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Preface to ”Space for Sustainability: Using Data from

Earth Observation to Support Sustainable

Development Indicators”

Global progress toward living sustainably is now urgently needed. Actions for sustainability are

typically informed through the use of indicator-based frameworks that encompass diverse attributes

of the environmental, social and economic dimensions of ‘sustainability’. Reporting on such

indicators is embedded in frameworks such as the United Nations Sustainable Development Goals

(SDGs), with the primary responsibilities for reporting borne by national and local governments.

Additionally, many businesses and public bodies (e.g., universities, health services) are increasingly

under internal and external pressure to similarly report via these sustainability indicators, especially

as part of the SDGs, and such reporting is of increasing interest to investors and the financial services

sectors from a risk and assurance perspective. However, the use of these indicator-based frameworks

involves many challenges, and one of the most significant of these is the challenge of acquiring

sufficient, timely and good-quality data to populate these indicators via ‘conventional’ methods (e.g.,

surveys at the local, national or corporate level) as this is often expensive and time consuming. Many

developing regions, in particular, suffer from a lack of resources or established systems for such data

collection and, indeed, this is also proving to be challenging for more developed economies. One

approach to address this issue of data provision for indicators of sustainable development (SD) is

the use of Earth Observation (EO). EO-based data, geospatial information and ‘big data’ can support

the population of sustainability indicators at all scales, and the integration of these sources is a step

forward in advancing the well-being of our societies. While EO-derived data have been used for many

years to assess important issues such as deforestation and changes in land use, their use to address

more socioeconomic issues (e.g., inequality, poverty, corruption, health care) within SD remains

limited. Nonetheless, EO tools and technologies are developing rapidly with an expanding range

of capabilities, resolutions, frequency, data power, accuracy, etc., and this is anticipated to continue

into the foreseeable future. The papers in this book set out some of the frontiers regarding the use of

EO data for SD indicators, and given the rapid progress in the field, it provides a timely and welcome

milestone in the journey.

Stephen Morse, Richard Murphy, and Ana Andries

Editors
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Abstract: The Sustainable Development Goals (SDG) framework aims to end poverty, improve health
and education, reduce inequality, design sustainable cities, support economic growth, tackle climate
change and leave no one behind. To monitor and report the progress on the 231 unique SDGs
indicators in all signatory countries, data play a key role. Here, we reviewed the data challenges
and costs associated with obtaining traditional data and satellite data (particularly for developing
countries), emphasizing the benefits of using satellite data, alongside their portal and platforms in
data access. We then assessed, under the maturity matrix framework (MMF 2.0), the current potential
of satellite data applications on the SDG indicators that were classified into the sustainability pillars.
Despite the SDG framework having more focus on socio-economic aspects of sustainability, there
has been a rapidly growing literature in the last few years giving practical examples in using earth
observation (EO) to monitor both environmental and socio-economic SDG indicators; there is a
potential to populate 108 indicators by using EO data. EO also has a wider potential to support the
SDGs beyond the existing indicators.

Keywords: earth observation; SDGs; indicator type; data challenges

1. Introduction

In 2012, the United Nations (UN) Conference on Sustainable Development (Rio + 20)
was held in Rio de Janeiro; 193 member states agreed on a new and comprehensive
framework called the Sustainable Development Goals (SDGs). The SDG framework was
intended to be an integrated development agenda to 2030 that would apply equally to
developed and developing countries and address all three dimensions of sustainable
development (environment, social and economic) and their interlinkages [1].

The SDGs were ratified by the UN General Assembly at the Sustainable Development
Summit in New York on 25 September 2015. All signatory countries committed to moni-
toring their progress towards the 17 goals at the heart of the SDGs by assessing past and
current conditions at national and sub-national levels. To achieve this, the UN created
a framework of 169 targets and 232 unique indicators that are meant to frame national
agendas and policies up to 2030 [2].

The Inter-Agency Expert Group for the SDGs (IAEG-SDGs) established three working
groups responsible for formulating these indicators and targets, as well as methods for
‘populating’ the indicators with appropriate data and communication and coordination
with all partners (international organisations, civil society, governments, academia, and
the private sector). The IAEG-SDGs Global Indicator Framework was officially adopted by
the UN Statistical Commission in March 2017 [3] and, initially, the IAEG-SDGs classified
the indicators into three different tiers based on how well established the methodology

Sustainability 2022, 14, 1191. https://doi.org/10.3390/su14031191 https://www.mdpi.com/journal/sustainability1
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was at that time and the data available to allow the population of the indicators: Tier I
(well-established methodology and data are widely available), Tier II (well-established
methodology but data are not collected regularly by the countries), and Tier III (no estab-
lished methodology to collect the required data and data are not available). Each of the
SDG indicators has a set of metadata guidelines to aid interpretation and transferability;
these include indicator definition (objective and purpose), computational methodology
(refers to how the indicator is computed and disaggregated into multiple sub-indicators)
and sourcing of data (the main source of data, collecting method, the frequency of data
collection, data providers and data availability) [4].

The IAEG-SDGs regularly reviews the Global Indicator Framework to add more
indicators, alter existing ones and, if required, update the status of the tier categorisation of
the indicator (see Table 1).

Table 1. SDG indicator framework and tier classification update [3,5].

Date of SDG Indicator
Framework Update

Number of
Indicators

Indicator Amendments
Indicator Tier
Classification

March 2016 (original
framework) 232 N/A

93 Tier I
66 Tier II
68 Tier III

5 multiple tiers

December 2020 231

36 changes in which 14
indicators were proposed to

replace existing ones, 8
indicators were revised, 8
proposals were made for

additional indicators, and 6
indicators were recommended

for removal

231
130 Tier I
97 Tier II

4 multiple tiers

March 2021 231 No modifications No modifications

To populate the IAEG-SDG indicators at the country level, many different types of
data are required; these are mostly derived from eight sources: census data (CD), house-
hold surveys (HS), agricultural survey (AS), administrative data (AD), Civil registration
(CR), economic statistics (ES), geospatial data (GD), and other environmental data (Env)
(Table 2) [6]. However, data alone are not enough, as they must be transformed (e.g., data
combined to generate a single indicator), analysed, interpreted, and communicated to those
who would make use of the indicators. Therefore, the UN noted a requirement to “intensify
efforts to strengthen statistical capacities of developing countries and least developed countries
are among the particular cases that need special attention in this regard” ([2], paragraph 74).
This includes a requirement to ensure access to quality and disaggregated data, including
geospatial and earth observation (EO)-derived data [2]. Environmental data can include
in situ observations, ground-based or aircraft remote sensing or satellite remote sensing.
Here we use the broad term earth observation (EO) to describe predominantly satellite-
based remote sensing. This term often also includes remote sensing from both crewed and
autonomous aircraft where similar imaging techniques are used.

Geospatial data play a crucial role for many of the SDG indicators, as well as for
disaggregated analysis of socioeconomic SDG indicators [6–10]. For instance, converting
household surveys into geospatial data can facilitate disaggregation and analysis by spatial
characteristics, e.g., proximity to roads or levels of urban development [6]. In recent years,
there have been efforts to integrate the geospatial approach into the national statistics
offices (NSOs) of many countries [11]. Likewise, geospatial tools can easily manipulate
large datasets such as those derived from EO satellites, aerial photography (AP), lidar,
information and communications technologies (ICT) (e.g., social media, mobile, and crowd-
sourcing data). The processing to derive information products from these different sources
is increasingly dependent on artificial intelligence and machine learning. These tools can
manipulate large data sets and the artificial intelligence methods are often referred to col-
lectively as ‘big data’ or the ‘data revolution’ [6–8]. Processing and analysing large datasets
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in real-time can reveal patterns, trends, and interactions, thereby deriving information and
insights on human behaviours and wellbeing, and helping to target aid interventions to
help vulnerable people [12].

Table 2. Data type and challenges associated.

Data Source Data Type Description Data Challenges

Traditional
national

statistical data

Census data (CD)

CD is a systematic recording of information, focusing
mainly on the population and takes place at least once

every 10 years (varies between countries); NSOs are
responsible for collecting these data.

Challenges in obtaining quality data
- lack of data accessibility and

availability, data quality, data
continuity, transparency, and
accountability

- lack of funding/financing
Challenges in data processing
- difference in methodology
- limited human and technical

capacity (e.g., skills and training,
adequate staff)

- lack of developed infrastructure
to support networking,
high-performance computing,
and the use of digitalisation

Household surveys
(HS) HS provides demographic and socio-economic data.

Agricultural survey
(AS)

AS covers information about land use and ownership,
operator characteristics, production practices, crop
yields and productivity, income, and expenditures.

Administrative data
(AD)

ADs are collected by government departments and
include information about welfare, tax, health, and

educational record systems.

Civil registration (CR)

CR is a collection of data that records main events in a
person’s life (such as birth, marriage, divorce,

adoption, and death). The primary responsibility for
collecting such data is typically attributed to different

Ministries and National Statistical Offices (NSOs).

Economic statistics (ES)

ES typically include data on the labour force, tax
returns, trade statistics, etc. The scope of these data are

to measure the financial performance of economic
agents and can include estimates of Gross Domestic
Product, Gross National Income, national poverty

levels, household income, labour force participation
and employment status, and economic losses from

disasters.

Non-traditional
data

Geospatial data (GD)

GD refers to all data from previous categories that are
located with environmental data, that include

geolocation as coordinates and topology, allowing the
data to be illustrated geographically.

Environmental data can be derived from readily
available imagery from satellites, airborne, drones, etc.

at different spatial resolutions that are coupled with
geospatial tools. Satellite imagery is currently used to

populate environmental indicators linked to
agriculture, biodiversity, forestry and land cover and

use change.

Challenges in using EO data
- EO does not provide statistical

indicators by default and requires
expert processing and analysis

- analysis prone to software errors
and human misinterpretation

- incompatibility with current
statistical methodology

- cloud coverage limits availability,
particularly in rainforest areas

Challenges in obtaining EO data
- limited technical capacity and

EO/software skills in NSOs
- limited hardware and software

infrastructure in NSOs
- lack of understanding of EO data

value prevents investment
- reluctance to change the current

method

Environmental data
(Env)

Other environmental data refers to ground
technologies or surveys. Many environmental
indicators also include real-time monitoring of

conditions, such as air quality in urban areas or water
supply.

However, of all these elements, the one area that is perhaps still in its infancy is the
use of EO technology to populate the IAEG-SDG indicators (herein referred to as the
SDG indicators) particularly for those indicators in the social and economic domains of
sustainable development. Using EO technology for social and economic domains is an
area of active research; much progress has been made in recent years as the availability of
satellite data and tools to manipulate them are more readily available. Notwithstanding
this progress, much remains to be done; the time is now right to review the current state-of-
the-art and chart a path for the future.

Therefore, the purpose of this paper is to provide a conceptual review [13] of the
literature focusing on efforts to use EO technology in populating the SDG indicators. The
paper structure is presented in Figure 1 and it begins with an analysis of the literature of
data challenges (including cost) behind populating the SDG indicators before moving on to
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explore the potential of using EO derived data. As part of this, it is necessary to give the
reader a sense of how EO technology has progressed to date and the authors have included
Supplementary Materials which set out some of the technical capabilities of EO-based
instruments, EO data portals and data platforms currently available. Our review highlights
the main applications of satellite imagery in sustainability and later links to peer-reviewed
articles and best practices of populating SDG indicators. The paper applies a framework
first developed by Andries et al. [14,15] designed to assess the potential of EO for the SDG
indicators and expands it by considering the classification of indicators into the various
indicator types based on the sustainable development pillars. This analysis was designed
to identify the areas where more work is needed in the use of EO data for indicators, but
also to understand the field that has been covered in recent years.

Figure 1. Paper structure.

2. Data Challenges and Costs

Results from the Voluntary National Reviews (VNRs) 2019 [16], a process by which
each country assesses progress made in achieving the SDGs every year, showed that most
developing countries failed to populate the SDG indicators due to a lack of data. However,
even when data are available, countries can encounter other challenges as highlighted in
Table 2 [17].

Developing countries tend to have relatively weak statistical institutions with poor
governance, constraints in obtaining quality data, a lack of time series [11], and often
have large variations in data collection and presentation methodologies across space and
time [18]. Kindornay et al. [19] highlighted other issues, such as lack of investment in staff,
infrastructure, and tools (e.g., computers and software), low human capacity, highly frag-
mented statistical systems, and inadequate funding, most of these issues are under political
influence; thus, data may even be misreported and suppressed for political reasons [20].
All of these issues can make indicator comparisons unreliable [11,16–18,21,22] (see Table 2).

Regarding EO-derived data, a survey conducted by the Intergovernmental Group
on Earth Observations (GEO) [23], with 72 respondents from GEO’s member countries,
revealed a series of challenges that cover organisational, technical capacity and data acces-
sibility issues for NSOs to obtain the necessary data (Table 2). However, according to the
UN Global Working Group on Big Data survey, 60% of interviewees (within 93 countries)
noted that the main benefits of using big data from satellite imagery and other sources are
“faster and more timely effective statistics”, “modernisation of the statistical production
process”, generating “new products and services”, and “cost reductions” [24]. There have
been challenges regarding the temporal resolution (revisit times) of EO satellites when
these data are used for certain sensitive applications; however, in recent years there has
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been a shift from multi-day revisit times to daily revisit times [25], particularly through
the establishment of small satellite constellations such as CubeSats, SkySat, and Vivid-I,
which are able to close this temporal resolution gap [26]. In addition, cloud coverage,
particularly in tropical areas, and satellite sensor failure can result in data gaps; this may
limit their applicability. However, algorithms have been developed and are now often
easily accessible on online computational platforms and portals (e.g., Google Earth Engine),
which can partially fill in such data gaps [27,28].

Given recent developments in satellite programmes, many have noted that there is
a need to invest in geospatial departments in NSOs, ensuring adequate human capacity
with relevant skills, equipment, and software and policy frameworks to support the col-
lection and use of EO data; countries also need to be open to reform in their institutional
and regulatory context [29]. For example, the Applied Sciences Programme within the
National Aeronautics and Space Administration (NASA) Earth Science Division has been
implementing free training on the practical use of satellite data, covering the application
of EO to disaster management, water quality management, health care (e.g., malaria early
warning), fisheries management, air quality monitoring, and wildfires [30,31].

Jerven [32] made one of the first estimations of the financial costs of populating the SDG
indicators in the policy paper ‘Benefits and Costs of the Data for Development Targets for the Post-
2015 Development Agenda’, later elaborated in [33]. In both reports, Jerven estimated a global
cost of US $254 billion for populating the SDG indicators over the 2016–2030 period, taking
into account the need for the population census, living standards measurement studies,
demographic and health surveys, core welfare indicator questionnaires, and multiple
indicator cluster surveys. However, Demombynes and Sandefur [34] provided a much
lower estimated cost of US $4.5 billion to populate the SDG indicators over the same period.
However, these estimates do not consider the use of EO and ‘big data’, despite the UN
“Data for Development” report (2015) suggestions that “cost savings might result from the
use of new technologies” and should result in better quality and efficiency, and that the
new technologies “may yield lower costs in the long run, but in the near term, they are likely
to require new investments” ([6] p. 29). The report estimated a total cost of populating the
SDG indicators to be US$902 to US$941 million per annum for all data types across 77
developing countries, where US$787 million would be attributed to traditional national
statistical data and US$114 million to EO data (Table 2).

EO derived data are increasingly being recognised as a promising resource for tackling
the challenges involved in data collection for indicators and the Integrated United Nations
Committee of Experts on Global Geospatial Information Management (UN-GGIM) and
GEO play key roles in realising this promise. These agencies are working with statistical
communities, at both global and national levels, to support them on how they could
benefit from the use of EO data to monitor SDGs. As a result, NSOs in countries such as
South Africa, the United Kingdom, Nigeria, Philippines, Sweden [27], USA [35], Colombia,
Senegal, Sierra Leone, Kenya, Tanzania and Ghana [36] have started exploring the use of
EO satellite imagery and geospatial frameworks, especially to address indicators of SDGs 1
(End Poverty), 2 (Zero Hunger), 6 (Clean water and sanitation), 11 (Sustainable cities), 13
(Climate Action), and 15 (Life on Land). EO data can also provide opportunities to measure
the indicator at the subnational level [35].

3. Potential of Earth Observation (EO) for Supporting SDG Indicators

The era of observing the Earth through satellites began in 1957 with the launch of
the first satellites (Sputnik-1 and Sputnik-2) by the Soviet Union followed soon after (1958
to 1959) by NASA launching the Explorer satellite series. While images of the Earth had
been captured by sub-orbital craft in the 1940s, the first orbital satellite image of the Earth
was captured by Explorer 6 in 1959 [37]. Technology progressed rapidly and, in 1972,
Landsat 1 provided the first images with a resolution of 80 m, followed by the European
Space Agency (ESA) that has observed the Earth from space since the launch of its first
meteorological mission in 1977 and later by European Remote Sensing (ERS) and Envisat
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missions satellites [38]. Today the main space agencies provide high-resolution satellite
data at no cost to the user, including Landsat from NASA with 30 m and ESA Sentinel 2
with up to 10 m resolutions.

There are currently 260 operational EO satellites (having full functionality), 333 non-
operational (usually historical satellites that have stopped sending data for several reasons)
and approximately 200 satellites are in development (this includes satellites that have been
approved and planned to be launched).

However, it needs to be noted here that a single satellite may carry several instruments
(sensors) that provide EO data. A list of important current satellites, non-operational
satellites and satellites in development (along with their sensors) is given in Supplemen-
tary Material Table S1 (which contains a list of 300 satellites, where 162 are operational,
116 non-operational, and 22 in development), based on data provided in three sources:
WMO-Oscar [39], EO satellite portal [40] and CEOS [41]. The list covers the satellites’
characteristics (e.g., date and lifetime, type of instrument, spectral coverage), capabilities
(temporal and spatial resolution, primary mission, imaging capability, data accessibility),
and main applications. The satellites and instruments in Table S1 have been selected based
on three criteria:

• they have been or are used in a wide range of programmes in sustainable development
by organisations such as GEO, ESA, NASA, JAXA, etc.

• the instruments on board the satellites have provided data for more than 6 consecutive
months

• the instruments on the satellites can offer time-series data from a series of similar
satellites (e.g., Landsat, Sentinel, NOAA, GOES, METEOSAT, HY).

EO satellites can be passive (measuring the light reflected from or the thermal energy
emitted by the Earth) or active (measuring the interaction of energy emitted by the satellite
with the Earth, e.g., through radar). Passive EO satellite sensors provide data at various
spectral, spatial, and temporal resolutions. The spectral resolution refers to the wavelengths
of radiation that can be detected by the instrument and, for example, in the visible and
shortwave infrared regions, the information in different spectral bands can provide a
spectral ‘signature’ for different land cover types (e.g., vegetation, soil, water, buildings).
Spatial resolution (typically reported as the number of metres covered by one dimension of
a single pixel) is a measure of the observable detail in an image, and modern optical sensors
provide multispectral and panchromatic (PAN) imagery at much finer spatial resolutions
than seen in previous decades [42] (although the chosen resolution for a modern mission is
a compromise between resolution and coverage.) Different space agencies, companies, and
other organizations categorise the spatial resolution of satellite images differently; thus,
‘high resolution’ can have a variety of meanings. In general, the categories used for images
are classified as shown in Table 3. Satellite data can also be categorised by the type of orbit
the satellite is in, whether it is in a high geostationary orbit (so it always observes the same
locations on Earth) or in a low Earth orbit (so it tracks the surface as it orbits).

Table 3. Spatial resolution of satellites in EO [43].

Spatial Resolution Examples of Satellites Scale

Coarse resolution (>1000 m) e.g., GCOM, Envisat, Aeolus, etc. Global and
regional

Medium resolution (100 m to 1000 m) e.g., MODIS, AVHRR, Sentinel-3
OLCI, etc.

Global and
regional

Fine resolution (5 m to 100 m) e.g., Landsat 5–8 TM, Sentinel-2,
SPOT 5, DMC etc., Regional and local

Very high resolution (VHR) (<5 m) e.g., Rapid Eye, WorldView,
Pleiades, SkySat, SuperView, etc. Local
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Free and open access data play a key role in enabling the discovery, retrieval, and
manipulation of data to monitor the planet [44]. For instance, NASA and the U.S. Geological
Society (USGS) have provided free Landsat imagery since 2008 [45]; ESA has released free
data (e.g., ERS, Envisat, Meteosat) since 2010; now, all data from the operational Sentinel
missions are freely available via the Copernicus Programme [46].

Open data can be freely used, re-used, and redistributed by anyone, whereas commer-
cial data, such as VHR imagery from commercial satellites, require the user to purchase
the data and to follow a license agreement. Commercial satellite imagery can be expensive
depending on the size of the area of interest, spatial resolution and number of observation
dates required. Rudd et al. [47] provided an example of using commercial satellite data
for precision agriculture, as this application benefited from higher spatial and temporal
resolutions than space agency sensors can provide; however, they considered these data
expensive for their application. Comparisons of the cost-effectiveness of EO-derived data
versus other sources of data are still relatively rare in the literature; nevertheless, examples
are provided by [48–52].

The findings of these studies suggest that using EO-derived data can be more cost
advantageous compared with the use of other data; however, the savings depend on the
scale of the project and what other types of data are available. For example, Bruzelius
et al. [52] conducted a cost-effectiveness analysis for their approach in detecting the health-
care service buildings for an area in south-eastern Liberia; the computational and data
cost involved was USD 12.30; if the method was applied for the entire country, the cost
would be approximately USD 141. These low prices show that EO-derived data can provide
information at a substantially reduced cost compared to the traditional monitoring costs,
which determines SDG indicators accessible for all nations, thus providing an opportunity
for “leaving no one behind” [51].

There are numerous web portals and services that enable the discovery, access, and
use of EO data and derived information products. These can be classified into three main
categories:

• EO data portals
• EO processing, visualisation, and cloud computing platforms (where the term ‘plat-

form’ in this paper refers to those online resources layer which provides the ‘back-end’
functionality of EO satellite images, rather than the engineering use of “platform”
used to contrast the “satellite” with its “sensor”)

• EO derived thematic products and services [53,54]

There are around 25 EO data portals that provide free (to the user) and open satellite
data at medium spatial resolution (e.g., Sentinel and Landsat) and historical VHR data
(these are listed in Supplementary Material Table S2) [55–80]. Free and open access EO data
are generally provided by taxpayer-funded national and international space agencies and
are provided for the public good. They play a major role in expanding the spectrum of new
users and applications [81]. There are numerous commercial suppliers (e.g., PlanetLab,
Maxar Technologies, Iceye, Earth-I, EarthBlox, Pixera, Surrey Satellite Technologies, etc.)
that offer EO satellite data and/or products for a cost or a subscription plan tailored to the
clients’ needs.

EO processing and visualisation platforms provide images that have passed through
several ‘levels’ of processing, integration, and analysis of raw EO data. Corrections at
these levels include radiometric calibration, atmospheric correction, and the derivation of
products from the satellite data (such as land classification maps); these EO-based products
are often further processed and combined with other geo-referenced socio-demographic,
economic and environmental data. The new cloud-based infrastructure services are be-
coming more important as they enable users to access, store, and analyse large volumes
of EO data without having to download (and in some cases process) the raw data [53,81].
These cloud platforms provide ‘analysis ready data’ (ARD) which are normally geometric,
orthorectified and radiometrically calibrated [24]. They can include integrated technologies
such as application programming interfaces (API) and web services to provide a more
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complete solution for big EO data management and analysis. Currently, there are around
14 major platforms that include big EO data management and analysis which offer mainly
free data access with commercial infrastructure, but use different storage systems, and
access interfaces of large EO data sets (listed in Supplementary Material Table S3) [53].
Among these platforms, Google Earth Engine (GEE) combines a multi-petabyte catalogue
of satellite imagery and geospatial datasets with planetary-scale analytical capabilities and
is available for scientists, researchers and developers to detect changes, map trends, and to
quantify differences on the Earth’s surface [28]. However, one barrier to the use of such
platforms is the need for computing skills and facilities to download and manipulate large
datasets.

In terms of EO-derived thematic products and services, ESA, NASA, and other partners
have created dedicated portals with advanced visualisation tools and services where users
can directly access spectral indices such as NDVI, as well as products derived using
advanced and complex algorithms that assess land degradation, land cover change, water
quality, etc. These free-to-the-user higher-level products require less expertise to manipulate
the EO data and generate products but are more susceptible to data misinterpretation as
a result of accessibility with a lower expertise level. These products provide quantitative
data to develop a baseline, assess trends, and address SDG indicators (a selected list of
these thematic products is presented in Table S4) [82–88].

Such portals and platforms integrated with big data provide several benefits, as they
provide a consistent, standardised product that has been developed by experts, that can
be used by a wide range of users without those users needing an expert understanding
(of the instruments) but lead to greater misinterpretation with assumptions made about
the sensor performance [89,90]. One of the first systematic data cubes to be established
was the Australian Geoscience Data Cube [91], which provides standardised data in a
common format on a range of processing platforms and with common pre-processing.
These analysis-ready data initiatives have great potential for NSOs; however, there has
not yet been the investment to establish how best to use the data at the national level [24].
There can also be a misconception that such data can be considered reliable simply due
to the volume of data available; however, this is not necessarily the case [24]. Efforts are
being made through satellite communities such as CEOS CARD4L [92] to provide some
consistent validation and evaluation of such products, although those initiatives are still at
an early stage and quality statements should be cautiously interpreted.

It is critical for users of EO information to understand and consider the key charac-
teristics (spectral, temporal, and spatial resolutions, and calibration uncertainties) of the
satellites and their applications to determine which are the most suitable to address specific
needs [37,93,94]. Some applications require data over relatively short periods such as
monitoring oil spills [95], forest fires [96], and sea ice motion [97], while, for understanding
long term trends of environmental and climatological issues, long time series of images,
and multi-decadal stability of the data set, which implies radiometric accuracy, are essen-
tial [97]. Other applications are in between, needing seasonal imaging especially for crop
identification [98], phenology [99], and wetland monitoring [100]. Table 4 illustrates a rep-
resentative range of EO applications with strong relevance to various aspects of sustainable
development, although it should be noted that this is by no means an exhaustive list.
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Table 4. Example EO satellite applications with relevance to the SDGs.

Main Application Classification Example EO Applications

Environmental

Terrestrial

Land use and cover change [85]
Biodiversity and habitat assessment [101,102]

Inland water resources [103]
Forestry- Deforestation and Afforestation [104]

Reforestation [99]
Forest fire [105]

Agriculture (crop mapping) [98]
Hydrology [106]

Mining and mineral exploitation [107]
Species growth (phenology) [108]

Soil Moisture [109]
Soil organic carbon [110]

Snow cover and glaciers [111]
Species identification [112]

Ocean

Sea-surface temperatures [113]
Ocean colour and algae blooming [114]

Sea levels [115]
Algae blooming [116]
Floating plastics [117]

Sea-Ice [97]
Marine and coastal environments [118]

Species identification [119]

Atmospheric Weather forecasting [120]
Radiation, evapotranspiration [121]

Climate system

Air quality and greenhouses gases [122]
Carbon Dioxide [123]

Ozone [124]
Nitrogen dioxide [125]

Methane [126]
Nitrogen dioxide [127]
Sulphur dioxide [128]

Socio-economic

Disaster management

Oil spill [95]
Disaster risk and damage assessment [129]

Geohazard risks [130]
Flooding [131]

Corruption

Illegal logging [132]
Favouritism [133]

Illegal fisheries [134]
Inflated GDP [135]

Transport
Ship tracking [136]

Transportation infrastructure [137]
Smart transport and logistics [138]

Socio-Economic
development

Global population density [139]
Quality of life [140]

Ethnic minorities development index [141]
Poverty [142]

Economic growth and GDP estimation socio-economic
activities [143]

Urbanisation dynamics [144]
Regional inequality [145]

Urban planning [146]

Energy Electricity consumption [147]
Access to electricity [148]

Humanitarian

Human rights [149]
Natural disasters, structural damage assessment, and
population estimation in settlements in conflict [150]

Forced labor [151]

Health
Incidence of breast cancer [152]

Response for Vector-Borne Diseases [153]
Access to health services [52]

Several peer-reviewed articles and case studies published since 2017 have explored
the contribution of satellite imagery towards the SDG indicators and targets [14,15,27,35,36,
90,154–158]. Some examples are provided in Table 5.
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Table 5. Published assessments of EO data use in support of SDG indicators and targets.

Title Type Year EO Data Contribution on SDG Indicators

Earth observation in service of the
2030 Agenda for Sustainable

Development [154]
Peer review 2017

First review of the EO contribution for SDGs,
focusing on the role of GEO and GEOSS work
and the actual use of EO in support of the SDGs.
Presents the major GEO projects that address
indicators from SDG 2, SDG 6, SDG 15. Also, it
discussed the importance of capacity building,
data access, and global collaboration with NSOs
and custodian agencies.

Satellite Earth Observation in support
of the Sustainable Development

Goals [36]
EO4SDGs Initiative [27]

Report

2018
The report presented best practices of using EO
data for several indicators that cover SDG 2,
SDG 6, SDG 11, SDG 14, and SDG 15.

2019

EO4SDGs Initiative is launching a series of pilot
projects to apply and test uses of EO to support
the assessment and tracking of the SDGs,
including integration with national statistical
accounts for the indicators.

Maturity Matrix Framework (MMF)
1.0 [14] Framework 2018

MMF 1.0 is an analytical framework that is based
on 3 premises (methods of processing EO data,
requirement of non-EO information, and level of
completeness). A total of 80 peer reviews and
reports were systematically reviewed under
MMF 1.0 to seek the potential of EO data to
support SDG indicators. The MMF 1.0 was
applied to all SDG indicators and found 84
indicators that were classified into three
categories: weak support from EO, indirect
measure by EO data and high potential of EO
data directly to populate the SDG indicator.

Maturity Matrix Framework (MMF)
2.0 [15] Framework 2019

MMF 2.0 is similar to the previous framework,
but it evolved into 6 premises after expert
interviews were conducted with 38 specialists in
EO and sustainability.

A Review of the Sustainability
Concept and the State of SDG

Monitoring Using Remote
Sensing [157]

Review 2020
The scope of this review was to summarise the
work and best practices of using EO for
supporting the SDG indicators.

Compendium of Earth Observation
contributions to the SDG Targets and

Indicators [156]
Compendium/Framework 2020

ESA Compendium presents case studies of using
EO satellite-derived data for a total of 34
indicators which were assessed against a
framework that discriminates the indicators into
two categories; 17 indicators can be directly
measured, and 17 indicators indirectly informed
by EO data across 29 targets and 11 goals.

EnviroAtlas [35] Review 2020

EnviroAtlas is a web-based, interactive map of
environmental and socio-economic data relevant
to the SDGs. It provides multi-resolution spatial
indicators and introduced proxy indicators
related to the SDGs.
The paper presents multiple examples of using
EO for 47 targets across most goals.

Maxar company (formerly known as
DigitalGlobe) [158] Review 2021 The report summarised the case studies that

address all SDGs.
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GEO and its space-agency arm CEOS has set out how EO can support the SDG
indicators through their EO4SDG initiative [154]; more recently, they have published a
report detailing the achievements of the programme, examples of application and further
steps [155]. In particular, they noted successes in collaboration with UNEP in assessing
SDG Indicators 6.6.1 (spatial extent of water-related ecosystems) and 6.3.2 (ambient water
quality), with UNCCD on Indicator 15.3.1 (proportion of degraded land per total land),
and with the UN Habitat on Indicator 11.7.1 (average share of the built-up area of cities
that is open space for public use) which enabled these four indicators to be recognised as
conceptually clear with internationally accepted methodologies. GEO suggests that EO
data have a role to play in monitoring progress with 71 out of the 169 Targets and 30 out of
the 232 indicators either directly or indirectly [154,155].

More recently, as part of the GEO EO4SDG initiative, in collaboration with the ESA,
an analysis has been completed regarding the contribution of EO for the Global Indicator
Framework [156]. In this analysis, the authors sought to identify those indicators where EO
could reasonably contribute to the development or implementation of indicator methodol-
ogy and based this on two main criteria which they refer to as “readiness” and “adequacy”.
A “traffic light” system of red, amber, and green colours was then applied across a suite of
34 selected indicators to flag EO relevance.

A further example of an analysis of the potential of EO for the SDG indicators is
provided by EnviroAtlas, developed by the United States Environmental Protection Agency
and other partners. EnviroAtlas provides a collection of web-based, interactive maps of
environmental and socio-economic data that support numerous SDG targets and indicators
that cover goals 6, 11, 15 and 4.

The increasing trend of launching constellations of nano and microsatellites (operates
between 60 and 100 small satellites) into space has been clear and well established in the
last two decades, aiming for higher spatial resolution and near real-time measurements
and continuous monitoring due to the daily revisit times [159]. In addition, there is an
increasing willingness to a partnership between the EO companies and custodian agencies
exploring the use of EO data to address SDGs. For instance, Planet Labs is working
with UN agencies, Kongsberg Satellite Services (KSAT) and Airbus to help measure the
SDG indicators by offering free access to VHR satellite, (<5 m) for 64 countries involved
in monitoring tropical rainforests. This partnership also helped support an interactive
platform called “Global Forest Watch”, (an open-source web application that monitors
global forests in near real-time) [160].

Another example of an EO company engaging with the SDGs is the Maxar com-
pany [158]. Engstrom et al. [161] investigated whether high-resolution satellite imagery
from Maxar Technology can accurately and affordably estimate the economic well-being
of 1291 Sri Lankan villages from space using machine learning and VHR imagery focused
on proxy indicators, such as car counts, building density, green space, and more, which
have all been used in models to predict the spatial variability of poverty across urban areas.
Maxar VHR satellite data have also been used to map areas at high risk for malaria, based
on population density and proximity to standing water. This has helped health workers
determine the required number of life-saving mosquito nets and the exact locations to
use insecticides [162]. Another example is the use of EO and mobile phone data to help
understand the disparity in transportation use by gender and the role it plays in inequality
(SDG 5) in Santiago, Chile. The GovLab and its partners DigitalGlobe, UNICEF together
with other organisations, established the first-ever baseline study of the urban mobility
experiences of women and girls, in which VHR satellite data play a role in human mobility
patterns [163–165].

Among many case studies that address the more environmental SDGs, ESA pre-
sented an example using satellite data and algorithms targeted at detecting illegal waste
sites [36,166]. They identified 207 sites classified as suspicious across one test area of 7000
km2 in the UK [167]. These sites are often associated with lower income and high-rate
crime areas and, thus, can help address indicators within SDG targets 12.4, 6.3 and 11.6 [36].

11



Sustainability 2022, 14, 1191

4. Assessing EO Contribution to SDGs Indicators Using a Maturity Matrix Framework
(MMF) Approach

In 2017 and 2019, Andries et al. [14,15] presented analyses of published literature and
other reports on the applicability of EO satellite data for SDG indicators using a structured
MMF based on six premises (uncertainty assessment, directness, completeness, requirement
for non-EO information, practicability, and cost-effectiveness analysis). The indicators were
allocated an aggregate assessment score (entitled Maturity Matrix Score (MMS)) based on
the premises detailed in [15] and their overall potential for being populated with data from
EO sources. Two versions of the MMF framework were produced and, using the latest
version (MMF 2.0), applied to all 232 SDG indicators some 80 of them were determined
to have some potential for being populated with data by EO. Of these, EO was found to
provide weak support (MMS between 1 and 2) for 25 indicators, partial support (MMS
values between 2 and 4) for 40 and strong support (MMS values between 4 and 5) for 15
indicators. The remaining 152 indicators had no evidence that EO could be used (at the
time of the research).

The SDG indicators have not been formally classified in terms of the three pillars of
sustainability (economic, social, and environmental) by the IAEG-SDGs; there have been,
perhaps surprisingly, few attempts to do this reported in the literature. Some exceptions are
provided by Paoli and Addeo [168] on the SDGs, Tremblay et al. [169] for the SDG targets
and Cochran et al. [35] for the SDG indicators. Such a classification of indicators can be
useful from a policy point of view [170] and can help to identify priorities for early action,
understand implementation challenges, detect data gaps and indicate the trade-offs among
SDGs [168].

A widely used taxonomy of indicators is based on the three pillars of sustainability
that includes environmental, economic and social indicators (sometimes institutions are
listed as a fourth dimension) [171]. Social indicators deal with broad categorical concerns
of well-being (e.g., OECD’s survey “How is life?” [172]), values (e.g., human values [173]),
agency (demographic and health surveys [174] and inequality (often calculated via Gini
coefficients) [175]). Economic indicators are statistics that allow an analysis of the economic
performance of a country and are classified into two main categories: economic structure
(e.g., gross domestic product (GDP), investment share in GDP, the balance of trade in
goods and services) and consumption and production patterns (e.g., consumer price index
(CPI), producer price index (PPI), household consumption, etc.) [171]. Environmental
indicators are based on the four main Earth systems: atmosphere, hydrosphere, lithosphere,
biosphere. Some environmental indicators are based on the human (anthropogenic) impact
on the four main Earth spheres. The processes of human interaction and the Earth-system
response to that interaction, such as pollution flows and natural resources stock (e.g.,
greenhouse gas emissions—CO2, SOx, NOx, methane), use of water resources, river quality,
wastewater treatment, land-use changes, protected areas, use of nitrogenous fertilizers,
use of forest resources, trade in tropical wood, threatened species, fish catches, waste
generation, municipal waste, industrial accidents). Lastly, partnership indicators measure
the effectiveness of cooperation between two or more organisations [176].

The authors classified the SDG indicators into five main categories, as follows: so-
cial, economic, environmental, the comprehensive indicators—socio-economic and socio-
environmental—and partnership; the results are presented in Figure 2. The assessment
resulted in 94 social indicators that mainly related to social inclusion and inequality re-
duction (SDG 5 and SDG 10), poverty eradication (SDG 1), quality education (SDG 4),
sustaining good health and well-being (SDG 3), and promoting peaceful and inclusive soci-
eties (SDG 16). There are 14 economic indicators mostly represented by GDP (in its various
forms) that can be found in SDG 2, SDG 8, and SDG 10. There are 27 SDG environmental
indicators that encompass issues of water scarcity, water resource management (SDG 6),
climate change (SDG 13), loss and degradation of biodiversity and ecosystems services
(SDG 6, SDG 13, SDG 14, SDG 15), deforestation (SDG 15). Most partnership indicators
(14 out of 16) occur in SDG 17, as the goal focuses on progress made in strengthening
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global partnership and in improving financial governance. The last category, comprehen-
sive SDG indicators, cover 96 indicators, of which 30 have socio-environmental features
and 66 include socio-economic dimensions of sustainability. Therefore, the SDG indicator
framework has an imbalance across the three pillars of sustainability and is mainly focused
on the socio-economic aspects with only 27 environmental and 30 socio-environmental
indicators.

Figure 2. SDG Indicator type based on the three dimensions of sustainability (Authors’ assessment).

Based on the MMF 2.0 [15] summarised above, we have re-evaluated all SDG indicators
using the latest best practice case studies and approaches available in the literature and
reports up to mid-2021 and have applied the categories presented in Figure 2. The results
(see Figure S1) suggest that 108 SDG indicators could be populated, at least in part, by
using data from EO. These comprise 19 indicators with weak support from EO, 67 with
partial support from EO, and 22 with strong EO support. The remaining 139 indicators had
no evidence (yet) (see Figure 3) that EO data could be used for their support; however, this
is a rapidly evolving field in which future approaches to using EO data for social indicators
may be developed.

These results have been sorted further in Figure 3, based on the indicator types of
Figure 2. The findings suggest that a strong contribution of EO data is predominantly
within the environmental type indicators; however, that was not exclusive, as several
social-economic indicators (e.g., indicators 1.4.2, 1.5.1, 1.5.2., 2.1.1, 11.5.1, 11.6.2) can be
also measured directly by EO data. For instance, indicator 1.5.2. (direct economic loss
attributed to disasters in relation to global GDP) can be directly measured by EO datasets;
Pham et al. [177] have shown an approach of automatic detection of building damage of an
earthquake, and EO optical and radar imagery can be used to gather useful information on
the economic loss on other disasters (e.g., flooding, transport infrastructure, fires, landslides,
etc.) at different stages. Satellite data of very high spatial and temporal resolutions play a
critical role in disaster management.
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Moreover, indicators with partial support from EO are spread amongst all indicator
types, reflecting the potential of EO satellite-derived data to play a role in calculating
the SDG indicator via a proxy indicator. For example, SDG indicators 16.1.1 (number of
victims of intentional homicide per 100,000 population, by sex and age) cannot be measured
directly by satellite data. However, Patino et al. [178] investigated the influence of the urban
layout (e.g., impervious surface percentage, type of roofs, land cover types) on homicide
rates using VHR image and integrated census data for socio-economic variables; thus, they
found associations of higher homicide rates with more heterogeneous and disordered urban
layouts. Likewise, EO data have been used to monitor conflicts (bombing, military presence,
war) by using historical records of the areas that changed over time and humanitarian
efforts, for example, by spotting refugee camps and estimating the number of refugees from
space [149]; all these applications can be linked to SDG indicator 16.1.2 (conflict-related
deaths per 100,000 population, by sex, age and cause).

A weak contribution of EO data to supporting the indicators occurs primarily among
indicators within the more socio-economic category. By its nature, SDG indicator 8.3.1
(proportion of informal employment in total employment, by sector and sex) cannot be
supported directly by EO data; nevertheless, Ghosh et al. [179] explored the potential
for estimating the formal and informal economy for Mexico using known relationships
between the spatial patterns of nighttime satellite imagery and economic activity. They
developed regression models between spatial patterns of nighttime imagery and adjusted
official gross state product (AGSP) for the USA states. These regression parameters derived
from the regression models of the USA were ‘blindly’ applied to Mexico to estimate the
estimated gross state income (EGSI) at the sub-national level and the estimated gross
domestic income (EGDI) at the national level. Comparison of the EGDI estimate of Mexico
against the official gross national income (GNI) estimates suggested that the magnitude
of Mexico’s informal economy and the inflow of remittances are 150% larger than their
existing official estimates in the GNI.

Comparison of the MMF results from 2019 to 2021 (see Supplementary Material
Figures S1 and S2) reveals 30 new indicators over these approx. 2 years where there is
published evidence that EO can provide some support. This suggests that researchers are
increasingly finding ways to use EO data in social and economic indicators. It also reflects
the amendments agreed by IAEG-SDG in December 2020 that introduced new indicators
and revised or removed others.

Figure 4 illustrates these 30 indicators with new EO-based methods, categorised into
their type and role of the EO contributions. Many of the social indicators that have new
EO-based methods are related to education. For instance, in one of the new approaches,
Yazdani et al. [180] noted that EO data can provide appropriate reliability, accuracy, and
convenience for identifying rural schools in Liberia via machine learning approaches;
based on their approach, UNICEF [181] launched an initiative to map every school in
the world, thus contributing to achieving SDG 4 (quality education). In addition, the
usage of night-time satellite data can help monitor aspects of education facilities, such
as access to electricity [182,183] and drinking water [184], which are closely linked to
SDG 4.a.1 indicator (schools with basic service as electricity and internet). Furthermore,
Andries et al. [185] used VHR satellite data and enrolment data to calculate the primary
school classroom area per pupil in rural Nigeria. They found that over 70% of the 1900
schools evaluated could be classified as overcrowded (according to Nigerian government
metrics), this being highly correlated with poverty and literacy rates. Andries et al. [185]
also analysed their area per pupil result via the MMF approach, which characterised this
EO support as partial for the SDG indicators 4.1.2. (Completion rate in primary education,
lower secondary education, upper secondary education) and 4.6.1 (Proportion of population
in each age group achieving at least a fixed level of proficiency in functional (a) literacy
and (b) numeracy skills, by sex). While area per pupil is not an SDG indicator, it potentially
provides a useful contribution since overcrowded schools influence SDG indicators, such
as completion of primary education and absenteeism, and can lead to low literacy and
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numeracy rates. The study is a proof of concept that was further validated in situ by
Andries et al. [186].
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Figure 4. EO contributions for SDG indicators against the MMF 2.0 and the latest publications
(Authors’ assessment).

The good health and well-being goal (SDG 3) is another social goal where new methods
have been derived to evaluate indicators using EO data [187–189]. For example, Bruzelius
et al. [52] used EO images and machine learning to assess health services in remote villages,
thus providing information that partially contributes to indicator 3.8.1 (coverage of essential
health services).

The latest developments in satellites continue to help to support the more environmental-
based SDG indicators. One of the latest SDG indicators introduced at the IAEG-SDG December
2020 update [5] is 13.2.2 (total greenhouse gas emissions per year). EO data can help validate
or complement this indicator through the wide availability of satellites; however, EO is not
currently discussed in the methodological guidelines [190]. Satellites (e.g., Gases Observ-
ing Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), TanSat) have been used to
measure atmospheric column-averaged concentrations of the key greenhouse gases CO2 and
CH4 at the global level. These can be used to complement the current methods, using flux
inversions to provide estimates of natural fluxes of CO2 and CH4. ESA’s Greenhouse Gases
Climate Change Initiative [191] has created consistent and quality-assured products with
rigorous uncertainty analysis based on these satellites, which are available via the Copernicus
Climate Data Store [192]. More recent public (e.g., Sentinel 5P) [193,194] and private (e.g.,
GHGSat) [126,195] missions provide more detailed spatial information and can begin the
process of determining emission fluxes (rather than concentrations of mixed gases) for the
larger emissions (city air pollution and oil and gas fugitive emissions) [196,197]. Therefore,
the current data from these satellites can be translated into actionable information to achieve
the goals of COP 26 and SDG 13 (climate action) [198]. Furthermore, there are new missions
in development that will further increase our understanding and direct monitoring of GHG
emissions (e.g., Microcarb). An area of current research is the exploration of the potential of
other medium and high resolution platforms, not initially designed for atmospheric retrievals,
such as Sentinel 2, PRISMA, WorldView-3, to fill the spatial and temporal gaps in mapping
methane plumes from point emitters [197].

16



Sustainability 2022, 14, 1191

As can be seen in Supplementary Material Figure S2, 11 indicators that had weak
support from EO, have ‘upgraded’ to providing partial or strong support from EO due to
new publications with new EO-based methods. For instance, indicator 7.1.1 (proportion of
population with access to electricity) had an MMS of 2.5 (amber) in the original MMF 2.0
dashboard analysis, based on the project India Lights [199]. This project was a collaboration
between Development Seed, the World Bank and the University of Michigan that used
the DMSP images to extract the light output of individual villages to show those that had
access to electricity. However, in this latest review, we increased this indicator’s MMS score
from 2.5 (amber) to 4 (green) based on a joint project (by Facebook, The Energy Sector
Management Assistance Program (ESMAP) at the World Bank, the KTH Royal Institute
of Technology, the World Resources Institute (WRI), and the University of Massachusetts
Amherst) that developed a predictive model for mapping medium-voltage distribution
using night-time satellite data, a MODIS land cover dataset and geospatial products (e.g.,
different type of roads, railways, political boundaries). The increased score came from the
new work on assessing uncertainty (with more validation against ground-truth data) and
improved practicability premises (with the method now integrated into the end-user’s
decision-making in several countries [200] with the possibility to replicate the model (using
the model documentation and codes) to other countries [201].

5. Discussion

The SDG framework, with its targets and indicators, stands as the most comprehensive,
universal, and ambitious plan to end poverty, promote prosperity and people’s well-being
and protect the environment, and has been agreed to by 193 world leaders spanning
the developed and developing worlds. The achievement of the SDGs relies prominently
on the availability and use of relevant, reliable, and timely data to measure progress,
inform policies and target those areas that need improvement. Traditional data sources
have administrative and technical limitations, in terms of data access, standardisation and
quality, lack of awareness concerning the benefits of current technologies, lack of financial
resources, technology and skills gaps, geographical constraints (in terms of developing
space projects), and coverage gaps across space and time [202]. Indeed, surveys suggest
that 73% of countries require assistance to upgrade existing data sources [203]. Thus, the
world is currently not on track in terms of being able to populate the SDG indicators; only
44% of the SDG indicators have sufficient data for global monitoring. However, the advent
of new EO technologies, either by themselves or combined with traditional data sources
and methods, offers the opportunity to provide robust and timely data on a routine basis
for monitoring and decision-making that supports the achievement of the SDGs.

Given a large number of satellites/instruments and their capabilities (spatial, spectral
and temporal resolution) (Table S1), free and open access portals (Table S2), data cubes
(Table S3), and EO thematic platforms (Table S4), there is potential to monitor every place on
Earth. EO data can help save time and cost [204,205] compared to the generally more labour-
intensive traditional approaches. There are some common misconceptions related to the
economic cost of VHR [206,207]; performing cost-effectiveness analysis can help identify
the most effective and competitive data [208,209]. For instance, Watmough et al. [51]
examined the role of using satellite data to assess the household wealth by considering
the spatial landscape use, size of the building, agricultural productivity, land use and
cover surrounding the household as predictor variables. They also estimated the price for
traditional and EO analyses. Surveying 330 households in rural areas of western Kenya
would cost USD 106,500 per year, compared with USD 1750 to USD 5000 per year for 100
km2 (covering the same 330 households) using VHR satellite data. They demonstrated
that satellite data can predict household wealth with 62% accuracy compared with the
traditional sampling methods and suggest that EO data be used to understand the dynamics
of changes in wealth between less frequent household surveys.

Nevertheless, there are capacity issues within NSOs that need to be addressed to
enable access to and use of EO data. These issues are not only about providing training

17



Sustainability 2022, 14, 1191

to NSO staff, but also about the strategic direction in the political agreement process
and cooperation between geospatial and EO communities, organisations, ministries, and
stakeholders. Likewise, there is a need for investment in the official statistics community in
terms of EO data manipulation,interpretation, and digitalisation.

This issue can be resolved by increasing technical capacity and infrastructure, but
also via regulations designed to build and consolidate trust among different stakeholders
involved in data sharing. Since 2015, GEO and its initiative EO4SDG, custodian agencies
and academia increased their efforts to explore the potential of EO and geospatial data
to support SDG indicators and targets; thus, in the last couple of years, there have been
several reviews that assess the EO contributions for SDG indicators under various frame-
works and analyses alongside practical guidance [14,15,27,35,36,90,154–158]. Despite these
developments, some countries are reluctant adopters for several reasons, such as concerns
about satellite data “spying” and confidentially, or because of a lack of data standardisation
and/or because they do not yet have the technical and infrastructure capacity in using
EO data [210]. Notwithstanding such reluctance, there are several examples of fruitful
collaborations between country NSOs and geospatial agencies, such as the case of Ireland,
Sweden, South Africa, Colombia, the Philippines, and the UK that integrated EO and/or
geospatial data for indicators that cover SDG 6, 11, 13 and 15.

In this paper, the framework developed by Andries et al. [15] was applied to the
most recent publications (up to June 2021), updating a similar analysis presented in the
earlier paper. Interestingly, rapid progress in terms of the EO data usage for supporting the
SDG indicators has occurred in the last 3 years, revealing an additional 30 SDG indicators
that can be measured by EO data (mostly through an indirect approach), with 26 of these
indicators having socio-economic features. This rapid progress in the most recent years is
likely driven by the increased availability of open source data, the collaboration between
various organisations, including the commercial sector, academia and GEO and other
organisations that continue to provide efforts promoting this type of data at the Statistical
Geospatial Integration Forum [211] and other relevant events [212].

However, there remain 139 SDG indicators for which there is currently no EO support.
When classifying the SDG indicators based on their sustainability pillars in the present
research, we observed that 174 (71%) of the SDG indicators are strongly oriented towards
social or economic pillars, which implies some barriers in the use of EO data for indicators
in those categories.

