Section 2, we analyse the complexity of the
k-domination coloring problem. In Section 3, we present basic results and properties of the
domination chromatic number χdd(G), including the bounds and characterization results.
In Section 4, we further research χdd(G) of some special classes of graphs, including the split
graphs, the generalized Petersen graphs P(n, 1), corona products, and edge corona products.
In Section 5, we investigate some realization results on graphs with χdd(G) = χ(G). Finally,
we make a conclusion in Section 6.

1.2. Preliminary

Graphs considered in this paper are finite, simple, undirected, and connected. Let
G = (V, E) be a graph with n = |V| and m = |E|. For any vertex v ∈ V(G), the open
neighborhood of v is the set N(v) = {u|uv ∈ E(G)} and the closed neighborhood is the
set N[v] = N(v) ∪ {v}. Similarly, the open and closed neighborhoods of a set X ⊆ V
are, respectively, N(X) =

⋃
x∈X N(x) and N[X] = N(X) ∪ X. The degree of a vertex

v ∈ V, denoted by deg(v), is the cardinality of its open neighborhood. The maximum and
minimum degree of a graph G is denoted by Δ(G) and δ(G), respectively. We call a vertex
of degree one a leaf or a pendant vertex, its adjacent vertex a support vertex. Given a set
X ⊆ V, we denote by G[X] the subgraph of G induced by X. Given any graph H, a graph
G is H-free if it does not have any induced subgraph isomorphic to H. We denote by Pn the
path on n vertices and by Cn the cycle on n vertices. A tree is a connected acyclic graph.
The complete graph on n vertices is denoted by Kn and the complete graph of order 3 is
called a triangle. The complete bipartite graph with classes of orders r and s is denoted by
Kr,s. A star Sk is the graph K1,k with k ≥ 1.

An independent set in G is a set of vertices, such that any two vertices in the set are
not adjacent. A matching in a graph G is a set of nonadjacent edges of G. The matching
number α′(G) is the cardinality of a largest matching in G. A vertex cover in a graph G is a
set of vertices, such that each edge has at least one endpoint in the set. The vertex cover
number β(G) is the cardinality of a smallest vertex cover in G. The clique number w(G) of
a graph G is the maximum order among the complete subgraphs of G.
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A proper vertex k-coloring of a graph G = (V, E) is a mapping f : V → {1, 2, · · ·, k},
such that any two adjacent vertices receive different colors. In fact, this problem is equiva-
lent to the problem of partitioning the vertex set of G into k independent sets {V1, V2, · · ·, Vk}
where Vi = {x ∈ V| f (x) = i}. The set of all vertices colored with the same color is called
a color class. The chromatic number of G, denoted by χ(G), is the minimum number of
colors among all proper colorings of G.

A dominating set S is a subset of the vertices in a graph G, such that every vertex
in G either belongs to S or has a neighbor in S. The domination number γ(G) is the
minimum cardinality of a dominating set of G. A γ(G)-set is a dominating set of G with
minimum cardinality.

For any undefined terms, the reader is referred to the book by Bondy and Murty [35].

2. Complexity Results

This section focuses on the complexity study of the domination coloring problem, e.g.,
whether an arbitrary graph admits a domination coloring with the most k colors. We give
the formalization of this problem.

• k-domination coloring problem.
Instance: a graph G = (V, E) without isolated vertices and a positive integer k.
Question: is there a domination coloring of G with the most k colors?

Theorem 1. For k ≥ 4, the k-domination coloring problem is NP-complete.

Proof. The k-domination coloring problem is in NP, since verifying if a coloring is a
domination coloring could be performed in polynomial time. Now, we give a polynomial
time reduction from the k-coloring problem, which is known to be NP-complete, for k ≥ 3.
Let G = (V, E) be a graph without isolated vertices. We construct a graph G′ from G by
adding a new vertex x to G and adding edges between x and every vertex of G. That is, x is
a dominating vertex of G′, as shown in Figure 1. We show that G admits a proper coloring
with k colors if and only if G′ admits a domination coloring with k + 1 colors.

