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Preface to ”Scientific Reasoning in Science Education:
From Global Measures to Fine-Grained Descriptions
of Students’ Competencies”

In modern science- and technology-based societies, competencies that enable citizens to reason

scientifically play a key role not only in science and technology-based careers but also for democratic

co-determination (e.g., OECD, 2019). Developing these competencies is, hence, considered an

important goal for science education in many countries around the globe (e.g., KMK, 2020; NRC,

2012).

Scientific reasoning competencies are defined as a complex construct that encompasses abilities

such as identifying scientific problems, developing questions and hypotheses, categorizing and

classifying entities, engaging in probabilistic reasoning, generating evidence through modeling,

experimentation, etc., and communicating, evaluating, and scrutinizing claims (Lawson, 2004; NRC,

2012). These abilities require different forms of knowledge, such as content knowledge about the

concepts of science, procedural knowledge about scientific methods, and epistemic knowledge of

how such procedures warrant the claims that scientists advance (Osborne, 2014).

The research on scientific reasoning competencies is quite diverse. This diversity is—at least

in part—caused by the manifold abilities that models of scientific reasoning comprise and the wide

range of content, procedural, and epistemic knowledge that is deemed necessary to exercise these

abilities. Differences exist, for instance, in the specific abilities that are addressed (e.g., applying the

control-of-variables strategy: Reith & Nehring, 2020; handling of anomalous data: Chinn & Brewer,

2001; formulating questions and hypotheses: Vorholzer et al., 2016; developing and using models:

Göhner & Krell, 2020). In addition, even studies that focus on similar abilities may use different

theoretical frameworks and address different procedural and epistemic concepts (Vorholzer et al.,

2016). Moreover, studies focus on a broad spectrum of respondents ranging from K-12 students

(e.g., Koerber & Osterhaus, 2019; Mayer et al., 2014; Nehring et al., 2015; Vorholzer et al., 2016) to

pre-service (e.g., Khan & Krell, 2019) and in-service teachers (e.g., Krell & Krüger, 2016).

Empirical research that focuses on scientific reasoning competencies typically describes the

addressed competencies in a rather large-grained way. On a conceptual level, most studies offer

a clear description of the addressed competencies, while the specific abilities, as well as the

corresponding procedural and epistemic knowledge, are often less precisely defined (Vorholzer et al.,

2016). For instance, a study may report that it focuses on students’ competencies to develop scientific

investigations without stating whether that entails just knowledge of the control-of-variables strategy

or also knowledge of strategies such as repeating measurements or measuring with large quantities.

In addition, empirical studies often report aggregated measures, for instance, in the form of a global

scientific reasoning competency measure or a global measure of their epistemic understanding (e.g.,

naı̈ve vs. sophisticated) without stating what exactly students are (or are not) able to do or how

they understand concepts related to scientific reasoning. It is important to note that the grain-size

outlined above is completely sufficient when the goal of a study is, for instance, to investigate the

effectiveness of a specific instructional intervention or to analyze the dimensionality of a competency

model. Studies that utilize this grain-size have provided many vital insights regarding the modeling,

assessment, and ways of fostering scientific reasoning competencies. However, we argue that

more fine-grained perspectives have substantial benefits for instructional practice and research. For

instance, detailed insights into students’ procedural and epistemic knowledge related to scientific
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reasoning can inform teachers in designing instructions that match students’ current understanding

and specific learning needs. Such insights also provide manifold opportunities for further research,

for instance, regarding the development of students’ scientific reasoning competencies and the

corresponding learning processes.

This book compiles empirical and theoretical contributions that seek to provide a more

fine-grained perspective on scientific reasoning competencies, for instance, by providing precise

descriptions of specific abilities and corresponding knowledge or by offering insights into the

extent to which students of different age groups are able to reason scientifically. The contributions

demonstrate the variety of conceptualizations of scientific reasoning in science education. Several

contributions have based their research on well-established conceptualizations, such as formulating

research questions, generating hypotheses, planning experiments, observing and measuring,

preparing data for analysis, and drawing conclusions (e.g., Bicak et al.). Others have broadened

their scope and discuss aspects that are somewhat “on the sidelines” of what is typically considered

scientific reasoning, such as the relevance of conceptual knowledge for reasoning in a specific context

(Schellinger et al.) and through reasoning on controversial science issues (Beniermann et al.). Most of

the contributions address the abilities related to experimentation and modeling (e.g., Khan & Krell;

Upmeier zu Belzen et al.).

The contributions in the book are ordered by their conceptualizations of scientific reasoning.

After the editorial, six contributions follow, which address scientific reasoning in general (Bicak et

al.; Hilfert-Rüppel et al.; Khan & Krell; Krell et al.; Mahler et al.; Schlatter et al.). The second part of

the book comprises nine contributions, which address specific aspects of scientific reasoning such as

modeling- or data-based reasoning (Beniermann et al.; Cabello et al.; Lang et al.; Masnick & Morris;

Meister & Upmeier zu Belzen; Schellinger et al.; Rost & Knuuttila; Upmeier zu Belzen et al.; Wei et

al.).
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1. Introduction

In modern science- and technology-based societies, competencies that allow citizens
to reason scientifically play a key role for science- and technology-based careers as well as
for democratic co-determination (e.g., [1]). Most challenges that societies are facing (e.g.,
climate change, food and energy supply, or—recently—the COVID-19 pandemic) and also
many questions that we encounter as individuals in our everyday lives (e.g., vaccination,
nutrition, electric mobility) are strongly related to science. Therefore, participating in the
public discourse on societal challenges as well as making informed decisions in one’s
own life requires not only a basic understanding of science-based concepts, but also an
understanding of the ways in which scientists think and reason. Developing scientific
reasoning competencies is, hence, considered an important goal of science education in
many countries around the globe (e.g., [2,3]).

The terms “scientific reasoning” and “scientific reasoning competencies” are not
consistently defined in the literature. In this editorial, we will, therefore, first analyze
existing definitions of scientific reasoning in science education and outline similarities and
differences between them. On the basis of this analysis, we will argue that it is important
to adopt a fine-grained perspective that accounts for the specific abilities, as well as the
corresponding knowledge, usually included under the umbrella term “scientific reasoning”.
Second, we will illustrate the potential benefits of conceptualizing scientific reasoning as a
competency rather than merely as abilities and/or knowledge. Third, we will use these
theoretical considerations to provide a structured overview of the contributions in this
Special Issue.

2. Definitions of Scientific Reasoning

Scientific reasoning is typically conceptualized as a complex construct that encom-
passes a wide range of abilities as well as corresponding knowledge; clear definitions,
however, have only seldom been proposed. On the basis of the notion of competency
(see below), Mathesius et al. [4] defined scientific reasoning as the “competencies that
are needed to understand the processes through which scientific knowledge is acquired”
(p. 94). It is important to note that this definition of scientific reasoning has a significant
overlap with the related goals of science education, such as scientific inquiry or scien-
tific thinking. This overlap can be seen in the fact that these terms often refer to similar
abilities and knowledge. These abilities, which are typically summarized under the term
“scientific reasoning”, comprise the following: identifying scientific problems, developing
questions and hypotheses, categorizing and classifying entities, engaging in probabilistic
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reasoning, generating evidence through modeling or experimentation, and communicating,
evaluating, and scrutinizing claims (e.g., [5–8]). The corresponding knowledge—that is,
knowledge necessary to reason scientifically in a given context—comprises content knowl-
edge, procedural knowledge, and epistemic knowledge. Content knowledge about science
concepts (e.g., theories, laws, definitions) refers to knowledge about the objects that science
reasons with and about [9]. This kind of knowledge is necessary as a basis for scientific
reasoning in a specific context (“knowing what”; [8]). For instance, to develop meaningful
scientific hypotheses about the variables that impact the efficiency of a solar panel, students
need a sufficient conceptual understanding of the variables that are potentially relevant
in that context (e.g., voltage, current, electric energy, inclination, charge separation). Pro-
cedural knowledge refers to knowledge about the rules, practices, and strategies that the
processes of scientific reasoning are based upon (“knowing how”; [8]). For instance, in
the example given above, students require not only knowledge about science concepts
but also knowledge of the rules on how to formulate a suitable scientific hypothesis (e.g.,
hypotheses should be as precise as possible; hypotheses have to be falsifiable; see [10–12]).
In addition to content and procedural knowledge, students should also have an epistemic
understanding about why scientific reasoning (or a specific part of it, e.g., developing a
scientific hypothesis) is important and how it contributes to building reliable scientific
knowledge (“knowing why”; [8,12]). Such epistemic knowledge is not directly necessary
to develop a well-formulated and falsifiable scientific hypothesis, but it is mandatory to
ensure that formulating hypotheses is more than rote performance [8,13].

Early and seminal descriptions of scientific reasoning (or similar constructs such as
logical thinking or scientific thinking) already appeared in the work of the developmental
psychologists Inhelder and Piaget [14] about the stages of human thinking. In their work,
evaluating claims based on observations was, for instance, part of the highest cognitive
stage (formal operational reasoning). This implied, however, one single cognitive ability
and not a multidimensional nature of reasoning, as stressed by later approaches.

In the late 1980s, Klahr and colleagues proposed the very influential model of scientific
discovery as dual search (SDDS) as a way to capture scientific reasoning (e.g., [15,16]). In
the SDDS model, scientific reasoning is conceptualized as a search in the following two
problem spaces: the hypothesis space and the experiment space. On the basis of this ”dual
search”, Klahr and colleagues distinguished between the scientific reasoning processes of
hypotheses generation (“search hypothesis”), experimental design (“test hypothesis”), and
hypotheses evaluation (“evaluate evidence”; [16], p. 33). In the SDDS model, scientific
reasoning is positioned within the context of problem solving (which, in retrospect, can be
envisioned as a link to the notion of competency; see below). Additionally, the idea of a
single cognitive ability (see [14]) is extended to a differentiation between multiple distinct
abilities. The SDDS model was adopted in a number of different studies with backgrounds
in psychology and science education (e.g., [17–19]). Furthermore, the three-phase structure
is still a prominent way of modeling scientific reasoning in science education [17].

More recent approaches have shown a diversity of conceptualizations, particularly by
either broadening what is considered to be scientific reasoning beyond the realm of experi-
mental hypothesis testing (aligned horizontally in Figure 1) or differentiating between more
or different sub-processes of scientific reasoning within that realm (aligned vertically in
Figure 1). The former can be observed, for instance, in the work of Cullinane, Erduran, and
Wooding [20], who not only investigated experimental hypothesis testing (manipulative
types of methods) but also at non-manipulative approaches. Another example is the work
of Kind and Osborne [9], who proposed six different styles of reasoning (mathematical
deduction, experimental evaluation, hypothetical modeling, categorization and classifi-
cation, probabilistic reasoning, and historical-based evolutionary reasoning). Here, the
SDDS model and related descriptions of scientific reasoning would probably just represent
a more detailed description of the experimental evaluation style, while all the other styles
go beyond what is typically understood as scientific reasoning. An example of the latter
type of conceptualization is the work by Krüger et al. [21], who distinguished between
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four process-related dimensions (called “sub-competencies”) of conducting scientific inves-
tigations by formulating questions, generating hypotheses, planning investigations, and
analyzing data and drawing conclusions. White and Frederiksen [22] even went a step
further by distinguishing between the six sub-processes of questioning, hypothesizing,
investigating, analyzing, modeling, and evaluating.
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Figure 1. Spectrum of (sub-)competencies typically associated with scientific reasoning.

In sum, most of the more recent conceptualizations of scientific reasoning compe-
tencies share the assumption that there are several sub-processes that can be modeled as
separate dimensions of scientific reasoning (Figure 1). However, as outlined above, the
ways in which these dimensions are shaped vary significantly. To capture and systemize
the (increasing) variance in conceptualizations of (and research on) scientific reasoning
(competencies), three different aspects have been identified, in which conceptualizations of
scientific reasoning competencies may differ: “(a) the skills they include, (b) whether there
is a general, uniform scientific reasoning ability or, rather, more differentiated dimensions of
scientific reasoning, and (c) whether they assume scientific reasoning to be domain-general
or domain-specific” [23] (p. 80). While these aspects are certainly very helpful in capturing
the variance in conceptualizations of scientific reasoning, we argue that there is even more
to be discovered beneath the surface.

3. Grain Sizes: A Source of Relevant but Seldom Addressed Variance

Empirical research that focuses on scientific reasoning typically describes the ad-
dressed competency as well as the corresponding outcomes with a rather large “grain size”.
For instance, most studies offer a clear conceptual description of the addressed compe-
tency (the larger grain), while the specific abilities as well as the corresponding procedural
and epistemic knowledge (i.e., the smaller grains that “make up” these competencies)
often remain unclear (see discussion in [24]). Therefore, different conceptualizations of
scientific reasoning may seem similar regarding the competency/sub-competencies they
comprise, but may still address different abilities and/or the different content, procedural,
and epistemic knowledge associated with them [24]. For example, the competency of
“planning scientific investigations” may include the ability to (a) “plan investigations ac-
cording to the control of variables strategy”, (b) “plan investigations considering repeated
measurements”, (c) “plan investigations that fit the research question and hypotheses”, or
a combination of these abilities (Figure 1). All of the aforementioned abilities clearly belong
to the competency of “planning scientific investigations”; however, the abilities addressed
in an assessment or an instructional intervention have considerable consequences for the
tasks students are working on and the knowledge they need to solve them, and, hence,
may significantly impact the results [24]. For instance, (a) requires procedural knowledge
of the control of variables strategy as well as of terminology such as the dependent variable,
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independent variable, etc., and epistemic knowledge about the function of controlling
variables. In contrast, (b) requires procedural knowledge of strategies for how to determine
the appropriate number of repetitions of measurement procedures as well as epistemic
knowledge about why repeating measurements is important.

This example illustrates that the results of studies that have adopted one specific
conceptualization of a scientific reasoning competency (i.e., the larger grain) may vary con-
siderably depending on which abilities and corresponding knowledge (i.e., smaller grains)
are considered to be part of that specific conceptualization. Differences on a fine-grained
level between the conceptualizations of scientific reasoning adopted in various studies are
not per se a problem. Given that the construct of scientific reasoning is manifold, it is often
even necessary to focus on a few specific abilities and the corresponding knowledge. How-
ever, without a fine-grained description of the chosen conceptualization, these differences
cannot be properly accounted for. This is also emphasized by Shavelson [25], who argues
that a clear construct definition is necessary in order to develop authentic assessments that
are capable of holistically assessing all (or as many as possible) of the components of a
given competency (holistic approach of competency assessment). From a more analytical
point of view, it has been proposed that all skills of a given competency need to be clearly
defined so that tasks (i.e., indicators) can be developed for each [26].

Aside from improving the comparability between studies, a more fine-grained per-
spective may have additional positive effects, for instance, regarding the communication
and application of empirical findings. Empirical studies often report aggregated measures
(larger grains), for example, in the form of a single (i.e., global) measure of students’ sci-
entific reasoning competency, their procedural understanding of the control of variables
strategy, or their epistemic understanding (e.g., naïve vs. sophisticated). This grain size
is sufficient when the goal of a study is, for example, to investigate the effectiveness of a
specific instructional intervention or to obtain system-monitoring data. However, goals
such as designing instruction that matches students’ current understanding and specific
learning needs require more detailed insights. From an educational point of view, insights
into which procedural and epistemic knowledge students have and which they lack and
into which abilities they have mastered and which they have not mastered yet is of vital
importance for designing instructional interventions.

We argue that research would profit from examining and reporting scientific reason-
ing by using more fine-grained perspectives in addition to the rather global grain sizes
typically reported. Linking these fine-grained and global perspectives would make it
possible to compare and even to coordinate research approaches. Additionally, research
on the development of students’ scientific reasoning competencies and the corresponding
learning processes—a key challenge for science education research on scientific reasoning
competencies—would benefit from linking fine-grained and global perspectives and not
only sticking to the one or the other perspective.

4. What the Notion of Competency Implies for Research on Scientific Reasoning in
Science Education

Following the increasing attention that the notion of describing learning outcomes as
competencies has received in recent decades (in particular, in German-speaking countries),
an increasing number of studies that (explicitly or implicitly) describe scientific reasoning
as a competency have emerged (e.g., [7,27]). Competencies can be defined broadly as
“dispositions that are acquired by learning and needed to successfully cope with certain
situations or tasks in specific domains” [28] (p. 9). Most conceptualizations of competencies
in science education share a common core of characteristic features (see [29–31]): First,
competencies comprise cognitive as well as motivational, volitional, ethical, social, and
further dispositions [32]. Second, these dispositions are domain-specific and learnable [28],
and, third, these dispositions are transferable in the sense that they enable individuals to
perform successfully within the same family of problems [33]. More recent definitions of
the term “competency” have also emphasized the role of situation-specific skills such as
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“perception” or “decision-making”, which mediate the transition of dispositions to actual
performance [34]. The notion of competency and its development adds new and interesting
facets to research on scientific reasoning, which, as we will detail below, are yet to be
explored.

In science education research, scientific reasoning is often conceptualized in terms of
skills or abilities (e.g., [35,36]) that require specific knowledge, and corresponding studies
typically focus on learners’ cognitive dispositions. A similar focus on cognitive dispositions
can also be observed in studies that describe scientific reasoning as a competency (e.g., [37]).
There is no doubt that cognitive dispositions are an important element of scientific rea-
soning competency. However, given that a key goal of promoting scientific reasoning is
to allow (future) citizens to reason scientifically in their personal and professional lives
(e.g., [1]), we argue that it is important to consider all elements of the notion of competency
outlined above in conceptualizations of scientific reasoning competency (e.g., cognitive,
motivational, and social). For instance, to use scientific reasoning to make an informed deci-
sion on a science- or technology-related topic or problem in an everyday situation, it is not
sufficient to be able to reason scientifically (i.e., to have specific abilities and corresponding
knowledge). One also has to realize that the particular situation actually requires scientific
reasoning or even a specific style of scientific reasoning (perception) and, at the same
time, one needs to be willing to apply the related abilities and knowledge (motivational
dispositions). Therefore, we argue that considering scientific reasoning as a competency has
multiple fruitful implications for future research: First, it suggests that we require the means
to assess and promote learners’ cognitive dispositions (e.g., abilities and knowledge related
to scientific reasoning) but also means to assess and promote their motivational dispositions
(e.g., willingness to engage in scientific reasoning, beliefs about the usefulness of scientific
reasoning). Second, alongside focusing on students’ cognitive, motivational, and social
dispositions, it is also important to identify the situation-specific skills that facilitate or
hinder the process by which these dispositions are translated into performance as well as to
find the means to assess and foster them. Lastly, and probably most challengingly, it is often
assumed that promoting students’ abilities to plan and scrutinize scientific investigations
or to analyze and interpret data (i.e., fostering their dispositions and/or situation-specific
skills) helps them to solve scientific problems as well as to make informed decisions in their
everyday lives (i.e., improves their performance); the relationship between dispositions,
situation-specific skills, and performance in a (close to) real-life situation, however, has—to
the best of our knowledge—only rarely been investigated so far (examples in [38]). In
sum, considering scientific reasoning as a competency is more than a rebranding; it empha-
sizes the role of motivational and social dispositions, situation-specific skills, and actual
performance and, thereby, outlines a promising agenda for science education research.

5. Contributions in This Special Issue

The contributions in this Special Issue demonstrate the variety of conceptualizations
of scientific reasoning in science education. Several contributions have based their research
on well-established conceptualizations, such as formulating research questions, generating
hypotheses, planning experiments, observing and measuring, preparing data for analysis,
and drawing conclusions (e.g., [39]). Others have broadened their scope and discuss aspects
that are somewhat “on the sidelines” of what is typically considered scientific reasoning,
such as the relevance of conceptual knowledge for reasoning in a specific context [40] and
through reasoning on controversial science issues [41]. Most of the contributions address
the abilities related to experimentation and modeling (e.g., [39,42,43]); this mirrors the
focus of science education on these two styles of reasoning. However, this focus has been
criticized as “an impoverished account” of scientific reasoning [9] (p. 17).

The articles in this Special Issue also show how scientific reasoning competencies
can be addressed based on smaller and larger grain sizes. For example, Bicak et al. [39]
conceptualize scientific reasoning in a six-step approach (see above) based on a larger
grain size. In their work, the authors provide an insight into how they operationalized
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scientific reasoning in a coding manual for video recordings and written records in a
hands-on task. For the sub-competency of observing and measuring, for instance, students
reached the highest proficiency level when their observations or measurements were
purposeful, exhaustive, and correct and their data was recorded correctly by using a suitable
method of measurement. The approach of coding outlined in [39] indicates that scientific
correctness is at the center of this conceptualization and not measurement repetition or
error analysis, as it might have been in a physics approach. Another example is provided
by Khan and Krell [42], who describe a two-dimensional competency-based approach to
scientific reasoning (conducting scientific investigations and using scientific models) and
also define sub-competencies of scientific reasoning and the associated abilities, including
the necessary procedural and epistemic knowledge (based on [11]). They argue that the
ability of generating hypotheses requires the knowledge that hypotheses are empirically
testable, intersubjectively comprehensible, clear, logically consistent, and compatible with
an underlying theory [42] (p. 3). This also presents the opportunity to link global and
fine-grained perspectives on scientific reasoning competencies.

Considering the different aspects of competency outlined above, it is evident that
the contributions in this Special Issue focus primarily on cognitive dispositions related to
scientific reasoning competencies. However, there are interesting exceptions. For instance,
the study of Beniermann, Mecklenburg, and Upmeier zu Belzen [41] investigated reasoning
processes in the context of controversial science issues. They argue that decisions or
attitudes regarding these issues depend “highly on individual norms and values” [41]
(p. 2) and are, therefore, not only dependent on learners’ content knowledge or their
ability to reason scientifically. The authors were able to identify not only intersubjective
but also subjective types of reasoning in their analyses; this finding can be interpreted as
empirical support for the assumed role of non-cognitive dispositions in scientific reasoning
processes. Furthermore, their work suggests that controversial science issues might be a
promising context in which to further investigate the non-cognitive components of scientific
reasoning competency. Another interesting example is presented by Meister and Upmeier
zu Belzen [44], who investigated the role of anomalous data in scientific reasoning processes.
Their approach highlights that learners’ perceived relevance and subsequent appraisal of
data depend on their prior conceptions. As learners’ prior conceptions are presumably
very situation-specific, perception and appraisal processes may serve as an interesting
example of the situation-specific skills that mediate the transformation of dispositions into
performance [34]. In a similar vein, the authors were also able to show that the role of the
perceived acceptance of an interpretation by others is—in some cases—more relevant than
evidential considerations, which, again, illustrates the role of situation-specific skills and
emotional dispositions in scientific reasoning processes. In sum, among the contributions
in this Special Issue, there are some interesting approaches that consider both cognitive
dispositions and motivational dispositions or situation-specific skills. However, the role that
aspects of competency other than cognitive dispositions play in scientific reasoning remains
a rather underrepresented field of research that, in our opinion, provides considerable
potential for further research.
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Abstract: Developing scientific reasoning (SR) is a central goal of science-teacher education world-
wide. On a fine-grained level, SR competency can be subdivided into at least six skills: formulating
research questions, generating hypotheses, planning experiments, observing and measuring, preparing data for
analysis, and drawing conclusions. In a study focusing on preservice chemistry teachers, an organic
chemistry lab course was redesigned using problem-solving experiments and SR video lessons to
foster SR skills. To evaluate the intervention, a self-assessment questionnaire was developed, and a
performance-based instrument involving an experimental problem-solving task was adapted to the
target group of undergraduates. The treatment was evaluated in a pre-post design with control group
(cook-book experiments, no SR video lessons) and alternative treatment group (problem-solving
experiments, unrelated video lessons). Interrater reliability was excellent (ρ from 0.915 to 1.000; ICC
(A1)). Data analysis shows that the adapted instrument is suitable for university students. First
insights from the pilot study indicate that the cook-book lab (control group) only fosters students’
skill in observing and measuring, while both treatment groups show an increase in generating hypotheses
and planning experiments. No pretest-posttest differences were found in self-assessed SR skills in the
treatment groups. Instruments and data are presented and discussed.

Keywords: scientific reasoning; scientific inquiry; science education; chemistry; teacher education;
assessment

1. Introduction

The study of scientific thinking dates back nearly a century and has been the interest
of psychologists and science educators alike [1,2]. The origins lie at Piaget’s [3] theory
of stages of cognitive development, formulating that adolescents are able to evaluate
evidence and build hypothetical terms. One main focus of research covers the development
of domain-general strategies of reasoning and problem-solving [2]. Terminology varies
respectively by discipline as well as focus on research or teaching, yielding terms such as
scientific reasoning, critical thinking (with regard to a science context), scientific discovery,
scientific inquiry, or inquiry learning [2,4]. For the purpose of this article, scientific inquiry
is used to describe teaching methods and activities aimed at the process of gaining scientific
knowledge [5,6], whereas scientific reasoning (SR) refers to the cognitive skills required
during a scientific inquiry activity [1,6,7]. Due to its cognitive nature, SR is viewed to be a
competency consisting of a complex set of skills [8,9].

SR is needed for acquiring scientific knowledge [10], making it an essential competency
in science and one of the most important key competencies in societies, increasing their
technical progress. Therefore, developing SR is a central goal of school science as well
as science-teacher preparation worldwide [11–19]. In the context of teaching, SR can be
fostered by inquiry teaching activities [20]. Teachers, however, perceive the integration
of inquiry into their lessons to be a difficult task [21,22], particularly if they have never
conducted inquiry experiments before [5]. SR and methods of inquiry teaching should
therefore already be introduced in preservice science-teacher education [5,15,23].
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1.1. Models for Scientific Reasoning Competency

SR can be studied in problem-solving situations, making it accessible to assessment [1,24].
Using a “simulated discovery context” [1] (p. 3) gives detailed insight into the underlying
processes while maintaining control over situational boundaries and prior knowledge
needed by the participants. So far, several models of scientific reasoning ranging from
global measures to more fine-grained descriptions have been proposed, yielding various in-
struments for measuring SR competency [25]. Models can be differentiated by target group,
i.e., school and/or university context or other target groups [25], and by their purposes,
such as assessment [10], description of learners’ activities in the process of SR, and problem-
solving [26,27] or the description of important aspects of inquiry teaching [28]. Following
Klahr and Dunbar’s [29] “Dual Space Search,” SR models usually cover the domain “con-
ducting scientific investigations” [24] and exhibit at least a three-fold structure involving
the facets “hypothesis,” “experiment,” and “conclusion”. However, the respective models
differ in the degree of sub-division into up to 9 facets (see Figure 1) [10,24,26,28–37]. For
example, the model developed by Fischer and colleagues [30] also covers the problem
identification, that is, the analysis of the underlying phenomenon before the generation
of hypotheses. The skill “generating hypotheses” is divided into “questioning” and “hy-
pothesis generation”. Moreover, “testing hypotheses” is subdivided into a construction
phase (cf. the different notions of planning in Figure 1) and “evidence generation,” which
is comparable to experimentation and observation [26,28,31]. The last facet of Klahr and
Dunbar’s [29] model can be divided into “evidence evaluation,” such as the preparation
and interpretation of experimental findings [26,32], and “drawing conclusions”. “Commu-
nicating and scrutinizing” completes the facets [30], whereas, for example, in Kambach’s
model [26], communication is viewed as a skill relevant to all processes involved in SR.
Some models also specify the documentation [28] skill as a separate facet, while this is seen
as a cross-process skill relevant to all other facets in other models [26]. Recently, modelling
skills have also been proposed to amend skills in conducting investigations to cover a
broader notion of SR [10,33,34].

Figure 1. Overview of some models for scientific reasoning competency subdomain “conducting scientific investigations”
(compiled from [10,24,26,28–37]).

For this study, part of Nawrath et al. and Kambach’s models [26,28] were combined to
form a fine-grained model for measuring SR competency of preservice chemistry teachers.
The skills formulating research questions, generating hypotheses, planning experiments, observing
and measuring, preparing data for analysis, and drawing conclusions were included. In contrast
to Kambach, the ability to specify the phenomenon is not assessed, but nevertheless, a
phenomenon underlies the test instrument: A phenomenon is presented to the participants
in an introduction and thereafter worked on. Furthermore, setting up experiments (cf. [28])
is not applied in our work, as this skill does not play a central role in scientific reasoning in
chemistry and partly overlaps with practical work skills [24]. Documentation is understood
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as an overarching skill following Kambach [26] and is thus not part of the skill observing
and measuring, which is contrary to the model by Nawrath et al. [28].

1.2. Assessment of Scientific Reasoning

SR competency can be assessed with domain-specific as well as domain-general in-
struments in different test formats, such as paper-pencil tests or experimental tests. For
the latter, real or virtual/mental experiment can be used [25]. Both types can employ
multiple-choice items [10,34] or open formats [27] and assess theoretical notions of SR,
performance-related measures [26,27], or self-assessments [35]. Some studies also use
mixed formats [25]. The different methods for eliciting these skills have different properties
regarding time consumption, practicability, individual diagnostics, external influences, con-
gruence, and simultaneity [27]. Performance tests showed significantly larger effect sizes
than multiple-choice tests [38]. Moreover, as Shavelson [9] pointed out, multiple-choice
assessment can hardly be seen as a situation closely representing real life. Furthermore,
multiple-choice questions may measure knowledge that the participants might be able
to state but might not be able to put to practice (inert knowledge, see for instance [39]).
Hence, a performance-based assessment format seems to be more closely tied to the com-
petency to be inferred. However, performance-based assessment can be time-consuming
for participants and researchers alike. In addition, there are differences in measuring skills
in individual and group work: while group work enhances communication and therefore
makes thoughts accessible to the researcher [40], better performance in problem solving of
groups compared to individuals has been demonstrated [41], which may limit reliability of
assessment of individual skills in group work situations.

Adults, and therefore also preservice teachers, experience difficulties in dealing with
SR tasks: they tend to design confounded experiments or to misinterpret evidence to be able
to verify their beliefs [1]. Kunz [36], Khan, and Krell [42] as well as Hartmann et al. [10]
found higher SR competency in preservice science teachers with two natural science
subjects, while this made no difference in a study conducted by Hilfert-Rüppell et al. [43].
Furthermore, students’ SR competency differs by school type and progression in university
studies [10,34,42]. Kambach’s [26] findings suggest that preservice biology teachers either
are very apt in describing phenomena, generating hypotheses, and interpreting results or
do not show these processes at all. As for the other processes, skills show more variation
among the sample. However, students also lack experimental precision and demonstrate
deficient reasoning for their choice of material in planning investigations. While conducting
experiments, they tend not to consider blanks and hardly ever plan intervals or end points
while measuring. Finally, they tend not to prepare their data for analysis or refer back to
their hypotheses while interpreting. Overall, Kambach’s sample demonstrates variation of
SR competency across the entire scale [26]. Hilfert-Rüppell et al. [43] demonstrated that
preservice science teachers’ SR skills generating hypotheses and planning investigations are
deficient. However, they found that students’ skill in planning investigations is moderated
by their skill to generate hypotheses.

1.3. Learning Activities Supporting the Formation of Scientific Reasoning Competency

While the empirical and pedagogical literature has to offer various ideas and propo-
sitions for incorporating scientific inquiry into learning environments in schools and
universities [44–46], preservice science teacher education still lacks inquiry learning ac-
tivities [5,32]. For instance, lab courses mainly employ cook-book experiments [26,32,47].
If at all, the prospective teachers come into contact with forms of inquiry learning only
in teaching methods courses in graduate education [10] or, if offered, while working or
training in school laboratories [26]. Khan and Krell [42] therefore suggested a combination
of contextualized, authentic scientific problem solving and its application to new contexts
with tasks to reflect on problem solving and scientific reasoning on a meta level.

Still, the laboratory already “is the place of information overload” [48] (p. 266). Tra-
ditional cook-book experiments demand of the students to conduct, observe, note—and,
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hopefully, also interpret and understand—an enormous number of elements [48]. How-
ever, most of these demands are clearly stated in the laboratory instructions. Working
on a problem-solving experiment, students need to perform a similar amount of tasks as
well as additional cognitive activities, such as understanding the problem and devising
their own strategy to solving it. Since these demands occupy working memory space
not directed to learning, especially open inquiry is seen to be ineffective due to cognitive
overload [49]. Furthermore, unfamiliarity with the method of problem-solving experiments
from previous laboratories might add to these strains. Reducing the amount of cognitive
demands students have to face simultaneously can be achieved by scaffolding the problem-
solving process [50], providing learners with worked examples [51,52], examples before the
problem-solving process [53,54], or structuring tasks [55,56]. For instance, Yanto et al. [32]
found that structuring three subsequent experimental classes using the three main types
of inquiry (structured, guided, and open inquiry, cf. [6]) in a stepped sequence fosters
preservice biology teachers’ SR skills better than a traditional cook-book approach.

While the use of problem-solving and inquiry activities is widely seen as important, time-
consuming learning activities like these do not always fit into tight schedules in schools and
universities [44]. However, students may benefit from instruction before inquiry activities [57].
In a meta-analysis on the control of variables strategy, Schwichow et al. [38] showed that larger
effects were achieved when learners were given a demonstration. Regarding chemistry
laboratories, implementing instruction, such as demonstrations or examples as prelab
learning activities, seems to be a promising approach [48]. This may be achieved by using
educational videos [58–60].

1.4. Educational Videos as Pre Laboratory Activities

Educational videos are seen as a suitable medium to enhance students’ preparation in
undergraduate chemistry, for instance, regarding content learning in organic chemistry [61],
calculations for laboratory courses [62], as well as the use of laboratory equipment and
procedures [62–66]. Methods for the development of effective videos are subsumed in [67].
Cognitive load theory (CLT) [68] and cognitive theory of multimedia learning (CTML) [69]
inform design of effective videos. For instance, exclusion of unnecessary details helps keep
students’ working memory from overloading (CLT), and making use of the visual and audi-
tory channel in a way to avoid redundancy contributes to the effective use of both channels in
educational videos (CTML). In terms of learning outcomes, Pulukuri et al. and Stieff et al.
demonstrated that students preparing with videos statistically outperform a control group
without any preparation [61] or an alternative treatment group preparing with a lec-
ture [66]. However, many studies only report significant effects regarding the affective
domain: students perceive videos to be helpful for preparation of and participation in the
laboratory [60,62–64], even if no evidence can be found for their effectiveness on student
performance [62,63]. Moreover, videos are still seen as rather new and motivating media
in university education [70] and may therefore, like other newly advancing educational
technologies, enjoy a novelty effect when used over a short period of time [61,70–73]. This
may lead to an overestimation of their impact on student performance [61].

1.5. Self-Concept of Ability and Performance

“The relationship between self and performance is associated with an improvement
in ability” [74] (p. 132). Self-concept is not a unidimensional construct but consists of
various facets, such as academic self-concept [75]. Regarding students in an introductory
chemistry course at university, House [76] showed that students’ academic self-concept is
a better predictor of first-year achievement in chemistry than, for example, grade of college
admission test. Moreover, facets of self-concept can be broken down further, i.e., academic
self-concept can be further differentiated for different subjects [75]. For example, Atzert
and colleagues demonstrated that self-concept of ability can be measured regarding science
experimentation [77]. Sudria and colleagues [78] compared self-assessment and objective
assessments of preservice chemistry teacher students’ practical skills in a chemistry labora-
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tory. Their findings suggest that both students’ self-assessed skills at the beginning and
during the course correlate with objective assessment of their performance by the lecturer.
Self-concept of ability usually is assessed with regard to three different norms: individual
(i.e., development of abilities over time), social (i.e., own ability in relation to others), and
criterial (i.e., own ability with regard to an objective measure) [79]. However, in agreement
with the criterial rubric Sudria et al. used, Atzert et al. showed that only the criterial norm
informs school students’ self-concept of ability regarding science experimentation [77,78].

The aim of the project underlying this paper is both to foster preservice teachers’
SR competency by implementing a small number of problem-solving experiments and
explanatory videos into an already-existing lab course and to measure a potential increase
in SR competency. This paper first describes an instrument for objectively measuring SR
skills as well as a self-assessment questionnaire in which students rate their SR skills with
regard to the criterial norm before and after the intervention. Using data from the pilot
study, a first insight is given into development of students’ SR skills.

2. Materials and Methods
2.1. Redesigning an Organic Chemistry Lab Course

Bearing in mind the insights from research on scientific reasoning and problem solving,
we chose a 90-hour (3 credit points) organic chemistry lab course for second-year bachelor
students [80] and redesigned 8 experiments into inquiry experimental problems cf. [6,46,81]
The intervention constituted approximately 30% of all lab course activities. To account for
the high complexity of a full problem-solving process, each experiment was designed to
focus mainly on one SR skill; planning experiments was further subdivided into (a) planning
experiments (general aspects), (b) using the control of variables strategy, and (c) using
blanks. Control of variables is central to the SR skill planning experiments [38]; however,
students might not be familiar with this strategy (cf. Section 3.1). Using blanks is a specific
form of controlling variables; yet, due to its application in analytical chemical, problems
might be more familiar to second-year students than control of variables strategy. Moreover,
using blanks (i.e., negative and positive controls) does not only cover the experimental
design but addresses validity since it but involves an examination of the method by (1)
testing functionality of the reagents and (2) determining the limit of quantification [82–84].
Therefore, a distinction between using blanks and using the control of variables strategy
was made.

For the lab course, this resulted in one experiment for each of the following skills:
formulating research questions, generating hypotheses, planning experiments: general
aspects, planning experiments: using the control of variables strategy, planning experi-
ments: using blanks, observing and measuring, preparing data for analysis, and drawing
conclusions. Students worked on the experiments in a stepped fashion: each consecutive ex-
periment demanded of them to apply one more skill. Since formulating research questions
and generating hypotheses are known to be more challenging to students than designing
experiments and interpreting data [42,43], we organized the problem-solving experiments
in a sequence from less to more challenging, starting with drawing conclusions in the first
experiment up to the application of all skills in the final experiment [20]. Prior to the lab
activity, each skill was explained and demonstrated to the students in a video lesson using
examples different from those of the respective lab experiment. For instance, criteria for the
generation of good scientific research questions or hypotheses were presented and applied
to examples. In addition, students attended a colloquium on each experiment, discussing
safety issues as well as specifics regarding experimental procedures and explanations with
a lab assistant. In the redesigned course, the colloquium was also used to have students
reflect on the content of each video lesson, i.e., students were asked to reproduce the main
ideas taught in the video lesson and to apply them to the respective experiment. For
example, they formulated their own research questions or presented their experimental
planning. In the lab, students worked in pairs or groups of three if total participant count

13



Educ. Sci. 2021, 11, 496

was odd. They handed in lab reports after the course. Details on the redesigned lab are
reported elsewhere [81,85].

Two cohorts served as control groups. They received the organic chemistry laboratory
as originally designed, i.e., without an explicit focus on inquiry experiments. Students
were neither asked to formulate research questions, generate hypotheses, plan their own
experiments, nor draw conclusions with regard to a hypothesis. Instead, they were given
cook-book descriptions of the processes to be conducted. If applicable to the experiment,
students were only asked to choose from a given set of qualitative tests (such as Schiff test
or Tollens reagent) and to conduct blanks for comparison of test results. They were not
given any of the video lessons nor provided with any information from the video lessons in
the colloquiums. To account for motivational effects of video media [61,70], the study also
used an alternative treatment group. This group received the redesigned lab course with
problem-solving experiments but watched videos about practical laboratory skills [62–66],
i.e., their videos were unrelated to SR skills.

2.2. Hypotheses

The overarching goal of our project was to determine whether the redesigned lab
course helps in fostering SR competency. Therefore, we adapted an already validated
test instrument for school students [27] to use with preservice chemistry teachers and
complemented it with a self-assessment questionnaire. Psychometric properties were
examined in a pilot study, and the following hypotheses were tested to account for the
purposefulness of Kraeva’s instrument [27] for our target group:

Hypothesis 1. In the adapted version of the test instrument, accompanying variables (prior
knowledge, methodological knowledge, documentation skill) correlate in the same pattern as in
Kraeva’s [27] findings.

Hypothesis 2. Students in the control group score similar points in accompanying variables (prior
knowledge, methodological knowledge, documentation skill) in pre- and post test since both test
booklets are expected to be comparable, as they do not require prior knowledge [27].

Since traditional cook-book labs should already support some SR skills also associated with
cook-book experiments, such as observing and measuring or preparing data for analysis [6,86,87],
a control group was used to determine the extent to which the cook-book lab already
fosters SR skills. Since both treatment groups worked on the problem-solving experiments
in the lab, these were both expected to gain SR competency over the course of the lab.
Nevertheless, the treatment group watching the SR-related videos (SR group) received
more support in structuring the problem-solving process than the alternative treatment
video group that watched SR-unrelated videos (alternative group). Therefore, the SR group
was expected to benefit more from the lab course, which should manifest itself in a greater
learning gain [61,66]. We hypothesized as follows:

Hypothesis 3. Students in the control group show an increase in SR skills observing and measuring
from pretest to posttest (i.e., after participation in the traditional lab course) but not in skills
generating hypotheses, planning experiments, or drawing conclusions.

Hypothesis 4. Students in both treatment groups (SR group and alternative group) show an
increase in SR competency from pretest to posttest.

Hypothesis 5. Students in the SR group show a greater learning gain in SR competency than
students in the alternative group.
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2.3. Data Collection

Following Shavelson’s [9] requirements for competency measurement, SR competency
can be inferred from measuring a set of complex skills (such as formulating hypotheses,
planning experiments, drawing conclusions, see Section 1.1) observable in a performance
situation (experimental problem-solving tasks in the test instrument) close to a real-world
situation (such as the problem-solving experiments in the laboratory). Tasks and scoring
manuals need to be standardized for all participants (as presented below) and yield a
score for the level of performance from which competency can be inferred. Moreover, the
skills measured are supposed to be improvable through teaching and practice (that is, by
the students attending a laboratory course such as the intervention presented) as well as
dependent on disposition (such as self-regulation due to self-assessment in the respective
skills). Therefore, we chose to build on an already validated, qualitative instrument with
which the procedural structures of students’ problem-solving processes in an inquiry
experiment can be determined using video recordings and written records [27]. Processes
observed by Kraeva [27] were generating hypotheses, planning experiments, and drawing
conclusions. Since Kraeva’s instrument was validated with high school students grade
from 5 to 10, we report here the adaptation to the target group of university students.
Using an expanded manual, the following SR skills were measured in the pilot study:
generating hypotheses, planning experiments, observing and measuring, and drawing conclusions.
Additional tasks assessing the skills developing questions and preparing data for analysis were
constructed for the main study. Due to the pandemic, data on the latter two tasks so far
could only be collected on five participants. Therefore, only data on the first four skills
are presented here. As accompanying variables, prior knowledge, documentation skills,
and methodological knowledge were assessed using Kraeva’s [27] instrument and manual.
After the performance test, the students filled out a self-assessment questionnaire in
which they assessed their own SR skills (developing questions, generating hypotheses, planning
experiments, using control-of-variables strategy, using blanks, observing and measuring, preparing
data for analysis, and drawing conclusions) on a five-point-scale. In addition, demographic
data, such as age, gender, and parameters for students’ learning opportunities in chemistry
(subject combination, semesters spent at university, and success in organic chemistry),
were collected.

The test was administered in German with standardized test instructions before
(pretest) and after completion of the lab course (posttest) with two similar test booklets on
different chemical topics (adapted from [27]). The survey usually took place in pairs so
that conversations could be recorded while videotaping. Data were collected anonymously
with cameras positioned to only film participants’ hands and working surfaces. Students
who did not wish to be videotaped were seated at a table without recording equipment. All
students who participated in the study signed consent forms. Research procedures were in
accordance with ethical standards of Technische Universität Braunschweig. Participants of
cohort 2020 were recorded individually because of pandemic regulations. Nevertheless,
due to using a think-aloud protocol (adapted from [88]), it was still possible to capture
students’ thoughts.

2.4. Description of the Test Booklet

Paper-pencil tests started with two tasks on prior knowledge (Task 1: everyday
knowledge and Task 2: chemical knowledge [27] (p. 81)) regarding the respective topic
(e.g., surface tension). Students were then shown a slow-motion video of the phenomenon
to be investigated and asked to document experimental procedures and observations
(Task 3). This was followed by a videotaped sequence of tasks (“Experimental Tasks”,
see Figure A1a and [27] (p. 71)), including a problem-solving experiment: first, students
were asked to generate a hypothesis (hypothesis I) about the phenomenon in the slow-
motion video (Experimental Task a). They were then asked to plan and conduct an
experiment related to their hypothesis (experiment I), document the procedures, and draw
a conclusion (Experimental Task b). This sequence was videotaped to observe students’

15



Educ. Sci. 2021, 11, 496

actual problem-solving process since protocols are known to not necessarily contain all
steps discussed or conducted but rather a selection of those procedures that students
judge worth reporting [89]. After the experimental task, students were asked to give an
explanation for the phenomenon observed earlier in the slow-motion video using findings
from their own experiments (Task 4; [27] (p. 82)). In Task 5 (see Figure A1b), they were
asked to think of other conditions that affect the phenomenon and to develop a new
research question and a corresponding hypothesis (hypothesis II). They then planned
another experiment to test their hypothesis (experiment II), this time, however, without
conducting it. Finally, a method for measuring surface tension was described to the
students; they were given measurement data and asked to prepare a diagram for future
analysis (Task 6, see Figure A2) as well as to extract information from the diagram to
answer a question on data analysis.

2.5. Coding Manuals for Scientific Reasoning Skills

Transcriptions of the videotaped sequence and students’ written answers in the test
booklet were analyzed using a coding manual. Accompanying variables were assessed in
individual work from students’ written records. Table 1 shows which data sources were
taken into account for analyses of SR skills.

Table 1. Data sources for analyses of SR skills and accompanying variables.

SR Skill Written Records Video Transcripts

developing questions individual work -
generating hypotheses I individual work discussion in pair work
generating hypotheses II individual work -
planning experiments I - pair work
planning experiments II individual work -

observing and measuring - pair work
preparing data for analysis individual work -

drawing conclusions individual work 1 -
1 Individual documentation of findings from experimental tasks in pair work.

Coding manuals for rating students’ SR skills were deductively developed from the
literature [26–28,90] and inductively complemented with data from the control group. For
calculation of interrater reliability, 13% of video transcripts and written records were coded
by two raters (author 1 and a trained student research assistant, see Section 3.3). Students’
skills were assessed on four-point scales using the manual (see Table A1), whereby a full
score indicated that the skill is fully developed. For example, there are four expressions for
the skills observing and measuring as well as planning experiments I/II (e.g., no experiment,
explicating planning, plan not suitable, plan suitable). The rating of the other skills is
divided into four categories (e.g., for generating hypotheses I/II: no hypothesis, hypothesis,
explanation, relationship). Points can be awarded independently of each other. The highest
expression shown by a student was coded even if the same student did not demonstrate
the respective level at another occasion in the task because it was assumed that once
competency is expressed in performance, it can, in principle, be shown again and again.

2.6. Sample

Sixty preservice chemistry teacher students participated in the pilot study. Students
were on average 22.1 years old (SD = 3.2). The majority identified as female (34 partic-
ipants), 20 participants as male, and 4 did not provide a gender identification. Ratio of
female to male students is usually high at Technische Universität Faculty of Humanities
and Education Studies [91]. Average grade of school leaving certificate was 2.3 (SD = 0.55;
“Abitur”, grades may vary from 1.0 to 4.0, with 1.0 being the best possible grade). Forty par-
ticipants studied two STEM subjects, and 14 participants studied chemistry in combination
with a non-STEM subject. The majority of the preservice teacher students in the sample
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planned to teach at secondary schools up to 12th grade (n = 42; German “Gymnasium”),
and 15 participants planned to teach at secondary schools up to 9th or 10th grade (German
“Realschule/Hauptschule”). On average, participants were in their 3rd semester of the
bachelor (IQR = 2.75) when attending the organic chemistry laboratory. In addition, most
participants (n = 50) had attended the corresponding lecture in organic chemistry before
the laboratory; 29 had also passed the respective exam.

The data were collected between 2017 and 2020 in a pretest-posttest design, i.e.,
immediately before and after the laboratory course. Across all cohorts, some students
refused videography, and thus, in some cases, less data are available for skills planning
experiments I and observing and measuring than for those skills assessed from written records
(see Table 2). The self-assessment questionnaire was not administered in the control group
because it was not added to the study design until production of explanatory videos was
completed. SR tasks assessing formulating research questions and preparing data for analysis
were piloted in 2020 with a small cohort due to the pandemic.

Table 2. Sample sizes for tasks A1 to A5 (accompanying variables, [27]) and SR skills by group in the pretest.

Group A1 to A5 H I H II P I P II OM C Q D SA

control 28 28 28 11 28 11 28 − 1 − 1 −1

SR 18 18 18 17 18 17 18 6 6 18
alternative 14 14 14 11 14 11 14 − 1 − 1 14
Sum total 60 60 60 39 60 39 60 6 6 32

Abbreviations: H, generating hypotheses; P, planning experiments; OM, observing and measuring; C, drawing conclusions; Q, formulating
research questions; D, preparing data for analysis; SA, self-assessment. 1 Task/questionnaire not yet implemented.

3. Results

Psychometric properties of the instruments were calculated using pretest data from
the pilot study. Hypotheses were tested using pre- and posttest data. For a first insight
into the effects of the newly designed laboratory, pre- and posttest measurements from the
treatment groups were examined.

3.1. Self-Assessment Questionnaire

Self-assessment data on SR skills were collected in the treatment groups, totaling
32 participants. Item parameters of the self-assessment instrument show that students
rated their initial abilities as rather high (M from 3.06 to 4.50, see Table 3; rating on a scale
from 1 to 5). However, the majority of participants already judged their skills in using blanks,
observing and measuring, and drawing conclusions to be very high before participating in the
laboratory. Interestingly, for item “using control of variables strategy,” 15 out of 32 students
chose the alternative answer “I don’t know,” resulting in only 17 valid answers. Item
planning experiments was answered by six participants because it had only been added to
the questionnaire in 2020.

Both items planning experiments and using control of variables strategy were excluded
from calculations due to the small number of answers. Exploratory factor analysis of
the remaining six items using principal component analysis (PCA) with varimax rotation
showed a two-factor solution judging by Kaiser criterion (see Table 4) [93]. Rotated
component matrix of the two-factorial structure indicated that the second factor consisted
of only two items, using blanks and observing and measuring. These items identified as
measuring skills not exclusively associated with inquiry experiments but also needed
when conducting cook-book experimental procedures. Both items were excluded from the
potential scale of SR skills. Reliability of the adapted four-item scale “self-assessment of
scientific reasoning competency” gave an acceptable Cronbach’s α of 0.787 (4 items, n = 29)
and a rather high inter-item correlation of 0.488 but still considerably lower than α [94,95].
No improvements of Cronbach’s α were achievable by further removal of items. Mean
score on the four-item scale was M = 14.97 ± 2.442.
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Table 3. Self-assessed scientific reasoning skills in the pretest (M, mean; SD, standard deviation; Pi, item difficulty; n, sample
size; assessment on a 5-point scale).

SR Skill M SD Pi n

formulating research question 3.27 0.907 0.57 30
generating hypotheses 3.68 0.832 0.67 31
planning experiments 1 3.83 0.753 0.71 6

using control of variables strategy 3.06 1.298 0.51 17
using blanks 4.09 0.818 0.77 32

observing and measuring 4.50 0.672 0.88 2 32
preparing data for analysis 3.88 0.833 0.72 32

drawing conclusions 4.03 0.647 0.76 32
1 Item removed from the scale due to small sample size. 2 Item difficulty indicates ceiling effect. (A ceiling effect is defined as “a situation
in which the majority of values obtained for a variable approach the upper limit of the scale used in its measurement. For example, a test
whose items are too easy for those taking it would show a ceiling effect because most people would achieve or be close to the highest
possible score. In other words, the test scores would exhibit skewness and have little variance, thus prohibiting meaningful analysis of the
results” [92].)

Table 4. Rotated component matrix of self-assessed scientific reasoning skills in the pretest (n = 29).
Factor loadings negligibly small (<0.3) [93] are set in gray.

SR Skill Component 1 Component 2

formulating research question 0.798 −0.053
generating hypotheses 0.755 0.247

using blanks 0.074 0.879
observing and measuring 0.115 0.900

preparing data for analysis 0.809 −0.010
drawing conclusions 0.745 0.261

Pre- and posttest data of self-assessment from the treatment groups were compared
using the four-item-scale. Wilcoxon test was used due to small sample sizes. In both
groups, a tendency for improvement toward the posttest is visible yet not significant (see
Table 5).

Table 5. Analysis of differences between pretest and posttest in SR skills in the treatment groups,
calculated using Wilcoxon test (M, mean; SD, standard deviation; n, sample size; Z, parameter of
Z-distribution; p, significance level).

Treatment Groups Pre Post Z p 1

M SD n M SD n

alternative 15.75 2.527 12 16.75 2.137 12 −1.299 0.116
SR 14.44 2.366 16 15.00 2.608 16 −0.829 0.215

1 Exact significance is reported due to small sample size (n < 30).

3.2. Accompanying Variables

As Kraeva [14] had constructed the instrument for school students grade 5 to 10, yet
as a tool not relying on prior knowledge, we investigated whether item difficulties in
the accompanying variables (tasks A1 to A5) might hint at ceiling effects [92], potentially
rendering the test too easy for university students. Means and item difficulties from
pretest data of the pilot study show that students achieve moderate to high scores in the
accompanying variables of the paper-pencil test. The test does not produce ceiling effects
except for the task on content knowledge (see Table 6).

Kraeva [27] found small but significant correlations between tasks A1 (prior knowl-
edge from everyday life) and A2 (prior knowledge from chemistry content knowledge) as
well as between tasks A4 (explaining results) and A5 (generating a hypothesis and planning
a corresponding but hypothetical experiment) and had hence subsumed tasks A1 and A2
to form a measure for prior knowledge and tasks A4 and A5 to measure methodological
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knowledge. We therefore expected to find similar correlations, while task A3 (“documen-
tation”) was expected not to correlate (Hypothesis 1). Correlations with medium effect
sizes [96] were found between tasks A1 and A2 (r = 0.332; p = 0.010; n = 60), tasks A3 and
A1 (r = 0.320; p = 0.013; n = 60), and tasks A3 and A4 (r = 0.301; p = 0.019; n = 60), but no
significant correlations with task A5 were found. For following analyses, tasks A1 and A2
were therefore subsumed as “prior knowledge” [27]; tasks A3, A4, and A5 were treated
as separate items. In addition, task A5 was also rated using coding manuals for SR skills
generating hypotheses II and planning experiments II (see Section 3.3).

Table 6. Item parameters of tasks A1 to A5, pretest data from the pilot study (M, mean; SD, standard
deviation; Pi, item difficulty; n, sample size).

Task M SD Pi n

Everyday life knowledge (A1) 1.32 1 0.833 0.66 60
Content knowledge (A2) 1.62 1 0.691 0.81 3 60

Prior knowledge (A1 + A2) 2.93 2 1.247 0.73 60
Documentation skill (A3) 0.88 1 0.904 0.44 60

Explaining (A4) 1.25 1 0.795 0.63 60
Hypothesis and planning (A5) 0.90 1 0.730 0.45 60

Methodological knowledge (A4 + A5) 2.15 2 1.147 0.54 60
1 Maximum of 2 points. 2 Maximum of 4 points. 3 Item difficulty indicates ceiling effect [92].

Furthermore, we expected that pre- and posttest performance of participants would
not differ in the accompanying variables, accounting for comparability of the pre- and
posttest booklets (Hypothesis 2). To eliminate any potential influence from the intervention,
only data from the control group were used in the comparison. Table 7 shows results from
Wilcoxon signed-rank test indicating no significant differences between pretest and posttest
performance of the control group in the accompanying variables.

Table 7. Analysis of differences between pretest and posttest in tasks A1 to A5 in the control group, calculated using Wilcoxon
signed-rank test (M, mean; SD, standard deviation; n, sample size; Z, parameter of Z-distribution; p, significance level).

Pre Post Z p 3

Task M SD n M SD n

Prior knowledge (A1 + A2) 3.18 1 1.278 28 3.07 1 1.016 28 −0.149 0.893
Documentation skill (A3) 1.00 2 0.861 28 0.89 2 0.875 28 −0.528 0.637

Explaining (A4) 1.29 2 0,763 28 0.93 2 0.813 28 −1.586 0.132
Hypothesis and planning (A5) 0.93 2 0.766 28 1.04 2 0.693 28 −0.786 0.515

1 Maximum of 4 points. 2 Maximum of 2 points. 3 Exact significance is reported due to small sample size (n < 30).

3.3. Scientific Reasoning Skills

In the pilot study, students’ SR skills generating hypotheses I/II, planning experiments I/II,
observing and measuring, and drawing conclusions were assessed on four-point scales using
either their written records of tasks in individual work, such as generating hypotheses II or
drawing conclusions, or video transcripts of tasks in pair work, such as planning experiments I
or observing and measuring (see Table 1 for details on data source per skill). Since analysis of
accompanying variables (see Section 3.2) showed that tasks A4 and A5 did not correlate
as was found by Kraeva [27], Task A5 was used to assess students’ SR skills generating
hypotheses II and planning experiments II in individual work with the manuals presented in
Section 2.5 (Table A1).

Content validity of the instrument and manuals was established in a group discussion
of eight members of staff in chemistry- and biology-teaching methodology. Reliability
of the data collection was assessed by computing interrater reliabilities for the manuals.
For this, the author conducted a rater training with the second rater (student research
assistant) after the development of the manual, in which the manual was first presented
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in general and discussed using some examples. Finally, the student raters’ questions
were clarified. Afterwards, the second rater coded 13% of the material and noted further
questions and ambiguities, which were then clarified in a second rater training session. This
was followed by the final coding of the material by both raters (13% student rater, entire
data set author 1), from which the results of the ICC were computed. Intraclass correlation
for absolute rater agreement in the presence of bias (ICC (A,1); [97]) was calculated, yielding
excellent reliabilities ranging from 0.915 to 1.000 ([98]; see Table 8). Interrater reliabilities for
the newly developed tasks measuring SR skills formulating research questions and preparing
data for analysis were not yet calculated because of small sample sizes in 2020 due to
pandemic regulations.

Table 8. Interrater reliability (ICC (A,1); [97]) of the manuals for SR skills.

SR Skills ρ p

generating hypotheses 0.915 0.000
planning experiments 1.000 0.000

observing and measuring 0.968 0.000
drawing conclusions 0.971 0.000

Means of students’ scores in the SR skills indicate that students already achieved mod-
erate results in the pretest (see Table 9). Item difficulties were high but showed no ceiling
effects, indicating that the tasks were not too easy for university students. For those skills
that were both assessed in individual work (generating hypotheses II, planning experiments II)
and in pair work (generating hypotheses I, planning experiments I), item parameters indicated
that pair work assessment results in a higher item-difficulty value, i.e., tasks in pair work
are easier for the students than tasks in individual work. Exploratory factor analysis (PCA,
varimax rotation [93]) indicated a two-factorial structure judged by Kaiser criterion (see
Table 10). Rotated component matrix showed that component 1 represents skills assessed
in individual work using written records (generating hypotheses II, planning experiments II
and drawing conclusions), and component 2 represents skills assessed in pair work using
video data (planning experiments I and observing and measuring) as well as written records
(generating hypotheses I). However, observing and measuring shows a negative loading and
was therefore excluded.

Reliability was calculated for the potential scales “individual SR competency” using
variables generating hypotheses II, planning experiments II and drawing conclusions as well
as “SR competency in pair work” using variables generating hypotheses I and planning
experiments I. Cronbach’s α = 0.578 was found to be rather low for the three-item scale
“individual SR competency” (n = 60) but considerably higher than moderate average inter-
item-correlation of 0.335 [95]. For the two-item-scale in pair work, Cronbach’s α = 0.292
was not acceptable (n = 39). Even though some authors argue that a Cronbach’s α lower
than 0.7 is acceptable if item content is meaningful [94,95], we decided not to use the scales
but to report analyses of SR skills item-wise.

Table 9. Item parameters of objectively assessed scientific reasoning skills, pretest data from the pilot
study (M, mean; SD, standard deviation; Pi, item difficulty; n, sample size). From 0 to 3 points were
achievable in each skill.

SR Skills M SD Pi n

generating hypotheses I 2.15 0.880 0.72 60
generating hypotheses II 1.67 0.816 0.56 60
planning experiments I 2.13 0.656 0.71 39 1

planning experiments II 1.67 1.100 0.56 60
observing and measuring 2.03 0.668 0.68 39 1

drawing conclusions 2.07 1.023 0.69 60
1 Sample size is smaller because not all participants agreed to the videography.
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Table 10. Rotated component matrix of objectively assessed scientific reasoning skills in the pretest
(n = 39). Factor loadings negligibly small (<0.3) [93] are set in gray.

SR Skills Component 1 Component 2

generating hypotheses II 0.852 0.039
planning experiments II 0.777 −0.146

drawing conclusions 0.770 0.120
generating hypotheses I 0.213 0.784
planning experiments I −0.288 0.508

observing and measuring −0.023 −0.685

Table 11 shows mean pretest and posttest scores for SR skills of all three groups. On
average, students in all groups showed moderate abilities in all skills as well as a tendency
for increase in the posttest in nearly all skills. Participants from the alternative treatment
group seemed to achieve higher performances in pair work in the pretest (cf. generating
hypotheses I, planning experiments I). To determine whether the traditional laboratory already
enhances students’ SR skills (Hypothesis 3), two cohorts served as control groups. They
received the organic chemistry laboratory as originally designed, i.e., without an explicit
focus on inquiry experiments. Pre- and posttest data from the control group were tested
for differences in the variables generating hypotheses I/II, planning experiments I/II, observing
and measuring, and drawing conclusions. Differences between pre- and posttest were only
found to be statistically significant for the skill observing and measuring (see Table 11). In
this skill, the posttest shows a ceiling effect, as all participants achieved the full score in
the posttest. Hence, the posttest may have been too easy for the participants of the control
group regarding this skill.

Table 11. Comparison of pretest and posttest mean scores in objectively assessed scientific reasoning skills, calculated using
Wilcoxon signed-rank test (M, mean; SD, standard deviation; n, sample size; Z, parameter of Z-distribution; p, significance
level). p-values for nonsignificant test results (p > 0.05) are set in gray.

Pre Post Z p 1

SR Skills M SD n M SD n

control group
generating hypotheses I 2.04 1.055 27 2.41 0.694 27 −1.487 0.081
generating hypotheses II 1.63 0.792 27 1.59 0.931 27 −0.080 0.491
planning experiments I 2.36 0.809 11 2.82 0.405 11 −1.406 0.125
planning experiments II 1.59 1.047 27 1.81 1.145 27 −0.851 0.221
observing/measuring 2.00 1.095 11 3.00 0.000 11 −2.460 0.008
drawing conclusions 2.04 1.224 27 2.07 0.997 27 −0.054 0.485

alternative group
generating hypotheses I 2.46 0.776 13 2.46 0.877 13 −0.122 0.500
generating hypotheses II 1.46 0.877 13 2.15 0.689 13 −1.852 0.043
planning experiments I 2.45 0.522 11 2.64 0.809 11 −0.816 0.344
planning experiments II 1.62 1.121 13 2.77 0.832 13 −2.461 0.008
observing/measuring 2.09 0.701 11 1.91 0.701 11 −0.694 0.242
drawing conclusions 2.15 0.987 13 2.31 0.751 13 −0.491 0.375

SR group
generating hypotheses I 2.00 0.612 17 2.59 0.618 17 −2.352 0.014
generating hypotheses II 1.94 0.827 17 2.18 0.728 17 −1.069 0.216
planning experiments I 1.76 0.437 17 2.76 0.664 17 −3.127 0.001
planning experiments II 1.82 1.185 17 2.24 0.970 17 −1.137 0.146
observing/measuring 2.00 0.000 16 2.13 0.619 16 −0.816 0.344
drawing conclusions 2.06 0.748 17 1.71 0.985 17 −1.604 0.091

1 Exact significances are reported due to small sample sizes (n < 30).
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Furthermore, we hypothesized that both treatment groups would show an increase
in SR competency (Hypothesis 4). Both groups had significantly higher mean scores in
generating hypotheses and planning experiments in the posttest than in the pretest (see Table 11).
Interestingly, for the SR group, this only applies to the skills assessed in pair work, while
for the alternative group, the increase is only significant for the skills assessed in individual
work. Regarding the alternative group, skills assessed in pair work were already rather
high in the pretest compared to individual skills. If pretest values are high, there is less
room for improvement. Nevertheless, a total number of 13 participants equal 6 groups at
most, reducing validity of the comparison. Furthermore, in contrast to the control group,
neither treatment group achieved a significant increase in observing and measuring toward
the posttest. Neither the treatment groups nor the control group showed an increase in the
skill drawing conclusions. Still, it should be noted here that the small sample sizes of the
pilot study, especially in the alternative group, limit generalizability of these findings.

So far, performances of control and treatment groups were compared independently
of each other, yielding five significant achievement gains. Hypothesis 5 assumed that
students in the SR group show a greater learning gain in SR competency than students
in the alternative group. To enable a comparison among the groups, gains in each skill
were calculated by distracting participants’ pretest scores from their posttest scores. Then,
Kruskal–Wallis H test was performed on the pre-post differences, indicating the only group
difference in the skill planning experiments I (see Table 12). A post-hoc test (with Bonferroni
correction) showed that the group difference resulted only from a significant difference of
learning gain between alternative group and SR group (z = −2.487; p = 0.039). So far, it can
be concluded that control group and alternative group did not differ in learning gains, but
participating in the SR group led to a significantly larger learning gain in the skill planning
experiments I. Beyond that skill, no other differences were found between alternative and
SR groups or control group and SR group. As was stated before, limitations regarding
generalizability of these findings apply due to the small sample sizes.

Table 12. Comparison of groups for mean pretest-posttest differences in objectively assessed scientific reasoning skills,
calculated using Kruskal–Wallis H test (M, mean of pre-post difference; SD, standard deviation; n, sample size; H, parameter
of H-distribution; p, significance level). p-values for nonsignificant test results (p > 0.05) are set in gray.

SR Skills Control Group Alternative Group SR Group H (2) p

M SD n M SD n M SD n

generating hypotheses I 0.37 1.214 27 0.00 1.414 13 0.59 0.870 17 1.455 0.483
generating hypotheses II −0.04 1.224 27 0.69 1.251 13 0.24 0.903 17 2.393 0.302
planning experiments I 0.45 1.036 11 0.18 0.751 11 1.00 0.866 17 6.742 0.034 1

planning experiments II 0.22 1.340 27 1.15 1.281 13 0.41 1.326 17 3.675 0.159
observing/measuring 1.00 1.095 11 −0.18 1.250 11 0.13 0.619 16 5.705 0.058
drawing conclusions 0.04 1.255 27 0.15 1.214 13 −0.35 0.862 17 1.495 0.474

1 Post-hoc test results: (z (control vs. alternative) = 0.746; p = 1.000; z (alternative vs. SR) = −2.487; p = 0.039; z (control vs. SR) = −1.664;
p = 0.288).

4. Discussion and Limitations of the Study

In this study, an already validated, performance-based instrument for description
of SR processes of school students was adapted for measurement of SR competency of
preservice chemistry teachers. Accompanying variables adopted from Kraeva [27] as
well as tasks measuring SR skills were found to be suitable for preservice chemistry
teachers regarding difficulty and comparability of test booklets (Hypothesis 2). Kraeva’s
performance test originally only involved generating hypotheses, planning experiments, and
drawing conclusions in a mixed format of individual and pair work. Due to the fact that,
in contrast to Kraeva [27], no significant correlation between accompanying variables
A4 and A5 could be identified, these variables were not summarized to form a measure
for methodological knowledge but treated as separate items. Even though Hypothesis 1
therefore had to be rejected in parts, the data from A5 could now be used to assess SR skills
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generating hypotheses II and planning experiments II from individual work. Furthermore,
the test was extended to measure observing and measuring in pair work in the pilot study.
Factor analysis indicated a two-factorial structure of SR skills, separating skills assessed
in individual work from those assessed in pair work. This is in accordance with findings
from other studies comparing individual and group performance [40,41]. Even though
reliabilities were low, tasks assessing skills individually yielded slightly more reliable data.
Still, excellent interrater reliabilities were found indicating reliability of the method for
collecting data on SR skills. Hence, for use in the main study, new tasks assessing skills
formulating research questions and preparing data for analysis were added to the test. Factor
analysis of SR self-assessment items indicated that the skills using blanks and observing and
measuring load on a different factor than the other SR skills, such as formulating research
questions or generating hypotheses. The former two skills seem to be not only relevant to
inquiry experiments exclusively but also to cook-book experimentation. For example,
Sudria and colleagues included observing in a set of practical laboratory skills [78].

The second aim of this project was to enhance preservice chemistry teachers’ SR
competency through experimental problem solving and explanatory videos in an organic
chemistry lab course. First insights can be inferred from comparison of control and treat-
ment groups in the pilot study. Even though 60 students in total participated in the pilot
study, the rather small sample sizes in each group still limit generalizability of the findings.
Both SR self-assessment and objective assessment data show that preservice chemistry
teachers in their second year at university already demonstrate substantial skill before
attending the laboratory. That is, without having received any explicit instruction on
inquiry learning or scientific reasoning so far. In comparison to instruments used with
secondary preservice science teachers in other studies [10,34,42], the instrument presented
here seems to be less difficult. This is in accordance with the origin of the instrument,
which was originally developed for school students [27]. Nevertheless, increases in several
skills were measurable (see below).

Students rated their own abilities in using blanks, drawing conclusions and observing
and measuring as particularly highly developed, while lower self-assessment of skills was
found for formulating research questions and using control of variables strategy. Especially the
control of variables strategy may be unknown to some preservice teacher students in their
second year of the bachelor, which might explain why students more frequently chose the
alternative answer “I don’t know” with this item. A similar pattern was found in the SR
skills assessed from students’ performance: students’ individual performance was found to
be relatively high in drawing conclusions and moderate in generating hypotheses and planning
experiments. This is accordance with findings from Krell and colleagues as well as Khan and
Krell that students’ performances are lower in formulating research questions and generating
hypotheses than in planning investigations, analyzing data, and drawing conclusions [34,42].
As was also demonstrated before [41], students scored more points in skills assessed in
pair work than in individual work: Performance for generating hypothesis I and planning
experiments I (assessed in pair work) tended to be higher than for generating hypotheses
II and planning experiments II (assessed in individual work). This is in accordance with
findings that groups have higher success in problem solving than individuals because
they engage more actively in explanatory activities [41,99]. However, it cannot be said
with certainty that the higher score is exclusively due to the work in pairs. Stiller and
colleagues identified several features rendering test items difficult [100], such as text length,
use of specialist terms, and cognitive demands, i.e., use of abstract concepts (for instance,
also [101] in this special issue). A comparison of the experimental task and task 5 (see
Figure A1) indicates no difference in text length or use of specialist terms. Tasks involving
abstract concepts require participants to build “hypothetical assumptions [ . . . ] not open
to direct investigation” [100] (p. 725). This only holds true for planning experiments II
(planning of a hypothetical experiment) but not for generating hypotheses I/II, as these are
both hypothetical tasks. Moreover, students were not observed to change their answers in
task generating hypotheses I after writing up their answers to the experimental task. Kraeva’s
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test construction followed the Model of Hierarchical Complexity in chemistry (MHC) [102],
which describes task complexity with regard to the number of elements to be processed
and their level of interrelatedness. Both the experimental task and task 5 were constructed
on the highest level (“multivariate interdependencies”) [102] (p. 168); therefore, both tasks
require the same cognitive demands. Additionally, the students were videotaped while
solving the experimental task, which may have led to greater care and effort in solving the
task. Therefore, it cannot be conclusively clarified whether this is an effect of pair work.

Regarding the increase in skill achieved through participation in the lab course, some
learning gains were found in the control and treatment groups. As was expected for
the control group, an increase was only found for observing and measuring but not for
generating hypotheses, planning experiments, or drawing conclusions (Hypothesis 3). This
may be attributed to the fact that in the traditional laboratory, students were not asked to
generate their own research questions or hypotheses. Hence, there was also no need for
them to reason with respect to question or hypothesis, consequently yielding no increase
in these skills [6,86,87]. Hypothesis 3 was therefore provisionally accepted. Increases in SR
skills in the treatment groups were not as clear cut as hypothesized. Both treatment groups
showed an increase in generating hypotheses and planning experiments, whereas no increase
was found for observing and measuring and drawing conclusions. Thus, Hypothesis 4 could be
provisionally accepted for the respective skills. As the control group’s skill in observing and
measuring increased, an increase would have been expected in the treatment groups as well.
This may be attributed to several possible reasons: On the one hand, cognitive demands
placed on the treatment groups due to the additional and new learning objectives in the
intervention (such as generating hypotheses) could have been too high, therefore reducing
cognitive capacity directed at skills students might have perceived as already familiar to
them. On the other hand, since observing and measuring showed negative factor loading
on SR skills in pair work, there might as well be an issue with the assessment of this skill
either in the manual or in the task. Hence, this skill should undergo revision before start of
the main study. So far, Hypothesis 5 had to be rejected since the SR group only showed a
significantly larger learning gain than the alternative treatment group in one skill, planning
experiments I, but no difference in learning gain compared to the control group. Since the
data analyzed here belonged to the pilot study and therefore only give a first indication of
the effectiveness of the intervention, both hypotheses 4 and 5 will have to be tested again
in the main study.

Qualitative assessment was chosen to arrange for a more individualized view on
students’ skills; yet, quantitative analyses show that small sample sizes are a serious
limitation of the presented investigation. This applied particularly to the very small sizes
of the treatment groups due to the piloting. Resulting from this, issues arose for the ratio
of items to participants in the factor analyses as well as regarding the low reliabilities of
the instruments. Furthermore, conducting parts of the performance tasks in pair work
led to reliability issues in comparison to individually assessed SR skills, negating the
advantage of the pair-work format in enhancing communication and hence accessibility of
participants’ thoughts [40]. In addition, since the original test instrument was constructed
for school students, we expected preservice teachers to achieve moderate to high scores. In
some variables however, this produced ceiling effects [92], such as in the control group’s
posttest for performance-based SR skill observing and measuring or in the self-assessment
in the respective skill. This may lead to a failure of the instruments in differentiating
potential gains in these skills due to the treatment. Furthermore, negative factor loading
of SR skill observing and measuring demands that the respective task and manual should
undergo revision before conducting the main study. Regarding the late introduction of the
self-assessment questionnaire in the design of the study, comparison of self-assessed skills
in the control group was impossible. Moreover, no gains in self-assessment of skills were
found for the treatment groups. It cannot be ruled out that the pandemic had an influence
on student motivation in the 2020 cohort, as lab activities had to be conducted under strict
pandemic restrictions, for example, prohibiting pair work in the lab. Furthermore, the
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pandemic may also have had an impact on the researchers’ and assistants’ performance
in the laboratory due to uncertainties in the planning process. Since the 2020 cohort was
part of the SR group, this limits the scope of the findings from comparison of treatment
groups even more. New pandemic regulations may also hinder the further conduction of
this study.

5. Conclusions and Future Directions

With the performance-based instrument presented here, so far, four SR skills as well
as gains in SR skills could be measured on a fine-grained level. Hence, the main aim of this
pilot study was partially achieved. For the further course of the project, assessment tasks
for the skills developing research questions and preparing data for analysis will undergo further
investigation as soon as pandemic restrictions permit standardized test administration
and delivering of the laboratory. In addition, task and manual assessing observing and
measuring will be inspected critically. As for the self-assessment questionnaire, items for
planning experiments and using control of variables strategy need further testing also regarding
students’ understanding of the items. For a more thorough investigation into the effects of
the redesigned laboratory on preservice chemistry teacher students’ objectively measured
and self-assessed SR skills, a main study will be conducted. It remains to be seen what
impact the interventions will have on students’ scientific reasoning.
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Appendix A Excerpts from Test Booklet and Coding Manual

Figure A1. (a) The experimental task “surface tension,” measuring SR skills generating hypotheses I, planning experiments
I, and drawing conclusions; (b) Task 5, measuring SR skills developing research questions, generating hypotheses II, and
planning experiments II.

Figure A2. Task 6. Preparing data for analysis.
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Table A1. Excerpt from coding manual for SR skills developing research questions, generating hypotheses I/II, planning
experiments I/II, observing and measuring, preparing data for analysis, drawing conclusions. A maximum score of 3 points
can be achieved in each skill. Based on [26–28,90].

Developing Research Questions Points

No question is formulated or the question does not address the topic. 0
The question addresses the subject and can be answered using scientific methods. 1

The question is formulated intelligibly and as an open-ended question. 1
The variables specified in the question denote general concepts (not individual cases) 1. 1

Generating Hypotheses I/II Points
No hypothesis is generated or the hypothesis does not address the topic and/or the statement is
formulated using “may,” “might,” “could,” “can,” or other expressions differentiating a scientific

hypothesis from a mere assumption.
0

A prediction or hypothesis addressing the topic is formulated. 1
The prediction/hypothesis is complemented by an explanation in one or more sentences. The

guess/hypothesis is investigable. The guess/hypothesis is falsifiable. 1

The prediction/hypothesis specifies a relationship between to variables (can also be represented by
bullet points or arrows/drawings). 1

Planning Experiments I/II Points
No experiments are named or planned. 0

The student explicates planning (also partial steps). 1
The student plans (and executes 2) an experiment that is not suitable. 2

The student plans (and executes 2) an experiment that is suitable. 3
Observing and Measuring Points

No observation or measurement is explicated or the observation/measurement is entirely incorrect or
the observation/measurement does not address the topic. 0

The student explicates that he/she is observing/measuring. The observation/measurement is
relevant to the topic and refers to what is happening in the experiment. Few mistakes are made in the

(order of the) observation/measurement.
1

The observation/measurement contains the essential elements of what is happening in the
experiment. Data are recorded correctly but using an unsuitable method of measurement. 2

The observation/measurement is purposeful, exhaustive and correct. Data are recorded correctly by
using a suitable method of measurement. 3

Preparing Data for Analysis Points
Task is not answered. 0

Correct type of diagram (line graph/bar chart) is chosen. Variables are correctly assigned to the axes.
Axes labels (arrows, categories, or physical quantities and respective units of measurement) are

correct.
1

Ratio scales start at zero or explicitly show that the range does not start at zero. Similar distances on a
ratio scale denote similar differences in the physical quantity. Tick mark labels/category labels are

provided. Lengths of the axes are chosen sensibly.
1

The diagram is neatly drawn. All data points/bars are plotted. Diagram does not extend beyond the
specified drawing area. Data points/bars are legible and displayed uniformly and neatly. 1

Drawing Conclusions Points
Task is not answered or answer does not address the topic. 0

The student names a result. 1
The student’s answer is related to the hypothesis (confirmation or rejection). 1

The student’s answer is based on his/her observation/measurement. 1
1 Anchor example: general concept: “surface tension of liquids”; individual case: “surface tension of water”. 2 Only relevant for rating of
SR skill “planning experiments I” in videotaped sequence.
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gelişim testi. Türk Bilgisayar ve Matematik Eğitimi Dergisi 2018, 9, 413–448.
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Abstract: Understanding and knowledge of scientific reasoning skills is a key ability of pre-service
teachers. In a written survey (open response format), biology and chemistry pre-service teachers
(n = 51) from two German universities claimed central decisions or actions school students have to
perform in scientific reasoning in the open inquiry instruction of an experiment. The participants’
answers were assessed in a quality content analysis using a rubric system generated from a theoretical
background. Instruments in a closed response format were used to measure attitudes towards the
importance of diagnostics in teacher training and the domain-specific expectations of self-efficacy.
The pre-service teacher lacked pedagogical (didactics) content knowledge about potential student
difficulties and also exhibited a low level of content methodological (procedural) knowledge. There
was no correlation between the knowledge of student difficulties and the approach to experiment-
ing with expectations of self-efficacy for diagnosing student abilities regarding scientific reasoning.
Self-efficacy expectations concerning their own abilities to successfully cope with general and exper-
imental diagnostic activities were significantly lower than the attitude towards the importance of
diagnostics in teacher training. The results are discussed with regard to practical implications as they
imply that scientific reasoning should be promoted in university courses, emphasising the impor-
tance of understanding the science-specific procedures (knowing how) and epistemic constructs in
scientific reasoning (knowing why).

Keywords: professional knowledge; scientific reasoning skills; self-efficacy; students’ difficulties;
diagnostic competencies

1. Introduction

Inquiry-based teaching is seen as contributing to content, procedural, and epistemic
learning goals of science education [1]. Therefore, a basic understanding of the systematic
approach to conducting science investigations is required in the competencies of scientific
inquiry (e.g., in the US [2] and in the UK [3]). In Germany, these are reported for biology,
chemistry, and physics with similarly formulated educational standards [4–6], allowing
these competencies to be promoted in a networked manner both vertically within a subject
and horizontally across subjects [7]. This applies also to the field of school education
and in the training of pre-service teachers. Both areas are in turn directly related, i.e., the
knowledge and skills (for scientific inquiry) of the teacher shape the teaching with learning
opportunities (for inquiry-based science education) and thus the potential learning success
on the part of the students [8]. As a result, at the international and national levels, standards
for the teaching profession are also being formulated and science teaching competencies
described for teacher education [9–11]. Common to them are the requirements for future
teachers to build up science education about and through scientific inquiry as their own
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competence, as well as to learn how to teach scientific inquiry in order to be able to pro-
mote corresponding competencies in students. For example, (ongoing) teachers have to
be competent themselves in designing empirical approaches to test hypotheses, and need
knowledge as well as skills in hypothesis-led experimentation [12]. Studies on the develop-
ment of pre-service science teachers’ scientific reasoning competencies show that explicit
reflections about scientific reasoning (i.e., learning about science; [13]) contributes more
to the development of scientific reasoning competencies than only doing science without
reflecting about it [14,15]. In the course of this, knowledge about and understanding of
scientific inquiry and scientific reasoning is relevant [16], and can also be used as constructs
for the analysis and assessment of learning activities and learning outcomes [17].

1.1. Scientific Reasoning

In many studies, the terms scientific reasoning and scientific thinking are used inter-
changeably because the boundary between reasoning and thinking is blurred (e.g., [18–20]).
Scientific reasoning thus forms the basis for critical thinking and is only one, albeit very
significant, aspect in the process of thinking about (scientific) facts (e.g., [21–24]). Scientific
reasoning can therefore be interpreted as a subset of critical thinking skills (cognitive and
metacognitive processes and dispositions) that are essential for scientific procedures in
the problem-solving process, the evidence of information in scientific disciplines, and the
epistemological incorporation of scientific methods and paradigms [25]. There are a range
of views on the structure of scientific reasoning and on the number of its components. Two
groupings can be distinguished: while one emphasises scientific reasoning as a broad and
complex component representing a particular skill, understanding, or competence [26], the
other grouping opposes the advocacy of multidimensional theories [27].

Since the 1970s, according to Dunbar and Fugelsang [28], scientific reasoning has
also been viewed as a way of solving problems, with great efforts being made to iden-
tify strategies that scientists use to solve problems. Competencies required for scientific
reasoning are viewed as a complex construct, encompassing both the skills required for sci-
entific problem solving and the ability to reflect on problem solving at a meta-level [29,30].
The scientific discovery process is best conceptualised as involving both reasoning and
problem-solving skills, with the ultimate goal of generating, testing, and then evaluating a
hypothesis about a causal or categorical relationship based on the results. Both of these
skills—strategy development and reasoning processes—require knowledge to identify key
features of a problem at hand [31]. Problem solving requires three types of knowledge in
a complex construct (knowing that, knowing how, knowing why, cf., [29,32,33]. Explicit
procedural knowledge, in turn, addresses the execution level and thus the “knowing how”
and practical implementation of actions to solve problems [32,33]. In his structural model
of scientific reasoning, Mayer [34] identified, in addition to personal variables, such as
(prior) knowledge and cognition, four process-related skills/subcompetencies:

1. Formulating scientific questions;
2. Generating hypotheses;
3. Planning scientific investigations;
4. Interpreting data, which are differentiated via different aspects of competence, e.g., [35].

In the execution of these process steps in problem-oriented and inquiry-based teaching,
content knowledge is to be applied and methodological knowledge is to be developed and
applied in equal measure [19]. Experimentation is considered to play a central role in the
process of scientific inquiry as a content and method in science education [36]. “Scientific
reasoning is defined as the inquiry processes [ . . . ] [and] the reasoning skills involved
in experimentation, evidence evaluation, and inference making addressed to scientific
understanding” [37] (p. 106). In the present study, scientific reasoning is predominantly
defined from a procedural perspective and thus addressed in the most open-ended problem-
solving process possible using the method of experimentation.

In order to perform diagnostics and scaffolding in the (experimental) inquiry process,
knowledge about scientific reasoning, as well as about the implementation and associated
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difficulties on the part of the learners of scientific reasoning, plays a central role for (pre-
service) teachers. Given this significance, the key difficulties faced by students will be
outlined below in a summary of the literature.

1.2. Literature Summary on Student Difficulties in the Experimental Problem Solving Process

Experimentation demands and promotes a wide range of cognitive, psychomotor,
and social skills in students [35]. In this context, the SDDS model (Scientific Discovery as
Dual Search; [22]) as well as the structural model for scientific reasoning [34] with their
anchoring in problem-solving research is relevant for both the conceptualisation and the
assessment of competencies in the science subjects of biology [37–41], chemistry [42–44],
and physics [45–47], respectively, and is central in natural science studies [7,48]. In pro-
moting the competencies underlying each model, the inquiry-based learning approach
is shown to be superior to direct instruction on these [49]. In inquiry-based learning, the
degree of student activity or, respectively, the open-endedness in the experimentation
can be designed differently (levels of inquiry [50]) and thus influence learning success.
In the literature, on the one hand, the high value of independence in experimentation
compared to teacher demonstration experiments is emphasised (e.g., [51,52]) and, on the
other hand, the guided inquiry approach with targeted support of learners in the phases
for experimental problem solving is attributed the highest effectiveness [53]. Vorholzer
and von Aufschnaiter [54] identify three main dimensions in which the implementation of
guidance can vary: (a) the degree of autonomy, (b) the degree of conceptual information,
and (c) the cognitive domain of guidance. Independent experimentation can be understood
as a relatively complex cognitive problem-solving process that is particularly challenging
for students (cf., [55,56]) and consequently requires scaffolding in the different dimensions,
process steps, and/or competencies. Accordingly, pre-service science teachers must be
provided with learning opportunities to acquire these competencies, to foster their own
reasoning in science alongside how to teach students how to reason. They should also be
enabled to plan and implement targeted lessons that enable their students to acquire the
scientific reasoning competencies for experimentation and experimental problem solving
required by the educational standards of many countries [4–6,57]. Neither mere boiler-
plate imitation of experiments nor participation in teacher demonstration experiments
by students leads to the desired mastery of the scientific reasoning process [58]; nor are
approaches opened too early effective [59,60]. The latter can create numerous difficul-
ties/barriers for students to overcome during experimentation. According to the structural
areas/phases of hypothesis, planning/execution, and testing, as well as conclusions and
evaluation of results in the models of Klahr [22] and Mayer [34], the misconceptions and
student difficulties described here descriptively and proven empirically are summarised in
Table 1.

Table 1. Overview of process-related misconceptions and difficulties of students in experimentation
published in the literature (references in brackets on the right side) structured and summarised
according to the three phases for scientific reasoning of the SDDS model [22].

Phase: Search Hypothesis [39,61–67]

No hypothesis is formulated.
No alternative hypotheses are formulated.

There is no idea about the purpose of hypothesising.
Hypotheses are not related to the research question.

Hypotheses are formulated and/or changed in the scientific inquiry process.
In the hypothesis, the variables are not defined or are defined incorrectly.

Hypotheses are formulated without justification (conjectures).
Assumptions are justified by themselves.

Assumptions are justified with reference to everyday life.
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Table 1. Cont.

Phase: Planning and Testing [39,56,63,66–76]

Experiment is not suitable for testing the hypothesis.
No plan and/or unstructured trial and error (no plan, change all).

Missing and/or incorrect operationalisation of variables.
Unsystematic handling of variables, i.e., several variables are confounded with each other or the

same variable is varied unsystematically.
Planning of an experiment that does not lead to the desired results.

Lack of a measurement concept/measurement repetitions.
Lack of a control approach and/or attention to control variables.

Selection of materials is unsystematic, incomplete and/or done by trial and error.
Difficulties in handling (simple) materials (e.g., pipette).

Wrong observation focus.
Interference factors are perceived but not eliminated.