Likewise, we considered it valuable to classify the SDG indicators with regard to
the well-established Driver-Pressure-State-Impact-Response (DPSIR) analysis [213–215]
(a framework that describes the interactions between society, environment, and socio-
economic outcomes) as a further perspective on the components of the SDG that can be
monitored using EO data. This classification has been performed by Andries et al. [216]
and Masó et al. [217], and both found an uneven distribution of the SDG indicators into
the five DPSIR components, with a large percentage of response and state indicators (32%
and 41% respectively), followed by impact (18%), driving forces (6%) and 3% for pressure
indicators.

Response indicators cannot be measured directly by EO and can only rarely be assessed
via proxy indicators. As an example, consider the response indicator SDG indicator
14.6.1 (degree of implementation of international instruments aiming to combat illegal,
unreported and unregulated fishing). This indicator monitors the human action (the
response), i.e., whether countries are enforcing international agreements about illegal
fishing through management strategies, regulations and policies. EO data can support the
overall aims behind this indicator through an indirect approach, as satellites sensors can
monitor maritime traffic at night using ship lighting and, thus, implicitly observe fishing
activities [136,218,219]. When illegal fishing is spotted from space, as Park et al. [209] have
shown in their study, this would reflect poor governance and legislation in those countries
(thus this is an indirect observation of the response indicator).
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Earth observation (EO) could have the highest contributions (based on the wide variety
of satellite sensors and capabilities) on the environmental SDG 15 (life on land). However,
even here, (as shown in Figure S1) four indicators, 15.6.1 (number of countries that have
adopted legislative, administrative and policy frameworks to ensure fair and equitable
sharing of benefits), 15.8.1 (proportion of countries adopting relevant national legislation
and adequately resourcing the prevention or control of invasive alien species), 15.a.1 ((a)
official development assistance on conservation and sustainable use of biodiversity, and (b)
revenue generated and finance mobilized from biodiversity-relevant economic instruments)
and 15.b.1 (same as 15.a.1), cannot be supported by EO data due to their nature of the
human decisions to the changes. On the other hand, pressure indicators on the environment
such as wildfires, illegal logging, pollution, land-use change, light pollution, urbanisation,
are readily measurable by EO; however, they are not covered in the SDG framework.

Therefore, the ability of EO data to support the existing SDG indicators is affected by
the socioeconomic nature of the SDGs framework and by the conception and formulation
of the indicators. At the same time, EO data can bring to the SDGs framework new
opportunities which have not been yet explored and new indicators not yet listed in the
formal system, but which could have applicability to help address the SDG targets. As
Bell and Morse [220] have highlighted, an indicator must be measurable in the sense that
data must be available at the required quality, spatial relevance and timeliness; such data
must also be cost-effective. In this vein, Masó et al. [217] and Cochran et al. [35] have
proposed new indicators that are deliberately EO based and that can complement the
existing indicators, providing valuable data that is currently missing.

The UN and custodian agencies, GEO, researcher communities, and other stakeholders
should take the opportunity to work together to create new or adapted indicators that
optimise the use of the available data such as from EO. Much needs to be done; however,
the potential of EO-derived data for populating the SDG indicators is here and is growing.
Further research, exploration and examples of applications will help to expand this frontier
of possibilities.

6. Conclusions

This paper presents the data challenges for monitoring the SDGs and how EO satellite
data have been used by different communities to support the SDGs and their indicators.
It has analysed the contribution of EO data from assessments carried out by various
organisations and the classification of the SDG indicators based on the three pillars of
sustainability. We have drawn the following main conclusions from this:

- To achieve the SDGs, inform policies and investment decisions, high-quality data
(relevant, timely, reliable, and internationally comparable) for measurement and
validation are needed.

- Indicators require good quality data: the lack of data and/or outdated data, particu-
larly in developing countries, is a major constraint for monitoring the SDGs.

- Traditional data can be expensive and come with other disadvantages: new technolo-
gies, including satellite EO data and methods, can play a major role in the provision
of data for many SDG indicators.

- The plethora of satellites now observing the Earth provides data at different resolutions
and capabilities that have been used in many applications related to sustainable
development, including in populating the SDG indicators.

- The framework of SDG indicators has an imbalance between the three pillars of
sustainability and is mainly focused on the socio-economic aspects of sustainability,
with only 27 environmental and 30 socio-environmental indicators out of its total of 231
unique indicators. The framework is also biased towards the “state” and “response”
indicators of the DPSIR framework.

- Satellite data can be used as indirect support for many SDG indicators and has greater
potential to support the SDGs beyond the existing indicators.
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- Despite the efforts of various organisations in developing satellite open access plat-
forms (e.g., data cube, EO portals and visualisation platforms), there are still con-
straints to using these data and services. Furthermore, NSOs in many/several de-
veloped countries are constrained in making use of EO data for populating their
SDG indicators.
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Abstract: The main aim of the new agricultural scheme, Environmental Land Management, in
England is to reward landowners based on their provision of ‘public goods’ while achieving the goals
of the 25 Year Environment Plan and commitment to net zero emission by 2050. Earth Observation
(EO) satellites appear to offer an unprecedented opportunity in the process of monitoring, reporting,
and verification (MRV) of this scheme. In this study, we worked with ecologists to determine the
habitat–species relationships for five wildlife species in the Surrey Hills ‘Area of Outstanding Natural
Beauty’ (AONB), and this information was used to examine the extent to which EO satellite imagery,
particularly very high resolution (VHR) imagery, could be used for habitat assessment, via visual
interpretation and automated methods. We show that EO satellite products at 10 m resolution and
other geospatial datasets enabled the identification and location of broadly suitable habitat for these
species and the use of VHR imagery (at 1–4 m spatial resolution) allowed valuable insights for remote
assessment of habitat qualities and quantity. Hence, at a fine scale, we obtained additional habitats
such as scrub, hedges, field margins, woodland and tree characteristics, and agricultural practices
that offer an effective source of information for sustainable land management. The opportunities and
limitations of this study are discussed, and we conclude that there is considerable scope for it to offer
valuable information for land management decision-making and as support and evidence for MRV
for incentive schemes.

Keywords: very high resolution satellite data; earth observation; habitat suitability; habitat assess-
ment; Environmental Land Management

1. Introduction

The sustainability of land-use and -cover systems are determined by the interaction
between natural resources (including soils, water, plants, and wildlife), climate, and human
activities while ensuring a long-term productivity of these resources and maintaining a bal-
ance within the environmental functions [1]. Hence, sustainable land management (SLM)
has been debated extensively in the literature [2–4] and can be defined as “a knowledge-
based procedure that helps to integrate land, water, biodiversity, and environmental
management to meet rising food and fibre demands while sustaining ecosystem services
and livelihoods” [5]. At the global level, the United Nations Food and Agriculture Or-
ganisation (FAO) supports integrated land resource planning strategies through a wide
range of comprehensive approaches, tools, and measures adapted to different biophysi-
cal and socio-economic contexts when aiming for sustainable land resilience and avoid
degradation [6].

Land-use policy impacts land management and therefore affects the extent and state
of ecosystem services [7]. The importance of decision support for mainstreaming and
scaling up of SLM formulated by FAO led to each country shaping its own set of policies,
programmes, and schemes that determine the extent to which SLM is taken into account
in resource-management decisions [8]. Hence, at the national level, the UK Environment
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Bill [9] and Agriculture Bill [10] set the foundations for implementing the 25 Year Environ-
ment Plan and led to the establishment of the Environmental Land Management (ELM)
scheme.

The ELM scheme is a new programme of intensive policy development over the
period 2019–2024 with implementation post-2025 by the Department for Environment,
Food and Rural Affairs (DEFRA) replacing the previous EU Common Agricultural Policy.
The ELMs is based on three schemes, Sustainable Farming Incentive (SFI), Local Nature
Recovery (LNR), and Landscape Recovery (LR). The overall aim of these is to use public
money to pay farmers and land managers in England to deliver a set of ‘public goods’ that
cover clean air, clean and plentiful water, thriving plants and wildlife, protection from and
mitigation of environmental hazards, beauty, heritage and engagement, and mitigation of
and adaptation to climate change [11]. Nevertheless, land-use management and decision
making that prioritises only one type of ecosystem service without considering those
occurring within and between ecosystems results in policy failure [12].

While ‘public goods’ and ‘ecosystem services’ have different theoretical
backgrounds [13,14] from an environmental perspective, DEFRA’s range of public goods
are often identified with some of the typical ecosystem services [15,16]. Therefore, ecosys-
tem services are known as the benefits obtained directly or indirectly from ecosystems
that support human life and enhance social welfare [12]. They are typically categorised as
supporting services, provisioning services, regulating services, and services that support
cultural needs.

In terms of measuring biodiversity conservation and ecosystem services, there are
freely available integrated modelling tools such as Integrated Valuation of Ecosystem
Services and Trade-offs (InVEST) [17], Co$tingNature [18], Multiscale Integrated Model of
Ecosystem Services [19], Protected Area Benefits Assessment Tool (PA-BAT) [20], Ecosys-
tem Services Toolkit (EST) [21], Toolkit for Ecosystem Services Site-based Assessment
(TESSA) [22], Multiscale Integrated Model of Ecosystem Services (MIMES) [23], and Artifi-
cial Intelligence for Ecosystem Services (ARIES) [24]. All these can help with measuring,
modelling, and valuing ecosystem services and thus help support decision-making about
resources management and planning [25].

Land-use management activities have profoundly altered many ecosystems and there-
fore SLM approaches, and nature-based solutions are needed across policies [26,27]. In-
tegrating nature-based solutions has been well debated in the literature within a range
of applications on land-use management [28], land and soil degradation [28], urban plan-
ning [26,29], and polluted land [30]. Likewise, delivering nature-based interventions can
maximise ecosystem services and lead towards net zero greenhouse gas emissions [28,31].

As part of the ELM policy development, DEFRA established 57 Test and Trails with
stakeholders to understand how ELMs could be shaped in order to work in a real-life
environment across a wide range of circumstances and to help understand the barriers
and opportunities of new approaches [32]. The Surrey Hills Area of Outstanding Natural
Beauty (SH-AONB) Test and Trial, entitled ‘Making Space for Nature’, is one of these 57
Test and Trails and is one of the 12 AONB-based ones that together make up the largest
Defra Test and Trial project group for the ELM scheme. The main aim of this test and trial is
to understand what local nature recovery and enhanced access represent for a ‘designated
landscape’ and how this can be delivered through ELMs [33].

Currently, DEFRA [16,32] is exploring a range of ways for monitoring, reporting, and
verification (MRV) of ELM scheme agreements. They are aware that ground-based surveys
and physical inspections can be prohibitively expensive, and they want to consider the use
of satellite and geospatial data, alongside other technologies that can offer cost-effective
processes for the MRV of ELM and similar activities [16,34,35]. The spectral, spatial, and
temporal resolution capabilities of modern Earth Observation (EO) satellites certainly
appear to offer an unparalleled opportunity relevant to such ELM and MRV application
through their capacities to assess:
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• biodiversity and habitat type [36–40]
• habitat quality [41,42] and model habitat suitability [43,44]
• species identity and diversity [45–50]
• species behaviour [49,51].

Habitat suitability models seek to predict the optimal habitat for a species based on
the assessment of habitat attributes such as habitat structure, habitat type, and spatial
arrangements between habitat features. The models use established correlations between
the presence of particular species and known ecological niche elements to analyse geo-
graphical space (e.g., from earth observation at various scales) to locate those same niche
elements. This can then be used to create predictive location maps and other representa-
tions of the distribution and quantities of relevant habitat for a given species or group of
species [44,52].

According to Turner et al. [53], there are two general approaches to quantify and
model biodiversity using satellite and airborne remote sensing: direct mapping of species
composition (based on tree canopy) and land use and cover [54–56] and indirect sensing
by using environmental variables proxies such as: primary productivity (chlorophyll and
ocean colour), climate (rainfall, soil moisture, and phenology), habitat structure (topogra-
phy and vertical canopy structure) [44]. These approaches can be performed using visual
photo/image interpretation [57] and computing/automated methods [57,58]. Visual inter-
pretation is a ‘manual’ method based on the visual detection, identification, and spatial
localisation of different objects and terrain shapes [59], whilst the automated methods
typically use supervised and unsupervised image classification approaches (object and
pixel image analysis) via classification algorithms (e.g., maximum-likelihood, support
vector machine, random forest, and neural networks) [55,60–62].

Spatial resolution is an important attribute for the remote assessment of opportunities
for biodiversity as it describes the level of spatial detail which can be seen in the image.
Generally, higher spatial detail requires a sensor with a narrower field of view, hence less
spatial coverage per image scene. Satellite sensors with a smaller field of view (e.g., World-
view and Superview have a 16 km swath) are generally constrained by low revisit times,
unless the satellite is combined with phased orbit of the satellite constellation, which can
offer a two day revisit for any point on Earth. Coarser spatial resolution sensors can image
larger areas (e.g., Sentinel-2 can image strips 290 km wide) in one overpass of the satellite
sensor with more regular repeat cycles [63]. There are also several important biodiversity
trade-offs when considering the spatial resolution of a satellite sensor. For example, low-
resolution data are perfectly adequate for monitoring status of broad land cover (LC)/use
(LU) [64] and land change at regional level [65], while higher-resolution data are often
desirable for monitoring at a local scale, individual protected areas [66,67] and agricultural
practices [68], habitat loss, fragmentation and degradation, and ecosystem services [69,70]
and for substituting for physical inspection [34,68]. Moreover, Mairota et al. [47] demon-
strated that VHR satellite data can help mapping biodiversity and modelling habitat across
different scales (landscape, plot, and patch) which can be used for identifying specific
taxonomic groups. One other benefit of using VHR satellite data (0.5–5 m, depending
on the optical sensor) is to discriminate some aspects of the habitat characteristics which
normally cannot be seen at the coarser resolution [37]. For instance, case studies have been
carried out using VHR optical satellite or aerial imagery for the mapping and monitoring
of moorland to map vegetation patterns, evidence of ditching, and degree of peat exposure
or burn histories [71,72].
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The potential for assessing biodiversity and ecosystem status can be obtained through
EO-derived land-cover and land-use datasets, spatial information, and in situ data [37].
In terms of the land-cover classification system at the global scale (refers to scales smaller
than 1:250,000 and using NOAA Advanced Very High Resolution Radiometer (AVHRR)
satellites), the most representative examples are USGS product [73], EarthSat GeoCover
Land Cover Legend [74], the UN/FAO Land Cover Classification System [75], Global
Observation of Forest Cover [76], and Global Observation of Land Cover Dynamics
(GOFC/GOLD) [77]. Furthermore, land-cover classification at a regional scale (between
1:250,000 and 1:100,000) often use a medium spatial resolution from satellites such as Land-
sat TM, SPOTHRV/XS, IRS-1C/LISS, Landsat ETM+, and MODIS, offering classification
systems such as CORINE [78] and AFRICOVER [79]. At the national scale, land-cover
classification systems are available at smaller scales (between 1:5000–1:10,000) and are
commonly based on remote sensing data and in situ surveys. Some products of land-cover
classification systems at the national scale are National Land Cover Data Classification
System [80], National Land Survey Classification System, and Centre for Ecology and
Hydrology (CEH) Land Cover Map [81].

The Centre for Ecology and Hydrology (CEH) has developed its Land Cover Map
spatial framework, which uses satellite data from 2015–2019 from the European Space
Agency’s Copernicus Sentinel-1 and Sentinel-2 satellites. These have a high resolution (10
m) enabling the distinction between 21 land-cover classes on the basis of Sentinel imagery
and linked to Biodiversity Action Plan (BAP) Broad Habitats [82]. However, it has been
noted [83] that discrepancies can exist in the habitat terminology, revealing the need for
additional ecological expert knowledge and potentially VHR data to help resolve such am-
biguities (e.g., in plant height estimations). VHR data have a wide application across many
sectors, including assessing biodiversity and habitat quality [47]. While UK CEH LC and
Crops are products that have a dynamic role for identifying main habitats, land cover/use
and change and connectivity, and to support land parcel boundary mapping and princi-
pal crop types, VHR imagery can capture field boundary features (e.g., hedgerows and
field margins), seasonal aspects related to agricultural management practices, vegetation
patterns, evidence of ditches, forest canopy, etc. [72,83,84].

Insufficient collaboration with biodiversity experts is frequently cited as a limitation in
using remote sensing for monitoring biodiversity and developing relevant indicators [85].
A deep understanding of habitat–species relationships must be available to use remotely
sensed information effectively. Gaps still exist in our knowledge regarding the potential of
EO imagery at the higher resolutions for projects such as the SH-AONB ‘Making Space for
Nature’ Defra Test and Trial:

1. VHR satellite data use in identifying the availability of suitable and connected habitat,
and

2. how effectively do EO approaches at the highest resolutions add new insights to over-
all habitat assessments for various species of importance for biodiversity conservation
and recovery.

Our aim in the present research was, therefore, to work with ecologists to establish
habitat criteria for five example species/species groups (henceforth referred to as the
‘species’) and then to use this information to examine the potential role of EO in habitat
evaluation for these species at particular sites and more widely in the SH-AONB. The
research was conducted in three linked steps (see Figure 1): Step 1, knowledge acquisition
of species–habitat requirements; Step 2, use of readily-available EO and similar resources to
evaluate broad habitat suitability and connectivity for the species; and Step 3, exploration
of the additional contribution of the increasingly available Very High Resolution (VHR)
EO data (0.7–4 m in this study) for habitat assessment.
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Figure 1. Workflow, analysis, and outcomes in this study.

2. Materials and Methods

Figure 1 summarises the overall research workflow, methods, and outcomes of the
three steps applied in this study.

2.1. Study Area and Sites Selected

The Surrey Hills was one of the first landscapes in the UK to be ‘designated’ as an
‘Area of Outstanding Natural Beauty’ (AONB) in 1958. It should be noted here that AONB
is not a subjective term of the authors but a formal one created by the UK Government.
In June 2000, it was confirmed that AONBs have the same level of landscape quality and
share the same level of protection as National Parks, and the primary purpose of an AONB
is stated as ‘to conserve and enhance the natural beauty of the area’. There are 34 AONBs
in England, and together they cover 15% of the total land area. Notably, AONBs and
National Parks are found in Category V—landscapes managed mainly for conservation
and recreation—of the International Union for the Conservation of Nature and Natural
Resources’ global network of protected landscapes [86].

The Surrey Hills AONB covers 422 km2 with myriad landowners and community
nature spaces. These include a wide diversity of broad priority habitats in the UK Biodiver-
sity Action Plan (BAP) such as ancient woodland, broadleaved mixed and yew woodland,
coniferous woodland, arable and horticulture, improved grassland, acid grassland, calcare-
ous grassland, heather, freshwater, built-up areas, and traditional orchards. These provide
habitat for BAP priority species, 85 specially protected species, and at least 300 species
recognised as being a priority for conservation [87].
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We selected for intensive study three farm sites within the SH-AONB area that com-
prise different habitats and biodiversity opportunities (Figure 2):

• Hampton Estate, located in the Greensand Plateau: Shackleford (~739 ha), 51.2116◦ N,
0.7034◦ W (Site 1) Sondes Place Farm, near Dorking, between Greensand Valley
(Pippbrook and Tillingbourne) and The North Downs (~78.6 ha), 51.2304◦ N, 0.3425◦ W,
(Site 2)

• Landbarn Farm also located near Dorking, between Greensand Valley (Pippbrook and
Tillingbourne) and The North Downs (~100 ha), 51.2309◦ N, 0.3740◦ W, (Site 3).

Figure 2. Locations of SH-AONB and the three intensive study sites.

2.2. Resources for Readily Available EO and Other Data (Research for Step 2)

The following datasets were used for Step 2 and to complement the use of VHR
imagery for the habitat suitability assessment carried out in Step 3 of this research:

2.2.1. UK Centre for Ecology and Hydrology Land Cover Map 2019 (LCM2019) (20 m
Classified Pixels) and Crop 2019

The Centre for Ecology and Hydrology (CEH) has recently made available the UK
Land Cover Map 2019 (LCM2019) [56,88], a product based on satellite images (mainly
Sentinel-2), digital cartography, and machine-learning techniques (e.g., bootstrap training
combined with random forest classifier). LCM2019 provides information about physical
materials on the Earth’s surface; these can be natural such as vegetation, freshwater, inland
rocks, etc., and non-natural materials such as buildings or urbanised areas. LCM2019
has 21 classes using similar UK BAP Broad Habitats categories except for a couple of
inconsistencies. Mapping relationships and discrepancies in definitions between the CEH
LC 2019 and UK BAP Broad Habitats categories are outlined in [56,88].
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The SH-AONB is covered by 11 of the CEH LC classes illustrated and listed in Figure 3
for the whole SH-AONB and for our three intensive study sites. Further details of the
SH-AONB LC and UK BAP Broad Habitats classes are given in Supplementary Materials
(Table S1) [56,82]. UK CEH Crops 2019 product was obtained using Sentinel-2. The crops
from 2019 in SH-AONB were identified as winter wheat, winter oats, spring wheat, winter
barley, spring barley, oilseed rape, field beans, potatoes, maize, peas, and other crops
(which might include other cereals, root crops, early potatoes, and vegetables) (Figure 4).

The UK CEH LCM2019 and Crops2019 products were obtained free of charge in raster
and vector format from the Digimap Edina platform [89] under University of Surrey’s
license.

Figure 3. UK CEH Land Cover classes in the SH-AONB (locations of the three intensive study sites shown in red boxes).

2.2.2. Priority Habitat Inventory (England)

This is a spatial dataset that describes the geographic extent and location of 41 habitats,
which is a separate classification from BAP Broad Habitats relevant to the Natural Environ-
ment and Rural Communities Act (2006). Among these 41 classes, we extracted only the
calcareous grassland (chalk grassland) that helped for modelling the habitat suitability for
the Small Blue butterfly. The data are free open access provided by Natural England [90].

2.2.3. OS Open Rivers and Open Street Map GIS Shapefiles

We extracted the watercourses from OS Open Rivers dataset provided by DigiMap
Edina [89] and small roads such as footpaths and bridleways from Open Street Map [91],
which has been used mainly for assessing the habitat suitability for dragonflies and dam-
selflies and the silver-washed fritillary butterfly.
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Figure 4. UK CEH Crops 2019 in SH-AONB and the three intensive study sites (red boxes).

2.2.4. Digital Elevation Model (DEM)

The DEM generally refers to a representation of a bare terrain surface or a subset
of it, excluding features such as vegetation, buildings, or bridges. DEM is often useful
for flood disaster evaluations or water-flow estimation models, land-use studies, and
geological applications, aspect, slope, etc. DEM can be obtained from different data types
(e.g., satellites and Lidar), but in this study, we used Google Earth Engine (GEE) [92], which
provides free open access to the NASA Shuttle Radar Topography Mission (SRTM) Digital
Elevation 30 m. SRTM digital elevation data are based on an international research effort
that obtained digital elevation models on a near-global scale [93].

2.2.5. Species Occurrence Records

We obtained occurrence data for all five species from the past 5–12 years. These
datasets were requested from a variety of organisations (Table 1). The original records
requested were collected from crowd-sourcing biodiversity data via the NBN Atlas and
iRecord (dragonflies and damselflies) and conducted surveys (dormouse, skylark, and
butterflies). For instance, the UK British Monitoring Scheme (UKBMS), which is run by
CEH, Butterfly Conservation, British Trust for Ornithology, and Joint Nature Conservation
Committee (JNCC), uses a structured methodology to monitor at least 56 butterfly species
across over 4000 UK sites.
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Table 1. Selected species occurrence records and their providers.

Species
Species

Scientific Name
Main Habitat
Requirement

Provider of the
Species Occurrence

Records

Collection
Period

Silver-washed
fritillary
butterfly

Argynnis paphia Woodland/scrub Butterfly
Conservation (BC) 2015–2019

Small blue
butterfly Cupido minimus Chalk grassland Butterfly

Conservation (BC) 2015–2019

Skylark Alauda arvensis Pasture/Arable Surrey Bird Club
(SBC) 2010–2019

Hazel dormouse Muscardinus
avellanarius Hedgerow National Dormouse

Database (NDD) 2008–2019

Dragonflies
Damselflies

Anisoptera spp.
Zygoptera spp. Inland water British Dragonfly

Society (BDS) 2010–2019

2.3. Resources for Very High Resolution (VHR) Satellite Imagery (Research for Step 3)

We used VHR Multispectral (MS) and Panchromatic (PAN) data from 3 different
satellite sources, DMC3, Superview, and Komsat 3/3A, purchased from Earth-i, for
performing the habitat suitability assessments and the associated automated classi-
fication maps. The description of the satellites’ camera mode, spectral and spatial
resolutions, and the acquisition date are given in Table 2. These satellite images were
requested to be between spring and late summer when most tree crowns were leafy
and crops had just been harvested; thus, we could discern different patterns, shapes,
and textures to understand the landscape and habitat requirements of the selected
species. As time-series images of the same location from 2016 until 2020 were available,
we could also analyse for habitat change.

Table 2. VHR satellite data characteristics.

Satellite
Name

Camera Modes
Spatial Resolution

and Bands
Date of

Acquisition
Sites Covered

DMC3 MS and PAN
MS = 4 m (blue,
green, red, NIR)
PAN = 1 m

6 May 2016 Site 2 and 3

12 August 2016 Site 1

6 May 2018 Site 2 and 3

30 June 2018 Site 1

20 April 2019 Site 2 and 3

29 August 2019 Site 1

25 June 2020 Site 1

Superview-1 MS and PAN
MS = 2 m (blue,
green, red, NIR)
PAN = 0.5 m

5 July 2017 Site 2 and 3

19 May 2018 Site 1

15 July 2018 Site 1

Komsat-3 MS and PAN
MS = 2.8 m (blue,
green, red, NIR)
PAN = 0.7 m

20 April 2018 Site 1

6 May 2020 Site 2 and 3
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2.4. Analysis

The following presents the analytical methods applied in each of the three research
Steps summarised in Figure 1.

2.4.1. Step 1—Expert Knowledge Elicitation on the Habitat and Food Requirements of
the Species

Expert knowledge was obtained from ecologists from the Surrey Wildlife Trust and
Butterfly Conservation and from literature review to understand the relationship between
the selected species and their habitat and food requirements in the SH-AONB. Likewise,
the expert consultations guided us also in the selection of the five species, which play a role
as indicators of an appropriate and healthy habitat both for themselves and in supporting
the wider ecosystem and maintaining its balance [94]. In consequence, the presence of
such key species indicates a healthy habitat, its good management providing food and
shelter for these species and suggesting thriving biodiversity. These represent an indirect
contribution to other ‘public goods’ such as improvements in carbon storage, improving
clean air and water quality, enhancing the landscape, mitigating climate change, and
promoting heritage engagement with the environment, well-being, and protection from
environmental hazards.

The five species and their requirements are presented in Supplementary Materials
Table S2 [95–103].

2.4.2. Step 2—Habitat Suitability and Connectivity Modelling Using Existing EO and
Other Resources

The ecological information on the basic needs of these species for food, habitat type,
dispersal movement, and breeding (Table S3 [98,102,103]) was integrated with variables
such as land cover, crop type, footpaths, topographical parameters, watercourses, settle-
ments, etc., that could be observed in sufficient detail from the EO. These EO-observable
variables played an equal role in evaluating the habitat suitability and its connectivity for
the studied species. This habitat suitability evaluation process was applied both at the level
of the three intensive study sites and also at the whole SH-AONB area level.

The following workflow was performed for the EO-based habitat suitability and
connectivity modelling:

(a) Choose the environmental variables (factors) based on species habitat and food
requirement

We used 6 different environmental variables, which can be placed into 3 categories
including land cover [104], topography [105], and anthropogenic [106] (Table 3). In our
modelling, we used land cover (UK CEH LCM2019), crop type (UK CEH Crop Type 2019—
only for Skylark), and chalk grassland (priority habitat inventory—only for modelling the
Small Blue butterfly suitable habitat) as a means of habitat type, vegetation structure, and
food availability. Land cover plays a role as a key variable in this analysis, and it was used
to model all habitat suitability of the studied species. The anthropogenic variables selected
in this study are footpaths and settlements (urban and suburban areas). These variables
(depending on the species–habitat relationship) are likely to affect the connectivity within
the habitats. For instance, the settlements vector layer was used as a pressure factor for
Skylark nesting habitat; thus, we created a 100 m buffer around the settlement polygons.
However, well-managed footpaths and bridleways that cross the broadleaved woodland
can be a positive aspect in maintaining a Silver-washed fritillary butterfly population.
Moreover, the topographic variable extracted from DEM was needed to ascertain the slope
degree, which is an important factor in understanding the small blue butterfly’s favoured
habitat.

(b) Georeferenced species occurrence records

In this study, the occurrence records of the species were combined with (overlaid on)
the results of habitat suitability analysis. This was considered as a further indicator for the
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presence of healthy and appropriate habitat, thus reinforcing the potential of a location as
suitable for the species.

Table 3. Environmental variables used in developing habitat suitability model.

Species Environment Variables Data Source Variable Type

Silver-washed
fritillary butterfly

Habitat type UK CEH LCM2019 Land cover

Broadleaved woodland
edge UK CEH LCM2019 Land cover

Footpaths through
broadleaved woodland Open Street Map Anthropogenic

Small blue butterfly

Habitat type UK CEH LCM2019 Land cover

Chalk grassland Priority habitat
inventory (England) Land cover

Slope degree DEM Topographic

Skylark

Habitat type UK CEH LCM2019 Land cover

Crop type UK CEH Crops2019 Land cover

Settlements UK CEH LCM2019 Anthropogenic

Hazel dormouse Habitat type UK CEH LCM2019 Land cover

Dragonflies and
Damselflies

Habitat type UK CEH LCM2019 Land cover

Slow-flowing
watercourse (ditches,

brooks, stream, rivulets,
and rills)

OS Open Rivers Land cover

(a) ArcMap tools

The datasets presented in Section 3, UK CEH LCM2019, UK CEH Crop type 2019,
species occurrence georeferenced records, OS Open Rivers, Open Street map footpaths, and
slope derived from DEM, were processed through a wide variety of tools in ArcGIS 10.6.1
(e.g., Extract, Buffer, Reclassify, etc.) to design the habitat suitability and connectivity of the
monitored species. A detailed workflow is presented in Supplementary Materials Table S4.

(b) Scoring system (from 1 to 5) based on species habitat and food requirement

Table 4 explains the rationale behind the scoring system. Scores were assigned from 1
to 5, where 1 is attributed to the least suitable habitat and 5 represents the most suitable
habitat of a species.

Table 4. Habitat scoring system and rationale.

Score Habitat Suitability Rationale

1 Least suitable/unsuitable Species cannot survive due to the lack of food

2 Low suitability
Species cannot cross through that area (depending

on species and the area size) due to the lack of
food.

3 Moderately suitable habitat
Species may travel through to reach other more

suitable areas, but it is unlikely to find food
sources.

4 Suitable habitat
It may be used occasionally but dependant on
other factors such as food availability or ideal

requirements to sustain a breeding population.

5 Highly suitable habitat Provides the best habitat for nesting, breeding, or
food (depending on the species).
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2.4.3. Step 3—Habitat Assessment Approach and Contribution of VHR EO Data

This step explored the use of VHR EO data, via visual interpretation (manual) and
supervised image classification (automated). This VHR-based habitat assessment was
performed at the three intensive study sites by combining:

- prior expert knowledge about the studied species
- either or both visual interpretation and automated classification of features of the

VHR imagery
- species occurrence georeferenced records and OS Open Rivers (only for Dragonfly

and Damselfly species).

The advantage of very high spatial resolution (between 0.7–4 m in this study) was to
unlock rich information for the species by distinguishing pattern, shape, texture, shadows,
and colours (see Figure S1) and to reveal observable detail about the habitat(s) such as field
boundary characteristics (e.g., hedgerows and field margins), agricultural management
practices, ditches, woodland canopy structure, type of woodlands, continuity of the habitat
over time, the interconnectedness of different types of habitats, etc. Patterns, shapes,
texture, shadows, and colours were discriminated in “true colour” bands and translated
into key features (see Table S5 [107] and Figure S1).

3. Results

The outcomes of the Step 2 (habitat suitability and connectivity) and Step 3 (habitat
assessment via visual interpretation and supervised classification methods) for the five
species are presented in this section. The information from Step 1, expert knowledge
elicitation (complemented with appropriate records), is not presented because it is em-
bedded as underpinning knowledge for the other two steps (see Table S2 [95–103] and
Table S3 [98,102,103]).

3.1. Step 2—Habitat Suitability and Connectivity Analysis

We designed our representation and mapping of the habitat suitability and connec-
tivity for our chosen species in the SH-AONB and our three intensive study sites using
a 1–5 scoring system (1 = least suitable, 5 = highly suitable, see Table 4). This represen-
tation for each species was derived from the Step 1 expert knowledge elicitation of the
habitat requirements (e.g., type, structure, and food requirements, see Table S1 [56,82] and
Table S3 [98,102,103]) integrated with the readily available datasets and resources (e.g., UK
CEH LCM2019, UK CEH Crop, DEM, Priority Habitat Inventory, OS Open Rivers, and
Open Street Map).

3.1.1. Silver-Washed Fritillary (SWF) Butterfly

Figure 5 shows the suitable habitats of SWF butterflies in SH-AONB and the three
intensive study sites. As the most suitable habitat (score 5) that can sustain an SWF
population is placed in mixed deciduous woodland with sunny, flowery rides, and glades,
and its edges, heather, and scrub, we included a 20 m buffer alongside footpaths that cross
broadleaved woodlands and a 20 m buffer edge of the broadleaved forests. In addition, a
score of 5 was assigned to the heather and heather grassland land cover classes. Scores of
4 and 3 were assigned to broadleaved woodland and grassland respectively, as the SWF
butterfly is a powerful flier, albeit restricted to areas of Viola flower presence which grows
at the margins of broadleaved, open, and sunny grassland and heathland. Scores of 2
and 1 were assigned to Coniferous woodland and Arable, Freshwater, and Inland rock,
respectively, as these habitats are poor for this species due to the lack of food or host for
their eggs. In terms of habitat connectivity, a positive linking of the available favourable
habitat can be observed at our three intensive study sites. The potential benefits of higher
resolution at the local scale than what is available in this Step 2 evaluation would be to
enable improved understanding of the canopy openness and the effects of management at
woodland edges and in hedgerows (as a key habitat for understanding connectivity). This
is explored further in Section 3.2.1. In addition, at the SH-AONB scale, we can observe
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the availability of many areas of suitable habitats that can support this species. However,
the best areas are somewhat ‘patchy’ in distribution, with some isolation of one area from
another.

Figure 5. Silver-washed fritillary butterfly—Step 2 habitat suitability assessment in the SH-AONB and the three intensive
study sites (red boxes).

3.1.2. Small Blue (SB) Butterfly

Figure 6 presents the suitable habitats for the SB butterfly, based on two environment
variables: slope degree (Maps 1 and 2) and land-cover classes (Map 3). In addition, it
overlays the records of SB butterfly from 2015 to 2019 which can indirectly confirm the
presence of the Kidney Vetch plant (as this is only source of food for the caterpillars). It
can be observed in both approaches (Maps 1 and Map 3) that most of the SB butterfly
occurrence has been recorded across areas of chalk grassland (with a high slope degree),
heather, and improved grassland.

In Map 3, the land-cover classes are classified based on our scoring system and the
species habitat requirements. Therefore, at this Step 2 level, it is possible to observe
several areas of potentially highly suitable habitat (score 4 and 5) that may offer the best
opportunities for additional habitat creation for the SB butterfly, e.g., by seeding of Kidney
Vetch in autumn or winter. However, further detailed examination of these broad potential
habitat locations to find fully optimal sites (e.g., scrub or sparse eroding vegetation with
bare ground, calcareous sites such as old quarries, gravel pits, and disused railways) would
be advantageous and could be accomplished by site visits or, potentially, via a higher spatial
resolution of EO imagery. Likewise, Map 3 illustrates the existence of many scattered areas
of suitable habitat which can lead to the isolation of SB populations. Hence, the map from
this Step 2 level can be useful for designing the introduction or restoration of connections
between colonies (e.g., by even quite small habitat creation interventions) as a vital aspect
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of the long-term conservation of this species. Due to its good dispersal movement potential
(efficient and light wings), maintaining the existing and new habitats and continuity
among them depends on the farming activities and agricultural practices such as avoiding
overgrazing by the livestock and fertilizer spray drift (see Table S3 [98,102,103]).

Figure 6. Small Blue butterfly—Step 2 habitat suitability assessment in the SH-AONB and the two intensive study sites.

3.1.3. Skylark

Skylarks select nesting sites at ground level with vegetation height about 20–50 cm to
give easy access to the nest but also near to field margins that can provide food (insects).
Certain crops such as spring and winter barley, spring wheat, and late-cut hay meadows
are also ideal for nesting; however, nests are only successful if the field is not cut or grazed
between early April and the end of May (see Table S3 [98,102,103]). Figure 7 shows suitable
habitat for Skylark nesting in the SH-AONB and the three intensive study sites based on
the CEH LCM2019 and CEH Crops 2019 classification and settlements. In addition, species
record points between 2010 and 2019 can be observed across most of the suitable areas.
However, the food requirement for this species cannot be assessed at this Step 2 resolution,
and higher detail maps are required. Moreover, in terms of connectivity, Figure 7 illustrates
that many sites ideal for nesting show quite high degrees of separation. Interpretation of
the significance of this connectivity feature should include awareness that this species has
a short-distance dispersal movement, and its home range has been noted as 1.08 ha [68].
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Figure 7. Skylark nesting—Step 2 habitat suitability assessment in the SH-AONB and the three intensive study sites.

3.1.4. Hazel/Common Dormouse

Habitat suitable for the Dormouse requires medium height (5–10 m) broadleaved
woodland, scrub, heather, and tall hedgerows, which were the main driver for the five
suitability classes identified based on the LCM2019 classes, as shown in Figure 8. A large
amount of suitable habitat can be identified in the SH-AONB and the intensive study
sites, but in some places, these are interrupted or fragmented by unfavourable habitats.
It is notable that most of the dormouse occurrence records have been registered in those
habitats that were assigned a score of 5 and 4; however, there are other suitable habitat
areas in which dormouse occurrence has not been registered (e.g., across Site1).

3.1.5. Dragonflies and Damselflies

Figure 9 presents habitat suitability analysis for dragonflies and damselflies in Step 2.
Despite a wide variety of these species (around 40) in the SH-AONB integrated into this
approach, all rely mainly on clear and shallow waters, which can be part of a lake, pond,
river, stream, ditch, or canal. Highly suitable habitats occur in Thursley National Reserve
and its proximities, where most of the dragonflies and damselflies sightings have been
recorded. As these species have preference for slow-flow watercourses, we created a 20 m
buffer alongside all ditches, brooks, etc., as highly suitable habitat. Suburban and urban
areas have not been included in the classification, although nature lovers may well have
created small ponds in their gardens, and ditches and ponds can be present in municipal
areas; hence, some occurrences have been recorded in suburban/urban sites.
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Figure 8. Dormouse—Step 2 habitat suitability assessment in the SH-AONB and the three intensive study sites.

3.2. Step 3—Habitat Assessment Analysis with VHR Imagery

The aim of the Step 3 approach was to investigate any additional value that VHR EO
data can add to the understanding of available habitat for the five species from the Step 2
analysis. The analysis below is for the intensive study sites via the visual interpretation
and the automated supervised image classification approaches. Interpretation of the VHR
images by either approach applied the direct and indirect associations established between
spectral bands (visible and PAN), textural, structural features, and plant diversity and
habitat opportunities. The analysis also included examples of assessment over a period
of time, opportunities to create/improve/extend suitable habitat, pressure factors, and
dispersal movements for the species (see Table S3 [98,102,103]).

The VHR imagery-based analysis enabled observation of a larger range of species-
associated habitat land-cover classes than in the LCM2019 set. These additional classes
were canopy openness, scrub, hedgerows, water plants, trees shade, individual trees,
and artificial features (tracks, pavement, etc). Visual interpretation of habitat assess-
ment is time consuming, and particularly for larger areas, automated supervised image
classification can play a very useful role in supporting efficient habitat quality and
quantity assessment.
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Figure 9. Dragonflies and damselflies—Step 2 habitat suitability assessment in the SH-AONB and the three intensive study
sites.

The results of the VHR use are presented below in the same sequence of species as
the results for Step 2. However, in this case, while noting habitat features relevant to the
selected species our primary focus was on evaluating any ‘additionality’ that the VHR
analysis can offer over and above that available from Step 2.

3.2.1. Silver-Washed Fritillary Butterfly

Figure 10 shows a well-vegetated area (Site 3) consisting of broadleaved and conif-
erous woodland, grazed grassland, maintained scrub patches, arable fields, ditches,
hedges, etc. The broadleaved woodland exhibits several patches of open areas, glades
and open rides that allow sunlight to come through, sunny and open woodland edges,
and scattered scrub. These are all positive habitat features for this species and are
revealed in finer detail than in the Step 2 results. The records of SWF sightings be-
tween 2015 and 2019 emphasise the presence of the species in such areas and also that
such sightings coincide with walking pathways. The VHR images shows additional
features such as other vegetation (providing additional shade) in places along such
pathways across open grassland that also coincide with recorded sightings. In terms of
assessment between July 2017 and May 2020, the detailed habitat features are mainly
consistent between the two, indicating stability in the provision of appropriate habitat
over this time series. Interestingly, there has been the removal of a small block of
coniferous woodland over this time (see red circled area in Figure 10; shown as present
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in LCM2019 Figure 5 of Step 2) and the now open area observable in the 2020 imagery
can provide additional habitat for this species.

Figure 10. Silver-washed fritillary butterfly—Step 3 VHR habitat assessment, intensive study Site 3, visual interpretation
(red circles indicate area of coniferous woodland removed between 2017 and 2020).

Figure 11 (Map 1) provides specific visual detail indicating highly desirable habitat
for the SWF within the broadleaved woodland (canopy openness, glades and other spaces,
open rides, etc.) that are absent from the Step 2 representation (Map 3). Similar detail
is available for the grassland areas in which highly desirable scattered tree cover and
associated shade is present. Map 2 shows that these highly desirable habitat features are
also available from the supervised image classification indicating that they are tractable to
automatic recognition and mapping. In this mapping, one conspicuous open ride is readily
identified in the broadleaved woodland (red linear pattern in north-south orientation in
Map 2) together with other areas of canopy openness and scattered trees, making location
and calibration of these habitat features readily assessed.
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Figure 11. Silver-washed fritillary butterfly—Step 3 VHR habitat assessment, intensive study Site 1, visual interpretation
(Map 1), supervised image classification (Map 2). Map 1 contains visual interpretation of 2 m resolution Superview satellite
image; black box indicates the same area of view in Map 2; yellow box indicates the same area of view in Map 3; Map
3 shows the yellow box area of Map 1 overlaid with CEH LCM2019 broadleaved woodland and improved grassland
land-cover classes from Step 2 (scored 4 and 5, respectively, as highly suitable habitat for the species).

3.2.2. Small Blue Butterfly

Figure 12 presents a time series of VHR (ranging from 0.7 to 2 m) DMC3 and Superview
images in PAN and MS (visible bands) from 2016 to 2020 to assess the consistency of the SB
butterfly habitat provision over this time period. As the SB butterfly presence is strongly
linked to the condition of Kidney Vetch flower, even though this cannot be identified
directly by satellite images, patches of scrub, sunny open space, and some areas of ungrazed
grassland are readily discerned (the quality of grassland can be differentiated—the light
grey (PAN) and light green (MS) are those areas with grazed grassland: the dark grey and
green is tall grass and scrub), and all these types of areas are positive for the Kidney Vetch.
In addition, detailed assessment of the habitat observable from the VHR imagery over the
2016–2020 period provides evidence that the habitat has been stable and well maintained
over this 5-year period, thus providing support for the SB population.
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Figure 12. Small blue butterfly—Step 3 VHR habitat assessment, intensive study Site 3, visual interpretation over time
series.
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Figure 13 illustrates the use of VHR imagery for automated quantification of the
habitat relevant for the SB butterfly in a 0.5 km2 area within Site 3. The histogram shows
the percentage of different land-cover classes using supervised image classification in
which the VHR imagery has provided much finer detail, thus obtaining the areas of scrub,
unimproved grassland, and footpaths, classes that are not available via LCM2019 data.
For example, the automated quantification shows that 13% of the selected area is scrub
associated with 46% of open grassland, which together offer highly favoured habitat for
the SB.

Figure 13. Small Blue butterfly—Step 3 VHR habitat assessment, intensive study Site 2, visual interpretation, supervised
image classification with quantification.

3.2.3. Skylark

This bird can nest in silage fields (grazed pasture) if the field is not grazed between
early April and the end of May. Figure 14 presents an example of monitoring such habitat
suitable for Skylark nesting in four grass/silage fields at intensive study Site 1, by using
VHR satellite images in mid-May and again in late-June 2018 and species sighting recorded
in the same year. The fields are clearly uncut in May 2018, thus maintaining this habitat
for Skylark nesting and rearing, and they are showing as cut (for silage) at the end of June
2018, after this important period for the Skylark. It is clear that the detail available from
the VHR imagery is sufficient to assess the status of these fields (cut/uncut), and therefore,
with appropriate overflies and image collection frequencies, VHR can be used readily to
monitor the grass management in support of Skylark nesting habitat. We believe that the
Skylark seen in 2018 was successfully maintained by the agricultural practices in place at
that time.
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Figure 14. Skylark Nesting—Step 3 VHR habitat assessment, intensive study Site 1, visual interpretation.

Figure 15 shows a grass field at intensive study Site 2 in 2017 and 2020. This location
is a suitable nesting habitat for Skylark (skylark recorded there in 2017). The VHR imagery
(Map 1 Figure 15) shows the field with full grass cover in early-July 2017, indicating that
it had not been cut during the Skylark breeding season. Furthermore, the grass margins
alongside hedgerows (lighter green (Map 1) and lighter grey (Map 2) Figure 15) are clearly
present with a width of ~10 m in both 2017 and 2020. These two practices, grass cutting
time and field margins, plus the presence of hedgerows and neighbouring woodland
(supporting insect and seed diversity), play a crucial role for the Skylark by providing a
good physical location, source of food, and materials for nesting.

3.2.4. Dormouse

Favoured habitat for this species is deciduous woodland (preferring yew, rowan, and
hazel during ranging), hedgerows, and dense scrub. Figure 16 illustrates a well-connected
network of favourable dormouse habitat. In terms of the habitat quality, the dormouse
population recorded in 2017 had a suitable habitat in both 2017 and 2020, noted as (+)
in Figure 16, due to the dense and wider hedges and young woodland (bright green or
light grey). However, there are some gaps in hedgerows, noted as (−) in Figure 16, which
could have a negative impact on the species dispersal. Farmers and land managers can
restore and/or add to hedgerows and fill such gaps to better link existing habitat areas for
improved foraging and dispersal for this species.
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Figure 15. Skylark—Step 3 VHR habitat assessment, intensive study Site 1, visual interpretation.

Figure 16. Dormouse—Step 3 VHR habitat assessment, intensive study Sites 2 and 3, visual interpretation.
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Figure 17 shows a comparison of VHR imagery at 2 m resolution from SuperView
(Maps 1 and 3, Figure 17) with the same area at 10 m resolution from of Sentinel 2 (as
per LCM2019) (Map 2, Figure 17). As for the other species, the VHR imagery permits
recognition and location of a much more granular classification and range of land-cover
types for dormouse habitat assessment, e.g., scrub, patchy tree or tall shrub cover and
shading as strong positive features. This is also tractable to automatic representation by
the supervised image classification approach (Map 3, Figure 17).

Figure 17. Dormouse—Step 3 VHR habitat assessment, intensive study Sites 2 and 3, visual interpretation and supervised
image classification.

3.2.5. Dragonflies and Damselflies

Two of the main pressures on dragonflies and damselflies are (i) poor water quality
from leaf litter, extensive growths of filamentous algae, water coloured green by planktonic
algae, and nutrient inputs from agricultural practices, and (ii) livestock access to bankside
vegetation. Therefore, Figure 18 shows that several variations in the habitat qualities for
dragonflies and damselflies that can be distinguished through the use of VHR imagery
for habitat assessment. The imagery from July 2017 and May 2020 permits recognition of
positive habitat features such as thick bankside vegetation alongside ditches and a buffer
zone of at least 10 m arounds the ponds that have not been affected by livestock both of
which also provides reasonable protection against nutrients inputs from fertilisers, and
from herbicides and pesticides. Negative features are also readily observed: for example,
in 2017, the pond situated in the centre of the image (marked as red hexagon in Figure 18)
was mostly covered by vegetation with extensive growth of aquatic plants. This is less
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apparent in 2020, which could be due to the low rainfall and higher temperature in the
2017 season.

Figure 18. Dragonflies and damselflies—Step 3 VHR habitat assessment, intensive study Site 2, visual interpretation.

In Figure 19, the two VHR images from May 2018 and June 2020 present an array of
open ponds in which habitat assessment features are easily recognised. The tree canopies
are not overhanging, but in some areas, the light brown colouration of the water indicates
the presence of sediments. This cloudiness could occur due to relatively shallow waters, if
the pond is located on clay, or it can be caused by fish or ducks stirring up bottom sediments.
Overall, it indicates a favourable and healthy habitat for dragonflies and damselflies, which
concurs with the sighting records.

Many of the dragonfly and damselfly species in the SH-AONB have habitat preferences
for clear ponds with open water surfaces and slow water flows (e.g., ditches). The upper
two VHR images in Figure 20 shows a substantial amount of aquatic vegetation within the
pond boundary with substantial tree cover surrounding. These conditions are not ideal
habitat for these species. In comparison, the lower pair of images in Figure 20 show a
high degree of openness of the water surface and an absence of aquatic plants or extensive
shading and overhanging trees, indicating the bulk of the pond area provides high quality
habitat for the species. The supervised image classification images in Figure 20 show that
these main habitat features are tractable to automated assessment.
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Figure 19. Dragonflies and damselflies—Step 3 VHR habitat assessment, intensive study Site 1, visual interpretation.

Figure 20. Dragonflies and damselflies—Step 3 VHR habitat assessment, intensive study Site 2 and surroundings, visual
interpretation and supervised image classification.
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Detailed visual interpretation of the lower VHR imagery in Figure 20 indicates, how-
ever, some limitation in the precision of the automated supervised image classification
in that the tapered, southwest part of the pond is classified as trees but is actually an
overgrown part of the pond area. Close visual assessment shows that, while the main part
of the pond, especially its more northern part, is very good habitat for these species, the
lower southwest part exhibits a mix of freshwater (little open surface), trees, and other
vegetation. A time series of imagery of his pond would enable interpretation of whether
this condition of the pond’s southwest part was due to the encroachment of vegetation
into a previously open area of the pond or, conversely, if the cause was inundation of a
previously vegetated area. This detail, readily observable in the VHR imagery here, pro-
vides a good demonstration of the value that VHR EO can bring, for example by indicating
where management interventions can best be targeted to maintain or enhance available,
high-quality habitat for particular species such as the dragonflies and damselflies in this
case.

4. Discussion

This present study has examined the use of EO and geospatial datasets with a particu-
lar focus on the additional insight that VHR imagery (0.7–4 m resolution) can bring to the
understanding of the availability, connectivity, and assessment at various scales of habitat
suitable for five key species in the SH-AONB. Efforts to use the capabilities of EO for the
purposes examined here depend crucially on combining knowledge on the habitat needs
of the species in question (acquired from expert consultations and published sources) with
that on EO technology and image interpretation. There are clearly important synergies here
between these groups and use of the EO-derived data needed to have the input of experts
who have in-depth knowledge of the ecology of the species. Similar image classifications
have been accomplished in the literature [37]. The present research has provided several
examples of the ways in which such a combination can be applied to habitat assessment.

