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Preface to ”Statistics and Pattern Recognition Applied

to the Spatio-Temporal Properties of Seismicity”

In recent years, there have been significant advances in the understanding of seismicity scaling

laws, the study of spatiotemporal correlations, and earthquake clustering, with direct implications for

time-dependent seismic hazard assessment. New models based on seismicity patterns, considering

their physical and statistical significance, have shed light on the preparation process before large

earthquakes and the evolution of clustered seismicity in time and space. On the other hand, the

increasing amount of seismic data available at both local and global scales, together with accurate

assessments of the reliability of the catalogs, offers new opportunities for model verification.

This Special Issue brings together eight peer-reviewed articles. The articles represent a

collection of innovative applications of earthquake forecasting, including the earthquake preparation

process, seismic hazard assessment, statistical analysis of seismicity, synthetic catalogs, and cluster

identification.

It is therefore invaluable to seismologists, statistical seismologists, research students,

government agencies, and academics.

We are especially grateful to all the authors as without them this Special Issue would not have

become a reality. As guest editors, we would like to thank the reviewers for their careful evaluation

and valuable contributions. Special thanks go to Assistant Editors Carlos Sanchez and Jill Fang

for their dedication to this project and their invaluable collaboration in setting up, promoting, and

managing the Special Issue.

Stefania Gentili, Rita Di Giovambattista, Robert Shcherbakov, and Filippos Vallianatos

Editors

vii
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Editorial of the Special Issue “Statistics and Pattern Recognition
Applied to the Spatio-Temporal Properties of Seismicity”

Stefania Gentili 1,*, Rita Di Giovambattista 2, Robert Shcherbakov 3,4 and Filippos Vallianatos 5

1 National Institute of Oceanography and Applied Geophysics—OGS, 33100 Udine, Italy
2 National Institute of Geophysics and Volcanology (INGV), 00143 Rome, Italy; rita.digiovambattista@ingv.it
3 Department of Earth Sciences, Western University, London, ON N6A 5B7, Canada; rshcherb@uwo.ca
4 Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
5 Department of Geophysics-Geothermics, Faculty of Geology and Geoenvironment, School of Sciences,

National and Kapodistrian University of Athens, GR 15784 Athens, Greece; fvallian@geol.uoa.gr
* Correspondence: sgentili@inogs.it

1. Summary of the Special Issue Contents

Due to the significant increase in the availability of new data in recent years, as a result
of the expansion of available seismic stations, laboratory experiments, and the availability
of increasingly reliable synthetic catalogs, considerable progress has been made in under-
standing the spatiotemporal properties of earthquakes. The study of the preparatory phase
of earthquakes and the analysis of past seismicity has led to the formulation of seismicity
models for the forecasting of future earthquakes or to the development of seismic hazard
maps. The results are tested and validated by increasingly accurate statistical methods. A
relevant part of the development of many models is the correct identification of seismicity
clusters and scaling laws of background seismicity. In this collection, we present eight
innovative papers that address all the above topics.

The occurrence of strong earthquakes (mainshocks) is analyzed from different per-
spectives in this Special Issue.

Ref. [1] proposes analysis using a medium-term earthquake prediction method (EEPAS)
applied to California and New Zealand and analyzes the trade-off between time and the
area identified by precursor seismicity.

Ref. [2] aims to establish the mechanical stability of a fault system by analyzing
modulations of seismic activity as a function of known perturbations, in order to assess
how unstable the faults are for additional stress. The method is applied to Greek seismicity.

Ref. [3] proposes a pattern recognition approach to identify areas where strong earth-
quakes occur, for application in seismic hazard assessment studies. The method is applied
to North and South America, Eurasia, and the Pacific Rim.

Three other papers are related to triggered and clustered seismicity analyses (foreshock
and aftershock).

Ref. [4] presents the modeling of aftershock occurrence rates by comparing Omori-Utsu
and ETAS laws, and estimates the probability of having the largest aftershock forecasted
during a given future time interval using the extreme value theory and the Bayesian pre-
dictive framework. A retrospective forecasting of three sequences in Alaska is performed.

Ref. [5] describes a new cluster identification procedure, MAP-DBSCAN, and suc-
cessfully compares its performance with that of other existing methods in the literature
by using synthetic catalogs. The method is then applied to obtain a characterization of
Greek seismicity.

Ref. [6] proposes the use of foreshock and aftershock data together with their main-
shocks to improve an earthquake prediction technique based on spatially smoothed seis-
micity. The method is applied to a global catalog with two different magnitude thresholds,
5.5 and 6.5, showing improved performance.

Appl. Sci. 2022, 12, 4504. https://doi.org/10.3390/app12094504 https://www.mdpi.com/journal/applsci1
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The last two papers in the collection are closely related to the topic of the previous
papers.

Ref. [7] shows an extended version of the maximum likelihood estimation method
for estimating the parameters of the tapered Gutenberg–Richter distribution and their
uncertainties, in the case of catalogs with a time-varying magnitude of completeness. The
method is tested on synthetic catalogs and the global centroid moment tensor catalog.

Ref. [8] proposes an algorithm to simulate synthetic catalogs covering hundreds of
thousands of years based on the ETAS model and seismogenic source data. The algorithm
allows for obtaining a seismicity catalog, using the seismogenetic model of Italian seismicity
derived from the DISS catalog, that reproduces sequences characterized by multiple main-
shocks of similar magnitude, a typical aspect of northern and central Apennine seismicity.

2. Conclusions

The eight papers published in this collection represent a non-exhaustive list of the
most recent leading topics in the fields of statistical seismology and pattern recognition
applied to the spatiotemporal evolution of seismicity. Given the complexity of the topic, a
rigorous methodology to the approach to the study of spatiotemporal properties of seis-
micity is needed. Descriptions of methods and implementations of modern and advanced
methodologies from multidisciplinary approaches are needed for a shared understanding
of the topic and as a starting point for new research. Therefore, this collection stands as
an important starting point to outline the issues of interest as well as new challenges in
this field.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The ‘Every Earthquake a Precursor According to Scale’ (EEPAS) medium-term earthquake
forecasting model is based on the precursory scale increase (Ψ) phenomenon and associated scaling
relations, in which the precursor magnitude MP is predictive of the mainshock magnitude Mm,
precursor time TP and precursory area AP. In early studies of Ψ, a relatively low correlation between
TP and AP suggested the possibility of a trade-off between time and area as a second-order effect.
Here, we investigate the trade-off by means of the EEPAS model. Existing versions of EEPAS in New
Zealand and California forecast target earthquakes of magnitudes M > 4.95 from input catalogues
with M > 2.95. We systematically vary one parameter each from the EEPAS distributions for time
and location, thereby varying the temporal and spatial scales of these distributions by two orders
of magnitude. As one of these parameters is varied, the other is refitted to a 20-year period of each
catalogue. The resulting curves of the temporal scaling factor against the spatial scaling factor are
consistent with an even trade-off between time and area, given the limited temporal and spatial
extent of the input catalogue. Hybrid models are formed by mixing several EEPAS models, with
parameter sets chosen from points on the trade-off line. These are tested against the original fitted
EEPAS models on a subsequent period of the New Zealand catalogue. The resulting information
gains suggest that the space–time trade-off can be exploited to improve forecasting.

Keywords: earthquake forecasting; precursors; statistical seismology; earthquake likelihood models;
seismicity patterns; New Zealand; California

1. Introduction

Medium-term earthquake forecasting with time-varying models is becoming increas-
ingly important for operational earthquake forecasting and the development of seismic
hazard models. For example, the New Zealand medium-term forecast model has end
users interested in time-varying earthquake hazards and risk, including the land use
planning and building sector, central and local government agencies and the insurance
industry [1–3].

Empirical observations of precursory seismicity patterns have an important role in
aiding the development of earthquake forecasting models [4–10]. One such pattern is the
precursory scale increase (Ψ) phenomenon, which is an increase in the magnitude and rate
of occurrence of small earthquakes [11,12]. Individual examples of Ψ were identified by
examining the seismicity in arbitrary frames of space and time preceding the occurrence
of a major earthquake, such as in Figure 1 for the 2014 Napa, California earthquake.
A magnitude versus time plot (Figure 1b) and a cumulative magnitude anomaly (Cumag)
plot (Figure 1c) were used to identify the onset of precursory seismicity [12]. The onset is
marked by the minimum of the Cumag plot. The precursor time TP is then found as the
time between the onset and origin time of the major earthquake. The space–time frame
was chosen to informally maximize the increase in magnitude and seismicity rate at the
time of the onset. Each example of Ψ provided a value of the mainshock magnitude Mm,

Appl. Sci. 2021, 11, 10215. https://doi.org/10.3390/app112110215 https://www.mdpi.com/journal/applsci3
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precursory magnitude MP, precursor time TP and precursory area AP (Figure 1c), within
which the precursors, major earthquake and aftershocks all occurred.

Figure 1. Identification of Ψ phenomenon for the August 2014 M6.0 South Napa, California earthquake. (a) The precursory
area AP (dashed rectangle) with the epicenters of the precursory seismicity, mainshocks and aftershocks. (b) Magnitude
versus time of prior and precursory earthquakes. Dashed lines show the precursory increase in magnitude level. Mm is the
main shock magnitude, and MP is the precursor magnitude. (c) Changes in the cumulative magnitude anomaly (Cumag)
over time; see [12] for the definition. Dashed lines show the precursory increase in the seismicity rate in 1998. The protractor
translates the Cumag slope into the seismicity rate in magnitude units per year (M.U. yr−1). TP is the precursor time.

From the combined identifications of Ψ from four well-catalogued regions, it was found
that Mm, MP, TP and AP were all positively correlated [12]. In particular, three scaling
relations (Figure 2) allowed Mm, TP and AP to be predicted from MP, defined as the average
magnitude of the three largest precursory earthquakes. These three predictive relations
became the basis for the ‘Every Earthquake a Precursor According to Scale’ (EEPAS) medium-
term earthquake forecasting model [13].

Although Mm, MP, TP and AP were all positively correlated, AP and TP were less
correlated than the other pairs of variables, as shown by the low value of the coefficient
of determination R2 in Figure 3a compared with those in Figure 2a–c. In Figure 2, we
highlighted the earthquakes for which AP was high and TP was low or vice versa relative
to the fitted relations, a condition that is not uncommon. The same earthquakes are
highlighted in Figure 3. Remarkably, the product of TP and AP was highly correlated with
Mm, as seen in Figure 3b, with R2 being higher than any of those values in Figure 2. These
features pointed to a trade-off between AP and TP. However, the origin of this trade-off was
not clear. Could it have a physical origin related to, say, the tectonic setting or seismicity
rate [14–16], or could it be a statistical side-effect? For example, in this case, if log TP and
log AP were independently correlated with Mm, then their sum would be correlated even
better, such as in Figure 3b.

4
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Figure 2. Predictive scaling relations and 95% tolerance limits derived from 47 examples of ψ from four regional earthquake
catalogues, taken after [12]. (a) Mainshock magnitude Mm versus precursor magnitude MP (coefficient of determination
R2 = 71%). (b) Precursor time TP versus MP (R2 = 65%). (c) Precursory area AP versus MP (R2 = 48%). Enlarged and colored
points are for 1990 Weber (blue square), 1968 Puysegur Bank (red square), 1969 E. Hokkaido (blue circle), 2000 W. Tottori
(red circle), 1948 Karpathos (blue triangle), 1983 Kefallonia (red triangle), 1966 Colorado D. (blue cross) and 1980 S. Cascadia
(red cross).

Figure 3. Scaling relations and 95% tolerance limits derived from 47 examples of Ψ from four regional earthquake catalogues,
taken after [12]. (a) Precursor time TP versus precursory area AP (R2 = 34%). (b) Product of AP and TP versus mainshock
magnitude Mm (R2 = 75%). Symbols are enlarged and colored as in Figure 2.

A study of the Ψ phenomenon in synthetic earthquake catalogues shed new light on
the matter [17]. It was found that, in a synthetic catalogue generated by the earthquake
simulator RSQSim [18,19], two or more equally plausible identifications of Ψ could be
found for individual mainshocks. These identifications presented very different TP and AP
values, consistent with a hypothetical space–time trade-off.

The evidence for the trade-off, whatever its origin, can also be strengthened through
applications of the EEPAS model. One example was the EEPAS model fitted with different
fixed lead times [20]. The lead time is defined as the time interval between the start of
the catalogue and the origin time of a target earthquake. It was found that as the lead
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time increases, the mean of the EEPAS time distribution increases, and the variance of the
location distribution decreases. The time and spatial scales involved varied by about a
factor of two. Here, we aim to further understand the space–time trade-off by fitting the
EEPAS time distribution with a fixed spatial distribution and the spatial distribution with a
fixed time distribution.

In the next section, we review the defining equations of the EEPAS model and then
describe the method and data for the present study. Our results show how the space–
time trade-off is revealed through constrained fitting of the EEPAS model to the New
Zealand and California catalogues. Finally, we indicate by way of a simple New Zealand
example how the space–time trade-off might be exploited for improving the performance
of medium-term earthquake forecasts.