Phase: Evaluate Evidence [63,66,67,72,75,77–80]

Hypothesis is confirmed without considering the results (confirmatory bias).
Hypothesis is adjusted to the results.
Data are not (re)related to hypothesis.

Not all results are considered; (unexpected) results are (partly) ignored.
Unexpected results are attributed to errors in the experimental procedure.

Missing or incomplete (error) reflection of the results.
Wrong conclusion from coherent experiments.

Due to unsystematic variable variation, no conclusions can actually be drawn, or illogical
conclusions are drawn.

1.2.1. Formulating/Search Hypothesis

When generating hypotheses, students often find it difficult to make educated guesses.
They do not consider preconditions such as justification or verifiability—in principle or
with the given experimental materials. The procedure that several hypotheses are to be
set up is mostly unknown to them or only the one they think is correct is considered
(e.g., [64,81]).

1.2.2. Design and Execution of the Experiment

It is often observed that the students do not plan out their approach to the experiment,
but instead carry it out immediately and instinctively with no pre-determined method in
mind. This can result in the steps in the experiment not being purposeful and the procedure
being changed several times [72]. Hammann and colleagues [40] describe this unstructured
trial-and-error approach as “no plan, change all”. The most important scientific reasoning
skill describes the control of variables strategy [70]. The difficulties of students here lie
in identifying the dependent and independent variable ([82,83], among others), and in
the fact that the variable control is often not considered and confounding variables are
not excluded [63]. Moreover, a control approach is usually missing, and measurement
repetitions are rarely performed [39,69,82,83]. Sometimes students try to create an effect
rather than conduct a goal-directed experiment [75,78]. Inefficient experimentation is
also evident, e.g., the same experiment is repeated multiple times [81]. Kraeva [44] was
able to identify six different approaches of students in conducting chemistry experiments
through video analysis, classified in terms of the attributes “plan” versus “try” as well
as “maintain”, “develop”, and “discard”. “Revision” as a planning-reviewing strategy
was described as relatively successful, whereas ‘imitation’ (exploratory-alternative-less)
was described as a relatively less successful strategy. This corresponds with the courses of
action taken by students when experimenting to clarify a biological phenomenon in the
sense of a process-oriented or explorative type [39].
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1.2.3. Evaluation of the Evidence

The generated data are partly disregarded, while conclusions are drawn illogically
and for the most part not related back to the hypothesis [67]. Hammann ([84], p. 200)
refers to the hasty termination of the search for possible hypotheses and thus to the wrong
conclusion as “positive capture”. He calls the “most robust finding in the literature” the
“confirmation bias” [62,79], i.e., the tendency to confirm hypotheses while ignoring contra-
dictory data [84]. Dunbar [85] distinguishes between two approaches to data evaluation:
the “find-evidence-goal” approach, i.e., looking for results that confirm the hypothesis, and
the “find-hypothesis-goal” approach, i.e., looking for new hypotheses after non-confirming
results that then reflect the results. Evaluation of the evidence in the form of referring back
to the hypothesis rarely occurs, as does discussion of error [39].

The probability of success for a specific experimentation process depends on the one
hand, on the requirements resulting from the individual phases of the experimentation
process [86], and, on the other hand, on personal characteristics, such as interest in the
subject or general cognitive performance of the students [55]. For diagnosis, in this case
the assessment of students’ abilities and performance in experimental problem solving, the
discrepancy between students’ conceptions and students’ actions on scientific concepts for
experimentation is used [87,88]. Draude [89] was able to demonstrate deficits regarding
the diagnosis of student difficulties in experimentation for physics teachers, whereby the
necessary prerequisites are hardly developed and promoted in the teacher training pro-
grams [75,90]. In a longitudinal two-year study with biology pre-service teachers, insights
into the structure and change of their diagnostic competence and possible influencing fac-
tors were obtained [91]. Diagnoses of student difficulties and performance in experimental
problem solving can only succeed if pre-service teachers themselves have the appropriate
(professional) knowledge of the subject matter to be diagnosed. Otherwise, diagnostic
processes will be impaired by the existing knowledge gaps [92]. Before a promotion in
this area can and should be targeted and discussed as a training element in teacher ed-
ucation, we pursue with this study the concern to describe pre-service science teachers’
scientific reasoning competencies in order to derive the relevance of possible curricular
implementations in subject, subject didactics, and educational science for diagnostics in
experimentation. As described, the latter is of importance in all study elements, but is
located differently and requires a theory-related consideration in the following.

1.3. Relevance of Diagnostic Competencies for (Pre-Service) Teachers

Diagnostic competence of teachers describes both the ability to successfully cope with
the diagnostic tasks arising in the teaching profession and the quality of the diagnostic
performance [93]. Making efficient instructionally relevant decisions is impossible without
being able to identify, understand, and even predict instructionally relevant situations
and events [94]. Thus, the investment of a (subject-related) diagnostic competence of (pre-
service) teachers seems to be an indispensable prerequisite for the teaching profession [95]).
In Shulman’s three main domains of professional knowledge (content knowledge (CK),
pedagogical content knowledge (PCK), pedagogical knowledge (PK) [96], which is the most
widely used classification in the literature, knowledge about assessment and diagnosis is
classified in the domain of general didactical knowledge (pedagogical knowledge, PK) [97].
Kramer et al. [95] describe either PK (more generic: e.g., teaching disorder [98]) or the
subject-specific facets CK or PCK (e.g., diagnosing biology instruction, [99]) as relevant to
the application of diagnostic activities and diagnostic accuracy, depending on the diagnostic
focus. Results of path analyses utilising Rasch measures showed that both PCK and PK
were statistically significantly in relation to pre-service teachers’ diagnostic activities.
Additionally, biology teachers’ PCK was positively related to diagnostic accuracy [95].

Divergent assumptions exist about what comprises teachers’ diagnostic competence,
stemming from the fact that different aspects such as subject matter, method, and target
are modeled. The conceptualisation of diagnostic activities in which knowledge is ap-
plied in order to solve specific problems can be seen as equivalent to scientific reasoning
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skills [100]. Crucial for a sustainable diagnostic cycle is the transformation of competence
into performance mediated by situational skills of perception (P), interpretation (I), and
(action) decision (D) in the sense of Blömeke, Gustafsson, and Shavelson’s [101] model,
in which teachers’ competence is viewed as a continuum with multiple transitions (P-I-D
model of competence transformation). In this context, diagnostic competence presup-
poses the correct perception of relevant classroom features (noticing) and their evaluation
with reference to theoretically grounded, pedagogical action knowledge (reasoning) [102].
Draude [89] distinguishes between predictive and action diagnostic competence of physics
teachers. While the predictive competence measured the extent to which teachers could
predict students’ experimental difficulties in a particular physics experiment, the action-
accompanying diagnostic competence measured the extent to which teachers diagnosed
difficulties during the students’ experimentation process. He also found deficits in both
areas, so that a promotion of (pre-service) teachers’ skills in this regard seems to be indi-
cated [89]. In the present study, therefore, the predictive diagnostic competence of biology
and chemistry pre-service teachers with regard to student difficulties, misconceptions, and
the necessary central decisions students have to make during open-ended experimentation
was assessed by means of a text-based description of a teaching scenario for a student
experiment. In terms of examining diagnostic competence, self-report is common in re-
search, so there is a need for tools to survey diagnostic and reflective skills in a natural
setting [103,104].

1.4. Self-Efficacy Expectations

Self-efficacy expectations are considered another major aspect of teachers’ professional
competence; following Baumert and Kunter’s [105] model of professional competence,
self-efficacy expectations are considered relevant in addition to knowledge and attitudes.
Self-assessments related to motivation, personal engagement, or self-efficacy also appear to
be of value in better understanding the interplay between motivational and affective states
and diagnostic activities. Self-efficacy, first introduced by Bandura [106] as an aspect of
social cognitive learning theory, is described as the strength of one’s belief in one’s ability
to perform a particular task or achieve a particular outcome. Thus, assessing self-efficacy is
less about what skills and abilities individuals possess and more about what they believe
they can do with the skills and abilities they possess [107]. In this regard, competent perfor-
mance is guided in part by higher-level self-regulatory abilities [108]. These include general
abilities to diagnose task demands, construct and evaluate alternative courses of action,
set perspective-close goals to guide one’s efforts, and create self-incentives to maintain
engagement in stressful activities and manage stress and distracting thoughts [109]. Self-
efficacy correlates with academic performance [110,111], task persistence, motivation [112],
and resilience in academic contexts [113]. Self-efficacy varies depending on the situa-
tion and therefore needs to be considered or captured in a domain- and context-specific
manner [114]. Students’ self-efficacy in science education has been studied in the science
subjects of mathematics [115–118], physics [117], and chemistry [118,119]. With regard to
problem solving in mathematics, it was shown that even when students have the ability
to solve problems, those who have a strong self-efficacy expectancy are more effective
problem solvers [116,117].

Regarding the self-efficacy expectancy of (pre-service) teachers in science, there are
some less empirical findings [120–122]. In a study by Yürük [120], pre-service teachers
who had taken more science courses in college, felt better prepared to teach science content
and had higher levels of self-efficacy. Riese and Reinhold [123] addressed the relationship
between physics teachers’ CK and PCK (compare [96], see above) and their general and
classroom self-efficacy. They found a significant positive correlation between teaching-
related self-efficacy and CK. Kurbanoglu and Akim [121], meanwhile, show that low
self-efficacy expectancy regarding the subject of chemistry predicts chemistry laboratory
anxiety and has a negative effect on freshmen’s attitudes toward chemistry. In biology,
there have been very few studies on self-efficacy (compare [114,122,124]). The findings of
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Mahler, Großschedl, and Harms [124] indicate that teacher education in college, attend-
ing professional development courses, and self-study provide learning opportunities to
promote self-efficacy and enthusiasm for teaching. In addition, the authors found that
self-efficacy and subject-specific enthusiasm were positively related to PCK.

While self-efficacy or self-efficacy expectations are increasingly a focus of inquiry in
teacher education, very few studies can be identified that address the application of self-
efficacy theory to diagnostic skills or self-reported perceptions of self-efficacy as a predictor
of actual diagnostic skills in pre-service teachers. Motivation, attitude, and knowledge
were found to be significant positive predictors of diagnostic skills with respect to learning
behavior [125], whereas reflection on experience and self-efficacy were not found to be
relevant. In a study of German secondary mathematics teachers at two measurement points,
a causal effect of teacher self-efficacy expectations on subsequent instructional quality (self-
reported teachers’ self-efficacy and instructional quality) was partially found [126]. Given
the primarily heterogeneous and partly contradictory findings, the need for research on
self-efficacy or self-efficacy expectations in the context of diagnostic skills becomes clear.

1.5. Claim and Research Questions

In addition to content knowledge about the addressed context in an experiment and
about experimentation (CK), the teacher needs pedagogical content knowledge about
typical difficulties of students in the experimental implementation of the context as well
as about possibilities for action in the experimental instructional setting (PCK) [127,128].
In this study, these dimensions of professional knowledge are addressed as important
components in the formation of diagnostic competence. Consequently, the promotion of
diagnostic competence requires that these areas of knowledge are either developed or
are already present in the pre-service teachers. Especially in the first third of university
studies, it is important to clarify what previous knowledge students bring with them or do
not bring with them in the development of diagnostic competence for the assessment of
students’ skills to experiment or are not developed in the basic subject didactic training.
On this basis, university teaching-learning programmes can be optimized and tailored to
the target group. Since research studies in science education with a focus on the evaluation
of diagnostic competence in combination with subject-specific pedagogical knowledge
are rare so far [129,130], an explorative approach was chosen for the present study. In a
chemistry course and a biology course, respectively, at two institutions at the University of
Braunschweig and the University of Kassel the first step was to qualitatively investigate
the professional knowledge of methodological difficulties and central decisions/actions of
students in science experimentation among pre-service teachers in the first third of their
university teaching studies. For this purpose, the following explorative-qualitative research
questions were considered:

RQ1: Which difficulties in experimentation pre-service teachers with the subject
biology and/or chemistry are able to describe on the basis of their pedagogical content
knowledge (PCK) in the first third of their university studies?

RQ2: To what extent can pre-service teachers with the subject biology and/or chem-
istry describe central methodological contents and actions for experimentation in the
first third of their university studies and what (methodological) content knowledge is
predominant here (CK)?

A number of individual and contextual factors may influence the willingness and
ability of (pre-service) teachers to implement diagnostic activities (while experimenting) in
the teaching profession (cf., e.g., [125,131]). Attitudes toward the relevance and importance
of diagnostic content in teacher education and, more broadly, the teaching profession are
difficult to predict due to overlaps in the addressed knowledge domains. As a content
element of pedagogical/didactic and/or educational study elements, both higher and
lower attitude expressions would be expected according to the findings of Cramer [132].
Similarly, for the area of self-efficacy expectations with the specification of diagnostic
competence in subject-related settings of experimentation, there is a lack of empirical
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findings that can be used to make an educated guess about the expression in the sample
studied here. Consequently, the following additional descriptive-quantitative questions
were examined in order to draw statements about the expression of diagnosis-related
attitudes and self-efficacy expectations among pre-service teachers:

RQ3: What attitudes towards the relevance of diagnostics in teacher training and what
self-efficacy expectations for diagnostics in experimental settings show pre-service teachers
in the first third of their university studies and how are they related in terms of expression?

RQ4: Is there a relation between pre-service teachers’ attitudes towards the relevance
of diagnostics in teacher training rsp. self-efficacy expectations for diagnostic activities in
experimental settings:

a. . . . and their pedagogical content knowledge about difficulties of students in experi-
mentation?

b. . . . and their (methodological) content knowledge about central components and
decisions in scientific experimentation.

2. Materials and Methods
2.1. Procedure

The written survey on which this paper is based was conducted at the beginning of
two regular obligatory courses identified in the module plan from the 2nd semester of
the (bachelor/teacher) degree programme in chemistry at the University of Braunschweig
and biology at the University of Kassel. The procedure and information provided, as well
as the time frame for completion (approximately 30 min) were identical in the cohorts.
An online questionnaire was used to collect (a) demographic and academic information,
(b) pedagogical content-related diagnostic knowledge about student difficulties and central
actions or decisions of students in experimentation, and (c) the relevance of diagnostics
in teacher training as well as domain-specific self-efficacy expectations. When recording
the self-efficacy expectations, the participants were free to specify them in relation to the
subject biology or chemistry. They had to make a selection beforehand and were assigned
to the chemistry or biology sub-sample according to this selection (see Section 2.2).

Participation in the survey was anonymous and voluntary. For the release of the
socio-demographic, quantitative, and qualitative data of the closed-ended and open-ended
questions, the participants provided a declaration of consent for anonymous analysis and
publication.

2.2. Participants

The sample consisted of 51 pre-service teachers of biology and/or chemistry. Of these,
66.7% were female and the average age was 22 ± 2.6 years. Of the participants, 34 were
studying to become teachers at grammar schools and 17 were studying to become teachers
at secondary schools. The relevant sociodemographic data for both the total sample and
the sub-samples are presented in Table 2. In relation to the sub-sample, the proportions
of pre-service teachers in their second or fourth semester were 47% in biology and 62% in
chemistry. While a further 43% of pre-service teachers in biology were in their 6th semester,
the remaining proportion in chemistry was distributed among the higher semesters. The
average number of semesters is similar in both sub-samples, as is the distribution of gender
and the type of school targeted in the study programme (see Table 2).
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Table 2. Demographic characteristics of the participants.

n

Age
in Years Sex School Type Semester in

Biology
Semester in
Chemistry

M
(SD)

Female Male GYM HR M
(SD)

M
(SD)n (%) n (%)

Total sample 51 22.0
(2.6)

34
(67)

17
(33)

34
(67)

17
(33)

Sub-sample biology 30 21.9
(2.5)

22
(73)

8
(27)

19
(63)

11
(37)

4.7
(1.8)

Sub-sample chemistry 21 22.2
(2.8)

12
(57)

9
(43)

15
(71)

6
(29)

4.4
(2.1)

Annotation: n = number; M = mean; SD = standard deviation; GYM = “Gymnasium” (grammar schools); HR = “Haupt-/Realschule”
(secondary schools).

Approximately three-quarters of the participants had taken one or two courses in
subject didactics at the time of the survey (biology 67%, chemistry 77%); all others had
already taken three or more courses in subject didactics. At the University Braunschweig,
the largest proportion of pre-service teachers recruited were those from the chemistry sub-
sample. Only two participants of this sub-sample completed the survey in the context of a
chemistry didactic course at the University Kassel. Further participants from this course
could not be included in the analysis due to too high a semester number and missing data.
Accordingly, a description of the university teaching and pre-conditions for the chemistry
sub-sample focuses on the curricular structures at the University Braunschweig. Here,
pre-service teachers take subject courses in the first semesters, in which investigations tend
to follow detailed instructions in laboratory practicals. Content knowledge and skills in
natural sciences working methods and techniques and handling laboratory materials are
to be developed. In the 4th semester, pre-service teachers usually attend courses with
didactic content for the first time, in which, among other things, the hypothetical-deductive
processes for scientific inquiry and experimental problem solving are addressed. The data
collection took place at the beginning of the seminar “Simple scientific experiments”.

The biology sub-sample mainly consists of pre-service teachers with biology as a
subject from the University of Kassel. Here, too, there is an exception to two participants
who come from the University of Braunschweig and who chose biology rather than chem-
istry in the survey section on domain-specific self-efficacy expectations. However, since
more than 90% participated in the survey at the beginning of a course in the didactics
of biology at the University Kassel, the curricular structures available here are used to
describe the university teaching- and pre-conditions for the biology sub-sample. The first
two semesters of the biology teaching programme at the University of Kassel are also dom-
inated by subject-related biology courses (incl. laboratory). In addition, the basic module
“Introduction to Biology Didactics” with lecture and exercise should be completed in this
stage. In this module, two individual sessions provide basic background and information
on the scientific inquiry process and the associated subject-methodological (procedural)
knowledge. In each subsequent semester there are further subject didactic courses with
different emphases. The survey took place at the beginning of the course “Scientific inquiry
methods and lab techniques in biology teaching”, which is central to the content area
of scientific inquiry; it can therefore not be assumed that the participants have received
in-depth training in this area.

2.3. Instruments

Some authors critique a lack of validity evidence for instruments to assess scientific
reasoning competencies (e.g., [133,134]) and point out that multiple choice assessment
can hardly be seen as situations closely representing real life (e.g., [135]). In some studies
with students response processes have also been examined qualitatively (through thinking
aloud, eye-tracking studies, video recordings and written recordings), and these studies
confirmed that respondents use procedural and epistemic knowledge (e.g., [136,137]).
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Moreover, as science is constituted among others by specialized language [138], a central
part of this study is a qualitative instrument to determine pre-service teachers’ scientific
reasoning knowledge concerning student’ difficulties.

2.3.1. Student Difficulties/Misconceptions and Actions in Experimentation

The central concern of the open-ended questions posed here in two parts is to record
the pre-service teachers’ Pedagogical (didactic) Content Knowledge (PCK) about typical
students’ difficulties/misconceptions as well as their Content (methodological) Knowledge
(CK) about the processing of an experimental task for an authentic teaching scenario.
The latter is presented to the subjects in the form of a short progression plan from the
perspective of the teacher and the experimental task given to the students via a task sheet
(see Supplementary Materials S1). The phenomenon to be investigated here for dissolving
sugar is visualized to the (fictitious) students as well as to the pre-service teachers by a video
with a dialogue between two friends at and about a cup of tea (‘tea conversation’) and used
to derive the question “How does the time needed to dissolve sugar depend on different
influencing factors?” This task stem is followed by two open-ended questions or subtasks.
In part 1, the central difficulties of the students in accomplishing the set experimental
task or the planning and execution of an experiment on the dissolving time of sugar are
examined with regard to the content knowledge and the experimental implementation.
Part 2 explicitly aims to attain methodological (procedural) knowledge for the design of
experiments in the sense of the scientific inquiry process and to also indirectly overcome
possible obstacles to master this process for students. In this part, four central decisions or
necessary actions of the students to accomplish the experimental task are to be articulated
by the pre-service teachers in writing.

2.3.2. Relevance of Diagnostics in the Teacher Training Program

The measurement instrument for assessing attitudes toward the importance of di-
agnostics in teacher education includes five items, the language and content of which
were adapted to fit the focus of the present study, based on Lorenz [139]. Based on the
characteristic values obtained in this sample for Cronbach’s alpha [140] (pp. 281–302)
with 5 items, α = 0.64, and a low discriminatory power for the item: it is important for
teachers to be able to correctly assess students’ performance in experimentation (rit = 0.165),
a reduction of the scale to four items is made (α = 0.70). A complete overview of all items
can be found in Appendix A.

2.3.3. Domain-Specific Self-Efficacy Expectations

Based on the concept of self-efficacy as devised by Schwarzer and Jerusalem [141],
an instrument was developed for the domain-specific assessment of subjective certainty
in coping with diagnosis-related teaching activities in general, as well as in instructional
experimental settings. In addition to an explicit focus on this selected activity domain,
the item formulation describes the perceived ability to be assessed here as “proficiency”.
Moreover, the ability of an action is specified in its effectiveness via the inclusion of
challenges or obstacles or barriers to action in the item formulation [109]. The items used in
the present survey [142] were administered and piloted to 98 pre-service teachers majoring
in biology over three semester cohorts. Based on the piloting data, the dimensionality
of the scale was tested using exploratory factor analysis (principal component analysis
with varimax rotation) and internal consistency was tested using Cronbach’s alpha. Factor
analysis revealed two factors with an eigenvalue > 1 that explained 59% of the variance.
On the first factor, four items loaded highly (factor load (ajq) > 0.649). One additional item
loaded similarly on both factors; based on content, this item was assigned to the second
factor. Thus, factor one (experiment-related diagnostic activities) is represented by four
items whose content is explicitly diagnostic and/or experimental. On the second factor,
another three items loaded similarly highly (ajq > 0.709). Together with the content-related
item, this factor describes diagnostic activities implicitly and without the inclusion of
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experimentation/processes (general diagnostic activities). The reliability of the two scales
formed according to the two-factor model was in the good range (α ≥ 0.70). The items
and (factor analytic) findings for piloting the instrument on domain-specific self-efficacy
expectations can be found in Appendix B.

In the survey presented in this article, a further subject-related specification took place
in the item formulation and content orientation. In accordance with the sub-samples, the
subjects were provided with either biology or chemistry items to assess their self-efficacy
expectations. Using a 4-point Likert scale ranging from “does not apply at all” (1) to
“fully applies” (4), the pre-service teachers’ self-reports were recorded in relation to the
respective items. The empirically derived and validated scales from the pilot were adopted;
the biology sub-sample showed in the very good range (α ≥ 0.83) and the chemistry
sub-sample showed acceptable Cronbach’s alpha values (α ≥ 0.61).

2.4. Data Analysis
2.4.1. Qualitative Analysis Methods

The written student responses on knowledge about student difficulties and actions/
procedures during experimentation were analysed qualitatively according to the procedure
of a summarising content analysis with deductive-inductive category formation [143] using
the programmes MAXQDA 2020 and Excel 2016. For the first part with written pre-service
responses on student difficulties and misconceptions, the formation of content categories
was initially carried out deductively with a theoretical foundation based on research find-
ings, which primarily explicate the prior knowledge of the researchers involved in the
study [39,47], as well as on results from a wide range of literature sources (see Table 1).
Where possible, the references were classified in the process-related sub-steps of experimen-
tation in Mayer’s [34] structural model of scientific reasoning, whereby the formulation
of the question was already specified in the material. In the second part (procedure for
experimenting), the central decisions listed were sorted into subcategories inductively
formed on the material on the basis of similarities in content. These were then classified
by subsumption into supercategories based on the hypothetical-deductive procedure in
the experiment [34]. This systematic inclusion of deductively and inductively formed
categories served to identify and explore further meaning components in the process of
creating the category system up to the category definition through anchor examples [144].
The assignment of the student responses to the categories for the 1st and 2nd part was
carried out independently by two trained raters. Interrater reliability was estimated using
Cohen’s Kappa with the programme IBM SPSS Statistics (version 27) and is ‘substantial’
in the 1st part (Cohen’s κ = 0.80; p ≤ 0.001) and ‘almost perfect’ in the 2nd part (Cohen’s
κ = 0.903; p ≤ 0.001) [145]. Finally, the relative frequency for each code in each category
was calculated for each group of biology or chemistry students.

2.4.2. Quantitative Methods of Analysis

In order to analyse the attitudes towards the importance of diagnostics in teacher
education and domain-specific self-efficacy expectations towards diagnostic skills/actions
in teaching-learning settings for science experimentation, descriptive procedures, represen-
tations, and associated characteristic values were used and analysed with the programme
IBM SPSS Statistics (version 27). In the first step, deductively derived as well as newly
constructed items for the assessment of self-efficacy expectations were used in a pilot
sample in order to test them accordingly factor-analytically and in their reliability (see
Section 2.3.3). A further reliability test was also carried out for the two empirically derived
scales on domain-specific self-efficacy expectations as well as for the newly constructed
scale on the significance of diagnostics in teacher training in the sample on which this
study is based. Taber [146] was used to assess the Cronbach’s for internal consistency. In
the next step, the sample was analysed in the subjects included here and the constructs
examined in each case (Mann–Whitney U test; Wilcoxon test) in order to uncover any
differences in attitudes and self-assessments that could influence possible correlations
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with the results on the open-ended task and allow conclusions to be drawn about subject
specifics. According to Cohan [147], possible effects associated with this are rated as in-
significant for r < 0.10, weak for r = 0.10–0.30; medium for r = 0.30–0.50 and strong for
r > 0.50. In accordance with the goal of describing a comprehensive picture of the extent of
subject-specific methodological (procedural) knowledge of experimentation in combination
with diagnosis-related competence assessments in this area, frequencies and mean values
in the respective characteristics are reported and, in the last step, the correlations between
the quantitative and qualitative data are exploratively tested via correlations (Spearman
rank correlation). Due to the small samples that predominate, especially in the subject
sub-samples, and a violation of the criterion for normal distribution in selected scales,
non-parametric procedures were used throughout.

3. Results

In total, 49 fully completed questionnaires by the pre-service teachers for the first sub-
task (student’s difficulties) and 50 for the second subtask (procedure for experimenting/key
decisions) were included in the predictive diagnostics.

(RQ1) To analyze participants’ responses to the first subtask, process-related difficulties
and misconceptions among students described in the theoretical literature (see Table 1)
were applied to the material. The pre-service teachers’ responses were paraphrased prior
to analysis, which involved rewriting the responses’ core content in a concise descriptive
form [143]. This then allowed them to be reliably assigned to the categories. For example,
the statement “... The students do not know what things are important/what one needs
to pay attention to—no connection to the research question—no hypotheses, ...” was
reformulated into the core components “creating a link to the research question” and
“no hypothesis generated”. The statement “... should be clarified and potentially what a
conjecture/thesis entails” was reduced to “technical term conjecture/thesis not known”.
A total of 293 statements could be coded from the 49 answer sheets examined. Of these,
166 statements referred to process-related difficulties and/or misconceptions by students,
which corresponds to roughly 57% (Table 3). In addition, the respondents frequently
mentioned difficulties arising from the “instructional setting”, specifically from the open-
ended task structure and materials pool, which overwhelmed students and required them
to make decisions. Statements referring to students’ decisions about how to divide up tasks
and/or disagreements within the group were assigned to the category “social format”.
Statements referring to teachers’ instructional planning were assigned to the category
“teacher”. A total of 94 statements (32%) were assigned to these non-process-related
categories. Difficulties related to subject-specific content knowledge or technical terms
were mentioned in 33 statements (11%).

In the following, the difficulties that students have to deal with during each sub-steps
within the hypothetico-deductive scientific inquiry process according to the pre-service
teachers’ statements are explained (see Table 3).

In terms of the phenomenon, the pre-service teachers mentioned a lack of or differ-
ences in prior knowledge. (The students will not yet be familiar with the phenomenon of
diffusion; [...] was not worked through as a group, meaning that the students will not be
able to think deeply about the phenomenon. It also seems that no ideas were taken up or
discussed. Hence, there is no bridge to their prior knowledge [...]).

Potential difficulties in dealing with the provided research question to be investigated
in the fictitious experimental instruction setting (see Supplementary Materials S1) were
also identified. These difficulties concerned the students failing to understand or refer back
to the research question (“The students might not be able to make connections between the
conducted experiment and the research question”).
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Table 3. Overview of the students’ process-related misconceptions and difficulties faced during experimentation identified
by the pre-service teachers (incl. paraphrases) according to the three phases for scientific reasoning of the SDDS model [22].

Difficulties Students Face
(Deductive, See Table 1) Paraphrase from Material h

Phase: Search Hypothesis

Phenomenon

Different levels of prior knowledge Students have sharply divergent understandings (or sometimes no understanding)
of how sugar dissolves in tea. 13

Research question

Integrating the research question
into the experimentation process

Perhaps a too complicated research question that might lead to misunderstandings
during implementation.

As a result, there is no bridge to students’ prior knowledge and the students cannot
incorporate their contributions into the research question.

8

Hypothesis Generation

No hypothesis generated No hypotheses. 1
No understanding of
hypothesis generation

No background subject-related knowledge is present, nor is fundamental knowledge
of scientific knowledge acquisition through the generation of hypotheses. 2

Suppositions not linked to
research question

[...] generate a hypothesis that makes reference to the research question and
subsequently guides the experimentation phase. 1

Phase: Planning and Testing

Planning

Selection of materials unsystematic,
incomplete and/or via

trial-and-error

[...] that they throw together materials at random.
[...] there are still problems with the selection of materials, since typically only the

necessary materials are made available and the students try to use everything, even
when it’s not necessary.

Confusion with respect to materials selection, since more materials are available ->
perhaps the students want to switch to using other materials during the experiment.

19

Trying things out in an unstructured
way (no plan, change all variables)

[...] change their minds while conducting the experiment if they get the feeling they
have selected the “wrong” factor. 3

Planning an experiment
that (does not) achieve its

objective
No foundation for planning an experiment. 3

Dealing with variables in an
unsystematic way (multiple

variables are confounded or a single
variable is varied unsystematically)

Students conduct the experiment with two independent variables simultaneously,
which does not lead to an unambiguous result.

When conducting the experiment, it could be difficult to stick to one influencing
factor and not hold constant conditions constant.

19

Aware of confounders, but
do not eliminate them

That they do not recognize or eliminate confounders when constructing a
self-developed experiment. 2

Lack of control group
approach Furthermore, students often forget to create blinded or comparison samples. 2

Variable selection

Deciding which variables
to include

[...] which influencing factors play a role in the solubility of sugar in water.
[...] which experiment should investigate a certain influencing factor. 42

Conducting the experiment

Variables operationalized not at all
or incorrectly

Imprecise
measurement/Measurement error

Imprecision in keeping time, since the time point at which all of the sugar has
dissolved is often difficult to determine.

[...] that they measure the water by eyeballing it or count without looking at a clock.
14

Order of experimental
steps

[...] students probably do not yet know exactly how an experiment with a
phenomenon, planning, observation and interpretation is structured.
I consider difficulties in conducting the experiment graver here [...].

12

Conducting experiment
incorrectly Experiment not conducted in a structured way. 6

Documentation Measurements not recorded. 3
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Table 3. Cont.

Difficulties Students Face
(Deductive, See Table 1) Paraphrase from Material h

Phase: Evaluate Evidence

Unexpected data are
attributed to errors in conducting

the experiment

They might change their results when they have the feeling that something is not
right or they have done something incorrectly. 1

Insufficient reflection on the
experimental results Errors are not taken into consideration. 1

Replicability/validity
Wrong conclusion drawn from

consistent experiments

[...] replicability or precision of measurement will pose problems for the students.
The students might not be able to correctly interpret their observations.

2
1

Conclusions are not possible
because variables were not varied

systematically,
and/or fallacious

conclusions are drawn

[...] not investigate multiple influencing factors at the same time, since they then
cannot say which factor actually influences the sugar’s dissolution.
Analysis does not take place, causal conclusions are not possible.

10

Data are not related
(back) to hypothesis/research

question

[...] hypotheses are actually confirmed or falsified based on the insights gained
while conducting the experiment. 1

Annotation: h = absolute frequency of mentions from a total of n = 49 pre-service science teachers.

Only a few statements mentioned difficulties regarding hypothesis generation com-
pared to the later steps of the process. Three participant statements referred to the aspects
of having no hypothesis, hypothesis formulation, and generating multiple hypotheses,
while one statement referred to the link between the supposition and research question.
No pre-service teachers mentioned formulating justifications for hypotheses as a difficulty
faced by students. One pre-service teacher wrote: “To me, the connection between technical
terms and phenomena observed in everyday life does not seem to be pronounced enough
in sixth grade in order to bridge the gap from multiple hypotheses [...] to independently
conducting an experiment to test these hypotheses”. This statement addresses the associa-
tion between the hypothesis and the need to plan an experiment that successfully tests the
hypothesis.

With regard to planning, no respondents mentioned potential problems connecting
the hypothesis and experiment, i.e., planning an experiment that is able to actually test the
proposed hypothesis. In contrast, difficulties with planning a meaningful experiment and
selecting appropriate materials (e.g., utilization of the materials pool) were mentioned very
frequently (“It is possible that the students might become overwhelmed by the various
materials on offer”). Application of the control-of-variables strategy was also described
by many respondents (“Moreover, various factors might be unwittingly coupled with one
another, meaning that only a single factor is not investigated”). Three mentioned difficulties
concerned trying things out in an unstructured way (“no plan-change all variables”) (“that
the students change their minds while conducting the experiment if they get the feeling
they have selected the ‘wrong’ factor”).

Variable selection was included as a unique overarching category, since it accounted
for 25% of process-related statements and was mentioned by 28 participants (“It could be
the case that no influencing factors are selected, but only changes that exert no influence”;
Ultimately, the students need to know and/or be able to identify the influencing factors
in order to independently develop an experimental approach”; “A difficulty for students
would be recognizing the difference between loose sugar and sugar cubes”).

With respect to conducting the experiment, general problems were mentioned: “Dif-
ficulties arise in conducting the experiment”. The spectrum of statements referring to
students’ difficulties with respect to failing to or incorrectly operationalizing variables,
from imprecise measurements to measurement errors, ranged from taking imprecise mea-
surements with the stopwatch to the use of different amounts and/or volumes of the
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chemicals and measurement differences between students (“When conducting the exper-
iment, replicability or precision of measurements will pose problems for the students.”;
“constantly switch the person doing the measurement, which can lead to imprecise mea-
surements”). Students’ difficulties regarding documentation also fall under this category
(“that the results need to be documented; the learners might not do this and forget the
times they measured, for example”). With respect to evaluating evidence, only one re-
spondent mentioned that students might attribute unexpected results to an error made
in conducting the experiment (“They might change their results when they have the feel-
ing that something is not right or they have done something incorrectly.”). Insufficient
reflection by the students on the experimental results was mentioned once (“Errors are not
considered—No analysis takes place (causal conclusions are not possible).”). The most
frequently mentioned difficulty was that no conclusions are possible because the variables
were varied unsystematically (“Students conduct the experiment with two influencing
factors simultaneously, which does not lead to an unambiguous result”; “Focusing on
just one aspect is probably difficult for some groups of students, so they try to investigate
multiple factors simultaneously and only realize at the end that they cannot draw any
conclusions from the investigation”).

Problems with evaluating evidence due to lack of a comparison or blinded sample
were also mentioned (“Furthermore, students often forget to create blinded or comparison
samples and thus cannot draw any concrete conclusions from their results”).

Overall, these problems were attributed to students being overwhelmed by the “lack
of guidance” in the self-directed procedure, which did not involve following prescriptive,
externally prescribed experimental steps (“Moreover, it is not precisely described how the
experiment should proceed”; “that the students can become overwhelmed by this freedom
and autonomy”). These statements were assigned to a non-process-related overarching
category, the “instructional setting”, which the pre-service teachers referred to 71 times,
with particular focus on obstacles stemming from the open-ended nature of the task.
Additionally included in this category was students’ lack of experience in dealing with
experimental materials, which was mentioned 10 times ([...] difficulty correctly using the
given materials”; [...] that the students are not familiar with all the materials and how they
are used”). Overall, 94 statements were coded into one of three such non-process-related
categories, the “instructional setting”, “social format” and “teacher”. Twelve statements
concerning students’ decisions about how to divide up tasks and/or disagreements within
the group were assigned to the category “social format” (“Students cannot come to an
agreement within the group”). Eleven statements addressing the teacher’s instructional
planning were assigned to the “teacher” category (“[ . . . ] handouts to assist students or
opportunities to repeat explanations are not included in the experiment, which could lead
to excessive questions”; “Since no thermometer is available, the students cannot make
any statements about the water temperature”). Beyond these overarching categories and
subcategories, difficulties related to subject-specific content knowledge and technical terms
were also reported. Lack of familiarity with technical terms was mentioned 14 times,
with the term “influencing factor” coming up seven times, “conjecture” three times and
other technical terms four times (“have problems finding out what influencing factors
are exactly”; “even the term ‘influencing factor’ should be clarified and possibly also
what a conjecture/thesis entails”) (“Effect on dissolution speed is difficult in sixth grade”).
That subject-specific content knowledge might be lacking, insufficient or fragmentary was
mentioned 19 times (“With respect to subject-specific content knowledge, the difficulty
might arise that some students do not know that sugar dissolves more quickly and easily at
higher temperatures”; “Background subject-related content knowledge is not yet present”).

To summarize, the respondents considered here (n = 49) mentioned four of the nine
overarching categories on average (M = 4.00, SD = 1.26; min = 2; max = 7) in their written
responses asking about potential difficulties faced by students, including roughly two of the
five process-related overarching categories (phenomenon, hypothesis generation/research
question, planning, variable selection, conducting the experiment, and evaluating evidence)
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(M = 2.33, SD = 1.18; min = 0; max= 4). Three pre-service teachers did not mention any
process-related difficulties. Statements falling under the overarching category of hypothesis
generation were by far the least frequent (2% of the total number of statements in the
process-related categories). Considered together with the phenomenon and the research
question, this rose to 10% of all statements in the process-related categories, which is similar
to the share of statements referring to evaluating evidence (15%). Planning was mentioned
most frequently by the respondents (29% of all statements in the process-related categories),
with the lion’s share referring to selecting appropriate materials and the control-of-variables
strategy, each of which made up 11% of all statements in the process-related categories.

Differences in the quality of participants’ statements were related to their subjects
of study, with the pre-service chemistry teachers using technical terms like “familiarity
with the RGT rule” (authors’ note: Reaction velocity-Temperature-Regulation), “materials
surface”, “solubility product”, and “law of mass action” more frequently than the pre-
service biology teachers, who used more general formulations like “dissolution time
depends on the temperature”, “recognizing the difference between loose sugar and a sugar
cube”, “factors like the solubility or saturation of a liquid and corresponding effect on
the dissolution speed”. The only further differences between the biology (Mdn = 6.00)
and chemistry pre-service teachers (Mdn = 4.50) uncovered concerned the total number of
difficulties identified in all nine overarching categories (Mann–Whitney U-test: z = −2.377,
p = 0.017; r = 0.34). Examining the frequencies of the process-related and non-process-
related categories revealed that this difference reflected a larger share of non-process-related
categories in the biology pre-service teachers’ statements. Consequently, no significant
differences in the number of process-related difficulties mentioned were found. A total of
24% of the biology pre-service teachers (n = 29) referred to the groups’ social fabric as it
related to completing the tasks, compared to just 10% of the chemistry pre-service teachers
(n = 20). A similar pattern was found for the “teacher” category, which was mentioned by
24% of biology pre-service teachers but only 5% of chemistry pre-service teachers.

(RQ2) The university pre-service teacher statements about four key decisions stu-
dents need to make when solving problems experimentally could be assigned to seven
superordinate categories and 26 subcategories (Table 4). A total of 325 statements were
analyzed, of which 298 were assigned to the following process-related superordinate cate-
gories, which referred to phases of the experimentation process [22,34]: decisions about the
“phenomenon”, the “research question and/or hypothesis”, “working with and identifying
variables”, “planning”, “conducting inclusive documentation”, “analysis and interpreta-
tion”. All statements by participants were analysed, regardless of the number of decisions
a respondent mentioned, which ranged from 2 to 14 in total (both process-related and
non-process-related).

On average, the pre-service teachers mentioned decisions about a bit more than three
(3.34) process phases/elements (=superordinate categories). In addition, five pre-service
teachers made six mentions of decisions by teachers, such as ensuring appropriate group
composition or an appropriate task. None of the participants mentioned all of the process
phases/elements considered here in their responses. Turning to the subcategories, the
pre-service teachers most frequently mentioned decisions related to the influencing factors
(around 20% of the 298 total mentions of process-related decisions) and the experimental
materials (12%), in line with the difficulties students were considered to face in this area
(see Table 3). Among decisions about “variables” and “planning”, the aspects of avoiding
confounders, mentioned twice by two different pre-service teachers, and including a
control group, mentioned three times by two different pre-service teachers, were grossly
underrepresented. This was also the case for estimating the experimental validity within
the superordinate category of “analysis and interpretation”, which was mentioned by three
pre-service teachers one time each.
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Table 4. Overview of categories (superordinate and subcategories) in the statements about key decisions students face when
solving problems experimentally, as well as corresponding anchoring examples and number of mentions.

Superordinate Category
Decisions About Subcategory Anchoring Example h f

. . . the phenomenon Retrieving (prior) knowledge
about the phenomenon

The students need to visualize the phenomenon
and think about how they can link it to their prior

knowledge.
4

4 8%

. . . the research
question and/or

hypotheses

Develop a research question/
hypothesis

To start with, the students should think about a
research question (or a conjecture) that they can

subsequently answer with the experiment.
17

Working with the research
question/assigned task

They need to come to agreement amongst
themselves on how they can best express the

characteristic to be observed and in what way they
will investigate it.

2

Understanding the research
question Students need to understand the research question. 1

20 36%

. . . working with and
identifying variables Selecting one influencing factor The students need to decide which influencing

factor they want to test. 59

Controlling for other factors Investigate one factor in the experiment! [ . . . ] pay
attention to other factors that remain constant. 12

Decisions about the measured
variable

It needs to be determined when the time will be
stopped (when has the sugar dissolved?). 8

Avoiding confounders [ . . . ] As part of this, the students must minimize
the presence of confounding factors. 3

Decisions about the dependent
variable (degree of breakdown,

amount)

They need to agree on whether to use ground sugar
or sugar cubes. 18

100 86%

. . . planning Selection of appropriate
materials

Decision about selecting materials from the list of
materials. 36

Planning the experiment [ . . . ] decide how they will proceed. 17
Determining the order of work

steps
The learners need to familiarize themselves with

which work steps they will conduct in which order. 4

Planning a control group
experiment

At least one comparative experiment must be
conducted. 4

Replication/Reliability Conduct each experiment at least twice. 4

65 84%

. . . conducting the
experiment (including

documentation)

Conducting the experiment Conduct the experiment in accordance with the
experimental plan. 24

Documentation Selecting documentation of the experiment. 21
Observation The students now observe [ . . . ]. 15

60 70%

. . . analysis and
interpretation

Conclusion They need to interpret their results (conclusion). 17

Evaluating evidence/causal
relationships

Based on what evidence they can see how the
influencing factor they are investigating affects the

sugar’s dissolution.
8

Reflecting on errors [...] pay attention to errors that might have crept in
and potentially conduct the experiment again. 7

Referring back to the
hypothesis/research question

Test the hypothesis
Analysis (Was the hypothesis refuted or not?)

6
9

Paying attention to validity Does the experiment I have conducted actually
answer my question? 2

49 50%
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Table 4. Cont.

Superordinate Category
Decisions About Subcategory Anchoring Example h f

Decisions unrelated to
the scientific method

Dividing up tasks within the
group

They need to divide up the various tasks within the
experiment [ . . . ] 11

Completing the group work
together

The group should work together so that everyone
is aware of what has been done. 9

Working precisely and carefully The students need to work very precisely. 3

Other

Time management: “The time allotted should also
be considered.” 2

Cleaning up after the experiment 1
Alignment with teacher (minimizing errors) 1

27 38%

Annotation: h = absolute frequency of mentions from a total of n = 50 pre-service science teachers; f = relative frequency of mentions in the
subordinate category (%); each respondent could identify multiple influencing factors.

Overall, the pre-service teachers frequently adopted a results-focused perspective:
“[...] After conducting the experiment, the students should collect the results, discuss them
as a group [...]”; “How can I answer my question for others. How can I be sure of my
result, does the experiment I have conducted really answer my question”. Around half
of the pre-service teachers adopted an understanding-oriented perspective and explicitly
mentioned the need for students to “understand the research question/assigned task”
and the need to make decisions about “selecting appropriate materials” or the “order of
work steps”. In this context, references were made to the open-ended structure of the
task, the third most commonly mentioned difficulty for students in Part 1 (see Table 3),
(“The learners need to familiarize themselves with which work steps they will conduct in
which order”; “... it could be difficult if they do not have sufficient practice in conducting
experiments and the students forget steps like documenting the results”; How do I conduct
the experiment, which work steps logically follow one another”) as well as decisions about
selecting materials from the materials pool (“They need to ascertain what materials are
necessary to match the selected influencing factor”; “They need to decide what materials
they want to use and which ones they don’t need or don’t want to use”). Three pre-
service teachers focused exclusively on deciding on an influencing factor, such as water
temperature or water volume, or deciding whether to stir or shake the samples during the
experiment.

When comparing the two subsamples, it was found that the biology pre-service
teachers (Mdn = 4.00) made reference to more process steps (=superordinate categories)
when discussing decisions that need to be made in carrying out the example experiment
than the chemistry pre-service teachers (Mdn = 3.00; Mann-Whitney U-Test: z = −2.639,
p = 0.008; r = 0.37). A similar pattern was found for the total number of process-related
decisions across all subcategories among the biology (Mdn = 6.00) and chemistry pre-
service teachers (Mdn = 5.00). The biology students reported more unique process-related
decisions here as well; the difference just failed to reach significance and represented a
small effect (r = 0.27; Mann–Whitney U-Test: z = −1.931, p = 0.056).

(RQ3) The university pre-service teachers’ attitudes toward including diagnostic ele-
ments and promoting diagnostic skills in university teacher education were positive and
quite pronounced. The full-sample mean was substantially above the scale midpoint, at
M = 3.13 (SD = 0.395), (see Appendix B). No significant differences in the strength of these
attitudes were found between the two subsamples (MdnChemistry = 3.00; MdnBiology = 3.25;
z = −1.414, p = 0.157). Likewise, there were no significant differences between the two
subsamples of pre-service teachers in perceived domain-specific self-efficacy with respect
to general (MdnChemistry = 2.50; MdnBiology = 2.50) as well as experimentation-related
diagnostic activities (MdnChemistry = 2.50; MdnBiology = 2.25). However, there was a sig-
nificant difference in the full sample between the two perceived self-efficacy scales and
attitudes towards the importance of diagnostics in university teacher education. The
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pre-service teachers’ subjective perception of their own skills in successfully carrying out
general and experimentation-related diagnostic activities (MdnSelf-efficacy factor1/2 = 2.50;
MdnRelative importance of diagnostics = 3.00) was lower than their perception of the importance
of this teaching and learning topic for university teacher education (Self-efficacy factor 1:
z = 5.612, p < 0.001; Self-efficacy factor 2: z = 5.345, p < 0.001; n = 50). The effect sizes can
be considered large, r > 0.75. However, no correlation between these two motivational
constructs was found. The pre-service teachers saw potential for improvement in the
diagnostic competences referred to in the perceived self-efficacy scale, as they tended to
“somewhat disagree” or “somewhat agree” to these items (e.g., MSelf-efficacy factor1-Bio. = 2.38,
SD = 0.61; Table 5).

Table 5. Item scores for the domain-specific perceived self-efficacy scales.

Item

Biology
(n = 30)

Chemistry
(n = 20)

M (SD) rit M (SD) rit

Experimentation-related diagnostic activities
Even when I am experiencing stress, I can still diagnose students’ errors in

experimentation in biology/chemistry class well. 2.20 (0.71) 0.708 2.40 (0.60) 0.524

I am certain that I am able to recognize children’s specific difficulties in
experimentation in biology/chemistry even when under a large amount of

time pressure.
2.40 (0.77) 0.737 2.75 (0.44) 0.447

In biology/chemistry, I am able to accurately assess my students’ level of
learning prerequisites, even when I have little time available. 2.43 (0.63) 0.603 2.65 (0.50) 0.380

In biology/chemistry, I am able to accurately assess my students’
experimentation skills, even when I have little time available. 2.37 (0.72) 0.803 2.45 (0.51) 0.430

Mscale = 2.35
SDscale = 0.60

Cronbachs α = 0.86

Mscale = 2.56
SDscale = 0.36

Cronbachs α = 0.66

General diagnostic activities
I am able to successfully integrate diagnostic activities to accompany learning

in my biology/chemistry instruction, even when I am under time pressure. 2.13 (0.78) 0.628 2.20 (0.62) 0.217

Despite a high level of heterogeneity, I am able to create tasks in
biology/chemistry that allow me to appropriately check both weaker and

stronger students’ knowledge levels.
2.57 (0.77) 0.665 2.50 (0.69) 0.546

I am able to successfully take into account students’ learning processes when
formulating individual learning goals in biology/chemistry, even when these

differ markedly.
2.47 (0.78) 0.743 2.35 (0.67) 0.440

In biology/chemistry, I am able to accurately assess my students’ thought and
work processes, even when I have little time available. 2.37 (0.67) 0.576 2.55 (0.51) 0.393

Mscale = 2.38
SDscale = 0.61

Cronbachs α = 0.83

Mscale = 2.40
SDscale = 0.42

Cronbachs α = 0.61

Annotation: n = sample size, M = mean, SD = standard deviation, rit = discriminatory power.

(RQ4) Quantifying the qualitative findings into frequency scores for the difficulties
students face and the different process-related decisions/actions during experimentation
made it possible to test the associations between these and self-efficacy expectations and
attitudes. (a) With respect to the first (qualitative) subtask, the anumber of difficulties
mentioned in all superordinate categories, number of difficulties in the process-related
superordinate categories, and number of process-related superordinate categories ad-
dressed were included in the analysis. There are no significant correlations between these
knowledge-based expressions and attitudes toward the importance of diagnostics (e.g.,
aSpearman’s ρ = 0.005, p = 0.974). The same is found in comparison to the domain-specific
self-efficacy expectations. In this sample, the expression of self-efficacy expectations with
respect to general as well as experimentation-related diagnostic activities is not related
to the pre-service teachers’ knowledge of student difficulties in experimentation. (b) For
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the second (qualitative) subtask, the bnumber of process-related superordinate categories
addressed in the mentioned decisions and the number of decisions mentioned in the
process-related superordinate categories were included. These results also did not correlate
with perceived domain-specific self-efficacy or battitudes towards the importance of diag-
nostics in university teacher education in the present sample (e.g., bSpearman’s ρ = 0.038,
p = 0.790).

4. Discussion

What began in the 1990s with a call for “Science for All” [148] has led to the setting of
obligatory educational goals in countries’ and states’ curricula and standards regarding sci-
entific inquiry and scientific reasoning as a component of scientific literacy (e.g., [4–6,149]).
In this respect, school curricula in the natural sciences (e.g., NGSS [149], University location
federal state 1 [150,151], University location federal state 2 [152,153]) require students
to be able to conduct and reflect on scientific inquiry processes. Subject-specific content
on promoting scientific reasoning in the classroom are also anchored in curricular stan-
dards for teacher education (e.g., [9,11] and thus must be taught in university teacher
education. Appropriate teaching-learning concepts for scientific inquiry in university
education can give future science teachers a better understanding of the difficulties and
the (mis)understandings, alternative ideas or misconceptions students experience during
experimentation, in order to be able to include those diagnosis-related aspects. Accordingly,
there are lines of research focusing on (pre-service) teachers, e.g., measuring and assessing
pre-service teachers scientific reasoning competencies in higher education [133,154,155],
verification of validity [156], evaluation of translated versions [157], but these are rather
limited and predominantly of a quantitative nature (e.g., [158]). Many studies also focus pre-
dominantly on developing and testing concepts and materials to promote subject-specific,
pedagogical content knowledge and pedagogical knowledge related to scientific reasoning
(e.g., video vignettes as a support for scientific reasoning, including video vignettes as a tool
to promote students’ learning: e.g., [48,98,99,159]; seminar concepts: e.g., [160]). However,
the first step is to identify pre-service teachers’ knowledge state in order to appropriately
adapt university courses and to develop and/or employ alternative teaching approaches.
Consequently, the present study did not focus on developing teaching-learning concepts
for the subject didactic training of pre-service teachers; instead, the primary focus lies on
potential prerequisites for learning such diagnostic activities, not only in the knowledge
areas mentioned (CK; PCK), but also in terms of attitudes and self-efficacy regarding
diagnostics and scientific inquiry (with a focus on experimentation). To summarize, it
became clear that the pre-service teachers in the present study were only able to identify
and cite a varying yet small number of potential student difficulties in the experimental
problem-solving process from the comprehensive catalogue, presumably based on their
own experience in school and basic training in subject didactics. The same was true of
procedural knowledge in carrying out an investigation of an illustrative experimental
phenomenon (“knowing how” [29,30]). In contrast, the teacher education students had
a strong sense of the importance of diagnosing students’ experimentation skills and the
hurdles students face, as well as a moderate level of self-efficacy in carrying out such
diagnostic activities. The research questions underlying these findings can be answered
and discussed in detail as follows:

(RQ1) The pre-service teachers cited difficulties students face in all steps of the exper-
imentation process (see Table 1), but with very different frequencies (see Table 3). They
predominantly described difficulties in the planning phase, including variable selection,
followed by the implementation phase. Contrary to the usually higher self-assessment
of scientific reasoning abilities [133], only a small number of unique difficulties were de-
scribed with respect to evaluating evidence and most of all, formulating a research question
and hypothesis, and the number of participants mentioning these areas was very low as
well. With respect to the research question, this is possibly due to the structure of the
task and teaching scenario applied in the study, in which students were provided with an
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overarching research question (see Supplementary Material S1). Moreover, it can be con-
cluded that pre-service teachers not only lack pedagogical (didactics) content knowledge
about potential student difficulties in these phases, but also exhibit a lower level of content
methodological (procedural) knowledge, e.g., with respect to formulating hypotheses.
Students in the early semesters of university teacher education are still largely unfamiliar
with the procedure and content of hypothesis formulation [155], which is at least partially
due to the lack of or minimal opportunities to learn how to formulate research questions
and hypotheses in school-based science instruction [42].

Overall, the pre-service teachers in the present study frequently attribute students’
difficulties to the instructional setting, e.g., the open-ended nature of the task, working with
the experimental materials, coming to an agreement and dividing up roles within the group
during experimentation are most frequently mentioned. The participants’ knowledge of
PCK with regard to potential student difficulties and misconceptions hardly extends to
aspects of subject-specific methodological concepts, such as planning an experiment that
actually tests the hypothesis(es), the question of confounding variables or dealing with
unexpected data. Overall, the respondents used rather general terminology, with scientific
terminology [161] used only to a very small extent. Comparing the sub-samples, however,
the pre-service chemistry teachers used technical terms more frequently, which may be
due to the specific experiment selected in the example teaching unit (sugar’s dissolution
time) at the university location Braunschweig at the time of the survey. In contrast, it can
be seen that the pre-service biology teachers cite more difficulties students face than the
pre-service chemistry teachers. However, this difference is only due to a higher proportion
of non-process-related categories mentioned by the pre-service biology teachers. As with
the use of scientific terminology, this may be due to the number of subject didactics courses
already completed by each group at the universities in which the study was conducted.
Even though the study was conducted before any courses on scientific reasoning at both
locations, the pre-service biology students in Kassel had already briefly dealt with this
content area in their introductory lecture and tutorial.

(RQ2) With regard to key decisions (procedure for experimenting), the university pre-
service science teachers tended to return to aspects they had also mentioned with respect
to difficulties and misconceptions. The majority of respondents referred to decisions
about working with and identifying variables in the experiment, planning, and actually
conducting the experiment (including documentation). Interestingly, however, more than a
third of the pre-service teachers also mentioned decisions about the research question or
hypothesis, i.e., experimental steps that were underrepresented in the responses to the first
subtask. It is possible that the pre-service teachers made greater reference here to hurdles
had experienced themselves in their practical laboratory training at university. For example,
one participant writes: “Now the students should not be thrown into the experiment like
that. Forming hypotheses is often still a sticking point in tasks, even for university students,
albeit at a higher level. [...] However, gaining knowledge should always be the goal of the
experimental phase. Finally, in order to consolidate knowledge, the hypotheses must be
verified or falsified based on the knowledge gained during the experiment.” Results- and
understanding-oriented statements are also made here, presumably due to the fictitious,
open-ended experimental situation. With appropriate adaptive support (scaffolding), pre-
service science teachers could be encouraged to further develop their process-oriented
and results-oriented thinking patterns in this regard [162]. Considering the statements
from both subtasks together, the pre-service biology teachers describe significantly more
decisions in the process-related superordinate categories and also tend to describe more
process-related decisions in the subcategories than the pre-service chemistry teachers.
Nevertheless, subject-specific methodological (procedural) knowledge regarding scientific
reasoning is rather low in the overall sample, similar to other studies in this area (e.g., [160]).

(RG3) The pre-service teachers rated diagnostics or diagnostic activities concerning
experimentation as highly important for university teacher education, corresponding to
the high perceived importance of diagnostics in teacher training more generally [163].
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However, in-service teachers have a divergent view. Only around one-third of the in-
service teachers surveyed by Lorenz [139] believed that diagnostic training is required
to correctly assess students’ competencies. It is possible that in-service teachers see their
university studies in retrospect as focused on theoretical content and content related to
their school subject, while diagnostics can only be performed when actually teaching in
schools and thus can be learned in practice. Despite an increase in diagnostic knowledge
during their studies compared to the beginning of their studies, pre-service teachers still
rate it as below average compared to their knowledge of their subject and pedagogical
knowledge [91,164]. In addition, diagnosing students’ performance and difficulties in
experimentation is more challenging than in other areas of science education, as it can only
be assessed to a rather limited extent through written tasks. However, knowledge of the
experimental competencies of the students being assessed—in particular, explicit knowl-
edge of difficulties and misconceptions, which enables science teachers to assess student
achievement against curricular expectations—is fundamental in science subjects [163]. This
knowledge goes along with higher self-efficacy [124], which is in turn positively related to
the successful transfer of content from teacher training (e.g., [165–167]) and ultimately to
student achievement [168].

(RQ4a/b) This study’s results concerning self-efficacy show that pre-service science
teachers’ subjective perceptions of their ability to successfully carry out general and
experimentation-related diagnostic activities are significantly lower than their attitudes
regarding the importance of diagnostics in teacher education. No correlations between
knowledge of students’ difficulties and key decisions in experimentation procedures and
self-efficacy in diagnosing students’ abilities in scientific reasoning acquisition were found
in the sample studied here. In a study of 495 pre-service biology teachers [161], advanced
students’ (Master’s or State Examination degree ≥ 7) self-efficacy to plan and conduct
biology lessons correlated with the knowledge of what data to collect when assessing
experimentation skills. No such correlation was found for pre-service teacher students at
the undergraduate level. The present study examined pre-service teachers at an early stage
of university teacher education, in the first third of their studies, which may be associated
with a low level of knowledge in assessing self-efficacy and its associated dimensions. It is
also possible that our findings were due to the surveyed students’ low assessment of their
own scientific inquiry competence. Conducting such surveys at the beginning of students’
studies is therefore highly relevant in order to be able to promote such competences in a
targeted way based on the obtained results. Khan and Krell [169] investigated the scientific
reasoning competencies of pre-service Canadian science teachers and how they improved
as a result of an intensive methods course including a 15-week internship. This inter-
vention significantly improved the students’ competencies in planning experiments and
testing models, demonstrating that these are trainable through instruction on the scientific
method including an internship with the opportunity to model, engage in, and reflect upon
inquiry instruction in the science classroom. Further intervention studies demonstrate an
increase in scientific reasoning competences as a result of combining different scaffolding
formats [12,48,170]. In this context, it also seems interesting that, in addition to training
(through scaffolds), greater background knowledge of scientific reasoning may influence
pre-service teachers’ competencies. Participants with prior university degrees (in other
subjects) performed better in a multiple-choice questionnaire surveying scientific reasoning
competencies than participants with no prior university degrees, perhaps because the
former group could draw on greater background knowledge [169].

Limitations

Although the sample size was small, especially when it came to the biology and chem-
istry subsamples, and the findings require replication among physics education students
and students at other universities, the study was able to provide insight on the views of
pre-service biology and chemistry teachers in the first third of university teacher education
on students’ difficulties, misconceptions and key decisions in experimentation. This sample

54



Educ. Sci. 2021, 11, 629

was specifically selected because the pre-service science teachers were still at a relatively
early phase of their teacher training, i.e., they were attending their first course on subject
didactic training, and prior internships in their subject of study (biology/chemistry) and
introductory lectures were not expected to have had much influence. The present study’s
sample therefore made it possible to assess the status quo of pre-service science teachers’
professional knowledge and self-efficacy regarding scientific reasoning and diagnostics, in
order to derive possible support measures.

At both university locations where the surveys took place, teaching education in the
natural sciences focuses on scientific inquiry in research and teaching, and this context is
likely to be significantly affected the students’ specific content and pedagogical content
knowledge. The second subject the pre-service teachers were studying might have also
exerted an influence. For example, a measurement instrument for upper secondary stu-
dents uncovered a distinction between “experimental ways of thinking and working” and
content knowledge [170]. Pre-service teachers studying two science subjects have more
opportunities to learn how to conduct scientific work, i.e., how to apply and reflect on
scientific reasoning skills in different contexts and with different strategies [68], which
leads to higher levels of competence [14,171].

The present survey of perceived difficulties and key decisions students face in experi-
mentation had respondents refer to an example experimentation context (see Supplemen-
tary Material S1). While it would be possible to evaluate and carry out scientific reasoning
skills in a context-free manner, it cannot be generally assumed that the same pre-service
science teachers will provide the same responses on a task with the same format referring
to a different context. Even though declarative knowledge of the context has only a minor
influence on the successful completion of scientific reasoning test items, students with
similar levels of procedural knowledge perform differently in such tasks (for an example
regarding hypothesis-testing skills: [171]), which may be due to their different levels of
declarative knowledge. Similarly, a different strategy can be used with each phenomenon
or scientific problem to be discovered and researched, even in the same domain [68].

Another methodological limitation that deserves mention here concerns the scales
measuring the students’ attitudes and self-efficacy, which should be interpreted in compar-
ison to other findings on these constructs. Neither follows the recommendation to apply
scales with a large number of points [108], as they only contain four levels, potentially
limiting the range of respondents’ assessments. However, other studies have assessed
self-efficacy with equally short Likert scales (e.g., [172]), while some studies have applied
more comprehensive scales (e.g., [173]). In the future, it should be examined whether the
number of scale points influences assessments of abilities and attitudes in a given area.

5. Conclusions

This study surveyed knowledge of students’ difficulties, misconceptions, and key
decisions in experimental problem-solving in the context of an authentic lesson plan,
attitudes concerning the importance of diagnostics in teacher training, and self-efficacy
related to diagnostics in experimental settings via an online questionnaire with a sample
of pre-service biology and chemistry teachers. The developed instruments/tasks make
it possible to survey pre-service teachers’ knowledge and attitudes towards diagnosing
experimentation skills within university teacher education in the subjects of biology and
chemistry. They might be also transferable to physics education, and could serve as a
foundation for conceptualizing university teaching-learning settings concerning scientific
reasoning as well as for future intervention studies within subject didactics training re-
garding diagnostic knowledge of experimentation and attitudes. The results indicate that
knowledge about students’ misunderstandings, difficulties and problems during experi-
mentation must be imparted to pre-service science teachers during university education. It
is essential to understand scientific procedures (knowing how) and epistemic constructs
(knowing why) regarding scientific reasoning in experimental problem-solving. Imparting
this procedural and epistemic knowledge to teacher education at an early phase of their
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studies via appropriate adaptive support (scaffolding) could help pre-service science teach-
ers develop process-oriented and results-oriented thinking patterns as well as diagnostic
skills in this regard [162]. To put this in perspective, knowledge of students’ difficulties
and frequent sticking points can help teachers design lessons in a student-oriented way
(cf., [174]). Studies on subject-specific teaching quality in biology with respect to diagnostic
competencies have shown that PCK and PK are statistically significantly related to pre-
service teachers’ diagnostic activities, and biology teachers’ PCK is positively related to
diagnostic accuracy [95]. Teachers are expected to provide students with learning opportu-
nities that help them develop 21st-century skills, including core competencies in subject
areas such as science. Zimmermann [19] concludes from her review of the literature on
scientific reasoning that it is possible to teach both key features of science, i.e., the subject-
specific content of scientific disciplines (e.g., biology, physics) and skills in experimentation
and evaluating evidence. Previous studies on scientific reasoning show that progress has
been made in research how it can be done to help students become scientifically literate
adults by applying their scientific reasoning skills (cf., [19]). Therefore, it is necessary that
(pre-service) science teachers are taught concepts and theories important for experimental
inquiry processes, i.e., the key decisions that must be made based on concrete examples
in open-ended experimentation process in order to conduct a successful experiment. In
addition to knowledge about individual student learning characteristics that may be rele-
vant to the learning process of scientific reasoning [175], procedural knowledge of scientific
reasoning enables teachers to diagnose students’ difficulties and misconceptions in the
experimentation process. Further research using the instruments employed in this study
on a larger sample of pre-service science teachers would contribute to the development of
models of diagnostic competence acquisition (e.g., [176,177]) as well as professional vision
(cf., [178]) for experimental problem-solving in competence-oriented science instruction
and identify similarities and differences across subjects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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Appendix A

Table A1. Item parameters for the scale relevance of diagnostics in the teacher training program (n = 50).

Item Wording M (SD) rit

A teacher can correctly assess students’ performance in experimentation even without diagnostic
components in teacher education. 2.92 (0.57) 0.55

It is important for teachers to be able to correctly assess the characteristics of the students that are
relevant to learning and performance in experimentation. 3.42 (0.54) 0.51

Diagnostic skills of pre-service teachers in the assessment of experimental processes should be
mandatorily promoted in teacher education. 3.30 (0.58) 0.59

Even without conducting diagnostic units in the course of study, a teacher can correctly assess the
characteristics of students that are relevant to learning and performance in experimentation. 2.88 (0.52) 0.28

Mscale = 3.13; SDscale = 0.39; Cronbach’s α = 0.70

Appendix B

Table A2. Item analysis on domain-specific self-efficacy expectations with a pilot sample of n = 98.

Item Wording
Factor

Loading (ajq) h2
I II

Experiment-related diagnostic activities
Even when I am under stress, I am still able to diagnose students’ errors when experimenting in

biology lessons. 0.818 0.697

I am confident in recognising children’s specific difficulties in experimentation in biology despite
great time pressure. * 0.763 0.663

In biology, I am able to identify the learning requirements of my students, even when I have little
time. * 0.762 0.583

In biology, I am able to confidently understand my students’ experimental skills, even when I
have little time. 0.650 0.341 0.539

n = 97; Mscale = 2.60; SDscale = 0.44; Cronbach’s α = 0.79

General diagnostic activities
In biology, I am able to integrate a diagnostic activity that accompanies learning in my teaching,

even when I am under time pressure. * 0.549 0.418 0.476

Despite a high degree of heterogeneity, I am able to formulate tasks in biology with which I can
appropriately test the level of knowledge of both weaker and stronger students. * 0.763 0.603

In biology, I am able to take into account the learning processes of the students when formulating
individual learning objectives, even if these are very different. * 0.732 0.554

In the subject of biology, I manage to grasp the thought and work processes for gaining
knowledge of my students, even when I have little time. * 0.319 0.710 0.606

n = 95; Mscale = 2.46; SDscale = 0.44; Cronbach’s α = 0.70

% of variance 46.03 12.99

Annotation: Principal component analysis with Varimax rotation; * adapted from [142].
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Abstract: We investigated the scientific reasoning competencies of pre-service science teachers (PSTs)
using a multiple-choice assessment. This assessment targeted seven reasoning skills commonly
associated with scientific investigation and scientific modeling. The sample consisted of 112 PSTs
enrolled in a secondary teacher education program. A latent class (LC) analysis was conducted to
evaluate if there are subgroups with distinct patterns of reasoning skills. The analysis revealed two
subgroups, where LC1 (73% of the PSTs) had a statistically higher probability of solving reasoning
tasks than LC2. Specific patterns of reasoning emerged within each subgroup. Within LC1, tasks
involving analyzing data and drawing conclusions were answered correctly more often than tasks
involving formulating research questions and generating hypotheses. Related to modeling, tasks on
testing models were solved more often than those requiring judgment on the purpose of models. This
study illustrates the benefits of applying person-centered statistical analyses, such as LC analysis, to
identify subgroups with distinct patterns of scientific reasoning skills in a larger sample. The findings
also suggest that highlighting specific skills in teacher education, such as: formulating research
questions, generating hypotheses, and judging the purposes of models, would better enhance the full
complement of PSTs’ scientific reasoning competencies.

Keywords: scientific reasoning; science teacher education; pre-service teachers; person-centered
statistical analyses; latent class analysis

1. Introduction

Scientific reasoning has been a subject of study in the field of science education for
some time [1]. Assessing this reasoning, however, remains a 21st century challenge for
science educators today [2]. The present study is on the scientific reasoning of future
science teachers themselves. We have assessed reasoning amongst this group because they
will need to teach and demonstrate reasoning to their future students in science, and we
can design activities in science teacher education that can enhance their competency in this
field.

Scientific reasoning is a competency that encompasses the abilities needed for scientific
problem-solving, as well as the capacity to reflect on problem-solving [3,4]. In the sciences,
reasoning has been previously distinguished from other constructs such as problem-solving
and critical thinking or scientific thinking alone. Descriptions of thinking, problem-solving,
and reasoning are often conflated. For example, scientific reasoning has been suggested as
being a kind of problem-solving; however, it has also been suggested that reasoning can be
distinguished from problem-solving alone in that direct retrieval of a solution from memory
is not possible with reasoning [5]. Ford [6] further reinforces that reasoning does not mean
following a series of rules either but rather encompasses permanent evaluation and critique,
as suggested by the reflective component of the above definition. Reasoning in the sciences
requires cognitive processes that can contribute to, or allow for, inquiring and answering
questions about the world and the nature of phenomena. These cognitive processes include

65



Educ. Sci. 2021, 11, 647

formulating and evaluating hypotheses, two of several processes regularly invoked in
scientific domains [7,8].

The multiple cognitive processes that have been investigated in research on reasoning
in science and science education have been variously described as formal logic, non-formal
reasoning, creativity, model-based reasoning, abductive reasoning, analogical reasoning,
and probabilistic reasoning [9–12]. These processes may or may not be used in the wider
category of critical thinking [13]. Scholars have provided evidence that the ability to use
these processes for reasoning is transferable across domains [14], while others such as
Kind and Osborne [15] suggest that reasoning is highly variable by the content and the
procedural and epistemic knowledge of the reasoner. Scholars have also shown that the
ability to reason in science does not necessarily improve with age [16] but that it can be
taught and enhanced in both the early years and at university levels [17–19].

Our focus in the present study is on the reasoning competencies of pre-service sci-
ence teachers (PSTs) enrolled in a university teacher education program. Most studies
on pre-service science teachers’ scientific reasoning competencies adopt variable-centered
approaches and report, for example, average scores for sample groups or populations.
For example, one study [20] reported on a group of 66 Australian pre-service science
teachers that they performed significantly better on tasks that required skills of ‘planning
investigations’ compared to tasks related to skills of ‘formulating research questions’ and
‘generating hypotheses’. Such insights are valuable but sometimes might be too rough-
grained depending on the research questions, as different subgroups with distinct patterns
of scientific reasoning skills exist within a sample. In order to identify such subgroups,
person-centered analyses are necessary, that, statistically speaking, aim to “[R]educe the
‘noise’ in the data by splitting the total variability into ‘between-group’ variability and
‘within-group’ variability” [21] (p. 2). Hence, person-centered analyses, like latent class
analyses (LCA), are finer-grained analyses in the sense that they are case-based and identify
individuals with similar patterns of scientific reasoning skills (e.g., [22]). Person-centered
analyses are also referred to as ‘typological’ approaches [23]. Such approaches can be
specifically valuable for educators as they move beyond the ‘average’ and follow, method-
ologically, “[M]odern developmental theory, in which individuals are regarded as the
organising unit of human development” [23] (p. 502). In the present study, we seek to
establish whether subgroups of reasoners can be ascertained among PSTs using an LCA.
The seven reasoning skills examined are: formulating research questions, generating hypotheses,
planning investigations, analyzing data and drawing conclusions, judging the purpose of models,
testing models, and changing models. While historical examination of scientific work has
revealed that practices such as thought experiments, analogies, and imagistic simulation
are important to scientists’ development of new concepts [24], these seven skills under
investigation were identified as key empirical areas of inquiry in science education [25–29]
and likely having been taught in undergraduate science programs [3].

2. Materials and Methods
2.1. Sample

A full cohort of 56 PSTs from a university in North America participated in this study.
Their mean age was 27 years (SD = 6.34; mode = 23). Data collection was done in their
science teacher education secondary methods course within a Bachelor of Education after-
degree program. To enroll in the secondary program, all students had at least one prior
degree (usually 4 years of Science or more). The instrument described below (Section 2.2)
was administered to the PSTs in their methods course at the beginning and at the end of
the semester (pre–post-assessment). For the purpose of identifying groups with distinct
patterns of scientific reasoning, we analyzed pre- and post-assessment data taken together
of 56 PSTs. The total response sample for each item was thus n = npre + npost or n = 112.
Only PSTs without missing responses have been included in the analysis, resulting in a
sample of n = 101 for the statistical analysis. The number of PSTs by primary major were:
Biology (n = 30), Chemistry (n = 11), Physics (n = 8), Biomedicine (n = 1), Earth Sciences
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(n = 1), Mathematics (n = 1), n/a (n = 4). Most of the PSTs’ prior degrees were within the
field of Biology (n = 60; e.g., general Biology, Applied Biology, or Evolutionary Biology),
followed by Chemistry (n = 25) and Physics (n = 6).

2.2. Data Collection

An established multiple-choice instrument was administered to assess the PSTs’ sci-
entific reasoning competencies. The instrument was originally developed in the German
language [27] and was later adapted into English, with thorough evaluations [30]. The in-
strument includes 21 multiple-choice items that were developed to assess seven reasoning
skills of formulating research questions, generating hypotheses, planning investigations, analyzing
data and drawing conclusions, judging the purpose of models, testing models, and changing models.
Authentic scientific contexts were included in the items, which are mostly related to general
science and Biology as well. As suggested in the organizing device that has been used
for test development (see Table 1), these seven skills are related to two sub-competencies:
conducting scientific investigations and using scientific models [31]. To correctly solve the
multiple-choice items, PSTs have to apply their procedural and epistemic knowledge re-
lated to the respective skills [32–34]. Table 1 lists the two sub-competencies, their associated
skills, and the specific knowledge necessary to correctly answer the items.

Table 1. Sub-competencies of scientific reasoning and associated skills with necessary procedural and epistemic knowledge,
as described by Mathesius et al. [34].

Sub-Competencies Skills Necessary Knowledge
PSTs Have to Know That . . .

Conducting scientific
investigations

formulating questions

... scientific questions are related to phenomena,
empirically testable, intersubjectively

comprehensible, unambiguous, basically
answerable and are internally and externally

consistent.

generating hypotheses

... hypotheses are empirically testable,
intersubjectively comprehensible, clear, logically
consistent and compatible with an underlying

theory.

planning investigations

... causal relationships between independent and
dependent variables based on a previous
hypothesis can be examined, whereby the

independent variable is manipulated during
experiments and control variables are considered.
... correlative relationships between independent

and dependent variables based on a previous
hypothesis can be examined with scientific

observations.

analyzing data and drawing
conclusions

... data analysis allows an evidence-based
interpretation and evaluation of the research

question and hypothesis.

Using scientific models

judging the purpose of models ... models can be used for hypotheses generation.

testing models ... models can be evaluated by testing model-based
hypotheses.

changing models . . . models are changed if model-based
hypotheses are falsified.

2.3. Data Analysis: Latent Class Analysis

A latent class analysis (LCA) was utilized to identify patterns of scientific reasoning
skills among PSTs. The R package poLCA was employed [35]. All further (classical)
statistical analyses, such as t-tests and descriptive analyses, were carried out with IBM
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SPSS statistics, version 26. In an LCA, PSTs’ responses are analyzed on the latent level, all
variables are assumed to be (at least) on a nominal level, and there are no restrictions on
the kind of relation between the (manifest) variables [33,36,37]. LCA was selected for data
analysis because it permits the identification and computation of different groups (i.e., latent
classes) of PSTs, with each group consisting of individuals with a response pattern that is
as homogenous as possible (low within-group variability) but different from the response
patterns of the other groups (high between-group variability). Therefore, LCA would be
considered as belonging to the person-centered approaches of data analyses [21,23].

A core question of LCA is to decide on the appropriate number of latent classes [36]. To
compare different LCA models, indices such as the Akaike information criterion (AIC), the
Bayesian information criterion (BIC), and the sample size adjusted Bayesian information
criterion (ssaBIC) are typically employed. These indices factor in the parsimony, the sample
size, and the likelihood of the LCA models—each of the indices in a different manner [38].
When comparing different LCA models with these information indices, the smallest value
of each index points out the comparatively best LCA model; however, the BIC and the
ssaBIC were identified as superior indicators compared to the AIC [39] (p. 557), which is
why these indicators are used in the present study. On the other hand, the BIC and the
ssaBIC often do not identify the same LCA model as optimal [38]. Therefore, one has to use
a combination of different insights to decide how many latent classes represent the data set
best [38].

It is an important characteristic of LCA that the subjects are not assigned to the
different latent classes in a deterministic manner but more so in a probabilistic sense. For
diagnostic purposes, it is common to classify each subject to the latent class with the highest
probability of assignment. Therefore, an “Additional indicator [of model-goodness] is
the average membership probability within each [latent] class” [40] (p. 52); the higher
this probability, the better the LCA model. Furthermore, one should analyze the item
parameters for extreme values that indicate an estimated probability of 0% or 100% to solve
a task; the fewer extreme values, the better the LCA model [40].

3. Results

Table 2 provides the fit-indices for the LCA models compared in this study. Because
the BIC (2 latent classes) and ssaBIC (4 latent classes) suggest selecting different LCA
models, the number of extreme values and the probability of assignment have been used
as additional indicators. Based on these indicators, it can be assumed that the response
pattern of the PSTs is best represented using two latent classes. These two latent classes
consist of about 73% or 74 PSTs (latent class 1) and 27% or 27 PSTs (latent class 2) of the
sample, respectively.

Table 2. Fit-indices of the different LCA models compared. Note that models with more than four latent classes did not fit
the data.

LCA Model BIC ssaBIC Extreme Values Probability of Assignment

2 latent classes 2685 2549 0 0.93 to 0.98

3 latent classes 2722 2517 9 0.92 to 0.98

4 latent classes 2779 2504 11 0.91 to 0.97

Figure 1 illustrates the response profiles for the two latent classes across the seven
skills of scientific reasoning covered in the multiple-choice instrument. Generally, PSTs
in latent class 1 show a higher mean probability of correct answers within all seven skills.
Comparing the mean probability of correct answers between the two latent classes with
independent t-tests resulted in significant differences for the skills planning investigations
(p = 0.04; d = 0.48, small to medium effect size measure), analyzing data and drawing conclu-
sions (p < 0.001; d = 1.25, large effect size measure) as well as judging the purpose of models
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(p < 0.001; d = 1.25, large effect size measure), testing models (p < 0.001; d = 1.49, large effect
size measure), and changing models (p < 0.001; d = 0.88, large effect size measure).
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For latent class 1 and considering skills related to conducting scientific investigations
(Table 1), response probabilities for the skills formulating research questions and generating
hypotheses on the one hand, and planning investigations and analyzing data and drawing
conclusions, on the other hand, are quite similar, even though significant differences with
large effect size measures could be found between these two groups of skills. For the skills
related to using scientific models (Table 1), correct responses were found significantly more
often for the skill testing models than for judging the purpose of models (p = 0.02; d = 0.36, small
effect size measure).

For latent class 2 and considering skills related to conducting scientific investigations
(Table 1), items related to the skill planning investigations have been answered correctly
significantly more often than the tasks related to the other three skills (p < 0.001; d > 1.00,
large effect size measures). For using scientific models (Table 1), no significant differences
between the skills could be found.

In order to better understand the characteristics of the PSTs assigned to latent class
1 and latent class 2, we compared their age, primary majors, and the sum of previous
degrees. Independent t-tests (Table 3) revealed that there are significantly more PSTs with
the primary major of Biology in latent class 1 (about 65%) than in latent class 2 (about 33%).
For the primary major of Chemistry, it is quite the reverse (about 15 % in latent class 1 and
about 33% in latent class 2); also, the number of PSTs with more than one previous degree
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is significantly higher in latent class 1 (n = 11) than in latent class 2 (n = 1). These findings
illustrate that the study of Biology as a primary major and a higher number of previous
degrees made it more likely to belong to the more proficient latent class 1, whereas the
study of Chemistry as a primary major made it more likely to belong to latent class 2.

Table 3. Comparison of the PSTs assigned to latent class (LC) 1 and LC 2 along the variables age, primary major of Biology,
Chemistry or Physics, and the sum of previous degrees (the latter as a dichotomized variable with 1 = one previous degree
and 2 = more than one previous degree).

Variable LC Assignment N M SD t-Test

Age 1 74 26.54 5.35 t(99) = 0.591; p = 0.556
2 27 27.30 6.55

Biology 1 74 0.65 0.48 t(99) = 2.918; p = 0.004
2 27 0.33 0.48

Chemistry 1 74 0.15 0.36 t(37.07) = 1.821; p = 0.077 *
2 27 0.33 0.48

Physics 1 74 0.14 0.34 t(99) = 0.316; p = 0.753
2 27 0.11 0.32

Previous degrees 1 66 1.24 0.63 t(78.93) = 2.072; p = 0.042 *
2 25 1.08 0.40

* Adjusted t-statistic and df because of violated assumption of variance homogeneity.

4. Discussion

Using LCA, we revealed that two groups of reasoners emerged amongst the PSTs. One
subgroup (latent class 1) had a statistically higher probability of solving scientific reasoning
tasks than the other subgroup (latent class 2). Overall, the groups were significantly
different on the following five skills out of seven investigated: planning investigations,
analyzing data and drawing conclusions, judging the purpose of models, testing models, and
changing models. They were not significantly different from each other on formulating
research questions and generating hypotheses.

The latent class 1 subgroup responded significantly differently from each other on the
skills planning investigations and analyzing data and drawing conclusions in contrast to the
skills formulating research questions and generating hypotheses. Tasks about testing models were
solved more often than those requiring judging the purpose of models within this subgroup.
The latent class 2 subgroup responded significantly differently from each other on planning
investigations compared to the other skills. For using scientific models, no significant
differences could be found within this subgroup on the skills related to modeling (judging
the purpose of models, testing models, and changing models).

These two subgroups also shared several other key characteristics. In latent class 1, a
significant majority had a major in Biology compared to latent class 2, whereas there were
far fewer from Chemistry in latent class 1. Moreover, there were significantly more PSTs
with more than one previous degree in latent class 1 than in latent class 2. This finding
is noteworthy for science teacher education because it suggests that Biology majors were
significantly better at planning investigations, analyzing data and drawing conclusions, judging
the purpose of models, testing models, and changing models than Chemistry majors. These
findings might have been caused by the dominance of Biology-related items in the instru-
ment; however, as the items require PSTs to apply procedural and epistemic knowledge as
shown in Table 1 (and less so content knowledge), the findings lead us towards a renewed
emphasis on reasoning tasks for Chemistry teacher education. Nevertheless, future studies
could investigate the importance of science content knowledge from specific subjects (such
as Biology) for solving the items, for instance, by applying think-aloud studies [25] or
statistically investigating difficulty-generating task characteristics [41].

As a ‘person-centered’ statistical approach, the LCA was particularly powerful in
ascertaining subgroups within a science teacher education cohort. This statistical approach
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is a departure from traditional variable-centered approaches in education that tend to
report on average scores for sample groups [21,23]. The LCA permits statistical cases to
emerge from within samples or classrooms and is a recommended approach to generate
case studies for further inquiry in science teacher education research.

In combination with relevant epistemic, procedural, and content knowledge, greater
attention to formulating research questions and generating hypotheses would be helpful within
science teacher education. Furthermore, reasoning tasks involving judging the purpose of
models and changing models could be a high priority for modeling investigations in pre-
service science teacher education. Possible science teacher education activities to support
such tasks include the three-phased generating, evaluating, and modifying (GEM) models
approach [10]. This approach emphasizes generating hypotheses in the first phase and
testing and changing models in the second and third phases [42]. In general, science teacher
education courses, Biology majors, or those with additional degrees could be purposefully
included within heterogeneous groups for cooperative learning tasks. It was interesting
to the authors that Biology majors outperformed other majors in this study, although this
might be caused by the dominance of Biology-related items in the instrument; insights into
the differences in performance among majors would be a helpful avenue for the design
of science teachers education courses and group work in the ways suggested above. By
participating in reasoning tasks with such recommendations in mind, future teachers might
be able to better support their own students to develop competencies in these areas.

The significance of this study is that it identifies two groups of reasoners who are PSTs
with different propensities to reason in science using person-centered statistics. Normally,
the classroom would be treated similarly as an entire group; however, with this statistical
approach, the researchers are able to show that subgroups of PSTs themselves emerged as
competent at very different reasoning tasks. One subgroup is significantly more competent
at planning investigations, analyzing data and drawing conclusions, judging the purpose of models,
testing models, and changing models than the other. The subgroups had approximately
equivalent competencies at formulating research questions and generating hypotheses showing
for the first time that among PSTs, different subgroups with specific patterns of scientific
reasoning skills exist. This finding can have an impact on science students of these future
teachers, who presumably will draw upon their own competencies to demonstrate how
to reason in the classroom. Future directions for research could target investigation and
model-based reasoning competencies among PSTs and relationships to student reasoning.
Judging the purpose of models, formulating research questions, and generating hypotheses were
areas that PSTs were less competent; researching interventions related to these aspects of
modeling and investigation would be worthwhile.
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Abstract: The development and evaluation of valid assessments of scientific reasoning are an integral
part of research in science education. In the present study, we used the linear logistic test model
(LLTM) to analyze how item features related to text complexity and the presence of visual represen-
tations influence the overall item difficulty of an established, multiple-choice, scientific reasoning
competencies assessment instrument. This study used data from n = 243 pre-service science teachers
from Australia, Canada, and the UK. The findings revealed that text complexity and the presence of
visual representations increased item difficulty and, in total, contributed to 32% of the variance in
item difficulty. These findings suggest that the multiple-choice items contain the following cognitive
demands: encoding, processing, and combining of textually presented information from different
parts of the items and encoding, processing, and combining information that is presented in both
the text and images. The present study adds to our knowledge of which cognitive demands are
imposed upon by multiple-choice assessment instruments and whether these demands are relevant
for the construct under investigation—in this case, scientific reasoning competencies. The findings
are discussed and related to the relevant science education literature.

Keywords: scientific reasoning; cognition; assessment; item features; item difficulty

1. Introduction

An understanding of science and its procedures, capabilities, and limitations is crucial
for a society facing complex problems. This significance was recently highlighted during
the COVID-19 crisis, where misinformation through traditional and social forms of media
appeared to be highly influential in shaping peoples’ opinions and actions about the cri-
sis [1]. Science education can respond to these issues in part by supporting the development
of scientific reasoning competencies (SRC) among students of science. Additionally, science
teachers would benefit from strong SRC themselves to model and promote SRC among
their students [2–4]. SRC are defined as the dispositions to be able to solve a scientific
problem in a certain situation by applying a set of scientific skills and knowledge, and
by reflecting on the process of scientific problem-solving at a meta-level [5–8]. SRC are
also seen as a core element of 21st-century skills in science curricula, as they are assumed
to help enable civic participation in socio-scientific issues facing societies and have been
said to be indicative of a society’s future economic power [9,10]. Hence, SRC, such as
developing scientific questions and hypotheses, modeling, generating evidence through
experimentation, and evaluating claims, are addressed in science education policy papers
and curriculum documents as a key outcome of science education in various countries
around the world (e.g., [11–13]). SRC are also emphasized as part of science teachers’
professional competencies that should be developed during initial teacher education [14].
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Existing studies suggest that pre-service science teachers typically have basic SRC,
with pre-service secondary teachers outperforming pre-service primary or early childhood
teachers [5]. For the specific skill of scientific modeling, it was shown that pre-service
science teachers apply strategies and experience challenges similar to secondary school
students [15]. Furthermore, longitudinal studies revealed that SRC slightly develop during
science teacher education at university [16] and that specific teacher education programs
can contribute to competence development in this field [17].