EO-derived land-cover and land-use products have been used successfully for mapping
and monitoring biodiversity and modelling species habitat suitability [36,37,43,44,64,108] and
for assessing ecosystem services [108,109]. Hence, at the scale of the whole SH-AONB, as
well as for our three intensive study sites, the readily-available EO and geospatial datasets
provide valuable resources enabling identification of the areas of broadly appropriate
habitat for these species, albeit at a fairly ‘coarse’ level of resolution. In general terms,
this provides a semiquantitative snapshot of potential habitat availability for the various
species which may be particularly useful as a broad guide to the prevalence and location
of the habitats across the whole SH-AONB. At the level of individual farms and similar
landholdings, the readily available EO and geospatial datasets again provide the capability
to broadly map suitable habitat at the individual property scale, e.g., several hectares. How-
ever, as is apparent from the habitat needs of these species outlined in Table S3 [98,102,103]
and in the detailed analyses, the high-level land classifications in the very useful LCM2019
data and similar/complementary resources only permit a quite general assessment of the
availability and distribution of suitable habitat. A key question driving our research was
whether information potentially available from the VHR satellite imagery could provide
the level of detail that would enable a much more confident assessment of the quantity
and quality of the habitat present for the given species. Further questions about such VHR
imagery and its interpretation were related to whether such information would be relevant
for habitat management and, potentially, for MRV systems for habitat provision under
policies such as ELMs. These aspects form the basis of the discussion below.

VHR satellite data have proven efficient and accurate in assessing habitat quality [41,42].
The VHR data (0.7–4 m) used in Step 3 of this research allowed detailed analysis of image
texture, patterns, colours, meanings, and identification and quantification of areas of scrub,
hedges, field margins, different tree species types, etc. This was a considerable extension
to the ‘granularity’ of habitat assessment over that available from the readily available
resources analysed in Step 2 (which relied upon resolutions of 10 m or more and other
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geospatial datasets). Specifically, the benefits of using the VHR imagery as demonstrated
in our results were a considerably extended capability to:

• Identify a wider range of landcover types relevant to the habitat preferences of the
species than the range of classes in LCM2019. Notable amongst these was scrub (an
aspect of preferred habitat of small blue butterfly, Silver-washed fritillary butterfly,
and Hazel dormouse), ‘patchiness’ small open spaces in broadleaved woodland
(Silver-washed fritillary butterfly), and recognition of small areas of single trees (Hazel
dormouse, Silver-washed fritillary butterfly, and small blue butterfly).

• Assess qualitative differences within a given land class/habitat type—examples in-
clude the ability to resolve uncut and cut grassland as shown in the habitat assess-
ment for the Skylark and, by inference, whether grassland areas are grazed or are
tall/scrubby (the Kidney Vetch flower is associated with the latter, and the SB butterfly
is dependent on this plant).

• Automate quantitative assessment of the habitat/land cover and automate the rep-
resentation of the extended range of land-cover/habitat types via supervised image
classification. This raises the potential to efficiently quantify at a finely resolved level
(e.g., 1 to a few m), the provision and location of suitable habitats for these, and most
likely, many other species. Given the availability of suitable VHR image coverage,
even quite large areas (up to 23 km2) are tractable to this finely resolved habitat
assessment approach.

• Evaluate negative aspects of habitat provision such as discontinuities in valuable
‘corridors’ such as hedgerows (important avenues for migration and movement for
wildlife and therefore a highly distinctive habitat) and diversity of ‘qualities’ within
a given habitat type (such as ponds where features such as the quality of adjacent
vegetation are also important).

• Evaluate habitat provision and quality efficiently and readily over time, offering
valuable information for management decision making, e.g., urgency of intervention
or responses and for efficient MRV for incentive schemes and policies.

• Assess habitat in ‘non-traditional’ urban and suburban areas by using the more
finely resolved observation offered by VHR imagery to analyse the distribution and
connectedness of relevant habitat types in such settings, and to support the nature
recovery potential of private gardens, municipal and public spaces, and the built
environment.

These benefits from the use of VHR imagery within this research are compelling. There
are also a number of improvements and limitations that can be recognised. For example,
species–habitat knowledge is a critical factor in the VHR interpretation as noted at the
beginning of this discussion. It would have been advantageous to have had more extensive
data, particularly for the occurrence records of the given species (and for those that they
rely on for food). For instance, the SWF butterfly relies on the presence of Viola flowers and
SB butterfly on the Kidney Vetch and having the records of the distribution and detailed
preferences of these two plants would likely have allowed the creation of a more accurate
habitat suitability analysis from VHR observations. Regarding access to VHR imagery,
a more comprehensive time sequence for the imagery would have allowed unequivocal
demonstration of land-use management directly supporting habitat provision. A good
example of this was the full habitat assessment benefit that would have been possible if
VHR imagery had been available for the precise harvesting time of silage grass cutting in
relation to the Skylark. It is apparent from the levels of VHR resolution examined that the
results presented here reflect habitat availability and its characteristics. The observations
do not confirm if the species in question is actually present or not. The debate about
whether the key metric for biodiversity conservation and enhancement should be (i) the
availability of appropriate habitat (and its ‘connectedness’) or, (ii) whether it should be
based strictly on species occurrence, lies outside the scope of this research. Therefore, it
should be recognised clearly that the scope of the VHR imagery used here is at the level of

56



Sustainability 2021, 13, 9105

habitat recognition and availability, rather than as a proof of species presence (although
occurrence of the species was recorded where available in the image presentations).

The precision in time and resolution for assessing areas of land, as demonstrated in
this research, clearly offer huge potential as primary evidence for the MRV of habitat and
other benefits that are needed for the correct distribution of the incentives associated with
ELM policy. Capitalising on this potential requires improved coverage in both time and
area at these levels of resolution and at acceptable cost. EO data are becoming more and
more widely used in governance and planning at all scales, and the demonstration of its
cost-effectiveness in similar applications [34,110] provides good reason to be optimistic that
ongoing R&D and applications development enable the near-term use of VHR imagery in
MRV for ELM and related policy.

Finally, we wish to reiterate the usefulness of EO data to inform biodiversity conserva-
tion and environmental management as highlighted here and by remote sensing specialists
and ecologists in recent years [37,47,64,66]. When EO is used in this field, it requires
ongoing collaboration between ecologists and EO experts to develop a common, shared
understanding about the relationship between the species selected and their habitats, termi-
nology (e.g., regarding land-cover classes), guidance for understanding the opportunities
to create/improve/extend suitable habitat for the species, and recognition of ecological
and environmental pressures on the species. Such collaboration is essential to realising the
outstanding potential for EO data to effectively support (i) ecologically informed environ-
mental management decisions and (ii) the provision of habitat as a much-needed ‘public
good’.

5. Conclusions

We have drawn the following main conclusions from this research:

• Satellite spatial resolution is decisive in terms of assessing biodiversity and habitats.
VHR data (at approximately 1–4 m) offers great potential for habitat suitability and
connectivity assessment for the five wildlife species in this research and, most likely,
for many more.

• Automated habitat suitability assessment using VHR imagery is feasible and provides
valuable, ecologically meaningful information

• The expert insights of ecologists on the species–habitat relationships examined here
provide key underpinning knowledge to enable use to be made of the potential of
VHR satellite data for habitat assessment.

• VHR data and imagery offer great potential for use in habitat management at the
scale of individual properties (farms, etc.) and at a whole-landscape scale. It provides
an effective source of information of value for land management and environmental
decision making and as potential evidence for the MRV relevant to ELM and similar
policies.
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Abstract: Continuing uncertainty about the present magnitudes of global environmental change
phenomena limits scientific understanding of human impacts on Planet Earth, and the quality of
scientific advice to policy makers on how to tackle these phenomena. Yet why global environmental
uncertainties are so great, why they persist, how their magnitudes differ from one phenomenon
to another, and whether they can be reduced is poorly understood. To address these questions,
a new tool, the Uncertainty Assessment Framework (UAF), is proposed that builds on previous
research by dividing sources of environmental uncertainty into categories linked to features inherent
in phenomena, and insufficient capacity to conceptualize and measure phenomena. Applying the
UAF shows that, based on its scale, complexity, areal variability and turnover time, desertification is
one of the most inherently uncertain global environmental change phenomena. Present uncertainty
about desertification is also very high and persistent: the Uncertainty Score of a time series of five
estimates of the global extent of desertification shows limited change and has a mean of 6.8, on
a scale from 0 to 8, based on the presence of four conceptualization uncertainties (terminological
difficulties, underspecification, understructuralization and using proxies) and four measurement
uncertainties (random errors, systemic errors, scalar deficiencies and using subjective judgment). This
suggests that realization of the Land Degradation Neutrality (LDN) Target 15.3 of the UN Sustainable
Development Goal (SDG) 15 (“Life on Land”) will be difficult to monitor in dry areas. None of the
estimates in the time series has an Uncertainty Score of 2 when, according to the UAF, evaluation by
statistical methods alone would be appropriate. This supports claims that statistical methods have
limitations for evaluating very uncertain phenomena. Global environmental uncertainties could be
reduced by devising better rules for constructing global environmental information which integrate
conceptualization and measurement. A set of seven rules derived from the UAF is applied here
to show how to measure desertification, demonstrating that uncertainty about it is not inevitable.
Recent review articles have advocated using ‘big data’ to fill national data gaps in monitoring LDN
and other SDG 15 targets, but an evaluation of a sample of three exemplar studies using the UAF still
gives a mean Uncertainty Score of 4.7, so this approach will not be straightforward.

Keywords: uncertainty evaluation; desertification; global change; Earth observation; planetary
measurement; Land Degradation Neutrality; Sustainable Development Goals

1. Introduction

The present magnitudes of major global environmental change phenomena, such
as forest area change, biodiversity loss and desertification, have been very uncertain for
decades. Judged purely by the number of available estimates, one of the most uncertain of
these phenomena is desertification, which is land degradation in dry areas. The annual rate
of desertification has only been estimated once, for the 1970s [1], and estimates of the global
extent of desertification show it contracting, not expanding: an estimate of the area of at
least moderately desertified land in the 1970s [2] is over six times an estimate for the 1980s
made by the World Atlas of Desertification [3,4]. That estimate has not been updated by
the recently published Third Edition of the Atlas, since its authors claim that desertification
cannot be mapped satisfactorily [5]. This is an important statement, for while the first
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two editions of the Atlas were produced by the United Nations Environment Programme,
the third comes from the European Commission Joint Research Centre (JRC), a leading
centre for global environmental monitoring using remote sensing data. In 2011, a report
from a group of remote sensing scientists, coordinated by JRC, recommended that a Global
Drylands Observing System be established to monitor desertification [6], but such a system
is still awaited.

Continuing uncertainty about the extent and rate of change of desertification makes it
difficult to assess the effectiveness of the United Nations Convention to Combat Deserti-
fication (UNCCD). Moreover, since drylands account for half of the Earth’s land surface
area [3], without accurate estimates of the extent and rate of change of their degradation, it
will be impossible to reliably monitor whether the world offsets the rate of land degradation
by the rate of restoration of degraded land by 2030, and so achieves Land Degradation
Neutrality (LDN), which is Target 15.3 in the UN Sustainable Development Goal 15: “Life
on Land” [7,8]. The other eight targets cover two other key global environmental change
phenomena: forest area change (15.2) and biodiversity loss (15.1 and 15.4–15.9). According
to Allen et al., the 17 Sustainable Development Goals (SDGs) “suffer from a lack of national
data needed for effective monitoring and implementation. Almost half of the SDG indi-
cators are not regularly produced and available datasets are often out of date” [9]. They,
like Hassani et al. [10], identify satellite data and other sets of “big data” as a potential
solution to this problem, but conclude that using these data will not be straightforward.
Indeed, in the journal papers on using big data for monitoring SDGs which they review,
SDG 15 accounts for the largest share of all papers but one of the smallest shares with global
datasets cited in them [9]. This paper addresses these data deficiencies for land degradation
in dry areas, but its analysis of global environmental uncertainties is also relevant to other
targets in SDG 15.

Does the persistence of global environmental uncertainties mean that they are in-
evitable? At the other extreme of spatial scales, in 1927, Heisenberg deduced from the new
theory of quantum mechanics an inequality which showed that for electrons and other
sub-atomic particles, “the exact knowledge of one variable can exclude the exact knowledge
of another” [11,12], since the disturbance involved in measuring the position of a particle,
for example, affects the measurement of its momentum. Yet while Heisenberg’s Uncertainty
Principle was just a theoretical prediction in 1927, there is ample empirical evidence, for
desertification and other phenomena, to show the persistence of global environmental
uncertainties, despite all the planetary data collected in the 50 years since the first Landsat
satellite was launched in 1972. Although sub-atomic physics may seem to have little in
common with global change science, they both involve measuring phenomena with sci-
entific instruments, and this paper is not the first to discuss potential parallels between
Heisenberg Uncertainty and environmental uncertainties [13].

Are global environmental change phenomena equally uncertain? Global environmen-
tal uncertainties continue to inhibit governments from committing sufficient resources to
tackling humanity’s global impacts on the planet. So if science can differentiate between
the uncertainties associated with different phenomena, this could lead to greater incentives
to tackle them.

Surprisingly little research has been undertaken into global environmental uncertain-
ties, despite their scientific and political importance. This may be because environmental
uncertainties generally are too easily taken for granted: Brown even stated in 2010 that
“there is no common understanding or consistent definition of uncertainty in environ-
mental research” [14]. Neglect of uncertainty about the natural environment is apparent
when Google Scholar searches for journal papers whose titles contain “environmental
uncertainty” or “environmental uncertainties” generate results dominated by studies of
organization theory [15] and control systems [16], which focus on the business environment,
not the natural environment.

This paper aims to inspire fresh interest in environmental uncertainties by: (a) propos-
ing an Uncertainty Assessment Framework (UAF) that can tackle the above questions about
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the inevitability and relative sizes of global environmental uncertainties, and indicate how
they can be reduced by planetary measurement; and (b) applying the UAF to desertifi-
cation and SDG Target 15.3. The UAF focuses on uncertainty about the magnitudes of
environmental phenomena, rather than all knowledge about the latter. Instead of starting
from a blank slate, it restructures sources of environmental uncertainty in two existing
taxonomies [13,17] using an original conceptualization, dividing these sources into three
categories linked to: (a) the features inherent in phenomena; (b) insufficient capacity to con-
ceptualize phenomena; and (c) insufficient capacity to measure phenomena. It deals with
present uncertainties, not future uncertainties and risk [18], uncertainties in modelling [19],
or links between uncertainty and decision making [20].

This paper has four main sections. The first reviews previous research into environ-
mental uncertainty. The second outlines the UAF, and the data and methods employed in
the paper. The third applies the UAF to desertification, finding that it has a high inherent
uncertainty and a persistently high present uncertainty. The fourth suggests how to reduce
present uncertainty about desertification by planetary measurement, using an initial set
of rules derived from the UAF for constructing reliable global environmental information,
and shows that uncertainty about desertification is not inevitable. It also examines whether
these rules are followed by a sample of papers, identified in recent reviews [9,10], which
discuss using big data to monitor SDG Target 15.3.

2. Literature Review

2.1. Defining Uncertainty

Uncertainty is defined as “incomplete knowledge” by Böschen et al. [21], but is
a contested term. For example, for Smithson, uncertainty is a type of error [22]; for Roth, it
describes constraints on reproducing experimental procedures [23]; and for Brown, it is
“a state of confidence” varying between certainty and irrelevance [14].

The relationship between uncertainty and risk is contentious too. Knight divided
ignorance into risk, which can be assessed by probabilities, and uncertainty, which can-
not [24]. Probabilities remain central to analysing future risk today [25], though Beck
argued that prediction “is not reducible to . . . probability” [18].

Wynne distinguishes between uncertainty and risk when classifying “kinds of uncer-
tainty” and proposes two more categories: ignorance, in which “we don’t know what we
don’t know”; and indeterminacy, which is an inability to classify “things . . . as the same
or different, [based on] specific properties or criteria” [26]. This views indeterminacy as a
conceptualization limitation. Yet physicists treat it more explicitly as a measurement limita-
tion, so parameters are known but cannot be properly measured [27]. Such different views
illustrate the contributions made to uncertainty by conceptualization and measurement,
and synergies between them.

2.2. The Sociology of Knowledge Accumulation

Uncertainty about any phenomenon is usually reduced as science systematically accu-
mulates knowledge about it through observation, experiment and explanation. Isolated
facts, or data, are collected and then processed within a conceptual framework into mean-
ingful information [28]. After being verified and reported, information is synthesized into
even more usable knowledge.

Science, however, is a social activity in which continuous development is punctuated
by discontinuities as scientific communities switch from one dominant theoretical paradigm
to another [29]. It also differentiates into an increasing number of subject-specific disciplines,
each with its own language and rules [30] and authority and monopoly claims [31].

Planetary measurement uses instruments on satellites to collect global data, and then,
with appropriate support from ground data, converts these data into global information. It
is difficult to explain on purely technological grounds the limited amount of planetary
measurement since the first Landsat satellite was launched in 1972, but much easier when
allowing for the sociology of science, since different approaches are taken towards data

65



Sustainability 2022, 14, 4063

collection and information production by remote sensing scientists, on the one hand, and
scientists in other disciplines which study land cover change, on the other [32]. Ecologists,
for example, have traditionally preferred to collect data by intensive measurements in small
sample plots, and have been slow to make full use of remote sensing data [33]. Remote
sensing scientists are skilled in processing the latter data but have taken time to convert
them into global information. For example, the first global forest area map based on “wall-
to-wall” Landsat data was not published until 2012 [34]; and of a sample of 96 papers
published before this advance in the International Journal of Remote Sensing in 2009, only one
focused on mapping at global scale (Supplementary Table S1).

Knowledge about global environmental change is gained not only by scientific processes,
but also by intergovernmental political processes in which UN and other international
organizations conceptualize phenomena and estimate their magnitudes. One example is
the UN Commission for Sustainable Development process which led to the Sustainable
Development Goals [8]. Intergovernmental processes often characterize global phenomena
by indicators—measurable quantities that represent specific attributes of a given system [35].
If indicators are to generate meaningful information, they should ideally be chosen using
coherent conceptual frameworks [36]; yet, in practice, these processes tend to rely on long
lists of indicators with limited coherency [37]. Interactions between scientific processes and
political processes vary in intensity [38].

2.3. Existing Approaches to Evaluating Very Uncertain Environmental Phenomena

The conventional quantitative approach taken by many peer-reviewed studies to evalu-
ate uncertainty about environmental phenomena uses statistical methods to estimate errors.
Yet it is claimed that this approach is less meaningful in cases of severe uncertainty [39,40],
when “unquantifiable uncertainties . . . dominate the quantifiable ones” [41]. Estimates
of global environmental change phenomena are particularly prone to this, because many
estimates are still not wholly based on measurements of the kind that scientists working
at lower spatial scales take for granted, but often rely heavily on national statistics whose
links to measurements are less robust [32].

One alternative to purely quantitative analysis of uncertainty is to combine it with
qualitative evaluation. The Numerical Unit Spread Assessment Pedigree (NUSAP) system
divides uncertainty into three “sorts”: “technical”, or random error; “methodological”,
or unreliable measurement; and “epistemological”, or how well scientific theories fit the
real world [42]. The first two sorts represent measurement and the third conceptualiza-
tion. Van der Sluijs has added a “societal” category in which society influences scientific
activity [41]. NUSAP identifies for any number its random error (Spread); reliability, linked
to systematic errors (Assessment); and how the number is produced (Pedigree). Although
NUSAP has been applied to various environmental phenomena, Spread seems less rel-
evant to highly uncertain phenomena; and Pedigree indicators may change from one
phenomenon to another, and give measurement uncertainties priority over conceptualiza-
tion uncertainties.

Another approach is to only evaluate sources of environmental uncertainty qualita-
tively. Regan et al. distinguish between “linguistic sources”, which limit conceptualization,
and “epistemic sources”, which include natural variability and measurement sources [13]
(Table 1). Van Asselt and Rotmans separate “variability” in phenomena from “limited
knowledge” (or measurement) sources, but exclude conceptualization sources (except
“value diversity”) [17] (Table 1). Both taxonomies neglect economic factors, which limit
the size, frequency and resolution of large scale surveys [43]. They are also rather arbi-
trary and inconsistent in categorizing sources, and in sequencing them in each category
(Tables S2 and S3). Yet their similarities suggest that, suitably modified, they could form
the basis for a more coherent taxonomy which distinguishes more clearly between inherent,
conceptualization and measurement sources, and this has inspired the approach taken here.
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Table 1. Two taxonomies of sources of environmental uncertainty proposed in 2002 by
Regan et al. [13] and Van Asselt and Rotmans [17] (detailed definitions are provided in
Tables S2 and S3).

Regan et al. Van Asselt and Rotmans

Linguistic Variability

L1. Vagueness V1. Inherent randomness
L2. Context dependence V2. Value diversity
L3. Ambiguity V3. (Irrational) human behaviour
L4. Underspecificity V4. (Non-linear) societal dynamics
L5. Indeterminacy V5. Technological surprises

Epistemic Limited Knowledge

E1. Measurement error K1. Inexactness
E2. Systematic error K2. Lack of measurements
E3. Natural variation K3. Practically immeasurable
E4. Inherent randomness K4. Conflicting evidence
E5. Moral uncertainty K5. Reducible ignorance
E6. Subjective judgement K6. Indeterminacy

K7. Irreducible ignorance

3. Methodology, Materials and Methods

3.1. Overview

Böschen et al.’s definition of uncertainty as “incomplete knowledge” [21] suggests that
to conceptualize the origins of environmental uncertainty, it is necessary to first identify
what determines complete knowledge of an environmental phenomenon (Kc), and then
explain how the gap between this and present knowledge at any time t (Kt) is linked to
restrictions on capacity to construct knowledge.

The Uncertainty Assessment Framework (UAF) proposed here therefore divides
sources of uncertainty about any environmental phenomenon into three interacting cate-
gories (Figure 1) which are linked to:

(1) The features inherent in the phenomenon.
(2) Insufficient capacity to conceptualize the phenomenon.
(3) Insufficient capacity to measure the phenomenon.

Figure 1. The Uncertainty Assessment Framework.
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The features of a phenomenon determine what must be understood to have complete
knowledge about it, and contribute to its inherent uncertainty. They include its: (a) spatial
extent; (b) biophysical complexity, which depends on the minimum number of attributes
needed to characterize its spatial distribution—attributes correspond to the different infor-
mation layers which must be combined to map the phenomenon (see below); (c) spatio-
temporal randomness, resulting from natural factors; and (d) human-environment com-
plexity, which exacerbates biophysical complexity and natural randomness. The larger
each feature is, the more knowledge is needed to understand the phenomenon, and the
greater its inherent uncertainty.

The two capacities describe how improving technology, financial resources and people’s
skills (or ‘Human Capital’) can reduce uncertainty by constructing present knowledge about
the phenomenon. The smaller the two capacities are, the larger the associated difficulties in
conceptualization and measurement are likely to be.

If the difference between complete and present knowledge is represented by the sum
of present conceptualization uncertainties (Uct) and measurement uncertainties (Umt) resulting
from the associated capacity limitations at time t then:

Kc = Kt + Uct + Umt (1)

Following Van der Sluijs [41], all three categories of sources are subject to societal constraints,
which include political, economic and other social factors (Figure 1).

The UAF builds on previous research by restructuring the individual sources listed
by Regan et al. [13] and Van Asselt and Rotmans [17], using the phenomenal features and
measurement categories prominent in both taxonomies and the conceptualization category
highlighted by Regan et al. [13] (Table 2).

Table 2. A taxonomy of sources of environmental uncertainty in the Uncertainty Assessment Frame-
work (UAF) and corresponding terms in the taxonomies of Regan et al. [13] and Van Asselt and
Rotmans [17].

UAF Taxonomy
Corresponding Terms in Other Taxonomies

in Table 1 *

Phenomenal uncertainties
P1. Spatial extent −
P2. Biophysical complexity RE3
P3. Spatio-temporal randomness RE4; VV1
P4. Human-environment complexity VV3, VV4, VV5
Conceptualization uncertainties
C1. Terminological difficulties RL1, RL3, RL5; VV2
C2. Underspecification RL4
C3. Understructuralization RL4, RE5
C4. Using proxies −
Measurement uncertainties
M1. Random errors RE1; VK1
M2. Systematic errors RE2; VK4, VK5
M3. Scalar deficiencies in measurement RL2; VK2
M4. Using subjective judgment RE6

* The second column lists the Linguistic (RL) and Epistemic (RE) categories of Regan et al. [13], and the Variability
(VV) and Limited Knowledge (VK) categories of Van Asselt and Rotmans [17], with numbering as in Table 1.

3.2. Phenomenal Uncertainties

It is proposed that uncertainty inherent in an environmental phenomenon is associated
with four of its features:

(1) Spatial extent (S). The greater the area of a phenomenon, the more difficult it is to
measure, and the more spatially diverse its distribution is likely to be.

(2) Biophysical complexity (B), potentially involving many environmental attributes—
each of which may be represented by at least one variable—and processes linking
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these attributes. For example, forest area change involves change in just one forest
attribute: area. In contrast, forest carbon change involves changes in at least two
attributes: area and carbon density, each of which needs to be mapped. Biodiversity
involves changes in at least three attributes: ecosystem diversity, species diversity and
genetic diversity [44] (Table 3). In the two latter cases the number of attributes could
be expanded to include intermediate ones, e.g., biomass density in the case of forest
carbon change [32], but for simplicity, the minimum number of attributes is used here.
Desertification is an even more complex phenomenon, with at least seven attributes,
as discussed in Section 4.1.3.

(3) Randomness in spatial and temporal distributions (R), resulting from natural factors.
(4) Human-environment complexity (H), evident in multidirectional, multitemporal and

multiscalar interactions between human systems and environmental systems. Often
involving changeable, conflicting and inconsistent human behaviour in causing or
responding to phenomena, these interactions can exacerbate biophysical complexity
and natural randomness and shift the characteristics of phenomena outside previously
recorded ranges.

Table 3. The multiple attributes of four global environmental change phenomena.

Phenomenon Number of Attributes Attributes

Forest area change 1 Area
Forest carbon change 2 Area

Carbon density
Biodiversity loss 3 Ecosystem diversity

Species diversity
Genetic diversity

Desertification 7 Vegetation area
Vegetation density
Water erosion of soil
Wind erosion of soil
Soil compaction
Waterlogging/salinization/
alkalinization of soil
Rainfall variation

The last three features encompass but expand the scope of the “epistemic” sources
3 and 4 of Regan et al. [13] and the “variability” sources 1, 3, 4 and 5 of Van Asselt and
Rotmans [17] (Table 2). Neither study recognizes the first feature, spatial extent, even
though it is far more difficult to measure environmental change at global scale than at
national and local scales [32].

The relationship between inherent uncertainty (U) and the four features of an en-
vironmental phenomenon listed above can be expressed algebraically by an inherent
uncertainty function:

U = f (S, B, R, H) (2)

If S is represented by the total area of the phenomenon (Ai), B is related to the minimum
number of attributes required to characterize it (bi), and R and H are jointly represented
on the ground by the inverses of the smallest area (ai) (areal variability) and shortest
time period (ti) (turnover time) over which the phenomenon varies, then U can also be
expressed as:

U = g (Ai, bi, 1/ai, 1/ti) (3)

Ideally, there would be a close fit between these variables and the properties of the
remote sensing system chosen to measure the phenomenon. Thus, Ai would be linked to
the maximum area which a remote sensing system can measure in practice; ai and ti to
the spatial and temporal resolutions of the system, respectively; and bi to the minimum
number of attributes which can be measured remotely and/or in situ.
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3.3. Knowledge Construction Mechanisms

Identifying the social mechanisms which limit the conceptualization and measurement
capacities of scientific groups and intergovernmental and other organizations, and lead
to conceptualization and measurement uncertainties, can show how to restructure the
sources listed in Table 1 to construct the more coherent taxonomy proposed in Table 2.
The UAF assumes that conceptualization and measurement capacities can be linked to
two characteristics of a group:

(1) Its world view, or discourse, which frames conceptualization. Hajer [45] defines a
discourse as “a specific ensemble of ideas, concepts, and categorizations that are pro-
duced, reproduced and transformed in a particular set of practices and through which
meaning is given to physical and social realities.” Ideas, concepts, and categorizations
are ideally expressed in an internally consistent language which, starting with the
smallest unit, or term, is used to construct increasingly complex narratives: sets of
statements that give a meaningful totality of events [46].

(2) Its set of repeated practices, or institutions, which comprise the methods used for
measurement and constructing knowledge generally. Institutions are “enduring
regularities of human action in situations structured by rules, norms and shared
strategies, as well as by the physical world” [47]. They occur in ‘organizations’ but
are not equivalent to them. Ostrom proposed that any social setting has multiple
levels of institutions: “operational institutions”, which may be varied easily, are
embedded in the “collective choice institutions” of a particular group that change
more slowly, and are framed by “constitutional choice institutions”, consistent with
national and international laws, that change even more slowly, and are nested in
“metaconstitutional institutions”, such as social norms, that rarely change [48].

Each scientific discipline has a set of common formal collective choice institutions
for conceptualization and measurement that influence the operational institutions used
by its members. All scientists can devise new conceptualizations and institutions. When
new informal institutions are widely adopted by other members of a discipline, they may
become formal institutions, and widespread adoption of a new conceptualization may
change the dominant paradigm of a discipline [29].

Hajer’s definition of “discourse”, which is generic but was devised for environmental
research, implies that reproducing discourse in conceptualization is inseparable from repro-
ducing institutions in measurement [45]. Synergistic interactions between conceptualization
and measurement are quite common in science: new theories are tested by comparing
their predictions with empirical data, but new data may raise questions about existing
theories and lead to better ones, and to more measurements to test these theories. Such
interactions are not deterministic or predictable, and may have positive and negative effects
on uncertainty.

3.4. Societal Constraints

The concepts of discourse and institutions can also explain societal constraints on
groups that construct knowledge [41] (Figure 1), e.g., governments and intergovernmental
organizations can impose their discourses and/or institutions on scientists working for
them [49]. Science is also restricted by the operation of markets, but since governments
frame the latter, by establishing and sustaining suitable constitutional choice institutions,
they can also modify this restriction for social ends.

3.5. Conceptualization Uncertainties

Estimating the magnitude of an environmental phenomenon is constrained by insuf-
ficient capacity to conceptualize it, resulting in four main sources of conceptualization
uncertainty that limit the clarity and coverage of statements about it (Table 2). If insufficient
conceptualization capacity is linked to limitations in discourse and language, as proposed
in Section 3.3, then these sources can be listed in order of the increasing linguistic complexity
of the statements to which they refer:
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(1) Terminological difficulties, in which using unclear, poorly defined or group-specific
terms, e.g., A and B, to name and represent a phenomenon or its attributes can create
confusion or ambiguity. Every scientific discipline has a different dominant discourse,
so the same term may mean different things to different disciplines [50], or to scientists
and lay people.

(2) Underspecification, which involves lack of completeness in statements that combine
various terms, e.g., “A + B”, to describe the multiple attributes of a phenomenon. Every
discipline at any time only has sufficient common formal rules, and corresponding
institutions, to combine some of the terms in its current discourse and theories into
statements that describe a phenomenon at particular spatial scales. Statements made
by different disciplines may be mutually inconsistent.

(3) Understructuralization, in which the actual spatial distributions of the characteristics
of a complex phenomenon are not fully represented by the disaggregation of combi-
nations of terms and statements about relationships between multiple attributes, or
states and flows related to these. Such combinations may include groups of symbolic
statements (equations), e.g., “aA + bB = C1, and dA + eB = C2”, and nested hierarchical
taxonomies of attributes and states that structure multiscalar knowledge. Structural
classifications of phenomena are called “ontologies” in geographical information
science [51]. So two conceptualizations of a phenomenon may differ structurally
(ontologically) as well as terminologically (semantically).

(4) Using proxies, in which attributes are represented by indicators loosely linked to
the ideal variables for measuring these attributes, or phenomena are represented
by models constructed with easily quantified variables. This happens when it is
difficult to: (a) identify more appropriate variables by conceptualization, or (b) collect
empirical data for such variables even if they are known.

Conceptualization uncertainties impose very real constraints on the accuracy of esti-
mates, as the analysis of desertification below will show. Our first three sources are included
in Regan et al.’s “linguistic” sources of uncertainty [13] (Table 2) but are structured more
coherently here. Terminological difficulties can influence other sources. Proxies are used
in reaction to the first three sources, and can involve synergies between conceptualization
and measurement. They are mentioned in NUSAP [42] but not by Regan et al. [13] or
Van Asselt and Rotmans [17]. Limitations on conceptualization capacity are also analysed
in other literatures, such as that on “vagueness” [52].

If conceptualization uncertainty (Uc in Equation (1)) is the sum of uncertainties result-
ing from terminological difficulties (Ucte), underspecificity (Ucusp), understructuralization
(Ucust) and using proxies (Ucpr) then:

Uc = Ucte + Ucusp + Ucust + Ucpr (4)

Societal constraints on scientific conceptualization can exacerbate these uncertainties
by: (a) territorialization, in which a scientific community is divided into ‘insiders’ and
‘outsiders’ when policy makers appoint ‘expert’ advisors who are unaccountable to other
scientists, contrary to norms for good communication [53]; and (b) scope shaping, in which
policy makers influence the scope of knowledge that these experts supply by imposing
discourses and institutions on them [49].

3.6. Measurement Uncertainties

Estimating the magnitude of an environmental phenomenon is also restricted by
insufficient capacity to measure it, leading to four main sources of measurement uncertainty
which inhibit construction of quantitative statements. If insufficient measurement capacity
is linked to institutional limitations, as proposed in Section 3.3, then these sources can be
listed in order of increasing institutional nesting:

(1) Random errors in measured data, resulting from deficient equipment and human error.

71



Sustainability 2022, 14, 4063

(2) Systematic errors in measured data, which are linked immediately to technical con-
straints, and through these to formal and informal institutions. For example, mea-
surements of environmental phenomena may be biased by informal adoption of
repeated practices which use: (a) equipment with insufficient resolution to observe a
phenomenon reliably; and (b) inadequate sampling designs.

(3) Scalar deficiencies in measurement, which are linked more directly to institutional
constraints. If the formal measurement institutions of a discipline do not specify all the
scalar contexts that characterize an environmental phenomenon [54], then scientists
may create ad hoc informal institutions for collecting and processing data. This can
lead to errors in estimates that evade scrutiny in peer review.

(4) Using subjective judgment in making estimates, when data are lacking.

These measurement uncertainties combine in a more coherent way the “epistemic”
sources 1, 2 and 6, and “linguistic” source 2 of Regan et al. [13]; and the “limited knowledge”
sources 1, 2, 4 and 5 of Van Asselt and Rotmans [17] (Table 2). Subjective judgment
is used in reaction to the other three uncertainties, and can involve synergies between
conceptualization and measurement.

If measurement uncertainty (Um in Equation (1)) is the sum of uncertainties resulting
from random errors (Umr), systematic errors (Umsy), scalar deficiencies (Umsc) and using
subjective judgment (Umsu) then:

Um = Umr + Umsy + Umsc + Umsu (5)

Societal constraints complicate measurement uncertainties when, for example: (a)
scientists use global compilations of national statistics in the absence of planetary measure-
ment, as when basing estimates of forest carbon change on national forest area statistics [55];
(b) governments ask scientific “experts” to use subjective judgment in making estimates
for them, as in estimates of desertification evaluated below [49]; and (c) economic factors
limit the size, frequency and resolution of surveys and hence the accuracy of estimates
of phenomena characterized by the variables Ai, ai, and ti in Equation (3)—for example,
market forces inhibited planetary measurement at appropriate spatial resolutions until the
US government modified its institutions and made medium resolution Landsat images
freely available in 2008.

3.7. Constructing the Uncertainty Fingerprint of an Estimate

The Uncertainty Fingerprint of an estimate combines its conceptual and measurement
uncertainties in a row of a matrix, and is constructed by:

(1) Identifying which of the eight sources of conceptual and measurement uncertainties
(Table 2) are associated with the estimate.

(2) Coding the uncertainties as follows:

a. Conceptualization uncertainties: terminological difficulties (te); underspecifica-
tion (usp); understructuralization (ust); and using proxies (pr).

b. Measurement uncertainties: random errors (r); systematic errors (sy); scalar
deficiencies (sc); and using subjective judgment (su).

(3) Calculating the total number of uncertainties in the fingerprint to give its Uncertainty
Score (US), on a scale from 0 to 8.

3.8. Trends in Uncertainty over Time

Stacking the Uncertainty Fingerprints of successive estimates of an environmental
phenomenon on top of each other in multiple rows in a matrix shows how the composition
of its uncertainties changes over time. Among conceptualization uncertainties, ideally
the use of proxies should end first (as estimates are increasingly based on appropriate
measurements), followed by terminological difficulties, understructuralization and under-
specification in a related manner. Among measurement uncertainties, reliance on subjective
judgment should ideally end first, for the same reason as for proxies. Scalar deficiencies
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will decline as common rules for planetary measurement are devised, agreed and widely
adopted, enabling reductions in random errors and systematic errors.

Assembling the trend in the Uncertainty Scores of successive estimates of a phe-
nomenon in a stack gives its Uncertainty Profile, which can show if present uncertainty is
persistent or not. If the Uncertainty Score falls to the statistical threshold value of US = 2,
then ideally uncertainty should be dominated by two measurement uncertainties—random
errors (Umr) and systematic errors (Umsy)—that can be evaluated by standard statistical
methods alone, thereby showing continuity between the latter and the UAF (see also Sup-
plementary Information). The Uncertainty Profiles of different phenomena can be used to
compare trends in their present uncertainties.

The UAF only applies to information on the magnitudes of environmental phenomena.
So gaining an accurate estimate of a phenomenon does not end the accumulation of knowl-
edge about it. It is merely a precondition for allowing scientists to develop increasingly
reliable explanations of the processes that cause and control it.

3.9. Rules for Constructing Reliable Global Environmental Information

The conceptualization uncertainties and measurement uncertainties listed in Table 2
and the inherent uncertainty function (Equation (3)) lead to seven rules for constructing
reliable global environmental information by planetary measurement:

(1) Define a phenomenon clearly and appropriately.
(2) Specify the minimum number of attributes to measure, to completely characterize

a phenomenon.
(3) Disaggregate measurement of a phenomenon, to represent the full diversity of its

spatial distribution.
(4) Minimize spatial systematic errors, by using sensors whose spatial resolution matches

the areal variability of a phenomenon and whose spectral resolution matches its most
distinctive property.

(5) Minimize temporal systematic errors, by choosing a monitoring frequency consistent
with the turnover time of a phenomenon.

(6) Minimize the systematic and random errors associated with the method used to
classify satellite images, e.g., supervised classification, unsupervised classification,
crowd classification etc., supported by ground data.

(7) Minimize the systematic and random errors associated with the algorithm used to
combine estimates of the various attributes of a phenomenon.

The first three rules will avoid terminological difficulties (1), underspecification (2), un-
derstructuralization (3), and using proxies. Rules 4–7 will avoid using subjective judgment,
and reduce random and systematic errors and scalar deficiencies.

3.10. Methods

The inherent uncertainty of desertification was assessed using the components of the
inherent uncertainty function (see Equations (2) and (3)).

Individual estimates of the extent of desertification were evaluated to identify the
presence of conceptualization and measurement uncertainties, produce their Uncertainty
Fingerprints, and calculate their Uncertainty Scores (US). The US values of five global
estimates were combined to give the Uncertainty Profile of desertification. Underlying
mechanisms which limit conceptualization and measurement capacities and generate
uncertainties were also identified.

The rules proposed here for constructing global environmental information were ap-
plied to suggest how to reduce uncertainty about desertification by planetary measurement,
and to inform the Uncertainty Fingerprinting of methods proposed to use ‘big data’ to
monitor SDG Target 15.3.
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3.11. Data

A time series of five estimates of the global extent of desertification, estimated by
scientists working within the framework of intergovernmental (UN) institutions [1–3,56,57],
was analysed using the UAF, together with methods proposed by scientific groups to use
big data to monitor SDG Target 15.3 in seven papers identified in two recent reviews [9,10].
A sample of 96 papers in the International Journal of Remote Sensing in 2009 was examined
to identify topics given priority in remote sensing science (see Supplementary Table S1).
Another 50 papers on assessing dryland degradation, published in Land Degradation and
Development from 2006 to 2010, were analysed to identify the scalar preferences, and
diversity of discourses and institutions, of dryland scientists (see Tables S4, S5, S8 and S9).
To avoid bias, both samples precede the start of global forest measurement using Landsat
satellite data [34], and exclude special issues.

4. Results

To illustrate how the Uncertainty Assessment Framework (UAF) can be used in prac-
tice this section applies it to desertification. After examining the inherent uncertainty
of desertification it identifies present conceptualization and measurement uncertainties
in a time series of five estimates of the global extent of desertification, and then assem-
bles the Uncertainty Fingerprints of these estimates and the overall Uncertainty Profile
of desertification.

4.1. The Inherent Uncertainty of Desertification
4.1.1. Definition

Desertification is defined in the United Nations Convention to Combat Desertification
(UNCCD) as “land degradation in arid, semi-arid and dry sub-humid areas resulting from
various factors, including climatic variations and human activities” [58]. Countering it by
the restoration of degraded land is necessary to achieve the Land Degradation Neutrality
Target 15.3 of UN Sustainable Development Goal 15 [7,8] in dry areas.

4.1.2. Spatial Extent

Desertification affects the drylands, which, according to the UN Environment Pro-
gramme World Atlas of Desertification [3], cover 6147 million hectares (Mha) in the hyper-
arid, arid, semi-arid and dry sub-humid zones. All of this area except for 978 Mha of
hyper-arid land (natural desert) is vulnerable to desertification [59] and so 5169 Mha
should be measured to determine its extent.

4.1.3. Biophysical Complexity

Desertification is a complex phenomenon in which the degradation (or reduction in
quality) of vegetation and soil, and the corresponding decline in their collective ecological
functions, is influenced by variation in climate [2]. Long-term human degradation of land
can accelerate when drought reduces land productivity and human impacts intensify. It
involves continuous transitions between different degrees of degradation, and is usually
reversible by restoration up to a threshold degree of degradation [59].

Desertification has multiple attributes. Thus, each type of dryland ecosystem has
a particular area, within which its multiple layers of grasses, shrubs and trees grow at
varying densities. Degradation through overuse causes each of these types of plants and
their species (including crops) to decline in density, which makes soil more vulnerable to
degradation by: (a) water erosion; (b) wind erosion; (c) compaction by animals and machinery;
and (d) salinization, alkalinization and waterlogging—three related forms of degradation to
which irrigated cropland is especially susceptible. Desertification therefore has at least six
terrestrial attributes plus rainfall variation, for which vegetation maps must be corrected to
avoid misleading inferences about vegetation change [60] (Table 3).
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4.1.4. Spatio-Temporal Randomness

Desertification is highly dispersed and spatially variable, owing to variation in soil
erosivity [61], and how the irregular timing and location of rainfall influence vegetation
growth in dry areas and human responses to it.

4.1.5. Human-Environment Complexity

Biophysical complexity and natural randomness are exacerbated by how complex
underlying social, economic and political driving and controlling forces [62,63] can lead to
cross-scalar relationships [64] and coupled relationships with multiple feedback loops [65].

Consequently, areal variability (Equation (3)) may be as little as 0.1 ha, since tree
density is low in dry open woodlands, and gullies caused by soil erosion may only be a
few metres wide, even in advanced stages of erosion [66]. A turnover time of 2 years fits
the great fluctuation in rainfall and short-term vegetation and human responses to this [67]
within long-term cycles.

4.1.6. The Relative Inherent Uncertainty of Desertification

Desertification is one of the most inherently uncertain of all global environmental
change phenomena. For example, in terms of the components of the inherent uncertainty
function (Equation (3)), it has seven times as many attributes as forest area change (Table 3),
and the area potentially affected is three times the area of forest in the tropics (Table 4),
where forest area is currently changing most rapidly. An areal variability of as little as
0.1 ha is just a fifth of that of tropical forest area change (0.5 ha): the smallest agricultural
clearances in tropical moist forest are usually of the order of 1 ha, but this overall tropical
mean allows for the greater spatial complexity of tropical dry forest change. The turnover
time of desertification (2 years) is slightly less than that of the 3 years for tropical forest area
change (Table 4).

Table 4. Values of components of the inherent uncertainty function for two global environmental
change phenomena.

Phenomenon
Potentially Affected

Area (Mha)
No. of Attributes Areal Variability (ha) Turnover Time (yrs)

Desertification 5169 7 0.1 2
Tropical forest area change 1770 1 0.5 3

4.2. Conceptualization Uncertainties of Estimates of Desertification

This assessment of present uncertainty about desertification begins by checking to
see if the four sources of present conceptualization uncertainty in Table 2—terminological
difficulties, underspecification, understructuralization and using proxies—occur in the
time series of five estimates of the global extent of desertification in Table 5.

4.2.1. Terminological Difficulties

Terminological difficulties lead to uncertainty about what a number refers to, and to
inconsistency between estimates of what may appear to be the same variable.

The first four estimates of the extent of at least moderately desertified land were
prepared for the United Nations Environment Programme (UNEP), which convened the
UN Conference on Desertification (UNCOD) in 1977 and coordinated implementation of
the Plan of Action to Combat Desertification agreed there [68]. The estimates vary greatly,
from 4002 Mha [2] to 3272 Mha [1] and 3475 Mha [56] in the 1970s to 608 Mha [3,4] in the
1980s (Table 5). Counter-intuitively, they appear to show desertified land contracting, not
expanding, over time. The rate of desertification has only been estimated once, for the
1970s (20 Mha.a−1) [1].

These estimates have no terminological difficulties as they all assume that deserti-
fication includes a range of soil and vegetation degradation, much of it dispersed and
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reversible, with only the most severe degradation leading to new desert. This is consistent
with how UNCOD defined the term as: “an aspect of the widespread deterioration of
ecosystems under the combined pressure of adverse and fluctuating climate and excessive
exploitation . . . [involving] the diminution or destruction of the biological potential of land,
and can lead ultimately to desert-like conditions” [59]. The fourth estimate was reported
in the UNEP World Atlas of Desertification [3] and included in its Second Edition too [4],
though this used instead the more compact definition in the UN Convention to Combat
Desertification [58] (see Section 4.1.1).

Table 5. Estimates of the global extent of desertification (Mha).

Estimate Primary Variable Period
Magnitude

(Mha)
Notes

Dregne (1977) [2] Area of at least moderately
desertified land 1970s 4002 −

Dregne (1983) [1] Area of at least moderately
desertified land 1970s 3272 −

Mabbutt (1984) [56] * Area of at least moderately
desertified land 1970s 3475 −

Middleton and Thomas
(1992, 1997) [3,4]

Area of at least moderately
desertified land 1980s 608 UNEP World Atlas

of Desertification
LADA (2008) [57] Degrading area 1981–2003 771 From Bai et al. [69]

* This paper also included an estimate of 1942 Mha that omitted unused rangelands.

The fifth estimate in Table 5, 771 Mha, does have terminological difficulties. It comes
from a “preliminary [global] map of land degradation” published by the Land Degradation
Assessment in Drylands (LADA) project of another UN agency, the Food and Agriculture
Organization [57]. It refers not, as FAO states, to the area of “degraded land”, but to a
proxy variable of “degrading area” [69]. The estimate is based on a drop in biomass growth
from 1981 to 2003 estimated from satellite data. So here conceptualization is affected by the
practicalities of measurement.

Table 5 contains no estimate for the Third Edition of the World Atlas of Desertifica-
tion, published in 2018 not by UNEP, but by the Joint Research Centre of the European
Commission (JRC). JRC is a leading centre for planetary measurement, and a new map of
desertification based on remote sensing data could have provided a more robust estimate
than those in earlier editions, which relied on subjective judgment. Yet the Atlas states
that: “‘desertification’ or ‘land degradation’ cannot be captured in global maps in a way
that satisfies all stakeholders. Instead, [the Atlas] illustrates the geographic distribution of
coincident patterns of issues that may indicate potential land degradation” [5].

Difficulties in “satisf[ying] stakeholders” in the new Atlas reflect the different percep-
tions of the governments of developing countries, who are concerned about the impacts of
drought (a natural hazard) on economic development, and those of developed countries,
who are more concerned about land degradation (a human-made hazard) [49]. The term
“desertification” is also contested by scientists, as its original meaning of frontier-like desert
expansion [70] is not how UNCOD understood desertification [71]. UNEP ‘territorialized’
the drylands science community (see Section 3.5) into ‘insiders’, who advised it for UN-
COD [59] and later initiatives and accepted its discourse, and ‘outsiders’ (other scientists),
many of whom did not. Thus, in our sample of 50 papers that assess dryland degradation,
only 36% mention the term “desertification” in the text and just 4% include it in their titles
(Table S4). The focus of the new Atlas on “potential land degradation” is consistent with
a scientific discourse within which maps of potential desertification hazard are generated
by biophysical models [72,73]. A “World Map of Desertification” was the most widely
publicized of four maps presented to UNCOD, though it only showed potential land
degradation hazard, not the actual current status of desertification [74].
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4.2.2. Underspecification

Underspecification limits the completeness of estimates in covering all attributes of
a phenomenon.

All the estimates of the extent of desertification in Table 5 are underspecified. In 1977,
Dregne was the first to specify desertification as a combination of vegetation degradation
and soil degradation [2], and used this approach to produce for UNCOD the first world
map of current desertification status (Figure 2) [75]. This subjective estimate divides soil
degradation into wind erosion, water erosion and salinization, but omits soil compaction
(Figure 3a). Two later estimates by Dregne in 1983 [1] and Mabbutt in 1984 [56] are even
less complete, as they only refer to total soil erosion (Figure 3b).

Figure 2. The first world map of desertification status (Based on [75]).

The UNEP World Atlas of Desertification estimate is underspecified too, since it treats
soil degradation as a proxy for all desertification (Figure 3c). The estimate is well specified
in soil degradation, covering all soil attributes, but it omits vegetation degradation. The
Atlas acknowledges this limitation, and includes a map combining soil and vegetation
degradation, but no estimate based on this map [3]. This conceptualization was influenced
by measurement practicalities, since UNEP used the dryland component of an existing soil
degradation map based on subjective estimates by a large team of scientists [76], instead of
commissioning a special survey of desertification.

In contrast, the LADA estimate is underspecified because it omits soil degradation and
uses a decline in vegetation productivity as a proxy for all land degradation [57] (Figure 3d).
Yet vegetation productivity corresponds to just one of 11 indicators (“vegetation activity”)
in LADA’s own comprehensive taxonomy of land degradation indicators, the other ten
covering climate, soil and water [77] (Table S6). This proxy also involves a synergy between
conceptualization and measurement since LADA used an existing map of vegetation
change originally produced for another purpose [69]. Underspecification in the LADA and
UNEP World Atlas of Desertification estimates contributes to their values being lower than
the earlier estimates, since both omit a major group of attributes.
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Figure 3. Alternative conceptual structures for specifying the attributes of desertification in five global
estimates of the extent of desertification by Dregne [1,2], Mabbutt [56], UNEP [3] and LADA [57],
also showing their disaggregation by land use type and the scales used for ranking the degree and
severity of desertification.

4.2.3. Understructuralization

Understructuralization limits the extent to which an estimate is disaggregated to repre-
sent the actual distribution of a phenomenon.
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Estimates of the extent of desertification would ideally be disaggregated by types
of land use, aridity and degradation of irrigated cropland. Only the Dregne (1977) and
LADA estimates in Table 5 are understructuralized by land use type [2,57]. The Dregne
(1983) and Mabbutt (1984) estimates divide areas of land by degree of desertification, e.g.,
slight, moderate, severe and very severe, for the three main uses of drylands: rainfed
cropping, livestock raising and irrigated cropping (Figure 3b) [2,56]. The UNEP World
Atlas of Desertification estimate takes a different approach, by focusing on the causes
of desertification, but it identifies areas in which soil is degraded by “overgrazing” and
“agricultural activities”. The latter include both rainfed cropping and irrigated cropping,
whose degraded area is listed separately (Figure 3c) [3].