Figure 1. The graphs G and G′.

First, we prove the necessity. Let f be a proper k-coloring of G, and the corresponding
color classes set is {V1, V2, · · ·, Vk}. We construct a (k + 1)-domination coloring f ′ of G′

with the color classes set {V
′
1 = V1, V

′
2 = V2, · · ·, V

′
k = Vk, V

′
k+1 = {x}}. It is easy to see that

f ′ is a domination coloring of G′ since

1. f ′ is proper;
2. Each vertex other than x dominates at least the color class containing x and x domi-

nates all color classes of f ′;
3. Each color class other than {x} is dominated by x and the color class containing x is

dominated by any other vertex.

Then, we prove the sufficiency. Let f ′ be a (k + 1)-domination coloring of G′, and
{V

′
1, V

′
2, · · ·, V

′
k , V

′
k+1} is the color classes set. Since f ′ is proper, there exists a color class V

′
i
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such that V
′
i = {x}. Thus, we can construct a proper k-coloring of G by removing the color

class V
′
i from f ′.

From the above, the k-domination coloring problem is NP-complete, for k ≥ 4.

3. Basic Results and Properties of the Domination Chromatic Number

In this section, we study some properties of the domination coloring and basic results
on typical classes of graphs.

Let G be a connected graph with order n ≥ 2. Then at least two different colors are
needed in a domination coloring since there are at least two vertices in G adjacent to each
other. Moreover, if each vertex receives a unique color, then both the vertices and color
classes satisfy the domination property. Clearly, we get a domination coloring of G with n
colors. Thus,

2 ≤ χdd(G) ≤ n. (1)

Gera et al. [20] introduced the Inequalities (2) for the dominator chromatic number
χd(G) and Merouane et al. [31] obtained Inequalities (3) for the dominated chromatic
number χdom(G). Moreover, we can get a similar inequality for the domination chromatic
number χdd(G).

max{χ(G), γ(G)} ≤ χd(G) ≤ χ(G) + γ(G). (2)

max{χ(G), γ(G)} ≤ χdom(G) ≤ χ(G) · γ(G). (3)

Proposition 1. Let G be a graph without isolated vertices, then

max{χ(G), γ(G)} ≤ max{χd(G), χdom(G)} ≤ χdd(G) ≤ χ(G) · γ(G).

Proof. Since any domination coloring of G is also a dominator coloring and a dominated
coloring, max{χd(G), χdom(G)} ≤ χdd(G). Both the dominator coloring and dominated
coloring are proper vertex colorings of G, so, χ(G) ≤ max{χd(G), χdom(G)}. For any
dominator coloring (dominated coloring) of G, we can get a dominating set by taking a
vertex in each color class. Thus, γ(G) ≤ max{χd(G), χdom(G)}. Therefore, the left two
parts of the inequality hold.

For the right part of the inequality, we consider a γ(G)-set D of G. A domination
coloring of G can be obtained by giving distinct colors to each vertex x of D and at most
χ(G)− 1 new colors to the vertices of N(x). Hence, we totally use at most γ(G) + (χ(G)−
1) · γ(G) = χ(G) · γ(G) colors. So, χdd(G) ≤ χ(G) · γ(G).

The bound of Proposition 1 is tight for complete graphs. Since every planar graph is
“4-colorable” [2,3], the following result is straightforward:

Corollary 1. Let G be a planar graph without isolated vertices, then χdd(G) ≤ 4γ(G).

Proposition 2. Let G be a connected graph with order n and maximum degree Δ, then χdd(G) ≥ n
Δ .

Proof. Consider a minimum domination coloring of G. Since G is SΔ+1-free, any color
class would not have more than Δ vertices; otherwise, a vertex dominating such a color
class will induce a star of order at least Δ + 2, a contradiction. So, χdd(G) ≥ n

Δ .