The development and evaluation of assessments that are capable of providing valid
measures of respondents’ SRC have become an integral part of research in science educa-
tion [8,18]; however, several authors have recently questioned the quality of many existing
instruments to assess SRC. For example, Ding et al. [19] identified poor definitions of the
underlying constructs to be measured and criticized that most scientific reasoning instru-
ments, “[A]re in fact intended to target a broader construct of scientific literacy” (p. 623)
rather than specific competencies needed for reasoning in science. In a review study, it was
found that the psychometric quality of most published instruments to assess SRC was
not evaluated satisfactorily [18]. Furthermore, Osborne [8] criticized a general lack of
validity evidence for these available instruments and referred to the valid assessment of
SRC, as, “[T]he 21st century challenge for science education.”

Arguably, an exception to these criticisms regarding the quality of instruments to as-
sess SRC is a German multiple-choice instrument that has recently been developed to assess
pre-service science teachers’ SRC during their course of studies at university [16,20]. English
and Spanish adaptations of this instrument have also been developed and evaluated [5,21].
For the original German instrument, comprehensive sources of validity evidence have
been considered following the recommendations in the Standards for Educational and
Psychological Testing [22]. For example, the instrument has been developed based on a
clear theoretical framework, distinguishing between two sub-competencies of scientific
reasoning—conducting scientific investigations and using scientific models—and seven related
skills of formulating research questions, generating hypotheses, planning investigations, analyzing
data and drawing conclusions, judging the purpose of models, testing models, and changing models.
Furthermore, standardized construction guidelines for item development were used based
on this framework [23], and the whole process of item development was guided by a
critical examination of various sources of validity evidence (e.g., [23,24]), as summarized
in [16]. In this process, one validation study [24] analyzed the influence of item features
on item difficulty. The authors found that item length (word count) and the use of visual
images, tables, formulas, abstract concepts, and specialized terms in the items significantly
contributed to item difficulty. Taken together, these features contributed to 32% of the
variance in item difficulty. The authors argued that these findings still provide evidence for
the valid interpretation of the test scores as measures of SRC because the identified effects
of item features on item difficulty were in accordance with the theoretical background of
item development, and they showed a plausible pattern of cognitive demands [24].

In general, the analysis of item features and their influence on item difficulty is a
common approach to research in psychological and educational assessment [25–28]. The
basic assumption in this context is that assessments should represent the construct under
investigation and test items should stimulate cognitive processes that constitute the target
construct (construct validity or construct representation, respectively, [29,30]). For example,
items that are intended to assess the competencies of “analyzing evidence” might provide
an experimental design and corresponding findings and ask students to interpret the
evidence appropriately [28]. The development of test items has to account for item features
and underlying cognitive processes so that the instrument allows for valid interpretations of
obtained test scores [27]. Related to this, legitimate and illegitimate sources of item difficulty
have been distinguished [24]. While legitimate sources of item difficulty are those that are
intentionally implemented to assess skills or knowledge representative of the respective
competency, illegitimate sources of item difficulty are not directly related to the target
construct, such as reading capabilities in science or mathematics tests, and can negatively

76



Educ. Sci. 2021, 11, 472

impact valid test score interpretation [24]. Identifying threats to validity, such as construct-
irrelevant sources of item difficulty, however, has the potential to inform item development
and thus improve the validity of assessments. Furthermore, construct-relevant sources
of item difficulty can guide item development [27,31]. Nonetheless, “[W]hat constitutes
construct-irrelevant variance is a tricky and contentious issue” [30] (p. 743) and depends
on the definition of the respective construct. As a result, exploratory studies investigating
the influence of item features on item difficulty of an existing assessment instrument can
contribute to a better understanding of the cognitive demands of the instrument [26,28].

This study adds to this body of research by investigating the influence of item fea-
tures on item difficulty of the above-mentioned German multiple-choice instrument. This
study contributes to construct validation of this internationally employed testing instru-
ment [16,21]. Furthermore, and independent from the specific instrument, this study
provides insights about the influence of item features on item difficulty, and as a result,
might be used by scholars to provide direction for systematically developing testing in-
struments that account for such features [27]. The focus of this study is on formal item
features related to text complexity and the presence of external visual representations.
There are already some studies that investigated the influence of formal item features
on item difficulty in science education. For example, text length has been identified as a
feature that tends to increase item difficulty [24,32]. In contrast to internal (i.e., mental)
representations, external representations are defined as externalizations or materializations
of more or less abstract thoughts in the form of gestures, objects, pictures and signs [33].
Taxonomies of (external) representations distinguish between descriptions and depictions,
with descriptions including text, mathematical expressions, and formulas and depictions
including photographs, maps, and diagrams [34]. Many representations are also combina-
tions of different forms. For example, diagrams include textual (descriptive) and graphical
(depictive) elements [35]. Formal item features, such as text length or task format, have
been described as being part of the surface structure of test items; that is, such item features
are often not directly related to the construct to be assessed [32,36]. On the other hand,
the existence of formal item features is an inevitable part of item development, and hence,
knowledge about how such features influence item difficulty is of significance for scholars
interested in developing testing instruments.

2. Aims of the Study and Hypotheses

This study investigates the effect of item features on item difficulty for the English
adaptation of the multiple-choice SRC assessment instrument described above. Item
features related to text complexity and the presence of visual representations will be tested
for their influence on item difficulty. This study complements existing evaluation studies
on the English adaptation of the instrument that have not yet analyzed item features [5,21].
Furthermore, the present study also significantly adds to our knowledge of which cognitive
demands appear to be imposed upon by multiple-choice assessment instruments and
whether these demands are relevant for the construct under investigation—in this case,
SRC [24,28,31].

The following assumptions undergird the study: (1) item difficulty is increased with
an increase in the complexity of text included in the item because the complex text makes
it more difficult to encode and process information relevant to identify the attractor (or the
correct answer option) [24,32]; (2) item difficulty is increased for items that contain visual
representations next to textual information because this addition requires respondents to
simultaneously encode and process information that is presented in text and image, which,
in turn, increases cognitive load [37].

3. Materials and Methods
3.1. Sample and Data Collection

Data of N = 243 pre-service science teachers from Australia (n = 103; mean age= 28),
Canada (n = 112; mean age= 27), and the UK (n = 26; mean age= 31) were analyzed in this
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study. Some data partly originate from existing studies [2,3,5,21] and were secondarily
analyzed for the purpose of this study. The UK sub-sample contains new data that have
neither been analyzed nor published. Hence, this study made use of some available data
sets in order to test the above hypotheses. Having an international sample with participants
from three countries allowed the hypotheses to be tested independently from the specific
context and, thus, potentially provide more generalizable findings. SRC are an important
goal of science teacher education in all three countries [2,3].

In each case, participating pre-service science teachers voluntarily agreed to partici-
pate in this study and anonymously completed the instrument, which is why the sample
sizes are relatively small (e.g., n = 26 from the UK). The study information was shared
with participants digitally (i.e., via email) or in person, in science methods courses of the
respective pre-service teacher education programs. Completing the instrument, however,
occurred outside of courses and was not an obligatory part of the pre-service science teach-
ers’ curriculum. Ethics approval was also obtained from local ethics approval committees.
To ensure equivalence of testing conditions, the same standardized test instruction was
used in all three subsamples—namely, background information about the study and the
assessed competencies, and voluntary participation.

In all three subsamples, the above-mentioned English adaptation of the German SRC
assessment instrument was administered. As described in [5,21], the English adaptation
was systematically translated and evaluated based on the German original instrument [16].
For each of the seven skills of formulating research questions, generating hypotheses, planning
investigations, analyzing data and drawing conclusions, judging the purpose of models, testing
models, and changing models, the English instrument includes three multiple-choice items
(i.e., 21 items in total). Each item is contextualized within an authentic scientific context,
and the respondents have to apply their procedural and epistemic knowledge within this
context to identify the attractor. (For sample items, see [21]; the full instrument is available
upon request to the first author).

3.2. Item Analysis

The aim of this study was to analyze the influence of item features related to text
complexity and the presence of visual representations on item difficulty. For this purpose,
21 items were analyzed by a trained student assistant and the first author to obtain infor-
mation about text complexity and the presence of visual representations (i.e., figures or
diagrams) in each item. The latter was scored with yes (=1) or no (=0) as this scoring was
also conducted in earlier studies (e.g., [24,32]). For text complexity, three different readabil-
ity measures were calculated, as described in [38]: the 4. Wiener Sachtextformel (WSTF),
local substantival textual cohesion (LSTC), and global substantival textual cohesion (GSTC).
These readability measures provide a sound statistical estimation of text complexity in
science education [38].

The 4. Wiener Sachtextformel (WSTF) calculates a readability measure based on the
percentage of words with more than two syllables (SYLL) and the average length (i.e., word
count) of sentences (SENT) as follows [39]:

WSTF = 0.2656·SENT + 0.2744·SYLL− 1.693. (1)

Substantival textual cohesion indicates text coherence based on substantives, either
locally (i.e., in consecutive sentences) or globally (i.e., in the whole text) [40]. Global
substantival textual cohesion (GSTC) is calculated by dividing the number of substantives
that appear more than once in a text (SUB2) by the number of substantives that appear
only once (SUB). Local substantival textual cohesion (LSTC) is calculated by dividing the
number of substantially connected sentences (LSCS, i.e., consecutive sentences with the
same substantive) by the total number of sentences (S) as follows:

GSTC =
SUB2

SUB
·100%, (2)
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LSTC =
LSCS

S
·100%. (3)

Higher numbers of WSTF and lower numbers of LSTC and GSTC indicate more
complex texts; 5.4 < WSTF < 8.4, 0.41 < LSTC < 0.65, and 0.70 < GSTC < 0.89 have been
suggested as indicating appropriately understandable texts for science education [38].

3.3. Data Analysis: Linear Logistic Test Model

To estimate the influence of the different item features on an item’s difficulty, the
linear logistic test model (LLTM) was applied [41,42] as this model was applied in several
similar studies analyzing item features (e.g., [28,43]). The LLTM belongs to Rasch models,
a family of established psychometric models utilized in psychological and educational
research [44]. The family of Rasch models includes descriptive and explanatory psychome-
tric models [45,46]. For example, the one-parameter logistic model (1PLM) is a descriptive
psychometric model that allows for the estimation of individual person ability (θs) and
item difficulty (βi) parameters. In 1PLM, it is assumed that the probability of a correct item
response depends only on θs and βi [44].

P(Xis) =
exp(θs − βi)

1 + exp(θs − βi)
(4)

In contrast to descriptive models such as 1PLM, explanatory models consider item
or person features to further explain the item difficulty or person ability parameters,
respectively [46]. The LLTM is an item explanatory model because it assumes that item
difficulty is a linear (additive) combination of basic parameters αk [43]. Formally, the βi
parameter of 1PLM is replaced with a linear combination of these basic parameters [41]
as follows:

β′i =
N

∑
k=1

(αkχik) (5)

where αk as the regression coefficient for k (i.e., the estimated difficulty of the item feature
k), and Xik as the given weight of item feature k on item i (i.e., the extent to which the
respective item feature applies to item i). Hence, αk illustrates the contribution of item
feature k to item difficulty [43]. If an LLTM can be shown to fit the given data, the estimated
parameters αk provide measures for the item features’ contribution to item difficulty. More
specifically, it is assumed that item difficulty can be sufficiently and totally explained with
the specified parameters in the LLTM [42]. Therefore, the LLTM can be considered more
restrictive and more parsimonious than the 1PLM [47].

To evaluate the model fit of an LLTM, a two-step procedure is proposed: first, 1PLM
has to fit “at least approximately” [42] (p. 509) to the data. For testing the fit of a Rasch
model to the given data, fit indices such as the sum of squared standardized residuals
(MNSQs) are proposed. MNSQs provide a measure of the discrepancy between the as-
sumptions of the Rasch model and the observed data [48]. Second, the decomposition
of βi (Formula 5) needs to be checked for empirical validity. For this reason, the item
difficulty parameters estimated in 1PLM, and the corresponding LLTM can be compared
(e.g., graphically or by calculating Pearson correlation coefficient, [25]). High associations
between both parameters indicate that the decomposition of βi might be valid [42]. Fur-
thermore, information criteria, such as the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC), and the log-likelihood difference test can be applied
to compare the fit of both models and different LLTMs [42]. In the present study, the R
package eRm [49] was used for model specification and parameter estimation.

3.4. Model Specification

In this study, two LLTMs with the following variables were specified to estimate
parameters αk. In the first LLTM–called LLTMbaseline–it was coded to which of the seven
skills each item belongs (i.e., dummy coding). This procedure mirrors the assumption that
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there are specific cognitive demands to solve the items associated with each skill [23,50].
Hence, the assignment to the respective skills is assumed to sufficiently and totally explain
the item difficulty in the LLTMbaseline.

The second LLTM—called LLTMextended—additionally included parameters for the
readability measures WSTF, LSTC, and GSTC, and the presence of visual representations
described above. Hence, the LLTMextended assumes that next to the scientific reasoning
skills, the readability of text and the presence of visual representations also impose specific
cognitive demands to process and encode information provided in the items, and to answer
correctly [24,32,37,38].

4. Results

The Results Section is subdivided into three subsections: Basic Statistics, Descrip-
tive Modeling, and Explanatory Modeling. The latter two sections refer to the two-step
procedure of LLTM model evaluation, as described in Section 3.3.

4.1. Basic Statistics

Table 1 provides basic descriptive statistics and Pearson correlations for item difficulty
and the variables considered in this study. Item difficulty was calculated as the proportion
of correct responses (i.e., 1.0 = 100% correct responses). It is evident that the multiple-
choice items had appropriate difficulty for the present sample, as about 47% of them were
answered correctly (MItemDiff = 0.47). About 43% of the items contain a visual representation.
Based on the WSTF and LSTC, the items would be considered rather easy to read. The LSTC
is even higher than expected, indicating a very high local substantival textual cohesion.
Only the average GSTC (MGSTC = 0.63) indicates low global substantival textual cohesion of
the items. Statistically significant correlations (i.e., p < 0.05) were only found between LSTC
and GSTC (r = 0.48; medium effect size). Due to the medium effect size of this correlation,
no serious problem of multicollinearity for further analysis occurs. Notably, no statistically
significant correlations were found between item difficulty (ItemDiff) and the variables
WSTF, LSTC, GSTC, and VisRep.

Table 1. Mean score (M), standard deviation (SD), and Pearson correlation coefficient (r) with related
p-value for the respective variables. Expectance = values indicating appropriately understandable
texts as suggested in [38]. ItemDiff = item difficulty; WSTF = 4. Wiener Sachtextformel; LSTC = local
substantival textual cohesion; GSTC = global substantival textual cohesion; VisRep = item contains a
visual representation (0 = no; 1 = yes).

Expectance M ± SD WSTF LSTC GSTC VisRep

ItemDiff — 0.47 ± 0.15
R −0.28 −0.31 0.32 −0.20
P 0.220 0.176 0.151 0.389

WSTF 5.4–8.4 6.43 ± 1.54
R −0.15 −0.26 0.17
P 0.502 0.251 0.468

LSTC 0.41–0.65 0.83 ± 0.38
R 0.48 0.34
P 0.030 0.136

GSTC 0.70–0.89 0.63 ± 0.11
R 0.28
P 0.221

VisRep — 0.43 ± 0.51

For further illustration, sample items can be found in Appendix A. These items represent
the median score of WSTF (M = 6.51), LSTC (M = 0.85), and GSTC (M = 0.61), respectively.

Figure 1 below illustrates how the variables shown in Table 1 differ between the
tasks for the seven skills of scientific reasoning. Kruskal–Wallis tests indicate significant
differences between the skills for the variables GSTC (H = 13.19, p = 0.040) and VisRep
(H = 12.22, p = 0.045). For GSTC, items related to the skills planning investigations (M = 0.73)
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and analyzing data and drawing conclusions (M = 0.78) show rather high values, compared
to lower values for the skills formulating research questions (M = 0.53), generating hypotheses
(M = 0.55), judging the purpose of models (M = 0.66), testing models (M = 0.54), and changing
models (M = 0.64). These five skills are below the suggested range of 0.70 < GSTC < 0.89,
unlike the others, indicating appropriately understandable texts in science education [39].
For VisRep, it is evident that items related to formulating research questions, generating
hypotheses, and planning investigations do not contain visual representations, while most
items related to the other skills do.
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4.2. Descriptive Rasch Modeling: One-Parameter Logistic Model (1PLM)

The fit between data and 1PLM has been evaluated and documented in previous
studies in detail [2,5,16,21]. Here, MNSQs are reported, which indicates the discrepancy be-
tween the assumptions of the Rasch model and the data. MNSQ values are always positive
because statistically, they are chi-square statistics divided by their degrees of freedom [51].
MNSQ values should lie in the range of 0.5–1.5 (“productive for measurement”) or 1.5–2.0
(“unproductive for construction of measurement but not degrading”), respectively, but not
be >2.0 (“distorts or degrades the measurement system”) [48]. MNSQs can be calculated
in two different versions—the outfit and the infit MNSQ. As the outfit MNSQ is more
sensitive to outliers than the infit MNSQ, both statistics should be considered [51].

The MNSQ values in this study range between 0.7 and 1.2 (outfit MNSQ), and between
0.9 and 1.1 (infit MNSQ), respectively. Furthermore, the Andersen likelihood ratio test
with the external split criterion “country” (i.e., Australia, Canada, UK) is not significant
(LR(40) = 46.22, p = 0.23), thus indicating item homogeneity [49]. Person separation relia-
bility is rel. = 0.52 and similar to previous reliability estimates for this instrument (e.g., [5]:
EAP/PV reliability = 0.55; [16]: Cronbach’s Alpha = 0.60).

4.3. Explanatory Rasch Modeling: Linear Logistic Test Model (LLTM)

MNSQ values for both LLTMs indicate a reasonable fit between data and model
(LLTMbaseline: 0.7 < outfit MNSQ < 1.6; 0.7 < infit MNSQ < 1.5; LLTMextended: 0.5 < outfit
MNSQ < 1.7; 0.7 < infit MNSQ < 1.6). Person separation reliability is rel. = 0.46 and
0.50, respectively. Pearson correlations between the item parameters estimated in the
LLTMs and the 1PLM are large for both the LLTMbaseline (r = 0.65, p = 0.002; i.e., R2 = 0.42)
and the LLTMextended (r = 0.86, p < 0.001; i.e., R2 = 0.75). The graphical model tests of
the LLTMs and the 1PLM show that the item parameters scatter around the 45◦ line
rather well for the LLTMextended, while less so for the LLTMbaseline (Figure 2). This is also
indicated by the empirical regression line (blue lines in Figure 2), which is closer to the 45◦

diagonal when comparing item difficulty parameters of the 1PLM and the LLTMextended
than when comparing these parameters of the 1PLM and the LLTMbaseline. In sum, the
findings indicate that the item parameters estimated in the LLTMextended were closer to the
estimated parameters from the 1PLM, than those estimated in the LLTMbaseline.
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Table 2 provides the information criteria AIC and BIC and the log-likelihood difference
test for model comparison between the 1PLM and the two LLTMs. AIC and BIC assess the
relative model fit, with smaller values indicating the better fitting model. These values,
therefore, indicate that the 1PLM fits better with the data than both LLTMs. The log-
likelihood difference test also proposes a significantly better fit of the 1PL, compared to
both LLTMs. Comparing both LLTMs, AIC and BIC indicate that the LLTMextended fits
better to the data than the LLTMbaseline.

Table 2. Model comparison between the 1PLM and both LLTMs (LogLik: marginal log-likelihood;
AIC: Akaike information criterion; BIC: Bayesian information criterion; LD test: p-value of the
log-likelihood difference test comparing the respective LLTM with the 1PLM).

Model Parameter LogLik AIC BIC LD Test

1PLM 20 −3018 6076 6145 —

LLTMbaseline 6 −3282 6577 6597 p < 0.001

LLTMextended 10 −3139 6299 6334 p < 0.001

Table 3 provides the αk parameters as estimated in the two LLTMs. Positive αk
parameters indicate that the respective variable decreases item difficulty, while negative
αk parameters illustrate an increase in item difficulty. For the dummy coded variables
representing the seven skills of scientific reasoning, planning investigations was chosen as the
baseline because the related items ended up being rather easy (Figure 1). As the confidence
intervals of most parameters in Table 3 do not include zero, they can be assumed to be
significantly different from zero at the 5% level. Exceptions are WSTF, Pur, Test, and Cha in
the LLTMextended. Comparing the parameters in both LLTMs, it is evident the additional
consideration of the variables WSTF, LSTC, GSTC, and VisRep reduces the effect of most of
the dummy coded skills.
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Table 3. Parameters estimated in the two LLTMs (SE = standard error; 95% CI = 95% confidence
interval); lines with 95% CI including zero are formatted in grey.

Variable αk SE 95% CI

LLTMbaseline

Que −1.52 0.12 −1.75 −1.30

Hyp −1.76 0.12 −2.00 −1.53

Ana −0.56 0.11 −0.79 −0.34

Pur −1.32 0.11 −1.54 −1.09

Tes −1.16 0.11 −1.39 −0.94

Cha −0.89 0.11 −1.11 −0.67

LLTMextended

WSTF −0.04 0.03 −0.09 0.02

LSTC −1.89 0.15 −2.17 −1.61

GSTC 5.61 0.78 4.09 7.14

VisRep −0.79 0.11 −0.99 −0.58

Que −0.53 0.19 −0.92 −0.15

Hyp −1.57 0.16 −1.88 −1.26

Ana −0.52 0.17 −0.85 −0.19

Pur 0.19 0.20 −0.20 0.58

Tes 0.28 0.20 −0.12 0.67

Cha 0.09 0.16 −0.22 0.41

In the LLTMextended, the existence of visual representations (αk = −0.79) makes items
harder to solve. Similarly, items related to the skills formulating research questions, generating
hypotheses, and analyzing data and drawing conclusions are harder to solve than items related
to the skill planning investigations (i.e., the baseline); this is also evident in Figure 1. As lower
numbers of LSTC and GSTC are indicative of more complex texts, the αk parameters of
GSTC are in line with what was expected: the lower the GSTC is, the more difficult are the
items to solve. Unlike expected, lower LSTC values decreased item difficulty (αk = −1.89).

As described above (Formula (5)), each item’s difficulty is calculated in an LLTM as
a linear (additive) combination of the item features’ difficulty, with αk as the estimated
difficulty of item feature k. Based on the αk values in Table 3, this means for the LLTMextended
that, for example, GSTC impacts item difficulty about seven times stronger than VisRep
(5.61/0.79 = 7.1). It is important to note that αk values are unstandardized and do not take
the different scales of item features into account (e.g., binary variable VisRep vs. continuous
variable GSTC).

5. Discussion

The purpose of this study was to investigate the effect of item features on item difficulty
for a multiple-choice SRC assessment instrument established in science education [5,16,21].
More specifically, item features related to text complexity (4. Wiener Sachtextformel: WSTF;
local and global substantival textual cohesion: LSTC and GSTC) and the presence of visual
representations as figures or diagrams (i.e., VisRep) were investigated for their influence on
item difficulty. The findings revealed that LSTC and GSTC, as well as VisRep, significantly
impacted item difficulty in the multiple-choice assessment instrument, while WSTF did
not. These findings are discussed below while acknowledging the limitations of this study.

In this study, the item features considered in the LLTMextended explain about 75% of
the variance in item difficulty estimated in the 1PLM—well above the limit of a large effect
(R2 ≥ 0.26; [27]) and also higher than what has been found in similar studies (e.g., [28]:
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R2 = 0.43; [24]: R2 = 0.32). Conversely, a variance explanation of 75% means that 25% of
the variance in item difficulty estimated in 1PLM cannot be explained with the parameters
specified in the LLTMextended and might be attributable to individual differences. For
example, general cognitive abilities such as verbal intelligence and problem-solving skills
have been shown to significantly predict students’ SRC [52].

The difference in variance explanation between the two LLTMs specified in this study
suggests that 33% of the variance in item difficulty can be explained with the additional
parameters related to text complexity and the existence of visual representations included
in the LLTMextended, that is, WSTF, LSTC, GSTC, and VisRep. The resulting amount of 33%
is very similar to the result of an earlier study that found 32% [24] on item features affecting
item difficulty in the German version of the instrument. This similarity in the effect of
item features on item difficulty in both language versions of the instrument (English and
German) is another indicator of test equivalence between the two versions [21].

A comparison of the parameters estimated in the LLTMbaseline and the LLTMextended
(Table 3) reveals that with the additional consideration of parameters related to text com-
plexity and the presence of visual representations, the significant effect of judging the purpose
of models (PUR), testing models (TES), and changing models (CHA), which were found in the
LLTMbaseline, disappeared. This finding indicates that the significant effects of PUR, TES,
and CHA, identified in the LLTMbaseline, might be artifacts caused by the effect of item
features not considered in the LLTMbaseline and confounded with PUR, TES, and CHA.
For example, all items related to PUR contain visual representations (Figure 1), while, on
average, this applies to only 43% of the items (Table 1). Hence, the effect of PUR, identified
in the LLTMbaseline, might have been caused by the presence of visual representations as
figures or diagrams in the items related to PUR.

While the correlation analysis (Table 1) revealed no significant association between
item difficulty and the item parameters of WSTF, LSTC, GSTC, and VisRep, these asso-
ciations were found for most of the parameters in the LLTMextended. This difference in
findings is most likely caused by the fact that the correlation analysis was carried out based
on the items (i.e., N = 21), a relatively small number to detect associations on a statistically
significant level [26]. In contrast, the parameter estimation in the LLTM was performed
based on a larger sample of individuals, or an N = 243 in this study.

Examining the individual parameters estimated in the LLTMextended (Table 3), items
containing visual representations tended to be harder to solve. This finding was also
reported in [24] and described as unexpected, and potentially caused by the fact that visual
representations in the items, “were often used to show complex scientific models and, hence,
may increase the difficulty” (p. 8). Another explanation might be that the simultaneous
encoding and processing of information provided in text and image can increase cognitive
load and, hence, item difficulty [37]. As expected, lower global substantival textual cohesion
increased item difficulty, with GSTC calculated as the proportion of substantives that appear
more than once in a text (Formula (2)); however, unexpectedly, lower local substantival
textual cohesion decreased item difficulty, with LSTC as the proportion of sentences with
the same substantive as the preceding or subsequent sentence (Formula (3)). Both GSTC
and LSTC measures are established indicators for text complexity and readability, with
lower values indicating more difficult text [38]. The effect of GSTC on item difficulty most
likely indicates that solving the items requires the encoding and processing of complex
textual information provided in the item text globally, a task that is even more difficult
with text that is challenging to read [24,32]. For the present multiple-choice items, this
processing might involve respondents having to encode, process, and combine information
that is textually presented in different parts of the item, such as the item stem and the
answering options [50]. Hence, if information in the item stem and the answering options
are more coherently presented (in terms of substantives), an item becomes easier to solve.
For example, signal words, occurring both in the item stem and the attractor, can ease item
difficulty [28]. The unexpected findings related to the effect of LSTC on item difficulty
should be investigated further, for example, qualitatively, using cognitive interviews. One
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plausible reason for the unexpected finding related to LSTC is that both GSTC and LSTC
are typically used to analyze the readability of longer texts than what is included in the
items of the present multiple-choice instrument [38]. Finally, the significant effects of
some of the dummy coded skills (i.e., QUE, HYP, ANA; Table 3) illustrate that the items
developed to assess the different skills of scientific reasoning require the application of
specific procedural and epistemic knowledge to be solved [23].

The multiple-choice instrument under consideration in this study is already employed
by scholars internationally in three language versions [2,16,21]. The findings of the present
study shed light on specific cognitive demands that are necessary to correctly answering
the items. These findings should be considered by scholars when interpreting test scores.
Independent from the specific instrument, the study provides important insights about
the influence of item features on item difficulty. These insights can inform the systematic
development of a testing instrument that accounts for such features [27].

Naturally, this study has some limitations. The LLTM is well established for the
analysis of item features and their influence on item difficulty within the approach of
evaluating construct representation (e.g., [25,26]). Nevertheless, the assumption of an
additive combination of the single features’ difficulty, as described in Formula (5), is also
criticized [43]. For example, a multiplicative combination of each item feature’s influence
on item difficulty might also be possible. Furthermore, in this study, only main effects were
considered in LLTMs, but no interaction effects were considered between the specified
variables. The variables considered in this study were also analyzed post hoc and were
not systematically considered during item development; hence, the item features were
not equally distributed across the items for the seven skills of SRC (e.g., items related
to formulating research questions, generating hypotheses, and planning investigations do not
contain visual representations at all; Figure 1). Finally, LLTMs assume that the specified
item features completely (i.e., 100%) explain item difficulty [42], which was not the case
in the present study. Despite a good explanation of item difficulty in the LLTMextended,
there is a significantly better model fit for the 1PLM (Table 2). The comparatively poor
model fit of an LLTM is a common finding (e.g., [25,43]), which is explained with the strict
assumption of a complete explanation of item difficulty by the specified item features [41].
The model comparison based on the information criteria, on the other hand, does not allow
any statement about the absolute fit of the models considered [53]. Since a relatively worse
model fit does not necessarily indicate an absolutely bad model fit, a check of the difficulty
parameters estimated in the LLTM in the sense of a prognostic validation by replication
studies is proposed [27,41]. This approach could be employed in the present context by
developing additional items with systematically varied item features, followed by testing
these features’ influence on item difficulty again. Notwithstanding this issue of model fit,
the comparison of the item difficulty parameters estimated in the 1PLM and both LLTMs
allowed for an estimation of the amount of variance in item difficulty explained by the
item features specified in the respective LLTM.

6. Conclusions

In this study, we investigated the effect of the item features WSTF, LSTC, GSTC, and
VisRep on the difficulty of the items of a multiple-choice instrument to assess SRC in science
education [5,21]. This analysis was based on the assumptions that the readability of text
and the presence of visual representations impose specific cognitive demands to process
and encode information provided in the items [24,32,37,38]. Furthermore, dummy-coded
variables representing the specific skills of scientific reasoning were also considered in the
analysis, assuming that specific cognitive demands (i.e., application of specific procedural
and epistemic knowledge) are associated with each skill [23,50]. The findings illustrate that
these variables, in sum, explain about 75% of the variance in item difficulty.

From a validity perspective, the similarity between the present findings and the
previous study on the German version of the multiple-choice instrument [24] provides
further evidence for test equivalence of both language versions [21]. From a cognitive point
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of view [25], the findings of the present study suggest that specific cognitive demands are
imposed by the readability of text and the presence of visual representations in multiple-
choice assessment instruments. Specifically, the multiple-choice items analyzed in the
present study appear to demand the encoding, processing, and combining of textually
presented information from different parts of the items—such as item stem and answering
options—while simultaneously encoding and processing information that is presented
in both the text and visual representations. It has been shown that to solve the multiple-
choice items used in this study, the application of procedural and epistemic knowledge
is required [23,50]. The findings of this study illustrate that multiple-choice items on this
assessment impose additional cognitive demands due to the necessity of processing text
and visual representations.
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Appendix A

The below items represent the median score of WSTF (M = 6.51), LSTC (M = 0.85), and
GSTC (M = 0.61), respectively. Note that the items are presented in a tabular format for
better reading and not in the same way as they appeared in the testing instrument. The
attractor of each item is highlighted in italics.

Item “testing models 03” (MWSTF = 6.51)

Item stem
Fraud with organic grocery bags?
Under the influence of oxygen, bacteria and fungi transform organic material mainly into carbon dioxide and water. This process of
transformation is called composting. A part of the resulting substances is transformed into humus (dead organic soil matter).
The following report was published in a newspaper: “The Deutsche Umwelthilfe (German Environmental Relief) launch
accusations against two supermarket chains: The allegedly 100 % compostable grocery bags are not biodegradable at all; therefore
they are just as ecologically harmful as common plastic bags.”
A team of experts has been asked to conduct a scientific investigation into how compostable are these organic grocery bags really?
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Answering options
Which scientific question might underlie this investigation?
Tick one of the boxes below.

• What impact do the biological decomposition products from organic grocery bags have on the environment?
• What biological decomposition products are formed in the process of composting organic grocery bags?
• What materials comprise organic grocery bags?
• Are there any substances formed in the process of composting organic grocery bags that cannot further be decomposed?

Item “changing models 03” (MLSTC = 0.85)

Item stem
Language Acquisition
In physical reality, there is a variety of continuous transitions between different sounds, such as [ra] and [la]. While infants are
aurally capable of perceiving all of these different transitions of sound, an imprint toward a specific language can be observed after
the first year of life. Vocal expressions within different languages are then no longer perceived in their entirety but rather through a
specific filter.
For this phenomenon of language acquisition, the following model was developed:
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• …if there are Australian adults who do not have a distinct subjective perception of [ra] and [la]. 

Item “generating hypotheses 02” (MGSTC = 0.61) 
Item stem 
In Outer Space 
After many years of space missions, we know that existing conditions in space, such as zero gravity and cosmic radia-
tion, harm the human body in the long run.  
Previous stays in outer space were limited to a few months, whereas the scheduled flights to Mars will span many 
months—a considerably longer duration. 
In a study, the health impacts of such long-lasting stays in outer space are to be investigated. 
Answering options 
Which scientific hypothesis might underlie this investigation? 
Tick one of the boxes below. 

Figure. Model of language acquisition by sound perception.
The model predicts that Australians and Japanese acquire their language in different ways and the subjective perception of sounds
develops differently.

Answering options
What reason would make it necessary to change the model?
Tick one of the boxes below.
The model has to be changed . . .

• . . . if the process of the subjective perception of [ra] and [la] in the language acquisition of English and Japanese is not
explained.

• . . . if there are Japanese adults who learned English as a second language and have a distinct subjective perception of [ra] and [la].
• . . . if the subjective perception of [ra] and [la] cannot be applied to languages other than English and Japanese.
• . . . if there are Australian adults who do not have a distinct subjective perception of [ra] and [la].

Item “generating hypotheses 02” (MGSTC = 0.61)

Item stem
In Outer Space
After many years of space missions, we know that existing conditions in space, such as zero gravity and cosmic radiation, harm the
human body in the long run.
Previous stays in outer space were limited to a few months, whereas the scheduled flights to Mars will span many months—a
considerably longer duration.
In a study, the health impacts of such long-lasting stays in outer space are to be investigated.
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Answering options
Which scientific hypothesis might underlie this investigation?
Tick one of the boxes below.

• The human body needs additional protection against cosmic radiation during flights to outer space.
• The human body shows little permanent damage from a short stay in outer space.
• The human body shows severe injuries when permanently being exposed to cosmic radiation.
• The existing conditions of zero gravity and radiation play a role in flights to Mars.
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Abstract: Scientific reasoning (SR) skills and nature of science (NOS) beliefs represent important
characteristics of biology teachers’ professional competence. In particular, teacher education at
university is formative for the professionalization of future teachers and is thus the focus of the
current study. Our study aimed to examine the development of SR skills and NOS beliefs and their
mutual relationship during teacher education. We applied paper-and-pencil tests to measure SR
skills and NOS beliefs of 299 preservice biology teachers from 25 universities in Germany. The
results of linear mixed models and planned comparisons revealed that both SR skills and NOS beliefs
develop over the course of the study. Nevertheless, the development of SR skills and multiple aspects
of NOS beliefs proceeds in different trajectories. Cross-lagged models showed a complex picture
concerning the mutual relationship between SR skills and NOS beliefs during their development
(both positive and negative). The current study contributes to the existing research because it is
based on longitudinal data and allows—in contrast to cross-sectional research—conclusions about
the development of SR skills and NOS beliefs.

Keywords: scientific reasoning; nature of science; preservice teachers; longitudinal study; cross-
lagged panel

1. Introduction

Fostering the scientific literacy of students is one of the core aims of science educa-
tion in schools (e.g., [1] [Germany]; [2] [U.S.]). Science teachers’ scientific reasoning (SR)
skills and their beliefs about nature of science (NOS) represent key domains of science
teachers’ professional competence regarding science as inquiry. Science teachers with
higher proficiency in SR skills are more likely to promote inquiry-based learning of their
students [3,4]. Furthermore, science teachers need adequate NOS beliefs to integrate NOS
teaching practices in their classrooms [5,6]. Accordingly, SR skills and NOS beliefs should
be considered equally important as knowledge of other science concepts [7]. In different
countries, standard documents of university teacher education, therefore, include SR skills
and NOS beliefs (e.g., [8] [Germany]; [9] [U.S.]).

Because teacher education at the university is one of the most formative phases of the
professionalization of teachers and the development of their professional competence [10],
it should also be considered an important starting point for the development of SR skills
and NOS beliefs. Previous research shows that preservice teachers’ SR skills and NOS
beliefs improve, at least to some degree, during teacher education at university, and that
this development is related to appropriate learning opportunities provided in science
education courses [11–13]. Regarding SR skills, preservice teachers are more skilled in
graduate science education courses than students in graduate courses that did not explicitly
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reflect upon scientific inquiry [12]. The more courses in university teacher education
referred to NOS concepts, the higher is preservice teachers’ understanding of NOS [11].
Nevertheless, empirical evidence based on longitudinal data allowing statements about
the development of SR skills and NOS beliefs is rare (see [13], for an overview). In
response to this desideratum, the first objective of the present study is to investigate
the development of preservice science teachers’ SR skills and NOS beliefs throughout
university teacher education.

Although SR skills and NOS beliefs are two separate domains of teachers’ professional
competence, their interplay is important: Within teachers’ professional competence, SR
skills and NOS beliefs may be closely related because they both concern the development
of scientific knowledge [14]. Whereas SR skills reflect preservice teachers’ procedural
knowledge about scientific inquiry processes (i.e., knowing how), NOS beliefs reflect their
evaluations of how scientific knowledge comes into being (i.e., knowing why; [15]). Most
research to date, however, was only able to correlate SR skills and NOS beliefs in cross-
sectional designs [14,16]. Thus, the mutual relationship between SR skills and NOS beliefs
and their development over time remains unexplored. For example, it is unclear whether
NOS beliefs are beneficial for SR skills or vice versa (see [17], for an overview). Our second
objective addresses this research gap by exploring the mutual relationship between SR
skills and NOS beliefs during their development. With our results, we aim to contribute
to understanding both constructs and their relationship, and the improvement in teacher
education at university regarding SR skills and NOS beliefs.

1.1. Scientific Reasoning Skills and Beliefs about Nature of Science as Domains of Science Teachers’
Professional Competence

To foster students’ scientific literacy, science teachers need specific characteristics that
are located within the concept of professional competence [18]. Professional competence
covers different aspects of successful teachers’ professional knowledge, motivational orien-
tations, beliefs, values, and goals, and self-regulative skills [18]. These aspects are a critical
resource for teachers to promote student learning [19–21]. One of the core assumptions
of professional competence is that future teachers do not enter their careers with all of
the desired characteristics but acquire them over time. This assumption implies that the
aspects of teachers’ professional competence are, in principle, learnable [22].

1.2. Scientific Reasoning Skills

SR skills are a procedural facet of teachers’ content knowledge. Content knowledge
represents the content-related domain of professional knowledge [18,23]. More specifically,
SR skills represent the “knowing how” (i.e., about scientific inquiry processes; [15,24,25]).
SR skills refer to an individual’s ability to solve problems scientifically, that is, to a domain-
specific set of knowledge and skills for scientific inquiry processes, which differ from
domain-general cognitive strategies [26,27]. SR skills are different from domain-general
cognitive abilities with which they only have medium but positive correlations [28]. SR
skills comprise several subskills, such as formulating hypotheses, planning investigations,
and analyzing and interpreting data. Furthermore, SR skills comprise different dimensions
related to methods such as observing, investigations, and modeling [12,29,30]. The theoret-
ical framework corresponding to the current study more precisely defines four subskills
of SR (i.e., “formulating questions”, “generating hypotheses”, “planning investigations”,
“analyzing data and drawing conclusions”) in the dimension of “conducting scientific
investigations” [31] (p. 264). We refer to “skills” because they are—other than intelligence—
trainable and also distinct from conceptual knowledge (see [32], for a similar account).

Regarding the assessment of SR skills, previous research noted a low validity of
questionnaires based on ill-defined constructs of SR skills [25,33]. There have been few at-
tempts to establish the psychometric quality of the questionnaires (e.g., [34]; see [32], for an
overview). One notable exception was the development of a multiple-choice questionnaire
for science teachers by theory-based item selection (see [31], for an overview), and testing
of its validity [12,30] and applicability in different countries [29,35].
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1.3. Beliefs about Nature of Science

Whereas scientific reasoning reflects the different activities in scientific inquiry (e.g.,
forming hypotheses, planning investigations, and analyzing and interpreting data), NOS
reflects the epistemological basis of scientific inquiry and knowledge [5]. NOS beliefs,
therefore, are different from knowledge of scientific inquiry. The location of NOS beliefs
within the teachers’ professional competence model reflects this conceptual difference [18],
because NOS beliefs conceptually belong to teachers’ beliefs [36]. Teachers’ beliefs are
defined as “psychologically held understandings and assumptions about phenomena or
objects of the world that are felt to be true, have both implicit and explicit aspects and
influence people’s interactions with the world” [36] (p. 250). More precisely, NOS beliefs
conceptually belong to teachers’ epistemological beliefs related to the nature of knowledge
or a particular science (see, [37] for mathematics education; see [38], for an overview). In
science education, NOS beliefs reflect preservice teachers’ evaluations of the character-
istics of scientific knowledge and its production [5]. Despite the ongoing debate about
the general aspects conceptualization of NOS, science education researchers, to a certain
degree, agree on the inclusion of seven to ten aspects in the NOS conceptualization (i.e.,
the consensus view on aspects to be taught in schools; [39]). Previous research aligned
the following aspects from different NOS conceptualizations: tentativeness; observations
and inferences; creativity and imagination; subjectivity and objectivity; social and cultural
embeddedness; diversity of scientific methods; and scientific theories and laws [39,40]. Re-
cently, a comprehensive account of professional competence that teachers need for effective
NOS instruction [38] added to the description of preservice teachers’ NOS beliefs during
teacher education [13] and provided a more prescriptive framework for teacher education.

The assessment of preservice teachers’ NOS beliefs with questionnaires reflects the
general aspects conceptualization of NOS. Questionnaires to assess NOS beliefs follow
qualitative approaches, such as the Views of Nature of Science Questionnaire (VNOS; [41]),
or quantitative Likert-type approaches, such as the questionnaire Student Understanding
of Science and Scientific Inquiry (SUSSI; [42,43]). The Likert-type SUSSI questionnaire is
based on the aspects from the VNOS [43]. Although Likert-type NOS questionnaires have
been criticized [41], they are especially useful in research that assesses larger samples or
repeatedly tests individuals and investigates the relationship between NOS beliefs and
other constructs [44].

1.4. Development during Teacher Education

Kunter et al. [10] describe the first phase of teacher education at university as incredibly
formative for the professionalization of teachers. Neumann and colleagues [45] provide a
concise overview of the German teacher education system (in which our study is situated).
Prospective teachers can choose from different teacher education programs to qualify for
different school tracks (primary school, non-academic track, or academic track). Typically,
they study two subjects. For prospective science teachers, it is essential to mention that they
can study the separate science disciplines (biology, chemistry, and physics). On average,
teacher education programs last five years (three years for the bachelor’s phase and two
years for the master’s phase).

Both preservice teachers’ SR skills and NOS beliefs profit from learning opportunities
in science education courses during teacher education at university [11–13]. According to
previous research, academic training generally appears to promote the development of
SR skills [12,26,46]. Other research, however, suggests that the development of SR skills is
more pronounced when courses promote explicit reflection on scientific inquiry [47–49].
Therefore, the development of preservice teachers’ SR skills may vary throughout teacher
education at university. In a cross-sectional study, university courses that require explicit
reflection are part of the postgraduate phase of university teacher education [12]. The
authors of this study assume that explicit reflection improved science teacher students’ SR
skills that were higher than those of natural science students, and they suggest further
exploring this assumption in longitudinal studies. Adding to the cross-sectional findings,
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one study provides evidence for the—at least moderate—development of SR skills during
university teacher education in a longitudinal study on preservice teachers from two
universities [31]. The development of SR skills was evident from four time points: the first
and fourth semester of their undergraduate studies, and the first and fourth semester of
their postgraduate studies (i.e., the 7th and 10th semesters in total).

Most research on preservice teachers’ NOS beliefs stems from cross-sectional analysis
and repeatedly shows that they do not possess what is considered to be adequate beliefs
about NOS (e.g., [43]). Cross-sectional findings highlight that (future) science teachers
often have an exclusively positive or idealistic image of science, even when the researchers
accounted for the number of teaching years, the type of teacher education program, and the
discipline (see [5], for an overview). Other research focused on how to promote adequate
NOS beliefs and highlighted the effectiveness of explicit and reflective instruction [50–52].
Nonetheless, some aspects of NOS beliefs are more difficult to change than others (e.g., dif-
ferences between scientific laws and theories; [52]). Less research focuses on how preservice
teachers’ NOS beliefs develop over time during university teacher education [11,53]. One
study found a decline in adequate NOS beliefs in a sample of Turkish preservice teachers,
although this study was cross-sectional [53]. Another study showed that adequate NOS
beliefs increase with learning opportunities provided during university teacher educa-
tion [11]. This study, however, also took a cross-sectional approach and did not consider
how NOS beliefs of individual preservice teachers develop over time. Thus, longitudinal
studies of preservice teachers’ NOS beliefs are needed, particularly to explore how different
aspects of NOS beliefs develop in relation to their difficulty [13].

1.5. The Interplay between SR Skills and NOS Beliefs

The two constructs may be related to each other because SR skills reflect the knowledge
of how to pose questions scientifically, whereas NOS beliefs reflect the knowledge of
why scientific inquiry proceeds in specific ways [14,54]. Both SR skills and NOS beliefs
can be enhanced by appropriate instruction, such as explicit reflection about scientific
inquiry [47,55]. Therefore, explicit teaching about scientific inquiry may lead to more
appropriate NOS beliefs, for example, that theories are subject to change. Conversely,
more appropriate NOS beliefs may promote more profound SR skills, such as drawing
valid conclusions from data (see [16], for a similar account on the nature of scientific
inquiry). Most research, however, either studied the development of SR skills (e.g., [12]) or
NOS beliefs [11,53]. Other research that assessed both SR skills and NOS beliefs neither
investigated their relationship (e.g., [56]) nor established a theoretical framework of how
specific beliefs and skills may be related (e.g., [16]). Recently, the theoretical ScieNo-
framework was developed [14]. In their framework, the authors assume that specific beliefs
about the nature of scientific inquiry are related to specific SR skills: for example, SR skills
for observations are related to views about the role of theory in observations [14,54]. Beyond
the above-mentioned theoretical assumptions, there is also empirical evidence indicating
a relationship between SR skills and NOS beliefs. The two studies that examined the
relationship between SR skills and NOS beliefs [14,16], however, were cross-sectional, and
they were not able to investigate the relation between two constructs during development.
Furthermore, a longitudinal framework enables the investigation of the directions of the
effects. Therefore, we suggest testing which NOS beliefs are related to SR skills in a
longitudinal study.

1.6. The Current Research

In the current research, we investigated the development of SR skills and NOS beliefs
in a longitudinal study with preservice biology teachers from German universities. Our
study extends previous studies that investigated preservice teachers’ SR skills (e.g., [12])
and NOS beliefs (e.g., [11,53]) only in cross-sectional designs and, therefore, were not able
to describe the development using a longitudinal approach. In line with previous cross-
sectional studies, we expected preservice teachers’ SR skills and NOS beliefs to increase.
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Furthermore, the current research investigated the mutual relationship between pre-
service teachers’ SR skills and NOS beliefs during university teacher education. Our study
extends previous research on the relationship between SR skills and NOS beliefs using a
longitudinal approach to discern causal relationships between the constructs through a
cross-lagged panel design. In line with previous studies that highlighted small to medium
positive correlations between SR skills and NOS beliefs [14,16], we expected a positive
mutual relationship between preservice teachers’ SR skills and NOS beliefs. However, we
did not assume a specific effect from one construct on another, because previous studies
have only shown positive correlations. The following research questions guided our study:

1. How do preservice biology teachers’ SR skills and their NOS beliefs develop over
time during university teacher education?

2. How are preservice biology teachers’ SR skills and NOS beliefs related to each other
during the course of university teacher education?

2. Materials and Methods
2.1. Study Framework and Participants

This study was conducted in the longitudinal KeiLa project (Development of profes-
sional competence in science and mathematics teacher education). In KeiLa, preservice
science and mathematics teachers from 25 universities in Germany attended up to four
4 h paper-and-pencil assessments between 2014 and 2017. The surveys took place inde-
pendently of specific learning opportunities or courses. Instead, extra appointments were
offered to participate in the study. We did this to obtain a general overview of the develop-
ment of SR skills and NOS beliefs over the course of the study rather than to examine the
effectiveness of specific learning opportunities.

In the current study, we refer to data of 299 preservice teachers (76% female;
Mage = 21.36 years at first attendance, SDage = 2.59). In the KeiLa project, a sequential-cohort
design was conducted. We obtained annual data of preservice teachers enrolled in four
consecutive semesters of semesters 1 to 11 throughout the four measurement points of the
sequential-cohort design. All preservice teachers gave their informed consent for inclusion
before they participated in the study. The study was conducted in accordance with the
Declaration of Helsinki, and no approval of the protocol by the local Ethics Committee
was necessary. The reason for this is that the testing was carried out anonymously and
proceeded in the familiar surroundings of university lecture halls, therefore causing no
distress to the participating preservice teachers.

2.2. Instruments
2.2.1. Scientific Reasoning Skills

We assessed the SR skills of preservice biology teachers with 12 items developed in
the Ko-WADiS project [12,31]. The single-choice items cover four subskills of SR with three
items each: (1) formulating questions, (2) generating hypotheses, (3) planning investiga-
tions, and (4) analyzing data and drawing conclusions (see Table 1, for means and standard
errors). We report a one-dimensional model based on dimensionality tests (see Section 2.3.2.
Preliminary Analyses). The reliability of the scale is sufficient (EAP/PVRel = 0.54; based on
concurrent calibration).

Table 1. Means and standard errors for scientific reasoning (SR) and nature of science (NOS) subscales
of semesters 1 to 7.

Scale
1 3 5 7

M a (SE) M (SE) M (SE) M (SE)

SR skills b 0.00 (0.07) 0.15 (0.08) 0.38 (0.07) 0.54 (0.08)
NOS beliefs c

Observations and inferences 3.59 (0.05) 3.70 (0.06) 3.76 (0.05) 3.77 (0.06)
Tentativeness 3.84 (0.05) 3.89 (0.05) 3.94 (0.04) 4.10 (0.05)
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Table 1. Cont.

Scale
1 3 5 7

M a (SE) M (SE) M (SE) M (SE)

Scientific theories and laws 2.67 (0.05) 2.74 (0.06) 2.80 (0.05) 2.84 (0.06)
Social/cultural embeddedness 3.46 (0.06) 3.65 (0.07) 3.72 (0.06) 3.80 (0.07)
Creativity and imagination 3.26 (0.06) 3.47 (0.07) 3.37 (0.06) 3.39 (0.07)
Scientific methods 3.67 (0.04) 3.71 (0.04) 3.74 (0.04) 3.87 (0.05)

a Estimated marginal means and respective standard errors are based on linear mixed models; b Mean values of
SR skills are based on WLE scores and can take any values centered around zero; c Mean values of NOS beliefs
are based on Likert-type scales which range from 1 to 5.

2.2.2. Nature of Science Beliefs

We measured NOS beliefs with the “Student Understanding of Science and Scientific
Inquiry” [42]. This contains 24 items that were assessed on 5-point Likert scales comprising
1 (does not apply at all), 2 (does rather not apply), 3 (uncertain), 4 (largely applies), and 5 (fully ap-
plies). The six NOS subscales (1) observations and inferences, (2) tentativeness, (3) scientific
theories and laws, (4) social and cultural embeddedness, (5) creativity and imagination,
and (6) scientific methods, were assessed with four items each (see Table 1, for means and
standard errors). Ranges of the reliabilities (Cronbach’s α) of the subscales were as follows
throughout the four semesters: from 0.45 to 0.68 for observations and inferences, from 0.50
to 0.59 for tentativeness, from 0.19 to 0.30 for scientific theories and laws, from 0.69 to 0.78
for social and cultural embeddedness, from 0.53 to 0.69 for creativity and imagination, and
from 0.28 to 0.51 for scientific methods. They were calculated in R [57] with the “psych”
package [58].

2.3. Analyses
2.3.1. Data Preparation

In our data set, we included participants from semesters 1 to 7 (n1 = 141, n3 = 101,
n5 = 155, n7 = 101) because sample sizes in semesters 9 and 11 were too small for our
analyses (n9 = 48, n11 = 8). In our data set, preservice teachers were assigned to the
respective semesters independent of the measurement points. Thereby, data were reshaped
from the sequential-cohort design of the study to a longitudinal design.

2.3.2. Preliminary Analyses

In a first step, we conducted confirmatory factor analyses in Mplus [59] to check the
assumed dimensionality of the constructs based on the subscales of the instruments (NOS
beliefs: [42]; SR skills: [31]). Results revealed that a six-dimensional NOS model and a
one-dimensional model of SR fitted the data significantly better than a one-dimensional
model and a four-dimensional model, respectively (see Table 2).

Additionally, we calculated weighted likelihood estimation (WLE; [60]) scores for
SR skills based on a one-parameter logistic item response theory model with concurrent
calibration in R [57] using the “TAM” package [61].

Table 2. Chi-square difference (∆χ2), degrees of freedom difference (∆df ) and p-value of model
comparison for one- and four-dimensional models of scientific reasoning (SR), and one- and six-
dimensional models of nature of science (NOS) for semesters 1 to 7.

Semester
SR Skills NOS Beliefs

∆χ2 ∆df p ∆χ2 ∆df p

1 7.44 6 0.283 181.44 15 <0.001
3 a 161.61 15 <0.001
5 4.50 6 0.609 191.93 15 <0.001
7 10.11 6 0.120 142.83 15 <0.001

a The four-dimensional model did not converge in semester 3.
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2.3.3. Analyses concerning the Development

We chose a linear mixed model approach (LMM: [62]) to test if time (i.e., semesters)
has a significant effect on preservice teachers’ SR skills and NOS beliefs; that is, if SR
skills and NOS beliefs develop over time. LMMs extend simple linear models by allowing
both fixed and random effects. These models show various advantages. First, unlike in a
repeated-measures analysis of variance, missing values can be easily handled (e.g., with
restricted maximum likelihood [REML] estimation). Second, LMMs enable us to take the
nested structure of our data (repeated observations nested in participants) into account.
Thus, we can control for unobserved, time-invariant differences between participants.
Third, LMMs allow us to control for specific autocorrelation structures, which can occur in
repeated measures.

All LMMs were computed separately for each subscale of NOS beliefs and for SR skills.
We fixed the correlations between time points to zero because previous checks revealed no
critical autocorrelation structure to be considered. In our models, we treated the semester
variable as a numeric fixed effect and the participants’ ID as a grouping variable for the
random effect, and we applied REML estimation. In addition to p-values, we computed the
variance that is explained by all fixed effects (i.e., marginal R2) and by fixed and random
effects (i.e., conditional R2) [63] because the trustworthiness of p-values provided for LMMs
is the object of ongoing statistical discussions [64].

Finally, we examined planned comparisons of time points to further examine between
which semesters significant mean changes for SR skills and NOS beliefs occur. First, we
contrasted semesters 1 and 7 for SR skills and each subscale of NOS beliefs. In a second step,
we compared consecutive semesters (i.e., semesters 1 vs. 3, 3 vs. 5, 5 vs. 7). p-values of the
multiple comparisons were Bonferroni–Holm adjusted. We additionally calculated effect
sizes (Cohen’s d) based on the t-statistics for every comparison [65]. These are generally
interpreted as small (d = 0.2), medium (d = 0.5), and large (d = 0.8; [66]).

We used R [57] with the “nlme” package for LMMs [67], the “MuMIn” package for
R2 values [68], the “emmeans” package for planned comparisons [69], and the “effectsize”
package for effect sizes d [70].

2.3.4. Analyses concerning the Mutual Relationship

We used a cross-lagged panel design with four waves (semesters 1, 3, 5, and 7) and
specified the respective path models to examine the interactions of SR skills and NOS
beliefs during teacher education. In the cross-lagged models, estimates of a later time
point from one construct can directly be regressed on values of the previous time point
from another construct (i.e., cross-lagged paths), and vice versa. Furthermore, we allowed
parallel time points to be correlated and autoregressive paths. We computed a single model
for each NOS subscale and its relationship with SR skills, including all four time points.
Cross-lagged models were computed in R [57] with the “lavaan” package [71].

3. Results
3.1. Development of Scientific Reasoning Skills

Based on the linear mixed model (LMM), the semester has a significant effect on
scientific reasoning values (B = 0.09, SE = 0.02, t(198) = 5.43, p < 0.001) with the marginal
R2

m = 0.05 and the conditional R2
c = 0.37 (see Appendix A Table A1, for detailed LMM results).

The direct comparison of semester 1 with semester 7 shows that the mean of semester 7
is significantly higher than the mean of semester 1 (Estimate = 0.54, SE = 0.11, t = 5.00,
p < 0.001, d = 0.36). Comparisons between sequential semesters yield no significant differ-
ences (Table 3; see Appendix A Table A2, for detailed comparison results).
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Table 3. Estimates (Est.), standard errors (SE), and effect sizes (d) for subsequent time point comparisons of scientific
reasoning and nature of science subscales.

Scale
1 vs. 7 1 vs. 3 3 vs. 5 5 vs. 7

Est. (SE) d Est. (SE) d Est. (SE) d Est. (SE) d

Scientific reasoning skills 0.54 *** (0.11) 0.36 0.15 (0.10) 0.11 0.23 (0.10) 0.16 0.16 (0.10) 0.11
Nature of science beliefs

Observations and inferenc. 0.17 * (0.07) 0.17 0.11 (0.06) 0.12 0.05 (0.06) 0.06 0.01 (0.06) 0.01
Tentativeness 0.26 *** (0.06) 0.28 0.05 (0.06) 0.06 0.05 (0.06) 0.06 0.16 * (0.06) 0.20
Scientific theories and laws 0.18 * (0.07) 0.17 0.07 (0.07) 0.08 0.06 (0.07) 0.06 0.04 (0.07) 0.05
Social and cultural embed. 0.34 *** (0.08) 0.29 0.19 * (0.08) 0.18 0.07 (0.08) 0.07 0.08 (0.07) 0.08
Creativity and imagination 0.14 (0.09) 0.11 0.22 * (0.08) 0.19 −0.10 (0.08) −0.09 0.03 (0.08) 0.02
Scientific methods 0.20 ** (0.06) 0.23 0.05 (0.06) 0.06 0.03 (0.06) 0.04 0.12 (0.06) 0.15

* p < 0.05, ** p < 0.01, *** p < 0.001.

3.2. Development of Nature of Science Beliefs

Based on the LMMs, the semester has a significant effect on the subscales observations
and inferences (B = 0.03, SE = 0.01, t(199) = 2.70, p = 0.008, R2

m = 0.01, R2
c = 0.59), tenta-

tiveness (B = 0.04, SE = 0.01, t(199) = 3.81, p < 0.001, R2
m = 0.02, R2

c = 0.58), scientific laws
and theories (B = 0.03, SE = 0.01, t(199) = 2.60, p = 0.010, R2

m = 0.01, R2
c = 0.44), social and

cultural embeddedness (B = 0.06, SE = 0.01, t(199) = 4.30, p < 0.001, R2
m = 0.03, R2

c = 0.53),
and scientific methods (B = 0.03, SE = 0.01, t(199) = 3.07, p = 0.002, R2

m = 0.01, R2
c = 0.42;

see Appendix A Tables A3–A8, for detailed LMM results).
When comparing semester 1 and semester 7, we found a significant increase for five

NOS subscales, that is, for observations and inferences (Estimate = 0.17, SE = 0.07, t = 2.44,
p = 0.011, d = 0.17), tentativeness (Estimate = 0.26, SE = 0.06, t = 4.00, p < 0.001, d = 0.28),
scientific laws and theories (Estimate = 0.17, SE = 0.07, t = 2.41, p = 0.016, d = 0.17), social and
cultural embeddedness (Estimate = 0.34, SE = 0.08, t = 4.12, p < 0.001, d = 0.29), and scientific
methods (Estimate = 0.20, SE = 0.06, t = 3.22, p = 0.001, d = 0.23). Sequential comparisons
show that no consistent significant change from semester to semester occurs (Table 3; see
Appendix A Tables A9–A14, for detailed comparison results).

3.3. The Mutual Relationship between SR Skills and NOS Beliefs

We found no significant cross-lagged paths between SR skills and the NOS subscales
observations and inferences (all Bs < |0.13|, all SEs < 0.16, all ps > 0.05), scientific theories
and laws (all Bs < |0.24|, all SEs < 0.17, all ps > 0.05), or creativity and imagination (all
Bs < |0.15|, all SEs < 0.15, all ps > 0.05). However, we found significant relations in the
other cross-lagged models, which are described in the following: A positive influence
was found of NOS beliefs subscale tentativeness at semester 1 on SR skills at semester
3 (B = 0.48, SE = 0.13, p < 0.001). Another positive influence was found for social and
cultural embeddedness beliefs at semester 5 on SR skills at semester 7 (B = 0.30, SE = 0.12,
p = 0.014). Additionally, SR skills at semester 3 negatively influence scientific methods
beliefs at semester 5 (B = −0.22, SE = 0.07, p = 0.002; see Figure 1).
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Error in Figure

In the original version of the paper [1], a regression weight was assigned to the wrong
cross-lagged path in Figure 1 (bottom). In the original version, the regression weight
(B = −0.22) was assigned to the cross-lagged path between scientific methods (MET) at
semester 3 and scientific reasoning (SR) skills at semester 5. In the correct version, the
regression weight (B = −0.22) is assigned to the cross-lagged path between SR skills at
semester 3 and MET at semester 5. A correct version of the figure can be taken from this
correction. This correction does not change the conclusions drawn in the article, as the text
portions of the manuscript correctly report the regression weights. Also, we would like to
apologize for any inconvenience this change may have caused.

1 
 

 

Figure 1. Unstandardized regression weights for (auto-)regression paths of cross-lagged models
computed for scientific reasoning and nature of science subscales; tentativeness, TEN; social and
cultural embeddedness, SCE; and scientific methods, MET; numbers in subscript refer to the respective
semester; * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 1. Unstandardized regression weights for (auto-)regression paths of cross-lagged models
computed for scientific reasoning and nature of science subscales; tentativeness, TEN; social and cul-
tural embeddedness, SCE; and scientific methods, MET; numbers in subscript refer to the respective
semester; * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

Science teachers’ SR skills and NOS beliefs are essential characteristics when teaching
science as inquiry [3–6]. To date, there are few longitudinal findings on either construct
that allow making statements about their development during teacher education (e.g., SR
skills: [31]). Thus, previous research left a gap concerning the development of individual
preservice teachers over more extended periods of university teacher education [13]. Our
study aimed to close this gap by taking a longitudinal approach to the development
of preservice biology teachers’ SR skills and NOS beliefs throughout university teacher
education, and their mutual relationship during development. In line with evidence from
cross-sectional studies, we assumed that both preservice teachers’ SR skills (e.g., [12]), and
NOS beliefs (e.g., [61]; cf. [62]), improve throughout teacher education at the university.
Furthermore, we assumed a positive relationship between SR skills and NOS beliefs.
However, we did not assume any direction in their relationship because previous findings
were based on cross-sectional studies [14,16].

First, our results indicate that both preservice teachers’ SR skills and NOS beliefs
improved over the semesters of teacher education at university. The linear mixed models
(LMM) revealed a positive impact of the semester variable on preservice teachers’ SR
skills, and on five of six NOS subscales, that is, observations and inferences, tentativeness,
scientific theory and laws, social and cultural embeddedness, and scientific methods,
but not creativity and imagination. Thus, our longitudinal study provides evidence that
both develop throughout teacher education. When we account for the semesters in the
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LMMs, they explain at least a slight variance (SR skills: 5% variance explained; NOS
beliefs: 1–3% variance explained). We argue that the amount of explained variance appears
plausible with regard to cross-sectional findings from other research. Our results support
a previous study that found a comparable amount of variance of preservice teachers’
NOS beliefs explained by semesters (i.e., 4%; [11]). Although our results indicate that
preservice teachers’ development of SR skills and NOS beliefs depends to some degree on
their attendance of consecutive semesters, numerous other factors besides the semester
remain unexplored. In this regard, the relatively high conditional R2 values refer to a large
amount of variance explained by time-invariant differences between participants, that is,
differences that do not change over the considered period. These differences could be, for
example, individual prerequisites such as a previously acquired degree (for SR skills: [35])
or the respective subject area of preservice teachers (for SR skills: [12]; for NOS beliefs: [51]).

Second, we explored when preservice teachers’ SR skills and NOS beliefs develop
throughout university teacher education by planned comparisons between the semesters 1
and 7 or 1 and 3, 3 and 5, and 5 and 7. For comparing semesters 1 and 7, we found that
both SR skills and five of six aspects of NOS beliefs show a small to moderate increase in
our study. Our results extend previous results from cross-sectional SR research [12,46] by
using a longitudinal approach showing that preservice teachers’ SR skills increase during
semesters 1 to 7. The magnitude of this increase is comparable—at least at a descriptive
level—to that in longitudinal data of semesters 1 to 7 from a previous study [31]. Although
our results strengthen cross-sectional findings of the general development of NOS beliefs
during teacher education (e.g., [11,52]; cf. [50,53]), most NOS beliefs’ means at semester
7 still range between 3 (uncertain) and 4 (largely applies) on the Likert scale. The mean
of the NOS subscale scientific theories and laws even remains below 3 throughout its
development. Thus, we cannot assume that preservice teachers’ development leads to
informed views of NOS at the sample level [42,43,72].

Our more detailed analyses of the in-between semesters (1 vs. 3, 3 vs. 5, and 5 vs. 7),
however, show that preservice teachers’ SR skills and NOS beliefs developed in differing
trajectories that are inconsistent in three ways: (1) they do not significantly improve during
the in-between semesters, that is, for preservice teachers’ SR skills and NOS beliefs about
observations and inferences, scientific theories and laws, and scientific methods, only
the comparison between semester 1 and 7 is significant; (2) some NOS beliefs do not
steadily improve, such as tentativeness and social and cultural embeddedness, but show
a significant increase with a small effect size (d > 0.19) only between two of the four
consecutive semesters; (3) a slight decrease follows after initial positive development of
NOS beliefs about creativity and imagination. These results suggest that the development
does not just happen incidentally but that something must happen during teacher education
that triggers this inconsistent picture of different trajectories. In principle, other studies
also found that—at least for NOS beliefs—a decrease throughout teacher education is
also possible [53]. Previous research highlighted that not all NOS aspects are equally
changeable [13,52], which matches our result that only five aspects develop throughout
teacher education. Our results complement prior research that showed that creativity
and imagination, for example, are more likely to change [52], in that our results show
that this belief changes mainly in the first few semesters and subsequently stagnates.
Therefore, we assume that, in addition to the complexity of some NOS aspects [13] and
individual differences among preservice teachers [50], learning opportunities in each
semester should also be considered [11,12]. We assume that the uneven development of
preservice teachers’ SR skills and NOS beliefs depends on university teacher education’s
different learning opportunities. Previous research supports our assumption by indicating
that learning opportunities are not equally distributed across teacher education at the
university regarding pedagogical knowledge [73] and content knowledge, such as SR
skills and NOS beliefs [11,12]. Thus, preservice teachers’ SR skills and NOS beliefs are
more likely to develop through multiple, interacting learning opportunities than through
linearly cumulative learning opportunities (see [50], for a similar account). To further
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understand the inconsistent picture, studies addressing learning opportunities during
teacher education may help. A cross-sectional study found that the number of NOS-related
learning opportunities is positively related to preservice biology teachers’ NOS beliefs [11].
Both SR skills [12,74] and NOS beliefs [50–52] benefit from explicit and reflective learning
opportunities. Accordingly, to further understand our results (e.g., why there are phases
during the course of study that are more important for the development of SR skills
and NOS beliefs compared to others), a closer examination of the number of learning
opportunities, their distribution throughout teacher education, and their type (i.e., implicit
vs. explicit) would have been helpful.

Third, we explored the mutual relationship between preservice teachers’ SR skills and
NOS beliefs during their development. We found that preservice teachers’ NOS beliefs
about tentativeness and social and cultural embeddedness positively influenced their SR
skills: Less naïve NOS beliefs about tentativeness in semester 1 led to more profound SR
skills in semester 3. Furthermore, less naïve NOS beliefs about the social and cultural
embeddedness in semester 5 led to more profound SR skills in semester 7. Our longitudinal
results align with previous research that established a positive correlation between NOS
beliefs and SR skills in cross-sectional studies [14,16]. Furthermore, a mutual relationship
between the SR skills and NOS beliefs appears plausible because both constructs refer to
knowledge of scientific inquiry (knowing how and knowing why; [15]), and they can be
improved through similar instructional approaches [47,55]. However, our longitudinal
results also extend previous findings because our results revealed a much more incon-
sistent relationship that was limited to only some NOS beliefs and not stable across all
semesters. The ScieNo-framework [14] may help to understand the inconsistent picture:
skills for specific inquiry methods (such as conducting investigations and using models; i.e.,
dimensions of SR: [31]) are related to specific beliefs that are conceptually close (e.g., skills
for observations and beliefs about the role of theory in observations). Therefore, we suggest
that not all NOS beliefs are equally related to the SR skills of conducting investigations. In
particular, NOS beliefs about tentativeness and the social and cultural embeddedness are
challenging to grasp for preservice teachers [13,52], so that more adequate beliefs may have
enhanced their SR skills in the following semesters. Other NOS beliefs that may be learned
more easily probably do not positively influence SR skills. Future research should test our
assumption that those NOS beliefs, in particular, that are more difficult to learn positively
influence SR skills. Although we could separate six different NOS beliefs, we cannot
relate them at this level of detail to different subskills of SR (e.g., formulating hypotheses)
because we could not empirically separate the subscales for the SR skills. Furthermore, we
used a short questionnaire that comprised 12 items of the dimension conducting scientific
investigations from the whole item set that also includes the dimension of using models
(see [31], for an overview). Thus, we suggest further research exploring the mutual rela-
tionship between different dimensions of SR skills, that is, for observing, experimenting,
and modeling, and NOS beliefs in longitudinal studies.

Interestingly, we also found that preservice teachers’ SR skills at semester 3 negatively
influence their NOS beliefs about scientific methods at semester 5. Preservice teachers
with more profound SR skills later had more naïve beliefs about scientific methods. We
suspect that this negative effect may be related to a distortion in their beliefs about scientific
methods when preservice teachers learn about methods of scientific inquiry in university
teacher education. If a preservice teacher masters one inquiry method, such as how
to conduct proper investigations, particularly well, this may lead to the idealistic (not
appropriate) belief that this method is superior to the others. Our conjecture is in line with
previous findings that show how naïve NOS beliefs develop with increasing study progress
or Ph.D. degrees [53]. The authors explain this with the assumptions of Kuhn [75], who
pointed out that during active engagement in research, the epistemological foundation
fades into the background.

Furthermore, in university teacher education, science education courses have been
shown to emphasize investigations, and particularly experiments, as teaching methods
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that may promote preservice teachers’ beliefs that there is only one scientific method [76].
Another explanation may be that limiting our SR questionnaire on the SR dimension of
conducting investigations for test-economic reasons (see also [30]) may have led to a one-
sided focus among the preservice biology teachers. Asking them only about conducting
valid investigations probably made them believe that this was the only scientific method
when they filled out the questionnaire on NOS beliefs. For future studies, we would
recommend investigating such interactions between questionnaires on SR skills and NOS
beliefs, and reflecting a greater variety of methods in the questionnaire on SR skills.

4.1. Strengths, Limitations, and Future Research

To the best of our knowledge, this study is the first to investigate the development
of both preservice teachers’ SR skills and NOS beliefs and their mutual relationship in
a longitudinal design. More precisely, our study makes an essential contribution to the
understanding of their development by using a longitudinal data set from 25 universities
with adequate sample sizes and established instruments. Nevertheless, some limitations of
this study should be discussed.

We used established and validated instruments for the assessment of both the SR
skills and NOS beliefs (Ko-WADiS instrument: [31]; SUSSI instrument: [42]). Nevertheless,
the reliabilities are partly in an unsatisfactory range in that they might have hindered us
from detecting more substantial changes by the longitudinal design [50]. In comparison
to previous research, the reliabilities determined in the current study are in the range of
the typical values for the SUSSI, except for the subscale theories and laws (i.e., Cronbach’s
α = 0.44–0.89: [42]; α = 0.16–0.86: [77]) and for the Ko-WADiS instrument (i.e., EAP/PV
reliability is: 0.54: [12]; 0.55: [34]).

The current study was designed to examine data from preservice teachers in semesters
1 to 11. Because the sample sizes were too small for semesters 9 and 11, these data had
to be excluded from our analyses. Thus, we can only make statements for the bachelor’s
program that precedes the master’s program in teacher education. We suggest for future
research to examine the development of preservice teachers’ SR skills and NOS beliefs
during the master’s program, because previous research suggests that the explicit learning
opportunities that are particularly effective for both SR skills and NOS beliefs tend to occur
in the latter part of teacher education [12].

The ScieNo-framework [14] helped us understand the mutual relationship between
SR skills and NOS beliefs because it aligns the dimensions of SR skills, such as observing,
experimenting, and modeling, with specific NOS beliefs. Unfortunately, we only used the
12 item short version of the Ko-WADiS instrument on the SR dimension when conducting
investigations [78]. The full range of items includes another three SR skills of using
models [31], so that the SR and NOS scales may be related to each other in a planned
manner. In addition to test-economic reasons that led to the use of only one subscale
for SR skills, it should be mentioned that the theoretical framework [14] was published
after the current study was conducted between 2014 and 2017. However, our results
highlight the mutual relationship between SR skills and the NOS beliefs about tentativeness,
social and cultural embeddedness, and scientific methods. These mutual relationships
are worth further investigation with more closely aligned instruments that are based on
the ScieNo-framework.

4.2. Implications

Our results lead to implications, both for further research and for teacher education at
university. They show that SR skills and multiple aspects of NOS beliefs develop differently;
that is, some are easier to learn than others (e.g., [13]). The longitudinal study approach also
suggests that preservice teachers’ development of SR skills and NOS beliefs take different
trajectories throughout teacher education, that is, the time point of development differs. As
a next step, it would be essential to understand why SR skills and NOS beliefs take different
trajectories during university teacher education. For this, the consideration of learning
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opportunities is essential. Different studies suggest that explicit learning opportunities
(i.e., learning opportunities that provide the opportunity for reflection) are particularly
effective for developing SR skills and NOS beliefs; development of SR skills and NOS
beliefs does not happen on the side. Accordingly, not only is the number of learning
opportunities essential, but also their focus (implicit vs. explicit). In order to consider this,
one could either refer to module manuals of teacher education or ask preservice teachers
to report on the learning opportunities they had between two measurement points. The
latter approach appears more promising because it provides information not only about
the intended curriculum, but also about the implemented curriculum, that is, what actually
took place [79]. We know from previous research that learning opportunities to explicitly
reflect on scientific inquiry appear mainly in the master’s program of German teacher
education at the university [12]. Accordingly, it would be necessary to have an appropriate
sample that covers both participants in the bachelor’s program and the master’s program.

Our results on the relationship between SR skills and NOS beliefs show an inconsistent
picture in that there is no mutual relationship between all aspects of NOS beliefs and SR
skills. To learn more about their mutual relationship, the ScieNo-framework [14] can be
consulted to derive and further investigate hypotheses regarding the relationship between
specific aspects of NOS beliefs and SR skills; for example, SR skills for observations are
related to views about the role of theory in observations. A longitudinal approach—as
in this study—would offer two advantages. First, it subjects the framework to empirical
testing in a longitudinal perspective. Second, it would allow us to examine the extent to
which learning opportunities for SR skills are also conductive to NOS beliefs, and vice
versa. However, careful planning is necessary for such an investigation. For example,
when selecting the instruments, it must be ensured that the constructs can be combined at
an appropriate level of detail.

Our results also provide suggestions for improving teacher education. Our results on
the different trajectories of preservice teachers’ SR skills and NOS beliefs are significant
in this regard. Our results make clear that preservice teachers’ SR skills and NOS beliefs
do not simply co-evolve but that their mutual relationship is much more complex across
teacher education at university. The positive influence of specific aspects of preservice
teachers’ NOS beliefs on their SR skills depends on how difficult certain NOS aspects
are to learn and when they develop due to learning opportunities in teacher education.
Accordingly, a blanket consideration in teacher education is not expedient because inquiry-
based learning does not automatically lead to the development of SR skills and NOS beliefs.
Instead, learning opportunities must be created that explicitly relate the corresponding SR
skills and NOS beliefs to each other (ScieNo-framework; [14]) and ideally provide space
for reflection on this interplay.

Furthermore, we found that the more profound SR skills preservice teachers had in
semester 3, the less informed were their NOS beliefs about scientific methods in semester 5.
We suggest that this might stem from the negative impact of a bias concerning a single
scientific method. It is possible that a strong focus on conducting scientific inquiry in
undergraduate studies (i.e., doing science: [80]; e.g., [12]), and in our test, leads preservice
teachers to idealistic but inadequate beliefs about methods in scientific research. Thus,
teacher education should reflect the broad repertoire of methods in scientific research and
provide opportunities for reflection on the use of those methods.

5. Conclusions

We investigated the development of SR skills and NOS beliefs—two characteristics
of effective science teachers—and their mutual relationship during the undergraduate
studies of teacher education at university. Our results add to previous research by taking
a longitudinal approach to show how SR skills and NOS beliefs develop throughout
teacher education. We present evidence for differing trajectories in the development
of SR skills and multiple aspects of NOS beliefs that hints at the importance of further
investigation of the learning opportunities. The present findings do not yet account for
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learning opportunities in university teacher education, so it would be interesting to see
whether the trajectories vary in university teacher education of other countries. If patterns
emerge in the country comparison, the different learning opportunities leading to these
trajectories can be examined in more detail. Furthermore, we present evidence that the
mutual relationship between SR skills and NOS beliefs is stronger for specific aspects
of preservice teachers’ NOS beliefs and specific time points in their development. Thus,
during teacher education at university, preservice teachers’ SR skills and NOS beliefs are
intertwined in their development, but further research is needed to truly understand their
interplay and dependence on learning opportunities.
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Appendix A

Table A1. Outcomes of the linear mixed model and effect sizes (marginal R2
m for fixed effects,

conditional R2
c for fixed and random effects) for scientific reasoning with semester as a fixed effect

and participants as a random effect.

Random Effects Variance SD

Participant (Intercept) 0.26 0.51
Residual 0.50 0.71

Fixed Effects B SE df t p

Intercept 0.00 0.07 293 −0.07 0.943
Semester 0.09 0.02 198 5.43 <0.001

Effect Size R2
m R2

c

Semester 0.05 0.37

Table A2. Estimates, standard errors (SE), t-values, p-values, and effect sizes (d) for planned compar-
isons of scientific reasoning.

Parameter 1 vs. 7 1 vs. 3 3 vs. 5 5 vs. 7

Estimate 0.54 0.15 0.23 0.16
SE 0.11 0.10 0.10 0.10
t 5.00 1.50 2.30 1.57
p <0.001 0.235 0.067 0.235
d [95% CI] 0.36 [0.21, 0.50] 0.11 [−0.03. 0.25] 0.16 [0.02, 0.31] 0.11 [−0.03, 0.35]
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Table A3. Outcomes of the linear mixed model and effect sizes (marginal R2
m for fixed effects,

conditional R2
c for fixed and random effects) for observations and inferences with semester as a fixed

effect and participants as a random effect.

Random Effects Variance SD

Participant (Intercept) 0.25 0.50
Residual 0.18 0.43

Fixed Effects B SE df t p

Intercept 3.61 0.05 295 75.68 <0.001
Semester 0.03 0.01 199 2.70 0.008

Effect Size R2
m R2

c

Semester 0.01 0.59

Table A4. Outcomes of the linear mixed model and effect sizes (marginal R2
m for fixed effects,

conditional R2
c for fixed and random effects) for tentativeness with semester as a fixed effect and

participants as a random effect.

Random Effects Variance SD

Participant (Intercept) 0.20 0.45
Residual 0.15 0.39

Fixed Effects B SE df t p

Intercept 3.82 0.04 294 88.59 <0.001
Semester 0.04 0.01 199 3.81 <0.001

Effect Size R2
m R2

c

Semester 0.02 0.58

Table A5. Outcomes of the linear mixed model and effect sizes (marginal R2
m for fixed effects,

conditional R2
c for fixed and random effects) for scientific theories and laws with semester as a fixed

effect and participants as a random effect.

Random Effects Variance SD

Participant (Intercept) 0.17 0.41
Residual 0.22 0.46

Fixed Effects B SE df t p

Intercept 2.67 0.05 294 58.24 <0.001
Semester 0.03 0.01 199 2.60 0.010

Effect Size R2
m R2

c

Semester 0.01 0.44

Table A6. Outcomes of the linear mixed model and effect sizes (marginal R2
m for fixed effects,

conditional R2
c for fixed and random effects) for social and cultural embeddedness with semester as a

fixed effect and participants as a random effect.

Random Effects Variance SD

Participant (Intercept) 0.29 0.53
Residual 0.27 0.51

Fixed Effects B SE df t p

Intercept 3.48 0.05 294 63.80 <0.001
Semester 0.06 0.01 199 4.30 <0.001

Effect Size R2
m R2

c

Semester 0.03 0.53
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Table A7. Outcomes of the linear mixed model and effect sizes (marginal R2
m for fixed effects,

conditional R2
c for fixed and random effects) for creativity and imagination with semester as a fixed

effect and participants as a random effect.

Random Effects Variance SD

Participant (Intercept) 0.21 0.46
Residual 0.33 0.57

Fixed Effects B SE df t p

Intercept 3.30 0.05 294 60.34 <0.001
Semester 0.02 0.01 199 1.40 0.164

Effect Size R2
m R2

c

Semester 0.00 0.40

Table A8. Outcomes of the linear mixed model and effect sizes (marginal R2
m for fixed effects,

conditional R2
c for fixed and random effects) for scientific methods with semester as a fixed effect and

participants as a random effect.

Random Effects Variance SD

Participant (Intercept) 0.11 0.33
Residual 0.16 0.40

Fixed Effects B SE df t p

Intercept 3.66 0.04 294 95.05 <0.001
Semester 0.03 0.01 199 3.07 0.002

Effect Size R2
m R2

c

Semester 0.02 0.42

Table A9. Estimates, standard errors, t-values, p-values, and effect sizes (d) for planned comparisons
of observations and inferences.

Parameter 1 vs. 7 1 vs. 3 3 vs. 5 5 vs. 7

Estimate 0.17 0.11 0.05 0.01
SE 0.07 0.06 0.06 0.06
t 2.44 1.71 0.85 0.15
p 0.015 0.269 0.796 0.877
d [95% CI] 0.17 [0.03, 0.31] 0.12 [−0.02, 0.26] 0.06 [−0.08, 0.20] 0.01 [−0.13, 0.15]

Table A10. Estimates, standard errors, t-values, p-values, and effect sizes (d) for planned comparisons
of tentativeness.

Parameter 1 vs. 7 1 vs. 3 3 vs. 5 5 vs. 7

Estimate 0.26 0.05 0.05 0.16
SE 0.06 0.06 0.06 0.06
t 4.00 0.81 0.86 2.76
p <0.001 0.779 0.779 0.019
d [95% CI] 0.28 [0.14, 0.43] 0.06 [−0.08, 0.20] 0.06 [−0.08, 0.20] 0.20 [0.06, 0.34]
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Table A11. Estimates, standard errors, t-values, p-values, and effect sizes (d) for planned comparisons
of scientific theories and laws.

Parameter 1 vs. 7 1 vs. 3 3 vs. 5 5 vs. 7

Estimate 0.18 0.07 0.06 0.04
SE 0.07 0.07 0.07 0.07
t 2.41 1.06 0.90 0.65
p 0.017 0.873 0.873 0.873
d [95% CI] 0.17 [0.03, 0.31] 0.08 [−0.06, 0.22] 0.06 [−0.08, 0.20] 0.05 [−0.09, 0.19]

Table A12. Estimates, standard errors, t-values, p-values, and effect sizes (d) for planned comparisons
of social and cultural embeddedness.

Parameter 1 vs. 7 1 vs. 3 3 vs. 5 5 vs. 7

Estimate 0.34 0.19 0.07 0.08
SE 0.08 0.08 0.08 0.07
t 4.11 2.53 0.92 1.07
p <0.001 0.037 0.571 0.571
d [95% CI] 0.29 [0.15, 0.43] 0.18 [0.04, 0.32] 0.07 [−0.07, 0.21] 0.08 [−0.06, 0.22]

Table A13. Estimates, standard errors, t-values, p-values, and effect sizes (d) for planned comparisons
of creativity and imagination.

Parameter 1 vs. 7 1 vs. 3 3 vs. 5 5 vs. 7

Estimate 0.14 0.22 −0.10 0.03
SE 0.09 0.08 0.08 0.08
t 1.60 2.68 −1.27 0.31
p 0.112 0.024 0.412 0.755
d [95% CI] 0.11 [−0.03, 0.25] 0.19 [0.05, 0.33] −0.09 [−0.23, 0.05] 0.02 [−0.12, 0.16]

Table A14. Estimates, standard errors, t-values, p-values, and effect sizes (d) for planned comparisons
of scientific methods.

Parameter 1 vs. 7 1 vs. 3 3 vs. 5 5 vs. 7

Estimate 0.20 0.05 0.03 0.12
SE 0.06 0.06 0.06 0.06
t 3.22 0.81 0.52 2.16
p 0.002 0.842 0.842 0.096
d [95% CI] 0.23 [0.09, 0.37] 0.06 [−0.08, 0.20] 0.04 [−0.10, 0.18] 0.15 [0.01, 0.29]
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Abstract: Scientific reasoning is an important skill that encompasses hypothesizing, experimenting,
inferencing, evaluating data and drawing conclusions. Previous research found consistent inter-
and intra-individual differences in children’s ability to perform these component skills, which are
still largely unaccounted for. This study examined these differences and the role of three predictors:
reading comprehension, numerical ability and problem-solving skills. A sample of 160 upper-primary
schoolchildren completed a practical scientific reasoning task that gauged their command of the five
component skills and did not require them to read. In addition, children took standardized tests of
reading comprehension and numerical ability and completed the Tower of Hanoi task to measure
their problem-solving skills. As expected, children differed substantially from one another. Generally,
scores were highest for experimenting, lowest for evaluating data and drawing conclusions and
intermediate for hypothesizing and inferencing. Reading comprehension was the only predictor
that explained individual variation in scientific reasoning as a whole and in all component skills
except hypothesizing. These results suggest that researchers and science teachers should take
differences between children and across component skills into account. Moreover, even though
reading comprehension is considered a robust predictor of scientific reasoning, it does not account
for the variation in all component skills.

Keywords: scientific reasoning; primary education; individual differences

1. Introduction

Science education is an important part of the curriculum in many countries [1,2].
Starting in primary school, children learn about the underlying principles and causal
relationships of science domains as well as the processes through which this knowledge is
created. This process of intentional knowledge-seeking is known as scientific reasoning [3,4]
and is important for children because it prepares them for a society where science and
the outcomes of scientific research are embedded in the culture [5]. In a school setting,
scientific reasoning skills are particularly important for successful inquiry learning: ‘minds-
on’ scientific reasoning skills [6] are instrumental to achieving meaningful outcomes from
a ‘hands-on’ inquiry.

Scientific reasoning consists of multiple component skills, namely, hypothesizing,
experimenting and evaluating evidence, the latter of which can be further divided into
inferencing, evaluating data and drawing conclusions [7,8]. These component skills emerge
at a different age, tend to develop at a different pace and are known to vary greatly
between same-age children (e.g., [9]). However, most existing research either treats scientific
reasoning as a unitary construct or looks at one specific component of scientific reasoning—
most often experimenting [10]. Therefore, the inter- and intra-individual differences are not
yet well understood, and to this date, few guidelines exist for addressing these differences
in primary science classrooms.