Only the UNEP World Atlas of Desertification [3] and LADA [57] estimates are disag-
gregated between the aridity zones within which desertification can occur according to the
UN [58,59], though the LADA estimate combines the arid and hyper-arid zones (Table S7).
The other estimates are understructuralized and this limits their spatial resolution.

The UNEP World Atlas of Desertification estimate is also fully disaggregated between
the different types of degradation of irrigated cropland: salinization, alkalinization and
waterlogging [3] (Figure 3c). The other estimates are understructuralized since they merely
list the area of all degraded irrigated cropland under the heading of “salinization or
waterlogging”, as with the estimates by Dregne [1] and Mabbutt [56], or aggregate degraded
irrigated cropland with other degraded land, as with the estimates by Dregne [2] and
LADA [57].

4.2.4. Using Proxies

All estimates of the extent of desertification in Table 5 use proxies, indicating their
tenuous foundation on measured variables and/or data. Dregne only uses one proxy in his
two estimates–an economic indicator (crop yield) to represent salinization of irrigated crop-
land [1,2] though his second estimate does include electrical conductivity equivalents [1]);
but Mabbutt [56] relies on economic proxy indicators (crop and livestock yields) for all
three of his attributes (Table S6).

The UNEP World Atlas of Desertification uses soil degradation as a proxy for desertifi-
cation. It assesses different types of soil degradation using quantifiable indicators, and then
converts these into the extent of desertification by using four additional proxy indicators:
“changes in agricultural suitability”, “decline in agricultural productivity”, the quality of
the terrain, and intactness of “biotic functions” and the ease of restoring these [3] (Table S6).
The LADA map uses “degrading area” as a proxy for “degraded land” [57], though the
map’s original authors [78], and later LADA itself [79], recognized that this did not properly
represent land degradation observable on the ground.

4.3. Measurement Uncertainties of Estimates of Desertification

This section reports the presence in the time series of estimates of the four sources
of measurement uncertainty listed in Table 2: random errors, systematic errors, scalar
deficiencies and using subjective judgment.

4.3.1. Random and systematic errors

Systematic errors can be evaluated in relation to areal variability and turnover time in
the inherent uncertainty function (Equation (3)). They are analysed here with random errors
since both are high in all the estimates of desertification in Table 5. Systematic errors are
difficult to assess for the first four estimates, owing to the limited empirical data on which
these are based, but are more easily traced in LADA’s map of lands, where, according
to the Normalized Difference Vegetation Index calculated from satellite data, biomass
growth fell from 1981 to 2003 [57]. Drylands only account for 22% of the global total of this
“degrading area” (Table S7), and since in Africa the latter is concentrated below the Equator,
the estimate is biased as it excludes degradation of drylands immediately to the south of
the Sahara. Desertification, by definition, can lead to “the diminution or destruction of the
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biological potential of land . . . .” [59], but it is not equivalent to a reduction in net primary
productivity, as this can also occur because of lack of rainfall [80]. Systematic errors also
result from the gap between the 8 km resolution of satellite data used for this map and the
much higher resolutions needed to monitor the areal variabilities of the different attributes
of desertification reliably (see Section 4.1.4) [81].

4.3.2. Scalar Deficiencies

All estimates of desertification in Table 5 have scalar deficiencies owing to limitations
of the informal institutions devised to produce them. ‘Insider’ scientists who worked
within UN institutions to make subjective global estimates of the extent of desertification
for UNEP devised informal institutions to do this, since few local ground data were
available [49]. Studies by autonomous scientists have scalar deficiencies too, e.g., LADA’s
global map of “degrading area” relies on another ad hoc set of institutions [57]. None of
our sample of 50 papers on assessing dryland degradation shows evidence for the use of
conceptual frameworks and formal measurement institutions suited to global and regional
scales. Only 4% of papers even produce national information using national conceptual
frameworks (Table S8).

4.3.3. Using Subjective Judgment

It is difficult to evaluate properly the reliability of subjective estimates by referring to
the methods and/or data on which they are based. Only the LADA estimate does not rely
on subjective judgment [57].

4.4. Fingerprinting the Sources of Uncertainty about Desertification

The Uncertainty Fingerprints of the estimates of the extent of desertification by Dregne
(1983) [1] and Mabbutt (1984) [56] show that the estimates are limited by underspecification,
understructuralization by irrigated cropland and climate, random errors, systematic errors,
scalar deficiencies and using proxies and subjective judgment (Figure 4). The Dregne (1977)
estimate is also understructuralized by land use type [2]. The least uncertain estimate, by
the UNEP World Atlas of Desertification [3], lacks understructuralization, but resembles
the preceding three estimates in being underspecified, relying on proxies and subjective
judgment, and having no terminological difficulties. The LADA estimate is not based on
subjective judgment but does have terminological difficulties [57].

Figure 4. A stack of Uncertainty Fingerprints to show changes over time in the conceptualization and
measurement uncertainties associated with five estimates of the global extent of desertification and
in their Uncertainty Scores (ustc = understructuralization by climate; ustlu = understructuralization
by land use, and ustir = understructuralization by irrigated cropland degradation).

Measurement uncertainties exceed conceptualization uncertainties in the first four
estimates in Table 5, yet conceptualization uncertainties still account for over 40% of all
sources of uncertainty (Figure 5). This supports claims by Van der Sluijs [41] and others
that statistical methods alone have limitations for evaluating very uncertain phenomena.
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Figure 5. The total numbers of the eight main sources of conceptualization and measurement
uncertainties found in a time series of five estimates of the global extent of desertification.

Stacking the fingerprints on top of each other to give the Uncertainty Profile of deserti-
fication shows that uncertainty about it is high and persistent. The first three estimates, by
Dregne [1,2] and Mabbutt [56], all have Uncertainty Scores of 7 on a scale from 0 to 8. This
drops to 6 for the UNEP World Atlas of Desertification estimate [3], but returns to 7 for the
LADA estimate [57] (Figure 6). The mean score of 6.8 is far above the statistical threshold of
2, when only random and systematic errors are expected and statistical evaluation alone is
appropriate, according to the UAF, so this also supports the claim of Van der Sluijs [41].

Figure 6. The Uncertainty Profile of desertification, based on the Uncertainty Scores of five estimates
of the global extent of desertification made between 1977 and 2008 [1–3,56,57].
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4.5. The Underlying Mechanisms of Global Environmental Uncertainties

The UAF can explain why uncertainties about estimates persist, by linking trends
in uncertainties, as in the Uncertainty Profile in Figure 6, to underlying discursive and
institutional constraints on conceptualization and measurement capacities in the monitoring
systems that produce the estimates (see Section 3.3).

Intergovernmental discourses responding to societal influences have framed conceptual-
ization in all estimates of desertification evaluated here, allowing the use of proxies (Table 6).

Table 6. Numbers of conceptualization and measurement uncertainties associated with five estimates
of the global extent of desertification and their underlying mechanisms (I = intergovernmental,
S = scientific, Y = present, and − = absent).

Conceptualization
Uncertainties

Measurement
Uncertainties

Uncertainty
Score

Discourse Formal
Institutions

Informal
Institutions

Conceptualization–
Measurement

Synergies

Dregne (1977) [2] 3 4 7 I I S −
Dregne (1983) [1] 3 4 7 I I S −
Mabbutt (1984) [56] 3 4 7 I I S −
Middleton and
Thomas (1992) [3] 2 4 6 I I S Y

LADA (2008) [57] 4 3 7 IS I S Y
Mean 6.8

Uncertainty is also influenced by the institutions of intergovernmental and govern-
mental organizations, and by scientific institutions. Formal intergovernmental institutions
are linked here to large uncertainties in monitoring desertification, but they have allowed
scientists to devise informal institutions to make estimates (Table 6).

Negative synergies between conceptualization and measurement can promote un-
certainty too (Table 6), as when ease of access to existing maps of soil degradation and
vegetation change led to underspecification in the UNEP World Atlas of Desertification
estimate [3] and LADA estimate [57], respectively. So while in Heisenberg Uncertainty,
one measurement disturbs another [11], in environmental uncertainty it seems that how a
phenomenon is ‘measured’ can disturb how it is conceptualized.

5. Measuring Desertification

The results presented in the previous section, which show that uncertainty about
desertification has been persistently high for decades, imply that global environmental
uncertainties are indeed inevitable, and so support the statement in the Third Edition
of the World Atlas of Desertification that the global extent of desertification cannot be
mapped satisfactorily [5]. However, this evidence is not conclusive. This section applies the
seven rules for constructing reliable global environmental information through planetary
measurement, derived from the UAF in Section 3.9 (Table 7), to examine if it is technically
feasible to measure desertification reliably at global and national scales, for example, to
quantify the indicator for Target 15.3 of the Sustainable Development Goals: “proportion of
land that is degraded over total land area” [8]. It then examines if these requirements are
met by a sample of seven papers, identified in recent reviews [9,10], which propose using
“big data” to monitor SDG Target 15.3.
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Table 7. Seven rules for constructing reliable global environmental information.

1. Define a phenomenon clearly and appropriately.
2. Specify the minimum number of attributes to measure, to completely characterize a phenomenon.
3. Disaggregate measurement of a phenomenon, to represent the full diversity of its spatial distribution.
4. Minimize spatial systematic errors, by using sensors whose spatial resolution matches the areal variability of a phenomenon and
whose spectral resolution matches its most distinctive property.
5. Minimize temporal systematic errors, by choosing a monitoring frequency consistent with the turnover time of a phenomenon.
6. Minimize the systematic and random errors associated with the method used to classify satellite images.
7. Minimize the systematic and random errors associated with the algorithm used to combine estimates of the various attributes of
a phenomenon.

5.1. Conceptualizing Desertification

Conceptualization frames the design of data collection, the analysis of data, and
presentation of the resulting information, and is the subject of the first three rules in Table 7.

5.1.1. Define a Phenomenon Clearly and Appropriately

If desertification is defined as in either the UNCOD or UNCCD definitions (see
Sections 4.1.1 and 4.2.1) then this should avoid terminological difficulties.

5.1.2. Specify the Minimum Number of Attributes to Measure

An estimate of the extent of desertification will be fully specified if all six attributes of
vegetation degradation and soil degradation in Table 3 are measured, and their estimates
are adjusted to remove misleading signals caused by rainfall variation.

5.1.3. Disaggregate Measurement of a Phenomenon

To avoid understructuralization, any measurement of desertification should be disag-
gregated to represent the actual diversity of its spatial distribution by estimating the degree
of degradation for all types of land use, aridity and degradation of irrigated cropland. Past
experience, reviewed in Section 4.2.3, shows how to do this. Disaggregating by aridity
requires that a digital map of climatic zones is overlaid on a map of desertification. As
changes in global climate will shift climatic zones [82], existing maps of the latter should
be revised using ground-based climate measurements. To disaggregate by land use, it is
necessary to map land use before measuring degradation, so that measurements can incor-
porate criteria appropriate to each land use [1]. Mapping land use is also a prerequisite for
mapping degradation of irrigated cropland, as specific measurement methods, discussed
below, are required for this too.

5.1.4. Avoiding Other Types of Conceptualization Uncertainties

Using remote sensing data, supported by ground data, does not prevent the use of
proxies (see Section 4.2.4), but proxy uncertainty should be absent if planetary measurement
is properly conceptualized and carried out at appropriate spatial and temporal resolutions.

5.2. Measuring Desertification

Measurement involves collecting data and converting them into meaningful informa-
tion. It is the subject of the last four rules in Table 7.

5.2.1. Minimize Spatial Systematic Errors

Matching the spatial resolution of a sensor to the areal variability (smallest area of
variation) of each attribute of a phenomenon, and the sensor’s spectral resolution to
the most distinctive property of each attribute, will minimize spatial systematic errors.
Desertification has at least six terrestrial attributes plus rainfall variation. Each is now
discussed in turn.

(1) Vegetation area. Mapping vegetation cover in dry areas is challenging since dryland
ecosystems commonly involve trees scattered at low density over grasslands. This is

83



Sustainability 2022, 14, 4063

difficult to measure with the medium (20–100 m) resolution optical satellite sensors
used to map changes in the area of the much denser forests in humid areas with
reasonable accuracy [83]. The first global map of tree cover in drylands based on very
high (≤ 1 m) resolution satellite images was not published until 2017, and led to a
much higher estimate of dry forest area than earlier estimates using lower resolution
images [84]. The correlation which that study found between dry forest area and
the spatial resolution of sensors (Figure 7) supports the relationship between spatial
resolution and areal variability (ai) in the inherent uncertainty function (Equation (3)).

(2) Vegetation density. Measuring vegetation degradation in dry areas, e.g., by a decline in
tree and grass density, is even more challenging than measuring vegetation cover [83].
Very high resolution satellite images are suitable for this too, but measurement is com-
plicated by: (a) the maintenance of vegetation cover when invasive species proliferate
on degraded land; (b) the lack of an absolute benchmark for ‘non-degraded’ ecosys-
tems in the drylands [85]; and (c) the temporal dimension, e.g., tree and grass density
vary with rainfall, and so apparent trends should be corrected for this (see below).

(3) Water erosion. Medium resolution (Landsat) images have been used to measure trends
in areas suffering from water erosion based on their spectral properties [86]. They can
also identify large- and medium-sized gullies but cannot track their development over
time [66]. Very high resolution satellite images are therefore needed for comprehensive
measurements of the features of water erosion. Research has found that as spatial
resolution rises, so too does the number of gullies identified. For example, 9, 15 and
30 gullies were mapped in an area in Tunisia by automated classification of images
from SPOT multispectral (10 m resolution), SPOT panchromatic (5 m resolution)
and Quickbird (0.6 m resolution) sensors, respectively [87]. This also supports the
relationship between the spatial resolution of sensors and areal variability (ai) in the
inherent uncertainty function (Equation (3)).

Figure 7. The expansion of estimates of dry forest area [84,88–90] as the spatial resolution of satellite
sensors used for measurement gets closer to the areal variability of dry forest.

Radar sensors and light detection and ranging (LiDAR) sensors can be used to measure
water erosion too, e.g., gullies below forest canopies have been mapped by an airborne
LIDAR sensor [91].

(4) Wind erosion. The spatial distribution of wind erosion has not yet been directly
measured using satellite images, possibly because of the absence of the same large

84



Sustainability 2022, 14, 4063

physical artefacts seen in water erosion. One way to overcome this problem, discussed
in Section 5.2.2, currently suffers from temporal resolution issues. Most estimates
of the rate of wind erosion are currently made using mathematical models that
incorporate meteorological factors, such as wind speed, and the susceptibility of soil
to erosion, with the use of satellite images confined to mapping land use and land
cover and how these change over time [92].

Landsat images, on the other hand, can measure trends in sandy areas, showing that
while in some parts of northern China, for example, sandy areas are contracting, elsewhere
they are expanding [93–95].

(5) Soil compaction. A literature search using Google Scholar found no studies which
measured soil compaction using optical satellite sensors. LIDAR and radar sensors
might be suitable for this purpose, however.

(6) Salinization, alkalinization and waterlogging of irrigated cropland. The spectral signa-
tures of salinized and waterlogged areas differ sufficiently from those of non-affected
areas for them to be separated by medium resolution optical satellite images [96],
but best results are obtained by using ground and laboratory data too [97]. Areas
affected by salinization and alkalinization can also be distinguished using medium
resolution images [98]. Measuring the degree of salinization using satellite sensors
was previously thought to be too difficult, owing to sensor limitations and variable
spectral responses [99–101]. Yet recent research in Morocco and Turkey shows that the
degree of salinization can be measured by soil salinity indices constructed using re-
flectance characteristics in the visible and near infrared bands of Landsat images [102]
and high (10 m) resolution Sentinel 2 images [103]. So desertification maps based
on satellite images can be disaggregated by the type and degree of degradation of
irrigated cropland.

(7) Rainfall variation. The role of rainfall variation is discussed in (2) above and in the
next section.

5.2.2. Minimize Temporal Systematic Errors

Ensuring that monitoring frequency is consistent with the shortest time period over
which a phenomenon varies (turnover time) will minimize temporal systematic errors. The
temporal resolution at which desertification generally is measured should ideally match its
turnover time, set above at 2 years, while allowing correction of misleading signals due to
the seventh attribute, rainfall variation, over longer periods.

Without appropriate correction, cyclical rainfall patterns make it difficult to determine
if a reduction in vegetation cover is caused by land degradation or declining rainfall, or if
a greater profusion of vegetation is the result of land restoration, the spread of invasive
species, or simply a rise in rainfall [104,105]. Confusion over this issue has previously
led to incorrect estimates of the rate of desertification and, in turn, to scepticism about
whether desertification actually exists [71]. For example, in 1977 UNEP reported that
comparing aerial survey observations with an 18-year-old map of the Sahara Desert’s
southern border implied that the desert was moving south at over 5 km per annum [106].
Scientific scepticism about the existence of desertification grew in the late 1980s [71], after
analysis of low spatial resolution satellite images showed that while the boundary between
the Sahara Desert and the Sahelian region shifted south in 1981, it moved north in 1985 when
rainfall returned [60,107,108]. So rainfall measurements at long-term monitoring stations
are indispensable for correcting for the variation of vegetation growth with rainfall, and for
future changes in climatic zone boundaries resulting from global climate change [82].

Annual rainfall variation is used here as the climate attribute because it is important
for analysing satellite data on land cover. Other climatic variables contribute to understand-
ing desertification but in different ways, and so are not listed here for measuring actual
desertification status. For example, prolonged droughts have a causative role in accelerating
actual desertification [59], and so would be independent variables in future models in
which the measured extent of desertification is the dependent variable. Mean dry season
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length and the mean annual number of extreme precipitation events could be used in a
similar way.

Research suggests that measuring wind erosion by combining satellite data and ground
data will be challenging for temporal reasons. The origins and paths of dust storms can in
principle be measured using optical satellite images, but dust storms are often not detected
from space due to high cloud cover, and even on cloudless days the temporal resolution of
satellite sensors may not match the relevant turnover time (ti in Equation (3)). For example,
using ground-based cameras to collect images in the Mojave Desert every 15 min over
six years recorded major dust events on 68 days each year, on average. Yet none of these
events was identified in images from the low (250 m) spatial resolution MODIS sensor,
despite its high temporal resolution (daily image collection), as the timing of dust storms
did not coincide with when cloud-free images were collected [109]. National ground-based
networks are vital for measuring airborne dust transport but are still few in number, and
even the US network has only 13 measurement sites [110]. Furthermore, according to Webb
et al., such networks generally “do not address which areas are eroding, and why, with
enough accuracy to inform management” [111].

5.2.3. Minimize Errors Associated with the Method Used to Classify Satellite Images

It is also important to minimize the systematic and random errors associated with
the method used to classify satellite images, supported by ground data, since planetary
measurement methods are still embryonic. Thus, the first global “wall-to-wall” map of
forest area based on Landsat images, published only in 2012, relied on a major innovation
in semi-automated supervised classification software [34]. The first global wall-to-wall map
of forest area change based on Landsat images followed a year afterwards and appeared to
use automated classification [112].

Since these innovations for classifying medium resolution satellite images are so recent,
corresponding innovations for the reliable automated or semi-automated supervised large-
area classification of very high resolution satellite images will take time to emerge. This is
why the first very high resolution map of tree cover in the drylands used crowd-based visual
classification [84], and why the same method is likely to be used to measure desertification
at very high resolution for the first time.

5.2.4. Minimize Errors Associated with the Algorithm Used to Combine Estimates of the
Various Attributes of a Phenomenon

When the multiple attributes of desertification have been measured, it is necessary to
use an algorithm to combine the resulting estimates to map spatial variation in the overall
degree of desertification. The choice of algorithm may lead to systematic and random
errors and limit comparability between different estimates.

In the early estimates evaluated in Section 4, algorithms are only employed to allow
for the contextuality of desertification [61], so it may occur in some parts of an area but not
in others [113,114]. Thus, the UNEP World Atlas of Desertification first assesses the degree of
desertification from Light to Extreme, and then uses an algorithm to designate the severity
of desertification in areas on another four-point scale from Low to Very High, according
to the percentage incidence of Light, Moderate, Strong and Extreme desertification in that
area [3].

5.2.5. Avoiding Other Types of Measurement Uncertainties

Planetary measurement of desertification should prevent uncertainty due to the use
of subjective judgment. Scalar deficiencies will be minimized if a robust set of planetary
measurement rules, such as those proposed here, are employed. Gaining a consensus in the
global change science community for a common set of rules will take time. However, the
seven rules in Table 7 could provide a foundation on which initial theoretical discussions
can build, so that the variety of informal planetary measurement institutions now in use
can become increasingly consistent.
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5.3. The Prospects for Reducing Uncertainty about Desertification

This section has presented an optimistic view of the technical feasibility of using
planetary measurement to reduce uncertainty about desertification, but has also indicated
that current state-of-the-art remote sensing methods still impose limits on the extent of
this reduction. For instance, the Uncertainty Score for estimates is unlikely to fall below
3 soon, because of continuing underspecification owing to the lack of measurement of wind
erosion and soil compaction.

Measuring the extent of desertification at global scale must be organizationally feasible
as well as technically feasible. Thus, measuring global forest area using a wall-to-wall
survey of Landsat images was, arguably, technically feasible in the 1970s but it did not
become organizationally feasible until 2012 [34]. A similar organizational advance is needed
to reduce uncertainty about desertification. For a Global Drylands Observing System, which
was advocated in various studies in the late 2000s, Verstraete et al. proposed a nested
hierarchy of monitoring centres covering all scales from global to local [6]. Bastin et al.
later found that tree cover in drylands could be measured at global scale by crowd-based
classification of very high resolution satellite images in regional centres [84]. This could
provide the basis for planetary measurement of desertification, though this section has
shown that ground-based measurements, especially of wind erosion, soil compaction and
rainfall, may also be needed for the foreseeable future.

5.4. Recent Proposals to Use “Big Data” to Monitor SDG Target 15.3

The measurement approach proposed here can be used to quantify the indicator for
SDG Target 15.3 listed in the Sustainable Development Goals: “proportion of land that is
degraded over total land area” [8]. In the absence of sufficient national data to allow coun-
tries to monitor progress in meeting the SDGs, two recent reviews have advocated using
global sets of “big data” (including satellite data) instead [9,10]. Yet since analysis earlier in
this paper has shown that existing global information on desertification is inadequate, this
section uses the UAF to evaluate the reliability of the methods proposed to monitor Target
15.3 in a sample of seven of the papers that are cited as exemplars of the big data approach
in these two review studies.

Only one of the seven papers, by Christian et al. [115], specifically aims to measure
the actual status of desertification, in a 144,368 ha area of Rajasthan State in India. While it
has no terminological difficulties, it is understructuralized since it is only disaggregated
by land use types and climatic zones (even though salinization is a major problem in
Rajasthan [116]), and is also underspecified since it merely maps a 25 year (1991–2016)
trend in vegetation degradation and water erosion, with vegetation degradation only being
assessed on land with natural ecosystems. Random and systematic errors are relatively
high, because 30 m resolution satellite data are employed as standard, with 5.8 m resolution
data only used for 2016, and temporal resolution (≥9 years) is also rather low. A second
paper, by Wang et al. [117], measures the status of “land degradation” in the whole of
Mongolia, but since this is in a dry area it is equivalent to desertification. The method
has no terminological difficulties and corrects informally for rainfall variation, but it is
underspecified as it effectively uses vegetation degradation (between non-degraded land,
desert steppe, sand, desert and barren land) as a proxy for land degradation as a whole,
and does not measure soil degradation as such. It is also understructuralized by aridity
zones, land use types and degradation of irrigated cropland. Spatial systematic errors are
relatively high, because 30 m resolution satellite data are used as standard, though temporal
systematic errors are relatively low since the highest temporal resolution is 5 years.

Two more papers merely use models to predict the potential hazard of desertifica-
tion [118,119], following the approach of the UNCOD “World Map of Desertification” [74]
described in Section 4.2.1, so they are not evaluated here. Nor is another modelling study
which predicts soil organic carbon content and other soil properties at global scale, using a
network of sample plots and low (250 m) resolution optical satellite data on land cover and
other land properties [120].
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In the two remaining papers, a global study by Giuliani et al. [121] discusses how
to assess land degradation in a range of climatic zones while Mitri et al. focus on a
140,800 ha area in Lebanon [122]. Both studies are framed by three UNCCD desertification
indicators—land cover, land productivity, and soil organic carbon stocks—that have been
proposed to substitute for the single SDG indicator [123], since the UNCCD is coordinating
implementation of the LDN target. As discussed in Section 4.3.1, land cover change is an
inadequate proxy for vegetation degradation. Satellite-based measurement of change in
the net primary productivity of areas stratified by land cover type may be used to estimate
vegetation degradation, but it is an inadequate proxy for land degradation as a whole.
The same is true for estimates of changes in soil organic carbon content, which should be
derived from direct measurements of soil carbon density and the different types of soil
degradation (Table 3), and not used as a substitute for them. A full critique of the UNCCD
indicators requires a separate study [124], but they and other indicators have been critically
evaluated by a group of experts appointed by the UNCCD [125]. As Giuliani et al. only
aim to provide a “proof of concept” of accessing different data sources, their global study
lacks sufficient methodological detail to be evaluated here, though it does recognize the
need to use high spatial and temporal resolution data, and appreciates the limitations of
the soil organic carbon indicator [121]. The Lebanon study is disaggregated by climatic
zones and land use/land cover types, but not by degradation of irrigated cropland. It
is underspecified, as it uses vegetation degradation (estimated using the change in net
primary productivity for forest, grassland and cropland) as a proxy for all land degradation,
and land use and land cover change to predict changes in soil organic carbon content,
rather than measuring soil degradation directly. Temporal systematic errors are high, as the
measurement period is 13 years. Spatial systematic errors are substantial, owing to the use
of data from satellite sensors with resolutions ranging from 5 m to 1000 m. Despite being
framed by the UNCCD indicators, it uses an original algorithm to estimate the degree of
overall land degradation by a weighted sum of the magnitudes of land cover change, land
productivity trend, change in net primary productivity, soil organic carbon content, erosion
risk, soil fertility and rainfall [122]. Yet since these parameters and their weights are not
justified in the study, this incurs further systematic errors (Table 7).

This evaluation of three of the seven exemplar big data studies complements the
evaluation of the five global UN studies in Section 4 by showing how the UAF can be
used to assess uncertainties in studies by scientific groups, and how ranking random and
systematic errors in Uncertainty Fingerprints can be informed by the last four rules for
constructing reliable global environmental information in Table 7. While the Uncertainty
Scores of the five UN estimates vary between 6 and 7 (Figure 4) and have a mean of 6.8, these
three studies have a lower mean of 4.7: the studies of Lebanon [122] and Mongolia [117]
have scores of 5 while that of India [115] has a score of 4 (Figure 8). None of the three
studies has terminological difficulties or uses subjective judgment. Only the Lebanon
study by Mitri et al. uses an algorithm to provide an overall estimate of the degree of
land degradation [122], and this has systematic errors associated with it. However, it is
important to note that all three studies lack scalar deficiencies since they are limited in
spatial scope.

So while there is clearly potential to use big data to substitute for inadequate national
data when monitoring SDG Target 15.3, such measurements require a more careful selection
of methods than those used in the three recent studies assessed in Figure 8 if Uncertainty
Scores are to decline substantially. Two of the other four studies [118,119] illustrate the con-
tinuing popularity among scientific groups of estimating potential desertification hazard,
rather than actual desertification status. Allen et al. are therefore justified in arguing that
substituting big global datasets for national data will face challenges.
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Figure 8. A stack of Uncertainty Fingerprints to show the conceptualization and measurement
uncertainties associated with three recent estimates of the extent of land degradation based
on ‘big data’ sources and their Uncertainty Scores (ustc = understructuralization by climate;
ustlu = understructuralization by land use; and ustir = understructuralization by irrigated cropland
degradation).

6. Conclusions

Fifty years after the first remote sensing satellite was launched to collect global data,
estimates of the magnitudes of global environmental change phenomena remain very
uncertain, since global data collected by these satellites have not been fully converted
into global information. This paper has built on two previous taxonomies of the sources
of environmental uncertainty [13,17] to propose an Uncertainty Assessment Framework
(UAF) for evaluating very uncertain environmental phenomena, and has applied it to study
the magnitude and persistence of global uncertainty about desertification and suggest how
this may be reduced.

This paper has demonstrated, using the UAF, that desertification is one of the most
uncertain of all global environmental change phenomena. Based purely on their relative
complexities, estimated using the number of attributes needed to measure them, the inherent
uncertainty of desertification, which has at least seven attributes, is much greater than that
of forest area change, which has just one attribute. Present uncertainty about desertification
is high too: the five available global estimates have a mean Uncertainty Score of 6.8 out
of a maximum score of 8, corresponding to four conceptualization uncertainties and four
measurement uncertainties.

Another finding is that uncertainty about desertification is persistent. The Uncertainty
Score (US) is a more objective measure of the persistence of uncertainty than the mere
frequency of estimates mentioned in Section 1, and using the UAF to evaluate the five
available global estimates of desertification shows that the US has remained at 7 since the
1970s, except for a dip to 6 in the 1980s.

In none of the estimates of desertification evaluated here has the Uncertainty Score
therefore fallen to the threshold of 2 when, according to the UAF, statistical evaluation
of uncertainties alone is appropriate. This, and the finding that conceptualization uncer-
tainties account for over 40% of all sources of uncertainty about desertification, support
claims that standard statistical methods are inadequate for evaluating very uncertain
phenomena [39–41].

While global environmental uncertainties are persistent, they are not inevitable like
Heisenberg Uncertainty [11]. This paper has also shown how the UAF can be used to devise
an initial set of seven rules for constructing reliable global environmental information. Con-
trary to a statement in the Third Edition of the World Atlas of Desertification [5], applying
these UAF rules shows that even the large uncertainty about the extent of desertification
could be substantially reduced if surveys are properly conceptualized, and involve mea-
surements using sensors with appropriate spatial, temporal and spectral resolutions. Yet
while it is technically feasible to measure most attributes of desertification at global scale us-
ing currently available remote sensing methods, this does not mean that uncertainty about
it will diminish quickly. Translating the technical potential of Earth observation into practice
is often hindered by organizational constraints [126], and until remote sensing methods be-
come available to monitor two particularly challenging attributes of desertification—wind
erosion and soil compaction—estimates are likely to remain underspecified, ensuring that
the US value does not fall below 3.
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These findings have two implications for measuring compliance at national scale
in dry areas with the Land Degradation Neutrality Target 15.3 of the UN Sustainable
Development Goal 15 “Land and Life”. First, within the limits of underspecification
mentioned in the last paragraph, it is technically feasible to monitor national progress in
complying with the official indicator of “proportion of land that is degraded over total
land area” listed in the Sustainable Development Goals [8], provided that measurements
are properly conceptualized and use both medium and very high resolution satellite
images, supported by ground data. While very high resolution satellite images are still
not yet widely used in national environmental monitoring, FAO has made the Collect
Earth software it used to map dry forests [84] freely available, and government use of this
software is increasing. Second, however, Allen et al. are right to caution that using “big
data” to fill gaps in national data to monitor SDG Target 15.3 will not be straightforward [9]:
(a) the five existing UN global estimates of desertification are out of date and our analysis
has shown that they were very uncertain when they were made; and (b) although the
uncertainty associated with the methods used in three recent studies of the potential to use
‘big data’ for this purpose is, according to our analysis, lower (with a mean Uncertainty
Score (US) of 4.7) than that of the five UN estimates (US = 6.8), it is still substantial, owing
to limitations in conceptualization and measurement.

The UAF can differentiate between different degrees of high inherent and present
uncertainty about different phenomena. It complements the use of statistical methods for
uncertainty evaluation and is consistent with them at the limits of their reliability. This is
because it identifies sources of uncertainty that are missed by statistical methods and which
are particularly important for complex multiple attribute global environmental change
phenomena, such as desertification. The UAF can also show how to reduce uncertainty to a
level where it can be estimated by statistical methods alone. The UAF is consistent with, but
more coherent than, previous taxonomies of sources of environmental uncertainty because
it synthesizes the sources using a novel theoretical approach to linking conceptualization
and measurement.

The simplicity of the UAF is another of its advantages, but it also leads to disadvan-
tages. For example, it is convenient to compare the uncertainty of different environmental
phenomena, and different estimates of the same phenomenon, using the Uncertainty Score
(US) on a common scale from 0 to 8, but the presence of different degrees of individual con-
ceptualization uncertainties in different estimates may not be reflected in the corresponding
US values. Thus, an estimate of desertification is ranked: (a) as understructuralized if
it has one form of understructuralization or all three; and (b) as using proxies whether
this occurs for just one attribute or all of them. One way to tackle this is to extend the
scale when comparing the uncertainties of multiple estimates of the same phenomenon.
Wider application of the UAF will lead to further critical evaluation of its advantages and
disadvantages, and to refinements to counter the latter.

While the Earth is a “small planet” [127], it is worrying that current estimates of
the magnitudes of global environmental change phenomena continue to be so uncertain.
This is of particular concern now that human impacts on the planet have reached global
proportions [82] and the world’s governments have agreed on ambitious Sustainable
Development Goals which include a considerable environmental component [8]. To address
this shortcoming, it is vital to give greater priority to fundamental research into the origins
of global environmental uncertainties and how to evaluate them. Using the UAF more
extensively to evaluate present uncertainty about other global environmental change
phenomena, e.g., forest area change, forest carbon change, and biodiversity loss, will enable
their US values to be compared with the mean of 6.8 reported here for desertification and
inform the monitoring of other targets in SDG 15. Another priority is to devise new rules
for constructing reliable global environmental information, so disparities between different
planetary measurements using different methods can be reduced. The initial set of seven
rules derived from the UAF that are proposed in this paper could provide a starting point
for this work.
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More research of this kind will benefit global environmental governance, and human-
ity’s capacity to tackle its global impacts. Politicians often wrongly assume that scientists
provide them with ‘certain’ knowledge. Countering this assumption remains a challenge,
but scientists could also do more to evaluate the uncertainty of information about global en-
vironmental changes which they communicate to politicians, and to reduce this uncertainty
by realizing the full potential of planetary measurement.
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Abstract: Earth Observation (EO) techniques could offer a more cost-effective and rapid approach for
reliable monitoring, reporting, and verification (MRV) of soil organic carbon (SOC). Here, we analyse
the available published literature to assess whether it may be possible to estimate SOC using data
from sensors mounted on satellites and airborne systems. This is complemented with research using
a series of semi-structured interviews with experts in soil health and policy areas to understand the
level of accuracy that is acceptable for MRV approaches for SOC. We also perform a cost-accuracy
analysis of the approaches, including the use of EO techniques, for SOC assessment in the context
of the new UK Environmental Land Management scheme. We summarise the state-of-the-art EO
techniques for SOC assessment and identify 3 themes and 25 key suggestions and concerns for the
MRV of SOC from the expert interviews. Notably, over three-quarters of the respondents considered
that a ‘validation accuracy’ of 90% or better would be required from EO-based techniques to be
acceptable as an effective system for the monitoring and reporting of SOC stocks. The cost-accuracy
analysis revealed that a combination of EO technology and in situ sampling has the potential to offer
a reliable, cost-effective approach to estimating SOC at a local scale (4 ha), although several challenges
remain. We conclude by proposing an MRV framework for SOC that collates and integrates seven
criteria for multiple data sources at the appropriate scales.

Keywords: monitoring; verification; reporting; soil organic carbon; soil organic matter; Earth
Observation

1. Introduction

Soil organic carbon (SOC) is one of the components of soil organic matter (SOM),
which also includes other elements such as hydrogen, oxygen, and nitrogen, as well as
fresh (living) and decomposed plant/animal (dead) materials [1]. SOM consists of several
components in varying proportions, including microorganisms (10–40%) and stable organic
matter (40–60%) (also referred to as humus) [1]. Most productive agricultural soils have
between 3% and 6% organic matter, with the organic matter contributing to soil productivity
in many ways. Although the carbon content of SOM varies considerably, the soil remains
one of the key components of the carbon cycle [2]. A mean value of 1500 gigatonnes for
the first 1 m depth of soils has been estimated from many studies of global carbon stocks,
with about half of this amount present in the top 30 cm of the soil [3,4]. SOC is critical
for soil health and biological, chemical, and physical functions such as nutrient cycling,
water retention, and maintaining soil structure and crop yield [5]. As a result, carbon
storage (C-storage) in soils has gained increasing international attention as a means of
mitigating climate change. Initiatives such as ‘4p1000′ [6], the FAO’s Global assessment of
carbon sequestration by soils (e.g. the GSOCseq programme) [7], and the UN’s Sustainable
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Development Goals (SDGs) all recognise the importance of C-storage in soils [8]. As part of
its action on soils, the UK has signed up for the ‘4p1000′ soil carbon initiative to increase the
soil carbon levels by 0.4% per year [6]. Similarly, the UK 25 Year Environment Plan aims to
enhance the natural capital of air, water, soil, and ecosystems that support all forms of life.
This is viewed as being essential for economic growth and productivity over the long term.
This includes developing a soil health index and restoring and protecting peatlands [9].

The UK Department for Environment, Food and Rural Affairs (DEFRA)’s Environ-
mental Land Management (ELM) initiative is a national programme of intensive policy
development, for implementation post-2025, to help farmers and other land managers to
improve the environment with associated public money used to help deliver ‘public goods’
(e.g. clean air and water, healthy soils, climate change mitigation, wildlife protection, and
the promotion of landscape beauty and heritage). As part of achieving this, cost-effective
and innovative solutions will be needed to deliver a robust and flexible system for the
monitoring, reporting, and verification (MRV) of soil status and change [9].

Certain agricultural management practices that result in land use change, such
as agroforestry, tillage/residue, manure/biosolid management, grazing land manage-
ment/pasture improvement, land restoration, and livestock management, can maintain or
increase SOC stocks [10,11]. Using such practices, it has been suggested that carbon seques-
tration in soils could be a cost-effective, environmentally friendly strategy for greenhouse
gas removal [12]. Increasing soil organic matter content and thereby improving soil quality
can also enhance other soil-based ecosystem services, such as agricultural production, clean
water supply, and biodiversity [13].

In terms of the current large-scale soil assessments (including SOC levels), regional
and country scale systems have been developed by the FAO and the International Union
of Soil Societies (IUSS) (Table 1). In the case of the UK, the National Soil Inventory (NSI)
and Countryside Survey (CS) are the two major soil surveys (Table 1). Bellamy et al. [14]
reported changes in SOC (up to 30 cm) during the 1980s and 1990s in England and Wales
based on NSI and observed gains in OC in some areas but large losses in others and, overall,
noted a net loss of about 4 million tonnes of C per year. More recent results reported by
Carey et al. [15], Emmett et al. [16], and Norton et al. [17] based on the CS show only
a negligible change in OC over the 1978–2007 period. The drivers of SOC variation are
discussed in further detail in [18] and are considered to include environmental change and
habitat-specific trends as influencing soil processes. However, Bellamy et al. [14] showed a
linear relationship between the rate of change in soil carbon and the soil carbon content,
indicating that the loss was greater in soils with large carbon contents while soils with
small carbon contents gained carbon. Because the losses occurred across all land use types,
they considered that climate change might play a role in this, in addition to the effects of
changes in land use and agricultural management activities.

The reasons for the differences in SOC between the NSI and CS results are not clearly
understood. However, Kirk et al. [19] considered that they were not comparable because of
differences in the sampling designs, with the CS using a hierarchical stratified sampling
scheme and single samples from point locations, whereas the NSI used a fixed grid with
bulked samples centred on the target point. Hence, the answer obtained about the SOC of
a field can depend to some extent on the sampling methodology.
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Table 1. Existing and emerging large-scale soil assessment projects (global, Europe and UK scale).

Network Scale Data/Method Reference

FAO soil map Global Derived from soil profile data. [20]

IUSS Global soil map Global Different mapping methods based on existing data. [21]

Global Soil Organic Carbon
map (GSOCMap) Global

Employs Earth Observation (EO) imagery to derive
prediction factors for global soil organic

carbon mapping.
[7,20]

European Soil Database
(ESDB) map Europe

This database includes the Soil Geographical
Database of Eurasia at scale 1:1,000,000 (SGDBE),

Pedotransfer Rules Database (PTRDB), Soil Profile
Analytical Database of Europa (SPADBE), and the

Database of Hydraulic Properties of European
Soils (HYPRES).

[22]

Land Use/Cover Statistical
Area Frame Survey (LUCAS) Europe

LUCAS project monitors landscape diversity, land
cover, land-use changes, and soil chemical data,

mainly on agricultural land.
[23]

National Soil Inventory
(NSI) database England and Wales

Results are based on in situ soil sampling. Between
1978 and 1981, the topsoil (0–15 cm) was sampled at

every 1 km2, 5 samples in 6127 points in England
and Wales, and analysed for a number of soil

parameters, including SOC. About a third of the
points were resampled in 1995.

[24]

Countryside Survey (CS) UK

The CS is an integrated national monitoring
program that makes measurements of vegetation;

topsoil physical, chemical, and biological
characteristics (0–15 cm); water quality; and land

cover across the UK in 1978, 1998, and 2007.

[25]

UK Soil Observatory UK

Users of the UK Soil Observatory and the mySoil
mobile app play a role in citizen science to build up
a soil dataset. They crowdsource information about

the soil properties in their area and send
photographs and measurements to gather vital new
information on soil science and help to improve soil

maps of the UK. By June 2021, over 2000
contributions have been recorded.

[26]

The increasing recognition of soil carbon as a key component in policy and action on
climate change, as well as for ecosystem health, highlights the need for MRV systems that
can track and update SOC status and change estimates at scales ranging from local to global.
At present, the available large-scale soil surveys (c.f. Table 1) represent major resourcing
efforts due to the complex and intensive sampling requirements to address the spatial
variability of SOC, even within a single field. The FAO [1] has outlined recommendations
for determining SOC stock and monitoring its dynamics and spatial variability. For instance,
to determine SOC stocks between 0 and 30 cm depth at a particular site, the FAO specifies
as a minimum requirement the need to quantify the following: (i) SOC concentration in the
fine earth (<2 mm size) soil fraction, (ii) the fine earth (<2 mm) and coarse mineral fraction
content (>2 mm size) of the soil, and (iii) the soil bulk density of fine earth mass. To capture
the spatial variability of SOC within an agricultural field (land parcel), with an acceptable
level of accuracy, it is required that the site be assessed using the following factors: soil and
land use type, climate, grazing practices, field size, fertiliser use, historical management
practices, and ploughing frequency [27,28]. In addition, a large number of soil samples is
often required.

For instance, Garten and Wullschleger [29] recommended the collection of more than
100 soil samples (to detect 2–3% change in SOC stocks), whereas Vanguelova et al. [30] sug-
gested between 4 and 25 soil samples for 0.25 ha with more or equal 5 m between sampling
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points to eliminate spatial autocorrelation. SOC measurement relies on appropriate study
designs and sampling protocols to deal with high spatial variability [31]. SOC content
is typically expressed as the (mass) percentage dry weight of soil, once stones, etc., have
been removed.

Laboratory techniques for assessing SOC are commonly based on approaches such
as dry combustion using an elemental analyser (prior acidification of sample will remove
inorganic carbon), loss on ignition, the Walkley–Black method, soil respiration, and active
carbon tests. The most accurate standard laboratory test for soil carbon is dry combustion
using an elemental analyser. These instruments heat a small sample (usually a fraction of a
gram) of dry pulverized soil to around 900 degrees C and measure the carbon dioxide gas
that is a combustion product. In terms of loss of ignition, a change in weight after heating
a soil sample (ignition test) is observed, although complications can arise if the sample
has carbon in an inorganic form (e.g. calcium carbonate), which will also generate carbon
dioxide at high temperatures. The latter can be accommodated by comparing the change
in weight of a soil sample divided into two parts, with one part first treated with acid
to remove the calcium carbonate while the other is subjected to combustion. Comparing
changes in the two provide a measure of the SOC for the sample, although there is clearly
room for error. Nonetheless, knowledge of the potential sources of error and uncertainty in
SOC stock estimation, coupled with sampling strategies that integrate lateral and vertical
variability of SOC stock, enable SOC and its change to be determined with an acceptable
level of uncertainty to help guide management, albeit often requiring intensive sampling
regimes [1].

Smith et al. [28] classified approaches to assess SOC measurements into “direct”—
those that could be performed through intensive soil sampling—and “indirect methods”—
measurements which infer SOC stock changes from flux measurements (based on the gross
primary production) and/or from the comparison of spectral reflectance images of soil
samples with consolidated spectral reflectance libraries derived from measurements on
reference soil samples of known properties (determined by traditional laboratory methods).
The reflectance-based measurements can be obtained at a high level of spatial detail from
hyperspectral sensors mounted on unmanned aerial systems (UASs) or multispectral
sensors onboard satellites and airborne platforms.

EO satellite imagery also can be used to estimate changes in SOC through proxies
such as Net Primary Production (NPP) or Gross Primary Productions (GPP) [32], land
use management [33], land cover change [34], and land degradation indices [35]. Conant
et al. [36] described approaches such as statistical upscaling via in situ samplings (providing
greater accuracy and lower errors but expensive at large scales) and geostatistical upscaling
through combining initial sampling with covariates (obtaining spatial maps of SOC status
at the whole field and large scale at low cost, but with low accuracy).

Many published studies [37–45] show that remote sensing imagery (both EO satel-
lite and UAS) can be used to estimate SOC stock and its change, by building statistical
relationships between the measured remotely sensed spectra and in situ soil samples, to
make estimations of the SOC status. As the traditional methods based on soil sampling and
laboratory analysis can be very expensive and time consuming, especially when estimating
SOC over large areas, the potential of EO technologies to provide timely, repeatable, and
potentially cost-effective estimates of SOC stocks and their spatial and temporal variability
is of considerable interest [46,47]. However, of course, much depends on the relationship
between estimates of SOC made using EO and those made by using more ‘traditional’
(i.e. well-established) approaches of taking soil samples that are assessed in the laboratory.
While, as noted above, the ‘traditional’ approaches to SOC assessment have their own un-
certainty in terms of the sampling regime and laboratory methods, they arguably provide
the standard to which EO assessments have to be compared. Thus, the term ‘accuracy’
is typically used to describe how the EO-based assessment of SOC matches (within un-
certainties) that derived from traditional methods. Inevitably there are trade-offs here for
those concerned with using the estimates of SOC to manage the land. Given that EO-based
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approaches have the advantages noted above, including perhaps a lower cost, then they
may provide an attractive option for those concerned with land management, but what
level of agreement with the more traditional assessments of SOC would be acceptable to
them? Would it be acceptable, for example, if the EO-based estimates of SOC gave values
that matched those using traditional techniques for half the number of plots or does it need
to be higher?

The research described in this paper was designed to assess the current state of the art
on the use of EO for SOC stock measurement and its potential for the current and future
MRV of SOC. The following objectives are addressed (i) to assess (from literature) the capa-
bilities of EO techniques for assessing SOC stocks at local to national scales (throughout
this paper the term EO is used to encompass remote sensing technologies such as satellite,
aerial photography, Unmanned Aircraft Systems (UAS), etc.), (ii) to evaluate expert per-
spectives on the relevance/importance of SOC estimation by EO and the acceptable levels
of accuracy required for application to UK (and other) policy implementation derived from
such approaches, and (iii) to perform a cost-accuracy analysis using different data sources
for estimating SOC.

2. Materials and Methods

2.1. EO for SOC—Literature Acquisition and Evaluation

A literature search was restricted to peer-reviewed papers published between 2000
and 2020 which assessed the use of EO to estimate SOC stocks. This literature was also used
to refine questions and topics for exploration in the expert interviews. Three sequential
steps were undertaken to select literature for analysis: (i) search for peer-reviewed articles
containing one or more of the following keywords: “Earth Observation”, “Remote Sensing”,
“Airborne”, “Lidar”, “Satellite”, “UAS”, along with either “Soil Organic Carbon” or “Soil
Organic Matter”; (ii) selecting relevant work that included the keywords; and (iii) review
and analysis. These steps identified 54 relevant peer-reviewed articles.

2.2. Expert Interviews

Primary data collection was conducted via a set of semi-structured interviews between
March and August 2020 with 13 specialists in soil health (highly cited researchers) and
environment/agricultural policymaking (top relevant institutions), most with more than
15 years of experience. An email invitation was sent with a brief explanation of the request
and a detailed description of this study. In addition, the framework established from
the analysis of the literature was provided to all participants and discussed during the
interviews. Following the initial seven interviews, several suggestions for further potential
respondents were made and followed up in a ‘snowballing’ approach. Each interview
lasted for between 20 and 45 min. Twelve were carried out through online conversations
with permitted recording, and one was undertaken in writing as the expert preferred
that format.

The structure of the interviews was led by open-ended questions acting to promote
and produce rich information which requires a high level of attention and interpretation.
We consider that the sample size was large enough to allow understanding of the issue
under study to unfold but small enough that rich qualitative data could be obtained.

The interviewees represented the following range of sectors and roles: academics and
researchers (5), consultants (4), and policymakers (4) (Table 2). All of the respondents were
based in the UK.

101



Sustainability 2021, 13, 12074

Table 2. Participants in the semi-structured interviews by sector and institution.

Sector Institution Name Number of Respondents

Academia

University of Aberdeen 1

University of Reading 1

University of Surrey 1

Research Centre
Rothamsted Research 1

Soil and Agrifood Institute at
Cranfield University 1

Consultancy

Climate Solutions Exchange 2

ADAS 1

Farm Africa 1

Governmental Organisation

Department for the
Environment, Food and Rural

Affairs (DEFRA)
3

Environment Agency 1

In the opening section of the interview, a detailed introduction was given regarding the
study’s objectives and the framework derived from the literature. The set of 12 questions
in Sections 2–4 of Table 3 was then explored. Section 2 comprised six questions about the
importance of SOC in the policy context and the current use and frequency of SOC/SOM
assessment within agricultural policy. The five questions in Section 3 sought to explore the
levels of accuracy that would be required from EO techniques in order to provide reliable
data for monitoring and reporting SOC levels to benefit ELM. Finally, in Section 4, the
respondents were given the opportunity to raise any further points or observations. This
structure enabled consistent coverage of the topics whilst allowing for the respondents to
provide their suggestions and comments based on their area of expertise.

Table 3. Format and questions of the semi-structured interview.

Section Description Questions Addressed

1. Introduction
Introduction to the objectives of the study

and framework derived from the
literature analysis.

No questions.

2. SOC/SOM in
agricultural policy

Six questions attempt to understand
SOC/SOM in the agricultural policy

context.

1. Please provide a brief background of your experience in
the field of agricultural research/policy.
2. Do you think SOC is currently used within agricultural
policy/do you think it will be?
3. Do you think SOC is important in agricultural policy? If it
is important then why?
4. How often is SOC assessed in the current policy—do you
think this is adequate/ If there are plans to assess SOC in
the policy then how do you think this should best be done?
5. (optional) Are you familiar with the SDGs? If yes, how do
the policies on SOC relate to the SDGs? Has there been an
influence of the SDG framework on the policy?
6. (optional-depending on the above answers) If SOC is
considered to be important but is not currently/or planned
to be a part of the policy, why do you think that is?
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Table 3. Cont.