Theorem 2. Let G be a connected triangle-free graph, then χdd(G) ≤ 2γ(G).

Proof. Consider a minimum dominating set S of G. Color every vertex of S with a new
color. Since G does not contain any triangle, the set of neighbors of every vertex of S is
an independent set. Thus, a second new color is given for each neighborhood. Obviously,
this is a proper coloring of G with 2|S| colors, which satisfies that every vertex dominates
at least one color class, and every color class is dominated by at least one vertex. Thus,
χdd(G) ≤ 2γ(G).
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Theorem 3. (1) For the path Pn, n ≥ 2,

χdd(Pn) = 2 · n
3
�+ mod(n, 3);

(2) For the cycle Cn,

χdd(Cn) =

⎧⎪⎨
⎪⎩

2, n = 4,
3, n = 3, 5,
2 ·  n

3 �+ mod(n, 3), otherwise;

(3) For the complete graph Kn, χdd(Kn) = n;
(4) For the complete k-partite graph Ka1,a2,···,ak , χdd(Ka1,a2,···,ak ) = k;
(5) For the complete bipartite graph Kr,s, χdd(Kr,s) = 2;
(6) For the star K1,n, χdd(K1,n) = 2;
(7) For the wheel W1,n,

χdd(W1,n) =

{
3, n is even,
4, n is odd.

Proof. (1) Let Pn = v1v2 · · · vn. By the definition of the domination coloring, we discover
that at most two non-adjacent vertices are allowed in a color class, if not, there exist
no vertex dominating this color class. On the other hand, the vertex adjacent to both
vertices of a color class must be the unique vertex of some color class. For convenience, let
P5 = v1v2v3v4v5 be a P5-subgraph of Pn. If vertices v1 and v3 are in a color class, then v2
must be the unique vertex of a color class. If not, v2 and v4 are partitioned in a color class,
which will result in v4 cannot dominate any color class. Thus, every three vertices of Pn
need to be partitioned in two color classes, and the rest form their own color class. Clearly,
it is an optimal domination coloring of Pn. Thus, χdd(Pn) = 2 ·  n

3 �+ mod(n, 3).
(2) For n = 3, 4, 5, the result follows by inspection. For n ≥ 6, it is not hard to find the

case is similar to the path Pn. As the discussion in (1), the result follows.
(3) For the complete graph Kn, χ(Kn) = n. By Proposition 1 and in Equation (1),

χdd(Kn) = n.
(4) Let Ka1,a2,···,ak be the complete k-partite graph, and Vi(1 ≤ i ≤ k) be the k-partite

sets. Then χdd(Ka1,a2,···,ak ) ≥ χ(Ka1,a2,···,ak ) = k. Moreover, the coloring that assigns color i
to each partite set Vi(1 ≤ i ≤ k) is a domination coloring. The result follows.

(5) and (6) are special cases of (4).
(7) Let W1,n be the wheel with order n + 1. Since,

χ(W1,n) =

{
3, n is even,
4, n is odd.

and the corresponding proper colorings are also domination colorings, the result follows.

Note. For a given graph G, and a subgraph H of G, the domination chromatic
number of H can be smaller or larger than the domination chromatic number of G. That
is to say, induction may be not useful when we want to find the domination chromatic
number of a graph. As an example, consider the graph G = Kn and H = P2, then
χdd(Kn) = n ≥ 2 = χdd(P2), and consider the graph G = Kn,n and H = P2n, then
χdd(Kn,n) = 2 ≤ 2 ·  2n

3 �+ mod(2n, 3) = χdd(P2n).

Theorem 4. For the Petersen graph P, χdd(P) = 5.

Proof. It is easy to check {{v1, v2, v9}, {v3, v4, v6}, {v5, v7}, {v8}, {v10}} is a domination
coloring of the Petersen graph, as shown in Figure 2. So, χdd(P) ≤ 5. By Proposition 2.1
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in [32], χdom(P) = 4 and χd(P) = 5. Then, χdd(P) ≥ 5 by Proposition 1. Therefore,
χdd(P) = 5.