An important challenge in understanding individual differences in scientific reasoning
is the valid measurement of its component skills. Even though scientific reasoning is

111



Educ. Sci. 2021, 11, 471

often taught in hands-on settings, it is mostly measured by paper-and-pencil tests. As
performance-based testing circumvents many of the problems typically associated with
written tests (see, for an overview, Harlen [11]), it might shed new light on the development
of scientific reasoning in children. Using one such performance-based test, the current
study set out to advance our insight into children’s proficiency in different component
skills of scientific reasoning, when applied in a practical, coherent inquiry setting in order
to ultimately aid the development of teaching materials for various groups of learners in
primary education.

1.1. Variation in Scientific Reasoning

As mentioned above, scientific reasoning comprises the skills of hypothesizing (the
articulation of ideas about possible outcomes of an investigation), experimenting (the skills
to design and perform experiments to test these hypotheses) and evaluating evidence (i.e.,
drawing valid conclusions). Evidence evaluation, in turn, involves inferencing (making
a verbal interpretation of the gathered data), evaluating data (assessing measurement
quality, for instance, to decide whether there are enough data to base a conclusion on),
and drawing conclusions (using this information to make causal statements to answer the
research question).

This multidimensionality is confirmed by psychometric models [12] and studies
investigating one or more component skills point to substantial variation. Experimenting,
for example, is relatively easy for children to learn: most pre-schoolers are capable of some
systematic testing [13,14], and older children can be taught this skill successfully by both
direct instruction [15,16] and guided inquiry [17,18]. Hypothesizing is more difficult for
young children to learn [9,13,19], whilst evidence evaluation is the most difficult skill for
them to acquire [4] and is also experienced as such [20].

Most of the studies on which this tentative order of difficulty is based examined
a single skill at a single time point. A positive exception is the study by Piekny and
Maehler [9], who inferred the age at which children learn hypothesizing, experimenting and
evidence evaluation from cross-sectional data collected with children from kindergarten to
grade 5 and found a similar build-up as described above. Still, this study used different
types of tasks for the different component skills rather than one task that encompassed all
component skills. Thus, the relative difficulty of the component skills of scientific reasoning
is not fully understood yet.

Other studies indicate that not all children develop scientific reasoning proficiency
at the same pace. In a large-scale cross-sectional study using written tests in grades 4–6,
Koerber, Mayer, Osterhaus, Schwippert and Sodian [21] distinguished between naïve,
intermediate and advanced conceptions of scientific reasoning and found that, although
older children more often had advanced conceptions and less often naïve conceptions
than younger children, all proficiency levels were present at all participating grade levels.
The results of Piekny and Maehler [9] further suggest that this variation increases with
age. For example, both the means and standard deviations of ‘hypothesizing’ were low
in kindergarten but increased from grade 1 onward. This finding indicates that, although
children’s hypothesizing skills grow, the inter-individual variation increases accordingly.
Thus, although children improve in scientific reasoning over the years, not all children
improve equally or at the same time as their peers. Acknowledging and understanding
these differences is vital for good science education.

To conclude, the component skills of scientific reasoning improve considerably during
the primary school years [9,21], albeit with substantial variation. As not all subskills emerge
at the same point in time and not all children develop their scientific reasoning proficiency
at the same pace, the teaching of scientific reasoning in primary education is a challenging
task. A profound understanding of how the component scientific reasoning skills develop
can help teachers make scientific reasoning accessible for all children.
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1.2. Explaining Variation in Scientific Reasoning

Although differences in the development of scientific reasoning are known to exist,
the roots of the differences between children as well as differences in developmental
patterns within children (i.e., differences across skills) are less clear. Children’s cognitive
characteristics account for part of the variation in scientific reasoning proficiency. Previous
research provides evidence that reading comprehension, numerical ability and problem-
solving skills contribute to scientific reasoning.

Reading comprehension most consistently explains children’s overall scientific rea-
soning performance on written tests [21,22] as well as their ability to set up unconfounded
experiments using the Control-of-Variables Strategy [23,24]. Van de Sande, Kleemans,
Verhoeven and Segers [25] found that reading comprehension explained the variance in all
component scientific reasoning skills, albeit not to the same extent: effect sizes ranged from
medium (r = 0.30) for experimentation and drawing conclusions to large (r = 0.47) for hy-
pothesis validation. Why reading comprehension is such a strong predictor is not entirely
clear. Possibly, reasoning ability transcends the domains of reading and science [24,25], or
a general understanding of the language of science is important for science learning [26].
However, it is also possible that the influence of reading comprehension is a consequence
of test item format: most of the studies cited above used written tests that likely call upon
children’s reading skills, even though questions were sometimes read out loud. In light
of these findings, reading comprehension can be considered an important predictor of
scientific reasoning, but because past research heavily relied on the use of paper and pencil
tests, further scrutiny of its role is warranted.

Numerical ability is often named as a prerequisite for scientific reasoning by na-
tional curriculum agencies [27,28] as well as scientists [29]—likely because scientific rea-
soning, in particular the evidence evaluation skills, involves reasoning about numerical
data [9,22,30,31]. Yet, empirical evidence for this relation is scarce. Early work by Bullock
and Ziegler [32] demonstrated that numerical intelligence predicts the growth of experi-
mentation skills in primary schoolchildren, explaining almost 35 percent of the variance
in a quadratic growth model. More recent studies found significant correlations between
numerical ability and scientific reasoning [10,33]. However, as the latter studies treated
scientific reasoning as a unitary construct, it is yet unclear whether numerical ability also
predicts children’s scientific reasoning, and if so, if it predicts all component skills of
scientific reasoning to the same extent.

Children’s problem-solving skill is another possible predictor of scientific reasoning.
Klahr and Dunbar [34] characterized scientific reasoning as a process of rule induction,
which inherently involves problem-solving. One could even argue that scientific reasoning
is a form of problem-solving in itself: the problem is a need for specific knowledge,
which is resolved through a systematic process of knowledge-seeking. Furthermore,
as with the previous predictors, it seems plausible that problem-solving calls upon a
person’s reasoning skills and therefore predicts scientific reasoning. Although upper-
primary schoolchildren are still incapable of formal abstract reasoning, they can solve
problems that involve reasoning with concrete objects such as the nine-dots problem and
the Tower of Hanoi [35]. Recent research supports these ideas: Mayer et al. [22] found
that problem-solving predicted a substantial portion of the variance in children’s scientific
reasoning. Van de Sande et al. [25] further showed that this effect does not apply to all
subskills: hypothesis validation and experimenting depended on problem-solving, whereas
generating conclusions did not. As such, problem-solving may explain some but not all
component scientific reasoning skills, and the extent to which the different component
skills are predicted is yet unclear.

1.3. Research Questions and Hypotheses

Although the cited literature points to notable differences in children’s scientific
reasoning, most studies either addressed scientific reasoning as a single, albeit multifaceted
construct or examined one of its subskills in isolation. Furthermore, most extant research
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has been conducted using written tests. These instruments neither resemble the learning
context nor scientific practice and therefore may not accurately gauge children’s true
ability in scientific reasoning [36]. Moreover, written tests of scientific reasoning can
confound with reading comprehension, as children with better reading comprehension
might perform better on such tests because the test itself involves reading. In order to
extend our understanding of the relations between scientific reasoning and the cognitive
characteristics discussed above, the subskills should be studied in tandem, preferably in an
authentic whole-task setting that does not require children to read.

This study, therefore, aimed to identify and explain differences in children’s ability to
reason scientifically by means of a performance-based task so as to maximize authenticity
and minimize the influence of reading skills. A sample of 160 upper-primary schoolchildren
performed this task to gauge their proficiency in five scientific reasoning skills: hypoth-
esizing, experimenting, making inferences, evaluating data and drawing conclusions.
Performance differences were related to reading comprehension, numerical ability and
problem-solving skills in order to answer the following research questions:

1. What amount of variation can be found in children’s scientific reasoning?
2. To what extent is this variation explained by reading comprehension, numerical

ability and problem-solving skills?

Based on previous research using written tests, it was expected that children would
differ considerably in their overall scientific reasoning proficiency. Differences across the
five subskills were also predicted to occur. Specifically, children were expected to be most
proficient in experimentation, less proficient in hypothesizing and least proficient in the
three evidence evaluation skills (inferencing, evaluating data and drawing conclusions).
Reading comprehension, numerical ability and problem-solving skills were expected to
explain a unique portion of the variance in scientific reasoning. Considering the alleged
differences across subskills, these characteristics were expected to have differential effects.

2. Materials and Methods
2.1. Participants

A sample of 166 children attending the two highest grades of a primary school in a
suburban area of the Netherlands participated in this study. Ages ranged from 8 years
11 months to 12 years 8 months. About 80% of the parents held a degree from a research
university or university of applied sciences, and almost all children had at least one
parent who was born in the Netherlands. Complete data were obtained for 160 of the
166 participating children (54% boys, Mage = 11 years 0 months, SD = 9 months); 84 of these
children were in grade 5 (52% boys, Mage = 10 years 5 months, SD = 7 months) and 76 of
them in grade 6 (55% boys, Mage = 11 years 7 months, SD = 6 months).

The school participated in a large-scale longitudinal research project that was approved
by the ethics committee of the Faculty of Behavioural, Management and Social Sciences of
the University of Twente. All participating children had passive parental consent, meaning
that parents were informed and did not object to their child’s participation in the study.
The findings reported here were gathered during the third wave of data collection, which
means that the sample was familiar with most tests. The school’s science curriculum
contained five annual hands-on science projects which enabled children to practice their
scientific reasoning.

2.2. Materials
2.2.1. Scientific Reasoning Task

Children’s scientific reasoning skills were gauged during a 20 min performance-based
scientific reasoning task under supervision of a test administrator [19]. The task contained
15 questions and assignments (hereafter referred to as ‘items’), 3 for each component
scientific reasoning skill, which were organized in four inquiry cycles of increasing difficulty
(for example, see Table 1). The task was administered orally in order to minimize the effects
of reading and writing ability, and handouts were used to ensure uniformity in the data
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children used to make inferences, evaluate data and draw conclusions. Children’s answers
and actions were registered by the test administrator for later scoring. Each of the items
was worth one point, and a child could thus earn a maximum of three points per subskill.
Total test scores could range from 0 to 15 points. The Cohen’s κ inter-rater agreement of
the answer scoring was 0.84.

Table 1. Example inquiry cycle.

Subskill 1 Question

Experimenting
Can you figure out if it matters whether the surface is hard or

soft? So you can be sure whether the ball without the mat
bounces more, less or as much as with the extra mat.

Inferencing
In this box, the outcome was ‘tick-tick’, and in this box, the
outcome was ‘tick-tick-tick-tick’. Can you explain what the

outcome of the experiment was?

Drawing conclusions Can you be sure that balls always bounce more often on a
hard surface?

Hypothesizing
The student who is next will also be completing this experiment.
Imagine that student asks you to predict what the outcomes of

their experiment will be. What would you say?
1 This is an example of the first inquiry cycle of the bouncing balls version of the test. In other versions, only the
variables would be different. Evaluating data were assessed in subsequent research cycles.

Three versions of this task were available, which differed exclusively with regard to
the topic of investigation. In the rolling balls version, adapted from Chen and Klahr [16],
children interacted with two inclined planes to find out how four dichotomous input
variables (slope, starting point, surface and mass of the ball) influenced the distance balls
travel after leaving a ramp. In the bouncing ball version, children investigated how four
dichotomous variables (starting height, surface, mass of the ball and whether the ball was
solid) affected the number of times a ball would bounce; the cars version had children set
four features of rubber-band-powered toy cars (size of back wheels, axle size, diameter of
the rubber band and tightness of the winding of the rubber band) in order to examine how
far a car drives.

Children were assigned to the version they had not received in previous waves of data
collection, and scores did not differ significantly between the three versions, F(2, 157) = 0.08,
p = 0.925. Furthermore, a validation study [19] showed no effects of prior domain knowl-
edge on the performance of any of the versions. This study also demonstrated that the test
scores conform to a two-parameter Item-Response theory model and have an acceptable
expected a posteriori (EAP) reliability of 0.59. As the component skills were each assessed
by only three items of increasing complexity, internal consistency of the subscales could
not meaningfully be calculated.

2.2.2. Reading Comprehension Test

Reading comprehension was measured by a standardized progress evaluation mea-
sure developed by Cito, the Dutch national testing agency [37]. Different versions are
available for different grades, and the test has a measurement accuracy between 0.87 and
0.89 [37]. In all versions of the test, children had to read different types of mostly pre-
existing texts, such as short stories, newspaper articles, advertisements and instruction
manuals. The test consisted of 55 multiple choice items that, for example, required chil-
dren to fill in the blanks, explain what a particular line in the text means or choose an
appropriate continuation of a story. As participants in the current study were drawn from
different grades, the version corresponding to their grade level was administered. The
One Parameter Logistic Model [38] was used to transform children’s answers into a person
proficiency score that can be meaningfully compared across grades.
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2.2.3. Numerical Ability Test

Numerical ability was gauged by a standardized progress evaluation measure that
required children to add, subtract, multiply or divide one- and two-digit numbers by
heart [39]. The test consists of 200 items of increasing difficulty and is highly reliable
(α = 0.97). Children worked on the test for 5 min and obtained 1 point for each correct answer.

2.2.4. Problem-Solving Test

A digital version of the Tower of Hanoi (adapted from Welsh [40]) was developed
to assess children’s problem-solving skills. The test required children to solve as many
problems as they could in 7 min. One point was awarded for each solved problem, and
reliability was high (α = 0.85). The 20 problems required children to move differently
sized disks from their starting position to their target position on the rightmost peg. Three
simple rules limited the possible moves children could make: only one disk could be
moved at a time, the disk could only be moved to an adjacent peg and it could never be
placed on top of a smaller disk. The starting position differed per problem in order to
assure a gradual increase from a minimum of 3 moves to solve the puzzle at Problem 1
to a minimum 15 moves at Problem 19. The target solution for each of the problems was
a three- or four-disk tower on the rightmost peg. In order to prevent trial-and-error and
provide children with an opportunity for a fresh start if they had trouble solving a certain
problem, each unsolved puzzle would be automatically reset after 20 moves were made.
Manual reset was not possible. To ensure that children would not finish the task ahead of
time, the final problem was a 5-disk, 31-move problem. In practice, none of the children
reached this final problem.

2.2.5. Procedure

Children were tested in their regular classrooms. First, teachers administered the
reading comprehension and numerical ability tests on a whole-class basis, using the
guidelines provided by the test publishers. When standardized testing was completed, the
researchers administered the problem-solving test and the scientific reasoning task. The
problem-solving test was administered in small groups. After a short explanation, children
worked on the test for 7 min. The scientific reasoning task was administered individually
and lasted about 20 min per child.

2.2.6. Data Analysis

Data were analyzed using IBM SPSS 25. In order to answer the first research question,
variation in scientific reasoning was explored using descriptive statistics; relations between
the five scientific reasoning subskills were analyzed using Pearson correlations and a
within-subject analysis of variance (ANOVA), controlled for grade and gender. The second
research question, which sought to reveal what accounts for the observed differences in
scientific reasoning, was answered by means of correlational analyses and multivariate
multiple regression analysis.

Table 2 presents the descriptive statistics of children’s test performance. Preliminary
analyses of three predictor skills indicated that the sixth-graders outperformed the fifth-
graders in reading comprehension, F(1, 158) = 14.18, p < 0.001, partial η2 = 0.08, numerical
ability, F(1, 158) = 8.02, p = 0.005, partial η2 = 0.05 and problem-solving, F(1, 158) = 4.35,
p = 0.039, partial η2 = 0.03. The cross-grade differences in scientific reasoning were minor,
and were tested for statistical significance in the main analysis reported below.
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Table 2. Descriptive statistics of children’s test scores.

Test Scores
Grade 5 Grade 6 Entire Sample

M SD M SD M SD

Scientific reasoning 8.01 2.23 7.99 2.24 8.00 2.23
Hypothesizing 2.15 0.86 2.01 0.82 1.77 0.88
Experimenting 1.54 0.63 1.50 0.64 2.09 0.84

Inferencing 1.19 0.63 1.37 0.73 1.52 0.63
Evaluating data 1.32 0.95 1.38 0.80 1.28 0.68

Drawing conclusions 1.81 0.86 1.72 0.90 1.35 0.88
Reading comprehension 52.40 12.58 61.91 18.98 56.92 16.59

Numerical ability 84.42 19.84 95.26 28.23 89.57 24.72
Problem-solving 11.39 2.92 12.33 2.74 2.87 0.17

3. Results

In order to determine the extent to which scientific reasoning ability differs between
children, the means and standard deviations of children’s test scores were examined. Over-
all test scores ranged from 2 to 13 points with an average of 8.00 (SD = 2.23). Scores on the
subskills ranged from 0 to 3 except for inferencing, where the minimum score was 1 point.
Means and standard deviations confirmed this differential ability and warranted further
exploration as to what could explain this difference in scientific reasoning proficiency.

The mean scores in Table 2 point to variation in proficiency on the different subskills:
on average, children appeared to be most proficient in experimenting and least proficient
in evaluating data and drawing conclusions, while hypothesizing and inferencing held the
middle ranks. A within-subject ANOVA, controlling for gender and grade, was conducted
to test whether these differences were statistically significant. Multivariate results revealed
an overall effect of subskill (Pillai’s trace = 0.46, F(4, 153) = 32.50, p < 0.001), but no
interaction effects of subskill with gender (Pillai’s trace = 0.02, F(4, 153) = 0.60, p = 0.665), and
grade (Pillai’s trace = 0.03, F(4, 153) = 1.23, p = 0.300). The differences between subskills were
further explored in univariate analyses. Scores on experimenting were significantly higher
than scores on all other subskills (p < 0.01). Scores on hypothesizing were significantly
higher than scores on inferencing, evaluating data and drawing conclusions (p < 0.05).
Scores on inferencing were significantly higher than scores on evaluating data (p < 0.01),
but not scores on drawing conclusions (p = 0.214). Drawing conclusions and evaluating
data, the two subskills with the lowest scores, were not significantly different from one
another (p = 0.993).

Having established that there is variation in the extent to which children master
the five scientific reasoning subskills, the next set of analyses sought to explain these
differences from children’s reading comprehension, numerical ability and problem-solving
skills. As shown in Table 3, the total scientific reasoning score correlated with all three
factors, albeit moderately. Correlations at the subskill level paint a mixed picture. Reading
comprehension was associated with all subskills except hypothesizing, numerical ability
only correlated with evaluating data and problem-solving did not correlate with any of
the subskills.

Multivariate multiple regression was used to further scrutinize the relations between
the three predictor variables and the five scientific reasoning subskills. Multivariate test
results showed no main effect for the control variables gender, Pilai’s trace = 0.01, F(5,
150) = 0.35, p = 0.882, partial η2 = 0.01, and grade, Pilai’s trace = 0.05, F(5, 150) = 1.60,
p = 0.164, partial η2 = 0.51. Regarding the explanatory variables, a significant contribu-
tion of reading comprehension on scientific reasoning was found, Pilai’s trace = 0.17,
F(5, 150) = 6.28, p < 0.001, partial η2 = 0.17. Neither numerical ability, Pilai’s trace = 0.02,
F(5, 150) = 0.57, p = 0.725, partial η2 = 0.02, nor problem-solving skills, Pilai’s trace = 0.02,
F(5, 150) = 0.61, p = 0.694, partial η2 = 0.02, explained scientific reasoning to a significant
degree. The between-subject effects of reading comprehension in Table 4 showed that
reading comprehension accounted for a significant proportion of the variance in experi-
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menting, inferencing, evaluating data and drawing conclusions, but not in hypothesizing.
The regression coefficients further indicate that experimenting was most influenced by
reading comprehension. Of the significantly predicted subskills, inferencing was least
influenced by reading comprehension. Thus, although reading comprehension remains an
important explanatory factor, it did not explain all scientific reasoning subskills uniformly.

Table 3. Correlations for predictors and scientific reasoning subskills.

1 2 3 4 5 6 7 8 9

1. Scientific reasoning (total score) —
2. Hypothesizing 0.61 ** —
3. Experimenting 0.58 ** 0.15 —
4. Inferencing 0.53 ** 0.18 * 0.11 —
5. Evaluating data 0.46** 0.14 0.14 0.06 —
6. Drawing conclusions 0.63 ** 0.17 * 0.16 * 0.28 ** 0.08 —
7. Reading comprehension 0.39 ** 0.15 0.29 * 0.18 * 0.31 ** 0.20 * —
8. Numerical ability 0.18 * 0.13 0.04 0.09 0.18 * 0.07 0.27 ** —
9. Problem-solving 0.17 * 0.07 0.08 0.09 0.13 0.11 0.14 0.15 —

* p < 0.05, ** p < 0.01.

Table 4. Reading comprehension as explanatory factor of the scientific reasoning subskills.

Subskills β t p 95% CI Partial η2

Hypothesizing 0.008 1.82 0.071 (0.00, 0.017) 0.021
Experimenting 0.017 4.09 <0.001 (0.009, 0.025) 0.098

Inferencing 0.007 2.10 0.037 (0.000, 0.013) 0.028
Evaluating data 0.011 3.23 0.001 (0.004, 0.018) 0.064

Drawing conclusions 0.011 2.43 0.016 (0.002, 0.020) 0.037

4. Discussion

This study aimed to identify and explain differences in children’s ability to reason
scientifically. To this end, a performance-based scientific reasoning task was administered,
and measures of reading comprehension, numerical ability and problem-solving skills
were collected in a sample of 160 upper-primary children. Their scientific reasoning
scores varied considerably, which indicates that not all children are equally proficient in
performing these skills. Observed differences within children further suggest that the
five scientific reasoning skills are not equally difficult to perform. These intra-individual
differences were partially explained by reading comprehension but not by numerical ability
or problem-solving skills.

Results regarding the first research question confirm the existence of variation in
children’s scientific reasoning: the inter-individual spread in total scores was considerable,
and marked intra-individual differences were found for some subskills. The hypothesized
proficiency pattern was confirmed: children in our sample were most proficient in exper-
imenting, less proficient in hypothesizing and least proficient in inferencing, evaluating
data and drawing conclusions. This is particularly important because, as Koerber and
Osterhaus [10] argued, previous research has studied these component skills separately,
often through written tests [22,25]. The present study thus confirms the differences in
subskill difficulty during a comprehensive performance-based scientific reasoning task
and suggests that children’s relative proficiency at the subskill level is stable across test
modalities (cf. [6]).

Of particular interest is that the component scientific reasoning skills were consistently
but moderately associated with total task scores. This result raises the question as to
what accounts for the error variance in these correlations. Part of it could be due to the
psychometric qualities of the scientific reasoning task. As mentioned in Section 2.2.1, each
component skill was assessed by only three items, so a meaningful analysis of internal
scale consistency was deemed impossible. In the absence of this information, the mag-

118



Educ. Sci. 2021, 11, 471

nitude of the correlations should be considered with some caution. A more substantive
interpretation is that the proficiency pattern described above does not apply similarly to all
children: some will develop the component skills in the indicated order, whereas others
will show a deviating developmental trajectory. As a consequence, fine-grained measures
of separate component skills, if reliably measured, give a more accurate impression of chil-
dren’s proficiency in scientific reasoning than global measures and should be the preferred
approach when assessment serves diagnostic purposes, for instance, to inform the design
of instruction.

The observed variation in scientific reasoning was independent of children’s grade
level. This equivalence of task performance might be due to the fact that our sample had
few opportunities to practice their scientific reasoning skills—the school offered them
only five inquiry projects per year, whereas the daily language and math classes lead to
grade differences in reading comprehension and numerical ability. A related explanation is
that scientific reasoning develops slowly in general and in the upper-primary grades in
particular (e.g., [9]). Although most children at this age advance in scientific reasoning [19],
the inter-individual variation is considerable and prevents the minor cross-grade growth
differences from becoming statistically significant. Alternative research methods such as
longitudinal designs and person-centered approaches to data analysis are more sensitive to
capturing developmental growth and are increasingly being applied in scientific reasoning
research [41].

Reading comprehension explained part of the variance in scientific reasoning. This
result is consistent with hypotheses and complements previous research that administered
written tests of scientific reasoning (e.g., [22,25,26]). Thus, why did reading comprehension
predict scientific reasoning on a performance-based test that makes minimal demands on
reading skills? One explanation is that scientific reasoning and reading comprehension
both draw on general language comprehension processes, in particular when scientific
reasoning is measured through interactive dialogue. Another interpretation could be
that reading comprehension is a proxy of general intelligence or academic attainment,
which, in turn, is associated with scientific reasoning (e.g., [42]). In addition, relations have
been found between scientific reasoning and verbal reasoning [24], as well as nonverbal
reasoning [25] and conditional sentence comprehension [43]. In line with these findings,
language-centered scientific reasoning interventions have been proposed [25,43] and have
been found to be effective [44].

Our results further show that reading comprehension does not explain all compo-
nent scientific reasoning skills to the same extent, which underscores the importance of
assessing the constituent skills separately rather than merging them in a single overarching
construct. The most striking finding in this regard is that hypothesizing was not related to
reading comprehension, even though one would intuitively expect verbal reasoning to be
associated with this skill. Although it is not entirely clear why hypothesizing and reading
comprehension were not related, a possible explanation may lie in what children need to
reason about: their own ideas about the world (as in hypothesizing) as opposed to building
a situation model from given information (as in reading [45] as well as in interpreting
outcomes). In hypothesizing, misconceptions and naive beliefs may interfere with the
reasoning process, whereas the chance of such ‘illogical’ thoughts could be less pronounced
when reasoning with given information.

Numerical ability did not predict children’s scientific reasoning. Although there were
sound theoretical reasons to assume that numerical ability would predict scientific reason-
ing, empirical evidence on this relation is either scarce and relatively recent [10] or involved
a different math strand [32]. Thus, while numerical ability as operationalized in this study
does not explain individual differences in scientific reasoning, future research might exam-
ine whether this independence generalizes across tasks and settings. Future research could
also investigate whether different math skills (e.g., number sense, measurement) contribute
to performance on a scientific reasoning task.
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Children’s problem-solving skills did not predict scientific reasoning either, possibly
because of task incongruence. Jonassen [46] argued that the ease with which a problem
is solved relies on individual differences between problem solvers and problem charac-
teristics. A scientific inquiry is an ill-defined problem that requires a problem solver to
combine strategies and rules to come to an unknown solution, whereas the Tower of Hanoi
is a well-defined problem with a constrained set of rules and a known solution. Thus,
although the Tower of Hanoi does involve problem-solving, it may be insufficiently sen-
sitive to distinguish weak from strong problem solvers. Beyond problem characteristics,
the problem representation [46] might explain why Mayer et al. [22] found that the very
similar Tower of London problem explained scientific reasoning. Mayer et al. [22] used
a multiple-choice paper-and-pencil version of this problem in which all manipulations
had to be completed mentally, thus making a relatively straightforward problem rather
difficult to solve. As such, this test may not have identified all children who could solve
a Tower of London problem, but only those who were sufficiently good at reasoning to
complete the problem mentally. The current study, by contrast, used a less demanding
task that allowed for real-time manipulation and was programmed to make invalid moves
impossible. This difference in task demands might explain why the current study did not
show a relation between problem-solving and scientific reasoning while previous research
showed such a relation. As understanding what explains specific subskills is only a recent
endeavor [10,25], more research is needed to understand which component skills can be
explained as well as why differential effects are found.

4.1. Limitations

This study has some limitations, which include the homogenous sample in terms of
parental background and education, with highly educated parents being overrepresented.
As these parents are more likely to intellectually stimulate their children, for example,
by taking them to science museums [47], this might have given the participants in the
current study a certain advantage compared to children whose parents are less educated.
The observed variation in scientific reasoning was nevertheless considerable and would
probably have been even more diverse if a more heterogeneous sample had been used.
Future research should therefore incorporate more diverse samples to find out whether the
present conclusions generalize to more typical groups of upper-primary schoolchildren.

Another limitation lies in the task used to assess numerical ability. Because there
was no precedent as to what type of math skills would predict scientific reasoning, a lean
task that assessed basic numerical operations was chosen because it seemingly matched
the type of operations children had to carry out during the scientific reasoning task (e.g.,
counting, direct comparisons). A further advantage of this task was that it did not make
demands on reading skills, which is particularly important because previous studies did
not allow for untangling of scientific reasoning and reading comprehension. However,
although the current task resembled the types of operations children had to carry out during
the scientific reasoning task, no reasoning was required. The absence of any significant
results suggests that numerical ability may not be the most relevant math skill to predict
scientific reasoning, and further research is needed to identify if and what math skills relate
to scientific reasoning.

4.2. Implications

The current study confirms that scientific reasoning is a multifaceted construct. This
is not only evident from differences in children’s proficiency in the component skills
but also from the asymmetry in the extent to which reading comprehension predicts
these skills. How children of different proficiency levels learn scientific reasoning in a
classroom setting and can be taught to reach their best potential is something that needs
to be attended to in future research. Studying all scientific reasoning skills together is
particularly important. Previous research has predominantly focused on a single skill,
most often experimenting [48], which stands to reason because experimenting is such
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a fundamental skill. At the same time, these focused investigations do not capture the
complexity of scientific inquiry, the relative proficiency of children in the different subskills
and the relations between these skills. Therefore, future research should focus more on
scientific reasoning in authentic inquiry settings while still distinguishing subskills.

The absence of grade-level differences suggests that scientific reasoning develops
slowly in the upper-primary years and implies that sustained practice is needed to boost
this development. In preparing weekly or bi-weekly inquiry-based science lessons, teachers
should attend to differences between children and among subskills. Most children will
be able to perform the relatively easy skill of experimenting themselves with minimal
guidance, whereas more teacher guidance is needed in generating hypotheses. Inferencing,
evaluating data and drawing conclusions, which are the most difficult subskills, should
initially be taken over by the teacher, who can demonstrate the skills to the class and
gradually decrease their involvement as the lesson series progresses.

Results of the multiple regression analysis imply that teachers who start an inquiry-
based curriculum can infer children’s entry levels from their reading comprehension
scores—children’s basic numerical skills and ability to solve mind puzzles that resemble
the Tower of Hanoi (e.g., tangrams, sudokus) should not be used for this purpose because
both are poor predictors of scientific reasoning. The regression data also suggest that
proficient readers need less guidance in scientific reasoning, so teachers can devote more
attention to the average and poor readers in the class. Teachers should, of course, monitor
the progress of all children and adjust the level of guidance just-in-time on an as-needed
basis. A final practical suggestion concerns the scheduling of inquiry-based science classes.
As these lessons are often taught by specialist teachers with part-time contracts, schools
can opt for flexible scheduling and combine the fifth- and sixth-grade lessons because the
proficiency levels in these classes are comparable. Alternatively, the same lessons can be
delivered in both grades, perhaps with some minor adjustments in the amount of guidance,
which will ease the teachers’ burden in lesson preparation.

5. Conclusions

This study found substantial overall differences in children’s scientific reasoning as
well as marked differences at the subskill level. This variation was in part explained by chil-
dren’s reading comprehension but not their numerical ability and problem-solving skills.
These results confirm the importance of treating scientific reasoning as a multifaceted skill.
Both teachers and researchers should address scientific reasoning in an integrated setting
where its component skills are distinguished but not studied or taught in isolation. As
reading comprehension explains scientific reasoning in general and most of its constituent
skills, science teachers should give more guidance to the poor readers in their classes, and
researchers should administer performance-based assessments of scientific reasoning that
make minimal demands on reading skills.
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Abstract: The ability to make evidence-based decisions, and hence to reason on questions concerning
scientific and societal aspects, is a crucial goal in science education and science communication.
However, science denial poses a constant challenge for society and education. Controversial science
issues (CSI) encompass scientific knowledge rejected by the public as well as socioscientific issues, i.e.,
societal issues grounded in science that are frequently applied to science education. Generating
evidence-based justifications for claims is central in scientific and informal reasoning. This study aims
to describe attitudes and their justifications within the argumentations of a random online sample
(N = 398) when reasoning informally on selected CSI. Following a deductive-inductive approach and
qualitative content analysis of written open-ended answers, we identified five types of justifications
based on a fine-grained category system. The results suggest a topic-specificity of justifications
referring to specific scientific data, while justifications appealing to authorities tend to be common
across topics. Subjective, and therefore normative, justifications were slightly related to conspiracy
ideation and a general rejection of the scientific consensus. The category system could be applied
to other CSI topics to help clarify the relation between scientific and informal reasoning in science
education and communication.

Keywords: argumentation; reasoning; justifications; socioscientific issues; societally denied science;
controversial science issues; science communication; science education

1. Introduction

The OECD Learning Compass 2030 [1] highlights the rapid changes confronting our
society and, consequently, the importance of adaptive education in formal and informal
learning environments. It emphasizes the need to think and act responsibly “towards
collective well-being” [1] based on knowledge, attitudes, values, and skills (including
reasoning and critical thinking) as a 21st-century goal [1]. In contrast to this goal, science
denial poses a constant or even growing challenge for society [2] and science education [3].
Informed citizens should be able to make evidence-based decisions on questions concerning
scientific and societal aspects, e.g., health and environmental issues [4].

The inevitable connections between science and society in science education are
bundled under the term socioscientific issues (SSI), defined as “societal issues with conceptual
or technological ties to science” [5]. SSI are scientific topics that are often discussed
controversially by the public [6]. They are well-acknowledged as contexts for science
learning [7,8], as the SSI approach integrates scientific, sociological, and ethical content to
foster reasoning on complex questions [9]. For example, the current COVID-19 pandemic
illustrates the rise in controversy between society and science and, moreover, in doubt
about scientific findings [10].

While the scientific foundation of some SSI is mostly accepted by the public (e.g., knowl-
edge about stem cells), controversy may arise with the ethical dilemmas of its application
(e.g., stem cell research for medical purposes) [11]. Other SSI are based on societally contro-
versial science that may even be rejected by parts of the public (e.g., anthropogenic causes
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of climate change), while being quite undisputed among scientists [11]. These topics are
referred to as societally denied science [11] or controversial science issues (CSI) [12]. Attitudes
toward CSI, i.e., their rejection or acceptance, highly rely on individual norms and values
that do not necessarily result from scientific reasoning [13].

As science and technology develop rapidly, opportunities to encounter a variety of
SSI, on which decisions must be made, and CSI, on which attitudes must be formed, be-
come more frequent. Fostering the ability to make informed decisions on such complex
issues and problems using evaluation and reasoning is not only a crucial aspect of general
scientific literacy [14,15] but also a central goal of science education [16,17] and science
communication [18,19]. Scientific reasoning [20,21] and informal reasoning (i.e., every-
day reasoning on ill-structured problems) [22] on SSI and CSI entail the evaluation and
justification of claims.

Several researchers have pointed out that argumentation is a core competence for
reasoning and scientific inquiry [23], as well as central to science education in general [24].
There are few studies on argumentation in science communication [25], but it is a potentially
beneficial field to bridge science communication and science education [18]. Argumenta-
tion in terms of SSI and CSI involves an ethical dimension, so socioscientific argumentation
is a distinct process from scientific argumentation [26]. Multiple studies have demon-
strated that reasoning on SSI [27,28] improves the complexity and quality of students’
arguments concerning both scientific and socioscientific issues and can improve students’
argumentation skills [29] and critical scientific literacy [30].

Different approaches to assessing argumentation have been used in science educa-
tion [31]. Toulmin’s Argument Pattern (TAP) [32] in particular has been applied in various
ways [33]. However, TAP is predominantly used to assess the quality of students’ argu-
ments [34] and focuses on an argument’s structure [35]. To date, few studies have examined
the content of arguments [27,35] or justifications [36].

Furthermore, most research on informal reasoning and argumentation in the context
of SSI and CSI focuses on either school [27–29,33,35] or university students [16,36,37], but
similar analytical approaches to argumentations used by the public [18] could provide
insights into controversial debates on scientific issues in everyday life. This research aims
to describe different kinds of justifications used when people reason informally on selected
CSI based on their attitude, using a fine-grained category system.

2. Theoretical Background
2.1. Socioscientific Issues (SSI) and Controversial Science Issues (CSI)

“Controversial Science Issues are scientific topics that, by their very nature, create
discussions, debates, and questions because students are intrigued by these issues, question
them or even have significant doubts about them” [12] (p. 26). Often, the description of
controversy in the relationship between science and society is left implicit in science
communication [38,39] as well as science education [36]. Borgerding and Dagistan [11]
differentiate between three categories of CSI: active science, societally denied and societally
accepted science, and SSI (Figure 1).

Controversies within active science are located within the scientific community itself
(actual scientific frontier debates) [11]. Societally denied science refers to a negative attitude
(i.e., rejection) toward scientific knowledge among the public (i.e., “x is not true”). This
scientific knowledge was nevertheless generated within the scientific community and a
scientific consensus on it exists [11].
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Both societally denied science and societally accepted science can serve as a foundation
for SSI [11]. For instance, knowledge about stem cell research counts as societally accepted
science [11], even if the application of this research can be addressed as controversial when
teaching SSI. SSI are highly relevant to society and are often discussed controversially in the
context of science education [5]. Examples of SSI include stem cell research, environmental
issues and their possible solutions, and the creation of genetically modified organisms [40],
and therefore, the applications of scientific knowledge in these areas [11]. Normative
questions, like “Is the application of this technology just?” are addressed in typical SSI,
reflecting the fact that SSI cannot be resolved by science and scientific inquiry practices
alone [11]. SSI have an ethical dimension concerning the relationship between science,
technology, and society [41] as well as a complex societal dimension [5]. Problems in the
context of SSI are open-ended, ill-structured, subject to multiple perspectives, and they
lack clear solutions [37].

However, not all controversial scientific topics addressed in educational contexts fit
this definition of SSI. Issues may be controversial and contested within the public sphere
without being ill-structured and/or without lacking clear solutions. SSI are often described
as inherently controversial [9,35] or as one kind of controversial issue [27,42]. Following
the ideas that SSI are one kind of CSI and that a publicly contested issue is not necessarily
denied by the public, we describe CSI as an umbrella term (see Figure 1), comprising
different approaches of science communication and science education. When engaging in
CSI, the question is not whether a certain issue is true or just but what the reasons for its
controversy are.

Examples of CSI are evolution [43] and climate change [44], since parts of society doubt
their theoretical scientific foundation, i.e., have a negative attitude toward them. Attitudes
are conceptualized here as an affective assessment of an attitude object (e.g., evolution,
climate change) [45]. Nevertheless, these topics do not lack a clear solution and are not
ill-structured. For other CSI, such as vaccination [46] and GMOs [47], the controversy
refers, at least in part, to the application of technology and touches the field of SSI.

Moreover, different factors influence attitudes toward CSI topics, hence the distinction
between societally denied and societally accepted science. Most influencing factors that
affect the rejection of scientific knowledge or applications are affective, such as emotions,
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ideology, or worldview, and are referred to as the roots of attitudes [13]. Attitudes toward
vaccination depend on risk perception, barriers, trust, calculation, and responsibility for
society [46], while factors like religious belief [43], trust in science, and knowledge about
the nature of science (NOS) influence attitudes toward evolution [48]. Climate change
attitudes are influenced by political identity [49] and an individualistic worldview [50],
and attitudes toward GMOs are affected by views about natural purity [51] as well as
emotions and intuitions [52]. These different factors illustrate the issue-dependency and
high heterogeneity of predictors of the controversiality of a topic [53,54]. However, some
factors seem to be general predictors of the acceptance and rejection of scientific knowledge,
like conspiracy ideation [55] and knowledge about NOS [56].

2.2. Informal and Scientific Reasoning

Engagement in SSI often involves argumentation and decision-making processes that
require reasoning processes, i.e., processes of building and evaluating arguments [57].
For a long time, research on reasoning focused on formal reasoning about well-defined
problems [58] and followed a “deduction paradigm” [59]. However, it has been demon-
strated that human reasoning is prone to biases, and everyday reasoning is in most cases
informal reasoning [58]. Both formal (scientific) and informal reasoning are processes
of generating and assessing arguments [60]. While the problems addressed in scientific
reasoning are often well-defined and the respective premises are explicit, problems in
informal reasoning are ill-structured and the premises are not always stated [61]. Informal
reasoning tasks often involve generating and evaluating positions on complex issues that
lack clear solutions [5]. However, the coordination of theory and evidence [4,60], as well as
generating evidence-based justifications [60], is central in informal and scientific reasoning:
“Foundational abilities that lie at the heart of both types of reasoning are the ability to
recognize the possible falsehood of a theory, and the identification of evidence capable of
disconfirm” [60] (p. 74). These abilities align with the epistemic dimension of scientific
reasoning as described by Osborne [21].

As SSI typically involve contentious and open-ended problems, their negotiation and
resolution can be characterized by informal reasoning [5,61], which is especially suitable
for processes like decision-making about actions for which supporting and opposing
arguments exist [57]. The ability to informally reason on SSI has been described as a crucial
component of scientific literacy [5] and a central goal of science education [62].

In addition to components of scientific reasoning [20,21], reasoning on SSI requires the
integration of societal and ethical aspects, also referred to as moral reasoning [63,64]. Sadler,
Barab, and Scott [8] proposed the construct of socioscientific reasoning (SSR) to assess the
reasoning practices associated with SSI. While research on SSR highlights the integration of
ethical components that require moral reasoning [42], reasoning on CSI is not necessarily
a matter of moral reasoning but a matter of personal attitudes and knowledge. This is
because the questions concerning CSI are neither open-ended nor unsolvable dilemmas [11].
Therefore, frameworks developed to assess SSR competencies [65], decision-making on
SSI [66], and SSI attitudes [67] cannot be applied to CSI in which a clear scientific consensus
concerning scientific knowledge and/or its application has been reached. Assessing how
people reason concerning their attitude toward a CSI asks for different approaches, e.g.,
the identification of informal reasoning types [37,61,68]. While some research results
suggest that reasoning is consistent across different topics [65,69], other studies describe a
topic-specificity [70,71].

2.3. Argumentation Frameworks

Argumentation is the communicative part of reasoning [22] and is addressed more
and more by science curricula around the world [33]. Argumentation in science is an
essential skill, not only for scientists and science students but also for citizens, to enable
them to make informed decisions on (socio-)scientific issues in everyday life [33].
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Argumentation in general can be described as an interplay of constructing claims or ex-
planations and the corresponding evidence [32,72] to justify something [73]. A fine-grained
conceptualization of argumentation has been an ongoing challenge for researchers, and a
variety of frameworks exist [31]. Aside from differences among these frameworks focusing
either on content [28], structure [74], or the epistemological quality [75] of arguments, all
of these frameworks rely on Toulmin’s Argument Pattern (TAP) [32]. The TAP builds a
general structure of arguments (Figure 2) and a foundation to assess them [33].
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Figure 2. Toulmin’s Argumentation Pattern (adapted from [32,33]) and its application to a complex
argument concerning the CSI of SARS-CoV-2.

The claim of an argument is its conclusion. It is a statement of commitment [33] that
every individual can agree or disagree with. The claim is based on several elements of the
argument, with data representing the evidence for the claim being the central element. The
data needs a warrant as a conclusive rule, turning the data into a relevant reason to support
the claim. The warrant itself can furthermore be based on additional information called a
backing. Because those three compartments form the justifying part of a persuasive argu-
ment [32] they are subsequently subsumed as the justification of a claim. The justification is
opposed to the rebuttal, which contradicts it, and the qualifier, which describes the extent to
which the justification allows valid conclusions.

As humans are easily capable of connecting statements in a logical way, the warrant is
sometimes left implicit [76]. In the given example, the fact that people die from COVID-19
(i.e., data) can lead to the conclusion of SARS-CoV-2 posing a serious threat to human
health without formulating the warrant (i.e., that the possible death forms a serious threat
to human health). Equally, the data can be left implicit. Taking this into account, the
articulation of a justification does not always include both data and warrant but sometimes
appears as only one of the two components.

The TAP is often used as an analytical framework to evaluate argument quality [33].
When assessing arguments, an adapted version of TAP is often used. Qualifiers are often
neglected to reduce the complexity [77–79]. The claim-evidence-reasoning approach is an
established adaptation of the framework, in which, in addition to claim and evidence (i.e.,
data), warrant and backing are summarized as reasoning [79].

However, using TAP or its adapted forms as an analytical tool has also been criti-
cized [33] due to the ambiguity of the arguments’ elements [80] and the context-dependency
of their interpretation [81]. In particular, differentiating between data and warrant, as well
as warrant and backing, is difficult and depends on the context [77,82]. These challenges, as
well as approaches that merge data and warrant [82], underpin the justification component
(see Figure 2).
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Several other studies that assessed arguments did not rely on TAP but analyzed argu-
ments dichotomously by focusing on one claim supported by a ground, i.e., a reason [28,36].
Often, subjective and objective justifications are distinguished [36,83]. A comparable distinc-
tion was provided by Jafari and Meisert [27], who distinguished between normative and
fact-based reasoning. Objective justifications are sometimes further divided into evidential
and deferential justifications [83], with deferential justifications appealing to an author-
ity [83]. Justifications were found to be heterogeneous within a person’s argumentation
and to differ among different CSI [36].

Additionally, several studies have indicated the relation between knowledge about
NOS and argumentation skills [84,85]. Studies on argumentations in the field of SSI
predominantly focus on argument quality based on the TAP or adapted forms. However,
when it comes to the argument’s contents and the types of justifications within arguments,
few studies are available [27,86].

2.4. Research Questions

Several researchers have pointed out that instruction and conceptual knowledge of
argumentation can foster the use of more complex [28] and more fact-based [27] arguments
in the science classroom. There are still societal debates on scientific topics that are not
disputed in the scientific sphere and do not lack clear solutions, and these topics count
as CSI. Scientific knowledge, or its application that is partly rejected by the public, points
to negative attitudes toward a topic. As roots of such attitudes are known to be mostly
affective [13], this leads to the question of how people justify these attitudes.

An assessment of justifications within arguments on CSI in the public sphere is a
necessary first step to identify overall tendencies and context-dependencies in justifications
as one element of informal reasoning. In the long run, a resulting framework may help
equip students with the necessary skills to participate in these public debates.

Our study addresses the following research questions:

1. To what extent can justifications identified in the field of CSI be grouped, with regard
to theoretical criteria? (RQ1)

2. To what extent are justifications specific for certain CSI (topic-specific)? (RQ2)
3. How are acceptance and rejection of CSI related to the use of different justifica-

tions? (RQ3)
4. How does knowledge about NOS, religiousness, and conspiracy ideation relate with

the use of different justifications? (RQ4)

3. Materials and Methods
3.1. Participants and Data Collection

We conducted an online survey in German, distributed via social networks to reach
the public in an informal learning context. Postings included a short introduction to the
topic and targeted communities interested in CSI, e.g., through a comment on videos on
genetically modified food (GMF; YouTube), anti-vaccine groups (Facebook), and science
communicators (Twitter). This random sampling was justified by the aim to reach out to a
heterogeneous sample and collect a wide range of different justifications on different CSI.
Data were collected within a two-month period in summer 2020.

In total N = 398 volunteers took part in the survey, of which N = 265 completed the
questionnaire up to the last page. Participation in the survey was voluntary and during
free time, which might explain the high dropout rate. It was possible to skip questions
or leave the survey at any point. All open answers were analyzed, regardless of if the
data set was complete. For closed questions, listwise deletion was applied. The age of
participants ranged from 16 to 85 with an average of 41 years. Participants from all 16
German provinces took part, and the education level ranged from high school students
and people who left school without a degree to post-doctoral researchers.
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3.2. Instruments

The research design was adapted from Lobato and Zimmerman [36]. Their survey
included four CSI topics (evolution, climate change, GMF, vaccination) and involved con-
fronting participants with a statement (i.e., claim) reflecting the scientific consensus on each
topic (Table 1). We added a fifth statement on SARS-CoV-2 to the survey, as the pandemic
has led to the most substantive large-scale, open, and public discussion of epidemiology
and science in recent history [87]. The statements used by Lobato and Zimmerman [36]
were modified whenever they seemed to express epistemological considerations that could
also serve as justifications, like “Evolution is the best explanation” or “Medical research
has demonstrated” (Table 1).

Table 1. Statements reflecting scientific consensus on five CSI topics (modified based on [36]). Statements reflect the claim
in TAP [32].

CSI Topic Original Statement [36] Adjusted Statement Adjusted Statement (German)

Evolution
Biological evolution is the best
explanation for explaining the
varieties of species of life.

The variety of life forms and
species is rooted in evolution.

Die Vielfalt an Lebensformen und
Arten ist auf Evolution
zurückzuführen.

Climate Change
The earth is experiencing a period
of global climate change that
human activity is contributing to.

The earth is experiencing a
period of global climate
change that human activity is
largely contributing to.

Die Erde unterliegt einem
klimatischen Wandel, zu dem der
Mensch maßgeblich beiträgt.

Genetically
modified foods (GMF)

Genetically modified foods [also
known as GM or GMO foods]
are largely safe for
human consumption.

Genetically modified foods
are largely safe for human
consumption.

Genetisch veränderte
Lebensmittel sind größtenteils
sicher für den
menschlichen Verzehr.

Vaccination

Medical research has
demonstrated that childhood
vaccinations are largely safe
and effective.

Vaccinations are largely safe
and effective.

Impfungen sind größtenteils
sicher und effektiv.

SARS-CoV-2 -
The coronavirus
(SARS-CoV-2) is a serious
threat to human health.

Das Corona-Virus (SARS-CoV-2)
ist eine ernsthafte Bedrohung für
die menschliche Gesundheit.

Participants’ attitudes toward the CSI topics (i.e., acceptance or rejection of the scien-
tific consensus) were measured using a five-point scale to rate their agreement with the five
claims. The participants were subsequently asked to justify (i.e., data/warrant/backing) their
attitude on each claim in an open answer format and to think of possible reasons to change
their position (i.e., rebuttals). In the following analysis, we focus on the justifications.

In addition, other potentially influencing variables were assessed: knowledge about
NOS [88], religiousness [43,89], and conspiracy ideation [90]. The NOS measure focused
on the tentativeness of scientific knowledge (“development” scale) with items like “New
findings might change what scientists hold as true” [88]. The original seven items were
reduced to six items. The scale measuring religiousness consisted of five items such as
“I believe in God” [43,89]. The scale on conspiracy ideation [90] included items like “I
think many important things happen in the world, which the public is never informed
about” [90]. All of these scales measured agreement on a five-point rating scale.

3.3. Data Analysis

Results of all rating scales were merged to sum scores per scale. The rating items to
assess attitudes toward claims concerning the five CSI topics were merged to one sum
score for further analyses, representing attitudes toward scientific consensus.

Open answer format responses (i.e., arguments) were analyzed using qualitative
content analysis [91] and the software MAXQDA Plus (VERBI Software, 2019, Berlin,
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Germany). Components of the analysis are semantic units; every semantic unit was
coded once.

As a first step, based on TAP, we deductively derived an operationalization to identify
the semantic units within respondents’ arguments that can be categorized as justifications
(Figure 3). This step was necessary since, even if the open answer format question con-
cretely asked about justifications, some answers contained other argumentative elements
or unrelated components.
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argument proposed in the open answer format as the first step of the analysis.

If the semantic unit named reasons supporting the participant’s position concerning
the claim (e.g., “The risk of dying from the disease is higher than dying from the vaccine”)
it was coded as warrant/data, since those two argument components, as postulated by
Toulmin [32], rarely appear explicitly as two distinct units. In this case, the warrant
(i.e., “If the risk of dying from the disease is higher than dying from the vaccine, the
vaccine is safe and effective”) is left implicit, as is often the case in informal logic [76].
The conceptualization of Toulmin [32] also includes qualifiers influencing the magnitude
of an argument (e.g., “If the vaccine is developed and tested responsibly”) and rebuttals
contradicting the conclusion (e.g., “Some people die from the side effects of vaccines”). For
the following analysis of the justifications, the rebuttals were merged with warrant/data as
justifications (i.e., analytic unit; Figure 3), because the statement “Some people die from
the side effects of vaccines” either justifies or rebuts a participant’s position.

If the semantic unit was completely unrelated to the claim, it was coded as unrelated. If
it was a restatement of the claim captured in the rating scale (e.g., “I think vaccines help”)
it was coded as claim. If the semantic unit was unrelated to the initial statement, e.g., the
safety and effectiveness of vaccines, but still related to the issue (e.g., “No one should
be forced to be vaccinated”) the unit was coded as problematization. Semantic units that
referred to the initial statement without using any argumentative component (e.g., “Why
would I answer that?”) were coded as refusals.
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The first deductive coding step resulted in a majority of answers justifying the state-
ment, as intended in the open question (Table 2). There was no evidence of structural
differences between stated argument components for or against scientific consensus. The
stated argument components did not depend on the attitude measured.

Table 2. Frequencies (proportions) of argument components among the five CSI topics following the first deductive coding
step. The grey row displays the proportion of semantic units identified as justifications.

Argument
Component Evolution Climate

Change GMF Vaccination SARS-CoV-2 Total

claim 5
(1.3%)

13
(3.6%)

12
(3.1%)

13
(3.2%)

3
(0.8%)

46
(2.4%)

data/warrant/rebuttal
(i.e., justification)

350
(88.8%)

289
(80.1%)

300
(76.5%)

325
(79.9%)

333
(84.1%)

1597
(81.9%)

qualifier 17
(4.3%)

23
(6.4%)

22
(5.6%)

34
(8.4%)

37
(9.3%)

133
(6.8%)

problematization 2
(0.5%)

23
(6.4%)

41
(10.5%)

25
(6.1%)

10
(2.5%)

101
(5.2%)

refusal 6
(1.5%)

2
(0.6%)

6
(1.5%)

4
(1.0 %)

5
(1.3%)

23
(1.2%)

unrelated 14
(3.6%)

11
(3.1%)

11
(2.8%)

6
(1.5%)

8
(2.0%)

50
(2.6%)

Total 394
(100%)

361
(100%)

392
(100%)

407
(100%)

396
(100%)

1950
(100%)

The semantic units identified as justifications underwent a second qualitative content
analysis to build up the deductive-inductive category system and answer the research
questions. Therefore, we started by gathering similar content in fine-grained subcategories
and subsequently generalized the categories more and more [91] based on those presented
by Lobato and Zimmerman [36]. In this way, it was possible to categorize the justifications
based on content and build types of justifications on CSI topics. To improve the objectivity
of our category system, a different researcher conducted a second coding on 30 complete
data sets (11.3% of complete data sets) [92]. These double coded data sets are a repre-
sentational sample to encompass the spectrum of the material. Cohen’s kappa indicates
a substantial intercoder agreement (κ = 0.68) [92]. Based on a discursive analysis of the
coding results, codings were discursively changed when coding errors were identified. This
led to increasement of Cohen´s kappa (κ = 0.84) and a refinement of coding descriptions.

The amount and proportion of coded semantic units per type of justification were
calculated and compared across the five topics. To analyze relations between types of
justifications and other variables, correlations were calculated.

4. Results

The claims reflecting the scientific consensus on the five CSI topics were generally
accepted, representing a positive attitude toward these topics. The most accepted claim was
evolution (95.3 % agreement), followed by climate change (87.6%), vaccinations (86.0%),
SARS-CoV-2 (82.6%), and finally GMF (57.5%), the most contested claim (Table 3).

Figure 4 displays the deductively-inductively built fine-grained category system to
distinguish different types of justifications on CSI. The categorization resulted in five types
of justifications, with 25 subcategories. A justification that cannot be falsified or is depen-
dent on individual beliefs belongs to the subjective type, and every other justification is
intersubjective. Subjective justifications refer to normative statements that are grounded
in values and beliefs (e.g., ideology: “God created all living beings”; naturalistic fallacy:
“This is not safe, because it is not natural”; argumentum ad hominem: “Virologists are not
trustworthy”). Intersubjective justifications were further distinguished into those referring
to specific data to support the claim (evidential) or referring to a third entity as an authority
(deferential). The mere mention of “evidence” did not count as an evidential justification but
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was categorized as a reference to a body of knowledge and therefore as deferential. The
determining differentiation between evidential and deferential justifications was their speci-
ficity; while deferential justifications refer to a rather general body or lack of knowledge
about the topic, evidential justifications are quite focused on the single CSI.

Table 3. Frequency (proportion) of acceptance of scientific consensus concerning each CSI topic.

CSI Topic Rejection Undecided Acceptance Total

Evolution 13
(3.4 %)

5
(1.3 %)

361
(95.3 %)

379
(100 %)

Climate Change 17
(5.3 %)

23
(7.1 %)

282
(87.6 %)

322
(100 %)

GMF 61
(21.3 %)

61
(21.3 %)

165
(57.5 %)

287
(100 %)

Vaccination 26
(9.4 %)

13
(4.7 %)

239
(86.0 %)

278
(100 %)

SARS-CoV-2 29
(10.7 %)

18
(6.7 %)

223
(82.6 %)

270
(100 %)
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Deferential justifications were further divided into justifications referring to a body
of knowledge (e.g., science/research: “That was proven by science”; consensus: “Almost all
scientist agree on it”; control mechanisms: “There is a strict and transparent approval
procedure for vaccinations”) or a lack of knowledge (e.g., no (sufficient) evidence: “We don’t
know enough about it”; no falsification: “To date, there is no evidence against it”; no
personal knowledge: “I don’t know enough about this”). The evidential justifications were
categorized as either empirical or theoretical justifications. While empirical justifications
referred to verifiable real-world phenomena (e.g., causality: “As shown by the eradication
of smallpox”; comparison/analogy: “SARS-CoV-2 is not more dangerous than the flu”;
definition/generalization: “This is the case, since we have a global pandemic”), the theoretical
justifications drew conclusions, weighed up, or referred to conclusiveness (e.g., weighing up:
“The risk of dying from the sickness is higher than dying from the vaccine”; conclusiveness:
“This is a conclusive explanation”).

All identified justification types were identified across all five topics. However, some
justification types were more common depending on the particular CSI topic addressed.
While subjective, empirical, and theoretical justifications tended to be rather topic-specific,
deferential justifications appeared with a similar frequency across most of the topics
(Table 4). Therefore, references to a body or lack of knowledge were used quite similarly
across the different CSI. However, on the safety of GMF, the most contested statement, a
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comparably high number of justifications refer to a lack of knowledge. In contrast, the
claims with the highest acceptance rates, i.e., anthropogenic climate change, evolution, and
vaccination, were more frequently connected with justifications referring to third entities
or vaguely defined bodies of knowledge such as “studies” or “evidence”.

Table 4. Proportions of justification types across the CSI topics.

Type of
Justification Evolution Climate

Change GMF Vaccination SARS-CoV-2 NTotal

Subjective 0.4% 1.4% 7.3% 4.3% 3.6% 66
Deferential:

Body of knowledge 49.1% 55.2% 25.3% 45.9% 26.1% 644

Deferential:
Lack of knowledge 9.1% 5.9% 38.0% 6.5% 13.8% 230

Evidential:
Theoretical 17.1% 6.2% 3.0% 12.3% 1.5% 132

Evidential:
Empirical 20.6% 31.4% 26.3% 31.1% 55.0% 526

NTotal 350 290 300 325 333 1598

Compared with theoretical justifications, empirical justifications were far more com-
mon. However, this varied across the topics; while justifications concerning evolution
relied almost equally on theoretical considerations and real-world observations, positions
on SARS-CoV-2 were more frequently justified by empirical justifications.

Subjective justifications were the least common justification type, with the topic of
GMF showing the highest proportion of subjective justifications, while almost no respon-
dents gave subjective justifications in the contexts of evolution and anthropogenic climate
change. The most frequent justification type overall was reference to a body of knowledge.
This type was especially common when justifying attitudes on anthropogenic climate
change, evolution, and vaccination.

In most cases, the acceptance of claims concerning the five different CSI topics did not
correlate significantly with the identified type of justification (Table 5). However, the use of
subjective justifications is negatively correlated to the acceptance of four of the CSI topics
with a weak effect. The claim about GMF is the only one without a significant correlation to
one of the justification types. Additionally, the acceptance of the effectiveness and safety of
vaccines is significantly and weakly related to the use of deferential justifications referring
to a body of knowledge.

Table 5. Correlation after Pearson between justification type and acceptance of scientific consensus on each topic. N = 398,
* p < 0.05, ** p < 0.01.

Justification Type Evolution Climate Change GMF Vaccination SARS-CoV-2

Subjective −0.141 ** −0.175 ** −0.064 −0.186 ** −0.153 *
Deferential:

Body of Knowledge 0.044 0.060 0.114 0.128 * 0.110

Deferential:
Lack of Knowledge 0.045 0.015 −0.048 −0.008 0.044

Evidential:
Theoretical 0.059 −0.003 0.057 −0.015 −0.026

Evidential:
Empirical 0.056 −0.036 −0.074 −0.016 0.053

In general, the participants were not very religious (M = 1.62; SD = 1.05, score range:
1–5), were partly drawn to conspiracy theories (M = 2.41; SD = 0.88, score range: 1–5), and
showed a high knowledge about NOS (M = 4.69; SD = 0.44, score range: 1–5).
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A significant positive and strong correlation between the general acceptance of sci-
entific consensus and knowledge about NOS (N = 252; r = 0.558; p < 0.01) was identified.
Religiousness (N = 254; r = −0.469; p < 0.01) and conspiracy ideation (N = 258; r= −0.655;
p < 0.01) correlated significantly negatively with the acceptance of scientific consensus with
a medium (religiousness) to strong (conspiracy ideation) effect size.

Correlations of these variables with different types of justification were not significant
in most cases (Table 6). Solely the use of subjective justifications (e.g., natural fallacy)
correlated positively and weakly with the rejection of scientific consensus as well as
negatively and weakly with conspiracy ideation. References to a body of knowledge
correlated with the acceptance of scientific consensus with a weak effect. Furthermore,
religiousness correlated weakly with the use of empirical justifications.

Table 6. Correlations between justification type and knowledge about NOS, religiousness, conspiracy ideation, and general
acceptance of scientific consensus operationalized by the mean of acceptance of the claims on the five CSI topics. N = 398,
* p < 0.05, ** p < 0.01.

Justification Type NOS Religiousness Conspiracy Ideation Acceptance of
Scientific Consensus

Subjective −0.045 0.029 0.180 ** −0.185 **
Deferential:

Body of Knowledge 0.035 −0.121 0.102 0.102 *

Deferential:
Lack of Knowledge −0.024 0.009 0.030 0.020

Evidential:
Theoretical 0.011 0.047 −0.036 0.007

Evidential:
Empirical 0.032 0.184 ** 0.079 −0.009

5. Discussion

The relatively high agreement with the claims on the different CSI indicates that most
citizens who responded to the survey accept the respective scientific consensuses. However,
while evolution as the explanation for the variety of life forms is accepted by more than
95% of the sample, only 57.5% agreed with the safety of GMF, the claim with the highest
frequency of rejection and uncertainty. About 10% disagreed with the claims about the
effectiveness and safety of vaccines and the health threat of SARS-CoV-2. Analysis of
justifications resulted in five types of justifications for claims on CSI, each with several
subtypes (RQ1). Justification types seem to be partly topic specific (RQ2) and in most cases
are unrelated to whether the claim on a CSI was accepted or rejected (RQ3), as well as to
variables like NOS, religiousness, and conspiracy ideation (RQ4).

5.1. Justification Types in the Field of Controversial Science Issues (RQ1)

To identify types of justifications in the field of CSI, we applied a deductive-inductive
approach based on an existing justification coding scheme [36]. We identified subjective
justifications that have been described before [36], sometimes referred to as normative
justifications [27]. This type relies on individual spiritual, political, or ideological beliefs as
well as on reasoning fallacies like argumentum ad hominem.

All justifications that could be identified as intersubjective formed a group that was
further categorized. The distinction between references to a third entity (i.e., deferential)
and references to the subject of discussion itself (i.e., evidential) was drawn from previous
research [36] and applied to the data in this study. This common distinction can also be
found in Shtulman [83].

However, taking a closer look at the deferential justifications, we distinguished ref-
erences to a body of knowledge (e.g., “There is evidence for x”) from references to a lack
of knowledge (e.g., “There is no evidence”). Another step toward more fine-grained cate-
gories was the distinction within the evidential category between empirical and theoretical

136



Educ. Sci. 2021, 11, 522

justifications. Empirical justifications rely on real-world phenomena or precisely named
and therefore provable data (e.g., correlation: “There is a positive correlation between
greenhouse gas emissions and rising global temperature”), while theoretical justifications
include a warrant to support the conclusion (e.g., cost risk calculation: “Even if climate
change is not anthropogenic, we should assume it is. Better safe than sorry”). This catego-
rization of the evidential justifications as either empirical or theoretical is therefore aligned
with the distinction between data and warrant in TAP [32]. Furthermore, both types of
evidential justifications share commonalities with components of scientific reasoning, e.g.,
the subskill of interpreting data [20] or abductive reasoning [93]. It would be worth in-
vestigating to what extent these types of evidential justifications align with the epistemic
dimension of scientific reasoning as described by Osborne [21], referring to the questions
“How do we know or how can we be certain?” [21] (p. 270).

Clearly, evidential justifications that refer to the CSI topic under consideration itself are
highly topic-dependent. Due to the high diversity of SSI [70], a further generalization of this
type of justification is challenging. One step that enabled the categorization into justification
types was the focus on CSI as a special variant of SSI. Following Kolstø [94], who defined the
field of risk-based SSI, and Borgerding and Dagistan [11] (see Figure 1), who differentiated
between different fields as foundations for SSI, the theoretical clarification of the field of
CSI as well as the resulting category system may help to further clarify the different fields
within the broad topic of SSI. This is likely necessary for a finer analysis of justifications
that could perhaps be field-specific.

5.2. Topic-Specific Justifications (RQ2)

Despite the field-specific scope of the category system, indicated by the occurrence
of all five justification types in all five CSI topics, the results show frequency differences
among justifications concerning the five CSI. This finding supports earlier results with
a similar methodological design [36], while results of studies investigating SSR instead
suggest consistency of the SSR framework across different SSI contexts [8,69]. However,
this contrast may be resolved by seeing the SSR framework as a field-specific tool that is
applicable to different topics of SSI, comparable with the category system for the field of
CSI presented here. Toulmin [32] has already emphasized the field-specificity of arguments.

Whereas subjective and evidential justifications appear to be more topic-specific,
the most general justification types seem to be deferential justifications referring to a
body or lack of knowledge, either personal or related to the scientific field. In fact, the
vast majority of deferential justifications refer to the scientific field. However, as the
participants were aware that they were part of a scientific survey, they may have tried to
use appropriate and convincing arguments. Laypeople are often capable of using “public
scientific arguments” [25].

5.3. Relationship between Acceptance of CSI and the Use of Different Justifications (RQ3)

Generally, correlations between the use of certain justifications and the acceptance
of the scientific consensus on the different CSI were weak. Still, the use of subjective
justifications correlated with a rejection of the scientific consensus on most CSI, except
for the safety of genetically modified food. One possible explanation is that all kinds of
fallacies (i.e., argumentum ad populum, argumentum ad hominem, naturalistic fallacy) are
subjective justifications. This fallacious argumentation is known to be rather common when
arguing against a scientific consensus [95]. Despite the only small number of subjective
justifications in total, these correlations suggest that subjective justifications are more
frequently formulated if people reject the scientific consensus on a CSI.

Deferential and evidential justifications seem to appear for both acceptance and
rejection of the scientific consensus, indicated by the insignificant correlations between
the use of these justifications and acceptance of the scientific consensus on the five CSI.
The only exception is a significant and weak correlation between reference to a body of
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knowledge and acceptance of the effectiveness and safety of vaccinations, indicating less
frequent use of this argument when being skeptical about vaccinations.

5.4. Relationship between NOS, Religiousness, and Conspiracy Ideation with the Use of Different
Justifications (RQ4)

Concerning the relationship between justification types and other variables, increased
knowledge about NOS did not correlate with a certain type of justification, an observation
made previously concerning NOS and the structural quality of arguments [47]. Nev-
ertheless, NOS is known to be able to positively influence argumentation skills on SSI
topics [85,96].

While Lobato and Zimmerman [36] noted that justification strategies appear highly
heterogeneous within an individual’s argumentation, our research demonstrated that
even across the spectrum of science rejection and acceptance, all different kinds of justi-
fications appear. This is consistent with previous findings that point out similarities in
argumentation on supernatural beliefs and scientific knowledge [83]. However, significant
correlations indicate that reference to a body of knowledge is more likely when accepting
the scientific consensus, while subjective justifications are more frequent in argumentations
against the scientific consensus.

Furthermore, subjective justifications are more frequent in people with high conspir-
acy ideation. Religiousness correlated weakly and positively with the use of empirical
justifications, suggesting that religiousness is not necessarily an obstacle to reasoning on
scientific topics [43].

6. Conclusions and Outlook

The task of fostering reasoning and argumentation competency goes beyond formal
education in school and university [4]. In general, citizens are expected to employ evidence-
based reasoning on issues grounded in science to make decisions in their personal lives and
in public policy [97]. People often have difficulty evaluating evidence, which is problematic
for informal reasoning on public policy and personal choices [4]. One crucial reason that
these everyday reasoning tasks are difficult is the easy generation of causal explanation
and their resistance [4,98].

To equip citizens with the ability to weigh up arguments and evaluate evidence, a first
step is knowledge about the different types of justifications they provide for their attitudes
concerning certain CSI. The category system reflecting justification types provides insight
into the diversity of argumentation patterns and can inform teachers and pre-service teach-
ers about potential attitudes and justifications on CSI that they might encounter in their
lessons. Previous studies emphasized the importance of the inclusion of multidisciplinary
perspectives when negotiating complex societal issues like CSI [7,35]. This approach can
be informed by the category system, which was built upon a wide variety of different
justifications from a heterogeneous online sample. It could furthermore be a helpful tool
for fostering science media literacy, described by Höttecke and Allchin [99] as a crucial goal
of science education in the age of social media [99].

Moreover, the presented category system lays the groundwork for further research
in this area. On one hand, it will be the starting point for similar research in formal
education. On the other hand, knowledge about justification types and how they differ
across different contexts enables the ability to choose the best contexts to integrate into
science education contexts.

Additionally, the results may inform science communication researchers and practi-
tioners about the acceptance of the scientific consensus on different CSI topics and common
justifications in these contexts. This is important, since even media reports often have
problems handling scientific information [19].

In future research, the fine-grained assessment of general attitudes toward SSI brought
forward by Klaver and Walma van der Molen [67] could be combined with the method
of measuring justifications toward scientific consensus on specific CSI proposed in this
article to shed more light on the different justification types. Furthermore, a research
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design integrating a task on SSR would be beneficial, e.g., by using the QuASSR [65]. In
general, further investigation of the category system and its justification types should
include steps of further validation [100] as well as argumentation in a broader discussion
context, as has been suggested by several scholars [32,33,72]. The current study involved a
random sample recruited within social networks to collect a wide variety of justifications
for creating the category system. However, this sampling led to a high dropout rate and
lacks representativeness of the quantified results. Future studies may apply the category
system to samples within controlled environments. Another important next step is the
theoretical and empirical investigation of the alignment of scientific reasoning and informal
reasoning on CSI and SSI.

The novel term CSI could—following further theoretical and empirical clarification—
help bridge the gap between the mostly separated research areas of science education and
science communication [18].
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Dvořáková, R.M.; et al. Evolution Education Questionnaire on Acceptance and Knowledge (EEQ) - Standardised and ready-to-use
protocols to measure acceptance of evolution and knowledge about evolution in an international context. Zenodo 2021. [CrossRef]

90. Bruder, M.; Haffke, P.; Neave, N.; Nouripanah, N.; Imhoff, R. Measuring individual differences in generic beliefs in conspiracy
theories across cultures: Conspiracy Mentality Questionnaire. Front. Psychol. 2013, 4, 1–15. [CrossRef] [PubMed]

91. Mayring, P. Qualitative Inhaltsanalyse, 12th ed.; Beltz: Weinheim, Germany, 2015.
92. O’Connor, C.; Joffe, H. Intercoder Reliability in Qualitative Research: Debates and Practical Guidelines. Int. J. Qual. Methods 2020,

19, 1–13. [CrossRef]
93. Upmeier zu Belzen, A.; Engelschalt, P.; Krüger, D. Modeling as Scientific Reasoning—The Role of Abductive Reasoning for

Modeling Competence. Educ. Sci. 2021, 11, 495. [CrossRef]
94. Kolstø, S.D. Patterns in students’ argumentation confronted with a risk-focused socio-scientific issue. Int. J. Sci. Educ. 2006, 28,

1689–1716. [CrossRef]
95. Zeidler, D.L.; Osborne, J.; Erduran, S.; Simon, S.; Monk, M. The role of argument during discourse about socioscientific issues. In

The Role of Moral Reasoning on Socioscientific Issues and Discourse in Science Education, 1st ed.; Zeidler, D.L., Ed.; Springer: Dordrecht,
The Netherlands, 2003; Volume 19, pp. 97–116.

96. Khishfe, R. Explicit Instruction and Student Learning of Argumentation and Nature of Science. J. Sci. Teach. Educ. 2021, 32,
325–349. [CrossRef]

97. Kuhn, D.; Lerman, D. Yes but: Developing a critical stance toward evidence. Int. J. Sci. Educ. 2021, 43, 1036–1053. [CrossRef]
98. Glassner, A.; Weinstock, M.; Neuman, Y. Pupils’ evaluation and generation of evidence and explanation in argumentation. Br. J.

Educ. Psychol. 2005, 75, 105–118. [CrossRef]
99. Höttecke, D.; Allchin, D. Reconceptualizing nature-of-science education in the age of social media. Sci. Educ. 2020, 104, 641–666.

[CrossRef]
100. American Educational Research Association (AERA); American Psychological Association (APA); National Council on Mea-

surement in Education (NCME). Standards for Educational and Psychological Testing; American Educational Research Association:
Washington, DC, USA, 2014.

142



education 
sciences

Article

Elementary Students’ Reasoning in Drawn Explanations Based
on a Scientific Theory

Valeria M. Cabello 1,2,* , Patricia M. Moreira 1 and Paulina Griñó Morales 2,3

Citation: Cabello, V.M.; Moreira,

P.M.; Griñó Morales, P. Elementary

Students’ Reasoning in Drawn

Explanations Based on a Scientific

Theory. Educ. Sci. 2021, 11, 581.

https://doi.org/10.3390/

educsci11100581

Academic Editors: Moritz Krell,

Andreas Vorholzer and

Andreas Nehring

Received: 8 August 2021

Accepted: 21 September 2021

Published: 26 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Facultad de Educación, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; pmmoreira@uc.cl
2 Research Center for Integrated Disaster Risk Management (CIGIDEN), ANID/FONDAP/15110017, Pontificia

Universidad Católica de Chile, Santiago 7820436, Chile; paulina.grino@uoh.cl
3 Escuela de Educación, Universidad de O’Higgins, Rancagua 2841959, Chile
* Correspondence: vmcabello@uc.cl

Abstract: Constructing explanations of scientific phenomena is a high-leverage practice that promotes
student understanding. In the context of this study, we acknowledge that children are used to
receiving explanations from teachers. However, they are rarely encouraged to construct explanations
about the causes and consequences of phenomena. We modified a strategy to elicit and analyze
primary students’ reasoning based on scientific theory as a methodological advance in learning
and cognition. The participants were fourth-graders of middle socioeconomic status in Chile’s
geographical zone with high seismic risk. They drew explanations about the causes and consequences
of earthquakes during a learning unit of eighteen hours oriented toward explanation-construction
based on the Tectonic Plates Theory. A constant comparative method was applied to analyze
drawings and characterize students’ reasoning used in pictorial representations, following the first
coding step of the qualitative Grounded Theory approach. The results show the students expressed
progressive levels of reasoning. However, several participants expressed explanations based on the
phenomena causes even at an early stage of formal learning. More sophisticated reasoning regarding
the scientific theory underpinning earthquakes was found at the end of the learning unit. We discuss
approaching elementary students’ scientific reasoning in explanations based on theory, connected
with context-based science education.

Keywords: explanations; scientific reasoning; drawings; science education; earthquakes

1. Introduction

Instructional practices that are central to learning are called high-leverage practices [1].
Constructing explanations based on evidence derived from inquiry processes [2] or under-
pinned by scientific theories or principles is relevant for mobilizing students’ understanding
of natural phenomena in science classrooms [3].

Constructing better explanations continuously provides an organizational and educa-
tional framework for designing science teaching and learning experiences [4]. Elementary
school students’ explanation construction has been researched primarily in developed
countries, i.e., [5]. Nonetheless, in developing countries, this field of research is in its early
years [6]. Moreover, most of the studies in elementary classrooms are based on students’
written explanations [6]. For instance, Forbes et al. [5] found that German classrooms
supported students’ use of evidence to ground claims. At the same time, the teachers gave
more robust opportunities to evaluate evidence-based explanations through comparison
in the US. Hence, students learned to look for bias in their reasoning by analyzing other
students’ explanations. In primary school, exploring and fostering students’ explanation
construction at the same time is difficult because the students are at the entry points to
learn the theories, concepts, or principles. They also start developing writing skills and
knowing to use the diverse genres in science education [6]. Thus, misinterpreting students’
knowledge because of them having diminished writing skills is likely to happen.
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Despite the different emphases of the international studies, there is agreement that
explanation-construction is a challenging task for students and teachers which requires
explicit support from linguistic and conceptual areas [6,7] or distributed scaffolding to help
students gradually [8,9]. Linking phenomena with their underlying causes appears to be
among students’ difficulties in constructing explanations. This process requires scaffolding
and reframing the thinking mechanisms to include theories or concepts already existing in
the individual’s system of theories [9–12]. Indeed, there is a need for research on evaluative
approaches to scaffold students’ construction of scientific explanations [11].

Scientific explanations constitute a specialized genre of the discipline in the class-
room, different from the report, arguments, or other text genres that children might be
more familiar with [13,14]. Constructing explanations also involves the development
of causal reasoning [15,16], disciplinary-specificities, i.e., [17], and the transformation
of the individuals’ intuitive theories [18]. This transformation is influenced by formal
knowledge [19], which usually occurs in a social dimension of learning in the classroom
activity. Additionally, scientific reasoning skills and other cognitive, metacognitive and
motivational—social—skills are related to one another [11,20]. Managing all these dimen-
sions is relevant but also challenging for teachers and researchers when they identify the
development of the explaining practice and engage primary students in making sense of
phenomena [20–24].

The current study focuses on analyzing pictorial representations of a specific phe-
nomenon, earthquakes, in elementary school students to understand better the process of
eliciting their causal reasoning through drawn explanations during a learning sequence.
The objective was to characterize students’ expressed reasoning through drawn expla-
nations. Using drawings for this purpose advances an evaluative approach to younger
learners’ thinking, who are just learning to write and talk in science. Additionally, an-
alyzing drawings complements the classic methodological trends of verbal and written
modes of making meaning. This knowledge is needed to analyze students’ reasoning in
phenomena underlined by a scientific theory and identify alternative formats to benefit the
growing number of students learning science through a foreign language or those with
verbal/oral expression difficulties [24].

1.1. Explanation-Construction as a Meaning-Making Process

Creating or sharing meaning in science education involves multimodal languages, ex-
periences, and interactions in the classroom [21]. The students’ construction of explanations
as a source of expressing their ideas is crucial, as it provides a window to understanding
and sensemaking [22]. A teaching approach responsive to meaning-making processes will
anticipate students’ ideas about phenomena before instruction and then elicit and respond
to these ideas during the lesson [23]. The materials and resources are other crucial elements
for meaning-making processes [24].

From a sociocultural perspective, students’ explanation construction is a strategy
for knowledge integration. It is an iterative and collaborative process in which they
connect what is already known—by prior instruction or intuitive theories—with their
experiences and conceptual elements to give scientific support for certain phenomena.
From this perspective, the explanations constructed are learning artifacts rather than
products or learning samples [25]. Explanations in the form of pictorial representations are
considered in this study to be vehicles for thought, or reasoning artifacts [26] that trigger
the creation of meaning [21] and, consequently, turn into steps in the development of
precursor models. These are “cognitive schemata compatible with scientifically appropriate
knowledge since they are constructed on the basis of certain elements pertinent to scientific
models, which have a limited range of application, and which prepare children’s thinking
for the construction of scientifically appropriate models” [27] (p. 2259).

In cognitive terms, explanation-construction requires a process of reasoning about
phenomena [17] that is rarely easy to access as an external observer since it might require
the recreation of the “image of the world” of the other, which contains not only concepts,
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but the images created through visual thinking [28]. Indeed, even when teachers know
their students’ initial ideas, it is hard to build on those ideas while teaching to probe their
students’ reasoning [29].

Even though interpreting and building new ideas based on students’ reasoning in the
classroom is challenging for teachers, encouraging the students to construct explanations
provides an optimal scenario to engage in understanding natural phenomena, such as those
related to socio-scientific issues [30,31]. Moreover, these scenarios help them reconstruct
their knowledge and reasoning about phenomena relevant to their lives [32,33]. The
reasoning process elicited in the classroom is afforded by an interaction between two
information processing systems: the individual’s intuitive and deliberative thinking [19].
Categories, as hypothetical entities in science education, fall under the umbrella term of
“concept”. These entities are products of reasoning with theoretical inputs provided by
formal education [34]. We understand explanations as a vehicle for triggering learning and
expressing scientific reasoning that emerges when putting the ideas into a material form
of communication (see the next section). Therefore, we interpret students’ drawings from
the lenses of sociomateriality, both as processes that elicit reasoning and as outcomes of
expressed scientific reasoning about a phenomenon that appears to be of high risk.

1.2. Explanations and Students’ Scientific Reasoning

Children at school learn about the underlying principles of phenomena and causal
relationships, usually but not exclusively in science education. These learning processes
are crucial to developing scientific thinking, which is applying the methods or principles of
scientific inquiry to reasoning or problem-solving situations [35]. We understand scientific
reasoning from a multiple component skills perspective [36], including hypothesizing,
experimenting, and evaluating evidence (inferencing, evaluating data, and drawing valid
conclusions) [37]. Generating valid conclusions in inquiry processes usually requires
explanations. Explanations are particularly characteristic of everyday causal understanding
appearing during early childhood [16].

This article studies a specific component, causal scientific reasoning expressed or
demonstrated in children’s explanations [16] if we take them as a process of intentional
knowledge-seeking [36]. Causal scientific reasoning emerges when they need to explain
why a specific phenomenon occurs. Constructing explanations requires diverse causal
connections [38], which means identifying particular circumstances that can trigger conse-
quences to understand why observed changes or phenomena have a place under certain
conditions. Explanations in science education involve scientific knowledge, and they can
be based on theory, evidence, and mixed with daily life experiences. Children’s scientific
reasoning reconciles different kinds of causal explanations about phenomena, such as
scientific, natural, and supernatural [17].

Explanations in science education frequently involve abstract knowledge or concepts
(i.e., explaining phenomena at an atomic or molecular level mediated by energy transfers).
Into a framework for modeling competence, explanations in science classrooms trigger
children’s abductive reasoning, which is the theory-based attempt of explaining a phe-
nomenon by a cause [38]. Abduction means generating a cause as the best explanation for
a phenomenon based on theoretical knowledge [39].

Considering scientific reasoning components, children’s use of information to make
causal inferences is a complex cognitive task [35,40]. However, this does not imply that
young learners cannot express causal reasoning about their natural environment [41]. Wang
et al. [42] observed how children between 2 and 5 years old faced causal tasks related to
the weight of objects and concluded that, even before primary school, children use causal
reasoning in natural environments, although some age-dependent variations were found.
Mayer and collaborators [20] measured four scientific reasoning dimensions in everyday
situations, one of those was understanding theories. They worked with 155 fourth-grade
students in a paper and pencil instrument test. The results showed that children developed
their performance in the measured dimensions.

145



Educ. Sci. 2021, 11, 581

In terms of searching for explanations to make sense of a phenomenon, scientific
reasoning is related to the construction of models. A model used for teaching and learning
concepts serves as a medium for communication, describing, and explaining [39]. Perkins
and Grotzer [40] proposed a selection of causal models based on the level of reasoning
sophistication: (a) mechanism, where students can use their experience to make gener-
alizations not always aligned with mechanistic reasoning, moving to more complex and
accurate explanations; (b) interaction pattern, a dimension where students use different
paths to connect causes and effects; (c) probability, referred to as what could happen; (d)
agency, for example when students identify the presence of an agent involved in direct
action. Within each of these dimensions, the authors note sublevels of complexity. Based on
Perkins and Grotzer’s framework and other research studies of causal reasoning in science
education, Moreira et al. [9] found that secondary students use complex causal reasonings
to develop explanations in a specific chemistry topic. However, their results showed that
using mechanistic reasoning does not always guarantee an alignment with scientific theory.
Zangori et al. [31] built a rubric based on Perkins and Grotzer’s framework [40] and other
studies related to reasoning about ecosystems to analyze the causal associations used by
third-grade students when they learn about ecosystems. They found the students who had
the opportunity to reason using models enhanced their causal reasoning, and intermediate
steps towards the use of causal reasoning were identified.

1.3. Scaffolding Explanations in Science Learning

Other studies have developed instructional models or learning progressions to scaf-
fold, assess, and analyze students’ explanations at the school level, e.g., [43,44]. These
studies have common characteristics; they describe the explanation components and using
evidence in their performances. McNeill et al. [43] constructed their instructional model
considering Toulmin’s framework and standards for science education, describing three
explanation components: claim, evidence, and reasoning in the following components:

Claim, an assertion or conclusion that answers the original question; evidence, scien-
tific data that support the claim; the data need to be appropriate and sufficient to support
the claim; and reasoning, a justification that links the claim and evidence and shows why
the data count as evidence to support the claim by using the appropriate and sufficient
scientific principles.

However, a few studies relate explanations and scientific reasoning in evaluative pur-
poses, for instance, highlighting the reasoning expressed by students in their productions.
A five-stage comprehensive learning progression of written scientific explanations for the
school level was designed by Yao and Guo [44]. At the more basic stages, the students first
relate, indirectly, facts and theory through models. When their scientific reasoning evolves,
they progressively approach scientifically accepted models. The elements of reasoning
appear as a simple causality, moving forward to more complex forms such as probabilistic
or correlational reasoning to link the explanations logically [44].

The distinction between school explanations based on evidence versus those based on
theory is an ongoing academic discussion. However, we know that the scaffolding process
that children need to construct explanations based on their observations, inquiry processes,
and evidence is different from the practical support for students to create explanations
underpinned by theories, principles, or models that are more abstract entities [43,45].
Among the first group, the studies show that systematically helping students distinguish
between the description of the facts, observations, and the emergence of an argument based
on evidence is worthy of learning, e.g., [43]. The second group of students’ explanations—
supported by theories—counts with empirical support of how the use of epistemic tools,
such as the Premise–Reasoning–Outcome instructional strategy (P.R.O.) [45] facilitates not
only writing of better explanations but enhancing students’ cognition and metacognition
processes [46]. Thus, in the context of learning to explain phenomena based on theory, we
found the research need of a domain-specific instrument to characterize students’ reasoning
and apply it to explanations.
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Previous studies of explanations as a product and process of learning have analyzed
verbal or written answers separately, i.e., [9,47,48]. However, this type of analysis has
insufficiently captured the complexity and advancement of children’s reasoning in learning
new scientific concepts [47,49].

Consequently, we focus on generated pictorial representations in drawings, a com-
plementary format vital for children’s expression and communication that has been less
researched in this field [49]. In addition, Park et al. [50] argued that this type of represen-
tation contains implicit information that offers an opportunity to analyze students’ ideas
and concepts. Indeed, analyzing non-linguistic forms of representation is a more inclusive
method to approach students with difficulties with verbal/oral expression [24].

The focus of our work is highlighting and approaching children’s reasoning about
natural phenomena underpinned by theory from a cognitive perspective. We centered
the application of this purpose on student-generated drawings as an alternative form of
constructing and communicating explanations to make sense of the causes of a natural
phenomenon that might affect their lives, specifically earthquakes. We chose the earthquake
phenomena because, in Chile, the country in which this study was conducted, earthquakes
are a relatively frequent event that children are familiar with, as the country is in a seismic
area. Thus, for the participants living in a geological fault zone, this phenomenon might
be more quotidian/frequent or, at least not as unfamiliar as other natural phenomena.
Nonetheless, the fourth grade is the first formal opportunity in which students start learning
the underpinning theory of this phenomenon, known as Tectonic Plates Theory (henceforth,
TPT). Moreover, the transmutation of the daily life self-explanations of phenomena towards
scientific explanations based on theory begins at the stage this research took place.