Section Description Questions Addressed

3. Potential for using
EO to monitor/

predict SOC

Five questions focusing on the
expected/required accuracy of SOC

predictions from remote sensing methods

7. Are you aware that EO satellite-derived data can be used
to assess SOC?
8. EO has the potential to estimate soil organic carbon under
the right circumstances, although this is at an early stage of
development. As part of our research, we are also
investigating this concerning potentially using EO to help
assess trends in SOM of various types of managed and
unmanaged land and it is a useful approach for monitoring
and reporting, e.g. for ELMS.
Please provide your estimate as a percentage of the accuracy
when EO technology is used to measure SOC and provide a
short statement indicating why you consider this to be
acceptable.
9. Studies have shown that EO derived data is not a perfect
predictor for SOC contents so what would be the level of
‘accuracy’ for making agricultural policy decisions when
SOC contents are predicted via EO data relative to the
traditional methods?
10. What do you think could be done to improve the
assessment via EO?
11. What other information would be needed to supplement
the assessment via EO and how might it be collected?

4. Round up Any other comments by the respondent. 12. Do you have any other comments/observations?

The transcribed interviews were subjected to manual content analysis. A series of
open and axial coding techniques were used to identify themes and build the theory. The
first step was ‘open coding’, in which tentative labels were assigned to the interview
transcription data. Secondly, in the axial coding, codes were selected to focus on the
analysis of the core categories to identify relationships among the open codes. Thus,
categories/themes were identified in the data using the underlying objectives and structure
of the questions posed, together with insights emerging from the respondents.

2.3. Cost-Accuracy Analysis

In Andries et al. [48], a structured framework was described for evaluating the use-
fulness of various EO-based approaches to inform the UN Sustainable Development Goal
(SDG) indicators. One premise that was considered as part of the framework (based on
recommendations from expert interviews) was the “cost-effectiveness” of the EO solution
when compared with more traditional techniques. It was noted that the existing literature
rarely discussed the cost-effectiveness of a particular approach, and the inclusion of this
information in studies was recommended. Therefore, in the present research, we have
taken into consideration information on the cost of the data type, methods, prediction,
and accuracy. This cost information is expected to be relevant for decision making in land
management and the design of cost-effective MRV systems for SOC within schemes such
as the UK ELM scheme.

For the selected 4 ha reference site (Figure 1), we assumed that the land manager or
ELM verification body would wish to obtain a map of SOC within the delimited field site.
This would be obtained by propagating data from passive and active sensors on satellites
or UAS platforms through a mathematical model that has been derived from in situ
measurements, either from the field site or from existing libraries of in situ observations.
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Figure 1. Trial site for cost-accuracy analysis (source—Google Earth Pro).

We obtained the prices for satellite data supplied by Earth-i, a global space company
that exploits commercial satellite imagery and cutting-edge artificial intelligence and
machine learning techniques. In terms of Unmanned Aircraft Systems (UAS), we have
used the cost analysis conducted by Aldana-Jague et al. [49] and the prices from ADAS,
a commercial operator that provides services including digital data collection by UAS
and aerial photography, use of software for data processing, and expertise for estimating
SOC. For conventional laboratory tests for SOC analysis, we used pricing obtained from a
leading UK soil analysis company (preferred to remain anonymous in this study).

3. Results

3.1. Literature Analysis of EO-Based Approaches for SOC Measurement

There are various studies in the literature which seek to assess how EO-based assess-
ments of variables thought to be related to SOC (such as land cover and topography) relate
to measures of SOC based on ground-level soil sampling. These variables (covariates) are
used as inputs to a statistical model that is used to estimate SOC. It should be noted that
the more traditional assessments using soil samples and laboratory analysis are deemed to
be the best estimates of SOC. Figure 2 presents our synthesis of the main steps that appear
in most literature reports and are needed for estimating SOC content from the field to the
national scale.
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3.1.1. Selection of Environmental Variables (Covariates) and Data Compilation

Different methods use different covariates in developing SOC estimation models.
Covariates used in methods described in the literature include land cover and land use
maps (e.g. CEH Land cover 2015, CORINE), meteorological data (e.g. temperature, precip-
itation, evapotranspiration), vegetation index (e.g., spectral indices), terrain parameters
(e.g., digital elevation model (DEM) and its derivates, slope degree (SD), aspect, depth of
sinks (m) (DoS), compound topogrphic index (CTI), and profile curvature (PC)). As these
different quantities are provided by data providers with different spatial resolutions and
on different grids, data compilation requires the covariate dataset to be resampled to a
common resolution.

The covariate data sets are collated from a wide variety of data sources. These data
sources range from imagery obtained by passive or active sensors onboard remote sensing
platforms (UASs, airborne and spaceborne), and meteorological data measured by land-
based stations. Our literature review showed that the following are the most common EO
data sources used in the development of SOC estimation models (note that some methods
use a combination of data sources):

i. Satellite multispectral (e.g., Sentinel 2, Landsat 8 OLI, Very High resolution (VHR)
images) and hyperspectral (e.g., EnMAP, PRISMA, and HyspIRI) remote sensing
reflectance images, and laboratory spectral measurements of soil samples [50,51];

ii. Spectral indices derived from multispectral images such as Normalized Difference
Vegetation Index (NDVI) [52], Enhanced Vegetation Index (EVI) [50], Soil Adjusted
Total Vegetation Index (SATVI) [53], Brightness Index (BI) and Greenness Index
(GI) [52], Vegetation Temperature Condition Index (VTCI) [52,54,55], Ratio Vegeta-
tion Index (RVI) (also for aboveground biomass estimation) [56], soil moisture [57],
and soil texture [58];

iii. Topographic data derived from active radar sensors such as SRTM, stereopho-
togrammetric images from ASTER [47], and LiDAR capable of providing a measure
of elevation to derive topographic-based parameters such as slope, aspect, depth of
sinks, etc. [59];

iv. VHR satellite data and LiDAR, which is used to estimate above-ground biomass by
assessing tree composition and height, both of which are useful proxies in predicting
SOC stock [60];

v. Data derived from multispectral sensors mounted on UAS, for example, by combin-
ing hyperspectral and high-resolution images of bare soil to obtain libraries of soil
spectral reflectance for training machine learning techniques [49,61,62]. The model
development also relies on traditional laboratory SOC measurements taken from
samples collected in the field.

3.1.2. SOC Model

The soil organic mapping approaches mentioned above adopt a wide variety of
statistical techniques to relate SOC retrieved from soil samples (dependent variable) to the
predictor variables (independent variables, e.g., spectral libraries/measurements, spectral
indices, terrain parameters). A range of statistical and machine learning techniques have
been applied to develop models to estimate SOC, and some had to accommodate the issue
of co-linearity whereby a number of the independent variables could be related to each
other. These techniques include principal component regression (PCR) and partial least
square regression (PLSR) [37,38,43,44,51,63], regression-kriging (RK) [55], penalized-spline
signal regression (PSR) [38], random forest (RF) [47,55,64,65], cubist (CB) [44,65,66], support
vector machines (SVM) [38,42,47], boosted regression trees (BRT) and bagged CART [47],
and convolutional neural networks (CNNs) [67].

This wide variety includes methods based on linear regression, where a linear relation-
ship is assumed between soil properties and predictor variables, and more sophisticated
machine learning (ML) techniques that can provide highly non-linear mapping and classifi-
cation approaches. Since the relationship between soil properties and predictor variables is
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complex and nonlinear [68], these more sophisticated approaches can achieve higher accu-
racy in terms of matching the observed values of SOC and outperform more conventional
methods [69].

3.1.3. Model Evaluation

The performances of the statistical models presented above are commonly tested under
different calibration/training (model development) and validation (model evaluation)
steps. In general, soil samples are divided into two sets that are randomly selected, one
for calibration/training (70% to 80% of the available data) and the other for validation
(20% to 30%) [44,52,55,60,65,68,70,71]. The calibration dataset is used to develop the
model, including selecting the relevant covariates and deriving the model parameters. The
evaluation dataset is used independently to assess the model performance [40]. To provide
an additional degree of robustness to the validation, an n-fold cross-validation approach
can be adopted. This approach builds on repeated train/test splits into the observed data,
ensuring that each data point occurs at least once in the test set [72,73]. In addition, to
repeat, training and testing subsets can also be subject to resampling techniques such as
bootstrapping. This has been shown to be efficient in assessing accuracy (i.e., the ability to
correctly predict observed values of SOC based on field measurements) when a small data
set is available [60].

The error metrics often used to compare these models to the validation datasets are the
root mean square error (RMSE), the mean absolute error (MAE), and the mean error (ME).
These metrics all represent different information associated with the differences between
the model predicted values and the observed values from the reference (usually in situ) data
set. These are all given in the same units as the measurement, here as g/kg−1 org/kg. The
ME is the simple mean of all such differences and can be positive or negative. For unbiased
results, it will take the value 0; some of the more sophisticated results can give a ME that is
different from 0. The MAE is the mean of the unsigned differences, and the RMSE gives the
standard deviation. All of these metrics must be interpreted with respect to the amount of
SOC measured. The coefficient of determination, R2, is, in contrast, a relative, normalised
quantity and the proportion or percentage of variation explained by each model. The R2

is commonly reported in regression studies and provides a measure of the ability of the
model to predict the dependent variable but fails to provide information on the model error
and bias. An R2 close to 1 alongside lower values of RMSE, MAE, and, where relevant,
ME, together provide more information on model quality. Much depends, of course, on
the quality of the data used in the statistical analysis. All of these methods rely on being
able to calculate an error based on a reliable in situ data set that is representative of the
region observed by remote sensing methods and do not account for uncertainties associated
with those measurements or site variability and other representation uncertainties. None,
particularly quoted without context, can be considered a pure “accuracy”.

3.1.4. Summary of Methods

Several of the above studies and their claimed ‘accuracy metrics’ are summarized in
Table 4. It should be noted here that ‘accuracy’ in this context is defined in terms of how
well the statistical model is able to predict the observed measures of SOC based on field
samples (dependent variable). The table includes values of the ‘accuracy metrics’ for the
model development and model evaluation phases of the analysis. The accuracy metrics
quoted may not represent the full model accuracy for the reasons given above and do not
necessarily apply when the method is extrapolated to new areas. The study that obtained
the best set of accuracy metrics in predicting SOC was performed at a single-field scale
and used very high spatial resolution (12 cm) and multispectral (6 bands) reflectance data
from a UAS that was processed with a non-linear machine learning regression trained
with samples from the same site. This method achieved an R2 value of 0.98 in calibration
(spread of calibration points) and R2 = 0.95 in validation [49]. The studies with a poorer
set of ‘accuracy metrics’ used free satellite data (e.g., Sentinel 1 & 2, Landsat, etc.) and
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covered much broader areas, with less detailed in situ data and more natural variability.
High-resolution studies are generally limited to small areas due to UAS flight duration
for covering large areas and legal barriers to initiate flights, and it is significantly more
expensive to do such detailed campaigns. Free satellite data can be used to cover a much
broader area and provide information for national and transnational studies.

3.2. Expert Interviews

This section presents the three main themes that emerged from the analysis of the
interviews. The key concerns and suggestions (KCS) associated with these themes are
presented in Tables 5–7, together with the most relevant quotes from the respondents (with
the respondent number indicated as Rx).

3.2.1. Theme 1: SOC/SOM within Agricultural Policy

SOC was discussed by most respondents as being a critical component in soil science
and soil quality, alongside other soil properties (Table 5: KCS 1.1 recognised by 77% of
respondents). In addition, many participants considered that soil health has been moved
up the political agenda after initiatives such as ‘4 per 1000’ and the UN SDGs increased
awareness at the global scale (Table 5: KCS 1.2, 55% of respondents). In 2018, the UK
Environment Secretary and Farming Minister both promised to put soil health at the heart
of the 25 Year Environment Plan, emphasising the UK Government’s ambition to improve
the approach to soil management and restating the commitment to all of the UK’s soils
being managed sustainably by 2030 (Table 5: KCS 1.3, 46% of respondents).

Likewise, some respondents (Table 5: KCS 1.4, 23% of respondents) also raised the
crucial role of tackling pressures (e.g., climate change, different agricultural practices,
drainage schemes, intensive sheep grazing, etc.) on the land in the long term as important
additional factors affecting SOC.

Interestingly, some respondents noted (Table 5: KCS 1.5–1.7, 38%, 31%, and 25%,
respectively) that SOC has been neglected so far in the UK policy framework, with this
coming from two different perspectives. The one coming from soil scientists was that, due
to a lack of interest and knowledge, policymakers have postponed addressing soil health
for far too long because priority was given to maximising the production of cheap food.
For policymakers, the explanation for a lack of focus on SOC, as well as soil health, was
perceived to be due to a lack of resources, rather than from any intentional avoidance of
integrating SOC into policy.

3.2.2. Theme 2: EO for SOC and Its Level of Accuracy

In this theme, the main concerns and suggestions that refer to the potential that EO
technology could have to monitor SOC and the level of accuracy that would be needed are
presented in Table 6. It needs to be noted here that ‘accuracy’ in the context of the interviews
was interpreted in terms of how often the results from an EO-based assessment match those
obtained via the ‘traditional’ methodology of taking field samples and using laboratory
analysis. The highest level of consensus from respondents (77% of respondents) was KCS
2.1 and 2.2—providing strong support for EO being relevant and valuable for recognising
different land use, agricultural practices, etc., and the linkage of these characteristics with
SOC. An advantage for EO approaches was acknowledged to be their ability to estimate
SOC stock over large spatial scales using proxies such as vegetation indices, slope degree,
precipitation, temperature, etc. About half of the respondents (54%) noted that a direct
determination of SOC from EO requires bare soil and that the spectral signatures derived
from EO imagery can be constrained by cloud coverage (KCS 2.3). In addition, there was
a strong consensus that EO could be useful for estimating the overall stock of SOC but
did not have the consistency and accuracy required to detect its detailed change over time
(KCS 2.4).
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Interestingly, more than half of the respondents noted that EO could provide a cost-
effective alternative to the use of field measurements (KCS 2.5). It should be remembered,
however, that most respondents indicated that they did not consider that EO-based imagery
could provide a sufficiently accurate estimation of SOC directly, and, by inference, this
cost-effectiveness refers to the value of EO in providing complementary data supporting
SOC determinations. Concerning the accuracy requirement for SOC estimations by EO, it
was clear that an accuracy of >90% was seen as a requirement by nearly 70% of respondents.
This means, for example, that out of 100 fields, the EO-based measurement would need to
match (within uncertainties) the assessments of SOC obtained via traditional methods for
at least 90 fields. Similarly, only 15% of respondents (2 out of 13) thought that an accuracy
between 70% and 90% was ‘acceptable’, confirming a strong concern over the impacts of
using potentially inaccurate assessments (KCS 2.6).

Most of the respondents recognised that methods solely utilising the current remote
sensing technologies would not be capable of substituting direct field sampling methods.
About one-third of respondents considered that multiple combinations of data types,
e.g., remotely sensed, ground-truthing measurements, multispectral imaging (derived from
UAS), LiDAR, citizen science, etc., all assimilated by machine learning, could significantly
increase the accuracy (KCS 2.7). Furthermore, it was also noted that for mapping the
state of SOC using remote sensing data, it would be possible to devise efficient sampling
schemes to achieve a specified accuracy based on the analysis of a number of ground-
based samples with associated analyses (e.g., machine learning, regressions), thus reducing
current physical survey costs.

3.2.3. Theme 3: Criteria for the Design of an MRV Framework for SOC

The third theme of measurement/monitoring, reporting, and verification (MRV)
emerged from the analysis of the interviews. This extended beyond the previous two
themes, which the semi-structured interviews were designed to explore with the respon-
dents. The basis for the emergence of this MRV theme potentially relates to the goal ofLand
Management (ELM) schemes to incentivise good soil management practices through the
application of current technologies, enhancing the ability to deliver environmental benefits
via improving or maintaining soil quality. Currently, most agri-environment schemes have
to rely on limited national monitoring capabilities and a wider understanding of soil health
and improved capability for its monitoring would be advantageous. Therefore, Table 7
provides seven criteria and associated quotes that resulted from the interviews.

A directness criterion (KCS 3.1) was mentioned by 85% of participants and refers
to the ways that the SOC MRV system is comprised of direct measurements of SOC
(field sampling) and indirect/proxy measures based on a spectral library and indices,
topographic parameters, etc. (see Figure 2). A few respondents (38%) recognised that
direct measurements should be first constructed on a universal protocol that should be
consistent over all fields. Thus, respondents raised the importance of defining SOC metric
standards as a criterion for a robust structured survey of soil sampling (KCS 3.2). About
77% of respondents considered scalability an important criterion to consider in designing
a soil monitoring system. Scale plays a role as a driver for determining the accuracy
of the methods. All participants admitted that the level of accuracy is a vital criterion
to understand, and it would differ for different scales and data used. In terms of the
variability in the SOC stock, many respondents (69%) recognised this as a challenge, mostly
because SOC levels vary considerably across the same field and with soil depth (KCS
3.5). A consistency criterion was raised by 62% of the respondents through two different
perspectives, one in terms of the standardization of the in situ soil sampling and the other
in the methods used that are closely linked to scalability (KCS 3.6). Finally, more than half
of the respondents (54%) consider that satellite and other technologies could enhance the
cost-effectiveness as a criterion for a national monitoring system of SOC (KCS 3.7).
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3.3. Cost-Accuracy Analysis

To evaluate the cost-accuracy of using different approaches to estimate SOC across our
4 ha (0.04 km2) site, we combined information about the cost of obtaining and analysing
different data sources (Table 8) for different methods (Table 9).

Table 8. Methods of measuring SOC—reference costs for different data sources.

Data Type
Cost

Raw Data
Processing Data

(e.g., Calibration)
Analytics

(e.g., Applying ML)

VHR satellite data

VHR satellite data 1

Multi spectral <= 50 cm
spatial resolution 1 = 23 €/km2

Multi spectral >50 cm = 12 €/km2

EUR 1.20/km2 EUR 7/km2Archived VHR satellite data 1

Multispectral <= 50 cm
spatial resolution = 7 €/km2

Multi spectral > 50 cm
spatial resolution = 3.5 €/km2

Medium and high resolution
(e.g., EnMap, MODIS,

Sentinel, Landsat)
Free EUR 0.20/km2 EUR 7/km2

Multi-spectral imagery
(480–1000 nm) UAS (prices
can vary depending on the

camera type and capabilities)

The cost analysis performed by Aldana-Jague et al. [49] estimated the total cost is between EUR
160 to EUR 400 per 0.01 km2.
ADAS UK provides services for a cost between EUR 600 to EUR 950 for a set of images (at least
0.04 km2).

In situ collection and
laboratory analysis

The price of the SOC laboratory analysis may vary depending on the company accredited for soil
testing.
The cost for one soil sample would include:

• sample disposal (per sample)—EUR 2.50;
• soil sample for measuring the total organic carbon—EUR 12 (a minimum order charge of

EUR 120 + VAT is applied);
• postal charges for collection and delivery per total order—EUR 60.

There will be additional costs relating to the collection of the soil samples from the field.
1 minimum order applied.

Table 9. Calculation based on the prices provided in Table 8 for 4 ha.

Method [Reference]
Prediction Accuracy
Metrics (Based on
Validation Phase)

Methods Cost for 4 ha Total Cost for 4 ha

Remote sensing satellite data
(Sentinel-2, Landsat-8 OLI,
and VHR PlanetScope) [65]

R2 = 0.56–0.81

Sentinel-2 and Landsat-8 OLI = free
PlanetScope 1 = EUR 0.5

Analytics = EUR 0.3

EUR 750–1000

UAS multispectral sensor
Parrot Sequoia [65]

EUR 600–950 (including data
capture and processing)

Hyperspectral Airborne
Imaging
CASI 1500 sensor and SWIR
(960–2440 nm)
SASI 600 sensor [65]
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Table 9. Cont.

Method [Reference]
Prediction Accuracy
Metrics (Based on
Validation Phase)

Methods Cost for 4 ha Total Cost for 4 ha

Collection of Soil Sampling
Data Study (50 soil samples
across 145 ha—80% for
training set and 20% for
validation set) [65]

11 soil samples = EUR 150 + EUR 60
(delivery and collection charge)

Remote sensing satellite data
(Sentinel-1 and -2 images) [47]

R2 = 0.32–0.44
Processing and interpreting satellite

data EUR 0.35
~EUR 0.35

DEM derivatives from SRTM
and ASTER GDEM [47]

In situ soil for satellite
calibration and validation (179
topsoil samples were collected
from the Land Use and
Coverage Area Frame Survey
(LUCAS) topsoil dataset
provided by the European Soil
Data Centre 2 [47]

Multi-spectral imagery
(480–1000 nm) UASs, and 30
reference samples collected
from the field site to build the
model [49]

R2 = 0.98

Purchased camera
EUR 600–1600 EUR 600–1600

Hiring camera (including data
capture and processing)

EUR 600–950
EUR 600–950

Laboratory analysis (between
6 and 42 samples, depending
on the accuracy and carbon
variability required) [27]

N/A EUR 90–600 + EUR 60
(Postal charges)

1 According to our correspondent from Earth-i, the most affordable way is to pay for a full year of access to the PlanetScope data captured
over an area. 2 LUCAS2015_SOIL data are the property of the European Union, represented by the European Commission, represented
by the Directorate General-Joint Research Centre (hereafter referred to as the JRC), which authorise third parties to use these data free
of charge.

In Table 8, different types of data are presented that could be used to estimate SOC,
including multispectral VHR satellite data, high- and medium-resolution satellite imagery,
UAS-based imagery, and the laboratory analysis of soil samples collected from each site.

Table 9 provides the approaches selected from the literature that can be applied to the
defined 4 ha study field to estimate SOC from some combination of the data sources given
in Table 8. For each approach, the cost and accuracy are considered.

Žížala et al. [65] used free (medium resolution) and commercial (VHR) satellite data,
along with UAS and in situ sampling to develop a bespoke model for the trial site. For this
approach, the total cost for measuring SOC for our trial site would be between EUR 750
and EUR 1000 (number of samples scaled from their larger site to our smaller site) with an
mboxemphR2 = 0.81. Zhou et al. [47] used only free satellite data trained to a general
European model (from the free LUCAS dataset), and here, the cost is extremely low at
EUR 0.35 for 4 ha (price only for the processing and interpreting the dataset), obtaining an
R2 = 0.44 for their model fit. Aldana-Jague et al. [49] used UAS reflectance spectroscopy
and a model trained on 30 reference samples from the field site. Including sample collection
and processing, image acquisition, processing, and analysis costs, they estimated the total
cost to be between EUR 160 and EUR 400 per ha, hence, for a 4-ha field, the cost would
be between EUR 600 and EUR 1600, with an R2 = 0.98. Their price considers the initial
investment costs for purchasing a UAS, a multispectral camera, and software (estimated
at circa EUR 25,000). Commercial operators charge approximately EUR 600–EUR 950 for
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services based on UAS imagery, where includes UAS and aerial photography for digital
data collection, processing, and manipulation.

For comparison, the Gehl and Rice [27] approach is given for sample collection and
laboratory analysis only. The range of prices depends on the types of laboratory tests
performed to quantify SOC, the different methods include the Walkley–Black (WB) method,
mass loss on ignition (LOI), automated dry combustion (ADC), and humic matter (HM).
The most accurate standard laboratory test for soil carbon is ADC and is often cheaper than
other tests [75]. Consequently, the laboratory price list for ADC is presented in Table 8, and
the price has been applied on the 4-ha field (Table 9). According to Vanguelova et al. [30],
the ideal number of samples is between 4 and a maximum of 25 samples per 0.25-ha plot,
thus, for our trial site, the total cost could be between EUR 90 and EUR 600, for a sampling
range between 6 and 42.

These hypothetical estimations are made recognising several limitations. The only
accuracy metric given is the R2, which is only one of the metrics of model fit, which may
underestimate the uncertainty, and the costs are based on limited information. Likewise,
for using UASs, there are two options available, to hire or to purchase, both of which have
benefits and drawbacks.

4. Discussion

This paper has evaluated the potential contribution that EO technology could pro-
vide for SOC estimation. We have collated input from experts in soil science and agri-
environment policymaking to identify key concerns and opportunities in this domain.
In particular, the inclusion of expert opinion delivers a unique degree of insight on the
acceptable level of accuracy that an EO-based soil MRV system would need to achieve to
be appropriate for policy implementation. It is noteworthy that all respondents mentioned
the benefit of such a study as an important input to the current DEFRA ELM scheme for
developing a UK national soil MRV system.

According to the literature, EO imagery combined with ML techniques trained on soil
samples representative of the location of interest can provide valuable information on the
state of soils and SOC estimations in a given location. Such analysis involves the selection
of variables (covariates), data compilation, model development, model evaluation, and
model application. Similarly, interviewees discussed the potential of EO technology to
estimate SOC, which they recognised relied on indirect measurements (proxies/covariates)
and a derived model based on simple or more complex machine learning. The respondents
were concerned about the use of EO technology and emphasised that it would have to
be highly accurate (>90%) to allow fair payments if this was the basis of an MRV system.
The meaning of ‘accuracy’ in this context was expressed mostly in terms of how well the
EO-based assessments match (as far as practical) those assessments of SOC based on more
traditional methods, although the meaning of this ‘accuracy’ is not universally defined.

The main advantages of using EO technologies have been highlighted in many studies.
Our respondents described the advantages in the gathering of information on SOC over
large and/or inaccessible areas, provision of information at different spatial and temporal
resolutions, use of low-cost or free data, and cost-effective assessments. However, they also
considered it of equal importance that the higher accuracy EO-based methods generally
came at a higher cost.

Several substantial unanswered questions remain over how feasible current remote
sensing methods are for estimating SOC and the levels of accuracy (i.e., how well the
models predict observed values of SOC obtained via field measurement) that can be
achieved, the amount of cross-validation or sampling that might be needed to assure such
accuracy and, ultimately, what level of accuracy is required for SOC determinations for
policy and decision making in support of sustainable SOC management. Our analysis has
also discussed that there is a need to find a consistent definition of ‘accuracy’ that goes
beyond simple metrics such as R2, which can only ever describe how well models fit data,
and not model biases or reference (in situ) data uncertainties. Other drawbacks noted in
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the use of EO-based data are that such methods are limited by cloud cover (for optical
satellite sensors) and can only estimate SOC for the thin top layer of bare soil, while some
agricultural practices that can increase SOC (cover of perennial rotation cropping, no-till
planting in rotation) increase soil cover and thus compromise the window of bare soil. In
addition, UAS have limited flight duration and hence spatial coverage.

It appears to be quite widely assumed that EO technology can be a cost-efficient tool
in monitoring SOC. However, few studies have performed a cost-effectiveness analysis to
test this assumption. Therefore, to address Andries et al.’s [48] recommendation that cost-
effectiveness is an important component when assessing the maturity of EO technologies for
providing data for the indicators of sustainable development, we performed a hypothetical
cost-accuracy analysis on different literature approaches for SOC estimation on a 4-ha field
using a combination of EO methods. We observed that the integration of data from satellite
and airborne sensors with data from ground-based measurements represented a reasonable,
current approach for prediction for SOC stocks at the field scale with an R2 = 0.81 at a cost
range of EUR 750 to EUR 1000. Relying on free satellite data (e.g., Sentinel-2) as a proxy for
estimating SOC at the national and regional scale is much lower cost (equivalent to ~EUR
0.35 for the same area) but produces lower repeatability, with R2 = 0.32–0.44. (Again, we
note that R2 provides only part of the information necessary to understand ‘accuracy’.)

The importance of EO technologies as a reliable source of data for monitoring and
reporting carbon stocks at a global scale within the context of the UN SDGs have been
explored by the Global Soil Partnership (GSP) and its Intergovernmental Technical Panel on
Soils (ITPS), which launched the Global Soil Organic Carbon GSOCMap [7]. The GSOCMap
helps monitor and report on the carbon stock aspect of SDG indicator 15.3.1 (“Proportion
of land that is degraded over the total land area, with three sub-indicators capturing trends
in land cover, land productivity, and carbon stocks”).

At national scales, several countries are attempting to make efforts to respond with
initiatives such as ‘4 per 1000′. In the UK, the 25 Year Environment Plan aims for all of
the UK’s soils to be managed sustainably by 2030. To achieve this, the ELM scheme aims
to update guidance for farmers, invest in developing a monitoring system and metrics
for soil health, and deliver research to better understand how soil health supports wider
environmental goals [76].

The suggestions of many of the respondents in this research informed the design
we propose in Figure 3 for an MRV framework for SOC which could underpin policies
supporting sustainable soils management. As is clear from our respondents, an MRV
system should be robust, consistent, transparent, and accurate. It needs to rely on ap-
propriate data, quality assurance and robust evaluation of the accuracy of the data, and
collaboration with farmer communities and trained staff. With respect to linking MRV to
fair payments, there are also requirements for defining clear SOC metrics and consistency
in the SOC measurement approaches. Hence, Figure 3 presents the main three aspects of
the framework as follows:

• Monitoring—Direct measurements through in situ soil sampling using a universal
protocol and indirect measurements via proxies (e.g., UAS, airborne and satellite
data). The measurements and estimation should determine the state and change of
the SOC level. Key criteria to be considered should be consistency in soil sampling,
high variability of the SOC, cost accuracy analysis, clear SOC metrics (that would be
nationally/internationally recognised), and the scalability of the approach.

• Reporting—Documents to inform all relevant stakeholders, including information on
the methodologies, assumptions, and data.

• Verification—A series of procedures for checking and verifying the quality of monitor-
ing and reporting. Verification could be achieved through physical field inspections,
independent remote sensing analysis, and/or smartphone apps (similar to BGS MySoil
app [77] or Soilmentor [78]). Evidence suggests that there is a large potential for in-
creasing carbon storage in agricultural soils through changes in land use management
and agricultural practices. The importance of this SOC storage and the potential for
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land managers to receive incentives for its enhancement suggests that VHR satellite
data could well provide an economically viable, cost-effective tool for the verification
stage. According to the UK National Audit Office (2019), the Rural Payments Agency
(RPA), which pays subsidies to farmers (part of the Common Agricultural Policy-Basic
Payments scheme), has increased remote inspections by 75% using satellite data with
an operational cost saving of up to GBP 2.1 million per year [79]. Similar evidence has
been shown in Ireland, which suggests that the average cost of a physical inspection
in 2010 was EUR 1800 compared with EUR 60–EUR 70 for a remote sensing check [80].

Figure 3. A framework for the measurement/monitoring, reporting, and verification (MRV) of SOC.

Overall, our research suggests that R&D to date has developed models at the field scale
that, with appropriate in situ training data, can come close to the ‘accuracy’ expectations for
policy when these are compared to results those obtained via traditional field assessment
which employs sampling and laboratory analysis.

In effect, ‘accuracy’ within a land management context is about ‘getting it right’, with
‘right’ being what is gleaned from field measurement that can itself generate variable
results based on methods of sampling and laboratory analysis that were employed. A
desired ‘accuracy’ of 80% expressed by the respondents for EO methods appears well
within reach at present, albeit for more expensive analyses. These are encouraging findings
and suggest that only a small gap remains to be bridged between utility for policy and the
accuracy/reliability available from EO-based SOC assessments at field scale. At regional
and national scales, the accuracy of SOC assessments will likely remain limited for some
time due to SOC determinations at these scales by EO-based methods being constrained by
reliance upon free and lower spectral and spatial resolution EO imagery.
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5. Conclusions

This research has led to the following conclusions:

• Satellite- and UAS-derived data provide unique capabilities for addressing current
challenges in the MRV of SOC, at all scales;

• Well-established training datasets along with advances in machine learning are likely
to increase the overall accuracy of SOC prediction models, especially when comple-
mented by soil spectral libraries based on soil sampling;

• A more robust analysis of uncertainties associated with both EO derived data and
in-situ measurements are required;

• Integration of UASs should be considered at farm scale as being the most cost-accurate
approach, whereas free satellite data would be more appropriate to be used at the
national scale but with lower accuracy;

• We propose a framework for the MRV of SOC, which includes direct measurements
via a combination of in situ soil sampling and indirect measurements through EO.
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Abstract: Nigeria is a country with a rapidly growing youthful population and the availability of
good quality education for all is a key priority in the sustainable development of the country. An
important element of this is the need to improve access to high-quality primary education in rural
areas. A key indicator for progress on this is the provision of adequate classroom space for the more
than 20 million learners in Nigerian public schools because overpopulated classrooms are known to
have a strong negative impact on the performance of both pupils and their teachers. However, it can
be challenging to rapidly monitor this indicator for the over 60 thousand primary schools, especially
in rural areas. In this research, we used satellite Earth Observation (EO) and Nigerian government
data to determine the size of available teaching spaces and evaluate the degree of overcrowding in
a sample of 1900 randomly selected rural primary schools across 19 Nigerian states spanning all
regions of the country. Our analysis shows that 81.4% of the schools examined were overcrowded
according to the minimum standard threshold for school size of at least 1.2 m2 of classroom space
per pupil defined by the Federal Government of Nigeria. Such overcrowding can be expected to
have a negative impact on educational performance, on achieving universal basic education and
UN Sustainable Development Goal (SDG) 4 (Quality Education), and it can lead to poverty. While
measuring floor area can be performed manually on site, collecting, and reporting such data for
the number of rural primary schools in a large and populous country such as Nigeria is a serious,
time-consuming administrative task with considerable potential for errors and data gaps. Satellite
EO data are readily available including for remote areas, are reproducible and are easy to update
over time. This paper provides a proof-of-concept example of how such EO data can contribute to
addressing this socio-economic dimension of the SDGs framework.

Keywords: earth observation; UN sustainable development goals; education; socio-economic;
overcrowded schools

1. Introduction

Nigeria is the most populous country in Africa, and seventh in the world. It also has
one of the largest populations of youth in the world [1]. From an estimated 42.5 million
people at the time of independence in 1960, Nigeria’s population has grown to around
195 million in 2018 [2]. Although Nigeria became the largest economy on the African
continent in 2014 [3], the country still faces many serious issues such as violent rebellion
and terrorism, endemic corruption, low life expectancy, inadequacies in public health
systems, income inequalities, and high illiteracy rates [4,5].

The educational system in Nigeria is based on the Universal Basic Education (UBE)
programme that was launched in 1999 aiming to provide free, universal, and compulsory
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basic education for children aged 6 to 15 years old. UBE covers six years of primary school
and three years of junior secondary education. This can be followed by optional three years
of senior secondary education and four years of tertiary education [6]. It needs to be noted
that primary education is the only level of education that is available in urban and rural
areas throughout the developed and developing world and is the largest subsector of any
education system and so offers a unique opportunity to contribute to the transformation of
societies [7,8].

Nigeria’s education system struggles with the challenge of a persistent lack of ad-
equate facilities. There is evidence that UBE is challenged by multiple issues such as
insufficient classroom space in relation to high pupil enrolment, inadequate furniture and
no functional chalkboards, lack of maintenance of building infrastructure and the lack of
teachers [9,10]. All these lead to overcrowded classrooms and limit the quality of educa-
tional attainment [11–13]. While the UBEC’s report does not specify a legal minimum space
requirement for classroom dimensions, it does provide provisions and guidance on space
norms which include a minimum standard learning space of 1.2 m2/ pupil in rural primary
schools (1.4 m2/pupil for semi-urban and urban primary schools) [6]. Currently, among the
suite of standards listed in the UBEC report, the key indicator that the Nigerian government
uses for measuring quality education and equity is the Pupil—Teacher Ratio (PTR), with
an ideal value set at 35:1 for primary schools [14]. Values higher than this equates to
overcrowding in schools. However, while it is often claimed to be a key indicator, we found
limited literature showing the PTR at the state and Local Government Areas (LGA) level
in Nigeria, reflecting a weak and often highly politicised statistical system [15,16]. Many
issues for national statistics offices in developing countries such as Nigeria often include a
lack of timely data of suitable quality, a simple lack of data, limited independence of statis-
tical information, unstable budgets, and misaligned incentives. These issues encourage the
production of inaccurate data, the domination of national priorities by various sponsors,
and limited access to and usability of the traditional data [17–20].

Despite these data challenges, researchers have conducted surveys in different states of
Nigeria. For example, Opanuga et al. [14] noted that 81% of the 133 public primary schools
in Ogun State have a PTR over 35:1. Moreover, a survey conducted by Ndem et al. [21] in
Cross River State schools found an occurrence of high PTRs, such as 49:1 in primary and
62:1 at the junior secondary level. A most remarkable example of high PTR linked with
overcrowding is noted in Sherry’s 2008 [22]: “all the schools I have seen are hugely overcrowded.
In one record case, in a rural school, I saw a class of over 200 pupils of ages ranging from 11 to 21 with
only one teacher to attend to them.” ([22], pp. 39–40). A five-year study that sought to support
equitable access to education and improve the learning outcomes from basic education
systems entitled ‘Education Data, Research and Evaluation in Nigeria (EDOREN)’ found
that: “consideration needs to be given to alternative ways of assessing classroom overcrowding, to
complement pupil–teacher ratio rates, as the latter does not necessarily give an accurate indication
of the numbers on the ground and can give the impression that classes are of manageable size when
in reality they are not” [9]. Overcrowded classrooms are well-known to be detrimental
to educational outcomes [14,23] and have been reported in many studies as having a
negative impact on adult and youth literacy [24,25]. Respondents of a survey conducted by
Olaleye et al. [26] concluded that the shortage of building infrastructure of adequate quality
was a major cause of overcrowded classrooms in Nigeria and Ikoya and Onoyase [27]
presented a comprehensive national survey of primary school infrastructure that found 53%
of the schools surveyed lacked fundamental structures. In addition, the assessment of basic
education facilities in Kano, Jigawa, and Kaduna States by the Education Sector Support
Programme in Nigeria (ESSPIN) concluded that around 75% of school infrastructure was
“very poor” [28], while in Adamawa State 67% of public primary school classrooms were
deemed to be in “poor condition” [13]. In a federal system such as in Nigeria, where taxes
are raised at national and state levels, there can be disparities in wealth between states and
this can influence the resources they have available to allocate to education [9]. Disparities
in the resourcing of education between states can, in turn, lead to differences in education
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outcomes (e.g., literacy and numeracy) and differences in educational outcomes can in
turn influence socio-economic indicators such as poverty; thus, there can be a negative
reinforcement of inequality between states [29].

The present research aimed to evaluate the utility of data derived from satellite Earth
Observation (EO) data as a direct measurement of classroom size and to determine the
amount of classroom space allocated to pupils in rural primary schools in Nigeria. Although
classroom areas could be individually measured by school staff, EO provides an opportunity
for an independent, and, through image recognition machine learning algorithms, rapid
assessment applicable to the whole country. Because Nigerian rural primary schools are
built to a common pattern, they are easy to detect from satellite imagery. Each school
is located near a road, with a playing field in front and a line of rectangular buildings
(classrooms) behind and typically running parallel with the road. Thus, unlike surveys and
measurements on site, EO satellite data provide the potential for a rapid, inexpensive, and
accurate assessment [30].

In this study, we provide a first proof-of-concept assessment of the use of EO data
for measuring school building footprints (area m2) that could help governments and non-
governmental organisations (NGOs) quickly identify schools with overcrowded classrooms.
Classroom areas (m2) were measured for 1900 rural primary schools across 19 Nigerian
states and in combination with available enrolment data, a determination was made of the
area per pupil for each school. Primary schools in rural areas were chosen for the research
because i) they are an important component of delivering Nigeria’s UBE ambitions and ii)
most rural primary schools are single-storey buildings facilitating accurate measurements
from satellite imagery.

Having estimated the area per pupil as an indicator of resourcing per pupil, the
research then sought to use the data to explore whether there are links with existing data
on educational outcomes such as literacy and numeracy. The latter has often been noted
in studies based in the developed world [31], but literature is scarce to support such an
association for the developing world, especially for Sub-Saharan Africa [26,32].

2. Materials and Methods

2.1. Study Area

Policies aimed at providing free universal primary education for all children in Nige-
ria pre-date independence from Britain in 1960. In the 1950s the colonial government
recognised that secondary and tertiary education should be prioritised to provide the
required number of teachers to achieve universal primary education (UPE). The attainment
of UPE gathered pace during the 1960s but was piecemeal as separate states implemented
their policies [33]. However, in 1976 the military government launched a major effort
to implement free UPE across the entire country based on a significant school building
programme and the recruitment and training of teachers [33]. Despite the prioritisation
of UPE by successive governments (both civilian and military), the realisation of UPE
remains a challenge and, since 1976, there have been many initiatives designed to address
bottlenecks and constraints within the system. Later the UPE programme has morphed
into UBE.

Nigeria has a federal system of governance, and the country comprises 36 states,
each with its own governor and state assembly, plus the Federal Capital Territory (FCT)
which houses the capital city of Abuja. Within the states, there are 768 Local Government
Areas (LGA) and six Area Councils within the FCT, totalling 774 [34]. Responsibility for
educational institutions is shared between different bodies at the federal, state, and local
government levels, and a suite of indicators have been developed to help assess the quality
of UBE received by pupils and their attainment. Various standards for basic education were
urged by the Universal Basic Education Commission (UBEC) in 2000 as part of Nigeria’s
efforts to achieve the second Millennium Development Goal (MDG) of universal primary
education [6]. For convenience, these states and the FCT are often classified in terms of six
geopolitical zones primarily based on location, but which would also broadly encompass
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the major ethnic groups in the country. The South-West geopolitical zone, for example,
largely comprises the Yoruba ethnic group while the South-East largely comprises the
Igbo ethnic group [35,36]. But given the country comprises hundreds of ethnic groups a
geopolitical zone will not be homogenous [36,37]. The same point applies to factors such
as religious belief. In broad terms, the country comprises an Islamic north and Christian
south, but geopolitical zones such as the South-West and North-Central, in particular, will
be mixed [36]. The country also has an economic axis that runs from south to north in terms
of wealth per capita; the southern zones tend to be richer than the northern ones [38] and
this results in southern states having more resources available for investment in education.
The authors hypothesised that these differences in wealth between states would, in turn,
result in differences in area per pupil.

For this study, 19 states (Figure 1) were selected to span all six geopolitical regions of
the country. These were:

1. North Central—Kogi, Benue, Kwara, Nasarawa;
2. North Eastern—Bauchi, Taraba, Gombe;
3. North Western—Sokoto, Kaduna, Zamfira;
4. South—Edo, Delta, Cross River;
5. South Eastern—Enugu, Abia, Anambra;
6. South Western—Ondo, Oyo, Osun.

Figure 1. Nigeria geopolitical regions and study area.

2.2. Data Sources

Nigerian government data resources for rural primary schools [39] and satellite im-
ageries from Google Earth Pro were used as the main data sources for the research. Firstly,
the location of all primary schools was obtained via the Education Facilities in Nigeria (EFN)
dataset [40] which includes school location (latitude and longitude), school type (primary,
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secondary, etc), school name, number of children registered, number of toilets, date of
survey (survey period between 2009 and 2014), and number of teachers. The database
comprises 98,667 primary schools across Nigeria and its goal was to build Nigeria’s first
nation-wide inventory of education facilities, to make the data collected available to plan-
ners, government officials, and the public, to be used to make strategic decisions for
planning relevant interventions and to help achieve the MDGs.

The Google Earth Pro platform uses historical satellite and aerial imagery, at different
spatial resolutions, which collect each image at a specific date and time. Most images used
for this study came from satellites of very high resolution, and the date of the images was
chosen to be close to the data of the pupil number survey (listed in [39]). For best results in
measuring the footprints of school buildings, a top-down view of the images has been used
as recommended in [39].

Given the lack of published and official data on the area (m2)/pupil or pupil density in
primary schools in Nigeria, but also to support validation of Google Earth measurements
and later the calculation of the teaching area per pupil, classroom buildings in a subset
of schools were physically measured. A professional town planner team was recruited to
conduct on-site measurements of school buildings in Ogun State. Due to the COVID-19
travel restrictions and practical issues, this state was one of the few where travelling was
allowed at the time of the research but still there were constraints in terms of accessing the
school interior. Although this state was not part of our original selection, the fact that all
rural schools were built in a nationwide characteristic pattern and in a typical morphology,
we expect similar results in other parts of the country.

The team measured the exterior dimensions of the building for 21 primary schools
from rural areas (listed in Table S1), and these were compared to the estimates made via
satellite images (Table S2).

A series of national survey data was used to establish a causal relationship between
the space per pupil and the educational outcomes of literacy and numeracy rates, as these
variables have often been noted in the literature to have a significant negative association
with pupil density.

The youth literacy and numeracy percentages (children age 5–16 able to read) by the
state were taken from the Nigeria Education Data Survey [41] for the 19 studied states
(Table 1). This survey was designed to provide information about the ability of children
aged 5–16 years old and adults in a sample of 30,000 households to read and be numerate.

Table 1. Literacy and numeracy percentage at the state level, Source: [41].

State
Percentage of Children
Ages 5–16 Able to Read

Percentage of Children
Ages 5–16 Who are Numerate

Bauchi 8 18
Benue 33 59
Edo 76 79

Kaduna 46 62
Kogi 52 71

Kwara 53 61
Nasarawa 29 57

Ondo 78 92
Oyo 68 84

Sokoto 9 14
Enugu 51 81
Delta 65 81
Osun 83 92

Gombe 32 35
Zamfara 21 24
Taraba 21 41

Cross River 54 76
Anambra 84 69

Abia 83 92

129



Sustainability 2022, 14, 1408

As a further level of exploration, we sought to check whether the area/pupil indicator
is linked with data on a variety of socio-economic measures of poverty available at the state
level in Nigeria. For the latter, we used the following widely used indices for measuring
poverty [42]: the poverty headcount ratio at US$3.20, consumption poverty headcount,
Multidimensional Poverty Index (MPI) headcount, and relative poverty. The data have
been collected under different surveys and methodologies and calculated at the state level
in Nigeria (Table 2). The poverty rates of these indicators are given in Table 3 for each state
in the present research.

Table 2. Poverty indices-Data description and source.

Index Description Data Source

Poverty headcount ratio at US $3.20 (2011 PPP) (%
of population, 2013)

Data are based on primary household surveys obtained from Nigeria
statistical agencies and the World Bank. The indicator is calculating the
percentage of the population living on less than US $3.20 a day in 2011
international purchasing power parity (PPPs). A detailed description of

this poverty indicator is presented by Ferreira et al. [42].

[43]

Consumption Poverty Headcount (2013)

Data on consumption are collected by the General Household Survey
which asks the households about broad categories of consumed items of

food, health care, schools. The indicator is obtained by aggregating
information on food consumption and non-food consumption.

[44,45]

MPI Headcount (2013)

MPI uses 10 indicators to measure poverty in three dimensions:
education, health and living standard in which the intensity of poverty

denotes the proportion of weighted indicators in which they are
deprived. A person who is deprived in 90% of the weighted indicators
has a greater intensity of deprivation than someone deprived in 40% of

the weighted indicators. The proportion of the population that is
multidimensionally poor is the incidence of poverty or MPI headcount

ratio. This index was calculated using 2013 data from Demographic
Health Surveys.

The consumption poverty and MPI headcount indicators are both
largely used to measure poverty, but the data are collected under two

different surveys and methods, thus the poor according to the MPI does
not always correspond to the poor measured according to

consumption poverty.

Relative poverty (2010)

Relative poverty measurement is defined by the living standards of the
majority and separates the poor from the non-poor. The threshold at
which relative poverty is defined varies from one country to another,

thus households with expenditure in Nigeria greater than two-thirds of
the total household per capita expenditure are considered non-poor

whereas those below it is poor.

[46]

2.3. Analysis

An overview of the analysis approach used in this paper is shown in Figure 2. The
analysis had the main aim of exploring the utility of a method for evaluating the overcrowd-
ing of an individual school from satellite EO imagery of the school buildings and national
statistical office data on pupil enrolments. The question being asked here was whether it
is feasible to use EO-derived data to assess building footprint area and thereby use that
measure as part of the area per pupil indicator? This process includes an analysis of the
challenges involved in the measurement process. The EO-based measurements were used
to assess area per pupil and based on the target employed in Nigeria of at least 1.2 m2 being
needed for a pupil it was possible to assess the degree of overcrowding (i.e., the proportion
of schools having < 1.2 m2/pupil). Firstly, we queried and extracted the EFN information
relating to school type (e.g., primary), school management (e.g., public), schools’ location,
name, date of survey, and the number of pupils registered. Then, the width and length of
each school building were measured using very high resolution (VHR) satellite images and
the external area (m2) was determined. The assessment of building footprint was directly
checked against results obtained via ground-truthing (using a sample of schools in Ogun
State; details below) and UBEC information that 15% of a school’s built area should be
attributed for administration [6]. This process allowed the authors to assess whether their
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measurements via EO had potential inaccuracies due to factors such as correct identification
of buildings used for teaching rather than for other uses such as storage and also school
buildings having a large veranda. However, even in the latter case, it is common for schools
in Nigeria to use verandas as teaching spaces. Furthermore, we explored the results of the
corrected teaching area to test for a possible association between educational attainment
(youth literacy and numeracy rates) and poverty indices.

Table 3. Poverty indices by state.

State

Poverty Headcount Ratio Based on
a Poverty Line of US $3.20 (2011

PPP) (% of Population, 2013)
(Values 0 = Poorest and

1 = Non-Poor)

Consumption Poverty
Headcount

(% of Total Population)

MPI Headcount
(% of Total Population)

Relative Poverty
(% of Total Population)

Abia 0.65 17.8 8.8 63.4
Anambra 0.72 16 5 68

Bauchi 0.96 46.9 58.3 83.7
Benue 0.87 44 28 74.1

Cross River 0.71 51 14.6 59.7
Delta 0.65 13.6 10.7 70.1
Edo 0.73 17.4 8 72.5

Enugu 0.76 45.8 12.3 72.1
Gombe 0.93 29.2 47.1 79.8
Kaduna 0.85 41 31.1 73

Kogi 0.84 22.4 11.3 73.5
Kwara 0.87 34.4 9.9 74.3

Nassarawa 0.93 33.6 25.1 71.7
Ondo 0.74 15.6 12.7 57
Osun 0.61 21.4 4.3 47.5
Oyo 0.71 34.3 15.5 60.7

Sokoto 0.96 25.9 54.8 86.4
Taraba 0.84 51.8 44.8 76.3

Zamfara 0.90 49.2 60.5 80.2

2.4. Evaluating the Teaching Area

The EFN datasets were queried by school type, to obtain data on 60,000 public primary
schools across the country. Having the approximate coordinates of the school location,
these were overlaid on the Google Earth satellite images and 1900 schools (100 schools
per state) from rural areas were selected using a random selection, with at least 2 km
between schools, from rural areas using buffer measure tool in Google Earth, spanning all
the geopolitical zones.

2.4.1. Google Earth Schools’ Measurements

The total area (m2) of the school building was obtained by measuring the length and
width of each building within the selected school, using historical images from the same
year as the EFN survey (from 2011–2016). The measurements were performed by the same
operator manually measuring the length and width of each building within the school using
the ruler tool in Google Earth and storing these measurements in an Excel spreadsheet.
Where images from the same year were not available, the closest year for when images were
available was selected. Identifying the school buildings was straightforward, as almost all
sample schools followed a common pattern as expected from the rapid school building
programme that took place during the mid-1970s. Figure 3 shows four examples of school
configurations and locations that present characteristic patterns and a typical morphology,
such as a schoolyard with bare soil or mowed grass, rectangular-shaped buildings, having
up to 5 building units in a row, L or U building layout, and being in a peripheral location
in the village adjacent to the main road (dirt road in most cases). Thus, teaching blocks
(perhaps comprising more than one classroom) can be readily identified as being the
larger buildings surrounding the playing field. While a typical school classroom block will
have a veranda, the pressure on space is such that these are also often used for teaching.
For operational use at the national scale, an image-processing classification algorithm
supported by machine learning techniques could be alternatively used to perform this step
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and there are likely to be benefits in acquiring operational VHR data and using a more
sophisticated processing platform.

Figure 2. Data source and analysis overview.