Figure 2. The Petersen graph.

Next, we consider the bi-stars. Let Sp,q be the bi-star with central vertices u and
v, where deg(u) = p ≥ 2 and deg(v) = q ≥ 2. Let X = {x1, x2, · · ·, xp−1} and Y =
{y1, y2, · · ·, yq−1}. Obviously, N(u) = X ∪ {v} and N(v) = Y ∪ {u}, as shown in Figure 3.

Figure 3. The bi-star Sp,q.

Theorem 5. For the bi-star Sp,q with p + q ≥ 5, χdd(Sp,q) = 4.

Proof. Consider a proper coloring of Sp,q in which the color classes V1 = {u}, V2 = {v},
V3 = X, and V4 = Y. Then, each vertex in the set {u} ∪ X dominates the color class V1, and
each vertex in the set {v} ∪Y dominates the color class V2. Moreover, the color class V1 is
dominated by any vertex in V3, V2 is dominated by any vertex in V4, V3 is dominated by
vertex u, and V4 is dominated by vertex v. Therefore, this is a domination coloring, and
χdd(Sp,q) ≤ 4.

By the Lemma 2.2 in [20], χd(Sp,q) = 3. So, 3 ≤ χdd(Sp,q) ≤ 4. Suppose that
χdd(Sp,q) = 3. It will be result in that each vertex in X or each vertex in y does not
dominate a color class. Thus, χdd(Sp,q) = 4.

Theorem 6. Let G be a connected graph with order n. Then χdd(G) = 2 if and only if G = Kr,s
for r, s ∈ N.

Proof. By Theorem 3 (5), if G = Kr,s, then χdd(G) = 2. We just need to prove the necessity.
Let G be a connected graph, such that χdd = 2, and V1 and V2 are the two color classes.

If |V1| = 1 or |V2| = 1, then G = K1,n−1. So, suppose that |V1| ≥ 2 and |V2| ≥ 2. For any
vertex x ∈ V1, since |V1| ≥ 2, it follows that x dominates color class V2. Similarly for any
vertex in V2. Thus, each vertex of V1 is adjacent to each vertex of V2, and both V1 and V2 are
independent. So G = Kr,s for r, s ∈ N, and the result follows.

Theorem 7. Let G be a connected graph with order n. Then χdd(G) = n if and only if G = Kn
for n ∈ N.

Proof. By Theorem 3 (3), χdd(G) = n, if G = Kn. We only need to prove the necessity.
Let G be a connected graph with χdd(G) = n. Suppose that G �= Kn. Thus, there

exist two vertices, say x and y, such that they are not adjacent and they have a common
neighbor in G. Now, we define a coloring of G in which x and y receive the same color,
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and each of the remaining vertices receive a unique color. This is a domination coloring, so
χdd(G) ≤ n− 1, a contradiction. Thus, G = Kn, and we obtain the result.

4. Domination Coloring in Some Classes of Graphs

In this section, we further research the domination coloring of some classes of graphs,
including the split graphs, the generalized Petersen graphs P(n, 1), corona products, and
edge corona products.

4.1. Domination Coloring for Split Graphs

We study the domination chromatic number of split graphs in this subsection.
A graph G is called a split graph if its vertex set can be partitioned into a clique and

an independent set.

Theorem 8. Let G be a split graph with split partition (K, I) and its maximum clique is of order k.
If there exists a dominating set D of G, such that D ⊆ K, and every vertex in I is adjacent to at
least one vertex in K− D and nonadjacent to at least one vertex in K− D, then χdd(G) = k.

Proof. Consider a minimum domination coloring of G. Obviously, χdd(G) ≥ k. We give
now a construction that yields a domination coloring of G with k colors.