Briefly explained, TPT states that layers and plates form the Earth’s internal structure
in the static model. Plates move in different directions, giving place to continents as we
currently know them. The inner movements of the plates occur mainly in three forms,
convergent where plates move towards each other, divergent where plates move away
from each other. Lastly, in transform movement, each plate moves sideways compared to
the other. As a result of such movements, energy builds up, released through earthquakes,
tsunamis, and related events. Therefore, TPT describes movements of plates, explaining
the origin and mechanism of earthquakes [51].

We started from the assumption that supporting students in constructing explana-
tions is a high-leverage practice in education [3], implying the development of reasoning
processes and more authentic scientific practices in this study regarding TPT.

Our research question was: What characterizes students’ expressed reasoning in
drawn explanations in the context of learning about earthquakes? The purpose of this
article is to shed light on primary students’ scientific causal reasoning during a learning
sequence at the school, in the context of current challenges in science, as well as to present
a novel methodological coding rubric to approach this process. Science education needs
to promote students’ thinking processes through authentic scientific practices, such as
constructing explanations. Thus, this work will contribute to research on primary students’
causal reasoning and science education from a cognitive perspective.

2. Materials and Methods

The present study was exploratory with a descriptive and relational scope based on
educational practices to inform educational processes. The data set was collected in Spanish
and then translated into English by the article’s first author for dissemination purposes. The
information from the participants was gathered during the science learning sequence about
the “Internal Dynamics of the Earth” in 2019. Two stages during the learning sequence
were crucial for collecting the data that compose this study, part of a larger project in
science education research. These stages are denominated as stage one and stage two,
henceforth S1 and S2. S1 represented when the learning unit was started by the teacher,
and S2 when the unit finished. It is important to note that this study did not intend to
estimate the effectiveness of the teaching unit or determine how the learning opportunities
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provided affected students’ scientific reasoning skills because the study design did not
include an intervention or comparison groups to make those inferences.

Characterizing students’ drawings provides opportunities to analyze how instruction
and the curriculum need to challenge students’ ideas. It is educationally relevant consider-
ing that students’ and scientific ideas coexist and interplay in their experience of making
sense of the world [52]. The instruction helps with a reconstruction of these ideas in the
sense of an explanatory coexistence [52].

The learning sequence in our study consisted of approximately 18 h of pedagogical
work distributed throughout four weeks. The lessons comprised drawing activities, a group
puzzle about Tectonic Plates and watching videos about the consequences of earthquakes,
tsunami, and volcano eruptions. The teacher delivered some lectures about Earth Structure
and Tectonic Plates’ interaction. The students completed learning workbooks about the
more dangerous hazards in Chile and socialized a school security plan.

During the learning unit, the learning outcomes were formalized by constructing
hand-drawn explanations about the phenomenon of earthquakes. However, the teacher
also used other sources to facilitate learning advances regarding tsunamis and volcanic
eruptions. The prompt for triggering student drawings used in this study was “Why does
the ground move (in a seismic context)? Please draw your explanation in this blank sheet”.
The instruments and steps of this study were approved by the Pontificia Universidad
Católica de Chile’s Ethics Committee code number 180514006.

2.1. Participants and Paradigm

The participants were 22 fourth-grade students from families of middle socioeconomic
status. The school was selected through purposive sampling and was in an area of Chile
identified as being at risk for disaster if an earthquake occurs, near the San Ramon ge-
ological fault line in Santiago, the Chilean capital. The partnership with the teacher for
the educational purposes of this research included the collaborative design of a learning
sequence to help students reason about the causes and consequences of Earth phenomena
and, therefore, to construct scientific explanations through drawings. This decision was
founded on the participatory research paradigm [53], in which the communities of research
are part of the analytic process and the decision-makers in the study.

Although the whole class that composed the group participated in the learning ac-
tivities, only 22 of the students had parental authorization and their consent to use the
drawings for research purposes. Moreover, one student did not attend school the day the
teacher allocated time for drawing in S2, and he did not want to do it later. Thus, the final
data set consisted of 22 illustrations in S1 and 21 in S2, and some results are presented
as percentages.

2.2. Data Analysis and Processing

Our data processing was carried out in three different steps. First, we developed an
instrument to categorize the scientific reasoning expressed through drawn explanations
following the study by Park et al. [50] about pictorial representations. Then, we used the
constructed instrument to analyze a group of students’ drawn explanations of earthquakes
based on Tectonic Plates Theory (TPT). In the following paragraphs, we describe these
two steps.

1. First, we developed an instrument to categorize the scientific reasoning expressed
through drawn explanations following the study by Park et al. [50] about pictorial repre-
sentations when qualitatively learning physics. Their work established three main levels
for students’ expression: sensory that includes what students sense; unseen substance
level, which provides for concrete substances that cannot be seen; and lastly, unseen non-
substance that contains those representations about non-concrete and unseen aspects. This
prior work was developed with talented students, representing a novel contribution to the
field with a limited scope of applicability.
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A panel of three experts, including teachers and cognitive psychologists, checked that
this first version of the instrument was conceptually adequate, and the levels proposed
would be observable in regular primary students learning samples.

2. To expand the applicability and address explanations of regular primary students,
we developed a first pilot qualitative analysis of a set of learning samples composed
of drawings using the constant comparative method as the primary coding process of
Grounded Theory [54]. We created groups of similar drawings and contrasted their main
features, discussing the expressed reasoning that could be identified. Then, we went
through three flows of activity of the constant comparative method to adjust the instrument
to the data: data reduction, data display, and conclusion verification. We also followed
the indications by Tang et al. [55] for interpreting specific aspects of children’s drawing,
such as types of lines for representing movement. Once we went through three rounds
of discussion between the authors of this study, clarifications on the instrument were
added. We modified the first version of the rubric by adapting the sensory level, the unseen
substance level, and the unseen non-substance level of Park et al.’s framework [50], with
specific emphasis on explanations of earthquakes based on TPT and an interpretation of
the younger student’s context-related scientific reasoning.

3. We conducted a qualitative analysis of students’ explanations by three independent
researchers—also authors of this article—all trained to code the drawings in a blind review
process using the instrument developed in the previous steps. The final version of the
rubric, which served as a coding framework, is presented in Table 1. The coding process
was performed by each researcher independently; a total of 30% of the students’ drawings
were coded and compared among the three researchers in two rounds. The first round
comprised 15% of the data, and the inter-rater reliability was 62%. After discussing the
cross-cutting drawings, examples were selected to represent each level (see details in
Section 3.3). The disagreements were discussed until a consensus was reached between
the three researchers. The second round included a second set of drawings that comprised
another 15% of the data set; the inter-coder agreement was 91%, which was considered a
high measure of transparency for instrument implementation [56]. The remaining data
were coded by one of the researchers considering the high level of prior agreement. The
drawings were coded according to the three rows of the rubric. The first identified the
main characteristics of the explanations represented in the students’ drawings, looking
for causes or consequences of the characterized phenomena. The second one centered the
attention on the specific elements or details found in the representations. The third one
interpreted the type of reasoning the student expressed in each drawing.

Table 1. Coding rubric for primary students’ drawn explanations inspired by Park et al. [50].

Level 0 Level 1 Level 2 Level 3

Description

It is not possible to
interpret an explanation

connected with the
phenomenon from the

pictorial representation.

The drawing represents
elements within the child’s
sensory plane, generally as

effects of earthquakes, such as
the ground’s surface

movements or movement
effects. The information in the

representation was not
enough to interpret an

explanation beyond the
child’s perceptible plane.

Some elements are beyond the
immediate child’s sensory or

perceptual plane. The drawings
present changing aspects, for

instance, beneath the ground or
views from outside planet Earth.
However, it is not evident that

these changing entities are related
to the interactive basis of TPT,

such as movement, friction or a
crash of plates, or the dynamics of
the internal structure of the Earth.

The drawings include interacting
elements that are outside or beyond the
child’s sensory or perceptual plane (i.e.,
changing position or moving entities),
expressed as a causal explanation of
the earthquake, directly connected

with TPT (i.e., movement, friction, or a
crash between plates, or the dynamics
of the internal structure of the Earth).
Conceptual inaccuracies are expected

even in this level of representation.

Details

Some students wrote “I
don’t know”, drawing a

non-related phenomenon
from an external

observer’s view, leaving
the paper blank, or

presenting
incomprehensible

elements.

These drawings frequently
have a baseline to delimit the

ground line (continuum,
backstitch, oblique) or

function as object support.
Some graphics also wrote

words related to “movement”
or “seism”, etc., while others

designed zigzags or wavy
lines to represent the

consequences of movement
on the objects.

These drawings commonly
represent a baseline to express a
division between the elements

perceived and the not perceived
but conceptualized and

represented as the possible causes
of earthquakes. This

conceptualization attempts to
express a causal relationship

between the consequences of the
earthquake and its origin.

The drawings include the causes and
consequences of the phenomenon,

usually with arrows or labels
indicating the name of the components
(i.e., epicenter, interaction, etc.) or the

direction of the movement.
These drawings are precursor models
used to express a causal relationship

between the phenomena and the
underpinning theory.
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Table 1. Cont.

Level 0 Level 1 Level 2 Level 3

Reasoning
(interpreted)

Students ‘ expressed
reasoning is not possible

to be interpreted from
these types of drawings.

It is a sensory level of
reasoning because the

cognitive operation is based
on entities or elements within

the students’ perception of
their senses.

The reasoning includes elements
or processes beyond the sensory

experience, attempting to express
causality, nonetheless, not yet at a
level that uses the parts of a theory

to represent causal processes or
ongoing mechanisms.

There is a qualitative leap of children’s
reasoning towards thinking with

non-visible theories or non-perceived
elements to explain processes or

ongoing mechanisms as the cause of
phenomena, using theories, abstract
concepts, or models. Thus, reasoning
at this level is at a more sophisticated

stage than in the previous levels.

3. Results

This section describes first the coding framework and the rubric developed to char-
acterize the students’ expressed reasoning through drawn explanations. Secondly, we
present the application results for fourth graders’ drawings based on the main elements
that constituted the participants’ explanations based on theory. After this, we show the
main trends of this group of participants’ reasoning levels coded at the beginning and the
end of a learning unit in context-based science learning related to earthquakes to illustrate
a practical application of this novel approach. These results are presented as an example of
the possible analysis of drawn explanations using the developed instrument but do not
limit the application to one phenomenon only. Finally, we illustrate the composition of
each reasoning level with some drawing examples, highlighting their inferior and superior
anchor to orient teachers and researchers on the transitions from one reasoning level to the
next one in the case of TPT.

3.1. Instrument for Characterizing Scientific Reasoning in Drawings

The instrument developed in our study takes the form of a comprehensive rubric
which works as a coding system to facilitate the assignment of levels, and the characteri-
zation of primary students’ expressed reasoning through drawn explanations. The rubric
allows a description of both the characteristics of the domain-specific drawings and the
reasoning level that might be externally interpreted.

Precisely, the rubric developed in this research (Table 1) consists of a three-level grid
oriented to progressively identify levels of scientific reasoning in primary students, which
are presented as columns. However, the first column represents a level 0 for drawings under
the category of missing. As the instrument was applied to learning about earthquakes, its
specification for Earth Science phenomena and TPT theory is included. We decided to base
our work on distinguishing between perceptual planes expressed as input for interpreting
reasoning and the connection between the explained phenomenon and its underpinning
theory. This decision sought broader use of this approach to characterize early stages of
students’ scientific learning based on theories for modeling and explaining phenomena. In
the topic of this study application, this stage corresponds to the fourth grade.

Additionally, the instrument added a minimum level used to code the learning sam-
ples that could not be categorized or did not answer the cognitive demand of the task,
which is quite frequent in young children or during initial learning processes. We expected
that students’ drawn explanations move throughout the starting levels, from concrete
or straightforward stages—based on their previous experiences, highlighting a sensorial
focus—to more abstract ideas considering causal links, likewise expressing more complex
reasoning. Furthermore, the rubric would make visible the sophistication of the students’
expressed reasoning and understanding of the underpinning theory. Thus, the levels
proposed in our instrument could also be used as an emergent learning progression.

The three rows of the rubric present elements as follows.

1. The first one describes the main characteristics of the explanations represented in the
students’ drawings, emphasizing the differentiation between their expressed sensory
plane and the connection with the theory.
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2. The second row presents the specific elements or details found in fourth-graders
learning about a particular phenomenon, in this case, earthquakes, as an application
of the first row to domain-specific learning samples.

The two first parts of the instruments may be adapted for working with other theories
or phenomena.

3. The third row describes the interpreted scientific reasoning in connection with the
sensory planes, the causality, and the usage of theory as a more abstract step in the
students’ cognitive processes when learning science. This part of the instrument
is not associated with a singular theory; thus, it does not need adaptation to apply
other topics.

The interpretation of reasoning is suitable to be used by educators or researchers in
other learning topics or areas beyond Earth Science when students construct explanations
based on scientific theories. It constitutes the first contribution of our work related to science
learning research transcending the specific theory and expanding the cognitive process of
causal reasoning rather than focusing on the learning accuracy of scientific concepts.

3.2. Trends in the Participants’ Reasoning Levels

Considering the categorization results of the participants’ explanations using the
instrument described earlier (Figure 1), we observe that in the early stage in the formal
process of learning—called Stage 1—(S1) before the learning unit began at the school,
28% of the students’ explanations did not achieve the minimum level for categorization.
Consequently, level 0 was assigned, as shown in Figure 1. In comparison, 24% of the
drawings were categorized at level 1 for reasoning and 48% at level 2. This result means
that most fourth-grade students could express reasoning about earthquakes with attempts
to go beyond their immediate perception plane, representing elements that might constitute
a causal explanation later, even with no formal instruction. However, none of the drawings
reached level 3, causal reasoning based on aspects of TPT. Thus, we observed that some of
them might have had an intermediate level of reasoning even with no formal instruction in
this group of students. Nonetheless, establishing connections between the phenomenon
and the theory in the form of a causal explanation in the drawings was difficult for
the students.
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Figure 1. Participants’ reasoning levels at the beginning and end of the unit.

In Stage 2—(S2), after the learning unit about the internal dynamics of the Earth was
implemented, we saw a reduction in the percentage of drawings at level 0, with only 9%
of the students’ samples categorized as such. There was a proportional increase in level
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1 illustrations, with 36% classified as level 1 instead of the 24% obtained at S1. It is interest-
ing to note that student representations categorized as level 2 decreased from 48% to 23%
compared to S1; however, this fact is attributed to an increase in the drawings categorized
in level 3, comprising 32% of the total. Thus, we conclude that, after participating in a
formal learning process about earthquakes, it is likely that most of the participants in this
group of students could express more sophisticated reasoning and a causal link in their
drawn explanations. Nonetheless, 45% of children did not show cognitive operations with
unobservable entities or logically connect the causes and consequences of earthquakes,
even after the learning unit was finished.

3.3. Characterization and Examples of Reasoning Levels Interpreted from Drawings

This subsection presents descriptions, main features, and examples for each level iden-
tified, representing the finest-grain analysis of student drawings. It is worth remembering
that, in the context of learning about Earth Sciences, the task demanded was “draw or
represent here your explanation about Why does the ground moves?”

Level 0: It is impossible to interpret an explanation connected with the earthquake
phenomenon from the pictorial representation. For instance, some students wrote “I
don’t know”, drew a non-related phenomenon from an external observer’s view, left
the paper blank, or presented elements that were incomprehensible for the researchers
in the light of the question demanded by the task. Thus, we could not interpret the
students’ expressed reasoning from these types of drawings. The authors of this work
considered this level as missing data. This means that interpretable reasoning could not
be obtained from an external viewer solely from drawings regarding the question given.
However, other researchers might combine these types of illustrations with oral or written
explanations; thus, the character of missing data would change. Some examples of pictorial
representations categorized in this level in the current study are presented in Figure 2.
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Figure 2. Examples of level 0. Drawing (A) shows a volcano, (B) represents the Earth planet and
where Chili is.

Level 1: The student drawing represents elements within their sensory plane, generally
as effects or consequences of the earthquake phenomenon, recognizable as movements
of the ground’s surface or results of the movement. The information derived from the
representation was insufficient for the researchers to interpret an explanation beyond
the child’s perceptible plane, for instance, based on non-visible entities. These drawings
frequently have a baseline to delimit the ground line (in a continuum, backstitch, or oblique)
or function as object support. Some graphics also wrote words related to “movement” or
“seism”, etc., while others designed zigzag or wavy lines to represent the consequences
of movement on the objects, as Figure 3 shows. Thus, we interpreted these drawings as a
sensory level of reasoning because the cognitive operation is based on entities or elements
within the students’ perception of their senses.
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Figure 3. Examples of level 1. Drawing (A) illustrates a field with plants moving, (B) a ground line
with scared children moving, and a happy face below the baseline.

Level 2: Some representations or elements are beyond the students’ primary sensory
or perceptual level. The drawings in this category (Figure 4, in which we have translated
what the students wrote in their drawings) usually present changing elements, for instance,
beneath the ground, or views from outside planet Earth, commonly represented by a
baseline–ground line or object support–to express a division between the elements per-
ceived by children and the elements not perceived but conceptualized and represented as
the possible causes of earthquakes. In these types of drawings, we observed an attempt at
expressing a causal relationship between the consequences of the earthquake (i.e., beyond
the baseline) and their origin (i.e., beneath the baseline); however, it is not evident that these
changing entities are related to the interactive basis of TPT, such as movement, friction or a
crash of plates, or the dynamics of the internal structure of the Earth. Thus, we interpret a
more complex level of reasoning than in level 1 because children are reasoning through
elements or processes that are further from their immediate sensory experience and trying
to express causal thinking, nonetheless not yet at a level that uses the parts of the theory to
represent a causal process or ongoing mechanism.
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Level 3: The representations in this level were more complex in comparison with level
2. The drawings include elements outside or beyond the children’s primary sensory or
perceptual level. However, the difference with level 2 is that, in level 3, these components
are interacting, changing position, or moving. These concepts are expressed as a causal
explanation of the earthquake, directly connected with TPT, such as movement, friction or
a crash between plates, or the Earth’s internal structure dynamics. We observed drawings
that included the causes and consequences of the phenomenon, usually with arrows or
labels indicating the name of the components (i.e., epicenter, interaction, etc., illustrated in
Figure 5) or the direction of the movement. Thus, we interpret these drawings as precursor
models used by the participants to express a causal relationship between the phenomena
and the underpinning theory, which means a qualitative leap of children’s reasoning
towards thinking with non-visible theories to explain processes or ongoing mechanisms. It
is worth noting that we made no judgment of the conceptual accuracy presented through
the representation.
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of level 2 to the low anchor of level 3. 
(a) The entry point to the hypothetical progression of reasoning is the connection of the 

explanation with the phenomenon of interest. In this case, we observed the leap be-
tween level 0 and level 1 when the students represented the effects or consequences 
of earthquakes. In addition, they recognized that, in the context of learning about the 
internal dynamics of the Earth, the cognitive task that required drawing “why does 
the ground move?” involves a specific phenomenon—an earthquake. Level 1 is mi-
nor complex because the student only needs to identify a logical connection within 
the task’s context. For example, in Figure 2B, the planet Earth drawing was catego-
rized at level 0, missing data. However, in Figure 3A, at the bottom anchor of level 1, 
we considered the black lines around the plants in the soil to represent movement, 
according to the categories by Tang et al. [55], which signal a consequence of the 
earthquake.  

(b) Comparing the upper anchor of level 1 to the inferior anchor of level 2, we can ob-
serve the qualitative leap that focuses beneath the ground level as a baseline. In Fig-
ure 3B, even though there is a line that might divide the perceptual plane from the 
non-perceptual plane, beneath this line, there are no recognizable elements. On the 
contrary, in Figure 4A, it is possible to observe the same ground line but with a rep-
resentation of the Earth’s layers similar to the static model. Thus, we interpreted the 
increased complexity of the child’s recognition of possible causes of the phenomenon 
with an incipient link to the TPT. 

(c) Between the upper anchor of level 2 and the inferior anchor of level 3, we interpret a 
leap signaled by some representation elements connecting with the modeling process 
in science education, in the labeling of “Plates” in Figure 4B. However, no interaction 
between the components was expressed. The sophistication was demonstrated by the 
more explicit representation of the interaction between unobservable entities. Figure 
5A and 5B represents cause, consequences, and activities between the components of 
TPT. They show reasoning with theory to explain a natural phenomenon. 

Figure 5. Examples of level 3. (A) represents a damaged house, a sad person on the surface and
under the herb line a point of interaction labelled “the epicenter” with facing arrows. (B) shows trees
moving, a scared person above the baseline and two blocks moving labelled as “Tectonic plates are
moving” under the baseline.

Conceptual accuracy refers to the degree of content correctness in the scientific use of
concepts, terms, or postulates in the drawing. Although in other works with secondary
students’ explanation, a conceptual inaccuracy in the written explanation implies coding
in level 0, e.g., [44], in this study, we consider that primary students can have inaccuracies
expected because they had only started to learn about the content. Thus, we decided to
give value even to explanations that were not totally precise but showed the advance in the
reasoning process. For instance, in Figure 5, student’s drawing A represented the causes of
earthquakes under the baseline, reasoning with abstract entities, represented a model of
interaction, signaling a black point where the energy releases as “the epicenter.” Although
the correct term should be “the hypocenter,” we made no judgment of the conceptual
accuracy in the representation and consider it is an advance in the expressed reasoning
regarding levels 1 or 2. Thus, we categorized it at level 3.

3.4. Boundaries for Interpreting “Qualitative Leaps” to a Superior Level

Our research found three qualitative leaps of expressed reasoning in students through
drawn explanations, which help us interpret a hypothetical progression of reasoning. The
first one (a) marks the level at which we can affirm interpretable reasoning about the
phenomenon. The second one (b) refers to an advance from the upper anchor of level 1 to
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the inferior anchor of level 2. The third leap (c) occurs between the upper anchor of level 2
to the low anchor of level 3.

(a) The entry point to the hypothetical progression of reasoning is the connection of the
explanation with the phenomenon of interest. In this case, we observed the leap
between level 0 and level 1 when the students represented the effects or consequences
of earthquakes. In addition, they recognized that, in the context of learning about
the internal dynamics of the Earth, the cognitive task that required drawing “why
does the ground move?” involves a specific phenomenon—an earthquake. Level 1
is minor complex because the student only needs to identify a logical connection
within the task’s context. For example, in Figure 2B, the planet Earth drawing was
categorized at level 0, missing data. However, in Figure 3A, at the bottom anchor
of level 1, we considered the black lines around the plants in the soil to represent
movement, according to the categories by Tang et al. [55], which signal a consequence
of the earthquake.

(b) Comparing the upper anchor of level 1 to the inferior anchor of level 2, we can
observe the qualitative leap that focuses beneath the ground level as a baseline.
In Figure 3B, even though there is a line that might divide the perceptual plane
from the non-perceptual plane, beneath this line, there are no recognizable elements.
On the contrary, in Figure 4A, it is possible to observe the same ground line but
with a representation of the Earth’s layers similar to the static model. Thus, we
interpreted the increased complexity of the child’s recognition of possible causes of
the phenomenon with an incipient link to the TPT.

(c) Between the upper anchor of level 2 and the inferior anchor of level 3, we interpret a
leap signaled by some representation elements connecting with the modeling process
in science education, in the labeling of “Plates” in Figure 4B. However, no interaction
between the components was expressed. The sophistication was demonstrated by
the more explicit representation of the interaction between unobservable entities.
Figure 5A,B represents cause, consequences, and activities between the components
of TPT. They show reasoning with theory to explain a natural phenomenon.

4. Discussion

In this study, we sought to explore the characteristics of students’ expressed reasoning
through drawn explanations in the context of learning about earthquakes at an early stage
of formal instruction. We developed an instrument based on previous research to elicit
and analyze fourth graders’ scientific reasoning based on theory through their drawn
explanations. The analysis allowed the recognition of three levels of scientific reasoning,
which were possible to characterize in the participants of this study. Consequently, our
findings answer the question proposed: What characterizes students’ expressed reasoning
in drawn explanations in the context of learning about earthquakes?

In summary, at level 0, topic-specific reasoning was not interpretable from the rep-
resentational explanation. In contrast, at level 1, students’ reasoning was based mainly
on the perceptible entities associated with the consequences of the phenomena. Drawings
characterized as level 2 showed that children’s reasoning starts to connect some theory
elements as a first attempt to explain the causes of a phenomenon. Despite this, levels
1 and 2 lack causal relations using the theory. Finally, in level 3, students could express
their scientific reasoning about the phenomenon by linking elements of TPT to explain
the causes and effects of a phenomenon as a precursor model, considered as cognitive
schemata compatible with scientifically appropriate knowledge [27].

Moreover, our study found qualitative leaps between the children’s levels of expressed
scientific reasoning focused on the connection with the phenomena under investigation, the
emergence of the divisions of the perceptual and non-perceptual plane, and the presence of
recognizable elements of the theory as part of the representation of the explanation. Some
of the more advanced features expressed by the participants in our study presented similar
characteristics to those of Perkins and Grotzer [40]. Specifically, we interpreted sophistica-
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tion from static comprehension to an interactive activity between the non-observable or
theoretical entities.

According to Yao and Guo [44], the students first relate indirectly to facts and the-
ory through models before their scientific reasoning evolves, progressively approaching
scientifically accepted models. Analyzing students’ drawings as an expression of their
reasoning process gave us evidence for interpreting more sophisticated reasoning during
the learning unit and students’ drawings as precursors of scientific models. This idea might
be construed from a transformation of embedded intuitive theories through language [18]
and deliberate thinking [19]. Moreover, our study expanded the literature to other forms of
capturing advances of students’ reasoning through their creative activity of drawing expla-
nations, which represents a complement to the current instruments to analyze students’
written explanations [31,43,44].

However, simultaneously analyzing and fostering students’ explanation construction
based on theories, principles, or concepts is still a challenge at the early stages of formal
learning [6]. Given this, we need to understand that students are still constructing the
meaning of the scientific concepts involved when explaining. In primary education, they
also develop essential skills such as explaining for scientific purposes or using models to
explain the world. Thus, we emphasize the importance of supporting students to build
these capacities and not underestimating their possible ability to express their scientific
reasoning and knowledge through formats more familiar to them, such as drawings. Com-
bining forms for approaching scientific reasoning and learning might mean a synergistic
effort to scaffold the emergence and sophistication of reasoning, the conceptual under-
standing of children, and the development of essential skills. Our results resonate with
prior research showing the need to combine diverse data sources to interpret children’s
scientific learning [27].

Park et al. [50] discussed pictorial representation as a complementary format to ex-
plore students’ ideas. In this, they argued that drawings involve implicit information that
is connected to other external representations. Indeed, the ways students express them-
selves about a concept or idea might be different when they do it verbally and pictorially,
or exclusively verbally. We believe that for younger students, it is through drawings or
representations that they are building scientific ideas and connecting them to other types of
representations. We know that for students to construct scientific concepts, multimodal lan-
guages support processes related to sensemaking, scientific explanation construction, and
scientific concept development [21]. It implies that employing exclusively visual or verbal
representation during teaching might limit students’ learning process. Considering picto-
rial representations as part of multimodal language supports students in building concepts
that are vehicles for expressing their reasoning. By having students use verbal communi-
cation only for concept construction, incorporating pictorial representations might result
in more prosperous, more robust, and connected ideas for concepts construction, perhaps
involving a re-conceptualization due to changing modalities. This is because constructing
explanations seen from a sociocultural perspective is a knowledge integration learning
artifact, in which the students connect what is already known with their experiences and
conceptual elements to give scientific support for certain phenomena [25].

The instrument used to analyze scientific reasoning based on theory for primary
students was demonstrated to be sensitive enough to detect the sophistication of these
elements of reasoning during a learning unit of eighteen hours in the context of this study.
Specifically, we observed an increase in level 1 and 3 categorized drawings between the
learning sequence’s beginning—S1—and the end—S2 (Figure 1). Thus, we can conclude
that, after participating in a formal instruction process, some participants in our study
could express more sophisticated reasoning with a causal link in their drawn explanations.
We agree that explaining phenomena provides an optimal scenario to connect students
with socio-scientific issues [30,31], and our study adds that student drawings can be a
source of expressed reasoning and, at the same time, a learning activity that activates and
allows enacting or triggering of specific systems of reasoning.
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Nonetheless, the instrument allowed the identification of a significant group of partic-
ipants who did not show evidence of operating cognitively with unobservable entities to
connect the causes and consequences of the phenomena under study. After the learning
unit was finished, this gap was observed, with students immersed in a high-risk context,
adding familiarity with the phenomenon. We recommend providing opportunities to
learn to link phenomena and their causes in this and several other topics and conducting
more research to determine the obstacles to student advancement in reasoning levels. Still,
we observed instances of expressed reasoning regarding context-related situations before
formal learning started at school. The entry point to the hypothetical reasoning progres-
sion was the connection of the explanation with the studied phenomenon. This finding
coincides with studies that show the starting point for explanation-construction is the
phenomenon [4], which helps to afford the need to generate explanations. By fourth grade,
Chilean students have likely already had some daily life experiences with earthquakes and
can nurture their reasoning process about the environment in which they live. Thus, the
fact that our study considered the early stages of formal learning and identified what ideas
the students had already formed in their representations for constructing explanations is
valuable. Further research could illuminate the role of local context in early scientific rea-
soning levels, not only on how scientific reasoning about earthquakes develops throughout
the school trajectory but also extending the use of such instruments to other subjects, areas,
or demanding tasks.

This study has some limitations. First, using a strategy designed in a different context
and language might cause cross-cultural issues. We adapted the frame suggested by Park
et al. [50] according to the context of the study. Still, we also acknowledge the particularities
of Chile as having a high risk of disaster (e.g., earthquakes). Thus, the learning approach
to these phenomena may vary from those whose context does not include risk or whose
geographical reality is very different. However, this point also represents a possible subject
for future researchers to explore: the extent to which proximity to a phenomenon might
imply a variation in the way students think about it.

Additionally, some elements of students’ drawn explanations went beyond the frames
of our analysis, for instance perspectives from outside the planet that combined astro-
nomical concepts. Although we treated those features as exceptions in our study, perhaps
representing a limitation, we believe a second perspective on these types of data is crucial
to challenge adults’ beliefs about the abstraction capacity of children and the way they
visualize phenomena and their causes. Moreover, we recognize our study has a small
sample size for going beyond descriptive analysis. Thus, we encourage further research to
work with larger groups of students for complementary validation purposes.

Regarding the validation of the rubric, in this study, we went through a content
validation through a panel of experts and a small pilot study before analyzing the data
sets. Due to the small sample size and the study’s exploratory nature, we could not run
factor analysis or more sophisticated processes, strengthening the significance and or
generalizability of the results.

Nonetheless, we consider this study as a first approach interpreting primary stu-
dents’ reasoning in phenomena explained by theory, with an educational significance in
the field of science education. Other researchers might take the advances of our work
and, for instance, compare pre–post drawings in specific groups of students, or use a
repeated-measurements design focusing on learning the topic or conceptualization of the
phenomena. Hence, we suggest future research gathering evidence of the leaps shown in
our study but exploring them in the light of learning progressions of individual students.
This exploration might complement the current results to emphasize the connections be-
tween understanding phenomena, theories, or concepts and learning, to establish learning
trajectories in science education.
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5. Conclusions

The current study allowed us to characterize students’ scientific reasoning through
drawn explanations. We presented a helpful instrument to identify cognitive leaps between
concrete expressed reasoning levels and more abstract ones, including causal links between
phenomena and theory. It is a methodological innovation to approach young students’
learning and reasoning development from an interdisciplinary perspective that combines
education and cognitive science. Our research explicitly links science learning and cog-
nition by highlighting and approaching children’s reasoning about natural phenomena
underpinned by theory. This development expands the current instruments available
to notice the complexity of scientific reasoning of young children when they are at the
first moments of learning models, theories, or abstract postulates that sustain the causes
of phenomena. There is a methodological advance considering that most of the current
instruments relate to explanations based on evidence in written formats.

In applying the developed rubric, we observed sophistication in students’ scientific
reasoning when provided a formal learning opportunity, resulting in some students pro-
gressively connecting their ideas to a scientific theory. Our study allowed exploration of
students’ progressive development of the causal reasoning required to construct expla-
nations. Constructing explanations based on theory from primary school is a relevant
teaching and learning practice to develop at an early stage of learning, considering that
secondary and college students have limitations to using their scientific knowledge to
establish causal links when they construct explanations. Furthermore, identifying scientific
reasoning levels at the early stages of learning allows conceptualization of scientific reason-
ing as a trajectory. Thus, we can observe more precisely where students begin this form of
complex knowledge and how it will eventually progress. By identifying and understanding
this trajectory and the qualitative leaps, teachers, educators, and researchers can better
scaffold the learning process and the development of context-related scientific reasoning,
providing opportunities to support this development promptly. The detailed description of
these findings helps researchers interested in this field adapt, reframe, and test in different
ways the analysis we have done, allowing projection of transference of the interpreted
reasoning of the rubric of this research to other topics. It would make the progressive
approach to thinking in different disciplines visible and promote students’ reasoning in
the school. This idea resonates with theoretical frameworks used for understanding of the
construction of explanations as epistemic processes, which broadens the interest of this
article to other areas beyond the content of the application in our study.

Teachers’ support of children’s reasoning in the classroom might take the form of
distributed scaffolding. For instance, giving prompts with initial questions such as in the
present study “why do you think this phenomenon happens”, and moving forward to
students to revise and enrich their initial explanations during the learning of the content
advance. The scaffolding seeks to transfer the responsibility gradually to the student, pro-
moting autonomy. In primary education, where students are diverse in autonomy degrees,
generating group discussions about explanations is an option, considering that science
practices also imply peer-reviewing ideas and claims to compare and contrast to evaluate
their scope and limitations. This strategy also connects with positioning science construc-
tion as a collective activity, introducing children to elements of Nature of Science. We
strongly believe that classroom activities oriented to develop students’ reasoning processes
should encourage students to express their ideas in diverse formats, such as the causes of
phenomena. Then, linking those with the scientific support through concepts, theories, or
postulates that are usually more abstract entities to reason. However, this approach needs
teachers to consider that students’ common sense is part of their implicit theories that
allow them to make sense of emergent phenomena, thus relevant for transformation and
not represent merely knowledge to discard during science lessons. We know that teachers
tend to suppress ideas that might look wrong as they are expressed in more traditional
science classrooms. Still, we want to stress that responsive science teaching gives value to
the students’ existing ways of thinking to construct new understanding, further develop
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their reasoning into a more scientific one, managing the supports strategically that students
need promptly.

Furthermore, our work supports understanding primary students’ reasoning con-
sidering current educational challenges, affording students’ thinking processes through
authentic practices, such as constructing explanations based on context-related phenomena.
Moreover, we see the explanation-construction of relevant phenomena as a participatory
action for responsible citizenship that can be implemented in primary education to pro-
mote high-leverage practices such as explaining and modeling, as was mentioned in our
theoretical framework. Thus, we highlight that, even at the early stages of formal science
learning, students can transform their ideas into expressions of context-related reasoning,
for instance, through drawings that act as learning samples of explanations represented
at the first stages of their models to explain natural phenomena. This fact emphasizes the
importance of recognizing young children as active constructors of knowledge, showing
that some can go beyond their immediate experience to logically link a phenomenon with
its underpinning theory. Constructing explanations about world phenomena and express-
ing students’ reasoning in formats aligned with their action, drawing creative activity is
a more abstract and complex process worthy of considering by researchers, educators,
and teachers interested in the multidisciplinary innovations for understanding learning
processes and outcomes.
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Abstract: Models are essential in science and therefore in scientific literacy. Therefore, pupils need to
attain competency in the appropriate use of models. This so-called model–methodical competence
distinguishes between model competence (the conceptual part) and modelling competence (the
procedural part), wherefrom a definition follows a general overview of the concept of models in this
article. Based on this, modelling processes enable the promotion of the modelling competence. In this
context, two established approaches mainly applied in other disciplines (biology and mathematics)
and a survey among chemistry teachers and employees of chemistry education departments (N = 98)
form the starting point for developing a chemistry modelling process. The article concludes with
a description of the developed modelling process, which by its design, provides an opportunity to
develop students’ modelling competence.

Keywords: models; modelling competence; chemical education

1. Introduction

In societies that rank science and technology as highly important, enhancing pupils’
participation is becoming increasingly central to teaching and learning strategies. Scientific
reasoning represents an essential part of modern society since it incorporates contemporary
philosophical and empirical psychological perspectives of science [1] and thereby enhances
personal, social, professional and cultural participation [2]. The following six perspectives
characterize the scientific reasoning: (1) postulation, (2) deployment of experiments both to
control postulation and to explore observations, (3) hypothetical construction of analogical
models, (4) structuring the natural variety by comparison and taxonomy, (5) statistical
analysis of regularities of populations, and historical derivation of explanations [3]. Due
to the central role of models in science practice and experimental studies, models are
the primary method in science and scientific reasoning [2,4]. Besides appreciating the
characteristics of models, their usage also belongs to scientific literacy as well [5]. Fore-
most in chemistry, models are essential tools for understanding and communication [6].
The great importance of models is mainly due to the nature of chemistry as a primarily
abstract discipline [7]. This aspect arises from the fact that, in addition to the real visible
macroscopic perspective, chemistry must consider sub-microscopic (atoms, molecules)
and representational (equations, symbols) perspectives [8,9]. These characteristics lead to
difficulties in the learning process for many pupils, especially when transitioning between
different perspectives [10]. In contrast to the broad acceptance and importance of models
and model competency in chemistry education, practice does not appear to address this
issue adequately. For example, when using models in the classroom, the focus is often
on describing them instead of predicting phenomena or solving problems. Furthermore,
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student-centred modelling is seldom anchored in practice [11]. In addition, chemistry
lessons often integrate the historically oriented development of particle models from un-
differentiated over less differentiated (Shell model of atoms) to strongly differentiated
models (orbital models). However, this can lead to learning difficulties [12] if pupils do
not competently deal with the model concept. However, properly guided, this constant
development offers potential for the acquisition of competencies in chemistry.

This article addresses this issue in several steps. We start with the theoretical founda-
tion of models and pupils’ model competences in chemistry education. Subsequently, a
comparison of two modelling processes to promote the modelling competence of pupils is
made. Finally, we present a blended approach for a modelling process in chemistry. The
results of a survey among chemistry teachers (practice-oriented relationship to chemistry)
and employees of chemistry education departments (research-oriented relationship to
chemistry) support the argumentation.

2. Theoretical Foundations
2.1. The Concept of Models

Models are objects or theoretical constructs created or used by a subject for a specific
purpose [13]. Certain properties of the model are associated with particular properties of
the represented object [14]. Thus, models do not necessarily represent a complete picture of
reality but often a specific aspect [15]. Thus, the modelling process of reality under different
points of view, results in various types of models. The categorization arises, for example,
from the function of the models (research model versus demonstration model, [16]) or
the nature of the models (virtual vs. tangible, [17]). This article considers the following
two categories in more detail as they appear in the intended chemical modelling process.
Pedagogical analogical models share information with the represented object. Teachers or
pupils create them to explain phenomena that are not accessible to people. One or more
attributes usually dominate the structure of the model to underpin the explanation [18].
Learners generate mental models within their cognitive activity during modelling processes
as mental representations to describe, explain or predict phenomena [19]. When working
with models in science, they take on three different functions: models are used to describe,
explain or predict chemical phenomena [20]. Models function as tools to acquire knowledge
or forecasting tools. In addition, they can serve as learning aids [21] by breaking down
anthropomorphic ideas, reducing complex connections, generalizing circumstances or
illustrating chemical and mathematical-logical processes [13]. According to previous
research, analogical models enhance scientific learning if used effectively [22]. Nevertheless,
the appropriate use of models is a complex cognitive activity [23]. To master this activity
successfully, pupils need to acquire so-called model competence [24].

2.2. Model Competence

Model competence used in biological contexts is the ability “to gain purposeful new
insights into . . . topics using models, to judge models concerning their purpose, and to
reflect on the epistemological process using models” [25] (p. 55). According to the sec-
ond and third lines of Table 1, model competence has two sub-dimensions: knowledge
about models and modelling. ‘Knowledge about models’ covers the conceptual part of
competence and subsumes the ‘nature of models’ and ‘multiple models’. In the dimension
‘nature of models’, learners compare the model and the represented object in terms of
similarities and differences. In the context of ‘multiple models’, reasons for the existence
of different models of a specific object are discussed. ‘Modelling’ as the procedural part
of the model competence summarises ‘purpose of models’, ‘testing models’ and ‘chang-
ing models’. The purposes merged under the category ‘purpose of models’ are general
reasons for existing models and reasons to create and apply models (e.g., construction
and evaluation of experiments, justification of causal relationships). Thus ‘testing models’
involves integrating different perspectives into the model, whereas a hypothesis may be
tested by using the model. The formulated three levels of competence for each of these sub-
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categories (Level I: exclusive consideration of the model; Level II: factual explanation of the
phenomenon to generate understanding; Level III: hypothetical–deductive investigation of
the phenomenon) allows a classification of the learners’ proficiency levels [26].

Table 1. Model–methodological competence [extension of 25].

Model-Methodological Competence
Model Competence

Knowledge about Models
(Conceptual)

Modelling Competence
Modelling

(Procedural)
nature of
models

multiple
models

purpose of
models

testing
models

changing
models

Here, we propose a further differentiation between model competence and modelling
competence to emphasize the procedural character to a greater extent. Modelling compe-
tence is the ability to initiate a theory-guided or creative process of cognition when creating
models, to gain knowledge related to purpose when using models, make judgements about
models regarding their purpose, and to reflect on the process of acquiring knowledge
through models and modelling [27]. Comparable to the model competence (2nd and 3rd
line of Table 1), the new definition specifies the epistemological procedures into a theory-
based orientation and creative development. As a result, the sub-dimensions show four
competence levels each [28]:

- Level I: Exclusive consideration of the model;
- Level II: Factual explanation of the phenomenon to generate understanding;
- Level IIIA: Abductive reasoning explanation of the phenomenon;
- Level IIIB: Hypothetical-deductive investigation of the phenomenon.

Following, but not in entire agreement with this definition, this paper defines model-
methodical competence as an umbrella term of modelling competence (previously called
‘knowledge about models’, conceptual part) and the modelling competence (previously
called ‘modelling’, procedural part) (light green terms in Table 1). The sub-dimensions
remain in their allocation in the new definition. This distinction emerges from the differen-
tiation between practical and meta-modelling knowledge [29].

2.3. Modelling Processes

The deep rootedness of models in science education described above emphasizes
the promotion of modelling competence as a central task of chemistry education [30].
Thoughtful consideration of modelling processes as iterative cycles of creating, apply-
ing and reviewing models enables competence promotion [31]. In this context, students’
active manipulation of models positively affects model competence in three ways [32]:
First, hands-on experience with models enables a cognitive off-load. Three-dimensional
representations can spare cognitive capacities. Second, the pupils perceive multiple repre-
sentations as they revise previous representations themselves or see the representations
of their fellow pupils. The integration of various representations allows the learners to
create more comprehensive and coherent mental models. Third, the physical confrontation
with the model encounters various stimuli (such as cues from the touch) in the long-term
memory, forming more bonds between the learning content and the long-term memory.
This approach becomes even more critical against the background that pupils have not
developed model competence in the sense mentioned above in a satisfactory way [33].

2.4. Modelling Process 1: Formally Used in Biological Contexts

The first modelling process formally used in biological contexts (Figure 1) starts with
an experiment or a daily observation [34]. The data obtained on this basis influence the
following preliminary considerations. Based on this, a model is generated in creative
development, used to create a hypothesis. The hypothesis is then either verified or falsified
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by further data. In the last case, the cycle is rerun using new data until the hypothesis can
finally be accepted.
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2.5. Modelling Process 2: Formally Used in Mathematical Contexts

The modelling circle shown in Figure 2 is formally used in mathematical contexts
and reduced to the essentials. This process distinguishes in a 2 × 2 design between the
world and mathematics as well as between the resulting problem and its mathematical
solution [35]. In the chemical context of modelling, mathematics is equal to the model
world. The starting point of this modelling process is an outer-mathematical problem
(situation). A mathematical model with an inner-mathematical problem is generated from
the situation by (mathematical) modelling. Applying mathematical rules and procedures
causes an inner-mathematical consequence from the problem. In the next step, the modeller
relates the mathematical results to the real world to obtain and check the plausibility of the
mathematical results. If the result is not considered a valid answer for the initial situation,
the process is rerun.
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3. Method
3.1. Research Questions

Based on the presented relevance of models and model competence for chemistry
teaching, the online questionnaire covers the experiences with models (R 1) and model
competence (R 2) of didactical experts in chemistry (chemistry teachers with a practice-
oriented relationship to chemistry and employees of chemistry education departments
with a research-oriented relationship to chemistry). Table 2 provides an overview of the
research questions.

Table 2. Overview of the research questions.

Models in Teacher Training, Chemical Education Research or Chemistry Teaching

R 1. Which aspects related to models do anchor in teacher training, chemical education research
or chemistry teaching?

Model competence

R 2a. To what extent is a well-developed model competence perceived as important for chemistry
education?
R 2b. To what extent do the respondents agree with the dimensions of model competence [19]
(Table 1) in the chemical context?

Modelling processes

R 3a. How do the respondents assess the transferability of modelling processes from other
disciplines to chemistry in general?
R 3b. To what extent can the presented modelling process 1 (Figure 1) be transferred to chemistry?
R 3c. To what extent can the presented modelling process 2 (Figure 2) be transferred to chemistry?
R 4. Considering theoretical aspects and expert opinions, how can a novel modelling process for
chemistry look like?

Modelling processes provide a method for promoting model competence [24]. These
processes vary in their focus depending on the subject area (modelling processes 1 and 2 in
Sections 2.4 and 2.5). Based on this, the respondents estimate to what extent approaches
from other disciplines are transferable to modelling in chemistry (R 3a). Subsequently,
the questionnaire presents the two modelling processes from Sections 2.4 and 2.5, and the
participants precisely assess their suitability for chemistry (R 3b + c). The survey ultimately
aims to design a novel chemistry modelling process that considers theoretical aspects and
expert opinions (R 4).

3.2. Questionnaire

The first questions of the questionnaire collect background data. In addition to the
relationship to chemistry (practice-oriented or research-oriented), this includes gender, age,
teaching qualification (primary school, community school, vocational school, secondary
school or other), location of study, school subjects, professional experience and research
areas (for employees of chemistry education departments). Conforming to the research
questions, the central part of the questionnaire consists of the sections: Models, Model
competence and Modelling processes. Table 3 compiles an overview of the questions and
associated answer options in the central part of the questionnaire. The questions in the
Models section (Q1 to Q3, Table 3) capture the degree to which education, chemistry educa-
tion research or chemistry education integrate models and which aspects they explicitly
address. The subsequent part on model competence first presents the definition of model
competence (Table 1). The respondents then evaluate this definition regarding its trans-
ferability to chemistry and give their subjective assessment of the importance of a strong
model competence for chemistry (Q4, Table 3). Finally, the respondents name aspects of
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the definition that fit well for chemistry and what should be omitted, added or changed
if necessary (Q5 and Q6, Table 3). The last part about modelling processes starts with a
general assessment of whether the respondents could imagine transferring modelling pro-
cesses from biology or mathematics to chemistry (Q7 a and b, Table 3). After a video-based
presentation of the first modelling process, the participants specifically indicate how to
transfer to chemistry. In three open-ended questions, respondents then identify aspects
that transfer well to chemistry, modify or omit, or add to better fit chemistry modelling
(Q8 and Q9, Table 3). The final questions regarding the mathematical modelling process
(Figure 2) are the same as those concerning the biological modelling process before (Q10
and Q11, Table 3).

Table 3. Overview of the central part of the questionnaire.

Models

Q1. Did you get to know different models in chemistry (cf. particle models, molecule kits, model experiments) during your
education?

1. “No, I have never got to know different models in chemistry.”
2. “Yes, during university education.”
3. “Yes, during the second phase of training (preparatory service).”
4. “Yes, during in-service training or seminars.”
5. “Yes, in the course of the following measure:” (open-ended answer)

Q2. Do you/Does your research group explore different models in your/their research (cf. particle models, molecule kits, model
experiments)? (research-orientated participants only)

1. “No, I do not explore/ my research group does not explore different models.”
2. “Yes, I explore different/ my research group explores models theoretically.”
3. “Yes, I explore different/ my research group explores models practically concerning the use of different models, cf. by developing and

testing possible applications for everyday school life.”
4. “Yes, I explore different/ my research group explores different models in an inferential way:” (open-ended answer)

Q3. In your chemistry lessons, do you employ different models (cf. particle models, molecule kits, model experiments)?
(practice-orientated participants only)

1. “No, I do not employ models in my lessons.”
2. “Yes, I employ theoretical models (cf. particle models) in my lessons.”
3. “Yes, I employ analogue models (cf. molecule kits) in my lessons.”
4. “Yes, I employ conceptual models in my lessons (cf. mental representations of chemical laws such as the law of conservation of mass) to

make and check predictions.”
5. “Yes, I employ model experiments in my lessons (cf. Stechheber experiment).”
6. “Yes, I employ models in my lessons as follows:” (open-ended answer)

Model competence

Definition of Model competence (Table 1)

Q4. Please indicate how much you think the following statements are true.

(a) “For me, this definition of model competence applies just as well to chemistry.” 4-point Likert scale ranging from 1 ‘disagree’ to 4
‘agree’.

(b) “For me, I see a well-developed model competence of the students according to the definition mentioned above as very
important for chemistry.” 4-point Likert scale ranging from 1 ‘disagree’ to 4 ‘agree.

Q5. Which of the above aspects would you apply to model competence in chemistry?
open-ended answer

Q6. Which aspects would you modify, add or omit for better applicability to model competence in chemistry?
open-ended answer

Modelling processes

Q7. Please indicate how much you think the following statements are true.

(a) “In my opinion, modelling processes from biology are good transferrable to chemistry.” 4-point Likert scale ranging from 1
‘disagree’ to 4 ‘agree.

(b) “In my opinion, modelling processes from mathematics are good transfer-rable to chemistry.” 4-point Likert scale ranging from 1
‘disagree’ to 4 ‘agree.
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Table 3. Cont.

Models

Video-based presentation of Modelling process 1

Q8. Please indicate how much you think the following statements are true.
“In my opinion, modelling processes from biology are good transferrable to chemistry.”
4-point Likert scale ranging from 1 ‘disagree’ to 4 ‘agree.

Q9. Which aspects of the modelling process from biology . . .

(a) “ . . . fit well and are adaptable for chemistry, in your opinion?” open-ended answer
(b) “... do not fit well and should be modified or omitted for chemistry, in your opinion?” open-ended answer
(c) “... in your opinion would have to be supplemented for the scheme to repres-ent a modelling process in chemistry?”

open-ended answer

Video-based presentation of Modelling process 2

Q10. Please indicate how much you think the following statements are true.
“In my opinion, modelling processes from mathematics are good transferrable to chemistry.”
4-point Likert scale ranging from 1 ‘disagree’ to 4 ‘agree.

Q11. Which aspects of the modelling process from mathematics . . .

(a) “ . . . fit well and are adaptable for chemistry, in your opinion?” open-ended answer
(b) “... do not fit well and should be modified or omitted for chemistry, in your opinion?” open-ended answer
(c) “... in your opinion would have to be supplemented for the scheme to represent a modelling process in chemistry?”

open-ended answer

3.3. Participants

A total of 98 participants completed the qualitative questionnaires via Unipark.
Among them, 56 (57%) were completed by research-orientated people (University) and
42 (43%) by practice-orientated people (School), with a total of 44 (44,9%) female, and
52 (53,1%) male (2 abstentions). The mean age amounts to 40.18 years (SD = 14.76), and
78 out of 98 (80%) respondents hold secondary school teaching qualifications. The most
common teaching subject besides chemistry is biology (37 out of 93, 38%). Among the
research-oriented participants, the number of people without professional experience of
teaching at school is high (25 out of 56, 45%). In comparison, this proportion is only 17%
(7 out of 42) among the practice-oriented participants. Table 4 shows an overview of the
background data.

Table 4. Background data of the survey.

In Total
(n = 98)

Research-Orientated
Relationship

(n = 56)

Practice-Orientated
Relationship

(n = 42)

Gender m = 52; f = 44 m = 31; f = 23 m = 21; f = 21

Age M = 40.18; SD = 14.8 M = 39.02; SD = 15.5 M = 41.75; SD = 13.7

Teaching
qualification

ps = 4; cs = 6; vs. = 2;
ss = 78; o = 8

ps = 2; cs = 4; vs. = 2;
ss = 43; o = 5

ps = 2; cs = 2; vs. = 0;
ss = 35; o = 3

Location of study

bw = 9; by = 11; b = 5;
bb = 1; hh = 1; he = 5; mv = 2;
n = 5; nrw = 20; rlp = 5; sl = 18;

s = 1;
sa = 1; sh = 4; t = 3; o = 3

bw = 3; by = 9; b = 4;
he = 4; mv = 1; n = 4; nrw = 15;
rlp = 3; sl = 1; s = 1; sa = 1; sh

= 3; t = 3; o = 2

bw = 6; by = 2; b = 1; bb = 1;
hh = 1; he = 1; mv = 1; n = 1;

nrw = 5; rlp = 2; sl = 17; sh = 1;
o = 1

School subjects
(selection)

biology = 35
mathematics = 18

physics = 11
Science = 8

biology = 19
mathematics = 8

physics = 8
Science = 3

biology = 16
mathematics = 10

physics = 3
Science = 5
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Table 4. Cont.

In Total
(n = 98)

Research-Orientated
Relationship

(n = 56)

Practice-Orientated
Relationship

(n = 42)

Professional experience at
school

M = 11.27; SD = 13.2
(0 years: 32 of 98)

M = 9.98; SD = 14.7
(0 years: 25 of 56)

M = 12.85; SD = 11.2
(0 years: 7 of 42)

Research Area
(selection)

n = 56
X

Digitalization = 20
Teacher education = 16

Experiments = 15
Models = 10

X

Key: m, male; f, female; ps, primary school; cs, community school; vs, vocational school; ss, secondary school; o, others; bw,
Baden–Württemberg; by, Bayern; b, Berlin; bb, Brandenburg; hb, Bremen; hh, Hamburg; he, Hessen; mv, Mecklenburg–Vorpommern;
n, Niedersachsen; nrw, Nordrhein–Westfahlen; rlp, Rheinland–Pfalz; sl, Saarland; s, Sachsen; sa, Sachsen–Anhalt; sh, Schleswig–Holstein;
t, Thüringen.

4. Results
4.1. Models

In the first section of the survey, the participants state that they all had experience of
various models and mostly during their university education (72 out of 98; A in Figure 3).
The chemistry education research models are rarely present, while theoretical and practical
research approaches are approximately equally widespread (26 and 24 out of 56; B in
Figure 3). In chemistry lessons, all the participants reported that they implement models in
their teaching. Theoretical models occur to the same extent as analogue models (40 out of
42, 95.3%). Nevertheless, the teachers also use conceptual models (36 out of 42) and model
experiments (34 out of 42, C in Figure 3).

4.2. Model Competence

Concerning model competence, the respondents not only considered model compe-
tence to be important for chemistry (MD = 3.40 of 4), but also could imagine transferring
the model competence dimensions to their work (MD = 3.37 of 4; D & E in Figure 3). Most
participants agreed that all the aspects to apply to chemistry (58 out of 98, F in Figure 3).
The ‘nature of models’ was seen as critical for chemistry by 14 out of 98 people, with six
participants with a research background stating the reason for this was that the initial
object in chemistry is not empirical compared to objects in biology. These statements are
consistent with the fact that in chemistry, frequently used models are models themselves,
objects may be directly employed [10]. For example, chemists apply atomic models to
explain macroscopic phenomena, mainly because the atomic structure is not observable
directly. Therefore, modelling in chemistry operates on a different level. Furthermore,
eight out of 98 respondents criticized the sub-dimension ‘multiple models’ with the ex-
planation of a low significance of this dimension in the chemistry classroom (Q6, Table 5).
Certain participants suggested adding types of models to the sub-dimension ‘nature of
models’ or renaming ‘changing models’ to ‘expanding models’. These results indicate that
this competence definition is suitable for chemistry, but also that certain refinements are
necessary.

4.3. Modelling Processes

In the previous section on modelling processes, the respondents rated the transfer-
ability of the modelling processes as neutral (2.85 (biology) and 2.58 (mathematics) on
a 4-point Likert scale ranging from 1 ‘disagree’ to 4 ‘agree’; G & H, Figure 3). After a
video-based introduction of the modelling process formally used in biological contexts, the
respondents rate the transferability of this process as rather good (M = 3.27 of 4; SD = 1.1;
I in Figure 3). The participants indicated in open formats which aspects of the process
fit well, which work more poorly and what the participants would probably like to add
(Q9 a, Table 5). 61% (47 out of 77) agreed with all of the aspects, while 14 of 77 (18%)
positively highlighted the experiment and 11 of 77 (14%) the formation of a hypothesis.
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28 out of 65 (43%; Q9 b, Table 5) could not identify any aspect that should be changed or
omitted in their opinion, though 6 out of 65 (9%) were critical of ‘creative production’. One
criticism was, for example, that other aspects (cf. available resources) influence the ‘creative
production’ besides the preliminary considerations. Concerning supplements, 14 out of
60 (23%) did not indicate anything (Q9 c, Table 5), while 10 out of 60 (17%) would like to
add different levels of representation. This requirement matches the literature [8,36]. The
second modelling process formally used in mathematical contexts takes this into account.Educ. Sci. 2021, 11, x FOR PEER REVIEW 9 of 16 
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Table 5. Results of the open-ended questions.

Questions
According to

Table 3

In Total
(N = 98)

Research-Orientated
Relationship

(n = 56)

Practice-Orientated
Relationship

(n = 42)

Model competence

Q6
(selection) n = 14; m = 8; p = 3; t = 7; c = 7

n = 11; m = 5; p = 3; t = 6; c = 3
“initial object unknown in

chemistry” = 6
“Add types of models” = 2

n = 3; m = 3; p = 0; t = 1; c = 4
“rename ‘changing models’ to

‘expanding’ models” = 2

Modelling Processes

Q9
(selection)

(a) a = 47; e = 14; h = 11; c = 7
(b) no = 28; pc = 6; cd = 6; m = 3;

e = 4
(c) no = 14; lr = 9; e = 7; mm = 3

(a) a = 33; e = 6; h = 6; c = 3
(b) no = 17; pc = 4; cd = 4; m = 3
(c) no = 10; lr = 5; e = 5; mm = 3

(a) a = 14; e = 8; h = 5; c = 4
(b) no = 11; pc = 2; cd = 2; e = 4

(c) no = 4; lr = 5; e = 2

Q11
(selection)

(a) a = 8; dwm = 12; v = 10; m = 6;
co = 6

(b) a = 2; no = 2; ma = 11; clr = 4
(c) no = 4; amp1 = 22; bm = 2

(a) a = 6; dwm = 10; v = 7; m = 6
(b) a = 2; no = 2; ma = 7

(c) no = 2; amp1 = 14; bm = 2

(a) a = 2; dwm = 2; v = 3; co = 6
(b) ma = 4; lr = 4

(c) no = 2; amp1 = 8

Key: Q9: a, all; e, experiment; h, hypotheses; c, cycle; no, nothing; pc, preliminary considerations; cd, creative development; m, models; lr,
levels of representation; mm, mathematical models. Q11: a, all; dwm, distinction between the world and mathematics; v, validation; m,
modelling; co, consequence; no, nothing; ma, mathematization; de, deduction; i, interpretation; lr, levels of representation; amp1: aspects of
modelling process 1; bm, blended model.

The structure of this part of the questionnaire is analogous to the first modelling
process: at the beginning, a video represents the process to the participants. Afterwards,
they rate the transferability of this process as neutral (M = 2.46 of 4; SD = 1.1; J in Figure
3). The respondents were asked subsequently in an open form to indicate aspects that fit
well, fit poorly and elements that probably need to be supplemented (Q11 a to c, Table
5). Eight out of 70 (11%) respondents saw all aspects as transferable to chemistry, while
17% (12 out of 70) perceived the juxtaposition of the ‘world’ and ‘mathematics’ (model
world) as highly effective. Another 10 out of 70 (14%) highlighted referring to the real
situation (‘validate’) as positive. The validating step aligns with the general orientation of
chemical education towards everyday phenomena (cf. the processing circuit of chemistry
in context, [37]). Significantly few participants (2 out of 56, 4%) stated that they would
not change the presented aspects. Eleven of 56 (20%) named ‘mathematize’ as needing
change, as mathematization rarely matters in the chemical modelling process. Among
the supplementary proposals, 20 out of 55 participants (37%, Q11 in Table 5) mention
aspects of the biological approach. These are copying effects created by the order of the
tasks [38]. Apart from that, the participants named several different aspects. However,
these only occurred twice each: The process makes sense if there is a transition between
macroscopic and sub-microscopic levels, which is not the case in every chemical modelling.
There should be an experiment or theoretical basement integrated as the starting point,
which takes the importance of the experiment as the second central method of science into
account [2].

4.4. Suggestion for a Novel Modelling Process in Chemistry

• The following consequences for modelling in chemistry emerge from the previous
explanations:

• The aspects of the first modelling process (Figure 1) generally remain unchanged;
• The second model (Figure 2) emerges that the process needs to differentiate between

the macroscopic real world and the sub-microscopic modelled world;
• For clarifying the cognitive processes (cf. mental analogue models), a separation

occurs between perceptual and non-perceptual modelling steps;
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• The modelling process should integrate phases to improve model-methodical compe-
tencies at appropriate points.

The developed process for modelling in chemistry shown in Figure 4 distinguishes
between two different levels: the real macroscopic and the sub-microscopic modelled
level. This explicit separation enables the pupils to consciously switch between the macro
and sub-micro worlds with their unique peculiarities and regularities. The modelling
process starts with a phenomenon that pupils can observe in their everyday lives. This
starting point considers the general didactic demand for relevance in chemistry lessons [39].
Conversely, it enables students to understand that they should develop a model [40]. The
experiment or phenomenon provides (experimental) data or observations that depend
strongly on personal factors (e.g., disciplinary knowledge, theories, attention, [41]). In
the following step, the modeller activates their prior knowledge and conceptual model
competence (sub-categories ‘nature of models’ and ‘multiple models’, cf. n and M in Figure
4) to form a mental model. Here, a transition takes place in two ways. There is a change
from the experiential real world to the model world (in Figure 4: light grey or dark grey
background). Conversely, visible (Figure 4: solid outlines) processes become invisible
(Figure 4: dashed contours). Using inner (modelling competence, creativity) and outer
resources (learning situation, available materials), the modeller generates an analogue
representation out of the mental model, a so-called pedagogical analogical model [19].
Mental models are simply a stopover in forming an analogical model. Nonetheless, the
discrepancy is essential in analysing pupils’ concepts because mental models and their
analogous representations do not necessarily coincide. The analogical model subsequently
allows hypothesis generation. In this step, the model world refers to reality, i.e., the learner
must once again make a ‘world transition’. This step gives pupils an understanding of the
competence dimension’ purpose of models’. Within the macroscopic world, the pupils
generate experimental settings or everyday phenomena that provide observations or data
to verify or falsify the hypothesis. By testing the hypothesis, learners create a reference to
the modelling competence dimension ‘testing models’. In the case of a falsified hypothesis,
the modellers go through the cycle again. First, they change their mental model and
thus also the analogical model. Through the model modification, the modelling process
establishes a relationship to the competence ‘changing models’.
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A hypothetical example from school practice on states of matter serves to concretize the
proposed modelling process for chemistry (Figure 5). The pupils observe the evaporation
of water in their everyday life, for example, when cooking. From this, they derive data, the
boiling temperature of the water or the optical properties of water vapour, for example. To
explain these data, the pupils activate their prior knowledge of the undifferentiated particle
model and their model competence. This activation generates a pictorial representation in
the students’ minds–a mental model (pictorial mental representation in Figure 5). Using
coloured cardboard or other craft materials, the pupils visualize their mental representation
to form a pedagogical analogue model (visualization in Figure 5). For example, circles
cut out from cardboard could be arranged at small distances to represent the liquid state
and at large distances for the gaseous state. In this step, personal skills (creativity, manual
skills) play an essential role. The analogue model is now observable for the teacher and
the fellow pupils. From the analogue model, the students then derive, for example, the
hypothesis that a certain amount of substance would have to occupy a larger volume
after the transition from the liquid to the gaseous state of matter since the movement of
the particles increases and the particles occupy the entire available volume. To test the
hypothesis, the students then perform the experiment on the evaporation of acetone to
exemplify the transitions between the states of matter in a closed system (pointed arrows
in Figure 5). They place a few millilitres of acetone into a plastic bag and close it airlessly.
Using a hot water bath, the students then heat the acetone and see that the bag inflates. The
hypothesis can therefore be accepted, which strengthens the students’ model conception.
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5. Discussion

The following section discusses the developed model on the basis of accepted di-
dactic concepts and classifies the idea correspondingly. In the SDDS approach, Klahr &
Dunbar [42] anchor modelling in scientific reasoning. The approaches of Clement [43]
and Göhner & Krell [44] support the basic structure. The basic structure consisting of
conjecture, evaluation and modification or reflection of Clement [43] and Göhner and
Krell [44] is common to the developed scheme. In addition, loops are integrated in all
approaches, enabling a reference back to the question, hypothesis or built model. The
developed scheme of a modelling process agrees with Göhner and Krell [44] in the dis-
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tinction between the macroscopic real world and the sub-microscopic model world. In
this context, Steinbuch [45] describes that with every transition between the real and the
model world, filtering always occurs, in which the subject only processes aspects that are
considered important. Moreover, the developed model additionally distinguishes between
observable and non-observable stages according to Harrison and Treagust’s [18]. Fratiwi
et al. additionally emphasise the importance of knowing students’ mental models in order
to assess their scientific understanding [46]. Therefore, the scheme includes mental models
as well as analogue models. Mental models and formed analogue models often differ and
consequently, the captured modelling competence can differ from the actual modelling
competence. Moreover, Didiş, Eryılmaz and Erkoç [47] describe the basis for the formation
of mental models as a combination of scientific and non-scientific fragments, whereby the
developed schema incorporates prior knowledge and model competence. When creating
the analogue model, the influencing factors (model competence, prior knowledge, external
and internal resources) are again considered. Above this, the focus of the second part of the
scheme (formation of hypotheses and seeking of verification or falsification) bases on the
separation between search hypothesis space, test hypothesis and evidence evaluation of the
SDDS approach [42]. At last, the novel scheme, based on the reflection scheme of Caspari
et al. [48], establishes relationships to the competence dimensions at the appropriate points
to force the promotion of modelling competence.

6. Conclusions

The blended process presented here brings the positive aspects of both modelling
cycles together and compares them with the expert opinions from the survey. The design of
an intervention will rest on this such that it is suitable for promoting modelling competence.
The process will consider the complexity of modelling [23] and the pupils’ attitudes by sup-
porting them individually in their learning [49]. Unlike other studies that locate modelling
processes in the upper secondary school [48,50], the intervention is anchored in initial chem-
istry teaching. Research has shown that misconceptions are stable over time and difficult
to correct, including with increasing subject knowledge [51]. Nevertheless, the cognitive
abilities of pupils increase during their school career, which means that the complexity
of modelling processes can also rise to increase educational attainment [10]. Therefore, a
spiral curricular promotion of modelling competence is apparent and suggested in the
survey responses.
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Abstract: Data reasoning is an essential component of scientific reasoning, as a component of
evidence evaluation. In this paper, we outline a model of scientific data reasoning that describes
how data sensemaking underlies data reasoning. Data sensemaking, a relatively automatic process
rooted in perceptual mechanisms that summarize large quantities of information in the environment,
begins early in development, and is refined with experience, knowledge, and improved strategy
use. Summarizing data highlights set properties such as central tendency and variability, and
these properties are used to draw inferences from data. However, both data sensemaking and data
reasoning are subject to cognitive biases or heuristics that can lead to flawed conclusions. The
tools of scientific reasoning, including external representations, scientific hypothesis testing, and
drawing probabilistic conclusions, can help reduce the likelihood of such flaws and help improve
data reasoning. Although data sensemaking and data reasoning are not supplanted by scientific
data reasoning, scientific reasoning skills can be leveraged to improve learning about science and
reasoning with data.

Keywords: data reasoning; scientific reasoning; statistics education; numerical cognition; cognitive
development; number sense

1. Introduction

Data reasoning is a critical skill in scientific reasoning. Although evidence evaluation
is a step in many models of scientific reasoning (e.g., [1–3]), there has been much less
attention on the interpretation of numerical data itself within this context, which has been
investigated largely within the field of statistics [4]. We outline a model of data reasoning
that describes how data sensemaking underlies data reasoning (both defined below). We
further suggest that scientific data reasoning differs from both informal data reasoning
and data sensemaking. We use the phrase scientific data reasoning to refer to a set of skills
that help reasoners improve the quality of their data analysis and interpretation, which
improves the quality of inferences that can be drawn from data. Although these skills
are most commonly used in scientific reasoning contexts, they can be used in any context.
Scientific data reasoning includes a set of skills that help to harness data sensemaking and
strengthen everyday data reasoning by improving the systematicity of data collected via
the scientific method, the quality of analysis via statistical tools, and inferences by reducing
cognitive bias and providing tools for evaluating conclusions.

Science refers to both a body of knowledge and the processes that create and evaluate
this knowledge [5]. These processes include generating and testing hypotheses, acquiring
data, and evaluating theories with new data [6–8]. The cornerstone of the scientific process
is the reliance on empirical data that are formally analyzed [5,8]. Research that has focused
on understanding the cognitive processes that underlie scientific reasoning includes studies
of generating hypotheses [1,5,9,10], making predictions [11], deciding how to measure
variables [12–14], and interpreting data in light of theory and prior beliefs [2,3,15,16]. We
focus on one area that has gotten less attention, specifically on how people make sense
of numerical data. Grolemund and Wickham [4] propose a cognitive interpretation of
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data analysis, considering the sensemaking process of data, focused on how we reason
with quantitative measurements. We argue that data reasoning is a unique skill, built
on intuition and knowledge about math and statistics, and that a full understanding of
scientific reasoning requires understanding of data reasoning as a core competency. In turn,
this understanding has implications for teaching of these skills, and for future research
directions.

We suggest that scientific reasoning is a specific type of information seeking that
emerges from an acquired set of cultural tools and knowledge that augment general cogni-
tive mechanisms (e.g., encoding, strategy use) and dispositions (e.g., curiosity [5,7,17,18]).
Scientific reasoning is defined in multiple ways. Zimmerman and Klahr [5] describe scientific
thinking as a multi-faceted, multi-level process that includes problem solving and reasoning,
knowledge seeking, curiosity refined by science education that teaches hypothesis testing
and evidence evaluation, and the development of metacognitive skills. Englemann et al. [19]
describe scientific reasoning conceptualizations as falling into discussions of the process of
scientific discovery, scientific argumentation, and understanding the nature of science. We
position ourselves within Englemann et al.’s description of the process of scientific discovery,
specifically focused on the evidence evaluation described by Zimmerman and Klahr, while
still shaped by teaching, hypothesis testing, and general reasoning.

Data reasoning is situated within this definition in multiple places. One, informal data
reasoning occurs frequently in daily life and requires no formal instruction (e.g., [19,20]).
This is the process of drawing inferences from everyday data, requiring only general-
purpose mechanisms for their operation (e.g., strategy acquisition and selection). Two,
cultural tools relevant to data include number systems, mathematical formalisms, and
data visualization tools (e.g., [21]), as well as the scientific process that produces (e.g.,
experimentation, data recording, as noted by many researchers, including [5,22]) and
allows for analysis of data (e.g., inferential statistics, [4]). The acquisition of these formal
tools improves the accuracy of data reasoning and improves the basic reasoning processes
as well. Thus, we argue that understanding the cognitive processes underlying data
reasoning is an important part of a fuller understanding of scientific reasoning.

We define data sensemaking as detecting trends or differences in sets of data without
the use of formal analytical tools [4,23,24]. We draw evidence from perception [25] and
numerical cognition [26] to suggest that data sensemaking relies on the same perceptual
mechanisms that allow people to quickly aggregate and summarize complex information
from the environment [27]. The perceptual processes and intuitions in data sensemaking
work impressively well for detecting strong patterns in data without formal analysis
(e.g., [3,28,29]). Detecting features in data provides information from which people can
draw inferences and interpret the meaning of these features and patterns.

We define data reasoning as reasoning in which quantitative data are used as evidence
for drawing conclusions or making decisions [30]. Data reasoning is a deliberate cognitive
process that is limited by our memory [31] and our cognitive biases [4]. We argue that data
sensemaking is a precursor to data reasoning, in that first the data are summarized (often
via automatic perceptual processes), and then the summaries are used to draw inferences.
Everyday data reasoning is common, though such inferences may fall prey to cognitive
biases such as the tendency to confirm one’s previous beliefs (i.e., confirmation bias, [32]).

Data reasoning occurs informally in many contexts. For example, when comparing
the performance of players for a fantasy sports league, people do not need to conduct an
experiment or test hypotheses. Instead, they are more likely to pay attention to features
of the data, such as means or medians, variation, and trends, to guide their inferences or
decisions (e.g., [20,30,33–36]). Researchers offer varied definitions of informal inferential
reasoning (what we are calling data reasoning), but Makar and Rubin [30] highlight five key
components that help describe the space: (1) informal reasoning makes a claim beyond the
data; (2) conclusions are expressed with uncertainty; (3) data are used as evidence (i.e., the
conclusions cannot be derived solely from prior beliefs, though the data can be considered
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in theoretical contexts); (4) the data are considered in aggregate, and the reasoning stems
from assessments of the aggregate data; and (5) context is considered.

In contrast, when engaging in scientific data reasoning, researchers use some of the
same techniques as in data reasoning, but add safeguards to limit biases, which lead to
the more deliberative scientific reasoning process. For example, scientists aim to ground
research questions in theories backed by past evidence (e.g., [1,8,37]), design studies that
measure and control variables to limit confounds (e.g., [38]), use external representations to
represent a larger quantity of data at once (e.g., [21]), and apply formal statistical analyses
to provide quantitative evidence when making inferences (e.g., [4]).

Our definitions of both scientific reasoning and scientific data reasoning are situated
at a relatively course grain size. One piece of every model of scientific reasoning involves
evidence evaluation, and that evidence evaluation typically includes evaluation and in-
terpretation of quantitative data. Our model of data reasoning is at a somewhat more
detailed level, including descriptions of component processes at a finer grain size than
general models of scientific reasoning. One example of a description on a fine grain size is
the process of summarizing data in sets. We propose that the same processes that underlie
summarization in perceptual sets (e.g., dots) operate upon sets of numbers. These processes
provide summaries that set up inferences from data. Thus, we provide descriptions at
varying grain sizes across the scope of the review.

In this paper, we suggest a model of the cognitive processes underlying how people
make sense of and draw inferences from data. We further suggest that, as people learn about
science, they acquire tools to improve both of these processes. Our review targets cognitive
processes as described from general Cognitive Science framework. We describe scientific
reasoning as a process that includes declarative (e.g., scientific facts) and procedural (e.g.,
conducting unconfounded experiments) elements. We screened the literature to find
research that was relevant to such a cognitive process model. We did not perform a
literature search by term because the same term can have quite different meanings in
different research traditions. Even within the community of scholars who study scientific
reasoning, there is little consistency in the terminology that is used to describe it. For
example, the special issue uses the term “competencies” [39] to describe what we and our
colleagues often refer to as “processes” (e.g., [40]). Another reason for our selections is that
we have attempted to bridge multiple literatures that have not regularly communicated,
such as cognitive scientists, statisticians, and science educators. As Fischer et al. [6] note,
“contemporary knowledge about what constitutes these competencies . . . is scattered over
different research disciplines” (p. 29).

In sum, we propose that numerical data reasoning is rooted in intuitions about number
sets and becomes more sophisticated as people acquire scientific and statistical reasoning
skills. Although there are many types of nonquantitative data used in both everyday and
scientific reasoning, in this paper, we focus exclusively on numerical data reasoning, and
hereafter use the term data reasoning to refer to this type of reasoning. We argue that
numerical data reasoning begins with data sensemaking, a largely intuitive process that
summarizes sets of numbers much like summaries of perceptual features (e.g., relative size).
Data sensemaking creates approximations of data rapidly. Data reasoning, or drawing
conclusions from these data, is derived from these data summaries. Although these
processes are fast and accurate given clear patterns or differences, both may be sensitive to
cognitive limitations such as confirmation bias. Scientific data reasoning augments these
informal processes by adding cultural tools for improving the accuracy of data gathering,
representation, analysis, and inferences. We summarize our proposed model in Table 1.
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Table 1. Summary of data sensemaking and data reasoning processes.

Processes Examples Key References

Data Sensemaking Summarization

Product of perceptual and cognitive
mechanisms

Implicit grouping of numbers that yields
summary values (e.g., mean, variance)

[25,27,28,41–43]

Data Reasoning
Detecting Patterns Detecting covariation between variables [3,11,44,45]

Detecting Differences Noticing differences between sets [28,41–43,46]

Scientific Data Reasoning External Representation External representations [21,47,48]

Scientific hypothesis testing Conducting unconfounded experiments [38,49–52]

Probabilistic Conclusions Evaluating the likelihood of conclusions
or inferences [4,20,53]

Limits to Data sensemaking
and reasoning Heuristics and biases Confirmation bias, Anchoring effect [15,32,54,55]

Sources of Change Strategies Acquiring better strategies for
summarization, reasoning [41,44,56,57]

Instruction Using data sensemaking to support
formal reasoning and analysis [58–60]

2. Data Sensemaking

We begin with a discussion of how data sensemaking occurs. As we will detail below,
data sensemaking is the summarization of numerical information, a product of perceptual
and cognitive mechanisms that summarize large quantities of information [25]. Numbers
have unique properties such as relative magnitudes that are represented in both an ap-
proximate and exact fashion. Even young children have some elements of number sense
that allows them to detect differences between quantities [61]. When these summarization
mechanisms operate on number sets, they yield approximate representations of a set’s sta-
tistical properties [25,28]. The following sections will outline the evidence for this account
of data sensemaking, how it allows for the extraction of central tendency and variability,
and how it changes over the course of development.

2.1. Sensemaking of Set Means and Variance

When people see a set of numerical data, they can summarize the data without using cal-
culations, yielding approximate set properties such as means and variance [62]. Decades of
evidence demonstrate that the properties of number sets can be summarized quickly [26,63]
and accurately [43,64]. Without computation, people can detect and generate approximate
means [41,43,65–70], detect relative variance [28,69,71], and increase their confidence in
conclusions from larger samples as compared to smaller ones [42,43,68,69,71–74]. In one
example of this early work with adults, participants were given a series of index cards each
with a two-digit number, and asked to generate “a single value that best represented the
series presented” [69] (p. 318). Participants generated a value that deviated from the arith-
metic mean by less than 1%. When asked to estimate the mean from a set of numbers, and
explicitly instructed not to calculate, participants were surprisingly accurate in generating
an approximate mean (within ~3% of actual mean; [65]).

How might this process occur? We suggest that children and adults quickly summarize
the properties of number sets similarly to how they summarize other types of complex
information in their environments. This research tradition includes work from Gestalt
psychologists [75] and recent research on ensemble perception and cognition [25,27]. Num-
ber sets may be summarized “automatically” [76] in that this may occur before conscious
processing occurs (less than 100 MS; [77]) and even when instructions prohibit such process-
ing [78]. Finally, reaction times are faster with larger sets than smaller sets with no loss in
accuracy [76,79], further suggesting that summaries are the result of an automatic process.
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Young children can summarize complex perceptual information, even in infancy [80].
However, summarization becomes more precise over the course of development [41,81]. For
example, 6-month-olds can distinguish sets of dots with a 2:1 ratio (e.g., 10 from 20; [82]),
while 6-year-olds can distinguish sets of dots at a 6:7 ratio [83]. Children as young as
six can summarize the average happiness of a set of faces, but their summaries are less
accurate than those of adolescents [84]. Given a set of objects (e.g., oranges), 4-year-olds can
summarize the average size, though not as accurately as adults [81]. These findings suggest
that summarization abilities emerge early in development and become refined over time.

Another numerical set characteristic is variability. The critical role of variability
in empirical investigations has been noted for decades (e.g., [85]) and recently, Lehrer
et al. [12] argued that variability is one of the fundamental issues it is necessary for students
to understand when reasoning effectively about science. Functionally, it is only possible
to measure the variability of a set of data, not a single data point; there must be data
that vary to measure variability [86]. In considering what sets statistical reasoning apart
from mathematical reasoning, Cobb and Moore [87] argue that although mathematical
principles underlie many parts of statistical reasoning, it is the presence of variability due
to real-world context that makes it statistical.

By first grade, children show an understanding that different variables are likely to
differ in their variability when examining a data set [73], suggesting a conceptual under-
standing of underlying reasons to expect variation. Similarly, lay adults can demonstrate
the ability to use variability in comparing data sets when the data are contextualized within
a story, suggesting the likelihood of variability or not [71]. These findings indicate an expec-
tation of variation when taking measurements from a heterogeneous sample, suggesting
an understanding that variation is common in many contexts.

One component of understanding variability involves understanding the value of
repeated measurements; without repeated measurements, there is nothing that can vary.
Surveying 11-, 13-, and 15-year-olds indicated many areas of both clarity and confusion
about experimental error, as well as the value of repeated measurements [88]. Although
most students believed it was necessary to repeat measurements in science experiments,
approximately 40% of participants in each age group focused solely on the means, and said
the data with different variance levels were equally reliable because of the same average
value, ignoring the variance. Detecting variability is also closely related to children’s
emerging understanding of the sources of this variability. Children understand by about
age eight that measurement error is possible, and that repeated measurements, therefore,
might not yield precisely the same results [89]. Children, especially 8-year-olds, were still
not that likely to refer to measurement error in justifying their reasoning.

Other work has demonstrated that children and adults respond to variability informa-
tion differently when they expect variability based on the context. For example, children
ages 10–14 had an easier time using data to revise a belief from a noncausal one to a causal
one [90]; the key complication in reasoning about noncausal links was in understanding
measurement error and the value of repeated measurements to improve accuracy of estima-
tions about data sets. In a converging set of findings, children ages 10–11 who expected a
pattern of results indicating differences between conditions (such as in whether the length
of a string affects the speed of a pendulum) were able to differentiate the small variance of
noise from the larger differences between conditions [91]. At the same time, these children
struggled more when they expected a difference but there was no true effect, and only small
differences due to repeated measures. This point also emphasizes the close connection
between data reasoning and scientific reasoning. For example, correctly interpreting data
might hinge on recognizing the possibility of measurement error.

Sample size is also linked with reasoning about variability in data. There is a lot of
evidence that people are more confident with larger samples of data (e.g., [68,69]). Further,
many studies have found an interaction between sample size and variability when both are
manipulated within the same study (e.g., [28,68,71,73]). For example, Jacobs and Narloch
report that when samples had low variability, participants did not differentiate between
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samples of 3 and 30, whereas in high-variability samples, even 7-year-olds responded
differently based on sample size, and there were no age differences in the use of sample size.
At the same time, there is evidence of failure to use sample size consistently in some contexts
(e.g., [42,71]). More recent work has tried to reconcile apparently contradictory work about
people’s ability to use sample size in data reasoning, arguing that in fact weighted sample
size follows a curvilinear function [74]. That is, with small sample sizes, participants are
sensitive to sample size differences, but with large sample sizes, participants are no longer
as sensitive to such differences and weight the differences much less. This finding suggests
that numerical representations can affect broader data reasoning skills. Further, Obrecht
found that intuitive number sense was also linked with the use of sample size, suggesting
this factor may also play a role [74].

In addition to studies of implicit reasoning about variance, there are also several studies
that have demonstrated that when children are asked to collect or are given data and asked
to develop their own ways of summarizing the information, they can develop measures
of center and variability that make sense to them. Additional design studies have focused
on the integration of variation into describing data. For example, in figuring out how to
display plant growth over two weeks of measurements, students had to consider how to
represent both center (averaging) and variation [13]. Similarly, when children measure data
in different contexts (for example, measuring the height of a flagpole with a handmade
“height-o-meter” as compared to a standardized measuring tool), they observe a different
amount of spread [14]. Another study involved asking 11-year-old children to each measure
the perimeter of a table with a 15 cm ruler [92]. As expected, students’ measurements varied,
and then students worked in pairs to consider how to represent the full set of classroom
data. These classroom studies also demonstrated a critical role for discussion as a means of
advancing reasoning through relevant concepts to improve understanding.

2.2. Refining Data Sensemaking

What changes throughout development to refine this ability to summarize numerical
data to estimate central tendency and variability? One contributing factor is acquiring and
using more efficacious strategies (e.g., [93,94]). Children asked to summarize the spatial
center in a series of dots used more strategies than adults, suggesting a less efficient process,
and many of the strategies children used were not efficacious, resulting in fewer correct
responses when compared to adults [41]. This result suggests that children’s approaches
to attending to and encoding information influence the resulting summaries [27]. Alibali
et al. [56] recently proposed considering that the process of developing new strategies
may be similar to a diathesis-stress model, in which there is an interaction between a
“vulnerability to change . . . and a ‘trigger’ that actually provokes change (p. 164)”. In other
words, they suggest that once children have reached a point of being able to encode target
problems in a way that makes key features salient, then it is possible that external input,
such as feedback from successfully trying a new approach, will lead to the generation of new
strategies. As they note, this does not fully explain the process of strategy generation, but
it does suggest the importance of considering perceptual encoding as a factor in learning.
There may also be value in considering more domain-specific models of change that occur
within specific types of problems and across different age groups, for a more nuanced
picture of the process [93].

As discussed above, adults are also adept at summarizing numerical information
presented in sets [27]. Although people are often capable of summarizing data without
conscious awareness, and encoding and drawing conclusions based on those summaries,
one facet of learning to reason with data involves understanding what the summary values
represent [95]. Students often gather or are given a series of individual data points, and then
are asked to summarize the data. To do so effectively, they must recognize that reasoning
about sets of data most commonly involves considering the data as an aggregate set, not
as individual data points [96,97]. As students transition from informal reasoning about
data to more scientific data reasoning, they are often taught formulas, enabling them for
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example to compute means, and later standard deviations. However, the ability to apply
formulas does not necessarily lead to understanding what the resulting values indicate,
and how these summary values are related to the individual members of the set [35,98–100].
Nine-year-old children sometimes reason about a data set by referring only to a subset of
the data [68]. Even university students who sometimes use aggregate reasoning are often
inconsistent in their reasoning approaches and vary in whether they consider the full set of
data or not, based on context [101,102].

Effective instruction makes use of a student’s skills and prior knowledge to sup-
port their learning [103]. In the case of data reasoning, leveraging intuitions and prior
knowledge about data can help students attend to relevant problem features [58], focus on
possible strategies [59], and generate and attempt potential solutions that may be helpful in
learning [60]. One instructional technique, preparation for learning, introduces students to
relevant content before any formal instruction takes place [104]. In one application of this
technique, students played a video game (Stats Invaders!) in which players identify the
shape of the distributions in which invading aliens appear [58]. Students who played this
video game before receiving instruction produced significantly higher scores at posttest
than students who received instruction first, likely due to familiarizing students with
statistical distributions before instruction began. Further exploration of how to bridge the
gap between statistical intuitions and teaching statistical tools is important for clarifying
this area. Statistical tools can augment and improve data reasoning, and provide some
protection against cognitive biases. For example, statistical tools provide steps of formal
analysis that control for sources of bias in informal analysis and allow for generalization
beyond the data collected [4].

A different approach, productive failure, provides students with an opportunity to
attempt to solve problems, and often fail, before instruction [59,60]. In two experiments
comparing productive failure to direct instruction, students saw two instructional phases
in one of two orders: (1) a data set with basketball performance and asked to determine
the most consistent player and (2) direct instruction on calculating standard deviation [60].
Participants, who first explored the data and then were given direct instruction, outper-
formed students who were first given direct instruction before exploring. These findings
suggest potential for broader applications of this concept.

To summarize, the evidence demonstrates that even young children can quickly
summarize data resulting in approximate representations of statistical features such as
variability, including the role of sample size. Much like summarization of sets of objects or
other complex perceptual information, this process is rapid and occurs without any formal
instruction. At the same time, variability is a more complex concept than the average, and
children and adults often struggle to use variability information effectively. The following
section will begin to explore how this initial data sensemaking underlies reasoning with
data. Although children and adults can summarize large amounts of numerical information
rapidly, drawing inferences and conclusions based on summary values may be skewed by
mental shortcuts, known as heuristics.