2. EEPAS Forecasting Model

Although inspired by the Ψ predictive scaling relations (Figure 2), the EEPAS model
does not involve the identification of precursory seismicity for individual major earth-
quakes. It treats every earthquake as a potential precursor of future larger earthquakes
to follow in the medium term [13]. Depending on the magnitude, this period can range
from months to decades. The model has a background component and a time-varying
component. The background component is a smoothed seismicity model, with the spatial
distribution depending on the proximity to the location of past earthquakes. It is, in prin-
ciple, time-invariant, but it is updated at the origin time of each contributing earthquake.
The time-varying component, based on the Ψ predictive relations, is obtained by summing
the contributions from all past earthquakes after a starting time t0 and exceeding an input
magnitude threshold m0. The expected earthquake occurrence rate density is a function of
the time, magnitude and location denoted by λ. For times t > t0, magnitudes m exceeding
a target threshold mc and locations (x,y) within a region of surveillance R, the total rate
density takes the following form:

λ(t, m, x, y) = μλ0(t, m, x, y) + ∑
ti≥t0,mi≥m0

η(mi)λi(t, m, x, y) (1)

where μ is an adjustable mixing parameter representing the proportion of the forecast
contributed by the background model component; λ0 is the rate density of the background
model; η is a normalizing function and ti and mi are the origin time and magnitude of the
ith contributing earthquake, respectively. The contributing earthquakes come from a larger
search region, which needs to be big enough to include all earthquakes that might affect
the rate density within R. The contribution from the ith earthquake to the rate density is
given by

λi(t, m, x, y) = wi f (t|ti, mi)g(m|mi)h(x, y|xi, yi, mi), (2)

in which wi is a weighting factor and f, g and h are the densities of probability distributions
which are based on the Ψ predictive scaling relations (Figure 2). These distributions depend
on the magnitude mi of the contributing earthquake. Following the notation in [20], the
magnitude density g is a normal density of the following form:

g(m|mi) =
1

σM
√

2π
exp

[
−1

2

(
m − aM − bMmi

σM

)2
]

, (3)

in which aM, bM and σM are adjustable parameters. The time density f is a lognormal
density of the following form:

f (t|ti, mi) =
H(t − ti)

(t − ti)σT ln(10)
√

2π
exp

[
−1

2

(
log(t − ti)− aT − bTmi

σT

)2
]

, (4)

in which H(s) = 1 if s > 0 and is 0 otherwise and aT , bT and σT are adjustable parameters.
If all other parameters are fixed, the mean of the time distribution is proportional to 10aT .
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Therefore, 10aT can be regarded as a temporal scaling factor. The location density h is a
bivariate normal density of the following form:

h(x, y|xi, yi, mi) =
1

2πσ2
A10bAmi

exp

[
− (x − xi)

2 + (y − yi)
2

2σ2
A10bAmi

]
, (5)

in which σA and bA are adjustable parameters. If all other parameters are fixed, the area
occupied by the location distribution is proportional to σ2

A. Therefore, σ2
A can be regarded

as a spatial scaling factor.
The adjustable parameters are fitted to maximize the log likelihood of the target

earthquakes in the region of surveillance over a fitting period (ts, t f ) and a magnitude range
(mc, mmax). If the target earthquakes have coordinates

[(
tij, mij, xij, yij

)
, j = 1, · · · , N

]
,

the space–time point process log likelihood [21,22] is given by

ln L =
N

∑
j=1

ln λ(tij, mij, xij, yij) +
�
R

∫ mmax

mc

∫ t f

ts
λ(t, m, x, y)dtdmdxdy. (6)

Information gain statistics compare the performance of different models with the same
data [23]. For models with the same number of fitted parameters or for testing pre-fitted
models on an independent data set, the information gain per earthquake I(X, Y) of one
model X over another model Y is given by

I(X, Y) = (ln LX − ln LY)/N. (7)

where ln LX is the log-likelihood of model X and N is the number of target earthquakes [24].

3. Method

The EEPAS model is usually fitted with a time lag to prevent any influence on the
parameters from short-term clustering. Here, a time lag of 50 days was applied. This means
that no precursory earthquake contributed to the time-varying rate density until 50 days
after its occurrence.

Two different weighting strategies are commonly adopted in applications of the EEPAS
model: equal weighting and down-weighting of aftershocks. For down-weighting of
aftershocks, the weight assigned to each earthquake depends on the ratio of the rate density
of the background model to the rate density of an epidemic-type aftershock model at the
time, magnitude and location of its occurrence. For details, see [13]. The down-weighted
aftershocks strategy is preferable for investigating the space–time trade-off because it better
respects the hierarchical nature of seismicity, as seen in aftershock occurrence as well as
precursory seismicity [25–27].

We considered two versions of the down-weighted aftershocks EEPAS model, which
we labeled EEPAS_1F. The models were called NZ EEPAS_1F and California EEPAS_1F. The
model parameters are listed in Table 1. The values were slightly different from the models
previously tested in the New Zealand and California testing centers of the Collaboratory
for the Study of Earthquake Predictability (CSEP) since 2008 and 2006, respectively [28–30].
The differences were due to looser constraints imposed in the fitting of μ.

The surveillance and search regions for New Zealand and California are shown in
Figures 4 and 5, respectively. Figures 4a and 5a show the locations of earthquakes with
magnitudes M > 2.95 contributing to their fitting between times t0 and t f . Time t0 is the
beginning of 1951 for New Zealand and 1932 for California, while t f is the end of 2006 for
New Zealand and 2005 for California. Figures 4b and 5b show the locations of the target
earthquakes with M > 4.95 between times ts and t f , where ts is the beginning of 1987 for
New Zealand and 1986 for California.
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Table 1. EEPAS_1F model parameters for New Zealand (NZ) and California.

Parameter Details NZ EEPAS-1F California EEPAS-1F

m0
Minimum precursor

magnitude 2.95 * 2.95 *

mc
Minimum target

magnitude 4.95 * 4.95 *

mu
Maximum target

magnitude 10.05 *,! 10.05 *!

bGR
Gutenberg–Richter

b-value 1.16 † 1.0 †

aM Equation (3) 1.10 † 1.74 †

bM Equation (3) 1.0 * 1.0 *
σM Equation (3) 0.35 † 0.60 †

aT Equation (4) 1.44 † 2.11 †

bT Equation (4) 0.43 † 0.40 †

σT Equation (4) 0.53 † 0.43 †

bA Equation (5) 0.37 † 0.35 †

σA Equation (5) 1.16 † 0.88 †

μ Equation (8) 0.18 † 0.27 †

* Fixed. † Fitted. ! Standard threshold used for CSEP models.

Figure 4. Maps of New Zealand seismicity, including the region of surveillance (inner dashed polygon), the search region (outer
dotted polygon) and locations of earthquakes with magnitudes (a) M > 2.95 with a hypocentral depth ≤45 km from 1951 to 2006
and (b) M > 4.95 with a hypocentral depth ≤40 km from 1987 to 2006 in the region of surveillance (158 target earthquakes).

To investigate the space–time trade-off, we varied the EEPAS model parameters in a
controlled way. Starting with the parameter sets listed in Table 1, we separately changed the
EEPAS_1F parameters σA and aT while the other parameters, except the mixing parameter
μ, remained fixed at their previously fitted values. We changed σA in seven steps in either
direction away from its optimal value (Table 2) and obtained the corresponding values of
the temporal scaling factor σ2

A. Subsequently, we changed the aT values in a similar manner
(Table 3) and obtained the corresponding values of the temporal scaling factor 10aT . Over
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seven steps, each of the controlled scaling factors varied by an order of magnitude on either
side of the optimal fit. For each controlled value of aT or σA, two free parameters, μ and
either σA or aT , were refitted to maximize the likelihood of target earthquakes in the region
of surveillance over time period (ts, t f ).

Figure 5. Maps of California’s seismicity, including the region of surveillance (inner dashed polygon), search region (outer
dotted polygon), and locations of earthquakes with magnitudes (a) M > 2.95 and hypocentral depths ≤30 km from 1932 to 2004
and (b) M > 4.95 and hypocentral depths ≤30 km from 1986 to 2005 in the region of surveillance (155 target earthquakes).

Table 2. Controlled values of σA in EEPAS_1F model for New Zealand (NZ) and California.

NZ EEPAS-1F California EEPAS-1F

0.34 0.26
0.41 0.31
0.49 0.37
0.58 0.44
0.69 0.53
0.82 0.97
0.97 0.74

1.16 † 0.88 †

1.38 1.05
1.64 1.25
1.95 1.49
2.32 1.77
2.75 2.10
3.27 2.50
3.89 2.98

† Fitted.
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Table 3. Controlled values of aT in EEPAS_1F models for NZ and California.

NZ EEPAS-1F California EEPAS-1F

2.49 3.16
2.34 3.01
2.19 2.86
2.04 2.71
1.89 2.56
1.74 2.41
1.59 2.26

1.44 † 2.11 †

1.29 1.96
1.14 1.81
0.99 1.66
0.84 1.51
0.69 1.36
0.54 1.21
0.39 1.06

† Fitted.

4. Results

The likelihood of the refitted models declined with each step change in the controlled
parameter away from its optimal value, as shown for New Zealand in Figure 6. The results
for California were similar. The log-likelihood of the refitted model is plotted against
the controlled spatial scaling factor in Figure 6a and against the temporal scaling factor
in Figure 6b. An order of magnitude change in each scaling factor induced a modest
reduction in the log-likelihood. The maximum reduction of about 34 units corresponded to
an information loss per earthquake of about 0.2 relative to the overall optimal fit.

Figure 6. Log-likelihood of EEPAS model fitted with controlled values of (a) σA (Table 2) and (b) aT (Table 3) to the New
Zealand earthquake catalogue.

The refitted mixing parameter μ tended to increase as the controlled parameter shifted
further away from its optimal value, as shown for New Zealand in Figure 7. Again, the
results were similar for California. The variation of μ with the spatial scaling factor is
shown in Figure 7a and against the temporal scaling factor in Figure 7b. The values of
μ increased from about 0.15 at the optimal fit to greater than 0.5 when the temporal or
spatial scaling factors were changed by an order of magnitude. The μ value represents the
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proportional contribution of the background model to the total EEPAS model rate density.
Higher μ values thus indicate a greater contribution of the background component and
a smaller contribution of the time-varying component. In other words, higher μ values
indicate that there were fewer target earthquakes with precursors matching the changed
spatial and temporal distributions.

Figure 7. Fitted values of mixing parameter μ (0 ≤ μ ≤ 1) of the EEPAS model fitted with controlled values of (a) σA and
(b) aT to the New Zealand earthquake catalogue.

As the controlled parameter was changed, the refitted values of the other parameters
changed in a way that was consistent with the notion of a space–time trade-off. The results
are shown for New Zealand in Figure 8a and for California in Figure 8b.

Figure 8. Trade-off of spatial and temporal scaling factors σA
2 and 10aT , respectively, revealed by the fit of the EEPAS model

with controlled values of σA (blue triangles) and aT (black squares). The straight line with a slope of −1 represents an even
trade-off between space and time. (a) New Zealand. (b) California.
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In each plot, the pairs of scaling factors resulting from controlling σA are shown as blue
triangles, and those resulting from controlling aT are shown as black squares. The temporal
scaling factor decreased as the controlled spatial scaling factor increased, and the spatial
scaling factor decreased as the controlled temporal scaling factor increased. However, the
curves had different slopes depending on whether σA or aT was the controlled variable.
An even trade-off line with a slope of −1 is drawn through the intersection of the two
curves (straight blue line in Figure 8a,b). Its slope lies between the average slopes of the
two controlled fitting curves.

5. Discussion

As seen in Figure 8, the controlled fits produced two curves which did not lie on the
even trade-off line but instead had higher or lower slopes. This result can be explained by
the limitations on the length of the catalogue and the size of the search region. The fitted
parameters could only adjust to the precursors that were contained in the catalogue and
not to those that were screened out by such limitations. We now consider in detail the
trend of the fitted σA value away from the even trade-off line for the controlled values of
aT . The trend of the other curve can be explained similarly.

As aT was stepped down to lower values (i.e., the time scale was shortened), fitting the
trade-off required earthquakes at increasingly longer distances from the target earthquakes.
However, at longer distances, more precursory events were screened out by the spatial
limitation on the input catalogue. The precursors of the largest earthquakes in the target
magnitude range would be most affected by the spatial limitation because they had larger
precursory areas (Figure 2). The spatial limitation at small aT values forced the fitted values
of σA to increasingly fall below the even trade-off line. On the other hand, as aT was
stepped up to higher values, the precursory time scale became longer and exceeded the
available lead time. This temporal limitation most affected the largest earthquakes in the
target magnitude range, which had the longest precursor times (Figure 2). Thus, more and
more precursory earthquakes on the specified time scale were screened out by the limited
time span of the catalogue. The remaining precursors for fitting σA would be those at the
lower end of the time distribution. Because of the space–time trade-off, these remaining
precursors tended to be at longer distances than the screened-out events. This forced the
fitted σA to increasingly exceed the even trade-off line.