2.4.2. Validation and Uncertainty Analysis

In any analysis method, and particularly when an approach is new, it is important
to understand the uncertainty associated with the approach and to validate the results.
This provides the information for users to judge the fitness for purpose of the data and
the inferences drawn from them. Here, we wanted to evaluate a quantitative uncertainty
associated with the area per pupil estimates and to validate the satellite measurements
against on site measurements.

To validate the measurements taken from satellite images of Google Earth, we were
aware of two main sources of uncertainties, one is that satellite images would not provide
information about the building functionality (classroom, laboratory, office, veranda, etc.).
The second concerns the repeatability of the measurement process in Google Earth.

The Guide to the Expression of Uncertainty in Measurement (GUM) provides a stan-
dard method for evaluating and propagating uncertainties [47] using two methods: the
Law of Propagation of Uncertainties and Monte Carlo Analysis [48]. Both were employed
in this analysis.
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To evaluate the uncertainty, a sub-sample of 21 rural schools (with a total of 55 buildings)
were selected for ground-truth measurement in Ogun State (South-Western Zone) and
UBEC standards for administrative areas [6]. The team of planners provided for each school
the width and length of each building and veranda (if present), along with a building plan
as a pdf format document and a drone image (one example is presented in Figure 4). They
also provided the number of buildings, number of building floors (always one for primary
schools in our sample), details about building conditions, number of offices, and lavatory
facilities within the school (see Table S1). From the on-site measurements, it was apparent
that buildings with at least 6.5 m width had a veranda and toilets with a width of less
than 4 m, and length less than 7 m are detached as small buildings (as seen in Figure 4—
the building without roof) (see Table S2). As the planner team was not allowed to take
internal measurements within buildings, the administrative area is unknown. UBEC [6]
recommends that 15% of the total building area for each school should be attributed for
administrative purposes (e.g., office, storage).

Figure 3. Examples of the characteristic spatial patterns and locations of Nigerian rural primary
schools. Note: Satellite images used are those closest to the date of the education facility survey [39]
and some school structures might have changed since these images.

To estimate the uncertainty associated with the measured building sizes, we considered
two components that we defined as “reproducibility uncertainty” (accuracy of the Google
Earth measurements compared to on-site measurements) and “repeatability uncertainty”
(repeatability of multiple measurements in Google Earth).

It should be noted that Google imagery does not have the resolution needed to provide
sharp demarcations for the buildings. Thus, it was not possible to know precisely where
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the edge of the building was in the image. Hence it is important to establish an uncertainty
associated with the Google-based assessments of area and inferences.

  
(a) (b) 

Figure 4. On site measurements of Moslem primary school Itapanpa, Imobi, Ijebu east LGA, Ogun
State (a) drone image, (b) school plan and building on site measurements.

2.5. Calculating Corrected Teaching Area Per Pupil
2.5.1. Model Development

As described above, the initial measurements of buildings using Google Earth might
contain inaccuracies associated with building functionality since there are aspects that are
opaque to satellite EO, such as the size of administrative areas (e.g., offices), storage areas,
and verandas. The on-site measurements revealed that small buildings with less than 4 m
width and 7 m length are non-teaching areas (e.g., toilet blocks or storage areas) and hence
they were removed from further analysis. For this analysis, and despite the fact that schools
often use verandas as teaching areas, we removed a veranda area for larger buildings. We
also removed our best estimate of administrative areas.

The calculation of “teaching area per pupil” thus followed Equations (1) and (2).

A′
T,j =

[
n

∑
i=1

Li(Wi − WV,i)

]
× (

1 − SoffBj
)

(1)

where,
A′

T,j is the corrected teaching area of the jth school (in m2),
i is an index representing the individual school buildings (in total there are n buildings),
Li is the measured (from satellite imagery) external length of the ith building, in metres,
Wi is the measured (from satellite imagery) external width of the ith building, in metres,
WV,i is the assumed width of the veranda for school building i.
Based on the analysis of the 21 schools measured on-site, it was assumed that the ve-

randa width would be 2 m for buildings wider than 10 m and 1.6 m for buildings from 6.5 m
to 10 m wide. Smaller buildings less than 6.5 m had no veranda. Mathematically expressed:

WV,i =

⎧⎪⎨
⎪⎩

2 m, Wi > 10 m
1.6 m, 10 m > Wi > 6.5 m
0 m, Wi < 6.5 m

(2)

To account for the space of administrative areas, an extra term was included: (1 − Soff)Bj
is a term that reduces the teaching area of the school if the buildings are big enough to have
office and storage space. If the school has more than three buildings, then it was assumed
that the office space is 15% of the total school area after removing the veranda.
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Soff = 0.15 is the proportion of the building area taken up by offices.

Bj =

{
1 n ≥ 3
0 n = 1, 2

(3)

is a Boolean that takes the value 1 if there are 3 or more buildings in school j and 0 otherwise.
Therefore, the teaching area per pupil (α′) is given by

α′ =
A′

T
Np

(4)

where,
A′

T is the corrected teaching area,
Np is the number of pupils in a measured school.

2.5.2. Estimation of the Uncertainty of the Google Earth Measurements of the Buildings

To estimate the repeatability uncertainty, each of the 55 buildings in the 21 reference
schools was measured 10 times (by the same operator) in Google Earth. The standard
deviations of the 10 measurements are shown in Figure 5a and show the spread (28%)
expected from a standard deviation calculated from just ten measurements. Those values
also show no pattern as a function of actual length or width and therefore we consider the
mean value (0.3 m) to be the uncertainty associated with random effects in a single Google
Earth Pro measurement (the 1900 schools in the main set were each only measured once).

  
(a) (b) 

Figure 5. (a) Absolute standard deviation (in metres) of the ten independent measurements using
Google Earth Pro of the length and width of the 55 buildings in the 21 reference set schools. Shown as
a function of building length or width. (b) Distance error (calculated from the mean of the ten Google
Earth Pro measurements minus the on site distance) for the 55 buildings in the 21 reference schools.

To estimate the reproducibility uncertainty, we took the average value of the 10 mea-
surements of the length and width from the Google Earth Pro measurements and sub-
tracted the on-site measured length or width from this. The differences obtained are given
in Figure 5b. If the difference could be entirely explained by the random repeatability ef-
fects, we would expect the uncertainty associated with the mean of the ten measurements
to be equal to the uncertainty associated with a single measurement (0.3 m) divided by

√
10

(i.e., 0.095 m). We see from Figure 5b that the actual spread is closer to 0.4 m (the standard
deviation of the points is 0.43 m).

The increased spread of 0.4 m, in Figure 5b is symmetrical around the 0 axis; there is
no obvious systematic bias between on site measurements and Google Earth Pro, but there
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is a randomly distributed difference between the two that cannot be accounted for by the
random spread in the Google Earth Pro measurements alone.

From these two analyses, we can determine that the uncertainty associated with a sin-
gle (rather than the mean of ten) measurement in Google Earth Pro contains a repeatability
component of 0.3 m and a reproducibility component of 0.4 m. The uncertainty associated
with a single building’s length and/or width is obtained by combining these two quantities
according to the GUM’s law of propagation of uncertainties, and is, therefore:

u(Li) =
√

u2
repeat + u2

reproduce =
√

0.32 + 0.42 = 0.5 m (5)

2.5.3. Uncertainty Analysis for Teaching Area per Pupil

To establish the uncertainty associated with the teaching area per pupil for a single
school, Monte Carlo analysis was performed, using the uncertainty distributions described
in Table 4. For this, a Python-coded algorithm that calculates Equations (1) and (2) was
placed within a “for loop” and run 50 times (see Table S3). Within each loop, the different
parameters were varied, for example by adding to the length and width of each building
a random error from a Gaussian distribution with a standard deviation of 0.5 m, or by
treating the office proportion, Soff as a quantity taken from a uniform random distribution
between 0.10 and 0.20. The different errors were treated entirely independently —that is a
separate random number was generated for every length and width measurement of every
building in every school and for every Monte Carlo iteration.

Table 4. Uncertainties associated with the terms in Equations (1) and (2), and the probability distribu-
tion used to create the error for the Monte Carlo simulation.

Equations (1) and (2) term
Probability Distribution the Monte Carlo

Error Is Drawn From
Where This Came From

Np, number of pupils 0
It is assumed that the number of pupils is

known from enrolment statistics
without uncertainty.

Set of Li , Wi for this school: lengths and widths
of the external buildings measured in

Google Earth

A Gaussian (normal) distribution centred on
the original measurement, with a standard
deviation of 0.5 m. Note each length and

width has a different random error drawn
from this distribution.

The analysis is described in Section 2.5.2 and
Figure 5a,b.

Statistically determined.

WV,i =

⎧⎪⎨
⎪⎩

2 m, Wi > 10 m
1.6 m, 10 m > Wi > 6.5 m
0 m, Wi < 6.5 m

No uncertainty is associated with the step
points (6.5 m and 10 m).

Veranda width is described by a Gaussian
(normal) distribution centred on the calculated

width (2 m or 1.6 m), with a standard
deviation of 0.3 m.

The on situ data showed this variety in the
veranda widths

(see Section 2.5.1).

Soff = 0.15, the proportion of the buildings
taken up by offices (for a school big enough)

is 15%

Office proportion has taken as a uniform
distribution from Soff = 0.10 to Soff = 0.20.

That is each school that is big enough for an
office is assigned an office proportion

randomly from this interval with an equally
likely probability of any value in this interval

The authors do not have any strong
justification for this range and have made a
“best guess” based on the UBEC report [6]
requirement of 15% area for a school, and

allowing for a “reasonable” range of values
around this.

Bj =

{
1 n ≥ 3
0 n = 1, 2

,

Boolean criterion to decide whether or not to
subtract office space.

No uncertainty is assumed.

Arguably, other criteria could be used to
decide whether or not to select office space,

but this was not analysed in the Monte
Carlo simulation.

Form of equation. No uncertainty is assumed.

Arguably, the form of Equation (1) could be
different–for example, the office area could be
removed before subtracting a veranda. But for

this analysis, alternative forms were
not considered.

Monte Carlo simulations are a method of uncertainty analysis described in the
GUM [48]. The standard deviation of the results of the 50 individual Monte Carlo it-
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erations provides an uncertainty estimate for the results obtained without perturbing the
data. For Monte Carlo simulation to provide a reliable estimate of the uncertainty, an
estimate of the uncertainty associated with the individual input parameters is required in
order to define the probability distribution from which the random errors are calculated.
Table 4 lists the uncertainties that we assumed.

2.6. Summary Statistics
2.6.1. Corrected Teaching Area Per Pupil

Basic summary statistics are calculated for the data set, both coming from the original
data set and the Monte Carlo outputs. The original data set results are presented as the
results of the analysis and the standard deviation of the Monte Carlo outputs are used to
evaluate the uncertainty.

2.6.2. Statistical Analysis using Socio-Economic Indicators

It has been well-reported in the literature that pupil density (or area/pupil) is linked
to outcomes such as literacy and numeracy [14,23–25]. Therefore, we attempted to test the
validity of the values obtained from Equation (2) and evaluate the relationship between
teaching area/pupil and percentage of children (age 5–16) able to read and be numerate at
the state level using Welch’s ANOVA.

Welch’s ANOVA is a test of multiple comparisons of means (a modified one-way
ANOVA) that is appropriate to use when there are unequal sample sizes and heterogeneity
variance. Non-parametric methods such as Kruskal Wallis can be also used but Welch’s
ANOVA fits better especially with heterogeneous large datasets [49]. Welch’s ANOVA was
performed in Excel (extension Sigma XL), so we tested the hypothesis as follows:

• Null Hypothesis (H0): all five groups means are the same
• Alternative hypothesis (Ha): at least one mean is different

First, we used the teaching area (m2)/pupil data measured for 1900 schools and the
literacy and numeracy rates related to the states where the schools are located. Then, we
grouped the states into 5 classes for the literacy and numeracy rates in Tables 5 and 6. To
demonstrate Welch’s ANOVA, we used the literacy and numerate groups in relation to the
mean teaching area (m2)/ pupil.

Table 5. Groups by Youth Literacy rates (%).

Youth Literacy (%)
Group 1
0–25%

Group 2
26–50%

Group 3
51–64%

Group 4
65–80%

Group 5
81–100%

Studied States

Bauchi Benue Kogi Edo Abia
Taraba Nasarawa Kwara Delta Anambra
Sokoto Gombe Cross River Ondo Osun

Zamfara Kaduna Enugu Oyo

Table 6. Groups by Numeracy rates (%).

Youth Numeracy (%)
Group 1
0–25%

Group 2
26–60%

Group 3
61–75%

Group 4
76–81%

Group 5
82–100%

Studied States

Sokoto Gombe Kwara Cross River Oyo
Bauchi Taraba Kaduna Edo Ondo

Zamfara Nasarawa Anambra Enugu Osun
Benue Kogi Delta Abia

3. Results

3.1. Values and Associated Uncertainties for Each School

To establish the uncertainty associated with the teaching area per pupil calculated
according to Equation (2), a Python program was written to calculate Equations (1) and (2)
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50 times as a Monte Carlo simulation (Table S3). As an example of the output, Figure 6
shows the 50 Monte Carlo runs on the teaching area/pupil and the original data analysis
(Equations (1) and (2)) (illustrated in black diamond) on the first 50 schools in the dataset.
For the vast majority of schools, the originally measured value is close to the centre of
the Monte Carlo distribution. However, there are cases when it comes closer to the top or
bottom, due to those schools where at least one building is close in width to the boundary
conditions for having a veranda or not. Such cases create a bias between the Monte Carlo
result set and the original data. Moreover, Tables S4 and S5, Figures S1–S3 include a further
investigation on both biases (difference between the average of the Monte Carlo output and
the originally determined value) and the standard deviation of the Monte Carlo output.

Figure 6. Output of the Monte Carlo analysis (circles) and original data analysis (black diamond) for
each of the 50 runs for the first 50 schools in the study.

3.2. Basic Summary Statistics

From the Monte Carlo analysis, we determined that, typically, for a single school
with the teaching area per pupil calculated according to Equations (1) and (2), the uncer-
tainty associated with that school “teaching area per pupil” was 10% of the value (see
Supplementary Material Table S5, Figures S2 and S3).

A histogram of the area per pupil calculated for the 1900 individual schools is given in
Figure 7. This histogram was calculated an additional 50 times, each time using the results
of a separate Monte Carlo run for the 1900 schools. The error bars in Figure 7 are calculated
as the standard deviation of the histograms calculated for the 50 Monte Carlo runs results.

We calculated the summary statistics for the set of 1900 schools (Table 7) and found
that 81.4% of the measured schools do not have a minimum required teaching space for
children (a school is overcrowded if the teaching area per pupil is less than 1.2 m2). Note
that the standard uncertainties for the statistical values in Table 7 are considerably less
than the 10% standard uncertainty associated with a single school. This is because the
uncertainties are random from school to school and are reduced in effect by the very large
number of schools considered.
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Figure 7. The number of schools with each corrected teaching area (m2) per pupil for the full set of
1900 schools considered. Main bars are based on the calculation of Equations (1) and (2), error bars
represent the standard uncertainty associated with this calculated from the Monte Carlo outputs.

Table 7. Summary statistics for the 1900 schools in the test data set. Overcrowded is defined as
having a teaching area per pupil less than 1.2 m2.

Statistics Value Standard Uncertainty Associatedwith this Value

Number of schools measured 1900

Total of buildings measured 4490

Mean teaching area per pupil 0.782 m2 0.002 m2

Median teaching area per pupil 0.601 m2 0.004 m2

Proportion of schools overcrowded 81.4% 0.2%

3.3. Teaching Area/Pupil in Relation to Socio-Economic Indicators
3.3.1. Literacy and Numeracy Rates

Welch’s ANOVA was applied to understand the relationship between the mean area
m2/ pupil and education performance (literacy and numeracy rates) analyses. Therefore,
Table 8 presents the sample size (number of schools), the mean of area m2/ pupil, standard
error and standard deviation of each literacy and numeracy group (also presented above in
Tables 5 and 6, Section 2.6.2), as well as the results of Welch’s ANOVA. The results of apply-
ing Welch’s ANOVA’s show that there are statistically significant (p < 0.0001) differences
in teaching area/pupil between the five literacy and numeracy groups, indicating that
lower teaching means area m2/pupil (overcrowded) are associated with low literacy and
numeracy rates (% children 5–12 able to read and numerate), and conversely when more
space is allocated to the pupil gradually increased, there is better performance in schools.

3.3.2. Poverty Indices

Figure 8 illustrates the percentage of schools measured that are overcrowded or
meet the minimum size required, overlaid on the poverty indices: (a) poverty headcount
ratio at $3.20 (% of total population, state level), (b) consumption poverty headcount
(by state), (c) MPI headcount (by state), (d) poverty relative (% of total population, state-
level). The poverty rates described by the four indicators have similar trends, Northeastern
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and Northwestern States are the poorest states, while Southwestern and South-Southern
states show the lowest poverty rates, with slight differences in Consumption poverty (b)
probably because our estimates were performed in the rural areas and the consumption
rates are normally higher in urban zones. Overall, schools with lower teaching areas/pupils
(<1.2 m2) are associated with the populations of that state being poorer. States such as
Sokoto, Zamfara, Bauchi, Gombe, Kaduna, Oyo, Benue, Taraba, Nasarawa, and Kwara,
where over 80% of measured schools per state are overcrowded, poverty is also at the
highest level. Conversely, the states with lower poverty rates (e.g., Anambra, Enugu, Delta,
Cross River, Abia, Ondo, Osun, and Cross River) generally have less overcrowded schools.

Table 8. Descriptive statistics and results of Welch’s ANOVA for literacy and numeracy groups.

Literacy Groups (as per Table 5) Numeracy Groups (as per Table 6)

1 2 3 4 5 1 2 3 4 5

Statistics 0–25% 26–50% 51–64% 65–80% 81–100% 0–25% 26–60% 61–75% 76–81% 82–100%

Sample size (N) 398 400 391 406 302 298 400 391 400 408

Mean (area/pupil) 0.43 0.50 0.86 1.04 1.14 0.43 0.51 0.65 1.11 1.11

Standard Error (SE) 0.01 0.01 0.03 0.03 0.04 0.02 0.02 0.03 0.03 0.04

Standard
Deviation (SD) 0.28 0.37 0.65 0.64 0.75 0.28 0.36 0.53 0.69 0.72

Welch’s F Ratio = 144.10 (p < 0.0001)
df = 4879.14

Welch’s F Ratio = 139.86 (p < 0.0001)
df = 4936.59

 

Figure 8. Poverty indices and % of schools overcrowded in the studied states, (a) consumption
poverty headcount (%), (b) MPI Headcount (%), (c) Poverty headcount ratio at $3.20, (d) Poverty
relative (%).
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4. Discussion

This paper presents a novel application of EO satellite data in measuring the teaching
floor area of a sample of 1900 rural public primary school buildings across 19 Nigerian
States. We relate these measurements to nationally reported pupil enrolment data, thus
determining how many of these schools would be deemed overcrowded. This approach
identified that 81.4% (±0.2%) of the schools measured appeared to be overcrowded. In
order to illustrate the potential value of our results, we performed further exploration of the
distribution of the overcrowded schools and their interlinkage with literacy and numeracy
rates, and poverty indices.

While measuring floor area could be performed manually on-site by school staff or others,
the collection and reporting of such data for the number of rural primary schools in a large
and populous country such as Nigeria is a substantial, expensive, and time-consuming
administrative task, with potential for miscalculation and data gaps. On the other hand, EO
data are readily available, address issues of accessibility in remote areas, are easily operated
(convenient and free use of Google Earth), and are easy to update over time as schools add
more classroom buildings. For example, from the historical satellite imagery incorporated
in Google Earth, we were able to observe from establishing our sample of 1900 schools,
that 113 of the schools had been extended and another 130 schools had been demolished
between 2011 and 2019. Therefore, we suggest that EO data can provide a reliable, accurate,
and convenient means for assessing classroom areas at the national scale and this has
the potential to be automated via Artificial Intelligent/machine learning approaches (see
Yazdani et al., [50] for identifying rural schools in Liberia). The advantages of this approach
are probably most likely to be realised in the developing world where issues of accessibility
to rural schools are especially challenging. Indeed, we consider the ability to rapidly and
remotely evaluate overcrowding in the rural primary schools presented in this study, can
help government agencies and NGOs in recognising priorities and to target attention and
investment. Likewise, the method can be used in other countries where the spatial pattern
of the school buildings and the number of students enrolled in school is understood.

As noted, EO data are convenient and easily available, but some limitations exist.
We based our analysis on the total area of the school buildings and assumed that this
was primarily dedicated to classrooms. Classrooms are understood to be the major use of
the space, but satellite images cannot distinguish other usages within the building (e.g.,
administration uses, storerooms, etc.). Therefore, for calculation of classroom space per
pupil, small buildings (width < 4 m and length < 7 m) were removed from the analysis
for schools with more than 2 buildings assuming these are lavatory facilities. Veranda
space was also extracted from classroom space based on the building width measurements,
detailed exclusion criteria, and uncertainty analysis. All assumptions were established
using the trends observed from the on-site measurements. The total remaining school
building area obtained for classroom space was further reduced by 15% as per UBEC
recommendations for administration uses [6].

Secondly, the EO images cannot determine the quality of the classroom space such
as the internal condition of the building, availability of desks, availability of equipment,
blackboards, etc., or lack of teachers (e.g., ‘ghost’ teachers—a type of fraud that often occurs
in developing countries) [51]. Thirdly, the approach is not straightforward for schools that
have more than one storey (mostly in urban areas). In Nigeria, the majority of rural schools
were built to a common single-storey design, but urban schools often have multiple storeys.
It may be possible to estimate height using shadow length taken at a particular time of the
day, but even so, the assumptions become more complicated.

In our previous work [52,53], we discussed the importance of providing validation
information and estimating uncertainty associated with indicators calculated from EO
data sets. Despite the pandemic time, we obtained the on-site school measurements of
21 schools from one state and consider that to be a representative sample of common
single-storey designed buildings used across rural areas in the country. Hence, the results
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of this study have been validated by both on-site measurements and statistical analysis
using socio-economic indicators.

Overcrowded schools result from increases in student enrollment that are unmatched
by school resources. School overcrowding and poverty are two distinct social issues, but
literature shows that they are related and take part in a cause-effect relationship (shown
in Figure 9). Insufficient classroom area can cause indirectly poverty, as children drop out
of primary school without achieving minimal academic performance [54,55] and is also
reflected in literacy and numeracy results [14,23–25], and vice versa when poverty (state not
having enough money to spend in education) causes a lack of school resources [56–58]. Our
study has shown that EO approaches can be important, efficient, enabling tools revealing
school overcrowding in this case and helping authorities to make progress on a number
of the UN SDGs. Figure 9 provides a conceptual model showing where EO can play a
key role in making progress on the critical socio-economic relationships that affect the
achievement of both SDG4 for quality education and promotion of lifelong learning and
SDG 1 on poverty alleviation.

Figure 9. Cause effect relationship of overcrowded schools and social indices.

This study supports the need for an increased awareness of the value of satellite EO
approaches for identifying both the specific example of overcrowded classrooms and, more
generally, in supporting the socio-economic SDGs (as well as the environmentally focussed
ones). Given the challenges involved in implementing the SDGs then the adaptation of a
number of indicators to enable them to make use of readily available EO data presents a
valuable opportunity to calibrate progress efficiently and economically.

5. Conclusions

The following conclusions can be drawn from this research:

• Overcrowded classrooms with less than 1.2 m2/pupil in rural primary schools in
Nigeria were readily identified using satellite EO tools in combination with available
school enrolment data.

• Results show that 84.4% (±0.2%) of schools measured are overcrowded and these
are reflected in the education attainment (using literacy and numeracy rates) and
poverty levels. The use of satellite images offers cost and time-efficient data to support
improvements to education in Nigeria and elsewhere, particularly for those schools
with one floor, and a simple measurement model and Monte Carlo Analysis can
provide uncertainty to those satellite estimations that can be used to assess the fitness-
for-purpose of the satellite data.

• Assessing pupil density using satellite EO can provide important information to help
progress towards the UN SDGs for quality education and lifelong learning (SDG 4),
equal access to opportunities (SDG 10), and reduce poverty (SDG 1). In wider terms,
this study has also highlighted how EO-derived information can offer effective and
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complementary support for sustainable development, including for indicators that are
more closely aligned with social dimensions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14031408/s1, Table S1. Information about the on-site school
measurements, Table S2. On site measurements compared to satellite images measurements, Table
S3. Python codes are used to calculate school overcrowding and the associated uncertainty Table S4.
Further explanation of differences between original calculations and the Monte Carlo analysis, Table
S5. Monte Carlo Analysis for individual schools. Figure S1. School number 6 (blue dots) and 36 (grey
dots) show the 50 Monte Carlo (MC) runs and the original measurements (brown and green lines) on
the teaching area (m2)/pupil, Figure S2. In blue is the standard deviation of the school teaching area
per pupil as a function of school teaching area per pupil. Negative values are given (calculated as -1
times the standard deviation) as well, to show the full spread. In orange the bias, calculated as the
difference between the mean of the Monte Carlo output and the teaching area per pupil calculated
from the original dataset, Figure S3. In blue is the standard deviation of the school teaching area
per pupil as a function of school teaching area per pupil. Negative values are given (calculated as -1
times the standard deviation) as well, to show the full spread. In orange, the bias, calculated as the
difference between the mean of the Monte Carlo output and the teaching area per pupil calculated
from the original dataset.
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Abstract: Achieving the seventeen United Nations Sustainable Development Goals (SDGs) requires
accurate, consistent, and accessible population data. Yet many low- and middle-income countries lack
reliable or recent census data at the sufficiently fine spatial scales needed to monitor SDG progress.
While the increasing abundance of Earth observation-derived gridded population products provides
analysis-ready population estimates, end users lack clear use criteria to track SDGs indicators. In
fact, recent comparisons of gridded population products identify wide variation across gridded
population products. Here we present three case studies to illuminate how gridded population
datasets compare in measuring and monitoring SDGs to advance the “fitness for use” guidance.
Our focus is on SDG 11.5, which aims to reduce the number of people impacted by disasters. We
use five gridded population datasets to measure and map hazard exposure for three case studies:
the 2015 earthquake in Nepal; Cyclone Idai in Mozambique, Malawi, and Zimbabwe (MMZ) in
2019; and flash flood susceptibility in Ecuador. First, we map and quantify geographic patterns
of agreement/disagreement across gridded population products for Nepal, MMZ, and Ecuador,
including delineating urban and rural populations estimates. Second, we quantify the populations
exposed to each hazard. Across hazards and geographic contexts, there were marked differences
in population estimates across the gridded population datasets. As such, it is key that researchers,
practitioners, and end users utilize multiple gridded population datasets—an ensemble approach—to
capture uncertainty and/or provide range estimates when using gridded population products to
track SDG indicators. To this end, we made available code and globally comprehensive datasets that
allows for the intercomparison of gridded population products.

Keywords: Sustainable Development Goals; hazards; Earth observations; remote sensing; demogra-
phy; urbanization; gridded population

1. Introduction

The United Nations Sustainable Development Goals (SDGs) aim to end global poverty
by 2030 and ensure a sustainable future [1]. To accomplish this, the SDGs outline a set of
seventeen interlinked and shared objectives to improve economic and health outcomes in
low- and middle-income countries (LMICs) while simultaneously reducing environmental
degradation and tackling climate change for all countries [2,3]. The SDGs were designed
to overcome the measurement challenges of the Millennium Development Goals [4] by
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outlining a clear set of indicators to track progress. Accordingly, global partnerships—
such as the Sustainable Development Solutions Network [5] and the Global Partnership
for Sustainable Development Data [6]—were established to provide countries with best
practices to monitor SDG indicators and to support decision making to achieve the SDGs [7].
These partnerships increasingly advocate for countries to leverage the considerable amount
of Earth observations (EO) data to track SDG indicators. In particular, analysis-ready EO
data present a systematic, affordable, and longitudinal pathway to track SDG indicators that
are specifically tractable for decision makers [8–12]. However, researchers, practitioners,
and decision makers collectively lack guidance on how to best utilize wide-ranging and
context-specific EO data to monitor SDG indicators.

This lack of guidance creates challenges for the SDGs’ “leave no one behind” agenda.
Not only does tracking many SDG indicators require accurate and accessible information
on where people live, but achieving the SDGs entails providing services to people. Indeed,
73 SDG indicators require population data to track them [5]. Yet, due to the lack of
reliable and consistent census data for many countries [13–15], we do not have information
regarding where people live at sufficiently fine spatial scales to measure, monitor, and map
changes in the distribution of populations relevant to many of the SDGs [13]. As such,
EO-derived gridded population products present a vital source of population information
to track the SDGs that continue to gain attention [5,16–19]. Each gridded population
product offers spatially explicit representations of population distributions in a comparable,
consistent manner that can be well suited to monitor SDG indicators across disparate
geographies and time points. We chose to focus on gridded population data for two
reasons. First, the gridded population products are receiving increasing use by a wide
range of researchers, practitioners, and decision makers. Second, the methodologies and
EO input data used to develop gridded population products continue to advance rapidly.

Given the wide range of gridded population products available, new “fitness for
use” guidelines outline the tradeoffs and benefits the various gridded products offer for
monitoring many SDG indicators [5,20]. However, the findings from recent studies [21–25]
that have compared how gridded populations products allocate population illuminate
the need for comparison of these datasets in the context of measuring and monitoring
the SDGs. For example, a recent comparison of gridded population products against
government-derived gridded census data in Sweden found wide variation in the accuracy
of gridded population datasets to measure pixel-level population estimates [21]. Similarly,
another recent study identified wide disagreement in both the location of and population
estimates for urban settlements in Africa across gridded population products [25].

Broadly, the variation across products is explained by three reasons (for a recent
review, see [20]). First, each gridded population product relies on different types of EO-
based ancillary input data and production methods. Second, gridded population products
differ in spatial resolution, projections, and temporal coverage. Third, for all but one
product (Table 1), the process of creating the gridded distribution of population involves a
disaggregation of census or administrative unit area counts into individual cells by relying
on various EO-based (e.g., land cover type, settlement presence, nighttime light intensity)
and geospatial covariates (e.g., buildings, roads, elevation) that vary in characteristics,
quality, and accuracy [20]. Simply put, each gridded population product will likely tell
a different story. In countries where reliable or recent fine-resolution census data are not
available—precisely the context in which EO-enhanced gridded population datasets were
designed to be employed—few independent fine-resolution micro censuses exist against
which to assess the accuracy of gridded population products. Furthermore, aside from
World Population Estimate 2016 (WPE-16), all current global gridded population products
lack uncertainty estimates [5,20]. Until robust validation studies are available or uncertain
estimates are produced, there remains a need to assess how different population data
sets may influence the methods and results employed to monitor and evaluate progress
towards SDGs.
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Here we present three case studies to illuminate how gridded population datasets
compare in measuring and monitoring SDGs and to advance the “fitness for use” guidance.
Our focus is on SDG Target 11.5:

“By 2030, significantly reduce the number of deaths and the number of people
affected and substantially decrease the direct economic losses relative to global
gross domestic product caused by disasters, including water-related disasters,
with a focus on protecting the poor and people in vulnerable situations.”

In the context of SDG Target 11.5, we compare how five gridded population data
products (Table 1) measure the population exposed to the 2015 earthquake in Nepal and
Cyclone Idai in Mozambique, Malawi, and Zimbabwe (henceforth referred as MMZ) in
2019, as well as populations susceptible to flash floods in Ecuador. By focusing on a range
of geographic and country-specific contexts across several hazards, our results provide
insights into the ways in which the construction of different gridded population products
across geographies affects the resulting calculation of the potentially affected populations.

Furthermore, we explore how gridded population products can be applied to other
global frameworks, such as towards the Sendai Framework for Disaster Risk Reduction
Targets [26]. Specifically, to achieve the first four targets (a–d), disaster risk monitoring re-
quires accurate estimates of impacts on people and/or property [27]. Our work contributes
to the Sendai Framework Global Target B: “Substantially reduce the number of affected
people globally by 2030, aiming to lower the average global figure per 100,000 between
2020–2030 compared with 2005–2015.” Beyond the importance of gridded data for calculat-
ing these indicators, however, we note that accurate population estimates are also vital to
emergency management and humanitarian agencies in the post-disaster response phase,
when assessments of the number of people affected directly translates to supplies and dis-
aster finance being prioritized (or deprioritized) across spatial units of interest [28]. Thus,
the work presented here contributes to an understanding of the potential for operational
uses of various gridded population products.

We chose five gridded populations products (Table 1) due to their availability at the
time of analysis and their global coverage. Our analysis focuses on the comparison of
these different gridded products and why estimates are similar or dissimilar in different
socio-economic and hazard contexts. Given the lack of “ground truth” micro census
population estimates for the regions compared, we do not assess the accuracy of the
gridded population products themselves. However, the analysis provided does inform
end users of the potential pros and cons of using these datasets in the context of measuring
SDG 11.5.

We have two interrelated objectives. First, we map and quantify geographic patterns
of agreement/disagreement across gridded population products for Nepal, MMZ, and
Ecuador, including delineating urban from rural populations estimates. Several method-
ologies have been used to compare products [21–25]. For the initial step, we identify the
number of rasters that agree if a given pixel is inhabited or not. Next, we assess pixel-level
variation across the five gridded population products by plotting the minimum pixel
values against pixel ranges to identify outliers and showcase the contrast in pixel-level
measurements. Then, for each gridded product, we examine transects through the primary
urban centers impacted by the hazards to both visually and quantitatively demonstrate the
variability in population estimates by product across the urban-rural continuum [29].

The second objective aims to situate our first objective within the context of measuring,
monitoring, and mapping SDG 11.5. For each dataset, we estimate the total number of
people, stratified by urban and rural populations, exposed to each hazard. For Nepal,
we compare estimates across seismic intensity levels during the 2015 Earthquake. With
Cyclone Idai, we compare estimates of population inundated by water detected by Sentinel-
1 EO platform and exposed to wind speed zones. Lastly, in Ecuador, we quantify and map
populations living in zones across levels of susceptibility to flash floods. We emphasize that
our results do not quantify error or validate population estimates across gridded population
products. We note that the urban land cover designation we employ (Section 2.1) is for
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comparative purposes only. Our analysis does not assess how gridded population products
measure urban populations and urban boundaries (for further detail see [25,29]). All our
code and data used in this analysis is open source and freely available for other scholars
and practitioners to develop their own use cases. This includes global raster datasets that
allow for the intercomparison of gridded population products.

2. Materials and Methods

2.1. Dataset Descriptions
2.1.1. Population Data

We focus on three geographies of interest—Nepal, the region of Mozambique, Malawi,
and Zimbabwe (MMZ), and Ecuador (Figure 1)—to explore how the gridded population
products measure populations related to SDG 11.5 across a range of geographic contexts.
Nepal, a relatively small country, is landlocked between China’s Tibet Autonomous Region
and India, and is very mountainous. As hazards do not respect political boundaries, we
present MMZ to measure exposure in a cross-border use case. Indeed, population exposure
to Cyclone Idai spanned from Mozambique’s low-elevation coastal zones, to Malawian
settlements near Lake Malawi, to the relatively high-elevation settlements in Zimbabwe.
Ecuador presents both a mountainous and a coastal geography to examine hazards, as
well as higher levels of economic development compared to the other two geographies
of interest. We intentionally chose countries and study areas that coincided with hazard
events that matched the gridded population product dates and span LMIC contexts.

 

Figure 1. Map of three geographies of interest with administrative input units for GWP-15 overlaid.

The five gridded population products we use are (Table 1): World Population Estimates
2016 [30]; the Global Human Settlement Layer Population 2015 (GHS-15) [31]; Gridded
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Population of the World version 4 2015 (GPW-15) [32]; LandScan 2015 (LS-15) [33]; and
WorldPop 2016 (WP-16) [34]. For a complete description of how each gridded population
product is produced, see [20,25], as well as the PopGrid Data Collaborative [35].

Aside from GPW-15, the gridded population datasets used in this study rely on re-
lationships between EO data and human settlement patterns to disaggregate the finest
available administrative unit level population data into pixels (Table 1). A higher adminis-
trative level corresponds to a finer resolution administrative unit. Additionally, only LS-15
focuses on daytime, or ambient population, whereas the other products aim to capture
nighttime residential population [35]. Last, aside from GHS-15, which disaggregates admin-
istrative unit-level population only within pixels identified as containing built settlements
(constrained), all other products disaggregate administrative unit-level population over all
land pixels globally (unconstrained). All products we use are at 1 km spatial resolution.
We use GPW-15 as a baseline for comparison, as it is the underlying population data for
both GHS-15 and WP-16. Finally, we include United Nations population estimates for each
geography of interest for 2015 (Table 2) [36].

Table 1. Summary of near-global coverage gridded population datasets included in this study. For further information,
see [20] and the PopGrid Data Collaborative [35].

Dataset Producer EO Data Population Constrained Model Description Citation

GPW-15:
Gridded

Population of the
World v4.11, 2015

CIESIN,
Columbia
University

None Residential No
Equal allocation of
population to cells

within admin. units
[32]

GHS-15:
Global Human

Settlement
Layer-POP, 2015

European
Commission,

Joint Research
Centre (JRC)

Landsat Residential Yes

Binary dasymetric,
proportional allocation

to built-up areas
extracted primarily
from 30 m Landsat

imagery

[31]

WP-16:
WorldPop Global,

Unconstrained,
2016

WorldPop,
Univ. of

Southampton

Landsat,
DMSP-OLS,

VIIRS,
MODIS,
MERIS

Residential No

Random Forest model
with 24 covariates and
weighted dasymetric

redistribution

[34,37]

LS-15:
LandScan, 2015

Oak Ridge
National

Laboratory

Landsat,
MODIS,

DMSP-OLS

Ambient
(24-h average) No

Multivariable
dasymetric model with
4 covariate types and

weighted
redistribution

[33,38]

WPE-16:
ESRI World
Population

Estimate, 2016

Esri Inc. Landsat Residential No
Dasymetric algorithm

with 16 covariate
weighting data sets

[30]
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Table 2. Allocation of population and pixel-level agreement across five gridded population products for Nepal, MMZ, and
Ecuador circa 2015. For each geography of interest the number and level of input administrative units is listed. Note urban,
rural, and total populations are in millions.

Geography
Urban

Pop
Rural
Pop

Total
Pop

Pct
Urban

Urban
Max

Rural
Max

Urban
Pixels

Rural
Pixels

Uninhabited
Pixels

Nepal 3990 level 3 units
WPE-16 2.66 30.71 33.37 7.97% 45,982 25,237 275 118,437 76,844 (39%)
GHS-15 3.3 25.16 28.46 11.6% 46,472 117,462 271 104,208 91,077 (47%)
GPW-15 2.88 27.84 30.72 9.38% 32,592 28,114 275 175,048 20,233 (10%)

LS-15 2.85 28.69 31.54 9.04% 57,668 44,892 275 145,639 49,642 (25%)
WP-16 3.64 28.6 32.24 11.29% 48,358 46,939 275 167,188 28,093 (14%)
UN-15 5.32 23.34 28.66 18.56%

MMZ—Mozambique 413 level 3 units, Malawi 12,647 level 3 units, Zimbabwe 92 level 2 units
WPE-16 6.84 59.52 66.36 10.31% 26,168 17,138 1695 232,593 1,356,048 (85%)
GHS-15 8.34 52.13 60.47 13.79% 81,852 156,171 1810 176,110 1,412,416 (89%)
GPW-15 3.46 51.9 55.37 6.25% 26,555 17,190 2011 1,467,545 120,780 (8%)

LS-15 6.51 50.93 57.45 11.33% 61,126 40,592 1976 1,370,043 218,317 (14%)
WP-16 5.01 51.81 56.82 8.82% 26,995 25,233 2009 1,409,324 179,003 (11%)
UN-15 17.61 43.75 61.36 28.7%

Ecuador 1047 level 3 units
WPE-16 7.97 10.28 18.26 43.65% 18,108 14,867 1457 41,897 247,071 (85%)
GHS-15 8.19 7.86 16.05 51.03% 31,851 43,017 1510 41,755 247,160 (85%)
GPW-15 2.06 13.83 15.89 12.96% 4172 4172 1664 235,809 52,952 (18%)

LS-15 7.58 8.24 15.82 47.91% 44,304 31,740 1645 192,868 95,912 (33%)
WP-16 5.35 10.87 16.23 32.96% 8782 8428 1663 224,407 64,355 (22%)
UN-15 10.24 5.91 16.14 63.44%

2.1.2. Hazards Impacts & Data
2.1.2.1. Nepal Earthquake

On 25 April 2015, a 7.8-magnitude earthquake struck approximately 80 km northwest
of Kathmandu, the country’s capital, at 6:11 UCT [39]. Official estimates state that the
earthquake killed more than 8000 people, injured 21,000 more people, and displaced at least
2 million people in total [40]. Some 600,000 homes were destroyed, with another quarter
million damaged [41]. The government estimated that reconstruction costs would surpass
$7 billion, or a third of Nepal’s GDP in the prior fiscal year [42]. Data and information on
the earthquake was obtained from the US Geological Survey (USGS) [39]. USGS ShakeMap
shapefiles were used to estimate earthquake impacts by “Instrumental Intensity”, which
is a proxy for Modified Mercalli Intensity (a qualitative index that can not strictly be
determined by instruments).

2.1.2.2. Cyclone Idai

Cyclone Idai made landfall near Beira, Mozambique, on 14 March 2019. The storm
had sustained wind >120 km/h. By March 16, the storm had tracked across Southern
Mozambique into Zimbabwe. Flooding was observed throughout Malawi, Mozambique,
and Zimbabwe, directly impacting 1.85 million people across MMZ [43]. The immediate
financial requirement of the response was estimated to be nearly $300 million [43].

To measure maximum flood extent, we use a 90 m raster available from the World Food
Program that captures maximum flood extent as of 21 March 2019 [44]. The raster is derived
from Sentinel-1 data obtained from 12 to 21 March 2019 and ARC Flood Extent Depiction
Model (AFED) detecting non-persistent water (7–16 March and 20 March 2019). We
resampled the 90 m flood raster to 1 km and reprojected it to match GPW-15. Data on wind
speeds were downloaded from the Global Disaster Alert and Coordination System [45],
with shapefiles delineating zones impacted by 60, 90, 120 km/h wind speed thresholds.
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Ecuador Flash Flood Susceptibility

In Ecuador, as well as on a global scale, flash floods are one of the most deadly types
of flood with distinct spatiotemporal physical and impact-related characteristics [46–49].
Early warning systems exist for floods in many countries; however, they are rarely linked
to resilience programming that can decrease risk of a flash flood disaster. While a long
time series of impact data for flash floods (and any type of floods) does not openly exist in
Ecuador [50], financial estimates of flood impact in the country can be acquired in some
instances, with a reported US$238 million in flood impact in 2012 [51].

To represent the susceptibility for flash flooding at the catchment scale in Ecuador, a
new vector dataset is derived from geophysical and non-geophysical data [52]. The sus-
ceptibility layer was built using a principal component analysis (PCA) derived weighted
mean [53] of geographic indicators known to drive the flash flood potential of a catch-
ment, related to geomorphology, drainage systems, and surface characteristics [54–56].
Geographic indicators such as slope, curvature, stream order, area of contributing sources,
density of drainage, land cover, and sand content [57–60] were attributed to each catch-
ment, using the predefined level 12 watershed units of HydroSHEDS [61], developed by
the Conservation Science Program of World Wildlife Fund (WWF). The resulting flash
flood susceptibility composite layer is normalized and reclassified into an equal count
discrete flash flood susceptibility index from 1 to 10, low to high susceptibility, respectively,
and represents the relative ranking of Ecuador catchments according to their increased
susceptibility to generate flash flooding in the case of heavy rain.

Urban/Rural Data

To identify urban versus rural population estimates across the five gridded population
products, we use an urban-rural binary land cover classification derived from MODIS
data—the MODIS global urban extent product (MGUP) [62]. This dataset is available from
2002 to 2018 at 500 m spatial resolution. We resample the 2015 MGUP data to 1 km and
projected it to match GPW-15. We employ MGUP as a relatively independent estimation
of where urban settlements exist, as other MODIS products are an input in three of the
five gridded population products (Table 1). In addition, we recognize that MGUP is
one among many datasets that delineate urban from rural land cover globally and that
binary urban/rural categorizations have well-known limitations [29]. As such, the MGUP
urban/rural designation we employ is, to a degree, arbitrarily defined with an intent
more on trying to better understand underlying population distribution methods, not a
statement on what population is urban and what is rural.

2.2. Raster Processing & Analysis

The five global gridded population rasters and the MGUP urban/rural land cover
raster were spatially co-registered (see Supplemental Information for the detail) and clipped
using the GADM level 0 administrative units for Nepal, MMZ, and Ecuador (excluding
islands). Across all five gridded population datasets, for the three study areas we map
uninhabited pixels, calculate maximum and minimum population (as well as the range
(maximum–minimum) at the pixel level), and measure urban and rural population esti-
mates according to the MGUP urban/rural classification (Table 2). To identify outliers
and highlight the variation in pixel-level estimates, we plotted pairwise pixel minimum
population estimates against pixel ranges (Figure 2). We then examine 7 km by 61 km
transects through three urban areas—Katmandu for Nepal, Beira for MMZ, and Quito
for Ecuador—to visually and quantitatively demonstrate how the products’ population
estimates compare at the pixel level across the urban-rural continuum.

To compare estimates of populations impacted by the three hazards under study,
we sum the populations by hazard criteria for the five gridded population products,
separating urban and rural estimates. For the 2015 Earthquake in Nepal, we sum the
population exposed by the USGS Shakemap “Instrumental Intensity” contour polygons.
For Cyclone Idai, we sum the population exposed by wind speed buffer and flooded area.
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Finally, for the flash flood in Ecuador we sum the population exposed by the susceptibility
index layer.

 

Figure 2. Spatial agreement of if a pixel is inhabited for five gridded population datasets for (a) Nepal,
(b) MMZ, and (c) Ecuador. Values correspond to the number of rasters in agreement that a pixel is
inhabited. White shows that all five gridded population datasets agree that a pixel is uninhabited.
The higher agreement for Nepal (a) and Malawi (b) is a result of the higher number of administrative
input units. Note that the spatial scale of each panel is different.

3. Results

3.1. Pixel-Level Comparisons

Four broad patterns emerged when comparing how the five gridded population
datasets allocate populations in Nepal, MMZ, and Ecuador. First, we found widespread
pixel-level variation in agreement across gridded population products of whether or not
a given pixel is inhabited. Broadly, GHS-15 and WPE-16 identify a smaller proportion of
inhabited pixels regardless of geography. We found that Nepal had the highest proportion
of agreement, with all five gridded population products agreeing that 76% of pixels are
either inhabited or uninhabited (Figure 2a). Only 67% for MMZ (Figure 2b) and 62% for
Ecuador (Figure 2c) had full agreement by all five products. WP-16, LS-15, and GPW-15
tended to distribute population to a far greater number of pixels, unlike GHS-15 and
WPE-16 (Table 2). For example, for MMZ, 85% of pixels in WPE-16 and 89% of pixels in
GHS-15 were uninhabited. In contrast, WP-16, LS-15, and GPW-15 identified that only 11%,
14%, and 8% of pixels in MMZ are uninhabited, respectively.

Second, we documented extreme pixel-level population estimation disparities across
gridded population products (Figure 3) and identified outliers. In pairwise comparison
between the minimum pixel values with the range identified across all five gridded pop-
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ulation products, for Nepal and MMZ, 27 rural pixels with minimums of 0–1000 people
had ranges that exceed 50,000 people. Rural outliers in Ecuador do not have the same
magnitude as Nepal or MMZ. Yet we still identified 8 rural pixels with minimum values of
0–1000 that have a range that exceeds 25,000 people in Ecuador. In the most extreme exam-
ple, one pixel on the border of Nepal and India was estimated by GHS-15 to have nearly
120,000 residents (Figure 3a, Table 2). GPW-15 and WP-16 allocate 2392 and 730 people,
respectively, to the same pixel, and the other two products identify fewer than 125 people.
A visual inspection of high-resolution WorldView imagery from Google Earth reveals that
the pixel mostly corresponds to a river with sand bars. For context, recently the United
Nations Statistical Commission released standards identifying pixels within urban cores as
having a population density of at least >1500 people per km2 [63].

 
Figure 3. To identify outliers and pixel-level variation across gridded population products, the
minimum population estimates (thousands) for each pixel are plotted against the population range
(thousands), separated by rural and urban pixels, for Nepal (a,b), MMZ (c,d), and Ecuador (e,f).
An example of an outlier is evident in panel (a) with one rural pixel having a range of more than
120,000 people.
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Third, we found a clear pattern that WPE-16 total population estimates greatly ex-
ceeded the other four datasets. For instance, in MMZ, we found that WPE-16 exceeds
the total population measured by the other gridded population datasets by 6–11 million
people (Table 2), and exceeds UN population estimates for all three geographies of interest
as well. As another example, while GHS-15 tended to prioritize allocating population to
urban settlements compared to the other gridded population datasets, WPE-16 identified
more urban residents in Nepal, by as much as 500,000 people, than the other four gridded
population products.

Fourth, GHS-15 allocated a greater share of the total population to urban areas (as
defined by the MGUP dataset) than the other four products for all three regions under
study. For example, in Ecuador, GHS-15 estimated that 51% of the total population is
urban. LS-15 was ranked second for Ecuador, allocating 47.9% of the total population to
urban areas, followed by WPE-16 with 43.67% of the total population estimated as urban.
In MMZ, GHS-15 again led in terms of the share of total population allocated to urban
areas, again followed by LS-15. In Nepal, WP-16 and GPW-15, respectively, followed
GHS-15 in terms of the share of total populations allocated to urban areas. Nonetheless,
all five gridded population products underestimated the total urban population for all
three geographies of interest when compared to 2018 United Nations World Urbanization
Prospect estimates [36]. Indeed, even GHS-15 estimated nearly 50% fewer urban residents
in MMZ than official UN counts.

Because the MGUP rural-urban binary designation does not capture how population
density varies across that rural-urban continuum [29], Figure 4 illustrates how each gridded
population product allocates population moving away from major urban centers. For the
Kathmandu transect (Figure 4a), there is far closer agreement in populations among the
products compared to Beira (Figure 4b) and Quito (Figure 4c). GPW-15, LS-15, and WP-16
capture less dense populations to the west of Beira (Figure 4b), as well as to the east of Quito
(Figure 4c). In contrast, WPE-15 and GHS-15 do not capture these rural populations near
Beira and Quito. This finding reinforces the preference of GHS-15 to allocate population to
urban pixels.

Figure 5 presents the comparison of population estimates exposed to seismic intensity
across the five gridded population products, stratified by MGUP-identified urban and
rural settlements in Nepal. For the total population exposed to an intensity greater than
seven, the difference between the highest and lowest populations estimated to be exposed
by the products was more than 1 million people. WP-15 estimated the maximum number
of people exposed at 9.85 million people, whereas GHS-15 finds 8.64 million people. The
products furthermore measured a wide range in both the total number and the proportion
of urban populations exposed to an intensity > 7. On the low end, WPE-16 categorized
22% (2.11 million people) of the population exposed to an intensity greater than 7 as
urban, whereas, on the high end, WP-16 indentifed 33% (3.33 million people) of the total
population exposed to an intensity greater than 7 as urban. As such, the elevated number
of urban residents exposed according to WP-16 paralleled the previous finding that WP-
16 identified more urban residents in Nepal compared to the other gridded population
products (Table 2).