First, we give to each vertex of D a unique new color from the set {1, . . . , p} and each
vertex of K − D a unique new color from the set {1, . . . , q}, where p + q = k. We arrange
the vertices in K − D according to a circular order function defined on the set {1, . . . , q}
as follows:

j ∈ {1, . . . , q} =⇒ next(j) = j mod(k) + 1.

We now color the vertices of the independent set I of the split graph G. Let i be a
vertex of I and let N(i) be the set (of colors) of its neighbors. The color of i is given by the
following formula:

c(i) = min{j : j ∈ {{1, . . . , q} \ N(i)} ∧ next(j) ∈ N(i)}.

Since every vertex i in I is adjacent to at least one vertex in K− D and nonadjacent to
at least one vertex in K − D, at least one color from the set {1, . . . , q} would be available
for i. Thus, every vertex in G is properly colored. On the one hand, given that D ⊆ K
is a dominating set of G, each vertex dominates a color class formed by a vertex of D.
On the other hand, from the above construction, each color class formed by a vertex of
D is obviously dominated, and one can observe that each color j will appear only in the
neighborhood of the vertex from the clique colored with the color next(j). Thus, we obtain
that the proposed construction gives a domination coloring for the split graph G with k
colors.

4.2. Domination Coloring for Generalized Petersen Graphs P(n, 1)

In this subsection, we determine the domination chromatic number of the generalized
Petersen graph P(n, 1).

Let n and k be positive integers with n ≥ 3 and k ≤ n− 1. The generalized Petersen
graph P(n, k) is the graph with V(P(n, k)) = {u1, u2, u3, · · ·, un} ∪ {v1, v2, v3, · · ·, vn} and
E(P(n, k)) = {vivi+1 : 1 ≤ i ≤ n} ∪ {viui : 1 ≤ i ≤ n} ∪ {uiui+k : 1 ≤ i ≤ n} where the
addition in the subscript is modulo n.

The Cartesian product G�H of two graphs G and H is the graph with V(G�H) =
V(G) × V(H) and E(G�H) = {(g1, h1)(g2, h2) : g1 = g2 and h1h2 ∈ E(H) or h1 =
h2 and g1g2 ∈ E(G)}.

The generalized Petersen graph P(n, 1) is isomorphic to the Cartesian product Cn�K2.
We now proceed to determine χdd(P(n, 1)).
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Theorem 9. For the generalized Petersen graph P(n, 1), we have

χdd(P(n, 1)) =

{
n, n ≡ 0(mod4),
n + 1, otherwise.

Proof. The result is obvious when n = 3. Now, let n = 4k + j where k ≥ 1 and 0 ≤ j ≤ 3.
Let S = {N[v4i−3] : 1 ≤ i ≤ k} ∪ {N[u4i−1] : 1 ≤ i ≤ k}. Then S is a family of 2k disjoint
closed neighborhoods in P(n, 1). We consider the following cases:

Case 1. j = 0.
In this case, S covers all the vertices of P(n, 1). For each closed neighborhood N[x]

in S , give a color to the vertex x and another color to the neighbors of x. Obviously,
C = {{v4i−3} : 1 ≤ i ≤ k} ∪ {{N(v4i−3)} : 1 ≤ i ≤ k} ∪ {{u4i−1} : 1 ≤ i ≤ k} ∪
{{N(u4i−1)} : 1 ≤ i ≤ k} is a domination coloring of P(n, 1). Thus, χdd(P(n, 1)) ≤ 4k = n.
On the other hand, any two disjoint closed neighborhoods in S cannot have a common
color, which will result in some vertices having no color class to dominate, and some color
classes will not dominate by any vertex. In this sense, χdd(P(n, 1)) ≥ 4k = n. Therefore,
χdd(P(n, 1)) = 4k = n.