The space–time trade-off in the EEPAS model shows that as the mean of f (t|m) in
Equation (4) increased, the area of the fitted h(x, y|m) in Equation (5) decreased and vice
versa. This phenomenon can be interpreted in terms of the predictive scaling relations on
which the EEPAS model is based (Figure 2). Figure 2 shows that TP and AP both increased
with the precursory earthquake magnitude MP. Similarly, in the EEPAS model, the mean
of the time distribution f (t|m) and the area of the location distribution h(x, y|m) both
increased with m. Now, the space–time trade-off observed in the EEPAS model can be
interpreted in terms of the space–time distribution of precursors to an individual major
earthquake; that is, the earliest precursors tend to occur very close to the source, and the
later precursors to occupy a wide area around the source. This interpretation only applies
to precursors occurring more than 50 days before the mainshock because of the time lag
applied for EEPAS model fitting here.

The existence of this trade-off raises the question of how it can be exploited to improve
the performance of the EEPAS model. The EEPAS model treats the time and location as
independent variables, but the trade-off implies that they are correlated. We will illustrate
how to improve forecasting by forming hybrid models. The hybrid models are mixtures of
three EEPAS models with the values of aT and σA chosen from points on the even trade-off
line with a slope of −1. We constructed two models, Hybrid_1F and Hybrid_1R, starting
from two different EEPAS models: EEPAS_1F and EEPAS_1R, respectively. EEPAS_1R was
similar to EEPAS_1F in nearly all aspects, apart from having fewer optimized parameters.
Its fixed and optimized parameters are given in Table 4. An important difference between
the two models was that EEPAS_1F (Table 1) had a larger value of σT than EEPAS_1R
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(Table 4). The parameter σT was optimized in the fitting of EEPAS_1F but not in EEPAS_1R.
In prospective testing over 10 years in the New Zealand CSEP testing center, EEPAS_1F
significantly outperformed EEPAS_1R [29].

Table 4. EEPAS_1R model parameters for New Zealand.

Parameter Value

m0 2.95 *
mc 4.95 *
mu 10.05 *
bGR 1.16 †
aM 1.00 †
bM 1.0 *
σM 0.32 *
aT 1.40 †
bT 0.40 *
σT 0.23 *
bA 0.35 *
σA 1.74 †
μ 0.24 †

* Fixed. † Fitted.

To construct the hybrid models, we replaced the time-varying component of each
model’s rate density with the average rate density of the three models, with the values of
aT and σA chosen from the trade-off line. The three models were the original one and two
others formed by an arbitrary increase and decrease in aT of Δ = 0.5. For an increase in Δ
in aT , the corresponding value of σA on the trade-off line was found by multiplying the
original σA by 10−0.5Δ. The other parameters, including μ and σT , remained unchanged
at their values in Tables 1 and 4. Using information gain statistics, we compared the
performance of the EEPAS_1F, EEPAS_0F, Hybrid_1F and Hybrid_1R models. For this,
we used a test period from 2007 to 2017, during which there were 259 target earthquakes
with magnitudes M > 4.95. Hybrid_1R outperformed all the other models, and EEPAS_1R
was the weakest model (Figure 9). Figure 9a shows the information gain of EEPAS_1F,
and Figure 9b shows that of Hybrid_1R over the other models. Both hybrid models and
EEPAS_1F outperformed EEPAS_1R with 95% confidence according to the T-test [24].

Figure 9. Information gain per earthquake and 95% confidence interval of the (a) EEPAS_1F model and (b) Hybrid_1R
model compared with other models during the test period of 2007–2017 in the New Zealand testing region (259 target
earthquakes with M > 4.95).

This simple example of hybrid formation, even without fitting additional parameters,
suggests that it might be possible to use the space–time trade-off to improve forecasting.
However, much more work needs to be done to construct a formal method for optimal
inclusion of the trade-off in the fitting of the EEPAS model. The temporal and spatial limita-
tions of the catalogue are clearly among the issues to be considered. The spatial limitations
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can be resolved if a global catalogue is used, but then a higher threshold magnitude of
completeness would apply. That in turn imposes further limitations. Additionally, there is
evidence that the precursor time distribution is dependent on the strain rate in the vicinity
of a target earthquake [17]. This dependence would have to be included in a global model.
Temporal limitations can also be partly resolved by introducing a fixed lead time for all
target earthquakes and then compensating for the lead time using the method described
in [20].

6. Conclusions

A space–time trade-off of precursory seismicity has been investigated by repeated
refitting of the EEPAS earthquake forecasting model to the catalogues of New Zealand and
California. In a sequence of controlled fits, the temporal scaling parameter was constrained
to vary in steps ranging over two orders of magnitude with the spatial scaling parameter
before being refitted, and vice versa. The two resulting curves of the temporal scaling factor
against the spatial scaling factor differed depending on which parameter was controlled
and which was fitted. However, both curves were consistent with an even trade-off between
space and time once the temporal and spatial limits of the contributing earthquake data
were considered. As the controlled parameter deviated further from its optimal value,
the likelihood of the refitted model decreased. In addition, the refitted model had an
increasingly large background component and a diminishing time-varying component.

The trade-off implies that the earliest precursors to a major earthquake tend to occur
very close to its source and that the later precursors occupy a wide area around the source.
A simple example in which hybrid forecasts were created by mixing several EEPAS models
with parameters chosen from the trade-off line suggests that it should be possible to exploit
the trade-off for improved forecasting. However, more research is needed to develop a
formal method for routinely incorporating the space–time trade-off into medium-term
earthquake forecasts.
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Featured Application: This article introduces a method to establish the state of mechanical sta-

bility of a fault system by analyzing modulations of seismic activity as a function of known

perturbations, i.e., tidal stress. In addition to providing useful information about the physics

of fault systems, our method can be applied to evaluate how unstable faults are with respect to

additional stress, and therefore forecast their future slip. Mutatis mutandis, our approach can

also be adopted in other fields where it is of paramount interest to assess the loading state of a

physical system alternating stability to sudden breaking.

Abstract: Seismic prediction was considered impossible, however, there are no reasons in theoretical
physics that explicitly prevent this possibility. Therefore, it is quite likely that prediction is made
stubbornly complicated by practical difficulties such as the quality of catalogs and data analysis.
Earthquakes are sometimes forewarned by precursors, and other times they come unexpectedly;
moreover, since no unique mechanism for nucleation was proven to exist, it is unlikely that single
classical precursors (e.g., increasing seismicity, geochemical anomalies, geoelectric potentials) may
ever be effective in predicting impending earthquakes. For this reason, understanding the physics
driving the evolution of fault systems is a crucial task to fine-tune seismic prediction methods and for
the mitigation of seismic risk. In this work, an innovative idea is inspected to establish the proximity
to the critical breaking point. It is based on the mechanical response of faults to tidal perturbations,
which is observed to change during the “seismic cycle”. This technique allows to identify different
seismic patterns marking the fingerprints of progressive crustal weakening. Destabilization seems
to arise from two different possible mechanisms compatible with the so called preslip patch, cascade
models and with seismic quiescence. The first is featured by a decreasing susceptibility to stress
perturbation, anomalous geodetic deformation, and seismic activity, while on the other hand, the
second shows seismic quiescence and increasing responsiveness. The novelty of this article consists
in highlighting not only the variations in responsiveness of faults to stress while reaching the critical
point, but also how seismic occurrence changes over time as a function of instability. Temporal
swings of correlation between tides and nucleated seismic energy reveal a complex mechanism for
modulation of energy dissipation driven by stress variations, above all in the upper brittle crust.
Some case studies taken from recent Greek seismicity are investigated.

Keywords: tidal triggering of earthquakes; seismic cycle; coulomb failure stress; preparatory phase;
seismic prediction

1. Introduction

Experimental and numerical simulations show that disorder plays a key role in driving
stress accumulation in the crust and energy nucleation during earthquakes [1], nevertheless
it was not clarified yet how stress variations trigger breaking processes in such heteroge-
neous media. Indeed, earthquakes can be due to several stress sources, such as magmatic

Appl. Sci. 2021, 11, 9596. https://doi.org/10.3390/app11209596 https://www.mdpi.com/journal/applsci17



Appl. Sci. 2021, 11, 9596

intrusion or overpressured liquids; moreover, faulting is also affected by temperature,
confining and pore pressure, and rock brittleness. This is why the comprehension of the
response of faulting to additional stress was so actively investigated for 50 years. There
are a few exogenous stress sources useful for this purpose: fluid injection is a widespread
technique in stimulating production from oil and natural gas wells and improve geother-
mal energy generation. Although it is usually associated with microseismicity, several
events with moderate magnitudes were also related to this practice [2]. This is why it is
of paramount importance to improve our knowledge about the conditions under which
intermediate magnitude events might occur. Also, it is crucial to note that injection and
depletion generally happen at different wells, leading to a complex underground liquid
circulation. Thus, it is not so easy to model how fluid injection drives spatial variations
in pore pressure. An additional source of complexity is due to the variability of the time
interval between the beginning of fluid injections and the onset of seismic activity. There-
fore, fluid injection cannot be considered an efficient way of monitoring fault response to
stress perturbation, at least over the time interval we are interested in. For this reason, we
do not focus on this kind of stress source. A second possibility may be the controlled use of
explosive, a tested tool in engineering of rock blasting, drilling, and mining, and moreover
it is at the base of field reflection and refraction seismology. Unfortunately, this method is
useful only for stress pulses simulations.

On the contrary, lunar and solar tides continuously induce periodic deformations in
solid earth. Tidal harmonics are featured by different frequencies, so that their periods
range from 104 to 109 s. The displacement of the tidal bulge can be decomposed into its
vertical and horizontal components that depend on latitude, and may amount respectively
up to 40 cm and 20 cm in the case of the semidiurnal M2 tide. Solid Tides depend on depth
reaching their highest intensity around 1000 km below the surface [3]. Despite the fact that
solid and ocean tidal stress (0.1 kPa–100 kPa) is fairly smaller than the earthquake stress
drops (1 MPa–30 MPa, [4]) it was sufficiently proven that tides can trigger earthquakes
(e.g., [5–9]) even though global seismicity weakly correlates with the Moon and Sun’s
distances from Earth and long catalogs (≥104 events, [10]) are needed to detect this effect
accurately. For these reasons, in this article we investigate how the response of faults
to stress modulations changes during the “seismic cycle” using tidal perturbations. In
particular, we focus on recent Greek seismicity.

Since the tidal bulge is misplaced relative to the gravitational Earth-Moon alignment,
being about 0.3–2.4 degrees eastward of it [11,12] due to the delay in reaction for the anelas-
tic component of the Earth as a response to the tidal pull, a westerly-directed horizontal
drag acts on the lithosphere and the continuously slows down Earth rotation [13]. The crux
of the matter is that, besides the symmetric oscillatory motions, the nonlinear response
of the low velocity zone (LVZ) breaks the symmetry of the tidal traveling wave on the
Earth surface: the small asymmetry produces a net drift motion of any material point
interacting with the gravitational wave force, in the direction following the rotation of
the Moon. Therefore, detailed properties of the combined tidal oscillation and tidal drift
depend on the degree of deformability of the lithosphere (a.k.a. Love and Shida numbers)
due to its local temperature and geochemistry. These modulations act through two dif-
ferent mechanisms on the outer layers of the Solid Earth: the brittle and outermost part
of the crust is elastically affected by tidal waves, which induce a stress variation in rocks
that, depending on the local geodynamics, promotes or, on the contrary, can prevent the
achievement of the critical breaking point, so that it plays a statistically significant role in
fault activation [14–16], while solid tides actively modulate plate motion at low frequencies
over geological periods [17,18] due to a heterogeneous dissipation of the tidal torque at the
LVZ level.

The issue of the tidal triggering of seismicity is not trivial, since it is necessary to
take into account not only of the effect of Earth tides, but also variations in pore and
confinement pressure, the orientation of the DC (Double Couple contribution) in relation
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with focal mechanism, and CLVD (Compensated Linear Vector Dipole) of earthquakes and
local geophysical heterogeneities.

To make matters even more complicated, a further difficulty must be considered: the
observed seismicity spans up to 11 orders of magnitude over time (from 10 s typical of
microseismicity up to 1012 s for earthquakes recurrence time intervals), and 14 concerning
to energy (if one considers events ranging from Mw 0 to 9.5) and seven in space (a Mw 9.0
can breaks crust up to 1000 km); this creates an enormous obstacle of both resolution and
saturation, catalog incompleteness [19], and unreliability of statistical data.

Finally, to the technical complexity of measuring real stress, we add the estimation of
uncertainties of seismic parameters such as magnitude and depth.

Beyond the triggering mechanism, in this work we focus on the possibility of high-
lighting the growth of critical states in the crust induced by stress accumulation in rocks
through the measurement of correlations between some features of the tidal perturbation
and seismic activity.

There is a flurry of scientific articles devoted to understand how tides influence
seismic activity, but only a few of them (e.g., [20]) so far extensively studied whether tidal
perturbation might somehow provide information about the stability of faults close to
rupture, with a few exceptions regarding some particular case studies (e.g., [21,22]). The
novelty of this article with respect to previous scientific literature consists in highlighting
not only the variations in responsiveness of faults to stress while reaching the critical point,
i.e., before a large earthquake, but it also shows how seismic response of faults changes
over time as a function of their instability.