For intensities less than 7 (Figure 5), we found a broad range of population estimates
across the gridded population products. For example, for an intensity between 5 and
6, WPE-16 measured more than 7.73 million people exposed, yet GHS-15 found only
6.46 million people exposed. Generally, the gridded products were largely in agreement
for these lower intensities that the vast majority of people impacted lived in rural areas,
although LS-15 still identified nearly 500,000 urban residents exposed to an intensity
between 5 and 6, and 200,000 urban residents exposed to an intensity between 4 and 5.
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Figure 4. Transects (7 km by 61 km) of population estimates for each gridded population product cen-
tered on urban cores for (a) Kathmandu, (b) Beiria, Mozambique, and (c) Quito. MGUP urban/rural
delineation is indicated for each pixel in the transect in the bottom of the plot of each panel. Note
that the population sums presented in the line plots are the summation of 7 north-south pixels along
the 61 km west-east transect. The color bar corresponds to log10 pixel-level population counts for the
transects shown.
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Figure 5. The total population impacted by the 2015 earthquake that struck Nepal estimates by “instrumental intensity” for
five gridded population datasets. Hatching on bars signifies rural populations, with unhatched portions corresponding to
MGUP-identified urban populations.

3.1.1. Cyclone Idai Exposure in MMZ

Generally, for Cyclone Idai, estimates of populations exposed to high wind speeds
and living in flood-inundated areas in MMZ varied across the five gridded population
data products, both in total agreement and divided by MGUP-identified urban and rural
areas (Figure 6). Wind speeds of 60 km/h, though the least severe of wind categories, had
the greatest variation. For instance, WPE-16 measured 7.41 million people (80% rural), the
most impacted by wind speeds of 60 km/h. GPW-15 identified only 7.01 million people
(88% rural) exposed. Estimates of populations exposed to wind speeds of 120 km/h and
flood-inundated areas, the most damaging hazards, also showed substantial variation.
Again, WPE-16 ranked first, with 2.39 million people (83% rural) exposed to wind speeds
of 120 km/h. The other four gridded products had similar estimates of the total population
exposed to wind speeds of 120 km/h, which ranged from 1.89 to 1.95 million people,
though GHS-15 and LS-15 identify a greater proportion of urban populations impacted
compared to GPW-15 and WP-16. Similarly, estimates of populations living in flood-
inundated areas ranged from WPE-16 identifying 817,000 people (88% rural) to GPW-15
identifying 1.28 million people (99% rural). Only for wind speeds of 90 km/h were the
products relatively consistent—rural populations were almost exclusively exposed, with
high-end estimates of 1.56 million people by WPE-16 and a low-end estimate of 1.46 million
people by WP-16.
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Figure 6. The total population impacted by wind speeds and flooding from Cyclone Idai across MMZ estimated by five
gridded population datasets. Hatching on bars signifies rural populations, with unhatched portions corresponding to
MGUP-identified urban populations.

3.1.2. Flash Flood Susceptibility in Ecuador

We found two main trends in the comparative analysis of population datasets and
the estimation of the rural and urban share within each susceptibility decile (Figure 7).
First, for most deciles, WPE-15 identified more population compared to the other four
gridded population data products. For example, for the 10th decile, which was the most
populated, WPE-15 estimated 2.96 million people, while on the low end, GPW-15 identified
2.47 million people. Second, across all susceptibility deciles GPW-15 estimated a greater
share of rural population compared to the other four gridded population datasets. This is
demonstrated by clear differences in rural/urban proportions in decile 3, whereby GPW-15
estimated almost all population as rural, compared to the under 50% estimation of rural
population identified using the other products. GHS-15 and LS-15, on the other hand,
allocated a greater share of population to urban areas. Again, using the 10th decile as an
example, which indicates the areas with the highest likelihood of flash flood susceptibility,
GHS-15 and LS-15 allocate 72% and 69% of the total population to urban areas, respectively.
WPE-15 (62% urban) and WP-16 (56% urban) tend to fall between the preference of GHS-15
and LS-15 for urban areas and GPW-15’s (32% urban) preference for rural areas.
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Figure 7. The total population susceptible to flash floods in Ecuador by susceptibility decile estimated derived from five
gridded population datasets. Hatching on bars signifies rural populations, with unhatched portions corresponding to
MGUP-identified urban populations.

4. Discussion

Gridded population data provide valuable population counts and densitity estimates
for regions in the world where census data is lacking, coarse-scaled, or outdated [13]. The
comparable and consistent means by which individual gridded data products are created
ensures simple integration with other geospatial data products for use in measuring and
monitoring various SDG indicators. However, using SDG 11.5 and a hazard context for
three different geographies, we demonstrate that gridded population estimates can vary
widely depending on the product of choice. Given the broad geographic contexts of our
three case studies, our results suggest that gridded population products will similarly vary
across many low- and middle-income countries (LMICs).

While variation in gridded population datasets has been documented by previous
studies [21–24], many widely cited hazards studies (e.g., [64,65]), recent media narra-
tives [66], and United Nations reports [67] continue to employ a single gridded population
dataset without justification. In all of these cases, the authors neglect to acknowledge the
wide variation in pixel-level population estimates. Indeed, we note that a recent review
of estimates of population exposure to sea-level rise or living in low-elevation coastal
zones [68] identified multiple global studies published since 2016 that use gridded popula-
tion products. None of these studies employed multiple gridded population products in
their risk estimates. Single-source population estimates, if framed in the context of hazard
risk reduction related to SDG 11.5, are thus presented as facts to decision makers. This
has broad implications for the allocation of scarce resources. If deployed in the immediate
aftermath of a natural disaster, it could also affect humanitarian response and allocation of
disaster relief.

Take two examples: first, we found that GHS-15 and LS-15 tend to allocate a greater
share of population to the MODIS global urban extent product (MGUP)-designated urban
areas compared to the other three products. While the MGUP rural-urban delineation is
specific to the context of MODIS built-environment detection [62], and it is not the only
criterion to identify urban settlement locations with EO data [25,29], this finding suggests
that GHS-15 and LS-15 also prioritize allocating population to where the built environment
is detected by Earth observation (EO)-derived spatial correlates. WP-16 also has been
shown to prioritize built environment [69]; but our results indicate that WP-16 allocates
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population more evenly across land cover classes. Second, WPE-16 estimates a far greater
population in Nepal, MMZ, and Ecuador compared to both UN estimates (Table 1) [1]
and the other gridded population products. Should decision makers be presented with
hazard risk reduction solutions or disaster preparedness scenarios based on GHS-15, they
may implement policies that overly support urban populations. Communities not easily
identified by the spectral signature of the EO-based data product would then be neglected.
Similarly, relying only on WPE-16, in which population estimates are largely driven by
leveraging the Landsat archive, may overestimate populations exposed or impacted by a
hazard, leading to the over-allocation of resources, compared to policies developed with
the other gridded population products. As such, efforts to monitor SDG indicators like
SDG 11.5, which depend on detailed population data, can vary as a function of the gridded
population product employed.

It is important to note that tracking any SDG indicator will also depend on the
granularity of hazard data used in association with gridded population data. Indeed, in
the context of SDG 11.5 the granularity of hazard data will affect estimates. For example,
when we zoomed in on major urban centers from the three case studies presented (Figure 4,
Figure 8), significant pixel-level population ranges are identified that may not actually
affect the total population measured over larger geographic areas. The USGS earthquake
instrument intensity data (Figure 8a) is at a much coarser granularity over Kathmandu
than the EO-observed flood inundated area around Beira, Mozambique (Figure 8b), or the
flash flood susceptibility layer for Quito (Figure 8c). Yet, unlike the more standardized
analysis-ready hazard datasets we presented here, there is not a widely accepted set of
criteria for deciding which gridded population dataset should be used to measure exposure
to a given hazard.

While recent “fitness for use” guidelines provide key information for researchers, prac-
titioners, and decision makers [5,20], our results suggest that the single use of a gridded
population product should be avoided in tracking SDG indicators. These guidelines empha-
size that spatial scale, reliability, and granularity of underlying census data, the population
under study, and geography must be considered in data selection. Yet the variation across
gridded population products we found for a range of hazards across geographic contexts
signals that the single use of a product has realworld financial consequences. For instance,
using our results from Cyclone Idai and per capita dollar basic disaster emergency costs of
$112 per person [70], relief costs solely for those in flood inundated areas in MMZ range
from US$92 million using the WPE-16 estimate of 817,000 people to US$143 million using
GHS-15 estimate 1.28 million. Both estimates are below the official estimate of 1.85 million
people impacted by Idai and the immediate financial estimate of US$300 million [43]. As
such, we caution against the single use of a gridded population product. We reaffirm
the need for the validation of existing products and urge future producers of gridded
population products to provide error estimations.

Different gridded population modeling approaches and EO input data can result in
varying population estimates per grid cell [20]. However, the finer the spatial resolution of
input administrative units (Table 2) associated with population counts, the more similar the
output population values per pixel will be across products regardless of the disaggregation
approach. This is clear from Figure 4a, which shows much less variation in population
estimates across the urban-rural gradient around Kathmandu. Generally speaking, finer
administrative units tend to concentrate in higher population density areas. Administrative
units that are larger, and coarser in spatial extent, tend to associate with lower population
density areas, and are affected more by the different disaggregation approaches and their
underlying assumptions. The result is greater variation in population estimates per pixel
within the same administrative unit. We thus encourage national census agencies to release
data with associated boundary files for the highest resolution units possible.
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Figure 8. Pixel-level population range (maximum–minimum population estimated across gridded
population products) overlaid with administrative units used for deriving gridded population
datasets and the hazard under study. Panel (a) is situated over Kathmandu, with the earthquake
instrument intensity contours shown. Panel (b) covers Quito with the highest flash flood sustainability
area outlined in red. Panel (c) focuses on Beira, Mozambique and the mouth of the Pungwe River.
Red hatching is the 90 m flood layer from Cyclone Idai resampled to 1 km.

Our results further highlight differences between constrained and unconstrained
gridded populations products. Constrained approaches disaggregate population counts
linked to administrative units only within pixels identified as “settled.” In doing so, there
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may be a tendency to overestimate the number of people “distributed” within high-density
(urban) settings. Our results indicate that this is the case with GHS-15. In contrast, the
unconstrained approach will disaggregate population counts into any pixel identified
as “land,” which may overestimate the number of people allocated within low-density,
i.e., more rural, settings. In the case of GPW-15, the overestimation in low-density (rural)
settings is expected to be even more pronounced than in the other unconstrained products
given that the disaggregated population totals are evenly redistributed within all pixels
identified as “land” and there is no additional ancillary data used in the model.

While we recommend using multiple products in hazard analysis, if selecting a single
gridded population product, it is important to identify not only if the gridded population
product is constrained in some way, but also how it is constrained. Underlying data sources
of constrained products may have validation or uncertainty estimates that may vary by
region or time point. For input settlement products that represent the constrained “built”
areas in which population counts are disaggregated, there is a general expectation that
those gridded products will have a more accurate representation of population distribution.
However, the final gridded population product will be greatly impacted by the presence of
omission and commission errors in the input settlement dataset, with small/isolated rural
settlements potentially being more difficult to detect and certain types of land cover (e.g.,
rock outcrops or sandy soils) potentially being misclassified as settlement areas [71].

On the other hand, unconstrained approaches use a dasymetric approach to disag-
gregate input administrative population values within all pixels identified as “land.” This
will introduce error in the final gridded output for those areas that are actually uninhab-
ited. There will be some trade-off with a minimization of the presence of omission and
commission errors in whatever input settlement data is used in the modeling due to the
influence of other ancillary covariates representing factors correlated with population
density and presence. There is error in all products, but some basic understanding of
how the gridded data products are produced can help identify which product makes
the most sense for a given application. Reed et al. (2018) [72] demonstrates the relative
robustness of the unconstrained WorldPop dataset compared to the constrained HRSL
dataset. The similarities in error metrics for these products emphasizes the importance
of considering omission/commission errors in the input built datasets and subsequent
allocation of population values in the final product.

Finally, it should be noted that most of these gridded population datasets represent a
residential population, or where people are most likely to be when at home. LandScan is an
exception and represents the ambient population, or the average population distribution
over 24 h. That type of data product is potentially useful for assessing exposure as it
represents not only the static census-based residence information but also the ambient
nature of population movement over a 24 h period.

5. Conclusions

Vector-based administrative-level population data often fails to disaggregate popula-
tion at the spatial scales requisite to identify where people actually live on the planet. This
type of data can fail to provide useful information for the delivery of services required to
achieve the SDGs. As such, our findings reinforce the many advantages of using gridded
population products to track SDG indicators. This is especially important in the context
of measuring, monitoring, and mapping SDG 11.5. Indeed, reducing exposure to hazards
requires accurate population estimates, and for many LMICs, Earth observation-derived
gridded population products are the best available data. Likewise, gridded population
products can provide crucial information in post-disaster contexts as well. The case studies
we showcase here reinforce the broad utility of these products and advance our under-
standing of “fitness for use” for both SDG 11.5 and the 73 SDG indicators that require
accurate, comparable, and timely high-resolution population estimates.

Nonetheless, we highlight that for some geographical regions (and/or hazards),
population estimates will vary depending on the choice of gridded population product.
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Despite the variation we identify across gridded population datasets, we emphasize that
uncertainty is not per se a limitation in employing gridded population datasets to track
the SDGs. Without externally derived validation data or producer error metrics, it remains
difficult to provide definitive recommendations in terms of what product to use, where
and for what type of hazard. As such, we recommend further resources be dedicated to
micro census data collection and encourage producers to quantify uncertainty in future
gridded population products.

Most importantly, we recommend that researchers, practitioners, and decision makers
acknowledge that inherent uncertainty when using these products. Along with leveraging
the “fitness for use guidelines” [5,20], a key step to doing so is to perform a sensitivity
analysis [23] and/or present a range of estimates using multiple gridded populations
using an ensemble approach. To this end, we have provided the code used in the analysis
and made available a global raster dataset that allows for the intercomparison of gridded
population products. Furthermore, researchers and practitioners who develop tools for
decision makers to track the SDGs should incorporate multiple gridded population datasets.
Decision makers can thus develop policies and allocate resources informed by information
that captures some of the inherent uncertainties of leveraging EO data to measure human
populations across the planet. Indeed, single-use population estimates could open the door
for bad actors to select the gridded population product that maximizes progress towards
achieving an SDG. Lastly, we emphasize that the development of indicators, including the
use of datasets like gridded population products, should be a collective effort between
users and producers across decision-making levels [73].
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Abstract: Assessing and measuring urban vulnerability resilience is a challenging task if the right
type of information is not readily available. In this context, remote sensing and Earth Observation
(EO) approaches can help to monitor damages and local conditions before and after extreme weather
events, such as flooding. Recently, the increasing availability of Google Street View (GSV) coverage
offers additional potential ways to assess the vulnerability and resilience to such events. GSV is
available at no cost, is easy to use, and is available for an increasing number of locations. This
exploratory research focuses on the use of GSV and EO data to assess exposure, sensitivity, and
adaptation to flooding in urban areas in the cities of Belem and Rio Branco in the Amazon region of
Brazil. We present a Visual Indicator Framework for Resilience (VIFOR) to measure 45 indicators
for these characteristics in 1 km2 sample areas in poor and richer districts in the two cities. The aim
was to assess critically the extent to which GSV-derived information could be reliable in measuring
the proposed indicators and how this new methodology could be used to measure vulnerability
and resilience where official census data and statistics are not readily available. Our results show
that variation in vulnerability and resilience between the rich and poor areas in both cities could
be demonstrated through calibration of the chosen indicators using GSV-derived data, suggesting
that this is a useful, complementary and cost-effective addition to census data and/or recent high
resolution EO data. Furthermore, the GSV-linked approach used here may assist users who lack the
technical skills to process raw EO data into usable information. The ready availability of insights on
the vulnerability and resilience of diverse urban areas by straightforward remote sensing methods
such as those developed here with GSV can provide valuable evidence for decisions on critical
infrastructure investments in areas with low capacity to cope with flooding.

Keywords: vulnerability; flooding; remote sensing; Earth Observation (EO); Google Street View
(GSV); climate change

1. Introduction

Floods are one of the most common and severe hazards to disrupt people’s livelihoods
globally [1]. The effects of climate change and widespread flooding can exacerbate urban
challenges and make it more difficult to tackle issues and help vulnerable communities in
informal settlements [2]. The Intergovernmental Panel on Climate Change (IPCC) outlines
that climate-related risks for natural and human systems are higher for global warming of
1.5 ◦C than at present, but risks depend on the magnitude and rate of warming, levels of
development and vulnerability, and on the choices of adaptation [2]. Given that the world
will further urbanize during the next decade, from 56.2% in 2020 to about 60.4% by 2030 [3],
these vulnerabilities are likely to intensify. Climate change can cause events such as flooding
with higher frequency, intensity, and variability, affecting urban areas where density of
housing is high and widespread [4,5]. Given that urban areas are expanding, along with
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the proportion of a population living and working within them, there is a growing need for
assessing their vulnerability to disasters such as flooding. Indeed, there have been various
international initiatives to address issues of uneven development and vulnerabilities within
urban areas, and the New Urban Agenda (NUA) of the United Nations Human Settlement
Programme (UN-Habitat) adopted in Quito, Ecuador, in October 2016 is one example of a
core commitment for a transformative agenda in urban areas [4].

Implementation of the New Urban Agenda and promoting actions on urban-related
Sustainable Development Goals (SDGs), such as the development of land use policies for
climate resilience and adaptation to climate change, housing and slum upgrading policies,
and preparation of existing institutions for disasters will require significant mobilization of
financial resources to improve infrastructure and services [4]. Making cities and human
settlements inclusive, safe, resilient, and sustainable (SDG11), and enhancing urban re-
silience in cities with rapid population growth, informal settlements, unplanned public
services, and extreme income inequality requires several coordinated efforts [4,5]. The
World Cities Report 2020 reaffirms that unplanned urban living leaves people vulnerable,
and the COVID-19 pandemic has exposed deep inequalities which suggest that tackling
the virus is more challenging in urban areas [3].

Vulnerability involves an individual or group’s exposure to, capacity to cope with, and
potentiality to recover from crises [5–7], and there are several international programmes
and frameworks designed to assess vulnerability to disasters. One example is the Disaster
Recovery Framework (DRF) of the World Bank’s Global Facility for Disaster Reduction
and Recovery’s (GDDRR), and another is the UN Sendai Framework for Disaster Risk
Reduction 2015–2030 [5]. The Sendai framework includes a set of global targets and
indicators, but these operate mainly at the national level policies rather than being focused
on local strategies [6,7]. Another example of a specific framework to assess vulnerability
is provided by the Notre Dame Global Adaptation Index (ND-GAIN); a free open-source
index that shows a country’s current vulnerability to climate disruptions [8]. The aim of the
index is to support the private and public sector in prioritizing climate adaptation [9]. The
details of the ND-GAIN methodology are not covered here, but it assesses the vulnerability
of a country by considering six life-supporting sectors: food, water, health, ecosystem
services, human habitat, and infrastructure [10,11]. The index is based on over 74 variables,
which are used to create 45 indicators spanning critical environmental, economic, and
social aspects designed to measure vulnerability and readiness of 192 UN countries [11].
The inclusion of social aspects towards assessing vulnerability is included in all these
frameworks and is important [12].

According to the United Nations Office for Disaster Risk Reduction (UNDRR), re-
silience of vulnerable communities is associated with various factors, including poverty
and inequality [12]. De Almeida et al. [13] demonstrated that counties in the Amazon
region face serious conditions of susceptibility to natural hazards (e.g., floods, landslides,
flash floods, droughts) and this is magnified by high levels of socioeconomic inequality. In
addition, the Amazon region has a very low capacity to recover and adapt to future environ-
mental and social scenarios because of climate change [13]. All these frameworks require
good quality information, and the same type of information is often required irrespective
of the type of disaster (e.g., storms, floods, landslides, etc.) [8]. The need for information
to enhance preparedness and plans to mitigate the impact of disasters in communities is
an important dimension and examples of such initiatives include The Use of Social Work
Interventions to Address Climate and Disaster Risk [12]. Traditional approaches to data
collection have relied upon availability of data collected via surveys, census, tax returns,
etc., but some of these can be time-consuming and expensive.

Another approach that has generated much interest is the use of Earth Observation
(EO) via satellites, aircraft, and drones. However, a third approach that has been gaining
some prominence in the literature is the use of tools such as Google ‘Street View’ (GSV) [14].
GSV images are available for several cities, as are open EO data, such as Sentinel 1- radar
that supply day and night all-weather EO data [15], or Sentinel 2- optical EO data available
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every five days under cloud free conditions [16]. GSV has been used to develop differ-
ent conceptual frameworks and methodologies for different purposes. Wang et al. [17]
developed a new machine learning method based on GSV to assess the quality of green
spaces in Guangzhou, China. They also examined exposure and access to green spaces
associated with socioeconomic inequalities in urban areas, and how neighbourhoods with
high socioeconomic status may have better access to quantity and quality of green spaces.
Feldmeyer et al. [18] used Open Street Map (OSM) and machine learning to generate so-
cioeconomic indicators where the availability of quality data is limited at specific temporal
and spatial resolution. GSV and deep learning have been used to measure the relationships
between a Green View Index (GVI) and walking behaviour [19]. Li et al. [20] assessed urban
greenery using GSV for monitoring and measuring street greenery that people can see on
the ground in different streets. Other examples include virtual tree surveys [21], the use of
GSV to identify the elements that affect the probability that individual buildings may suffer
flooding in urban areas [22], and the assessment of damage after hurricanes [14]. Hence,
GSV has been used for several applications, and proves to be a useful tool for virtual field
observation, especially when combined with EO. Giuliani et al. [23] used a combination
of free Earth Observation (EO) and crowdsourced (e.g., OSM) EO data to model physical
accessibility to urban green spaces in four European cities (Geneva, Barcelona, Goteborg,
and Bristol). Unlike other studies [17–22], Giuliani et al. [23] incorporated the use of EO
data but measured only one specific indicator associated with green areas.

Using GSV to populate indicators has advantages in terms of cost, but it also has
limitations. For example, GSV imagery may not necessarily be up-to-date; in addition, the
indicators that can be populated with the tool have to be amenable to a visual assessment
(e.g., quantity and quality of infrastructure). EO can also be used in conjunction with
GSV, but it too is limited to addressing indicators that can be passively ‘seen’ using visual
wavelengths or the use of ‘active’ EO such as the use of radar. Image resolution can also
be an important factor in EO. Hence, the assessment of urban greenspace has often been
a focus with GSV- and EO-based systems in urban spaces, but there are no published
examples as yet of using these tools to assess vulnerability to disasters such as flooding.
The research set out in this paper addressed that gap in knowledge and sought to develop
and apply an alternative method to assess vulnerability in urban area primarily using
GSV along with a framework for assessing vulnerability based on the Notre Dame Global
Adaptation Initiative (ND-GAIN).

The ND-GAIN approach defines adaptation as ’adjustment to the changing climate
that minimize negative impacts on humans and on built and natural systems‘, and this
involves both a mitigation of risk along with an exploration of opportunities [24]. In order
to assess vulnerability to climatic hazard events such as flooding, the ND-GAIN framework
uses three dimensions:

• Exposure: The size of the population and critical infrastructure (e.g., transport links,
health care facilities) which may potentially be exposed to a climatic hazard event.

• Sensitivity: The extent to which a population or infrastructure may be affected by a
climatic hazard event. This could be influenced by many factors such as the quality of
construction of key infrastructure.

• Adaptive capacity: The ability to respond to the consequences of climate hazards, for
example, the presence of emergency services or the ability to bring in support from
outside the area affected.

A series of indicators may be chosen or developed to assess the three dimensions, and
these can be populated in part using existing datasets such as census data [25] as well as
via primary data. The logic at the heart of the ND-GAIN framework is that vulnerability
to hazardous events is influenced by all three of these and is maximized when all three
are weak. There are nuances, however. For example, a population may have a high level
of exposure to flooding events because of geography, but the sensitivity to damage may
be low, perhaps because of physical mitigations employed in construction of housing
and infrastructure. Similarly, exposure and sensitivity may both be high, but there are
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good adaptations in place to ensure that affected populations are supported quickly and
effectively. The latter could, for example, include early warning systems coupled with
rapid evacuation systems. Hence, an appreciation of vulnerability needs to draw upon
an understanding of all three of these dimensions. The ND-GAIN approach includes a
fourth dimension—readiness—which in essence is the ability to enhance adaptive capacity
and includes ability to attract funding as well as the ability of governance structures to
make the best use of that funding. There may be various barriers at play that influence
these, and one example is linked to the effectiveness of communicative tools to addressing
key municipal barriers to climate adaptation [26]. One of the key findings of research
based in the Netherlands is that barriers experienced by municipalities are lack of urgency,
lack of knowledge of risk and measures, and actions by authorities, which are limiting
their adaptation planning and implementation [26]. Enabling factors for ‘readiness’ can
include communication and transportation infrastructure, local laws and regulations, and
community-based behaviours during flooding [27].

The research reported here focuses on assessing the vulnerability of relatively rich
and poor areas in the cities of Rio Branco (state of Acre) and Belem (state of Para), Brazil,
to flood events. The approach is a visual interpretation and does not include machine
learning or algorithms to process large numbers of images. The research followed several
steps, and these are set out in the methodology section of the paper. Firstly, two cities
were selected to explore resilience to flooding, and the choice of Rio Branco and Belem was
based upon a series of preliminary experiences and field work visits in Brazil. Within each
city, two areas that were especially prone to flooding were selected, one of them regarded
as being a poorer area while another was seen as being a comparatively wealthier area.
Once cities and areas were chosen and demarcated on maps, GSV was used to populate
an indicator framework based upon the ND-GAIN approach set out above. The indicator
values for the two cities and areas within the cities were then analysed and conclusions
drawn about vulnerability to flooding, the utility of the approach taken, and its potential
for further development.

2. Material and Methods

2.1. Study Background—Rio Branco (Acre State) and Belem (Para State) in Brazil

The locations in Brazil of the two cities chosen for this research (Rio Branco and
Belem) are shown in Figure 1. Both cities are located within the relatively high-rainfall
Amazon region.

The two cities were recommended by experts based at the National Institute of Space
Research of Brazil (INPE), The Brazilian Agriculture Research Corporation (EMBRAPA), the
National Centre for Disasters and Alerts and Monitoring (CEMADEN), and the Geological
Service of Brazil (CPRM), which are responsible for mapping flood hazard risk areas in
vulnerable areas in Brazil. All the experts consulted noted the importance and timeliness of
the research, as flooding is one of the most severe natural disasters that affects livelihoods
in several regions of Brazil. The specific locations within the two cities were based on
suggestions provided by experts from CPRM; the cities and locations were known to
have a frequency of flooding of at least two or three events in the last ten years. The
Brazilian Disaster Risk Indicators (DRIB-Index) proposal by Almeida et al. [28] was also
consulted to select the best locations in the Amazon region. The DRIB-Index served as a
tool to help assess 32 indicators that include different levels of exposure, vulnerability, and
risks in Brazil [28]. DRIB aims to capture and measure four major components: exposure
to natural disasters, susceptibility of the exposed communities, coping capacities, and
adaptive capacities [28]. The DRIB-Index showed a high level of vulnerability and low
capacity to cope and adapt to socioenvironmental changes imposed by disasters and
climate changes for several cities in the North (Amazon) and Northeast regions [2] of Brazil.
Indeed, some places in the Amazon region were identified by the index as being greatly
exposed to multiple hazards such as landslides, floods, flash floods, and droughts [29–31].
The Amazon region also has a very high social-vulnerability index based on indicators
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associated with employment, social dependency, race and ethnicity, availability of quality
sanitation, and housing structures, amongst others [32,33]. However, the DRIB-Index does
not use visual tools at the local level to evaluate specific socioeconomic features.

Figure 1. Study area showing two cities in the Amazon region (grey shading) in Brazil: Rio Branco
(Acre State) and Belem (Para State).

The city of Rio Branco, the capital of the state of Acre in southwestern Amazon
(Figure 1), is an example of an area of almost annually recurrent extreme events (e.g., floods,
droughts, and forest fires) [34]. Since 1988, the city has been flooded (River Acre (the
main river running through the city) levels exceeding 14.0 m [34]) several times, with 2015
being the most severe in recent history when the River Acre flooded for 32 consecutive
days and reached 18.4 m in March that year. The 2015 flood affected 100,000 people, or
about one-third of the city’s population [34]. Rio Branco’s population was estimated at
413,418 in 2020 as compared with 336,038 in the last 2010 census [35]. Rio Branco has 57%
of adequate sewage, and 20% urbanization of public roads, which shows some limitations
in infrastructure in additional to population growth in the past decade [35]. Belem has
an estimated population of about 149,964 in 2020 compared with 139,300 in the 2010
census [36]. In addition to the high population density, Belem has 68% of adequate sewage,
and 36% urbanization of public roads [36].

The first author visited both locations for two weeks each in February and March
2020. In this period, the aim was to collect local data from local authorities (e.g., civil
defence, local council, urban planning agencies, local environmental authorities). However,
access to data emerged as a major challenge, despite visits to over ten local institutions in
each location, including federal institutions such as EMBRAPA, federal universities, and
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the Brazilian Geological Survey (CPRM), and local institutions such as the fire brigade,
civil defence, and environmental agency authorities. We assumed that talking directly to
personnel in both cities would facilitate data collection. However, it was often mentioned
by senior researchers in different federal institutions (e.g., CPRM, EMBRAPA, University
of Para) that data availability and access to local institutions are major challenges for local
researchers, and there are various reasons for this. For example, it was often mentioned by
informants that federal, state, and local authorities are from different political parties and
interest in climate change mitigation was at the time not part of the political agenda. Thus,
access to data that shows poverty, vulnerability, exposure of minorities within flooding
areas was limited or appeared not to be in the interest of local authorities to provide. This
issue may have been exacerbated at the time of the fieldwork by political debates and
sensitivities regarding forthcoming elections for mayoral posts. It should also be noted that,
at the time of fieldwork (and also in 2021), IBGE had postponed the demographic census of
2020 due to the ongoing COVID-19 pandemic, and so the last set of available census data
were from 2010 [37].

These factors and the challenging circumstances illustrate the difficulties for many
researchers and authorities in accessing ‘conventional’, timely, and relevant data to assess
local vulnerability and resilience. This reinforced the aim of this research to seek alterna-
tive, open, remote sensing approaches to assess these characteristics in the local context.
Following the approach taken in the ND-GAIN framework summarized above, where
vulnerability to events such as flooding is assessed via an appreciation of exposure, sensi-
tivity and adaptation, the aspects chosen for remote sensing evaluation were designed to
explore aspects such as the likelihood of floods generating material and nonmaterial losses
(e.g., destruction of public and private infrastructure, reduction of accessibility to various
locations, disruption of traffic flow, families losing their homes or access to dwellings) [37].

2.2. Choice of Areas in the Two Cities

In this study, two 1 km2 areas within each city that were known to flood regularly
(Figures 2 and 3) were identified. Within each city, one area was selected as being ‘poor’ and
one that was ‘rich’ on the advice of experts at CPRM based on several technical geological
surveys. We used several criteria for selection (e.g., average income, house prices, number
of banks, shopping malls) as indicators of poor and richer areas. However, it should
be noted here that these are relative rather than absolute categorizations. Other factors
such as the number of hospitals, schools, and churches were considered as indicative of
the adaptive capacity to provide accommodation, psychological assistance, and shelter
available locally to support dislodged people [33]. The following neighbourhoods were
chosen for the research:

1. Rio Branco: Cidade Nova and Preventorio—poor area;
2. Rio Branco: City Center, Base and Seis de Agosto—richer area;
3. Belem: Terra Firme—poor area;
4. Belem: Umarizal—richer area.

The suggestions above were confirmed by advice from EMPRABA, local universities,
civil defence, and other local institutions. Figure 2 gives an EO image for the poor area in
Rio Branco (A), which is subject to both flooding and landslides due to unsustainable land
use occupation near the river, and the richer area (B) with high levels of infrastructure (e.g.,
banks, government buildings, pharmacies) and also proximity to river.

The areas were demarcated using Google Earth Pro (GEP) and measured using its
toolbox. The blue lines in Figures 2 and 3 are the streets available on GSV and the user can
zoom in to access the street option view, or swipe up and down on the blue line. Users
can move the ’yellow man‘ pegman and can switch between Google Earth (GE) using
EO data from unique sources of Google Street View. EO imagery built into GE for every
specific location provides the date, geographical coordinates, and elevation at the point
of observation. In Google Earth, complete 360 degrees is available at the street level, and
the user can move readily up and down the street (Figure 3). Both long and short streets
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were considered as single units of analysis. As the purpose of this study was to identify
the overall vulnerability of a particular area, we used imagery available for throughout the
period 2012 to 2020.

 

Figure 2. Google Earth EO image (27/05/2020) of selected poor (A) and richer areas (B) in Rio Branco,
Acre State, 2021.

 

Figure 3. Google Earth EO image (27/05/2020) of selected poor (A) and richer areas (B) in Belem,
Para State, 2021.

2.3. Indicator Framework

The indicator framework for assessing vulnerability and resilience followed the logic
set out in the ND-GAIN framework outlined above [10]. Vulnerability to flooding was
assumed to have three dimensions:

1. Exposure (E—factors that influence exposure to flooding);
2. Sensitivity (S—sensitivity to flooding events);
3. Adaptation (A—adaptations made to limit incidence or damage from flooding events).

The indicators and variables were then selected based on relevance to flooding and ex-
posure of residents to floods in the selected areas. The initial identification included critical
infrastructure and places to support vulnerable communities during flooding or post-
flooding (e.g., shelters, churches, sport facilities), or urban infrastructure that could support
affected neighbourhoods during a flooding event. We considered an area at high levels
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of vulnerability if it had few assets available (e.g., weak access to hospitals, schools, poor
roads, rubbish in the streets, other sensitivity indicators based on socioeconomic criteria).

We began with the list of 232 indicators of the SDGs, those of the Sendai Framework,
and other indicators available in the literature. These were then selected by the authors
for those associated with flooding and natural hazards. From these, those that were
considered potentially amenable to visual assessment via GSV or EO were further selected.
The indicators were also classified in terms of the five major capitals (or assets) of the
Sustainable Livelihood Approach:

1. Natural (N);
2. Human (H);
3. Social (S);
4. Financial (F);
5. Physical (P).

Hence, indicators labelled as ‘EN’ come under the exposure dimension and were
considered as ‘natural’ capitals. The result of this selection process was a framework of
45 indicators we termed the Visual Indicator Framework for Resilience (VFIOR), as set out
in Table 1. The framework comprises a mix of indicators assessed by scoring and counting,
and lower values (scores and counts) equate to a low resilience or capacity to adapt to
flood hazards. Each of the three dimensions (Exposure, Sensitivity, and Adaptation) had
differing numbers of indicators and it was not necessarily the case that all five capitals
were represented within each dimension. The exposure and adaptation dimensions have
indicators that span all five of the capitals, but in the sensitivity dimension the indicators
only spanned the human, financial, and physical capitals.

Table 1. Indicators used to measure VIFOR framework.

No. Indicators Used to Measure Vulnerability Type of Data Collected Assumption

Exposure (factors that influence exposure to flooding)

1
* EN1: Presence and scale of waterways

(extent/size) Score More waterways and greater extent can
cause greater probability of flooding

2 EH1: Proximity of hospitals to waterways Score

Proximity leads to greater probability of
flood damage

3 EH2: Proximity of clinics to waterways Score

4
EH3: Proximity of pharmacies

to waterways Score

5 EH4: Proximity of schools to waterways Score

6
EH5: Proximity of houses near

to waterways Score

7 EH6: Proximity of business to waterways Score

8
EH7: Proportion of business near to

ground level Score
Being near ground level equals a higher
chance of flood damage. Some level of

elevation above ground.

9
ES1: Proximity of places of worship

to waterways Score Proximity leads to greater probability of
flood damage

10 EF1: Proximity of banks to waterways Score

11
EP1: Proportion of business at direct

street level Score Being at ground level means a higher
chance of flood damage. Direct at the street

or pavement without elevation.
12

EP2: Proportion of housing at direct
street level Score
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Table 1. Cont.

No. Indicators Used to Measure Vulnerability Type of Data Collected Assumption

13 * EP3: Quality of road surface Score
Indicator of flood damage but also is

important in terms of access for emergency
vehicles and people wishing to leave

14 EP4 General state of repair of buildings Score Indicator of flood damage but also poverty

15 EP5: Presence of soil erosion Score Indicator of flood damage

16 EP6: Rubbish in the streets Score
Indicator of poverty, but also more rubbish

leads to a greater chance of drainage
systems being blocked

Sensitivity (sensitivity to flooding events)

17
SH1: Density of housing/construction in

the flooding areas Score Number of houses per street. Density and
intersection with mix land uses.

18 SH2: Sturdiness of dwellings Score Quality of materials of houses
and buildings.

19 SF1: Cleanliness of streets Score Rubbish in the streets

20 SF2: Presence of graffiti Score Number of graffiti in public spaces

21 SF3: Unoccupied/boarded-up buildings Score Empty buildings or facilities without use

22 SF4: Incidence of decaying buildings Score Buildings without use

23 SF5: Value of cars parked on streets Score New and expensive cars to damaged and
old cars.

24 * SP1: Type of road surface Score High quality asphalt to various low-quality
pavement layers.

25 * SP2: Overall road width Score Size of road width and road markings used,
including those across the carriageway.

26
SP3: Quality of pavements/sidewalks

to roadsides Score

Allows cars and people to move during
flooding events. Quality of sidewalks,

which allows effective mobility
of pedestrians.

27 SP4: Presence of water on the streets Score Poor drainage that can lead to flooding.

Adaptation (to flooding)

28
* AN1: Proportion of green areas

and vegetation Proportion (%) Green spaces help with drainage

29
AH1: Number of hospitals (public

and private) Count
Assets to support health care during a

flood event30 AH2: Number of clinics Count

31 AH3: Number of pharmacies Count

32 AH4: Number of schools Count
School premises can provide spaces for

people to gather in the event of a flood and
be supported.

33
AH5: Number of community public

health centre Count Supports health care in the event of a flood

34
AH6: Number of universities (public

and private) Count
Physical premises can provide spaces for

people to gather in the event of a flood and
be supported

35 AS1: Number places of worship Count

36 AS2: Number of sport halls Count

37 AS3: Number of police stations Count Provide support/security during a
flood event38 AS4: Number of fire stations Count
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Table 1. Cont.

No. Indicators Used to Measure Vulnerability Type of Data Collected Assumption

39
AF1: Number of banks (access to local

financial support) Count Access to cash and financial services

40 AF2: Number of cooperative associations Count
Supports with information, shelter and

community-based cooperation to support
socioeconomic recovery

41
* AP1: Presence of flood defences

(strengthened banks etc.) Count Provide defence for rivers do not burst
their banks

42 AP2: Quality of flood defences Score Natural and artificial strengthened banks
to prevent flooding

43 AP3: Quality of street drainage systems? Score Surface water drainage systems to
prevent flooding

44
* AP4: Number or bridges (bridges

for vehicles) Count Provide access and mobility in
flooding areas

45 AP5: Durability of bridges (to flooding) Score

Type of material from small scale wood
bridges to large scale concrete bridges.

Resilience of infrastructure to avoid bridge
collapse during flooding.

Note: Indicators marked with an asterisk (*) are potentially measurable via Earth Observation.

In the Exposure dimension (16 indicators) many of the indicators refer to distance
of the community assets (hospitals, clinics, schools, etc.) from a source of flooding. The
assumption here is that the farther away an asset is from the source of flooding, then the
lower the likelihood is that it would be exposed to damage as a result of flooding. Further
included here are indicators that assess whether an asset is at street level or raised (e.g., on
the second floor or higher of a multitier building). The Sensitivity dimension has a total of
11 indicators, most of which address the exposure of assets to damage once flooding occurs.
The assumptions here are that buildings, roads, and sidewalks that are of poor quality
suggest that they may be or have been readily damaged by flood events and/or that they
may also be sensitive to further degradation. To some extent these are also indicators of
wealth and lack of investment. One of the indicators specifically assessed whether there
is standing water on the street, which would suggest a lack of drainage (this depends
on when the GSV images were taken). For the Adaptation dimension (18 indicators, the
largest number of indicators of the three dimensions), the indicators are mostly counts of
important assets such as the number of hospitals (public and private), schools, pharmacies,
universities (public and private), clinics, places of worship, sports halls, number of police
stations, and number of banks. These are important in terms of health care provision during
and after a flooding event, but also of the ability to improve human capital (education),
social capital (cooperatives), and financial capital (banks). Further included here are counts
of assets such as emergency service stations (police, fire stations) and flood defences (e.g.,
barriers) and drainage systems. Assessing adaptation in terms of physical entities that can
be observed via GSV or EO is admittedly a narrower perspective than envisaged in the ND-
GAIN framework. In ND-GAIN, adaptation (or more precisely, adaptive capacity) is seen
as an ability to manage flood events and includes the presence of early warning systems
and management plans. However, in the VIFOR framework, adaptation was limited to an
assessment of structures such as number of facilities (e.g., AS1 to AS2), or specific flood
defence systems such as the quality of flood defences (AP2) or the quality of street drainage
systems (AP3). There is a relationship here in the sense that the presence of structures
such as medical facilities and police and fire stations are important for helping deliver any
plans that authorities may have in place, although counting such facilities says nothing
about their quality in terms of number of staff available, their training and preparedness,
and availability of required equipment. Therefore, a thorough assessment of adaptation
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would need to go beyond what can be seen and this would necessitate interviews with
stakeholders at all levels, including the local community, although there can be constraints
here as noted above and especially during a pandemic.

All three dimensions of VIFOR overlap to some extent and there are indicators that
could be moved to a different category. For example, under Sensitivity, the indicators that
capture building quality (SH2, SF3, and SF4) could also be classified under Adaptation; one
of the responses that people could make to improve resilience would be to strengthen their
dwellings. Similarly, the quality of the road surface (EP3) in the Exposure dimension could
be placed under Sensitivity. It is included under Exposure as it is assumed that a poor-
quality road indicates greater damage resulting from flooding, but that can also be applied
to the type of road surface (SP1), as paved roads could decay as the result of successive
flood events. For this reason, it was decided to weigh all the indicators equally and not
apply weights to the three dimensions. Thus, in a sense it does not really matter where an
indicator appears in the framework, it is still weighted equally, and the classification is only
for ease of use.

It should be noted that some indicators in the VIFOR framework have the potential
for assessment via EO. These are demarcated in Table 1 with an asterisk. The presence
of waterways (EN1), the proportion of green areas (AN1), flood defences (AP1), and
bridges (AP4) are obvious examples, as indeed are indicators of road width (SP2) and road
quality (EP3) and material of construction (SP1). There are other indicators that may not
be so obviously assessable via EO, such as the number of banks (AF1) and cooperative
associations (AF2). These institutions often occupy spaces within larger buildings and
provide no visual clues readily tractable by EO to their use.

2.4. Data Collection and Analysis

The indicators in Table 1 were populated via a combination of counts and scoring.
For all the indicators, all the streets in the 1 km2 quadrant (lines in Figures 2 and 3) were
‘walked’ virtually in GSV. We focused on 1 km2 due to logistical issues and time constraints
to cover all the streets within the boundaries of the two cities. Hence, we selected two
areas (rich and poor) for each city based on the recommendations of experts along with the
criteria noted above. The number of streets ‘walked’ in each of the areas is shown in Table 2.
Care was taken to ensure that a single asset existing on a junction between streets was not
recorded more than once. However, while the streets differed in terms of length, this was
not accounted for in the assessment and long streets were treated the same as short streets.
Hence, each indicator was not weighted for variation in the length of the street. For those
indicators assessed via scores (mainly Exposure and Sensitivity), the scores ranged from 1
to 5, with the polarity set to 1 representing low resilience and 5 representing high resilience
(to flood events) and the midpoint score of 3 representing a moderate level of resilience
‘performance’ for the indicator. For count-type scores (mainly in the Adaptation dimension)
these are ‘raw’ data and no midpoint assessment of a level of resilience is given except for
the fact that a higher number is indicative of greater resilience and average values of zero
or small fractious per street suggest low resilience.

Table 2. Number of streets assessed for the indicators in Table 1.

City Area Number of Streets

Rio Branco Poor 42
Rich 29

Belem Poor 45
Rich 20

The construction patterns of dwellings are often not designed to withstand flooding,
especially in regions with significant inequalities [38]. In Figure 4, we used GSV to classify
houses and structures in terms of their likelihood of flooding as described in the following
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categories: very high, high, high, medium, low, and very low. We assumed that very high
(score 5) is the most adaptable structure in the sense of the building and its contents being
best able to avoid flood damage (often located in richer areas), and very low (score 1) is the
least adaptable structure to cope with a flooding event (i.e., building and contents damage
is most likely). In the low and very low scores, we identify houses principally situated
at street level, limited paved roads, and high concentration of houses. In high and very
high categories, houses are located in buildings situated above street level that are less
exposed to floods. EP2 refers to the proportion of housing at street level, or likely to flood
during an event. A similar scoring system was used to describe the general state of repair
of buildings (Figure 5) in the following categories: very low, low, medium, high, and very
high. This refers to the quality of the houses, type of materials, and construction. For
example, in Figure 5, scores 4 and 5 represent good quality construction indicating resilient
infrastructure when compared with scores 1 and 2. A further example of the scoring system
is that for SP3 (Figure 6), which refers to the quality of pavements and sidewalks.

 

Figure 4. Example of the scoring system showing proportion of houses and structures likely to flood.
GSV images from Rio Branco and Belem. EP2: Proportion of housing at direct street level (likely
to flood), Score 1 = Very high (80–100%), Score 2 = High (60–80%), Score 3 = Medium (40–60%),
Score 4 = Low (20–40%), Score 5 = Very low (0–20%).
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Figure 5. Examples of the scoring system showing the general state of repair from buildings. GSV
images from Rio Branco and Belem. EP4: General state of repair of buildings, Score 1 = Very low,
Score 2 = Low, Score 3 = Medium, Score 4 = High, Score 5 = Very high.

 

Figure 6. Examples of the scoring system showing quality of pavements/sidewalks. GSV images from
Rio Branco and Belem. SP3: Score 1 = Very poor, Score 2 = Poor, Score 3 = Medium, Score 4 = High,
Score 5 = Very high.
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3. Results

The means and standard deviations (SD) for the indicators as assessed using GSV
observation data for the selected streets/city areas are shown in Table 3. Further shown are
the number of streets (N) for which the indicator could be assessed. The latter is important;
for example, the indicators which assess proximity to a source of flooding were not relevant
in some cases where the unit (hospital, clinic, etc.) did not exist within the 1 km2 grid. There
is insufficient space here to describe all the indicators in Table 3, so only a few examples
are highlighted. For the two poor areas there are issues with houses and businesses more
likely to be located near ground level. The presence and scale of waterways in the poor
area of Belem (EN1 average score: 4.11) is higher compared with that of Rio Branco (EN1
average score: 3.61). Indeed, in Belem, many of the businesses and houses are located near
canals that are often related to poor technical maintenance of river channels, and disposal of
rubbish in the canals also contributes to flooding. In Rio Branco, some houses in poor areas
located near the Acre River are built with two floors, while in many of the poorer areas in
Belem located near the canals, houses have only one floor. The poor area in Belem has a
worse drainage system (AP3 average score 1.62) when compared with the poor area of Rio
Branco (AP3 average score: 2.6), which relates to the quality of drainage as an indicator
for Adaptation during flooding events. The density of housing is higher in the Belem poor
area (SH1 average score: 2) when compared with the Rio Branco poor area (SH1 average
score: 2.86). The streets in the poorer area of Rio Branco are cleaner (SF1 average score:
2.76) when compared to Belem (SF1 average score: 2.38), and there is more graffiti in the
poorer area of Belem (SF2 average score: 3.27) when compared to Rio Branco (SF2 average
score: 3.88). The quality of pavements and sidewalks in Belem (SP3 average score: 1.58)
was also lower than found in the poor area of Rio Branco (SP3 average score: 2.33).

Table 3. VIFOR framework scores for the 45 indicators based on GSV observation of streets in the
selected areas of Rio Branco and Belem.

Rio Branco Belem

Poor Area Rich Area Poor Area Rich Area

Indicator N Mean SD N Mean SD N Mean SD N Mean SD

(a) Exposure dimension
EN1 42 3.62 0.85 29 3.41 0.98 45 4.11 0.91 20 4.25 1.33
EH1 0 - - 0 - - 0 - - 6 2.17 1.33
EH2 1 2 - 11 2.45 0.82 3 1 0 10 2.4 0.84
EH3 1 3 - 12 2.08 0.67 0 - - 7 1.14 0.69
EH4 3 3 1 10 2 0.47 3 1.33 0.58 6 2.83 0.75
EH5 41 2.54 1.12 29 2.59 1.12 43 1.33 0.57 19 2.21 0.85
EH6 39 2.69 1.06 29 2.41 1.21 42 1.31 0.6 17 2.12 0.93
EH7 39 2.15 0.74 29 2.34 1.04 43 1.12 0.45 18 2.33 0.77
ES1 13 2 1 9 1.67 1.32 28 1.25 0.52 3 1.67 1.15
EF1 2 3 0 14 2 0.96 0 - - 5 1.4 0.89
EP1 40 2.25 0.78 29 2.1 0.86 44 1.2 0.46 18 2.44 0.92
EP2 42 2.26 0.8 29 2.17 0.76 45 1.36 0.53 19 3.11 1.52
EP3 42 2.74 0.8 29 3.45 0.69 45 1.96 0.67 20 3.85 0.93
EP4 42 2.71 0.46 29 3.55 0.83 45 2 0.64 20 3.85 1.04
EP5 42 3.1 0.98 29 4 0.8 45 4.07 0.89 20 5 0
EP6 42 3.05 0.62 29 3.45 1.21 45 2.96 0.77 20 3.9 0.64

(b) Sensitivity dimension
SH1 42 2.86 0.65 29 3.31 0.66 45 2 0.48 20 3.45 1
SH2 42 2.71 0.64 29 3.38 0.56 45 2.22 0.56 20 3.55 1.19
SF1 42 2.76 0.53 29 3.24 0.87 45 2.38 0.53 20 3.4 1.23
SF2 42 3.88 0.67 29 4.1 1.01 45 3.27 0.86 20 3.7 1.26
SF3 42 3.6 0.63 29 4.14 0.99 45 3.33 0.77 20 4.1 1.07
SF4 42 3.4 0.8 29 3.86 1.13 45 2.38 0.68 20 4.2 0.83
SF5 42 2.76 0.53 29 3.24 0.64 45 2.24 0.68 20 3.6 0.82
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Table 3. Cont.