2.3. Sensemaking and Reasoning from Associations between Variables

The section above described the initial process of data sensemaking that allows chil-
dren and adults to summarize data. This process spares limited processing resources and
provides information not available in individual numbers within a set. Summary values are
one piece of information used to draw inferences. The following sections review research
on both data sensemaking and reasoning from data. We combine these sections because
detecting patterns in data or comparing data include both summarization and making sense
of the patterns or differences that emerge from these summaries, and most of the tasks cited
ask participants to reason with the data. Covariation refers to the relation between two
or more variables and is one of the foundational principles in statistics and research [105].
Thus, one common application of data sensemaking and reasoning is within the contexts
of reasoning about covariation between variables [106]. In the section below, we review
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the experimental evidence, from research with children and adults, that illustrates data
sensemaking and reasoning with covariation data and how strategy use influences informal
data reasoning.

2.4. Making Sense of and Reasoning with Covariation Data

Data sensemaking often occurs when reasoning about covariation data, and drawing
inferences from the patterns and relations between variables. Children and adults can
detect differences in covariation data when those differences are large [44,45] or when
covariation is presented within a constrained context [11]. More nuanced detection occurs
as children acquire more sophisticated strategies for making sense of and interpreting
covariation [44,57]. Early work in this vein [3] indicated children struggle with using
covariation evidence to draw conclusions in line with the data, at least until ages 11 or 12.
In many cases, children and even some adults referred to prior beliefs as justification, rather
than the covariation evidence provided. For example, even if the data indicated more colds
with carrot cake than chocolate cake (or no relationship), some children talked about how
chocolate cake had more sugar, and was, therefore, less healthy and would lead to more
colds. These findings have been used to suggest that children struggle with understanding
covariation evidence, and have difficulty reasoning with this type of data.

However, follow-up work suggested that in fact young children could reason with
covariation evidence when the tasks were simplified. For example, when given a less
complex task, children by age six demonstrate an understanding of how covariation works.
That is, they can use patterns of evidence to draw conclusions [11], particularly when
the examples used tested equally plausible hypotheses. Similarly, young children ages
4–6 show evidence of the ability to use covariation evidence in drawing conclusions [107].
This suggests that young children can make sense of covariation data, when the differences
are large.

Shaklee and colleagues report a series of studies in which they explored how people
interpret covariation data (i.e., use strategies to reason with data) presented in contingency
tables, in which there are four cells [29,44,45,108,109]. Participants were asked to consider
whether there was a relationship between two dichotomous variables, such as the presence
or absence of plant food and plant health or sickness. These studies demonstrated that
children struggle to reason about contingency tables using sophisticated strategies, often
ignoring some of the data. For example, Shaklee and Mims (1981) found that although
strategy sophistication improved with age from fourth graders to college students, it was
still only a minority of students even at the college level who used the most sophisticated
strategy of conditional probability. Additional studies have found similar difficulties with
strategy use in both children [29,110] and adults [57,109,111].

Taken together, the covariation results described above are consistent with data sense-
making that involves rapid summarization of data. In this case, detecting associations
between variables would be possible with a mechanism that represents the event itself and
represents an aggregate of multiple events of the same type. For example, seeing multiple
instances of carrot eaters catching a cold would provide a strong pattern that should be
readily detected by tracking cases [112]. However, only tracking this one outcome will lead
to incorrect reasoning when there is a larger proportion of cases of carrot eaters who do
not catch a cold. Finally, the consistency of the data (i.e., the strength of the correlation
between variables) will make identifying the relations easier because more data points will
be predictably in line with previous data points.

In many covariation studies, such as those described above, covariation is considered
sufficient to demonstrate causation, and a mechanism linking two variables is not necessary.
For example, in asking children to draw conclusions about the link between types of
food and a cold, children are given no reason to believe one type of food would be better
than another, beyond their knowledge of which foods are healthier than others. Similarly,
figuring out which objects make a machine light up is determined by covariation evidence
and temporal precedence. However, although covariation is one required piece of evidence
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for inferring a causal relationship, it is not sufficient on its own. Further, analyzing data
independent of theory is not what real-world scientists do, and there is an argument
that it is important to consider the data in the context of one’s prior knowledge about
mechanisms that might link a cause and effect, enabling one to make an inference to the
best explanation [37]. In many of these covariation studies, children are expected to ignore
prior beliefs, even when prior beliefs suggest the data presented are implausible [2]. When
given a potential explanatory mechanism, both children and adults reason based at least
in part on these prior beliefs and mechanistic explanations, instead of exclusively on the
data [3].

2.5. Sensemaking of and Reasoning with Group Comparisons

Another common inferential goal of scientific data reasoning is to determine if two (or
more) groups are different on some outcome measure, and, again, data sensemaking and
reasoning play a role. In this case, we are specifically talking about comparing categorical
groups on a numerical or scale outcome measure. The origin of the first formal statistical
test for group comparisons, Student’s t-test, was to provide a method to compare samples of
ingredients during beermaking [113]. People with training in statistics would typically use a
t-test in making inferences about differences in an outcome between two groups. However,
a small series of studies has demonstrated that children and adults often use the same
components that are part of a formal t-test (i.e., differences between means, variance, and
sample size) in drawing conclusions, even when comparing datasets without any calculation.

When comparing datasets, people generally rely most heavily on differences between
means, with less attention to variance or sample size [35,68]. In a more recent study with
adults, with more systematic manipulation of the mean difference and variance, larger
mean differences and smaller variance in the datasets led to more accurate reasoning, more
confidence in answers, and fewer visual fixations on the data [28]. These patterns suggest
people summarize the data and compare the summaries quickly and accurately, without
explicit computation. Other work has provided converging evidence that the magnitude
of inferred (not computed) averages when comparing groups can depend in part on the
magnitude of the values sampled [114], and that the ratio of means is a critical factor in
reasoning about numerical data, such that accuracy of numerical perception varied in
accordance with Weber’s law (e.g., [83,115–117]).

A study of similar concepts looked at college students who compared pairs of con-
sumer products in which the mean product ratings, the sample size, and the variance
were all systematically manipulated. Participants focused most heavily on product ratings
(magnitude of the outcome variable and the difference between means), and gave less
weight to sample size. They gave the least weight of all to the sample variance [42].

Additional work has examined how college students compute analyses of variance
(ANOVAs) intuitively, in which they are comparing four columns of data [46]. The data
varied in their within-group variance and between-group variance, though students only
saw raw data and this variance was not summarized. These students, similar to others
described above, focused more in between group differences than within-group variance at
the beginning of a semester-long statistics course.

The results reviewed in this section suggest that children and adults rely on data
sensemaking; they make group comparisons quickly and without evidence for formal
calculations, even in those who have received some formal instruction on data. Children
and adults focus on differences between groups, as demonstrated by performance related
to the statistical properties of the stimuli. This result pattern is consistent with a process of
rapid summaries of both sets for comparisons [25,28]. In these models, individual numbers
are represented as activation functions on a mental number line [118]. Multiple numbers
are summarized by a secondary activation that is heightened with overlap among the
individual values. The larger the distance between secondary activations, the faster the
detection of difference. However, as with the detection of covariation, while children
and adults are able to detect large differences, they become less accurate given smaller
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differences (e.g., 9:10 ratio of means [28]) may attend to less diagnostic data features, and
this informal detection may be influenced by cognitive biases.

3. Scientific Data Reasoning

Scientific reasoning processes provide tools to increase the validity and reliability of
data reasoning while helping people reduce, or even avoid, common reasoning biases
(e.g., confirmation bias) [119]. We will briefly describe three such tools that can improve
data reasoning: external representations, scientific (i.e., theory-driven) hypothesis testing,
and probabilistic conclusions. We recognize these descriptions are not comprehensive, but
highlight a few key points about each topic.

3.1. External Representations

External representations refer to representations outside the mind that can be detected
and processed by the perceptual and cognitive systems [21]. Examples of external represen-
tations related to numerical data are scatterplots, bar graphs, and columns of numbers in a
spreadsheet. External representations allow us to record and display much larger amounts
of data than can be held with fidelity in human memory [48]. Since internal representations
are bound by the constraints of the human cognitive architecture, people can only attend to
and process a finite amount of data at any given time [31].

External representations reduce this load by providing a representation of information,
thereby allowing limited resources to be focused away from low-level process such as
maintaining information in memory, to higher-order processes such as problem solving and
reasoning. For example, 2nd graders were more likely to change beliefs in response to a
diagram than an explanation [120], and 5th and 8th grade children were more successful in
testing links between switch settings to make an electric train run when they kept external
records [121]. A similar pattern holds with older participants: novice undergraduate and
graduate students were more successful in solving a medical diagnostic problem when
they created external representations of the problem (e.g., lists of symptoms or decision
trees) than students who did not [47].

In addition to providing a reliable and durable record of data, external representations
are accessible to others, and can allow for the discovery of patterns and higher-order
features that would be difficult to detect in other formats (e.g., trends in a scatterplot; [21]).
For example, scientists often compare their internal (i.e., mental) representations to external
representations when reasoning with and interpreting ambiguous data [122].

However, even with external representations, cognitive biases can still influence data
reasoning. For example, there is a tendency to underestimate means in bar graphs (though
less so in point graphs), even in the presence of outliers [123]. This is likely because, as most
models of graph comprehension suggest, people initially, and rapidly, summarize the main
features of the graph, which forms the basis for subsequent inferences [124,125]. In sum,
external representations provide powerful tools that aid with scientific data reasoning by re-
ducing working memory burdens and making patterns and relations between variables more
apparent; however, they are also subject to cognitive biases (e.g., mean underestimation).

3.2. Scientific Hypothesis Testing

Another tool for scientific data reasoning is scientific hypothesis testing. It has been
documented that even young children engage in hypothesis testing [22]. The evidence for
hypothesis testing and its development provides several seemingly contradictory findings.
Developmental research demonstrates that young children have many of the rudiments of
scientific reasoning [10,51,126,127]. When kindergartners use an inquiry-guided process,
they can develop scientific questions and hypotheses more effectively than similar children
not given such guidance [128]. There is also evidence that young children were more likely
to seek information when evidence was inconsistent with their prior beliefs than when
evidence was consistent with their beliefs [49]. Children as young as five spontaneously
performed contrastive tests (i.e., compared two different experimental setups), in which
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they tested whether a machine lit up with or without a targeted variable [51]. These findings
collectively suggest more robust scientific reasoning ability in children than assumed in
early developmental research [129].

At the same time, evidence from several studies suggest that children and adults
often fail to conduct unconfounded hypothesis tests, as would occur in scientific experi-
mentation [40,51,130]. Children often conduct confounded experiments before they have
received instruction on this topic [40] and sometimes struggle to construct unconfounded
hypotheses in unconstrained contexts such as discovery learning [50]. Adults sometimes
do not perform contrastive tests and sometimes fail to identify causal variables [131]. There
is research that demonstrates a tendency for children [132] and adults [54] to seek to con-
firm beliefs. Additionally, preschoolers sometimes do not seek disconfirming evidence
after hearing misleading testimonial evidence [133]. This pattern of results might arise
from either lacking knowledge about scientific hypothesis testing or not implementing
this knowledge correctly. Further, even when seeking evidence, children and adults some-
times misinterpret or misperceive data such that new data conform with their prior beliefs,
despite the misconceptions of those prior beliefs [15].

This pattern of evidence likely suggests a developmental and educational trajectory
in which children’s curiosity drives them to understand the world by seeking informa-
tion [49,51,134,135]. Children quickly acquire impressive skills for information seeking [49]
and evidence evaluation [10]. However, these skills are limited by children’s emerging
understanding of scientific experimentation [50], implementing this knowledge in novel
contexts [38,136], and cognitive biases (e.g., confirmation bias [15,119]). The acquisition
and use of scientific reasoning skills improves how people evaluate and understand the
data about which they are reasoning, which improves the quality of the conclusions drawn
from data. In short, the acquisition and application of scientific hypothesis testing can help
to protect reasoners from errors that may reduce the accuracy of their data [52].

3.3. Probabilistic Conclusions

Data reasoning leads to conclusions, but these conclusions are always probabilistic
rather than deterministic (e.g., [4,53]). Science education, including scientific data reasoning,
often presents scientific conclusions as definitive [20]. Including acknowledgement of the
uncertainty inherent in scientific data is an important, but often overlooked, area of science
education (e.g., [137–139]). When children work with real-world data, with its variability
and uncertainty, they often come to understand the nature of science more effectively [140].
Young children often appear to have a bias towards deterministic conclusions, preferring
to select a single outcome when multiple outcomes are possible [141,142]. This tendency to
look for a single conclusion is robust but is reduced with age [142] and can be reduced after
multiple training experiences [9].

At the same time, Denison and Xu [143] argue that the majority of empirical evidence
into infant (and primate) reasoning under certainty suggests that they use probabilistic
reasoning in drawing conclusions. Young children have some intuitions about probability
that help them make sense of situations such as the likelihood of selecting a specific object
from a target set. In one recent experiment, 6- and 7-year-old children were shown a
set of white and red balls with specific ratios of difference between red and white balls
(e.g., 1.10–9.90; [144]). In line with previous results reported above, children’s accuracy in
selecting the most likely ball was closely associated with the ratio of difference.

These intuitions of data sensemaking can influence reasoning from data, but the
understanding that inferences from data must be probabilistic is necessary for effective
scientific reasoning, despite its challenges (e.g., [12,53]). Even when adding inferential
statistics to the toolkit, there can still be a wide range of approaches taken by experts in the
field [145]. That variation is one of the many challenges in thinking through scientific data
reasoning, and a factor that makes teaching these concepts especially difficult. How do we
leverage intuitions about data to promote scientific data reasoning?
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4. Heuristics in Data Reasoning

A key limitation of all data reasoning is that humans are subject to cognitive biases,
and when reasoning with data, we can fall prey to them. Tversky and Kahneman’s classic
work on heuristics and biases [32] suggests several ways in which shortcuts we often take
to reason about data can lead us astray. For example, people are more likely to think things
that come to mind easily are more common than those that do not come to mind as quickly,
a phenomenon known as the availability heuristic. People also often estimate magnitude
by anchoring to an initial value. When seeing data, the anchor then affects conclusions, and
adjustment for the anchor is often insufficient. Additionally, people often test hypotheses
with a confirmation bias, looking for evidence to support their initial beliefs rather than
seeking and evaluating evidence independent of hypotheses (e.g., [15,54,55]).

Although mental shortcuts can lead to suboptimal conclusions, under some conditions,
shortcuts may lead to better conclusions and decisions than deliberative reasoning, a
phenomenon termed adaptive heuristics [146]. For example, when selecting the best mutual
fund for retirement investments, a simple, adaptive heuristic in which one allocates equally
to all options, outperformed data-driven models that far exceeded human processing
limits [147]. In this case, the use of a simple strategy was highly efficient and could easily
be implemented within limited cognitive capacity. Adaptive heuristics are useful when
thinking about reasoning with data because we often have to make sense of large amounts
of information (e.g., data) and formal data calculations require significant time, energy, and
working memory capacity [148].

However, reliance on heuristics alone might result in suboptimal conclusions, as
described above. Recent evidence demonstrates that training in the scientific process leads
to reduced susceptibility to cognitive biases [149]. It is important to note that heuristics are
not supplanted by scientific reasoning. Heuristics continue to operate even for experts and
may compete for cognitive resources [150]. Experts might use heuristics in a more controlled
and deliberate fashion than novices [151]. In addition, reliance on prior knowledge about
mechanisms, and assessing data in light of that knowledge, often makes sense in a scientific
context (e.g., [2,37,152]). For example, if an initial analysis provides evidence against a
well-established pattern of evidence, it is often reasonable to check the data and analysis or
even replicate a study before abandoning one’s hypothesis. Additionally, consideration
of the plausibility of the proposed mechanisms for an effect play a role. In the following
section, we will discuss how intuitive data reasoning strategies (e.g., heuristics) play a role
in data reasoning and how these processes can be leveraged through instruction to help
students learn scientific data reasoning.

5. Future Directions

Many basic research questions remain in this realm of data sensemaking, informal
reasoning with data, and scientific data reasoning. For example, although the evidence
presented above suggests rapid summarization of data sets (e.g., [26,29,68]), more research
is needed to determine the extent to which summarizing data is made on the basis of
the same mechanisms underlying ensemble perception and cognition. Further, as we
have discussed, data reasoning occurs in a wide ranges of contexts, including scientific
reasoning, science education, decision-making, and other fields. We have focused on
scientific reasoning and a little bit of the science education literature. Further exploration of
differences in data reasoning across disciplines, with and without the supports of external
representations, scientific hypothesis testing, and probabilistic conclusions, would also
help in understanding the process of data reasoning more thoroughly.

We have suggested that reasoning with data begins with data sensemaking, a rapid
summarization process that reduces processing burdens while providing information
about the statistical properties of number sets. This process appears to improve through
development and education, resulting in more accurate summaries. We suggested that
one important factor underlying these improvements is the acquisition and use of more
effective strategies, which are developed with experience and education. Data reasoning
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is drawing inferences from the data, along with prior knowledge and other relevant
information. Much like data summaries, data reasoning is often “accurate enough” for
everyday contexts. One limitation to accuracy for summaries and inferences is reasoning
biases, such as the confirmation bias or the tendency to seek data consistent with prior
expectations. We propose that the acquisition of scientific data reasoning provides tools
that improve the fidelity of the data itself, the conditions through which data are acquired,
representation of data (e.g., figures), and the types of conclusions drawn from data. An
important future direction is to evaluate this model experimentally.

Our proposed model needs direct testing of its components, though focus on the
concepts at a fine grain size provides researchers with opportunities to evaluate elements of
the model or the model itself. Our predictions about relatively automatic summarization of
data sets can be evaluated directly. Educators can implement parts of our model individually
or in concert. For example, lessons on data interpretation can encourage reliance on data
summarization, with instruction guiding students to describe patterns and compare data
sets in consistent ways. Below, we highlight several specific suggestions for future directions.

One complex topic in need of much further exploration is the interplay between
prior knowledge and data reasoning. Although there is a fair amount of work about
integrating theory and evidence (e.g., [2,3,90,152,153]), there is less work on how prior
beliefs interact with different types of numerical data (e.g., [13,14,91]). There is evidence
that prior knowledge increases attention to diagnostic features [154] and helps reasoners
solve problems more effectively [155]. However, this attention to diagnostic features has
not to our knowledge been tested with data reasoning.

In addition, there are many educational applications of data reasoning, and specifically
scientific data reasoning. Future research aimed at effective application of these concepts
in the classroom can be beneficial both to understanding scientific data reasoning, and to
developing best practices in education. As discussed above, classroom studies in which
students develop their own measures of description and inferences from data have been
shown to facilitate a more comprehensive understanding of concepts such as the aggrega-
tion of data and variability, building on initial intuitions (e.g., [13,14,35,156]). Considered
within the framing outlined above by Alibali et al. [93], the classroom conversations could
be considered a potential trigger for provoking changes in strategies used to approach these
problems, and in turn, increase learning. This process can work in informal data reasoning
or scientific data reasoning contexts. Follow-up studies could directly examine strategy
acquisition and be used to develop a more comprehensive understanding of how strategies
aid in learning about data reasoning.

There is a lot of work demonstrating the efficacy of classroom interventions or curricu-
lar approaches in improving people’s ability to reason statistically [96]. A meta-analysis of
scientific reasoning interventions, targeting a wider range of topics than just data reasoning,
indicated there was a small effect in classroom interventions across ages [19]. Similarly,
there are many demonstrations of efficacy of specific tools aiding in data reasoning within
lab contexts (e.g., [56,120,157,158]. However, scaling up these interventions into more
effective curricula at all levels (including teacher training) remains a challenge.

Teaching materials are also important in facilitating (or unintentionally hindering)
student learning. Textbooks play an important role in student learning, and limitations
in textbook content can affect student learning. Children can acquire misconceptions
through misaligned instructional materials. One source of misconception can be examples
in textbooks. A notable example from mathematics is children’s misconception of the equal
sign, in which children interpret the equal sign as a signal for executing an operation rather
than balancing both sides of an equation [159]. An analysis of math textbooks demonstrated
that most practice problems had the same structure (e.g., 3 + 5 = ?) that is consistent with
this misconception [160]. Another study of middle school science textbooks showed they
typically include limited guidance in appropriate use of data [161]. In fact, the majority
of data reasoning activities in science texts provided little guidance on how to analyze or
draw inferences from data formally. Thus, one step that can help improve student learning
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of data concepts involves improved integration of descriptions and applied exercises in
textbooks used in science classes. This research demonstrates the importance of using
instructional materials that do not promote biases or misconceptions [160,162].

Finally, one last suggested future direction is investigating the role of intuitions and
potential misconceptions, both about science and about data, in scientific data reasoning.
One difficulty in science education is that many scientific phenomena are challenging to
understand, and in many cases intuitions conflict with scientific consensus, such as in
understanding of physical principles of heat and motion as well as biological principles of
inheritance and evolution [163]. Thus, although intuitions about data can be useful in data
reasoning, intuitions about conceptual content sometimes lead people to incorrect beliefs
and misconceptions. Indeed, there is some evidence it can be at the observation stage where
incorrect prior beliefs interfere with accurate perception of physical phenomena and the
gathering of potentially-informative data [15].

6. Conclusions

We proposed a model of data reasoning and its relation to scientific reasoning. Specif-
ically, we suggest that data reasoning begins developmentally with data sensemaking,
a relatively automatic process rooted in perceptual mechanisms that summarize large
quantities of information in the environment. As these summarization mechanisms operate
on number sets, they yield approximate representations of statistical properties, such as
central tendency and variation. This information is then available for drawing inferences
from data. However, both data sensemaking and informal data reasoning may lead to
erroneous conclusions due to cognitive biases or heuristics. The acquisition of scientific
data reasoning helps to reduce these biases by providing tools and procedures that improve
data reasoning. These tools include external representations, scientific hypothesis testing,
and drawing probabilistic conclusions. Although data sensemaking and informal data
reasoning are not supplanted by scientific data reasoning, these skills can be leveraged to
improve learning of science and reasoning with data.
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Abstract: In this study, we investigated participants’ reactions to supportive and anomalous data in
the context of population dynamics. Based on previous findings on conceptions about ecosystems
and responses to anomalous data, we assumed a tendency to confirm the initial prediction after
dealing with contradicting data. Our aim was to integrate a product-based analysis, operationalized
as prediction group changes with process-based analyses of individual data-based scientific reasoning
processes to gain a deeper insight into the ongoing cognitive processes. Based on a theoretical frame-
work describing a data-based scientific reasoning process, we developed an instrument assessing
initial and subsequent predictions, confidence change toward these predictions, and the subprocesses
data appraisal, data explanation, and data interpretation. We analyzed the data of twenty pre-service
biology teachers applying a mixed-methods approach. Our results show that participants tend to
maintain their initial prediction fully or change to predictions associated with a mix of different
conceptions. Maintenance was observed even if most participants were able to use sophisticated
conceptual knowledge during their processes of data-based scientific reasoning. Furthermore, our
findings implicate the role of confidence changes and the influences of test wiseness.

Keywords: scientific reasoning; anomalous data; balance of nature metaphor

1. Introduction

Developing, understanding, and critically questioning knowledge and processes of
deriving knowledge in science are key aspects of scientific reasoning [1,2]. The ability
to engage in scientific reasoning requires a set of competences and knowledge entities
that vary depending on the kind of problem to be solved [1,3]. Kind and Osborne [3]
describe styles of reasoning that are distinguishable based on typical entities of conceptual,
procedural, and epistemic knowledge. Conceptual knowledge focusses on the scientific
objects of the problem’s context, procedural knowledge focusses on entities that address
methods and tools used for generating information like empirical data, and epistemic
knowledge focusses on entities used to justify scientific conclusions on a meta-level [1,3–5].

Most processes of scientific reasoning rely on empirical data derived from methods
like experimentation, observation, or modeling [3]. Therefore, reasoning based on data
is central in scientific practices and defined as one epistemic activity in scientific reason-
ing [6,7]. Especially data that are not in line with prior knowledge, so-called anomalous
or contradicting data [8], are a driving force for engaging in scientific reasoning. Rea-
soning processes initiated by anomalous data address conceptual knowledge regarding
conceptual development, procedural knowledge regarding questions of methodology, and
epistemic knowledge regarding questions of credibility and limits of data-based knowledge
acquisition (e.g., [8–10]).

Most studies investigating reasoning in the light of anomalous data focus the analysis
on participants’ explanations for their reaction to the data (e.g., [8,9]), not including an
analysis of the reasoning process itself. The reaction to the data can be regarded as the
product from a previous reasoning process (e.g., [10,11]). Hence, studies that only focus
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on the reaction (e.g., change of initial theory) analyze responses to anomalous data from
a product-based view. In contrast, studies that analyze the reasoning process leading to
these reactions are considered to apply a process-based view (e.g., [10,11]).

Studies that investigated responses to anomalous data from a process-based view
mostly used data that were self-generated by the participants in laboratory settings [10,12].
However, reasoning processes with first-hand or second-hand data differ regarding used
entities of conceptual and procedural knowledge [13].

The aim of this paper is to provide an integrational perspective from a product-based
and a process-based analysis of reasoning processes with second-hand anomalous and
supportive data. Therefore, reasoning processes are described by applying a general model
of information processing [14] resulting in the model of data-based scientific reasoning.

The results might help to gain a deeper insight into processes that occur when reason-
ing with anomalous and supportive data as well as the relation to the use of conceptual,
procedural, and epistemic knowledge. Further research might tie in these findings, leading
to instructional recommendations for data-based scientific reasoning when used in teaching
and learning.

2. Theoretical Background
2.1. Data-Based Scientific Reasoning

Chinn and Brewer [15] highlight the initiating effects of anomalous data for the devel-
opment of scientific knowledge by reviewing historical examples in which anomalous data
played a crucial role in the investigations of scientists leading to discussions that initiated
a critical reflection on initial interpretations and theories. “Anomalous evidence are data
which would not be predicted by, and are inconsistent with, a person’s mental model” [8],
hence they can be described as initiators of cognitive conflicts that induce conceptual devel-
opment and reasoning processes [16]. However, previous studies on anomalous data show
that data contradicting initial expectations are discounted in different ways [8,15,17,18].
Such responses to anomalous data rely on a variety of justifications [8,9] based on different
aspects of conceptual, procedural, or epistemic knowledge [3]. Furthermore, evidence
exists that shows the importance of the perception and recognition of the anomalous data
for subsequent reasoning processes [10,13,19]. More recently, a study on anomalous data
provided evidence that the degree of anomaly relates to the likelihood of theory change [20].
In this study, the researchers could show that an increase of shown anomalous data in-
creases the recognition of the anomaly and subsequently decreases participants’ confidence
in the initial theory. This change in confidence was furthermore connected to a tendency to
change their initial theory based on the new information provided by the anomalous data
presented [20].

Responses to anomalous data are often conceptualized as part of interpretational
processes during data-based scientific reasoning [21]. Previous studies show a tendency for
a product-based view on responses to anomalous data and a concentration on a rather meta-
level appraisal of this kind of data, asking for the believability and relevance [8,22] instead
of asking for the coordination between anomalous data and initial knowledge. However,
knowledge about the processes involved in different situations of scientific reasoning
can lead to deeper insights into the structure of reasoning processes and enhances the
knowledge about scientific reasoning [3,11].

From a process-based view, reasoning initiated by anomalous data can be described
based on a general model of information processing [14], emphasizing the roles of data per-
ception, data selection, data appraisal, data explanation, and data interpretation regarding
initial knowledge (Figure 1).
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In this process model of data-based scientific reasoning, anomalous data function as
sensory stimuli that, at first, have to be perceived [10,12,19,23] before they are selected and
appraised in early reasoning processes which focus on the perception of data characteris-
tics [24,25]. Subsequently, data are interpreted within and integrated into initial knowledge
entities during interpretational reasoning processes [24,27]. Interpretational processes can
be distinguished into data explanation and data interpretation. Data explanation focusses
on the sense-making of the data by offering alternative causes, whereas the interpretation
of the data includes the coordination of the data, the alternative explanations, and the
initial hypothesis to make a claim that is justified [28]. All of these sub-processes are
influenced consciously or unconsciously by initially held entities of conceptual, procedural,
and epistemic knowledge [3].

Research on information processing shows that a strong tendency to confirm prior
conceptions can influence each step in the information processing process [29]. Therefore,
we assume that responses to anomalous data, representing a specific type of scientific
information, differ qualitatively in relation to the phase of information processing. Such
strategies of confirmation can occur during several processes during data-based scientific
reasoning, for example: perceptually ignoring contradicting data in the process of data
perception, searching for flaws in contradicting data or information in the process of data
appraisal, being more willing to advance vague, nonspecific causes, or finding alternative
causes in the process of data explanation [18,24]. Therefore, a detailed look at the responses
to anomalous data in relation to the phases of information processing provides a deeper
understanding behind the cognitive processes during data-based reasoning.

2.2. Changes of Conceptual Development with Data in the Context of Population Dynamics

The acquisition of knowledge in the context of ecology is influenced by initial concep-
tions that are often not in line with current scientific theories [30], such as the assumption
that ecosystems have a specific equilibrium state given by nature [31]. Most of these
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not scientifically adequate conceptions derive from the use of the so-called Balance of
Nature (BoN) metaphor [32]. Within this metaphor, ecosystems are defined as being sta-
ble, homogenous entities that regenerate to an ideal equilibrium state after disturbances.
Human interactions with ecosystems are mostly seen as destructive leading to instability.
According to BoN, organisms in ecosystems behave harmonically and control each other
in a balanced way [32]. Conceptions on ecosystem and population dynamics that are
related to BoN are prominently used in media like news, the Internet [31], and school-
books [33]. Therefore, it is not surprising that BoN conceptions are stable against teaching
interventions [34]. The aim of teaching inventions is to initiate conceptual development by
offering alternative scientifically adequate conceptions that would fit into a Flux of Nature
(FoN) metaphor [31,32] and support the preference of using FoN conceptions over the BoN
conception during scientific reasoning [35].

Using the example of population dynamics, the advantages, and difficulties for data-
based scientific reasoning initiated by anomalous data can be shown. The development of a
population in size and composition over time is a typical topic discussed in school biology
and university level ecology courses [36]. However, entities of conceptual knowledge
emerge from teaching interventions, but are influenced by initially held conceptions about
the topic [37]. Furthermore, population dynamics are often represented by using data
depicted as line graphs [38] to show, for example, the development of the population size
of a species over time. Additionally, the presentation of empirical data sets is more likely to
induce theory change [39]; hence, presenting anomalous data in the context of population
dynamics in their typical representation as line graphs might give interesting insights for
research on data-based scientific reasoning. Thus, scientific reasoning processes in this
context require the use of procedural knowledge regarding handling data (e.g., knowing
procedures of data generation, identifying patterns in data sets [25,26]) and interpreting
graphs (diagram competence [40]). Connected to procedural knowledge, knowledge on
the limits of interpreting the data are necessary for scientific reasoning, which is part of
epistemic knowledge. In the case of population dynamics, represented line graphs are
often connected to the use of the Lotka–Volterra equations modeling the development of
populations in a prey–predator relationship hypothetically [32,41]. Therefore, epistemic
knowledge associated with meta-modeling knowledge is also required during scientific
reasoning in the context of population dynamics [42].

2.3. Aim and Research Questions

The aim of the following study is the identification and empirical description of
reactions to anomalous and supportive data and their relation to individual processes
of data-based scientific reasoning in the field of ecology. Therefore, we focused on the
following research questions.

1. How does anomalous data affect the change of initial predictions regarding the
scientific phenomenon of population dynamics?

2. How are changes of initial predictions about population dynamics related to a change
in confidence towards the initial predictions?

3. How are reactions regarding initial predictions about population dynamics related to
presented proportions of anomalous to supportive data?

4. How are reactions regarding initial predictions about population dynamics related to
individual processes of data-based scientific reasoning?

3. Materials and Methods

The study is based on a mixed-methods design encompassing assessment instruments
that allow the application of quantitative and qualitative analysis methods [43]. A tradi-
tional paper-and-pencil format was combined with the use of eye-tracking techniques [44].
Participants were invited to participate in the study that was conducted in a laboratory
setting in the university.
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3.1. Participants

In the study, twenty pre-service biology teachers (mean age = 26.25 years; SD = 5.44 years)
ranging from attending first-year bachelor courses (nBachelor = 11) to attending master
courses (nMaster = 9) participated voluntarily. The range of invited participants was chosen
to enhance the variety of assessable responses to anomalous data during the process of
data-based scientific reasoning due to their assumed differences in expertise regarding
ecology and scientific reasoning [45].

3.2. Instrument

We developed a paper-and-pencil instrument in the context of population dynamics
containing a set of tasks for assessing individual initial expectations and subsequently
responding to anomalous and supportive data (Table 1). To interpret the answers given in
the instrument, regarding responses to anomalous data, individual initial expectations on
population dynamics were assessed by a prediction task in which participants graphed
predicted outcomes of population development over a period of ten years and explained
their prediction in an open-ended writing task. The prediction task was combined with a
confidence rating scale for all scenarios prior to the remaining set of tasks (Table 1). Each of
the following tasks is aiming to operationalize one of the sub-processes of the process model
of data-based scientific reasoning (Figure 1). Perceptual processes of data-based scientific
reasoning were operationalized in the paper-pencil instrument by the data selection task,
which was combined with the assessment of eye-tracking data for validation purposes [44].
Interpretational processes were assessed by the data appraisal task, data explanation task,
and data interpretation task (Table 1). Changes in the confidence regarding the initial
predictions were assessed by a second confidence rating scale [20]).

Table 1. Overview of the used tasks and their corresponding sub-processes of the model of data-based scientific reasoning.

Sub-Process/Task Task Content Format of Data Assessment

Prediction
Making predictions about
population development

Open-ended graphing task combined with
open-ended writing task for explanation

Rating the confidence in the made predictions
Rating scale: percentage scale from 0%

(totally unconfident) to 100%
(totally confident)

Data visual perception
(perceptual)

Looking on the presented data sets without a
further instruction. Eye tracking experiment

Data selection
(perceptual) Selecting data sets Multiple-choice task

Data appraisal
(perceptual/interpretational) Rating credibility, relevance, and fit of each data set

Rating scales from 1
(credible/relevant/fitting) to 5

(non-credible/irrelevant/not fitting)
Data explanation
(interpretational) Explaining each data set Open-ended writing task

Data interpretation
(interpretational)

Interpreting data sets regarding initial conceptions Open-ended writing task

Rating the confidence in the made
predictions retrospectively

Rating scale: percentage scale from 0%
(totally unconfident) to 100%

(totally confident)

The contexts of the three scenarios were closely comparable with all introducing
a population of an herbivorous mammal species (elk, deer, and goat) in a terrestrial
ecosystem and a typical predator species. The scenarios varied regarding the proportion
of anomalous and supportive data shown to induce the data-based scientific reasoning
process. Anomalous and supportive data were operationalized as data sets represented as
line graphs. Each of the line graphs was pre-defined to show either a population dynamic
associated with typical BoN expectations (stable, slightly fluctuating population number)
or typical FoN expectations (chaotic fluctuating population number, extinction; [41]). In
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each scenario (elk, deer, and goat), six of these data sets were presented as a stimulus to
induce the scientific reasoning process (Figure 2).
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of a specific species in a defined ecosystem. Three line graphs are pre-defined as BoN-associated (B,D,F) and three line
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The degree of anomaly was varied by changing the ratio between FoN and BoN associ-
ated graphs from 2:4; 3:3 to 4:2 within the three scenarios [20]. Each scenario was assigned
to a specific ratio between FoN and BoN-associated graphs (deer = 3 FoN:3 BoN: goat = 2
FoN:4BoN: elk = 4 FoN:2 BoN). The sequencing of the three scenarios was randomized
between the participants to avoid sequencing effects. Hence, participants responded to the
set of tasks three times while processing the three scenarios in different orders.

3.3. Analyses

In this study, responses to anomalous data were analyzed from a product-based and
a process-based view (e.g., [10,11]). The product-based view focuses on the change of
initial predictions made by the participants after reasoning with anomalous data. There-
fore, the analysis is grounded strongly in the nature of the three predictions made by the
participants as part of the instrument. Therefore, we coded the type of graphed prediction
and associated written explanation following a qualitative content analysis approach [46].
We developed a category system that includes deductively generated categories from the
main theoretical frameworks addressing conceptual, procedural, and epistemic knowl-
edge entities that might be used when reasoning with anomalous data in the context of
population dynamics [3,24–26,41]. After piloting the category system, descriptions were
refined and inductively generated categories included, resulting in a final category system
with 26 codes for coding the answers of all tasks included in the instrument (Table A1).
The first author coded all answers from the participants. To check for the objectivity of
the category system, a second coder who was no expert in this field of research re-coded
20% of the material, resulting in an intercoder agreement of κ = 0.73, indicating a good
objectivity. However, disagreements were subsequently discussed and coding descriptions
in the coding manual adjusted. To group the given answers of the prediction task into pre-
diction groups, we used an epistemic network analysis (ENA [47]), using an open-source
online tool that quantifies, visualizes, and models networks between qualitative entities
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of processes such as discussions. This tool allows unraveling relations between cognitive
knowledge entities and is based on theoretical frameworks for learning analytics [47]. ENA
represents relations between objects in dynamic networks in which also the strength of each
relation is considered [47]. Objects are represented as knot points and relations as lines be-
tween these knots varying in their thickness to indicate the strength of the relation. Objects
are defined as the coded categories that indicate the use of conceptual (e.g., mentioning
theories of prey–predator relationships), procedural (e.g., using statistics), and epistemic
(e.g., credibility of data) knowledge entities (Appendix Table A1). Hence, each answer from
the prediction task for the three scenarios per participant resulted in an individual network
(N = 60), with the coding categories as objects and their co-occurrences as relations. All
networks are located in a two-dimensional coordinate system; hence, all objects have the
same position in the coordinate system independent from the individual network making
different networks comparable [47]. Hence, similar networks are located closer to one
another than networks that differ in their included objects and relations. To group the
networks, we first distinguished the answers based on the type of graphed prediction into
BoN-associated (Figure 3a,b), FoN-associated (Figure 3c), or FoN/BoN, when participants
graphed two different predictions that were associated with both BoN and FoN [41]. These
three groups were labeled as superior prediction groups indicating the superficial tendency
of the conception behind the made prediction.

Within these superior prediction groups, similar individual networks were grouped,
based on the co-occurrence of knowledge entities used for explaining the graphed predic-
tions (represented in the ENA model as relations between objects) and labeled as explicit
prediction groups. Based on this grouping, summary statistics that are included to ENA al-
low an aggregation of all networks in a group into a mean network. Hence, a mean network
represents the average combination of objects and their relations for this group [47]. In this
study, mean networks of an explicit prediction group showed typical combinations of used
knowledge entities for explaining the made prediction regarding population development.
Furthermore, ENA offers the calculation of t-tests (e.g., Mann–Whitney test) to check for a
statistically significant difference between the mean networks of different groups [47].

Based on the found prediction groups, we observed if participants changed the pre-
diction group for the second and third scenario in the instrument after reasoning with
anomalous and supportive data regarding their initial prediction (Figure 4; prediction
group change). Furthermore, changes of confidence in the initial prediction (Figure 4;
confidence change) and the relation to the presented proportion of anomalous to support-
ive data were taken into consideration as factors that might influence the responses to
anomalous data.

Subsequently to this product-based view of analysis, we analyzed the data-based
reasoning processes that occurred between the prediction group changes and confidence
changes (Figure 1 DbR processes). For this process-based analysis (e.g., [10,11], answers to
the data appraisal task, data explanation task, and data interpretation task were analyzed
for the first and second scenario of each participant. We excluded the third scenario in this
analysis since we did not assess a further prediction change after the reasoning process
during the third scenario due to the test construction. The answers of the rating scales in
the data appraisal task were subsumed into five groups. If participants rated the credibility
and the relevance of the perceived anomalous data as low (1 or 2 on the rating scale) they
were assigned to skeptical general. When participants rated the perceived anomalous data as
only low on the credibility scale, they were assigned to skeptical credibility; in the case of the
relevance scale this led to skeptical relevance. Participants who rated both scales in the middle
(3 on the rating scale), were assigned to undecided, and participants who rated high on both
scales (4 and 5 on the rating scale) were assigned to not skeptical. After coding the answers
to the open-ended questions from the data explanation task and data interpretation task,
we compared the used conceptual knowledge entities with the ones the participants used
for their prediction in each scenario. Based on this comparison, two groups were defined
as new conceptual knowledge and initial conceptual knowledge. New conceptual knowledge
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encompasses cases in which participants used new conceptual knowledge entities in
addition to the initial conceptual knowledge entities, for example, when a participant
used theories of prey–predator relationships for their prediction only but explained or
interpreted the data by considered environmental factors like natural resources. Initial
conceptual knowledge encompasses cases in which participants only used initial conceptual
knowledge entities, for example, when the previous mentioned participant used theories
of prey–predator relationships during data explanation and interpretation as the single
explanation option. If participants additionally used procedural or epistemic knowledge
entities for explaining and interpreting data, they were assigned to the sub-groups plus
procedural or epistemic knowledge. Participants that answered without using conceptual,
procedural, or epistemic knowledge to explain or interpret data were assigned to no
explanation. Based on this grouping, participants’ data-based scientific reasoning processes
were assigned into a dimensional matrix with data appraisal on one dimension and data
explanation/interpretation on the other dimension.
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Figure 3. (a,b) Examples of graphed predictions for the population development of a specific species
in a defined ecosystem that were assigned into BoN-associated. (c) Example of a graphed prediction
for the population development of a specific species in a defined ecosystem that was assigned into
FoN-associated.
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Figure 4. Schematic representation of the analysis processes for this study.

4. Results

Each of the participants (N = 20) answered the prediction and data-based scientific rea-
soning tasks (Table 1) for the three scenarios leading to a total amount of 60 answers for each
task. For the open-ended writing tasks that were coded by a qualitative content analysis, a
total of N = 868 codes were assigned, ranging from 19 to 59 codes between participants.

First, the results regarding the prediction groups found by ENA are presented. All
individual networks for the answers of the prediction tasks in the three scenarios per
participants (N = 60) were modeled into a dynamics network by ENA as shown in Figure 5.
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Figure 5. Individual networks for all predictions made by the participants in a two-dimensional
system modeled with ENA.

From these individual networks presented as dots, seven explicit prediction groups
were defined (Table 2). However, in ten individual networks that represent answers to
the prediction task in the second and third scenario, the main explanation for the made
prediction was test wiseness. Test wiseness is operationalized as identifying participants’
statements that present experiences from the previous tasks of the test instrument as the
main reasons for the task performance under consideration instead of answering the task
based on conceptional, epistemic, or procedural knowledge. Test wiseness is often used to
improve test performance [48]. For example: “A stable graph was shown in the previous
scenario. I want to cover every option”.

The Mann–Whitney test showed that explicit prediction groups within their superior
group were statistically different at the alpha = 0.05 level in at least one dimension of
the coordinate system, except for divergent prey–predator relation conceptions and mixed
conceptions and human disturbance in the FoN/BoN group (Table 2). Based on the theoretical
background, both groups represent different aspects of conceptions associated with the
BoN metaphor [30,32]; hence, we maintained both explicit prediction groups.
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Most predictions given by the participants indicate a tendency towards BoN concep-
tions (n = 28; 46.7%) or a mix of BoN and FoN conceptions (n = 17; 28.3%). Therefore,
BoN-associated data sets presented in the instrument are assumed to be perceived as
supportive, while FoN-associated data sets are assumed to be perceived as anomalous data.
This assumption is supported by the decrease of frequencies for BoN prediction groups
and an increase of FoN/BoN prediction groups after the first scenario (Table 2).

4.1. Prediction Group Changes

Based on the assignment of participants’ answers given to the prediction task to the
prediction groups for each scenario, the changes of prediction groups between scenarios
were analyzed. Prediction group changes were expected between the scenarios as a reaction
to reasoning with anomalous and supportive data regarding the initial prediction made in
the previous scenario. Table 3 shows how many participants maintained or changed their
superior prediction group from the first to second and second to third scenario.

Table 3. Absolute frequencies of superior prediction group changes between the first and second
scenario and the second and third scenario.

To From BoN FoN/BoN FoN

BoN n1st-2nd = 8 (* = 1)
n2nd-3rd = 6 (* = 1)

n1st-2nd = 6 (* = 3)
n2nd-3rd = 1

n1st-2nd = 0
n2nd-3rd = 2

FoN/BoN n1st-2nd = 0
n2nd-3rd = 3 (* = 2)

n1st-2nd = 4
n2nd-3rd = 7 (* = 3)

n1st-2nd = 0
n2nd-3rd = 1

FoN n1st-2nd = 1
n2nd-3rd = 0

n1st-2nd = 1
n2nd-3rd = 0

n1st-2nd = 0
n2nd-3rd = 0

* Frequencies of cases in which test wiseness was included into the explanations for a made prediction.

In most possible changes (n = 40) the initial prediction groups were maintained,
especially when BoN conceptions (n = 14; 35%) or a mix of FoN and BoN conceptions
(n = 11; 27.5%) were used initially in the prediction task. Changes of prediction groups
between the scenarios occurred fifteen times (37.5%). Most of the changes occurred from
prediction groups associated with BoN conceptions to prediction groups associated to a
mix of FoN and BoN conceptions (n = 7; 17.5%). In four cases (10%), a change from an FoN
or mixed-associated prediction to a more BoN-associated prediction occurred. In particular,
changes to and the maintenance of an FoN/BoN prediction group were related to the effect
of test wiseness. When participants maintained the superior prediction group, they also
maintained their explicit prediction group with one case as an exception.

4.2. Reactions to Anomalous Data

For each scenario, the participants rated their confidence in their prediction before
and after dealing with anomalous and supportive data sets on a percentage scale. The
difference between the two ratings represents the confidence change. Based on the found
differences, five options of confidence change were identified: steady confidence when
confidence remained above 50% on the rating scale, steady unconfidence when confidence
remained under 50% on the rating scale, confidence in abeyance when confidence remained
on 50% on the rating scale, increase to confidence when confidence changed from under 50%
to above 50% on the rating scale, and decrease to unconfidence when confidence changed
from above 50% to under 50% on the rating scale. Table 4 shows the frequencies of each
option across the three scenarios to which the participants gave answers.

The data-based scientific reasoning process with anomalous and supportive data sets
in the first scenario led to a wide range of responses regarding the confidence in the initial
prediction. While some participants maintained their initial rating of confidence, either as
confident or as unconfident, six participants increased their confidence in their prediction
after dealing with the data. Furthermore, three participants decreased their confidence,
and four participants were undecided about their confidence. In contrast, the frequencies
of the confidence change options for the second and third scenarios show a tendency to
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maintain the rated confidence, either as confident or as unconfident, after dealing with the
shown data sets representing population dynamics.

Table 4. Absolute frequencies of options for confidence change which occurred within the first,
second, and third scenarios.

Confidence Change Options N (1st Scenario) N (2nd Scenario) N (3rd Scenario)

Steady confidence 4 8 9
Steady unconfidence 4 5 4

Confidence in abeyance 4 4 (+1) 5
Increase to confidence 5 (+1) 1 1 1

Decrease to unconfidence 3 2 1 (+1)
1 One participant made two different predictions and rated them separately.

To check relations between confidence change and prediction group change, the
presented frequencies shown in Table 3; Table 4 were integrated. Data from Table 4 were
limited to the columns for the first and second scenarios because we assessed no further
change of the prediction group after participants answered the instrument for the third
scenario. Based on this data integration, we defined six possible reactions after dealing
with the shown anomalous and supportive data sets (Table 5).

Table 5. Absolute frequencies and percentages of reactions to anomalous data shown by the participants.

Reactions N

Confident confirmation 14 (* = 3; 35%)
Undecided confirmation 4 (10%)

Unconfident confirmation 7 (* = 2; 17.5%)
Confident modification 4 (* = 1; 10%)
Undecided modification 4 (* = 1; 10%)

Unconfident modification 7 (* = 3; 17.5%)
* Frequencies of cases in which test wiseness was included into the explanations for a made prediction.

Mostly, participants that maintained their prediction group were confident in their
prediction after data-based scientific reasoning (n = 14; 35%). Still, twenty percent of
participants maintained their prediction group even if they stated that they are unconfident
about their prediction. If participants changed the prediction group by modifying their
prediction between the first and second scenario or second and third scenario, they mostly
stated to be unconfident towards their initial prediction (n = 7; 17.5%).

4.3. Relation to the Proportion between Anomalous Data and Supportive Data

All participants gave predictions for each of the three scenarios that differ in the
proportion between presented BoN and FoN-associated data sets; hence, the proportion
of perceived supportive and anomalous data varies. The three scenarios were randomly
sequenced between the participants. Table 6 shows the frequencies of reactions to the
data in relation to the different proportions between supportive and anomalous data also
labeled as the anomalous data ratio.

For both types of reactions to the data, confirmation or modification of the initial
prediction, the differences between the frequencies per anomalous data ratio are rather
ambiguous showing no statistical difference. However, for confirmation, a tendency of an
increasing confidence when confronted with a higher or equal proportion of FoN-associated
data sets to BoN-associated data sets can be found.
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Table 6. Absolute frequencies and percentages of reactions to anomalous and supportive data shown
by the participants in relation to the anomalous data ratio within the three scenarios.

Reactions
Anomalous Data Ratio (BoN:FoN)

2:4 3:3 4:2

Confident confirmation n = 5 (* = 1) n = 6 (* = 2) n = 3
Undecided confirmation n = 2 n = 0 n = 2

Unconfident confirmation n = 2 n = 1 n = 4 (* = 2)
Confirmation (N = 25) n = 9 (* = 1; 36%) n = 7 (* = 2; 28%) n = 9 (* = 2; 36%)
Confident modification n = 2 (* = 1) n = 1 n = 1
Undecided modification n = 0 n = 3 (* = 1) n = 1

Unconfident modification n = 3 (* = 2) n = 2 (* = 1) n = 2
Modification (N = 15) n = 5 (* = 3; 33.3%) n = 6 (* = 2; 40%) n = 4 (26.7%)

* Frequencies of cases in which test wiseness was included into the explanations for a made prediction.

4.4. Role of Data-Based Reasoning Process

In Table 7, participants’ data-based scientific reasoning processes for the first and
second scenario are represented as cells in a two-dimensional system with their assignment
to the data appraisal groups in the one dimension and the assignment to the explana-
tion/interpretation groups in the other dimension.

Table 7. Assignment of participants’ data-based scientific reasoning processes into the two dimensions data appraisal and
data explanation/interpretation based on their answers for the first and second scenario. Participants’ reactions regarding
their initial prediction are highlighted with italic letters when assigned to confirmation (n = 25; * = 5) and bold letters when
assigned to modification (n = 15; * = 5).

New Conceptual Knowledge Initial Conceptual Knowledge
No Explanation

Only Plus Procedural and/or
Epistemic Knowledge Only Plus Procedural and/or

Epistemic Knowledge

Skeptical general Finn_1st
Sam_2nd

Skeptical
credibility

Alex_1st
Andrea_2nd
Andy_2nd

Skeptical
relevance

Jamie_1st
Quinn_2nd

Undecided

Andrea_1st
Bente_2nd *
Jona_2nd
Kay_2nd

Noah_1st
Noah_2nd

Bente_1st *
Chris_1st
Chris_2nd
Finn_2nd
Kim_1st
Luca_1st
Luca_2nd
Quinn_1st
Sam_1st

Nicola_2nd Nicola_1st

Not skeptical

Charlie_2nd
Jona_1st

Kim_2nd *
Mika_2nd
Toni_1st *

Alex_2nd *
Andy_1st

Charlie_1st *
Jamie_2nd *

Kay_1st
Mika_1st

Robin_1st *
Robin_2nd *
Sascha_1st
Sascha_2nd

Toni_2nd *

* Participants’ cases in which they used test wiseness as an explanation for their made prediction.
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Based on this, it is shown that most of the data-based scientific reasoning processes
leading to confirmation were characterized by an undecided or not skeptical appraisal
of the data combined with the use of new conceptual knowledge entities in addition to
the initial conceptual knowledge entities (n = 15; 60%). Generally, all data-based scientific
reasoning processes leading to confirmation were related to the use of new conceptual
knowledge entities when explaining/interpreting the data. For a deeper insight into
this finding, we first looked for the assigned superior prediction groups of these cases
(n FoN/BoN = 11; n BoN = 14). For those cases that maintained an FoN/BoN prediction
group, most of the presented data sets were not anomalous, hence, there was no need
for modifying the initial prediction as it was not induced by the processed data. This is
illustrated by the example of Sascha (Table 8).

Table 8. Illustration of the prediction group change and data-based scientific reasoning process of Sascha in the first scenario.

Prediction Group 1st Scenario Data Interpretation (Extract) Prediction Group 2nd Scenario

Mixed conceptions and
content knowledge
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population fluctuations.”
“In 2/3 of the areas, my prediction was the case.”

“Without further information about
environmental factors, my confidence regarding

my prediction will not increase.”

Stability conception
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Participants who modified their initial prediction showed different data-based sci-
entific reasoning processes. For describing these cases, the direction of modification was
considered (n FoN direction = 10; n BoN direction = 5). Almost all modifications of predictions
into the FoN direction were related to data-based scientific reasoning processes in which
new conceptual knowledge was used, shown by the example of Mika (Table 10).

Modifications of predictions into the BoN direction were related to data-based scien-
tific reasoning processes with a stronger focus on procedural or epistemic knowledge like
looking for statistical patterns or argumentations considering the probability of the data.
This is illustrated by the example of Nicola (Table 11).
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Table 10. Illustration of the prediction group change and data-based scientific reasoning process of Mika in the first scenario.

Prediction Group 1st Scenario Data Interpretation (Extract) Prediction Group 2nd Scenario

Stability conception
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“4 of 6 data sets are supporting my prediction,
because of a stable prey-predator relationship.”

“2 of 6 data sets show massive fluctuations.
Imbalance of prey-predator relationship could

also be influenced by other factors.”
“Unconfidence due to wrong assumptions and

the fact, that population growth cannot be
explained only by considering
prey-predator relationships.”

Divergent prey-predator
-relation conceptions
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Table 11. Illustration of the prediction group change and data-based scientific reasoning process of Nicola in the first scenario.

Prediction Group 1st Scenario Data Interpretation (Extract) Prediction Group 2nd Scenario

FoN conceptions and content knowledge
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some data represent extreme events that
were not included into my prediction.”

Harmonic prey–predator relation
conception
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However, for some cases of both reaction types of confirmation and modification, test
wiseness had an influence, indicating the tendency to answer the tasks of the instrument in
a way that was perceived as the expected one by these participants.

5. Discussion

In this study, our aim was to investigate how participants reason with supportive and
anomalous data in the context of population dynamics. In particular, we were interested in
the way they confirmed or modified an initial prediction after dealing with different data
sets represented as line graphs (Figure 2) by answering tasks coherent to the sub-processes
of a data-based scientific reasoning process (Figure 1). For this, we integrated analyses
with a product-based and a process-based view.

The first finding supports previous studies investigating conceptions about ecosystems
and populations dynamics [30,34,49]. Most of the participants explained their predictions
about the development of a population by using conceptions associated with the BoN
metaphor (Table 2). Some participants showed a mix of BoN and the scientifically more
adequate FoN metaphor-associated conceptions. Furthermore, it is shown that the frequen-
cies of used mixed conceptions increased after the first scenario while using pure BoN
conceptions decreased for making a prediction (Table 2). However, most participants main-
tained their initial predictions (Table 3). This finding supports the theory that conceptions
are not replaced by one another, but different conceptions for a phenomenon exist parallel
to each other, for example, naïve and scientifically adequate explanations for population
dynamics [35]. Which conception is used in a situation depends on the characteristics of the
situation itself, as this can inhibit or promote the prevalence of a specific conception [35].
In this study, participants’ conceptions associated with FoN might have been activated
with the presentation of the corresponding data sets in the first scenario.
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From this product-based view on the results of the study [3], we can distinguish
the reactions of participants to the presented data into the confirmation or modification
of the initial prediction. Both reactions are related to the confidence participants had
in their initial prediction (Table 5). While confirmation is by tendency related to a high
confidence in the initial prediction, modification mostly relates to a stated unconfidence
in the initial prediction. These findings are consistent with the results of the study by
Hemmerich and colleagues [20] in which they found that a decrease in confidence will
increase the probability to change the initial theory. However, they found evidence to
support the Incremental Change Hypothesis which states that the proportion of anomalous
data to supportive data will influence confidence change [20]. In our study, we found by
tendency opposite findings regarding the Incremental Change Hypothesis for the reaction
of confirmation (Table 6). More or an equivalent proportion of FoN-associated data sets
to BoN-associated data sets presented as line graphs led, by tendency, to an increased
confidence in the initial prediction. However, a higher proportion of BoN-associated
data sets had the opposite effect (Table 6). We assume two causes for this finding. First,
predefined FoN-associated data sets, that represent a chaotic fluctuation of the population
dynamic, were often interpreted in line with assumed harmonic-fluctuations and hence
were perceived as supportive data for BoN predictions. This observation fits with findings
of other studies which showed that some people tend to reinterpret anomalous data as
fitting with their initial expectation, and hence, perceiving no anomaly at all [8]. Second, in
44% of the cases in which the initial prediction was confirmed in a subsequent scenario,
the prediction was assigned into the superior prediction group FoN/BoN. Therefore, data
sets that might have been perceived as anomalous were mostly limited to the data sets
representing an extinction event. Furthermore, the modification of the initial prediction
does not show a relation to the options of confidence change. One important reason
might be that one third of the cases in which modification of the prediction occurred were
based on test wiseness. Therefore, the modification shown by the participants was not
motivated by processing the data in the scenario in a scientific way, but by copying the
data sets as predictions to fit an expected outcome in the tasks of the subsequent scenarios.
According to the finding for confidence change, this supports previous findings that show
how participants’ confidence is more related to the individual perception of acceptance by
other people than the ability to refer to evidential considerations [50].

However, besides the effect of test wiseness during the product-based analysis, we
do not know how the processing of the data sets during data-based scientific reasoning
relates to the reactions regarding the initial predictions. Hence, the analyses of the tasks
operationalizing the sub-processes of data-based scientific reasoning, with a focus on
the interpretational processes, gave a deeper insight. Based on this, we found that the
participants used mostly a combination of conceptual, procedural, and epistemic knowl-
edge to explain and interpret data. In addition, most of them seemed undecided or not
skeptical when appraising the data regarding relevance and credibility. Compared to
previous studies that investigated responses to anomalous data, our study design favors
responses which try to explain the data on a conceptual basis, like reinterpretation, peripheral
theory change, and theory change in the taxonomy of responses to anomalous data [8], or
use of theoretical concepts in the categories of justifications to hold or reject a hypothesis [9].
This is consistent with the methodological differences between our and the cited studies.
First, we explicitly instructed the participants to explain each data set and interpret the
data sets regarding their initial prediction. However, Chinn and Brewer [8] asked their
participants to rate the believability and consistency to an initial theory of the presented
data and explain their ratings. These instructions focus rather on the sub-process of data
appraisal; hence, a tendency towards response types that are more on ‘the data side of the
[explanation] model’ are expectable [24]. Second, in our study we presented second-hand
data represented as line graphs. Compared to Chinn and Brewer [8] who used textual
descriptions of evidence, the presentation of empirical data is typical of scientific domains.
Furthermore, the representation of data as text passages [8,17], charts [51], or graphs [52]
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will influence the ambiguity of the perceived anomality. For example, Masnick and col-
leagues [39] gave empirical support that reasoning with numerical data initiate and support
processes of conceptual change which need the activation of conceptual knowledge to
formulate alternative explanations. Ludwig and colleagues [9] let participants generate
data in laboratory settings or with computer simulations; therefore, they found a variety
of justifications to hold or reject a hypothesis that are connected to the methodological
issues of the data generation. This fits with findings of studies investigating the effect of
first-hand or second-hand data on scientific reasoning. Hug and McNeill [13] concluded
that first-hand data support the awareness of limitations and error in data, as well as
learners’ understanding of the role of data for knowledge generation in science. This is
also supported by findings from other studies, investigating responses to anomalous data
during experimentation and modeling activities [10,12]. Second-hand data, in turn, are
perceived as authoritative by learners and support more sophisticated reasoning skills
like identifying patterns, drawing conclusions, and considering content knowledge, due
to being often rather complex compared to first-hand data [13]. These conclusions were
supported by our findings that conceptual, procedural, and epistemic knowledge were
central during participants’ data-based scientific reasoning processes.

Nevertheless, sophisticated data-based scientific reasoning processes in which new
conceptual knowledge is used to explain data do not lead to a change of the initial prediction
per se. Hence, in almost all analyzed reasoning processes, new conceptual knowledge
was used independent from the subsequent reaction of confirmation or modification
regarding the initial prediction. Our analysis approach to integrate a product-based with a
process-based view on responses to supportive and anomalous data showed that initial
conceptions are strongly held and repeated even if alternative conceptions and explanations
are available but are perceived as less likely due to arguments based on epistemic and
procedural knowledge.

In general, scientific reasoning is proposed to rely on conceptual, procedural, and
epistemic knowledge independent of the used style of reasoning that may be associated
with data-based scientific reasoning or not [3]. Hence, our findings suggest that the
interdependency between these forms of knowledge might be of crucial interest for future
research on scientific reasoning. The role of conceptual knowledge is one aspect that has
been extensively discussed lately [53]. Furthermore, a lot of research on the nature of
science has been done, a construct that includes many aspects of epistemic knowledge and
is related to scientific reasoning skills [54]. However, data-based scientific reasoning might
be essential for most scientific reasoning styles, and it is important for all people to engage
in data-based argumentation and decision making in the context of socio-scientific and
controversial science issues [55].

The interpretation and generalization of the findings of this study have limitations
because of methodological decisions. Due to the amount of different data sources to enable
the integrational analysis, the sample size was limited. Hence, all interpretations made
from the data show tendencies that need to be tested in further studies. However, with this
mixed-method approach new hypotheses can be built and tested in subsequent studies. For
instance, it would be interesting to observe possible causes for the tendency to maintain an
initial expectation and its conceptual explanation, even if other explanations are known, but
maybe seen as less likely. In addition, it might be interesting to investigate how other factors
regarding data characteristics, besides the proportion between anomalous and supportive
data, relate to the data-based scientific reasoning process and their outcomes. This might
be moderated by a change of skepticism regarding the data. Additionally, we decided
to focus the analysis of this study on the prediction group changes and corresponding
data-based scientific reasoning processes, hence we presented the results of the data-based
scientific reasoning processes for the first and second scenario. Furthermore, our model of
data-based scientific reasoning encompasses and highlights the role of perception. This
study focused on the interpretational processes during data-based scientific reasoning;
however, the role of perceptual processes is still important for gaining further insights into

216



Educ. Sci. 2021, 11, 639

ongoing cognitive processes. Therefore, the analyzing of additional data assessed with
eye-tracking techniques [44] will be the focus of our future research.
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Appendix A

Table A1. Category System.

Category Subcategory Code Description

Type of
graphed

prediction

BoN Graph
The graph shows a trend that represents a stable population development. Stable is defined

as linear horizontal or around a mean value fluctuating lines. The fluctuation is mostly
uniform, and the amplitudes are low.

FoN Graph The graph shows an unstable, chaotic trend. FoN graphs include increasing, decreasing, and
chaotic or with high amplitudes fluctuating graphs.

Conceptual
knowledge

BoN
conceptions

Stability The general assumption of a stable development or that disturbances are
not expected is stated.

Human disturbances Human caused disturbances are named as reasons for instability.
Harmonic prey–predator

relationship (PPR) A harmonic regulation by prey–predator relationship is stated as a reason for stability.

FoN
conceptions

Instability An unpredictable/instable development is described.

Natural causes
Natural causes (e.g., disturbances like epidemics, fires, and invasive species; climate

changes; change of environmental resource; imi- and emigration) are described as reasons
for an instable development.

Inharmonic PPR Predator caused changes that may also cause extinction are stated.

Content
knowledge

Population models Biological models like capacity limit, logarithmic population development, or prey–predator
models (Lotka–Volterra) are named.

Patch dynamics Aspects of a heterogeneous ecosystem like naturally changing resources or imi- and
emigration of populations are named.

Disturbances The chance and importance of disturbances for development in ecosystems are named.
Biodiversity Aspects of biodiversity (also genetics) are named.

Environmental factors Change of biotic and/or abiotic factors are named.

Procedural
knowledge

Statistics The data are statistically treated (e.g., comparison of means/data points,
calculating/estimating mean values).

CVS Aspects of the importance to control variables are stated.
Patterns The identification of patterns in the data is stated.

Diagram
competence

Represent The data sets represented as line graphs are described superficially without
explaining the shown relation.

Syntactic
The data sets represented as line graphs are described by stating aspects of the shown

relation, trend or single data points, no connection to the phenomenon/conceptual
knowledge is given. Data sets are compared superficially.

Semantic
The data sets represented as line graphs are described by stating aspects of the shown
relation, trend, or single data points and a connection to the phenomenon/conceptual

knowledge is given. Data sets are compared with relation to the phenomenon.

Epistemic
knowledge

Limits of models Aspects of the limits or hypothetical nature of models are named.
Probability Aspects of probability and significance are named.
Credibility Aspects of credibility or believability of the data are stated.

Quality Aspects of quality of the data are stated (e.g., reliability of measurement,
replication, experimentation bias).

Others

Uncertainty Aspects of uncertainty (e.g., need for more information) are stated.
Test wiseness Experiences from previous tasks are stated as reasons for any task performance.
General prior

knowledge/Intuition
General prior knowledge (e.g., memorizing from schoolbooks) or intuition are stated as

reasons for any task performance.
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Abstract: Assessments of scientific reasoning that capture the intertwining aspects of conceptual,
procedural and epistemic knowledge are often associated with intensive qualitative analyses of
student responses to open-ended questions, work products, interviews, discourse and classroom
observations. While such analyses provide evaluations of students’ reasoning skills, they are not
scalable. The purpose of this study is to develop a three-tiered multiple-choice assessment to measure
students’ reasoning about biological phenomena and to understand the affordances and limitations
of such an assessment. To validate the assessment and to understand what the assessment measures,
qualitative and quantitative data were collected and analyzed, including read-aloud, focus group
interviews and analysis of large sample data sets. These data served to validate our three-tiered
assessment called the Assessment of Biological Reasoning (ABR) consisting of 10 question sets focused
on core biological concepts. Further examination of our data suggests that students’ reasoning is
intertwined in such a way that procedural and epistemic knowledge is reliant on and given meaning
by conceptual knowledge, an idea that pushes against the conceptualization that the latter forms of
knowledge construction are more broadly applicable across disciplines.

Keywords: scientific reasoning; biological reasoning; assessment; three-tiered assessment; Assess-
ment of Biological Reasoning

1. Introduction

Enhanced learning in science moves beyond memorization and recitation of funda-
mental concepts to encompass a much larger collection of sense-making activities that
resemble the cognitive, procedural, epistemic and social work of scientists [1–3]. Although
investigative activities occur in science classrooms in myriad ways, they often limit or
even neglect to deeply engage students in the explanatory and evaluative spheres of the
scientific enterprise that are essential to the development of scientific understandings [3–6].
Greater emphasis on engaging students in practices reflecting the investigative, explanatory
and evaluative spheres of science require supporting students in understanding not only
the conceptual elements involved but also the procedural and epistemic function of such
practices [3,7]. Such learning not only helps students participate in the development of
evidence-based arguments, explanations and models, but also helps them learn to evaluate
the quality of different elements of these products and how the processes involved in
developing them connect with each other [8,9]. Thus, science learning grounded in these
practices also necessitates engaging students in various forms of scientific reasoning where
they connect these different activities and products of science in complex yet coherent
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ways [10]. We define scientific reasoning as the process that encompasses “the skills in-
volved in inquiry, experimentation, evidence evaluation and inference that are done in the
service of conceptual change or scientific understanding” [11] (p. 172), a process that brings
together conceptual (i.e., content), procedural and epistemic aspects of knowledge [3,12].

Research on learners’ engagement in scientific reasoning activities demonstrates the
complexity of such processes, particularly as they engage in the evaluative and explanatory
aspects of science [3,12]. A multitude of factors can shape how students engage in scientific
practices that serve as manifestations of scientific reasoning. Scholars have pointed to the
need to create time and space in classrooms where students are afforded opportunities to
develop the epistemic agency required to engage in reasoning activities to construct knowl-
edge [13]. Research into students’ participation in episodes of critique highlight structural
and dialogical elements of argumentation activities reliant on scientific reasoning [14].
Studies of instruction centered around students developing and refining scientific models
demonstrate that the concepts that serve as the cognitive objects involved in their reason-
ing must have a robust quality before students can connect them to broader conceptual
elements of models [15]. Enhancing students’ reasoning using scientific models requires
engaging their creativity, while also supporting their ability to understand the multiple
goals that models can help achieve [16]. However, it is important to note that students’
proficiency with procedural aspects of scientific reasoning, including experimentation and
data analysis, are supportive of their learning of conceptual objects and epistemological
characteristics [17–19]. There is some evidence to suggest that the cognitive and motiva-
tional characteristics of students are also predictive of their ability to reason across broader
disciplinary contexts [5].

Much of the research into students’ scientific reasoning when engaged in scientific
practices involves intensive qualitative analytical approaches that rely on products resulting
from relevant activities [15,20,21]. The composition and quality of students’ arguments [21],
models [15,16] and constructed responses to open-ended questions [20,22] can be coded
by multiple raters to inductively develop thematic findings or deductively assess the
alignment of students’ products to theoretically derived frameworks. Such analyses can
be extended by or complemented through separate explorations of students’ reasoning as
they are engaged in various types of individual interviews, which are then qualitatively
coded [15,23]. Other researchers explore students’ reasoning in action, relying on various
analytical approaches employing discourse analysis [14] or observation protocols [6,17]
that still necessitate qualitative coding or scoring approaches amongst multiple raters.

Another influential aspect of these analytical approaches concerns the conceptual and
disciplinary contexts within which they occur. Many of the studies identified remain tied
to particular conceptual areas within specific scientific disciplines, including thermal con-
ductivity in chemistry [21], evolutionary theory or genetics in biology [22,23] and carbon
cycling and climate change in Earth science [15]. Limited studies exist where researchers
have employed more scalable, quantitative instruments that explore connections between
students’ scientific reasoning and broader disciplinary contexts [5], multiple reasoning
competencies and skills that can be employed internationally [24,25] and measure com-
petencies among various age ranges [26]. Assessments that do exist have been criticized
because they are not psychometrically sound [26]. Additionally, most large-scale measures
across various disciplines remain focused on students’ conceptual understanding, limit-
ing the inferential capacity of such work to gain understanding about students’ scientific
reasoning [27–30]. Thus, measuring students’ scientific reasoning across a discipline and
across dimensions of scientific reasoning through more scalable quantitative approaches
remains an ongoing challenge for science education research, something that limits the
research that can be conducted.

In light of these challenges, this study focuses on the iterative development and
validation of a multiple-choice instrument using qualitative and psychometrically sound
quantitative approaches aimed at assessing dimensions of students’ scientific reasoning
across ten focal topic areas within biology, entitled Assessment of Biological Reasoning
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(ABR). As part of a broader study exploring the influence of teachers sustaining productive
classroom talk on student sensemaking [31], the effort described here involved adapting a
previously used measure of students’ ability to construct scientific explanations through
two-tiered, open-ended questioning [17]. Using the instrument and previously analyzed
student response data, we developed a three-tier multiple choice assessment exploring each
biological topic through a conceptually oriented first tier, a procedural explanatory second
tier and a newly developed epistemic third tier exploring students’ reasoning supporting
their scientific explanations. The study presented below was guided by the following
research questions:

What does a three-tier multiple choice assessment measure about students’ scientific
reasoning across a variety of scenarios relying on fundamental biology concepts?

What are the affordances and limitations of using this approach to measure students’
scientific reasoning in biology?

2. Literature Review
2.1. Scientific Reasoning

Scientific reasoning, a central feature of scientific sensemaking, has suffered from the
absence of a coherent definition. Early conceptualizations of scientific reasoning present
reasoning as a process by which one can develop understandings of science by controlling
variables and making causal inferences based on the outcomes of those tests [32,33]. This
model, which closely aligns with one methodological approach of science, that of controlled
experimentation, represents an overly narrow view of science [34] and does not capture
the complex set of reasoning strategies encompassed in the coordination of theories (prior
knowledge and beliefs) and evidence needed to generate new knowledge [35,36].

The examination of how these strategies interact and inform one another requires that
one engages in the investigative, evaluative and explanatory spheres of science described
by Osborne [37] as the spheres that position students to address questions such as “What is
nature like?”, “Why does it happen?”, “How do we know?” and “How can we be certain?”
(p. 181). As students engage in exploring these questions, they make observations to
understand natural phenomena and to figure out why something happens by constructing
and testing models and explanatory hypotheses through empirical investigations and/or
data collection that serves as a basis for argumentation and critique, a process by which
students consider explanations, the strength of those explanations and how those expla-
nations are supported by evidence [38,39]. When students come to interact in all aspects
of these spheres, they are positioned to better engage in a more holistic representation of
reasoning which includes conceptual (i.e., content), procedural and epistemic aspects of
knowledge [3,12].

Discussions as to whether such reasoning is broadly applicable across domains or is
domain-specific exist. Shavelson [40] argued that scientific reasoning can be used when
considering everyday decisions. Chinn and Duncan [41] argue that such applicability can
be applied to evaluate the trustworthiness of claims about larger scientific issues (e.g.,
global climate change) presented by the scientific community. These arguments connect
with ideas that many of the reasoning aspects, such as a claim that must be supported by
evidence, occur across disciplines (e.g., history and literature).

Other argue that scientific reasoning is domain-specific. Samarapungavan [42] sug-
gests that epistemic reasoning is tied to the role of evidence (i.e., what counts as evidence
in a knowledge claim, to what extent does it count and why does it count) in bridging
conceptual knowledge with practice within a specific disciplinary context. Kind and Os-
borne [12] describe conceptual (i.e., content), procedural and epistemic aspects of scientific
reasoning to require domain-specific concepts or the ontological entities of a disciple to
answer questions about “What exists?”, the procedures and constructs that help establish
knowledge claims and answer causal questions about “Why it happens?” and the epistemic
constructs, values and applications that support the justification of these knowledge claims
to answer questions about “How do we know?” (p. 11).
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Whether domain specific or broadly applicable, scientific reasoning that connects
conceptual, procedural and epistemic aspects of knowledge push against the traditional
focus in K-12 education of correctly reciting information about content [43]. Instead, by
emphasizing these forms of knowledge, students are asked to demonstrate an understand-
ing of content in ways that integrate how they know what they know. For example, when
the object of reasoning is to understand whether species are living or nonliving things (i.e.,
conceptual), students must understand criteria for separating these species (i.e., procedural)
and they must understand the role that categorization serves in identifying distinguishing
characteristics of living from nonliving things and the particular constructs needed to
explain the phenomena (i.e., epistemic [12]).

2.2. Reasoning in Practice

Curriculum and instruction in recent years have focused on positioning students to
engage with the forms of knowledge construction involved in reasoning through such
activities as model-based and argumentation-driven inquiry. Zagori et al. [15] and oth-
ers [44–48] suggest that models serve as tools for reasoning because they are developed
based on prior knowledge, they are used to make prediction and to generate scientific
explanation about how and why a phenomenon works, they are informed based on data
collected through investigations and observations and they serve as artifacts of new under-
standings when the initial model is evaluated and revised. Zagori and her colleagues [15]
conducted a quasi-experimental comparative study to understand how modeling-enhanced
curricular interventions supported students’ model-based explanations (e.g., conceptual
understanding and reasoning). They found that students had statistically significant gains
in their model-based explanations about water and geosphere interactions as measured
through a pre- and post-unit modeling task when supported with a rigorous curricular
intervention that provided opportunities for students to engage in scientific modeling prac-
tices (intervention 2) compared to an intervention that provided only pre- and post-unit
supplementary lessons and tasks involving modeling (intervention 1). These findings were
based on a quantitative score for each student across five epistemic features of modeling,
including components (i.e., model elements), sequences (i.e., component relationships),
mapping (i.e., relationship of model to the physical world), explanatory process (i.e., the
connections articulated between cause and effect of system processes) and scientific princi-
ple (i.e., connections to underlying scientific theory). When examining these results further,
the researchers noted that the features of components and explanatory processes explained
the difference in the aggregated feature scores. While the scores of these particular features
helped explain students’ gains in model-based explanations, they provided less insight into
how students themselves conceptualized these and other features in their models. To fur-
ther understand the results, the researchers examined students’ scores on the components
and explanatory process features in conjunction with student interview data. One key find-
ing from this examination was that students’ models served as reasoning tools to explain
how and why water flows underground when students’ models included hidden elements
under the subsurface of the earth. Swartz and colleagues [47], similarly, found that models
can serve as reasoning tools in which students improve their understandings and develop
new knowledge that encompasses the explanatory mechanisms and relationships between
components of a phenomenon, findings that required the analysis of construct maps and
focus group interviews to understand how students construct and use models.

2.3. Assessments of Reasoning

We present these studies not only to acknowledge that efforts are being made in
science education to provide opportunities to engage students in scientific reasoning but
also to acknowledge the effort and work required to assess students’ reasoning capabilities.
Such assessments require qualitative examination of student work products (e.g., models,
drawings, written work and answers to open-response questions), student interviews, stu-
dents’ discourse and engagement in reasoning tasks and activities [4,14,15,17,23]. Similar
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effort and work is required in assessing students’ reasoning capabilities in argumenta-
tion, the results of which highlight that students often struggle to understand why the
construction and generation of claims based on evidence are necessary for science learn-
ing [49–51], to analyze and discern quality evidence to substantiate their claims [52,53] and
to provide justification for the relationship between claims and evidence to support their
argument [50–55].

These findings, while useful in helping us understand students’ reasoning capabilities,
many of which are tied to specific concepts within a scientific discipline (e.g., groundwater
and water systems), are not necessarily sustainable or scalable. In response to issues of scale
that go beyond just measuring conceptual understanding, a prominent feature of many
large-scale assessments [27–30], instruments to measure students’ scientific reasoning have
been developed [26]. In a review of 38 test instruments measuring scientific reasoning,
Opitz and colleagues [26] found that most tests were related to reasoning skills associ-
ated with hypothesis generation, evidence generation, evidence evaluation and drawing
conclusions within specific scientific domains, biology being the most common (N = 13).
They found that newer assessments, those developed from 2002 to 2013 (N = 27), measure
scientific reasoning competencies as a coordinated set of domain-specific skills as compared
to the older assessments (N = 11 developed from 1973 to 1989). Additionally, they found
that, of the newer assessments, only 17 reported reliability measures and fewer reported
validity measures, a finding that led the authors to call the “overall state of psychometric
quality checks” unsatisfactory (p. 92). Only 14 of the 38 tests were multiple choice and
most were of a closed format following a tiered structure.

Tiered assessments present interconnected questions such as two-tiered assessments
that measure content knowledge in tier 1 and related, higher order thinking and explanatory
reasoning in tier two [56–59]. For instance, Strimaitis and colleagues [60] developed a two-
tiered multiple-choice instrument to measure students’ abilities to critically assess scientific
claims in the popular media. The 12-item assessment presented students with two modified
articles (i.e., dangers of high heels and energy drinks) and asked them to evaluate aspects of
the claims presented in each article (tier one) and the logic (tier two) they used to determine
their response to tier one. Such tests not only provide opportunities to quantitatively
measure students’ underlying reasons for their answer choices but they also provide
opportunities to assess the alternative conceptions that many students hold related to the
particular topic being assessed [61].

While a two-tiered assessment can provide a diagnostic measure of student content
knowledge and their explanatory reasoning related to that knowledge, it can suffer from
over- or under-estimations of student conceptions [62] or alternative conceptions [63–65],
meaning it can fail to differentiate mistakes from such things as lack of knowledge or
correct answers due to guessing [66]. To account for these estimation errors, instruments
with three and four tiers have been developed. Three-tiered assessments add a third item
that provides a measure of the student’s confidence in their answer to the first two content
and reasoning items [63]. Four tier assessments add additional items to measure the test
takers confidence in their prior answers. In a four-tiered assessment, tier one measures
content knowledge, tier two measures the student’s level of confidence in their answer to
tier one, tier three measures reasoning for tier one and tier four measures the student’s
confidence related to their reasoning in tier three [64]. The inclusion of additional tiers
to assess confidence serves as a measure of the student’s belief in their own accuracy
and provides a level of validity to their answers [67]; however, these tiers do not provide
additional measures of a student’s higher order reasoning skills nor do they attend to the
interrelated conceptual, procedural and epistemic aspects of scientific reasoning that can
be difficult to assess quantitatively and are not often assessed in this way.

Informed by the previous work that has been conducted in terms of assessments of
students reasoning and motivated by a need for a psychometrically sound measure of
students’ content knowledge and reasoning skills in biology, this research study focuses
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on the development, fine-grained analysis and validation of a multiple-choice instrument
aimed at assessing students’ scientific reasoning across ten focal topic areas within biology.

3. Methods

This research project is part of a broader professional development study focused on
supporting biology teachers’ practice to engage students in scientific reasoning through
productive scientific discourse [31]. The goal of this assessment is to measure students’
explanation of biological phenomena. This assessment was developed based on an existing
constructed response assessment used to measure students’ conceptual knowledge in
biology necessary to evaluate scientific claims [17]. Major concepts in the discipline were
selected as foci for the questions, allowing the instrument to serve as an assessment of
student learning in both secondary and post-secondary biology courses. The topics that
the assessment addresses include cell theory, meiosis, mitosis, photosynthesis and cellular
respiration, nutrient cycling, species concepts, evolution and natural selection.

This assessment was designed to understand three dimensions of students’ biolog-
ical reasoning of the 10 focal phenomena listed above operationalized within the four
styles of reasoning put forth by Kind and Osborne [12]. These styles include experimental
evaluation, hypothetical modeling, categorization and classification, and historical-based
evolutionary reasoning, and represent key practices in scientific knowledge generation.
Experimental evaluation relates to empirical investigations to establish patterns, differ-
entiate objects and test predictions. Three focal topics fall within this style, including
respiration, natural selection and photosynthesis. Hypothetical modeling relates to the
construction of models. The focal topics of Medelian genetics, mitosis and evolution fall
within this style. Categorization and classification relate to ordering based on variety and
taxonomy. Biological species concept and cell theory align with this style of reasoning.
Lastly, historical-based evolutionary reasoning relates to the construction of historical
derivations of explanations and development, which include meiosis and nutrient cycling.

The three dimensions of biological reasoning were operationalized within each of
these styles of reasoning, including conceptual knowledge (i.e., object of reasoning), pro-
cedural knowledge (i.e., use of conceptual knowledge required for reasoning within a
specific context) and epistemic knowledge (i.e., ability to justify conclusions based the
application of that knowledge). To allow for this structure, each question was framed with
an introductory scenario targeting the focal phenomenon with relevant imagery, including
graphics, tables, or charts. The first item of the 3-tier question was directed at understand-
ing students’ knowledge of specific biological concepts relevant to the focal phenomenon.
The second question was aimed at students’ use of knowledge, or their application of
biological concepts to develop explanations for the focal phenomenon. Finally, the third
question asked students to apply reasoning for their explanation by asking them to indicate
how relevant biological concepts lead to the explanation of the focal phenomenon. Each
tiered question had four answer choices that included a correct choice and distractors,
which were developed from expert responses and/or known student responses from
previous assessments.

Assessments of this nature should be validated for research purposes with the par-
ticipant populations that they are intended to be used with. Although multiple views
exist on the specific procedures that should be followed for developing educational testing
instruments [68–70], a shared consensus suggests that varied pieces of evidence should be
collected to demonstrate the properties of an instrument and the validity of the instruments’
measurements. Figure 1 provides a graphic identifying the multiple lines of evidence we
developed to demonstrate the validity of the ABR. For construct validity, we relied on the
input of experts to develop the instrument items and assess how well items measured the
targeted, theoretically grounded biological constructs. Experts were comprised of five of
the six authors and one high school biology teacher. Of the five authors, three hold two
post-secondary degrees in biology and two hold post-secondary degrees in biology and in
education. One of the experts holding a post-secondary degree in biology and in education
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was also a teacher, represented as teacher #2 in Section 3.1.4. Additionally, the high school
biology teacher (Teacher #1), who administered the assessment in her class (discussed in
Section 3.1.4), has both a teaching credential and a doctorate in biology. For criterion-related
validity, we recruited participants from different populations that theoretically differ in
their learning about the focal biological concepts. Finally, we conducted several procedures
that improved and demonstrated the reliability of the developed items, including their
interpretability by participants, analysis of distractor responses and the internal consistency
of the items. We also examined the factor structure of the respondent data to explore how
the scores from the instrument should be interpreted.
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3.1. Data Collection
3.1.1. Exploration of Wording and Coherency Issues

Two rounds of initial testing, including self-recorded read-alouds (see Section 3.1.2)
and focus group (see Section 3.1.3) interviews, were conducted to identify possible wording
and coherency issues in the 10, three-tiered questions. Each round consisted of a qualitative
focus on students’ understanding of what each question was asking and the ideas they
used to answer the question.

3.1.2. Read-Aloud Interviews

The initial round of testing occurred through self-recorded read-alouds taking approx-
imately from 30 min to 1 h. Seven participants took part in individual read-alouds; one
individual had completed high school Biology Honors, three participants were high school
biology students and the other three were enrolled in a post-secondary General Biology
Laboratory course for non-biology majors. During the read-aloud, each participant read
each test item aloud, discussed how they answered the item (e.g., how they arrived at the
right choice and why they eliminated certain answer choices), they identified any parts
they found difficult or confusing and they made suggestions for item improvement.

3.1.3. Focus Group Interviews

Two virtual focus group interviews were conducted through Zoom. Two participants,
one high school Biology and one post-secondary General Biology Laboratory student, took
part in the first focus group, which took 2 h and 20 min. During this focus group, the
participants answered, annotated and discussed 6 of the 10 questions, including Mendelian
genetics, natural selection, nutrient cycling, cell theory, photosynthesis and mitosis. Be-
cause of time limitations, the participants in this group answered and made notes on the
remaining four questions not addressed in the meeting within one day of the interview. The
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second focus group interview had six participants—one high school Biology Honors, two
high school Biology and three post-secondary General Biology Laboratory students—and
took 2 h and 15 min to conduct. The sequence of the questions was changed for this inter-
view to ensure that feedback for the items that the first group did not have time for in their
focus group were examined. In this case, participants answered, annotated and discussed
questions related to meiosis, evolution, species concepts and respiration before answering
the six questions that the first group started with (i.e., Mendelian genetics, natural selection,
nutrient cycling, cell theory, photosynthesis and mitosis).

Both focus group interviews were led by the first author. She followed the same
protocol for each interview. In this protocol, participants were introduced to the general
structure of the assessment (i.e., three-tiered), they were provided a link to an individual
Google document with the assessment questions and then they were asked to work through
one three-tiered question individually before coming back together to discuss the question
as a group. Students were asked to annotate questions indicating the correct answer, the
pieces of the questions that helped them arrive at their answer and to mark any parts
that were confusing. Once all students completed the question, the interviewer asked all
participants to describe how they solved the problem, the essential pieces of the question
that helped them answer it and whether they found any parts of the question or the
language of the question difficult, challenging, or confusing. This pattern continued until
students cycled through all or most questions. At the end of the interview, participants
were asked to discuss if they noticed any changes in how they thought about or read the
item for each question and if there were any directions or markers that they wished they
had been provided when answering the questions.

3.1.4. Large Sample Data Collection

After completion of the qualitative analysis of the assessment, the instrument was
administered to a larger population of students in two rounds to identify if there were any
problematic items that potentially needed adjustments. Each round required students to
complete the assessment and these data were analyzed for internal consistency.

The first round of analysis focused on examining student assessment data from two
teachers (Table 1), one who taught high school Advanced Placement (N = 45 students)
and International Baccalaureate Biology classes (N = 15 students) and one who taught a
post-secondary General Biology Laboratory course (N = 27 students). The purpose of this
analysis was to determine if there were any problematic items and if any items needed to
be adjusted. This round also allowed for an examination of item distractors to ensure that
they aligned with the internal consistency analyses.

Table 1. Participant information for round 1 data collection.