2. Materials and Methods

The lunisolar tides deform the Earth up to 60 cm twice a day, moreover the weight
of the ocean tides gives a periodic load on the Earth’s surface strongly dependent on
bathymetry [23]. Although the displacements are relatively large, the associated changes
in strain at the Earth’s surface are tiny, extremely difficult to measure accurately, and even
more tricky to model. The main difference between liquid tides and solid tides is in the
phase: rocks react quickly to solicitations, while fluid masses need a characteristic time
span to move, so they are affected by the tide with a certain phase shift.

We model tidal stress according to the following method.
Considering two massive celestial bodies with a spherical distributed mass density

one realizes that the gravitational and centrifugal forces are balanced whenever their
volumes are deformed by tides.

�FM(P) = �FG(P) + �FC(P) (1)

from which the tidal acceleration is immediately obtained

|�aM(R)| = GM
(R − r)2 − GM

R2 � 2MGr
R3 (2)

in the last step R � r is assumed. The gravitational potential due to celestial body with
mass M, at a point P at a distance r from the center of the planet, can be expanded in a
series of powers of r/R, where R is the distance from the center of the Earth to the celestial
body.

W(P) = V(P) + �FG(P) ·�r(P) + const (3)

W(�R) = − GM
|�R +�r| +

GM
R3

�R ·�r − GM
R

(4)

if l = |�R +�r|
W(�R) = −GM

R

(
R
l
− �R ·�r

R2 − 1

)
(5)
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by expanding in series of Legendre polynomials we obtain

W(R, Ψ) =
GM

R

∞

∑
n=2

( r
R

)n
Pn(cos Ψ) (6)

Since r/R for the Moon is ∼1/60 while for the Sun is ∼1/23,000, the contributions of
successive terms to the potential rapidly decrease. For the Moon, ∼98% of the total tidal
potential, and for the Sun, the higher orders are completely negligible for our purpose.
Moreover, from the ratios of masses and their mean distances, it follows that the solar tidal
perturbation is ∼0.459 times the lunar tides. So, we can write that the total tidal potential
is given by the sum of lunar and solar perturbations in the following form

W(R, Ψ) � GM
R

(
r
R

)2

P2(cos Ψ) (7)

where Ψ is the zenith of the body with respect to P and P2 is the second degree Legendre
polynomial.

cosΨ = cos θ cos δ + sin θ sin δ cos(φ − α) (8)

θ is the colatitude and φ is the easterly longitude of P, δ is the codeclination, and
α is the right-ascension of the body. We can write the potential so that three different
contributions are highlighted

W(R, Ψ1, Ψ2, Ψ3) =
3GMr2

4R3 [Ψ1 + Ψ2 + Ψ3] (9)

with

Ψ1 = 3
(

sin2
(π

2
− θ

)
− 1

3

)(
sin2

(π

2
− δ

)
− 1

3

)
(10)

Ψ2 = sin
(

2
(π

2
− θ

))
sin

(
2
(π

2
− δ

))
cos(φ − α) (11)

Ψ3 = cos2
(π

2
− θ

)
cos2

(π

2
− δ

)
cos(2(φ − α)) (12)

For the sake of simplicity

D =
3GMr2

4R3

is called Doodson’s parameter.
The vertical displacement is obtained by dividing W for the local value of the gravita-

tional acceleration

δH(R, Ψ1, Ψ2, Ψ3) =
W(R, Ψ1, Ψ2, Ψ3)

g
=

3GMr2

4gR3

(
Ψ1 + Ψ2 + Ψ3

)
(13)

The three terms represent the zonal, tesseral, and sectoral tides respectively. The zonal
and sectoral contributes are responsible for tides with a half the Moon’s revolution period,
while the tesseral one for planet’s rotation period tides. A paramount research work in
this field was conducted by A. T. Doodson (1890–1968), who identified 378 tidal harmonics
that were collected in a celebrated catalog in 1921 [24]. The largest tidal harmonics [25]
are shown in Table 1. The elastic deformation of the Earth has two modes: spheroidal and
toroidal, but tidal forces excite only the spheroidal modes [26].
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Table 1. Largest tidal frequencies.

Symbol Doodson Number Period (Days) Amplitude (m)

M2 2 5 5 5 5 5 0.518 0.6322
S2 2 7 3 5 5 5 0.500 0.2941
K1 1 6 5 5 5 5 0.997 0.3686
M f 0 7 5 5 5 5 13.661 − 0.0666
Mm 0 6 5 4 5 5 27.555 − 0.0352
SSa 0 5 7 5 5 5 182.622 − 0.0310
h 0 5 6 5 5 4 365.264 − 0.0049
p 0 5 5 6 5 5 3232.605 0.0002

N/2 0 5 5 5 7 5 3399.048 − 0.0003
N 0 5 5 5 6 5 6798.097 0.0279

For the sake of simplicity, we assume that the Earth is spherically symmetric, nonro-
tating, elastic, and isotropic. Nevertheless, the effect of sphericity of the Earth’s layering
cannot be neglected if one wishes to calculate surface waves of long wavelength. Spheroidal
deformations of the SNREI model as a function of depth, Lamé’s coefficients and the gravi-
tational acceleration can be evaluated by using a set of functions yi with i = 1, . . . , 6 which
satisfy a set of six ordinary differential equations [27]

dyi(r, n)
dr

=
6

∑
j=1

f (ρ(r), λ(r), μ(r), g(r), n)yj(r, n), (14)

where n is the n-th mode. For our purpose, it is enough to consider n = 2. Displacements
can be written in spherical coordinates as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ur =
h2(r)
g(r)

W(r, θ, φ)

uθ =
l2(r)
g(r)

∂W(r, θ, φ)

∂θ

uφ =
l2(r)

g(r) sin θ

∂W(r, θ, φ)

∂φ

(15)

The value of g(r) rises from the surface up to a depth of about 700 km to a maximum
of 9.99 m/s2. In the lower mantle, g(r) lingers stable and increases abruptly near the
Gutenberg discontinuity, reaching 10.16 m/s2. Gravity continuously falls in the core with a
rate that depends on density till it reaches a zero-value at the center of the Earth.

In this work, tidal perturbations are considered with respect to seismicity and, above
all, crustal seismicity (up to ∼100 km at depth), so that if we assume g(r) � g(r = 6371 km)
an error ∼0.1% is introduced, which is negligible. The strain components in spherical
coordinates are obtained from (15) by derivation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εrr =
∂ur

∂r
εθθ =

1
r

(
∂uθ

∂θ
+ ur

)

εφφ =
1

r sin θ

(
∂uφ

∂φ
+ ur sin θ + uθ cos θ

)

εθφ =
1
r

(
1

sin θ

∂uθ

∂φ
+

∂uφ

∂θ
− uφ cot θ

)
(16)

For computational simplicity, the radial component of strain can also be evaluated by
using

εrr = − ν

1 − ν

(
εθθ + εφφ

)
(17)
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where ν is the Poisson’s coefficient that can be computed at depth with

ν(r) =
λ(r)

2(λ(r) + μ(r))
(18)

in turn, the Lame’s coefficients can be obtained starting from the speed of the seismic P
and S waves as a function of depth (PREM, [28]).{

λ(r) = ρ(r)
(
v2

P(r)− v2
S(r)

)
μ(r) = ρ(r)v2

S(r)
(19)

So, the needed components of stress in spherical coordinates are

⎧⎪⎨
⎪⎩

σθθ(r) = λ(r)
(
εrr + εφφ + εθθ

)
+ 2μ(r)εθθ

σφφ(r) = λ(r)
(
εrr + εφφ + εθθ

)
+ 2μ(r)εφφ

σθφ(r) = μ(r)εθφ.

(20)

At last, it is necessary to take into account the spatial orientation of faults, which
provides information about the tectonic stress tensor. Given the strike α of the seismological
source, the tangential stress is

σ
(±)
α = σθθ(r) cos2 α + σφφ(r) sin2 α ± 2σθφ(r) sin α cos α. (21)

Then, the quantities of geophysical interest are the following

⎧⎪⎪⎨
⎪⎪⎩

σs = σ
(+)
α sin δ cos δ

σn = σ
(+)
α sin2 δ

σc =
1
3

(
σ
(+)
α + σ

(−)
α

) (22)

where δ is the dip angle of the fault. α and δ are inferred by comparing the focal mechanisms
of local seismicity with the maps of actual faults. Since focal mechanisms are calculated
only for earthquakes with significant magnitude, usually larger than 3.5–4.0, routinely
recorded small events are assumed to occur on fault planes whose angles of strike and dip
are given by the averages of the available ones.

σs is the so-called shear stress, which is positive in extensional tectonics, σn is the
normal stress acting orthogonally to the fault plane, and σc is the confining stress due to the
weight of the overlying rocks and fluids [29]. σrr, σrθ , and σrφ are not considered since they
are negligible up to 300 km deep [3] and ∼95% of the seismic energy is nucleated within
the depth 0–50 km. For these reasons, only the horizontal shear stresses σθθ and σφφ can
effectively play a role in triggering earthquakes.

A still open problem concerns the functions yi: for the calculations above, only y1 and
y3 are needed since ⎧⎪⎪⎨

⎪⎪⎩
y1(r, 2) =

h2(r)
g(r)

y3(r, 2) =
l2(r)
g(r)

(23)

they can be obtained by integrating with the fourth order Runge–Kutta method, a system
of six coupled ordinary differential equations starting from a set of suitable boundary
conditions. In turn, these can be calculated by considering the solutions in the case of
an isotropic and homogeneous sphere on the Gutenberg discontinuity. The result is a
combination of spherical Bessel function of the first kind that can be computed with a
power series expansion.

As regards ocean tides, a foreword is necessary.
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Despite ocean loading being able to induce stress up to 100 kPa, which is much larger
than the stress due to solid tides (0.1–3 kPa), it is locally generated and usually focused
over small surfaces (�104 km2), with some exceptions such as off the coast of New Zealand,
the Madagascar Channel, the Java–Timor Sea and offshore Alaska. In practice, the main
contribution of oceanic tides derives, unlike solid tides, from vertical stress [30]

σzz = −ρgh (24)

where h is the amplitude of the tide and ρ � 1030 kg/m3; the radial stress spread hori-
zontally through the Poisson’s coefficient. So, working in local Cartesian coordinates, if I
assume that the vertical stress acts symmetrically σxx=σyy [31]

σxx =
ν

1 − ν
σzz (25)

therefore, comparing with Equation (22) we get

⎧⎪⎪⎨
⎪⎪⎩

σs ≈ 0
σn ≈ σxx cos2 δ + σyy sin2 δ

σc =
1
3
(
σxx + σyy + σzz

) (26)

the predicted tidal height H can be provided by the NAO.99b software [32].
At last, it is convenient to introduce the Coulomb Failure Stress (CFS) [33]

CFS = |σts| − μ(σtn − p)− S0 (27)

where σts and σns are, respectively, the shear and normal stress, p is the pore pressure and
S0 stands for the coesion of rocks. It is often assumed that changes in p are proportional to
the normal stress change across the fault plane, so that rescaling μ

CFS = σts − μσtn − S0 (28)

with μ ∼ 0.4–0.8.
Since the original state of stress is unknown, the ΔCFS [34] is usually studied

ΔCFS = σs + μσn (29)

where σs is the change in shear stress on the fault plane induced by the tidal perturbation
in the slip direction and σn is the tidal normal stress. Positive ΔCFS is associated with
encouraged seismicity, while negative values produce stress shadow effects which inhibit
slip [35].

Since tidal stress upon the fault is known in principle, we can perform a correlation
analysis according to the following steps:

• Identification of regions of geophysical interest based on recent seismic events. The
ranges of latitude, longitude, and depth are selected for each area;

• The completeness magnitude is estimated for each catalog;
• Declustering is carried out following the method proposed by Uhrhammer, to remove

seismic sequences generated by events with high magnitude. Retrospectively, the role
of declustering is studied. Banking on our results discussed in the next section, our
analysis should be performed without declustering;

• ML and Mb are converted into moment magnitudes Mw;
• Normal, shear, confinement and ΔCFS stresses are calculated for each earthquake

occurred within the selected region following the procedure above;
• Uncertainties on the stress values are estimated by propagation of the errors in the

measure of spatial parameters of faults and focal mechanisms and hypocentral pa-
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rameters. The dominant contribution comes from the strike and dip angle errors,
so that ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
εshear �

√
ε2
+ sin2 δ cos2 δ + ε2

δσ2
+ cos2 δ

εnormal �
√

ε2
+ sin4 δ + ε2

δ sin2 2δ

εcon f inement � 1
3

√
ε2
+ + ε2− ≈ 0.47ε+

(30)

where ε replaces the usual symbol for standard deviation to avoid misunderstanding
with stress components σs, σc, σn and σ

(±)
α .