Case 2. j = 1.
In this case, S is a collection of 2k disjoint closed neighborhoods in P(n, 1) and the

vertices vn−1 and un are not covered by S . Similar to Case 1, give two colors to each
closed neighborhood in S and two new colors to vn−1 and un. Then, C = {{v4i−3} :
1 ≤ i ≤ k} ∪ {{N(v4i−3)} : 1 ≤ i ≤ k} ∪ {{u4i−1} : 1 ≤ i ≤ k} ∪ {{N(u4i−1)} : 1 ≤ i ≤
k}∪ {vn−1}∪ {un} is a domination coloring of P(n, 1). Thus, χdd(P(n, 1)) ≤ 4k+ 2 = n+ 1.
On the other hand, to ensure that every vertex dominate a color class and every color class
is dominated by a vertex, the vertices vn−1 and un should be colored uniquely, respectively.
Hence, χdd(P(n, 1)) ≥ 4k + 2 = n + 1. Therefore, χdd(P(n, 1)) = 4k + 2 = n + 1.

Case 3. j = 2.
In this case, S is a collection of 2k disjoint closed neighborhoods in P(n, 1) and the

vertices vn−2, vn−1, un−1 and un are not covered by S . C = {{v4i−3} : 1 ≤ i ≤ k} ∪
{{N(v4i−3)} : 1 ≤ i ≤ k} ∪ {{u4i−1} : 1 ≤ i ≤ k} ∪ {{N(u4i−1)} : 1 ≤ i ≤ k} ∪
{vn−2, un−1} ∪ {vn−1} ∪ {un} is a domination coloring of P(n, 1). Thus, χdd(P(n, 1)) ≤
4k + 3 = n + 1. On the other hand, to ensure the domination properties, the vertices vn−2,
vn−1, un−1 and un need at least three new colors. Hence, χdd(P(n, 1)) ≥ 4k + 3 = n + 1.
Therefore, χdd(P(n, 1)) = 4k + 3 = n + 1.

Case 4. j = 3.
In this case, S ∪ N[v4k+1] is a collection of 2k + 1 disjoint closed neighborhoods in

P(n, 1) and the vertices un−1 and un are not covered by these neighborhoods. Then C =
{{v4i−3} : 1 ≤ i ≤ k} ∪ {{N(v4i−3)} : 1 ≤ i ≤ k} ∪ {{u4i−1} : 1 ≤ i ≤ k} ∪ {{N(u4i−1)} :
1 ≤ i ≤ k} ∪ {v4k+1} ∪ {N(v4k+1)} ∪ {un−1} ∪ {un} is a domination coloring of P(n, 1).
Thus, χdd(P(n, 1)) ≤ 4k + 4 = n + 1. Similar to the above analysis, χdd(P(n, 1)) ≥ 4k + 4 =
n + 1. Therefore, χdd(P(n, 1)) = 4k + 4 = n + 1.

Thus, the result follows.

4.3. Domination Coloring for Corona Products

For graphs G and H, the corona product G ◦ H is obtained from one copy of G and
n(G) copies of H by joining with an edge each vertex of the ith copy of H, i ∈ [n(G)], to
the ith vertex of G. If v ∈ V(G), then the copy of H in G ◦ H corresponding to v will be
denoted by Hv. We may consider the vertex set of G ◦ H to be

V(G ◦ H) = V(G) ∪ (
⋃

v∈V(G)

V(Hv)).

The dominator and dominated chromatic numbers of corona products are already known.

Theorem 10 ([36]). If G and H are graphs, then χd(G ◦ H) = n(G) + χ(H).
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Theorem 11 ([33]). If G and H are graphs, then χdom(G ◦ H) = n(G)χ(H).

We now give a general result for the domination chromatic number of corona products.

Theorem 12. If G and H are graphs, then χdd(G ◦ H) ≤ n(G)(χ(H) + 1).