Rio Branco Belem

Poor Area Rich Area Poor Area Rich Area

Indicator N Mean SD N Mean SD N Mean SD N Mean SD

SP1 42 2.79 0.72 29 3.31 0.89 45 2.11 0.49 20 3.7 1.03
SP2 42 2.6 0.63 29 3.38 0.86 45 1.47 0.55 20 3.4 1.14
SP3 42 2.33 0.82 29 3.34 1.14 45 1.58 0.75 20 3.6 1.27
SP4 42 3.81 0.8 29 4 0.85 45 3.67 1 20 4.25 0.97

(c) Adaptation dimension
AN1 42 2.1 0.66 29 2.28 1.03 45 1.11 0.49 20 2.1 0.97
AH1 42 0 0 29 0 0 45 0 0 20 0.4 0.75
AH2 42 0.02 0.15 29 0.41 0.73 45 0.04 0.21 20 0.65 0.81
AH3 42 0.1 0.48 29 0.41 0.82 45 0 0 20 0.9 2.1
AH4 42 0.07 0.26 29 0.48 0.74 45 0.07 0.25 20 0.5 0.89
AH5 42 0.07 0.26 29 0.07 0.26 45 0 0 19 0.05 0.23
AH6 42 0 0 29 0.03 0.19 45 0 0 20 0.2 0.41
AS1 42 0.43 0.74 29 0.28 0.45 45 1.02 1.23 19 0.21 0.42
AS2 42 0.02 0.15 29 0.24 0.58 45 0.04 0.21 20 0.3 0.57
AS3 42 0 0 29 0.14 0.35 45 0 0 20 0.05 0.22
AS4 42 0 0 29 0 0 45 0 0 20 0 0
AF1 42 0.05 0.22 28 0.79 1.42 45 0 0 20 0.4 0.94
AF2 42 0.02 0.15 28 0.36 0.56 45 0 0 20 0 0
AP1 38 0.03 0.16 29 0.21 0.41 32 0.03 0.18 13 0.38 0.51
AP2 4 0.75 1.5 6 3.33 0.82 10 0.9 0.57 9 4 0.87
AP3 42 2.6 0.77 29 3.07 0.8 45 1.62 0.65 20 3.4 1.05
AP4 21 0.05 0.22 29 0.07 0.26 33 0.33 0.74 11 0.55 0.52
AP5 3 1 1.73 2 5 0 8 1.25 1.16 6 4 0

Note: Means and standard deviation (SD) are based on the streets that were assessed for the indicators. N is the
number of streets where the indicator could be assessed.

For the two richer areas, the one in Belem is less exposed to waterways (EN1 average
score: 4.25) when compared to the richer area in Rio Branco (EN1 average score: 3.41).
The general state of repair of buildings, which includes the quality of the materials and
condition of buildings, is similar for the richer areas of Belem (EP4 average score: 3.85)
and Rio Branco (EP4 average score: 3.55). Richer areas in Belem include large numbers
of high-rise buildings, which may only flood at street level (access points to buildings),
but flooding is unlikely to cause damage more widely to the building. The proximity of
businesses to waterways in the richer area of Belem (EH6 average score: 2.12) is similar to
that for Rio Branco (EH6 average score: 2.41) and suggests that businesses in both areas are
relatively close to local waterways. The quality of pavements/sidewalks to roadsides in
the richer areas of Belem (SP3 average score: 3.6) and Rio Branco (SP3 average score: 3.34),
and the quality of street drainage in the rich of Belem (AP3 average score: 3.4) and in Rio
Branco (AP3 average score 3.07), suggest a medium level of vulnerability and the indicators
certainly suggest better levels of resilience compared to the poorer areas of the two cities.

The distribution of scores for the Exposure and Sensitivity dimensions to resilience,
the two that were assessed entirely via scoring, are shown in Figure 7. The results suggest
that the distribution of scores was towards the higher end of the five-point scale for the
richer areas (Figure 7b,d) compared with the poorer ones (Figure 7a,c). Indeed, the poorer
area of Belem (Figure 7c) had scores that were especially on the low side. Hence, for the
Exposure and Sensitivity dimensions, there is a sense here that poorer areas have a lower
resilience compared with richer areas. To allow for a direct comparison of resilience across
all three dimensions (Exposure, Sensitivity, and Adaptation), the mean score or count per
street was calculated for the 45 indicators and the results are presented in Figure 8 as radar
(or amoeba) diagrams. Higher values for any of the indicators suggest a greater resilience.
The overall pictures of resilience presented in Figure 8 suggest that there is a clear division
between Exposure and Sensitivity between poor and richer areas. However, the poor area
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Rio Branco (Figure 8a) would appear to have a higher level of Exposure when compared
with the poor area in Belem (Figure 8c). Interestingly, the Adaptation dimension is quite
low for all four areas but is especially low for the two poor areas.

Figure 7. Distribution of exposure and sensitivity scores for selected areas in Rio Branco and Belem.
The bars indicate the number of times each score was given for indicators within the exposure and
sensitivity categories. (a) Rio Branco: poor area, (b) Rio Branco: rich area, (c) Belem: poor area,
(d) Belem: rich area.

To explore more fully the differences between cities and areas within cities, cluster
analysis was applied to the means in Table 3. The correlation coefficients for the mean
indicator values are shown in Table 4. Most of the means are correlated to levels that are
statistically significant. The results of the cluster analysis are shown in Figure 9. For the
Exposure dimension (Figure 9a), there is no clustering of cities, but the two rich areas
do emerge as a distinct cluster. Thus, richer areas have a similar pattern based on the
Exposure indicators. However, for the Sensitivity dimension (Figure 9b) the main cluster
which emerges is for Rio Branco (poor and rich areas). This suggests a greater degree
of similarity for Sensitivity indicators within this city compared with Belem. For the
Adaptation dimension (Figure 9c), there is a clear clustering into poor and rich areas,
irrespective of city. Rich areas tend to do well with the Adaptation indicators while poor
areas do badly, and what emerges is a clear clustering based on wealth.
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Figure 8. Radar diagrams of the mean indicator values from Table 3. (a) Rio Branco: poor area,
(b) Rio Branco: rich area, (c) Belem: poor area, (d) Belem: rich area.

Table 4. Correlation coefficients between the mean indicator values shown in Table 3.

Rio Branco Poor Rio Branco Rich Belem Poor Belem Rich

(a) Exposure
Rio Branco poor 1 0.52 * 0.83 *** 0.43 ns
Rio Branco rich 1 0.81 *** 0.89 ***

Belem poor 1 0.87 ***
Belem rich 1

(b) Sensitivity
Rio Branco poor 1 0.93 *** 0.92 *** 0.74 **
Rio Branco rich 1 0.83 ** 0.79 **

Belem poor 1 0.70 *
Belem rich 1

(c) Adaptation
Rio Branco poor 1 0.72 *** 0.89 *** 0.74 ***
Rio Branco rich 1 0.81 *** 0.96 ***

Belem poor 1 0.82 ***
Belem rich 1

Note: Indicator values are mean values for each indicator across the assessed streets. Not significant at 0.05 = ns;
* p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 9. Cluster analysis results for the mean indicator values shown in Table 3. (a) Exposure,
(b) Sensitivity, (c) Adaptation.

4. Discussion

This research sought to develop and apply a novel method (VIFOR) to assess the
vulnerability and resilience to flooding in the urban areas of two cities in Brazilian Amazon
primarily using GSV-derived observations. Based on the suite of 45 indicators spanning the
dimensions of Exposure, Sensitivity, and Adaptation, it was possible to identify differences
in vulnerability and resilience, and these were especially apparent in terms of differences
between poorer and richer areas of the cities. Conceptualising resilience in terms of these
dimensions has the advantages of being able to explore where the main contributors to
resilience (or lack of it) may be coming from, and here the most noticeable differences
were with the Adaptation indicators, though this was also reflected in part in the Exposure
indicators. Thus, richer areas had more ‘assets’ that help with resilience, but some of these
could themselves be vulnerable to flood damage. Poorer areas had fewer ‘assets’ that
would help with Adaptation. Of course, as with any such framework much depends on the
choice of indicators. Here, the focus was upon indicators that could be assessed visually
using GSV, with some potentially also assessable via EO. This indicator set focused on
a very local scale in two particular regions of two municipalities. Other indicators such
as the DRIB-Index focus on the validation of disaster risk reduction models at a higher
spatial scale including several municipalities. VIFOR includes a disaster risk analysis at
local and microscales. However, a comparative analysis with a different geographical
location including other parameters of inequality, natural biome (e.g., outside the Amazon
region), or a microregion within the same city may present a different result using the
same list of indicators. Regarding the validation of VIFOR and the reliability of the
indicators in a different context, the availability of GSV images is obviously essential.
The methodology developed here to assess the indicators from GSV imagery can help in
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providing information when data are not available (e.g., access to institutions, bureaucracy
to acquire data, capability for field work and observations). The VIFOR methodology can
be improved and is potentially a cost-effective method compared with the use of a field
survey in areas where data are not available or for safety reasons (e.g., areas of conflicts,
COVID-19 outbreak, crimes). Reasonably up-to-date GSV imagery is also needed and the
VIFOR indicators have to be amenable to a visual assessment (e.g., quantity and quality
of infrastructure).

Access to high resolution EO data (1 m and below) may help to capture additional
features not available from GSV. Image resolution is likely to be an important factor in EO.
Hence, the assessment of urban greenspace has often been a focus with GSV- and EO-based
systems in urban spaces, but there are no published examples as yet of using these tools to
assess vulnerability to disasters such as flooding. However, EO is also limited to populating
indicators that can be passively ‘seen’ using visual wavelengths or the use of ‘active’ EO
such as the use of radar. Machine learning or automatic measurements to process multiple
GSV in the same location or extensive areas of the city integrated with EO time-series in
real time could improve the quality of the results. The gathering of EO data with multiple
tools may also enhance the VIFOR framework by using new algorithms or methods that
identify key indicators of our proposed 45 indicators. In the Amazon region, one of the
major challenges is to monitor the differences in vegetation and land use characteristics
between each biome [39]. The National Space Research Institute of Brazil (INPE) monitors
deforestation via the Amazon Deforestation Monitoring Project (PRODES), but only with
a minimum unit of 6.25 ha, and it does not include some of the urban areas [39], such
as the 1 km2 area of VIFOR. The improvement of remote sensing products, such as the
50 cm High-Resolution Planet Labs tasking provides rapid daily revisit that help to inform
actions [40]. However, private high-resolution data with added value information are
expensive and are not affordable to every user. Therefore, the GSV-based approach we
demonstrate here provides a simple and ready-to-use tool when funding is not available
to pay for the latest technology available. It requires some time and patience to monitor
and measure the local area street by street, but it provides helpful information for a specific
local context. Similarly, it could help urban planners and policymakers to target further
investments and actions to mitigate the effects of flooding in particular streets and locations
of the city.

Fundamental to prioritizing disaster mitigation efforts is quantifying flood hazard,
exposure, and vulnerability [41]. EO data and remote sensing approaches can directly ob-
serve inundation [41], but there are several other indicators that affect lives and livelihoods.
This study extends previous research [17,18] by including an extensive list of indicators that
take note of dwelling and business locations, conditions, and vulnerabilities, and location-
based general socioeconomic resilience features (e.g., observable pharmacies, community
centres, etc.). VIFOR is a manual scoring process and, as such, has some limitations. For
example, further research may be beneficial in order to adapt and integrate EO data to
cover gaps where street view images are not available, although we expect only a subset of
the 45 GSV indicators for VIFOR here to be measurable in this way. Overall, we believe
that the GSV-based VIFOR approach has several strengths, notably: (i) accessibility and
no cost to access GSV, (ii) possibilities to integrate and expand the research with machine
learning, (iii) expandability to larger areas, and (iv) inclusion of EO data.

In addition to the selected 45 indicators included in the current VIFOR, its complemen-
tation with several other local data sources (e.g., number of health workers, doctors, crime
rates) will help to better understand the trends and resilience of a particular location. Future
work and new applications will be valuable to test and develop the VIFOR framework in
different urban or other settings and could expand this approach further by incorporating
the use of social media (e.g., Twitter, Facebook, Instagram) and high resolution EO data.
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5. Conclusions

This paper presents the novel Visual Indicator Framework for Resilience (VIFOR)
framework based on GSV imagery to assess the vulnerability and resilience of two flood
prone urban areas. The framework is useful in locations where data are not available
or difficult to access from local authorities. The approach provides a valuable source of
information to monitor specific visual indicators, as suggested in our list of 45 indicators.

The existing literature provides several examples of the use of GSV to assess specific
indicators. The VIFOR framework extends this by leveraging easy to use and freely
available GSV images to enable a multi-indicator assessment of vulnerability and resilience
to flooding that is accessible to nonexperts. The framework is likely to be adaptable to
several natural and other hazards according to GSV images and local geographical contexts.
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Abstract: This paper presents the results of research designed to explore the challenges involved in
the use of Earth Observation (EO) data to support environmental management Brazil. While much
has been written about the technology and applications of EO, the perspective of end-users of EO
data and their needs has been under-explored in the literature. A total of 53 key informants in Brasilia
and the cities of Rio Branco and Cuiaba were interviewed regarding their current use and experience
of EO data and the expressed challenges that they face. The research builds upon a conceptual model
which illustrates the main steps and limitations in the flow of EO data and information for use in the
management of land use and land cover (LULC) in Brazil. The current paper analyzes and ranks,
by relative importance, the factors that users identify as limiting their use of EO. The most important
limiting factor for the end-user was the lack of personnel, followed by political and economic context,
data management, innovation, infrastructure and IT, technical capacity to use and process EO data,
bureaucracy, limitations associated with access to high-resolution data, and access to ready-to-use
product. In general, users expect to access a ready-to-use product, transformed from the raw EO data
into usable information. Related to this is the question of whether this processing is best done within
an organization or sourced from outside. Our results suggest that, despite the potential of EO data
for informing environmental management in Brazil, its use remains constrained by its lack of suitably
trained personnel and financial resources, as well as the poor communication between institutions.

Keywords: earth observation; end-users; environmental management; land use; Brazil

1. Introduction

It has been demonstrated that Earth Observation (EO) via satellites provides a useful tool to
monitor, report, and verify the management of sustainable land use and land cover (LULC) in
tropical forests [1]. For example, the maps generated with EO data enable institutions to monitor
deforestation [2,3]. Since 1973, the Brazilian Institute for Space Research (INPE) has been monitoring
deforestation in the Amazon forest by using Landsat EO data [4]. Since 1988, INPE has assessed the
annual deforestation rates via the Amazon Deforestation Monitoring Project (PRODES), a leading
example of operational monitoring to quantify land-cover change via EO data [4–6]. While PRODES
provided annual deforestation rates, INPE has also developed the Near Real Time Deforestation
Detection System (DETER) to meet the needs of other users that require near-real time detection
for early warning and the potential for quick response by government agencies [7]. Information
derived from PRODES and DETER is used by law enforcement and other institutions to help support
actions on the ground [8]. INPE sends deforestation alerts to institutions such as the Brazilian
Institute of Environment and Renewable Natural Resources (IBAMA) [9]. DETER was created in 2004,
following demand from IBAMA to provide high-frequency alerts of deforestation instead of relying on
annual data from PRODES [9]. The information derived from PRODES and DETER is widely used
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by different agencies to verify deforestation and land use changes in the Amazon [10–12]. Indeed,
deforestation in the Brazilian Amazon, defined as clear cutting and conversion of the original forest
cover to other land uses [13], reduced from 7893 km2/annum in 2016 to 6947 km2/annum in 2017,
but increased to 7536 and 10,129 km2/annum, respectively, in 2018 and 2019 [14].

This paper builds upon previously published work that illustrated how EO datasets, including the
increasing availability of free datasets, has enabled users to generate and use the information available
to them [15]. Achard and Hansen [4] suggest that, while unprocessed EO data from a range of
satellite sensors may be available for a region of interest, adequate tools are essential to download
and preprocess the data, to facilitate user access. Overall, there remains a lack of research to date
on the challenges faced by users when trying to access, process, and use EO data for environmental
management and other sustainability purposes [9,15]. In the present research, our objective was to
address four key questions regarding these challenges:

1. What uses are made of EO data?
2. What are the factors that limit the use of EO data?
3. What are user needs/expectations with regard to EO data?
4. What suggestions do users have for improving EO data use?

“EO data” in these questions span both the raw data and the information that can be derived
from those data. Cerbaro et al. [15] noted that some of the major challenges identified in the complex
and multifaceted aspects of using EO data were associated with access to, and with the processing of,
raw data into usable information. The analysis also revealed novel insights on a lack of inter-institutional
communication, adequate office infrastructure and personnel, availability of the right type of EO data
and funding restrictions, political instability, and bureaucracy as factors that limit more effective use
of EO data in Brazil at present. They used these findings to develop a conceptual model to illustrate
the main steps and limitations in the flows of EO data and information for use in the management
of land-use change in Brazil. This paper extends that work by reporting the results of a research
project undertaken between 2016 and 2017 that was one of the first of its type designed to focus
specifically on the challenges faced by end users and their needs/expectations when applying EO
data for environmental and sustainability management in Brazil. The paper is structured to present
the results obtained regarding each of the four questions, in turn, before arriving at an integrated
discussion and conclusions.

2. Materials and Methods

2.1. Research Locations

Initial “scoping” research was undertaken between November and December 2016, whereby the
authors conducted 43 interviews with senior scientists at the National Space Research Institute (INPE),
policymakers in Brasilia, directors at the Ministry of Environment (MMA), environmental analysts,
GIS technicians, senior staff at the Brazilian Space Agency, senior researchers at Brazilian Agriculture
Research Cooperation (EMBRAPA), and other public and private institutions in the state of Sao Paulo
and in Brasilia. The details of that research are not covered here, but respondents were asked to
recommend the most appropriate locations in Brazil, to address the research questions noted above
based on examples and experiences of EO data in use. Many of the respondents suggested that the
optimum locations in Brazil for such research were the states of Acre and Mato Grosso. Acre was
recommended as the best example where EO is already widely used by different stakeholders to
inform policymakers. The respondents from EMBRAPA and INPE recommended the state of Mato
Grosso as a location where EO data are used to monitor and integrate land-use policies and agriculture
over large areas in three different biomes: Amazon, Cerrado, and the Pantanal. In addition, most of
the respondents in the scoping study also suggested Brasilia (the capital of Brazil) as a necessary
location for the research, because it is where many of the key ministries, in terms of EO data use,
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are based. Therefore, Brasilia and the cities of Rio Branco (capital of Acre) and Cuiaba (capital of Mato
Grosso) were selected as relevant, representative, and informed locations for undertaking the in-depth
structured interviews conducted in 2017 (Figure 1).

Figure 1. Field work locations: Brasilia (the capital of Brazil), Cuiaba (Mato Grosso) and Rio Branco
(Acre). Sources: National Geographic and Open Street Map.

2.2. Data Collection

The primary data reported here are based upon the analysis of 53 semi-structured interviews
held between June and August 2017, in Brasilia, Rio Branco, and Cuiaba. The initial respondents
were selected based on recommendations from senior researchers at INPE and respondents in the
November/December 2016 scoping research. A snowballing approach was used to identify further
respondents. The interviews were conducted in Portuguese and translated into English. This number
of interviews (53) was considered appropriate for the aim of capturing the breadth of user and provider
experience, and the range of organizations was representative of the diversity of main actors engaged
in acquiring and using EO data for environmental management in Brazil:

• Federal Government Institutions (26);
• Federal Universities (7);
• State government organizations (16);
• Private institutions (3);
• Non-governmental organization (1).

The questionnaire comprised 15 questions. Two of these were structured quantitative questions
(respondents scored on a 1–5 Likert scale a list of factors pre-defined by the research team, based on
the initial scoping research in 2016. In addition, thirteen more “open” questions were presented across
five more general challenge areas (also identified on the 2016 scoping research) for discussion and
comment by respondents. The outline structure of the questionnaire and its relationship with the four
key research questions (RQs 1–4) of this study were as follows:
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1. EO data use (RQ1);
2. Expectation from providers of EO data (structured questions) (RQ 3);
3. Capacity of institutions to use EO data (RQ 2, 4);
4. Limitations and restrictions on the use EO data (structured questions) (RQ 4);
5. Regional capacity and training for EO users (RQ 4);
6. EO data and public policies in Brazil (RQ 4);
7. Use of EO to help populate indicators (RQ 4).

Within Sections 2 and 4, respondents were presented with a set of potential factors derived from
the scoping survey. For capturing respondents ‘expectations’ from EO data and its use, the predefined
list of 7 factors was as follows:

• Low cost (no cost);
• Easy to use systems (minimum need for post-processing);
• Fast delivery;
• Availability of technical support;
• High-resolution images;
• Frequency of coverage;
• Friendly interface (analysis functions and services).

For capturing respondents’ perceptions of the limitations/restrictions on EO data and its use,
the predefined list of 13 factors was as follows:

• Data management (big data);
• Technical capacity (image processing and data analysis technique);
• Innovation (investment in technology);
• Personnel (human resources, lack of staff, and specialized staff);
• Access (EO images, GIS software’s, maps, and web services);
• Institution capacity (long-term planning, management, and business dynamics);
• Infrastructure (IT, computers, and internet);
• Communication (internal and external);
• Political and economic context;
• Bureaucracy (legal frameworks);
• Capacity to implement projects;
• User capacity to combined data from different sources;
• Regional geography (knowledge of local settings and problems, changes in time represented by

the imagery, and historic context).

In each of these factors, a score of 5 was equated to “most important” and 1 to “least important.

2.3. Data Analysis

The transcripts of the 53 recorded interviews were subject to content analysis for the thirteen open
questions. For the two structured, quantitative questions the Kruskal–Wallis nonparametric test was
employed (using SPSS) to identify patterns amongst the amalgamated data from Brasilia, Rio Branco,
and Cuiaba. However, not all of the 53 respondents answered the structured questions (mostly due
to time constraints), so the question which focused on the expectation of providers of EO data had
47 respondents, while the question which addressed the factors limiting the use of EO data in the
respondent institution had a total of 49 respondents.

This enabled the comparison of several treatments and ranking differences between responses to
questions [16]. Kruskal–Wallis one-way analysis of variance is the method of statistical choice
for non-normally distributed data if there are multiple groups being compared from different
populations [17].
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3. Results

3.1. Uses Made of Earth Observation Data (RQ 1)

The main reported uses of EO data in this research were for agricultural forecasting,
disaster management, land-use planning, environmental management, and monitoring deforestation
in the Amazon region. Table 1 shows that a majority of data used were from freely available sources,
such as Landsat 8 (30 m resolution), Rapideye (5 m resolution), and Sentinel 2 (10 m resolution).

Table 1. Earth Observation (EO) data use and major providers of EO data.

Earth Observation Data Number of Users

Landsat 8 (30 m) 23
Rapideye (5 m) 10

Sentinel 2 (10 m) 10
CBERS 4 (20 m) 4
MODIS (250 m) 3

SRTM (30 m and 90 m) 3
RADARSAT (3–100 m) 2

SPOT (10 m) 2
SPOT (2.5 m) 2

ALOS 2 2
GOES 2

ResourceSat 2
FORMOSAT (15, 4, and 2 m) 2

Sentinel 1 1
Provider’s Website Used to Download EO Data Number or Users

INPE 25
The United States Geological Survey (USGS) 22

European Space Agency (ESA) 17

Notes: INPE, Brazilian Institute for Space Research. CBERS, China-Brazil Earth Resource Satellites. MODIS, Moderate
Resolution Imaging Spectroradiometer sensor of The National Aeronautics and Space Administration(NASA).
SRTM, Shuttle Radar Topography Mission. NASA. RADARSAT, Canadian government / industry partnership
commercial satellite operator. SPOT is a commercial satellite operator based in Toulouse, France. ALOS 2,
Synthetic Aperture Radar (SAR) commercial satellite developed by JAXA (Japan Aerospace Exploration Agency).
GOES, Geostationary Operational Environmental Satellite. Joint partnership between The National Oceanic and
Atmospheric Administration (NOAA) and NASA. ResourceSat, Indian Earth Observation Satellites program IRS
(Indian Remote Sensing Satellite). The EO data is available at not charge to end-users in Brazil via INPE website.
Single agreement between India and Brazil governments. FORMOSAT is a commercial satellite operator at the
National Space Organization of Taiwan (NSPO).

EO data made available through various government agreements with private sector providers
are important. The acquisition of Rapideye (5 m) data by the federal government also enabled users in
public institutions to access EO data from such private sector sources. The acquisition of SPOT 6/7 (10 m
and 2.5 m; https://earth.esa.int/web/eoportal/satellite-missions/s/spot-6-7) by the state of Mato Grosso
and FORMOSAT (15, 4, and 2 m) by the state of Acre are examples of private EO data used in state
institutions. SPOT is a commercial satellite operator that offered a range of EO data (2.5, 5, 10, and 20 m),
and the main goal is to guarantee a sustainable operational service to customers [18]. FORMOSAT is a
program at the National Space Organization of Taiwan (NSPO), and the EO data are available at a
cost for end-users, and can be used for applications such as a planning tool for urban development,
environment and crop health monitoring, and disaster assessment [19]. Several respondents mentioned
that Landsat 8 (30 m) and Sentinel 2 (10 m) meet the demand for monitoring deforestation and land-use
applications at a large scale, but not for land-use management in small properties at the national level.
Both Sentinel and Landsat EO data are available at no cost for end-users.

However, key respondents complained that all the privately available EO data are over five
years old and needed updating at the state level. The demand for new EO data at high spatial
resolution for various applications, such as monitoring urban fires in Rio Branco and land-use planning,
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was mentioned by more than 50% of respondents. In Cuiaba, the state of Mato Grosso purchased the
EO data for the entire state in 2008. The final products of the INPE Fire program and the information
from PRODES are also widely used in several institutions. For example, the data of PRODES is used
by environmental agencies (SEMA) in both Cuiaba and Rio Branco.

All respondents highlighted the importance of EO data to support their respective activities,
indicating strong user recognition for its value in environmental management in relation to the first
key research question of this study.

3.2. Limitations on the Use of EO Data (RQ 2)

Figure 2 summarizes the mean rank scores at the national level for the set of limiting factors for the
following question: What is limiting your use of Earth Observation? The details of the five homogeneous
subsets identified in the statistical analysis are provided in Table 2. The analysis is based on responses
from 49 respondents, with four respondents opting not to respond to the question, mainly because of
time constraints during the interviews.

Figure 2. Average scores of factors limiting the use of EO data: 1 = least important, and 5 = most
important; error bars = standard error of the mean; horizontal bars represent five homogeneous subsets
from the statistical analysis (details presented in Table 2).

Subsets in Table 2 are based on asymptotic significances, with a significant level of p = 0.05.
The respondents to this question had the opportunity to explain the main reasons why particular
factors ranked low or high to complement the numerical rankings given in Table 2. Lack of personnel
(average score = 4.24) was seen as the most important individual limitation by respondents, and this
was largely associated with a lack of financial resource represented in the political and economic
context factor (average score = 3.95). Indeed, the respondents tended to mention the economic context
within Brazil as a major factor which limited the use of EO in their institution (both factors ranked
high). In general, challenges were also associated with lack of investment in data management and
innovation (average scores = 3.8 and 3.78, respectively), which includes investments in IT, internet,
and office conditions. Institutional capacity (capacity of institutions to deliver outcomes and use all
the information available) was ranked in the middle of the table (average score = 3.41) and was often
associated with lack of institutional capacity to implement projects on the ground. These limitations
were often associated with the capacity of institutions to act on the ground, based on limited financial
resources and personnel. Lower ranked limiting factors included administrative aspects such as
capacity to implement projects, bureaucracy, and communication (average scores = 2.86, 2.82, and 2.67
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respectively). Interestingly, access to EO data was considered by respondents to be of relatively low
importance (average score = 2.63), despite the high demand for high-resolution EO data and limitations
to accessing specific types of radar EO data. The capacity of users to combine EO data with other types
of information was ranked low (average score = 2.29), which refers to the capacity of users to download
EO data and process raw EO data into usable information in the respondent institution. However,
end-users often mentioned the need for easy-to-use platforms to allow users with limited technical
skills in EO data processing to use large EO datasets in combination with other data (e.g., agricultural
statistics, health, income and other indicators). Regional geography (the knowledge of end-users to
understand the problems at the regional context, e.g., fire, deforestation, and agriculture) was the
single least important limiting factor for the use of EO data (average score = 1.61).

Table 2. Kruskal–Wallis analysis of the responses on the factors limiting the use of EO data.

Factors Influencing the Use of EO Data
Homogeneous Subset

1 2 3 4 5 6

Regional geography 125.1
User capacity for combined data 208.3

Access to data 253.8
Communication 261.1 261.1

Bureaucracy 277.4 277.4
Capacity to implement projects 284.8 284.8 284.8

Technical capacity 309.6 309.6 309.6
Institutional capacity 355.9 355.9 355.9

Infrastructure 357.7 357.7
Innovation 405.0 405.0

Data management 408.1 408.1
Political and economic context 430.4 430.4

Lack of personnel 469.8
Test statistic a 10.39 9.33 6.3 9.41 7.48

Significance (2-sided test) 0.065 0.053 0.098 0.052 0.058
Adjusted significance (2-sided test) 0.135 0.133 0.285 0.129 0.177

Notes: Homogeneous subsets (shaded cells) are based on asymptotic significances. N = 49, significance level
p < 0.05. Each cell shows the sample average rank of factors limiting the use of EO data. a Incomputable because
subset has only one sample.

The following quotations provide examples of the responses received in the more open elements
of the interviews to complement the quantitative data presented above:

I think the use of EO data is systematic (PRODES, DETER, Fire). In my opinion the main gap is that
there is information available, but the problem is lack of people to process it. High demand and a few
people to do the work. (General coordinator, ICMBIO, Cuiaba)

We hire external services to attend our specific demands here at the Ministry of Environment in
Brasilia, and our institutional capacity is related to lack of people. This is a critical problem in
government institutions. For example, IBAMA used to have 1600 environmental agents in 2010 and
only 900 in 2017. (Senior analyst, Ministry of Environment, Brasilia)

The limitations associated with lack of personnel are often linked with the financial capacity of
institutions to hire new personnel and this is reflected in the second highest scoring limitation being
the political and economic context.

The user’s capacity to combine datasets, communication between institutions, capacity to
implement projects, and technical capacity are some of the limitations at the national level
(subsets 1 to 3). The major limitations are associated with innovation, data management, political and
economic context, and availability of personnel with the required expertise (subsets 4 to 6). For example,
financial resources were the critical factor at UCGEO in Rio Branco, initially having 12 staff in 2009
for geoprocessing and having only three in 2017. In Brasilia, the head of EO monitoring at ICMBIO
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described the problem of only having two permanent staff and the requirement of having to hire staff
only on a short-term contract (six months to one year maximum). The work must be complemented
with the short-term help of undergraduate students and temporary contracts. This creates problems
of quality and control due to high demand of work and constant change. This constant turnover of
staff is also a challenge, as time and resources had to be spent training someone for a limited period.
A similar situation was evident in other institutions at the national level.

The speed of the internet (infrastructure) was noted to be an important limitation by almost all
the users in Brasilia, and at the regional level, it was a main barrier of communication between Brasilia
and the state levels. The following illustrate this point:

Internet with poor quality, it takes 12 h to download an EO image. (Environmental Analyst,
ICMBIO, Rio Branco)

We need to invest more in system of information and data management. The internet is very slow,
old computers and the changes of staff is constant. Investments in technology and to hire new staff is
related to the political and economic context in Brazil. For example, one area that requires investment
is to integrate land ownership data with different databases. In general, technical capacity is good
with a few limitations. This is because we have different training programs in academia or here at
IBAMA. Also, EO data image processing and remote sensing is part of our day-to-day life. The main
limitation is the speed of the internet here in Brasilia and the regional offices. (Senior director,
IBAMA, Brasilia)

When asked about EO restrictions associated with radar images and high-resolution optical data,
more than half of the respondents mentioned challenges involved with processing and interpreting
radar data.

One of the problems is the capacity of the end-user to use radar images. (Environmental Analyst,
ICMBIO, Rio Branco)

Lack of knowledge to use radar images. For example: the high number of clouds in the Amazon
region. It would be useful, but we need proper training to process this type of data. (PhD student,
University of Acre, Rio Branco)

It is difficult to process EO data from Sentinel 1. It requires specific knowledge. (Senior coordinator,
ICMBIO, Brasilia)

The limitations of using EO radar data are also associated with economic limitations to purchase
radar data available, but at a cost, in institutions where the end-user is skilled to use and process
advanced information, such as IBAMA in Brasilia.

Radar images on band L, 15 day’s resolution and 20 m at no cost are essential to detect illegal
deforestation in the Amazon. The images are not available for free. (Senior director, IBAMA, Brasilia)

The results show that some of the main challenges in all locations are limitations of end-users
with the technical capacity to process and extract the needed information and more than 70% of
respondents mentioned challenges involved with processing and interpreting radar data. More than
50% of respondents noted that the problems are associated with both access to radar images and
the technical capacity process EO radar data. The need for up-to-date high-resolution EO data of
1 m or lower was one of the main demands noted by respondents, and it was suggested that such
high-resolution imagery should be available at no cost for public access.

We need EO data with high resolution and high frequency available for public access. (Environmental
analyst, Brazilian Forest Service, Brasilia)
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It would be great to have access of high-resolution EO data of 1 m or 2 m. It would help the state of
Acre to monitor public land and to monitor fiscalization. For example: problems of land conflicts,
landless movements, land invasions and overlapping land areas registered with the different owner.
(Senior director, Land Institute of Acre (ITERACRE), Rio Branco)

3.3. Expectations of Earth Observation Data Providers (RQ 3)

In exploring this third key research question we sought responses from users on what they saw as
their most important needs/expectations from EO data providers. Figure 3 gives the mean rank scores
at the national level for the set of needs/expectations for the following question: What are your user
needs/expectations from providers with regard to EO data? The details of the three homogeneous subsets
identified in the statistical analysis are provided in Table 3.

Figure 3. Average scores of the user needs/expectations of EO data providers: 1 = least important, and
5 =most important; error bars = standard error of the mean; horizontal bar represents a homogeneous
subset from the statistical analysis (details presented in Table 3).

Perhaps unsurprisingly, low cost was mentioned as the most important factor for the respondents
(average score = 4.83, subset 3). The factor products with high frequency and fast delivery was also
ranked as very important (average scores = 4.49 and 4.45, respectively), although subset two comprised
five of the factors and these could not be separated statistically. Technical support had the lowest
average score (3.38); however, this still suggests a degree of importance ascribed to this factor by the
respondents. Hence, Figure 3 would suggest that all of these factors were regarded as “important” by
the respondents, albeit with low cost emerging as the one having greater emphasis.
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Table 3. Kruskal–Wallis analysis of the responses on expectations from EO providers.

Homogenous Subset
1 2 3

Expectations from
EO providers

Technical support 90.3
High-resolution images 160.0

Friendly interface 165.0
Fast delivery 167.1

Frequency 177.4
Easy to use systems 180.5

Low cost 214.6
Test Statistic a 2.076 a

Significance (two-sided test) 0.722
Adjusted Significance (two-sided test) 0.833

Notes: Homogeneous subsets (shaded cells) are based on asymptotic significances. N = 47; significance level
p < 0.05. Each cell shows the sample average rank of user needs/expectations. a Not computable as subset has only
has one sample.

The following quotations provide examples of the responses received in the more open elements
of the interviews to complement the quantitative data presented above:

We want products ready to use without the need of additional technical support from EO providers.
(Senior coordinator, IBAMA, Brasilia)

EO providers should improve systems to transform complex EO information into simple information
for the farmers. (Land analyst, Federation of Agriculture and Livestock of the state of Mato
Grosso (FAMATO), Cuiaba)

We need to have access of new EO products that includes both high frequency and high-resolution
data. (Environmental analyst, Secretary of the State of Environment (SEMA), Cuiaba)

It would seem that respondents wish to have easy-to-use systems without any additional technical
support from the main providers (INPE, USGS, and ESA). The relatively lower ranking of technical
support compared to the others is perhaps surprising, but this did not mean that users of EO data saw
this as unimportant, as indicated by its scores in the mid-range of the scale. Given that resourcing
in terms of staff, IT, fast-internet connection, etc., were regarded as significant limitations in EO use,
the services offered by providers were seen as a key ingredient for helping to address that gap by
providing information that did not require further in-house processing. The use of EO data via WMS
(Web Mapping Services) is a good example of practical solution that IBAMA headquarters provides to
regional offices. The service accesses EO time series data in real time, with advanced computers at
IBAMA headquarters. This reduces the infrastructure and staffing requirements at the regional level
and in the field. The EO data are aggregated with information from PRODES and DETER. In general,
respondents were confident that providers generate reliable and accurate information that does not
require further verification.

3.4. Suggestions for Improving EO Data Use (RQ 4)

Respondents suggested several ideas for improving EO data use, although these often overlapped
with infrastructure problems and institutional challenges. Indeed, the suggestions typically revolved
around ways in which the limitations of staffing and other resources noted above could be addressed.
For example, the infrastructure planning analyst at the State Secretariat of Planning of Mato Grosso
(SEPLAN) in Cuiabá made three suggestions to improve the use of EO data in Mato Grosso:

1. Policymakers need to see cartography as an essential part of planning.
2. The workforce in public institutions needs to be renewed, as there is a lack of people to work in

the field.
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3. The concept of information management is essential. More transparency of information between
all public institutions is required, and there is a need to simplify the use of information for the
regular user.

(Infrastructure planning analyst, State Secretariat of Planning of Mato Grosso
(SEPLAN), Cuiaba)

The bureaucracy involved when establishing new partnerships, including with universities,
was mentioned as a key barrier by respondents in Brasilia and Cuiaba, as exemplified by the following
quotations from respondents:

We need to integrate the work of Universities with other public institutions and the private sector.
The knowledge remains at the University and it does not reach the end-user. The problem is
bureaucracy to establish partnerships. Internal and external communication with other institutions
are major challenges for the University. Political will and conflict of interests are also major issues.
(Geography lecturer, Federal University of Mato Grosso (UFMT), Cuiaba)

Universities should participate in more active ways to disseminate knowledge. (Senior director,
CONAB, Brasilia)

We need more integration between academia at the state level and centers of information like INPE and
federal institutions in Brasilia. Those institutions lack influence at the regional context to influence
regional societies. INPE should work more at the state level. (Infrastructure planning analyst,
State Secretariat of Planning of Mato Grosso (SEPLAN), Cuiaba)

Respondents often mentioned the need to integrate databases between institutions and improve
access to the final information generated by using EO data.

We need to improve the transparency of information in public organizations. One of the main problems
is the integration of database between public institutions. We also need to improve communication
between institutions. For example, better communication between the State Secretariat for the
Environment (SEMA), IBAMA, and the public attorney. Information is power and is associated with
politics. (Senior staff, public attorney, Cuiaba)

We expect more transparency of information between public institutions. We have all the
data, but we need to improve the links between institutions and the online platforms to share
information. For example, between SEMA, IBAMA, INTERMAT, infrastructure departments,
and other institutions. (Senior analyst, Secretary of State for the Environment (SEMA), Cuiaba)

We need to improve the quality of the data and how we share the data between institutions. SEMA,
the National Institute of Colonization and Agrarian Reform (INCRA), the National Indian Foundation
(FUNAI) and improve the flow of information between institutions. We have internal capacity, but one
limitation is to manage the large volume of data. One suggestion is to generate more thematic maps to
help policymakers. The government budget is linked to our institutional capacity to hire new staff and
invest in new technologies such as new data management (big data). We need more integration between
public universities and public institutions to integrate our knowledge and resources. (Senior Director,
IBAMA, Cuiaba)

Several respondents highlighted that INPE (located in Sao Jose dos Campos) and federal institutions
in Brasilia should influence actions at the regional level. The key factors of federal institutions
contributions to regional development are associated with the general sense of disconnection between
civil servants and policymakers in Brasilia with the reality of problems at the state and regional level.
This point was mentioned several times during the interviews in Cuiaba and in Rio Branco.
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4. Discussion

This research addresses the important but hitherto poorly understood requirements of,
and limitations experienced by, the users of EO data for environmental and sustainable land
management. It was conducted by obtaining quantitative and qualitative data from a diversity
of relevant actors in Brazil, a country with a long history of interest in using EO data for such purposes.
In total, extensive responses were obtained from 53 individual interviews, to provide representative
coverage of both governmental institutions, other organizations, and tiers of EO users and enable a
number of valuable insights to be drawn on the uses made of EO data, the factors that limit/enhance
its use, and, importantly, on the needs of users and their suggestions for improving their use of EO
data. While the majority of respondents was from federal or state institutions, this does reflect where
much of the experience and responsibility rests for the sourcing and use of EO data and information
for environmental and sustainability management in Brazil.

In the discussion below, we have combined the excellent breadth and depth of the freely given
responses to the semi-structured represented in the Results section into an overall synthesis narrative
addressing the four key research questions posed in the introduction that capture the challenges
end-users encountered to extract the right information derived from different EO data. In more than
half of the interviews, respondents mentioned that services with “ready-to-use” platforms are available
from private providers and government (national level or state) should consider purchasing these
specific applications associated with land-use management.

The use of EO data was acknowledged in this research to be indispensable as a means of providing
policymakers and environmental and sustainability managers with reliable information e.g., on land
use and land-use change. In the present study, the key areas of environmental and sustainability
management that users wished to deploy EO data to help address were to monitor deforestation,
crop forecast, disasters (e.g., flooding), fire, urban planning, and law enforcement. It is widely used in
different sectors, such as government agencies, banks, NGOs, and academia. Potential users include
small farmers and non-experts outside the EO community. It was often mentioned the need to create
easy-to-use platforms to enable non-experts to understand the information generated from EO data.
The main users in this study include civil servants, personnel in research institutions, and government
institutions at the federal and state levels.

Lack of skilled personnel and finance emerged as the main limitations identified by users for EO
data. The financial limitations restricted both investment in staff and in infrastructure (IT, speed of
internet, and big data management), thereby limiting institutional capacity, but they are also a factor
restricting investment in field operations and actions that utilize EO data. At the time of the research
(2017), Brazil was going through an economic crisis which resulted in fewer funds being available for
recruitment by government agencies (political and economic context). Salaries for GIS professionals
tend to be low, and there was a lack of long-term career opportunities inside the respondent institutions.
Access to EO data at medium resolution (e.g., Sentinel 10 m and Landsat 30 m) was not a limitation
for users, but access to up-to-date high-resolution (≤1 m) data from government institutions or via
international technical cooperation was an unmet demand.

Two ways emerged in this research whereby the limitations of a lack of skilled personnel and
finance could be addressed:

• Improving partnership between institutions to share their data;
• Buy-in processed information from service providers.

It was suggested by some respondents that further cooperation and new partnerships between
existing institutions are necessary to overcome limitations on the use of EO data. For example,
the results of academic research should be used by policymakers and by institutions that rely on
up-to-date information, as well new up-to-date GIS training provided by academics which could
improve the technical capacity of regional institutions. In many cases, respondents learned to process
EO data alone and technical support from experts could improve institutional capacity to use EO data
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more efficiently, but the bureaucracy involved in establishing new partnerships was mentioned as
a significant barrier and the main reason why institutions do not create partnerships. It was often
mentioned that institutions at the federal level, which are generally better resourced, should work
closely with institutions at the state level, to improve the use of EO data.

Several ideas to address these barriers to cooperation and transparency were suggested, such as
the expectation that INPE should provide high-resolution data with a high frequency of coverage at
the national level. These data should be converted into easy-to-use information products. For example,
final products or thematic maps that offer multiple information associated with an EO dataset in specific
geographical regions could be managed and hosted by INPE. It was suggested that such an “EO portal”
would integrate multiple data sources and include information about income, health, agriculture,
regional development, and many other indicators associated with EO data to guide informed decisions.
The end-user could access in a single online platform EO data and other relevant information according
to end-user needs. The second approach, that of purchasing EO-based informational services from
private sector providers, was popular and seen by respondents as a useful and trusted means of
addressing their in-house limitations.

As noted earlier, there is an important distinction here between EO “data” and “information”
derived from those data. In EO terms, data are the raw images, perhaps processed to distinguish factors
such as land use. Information is the result of further processing of the data to provide details on the
places where (for example) there are changes in the rate and extent of LULC. Hence, service providers
may go further than just providing data and also provide high-level information that agencies can
make use of. Here the main factor was cost along with a need for high frequency and fast delivery.
The information provided need to be easy to use without any additional technical support. However,
high-resolution EO data are expensive, and some institutions cannot afford to buy services or products
provided by private enterprises. Satellites are valuable tools to monitor land-use change, and they have
delivered consistent data on forest change, such as the DETER alert system provided from INPE [2].
The evidence from the interviews suggests that EO data are widely used at the respondent institutions,
and additional communication between institutions is necessary to increase the use of the information
provided by different providers.

One of the key points identified in the research is how data, information, and knowledge are shared
across institutions. Providers of information such as INPE, CONAB, EMBRAPA, IBAMA, and state
agencies are users and providers of environmental information derived from EO data. However,
access to EO data is not a major limitation in itself, except for the point made about the need for
high-resolution EO data, but it is the availability of information derived from the EO data that matters.
The problems associated with lack of cooperation and the needs to increase partnerships to improve
shared information in different flows of information was mentioned as one of the main limitations by
different respondents. This point about the sharing of information has been noted before, although
not in the context of EO, and provides a challenge regarding analysis, given that there can be many
facets involved. For example, Bruckmeier and Tovey [20] point out the practices of hierarchy of data,
information, knowledge, and the interactions amongst social actors involved in generating and using
knowledge via complex interactions. Ostrom [21] has suggested the use of multiple-level analytical
framework, such as the Institutional Analysis and Development Framework (IAD), to understand
the ways institutions operate and interact in terms of information flows, the complexity of such
networks, and the changes over time [22]. The IAD framework helps to organize the capabilities
of institutions issues related to governance systems and institutional arrangements [21]. However,
it can be challenging in practice to determine the patterns of interactions, norms, and strategies
between participants within such a complex institutional network [23]. Nonetheless, additional
in-depth institutional analysis would enhance the understanding of the flow of EO information
between institutions.

Another key point that emerged in the respondent institutions is the skills levels available to
use and process all the information available. For example, some respondents (e.g., in IBAMA and
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EMBRAPA) mentioned that they are very capable when it comes to using different types of EO data
and integration of those data with external sources of information, to provide reliable information
for managers. On the other hand, some end-users in small state institutions learned by themselves to
process EO data and GIS independently via different online resources. Several respondents mentioned
the need for EO data providers to provide thematic maps with “ready to use products” integrating
multiple data sources to improve the use of EO data. For example, thematic maps with the best EO
data available for specific geographical regions with additional information of socioeconomic factors
(economic, unemployment, education, health, poverty, and unemployment) and environmental factors
associated with land use and land-use change (agriculture production, deforestation, water quality,
and environmental degradation) would be very useful.

Access to raw EO data in not the primary requirement of end-users, but access to online platforms
that facilitate access to ready-to-use products and services is critical importance [24]. Vinhas et al. [25]
points out that traditional methods where end-users transform data into information are being replaced
by ready-to-use Web Map Services (WMS), which significantly facilitate the use of EO information
by the wider community. Ready-to-use WMS end-users are not required to transform EO data
into information [25]. To extract information, experts use methods that assign a label to each pixel
(e.g., grasslands, forest, and pasture), and labels can represent either land cover (observed biophysical
cover of the Earth’s surface) or land use (description of the socioeconomic activities) [26], but end-users
have different knowledge to transform EO data into usable information (e.g., EO terminology,
algorithms, software programs, and image processing skills) [27]. The term “data as a service” (DaaS)
is defined as the sourcing, management, and provision of data delivered in an immediately usable
format to end-users, including non-expert users [25]. Examples include machine-learning techniques
and pattern-recognition to process EO data with spatial, temporal, and spectral features of different EO
data [28], or machine-learning techniques to solve a wide range of tasks to extract information from
multiple EO datasets (e.g., optical and radar) to classify land-cover classes (e.g., crops and forests) [29].

Synthetic Aperture Radar (SAR) is classified as an active system by which the instrument transmits
radiation and captures the reflection, while passive systems are designed to only capture radiation from
the earth’s surface [30]. Passive systems have an important disadvantage in terms of their inability to
capture data during unfavorable weather conditions (e.g., rain and clouds) [30], while SAR can “see”
through such barriers. Hence, SAR is a high-performing technology for studying the dynamics of forests
in tropical forests (e.g., forest classification and detection of clear-cut and burned-out areas), but radar
images are not intuitively understandable even by scientists and technicians due to centimetric band
classifications [30].

Overall, the results of this research clearly suggest that the challenge, as identified by users
in Brazil (mainly in public institutions), is not lack of EO data per se, but rather mainly a lack of
institutional resources to translate the data into information and to make use of the information on
the ground (e.g., adequately resourced teams to fight fire or illegal deforestation). However, it is also
clear that other limitations overlap with this main one and there is no single answer for every user
group or institution. A shortage of skilled staff, the speed of the internet (communication between
headquarters and regional offices), etc., are recognized problems in several institutions, and this will
require further investment from the federal and state government. The federal institutions included
in the interviews rely on public funding for new investments, and this seems unlikely in financially
challenging times. Nonetheless, a substantial challenge is also associated with lack of cooperation
between different government institutions and transparency to provide the environmental information
for end-users. What would seem to be required are efficient ways in which the barriers to cooperation
and transparency could best be addressed. In a study about forest governance and transparency in
public institutions and state agencies in the Amazon region, Bizzo and Michener [31] noted poor
governance outcomes (passive transparency) and weak compliance with environmental open-data
obligations and policies and with expenditures and procurement practices of government agencies.
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Their results are in line with those presented here: End-users complained about the lack of transparent
access to environmental information in environmental agencies and government institutions.

The interview with a senior staffmember at the public attorney office in Mato Grosso highlighted
the power of vested interests. The role of private-sector service providers also requires more attention,
particularly regarding the newer high-resolution (<1 m) optical data and what it can offer public-sector
agencies. There is clearly a need for more research to untangle the factors at play with these
interactions between various public sector institutions seeking to use EO data and between them and
the private sector.

To transform EO data into useful information (e.g., maps), end-users require knowledge of
technical geospatial approaches, observation, and analysis [32]. It should be noted that the present
research did not specifically cover disruptive changes in EO technologies, such as the use of video
satellites capable of capturing tens of seconds of Very High Resolution Imagery (VHRI) steady images,
such as the Carbonite-2 (Vivid-i) [33], nor were such changes referred to in any substantial degree by
respondents. However, it needs to be acknowledged that end-users are increasingly coming from
non-EO domains, thus affecting user-centric technology developments to support the visualization
of information [32], and that these new disruptive capabilities are already playing an increasingly
important role in disaster response and are likely to be used increasingly in environmental and
sustainability monitoring of land-use-change detection [33]. VHRI EO data (<1 m resolution) available
from optical sensors offer rich spatial details [34]. However, the present study indicates that taking
advantage of such advances will be very difficult due to the challenges users in Brazil already face in
terms of the lack of skilled personnel able to process existing EO data and potentially without easy
access to ready-to-use service platforms for VHRI, etc. Agreements between public institutions and
private providers to facilitate purchasing ready-to-use services with new technologies may help the
performance of institutions, without adding to the long-term costs of permanent staff. Additionally,
further initiatives to improve the use of information, such as the Norway International Climate and
Forest Initiative (NICFI) in partnership with Kongsberg Satellite Services (KSAT), Planet, and Airbus,
aiming to provide monthly universal access to high-resolution and ready-to-use platform of the
tropics [35], may prove to be highly useful in advancing EO usage in support of environmental and
sustainability goals.

5. Conclusions

The main conclusions of this research are as follows:

1. The main limitation for wider use of EO data and information is a lack of skilled personnel
linked with financial constraints associated with the current political and economic situation of
Brazil (lack of government investments). These limit the capacity of institutions to develop the
skilled personnel and infrastructure to benefit from the acknowledged gains that EO data and
information can bring to their environmental and sustainability management roles.

2. New partnerships and cooperation between institutions at the federal and state levels could
be one means of addressing these resource constraints, but there are significant barriers which
prevent this, and these warrant further research.

3. Service providers from the private sector are utilized by agencies, and there is potential for
more involvement. These service providers are often in a better position to access a variety of
platforms and provide the most appropriate EO-based products for the requirements of customers.
Further research is required on the interaction between the private and public sector institutions
to better understand the needs of both and how they can be addressed.

4. The quantity of EO data is not a real limitation. However, it is also clear that some aspects of the
data’s “quality” (e.g., resolution, type) and its cost can be.

5. Addressing the widespread demand/expectation identified in this research for “easy to use”
EO-based information on “easy to use” platforms will bring substantial benefit for environmental
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and sustainability management, especially when combined with complementary information
from other sources and databases. This would be of considerable value to the work of diverse
public/governmental institutions, other organizations (including the private sector and academic),
and for the general public.
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