ε+ and ε− are the uncertainties of the positive and negative tangential stresses given
by

ε+ = ε− � εα

√
(2σθθ cos θ sin θ)2 + (2σφφ cos θ sin θ)2 + (2σθφ cos 2θ)2 (31)

• The correlation between the magnitude of the seismic events and the intensities of the
tidal stress components acting on the fault is calculated over fixed time intervals Δt
according to the following formula:

ρ
(j)
tn

=
∑

Ntn
i=1

(
Mwi − Mw

)(
σ
(j)
i − σ(j)

)
√

∑
Ntn
i=1

(
Mwi − Mw

)2
∑

Ntn
k=1

(
σ
(j)
k − σ(j)

)2
(32)

where j = s, n, c, ΔCFS meaning respectively the shear, normal, confinement and
ΔCFS components of stress; Ntn is the number of failures occurred during the n-th
time step.
ΔCFS is calculated for each event occurred within the selected region whose magni-
tude is above the completeness magnitude. Since we are interested in understanding
how sensitivity of faults to additional stress modulations changes during the seismic
cycle, we calculate the correlation between ΔCFS and the nucleated seismic energy
for several time intervals (about 20 in Figures 1–3). To do this, the number of events
used for the calculation of the correlation must be large enough to suppress stochastic
fluctuations (the number of earthquakes for each point in Figures 1–3 is >200). On the
other hand, short time intervals are not suitable for our goal because tides with not
negligible amplitudes have semiannual and yearly frequencies. Therefore, Δt < 1 yr
can affect the correlation value. Moreover, we are looking for slow processes of pro-
gressive destabilization of crustal volumes, then averaging does not cause information
loss, but only noise attenuation.

• The uncertainty on the correlation index is obtained by propagation of tidal stress
errors and magnitudes.

3. Results

What happens before large stress drop? In the nucleation dominated regime [10], the
mechanism responsible for fracture triggering is analogous to static fatigue and delayed
failure. The correlation between earthquake occurrence and tidal phase vanishes and
failure is ultimately controlled by stress maxima. This can appear to be contradictory
because we underlined that tidal stress modulations are ∼104 smaller than the seismic
stress drop. Mechanical triggering must play a key role in statistical seismology, so that a
tiny initial perturbation always have a not vanishing probability to become an earthquake.
In this view, the problem of triggered instability reduces to a trivial threshold phenomenon
in which perturbations are just “the straws breaking the camel’s back”.

Analogously to mechanical engineering studies delving into the periodic supervision
of facilities to detect signals of progressive weakening or corrosion, it is possible that
seismicity could show significant variations in the correlation between seismic activity
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and stress modulations before a major event. Below we analyze three among the most
important seismic sequences recorded in Greece in the last 20 years.

Greece is a country prone to elevated seismic risk with both continental and insular
territories prone to large earthquakes. Since in the Mediterranean Sea the amplitude of
liquid tides does not reach relevant values (<50 cm), and they are even smaller in the
investigated region, i.e., Greek Ionian Sea, where M2 tide is about 5 cm high [36], sea tides
can be neglected for our purpose.

In our analysis, we focus on three different regions: Northern Thessaly Region, North-
ern Ionian Greek Islands, and Southern Ioanian Greek Islands.

Northern Thessaly Region was recently hit by the Larissa seismic sequence (mainshock
3 March 2021, Mw 6.3, 11.5 km depth, USGS), causing widespread damage and one casualty.
The still ongoing seismicity occurred along normal faulting. The analysis of correlation
between the ΔCFS and the nucleated seismic energy is performed between 1990 and 1 May
2021 in an area within latitude 39.5–40.2° N and longitude 21.7–22.4° E considering only
earthquakes with ML > 2.0. After an initial period featured by elevated correlation values
corresponding to a seismic swarm (Mw ≤ 5.0, ρ ∼ 0.45) which occurred between 1993 and
1995, a decennial decrease of correlation followed. The trend switched in 2005–2007 and
continued till the correlation turns positive. The progressive increase stopped in 2010 when
diffuse swarms were recorded.

Then, tidal correlation becomes negative again till 2020, when a peak is rapidly reached
at the beginning of 2021 (ρ ∼ 0.29), when Thessaly was shaken by a Mw 6.3 earthquake.
Our results are summarized in Figure 1.

Figure 1. Correlation between ΔCFS and seismicity in Thessaly Greece, between 1990 and 2021,
ML > 2.0, NOAIG Catalog.

Northern Ionian Greek Islands are often involved by seismic sequences because they
rise along the regional plate boundary between the Africa and Eurasia plates, which
converge at a rate of about 9 mm/yr towards the north-north west.

Nubian lithosphere subducts beneath the Aegean Sea along the Hellenic Arc.
Focal mechanisms clearly denote compressive earthquakes. The largest seismic events

during since 1990 occurred on 17 November 2015, Mw 6.5 [37], and it is usually known as
the Lefkada earthquake because it resulted in several fatalities and dozens injuries on the
Greek Island of Lefkada.

This major seismic crisis was forerun by a two-years-long seismic instability, which
also included large-magnitude events such as the Cephalonia earthquake (26 January 2014,
Mw 6.1).

Correlation analysis shows an about five years lasting increase of ρ, which reached its
maximum in 2013 (ρ ∼ 0.13), then a sharp fall is observed so that tidal correlation becomes
compatible with zero. Our results are in Figure 2.
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Figure 2. (Top) correlation between ΔCFS and seismicity close to the Greek Ionian coasts (38.0–
39.0° N, 20.0–21.0° E, ML > 2.0, NOAIG Catalog.) between 1990 and 2021. Main event was located in
southwestern region of Lefkada Island between the villages Athani and Agios Petros. The 2014–2016
seismic sequence involved faults within different tectonic settings. (Bottom) ΔCFS as a function of
time. Before the 2014–2016 seismic sequence, significant changes in the Coulomb stress distribution
was observed, partially due to contribution of deeper (>20 km) earthquakes.

The tectonic setting of the Southern Ioanian Greek Islands (37.0–38.0° N, 20.0–21.0° E)
is similar to the previous one.

Great part of seismicity is still featured by a compressive focal mechanism even if a
fraction of crustal events with significant oblique component are recordered.

In this territory, two main quakes happened in the last thirty years.
The largest hit Lithakia on 25 October 2018 with Mw 6.8, depth 15 km, it also produced

a small tsunami with about ∼20 cm high anomalous waves.
The other was a Mw 6.6 earthquake occurred in the same area on 18 November 1997.
The Lithakia earthquake was preceded by an about 7–9 years long period of progres-

sively increase of the tidal correlation between ΔCFS and seismic energy. The peak of the
correlation was measured between 2018 and 2019 with ρ ∼ 0.11, then a fast decrease is
observed.

At the same time, an anomaly in the localization of seismicity is noticed, which is
reported in the lower part of Figure 3. Two seismic shadow zones are located at a depth of
0–10 km (2012–2017) and below 19 km (2015–2018).
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Figure 3. Correlation between ΔCFS and seismicity close to the Greek Ionian coasts (37.0–38.0° N,
20.0–21.0° E) between 1985 and 2021. A nine-years-long preseismic phase is highlighted both by an
increasing value of correlation in the upper part of the picture, and seismic quiescence, represented
by two red shadow zones, at a depth of 0–10 km (2012–2017) and >20 km (2015–2018). The yellow
star represents the Mw 6.8, 25 October 2018 Lithakia mainshock.

The seismic quiescence [38] in the forementioned layers is statistically significant
especially in the upper one, where the reduction of the seismic rate reached 60% with
respect to the preceding 2007–2012 period.

Observations suggest that ρ tends to increase during the preparatory phase of signif-
icant crustal earthquakes in Greece. The values of correlation are higher in extensional
tectonic settings rather than compressive ones of about 100–200%, normal fault quakes are
found to correlate stronger with tidal stress modulations also in other regions. The energy
conditions are instead stricter for events occurring in a compressive tectonic setting, so it is
reasonable to expect that they correlate very little with the intensity of tidal perturbations,
especially in the case of deep hypocenters. Therefore, even though correlations are weak,
their modulations can provide precious information about the condition of instability of
local crustal volumes, especially if jointly analyzed with other seismological and geodetic
recordings. We also analyze the spatial density of the Coulomb stress variation induced by
the action of tidal perturbations. For each seismic event, ΔCFS value is calculated, then a
map is created that shows the fraction of ΔCFS generated in each location of the selected
region. Therefore, the areas with elevated ΔCFS density are those in which seismicity has
statistically occurred at more elevated Coulomb stress values or characterized by higher
seismicity rate with respect to the surrounding areas.

Since the seismic rate is ultimately controlled by the maximum nucleated magnitude,
for each case study, we also plot the areas hit by earthquakes with large magnitude,
as written in the caption according to the relative intensity of the regional seismicity.
The green contours are drawn according to the finite fault maps of the USGS catalog.
Whenever earthquake sequences occur at significantly high ΔCFS values, the brightest
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spots (according to the vertical colorbar on the left in Figure 4) are located within the green
profiles, which suggest self-triggering. On the contrary, shiny stains just outside the main
shock areas point out zones featured by elevated stress transfer.

Figure 4. ΔCFS density map for seismicity in Greece, NOAIG Catalog, 1990–2021, ML ≥ 2.0. Highest
density areas are located on the Greek Ionian Islands along Hellenic Trench and along normal fault
system of Gulf of Corinth.

The ΔCFS density map for Greece shows diffuse signal sometimes due to strong
motion recordings (e.g., Gulf of Corinth seismic sequence, 1995, and Ionian Arc seismicity
in 1997); nevertheless, no correlation is found between the intensity of the signal and large
magnitudes, as proven in the cases of the Methoni Mw 6.9 earthquake and the Aegean Sea
Mw 6.9 event.

The brightest patches are located where the 2014–2015 Ionian and the 2018 Lithakia
seismic sequences occurred. This means that seismic activity in the Aegean region is usually
self-triggered at large spatial scales. Compare with Figure 4 and Figure 5.

Figure 5. Map of seismicity in Greece between 1990 and 1/8/2021, ML > 2.0, NOAIG Catalogue.
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4. Discussion

Tidal triggering of earthquakes is still a debated theme in Solid Earth Geophysics.
In particular, there are three sources of discussion among geophysicists:

• From a statistical viewpoint, earthquake catalogs are often insufficient to detect signif-
icant modulations of seismic activity over time.
Tides are tiny perturbations of the gravitational field (0.1–100 kPa) with respect to
typical earthquake stress drops (1–50 MPa), but nonetheless they are able to generate
significant stress variation rates (∼100 mbar/day compared with 1–10 mbar/day due
to tectonic stress, [39]). However, the actual impact on the stability of rock volumes
largely depends on the tectonic setting, the spatial orientation of the fault, the depth,
and the hypocentral latitude; finally, also the magnitude of the impending event
modifies the response of the system to the tidal perturbation. Therefore, a wide range
of results were found in several geographical regions.

• It is sometimes difficult to distinguish between the effects of Solid Earth tides from
those of ocean tides. Even though the stress amplitude of liquid tides (up to 100 kPa)
often exceeds that of the Solid Earth tide (usually ∼0.1–1 kPa), the mechanism of
action is quite different. In the first case, tides are concentrated on limited surfaces,
at most of the order 105 km2, and act mainly through the σrr vertical component,
which is transmitted to the horizontal components (almost symmetrically) thanks to
the elastic properties of the lithosphere. However, the incremental stress decreases
exponentially as depth increases, therefore it can strongly modulate shallow oceanic
small magnitude seismicity, for example, at ocean ridges or submarine volcanoes, but
it is unlikely that intermediate and deep earthquakes might be triggered by liquid
tides.
Solid tides, on the other hand, deform the outer layers of the planet mainly in the
horizontal components, acting on very large surfaces. For this reason, solid tides have
a dominant role in triggering earthquakes except for the just cited peculiar cases. For
these reasons, liquid tides are neglected in this work.

• Seismic response to tidal loading strongly depends on the duration of earthquake
nucleation.

Beyond the aforementioned issues, well-established scientific evidence exists about
tidal synchronization in seismic catalogs, as already discussed in the introduction. Both
global and regional seismic series show semiannual, annual, biennial, with approximately
9-, 19-, 37-, and 56-years-long periods activity modulations. While the first three frequencies
are generally associated with seasonal patterns, the others have no explanation other than
lunisolar tidal loading. The FFT of European magnitudes (SHEEC 2020 catalogue) in
Figure 6 clearly attests this phenomenon. Since Mc ≈ 6 for the SHEEC catalogue, the
nonuniform FFT is applied to include at least Mwde f > 5.0. Instrumental recordings are
rarely available before the 1950s also for violent earthquakes, and therefore, macroseismic
intensity data are widely used combined with epicentral macroseismic intensities and
other parametric data sources. Therefore, parametric catalogs must be used with caution
and results must be interpreted according to their reliability. Even if an accurate analysis
cannot be performed for the aforementioned reasons, the power spectrum of the European
seismicity shows typical tidal frequencies such as 8–10- or 18–19-years-long periodicities
and some multiples. Moreover, local seismic rates are noticed to be directly correlated with
the phase of tidal shear stress or the Coulomb failure stress change in submarine volcanic
seismicity [31] and seismic tremors [6]. Finally, it is reasonable to expect that the triggering
power of tides is affected by the following variables:

• The critical stress needed for crack propagation depends on the tectonic setting.
Then normal-fault quakes and oblique flat or low-angle thrust earthquakes are the
most sensible to tidal stress changes [40];

• Lithostatic loading increases with a vertical gradient equal to ∼27 MPa/km, so that
confinement stress requires higher and higher energy activation for fracturing (we
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assume to investigate only crustal volumes above the BDT). If pore pressure is ne-
glected, as a first approximation, earthquakes become less and less susceptible both to
ocean and to solid tidal loading with increasing depth;

• Tesseral, sectoral, and zonal components of solid tides reach different amplitudes
depending on the latitude, and therefore the intensity of the phenomenon is more or
less evident depending on the location.