Proof. Set n = n(G) and color G ◦ H as follows. First, we color each vertex of V(G) an
unique color. Second, we properly color every copy of H with χ(H) distinct colors. Clearly,
the obtained coloring is a domination coloring of G ◦ H. Indeed, each vertex v ∈ V(G)
forms a color class of cardinality 1 and the color class {v} is dominated by any adjacent
vertices of v, while each vertex from Hv is adjacent to the vertex v and dominate the color
class {v}, the color class formed by vertices in Hv is dominated by the corresponding vertex
v. Therefore, χdd(G ◦ H) ≤ n(G)(χ(H) + 1).

4.4. Domination Coloring for Edge Corona Products

For graphs G and H, the edge corona G ! H is obtained by taking one copy of G and
m(G) disjoint copies of H one-to-one assigned to the edges of G, and for every edge vv′ ∈
E(G) joining v and v′ to every vertex of the copy of H associated to vv′. If e = vv′ ∈ E(G),
then the copy of H in G ! H corresponding to vv′ will be denoted with Hvv′ (or simply He).
Hence we may consider the vertex set of G ! H to be

V(G ! H) = V(G) ∪ (
⋃

vv′∈E(G)

V(Hvv′)).

The dominator and dominated chromatic numbers of edge corona products have been
studied, which were related to the matching number α′ and the vertex cover number β.

Theorem 13 ([36]). If G and H are graphs, then χd(G ! H) = β(G) + χ(H) + 1.

Theorem 14 ([36]). If G is a graph without pendant vertices, then χdom(G ! H) ≥ α′(G)χ(H) +
χdom(G).

Theorem 15 ([36]). If G has k pendant vertices, then χdom(G ! H) ≥ α′(G)χ(H) + k.

Theorem 16 ([36]). If G and H are graphs, then χdom(G ! H) ≤ β(G)χ(H) + χdom(G), with
equality when G is bipartite graph without pendant vertices.

In the following, we give a general result for the domination chromatic number of
edge corona products.

Theorem 17. If G and H are graphs, then χdd(G ! H) ≤ β(G)(χ(H) + 2).

Proof. Let K = {v1, · · ·, vβ(G)} be a minimum vertex cover of G, so that |K| = β(G).
Partition E(G) into subsets of edges E1, · · ·, Eβ(G), such that if e ∈ Ei, then vi is an endpoint
of e, i = 1, · · ·, β(G). Partition V − K into subsets of vertices V1, · · ·, Vβ(G), such that if
u ∈ Vi, then uvi ∈ Ei, i = 1, · · ·, β(G). It is clear that such partitions always exists since K is
a vertex cover. Notice that each Vi is a independent set, i = 1, · · ·, β(G).

Now, define a coloring c of G ! H as follows. First, for each set of edges Ei, reserve
private χ(H) colors and color with each of the corresponding subgraphs He, e ∈ Ei.
Second, color the vertices of K with β(G) colors. Third, color the vertices of V1, · · ·, Vβ(G)

with additional β(G) colors. Then, c is the domination coloring of G ! H. Indeed, each
vertex in each He dominate a corresponding color class {vi}, and the color classes of those
copies of H with common χ(H) colors are dominated by the corresponding vertex vi.
For each vertex vi in K, there exist color classes dominated by vi. Moreover, the color
class {vi} can be dominated by any adjacent vertex of vi. Moreover, each vertex in Vi
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dominates the color class {vi}, and the color class Vi is dominated by vertex vi. Hence,
χdd(G ! H) ≤ β(G)(χ(H) + 2).

5. Graphs with χdd(G) = χ(G)

For any graph G, we have χdd(G) ≥ χ(G). In this section, we investigate graphs for
which χdd(G) = χ(G).

The following theorem directly follows from Proposition 1.

Theorem 18. Let G be a connected graph, if γ(G) = 1, then χdd(G) = χ(G).

A unicyclic graph is a graph that contains only one cycle. In the following, we
characterize unicyclic graphs with χdd = χ.