Teacher School Type Course Title Number of Students

1 high school Advanced Placement Biology 45
1 high school International Baccalaureate Biology 15
2 post-secondary General Biology Laboratory 27

The second round of testing focused on completing final factor analysis, as well as a
reexamination of distractor and consistency data. In the distractor analyses, any item with
more students selecting an incorrect item choice than the correct item choice was flagged
for follow-up review. For internal consistency, Cronbach’s alpha was calculated for each
scale and alpha values for the scale if each item was removed. We looked for any items
where the deletion of the item would increase the scale reliability. More details on the
analysis and results can be found in Sections 3.2 and 4. For this purpose, data from three
teachers’ classrooms collected at the end of the semester were included in the data set. Data
were collected from two high school biology teachers (Table 2), one of which participated
in the first round of quantitative data collection who taught Advanced Placement (N = 72
students) and International Baccalaureate (N = 20 students) Biology courses and one teacher,
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denoted as teacher #3 in Table 2, who taught Advanced Placement Biology (N = 7 students).
Additionally, data were collected from teacher #2 who participated in the first round of
quantitative data collection. Seven post-secondary students enrolled in her General Biology
Laboratory took the assessment in this round.

Table 2. Participant information for round 2 data collection.

Teacher School Type Course Title Number of Students

1 high school Advanced Placement Biology 72
1 high school International Baccalaureate Biology 20
2 post-secondary General Biology Laboratory 7
3 high school Advanced Placement Biology 7

3.2. Data Analyses
3.2.1. Qualitative Analyses of Individual and Group Interviews

Transcripts were produced for each individual read-aloud and focus group interview
for the relevant analyses. For the individual read-alouds, the transcripts were analyzed
by the team to identify areas that needed to be clarified, changed, or improved in the
assessment. The research team reviewed the participants’ responses to the assessment
items and the reflective questions concerning clarity of the text and conceptual coherence.
As each item and question set was reviewed, the research team identified specific similar
challenges mentioned by at least 3–4 students. Similarly, transcripts of the focus group
responses for each question set were reviewed. With these transcripts, any issue that
maintained the focus of the group’s discussion for a significant amount of time was
given priority. For the analysis of the individual read-aloud interviews, the research team
maintained a stronger emphasis on clarity of the text and how well participants were able
to interpret the instrument. For the focus group analysis, greater attention was given to the
participants’ grasp of the concepts and explanations being provided by the instrument. For
both analyses, the researchers collectively identified patterns in the participants’ responses
and negotiated the manner in which they were addressed as a group. These changes are
discussed further in Section 4. Changes occurred after each round of analysis and the
revised assessment was used in the next round of data collection.

3.2.2. Quantitative Analyses of Students’ Responses to the Instrument

For both rounds of quantitative data analysis presented in this paper, the analyses
were conducted using a classical test theory (CTT) approach. The purpose of the first
two round of testing for this instrument was to provide preliminary validity evidence
before the team conducted large-scale data collection. CTT analyses are more appropriate
for smaller sample sizes and provide baseline evidence for the instrument’s validity so
that the team could begin large-scale data collection for future item response theory (IRT)
models with greater confidence in the instrument. The first round of quantitative data was
analyzed to assess how well the questions and responses were interpreted by students.
For this round of analysis, the research team primarily focused on the distractor analysis
and the percentage of students selecting the preferred response. The items that resulted in
participants responding with distractor choices for over 50% of the sample were reviewed
for clarity. These metrics were determined using SPSS 27. After completion of this analysis,
three items were adapted in order to improve performance, where text was altered to
clarify distinctions between popular distractor responses and preferred responses. Further,
this analysis explored how students in the different courses performed on the assessment
to understand the instrument’s ability to distinguish between theoretically distinct groups.

The analysis of the second round of quantitative data involved several procedures
aimed at assessing the reliability of the instrument as a measure of students’ scientific
reasoning in biology. The second round of quantitative data analyses focused on the
several psychometric properties of the items in the assessment, including item difficulty
and discrimination, distractor analysis, internal consistency analysis and exploratory factor
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analysis. For distractor analysis, the frequencies of the responses to all four options
of each item were calculated using SPSS 27. Any items with distractors which had a
higher percentage of students selecting a distractor over the correct answer were flagged
for further review. In addition to distractor analysis, we also calculated item difficulty
(percentage of students obtaining the item correct or p-value) and item discrimination
(a point-biserial correlation between the dichotomous variable for obtaining the item correct
and the student’s summed score on the rest of the items). The results of the item difficulty
and discrimination analyses are presented in Table 3. To evaluate the internal consistency
of the instrument, we calculated Cronbach’s alpha to measure internal consistency using
SPSS 27 for the overall instrument and for each of the tiers in the assessment. Finally, to
test for the dimensionality of the instrument, we conducted an exploratory factor analysis
(EFA). Dichotomously coded variables were used, with 0 indicating that a student obtained
the item incorrect and 1 representing that the student obtained the item correct. The EFA
was conducted in Mplus 8.4 [71], using the weighted least squares mean and variance
adjusted (WLSMV) estimator.

Table 3. Item Difficulty and Discrimination.

Item Number Difficulty
(p-Value)

Discrimination
(Point-Biserial Correlation)

Tier 1

Q1.1 0.533 0.603
Q2.1 0.598 0.574
Q3.1 0.411 0.599
Q4.1 0.673 0.287
Q5.1 0.411 0.457
Q6.1 0.411 0.428
Q7.1 0.645 0.596
Q8.1 0.626 0.607
Q9.1 0.617 0.515
Q10.1 0.514 0.511

Tier 2

Q1.2 0.561 0.383
Q2.2 0.579 0.429
Q3.2 0.495 0.292
Q4.2 0.262 0.260
Q5.2 0.514 0.368
Q6.2 0.355 0.233
Q7.2 0.439 0.405
Q8.2 0.673 0.339
Q9.2 0.383 0.282
Q10.2 0.533 0.328

Tier 3

Q1.3 0.542 0.448
Q2.3 0.607 0.463
Q3.3 0.336 0.406
Q4.3 0.234 0.193
Q5.3 0.477 0.570
Q6.3 0.430 0.432
Q7.3 0.439 0.349
Q8.3 0.589 0.511
Q9.3 0.533 0.469
Q10.3 0.430 0.197
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4. Results
4.1. Evidence for Construct Validity—Initial Item Development and Review

As stated previously, the ARB instrument arose from the adaptation of a previously
developed and validated instrument aimed at measuring students’ ability to construct
scientific explanations using core biology ideas [9]. That instrument consisted of two tiers of
open-ended, constructed response questions aligned with several theoretical frameworks
describing fundamental biological knowledge [10]. This assessment was reviewed by
several biologists and biology educators and found to have translational validity, in that all
the experts agreed that the instrument measured important concepts and explanations in
biology, thus also supporting the construct validity of the ARB. Experts developed ideal
answers for the constructed response version that were used to develop the scoring rubrics
for the open-ended version of the first- and second-tier questions. For the current ARB
instrument, the expert-generated rubrics served as the guide for developing the correct
multiple-choice responses for all of the first- and second-tier questions in the ARB. Further,
the authentic student responses from data collected in previous studies were reviewed
by the research team to develop the distractor responses for the first and second tiers.
To establish construct validity for the third-tier questions and responses, a new panel of
experts, all who had a minimum of two post-secondary degrees in biology and advanced
study in education, reviewed the third-tier questions and agreed they assessed biological
reasoning. The third-tier responses also aligned with theoretical descriptions of how core
science ideas are used to develop scientific explanations through reasoning [8,72]. Taken
together, these efforts support the construct validity for the ARB instrument.

4.2. Evidence for Validity—Outcomes from Qualitative Interview Stages

The analysis of the two rounds of interview data led to several changes in the original
iteration of the instrument. One major revision resulting from the initial round of think-
aloud individual interviews entailed creating a relatively standardized structure for each
tier in the question set for each topic area. The original question stems for the first and
second tiers mirrored the question stems from the original constructed response instrument
and the third-tier stem followed a general structure of “Which of the following best
describes your reasoning for the choice you made in the previous question (#2)? (2nd tier
question)”. However, participants experienced difficulty in distinguishing the intent of
the third-tier reasoning question from the second-tier question asking them to develop an
explanation of the presented scenario using the focal concept from the first tier. Confusion
between developing an explanation or the role of evidence in argumentation with the
underlying reasoning has been noted in other studies, thus the students’ struggle was not
surprising [8,73]. To address this issue, all second-tier questions, which originally varied
greatly in structure, were aligned more closely to a general form of “Use your knowledge
of X (Focal concept in 1st tier) to select the statement that best explains Y (Focal scenario
for each topic).”

This revised standardized structure was used during the focus group interviews
and this set of students described the structure to be clear and logically presented. For
instance, they discussed how the first-tier questions required that they pull from their prior
knowledge about the concept, the second-tier ones required that they apply that knowledge
to a scenario that they considered to have real world applications, which were sometimes
novel to them, and the third-tier ones required that they describe their reasoning for that
choice. In addition to this group understanding this structure and feeling comfortable in
answering the question based on this structure, they also identified that the consistency of
this structure helped them understand the nature of the assessment and the connection
between the tiers as they progressed through the questions.

Further issues emerging from the analysis of several rounds of interview data broadly
related to the semantic structures of the items and potential responses. Several of these
issues surfaced as participants considered several of the distractor answer choices. Both
individually and in the focus groups, some distractor answer choices seemed too attractive
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when compared to desired answer choices. As the research team reviewed these items,
the appeal of these distractors followed one of two trends. The first trend involved the
distractor response using more generalized language while mainly differentiating through
one or two critical terms from the desired response, which typically used slightly more
technical wording. The slight variation in ease of comprehension led to the selection of the
distractor over the desired response. To address this trend, the responses were edited to
limit the level of technicality of each response and to expand the critical elements of the
distractor to be more apparent. The second trend in participants’ preference for certain
distractor responses related to variation in the volume and length of text in the possible
responses in the questions. If a particular response was longer and greater in word volume,
participants typically deliberated more about their appropriateness and selected those
distractors, even if the desired response had less length and volume. To address this trend,
the length and volume of all responses for each question set were revised so that they were
relatively equal to each other.

One last structural issue that arose for particular question sets involved the nature
of the graphics used to accompany the focal scenario for each question set. Specifically,
the graphics used in the questions about cell theory, mitosis, photosynthesis and cellular
respiration went through several revisions to enhance the clarity of the image and provide
a more nuanced representation of the scenario. The photosynthesis and cellular respiration
question sets rely on the same experimental scenario using indicators to note the production
and use of carbon dioxide in test tubes with plants and animals. The original image used
involved black and white graphics only at the beginning of the questions. However,
after some revisions, participants engaged in more thoughtful reasoning when color was
added to the graphics and the answer choices were aligned to repeated elements from the
overarching graphic. As these two questions rely on the evaluation of experimental data,
rather than already analyzed forms of data, these revisions appeared to be particularly
helpful in supporting participants’ engagement with those questions.

4.3. Initial Evidence for Reliability—Outcomes of Quantitative Data Collection and Analyses

For the first round of quantitative data collection, the research team analyzed the
results to determine how well the revisions to the textual structure and complexity of
the responses supported participants selecting the desired response compared to the
distractors. From this analysis, two issues arose that required attention to certain questions
and responses. The first issue involved trends in responses to several first-tier questions,
which asks respondents to select an answer that best described or defined the focal science
concept for the question set. The analysis showed that, for four of these first-tier questions,
participants selected one or two distractor responses at levels that were 10–25% greater
than the desired response level. Upon review of these first-tier questions, all four followed
a similar structure of asking a “negative” question, such as “Select the answer that does
NOT represent the products of meiosis.” Based on this pattern in the larger data set, the
research team chose to revise those first-tier questions to a more affirmative format, such
as “Select the answer that best represents the products of meiosis.” The second issue
concerned further challenges involving high similarity between the desired response and a
particular distractor for three questions, which were revised further to distinguish between
the two selections.

The second round of quantitative data collection provided more participant responses
than the first round of data collection, while also allowing all course groups to complete
their course of study in biology. The analyses for this data set aimed to explore several
psychometric properties of the instrument to provide preliminary evidence for reliability
and validity of the instrument. The first analytical step involved further distractor analysis
for each item. The results from this analysis demonstrated that only two items had response
rates which were significantly higher for a particular distractor (>10%) than the desired
response. These particular items included the second- and third-tier questions for the
question set involving cellular respiration. For both questions, the more popular distractor
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response involved a critical error that misrepresented the role of oxygen in the process of
cellular respiration, where O2 was treated as a reactant rather than a product of the process.
Understanding this specific role of oxygen is a key element of a sophisticated understanding
of cellular respiration and more advanced reasoning through the experimental scenario
presented in the question. Thus, the research team chose to retain these items in their
forms as the distractor can help discern learners with more advanced biological reasoning.
Only two other distractor responses garnered a slightly higher response rate than their
corollary desired response item (<10%), but the review of those items did not demonstrate
a compelling need for revision. All other distractors did not reach a response level higher
than the desired correct response for the other questions. See Table 3 for a summary of
item difficulty and discrimination.

The next psychometric analysis involved assessing the internal consistency of the
instrument as a whole and of the three different tiers of question types by calculating a
Cronbach’s alpha for each subset of the data (see Table 4). For all items together, Cronbach’s
alpha was 0.905. When looking at the individual tiers within the assessment, the first-
and third-tier subsets met the commonly adopted threshold of 0.7 [74]. The second tier
had an alpha value slightly below 0.7. Follow-up analyses of item statistics for the second
tier showed the deletion of any one item would not have increased the overall internal
consistency for this tier, indicating that no item was problematic enough that deleting it
from the instrument increased the overall reliability. The reduced internal consistency for
the second-tier questions was not unexpected, as these questions are the most unique indi-
vidually due to the different scenarios presented for each biological topic. Thus, the nature
of the appropriate explanations for each scenario involved different reasoning processes,
including experimental evaluation, application of analogical models and comparison of
classification structures [12].

Table 4. Internal consistency for instrument and question tiers (Cronbach’s alpha).

Overall Instrument 1st Tier 2nd Tier 3rd Tier

0.905 0.830 0.672 0.744

To test for initial dimensionality of the instrument, we conducted an EFA in Mplus
version 8.4 using the WLSMV estimator. For this, dichotomously coded variables were
used, with 0 indicating that a student obtained the item incorrect and 1 representing that
the student obtained the item correct. The resulting scree plot is presented in Figure 2.
To interpret the scree plot, we first identified the elbow point in the plot, indicating the
number of factors at which point factors stop explaining significant portions of the variation
and only considered factors to the left of that point significant. Our plot has an elbow
point at 2 factors, indicating that only a one-factor model should be considered, based on
these data. The plot provides preliminary evidence for a one-factor structure of the item
response data. With an elbow point at factor 2, the plot indicates that only the first factor
explains a significant amount of variance. For this analysis, two- and three-factor structures
were considered. A three-factor structure would be plausible considering the conceptual,
procedural and epistemic characters of the different question tiers. A two-factor structure
would be plausible in light of the intertwined nature of the procedural and epistemic tiers
with respect to the responses. The result of the one-factor structure is intriguing in light of
scientific reasoning, as it lends support to the notion that all three elements of reasoning are
necessary and possibly inseparable for an instrument in this format. However, we consider
these factor analysis results to be preliminary due to the small sample size available. In the
future, we plan to distribute the model to a large sample of students and we will conduct a
more thorough examination of dimensionality through both exploratory and confirmatory
factor analyses as preliminary stages to our planned IRT models.
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4.4. Evidence for Concurrent Validity

Another outcome from the analyses of the larger sets of data is the development
of preliminary evidence for the instrument’s ability to distinguish between groups of
learners who are theoretically distinct. The instrument was administered at the beginning
and end of a spring semester course sequence for all three groups. However, the group
of participants in the International Baccalaureate Biology course completed a previous
semester of biology instruction in the fall. Due to the school schedule structure, a semester-
long course in this school equaled what is typically considered a year of typical instruction
in most schools. Students in the Advanced Placement Biology and post-secondary General
Biology Laboratory course were just beginning their continued study of biology, thus
having to rely more on remembered prior knowledge to complete the instrument. That
said, the post-secondary students, accepted for study at a research-level university, would
be reasonably expected to have at least a slightly more developed conceptual capability
in the sciences than Advanced Placement Biology students, who mostly had received
introductory-level instruction in life science a few years prior. Thus, it is reasonable to
expect the International Baccalaureate Biology students to score better than the other course
groups, as they experienced the most recent direct instruction in biology. Further, due to
their advanced experience with schooling, it was expected that the post-secondary students
would score better than the Advanced Placement Biology students. Disaggregating the data
by the different course groups confirmed these expectations, as seen in Table 5, offering
evidence to support the concurrent validity of the instrument’s ability to distinguish
between theoretically different groups.

Table 5. Average percent correct responses across all items by course group, round 1 data.

Advanced
Placement Biology

International
Baccalaureate Biology

General Biology
Laboratory

Average mean correct 0.35 0.69 0.42

Standard deviation of
mean correct 0.10 0.18 0.18

To test for significant differences in the average scores across these groups in the first
round of data collection, we ran a Kruskal–Wallis one-way ANOVA in SPSS version 27.
The non-parametric Kruskal–Wallis was selected because the data in our sample were
not normally distributed, which would have resulted in a violation of assumptions in
a traditional one-way ANOVA. The test indicated that, overall, there were significant
differences between the groups (H(2) = 23.130, p < 0.001). Post hoc tests revealed signifi-
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cant differences between Advanced Placement Biology and International Baccalaureate
biology (p < 0.001) and between International Baccalaureate Biology and General Biology
Laboratory (p = 0.001), but no significant difference between General Biology Laboratory
and Advanced Placement Biology (Table 6).

Table 6. Average percent correct responses across all items by course group, round 2 data.

Advanced
Placement Biology

International
Baccalaureate Biology

General Biology
Laboratory

Average mean correct 0.43 0.70 0.50

Standard deviation of
mean correct 0.10 0.15 0.24

As in round one, we examined the average scores across the different course types to
establish concurrent validity for the ARB using the second data set. To test for significant
differences in the average scores across these groups, we ran a Mann–Whitney U test in
SPSS version 27. The non-parametric Mann–Whitney test was selected for round two data
because the sample size for General Biology Laboratory was not large enough to test for
statistical significance and the data was not normally distributed, consistently with round
one data. The Mann–Whitney test indicated a significant difference between the scores of
Advanced Placement and International Baccalaureate Biology (U = 314.5, p < 0.001).

5. Discussion

Using the collection of evidence described above, we assert that the preliminary
evidence supports the Assessment of Biological Reasoning as a valid assessment instrument
for measuring high school students’ reasoning capabilities across several major biological
topic areas. The resulting ABR assessment consists of 30 questions divided into 10 question
sets connected to 10 biological topic areas, with each set including three tiered questions
with four answer choices each (see Supplementary Materials for the full instrument).
The three-tiered nature of the question sets align with the three recognized dimensions
of scientific reasoning [3,12], including a conceptually oriented question comprising the
primary object of reasoning, a procedural oriented question that engages the student
in developing scientific explanations for the scenarios grounding the question and an
epistemically oriented question exploring how a respondent uses the focal science concept
to construct their preferred explanatory response. Using a validation framework stemming
from the work by Trochim [70] and used in previous validation work by the authors [9],
we collected an assemblage of evidence that demonstrates the construct validity, criterion
validity and reliability of the ABR instrument.

Through the development of the ABR, the research team gained some insight into
the nature of students’ reasoning in biology. When developing the instrument, we were
not sure if the multiple tiers of questions within a set would be reliant or independent
of each other, as each set had a specific focus on a specific ontological/conceptual com-
ponent but each tier of questions focused on a different component of reasoning. This
question regarding the interactive nature of the components stems from descriptions that
primarily place domain specificity within the ontological/conceptual component, while
the procedural and epistemic components of scientific reasoning have more domain gen-
eral characteristics [12]. Based on the EFA analysis conducted with the largest sample of
responses, the one-factor structure confirmed for the ABR provides preliminary evidence
that domain-specific/general distinctions among the three components are not borne out.
Rather, although procedural and epistemic dimensions of reasoning may broadly be ap-
plied across disciplines, as all science disciplines involve experimental design, modeling
and classification, our results suggest that those reasoning components are given meaning
by their ontological element. That is, investigating students’ ability with certain scientific
reasoning activities must pay attention to the ontological/conceptual components of the
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activity. This conclusion resonates with other studies that demonstrate that conceptual
awareness can improve the overall quality of the verbal argumentation that students
engage in, but it is important to indicate that students’ epistemic practices can improve
separately from conceptual awareness [17]. Additionally, it is important to note that the
ABR is mute regarding this point, as the design of the ABR negates this possibly, even if it
is sound, given the design of this standardized measure.

The analyses of students’ thinking and reasoning during the qualitative data collection
also support the intertwined nature of the three tiers of questions within each set. Consider-
ing the outcomes described above, an interesting pattern emerged when we examined the
questions for which students’ expressed difficulties—particularly interpretive difficulties
as opposed to simple unfamiliarity with the concept. In the instances, when students
encountered interpretive difficulties with a particular question set, we came to understand
the students’ self-generated descriptions of the focal concepts became a standard by which
the students’ judged the phrasing of the other response items. It seems that students
assessed the language in the responses for the second and third tier through their personal
understanding of the focal concepts. This pattern offers an explanation for why the nega-
tively phrased first-tier questions in a previous iteration of the ABR did not produce high
correct response rates. This relationship can also help understand how the role of graphics
changed and enhanced students’ ability to reason through the scenarios, as they provided
a conceptual anchor for those questions that could have assisted students in navigating
the second- and third-tier questions. The importance of conceptual clarity for respondents’
reasoning resonates with findings of earlier studies that speak to the importance of the
quality of the cognitive objects involved in students’ reasoning [15].

6. Limitations and Implications

The research team recognizes that the ABR instrument and the current validation
efforts do have some limitations that should be acknowledged. First, the assessment, while
focusing on key biology topics covered in high school and post-secondary education is
limited in nature because of this focus. As our results suggest, the ontological/conceptual
component of the assessment are interconnected such that the application and reasoning
components cannot be disentangled. As such, the ABR instrument is limited in use to
biology classes.

Second, the nature of the assessment, while allowing the quantitative assessment of
scientific reasoning to be conducted in a controlled format that can be uniformly imple-
mented and easily scored in a short amount of time for a large sample of students, has its
limitations [75,76]. One such limitation is that the multiple-choice format is constrained and
does not assess reasoning that may occur in what Chinn and Duncan [41] call “the wild”.
By this they mean that multiple-choice and, even, assessments with open-ended questions
do not capture students’ reasoning that is observable during performance tasks, inquiry
activities, or through direct open-ended, person-centered questioning (questions related
to students’ ideas) that can be employed by teachers in situ [41,75]. Additionally, while
multiple choice tests may have advantages over open-response questions, which often
also assess a student’s writing ability, they are open to issues of guessing and test taking
strategies such as using clues provided by particular words or statements in a question [75].

Third, as a multiple-choice style assessment, there are valid critiques that the wording
of response items requires students to comprehend and use language that may not be
familiar or representative of their thinking [77]. However, we endeavored to make the
language of the response items more accessible by generating many of them from previously
recorded student responses and iteratively refining the instrument based on qualitative
data from interviews. Similarly, the language used in the question sets is relatively complex
and may present challenges for some students. The inclusion of the graphics for each
question works to support the interpretability of the questions, but those may not be
sufficient and further scaffolding to support students’ interpretation of meaning may
necessitate further investigation of the ABR. Although the sample sizes for this study were
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not overly large, further research being conducted will provide a much larger data set that
will help advance the validation of the ABR and the findings related to measuring students’
biological reasoning.

Much of the groundbreaking work into students’ reasoning in science has been neces-
sarily content-embedded and heavily descriptive, often relying on participant observations
and analysis of students’ work products and discourse [14,15,20,21]. Given the intensive
nature of such investigations, such work is simply not scalable, something that limits the
advancement of this line of research. In response to this and to the need for psychometri-
cally sound assessments [26], the ABR represents a contribution to research into secondary
students’ reasoning in biology, as it is domain- and grade level-specific for measuring
students’ reasoning in secondary level biology. Although some in-depth assessments of
students’ reasoning with certain biological topics already exist [22,23], extant assessments
across the discipline of biology are primarily limited to measuring conceptual understand-
ing [28]. Thus, the introduction of the ABR represents an advanced tool for the field to
use to measure more complex learning and reasoning in secondary biology classrooms,
something needed if the field is to move toward larger scale studies involving students’
biological reasoning.
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Abstract: Models are at the core of scientific reasoning and science education. They are especially
crucial in scientific and educational contexts where the primary objects of study are unobservables.
While empirical science education researchers apply philosophical arguments in their discussions
of models and modeling, we in turn look at exemplary empirical studies through the lense of
philosophy of science. The studied cases tend to identify modeling with representation, while
simultaneously approaching models as tools. We argue that such a dual approach is inconsistent,
and suggest considering models as epistemic artifacts instead. The artifactual approach offers many
epistemic benefits. The access to unobservable target systems becomes less mysterious when models
are not approached as more or less accurate representations, but rather as tools constructed to
answer theoretical and empirical questions. Such a question-oriented approach contributes to a
more consistent theoretical understanding of modeling and interpretation of the results of empirical
research.

Keywords: science education; scientific reasoning; models and modeling; philosophy of science

1. Introduction

Imagine a chemistry teacher trying to explain the volume contraction that occurs
when water and ethanol are mixed using the famous demonstration of mixing the corre-
sponding volumes of lentils and beans. Since the contraction of the liquid mixture is a
non-trivial consequence of a change in hydrogen bonding length and is not mechanistically
explainable by smaller molecules that fill the gaps between larger molecules, the lentil-bean
demonstration is clearly misleading. Moreover, another major source of confusion is also
simultaneously introduced: molecules are identified with solid spheres while imposing
the same identification on single atoms. How is a learner supposed to know when it is
appropriate to apply such a structural simplification of volume contraction?

One would expect scientists to be prepared to point out the analogies and simplifica-
tions used in the bean-lentil model by stating the assumptions involved. Yet, presenting
such assumptions is not a trivial task. Not only should the empirical researchers be able
to articulate their own theoretical framework, e.g., psychological constructs or observa-
tional premises. Moreover, they would simultaneously need to refer to the specific subject
on which, e.g., learning groups acquire knowledge or skills. Instead of such explication
work, a representational perspective is often adopted, where the notion of representation
is, implicitly or explicitly, understood as a structural or other kind of similarity relation
between a model and its supposed target system. But how is one able to understand the
lentil-bean example according to such a representational notion of modeling? Indeed, the
representational approach cannot easily make room for the fact that models are intrinsically
tied to human made inferences, actions, and interpretations, and not just to the natural
objects, processes, and systems they study.

Apart from chemistry education e.g., [1–4], the representational approach to modeling
is also widely present in other fields of science education research e.g., [5–7]. In its reliance
on the representational approach to model-based reasoning, science education research
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does not differ too much from the mainstream philosophical discussion of modeling (e.g.,
Weisberg [8]). However, one peculiarity of the science education research literature studied
in this article is that the representational conception of modeling features in them side-by-
side with the notion of models as tools. By contrast, in philosophical literature, approaching
knowledge and human action from the perspective of tool use has traditionally been used
to criticize the representational conception of knowledge [9,10]. Another idiosyncrasy of
science education research is its tendency to move in between scientific models and students’
supposed mental models, as if they were comparable entities. Such an understanding of
model-based reasoning has its advantages, for example, in zooming in on the subject matter
in question and the students’ understanding of it, yet it turns out to be highly problematic
in practice.

An unreflective use of the notions of a model and representation, causes problems
both in empirical research and in classrooms. If empirical researchers try to discuss their
studies within their research communities without properly laying out the assumptions
underlying their respective understanding of models, especially when studying scientific
reasoning processes, they run the risk of losing common ground, on something that has
empirically been observed to be the case [11,12]. Confusions ensue, not because the
researchers would have conducted erroneous experiments or miscalculated their statistics,
but rather because the results arrived at are not on par with the underlying theoretical
assumptions concerning modeling. Likewise, if science teachers are using models merely
as representational depictions free from ontological and other assumptions—and not as
tools for addressing, e.g., a particular scientific question—it may cause confusion in their
learning groups. Such confusions may arise even if every part of the lesson was correct in
view of the content to be taught, as well as regarding the level of knowledge of the students.

Given the centrality of the notion of a model in both research and teaching [13–15],
we call for a more coherent and explicit treatment of it. With such a theoretical goal in
mind, we will argue for the artifactual approach to models [16,17], through presenting and
analyzing exemplary empirical and theoretical studies from the field of science education
research. The artifactual account approaches models as concretely built artifacts that are
constructed by employing various kinds of representational tools. Central for the epistemic
functioning of models, according to the artifactual account, is their constrained design that
facilitates the study of particular theoretical and empirical questions, and learning from
models through their construction and manipulation [18].

In what follows, we study some exemplary studies on modeling within the field of
science education research, discussing their degree of internal consistency regarding their
respective theoretical frameworks and empirical findings. We then present the artifactual
notion of models, and conclude our paper with suggestions on how to think about modeling
as a question-oriented activity that employs concrete artifacts for scientific reasoning. Such
an artifactual perspective, we claim, can lead to better practice, and stronger mutual
understanding within the field.

2. Model-Based Reasoning in Empirical Science Education Research
2.1. Scientific Reasoning in General

Empirical studies in science education research discuss scientific reasoning in various
ways. Scientific reasoning is often typically linked to (formal) argumentation and delineated
between the theoretical extremes of domain-generality and domain-specificity [19]. Such
a middle-ground between the domain-generality and domain-specificity appears well-
justified. If, on one hand, scientific reasoning were necessarily tied to specific domains,
a general path of doing science would be blocked. On the other hand, too exclusive an
attention to domain-generality could lead to general theorizing with (nearly) no contact
to domain-specific knowledge. This is often the case with many modeling endeavors that
apply cross-disciplinary model templates, such as various network models, to different,
often distant domains [20,21].

In addition to the domain-specific dimension of reasoning, the empirical literature
has identified general patterns within reasoning processes on the basis of interviewing
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researchers about their work, or empirically testing learning environments [22–24]. Such
patterns of reasoning are not bound to specific subjects [25–27], but are instead hypothesis-
driven, and supposed to work iteratively. They are usually implemented as follows:
first, a question is elicited in a research-oriented learning environment and a preliminary
hypothesis is formed; second, a suitable scientific investigation is planned and conducted;
third, the collected observational or experimental data is processed and referred back to the
prior hypothesis; followed finally by the assessment of the hypothesis with respect to the
original question, generating new questions and hypotheses, and leading to an iterative
process of inquiry.

The aforementioned patterns emerge from different, subject-oriented studies in science
education cf. [28–30]. They range from kindergarten [31] and preschools [32,33] to higher
education [34]. Given the vast diversity of these implementations, one may ask whether
there is a generalizable perspective from which scientific reasoning skills, e.g., formulating
adequate questions for respective investigations, could be approached in learning and
teaching sciences. One such perspective is provided by model-based reasoning.

2.2. Model-Based Scientific Reasoning

Models are an active area of research within science education research. A host
of different perspectives on models and modeling have been introduced and further
developed, starting from a focus on visualization [35], to presenting a broad, comprehensive
overview of different perspectives on modeling [14].

A substantial part of the discussion of models and modeling in the literature on
scientific reasoning aims at straddling the divide between general modeling methods and
subject-specific applications. In this regard, models have often been considered as mental
or abstract entities, that express formal relations between propositions [36,37], as heuristic
devices serving to generate concrete analogies [38], or connecting disciplinary knowledge
to data, thus generating explanations [39]. When turning to the generalization-oriented end
of the field, assessments of competencies with regard to model-based reasoning [12,40,41]
focus on the reasoning processes of learners. As such, the role of models as tools for
reasoning within research processes is understood as competency-based cf. [42], and it
is presently under vast empirical investigation, since it relates closely to international
educational standards, thus shaping the teaching and learning of science.

Within science education research, the notion of “model-being” has offered a promi-
nent approach to the ontology of models [43]. This approach draws together a collection of
different perspectives, incorporating also considerations from the philosophy of science,
and providing the foundation for the competence model of model competence [44,45]. The
related epistemological notion of models is agent-based [46,47]. The agent-based perspec-
tive addresses the circumstances in which a model is referred to as such: who, where, when,
and to what end does a human judge an object as being a model [48,49]? Despite several
empirical educational studies e.g., [50–52], the understanding of models in science [53]
and science education [11] remains diverse. Such diversity in understanding has led to
an astonishing [44] as well as surprising [43] diversity in model classification schemes. It
is, therefore, crucial to further examine the concepts, terminologies, and differentiations
native to science education in order to pave the way for a more unified analysis of models
and model-based reasoning in science education research [54].

2.3. Examples from Science Education Research

In this section, we will discuss the incoherent treatment of models in science education
research, using empirical examples. We begin by presenting two detailed cases, followed by
shorter analyses as well as a discussion of a well-received theoretical approach to models.
On the basis of our observations on these studies, we call for a more consistent use of the
artifactual notion of models. The studies chosen are exemplary in that they are careful in
articulating how they understand the notion of a model, and modeling as a particular kind
of theoretical reasoning. However, their conclusions seem partially inconsistent in that their
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theoretical starting points do not necessarily align with their empirical findings, a problem
that we trace back to the authors’ representational stance towards models and modeling.

2.3.1. Models as Generative Tools

Schwarz et al. [5] provide an interesting case of a partially inconsistent treatment
of models in that they argue for understanding models as generative tools at the level
of their empirical analysis, yet defining models in a more traditional representational
and abstract way. The authors report a learning progression among primary and middle
school students where the more sophisticated way of using and understanding models
is to view them as tools that “[. . . ] can support [the students’] thinking about existing
and new phenomena.” (p. 640), instead of understanding models as literal illustrations
of what a single phenomenon is like. At the higher end of this progression, students are
able to construct multiple models of related phenomena and appreciate their respective
advantages and weaknesses.

Similarly, Schwarz et al. elaborate on students’ metamodeling [27,55,56] knowledge:
the ability of the learner to elucidate inconsistencies which, in turn, can help her and her
teacher productively intervene in learning processes, e.g., by turning the inconsistencies
into starting points for conceptual change [57]. Such metamodeling knowledge concerns
the learner’s understanding of models and modeling in science, and progresses from
considering models as “[. . . ] good or bad replicas of the phenomenon [. . . ]” (p. 647) to
that of viewing them as explanatory and changeable tools, whose changes are crucial for
developing new questions. The same goes for the elements of scientific practice, i.e., what
learners actually do within the boundaries of their tasks [41,58,59].

In spite of their practice-oriented approach to models as tools, Schwarz et al. de-
fine a model as “[. . . ] an abstract, simplified, representation of a system of phenomena
that makes its central feature explicit and visible and can be used to generate explana-
tions and predictions.” (ibid. p. 633). Moreover, the authors distinguish models from
other representations:

“It is important to clarify that not all representations are models. Models are
specialized representations that embody aspects of mechanism, causality, or
function to illustrate, explain, and predict phenomena.” (ibid. p. 634).

In referring to the function of models, the authors ascribe to the agent-based account
of models (to be discussed more in detail in the sections below). Consequently, it is the
users’ judgment about the proper means to serve a particular purpose that is crucial for
something to function as a model. Yet, at the same time, the authors still hold on to the
realist [60] understanding of models as objective representations of systems/phenomena.
Moreover, Schwarz et al. assess the students’ success in terms of what they think about the
respective phenomena, leading to the question of whether the modeling activity would not
be considered successful if a phenomenon were not recovered correctly. But the correctness
of the students’ supposed mental content would be hard to assess if, say, the targeted
system in question were on a submicroscopic level. Or, alternatively, would the modeling
activity be successful if a learner “[. . . ] consider[ed] how the world could behave according
to various models” (ibid. p. 640)?

The definition of models proposed by Schwarz et al. tries to bridge the gap between
models as representations and models as tools, while in their empirical study the students’
progression clearly proceeds from naive realist correspondence between a model and
a phenomenon towards more reflective uses of models as tools for scientific reasoning.
Moreover, their notion of models as abstract representations of phenomena does not seem
to suit the concrete examples of the models produced by the students in the empirical
study. It is these concrete models rendered by different representational means – pictures,
symbols, and language – that researchers focus on (in addition to students’ commentary)
and not any abstract mental models within students’ heads.

On the one hand, Schwarz et al. consider representing, or rather depicting, phenomena,
and iteratively revising for better or alternative explanations and predictions as a central
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defining aspect of a successful modeling cycle (“elements of practice”). On the other hand,
the authors also refer to models as means of eliciting What If? questions (“metaknowledge”).
These aspects are not mutually exclusive. However, without explicating the connection
between realistically conceived representational aspects of models, and the progression
towards a more instrumentalist understanding of them, the epistemological stance of the
authors remains unclear. Finally, the authors treat both visible (e.g., a shadow emerges),
as well as non-perceivable (e.g., particle movement) target systems, as representable on
the same scale. It appears to us that these problems concerning the interpretation of
their empirical study are due, at least in part, to the unexplained, and to some extent
inconsistent, notion of models with which the authors operate. While we have thus
detected inconsistencies between the different parts of the study of Schwarz et al., we wish
to emphasize that we do not contest their empirical study or the learning activity reported,
but rather the concessions that their instrumental view on modeling nevertheless makes to
representational realism.

2.3.2. Model-Based Reasoning and NOSI Views

As a second example, we analyze a study from chemistry education research [61] that
attempts to link a three-dimensional framework of scientific reasoning competencies (i.e.,
observing as theory-driven activity, experimenting as manipulation of variables, and using
models as tools for inquiry) with views on the nature of scientific inquiry (the so-called
NOSI views). Models are important for testing “[. . . ] hypotheses about an original object
[. . . ].” (ibid. p. 2720). The reference to original objects is crucial for the authors’ definition
of models:

“The model serves as [a] substitute object [. . . ] for an original object when these
objects are not available—due to ethical or practical reasons, for example. Stu-
dents use the model not only to derive a hypothesis or to explain a phenomenon
but also to derive data about the original object with regard to their research
questions. They test models against data on the underlying original object and
reflect the validity of their assumptions.” (ibid. p. 2719)

We would like to highlight that Reith and Nehring simultaneously present models
both as tools, i.e., human-shaped constructs, and as surrogates for non-perceivables, i.e.,
structural representations. Similarly to Schwarz et al., this conflation results in an inconsis-
tent view on models. Reith and Nehring claim that a “naive view” on models considers
a model “as an exact copy of reality” (ibid. 2720). Such a view supposes that a surrogate
could directly represent atomic features, e.g., by using lentils and beans. An “informed
view”, in contrast, “[. . . ] [carries] out investigations on models. [Scientists] test hypotheses
about an original object using models” (ibid. p. 2720). However, the authors do not
explicitly delineate the circumstances under which a model object is a mere copy of reality
(i.e., a direct representation), or when to refer to it as an appropriate tool to represent as-
sumptions about a target system. Moreover, we wish to point out that introducing models
as surrogates for original objects, such as assumed submicroscopic entities, runs the risk of
reifying these entities in principle, thus falling back on a naive view time and again. Such
a view would make the example of mixing legumes as a representation of the respective
submicroscopic system to learn something about volume contraction irrelevant at best.
The vegetables can hardly represent smaller/larger molecules with regard to canonical
mechanistic explanations, i.e., changes in hydrogen bond length. The artifactual notion of
models does not start from assuming such a possibility of direct representation, thus lifting
the argumentative burden when it comes to the supposed structure of non-perceivables.
However, if a teacher would like to introduce how scientific modeling works, surrogate
reasoning on the basis of the simplified legumes-molecules correspondence does not add
value to the learning environment unless this correspondence is further elaborated. In such
a case, understanding the hypothetical nature of the model would be the very point of
the exercise. If the same teacher would like to convey canonical knowledge about how
molecules are supposedly structured, then the lentil-bean demonstration is inappropriate,
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given the numerous and partly contradictory portrayals of submicroscopic entities in, e.g.,
chemistry textbooks. With this in mind, it would be helpful if science education researchers,
exemplified by Reith and Nehring as well as our other cases, refrained from constituting
their understanding of modeling via a dyadic relation between models and target systems.
We will elaborate the artifactual alternative in the respective sections.

2.3.3. Further Studies on Modeling

The works of Schwarz et al. and Reith and Nehring provide examples of the many
cases within the field of science education research where, in our view, more consistency
in how models are approached and defined would have strengthened their educational
implications. In this section, we give a brief overview of some other studies, representative
of the current state-of-the-art in the field of science education. What they have in common is
that they tend to take a largely unarticulated representational stance towards models, while
simultaneously treating models as tools. A more reflective and differentiated approach that
pays heed to different kinds of representational tools and their epistemic affordances would
have been more appropriate. Such an approach would help addressing, e.g., the difficulties
science learners face in acquiring generalizable knowledge when they are confronted with
symbolic abstract representations that are presented as mere surrogates for unobservables
(e.g., particles, forces or pedigrees) [62,63].

Cheng et al. [6] present models as epistemic tools “[. . . ] to represent [students’ and
teachers’] ideas, or to coherently explain the mechanisms underlying target events.” (2019,
p. 5). The notion of a model as an abstract representation seems to provide purchase both
to students’ and teachers’ ideas and to the real-world target systems. Abstraction plays
a crucial role in both cases, as it allows treating the subjects’ ideas as mental models, as
well as scientific models as abstract theoretical representations of mechanisms underlying
the phenomena. However, a mental model of a theoretical idea and the allegedly correct
representation of a submicroscopic target event are two different things. Additionally, if
models are considered as abstract representations, why would a student be assessed as
a more advanced modeler if she were able to visualize submicroscopic mechanisms, i.e.,
sketching what is considered a structurally correct depiction of magnetic field lines? In our
view, this would testify to the students’ ability to employ cultural representational tools
correctly, which is not accounted for when models are conceived of as abstractions.

Luca and Zacharia [64] neither clearly distinguish the students’ supposed mental
models from models of external real-world target systems, nor pay due attention to the
importance of the external representational tools with which models are constructed. They
point out that “[. . . ] models can be both concrete and conceptual (i.e., models we create
in our mind) in nature, in our case we refer to external/physical models.” (p. 195). Yet in
their discussion of model construction, students are supposed to “[. . . ] mentally bring the
model’s content/elements together in order for the model to take shape (have a structure).
This cognitive process takes place immediately before learners start constructing their con-
crete artifacts/models.” (ibid.). Consequently, models reduce to the “[. . . ] externalization
of the components and underlying mechanism of a phenomenon/system”. How did the
students have access to the underlying mechanics of a phenomenon/system in the first
place? Only by collecting observations and experiences, as Louca and Zacharia seem to
suggest? This question becomes all the more puzzling as the authors judge the accuracy
of a model in terms of how well it represents the features of a respective phenomenon.
The study focuses on phenomena at the macroscopic level, yet purports to apply to the
representation of the underlying (unobservable) mechanisms as well.

Likewise, when turning to chemistry-focused studies, the question of how a learner
could gain competency in handling the problem of unobservable structures remains chal-
lenging. Stieff et al. [7] work on what they label as concrete molecular models, i.e.,
three-dimensional ball-and-stick objects for grasping spatial structures of submicroscopic
targets. The authors stress the importance of the empirical investigation of representational
competence, which they measure by a test of translating between different chemical depic-
tions of molecules, e.g., translating from the Newman projection to the Fischer projection.
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However, such an approach already presupposes a structurally adequate relation between
the projections and their respective target systems and thus, elucidates how the partici-
pants are able to express and communicate certified knowledge about the atomic scale
(ibid., p. 345).

Oliva et al. [65] studied the competence of modeling among secondary students
learning about chemical change. Various kinds of representational tools were used (fruits
and bowls, Lego pieces, balls of plasticine, discs of colored cards, etc.) “[. . . ] as mediators
between the students’ intuitive understanding and school science models.” (p. 751). The
authors used several different qualitative and quantitative methods of data analysis. They
delineated modeling as an activity employing a range of inferential and reasoning processes
that require the students to be able to “[. . . ] interpret, handle, and express phenomena
and situations using as certain variety of signs, whether propositional or iconic in format
[. . . ]” (p. 753). In their analysis, Oliva et al. tend to conflate mental models and scientific
models, in that they relate the students supposed “intuitive models” to “school science
models” implying that the application of the same notion of a model to both enables their
comparison. Moreover, despite their attention to actual representational tools, they invoke
a meta-representational perspective to draw together and evaluate multiple representations.
Yet, they do not explicitly attempt to state the conditions under which such an evaluation
would be judged to be adequate or successful. Provided that Oliva et at. also subscribe to the
models-as-tools approach, it would have been advantageous to address the contributions
of different kinds of representational tools in producing scientific understanding as well,
rather than focusing only on their supposed unification at the meta-representational level.

2.3.4. Models of and Models for

The theoretical discussion of models within science education research attempts to
navigate between models as tools and models as representations, but not always entirely
consistently. Gouvea and Passmore [47] make a distinction between models of and models
for, following Fox-Keller [66], who views models in molecular biology as tools for both
theoretical reflection and instruments for material intervention. Gouvea and Passmore
argue that “[. . . ] the models of account [of models] often comes alongside models for,
which makes it seem like an alternative on equal footing” (ibid. p. 57). They are critical of
such attempts, advocating for approaching scientific models as tools for understanding,
explanation, and prediction, especially in classroom settings. In their view, the models of
accounts “[. . . ] are less able to support students’ epistemic agency in doing science because
they tend to treat models as representations of what is known rather than as tools to be
used in generating new knowledge.” (ibid, p. 50).

Although Gouvea and Passmore are focusing on science classrooms, they also put forth
a more general agent-based conception, inspired by the pragmatic accounts of scientific
representation within philosophy of science. While we find their agent-based conception
of modeling interesting, and also deserving of philosophical attention, some clarification
of what they mean by representation would be needed. However, despite their stated
intention of approaching models primarily as tools, “i.e., models for a purpose”, their
model appears to take the “representational axis” of models of on par with the “epistemic
axis” of models for cf. [46]. As a consequence, the authors distinguish the representational
relationship between a model and “a phenomenon”, from the understanding of seeking
questions and other epistemic aims of the model. To be sure, Gouvea and Passmore
underline that the “[. . . ] two axes are interdependent and inform and constrain each other.”
(ibid. p. 53). The epistemic agents, in their view, “[. . . ] specify how models will represent
phenomena [. . . ]” (ibid.), while the representational axis concerns the “[. . . ] respects and
degrees the model represents the features of some phenomenon.” (ibid.). Yet, given that
they do not explicate the notion of representation, it is difficult to tell what they in fact are
committed to concerning the representational axis of their account. Gouvea and Passmore
claim that their agent-based conception of a model is based on the work of Suárez [67,68]
and Giere [46], but these pragmatic accounts would not separate the representational axis
from the epistemic axis. Instead, the epistemic aims of the model users are an integral
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part of Suárez’s and Giere’s analyses of representation (i.e., the “representational axis” of
Gouvea and Passmore).

In order to see what is at stake more clearly, in the next sections we will provide a brief
overview of the philosophical discussion of models and representation. This overview is
followed by our suggestion as to how the artifactual account of models as tools should be
framed, such that it does not get subsumed by the representational account. Two things are
especially important in this regard. First, although models are constructed by using repre-
sentational tools, the systems specified by these tools do not need to accurately represent
any real-world target system. They can also compose fictional, or merely hypothetical sys-
tems, addressing various possibilities and impossibilities [69]. Second, the crucial challenge
for any account that seeks to approach models as tools is to explain how they could provide
scientific understanding without falling back on the representationalist assumption that
they do so in virtue of representing some real-world target system more or less accurately.

The artifactual account seeks to account for these challenges by focusing on the
scientific and empirical questions models are constructed to answer, instead of supposing
that models would need to have any determinable and fixed relationship to some real-world
target system. From this perspective, models of are models for.

3. Contemporary Philosophical Perspectives on Models

As we have discussed above, there appears to be a tension in the science education
literature about whether to consider models as tools or representations. The studies
discussed above treat models as tools while simultaneously adhering to an unexplained
notion of representation. This bifold strategy tends to lead to incompatibilities at both the
theoretical and empirical levels. That is precisely what the artifactual account of modeling
aims to avoid.

We have found that while the notion of models as epistemic tools has gained traction
in science education research [55,70], the notion has also been used inconsistently. However,
the problems involved do not certainly concern just science education researchers. They are
present also in those contemporary philosophical accounts of models and representation
that approach the epistemic value of modeling in terms of representation, yet also invoke
pragmatic aspects, i.e., factors relating to the use of models (e.g., [71,72]).

For example, Chakravartty [72] distinguishes between the informational and func-
tional dimensions of modeling. The functional dimension of models refers to their capacities
to support scientific reasoning, while the informational dimension relies on representation,
conceived loosely as some kind of similarity between a model and its target system. Accord-
ingly, the functional dimension presumes the informational dimension. Chakravartty asks:
“how [...] could such [inferential and reasoning] practices be facilitated successfully, were it
not for some sort of similarity between the representation and the thing it represents—is it
a miracle?” (ibid. 201). We suspect that the same kind of reasoning motivates the attempt
of science education researchers to merge the notion of models as tools with the idea of
representation: if the world behaves as if it were made of invisible particles, why not accept
the inference to the best explanation (and the world it depicts)?

The question posed by Chakravartty is thorny indeed as we will discuss in the next
sections, and yet, it quite obviously tends to put the cart before the horse. At least when it
comes to scientific practice, models are frequently tools for probing what kinds of systems
and causal processes might bring about particular kinds of phenomena. Consequently, they
are tools for finding out what might be the case instead of representing what is known to be
the case (though successful models may gain the status of certified knowledge over time).

3.1. Perspectives on Representation

The idea that modeling has something to do with representation has a long history
within philosophy of science, yet Suárez [73] finds out that “the modeling attitude” of both
the British (e.g., Thomson and Maxwell) and German scientists and philosophers (e.g.,
Helmholz, Hertz, and Boltzmann) of the 19th century, were in fact nuanced. Apart from
relying on similarity, resemblance, and analogy, the scientists in question were acutely
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aware, according to Suárez, about the relativity of knowledge. Boltzmann’s Encyclopedia
Britannica entry, “Models”, is especially interesting in this regard [74]. On one hand, he
writes about models as “representations in thought” and on the other, he invokes the
material and tangible objects that scientists have created for assisting their thoughts.

This practice-oriented tradition of considering models as concrete things or their
mental images later on became entangled with the semantic and syntactic conceptions
of theories with their notion of a model derived from mathematical logic. The resulting
“model muddle” [75], does not, however, mean that the notion of a model itself would be
vague cf. [47]. Rather, the word model is used in various ways, in different contexts. As
our focus is on science education, we limit ourselves to those philosophical discussions
that explicitly concern models in scientific practice. Two contemporary discussions are of
special interest in this regard: the pragmatic accounts of representation, and the accounts
of modeling that instead of concentrating on the representational relationship, address
model construction. The latter accounts study how scientists learn from building and
manipulating hypothetical systems, frequently called models, without supposing that
such model systems would accurately reproduce some features of some target systems
of interest.

3.1.1. The Pragmatic Account of Representation

The pragmatic accounts of representation aim to provide an alternative to the so-called
substantive accounts of representation. Such substantive accounts—i.e., structural or other
less formal similarity accounts—seek to explain how models give us knowledge by asking
how a model represents its target system. The answer is provided by the relationship
between the constituent parts and relations of the model and those of its supposed target
system. In other words, such accounts analyze representation in terms of a structural, or
some other kind of similarity relation, between the model and its target. Yet, the structuralist
and similarity accounts of representation have been rather conclusively criticized within the
recent philosophy of science discussion: they have been found lacking when it comes to both
their logical and practical dimensions [76,77]. As a result, several structuralist philosophers
have attempted to amend their accounts of representation by either accommodating some
specific criticisms concerning e.g., the direction of representation [78], or by extending
their account of representation by including pragmatic elements with it [79]. On the other
hand, many philosophers have increasingly embraced a pragmatic approach to models
and representation.

To put it bluntly, the basic issue is this: the pragmatists of scientific representation
claim that it is not possible to analyze the representational relationship without making the
users and their aims an integral part of it. In terms of Gouveau and Passmore’s agent-based
conception of models, this would mean that the representational and epistemic axes would
coalesce instead of the remaining separate dimensions of modeling. For example, Giere [80]
analyzes scientific representation as a four-place relationship: “S uses M to represent W for
purposes P”, where S is an individual scientist, group of them or a scientific community, M
is a model, and W stands for an “aspect of the real world, a (kind of) thing or event.” This
form can be translated into the following, more informal statement: “Scientists use models
to represent aspects of the world for various purposes” (ibid. p. 747). In other words, the
users’ goals become a part of the definition of representation and as a result, one cannot
analyze representation without taking them into account. Suárez [67,68] also grounds his
account of representation in the representing activity of modelers. His inferential account
of representation has two parts: the representational force and the inferential capacities.

The representational force of a model is due to the practice of scientists using it as a
representation of an intended target. Yet, representational force alone is not enough to make
any model a scientific representation. Consequently, in order to function as a scientific
representation, the model must possess inferential capacities enabling a competent user to
draw valid inferences regarding the target.

What is important, then, to note about the aforementioned pragmatic accounts of
representation is their minimal nature: a model represents a target system if it is used to
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represent. That in turn, according to Suárez, is based on the inferential capacities of the
model, and some norms concerning valid inferences. What those inferential capacities
and norms consist of, Suárez does not say. As a result, pragmatists do not say anything
substantive about representation, as they do not invoke any deeper constituent relation,
such as similarity or structural mapping, between the parts of the model and the parts of
the target. What pragmatists are in fact saying is that a model is a representation, if it is
used as such. And such a notion of representation does not, by design, explain why models
give us knowledge, something that the substantive accounts attempted to do.

The question then becomes: How can one understand how models give us knowledge
if representation is trimmed down into such a thin notion that it cannot explain the epistemic
productivity of modeling? The answer would need to be sought for somewhere other than
from the notion of representation.

3.1.2. Model Construction

Morrison and Morgan [81] focus on learning from constructing models instead of
using them as representations. They approach models as investigative instruments, whose
construction and manipulation enable scientists to learn from them. They view models,
rather than as representations, as mediators between theory and data. Likewise, Weis-
berg [8] considers models as independent from any uniquely determinable relationships
to the worldly target systems (ibid. p. 218). Modeling is for Weisberg an art of indirect
representation, one of building and studying hypothetical systems that will only be related
to some particular real-world systems at a later stage of the modeling cycle, if at all.

Many areas of contemporary modeling testify to such an indirect approach with only
a few manifest ties to some clearly identifiable target systems. For example, economics has
often been accused of modeling without an attempt to relate the highly abstract models to
economic realities [82]. The same kinds of concerns have also been raised in biology [83].

Despite paving a way for understanding models as tools, both Morrison and Morgan,
as well as Weisberg, eventually invoke the notion of representation as well. Morrison
and Morgan are careful to note, however, that they do not consider representation to be
“mirroring” or “correspondence”, yet they do not develop their notion of representation
any further. They mainly note that it should be thought of as “[. . . ] a kind of rendering—a
partial representation that either abstracts from, or translates into another form, the real
nature of the system or a theory, or one that is capable of embodying only a portion of a
system. [81], p. 27.” Weisberg [84] formulates a formal account of similarity on the basis of
Tversky’s set-theoretic account [85] that has not succeeded to create any noticeable interest
in the philosophy of science community.

To sum up, the lively philosophical discussion of modeling and representation has
not settled on any one notion of representation. The structuralist and similarity accounts
of representation have proven difficult to flesh out in any satisfactory fashion, while the
pragmatist accounts have remained overly deflationary. Given these difficulties concerning
the notion of representation, the artifactual approach to models builds directly on the idea
that models are human-made objects, whose construction and use in scientific practices is
the key to their epistemic value.

4. Models as Epistemic Artifacts

Instead of assuming that models more or less faithfully represent real-world target
systems, the artifactual account focuses on how models as purposefully designed artifacts
provide access to the empirical and theoretical questions scientists are interested in. Ac-
cording to a standard philosophical definition, artifacts are intentionally made or altered
objects, whose aim is to accomplish some purpose [86]. Such definition pays heed to (i) the
aim that an object has in some human practice and (ii) its intentional production or alteration
that involves the use and modification of various kinds of materials. Consequently, from
the artifactual perspective scientific models are human-made objects that are typically
designed for answering some pending scientific problems and built by making use of a
variety of representational tools (i.e., various symbolic, semiotic, and material resources).

250



Educ. Sci. 2022, 12, 276

Both of these aspects of model construction—purposeful design and the representational
tools employed—are important for how a model can provide access to a problem scientists
are dealing with.

4.1. Purposeful Design

The artifactual account envisages models as human-made objects that can have mul-
tiple epistemic uses. In science and science education, they can be used for explanatory,
predictive, and assessment purposes, for example. Traditionally, especially the explanatory
and understanding bearing dimensions of modeling have been accounted for by appealing
to representation. Instead of approaching models as representations of real-world target
systems, the artifactual account seeks to analyze the epistemic dimension of models through
their interrogative function: addressing the scientific questions models are designed to
answer. The constrained construction of a model is the key to its interrogative functioning.
Models typically consist of a system of dependencies, designed to answer a pending scien-
tific question, motivated by theoretical and/or empirical considerations [18,47,87]. In other
words, relevant theoretical and empirical knowledge needs to be built into it, both through
its specific construction and the question(s) it addresses.

For example, in constructing his version of the Lotka-Volterra model, Volterra set
out to answer the question of whether the variations in the populations of predators and
prey could be produced solely by “[. . . ] the purely internal phenomenon, due only to the
reproductive power and to the voracity of the species as if they were alone. [88], p. 5.” To
study this question, Volterra wrote a pair of nonlinear differential equations concentrating
only on the dynamics between two species, one of which preys on the other, while also
acknowledging the importance of external causes for the actual fluctuations in populations.
Indeed, at the time when he published his results, the fluctuations in predator and prey
populations were usually attributed to some external causes [89]. Akerlof’s celebrated
model of the “market for lemons” that earned him a Nobel prize provides an example from
economics. It studies through a simplified model of used cars the question of how quality
uncertainty can lead the bad quality cars to drive out the better quality cars, leading even
to market collapse.

What is important to note about both Volterra’s and Akerlof’s models is that they
are not inherently tied to any specific target system, but are rather hypothetical systems
constructed to study general theoretical questions. The general character of the dynamics
they study have allowed for their application to sundry other problems.

Alfred Lotka used the Lotka-Volterra model to study, apart from biological systems,
also chemical systems. Later on, the Lotka-Volterra equations were applied across different
disciplines to study various kinds of target-systems, ranging from class struggle to models
of technology diffusion [20]. Moreover, the Lotka-Volterra equations have been used as a
basic simple model to study the complex behavior of nonlinear systems [90]. Akerlof, in
turn, did not intend in his classic article to only study markets for used cars. In fact, the
market for used cars was for him simply a “finger exercise” chosen for its “[. . . ] concreteness
and ease in understanding rather than for its importance or realism” (p. 489). Akerlof’s
focus was on the effects of asymmetric information more generally, and in his famous
article he proceeds from presenting the model of used cars to study its implications for
various, more important topics, such as the health insurance market, the employment of
minorities, and credit markets in underdeveloped countries.

The artifactual perspective can better capture the initial motivation underlying the con-
struction of such exemplary models as the Lotka-Volterra model and Akerlof model. From
the perspective of scientific practice, to which science education naturally relates on a large
scale, one of the main problems of the representational approach is due to its basic unit of
analysis: the model-target pair.

Viewing models as inherently targeting a particular real-world system leads to prob-
lems concerning their accuracy and misrepresentation, but more importantly, misses their
most important scientific contributions. Consequently, the artifactual approach focuses on
the questions models are designed to address. Due to their interrogative function, models
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are already embedded in existing theoretical and empirical knowledge, e.g., knowledge
concerning fluctuations in populations, or market failures due to degrading quality of
goods offered. Instead of gesturing at (an unexplained notion of) representation, the artifac-
tual account zooms in on model construction and the access it bestows for further scientific
theorizing and exploration, including the application of the model to other domains [91].

4.2. Representational Tools

As we have argued above, the way a model is constrained is crucial for its epistemic
functioning; striving for accurate representation of some particular target system is fre-
quently less helpful if the goal is to tackle some more general question, as is often the case
with modeling. In such tasks, minimal and unrealistic models may be explanatorily useful:
such models may isolate some hypothetically relevant, or difference-making features for
particular patterns of interest [92–94]. Moreover, the use of mathematical and statistical
methods entails simplification and unification as well [95].

In contrast to the representational approach that focuses on the general and abstract
features of the relationship of representation, the artifactual approach emphasizes the
concrete, workable dimension of models rendered by various representational tools, such
as differential equations in the case of the Lotka-Volterra model. The concrete workability
of models explains how scientists can learn by building and manipulating them [81]. For
instance, Volterra’s ability to draw important results from a highly idealized hypothetical
system shows that in order for models to be epistemically useful, they do not need to
correspond more or less accurately to real-world systems and processes.

This learning process is facilitated through articulating different kinds of relationships
within a model with some particular representational tools, concretely manipulating them,
and reconfiguring the model in view of further questions. Such work can lead to various
kinds of explanations, predictions, and theoretical results, and may contribute to novel
experimental designs and the construction of artificial and synthetic systems [96].

The fact that the epistemic importance of the concrete workable dimension of models
has not received due recognition can partially be traced back to the tendency of treating
models as abstractions. Such a tendency is understandable given the importance of mathe-
matical and computational modeling in contemporary science. Once models are considered
as abstract entities, likening them, or at least comparing them, to mental models seems an
easy step to take, as we have seen above. Such a step should be resisted, however. The
concrete workable dimension of models does not boil down to their material aspects only,
it also applies to mathematical modeling as the case of the Lotka-Volterra model shows.

Most of Volterra’s papers on biological associations are highly technical mathematics,
consisting of the study of the mathematical properties of the Lotka-Volterra model and
its variations. In other words, the differential equations provided Volterra the workable
dimension of the Lotka-Volterra model, and the study of these equations gave him several
results that could be given a biological interpretation. He would not have come up with
these results had he simply mentally conceived the predator-prey system: the differential
equations provided him a representational tool to access the dynamics between the two
populations.

The representational tools employed in modeling typically consist of various symbolic
or semiotic devices (mathematical, iconic, diagrammatic etc.) that serve as vehicles for
conveying different kinds of content. However, these vehicles need to be embedded in
representational media that furnish the material means with which representations are
produced and manipulated (such as ink on paper or digital computer in which simulations
are run) [18,87,96,97].

The representational media and their materiality play different epistemic roles de-
pending on the type of model in question that has led to the perception that some models,
such as mathematical models, are inconcrete, whereas other models, such as scale models,
are concrete. But on closer inspection, such a distinction between concrete and inconcrete
models tends to lead astray. For instance, there is accumulating evidence that the perceptual
and sensorimotor engagement with external mathematical representations is crucial for
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mathematical reasoning over and above them functioning as mere scaffolds for mnemonic
and communicative tasks [98,99]. On the other hand, the Phillips-Newlyn model, a hy-
draulic model of a macroeconomy in which colored water flows and accumulates in a
system of tanks and channels, does not reduce it to its material embodiment. As such, it
would hardly be interpretable as a model, let alone an economic model. Instead, it gives a
concrete form to the conceptualization of the economy in terms of stocks and flows that has
a long history in economic theorizing [100].

4.3. Representing and Justifying

It may seem puzzling that the artifactual approach seeks to explain the epistemic
value of modeling without invoking representation, yet emphasizes the importance of
representational tools. No contradiction is involved as representation in the sense of
establishing a relationship between a model and a real-world target system should be
distinguished from representing something within the model.

Representation in this latter sense refers to the use of representational tools to convey
some content that is a precondition for claiming any representational relationship between
a model and some external target system. Such distinction between these two notions of
representation is embedded in the recent philosophical literature, where modeling as an
activity of building and studying models is distinguished from establishing a representa-
tional relationship between a model and a target system. For instance, Weisberg [8] argues
that the practice of indirect representation distinguishes modeling from those theoretical
strategies that rely on abstract direct representation. Modeling, Weisberg claims, is engaged
in indirect representation as modelers are primarily interested in studying their models, be-
fore trying to relate them to some real-world, or merely possible targets. Indeed, apart from
providing possible explanations of the actual states of affairs, models also enable inferences
concerning unactualized possibilities [87,96,101]. Such modal reasoning constitutes one of
the main ways in which models are used in scientific practice [102].

Regarding the modal dimension of modeling, the artifactual account approaches the
question of justification through model construction: a model is constructed for the pur-
pose of probing theoretical and empirical consequences. Thereby, it becomes necessary to
independently justify any kind of representational relationship (if only because of under-
determination). The fact that some models are used as representations does not provide
justification for model-based results in and of itself. Although, part of the justification is al-
ready built-in due to the previously established theoretical, empirical and representational
resources used in model construction [103]. The already established use of differential
equations, and the mechanistic approach of isolating the components and their interactions,
in addition to the observations on fluctuations in fish populations were resources already
built-into Volterra’s model. Due to these pre-established resources and knowledge, the
relationship of representation is not pivotal for explaining how models are able to generate
knowledge: it is not needed to connect a model to the empirical world as the connection is
already partially built-in.

Finally, it goes without saying that in order to establish the external validity of a
model, more is needed than consistently analyzing the built-in connection from successfully
certified models. Such external validation in work-in-progress models typically proceeds
by triangulating different epistemic means: other models, experiments, observations, and
background theories. These processes of triangulation are often not easily recognizable due
to their complex and indirect nature. Justifying models does, therefore, not happen through
individual model-target comparisons as, e.g., the representational approach would have it,
but rather by rigorously questioning models, even at the level of research programs, being
distributed in terms of time, place, and epistemic labor.

5. Future Challenges and Implications

Equipped with the notion of models as epistemic artifacts, we turn in this section
to two concrete examples, where a more theoretically consistent approach to modeling
would have strengthened the already valuable educational implications. In our examples,
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science education researchers implement straightforward empirical strategies according
to the notion of models as artifacts, while such an approach has been less prevalent
in philosophy of science. Nevertheless, these science education studies tend to set the
concrete representational tools (e.g., sketches) aside, turning to discuss the mental models
of students, as if a direct connection between them and the students’ concrete modeling
products could be established by the researcher in some unproblematic manner. In contrast,
and in line with the artifactual approach, we emphasize that science education should focus
on the epistemic value of concrete products in investigating the system of interest.

5.1. Model-Based Learning and Reasoning

As an important next step towards a better mutual understanding of model-based
learning and reasoning, we propose below how to clarify the connection between the
empirical studies’ results, and their respective theoretical frameworks by drawing on the
insights of this paper.

First, it would be helpful to focus on whether or not a learner was able to refine
iteratively, and in a justified manner, concrete model objects (by sketching, modeling clay,
etc.). In this regard, the question about the adequate rendering of canonical scientific
knowledge appears to be of secondary importance. Yet, such an approach may appear
unsatisfying at first: what scientist would give credit to a learner who gives justified, yet
evidently false explanations about the behavior of a target system? It might seem that
useful representations should not include disproven assumptions, at least within learning
environments. Nevertheless, a learner may eventually be able to confront the experienced
scientist/teacher with cases where hypothetical speculation is an intrinsic part of daily
scientific business. Moreover, the learner may wonder why atoms are described as identical
to tiny solid spheres in every introductory chemistry lecture, when the scientific commu-
nity knows that this is not the case. When viewed from the artifactual perspective such
assumptions do not appear so baffling, as they highlight the question-oriented character of
modeling, providing thus a reasonable, though underappreciated, starting point for science
classes [104].

Second, carefully choosing an appropriate target system presents challenges of its own.
It does matter whether a learner either works on how introducing a species into a biotope
affects the population of another species and comes up with a numerical association by
counting and extrapolating, or tries to find a mechanistic explanation of ice maintaining
its temperature while melting during heat supply. Both tasks can be approached through
modeling, yet they are fundamentally different in terms of their underlying goals, i.e.,
numerically predicting or mechanistically explaining the target system. The situation gets
even more complex if, contrary to the purely predictive goal, one inquires about the mecha-
nisms that lead to the influence of one species on another, e.g., a predator-prey relationship
or a displacement of another population due to an advantage in reproduction. Likewise,
associating heat supply to state transitions and making predictions without asking for
submicroscopic mechanisms is in itself valuable [105], highlighting the paramount impor-
tance of the question to be asked for any modeling activity. Thus, it is crucial to explicitly
distinguish whether the aim of modeling is to present what is currently accepted as being
the case in the field [106], pp. 141, or whether the focus is on practicing to think about and
test the consequences of what if something were the case? [41]

5.2. Models and Subject-Specific Content

Inconsistencies of subject-specific models are rarely explicitly addressed in science
education research [107], and, if discussed at all, they are approached within the context of
multiple modeling [108–110]. However, presenting to a learner multiple models of a certain
target system (e.g., Bohr’s model vs. Lewis’ structures) does not inform the learner when
it is appropriate, e.g., to refer to electrons as particles circling around an atomic core, in
contrast to electrons as fixed bonding pairs. The models do not reveal, in and of themselves,
to what end and under which circumstances they were constructed, and what seems even
worse from the learner’s perspective is that they seem not to be true at the same time. In
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this regard, learners and teachers alike should be encouraged not to suppose that they
could perfectly state how unobservables, or other lesser known phenomena, are structured:
multiple models of the same target systems should be regarded as a normal phenomenon
in scientific research. Consequently, teachers, learners, and researchers should focus on
the modal dimension of modeling, seeking plausible estimations, fruitful depictions, and
how-possibly explanations. We were not able to identify such a consistent modal focus
within the investigated studies.

We hereby turn to vindicating the lentils and beans model to a certain degree: if
students work with this representational vehicle in response to a relevant research question,
they can learn about chemistry as a matter of course. For example, if the bean-lentil demon-
stration was used to explain volume contraction, how could the structural relationship
between the demonstration and the target system be justified in the first place? If we did
not have any other evidence for such a relationship, we could adopt a question-oriented ap-
proach: what if the lentils and beans were structurally equal to water and ethanol particles?
Subsequently, experiments would come into play and different liquids could be mixed and
their behavior documented. Fortunately, in the sense of fostering model-based reasoning,
mixtures exist that show a volume expansion, which falsifies the assumption of smaller
particles fitting into the gaps between the larger particles as a general principle. That
falsification could potentially lead to a more sophisticated reasoning activity that makes
use of students’ artifacts. These artifacts, in turn, could be integrated into standardizable
frameworks under current development, e.g., stepwise procedures for the modeling of
target systems in chemistry classrooms [15]. However, teachers and researchers should be
careful about their presuppositions of unobservables; which of them appear to be resolved,
and which of them side-stepped, via an over-simplified representation. While models as
epistemic artifacts are constructed by representing what could plausibly, or possibly, be
the case, and are thus able to convey scientific content [111,112] that does not yet justify
supposing that they would accurately depict the structure of their target systems—as a
representationalist would have it. A little sphere is not structurally equal to a molecule.

6. Conclusions

We have claimed that scientific reasoning can usefully be viewed as a question-oriented
investigation. Modeling provides a prime example of such an activity. We have suggested
that an explicit and reflective discussion of models as artifacts serves to prevent a relapse
into viewing models as straightforward, uniquely determinable representations of target
systems. We have observed in science education research a conflation of mutually exclusive
epistemological accounts of models and representation, i.e., adhering to both pragmatist
and structuralist perspectives. If a researcher refers to models as constructed tools, it
is difficult to maintain a representational dyadic model-target relationship as a unit of
analysis. Modeling submicroscopic mechanisms for explaining or predicting the behavior
of, e.g., chemical target systems is a case in point. As we have shown, straddling between
the pragmatist agent-based and the representational similarity-based and structuralist
approaches to modeling breeds inconsistencies both on the theoretical level and between
the theoretical definitions of models and the interpretation of empirical results.

Consistently understanding and explicating models as artifacts is helpful since it
fosters an understanding of science as being revisable by keeping the focus on the inter-
rogative, uncertain, and fallible nature of scientific reasoning. Thus, the studied target
systems can be worked on with models as metaphorical magnifying glasses, hammers, or
screwdrivers. Consequently, the artifactual approach shifts the focus of the discussion of
scientific modeling within science education research from accurate representation into
the learning of how to do science. Moreover, since the artifactual approach views any
representational relationships between models and some real-world targets as contingent
scientific achievements, it prompts researchers and teachers to reflect on the assumptions
they make about target systems.

Finally, we find plenty of room for a dialogue between philosophy of science and
science education research, a dialogue that is already happening. The link to teaching
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makes science education research a worthwhile area of study for philosophers of science:
philosophy cannot be considered just a source for trickling down theoretical ideas to
empirical sciences. Especially practice-oriented philosophers of science are interested in
what scientists think and do to gain knowledge about the world, and for this task, they need
case studies and empirical research. Science education researchers are uniquely positioned
to do just that: studying and conveying scientific reasoning at different levels of teaching,
learning, and researching. Therefore, we advocate a fruitful and critical discussion between
philosophers of science and science education researchers concerning their theoretical
presuppositions and definitions, addressing also the question of how to plan and/or revise
empirical studies on the basis of such reinvigorated mutual understanding.
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Abstract: While the hypothetico-deductive approach, which includes inductive and deductive rea-
soning, is largely recognized in scientific reasoning, there is not much focus on abductive reasoning.
Abductive reasoning describes the theory-based attempt of explaining a phenomenon by a cause.
By integrating abductive reasoning into a framework for modeling competence, we strengthen the
idea of modeling being a key practice of science. The framework for modeling competence theoret-
ically describes competence levels structuring the modeling process into model construction and
model application. The aim of this theoretical paper is to extend the framework for modeling com-
petence by including abductive reasoning, with impact on the whole modeling process. Abductive
reasoning can be understood as knowledge expanding in the process of model construction. In com-
bination with deductive reasoning in model application, such inferences might enrich modeling
processes. Abductive reasoning to explain a phenomenon from the best fitting guess is important for
model construction and may foster the deduction of hypotheses from the model and further testing
them empirically. Recent studies and examples of learners’ performance in modeling processes
support abductive reasoning being a part of modeling competence within scientific reasoning. The ex-
tended framework can be used for teaching and learning to foster scientific reasoning competences
within modeling processes.

Keywords: scientific reasoning; abductive reasoning; models; modeling; model construction; model
application; modeling competence

1. Introduction

Theoretical abduction is “the process of reasoning in which explanatory hypotheses
are formed and evaluated” [1] (p. 220).

This process of reasoning addresses modeling. Hence, the concept about the phe-
nomenon is a model [2] that develops while seeking for explanations [3]. Thus, scientific
reasoning, in terms of searching for explanations to obtain insight into a phenomenon, is
related to the construction of models. The derivation of hypotheses from these models and
their application in empirical investigations allows the evaluation of the phenomenon [1].
As such, modeling is a prominent style of scientific reasoning that also is understood as a
skill that needs to be practiced [4] and is related to competences [5] (p. 43). Thus, the frame-
work for modeling competence was developed [6,7], respecting particularly procedural
and epistemic perspectives of reasoning [8].

A model serves as a representation for communicating scientific knowledge or as a
research tool for testing hypotheses about a phenomenon [9]. A model used for teaching
and learning content knowledge serves as a medium for communication and meets the
purpose of describing and explaining current scientific knowledge. Therefore, when
using a model as medium, the focus is on model construction to represent a phenomenon
accurately [7,9–11]. In contrast, a model used as a research tool is constructed for the
purpose of deriving hypotheses about scientific phenomena. Hence, the focus is on model
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application in research contexts to gain new insights into unknown phenomena [11]. In
both communication and research contexts, model construction and model application are
central parts of intertwined modeling processes: a model is constructed starting from a
theoretical background and from abductive or inductive reasoning [12,13], both forms of
logical inferences [14]. Deductive reasoning as the third logical inference [14] is practiced
in model application, which starts with deriving hypotheses deductively from the model,
usually followed by empirical testing [4].

In biology education, the framework for modeling competence (FMC) [6] has been
developed and empirically validated [15,16]. The FMC structures modeling competence
into aspects and levels [17] and addresses at the same time the perspectives of model con-
struction and model application. Theoretical considerations and empirical findings [3,18]
revealed the need for including another level to the FMC regarding reasoning processes in
model construction with hypothesized impact for model application [7]. This extension was
realized by integrating the knowledge-expanding function of explaining a phenomenon
in the process of model construction, which is abductive reasoning [3,13,19]. In the initial
FMC, explaining was considered as an intermediate level representing communicative
functions. However, this approach did not cover the idea of developing a model by explain-
ing a phenomenon with causes from past experiences and information [3,13,19], meaning
a phenomenon is explained as best as possible through abductive reasoning [13]. Thus,
the term “explanation” [3,18] describes two different practices needing to be separated:
explanation in order “to make clear” for communication purposes and explanation in order
“to justify” as an epistemic function. This differentiation of explaining is now integrated
into the presented FMC. The process of abductive reasoning in model construction may
initiate, because of its uncertainty, deductively derived hypotheses in model application
and thus promote empirical investigations.

In this article, we argue that abductive and deductive reasoning are related parts
within scientific reasoning regarding model construction and model application. The
theoretical considerations of abductive reasoning in modeling are supported by empirical
work in mathematics [20] and geography [12,21,22]. Additionally, we give some insight
into learners’ performance in modeling processes which support abductive reasoning being
a part of modeling competence within scientific reasoning.

2. Logical Reasoning

Three forms of logical reasoning are involved in scientific reasoning and inquiry. They
are summarized briefly by Peirce: “The division of all inference into Abduction, Deduction,
and Induction may almost be said to be the Key of Logic” [14] (CP 2.98). In this context,
abduction is about generating a cause as the best explanation for an observed phenomenon
based on existing rules or theoretical knowledge (“inference to the best explanation” [23],
“educated guess” [12]). This kind of reasoning is knowledge expanding, leads to creative
ideas, and thus forms new theoretical inferences [24]. In contrast, inductive reasoning
derives a general rule from repeated observations of a phenomenon. This inference is
knowledge expanding but does not provide any principally new ideas [14]. In deductive
reasoning, a general rule as theoretical basis and a cause are used to predict a result of a
certain case. If the rule is true, each individual case will fit to this rule. Thus, deductive
reasoning is truth preserving and logically flawless. However, as in the case of inductive
reasoning, it does not generate principally “new ideas” [24]. The relationship among
the three forms of logical reasoning is summarized by Peirce: “Deduction proves that
something must be; Induction shows that something actually is operative; Abduction
merely suggests that something may be” [14] (CP 5.171).

3. Theory of Abductive Reasoning

An established theory of abductive reasoning from cognitive psychology describes
seven components of abductive reasoning [13,25]. This theory describes a continuous,
implicit process with different steps that do not have to be run through in a strict order [26].
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This process can lead to a consistent type of explanation free from redundancies [13].
Ideally, the process of abductive reasoning begins with the perception of a phenomenon,
for which the step of data collection takes place in an exploratory or theory-based manner.
Subsequently, these data are incorporated into an existing mental model leading to a
preliminary comprehension. It is checked whether the new data contradict the previous model
or remain un-understandable. These thoughts lead to the step of resolving anomaly. If this
occurs, new data will be collected. If there are several possible explanations, alternative
potentially plausible explanations will be refined. Due to this, it is necessary to discriminate
by selecting one potentially plausible explanation. In the step of checking for consistency,
both likely and unlikely explanations are included. This process of decision making
may lead to the collection of new data. If checking for consistency is not successful, other
potentially plausible explanations will be discriminated. Although model testing in the
theory of Johnson and Krems is about eliminating this uncertainty about improbable
explanations [13], this step can be extended to an abductively developed model. When
it comes to application of this model, hypotheses are derived deductively to be tested
(“abductive model evaluation”) [1,8].

4. Models and Modeling
4.1. Concept of a Model

“In model-based views, models are considered subsets of scientific theories–more
comprehensive systems of explanations–which are created with various semiotic
resources and provide semantically rich information for scientific reasoning and
problem solving” [27] (p. 1110).

The term model has so many meanings that attempts merging all meanings into
one definition are methodologically useless [28]. Hence, there is no unified definition of
what a model in science and science education is [29,30], nor is there a unifying modeling
theory [31]. Following Mittelstraß, models are replicas of a real or imaginary object with
the aim of learning something about it or learning something with it [32]. This refers to
both the representational function (learning something about it) of models for the purpose
of communication and to the research tool function (learning something with it) to test new
ideas for the purpose to generate new knowledge.

Due to the multiformity of models and since anything can become a model that is con-
ceived of something as a model by an agent for some purpose and time [4,33–35], general
properties that characterize models ontologically as special objects are absent [32,34]. Other
approaches distance from an ontological perspective on models and try to conceptualize
models from an epistemic point of view [30,34,36]. In this case, something becomes a model
when it is used [4], developed [31], or conceived as such [34]. In his concept of model-
being, Mahr suggests that an agent judges something to be a model for a specific period of
time and for a specific purpose [34]. Furthermore, the distinction between the imagined
mental model and the externalized model object is relevant to Mahr’s conceptualization of
models [26]. In this context, the model object is described as the representation of a mental
model in the broadest sense, reaching from verbal analogies to graphical representations.

4.2. Concept of Model-Being

The model and the model object each stand in two relations to something: in the
perspective of construction, the model stands in relation to something of which it is a
model. In the perspective of application, it stands in relation to something for which it
is used for as a model [9,28,34] (Figure 1). These two relationships are constitutive and
inherent aspects of model-being [28,36,37].

Mahr´s concept of model-being has separated inherent properties permanently associ-
ated with the model object [34]. A model can be used by an agent as a model of something
and for something in any given time.
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Figure 1. Mahr’s concept of model-being [7] (adapted). A is a phenomenon, B is a purpose of
an application.

Gouvea and Passmore also differentiated into the perspectives models for something
(as tools for research) and models of something (as representation of actual knowledge) [9].
In contrast to Mahr’s concept of model-being, their categorization of these perspectives
are not constitutive aspects of a model in terms of a theoretical understanding of model-
being. Gouvea and Passmore rather argue from a heuristic perspective to help teachers
and supporting students. In accordance with this perspective, Gilbert and Justi suggest
conceiving models as substitutes [38] or to describe models as epistemic tools [31] being
used by agents [30].

Giere described the agent as the person making decisions about both the focus of
the similarities (intent) and the goal of that focus (purpose) [36]. Mahr also consistently
integrates an agent in his concept of model-being [39]. He distinguishes between the
mental model, which is modeled by the agent, and the model object as the externalized
representation of the agent´s mental model.

4.3. Modeling Process

The process of modeling lacks a general procedural description and definition of
certain rules [40]. This is because experiences, ideas, and theories of the modeling agent
influence the process and hence creative, innovative, and subjective considerations are
involved [12,41]. Nevertheless, recurring elements can be identified in modeling, which
ideally follow a hypothetico-deductive research logic [42,43]. In the following, the process
scheme of modeling described by Krell and colleagues [15,16] stands as the basis for the
integration of abductive reasoning.

In the scheme, the modeling process begins with the perception of a phenomenon,
most frequently undertaken by observation (Figure 2) [44]. Observation in this case means
exploring the phenomenon as a whole and without explicit assumptions [44]. These ob-
servations might lead to the formulation of hypotheses about potential relations between
variables, which means that conceivable theories are generated. These hypotheses can
arise through inductive reasoning from a generalized model. They are checked for consis-
tency with other theories within model construction (Figure 2). Alternatively, abductive
reasoning explains the phenomenon [13], for example with the help of analogies and is
also checked for consistency (Figure 2). In case consistency is missing, the phenomenon is
further explored by additional observations. If inductive or abductive inferences lead to
plausible models, model construction temporarily ends. Model application begins with the
deduction of hypotheses about how the model’s relationships will behave under certain
conditions (Figure 2). Depending on the type of hypotheses, this leads to different method-
ological implementations and thus into corresponding inquiry methods [6,45]. While
difference hypotheses are descriptive and lead to the comparison of structures, groups,
or systems, causal hypotheses are investigated through controlled experimentation and
correlation hypotheses through observation (Figure 2) [44]. The analysis of data from
empirical investigations lead to support or falsification of hypotheses (Figure 2). If sources
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of interference in data collection are excluded as a reason for the lack of fit between the
hypotheses derived from the model and the phenomenon under investigation, the model,
the model object, and the concept about the modeled phenomenon have to be revised.
In this process, exploration of the phenomenon restarts, which means that the process of
model construction and application of a modified model begins anew (Figure 2) [4]. By
initiating cognitive processes this way, models become flexible intellectual tools for scientific
knowledge acquisition (epistemic tools) [46,47]. This function goes beyond presenting a
model of something in a medial perspective as a means for communication.

Figure 2. Abductive reasoning in model construction and deductive reasoning in model application.

5. Framework for Modeling Competence

The initial FMC [10] structures modeling competence in five aspects and three levels.
The aspects were built on the basis of studies from science education research [48–50]: nature
of models, multiple models, purpose of modeling, testing models, and changing models [6,10,15]
(Figure 3). In the case of nature of models, the focus is on the similarity between the model
and the phenomenon. The aspect alternative models addresses the question whether there
can exist several models for a phenomenon. The purpose of modeling is guiding the modeling
process for communication or as a research tool. Considering the purpose, when testing
models and changing models from a medial perspective, it is about optimizing the model
in context of already known details. In the research tool perspective, testing models and
changing models starts from hypotheses and is led by results from corresponding empirical
investigations.

The three competence levels were based on Mahr´s conceptualization of model-being
and integrate perspectives on modeling focusing on the model object (level I), model
construction (level II), and model application (level IIIb, Figure 3) [10]. The extended
FMC integrates abductive reasoning as a further level (Figure 3, level IIIa) [7]. This new
level differs from an understanding-generating explanation of common knowledge with
models of something determining level II (Figure 3). In contrast, the knowledge-expanding
function of explaining described in level IIIa is based on abductive reasoning. Abductive
reasoning in model construction, like deductive reasoning in model application, involves
theoretical or creative considerations. By treating level IIIa as part of level III, it is intended
to clarify that model construction by abductive reasoning is scientifically demanding [13].
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It may precede deductive reasoning in the sense of the hypothetico-deductive path of
knowledge acquisition [43,51] (Figure 3).

Figure 3. Framework for modeling competence [6,7] consisting of aspects and levels.

The inclusion of a general theory of abductive reasoning in modeling [26,52], in which
a model is constructed sequentially in a complex and creative process of understanding,
leads to a definition of the cognitive facet of modeling competence: modeling competence
comprises the abilities to initiate a theory-guided cognitive process in the creative construc-
tion of models, to gain purpose-related knowledge in the application of models, to judge
about models with reference to their purpose, and to reflect on the modeling process in
terms of scientific reasoning [7].

In the extended FMC (Figure 3), thinking about models and modeling that is assigned
to levels I and II means to understand models and modeling as representations to achieve
educational goals, which is the medial perspective [6,7,10,11]. The focus is on accuracy in
model construction for communication, teaching, and learning of content knowledge. In
more detail, level I deals with the ability to assess the model object from an aesthetic point
of view or regarding its technical functionality without putting the phenomenon in relation
to the model object, except in its capacity as a copy or for the purpose of illustration. Level
II entails the ability to assess the process of model construction for understanding the
represented phenomenon. The model object is a more or less accurate representation of
something already known in the natural sciences.

Descriptions in level IIIa and IIIb indicate an understanding of modeling in the context
of scientific investigations, which means the ability to assess models in their construction
and application as research tools, which is a methodological perspective [6,7,10,11]. Level
IIIa describes the ability to construct a model that provides the best plausible explanation for
unknown phenomena which is free of contradictions to previous theories and explorations.
Modeling is thus already a theoretical or creative process in model construction, which,
associated with uncertainty, represents knowledge about a phenomenon, and can offer
new possibilities for explanation. Level IIIb describes the ability to apply a model as a tool
for investigating a phenomenon within scientific reasoning to empirically test its validity
in the hypothetico-deductive approach; the model object as a model for something leads to
processing new, thus far unexplained scientific questions.

The competence descriptions with regard to aspects and levels draw on theoretical
elaborations [10,11] and, with regard to the initial FMC, extensive empirical work, which
allows the use of them for assessing and promoting modeling competence for scientific
reasoning [6,15,53]. However, level IIIa of the FMC with inclusion of abductive reasoning
still needs to be empirically investigated.
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6. State of Research

There are several approaches from different disciplines of science education connecting
abductive reasoning with modeling [12,22,54]. For geoscience, Oh established a close
connection between abduction and modeling (modeling-based abductive reasoning) [21,22]
relating to research by Clement (addressing the solution of physical problems through
abductive reasoning in modeling) [12]. Furthermore, Park and Lee point to the central role
of abductive reasoning in mathematical modeling [20]. These studies rather focus on the
role of abductive reasoning for constructing technically appropriate models in terms of
content knowledge than on methodological (procedural and epistemic) knowledge as part
of scientific reasoning competencies.