Figure 6. Power spectrum of European seismicity (M > 5.0, 1106–2006, SHEEC catalogue). Tidal
periodicities are detected in the recurrence times of intense seismicity in Europe. nuFFT is used for
the calculation to take into account progressive decrease of completeness magnitude.

To perform a reliable statistical analysis

N ≈
(

kσn

Δσs

)2
≈ 103 (33)

events are required if we assume σn ∼ 1–10 MPa, Δσs ∼ 0.1–1 kPa and k ∼ 10−3 (compare
with [10], p. 12). This means that only high-quality and extended seismological networks
can provide an adequate amount of information for our research. Microseismicity strongly
correlate with the phase of tidal loading (e.g., [41]), but we neglected this phenomenon in
the present work to focus on tectonic earthquakes. Several studies proved a strong sensitiv-
ity of seismicity to stress changes of both endogenous and exogenous origins (e.g., [42]).
For this reason, Coulomb failure stress was applied to correlate its variations with changes
in aftershocks productivity. A difference between static and dynamic Coulomb stress
is conventionally done: when loading is slow, so that its increasing/decreasing rate is
negligible with respect to the compared time interval, then the static Coulomb stress is at
work, on the contrary, if loading occurs suddenly (i.e., fluid injection, coseismic slip), then
the dynamic Coulomb failure stress plays a relevant role. In general, the strain produced
by earthquakes induces dynamic Coulomb stress swings that, at long distances, can be
even an order of magnitude larger than the static stress changes. There is a nonlinear
dependence of the time to instability on stress variations [14]; this not only means that
seismic rate is a direct effect of loading, but also implies that small additional stress can
result in highly unpredictable states of crustal instability. From a mathematical viewpoint,
these properties can be summarized in the seismicity rate R(t) equation, which, in the
simplest form, reads [43]

R(t) =
R0

1 + e−
t

tA

(
e−

ΔCFS
Aσn − 1

) (34)
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where R0 is initial seismic rate, A is a constitutive parameter, and tA is the duration of the
loading.

In brief, observations suggest that seismicity rate can be influenced by both static
and dynamic perturbations. If static stress changes act on crustal stability modulating
earthquake occurrence, then seismicity rates might be influenced by the Solid Earth tides,
caused by the pull of both the Sun and Moon, even though rather weak with respect to
tectonic stress. This is the reason why a research looking for tidal static stress loading
signatures along the seismic cycle is meaningful and the results showed in this work can
be reliable. The case studies we consider suggest that clustered shallow seismicity tends to
occur in correspondence with positive values of the correlation ρ between nucleated seismic
energy and ΔCFS. The correlation values show progressive growth before major seismic
sequences, while they fall while seismicity is ongoing. Preslip, in agreement with [44], and
aftershock activity are also both associated with the lowering of correlation values. On
the contrary, ρ seems to increase during quiescent periods, which is compatible with [45].
We think that locked faults become more and more sensitive to stress perturbation as they
reach the breaking point, which can provide a simple explanation to the observed trends
of ρ.

In summary, we develop a method to highlight the different phases of the seismic
cycle in fault systems by studying their response to a well-known stress perturbation, i.e.,
tidal stress. Even though seismic prediction was considered impossible [46], no theoretical
reason prevents it. Since the physics of fracture at seismological spatio-temporal scale
is still poorly understood and no unique mechanism for nucleation was proven to exist,
then seismic precursors cannot be effective in predicting impending earthquakes. By the
same token, it is unlikely that the probability of occurrence of single earthquakes may
ever be reliably assessed. However, it was proven, also in this article, that fault systems
change their mechanical response during the different phases of seismic activity, which
is certainly not sufficient for forecasting, but it can be used to understand whether fault
systems are evolving towards instability. Our analysis shows that a preseismic phase is
observed before large and intermediate (Mw � 5) shallow (depth ≤ 50 km) earthquakes.
Therefore, our advances achieved in this research are significant, with a potential impact
on seismic hazards. In addition, they provide new insights for the comprehension of the
relationship between stress perturbations, earthquake nucleation, and seismic sequences,
which are still to be fully investigated.
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Abstract: Typically, strong earthquakes do not occur over the entire territory of the seismically active
region. Recognition of areas where they may occur is a critical step in seismic hazard assessment
studies. For half a century, the Earthquake-Prone Areas (EPA) approach, developed by the famous
Soviet academicians I.M. Gelfand and V.I. Keilis-Borok, was used to recognize areas prone to strong
earthquakes. For the modern development of ideas that form the basis of the EPA method, new
mathematical methods of pattern recognition are proposed. They were developed by the authors
to overcome the difficulties that arise today when using the EPA approach in its classic version. So,
firstly, a scheme for the recognition of high seismicity disjunctive nodes and the vicinities of axis
intersections of the morphostructural lineaments was created with only one high seismicity learning
class. Secondly, the system-analytical method FCAZ (Formalized Clustering and Zoning) has been
developed. It uses the epicenters of fairly weak earthquakes as recognition objects. This makes it
possible to develop the recognition result of areas prone to strong earthquakes after the appearance
of epicenters of new weak earthquakes and, thereby, to repeatedly correct the results over time. It
is shown that the creation of the FCAZ method for the first time made it possible to consider the
classical problem of earthquake-prone areas recognition from the point of view of advanced systems
analysis. The new mathematical recognition methods proposed in the article have made it possible to
successfully identify earthquake-prone areas on the continents of North and South America, Eurasia,
and in the subduction zones of the Pacific Rim.

Keywords: system-analytical method; earthquake-prone areas; pattern recognition; clustering; ma-
chine learning; earthquake catalogs; high seismicity criteria

1. Introduction

As a rule, strong earthquakes may not occur over the entire territory of a seismically
active region. Critical objectives of the seismic hazard assessment include recognition of the
areas prone to strong earthquakes. An effective instrument to accomplish this objective is
pattern recognition. The fundamental possibility of employment methods and algorithms
for pattern recognition to identify potentially high seismicity areas was first substantiated
by remarkable mathematician I.M. Gelfand et al. in 1972 [1,2]. The developed approach
was later called EPA (Earthquake-Prone Areas) [3–7].

The EPA method was developed in the fundamental papers of I.M. Gelfand and V.I.
Keilis-Borok, members of the Academy of Sciences of the USSR; A.D. Gvishiani, academi-
cian of the RAS; Al.An. Soloviev, associate member of the RAS; and famous Soviet and
Russian scientists, namely Sh.A. Guberman, M.P. Zhidkov, V.G. Kossobokov, A.I. Gorshkov,
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V.A. Gurvich, E.Ya. Rantsman, I.M. Rotvain, etc. Prominent foreign geophysicists, seismolo-
gists, geologists, and mathematicians took an active part in developing EPA. These include
F. Press and L. Knopoff, members of the United States National Academy of Sciences;
Professors A. Cisternas, J. Bonnin, E. Philip, C. Weber, and J. Sallantin, French scientists; as
well as M. Caputo and G. Panza, members of the National Academy of Sciences of Italy,
etc. [5–7].

In the classical Gelfand–Keilis-Borok setting, the problem of strong earthquake-prone
areas recognition (EPA problem) is formulated as follows. In a considered seismically active
region, it is necessary to recognize the areas prone to strong earthquakes (with magnitude
M ≥ M0, where M0 is a given threshold). These areas are sought among the recognition
objects identified in the region. As the recognition objects, morphostructural nodes or
intersections of morphostructural lineaments obtained as a result of morphostructural
zoning (MSZ) of the region are considered [8–12]. It is necessary to divide the set of
recognition objects W into two non-intersecting classes: class B consisting of the objects
whose vicinities are prone to strong earthquakes and class H, which is composed of the
objects where such earthquakes cannot occur.

This classification is carried out with the employment of the pattern recognition
algorithm with learning. It uses the learning set W0, which is determined based on the
information about the seismicity of the region. In turn, W0 consists of two non-intersecting
subsets B0, containing objects that are a priori referred to as class B, and H0, containing the
representatives of class H. The result of applying the recognition algorithm is a decision
function based on which an object from W can be attributed to class B or H, and the
classification of the objects itself [4–6].

A detailed literary review for almost half a century of the development and application
of pattern recognition algorithms to solve the recognition problem of areas prone to strong
earthquakes (EPA approach), carried out by the authors of this article, is given in [5].
This paper examines the applied pattern recognition algorithms, the studied regions,
and methods for assessing the reliability of the results obtained, including the theory
of dynamic and limit recognition problems. This work is devoted to the presentation
of modern mathematical methods developed at the Geophysical Center of the Russian
Academy of Sciences, aimed at overcoming the difficulties that may arise today when
using the EPA approach in its classic 50-year version. In the present paper, the problem of
earthquake-prone areas recognition is considered in the classical formulation of Gelfand–
Keilis-Borok.

Talking about the drawbacks of the EPA method, the following should be noted. The
formation of learning material is a fundamental phase of recognition. Learning set B0
includes the objects with known epicenters of strong earthquakes in the vicinities. It is
reasonable to assume that set B0 formed in this way is highly likely to contain no a priori
errors or so few of them that they are unable to affect significantly the recognition result. It
is hard to form a similar “clean” learning material of class H. The set H0 contains either all
objects not included in B0 or objects with known earthquakes with magnitude M < M0 − δ,
where δ > 0 [5,13] in the vicinities.

As regards the essence of the EPA problem, which represents a threshold problem of
recognition [4,14,15], learning class H0 entails inherent potential errors. Accordingly, a low
seismicity learning class is not at all a totality of benchmark objects that cannot be related
to strong earthquake-prone areas. Learning sets B0 and H0 turn out to be disparate [16,17],
and the EPA procedure ignores this fact [13].

Many years of applying the EPA method in numerous mountainous countries of the
world [5] demonstrated the need to avoid learning asymmetry in recognition. Making EPA
findings more reliable necessitates amending the recognition unit by adding a learning
algorithm based on the only high seismicity class B0, which includes objects with known
strong earthquakes in their vicinities [13]. The development of this kind of recognition
algorithm has been one of the main objectives of this study.

36



Appl. Sci. 2021, 11, 7972

Another drawback of the EPA method is that the identification of recognition objects
and the measurement of their geological-geophysical and geomorphologic characteristics
is a time- and effort-consuming problem. That said, the possibility of using selected objects
needs separate justification for every region [5]. The foregoing illustrates that the practical
employment of the EPA method is still challenging to a great extent. This forced the
authors to develop new state-of-the-art algorithmic systems, which enable the automation
of the recognition process. The key objective of study was to set up and develop this kind
of system.

2. Materials and Methods

2.1. Recognition of the Areas Prone to Strong Earthquakes with One Learning Class

In the papers [4,5], the EPA approach was further developed by creating a new algo-
rithm called Barrier-3, employed in the recognition unit [13,16,17]. It should be especially
noted that the principal difference of the Barrier-3 algorithm from the dichotomy algorithms
previously used in EPA is that learning is based only on B0 high seismicity class set.

Broadly speaking, the Barrier-3 algorithm, which learns based only on one class, is not a
dichotomy algorithm. However, it can be used in the EPA. Barrier-3 also divides the territory
into two non-intersecting areas that are either prone or not prone to strong earthquakes.

Similarly, to the dichotomy algorithms [5], the Barrier-3 algorithm views disjunctive
nodes or axis intersections of the morphostructural lineaments as recognition objects. Such
selection of objects derives from their deep tectonic connection with strong earthquakes.
The confinedness of the strong earthquake epicenters to the intersections of morphostruc-
tural lineaments was statistically confirmed in the paper [18].

The objective of the Barrier-3 algorithm is to study the characteristics of learning
set B0 of the only high seismicity class and identify the objects that are “similar” to the
learning objects based on the knowledge obtained. The latter are declared as high seismicity
ones. Speaking the language of the theory of sets, Barrier-3 accomplishes the objective of
constructing in the finite set of objects W and its subset B, broadening the only learning
class B0. For this reason, the disparity measure between two arbitrary objects is constructed
for every characteristic. This allows finding and measuring the “barrier,” which divides
these objects as part of the considered characteristic. This assessment acts as a proximity
measure for the initial set W, which enables giving exact meaning to the idea of proximity
to B0 based on a given totality of characteristics. Let us move on to the description of the
mathematical construction of the Barrier-3 algorithm [13,16].

Let us assume that Π = {π} is a finite totality of numerical characteristics of recogni-
tion objects w ∈ W, and π : W → R , B0 is own subset in W for learning of high seismicity
class B. Based on the totality of characteristics Π of a set of objects W, it is necessary to
construct a set PΠ(B0) that would adequately expand B0 in the sense of requirements of
the formulated problem.