Theorem 19. Let G be a connected unicyclic graph. Then χdd(G) = χ(G) if and only if G is
isomorphic to C3 or C4 or C5 or the graph obtained from C3 by attaching any number of leaves at
one vertex of C3.

Proof. For the sufficiency, the result is obvious if G is the graph meet conditions. We
consider only the necessity. Let G be a connected unicyclic graph with χdd(G) = χ(G), and
C the unique cycle of G.

Case 1. If C is an even cycle, then χ(G) = 2 and χdd(G) = 2. It follows that G cannot
contain any other vertices not on C, otherwise χdd(G) ≥ 3. By Theorem 3(2), G = C4.

Case 2. If C is an odd cycle, then χdd(G) = χ(G) = 3. Suppose there exists a support
vertex x not on C. Since x or the leaf is a color class in each χdd-coloring of G, it follows
that χdd(G) ≥ 4, which is a contradiction. Hence, all of the support vertices lie on C, and
any vertex not on C is a leaf. Moreover, the number of support vertices is at most one.
Otherwise, it follows that some color classes are not dominated, since there exists some
χdd-coloring of G in which every support vertex appears as a singleton color class.

Case 2.1. If |C| = 3, then G is isomorphic to C3 or the graph obtained from C3 by
attaching any number of leaves at exactly one vertex of C3.

Case 2.2. Suppose that |C| ≥ 5. If there exists a support vertex x on C, then there
exists a χdd-coloring {V1, V2, {x}} of G, such that V1 contains all of the leaves of x. Now,
we get two vertices u and v on C, such that u ∈ V1, v ∈ V2, both u and v are not adjacent
to x. Clearly, v does not dominate any color class and the color class V1 is not dominated
by any vertex, which is a contradiction. Thus, G has no support vertices and G = C. By
Theorem 3(2), G = C5. So, the theorem follows.

For the complete graph Kn, we know that χdd(Kn) = χ(Kn) = n. Next, we construct a
family of graphs by attaching leaves at some vertices of the complete graph. We denote by
Km

n the family of graphs obtained by attaching leaves at m vertices of Kn, 1 ≤ m ≤ n. We
take no account of the number of leaves attached at any vertex in the notation, since it does
not impact the domination chromatic number. Moreover, we denote any element in Km

n by
Km

n . For example, a instance of K2
5 is shown in Figure 4.

Figure 4. A instance of K2
5.
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Theorem 20. For m ≤  n
2 �, χdd(Km

n ) = χ(Km
n ).

Proof. For any 1 ≤ m ≤ n, Km
n is n-colorable. So, χ(Km

n ) = n. Next, we consider a
domination coloring of Km

n . On the one hand, vertex-attached leaves should be partitioned
into a singleton color class, since each leaf has to dominate a color class formed by its only
neighbor. On the other hand, leaves attached to different vertices have to be partitioned
into different color classes, otherwise, there exists no vertex dominating the color class.
Thus, at most  n

2 � vertices can be attached to leaves of Kn, in order to guarantee that Km
n is

n-domination colorable. The result follows.

6. Conclusions

In this paper, we introduce the concept of domination coloring where both vertices
and color classes should satisfy the domination property. Moreover, an application of
domination coloring in a social network scenario is presented. We prove the k-domination
coloring problem is NP-complete by a reduction from the k-coloring problem. We provide
basic results and properties of the domination chromatic number χdd(G), and further
research χdd(G) of the split graphs, the generalized Petersen graphs P(n, 1), the corona
products, and edge corona products. In particular, we establish a relationship between
the domination chromatic number and other graph parameters, such as the matching
number, the vertex cover number, and the clique number. Moreover, we provide sufficient
and necessary conditions for connected unicyclic graphs with χdd = χ, and construct a
class of graphs with χdd = χ. Our future work will focus on the relationships among
the domination chromatic number, the domination number, and the chromatic number,
and discuss graphs with χdd = χ, χdd = γ, χdd = χ · γ. Moreover, we will explore the
application of domination coloring in practice.
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