Our work aims to obtain insight into abductive reasoning within modeling processes
in biological contexts. Based on Sturm [55], the reddened face phenomenon was used
to obtain insight into abductive reasoning with regard to the FMC’s competence descrip-
tions [6]. Regarding this, 32 pre-service biology teachers created concept maps to solve the
problem of why a fictitious person, whom they cannot talk to, has a reddened face. The
participants generated abductive explanations and strategies for testing these explanations
(Figure 4). A total of 159 explanations were summarized into 39 types of explanations for
the reddened face. It turns out that the reddened face scenario promotes students to select
different explanations by abductive reasoning. Most of the 39 given explanations were
further condensed into six superior explanation types “Emotion”, “Activity”, “Disease”,
“Environment”, “Blood Circulation”, and “Individual Disposition” (Figure 4).

Figure 4. Frequencies of explanations (N = 159) and of tested explanations (N = 57) per explanation type.

In total, for 57 of 159 explanations further considerations for testing were provided.
Hence, most explanations were not linked with ideas on how to test them. Explanations
such as “Activity” or “Environment” have been connected to possible test strategies most
frequently. In everyday life, explanations regarding “Emotion” can be tested easily through
verbal communication. As this was not possible, this may explain why the participants
tested explanations for “Activity” or “Environment” more frequently than for “Emotion”.

The reddened face phenomenon emphasizes that a complex and creative process
of abductive reasoning [13] is relevant in model construction [22] and is successful as
soon as experience and analogies allow for abductive reasoning. Studies showed that
for modeling the inner mechanisms in black-box scenarios [47–49], abductive reasoning
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can be a successful strategy when a theoretical background is available, or creativity is
involved when interpreting data. This can lead to repeated switching between abductive
and deductive reasoning. If the development of explanations for the inner mechanisms of
the black box is not satisfactorily [56], this is because theoretical knowledge is not available,
analogies are not found, or creative solutions are lacking [57]. Unsurprisingly, because
a corresponding model is missing, this leads to neither model application nor deductive
reasoning [56,58].

Students’ solutions for the reddened face phenomenon were structured into three
different groups. In the first group, possible explanations were simply guessed without
any testing strategy (n = 12). This result does not fit to our expectation that abductive
explanations in model construction foster the switch into deductive testing in model
application on its own. On the other hand, this result may be related to the fact that
there were no possibilities to interact with the fictitious person nor the phenomenon itself.
Thus, there was no feedback or interactive offer to test explanations. Nonetheless, most
concept maps (n = 20) provided indicators aiming to test abducted explanations. Among
these, two different strategies were identified. The first strategy in the sense of abductive
testing (n = 7, Figure 5a) is characterized by the derivation of an explanation from additional
speculatively observed indicators (test; cf. [13]). In contrast, the second strategy in the sense
of deductive testing (n = 13, Figure 5b) is characterized by indicators for further observations
being derived from a possible explanation. The strategy of abductive testing refers to the
theory of abductive reasoning [13] by collecting further information beforehand within
observations (Exploration of the phenomenon, Figure 2), thus in model construction. By
switching to model application, applying the strategy of deductive testing of abducted
explanations, students indicate strategies of deductive reasoning. This result supports
the idea that abductive reasoning in model construction fosters strategies for deductive
reasoning in model application.

Figure 5. Excerpts of students’ concept maps illustrating the strategies of abductive testing (a) and deductive testing (b).
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7. Outlook

The focus on abductive reasoning within modeling processes is rather new [20,21]
and led to the extension of the FMC for the field of biology in the natural sciences, thus
providing a theoretical basis for the investigation of scientific reasoning in this modeling
perspective. This innovation can be referred to as “abductive turn” [59], leading to broader
foundations of scientific reasoning in terms of paths of knowledge acquisition in science
education [6,51]. Explicating the role of induction when encountering a phenomenon, the
role of abduction in model construction, and the role of deduction in model application
supports Lehrer and Schauble’s suggestion to consider modeling as the “signature practice
of science” [60]. In this way, the prominent position of induction and deduction within the
hypothetico-deductive approach might be expanded by integrating abductive reasoning in
the classroom, with implications for Nature of Science perspectives [8,61]. It is necessary
to further reflect on the role of abduction for gaining new knowledge and to answer the
question whether abductive reasoning is underrepresented compared to induction and
deduction in the hypothetico-deductive approach [62,63]. In other words, the focus on
deductive inference may fall too short [64], and abduction should be implemented in school
curricula as an important part of scientific reasoning.

Taking the reported rare empirical insight about the role of abductive reasoning for
modeling into account, it becomes clear that scientific reasoning in modeling leads to
considerations in research as well as in teaching and learning. Thus, the significance of
abductive reasoning requires being investigated not only within modeling but also within
the inquiry methods observation, experimentation, and comparison (Figure 2).

In teaching and learning, hypothesis-driven empirical investigations with the help
of different inquiry methods are often interpreted as deductive reasoning, whereas the
students are also finding causes that explain a phenomenon and therefore are reasoning
abductively. This frequently remains unrecognized in schools and in teacher education at
university but can be seen as a resource for promoting creative thinking within scientific
reasoning which should be strengthened by further empirical evidence.
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Abstract: For high school students to develop scientific understanding and reasoning, it is essential
that they engage in epistemic cognition and scientific argumentation. In the current study, we used
the AIR model (i.e., Aims and values, epistemic Ideals, and Reliable processes) to examine high
school students’ epistemic cognition and argumentation as evidenced in collaborative discourse in
a science classroom. Specifically, we employed a qualitative case study approach to focus on four
small-group discussions about scientific phenomena during the Quality Talk Science intervention
(QTS), where students regularly received explicit instruction on asking authentic questions and
engaging in argumentation. In total, five categories of epistemic ideals and five categories of reliable
processes were identified. Students demonstrated more instances of normative epistemic ideals
and argumentative responses in the discussions after they received a revised scientific model for
discussion and explicit instruction on argumentation. Concomitantly, there were fewer instances of
students making decisions based on process of elimination to determine a correct scientific claim.
With respect to the relationship of epistemic cognition to authentic questioning and argumentation,
the use of epistemic ideals seemed to be associated with the initiation of authentic questions and
students’ argumentation appeared to involve the use of epistemic ideals.

Keywords: epistemic cognition; argumentation; science discussions; Quality Talk

1. Introduction

High school students must engage in the epistemic practices of science to develop
their scientific understanding and reasoning [1]. It is not enough for them to read about
and memorize the “facts” that have already been established by scientists. Science is an
iterative, social process and the transmission of scientific facts from teacher to student does
not do justice to the realities of science practices. Indeed, in the contemporary digital world
where abundant unvetted information is easily created and spread [2], it is essential for
students to develop reasoning skills and critically evaluate this information. Whether or
not students choose to pursue a career in science, they must be armed with the ability to
reason, problem-solve, as well as evaluate and justify arguments as they encounter scientific
information in their daily lives. These abilities and practices are critical to navigating and
effectively engaging in society. Rather than focusing on what science content students
need to know, science education reforms have shifted the focus toward helping students
understand how scientists observe the world and draw conclusions from their observations,
leading to knowledge [3,4].

In line with this shift, over the past 50 years researchers have examined students’
epistemic cognition, that is, how they acquire, understand, justify, change, create, and use
knowledge [5–9]. The ways in which individuals conceptualize the fundamental nature of
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how and what they know plays an important role in learning and acquiring knowledge [10],
particularly for science education [9] and layperson scientific literacy [11]. For instance,
in an attempt to further understand and model epistemic cognition in science, Reith
and Nehring tested and confirmed the ScieNo-framework by examining the relationship
between key scientific reasoning competencies and views on the nature of scientific inquiry
(NOSI) [12]. Empirically, a recent meta-analysis has revealed that epistemic cognition
interventions bolstered students’ academic achievement in various ways and had the largest
average effect size on argumentation among different types of academic achievement
outcomes in the reviewed studies (ES = 1.047, p < 0.001) [13].

Indeed, both epistemic cognition and argumentation are core to scientific reasoning.
According to Osborne, scientific reasoning abilities require “a meta-level knowledge of
science and the epistemic features of science,” (p. 274) which are necessary for learners
to understand why certain scientific claims are warranted [14]. Indeed, Chinn and San-
doval argued that scientific reasoning requires that students acquire, understand, and
use scientific practices and norms, which include various facets of epistemic cognition
such as reliable processes for knowing and the skills to generate arguments that support
knowledge claims [15]. In addition, the emphasis on fostering scientific reasoning skills
requires that students engage in argumentation during which they construct and evaluate
scientific models through evaluation [4]. During this process, students are expected to
provide justifications based on evidence to support or refute claims, which is central in
scientific reasoning [16]. In line with Upmeier zu Belzen and colleagues in this Special
Issue, “modeling is a prominent style of scientific reasoning” [17] (p. 495).

Delving into these key facets of scientific reasoning, researchers have also identified
a close relationship between epistemic cognition and argumentation. Indeed, epistemic
cognition influences and supports argumentative reasoning; more complex or developed
epistemic beliefs are related to better argumentative reasoning skills (e.g., production
and evaluation of arguments; [18–22]). In turn, argumentation is often emphasized as a
part of epistemic cognition interventions [23,24] and may also serve to promote epistemic
cognition. As a case in point, Iordanou and Constantinou found that 11th-grade students
who participated in evidence-focused, argumentative discourse activities in a Web-based
learning environment increased their use of scientific evidence in their electronic dialogs
with a peer, used more evidence to weaken the opponent’s claims, and made explicit
references to the source of evidence, whereas the comparison counterparts did not exhibit
such improvements [25]. This suggests that students developed a more advanced episte-
mological understanding in science after engaging in sustained argumentation. However,
given the complexity of epistemic cognition, scientific argumentation, and their interaction,
more research is needed to more clearly delineate the relations between collaborative
argumentation and students’ epistemic cognition.

Informed by this body of literature, we investigated the epistemic cognition prac-
tices of high school students during small-group science discussions over the course of a
year-long intervention designed to develop students’ argumentation and discourse skills.
We chose to leverage small-group discussions to examine students’ epistemic practices
in science, given the established literature documenting positive effects of small-group
discussions on students’ scientific argumentation and critical-analytic thinking [26–28] as
well as the aforementioned evidence regarding the relationship between argumentation
and epistemic cognition in science [25]. Specifically, we conducted a qualitative case study
of a small group of students engaging in four science discussions, with the goal of better
understanding how epistemic cognition and scientific argumentation manifest and interact
with one another, particularly as students learn more about argumentation and discourse.
This research contributes understandings of how best to incorporate small-group discourse
into science classrooms, engage students in epistemic practices of science, and prepare
students to think critically and analytically about the scientific information they encounter
in their daily lives.
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1.1. Theoretical and Explanatory Framework: AIR Model of Epistemic Cognition

To examine and analyze students’ epistemic cognition as reflected in their small-group
discourse in science classrooms, we employed Chinn and colleagues’ AIR model of epis-
temic cognition (i.e., Aims and values, epistemic Ideals, and Reliable processes) [29,30]
as the theoretical and explanatory framework of the current study. Chinn and colleagues
proposed that epistemic cognition is comprised of three components [29,30]. The first
component, epistemic aims, consists of goals related to the pursuit of epistemic ends or
products, such as knowledge, understanding, explanations, true beliefs, scientific models,
or rational arguments. For example, students who adopt the aim of summarizing explana-
tions deemed normative by the field (i.e., knowledge) would necessarily engage in a given
task differently from those whose epistemic aim was to achieve deep understanding of
those explanations, such as the scientific reasoning that underlies such explanations [31,32].

The second component, epistemic ideals, represents the criteria or standards used to
evaluate epistemic products, which are discipline-specific, context-specific, and even topic-
specific. Students use epistemic ideals as justification for the adequacy of the epistemic
products they construct or to evaluate the epistemic products of other individuals. For
example, a scientific claim’s adequacy as an epistemic product can be judged by how well
it adheres to various science-based epistemic ideals, such as its fit with prior knowledge.
Chinn and colleagues proposed five broad categories of epistemic ideals: (a) specification
of the internal structure of an epistemic product, (b) connection to and coherence with
other knowledge, (c) present and future connections to empirical evidence, (d) credibil-
ity of testimony, and (e) coherency and how well it has been communicated [30]. For
example, when considering models of a scientific phenomenon, students may hold the
epistemic ideal that “good models fit all the evidence,” or “good models are parsimo-
nious.” Likewise, when evaluating a scientific argument, students may hold the epistemic
ideal that “strong evidence addresses core parts of the model,” or “good arguments are
clearly communicated.”

Reliable epistemic processes, the third component of the AIR model, are the methods by
which knowledge and other epistemic products are constructed [29,30]. Reliable processes,
strategies, and practices are those that consistently result in epistemic products that meet
epistemic aims. Classification as to whether a process is reliable and appropriate depends
largely on the discipline and context; they are often contingent upon the circumstances
in which they are enacted, although certain processes are near-universally viewed as less
reliable than others (e.g., relying on hearsay). In science, controlled experimentation and
rigorous observation are often endorsed as reliable processes, under particular conditions.
Observation may be a reliable process when a person uses it to visually count a small
number of people in a room, but it becomes much less reliable when counting people in a
crowd of thousands. As argued by Chinn et al., a critical part of epistemic cognition relates
to the people’s schemas about the conditions under which processes can be considered
reliable, and these schemas can be used in different ways [30]. According to Chinn et al.,
individuals may use the schemas to guide their actions, that is, to enact a reliable process [30].
For example, a student may conduct a well-designed scientific experiment to collect data
as evidence to support a claim. Second, individuals may use the schemas to evaluate the
processes used by others, such as by judging whether a specific method is viable to generate
an accurate understanding of a scientific phenomenon. Third, individuals may use the
schemas to express metacognitive beliefs about how to produce reliable epistemic products.
For instance, an individual may explain what needs to be considered when evaluating a
scientific argument.

Chinn and colleagues’ model has been used as a framework to examine learners’
epistemic cognition while engaged in scientific inquiry [24,33]. For instance, Herrenkohl
and Cornelius examined the argumentation practices of fourth- and fifth-grade students
and teachers to assess the epistemic thinking that emerged during instructional activities
such as whole-class discussions and small-group discussions [24]. The researchers coded
whole-class discourse for argumentation and categorized the emergent code clusters into
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the components of Chinn et al.’s model of epistemic cognition. In the present study, we
also employed the AIR model as the theoretical and explanatory framework. Specifically,
we conceptualized epistemic cognition based on the AIR model. Further, we used the
AIR model to identify and analyze student discourse to deepen understanding of how
epistemic ideals and reliable processes occur and interact together with argumentation in
student discourse about science in small-group discussions. The goal was to gather a better
sense of the criteria students use to form scientific arguments and to better understand the
relationship between students’ practices of argumentation and the epistemic criteria they
hold and apply in science classrooms.

1.2. Interplay of Argumentation and Epistemic Cognition in Science

As addressed above, the AIR model aligns well with contemporary research and
theory on argumentation. Argumentation—the process through which knowledge claims
are asserted and justified through supporting reasons and evidence—is part of the foun-
dation for the development and progression of scientific knowledge [34–37]. Thus, when
conducted in ways that adhere with scientific normative practices, argumentation can be
considered a reliable epistemic practice in science. Scientists advance knowledge in their
field by endorsing normative epistemic ideals such as that a scientific argument needs to
be supported by evidence and connected to prior theories (i.e., coherence with evidence or
normative disciplinary knowledge). Subsequently, scientists must establish a convincing
argument and communicate it to the broader scientific community. Their argument is
subject to critical evaluation by their peers, who can question aspects of the argument and
make counterarguments. The goal of reasoned argumentation is thus to come to a rational
conclusion about which claims to accept or which actions to take [38].

As students engage in argumentation as an epistemic process, they are also likely to
develop their epistemic understanding of science [25]. When students engage in collab-
orative argumentation, their arguments are also open to evaluation by others, who can
examine the provided justification and accept or reject the purported claims [39]. During
this process, alternative positions can be considered as well. Specifically, an individual
can engage in written argumentation independently by articulating their own viewpoints
and providing reasoning and evidence in support of their claim as well as considering
multiple perspectives and counterarguments to their position. However, students can also
engage in oral argumentation collaboratively and dialogically. During oral argumentation,
students benefit from listening to others, processing and evaluating others’ arguments,
similar to what scientists do in their own practice. As a result, engaging students in ar-
gumentation helps them to understand the processes behind science and to develop a
deep understanding of how knowledge develops in the scientific discipline [40], which
subsequently advances their science learning [3,41–43].

Epistemic ideals, on the other hand, guide the kinds of reasons and evidence used
in the scientific arguments constructed by scientists and students. In science, there are
disciplinary standards (i.e., epistemic ideals) regarding the ways in which argumentation
(e.g., evidence or connection to other theories) is used in knowledge building [3]. These
disciplinary standards are the accepted guidelines by which the community justifies and
evaluates knowledge, as well as the processes used to produce knowledge [3]. As a result,
argumentation involves a deliberation on the epistemic status of knowledge claims [44].
For instance, in science, claims that adhere to scientific evaluative criteria (e.g., supported
by evidence or fit with prior theories) are given predominant epistemic status over claims
that do not meet these criteria. In the coordination of claims, reasons, and evidence, one’s
epistemic cognition becomes pivotal. Absolutist, multiplist, and naïve views of knowledge
and knowing provide few guides as to what should and should not be considered a valid
knowledge claim [45], whereas when students adopt an evaluativist perspective and more
normative beliefs, they are more likely to utilize disciplinary norms to evaluate arguments
and consider whether to accept or refute the arguments.
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Therefore, the epistemic ideals students hold will guide the kinds of reasoning, evi-
dence, and arguments they bring forward and the type of disciplinary standards they use
to evaluate the presented arguments. Empirical evidence shows that students’ epistemic
cognition influences how they evaluate and construct scientific arguments [46]. Students
with more advanced epistemological understanding engage in more critical evaluation [47].
They are better able to identify informal reasoning fallacies in flawed arguments [48]
and produce higher-quality written arguments of their own [18]. Nussbaum and col-
leagues examined the transcripts of paired students’ online argumentation discussions and
found that students with less advanced epistemological understanding were less critical of
their partner’s arguments [19]. Also, these students did not acknowledge inconsistencies
within arguments, when compared to students who held more advanced views. The more
advanced students provided counterarguments, brought forth more content into their
argumentation, and noted the need for more information. Students with more advanced
epistemic perspectives were also more willing to engage in argumentation than peers with
more naïve perspectives [19,49]. Notably, there is literature suggesting this relationship
could be bi-directional. When students engage in dialogic argumentation and demonstrate
their knowledge of the argumentation norms in science, they reveal an improvement in
their epistemic understanding [50]. Given the strong alignment between models of argu-
mentation and epistemic cognition (e.g., AIR model), there is a need for research on how
to construct argumentation instruction in ways that help students refine their epistemic
understanding of science, which necessarily includes normative scientific aims, ideals, and
reliable processes.

1.3. Using Quality Talk Science (QTS) as a Potential Approach to Enhance Argumentation and
Examine Epistemic Cognition

As stressed in prior research, the kind of classroom intervention found to be effective
for promoting epistemic cognition often involves teachers’ creating and supporting an open
space where small groups of students can co-construct and challenge arguments about
domain-specific problems [2,51]. Further, within the context of an open participation space,
the type of task assigned to students may also influence their performance. For example, a
well-defined, open-ended, and challenging task provides more opportunities for students
to utilize multiple strategies and can help promote generalization, argumentation, and
higher-order thinking [52,53]. The variable nature of open-ended tasks also stimulates
conversations among students to allow for a negotiation of meaning and understanding of
the domain knowledge [54].

In this study, we examined students’ oral discourse in science during an intervention
called Quality Talk Science (QTS), a teacher-facilitated, small-group, discourse intensive
approach that aims to promote students’ critical-analytic thinking and high-level compre-
hension about scientific models and phenomena [27,55]. Similar to the aforementioned
characteristics of successful interventions that promote epistemic cognition, during QTS
teachers receive a series of professional development workshops to become familiar with
the pedagogical principles. Specifically, these pedagogical principles outline the need
for students to take on the interpretative authority of the discussion. To achieve this,
teachers gradually release control of the discussion to students, such that students in-
crease their responsibility participating in productive discourse about scientific content,
searching for the underlying arguments and assumptions (i.e., epistemic engagement) [56].
Further, as part of these pedagogical principles, teachers provide explicit instruction to stu-
dents with guided practice on how to generate thought-provoking, open-ended questions
(i.e., authentic questions, AQ) and respond to those questions using argumentation. These
student-initiated authentic questions and argumentation responses serve as indicators of
high-level comprehension, as students critically and reflectively engage with scientific text
or content. As an essential part of QTS, students engage in regular small-group discussions
where they are expected to evaluate scientific models related to various scientific phenom-
ena. Teachers facilitate these discussions using appropriate teacher discourse moves such
as marking or modeling discourse elements indicative of productive talk [57].
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QTS has both theoretical and empirical underpinnings as a branch of the broader
Quality Talk (QT) framework [58]. QT was derived from a systematic review of text-based
discussion interventions in language arts [26] and was adapted for use in high-school
science classrooms [27]. The most effective parts of multiple approaches to discussion
were combined into one approach designed to bolster students’ high-level comprehen-
sion and critical-analytic thinking of text. It is rooted in rich theoretical underpinnings
including cognitive, sociocognitive, sociocultural, and dialogic perspectives on teaching
and learning [59].

Accumulating empirical research on the QT approach has evidenced positive impacts
on improving students’ discourse and argumentation in science, literacy, English language
learning, and mathematics [27,60–62], as well as in different cultural contexts [63–65].
As a case in point, we conducted a quasi-experiment in which high school chemistry
and physics teachers implemented QTS in their classrooms over a school year [27]. The
critical-analytic thinking and argumentation in the discourse of students engaging in QTS
improved dramatically from pre-test to post-test. Over time, QTS students asked more
questions that provoked deeper levels of cognitive processing and responses [27]. In
contrast, students in the comparison classroom did not evidence these changes to the same
degree. At the end of the school year, QTS students produced many more well-supported
responses with reasoning and evidence, and challenged and built on others’ arguments
more frequently. Such indicators were not present in the pre-test discussions, nor were
they present in the post-test discussions of the students in the comparison classroom.
Comparable results have been shown across varying grades, content areas, and contexts.
For example, in language arts classrooms, fourth-grade students who participated in QT
discussions evidenced increases in students’ basic- and high-level comprehension [60] as
well as students’ written argumentation after receiving writing instruction as part of the
QT intervention [66].

In sum, QTS has shown promise as a way to foster scientific practices that involve
argumentation and understanding via small-group discussion, and it aligns well with
instruction on epistemic cognition in science. However, less is known about the epistemic
ideals that students use in scientific discourse as they generate arguments and how they
consider reliable processes while understanding scientific phenomena.

1.4. The Present Study

In this qualitative case study, we examined how high school students engaged in
small-group discussions about scientific models and phenomena with a particular focus
on how students’ epistemic cognition and argumentation were evidenced across a set of
discussions. We used the AIR model as the theoretical and explanatory framework from
which we identified and analyzed the epistemic ideals and reliable processes students used
while constructing arguments and evaluating scientific models. This study contributes to
the extant literature in three ways: (a) our methodological approach allowed us to gather
evidence of epistemic cognition and argumentation as enacted in students’ oral discourse
rather than via self-reports, (b) the AIR model enabled us to capture the criteria students
used to evaluate scientific arguments while also contributing to the emerging body of
literature using the framework to analyze collaborative argumentation discourse [24,33],
and (c) the use of the QTS discussion approach contributed to examining the relationship
between epistemic cognition and argumentation as well as informing instructional implica-
tions for promoting scientific argumentation and epistemic cognition in science classrooms.
Our research questions were:

RQ1.What types of epistemic ideals, reliable processes, and argumentation do students
invoke while engaging in small-group, QTS discussions?

RQ2.How do students’ epistemic cognition and argumentation vary based on contextual
factors of the discussions (i.e., model format and explicit instruction)?

RQ3.How does students’ epistemic cognition relate to authentic questioning and argumen-
tation during QTS discussions?
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2. Methods
2.1. Participants and Study Design

Within the context of a larger National Science Foundation grant, four teachers from
one public high school in the northeastern United States implemented QTS in their 10th-
through 12th-grade chemistry and physics classes over an entire academic year. Students
in the school were predominantly Caucasian (i.e., 91%), and over half of the students were
from economically disadvantaged families (i.e., 49% qualified for the Free Lunch Program
and 8% qualified for the Reduced-Price Lunch Program). The school was situated within a
small city in a rural setting. The student population was highly transient; almost half of
the participants who enrolled in the study at the start of the school year changed school
districts over winter break.

For this qualitative case study, one group of all female students (n = 6) from the
AP chemistry class was selected for analysis. Although students in the class were split
into four discussion groups, we elected to examine the discourse from one of the small
groups so that we could conduct the depth of qualitative analysis necessary to explore
our research questions. We identified the best fitting group for analysis based on two
primary selection criteria: (a) a group where the teacher was not present for the QTS science
lesson discussions and (b) a group with students who had high rates of attendance and
a full year of participation. These selection criteria allowed us to identify the group that
would give us the best sense of students’ epistemic cognition and scientific argumentation
without the influence of the teacher or the variability in group composition (e.g., shifts
in group dynamics due to student absences). Finally, it is important to note that in this
qualitative study, we emphasized ecological validity over external validity. That is, the
study examined student learning in an authentic science classroom. Therefore, our research
design does not warrant causal claims or generalizations from our findings.

2.2. QTS Intervention

The key components of the QTS intervention included the delivery of QTS discourse
lessons and QTS catalyst, QTS science lessons, QT scientific model handouts for QTS
discussions, and QTS discussions across one academic year (see Table 1 for schedule and
timeline), which are introduced in the following sections, respectively.

Table 1. Timeline of Monthly Cycles with QTS Discourse Lessons and QTS Science Lesson Topics.

Month QTS Discourse Lesson Content QTS Science Lesson Topic

Emphasis on Asking Open-Ended Questions (Fall)

September Authentic Questions Airbags *
October Question Types Soap Bubble

November Question Types Nuclear Fission *

Emphasis on Argumentation (Spring)

January Components of an Argument Thin Films *
February Evaluating Evidence and Reasoning Hot Packs *

March Counter-Argument Tesla Coil
Note. * Denotes discussion analyzed as part of this study’s data.

2.2.1. QTS Discourse Lessons and QTS Catalyst

The six QTS discourse lessons were shared with the teacher during the initial and
ongoing professional development workshops. For each discourse lesson, the teacher
was provided with a set of slides to present in class as well as a corresponding lesson
plan. The first three discourse lessons focused on different types of authentic questions
that students could generate and ask in their discussions (e.g., speculation questions,
connection questions, or high-level thinking questions) and were delivered in fall. The last
three discourse lessons were delivered in spring and were focused on teaching students
about argumentation components (i.e., claim, reasoning, and evidence), the evaluation of
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evidence and reasoning, as well as challenge, alternative argument, and counterargument.
Students were not only introduced to the definition of each necessary argumentation
component, but they were also provided with guidelines (i.e., relevance, credibility, and
accuracy) on evaluating evidence and quality of reasoning. All discourse lessons included
descriptions of concepts as well as realistic examples of these concepts illustrated through
discussion transcripts and/or videos [58].

Students were also provided with a QTS catalyst worksheet to correspond with the
discourse lessons and prepare students for the QTS discussions. In the fall semester, the
QTS catalyst focused on different types of authentic questions in alignment with the QTS
discourse lessons (Figure 1a). The fall QTS catalyst provided space for students to record
their authentic questions about the model, readings, and demonstration in preparation
for discussion. In spring, students were provided with a QTS catalyst that centered on
argumentation in alignment with the discourse lessons focused on argumentation. In
addition to providing space for recording authentic questions, the spring QTS catalyst used
visual representations of each argumentation component to facilitate the discussion and
help students think about the model for discussion regarding the evidence and reasoning
for each claim (Figure 1b).
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Figure 1. Examples of QTS Catalysts. (a) The top QTS catalyst was used in fall with a focus on
recording students’ authentic questions; (b) The bottom QTS catalyst was used in spring with a focus
on argumentation components.
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2.2.2. QTS Science Lessons

Paired with each of the six discourse lessons, the teacher also taught a QTS science
lesson over three consecutive class periods. QTS science lessons were co-created with
teachers and content area experts to provide rich opportunities for students to engage in
discussions around disciplinary core ideas in science in alignment with the Next Generation
Science Standards (NGSS). Each lesson was centered around an essential question related
to a scientific phenomenon (see Tables 1 and 2 for details).

Table 2. QTS Science Lesson Details.

QTS Science Lesson Topic Essential Question Science Concepts Class Demonstrations

Airbags
How does the inflation and

deflation of the airbag prevent
injury?

Newton’s Laws of Motion,
Kinetic Theory of Gases,

Acceleration, Velocity, Force,
Diffusion

• Video demonstration of
a crash test with and
without an airbag

• Video demonstration of
an airbag deployment
and deflation in slow
motion

Nuclear Fission How does nuclear fission
create explosions?

Fission, Strong force, Nucleons,
Nuclides, Neutrons, Protons,

Electrons, Binding Energy,
Electrostatic Forces, Radiation,

Isotopes, Stability

• Video demonstration of
chain reactions

• Video demonstration of
an explosion from
100 tons of TNT

• Video discussion of the
Manhattan Project
Trinity Test

Thin Films

What causes the appearance
of multiple colors in a layer of
colorless nail polish when it is
observed under white light?

Destructive Interference,
Constructive Patterns,

Refraction, Young’s Experiment,
Absorption, Scatter, Diffraction,

Reflection, Light Dispersion,
Miscible, Immiscible, Density

• Hands-on, thin film
rainbow paper
experiment

Hot Packs
Why does clicking the disk in
a reusable hot pack result in

the release of heat?

Phase Change, Exothermic,
Endothermic, Entropy, Energy,

Activation Energy, Potential and
Kinetic Energy, Enthalpy

• Video demonstration of
a hot pack activating in
slow motion

• Hands-on, reusable hot
pack for each group

On the first day of the QTS science lesson, students were introduced to the essen-
tial question and observed demonstrations of the phenomenon (i.e., hands-on activity
or video). After the demonstrations, the teacher introduced a handout that contained
multiple models/claims to explain the scientific phenomenon that students observed in
the demonstration (Figure 2). During and after the demonstrations, students generated
and wrote down authentic questions about the phenomenon or their thinking about each
claim in the scientific model on their QTS catalyst worksheet (Figure 1). Taken together,
students were provided with multiple exposures to the scientific phenomenon and related
material (e.g., demonstrations or scientific readings) in order to promote the likelihood that
students possessed the necessary foundational understanding related to the phenomenon
prior to the discussion. This approach also allowed multiple opportunities for students
to develop a variety of rich authentic questions and engage with the scientific model. On
the second day, students brought their QTS catalyst, readings, and the provided scien-
tific model/claims to their QTS discussions to talk about the scientific model and related
scientific phenomenon. On the third day of the science lesson after students conducted
a QTS discussion, the teacher reviewed the student evaluations of the presented models
or claims via a whole-class discussion toward the normative model and addressed any
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misconceptions in student responses to help them understand the normative scientific
model in class.
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2.2.3. Scientific Model Handouts for QTS Discussions

The scientific model handouts were an integral part of the QTS science lesson, as
they provided a framing for alternative scientific models related to the phenomena and
also served to guide the discussions. In line with Schwarz et al. [67,68], scientific models
are considered “tools for predicting and explaining” scientific phenomena, and scientific
models can “change as understanding improves” [67] (p. 632). Having students engage in
modeling practices is conducive to developing their epistemic understanding as well as
their capacity for constructing and evaluating knowledge in science [69]. Therefore, in the
current study, students were afforded the opportunity to evaluate and revise these models
during QTS discussions as part of their learning about various scientific phenomena.

In fall, the handout consisted of four different models of the given phenomena. Each
model had a collection of claims and there were overlapping claims across the four models.
Among the four models, one of them contained all correct claims and the remaining
three had one or more incorrect claims (Figure 2a). However, the teacher and students
reported that these models were too simplistic. Once students identified one model that
they believed to be correct, they no longer considered the remaining models. As a result,
we revised the handout. In spring, a single model was presented, which included three
claims that jointly explained the phenomena (Figure 2b). The models and claims were
hand-drawn and formatted to appear as if they were student-generated work rather than an
authoritative source (e.g., a textbook figure). The three claims addressed different aspects
of the model and did not have any overlapping components. Students were told that any
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number of the claims were potentially correct or incorrect, and their task was to provide
reasoning and evidence regarding the veracity of each claim. For incorrect claims, students
were asked to generate a correct claim with appropriate reasoning and evidence.

2.2.4. QTS Discussions

The small-group discussions took place on the second day of the QTS science lesson.
Given logistical and time constraints, it was not possible for the teacher to facilitate four
discussions in one day while still allowing each group enough time to engage sufficiently
in discussions (i.e., at least 15 min). Thus, the teacher organized the class so that two groups
discussed for the first half of the class, while the other two groups worked independently
on classwork, and then they switched for the second half of class. The teacher facilitated
one small-group discussion in each half, while the other group engaged in a discussion
without a facilitator. Discussions lasted approximately fifteen minutes and naturally
unfolded in two portions: (a) discussing the answer to the essential question presented
in the lesson, also called the model-based portion of the discussion and (b) engaging in
the discussion about related scientific content guided by student-initiated questions, also
called the open-ended portion of the discussion.

In response to the essential question about the provided model, students discussed the
different models or claims with respect to which were correct, which were incorrect, and
why. Notably, there was no single answer to these questions and there existed multiple ways
to address these questions by referring to various pieces of evidence from the provided
readings or demonstrations. During the model-based portion of the QTS discussions,
students focused on one specific epistemic aim: determining whether the model or claim
was scientifically sound. To achieve this epistemic aim, students needed to evaluate
and analyze the scientific credibility of the provided models or claims using reasoning
and evidence.

After students concluded their discussion around the essential question and reached
a conclusion regarding the scientific model, they began the open-ended portion of the
discussion. When students engaged in the open-ended portion of the discussion, a singular,
central epistemic aim was not evident. This open-ended portion revolved around asking
and answering student-generated authentic questions. These two distinct parts emerged
from the flow of the discussion across all discussions, but occasionally, students would
briefly return to reconsidering the essential question as it related to a student-generated
authentic question they were discussing. Importantly, this split between the scientific
model-based portion and the open-ended portion of the discussion was not invoked by the
teacher nor controlled by the researchers.

2.3. Procedures

Along with a cohort of teachers participating in the larger grant-funded study, the
chemistry teacher participated in a series of initial and ongoing professional development
workshops, where they learned about the QTS approach and how to implement it in
their classroom with researcher-provided materials (e.g., QTS discourse lessons, QTS
science lessons, or materials for hands-on activity). They also received regular one-on-one
coaching sessions with QTS coaches to support high-fidelity QTS implementation (e.g.,
successful delivery of QTS discourse lessons, QTS science lessons, or implementation of
QTS discussions).

Each month the teacher engaged in a cycle (see Table 1 and Figure 3) whereby they:
(a) presented a QTS discourse lesson to teach aspects of authentic questions and argumen-
tation, (b) implemented a QTS science lesson about a disciplinary core idea, (c) conducted
small-group discussions based on the disciplinary core idea science lesson with two groups
being teacher-facilitated and two groups being student-led, which were both video- and
audio-recorded, and (d) reviewed student evaluation of the scientific model(s) through
a whole class discussion and presented the normative scientific model. In addition, the
teacher also (e) conducted a second set of small-group discussions based on a chemistry
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lesson of their choice. In this teacher-choice science discussion, the teacher used a structure
similar to the QTS science lessons but without a scientific model. This gave students an
opportunity to engage in additional QTS discussions while also allowing the teacher to
facilitate the groups that were previously student-led. Thus, by alternating the discussions,
the teacher was able to facilitate all four groups within each cycle. Over the academic
year, this monthly cycle repeated six times. In this study, we examined four of the QTS
discussions conducted by one student-led group.
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Figure 3. A Flowchart of the QTS Intervention Procedures (One Cycle).

2.4. Qualitative Coding
2.4.1. Epistemic Cognition Coding

The coding for epistemic cognition was conducted through iterative cycles to ensure
consistency and coherence across the two portions of each QTS discussion (i.e., model-
based portion and open-ended portion). Prior literature regarding epistemic criteria for
models and arguments [70] and Chinn and colleagues’ AIR model [30] framed our initial,
open coding of students’ discourse. After separately coding the discourse, the authors
met to discuss the emergent codes in the data and our reasoning for each code. Over
multiple coding cycles, we refined our coding scheme and resolved all discrepancies
through discussion. Given the two portions of each QTS discussion had different epistemic
aims, coding was conducted first for the model-based portion of the discussion and then
replicated for the open-ended portion in order to maintain greater consistency and to avoid
drift in coding for each portion of the QTS discussion. Throughout the coding process,
the researchers wrote analytic memos [71] to document reflections and insights regarding
the coding process. It is worth noting that the authors did not code for epistemic aims in
the coding of epistemic cognition. This was because there was one clear epistemic aim
for the model-based portion of the discussion, which was to determine a correct model,
and no clear, central epistemic aim for the open-ended portion of the discussion during
which students answered their authentic questions related to the scientific phenomenon
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in general. Through this iterative, multi-cycle process, the authors developed two sets of
epistemic cognition codes (i.e., epistemic ideals and reliable processes) with five categories
of epistemic ideals and five categories of reliable processes. While coding for the reliable
epistemic processes used in the discussions, the researchers also noted the ways of how
students used the schemas that specify these processes, such as whether each reliable
epistemic process was enacted, evaluative, or metacognitive [30]. See Tables 3 and 4 for
code descriptions and examples.

Table 3. Descriptions of Epistemic Ideals Codes with Examples.

Epistemic Ideal Code Code Description 1 Example 2

Connections to Other Knowledge

Coherence with normative
disciplinary knowledge

The explanation is consistent with
known scientific knowledge from

an authoritative source. This
includes information from the
provided texts or any scientific

knowledge they apply (e.g., prior
knowledge from another

science class).

Nuclear Fission

Emma: I had a question about the decaying. Like, why do
they decay? Is it to become more stable?
Aria: Yeah, because remember how it [the article] says, like,
the stability of an isotope is dependent on the ratio of the
number of neutrons and protons. Well, it was stable before,
but if you added another neutron it’s unbalanced. So, it
wants to be stable, when it’s not, it’s just going to decay. {EI:
Coherence with NDK}

Coherence with personal
experience

The explanation is consistent with
a situation that they have
personally experienced.

Hot Packs

Grace: ’Cause, like, in the [article] it said 130 degrees
Fahrenheit, but do you think, some . . . like, I doubt that [the
reusable hot pack] got that hot . . . {EI: Coherence with PE}
Aria: Yeah, it’s not that hot. Fifty-four, um . . . In the
summer, the temperature is roughly, like, 38 degrees Celsius,
so really, that’s not that hot. {EI: Coherence with PE}

Coherence with the personal
experience of a layperson

The explanation is consistent with
personal experiences of others

that they were told or heard about
(e.g., friend, family, coworker).

Airbags

Aria: Well, say, like I told you earlier, my dad was in an
accident, like, a year ago. A car hit him from behind, so his
face physically went forward, and the airbag popped out, so
he went backwards again. So his neck was sprained and he
couldn’t move his neck around for a month. So is that injury
really necessary? {EI: Coherence with PE of a layperson}

Coherence with prior
knowledge (other)

The explanation is consistent with
other prior knowledge that is not

from their own personal
experience and is not scientific

knowledge they know.

Airbags
Chloe: I think in the demonstration they were, like, wearing,
like, a lap belt and, like, when they, like, came up, like, the
airbag hit them and they went back down. But, like, without
the seatbelt they would probably go over the airbag, you
know what I mean and then, like, crash. {EI: Coherence
with PK}
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Table 3. Cont.

Epistemic Ideal Code Code Description 1 Example 2

Internal Structure of the Explanation

Comprehensive The explanation is not too simple;
it is sufficiently complex.

Thin Films

Aria: So what’s our reasoning? How are we . . . ?
Isabella: I said that . . . Well, I said that it’s true, but it
doesn’t really explain why, like, the appearance of the light,
do you know what I mean? Like, it, it doesn’t really explain
why multiple colors appear. It just explains—it just—{EI:
Comprehensive}

Logically sound

The components of an
explanation make reasonable,

non-contradictory connections
among each other.

Airbags

Chloe: Do you guys think it is safe to use sodium azide and
potassium nitrate and silicone oxide in the gas generator
mixtures, and sodium . . . ? Wait, so sodium . . . Sodium
azide is toxic.
Emma: Probably not.
Isabella: I know that’s, that’s what I—that’s one of my
questions where I don’t understand how that would be safe.
{EI: Logically sound} <EI starts>
Mia: Yeah.
Isabella: Like, if airbags are supposed to protect you and
save you, then why are they putting chemicals in it? <EI
ends>
Emma: And then, like, the toxic substance that, like,
converts into glass . . . Isabella: Like, like, I don’t
understand how that came about for a safety device to have
glass in it and a toxic substance that you know, converts
to that.

Good Communication

Precise wording
The language used in the

explanation is specific and
accurate.

Hot Packs

Aria: That’s not technically—{EI: Precise wording} <EI starts>
Emma: But using this—
Aria: —phrased right. Yeah, yeah, I know what you mean,
but it’s—it should say activation energy is the energy
nee—well, like, it—you have to overcome the activation
energy—
Emma: To be able to start.
Aria: Yes. It’s not needed. Like, the activation energy is just,
um, an amount.
__: OK.
Aria: Does that make any sense? <EI ends>

Clearly understandable The explanation is well-written
and easily interpreted.

Airbags

Chloe: I would agree [that model 2 is valid], um, that I just
think it had kind of better language. {EI: Clearly
understandable}
Aria: The wording’s the same, they just have different
things, like, combined.
Chloe: But I think the best thing was it said the airbag
inflates in order to provide a force in the equal and opposite
direction of the driver’s motion and (inaudible) like that,
like—made it better.
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Table 3. Cont.

Epistemic Ideal Code Code Description 1 Example 2

Empirical Evidence

Coherence with empirical
evidence (personally

collected)

The explanation is not
contradicted by empirical

evidence (i.e., data that were
collected systematically using

scientific practices) that the
students have personally gathered

while assessing claims.

Thin Films

Chloe: When the nail polish hit the water, it, like,
spread—like, it was like a drop, but then it, like, spread and
[the model] doesn’t do that. {EI: Empirical evidence}

Evidentiary Support

Evidentiary support The explanation is supported by
reasons and/or evidence.

Thin Films

Grace: What do you have written down as your reasoning
and evidence, Student 1? {EI: Evidentiary support}

Note. 1. The term “explanation” is used throughout the definitions in this table for consistency. However, each epistemic ideal could be
applied to any epistemic product (e.g., model, argument, claim). 2. In the examples, EC codes are noted in italics within {}; duration of
codes that span multiple turns is indicated within <>; EI: Epistemic ideals; RP: Reliable process. 3. Student names are pseudonyms.

Table 4. Descriptions of Reliable Epistemic Processes Codes with Examples.

Reliable Epistemic
Process Code Description Example

Experimentation Controlled testing of
different options.

Thin Film

Emma: I said, why do you think it only takes the one drop? Like, what
would happen if we added more?
Grace: Well, I did.
Mia: Yeah, we added more.
Emma: What happened?
Grace: Well, I feel like after you add too many they start, like, turning into
little blobs, and they sink to the bottom. That’s what happens after a while.
But if you have, like, two, they just kind of go inside each other, and it’s
just magical. Then after a while they form, like, little, tiny kind of
teardrops, and they just fall to the bottom. I don’t know why. {RP:
Experimentation, enacted}

Observation

Examination of the world
in real-time through

human sensory
perception.

Airbags

Chloe: I would like to see it in real life. I think it would be better than
seeing it on tel—like, on a screen is to see an airbag deployed in real life,
because I’ve never been in an accident, thank goodness, to see that, so I
think that would help better for the demonstration, for the models, have a
better understanding to see it. {RP: Observation, metacognitive}

Physics formula Use of a known physics
formula.

Nuclear Fission

Chloe: But if you, like, fly away, how would you know like when [a nuclear
bomb] was supposed to hit the ground to press [a button to activate it]?
Emma: So maybe you have to—at least you can see it, you can estimate,
like, you can—like in physics, the freefall problems, estimate with the
gravity, (laughs) how long it would take. {RP: Physics formula, metacognitive}
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Table 4. Cont.

Reliable Epistemic
Process Code Description Example

Process of elimination

Among a number of
proposed claims, find

reasons to reject each claim
until one claim remains.

Evidentiary support is not
provided for the final

remaining claim.

Nuclear Fission

Chloe: Why’d we pick model two?
Emma: Well, compared to the other ones, it says, “The strong nuclear force
overpowered the electric static forces.” And only number four also says
that. The rest of them are backwards. {RP: Process of elimination, enacted}
<RP starts>
Chloe: I agree, and that refers to the text where it told us that strong, uh,
nuclear forces would overpower the, uh, electrostatic forces.
Grace: So then you would be able to narrow it down to two and four, and
then it would be two because it says, like, the resulting nuclei will have an
increased binding energy and be more stable. <RP ends>

Thought experiment Working logically through
an imagined scenario.

Hot Packs

Aria: I feel like it’s going to release the same amount, but, like, it’s going to
release it over longer period of time. If you think about, like, um,
imagining you’re holding a really large disc, just like that—and if you click
it, like, slowly, and you kind of hold it, and then it goes over, like, to that
curve slowly, so it’s giving off the same amount of energy, but over a
longer period of time. So it’s not giving much at a time. So if you just click,
it just flips, but if you click it slowly, it doesn’t give as much energy at a
time.” {RP: Thought experiment, enacted}

2.4.2. Quality Talk Coding

Two trained researchers independently coded the discussions and came together to
reconcile any disagreements in accordance with the Quality Talk Coding Manual [72]. In
order to facilitate analysis, we segmented the discussion into episodes of talk based on
the authentic question events [73]. Each authentic question event began with an authentic
question asked by a student and included all responses generated by students in response to
that question. Responses related to the authentic questions were coded for individually (i.e.,
elaborated explanation, EE) and collectively constructed argumentation (i.e., exploratory
talk, ET; cumulative talk, CT). See Table 5 for code descriptions and examples.

2.5. Data Analysis Plan

Of the six cycles of QTS discussions, four were selected for analysis: two from fall
and two from spring (see Table 1). The lesson on Soap Bubbles was not analyzed due to
technical malfunctions with the camera, and the lesson on Tesla Coil was not analyzed due
to a new student joining the group. Video and audio data from these QTS small-group
discussions were transcribed by a professional transcriber into word processing documents.
These transcription files were uploaded to a qualitative data analysis software (ATLAS.ti 7)
to facilitate coding and analysis.

For RQ 1, we identified the categories of epistemic cognition and argumentation
invoked during the QTS discussions via qualitative coding and through iterative coding
and reconciling by two raters. For RQ 2, we detected the differences in students’ epistemic
cognition and argumentation due to contextual factors by examining the frequency of
the epistemic cognition and argumentation codes during the model-based portion of the
QTS discussions. For RQ 3, we investigated how students’ epistemic cognition related to
their authentic questioning and argumentation by examining the extent to which epistemic
cognition codes, the authentic question code, and argumentation codes co-occurred or
were closely related to one another (e.g., where one code tended to immediately follow
another code) and then checking the transcripts to verify patterns.
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Table 5. Descriptions of Quality Talk Codes with Examples.

Discourse Code Short Code Description Examples

Authentic
Questions AQ

Question in which more than one
acceptable answer is possible, the
speaker genuinely is interested in
the responses of others, and there

is no known “correct” answer.

Thin Films

Grace: What causes the nail polish on the surface to, like, spread out?
Do you guys know? {AQ}

Elaborated
Explanation EE

Response to an AQ where an
individual offers an explanation

that includes a claim with
multiple pieces of reasoning

and/or evidence.

Airbags

Chloe: I think, going back to Emma’s question, it’s kinda just, I feel it
saves you to an extent, but I think without your seatbelt, like, if you
don’t wear your seatbelt and the airbag’d deployed I feel like it
wouldn’t really do much, but I feel like the seatbelt keeps you
grounded. Like, I think in the demonstration they were, like wearing,
like a lap belt, and, like, when they, like, came up, like, the airbag hit
them and they went back down. But, like, without the seatbelt they
would probably go over the airbag, you know what I mean—and
then, like, crash. {EE}

Exploratory Talk ET

Collaborative exchange where
multiple students build on and

share knowledge, evaluate
evidence, or weigh different

options over multiple turns. ETs
are differentiated from CT by the

presence of a challenge.

Thin Films

Chloe: Oh, wait, wait, wait, I have a—I have a answer for (3)’s
question. Because technically these lights aren’t truly white light.
They’re not purely white, so they might not fully have all the colors.
{ET} <ET starts>
Grace: Oh, but then whenever you look at the outer edge it has
(inaudible). Oh, I see some blue in there when you go like this.
Mia: Wait, but—
Isabella: Like, in between the green, but it still goes from green to
pink.Mia: Wait, but [didn’t] they reflect—
Isabella: (inaudible).
Mia:—all the light (overlapping dialogue; inaudible)?
Isabella: You have to, like, hold it at an angle.
Aria: Oh, yeah.
Emma: But (teacher) even said there were, like, close, but they
weren’t, like . . .
Chloe: I would expect (overlapping dialogue; inaudible).
Grace: (overlapping dialogue; inaudible)
Isabella: Wait, guys, I can see different colors now.
Chloe: I don’t think [they’re] (inaudible).
Grace: Oh, it’s all about that angle.
Mia: I think (inaudible).
Chloe: It is. Like, look at it on an angle. Then you see, like, all
different colors (inaudible). It’s like now I see blue and then I see
pink.
Emma: So it has to do with the angle—
Grace: Oh, yeah.
Emma:—that you’re looking at it. <ET ends>

Cumulative Talk CT

Collaborative exchange where
multiple students build on and

share knowledge in a way that is
positive, but not critical, over

several turns. CTs do not contain
the element of challenge that

characterizes ETs.

Thin Films

Mia: Yeah, wavelength dictates color. {CT} <CT starts>
Aria: I feel like each color, like, each different—
Isabella: Oh, yeah.
Aria:—spot of color on the piece, piece of film is giving a different
wavelength, so our eyes are percepting, like, this red or purple or
whatever color.Grace: Yeah, it has to (inaudible)—
Aria: But it doesn’t mean they’re bouncing off of each other. They’re
just—
Grace: Yeah, it has to do with the wavelength.
Aria: Yeah.
Grace: Whatever she said, bouncing off of each other.
Isabella: I mean, it’s, like, implying that all wavelengths are the same,
like, all colors have the same wavelength.
Grace: But they just bounce off each other.
Isabella: But they just bounce off each other, like . . .
Aria: I don’t think that’s true.
Isabella: Yeah.
Grace: Yeah. Nice try. <CT ends>

Note. QT codes are noted in bold within {}.
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3. Results
3.1. RQ1. Epistemic Ideals, Reliable Processes, and Argumentation Invoked in Science Discussions
3.1.1. Epistemic Ideals

Our qualitative open-coding procedure resulted in a set of 10 codes related to students’
epistemic ideals. Then, these codes were organized into five epistemic ideal categories:
connections to other knowledge, internal structure of the explanation, good communication,
empirical evidence, and evidentiary support (see details in Table 3). With respect to
the frequency of these epistemic ideals, there was a notably wide variation between the
different categories. As shown in Table 6, students most frequently made ‘connections
to other knowledge,’ as evidenced through 49 instances. In contrast, there was only one
instance of the category ‘empirical evidence,’ as represented through the code ‘coherence
with personally collected empirical evidence.’ In the following descriptions of each category,
we refer to the examples provided in Table 3.

Table 6. Frequency Table of EI Codes Across Discussions.

Epistemic Ideal Code

Fall Spring

D1. Airbags D2. Nuclear Fission D3. Thin Films D4. Hot Packs

Model-
Based

Open-
Ended

Model-
Based

Open-
Ended

Model-
Based

Open-
Ended

Model-
Based

Open-
Ended

Connections to other knowledge (total count = 49)

Coherence with normative
disciplinary knowledge 2 2 3 8 6 1 5 5

Coherence with personal experience 0 1 0 0 0 0 0 7
Coherence with the personal experience of

a layperson 0 1 0 0 0 0 0 0

Coherence with prior knowledge (other) 0 2 0 2 1 3 0 0

Internal structure of the explanation (total count = 7)

Comprehensive 0 2 0 0 1 2 0 0
Logically sound 0 1 0 0 1 0 0 0

Good communication (total count = 2)

Precise wording 0 0 0 0 0 0 1 0
Clearly understandable 1 0 0 0 0 0 0 0

Empirical evidence (total count = 1)

Coherence with empirical evidence
(personally collected) 0 0 0 0 0 1 0 0

Evidentiary support (total count = 3)

Evidentiary support 0 0 0 0 1 0 2 0

The vast majority of identified instances of epistemic ideals related to how epistemic
products connected to other knowledge (e.g., personal experience or prior knowledge).
Within this category, the most commonly invoked epistemic ideal was noted by instances
coded as ‘coherence with normative disciplinary knowledge’ (i.e., coherence with NDK). As
evidenced by the 32 instances of this code, this ideal generally involved students expressing
normative science knowledge that related to what they learned from the QTS science lesson,
such as the scientific articles. As shown in the example in Table 3, Aria (student names are
pseudonyms) explicitly referred to an article assigned from the nuclear fission lesson in
response to Emma’s authentic question. Likewise, in the airbag discussion, Chloe made
a connection to their shared prior knowledge from the demonstration video that they
watched together in class.

With respect to the category of ‘internal structure of the explanation,’ students evalu-
ated whether explanations were sufficiently complex (i.e., comprehensive) or internally
consistent (i.e., logically sound). In alignment with the two codes in this category, students
expressed hesitations about whether to accept a claim or explanation because they felt it
was incomplete or missing important explanatory components or they speculated about
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the logic in the explanations. For example, when discussing the use of the chemical sodium
azide in airbags, students wrestled with whether the use of the highly toxic sodium azide
was contradictory to the use of an airbag as a safety device. That is, students stated the
ideal of being logically sound was not sufficiently met.

Instances associated with the ‘good communication’ category pertained to epistemic
ideals related to the language and comprehensibility of explanations. The codes that made
up this category included ‘precise wording’ and ‘clearly understandable’ and were notably
infrequent in the discussions, each occurring only once. In the example, Chloe expressed
that they accepted Model 2 because of the language, and then went on to describe the
exact phrasing of the explanation that they were referring to as it related to this ideal.
These statements exemplified how the student accepted the claim on the basis of its clear,
understandable language in comparison to the other claims.

The category of ‘empirical evidence’ related to the epistemic ideal that students used
to seek coherence with empirical evidence that was personally collected. However, formal
data collection was not a component of the science lessons in the present study, and students
only conducted hands-on experiments during some lessons. Despite this, there was one
instance where a student made a connection with empirical evidence. In the thin films
lesson, students had an opportunity to engage in a hands-on activity. They submerged
a scrap of black construction paper in water, added a drop of nail polish onto the water,
and then observed how the nail polish formed a layer on the surface of the water as well
as how the paper looked once it was lifted out of the water. Thus, during the discussion
about thin films in the example, Chloe referred to the empirical evidence and emphasized
that the model did not seem to align with what was observed during the demonstration.

Finally, we identified one code that did not fit within any of the five proposed by
Chinn and colleagues [30]. We termed that code and the broader category ‘evidentiary
support.’ As illustrated by the evidentiary support code, students either accepted a claim
because it was supported by reasons and/or evidence or they held their peers accountable
for providing reasoning and/or evidence. Notably, this was different from empirical
evidence where students provided or referred to empirical evidence that was personally
collected to support a claim. An example would be Grace explicitly prompting their group
for reasoning and evidence to help evaluate a claim.

3.1.2. Reliable Epistemic Processes

Through our open-coding process, we coded five types of reliable epistemic processes:
experimentation, observation, physics formula, thought experiment, and process of elim-
ination (see code descriptions and examples in Table 4). Compared to the frequency of
epistemic ideals, there were fewer instances of reliable epistemic processes, which added
up to 11 instances across four QTS discussions (see Table 7).

Table 7. Frequency Table of Reliable Processes Codes Across Discussions.

Reliable Epistemic Process Code

Fall Spring

D1. Airbags D2. Nuclear
Fission D3. Thin Films D4. Hot Packs

Model-
Based

Open-
Ended

Model-
Based

Open-
Ended

Model-
Based

Open-
Ended

Model-
Based

Open-
Ended

Experimentation 0 1 0 0 0 1 0 0
Observation 0 1 0 0 0 1 0 3

Physics formula 0 0 0 1 0 0 0 0
Process of elimination 1 0 1 0 0 0 0 0
Thought experiment 0 0 0 0 0 0 0 1

Each of these five codes involved a different method used to construct epistemic
products, that is, a process used to establish knowledge, models, explanations, or theories.
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For instance, ‘experimentation’ referred to using controlled testing as a reliable process
to produce an epistemic product. Similarly, for other reliable process codes, students
considered examining the world through human sensory perception (i.e., observation),
referring to a known physics formula (i.e., physics formula), logically thinking through
an imagined situation (i.e., thought experiment), or applying a process of elimination as
reliable processes to obtain an epistemic product. For instance, during the discussion on
thin films, Grace referred to her experimentation as a reliable process to explain what
happened after adding one more drop of nail polish on the water surface. An example of
a thought experiment as a reliable process was identified in the discussion on hot packs
as shown in Table 4. Aria was thinking through an imagined scenario where the energy
would be released over a longer period of time when one clicked the disc more slowly.

As we attempted to identify the categories of reliable processes in student discourse,
we also noted the ways in which students used the schemas that specified these reliable
processes (i.e., enacted, evaluative, and metacognitive). An example of students enacting
a reliable process would be picking a model that they deemed to be correct through the
process of elimination (see Table 4). Specifically, when students discussed which model to
pick for the nuclear fission discussion, they did not argue why the selected Model 2 was
correct. Instead, Emma and Grace eliminated other models because one statement in the
rest of the models did not seem to align with the information provided in the reading. As
noted earlier in the qualitative coding for reliable processes, even though it was not viable
for participants to enact all possible reliable processes, students could still speculate about
the reliable processes by evaluating and metacognitively thinking and talking about them.
As a case in point, in the discussion on airbags, Chloe expressed a metacognitive belief
regarding observation as a reliable process, stating that having first-hand observations
from a real-life experiment would help the group better understand the models than a
video demonstration. Similarly, in the discussion on nuclear fission, Emma expressed her
metacognitive belief about using a physics formula as a reliable process that could estimate
how long it would take a nuclear boom to hit the ground.

3.1.3. Argumentation

The final piece related to the first research question involved students’ use of argu-
mentation in the discussion. Our argumentation coding was operationalized through
the response codes of the Quality Talk coding. Three argumentation codes were used to
identify episodes of talk that evidenced both individually (i.e., elaborated explanation, EE)
or collectively constructed argumentation (i.e., cumulative talk, CT; exploratory talk, ET).
The frequency of each argumentation code was generally balanced across the four QTS
discussions (see Table 8), but EEs (n = 41) occurred more frequently than ETs (n = 10) or
CTs (n = 24).

Table 8. Frequency Table of Quality Talk Codes Across Discussions.

QT Code

Fall Spring

D1. Airbags D2. Nuclear Fission D3. Thin Films D4. Hot Packs

Model-
Based

Open-
Ended

Model-
Based

Open-
Ended

Model-
Based

Open-
Ended

Model-
Based

Open-
Ended

AQ 2 11 1 17 13 18 4 15
TQ 0 1 0 1 1 1 3 1
EE 1 7 2 9 6 6 4 6
ET 0 2 1 1 3 2 1 0
CT 2 4 1 5 3 4 1 4

EEs are individual explanations (i.e., an uninterrupted turn by a single speaker) that
include a claim and multiple pieces of reasoning and/or evidence. For instance, in the
example shown in Table 5, Chloe first started with a claim regarding the necessity of a

292



Educ. Sci. 2021, 11, 616

seatbelt in response to a question about the pros and cons of airbag. Following this claim,
they provided evidence or reasoning, one being the demonstration they watched in class
and the other being the reasoning derived from the demonstration.

The code for ET captures episodes of collaborative, group-constructed discourse where
students weigh different arguments over multiple turns and is characterized by the use of
a challenge. For example, in the discussion on thin films (see Table 5), Grace challenged
Chloe’s reasoning about why the colors went from green to pink on the thin film but not
purple or blue. Chloe first proposed that it was because the lights were not truly white
light. However, Grace challenged this claim by referring to their observation of the thin
film when the black paper was held at different angles and argued that the reason could be
the angle of perception.

In contrast, the code for CT captures episodes of talk that are collaborative, group-
constructed exchanges where multiple students build knowledge but not critical way. That
is, there is no presence of a challenge in a cumulative talk episode. According to the
example in Table 5, four students co-constructed their understanding of the relationship
between wavelength and colors seen on the thin film without challenging each other.
Together they built their evaluation of a claim in the presented model and concluded that
the claim was not correct.

3.2. RQ2. Contextual Factors Related to Students’ Epistemic Cognition and Argumentation

Scholars have increasingly acknowledged the influence of context, including factors
such as domain- and task-specificity of phenomena, on epistemic cognition [10,32]. In
order to explore our second research question, the authors met to identify trends with
regard to students’ epistemic cognition and argumentation as related to change in the
contextual factors from fall to spring. Specifically, the contextual factors of interest included
the model format (i.e., the scientific model task shifted from selecting one best model from
four models to evaluating three separate claims) and explicit instruction provided to the
students (i.e., the focus of QTS discourse lessons and QTS catalyst shifted from authentic
questions to argumentation components). Herein, we present three trends that demonstrate
changes in students’ epistemic ideals, reliable processes, and argumentation from fall (i.e.,
discussions on airbags and nuclear fission) to spring (i.e., discussions on thin films and hot
packs) in the model-based portion of the discussion, as it was the portion of the discussion
that was more sensitive to changes related to model format.

3.2.1. Students Evidenced Increased Use of Epistemic Ideals

We identified two primary trends regarding shifts in the epistemic cognition codes
for the model-based portion between fall and spring. First, with regard to epistemic
ideals, there were substantially more occurrences of coherence with normative disciplinary
knowledge (n = 11) and evidentiary support (n = 3) in spring compared to fall (n = 5 and
n = 0, respectively; see Table 6).

As illustrated in Excerpts 1 and 2, during both spring discussions (i.e., thin film
and hot packs discussions), students invoked the standard that acceptable claims must
be supported by reasons and evidence (i.e., evidentiary support). They systematically
evaluated each of the three claims presented. In Excerpt 1, Grace asserted that the first
claim was correct because it was the only claim with evidence, meaning that this claim met
a necessary criterion (i.e., claims must be supported by evidence). Then, Aria endorsed
this epistemic ideal and prompted the group to provide evidence by asking, “What’s your
evidence behind it?”

Students also referred to the revised QTS catalyst that was focused on the key argu-
mentation components (i.e., claim, reasoning, and evidence) to probe for evidence of each
claim in the provided scientific model. Similar to the question that Aria asked in Excerpt 1,
in Excerpt 2 from the thin films discussion, Grace asked, “What do you have written down
as your reasoning and evidence?” (Note: In each excerpt, EC codes are noted in italics
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within {}; QT codes are noted in bold within {}; duration of codes that span multiple turns
is indicated within <>. EI: Epistemic ideals; RP: Reliable process.)

Excerpt 1: Hot Packs

Grace: I think that’s the only [claim] that has evidence. {EI: Evidentiary Support}

Aria: Yeah, same. So what’s your evidence behind it?

Isabella: I talked about this little—this little [doodah], this—graph, about the
activation energy. I said that by clicking it—that it provides the activation energy
for the reaction to start occurring. {EI: Coherence with NDK}

Excerpt 2: Thin Films

Grace: When a drop of nail polish is dropped onto a warm surface, the lower
density of the nail polish and the molecular attraction of the molecules present it
from mixing with the water? Now, what does everyone think about this?

Chloe: I think it’s false.

Isabella: I think it’s true.

Grace: What do you have written down as your reasoning and evidence? {EI:
Evidentiary support}

Aria: Yeah, why do you think it’s false?

These excerpts are examples of how both the changing context of the model format
and the explicit instruction affected the ways students evidenced epistemic cognition via
argumentation. The structure of the model and lessons on argumentation made it more
likely that students would surface their epistemic cognition (i.e., epistemic ideals), which
in turn, made their epistemic cognition public and available for scrutiny by their peers via
argumentation. The process of argumentation, a scientific epistemic practice, could then
lead to improvements in epistemic cognition.

3.2.2. Students Evidenced Decreased Use of Process of Elimination

The second trend regarding the change in students’ epistemic cognition pertained to
students’ use of reliable processes for the model-based portion between fall and spring.
There were only two instances of reliable processes in the model-based portions of the
discussions, and notably, these both occurred during the fall discussions. That is, students
used the process of elimination in both airbags and nuclear fission discussions to identify
the normative model that they held to be true. Specifically, students used the process
of elimination to identify the model they believed was the most appropriate without
challenging each other, probing for alternative arguments, or requesting further justification
for the claim. In essence, in fall, students engaged in a process of elimination by narrowing
the options provided in the model, a process they considered reliable for achieving their
epistemic end (see Excerpt 3). In contrast, after the change in the model format, students
did not use process of elimination when discussing the provided scientific model in spring.

Excerpt 3: Nuclear Fission

Chloe: Why’d we pick model two?

Emma: Well, compared to the other ones, it says, “The strong nuclear force
overpowered the electric static forces.” And only number four also says that. The
rest of them are backwards. {RP: Process of elimination, enacted} <RP starts> {EE}

Chloe: I agree, and that refers to the text where it told us that strong, uh, nuclear
forces would overpower the, uh, electrostatic forces.

Grace: So then you would be able to narrow it down to two and four, and then
it would be two because it says, like, the resulting nuclei will have an increased
binding energy and be more stable. <RP ends>
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The process of elimination is not a typical, normative scientific practice. Again, this
change in the use of reliable processes was likely due, in part, to the change in model
format but also likely resulted from QT instruction in argumentation, which emphasized
more normative epistemic practices in science than the process of elimination.

3.2.3. Students Evidenced Increases in EE, ET, and CT

The last trend focused on changes in students’ argumentation as evidenced by the
individual- and group-constructed argumentative responses. Notably, there were more
instances of EE (n = 10), ET (n = 4), and CT (n = 4) in spring than fall (n = 3, 1, and 3,
respectively) during the model-based portion of the discussions.

The increased occurrences of these argumentation codes indicated an improvement
in the quality of student argumentation in general, but as we examined students’ EEs
in the transcripts, we also noted that the EE generated by Emma in spring appeared to
have a higher quality than the EE she initiated in fall. For instance, in Excerpt 3, students
were discussing why they would pick Model 2 from the four models presented to them
during the nuclear fission discussion. In response to this question, Emma generated an
EE that indicated a process of elimination, a non-normative reliable process. That is, as
long as a claim includes a statement that the students think is wrong or is reversed from
the statement that they hold to be true, it is automatically eliminated regardless of what
remains in the claim. Such reasoning did not directly explain if the model was scientifically
acceptable or not. By contrast, in spring, as students were evaluating the second claim in
the provided model about hot packs, Emma initiated an EE which included an explicit
reference to the evidence that was closely related to the claim. As shown in Excerpt 4 below,
Emma used scientific evidence to explain why the second claim was considered wrong.

Excerpt 4: Hot Packs

Emma: Yeah, whenever—in this article it says—like, it’s talking about entropy,
it says, like, an increase in entropy is represented by a positive value for delta
S, which is, like, an endothermic reaction. So that’s kind of like . . . But this is
saying, like, an increase in entropy makes it an exothermic reaction. So it’s kind
of, like, saying the opposite in here. {EE}

Aria: Yeah.

Emma: That’s what I used for my evidence, like, down here—

Such discourse is reflective of more normative argumentation processes in science,
where counterclaims and rebuttals must be supported with reasoning and evidence. As
students evaluated each separate claim, they needed to provide reasoning and evidence to
support a correct claim as well as to refute an incorrect claim. The ability to evaluate claims
via argumentation was likely strengthened through explicit instruction on argumentation.

3.3. RQ3. The Relation of Epistemic Cognition to Authentic Questioning and Argumentation

For our third and final research question, we looked at how students’ epistemic cogni-
tion related to their authentic questioning and argumentation. Specifically, we produced
a set of figures to demonstrate the timelines and the codes of epistemic cognition, argu-
mentation, and authentic questions across the entirety of four QTS discussions, which
we examined in combination with the transcripts to synthesize trends (see Figures 4–7).
In sum, we identified two major trends: (a) the use of epistemic ideals was associated
with the initiation of authentic questions, and (b) argumentation involved the use of
epistemic ideals.

3.3.1. The Use of Epistemic Ideals Was Associated with the Initiation of
Authentic Questions

As shown in Figure 4 along with the transcripts, a pattern emerged whereby (a) the
use of epistemic ideals seemed to trigger the initiation of an authentic question and (b) the
initiation of an authentic question seemed to lead to the use of epistemic ideals. For the first
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trend, we explored the transcripts where the use of an epistemic ideal co-occurred with or
immediately preceded the initiation of an authentic question to identify the relationship.
For the second trend, we explored the transcripts where the initiation of an authentic
question preceded the use of an epistemic ideal to verify the finding.
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An example of the first trend is evidenced in Excerpt 5, which is denoted in a block
with an asterisk in Figure 4. At the beginning of this excerpt, Isabella’s turn was coded
both as an authentic question and an epistemic ideal, that is, the two codes co-occurred.
In this turn, Isabella first connected their everyday experience of boiling chocolate with
the changing state of hot packs. The idea that a reusable hot pack, after being boiled,
did not turn solid again at room temperature did not seem to cohere with their personal
experience about the substance of chocolate. Thus, students had to reconcile the lack of
coherence between the two situations to fully understand the phenomenon under which
sodium acetate in hot packs behaved differently than chocolate. In this scenario, the
epistemic ideal of coherence with personal experience was not met and thus prompted a
productive authentic question asked by Isabella, approaching the end of the same turn,
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about why a hot pack did not get solid again at room temperature like chocolate. In this
excerpt, the scrutiny of epistemic ideals facilitated productive discussions around students’
misconceptions through the initiation of an authentic question.

Excerpt 5: Hot Packs

Isabella: OK, and then, like, what you were saying before, how you boiled it—
and then it stays a solid—I mean, a liquid—like, that’s, like, different. You know,
like, when you heat chocolate, OK—it’s, like, solid at first, and then you heat
it, and then it turns into, like, a b—then it turns back into a solid. So, like, why
wouldn’t this do that? <EI: Coherence with PE> {AQ}

Aria: I think the freezing points are different. Like, with ice, if you melt it, it’s
just gonna stay, like, water, unless you put it back into the fridge again—<EI:
Coherence with NDK> {EE}

Isabella: Oh.

Aria: —because the freezing point is all (inaudible).

Isabella: OK.

Aria: Anyway, um, but with chocolate, it probably has a really high freezing
point—

Isabella: It’s (inaudible)—

Aria: —’cause at room temperature it’s a solid, right?

Isabella: Yeah. But it’s weird, because this—like, at room temperature it can be a
solid or a liquid. {RP: Observation} {EI: Coherence with PE}

Aria: Yeah, that’s kind of weird, huh?

Grace: Yeah, ’cause yours is . . . Well, mine’s as hard as can be, and hers is like
a gel.

Isabella: Or, like, they’re just doing it right now, like, they just boiled theirs, and
it’s, it’s gonna stay a solid. Like, it’s not gonna go back to . . . I mean, it’s gonna
stay a liquid. It’s not gonna go back to a solid.

Aria: Yeah, I don’t know how they engineered it to—so that it stays . . . I feel like
it’s probably the chemical properties, because it says, “But it can exist as, as a
liquid at a much lower temperature,” like, lower than the freezing point, “and
it’s extremely stable.” I don’t know why that is, but I think—{EI: Coherence with
NDK} {EE}

The use of epistemic ideals seems to trigger the initiation of authentic questions, but
authentic questions also probe for the use of epistemic ideals in student responses to these
authentic questions. Again, as shown in Excerpt 5, Isabella’s authentic question led to
multiple student responses that connected to the normative disciplinary knowledge (by
Aria) as well as personal experience (by Isabella). For example, in response to Isabella’s
authentic question, Aria was seeking coherence with the normative disciplinary knowledge
by citing a piece of evidence from the student’s prior knowledge about the melting of ice
and later brought up a reference reading regarding the chemical properties of hot packs.

3.3.2. Argumentation Involves the Use of Epistemic Ideals

The second trend pertained to the co-occurrence of argumentation and epistemic ideals,
indicating frequent use of epistemic ideals in constructing argumentation. Specifically, EE
co-occurred with epistemic ideals approximately 50% of the time (see Figure 5). Further, as
shown in Figures 6 and 7, ET and CT also co-occurred with epistemic ideals approximately
60% of the time. The excerpts presented in the sections below provide additional evidence
to bolster our argument regarding this trend.

Students’ EE involved the practice of epistemic ideals. For example, in Excerpt 6
(also see the block noted in Figure 5), students were evaluating one claim in the student
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model during the thin films discussion, that is, “When a drop of nail polish is dropped
onto a water surface, the lower density of the nail polish and the molecular attraction of the
molecules prevent it from mixing with the water.” During the discussion, Aria generated
an EE by utilizing normative disciplinary knowledge and referred to the bonding between
molecules of the nail polish and the bonding between water molecules as her reasoning.

Excerpt 6: Thin Films

Isabella: Why else do you think the, the first one [claim is false]—{AQ}

Chloe: No, I just—it doesn’t make sense that the molecular attraction of the
molecule, uh, (inaudible)—{EI: Logically sound} {ET} <ET starts>

Aria: OK, think of it this way: you have, um, like, this drop of nail polish in just,
like, water. Where was the water? Was it on the film or something?

Emma: It was in, like, a little plastic tub.

Isabella: It was (inaudible).

Emma: Yeah.

Aria: OK. So you have the nail polish, and the nail polish molecules attract one
another, so they want to stick, stick together, sort of like . . . And the water has
hydrogen bonding, your favorite type of bonding, right? And then they want
to stay together, so the nail polish is not gonna just mix with the water, because
they’re still, like, together, because (inaudible) molecular forces are bonding them
together, that they’re not separated. Does that make sense? {EI: Coherence with
NDK} {EE}

Grace: Basically, the water molecules don’t want to get a divorce, and the nail
polish ones don’t either, so they just kind of—

Aria: Yeah.

Grace: —coexist. <ET ends>

In addition, argumentation was found to co-occur with epistemic ideals as evidenced
through ETs and CTs. As illustrated in Excerpt 6, an ET occurred following an authentic
question. In this example, some students stated the first claim in the student model was
true, whereas others disagreed. Chloe struggled to accept the first claim. The statement
that molecular attraction prevents the nail polish from mixing with water did not appear to
be logically sound to her. The use of this epistemic ideal (i.e., logically sound) led to Chloe’s
challenge in the group, which characterized this ET. In response to Chloe’s challenge,
Aria provided an EE to demonstrate that this claim cohered with normative disciplinary
knowledge as explained earlier. After this EE, the group collectively decided that the first
claim was valid and moved onto the next claim in the model. Collaboratively, students
used various epistemic ideals to construct argumentation as a group by raising a challenge
and responding to the challenge.

During episodes of talk where co-constructed understandings occurred, but without
challenging each other (i.e., CT), it appeared that epistemic ideals were also enacted as part
of the knowledge building process (see Figure 7). For example, in Excerpt 7, students were
co-constructing a response to an authentic question “Do airbags cause more injuries or
prevent more injuries?” As Isabella and Mia built upon each other’s response about how
airbags could prevent people from smashing into the windshield, they referred to their
prior knowledge from a demonstration video that they watched in class.

Excerpt 7: Airbags

Mia: I feel like . . . I feel like a lot of airbags also do is they, like, keep you from
(inaudible) if you were to smash into the windshield, too. {CT} <CT starts>

Isabella: Yeah, in the one—in the one—{EI: Coherence with PK} <EI starts>

Mia: Cause if you smash in the windshield . . .
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Isabella: —demonstration, like, without the—without the airbag, it showed, like,
the person—

Mia: Yeah.

Isabella: —it’s not an actual person, but—

Mia: The (inaudible) going through.

Isabella: —but the person, like, going through the window, and, like, you could
see (inaudible). <EI ends>

Mia: Yeah, (inaudible), like, if you hit it, it’s gonna shatter. It’s like a glass that
stays together. So, like, if you go through it, it’s not gonna shatter around and
you’re gonna be stuck in it, and you’re gonna have (inaudible). <CT ends>

These excerpts are examples of how students’ epistemic cognition interacted with
authentic questioning and argumentation during small-group discussions, indicating a
close relationship of epistemic cognition to authentic questioning and argumentation. It
also enhances the understanding about how epistemic cognition can be enacted and sup-
ported by authentic questioning and argumentation during small-group, QTS discussions
in science.

4. Discussion

Modern science education standards are focused on literacy practices, including the
ability to engage in scientific thinking and argumentation [4]. Society expects students to be
able to readily evaluate, accept, and use scientific knowledge as they reason about science
in their own lives [35,74]. Despite the strong rationale behind incorporating argumentation
into science education, it remains limited in most science classrooms [40].

In response, our study contributes to science education and literacy research by explor-
ing how small-group discussions can be used as a pedagogical tool to help students acquire
the epistemic cognition and argumentation practices necessary to be thoughtful critics of
scientific claims inside and outside of the classroom [10]. In prior work, we implemented
QTS, a teacher-led, small-group discussion approach designed to promote students’ scien-
tific oral and written argumentation skills and identified increases in students’ scientific
argumentation [27]. In the present study, we utilized the AIR model as the framework to
examine and analyze high school chemistry students’ epistemic cognition (i.e., epistemic
ideals and reliable processes) [30] and scientific argumentation as they participated in
small-group, scientific discussions about, around, and with scientific text or content.

4.1. RQ1. Documented Evidence of Students’ Epistemic Cognition
4.1.1. Epistemic Ideals

Most of the identified epistemic ideals in the present study are in alignment with
those in the extant literature. For instance, four of the categories we identified, namely
connections to other knowledge, internal structure of an explanation, empirical evidence,
and good communication, align directly with the categories of epistemic ideals (i.e., “con-
nection to other knowledge,” “internal structure of an explanation,” “clearly presented and
understandable,” and “present and future connections to empirical evidence”) set forth by
Chinn and colleagues [30] (pp. 433–434). The codes organized into these four categories
also appear to align with the broader extant literature. For instance, the epistemic ideal of
logically sound is similar to the criteria of plausibility [69,75] or logical consistency [76].
The epistemic ideal of comprehensive aligns with what scientists consider to be good mod-
els, which can strike a balance between complexity and parsimony [77]. Similarly, clearly
understandable, which is classified into the category of good communication in our study,
is a communicative criterion that scientists use to evaluate models. Indeed, as Pluta et al.
argued, if a successful model is not presented in a way that scientists understand, it will not
be accepted and thus, the communication criterion has to be fulfilled prior to evaluating
epistemic quality [70].
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However, one epistemic ideal (i.e., standards of testimony) proposed by Chinn and
colleagues was not identified within these four science discussions. Chinn et al. proposed
a category of epistemic ideals related to standards of testimony, which indicates the criteria
that must be met to believe testimony from others [30]. For example, a student could
use quotes from a climate scientist to support their argument about climate change as a
result of referring to the expert in the area. In this dataset, we found no instances where
students referred to standards of testimony. They occasionally brought forth testimony
as evidence (e.g., provided experiential accounts from their relatives) and tended to use
personal experience when discussing familiar topics. However, they were stating that a
knowledge claim cohered with the information they received as testimony, rather than
asserting that a particular testimony was valid according to some standard. This indicates
that students may need more explicit instruction that guides them to evaluate the source of
evidence within the context of small-group discussions so that they may be more likely to
employ the standards of testimony.

4.1.2. Reliable Processes

Throughout the discussions, we found evidence of students using a number of norma-
tive reliable processes, including experimentation and observation, which are consistent
with Chinn et al. [30]. However, students also adopted non-normative processes when
the situation allowed for it. For example, students used the process of elimination when
they were asked to select one normative scientific model from four options for the airbags
and nuclear fission discussions. It is important to note that the process of elimination is
considered a non-normative process because it does not align with scientists’ epistemic
practices as delineated in prior research [34–36]. A plausible reason for the use of the pro-
cess of elimination could be that when students were given four models with overlapping
claims to choose from, when the goal of the task emphasized determining the best model,
students were likely to apply a simple heuristic to narrow down the options. Another
possible reason is related to the level of knowledge students had about argumentation and
normative reliable processes in science. The explicit instruction on argumentation delivered
in spring may have made it less likely for students to use non-normative processes such as
the process of elimination when evaluating scientific claims.

4.2. RQ2. Model Format and Explicit Instruction in Relation to Epistemic Cognition and Argumentation

The epistemic practices that individuals engage in vary widely depending on contex-
tual factors [15,78]. In the current study, the influence of context pertained to changes in
the model format and explicit instruction provided during the QTS intervention. Following
the changes in these two contextual factors, instead of using the process of elimination,
students tended to use epistemic ideals such as coherence with normative disciplinary
knowledge and evidential support to negotiate ideas and engaged in argumentation more
extensively during the model-based portion of the discussion.

A plausible reason for such change is that the revised model format precluded the
ability to eliminate models, as the multiple claims presented in the model in spring were
distinctly different from each other. Students needed to go through each of the three claims
and discuss why certain claims were either more or less supported. Further, the explicit
instruction on argumentation and the updated QTS catalyst with external, visual cues
related to essential argumentation components (see Figure 2) also seemed to promote the
use of certain epistemic ideals (e.g., evidentiary support) and argumentation as students
evaluated each claim. For instance, at the beginning of the thin films discussion when
students were evaluating the presented model, Grace used the epistemic ideal of eviden-
tiary support and explicitly referred to the QTS catalyst by asking, “What have you written
down as your reasoning and evidence?”

This finding is informative in terms of understanding and cultivating apt epistemic
performance (i.e., “performance that achieves valuable epistemic aims through compe-
tence” [79] (p. 353)) in science classrooms. Barzilai and Chinn examined prior models of
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epistemic cognition and proposed that the primary goal of epistemic education is to enable
learners to achieve apt epistemic performance [79]. For the first two discussions, students
used a process of elimination to approach the model-evaluation task. Using the definition
of apt epistemic performance, a process of elimination could have resulted in success
(i.e., choosing the correct model), but it would not have necessarily been apt (i.e., choosing
the correct model by providing reasons and evidence to support all aspects of the model).
Therefore, to promote students’ apt epistemic performance via scientific discourse [2], it is
necessary to consider the model format for discussion and encourage students to negotiate
ideas about scientific phenomena using normative practices in science.

Another implication for instruction would be to optimize explicit instruction on
argumentation by providing instructional tools such as a graphic organizer worksheet that
visually demonstrates the components of argumentation. Such visual cues and external
representation of abstract concepts can potentially support the use of argumentation
components [43,66]. As students fill out these worksheets in preparation for the discussion,
they are more likely to think about and negotiate ideas about these essential argumentation
components during the discussion. As a result, students may be more likely to bring forth
and evaluate scientific arguments by querying or providing reasoning and evidence to
engage in deeper thinking about scientific phenomena.

4.3. RQ3. The Relation of Epistemic Cognition to Authentic Questioning and Argumentation

As evidenced across the four QTS discussions in the current study, the relationship
between the use of epistemic ideals and the initiation of authentic questions appears to
be bi-directional. A plausible explanation is that when students used epistemic ideals to
decide whether knowledge should be accepted as valid and found the epistemic ideal to
be unmet, the dissonance prompted them to query why that knowledge claim did not
meet the ideal students had in mind, and thus led to the initiation of an authentic question.
On the other hand, when students responded to an authentic question, as they justified
their claims by referring to their personal experience or prior knowledge as evidence, they
invoked epistemic ideals accordingly.

When students invoked epistemic ideals in their responses to an authentic question,
they were also likely to bring forth arguments individually or collectively, in the form
of an EE, ET, or CT, indicating a close relationship between epistemic cognition and
argumentation. This is possibly because the epistemic ideals students held may guide
the kinds of reasoning, evidence, and arguments they brought forward and the type of
disciplinary standards they used to evaluate the presented arguments. To construct an EE,
students necessarily needed to build an argument by providing evidence or reasoning that
met students’ epistemic ideals. When students’ epistemic ideals were not met, the resulting
dissonance indicated a gap between what was being discussed and what students knew
(see Excerpt 6) and was effective in triggering challenges during small-group discussions,
which are characteristic of ET. That is, students may raise a challenge when someone says
something that does not cohere with their prior knowledge. This also indicates that when
students have the normative epistemic cognition knowledge necessary to critique claims,
they are more likely to engage in discourse that involves thoughtful critique [30].

Finally, the relationship between epistemic ideals and CT as evidenced in Excerpt
7 reveals that even the building of knowledge without the raising of counterarguments
or challenges involved the use of epistemic ideals. A possible explanation is that knowl-
edge building involves making connections to one’s prior knowledge, ideas, and expla-
nations [80–82], as well as cognitive processes such as asking questions that probe for
explanations, interpreting and evaluating information, and justifying arguments [83–85].
Such cognitive processes would require the application of epistemic ideals to help elicit
or formulate responses that cohere with the students’ normative disciplinary knowledge,
personal experience, or other forms of prior knowledge. This also suggests the importance
of teaching scientific knowledge, skills, and practices in tandem to promote student con-
struction of knowledge through cumulative talk, as was done in our larger QTS study [27].
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4.4. Limitations

In this study, we elected to conduct a close analysis of one student group’s work
over the course of an instructional year to deeply examine their use of epistemic cognition
and argumentation in small-group discussions. Our emphasis in this in-depth qualitative
study was on ecological validity over external validity, therefore causal claims are not
warranted but our findings do deeply capture epistemic cognition and argumentation in
an authentic context.

Students’ argumentation and epistemic cognition were observed within the context
of the QTS intervention. As part of QTS, students received explicit instruction on argu-
mentation and conducted regular QTS discussions about scientific phenomena including
evaluating a scientific model, and thus, these findings may not be generalized outside of
this context. Instead, we argue that this study contributes to a foundation from which to
further investigate students’ emergent argumentation and epistemic cognition in other
contexts, for example, while engaging with conflicting scientific claims [86], or to further
examine how features of pedagogical practices can support students’ development of
argumentation practices and epistemic thinking.

5. Conclusions and Future Directions

The current study adds to the growing body of work examining situated epistemic
cognition during authentic scientific practices. Within the scope of current research, we
observed students’ epistemic cognition through the lens of epistemic ideals and reliable
processes, examined the role of contextual factors in the occurrence of epistemic cogni-
tion and argumentation, and investigated the relationship between students’ epistemic
cognition and their scientific argumentation during the QTs intervention. Such findings
not only contribute to the field’s understanding about students’ epistemic cognition and
argumentation in authentic science classrooms but also inform research and practice on
how to develop and design effective pedagogies in ways that promote students’ epistemic
cognition and argumentation.

In this study, we examined students’ discourse in four science discussions within one
discussion group. In future work, researchers could include additional discussion groups
to better capture individual and group differences (e.g., reading comprehension) [87] and
explore to what extent such differences may influence students’ epistemic cognition and
argumentation in science. In response to the first research question, we identified various
categories of epistemic ideals and reliable processes, two components of the AIR model,
in students’ science discourse. Future researchers could examine under what conditions
students vary in their enactment of epistemic aims, and how different aims relate to scien-
tific argumentation, to further explore students’ epistemic cognition in science classrooms.
Further, we found that contextual factors (e.g., model format) guided the discussion of
scientific models. These contextual factors may contribute to the occurrences of different
types of epistemic ideals, reliable processes, and argumentation. Researchers could extend
this line of research and examine ways in which the design of a scientific modeling task
can most effectively lead to students’ enactment of normative scientific practices and the
extent to which different attributes of the context (e.g., scientific language, background
knowledge) may relate to students’ scientific practices [15,88]. Finally, we identified a
close relationship between students’ use of epistemic ideals, authentic questioning, and
argumentation across the series of QTS discussions. This finding revealed how certain
components of the QTS intervention, such as explicit instruction on authentic questions and
argumentation, may promote students’ epistemic cognition. Thus, future researchers could
investigate other instructional components of QTS that might promote students’ epistemic
cognition in science via argumentation instruction and practice.

Indeed, in the face of various post-truth reasoning challenges, to help students de-
velop their scientific reasoning competency and achieve “valuable epistemic aims through
competence” (i.e., apt epistemic performance) [79] (p. 353), researchers likely need to
work together with practitioners to design more authentic learning environments that
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engage students in discussions to explore different ways of knowing and to understand
how different sources of information work and why they are more or less reliable [2].
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