The proximity of the objects w1 and w2 by characteristic π is “hampered” by all those
objects w whose π(w) values lie in between the values π(w1) and π(w2). They make up
a barrier:

Бπ(w1, w2) = {w ∈ W : min(π(w1), π(w2)) ≤ π(w) ≤ max(π(w1), π(w2))} (1)

It is natural to assume that the lower the barrier Бπ(w1, w2), the better it is for the
proximity of w1 and w2 on W by characteristic π. This observation explains the name of
the algorithm.

Let us call the ratio
ρπ(w1, w2) = |Бπ(w1, w2)|/|W| (2)

disparity measure between w1 and w2 by characteristic π or simply barrier measure.
The Barrier-3 algorithm forms the set of PΠ(v) objects that are close to v ∈ B0 from W

based on the characteristics Π in three phases.
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Phase one: formation of set Pπ(v) of objects that are close to v in W by characteristic π
using the minimality threshold απ(v):

Pπ(v) = {w ∈ W : ρπ(w, v) ≤ απ(v)} (3)

The threshold απ(v) performs the functions of the flexible lower boundary of the set
{ρπ(w, v), w ∈ W} and can be obtained, for example, using Kolmogorov averaging with
the value s < 0:

απ(v) =
(

∑w∈W ρπ(w, v)s

|W|
)1/s

(4)

Phase two: formation on W of the value pΠ(w|v) showing the proximity of w to v
based on all characteristics Π:

pΠ(w|v) = |{π ∈ Π : w ∈ Pπ(v)}|. (5)

Here Pπ(v) is determined by the formula (3), and the integral exponent pΠ(w|v)
introduced by the formula (5) varies from 0 to |Π|.

Phase three: formation in W of a subset of PΠ(v) objects that are close to v based on
all characteristics Π using the maximality threshold βΠ(v):

PΠ(v) = {w ∈ W : pΠ(w|v) ≥ βΠ(v)} (6)

The threshold βΠ(v) performs the functions of flexible upper boundary of the set of
values {pΠ(w|v), w ∈ W}. Similarly, to the formula (4), βΠ(v) can be constructed using
Kolmogorov averaging with the value q > 0:

βΠ(v) =
(

∑w∈W pΠ(w|v)q

|W|
)1/q

(7)

As a result, a sought set PΠ(B0) is obtained by the formula:

PΠ(B0) = ∪v∈B0 PΠ(v). (8)

For the quantitative assessments of the contribution of characteristics to the formation
of a sought subset of high seismicity objects, the algorithm features additional compu-
tational units. In parallel with the computation of pΠ(w|v), a binary matrix is formed
MΠ(w|v):

MΠ(w|v)i,j =

{
1, wi ∈ Pπj(v)
0, wi /∈ Pπj(v)

, i = 1, . . . , |W|, j = 1, . . . , |Π|. (9)

Every element of the matrix (9) determines whether or not the object w ∈ W belongs
to the set Pπj(v), πj ∈ Π of the objects that are close to v. String summation of the matrix
MΠ(w|v) for all w ∈ PΠ(v) forms the vector WΠ(v):

WΠ(v)j = ∑
k

MΠ(w|v)k,j, wk ∈ PΠ(v), j = 1, . . . , |Π|. (10)

The elements of the vector (10) illustrate the contribution of characteristics πj ∈ Π
to the formation of a subset PΠ(v) of the objects that are close to v ∈ B0. The quantitative
assessments of the contribution of characteristics to the formation of PΠ(B0) are undertaken
in two phases:

Element-by-element summation of all vectors WΠ(v), v ∈ B0 and normalization on
|B0| allows obtaining the average contribution of characteristics to the recognition of a
sought high seismicity subset PΠ(B0).
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The sorting of WΠ(v), v ∈ B0 and the selection for each of them of three characteristics
with the greatest values, followed by the summation of the number of belongings of such
characteristics to the formed threes, enable assessing the contribution of such characteristics
through their classification as the “strongest.” This class will be called Top 3 ranking. This
explains the name of the algorithm Barrier-3.

The set of recognition objects is represented as a disjoint union of W = B � H high
and low seismicity classes, B = PΠ(B0) ⊇ B0, and H = W\B.

The Barrier-3 algorithm was employed as the EPA recognition block to recognize the
areas prone to crustal earthquakes with M ≥ 6.0 in the Caucasus and the Altai–Sayan–
Baikal region. Here, 16 intersections of the axes of morphostructural lineaments with
known epicenters of crustal earthquakes with M ≥ 6.0, starting from 1900, in their vicinities
(with a radius of 50 km in the Altai–Sayan–Baikal region and 25 km in the Caucasus) were
used as the learning sets B0 of high seismicity class in both regions.

The list of the geological-geophysical and geomorphological characteristics of con-
sidered vicinities of lineament intersections used for recognition by Barrier-3 algorithm is
given in Table 1. Highlighted in bold type are 7 characteristics that were selected to be used
for recognition in the Altai–Sayan–Baikal region based on the findings from the assess-
ment of informativeness for the instance of one learning class; in italics, 11 characteristics
selected for recognition in the Caucasus are given. It is noteworthy that 4 characteristics
(Hmin, Top, R2, and dB) were selected for recognition using the Barrier-3 algorithm in
both regions. Based on the threshold magnitude of the recognized earthquake-prone areas
(M ≥ 6.0), the circles with a radius of 25 km were selected as vicinities within which the
values of characteristics were computed. For reproducibility of the result and its greater
reliability, the values of characteristics of objects were computed automatically using the
smart GIS developed by the Geophysical Center of the Russian Academy of Sciences
(http://seismgis.gcras.ru/ access date: 30 July 2021) [19,20].

Table 1. The list of characteristics of the recognition objects (intersections of lineaments). Bold type—
characteristics used by the Barrier-3 algorithm for recognition in the Altai–Sayan–Baikal region;
italics—the Caucasus; bold italics—both regions.

Maximum height Hmax

Minimum height Hmin

The range of heights dH = Hmax-Hmin

Distance between points where Hmax and Hmin are measured l

Height gradient dH/l

The combination of relief types Top

The area of Quaternary sediments Q

The highest rank of lineament HR

The number of lineaments at the intersection NL

The distance to the nearest intersection Rint

Number of lineaments in the neighborhood of the intersection NLC

The distance to the nearest lineament of rank I R1

The distance to the nearest lineament of rank II R2

The maximum value of the Bouguer anomaly Bmax

The minimum value of the Bouguer anomaly Bmin

The range of the Bouguer anomaly values dB = Bmax-Bmin

The maximum value of magnetic anomaly MOmax

The minimum value of magnetic anomaly MOmin

The range of the magnetic anomaly values Modif = MOmax-MOmin
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2.2. Recognition of Strong Earthquake-Prone Areas Based on Identifying Dense Condensations of
Point Objects

In this part of the article, let us depart from the recognition objects described above
(disjunctive nodes and intersections of the axes of morphostructural lineaments) and their
geological-geophysical and geomorphologic characteristics. The task considered here will
be closer to reality. Namely, in addition to the reliable classification of a finite set of point
objects, a formalized and reproducible transition from a recognized high seismicity set B
to a real two-dimensional region in the plane with the cardinality of the continuum will
be required. Strong earthquakes can occur within and cannot occur outside of this sought
region. In other words, the innovation we make to the statement of the problem will be
building an image of the set of recognition objects W in the studied region S as in the subset
of the Euclidean plane:

Fγ : W → Fγ(W) ⊂ S ⊂ R2, (11)

where γ is a set of free mapping parameters Fγ [21].
A sought mapping Fγ must meet the following necessary conditions:

(a) flat set Fγ(B) ⊂ S is obtained for B ⊂ W, given the fixed values of free parameters γ,
(b) flat set Fγ(B) contains high seismicity objects w ∈ B as points in the plane, i.e.,

∀ w ∈ B ⇒ w ∈ Fγ(B) , and
(c) the epicenters of known strong earthquakes (M ≥ M0) are located inside or at the

borders of zones Fγ(B). That said, given possible errors in the identification of historic
epicenters, they can be located near the borders Fγ(B).

It is natural to view such two-dimensional sets Fγ(B) of the cardinality of the con-
tinuum as actual flat zones within which strong earthquakes can occur. The selection of
values γ of any given variant among those that meet the conditions (a), (b), and (c) is based
on the system approach using control experiments.

The algorithmic system called Formalized Clustering and Zoning (FCAZ) developed
by the authors [21,22] is used as sought mapping Fγ. It represents systems analysis method
concerning Discrete Mathematical Analysis (DMA) [23–30].

The FCAZ method enables an effective recognition of strong earthquake-prone areas
based on the cluster analysis [31] of a catalog of seismic events. It represents a consistent
application of Discrete Perfect Sets (DPS) algorithms [21,32–34] and E2XT [22] (Figure 1).
Unlike the EPA procedure, the FCAZ systems analysis method uses neither morphostruc-
tural zoning nor dichotomy learning algorithms. It relies on the topological filtering of a
finite set of epicenters of fairly weak earthquakes, which act as recognition objects.

The fundamental difference of the FCAZ systems method from the EPA procedure is
that FCAZ has a formalized block (E2XT algorithm) of passing from the classification of a
finite set of point objects to sought flat high seismicity zones. The E2XT block constructs an
unambiguous mapping of a set of objects identified by the DPS algorithm in the flat zones of
non-zero measure. Strong earthquakes can occur within and at the boundary of such zones.
Such mapping allows for the first time to switch in the problem of earthquake-prone areas
recognition from the simple pattern recognition to full-fledged systems analysis. Specifi-
cally, this makes it possible to unambiguously isolate, using sharp bound, a subsystem of
recognized high seismicity zones from their non-empty complement.

The core of FCAZ is the DPS topological filtering algorithm (Figure 1) [21] isolating
clusters as own subsets in a set W. This is what makes DPS different from classical
clustering algorithms. It is aimed at isolating in a finite set of Euclidean space of flat regions
with a given density level α.

It should be emphasized that DPS is effective for the considered problem exactly
because it distinguishes between compact, connected groups of objects and their fuzzy,
unstructured complement. In other words, DPS cuts out isolated objects, “attracting” the
rest into dense clusters. That said, unlike classical clustering algorithms, in DPS by no
means all objects end up in clusters. This is what makes DPS new and innovative as a
systems analysis algorithm.
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Figure 1. The flow chart of system-analytical FCAZ method. Black blocks—DPS algorithm steps;
blue blocks—E2XT algorithm.

The DPS algorithm has two free parameters: q < 0 for the calculation of localization
radius rq(W), which is determined as the power mean of all nontrivial pairwise distances
in a set of recognition objects W, and β ∈ [−1, 1] is the maximality level of the necessary
density of α = α(β, q) DPS clusters. The output value is a set (α(β, q)) α, which is dense in
each of its elements.

The result of applying the DPS algorithm is as follows:

DPS(q, β) : W → {B1, . . . , Bn}, (12)

where parameters q and β determine a particular type of DPS clusters; B1, . . . , Bn, own
connected subsets in a set of recognition objects. In other words, B = �n

i=1 Bi, where Bi,
i = 1, . . . , n are recognized DPS clusters, B, Bi ⊂ W, and W\B represents a significant part
of the set W. It is noteworthy that if the latter is false, then the recognition result is trivial.

During the next phase, DPS clusters B1, . . . , Bn are transformed by the E2XT algorithm
into flat zones of the cardinality of the continuum (i.e., mapping of Fγ is performed). During
this phase, mapping is constructed:

E2XT(δ, C, ω, v) : Bi → F(Bi), (13)

where δ is the step of the geographical grid, ω < 0, v < 0 are free parameters, C is
connection type, Bi are determined by the formula (12), F(Bi), i = 1, . . . , n are sought flat
zones of non-zero measure. If mapping (13) meets the above conditions (a), (b), and (c),
then F(Bi) there are sought areas prone to strong earthquakes.

Accordingly, the FCAZ system is a composition of two algorithms:

FCAZ(γ) = E2XT(δ, C, ω, v) ◦ DPS(q, β), (14)
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and γ is a set of free parameters of FCAZ:

γ = {δ, C, ω, v} ∪ {q, β} = {δ, C, ω, v, q, β}. (15)

The existence of mappings (13–15) allows considering FCAZ as a systems analysis
method. FCAZ(γ), indeed, processes input data from beginning to end in a unified system.
That said, the solution presented takes shape of sought two-dimensional zones and not
their palliatives, representing finite sets of points in the plane [21].

The constructions of DPS and E2XT algorithms feature artificial intelligence blocks
that automatically select optimal values β in DPS and ω, v in E2XT. This makes the result
of FCAZ recognition objective and reproducible. An optimal value β enables recognizing
DPS clusters for which the difference between the totality of densities (in the inherent
sense of the algorithm) of objects inside the clusters and the totality of densities of objects
outside of the clusters will be the greatest possible. The selected ω and v make it possible
to find an optimal combination of connection and scannability of DPS clusters. A detailed
description of mathematical constructions of the DPS and E2XT algorithms is provided in
the papers [21,22].

FCAZ delivers a system approach to studying strong earthquake-prone areas. Its
characteristic property lies in the fact that the recognition of sought zones in the regions
of the globe that differ in structure relies on universal facts and methods, which enable
a uniform approach toward solving the entire class of such problems. The statement of
the problem and the process of its solving represent a unified system that is sufficiently
invariable relative to geological structure, the selection of threshold magnitudes of sought
strong earthquakes, objects, etc. That said, the FCAZ applicability condition is the state of
seismological and geological-geophysical exploration of regions, which manifests itself in
the high quality of earthquake catalog.

The next parts of the paper will demonstrate how FCAZ allows performing reliable
recognition of the strongest (M ≥ 7.75), strong (M ≥ 6.0), and significant earthquake-
prone areas across different mountain countries of the world. The reliability of obtained
results was assessed with the help of control experiments and through comparison with
high seismicity zones recognized by EPA approach. The division of earthquakes into the
strongest, strong, and significant ones was made by the authors solely to simplify the
description of the results obtained.

It should be noted that previously the recognition of high seismicity zones was per-
formed just for one fixed magnitude threshold M0. In the present paper, a method for
the successive recognition of the areas prone to earthquakes for different threshold mag-
nitudes in the same region is proposed. It is based on the repeated application of FCAZ
method to a set of recognition objects, which is successively narrowed down by way of
DPS clustering. The new method was called Successive Formalized Clustering and Zoning
and is abbreviated as SFCAZ [35]. Accordingly, the classical EPA problem formulated at
the beginning of the article is for the first time expanded to a more systemic complicated
problem of the successive recognition of the areas prone to earthquakes in the same region
for several threshold magnitudes. The mathematical construction of the SFCAZ method is
described in detail in the paper [35].

3. Results

3.1. Variable EPA Method

Figure 2 shows the MSZ map of Altai–Sayan–Baikal region. The result of earthquake-
prone areas recognition with M ≥ 6.0 by Barrier-3 algorithm is shown in Figure 2 using
ellipses with blue boundaries. Upon the completion of recognition, 32 out of 97 objects are
identified as high seismicity class B. The totality of vicinities of these objects (circles used
to compute the values of characteristics) [5] determines the areas prone to earthquakes
with M ≥ 6.0.
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Figure 2. The morphostructural zoning map of the Altai–Sayan–Baikal region. Thick black lines—rank I lineaments; medium
gray lines—rank II; thin black lines—rank III; solid lines—longitudinal lineaments; dotted line—transverse ones [36,37],
areas prone to earthquakes with M ≥ 6.0 (ellipses with blue boundaries—Barrier-3 [16], white ellipses—Cora-3 [37], white
ellipses with blue boundaries—both the algorithms). Red circles designate the epicenters of crustal earthquakes with M ≥
6.0 (1900–2012) used to form the learning set B0, red star refers to the epicenter of crustal earthquake (11 January 2021 with
M = 6.7) that occurred after the completion of recognition.

Figure 3a shows a bar diagram characterizing the medium contribution of characteris-
tics in recognition using the Barrier-3 algorithm of a sought high seismicity set of objects.
Figure 3b shows the contribution of characteristics expressed through attribution to the
Top 3 rankings. The y axis in Figure 3a shows the average number of “attributions” of
characteristics in the recognition of a set PΠ(B0) (see above), in Figure 3b, the number of
attributions to the three “strongest” characteristics (Top 3 ranking).

Figure 3. The contribution of characteristics to recognition using the Barrier-3 algorithm of a high seismicity set of objects in
the Altai–Sayan–Baikal region: (a) average contribution of characteristics; (b) the contribution of characteristics expressed
through their attribution to the “strongest” threes.

It can be seen from Figure 3 that in the recognition of strong earthquake-prone areas
in the Altai–Sayan–Baikal region using the Barrier-3 algorithm, the most significant charac-
teristics include gravity anomalies (Bmax and Bmin), a combination of relief types (Top)
and the distance to the nearest lineament of rank II (R2). The intersections of lineaments
classified as high seismicity ones against the background of the entire set of objects in their
vicinities are characterized by low values of gravity anomalies (mostly Bmax ≤ −160 mGal
and Bmin ≤ −220 mGal) and contrasting combinations of relief types—mountains/foothill
and mountains/mountains. These are characterized by high values of magnetic anomaly
(MOmax), the concentration of dB around 60 mGal and 120 mGal, and the concentration of
Hmin less than −1000 m and more than 1000 m.

It can be seen from Figure 3 that lithospheric magnetic field anomalies contribute to
the result of recognition in the Altai–Sayan–Baikal region. It can thus be concluded that the
vicinities of high seismicity intersections of lineaments are characterized by a high degree
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of tectonic breaks, the existing deep density heterogeneity, as well as specific structure and
composition of the Earth’s crust. It would be natural to interpret these signs as the criteria
of high seismicity in the studied region.

A comparative analysis of results, obtained independently using the Barrier-3 algo-
rithm and the Cora-3 dichotomy algorithm, which is most common in the EPA [38,39],
shows that they are well aligned with each other (Figure 2). The Barrier-3 algorithm recog-
nized as high seismicity ones 32 intersections of morphostructural lineaments and Cora-3
33 intersections [36,37]. That said, 25 objects were attributed by both algorithms to class B.

The Barrier-3 algorithm classified as hazardous 6 out of 51 objects of the learning set
of a low seismicity class of dichotomy; Cora-3 3 out of 51; both algorithms, 2 intersections.
Consequently, 44 learning objects of class H were recognized by both algorithms as non-
hazardous for magnitude M ≥ 6.0. It means that the key differences in the classification
belongs to a set of objects initially not attributed to learning sets (20 objects are classified
identically by the algorithms and 10 are classified differently). It should be noted that the
epicenters of earthquakes with M ≥ 6.0, used to form the learning set B0 (red circles in
Figure 1) are located strictly within the vicinities of objects classified by both algorithms as
high seismicity ones [16,37].

It is noteworthy that the Barrier-3 algorithm is structured in such a way that learning
objects in the final classification always belong to class B. In turn, in recognition using di-
chotomy algorithms (particularly Cora-3 algorithm), learning objects are broadly speaking,
not obliged to retain their attribution to the relevant class [4,7].

The red star in Figure 2 shows the epicenter of the crustal earthquake, which occurred
on 11 January 2021, with M = 6.7. This earthquake occurred after the completion of the
independent recognitions described herein using the Barrier-3 and Cora-3 algorithms,
thus representing the material for a pure examination for them. It can be seen from
Figure 2 that the epicenter is located outside of the vicinities (with a radius of 25 km) of
the intersections of lineaments recognized as high seismicity ones by both algorithms. At
the same time, it is located 42 km away from the nearest recognition object attributed to
class B by both algorithms. It was believed in the formation of learning material that the
epicenter is confined to the intersection if it is located at a distance of no more than 50 km.
Accordingly, the epicenter of the earthquake that occurred on 11 January 2021, is confined
to the intersection of lineaments attributed to class B by both algorithms, yet is located
outside of the 25 km of vicinities used to compute the values of its characteristics.

The recognition results of the areas prone to earthquakes with M ≥ 6.0 in the Altai–
Sayan–Baikal region, obtained using the Barrier-3 (one learning class) [16] and Cora-3
algorithms (two learning classes) [36,37], are well aligned with each other. On the one hand,
this evidences the reliability of both results since recognition was performed independently.
On the other hand, in the interpretation of differences (15.5% of the total number of
objects) in the outcomes, preference should be given to the classification using the Barrier-3
algorithm since it was performed with learning containing no protentional errors.

The recognition result of the areas prone to strong earthquakes in the Caucasus,
obtained using the Barrier-3 algorithm as the EPA recognition block, is shown in Figure 4 as
ellipses with blue boundaries. Barrier-3 attributed 108 out of 237 intersections of lineaments
to high seismicity class B.

Figure 5 shows the bar diagrams demonstrating the contribution of object characteris-
tics to the recognition, by Barrier-3 algorithm, of the intersections of lineaments, in whose
vicinities strong earthquakes can occur in the Caucasus. As it can be seen, the greatest
contribution is made by the characteristics that are responsible for relief heights (Hmax and
Hmin), the area of quaternary rocks (Q), the highest rank of lineament (HR), the number of
lineaments in the vicinities (NLC), and the distances to the nearest lineaments of ranks I
(R1) and II (R2).
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Figure 4. The morphostructural zoning map of the Caucasus (legends as in Figure 2) [40], areas prone to earthquakes with
M ≥ 6.0 (ellipses with blue boundaries—Barrier-3 [17], white ellipses—Cora-3 [41], white ellipses with blue boundaries—
both algorithms) and the epicenters of earthquakes with M ≥ 6.0 (brown circles—before 1900, red circles—in the period
from 1900 to 1992 (used to form the learning set B0), dark green circles—since 1993 (material for a pure exam)) [42].

Figure 5. The contribution of characteristics to the recognition, using the “Barrier-3” algorithm, of a high seismicity set of
objects in the Caucasus: (a) average contribution of characteristics; (b) the contribution of characteristics expressed through
their attribution to the “strongest” threes.

In the Caucasus, the intersections of lineaments recognized as hazardous ones for
M ≥ 6.0 against the background of the entire set of recognition objects in their vicinities
are characterized by high values of the maximum and minimum heights (Hmax ≥ 2500 m
and Hmin ≥ 600 m) and a small area of quaternary rocks (Q ≤ 30%). They are made up of
three or more lineaments of ranks II or III (NLC ≥ 3, HR = 2 or HR = 3, R2 ≤ 30 km) and
located at a relatively short distance away from the lineaments of rank I (0 < R1 ≤ 50 km).

The joint analysis of Figures 3 and 5 shows that in both regions for the Barrier-3
algorithm, a significant contribution to the formation of a high seismicity set of objects is
made by the distance to the nearest lineament of rank II. Namely, the characteristic R2 is
important for the Barrier-3 algorithm and invariable relative to the selection out of two
regions considered.

Figure 4 illustrates a comparison of the classification of lineament intersections in
the Caucasus, obtained with the help of Barrier-3 and Cora-3 algorithms. The first one
recognized as high seismicity ones 108 intersections of lineaments [17]; the second one,
107 [41], both algorithms simultaneously recognized 73. The Barrier-3 algorithm classified
as hazardous 24 out of 71 objects of the learning set of low seismicity class from Cora-3; Cora-
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3, 22; both algorithms simultaneously, 16. In total, 41 learning objects of a low seismicity
class were recognized by both algorithms as non-hazardous. Out of the intersections set
not initially classified as the learning sets of Cora-3, the algorithms classified identically 95
objects and classified differently 55 objects [17,41].

It can be seen from Figure 4 that the objects located on the longitudinal lineaments of
rank II and classified by both algorithms as high seismicity ones make up extensive zones
along the axis of the Main Ridge in the Central and Southeastern Segments of the Greater
Caucasus. A good coincidence of recognition results can be seen in the eastern sector of
the Lesser Caucasus and the Armenian Volcanic Plateau [43]. A totality of the objects
located on the transverse lineaments of rank II and attributed by the Barrier-3 and Cora-3
algorithms to class B make up an extensive submeridional zone within the Trans-Caucasian
Transverse Elevation, combining the areas prone to strong earthquakes in the Greater and
Lesser Caucasus. A fairly good alignment of high seismicity areas can also be seen near the
Talysh mountains. It is noteworthy that most earthquakes known in the Caucasus with
M ≥ 6.0 occurred in the vicinities of the objects making up the zones described above.

The analysis of Figure 4 showed that all 17 epicenters of earthquakes with M ≥ 6.0
(red circles), which formed the learning set of high seismicity class of both algorithms, are
located inside the B zones recognized by both algorithms. Out of 42 epicenters of strong
earthquakes, which occurred before 1900 (brown circles), 7 and 8 epicenters, respectively,
are located outside of the zones recognized by the Barrier-3 and Cora-3 algorithms. Half
of them are located within a short distance from the potentially high seismicity areas
recognized by the algorithms.

Dark green circles in Figure 4 refer to the epicenters of strong earthquakes, which have
occurred in the Caucasus since 1993. Information about them has not been used, in any
manner whatsoever, in the formation of learning sets; thus these earthquakes represent
material for a pure examination. Two of the three epicenters are located strictly within the
high seismicity zones recognized by both algorithms. The latter represents a significant
argument in favor of the reliability of the result demonstrated by Figure 4.

The replacement of a dichotomy algorithm with the original Barrier-3 algorithm,
undertaken in this paper, is an attempt to open a new page in the development of the
EPA approach. As shown above, the Barrier-3 algorithm proved itself to be good in the
recognition of strong earthquake-prone areas with one learning class in the Caucasus and
the Altai–Sayan–Baikal region. This fact strengthens the assumptions that the approach to-
ward the recognition of potentially high seismicity zones based on the only high seismicity
learning class through its expansion is adequate to the classical setting of the EPA problem.

The positive variants for recognition obtained using the Barrier-3 and Cora-3 algo-
rithms make them control experiments for each other. Due to the relative proximity of
results, these control experiments should be recognized as successful. This enhances the
assessment of the reliability of the above results.

The studied regions serve as a basis for the proposed joint interpretation of the strong
earthquake-prone areas recognized for one and two learning classes. The interpretation
relies on the composition of unclear set construction [44] and the results obtained indepen-
dently using the Barrier-3 algorithm and the Cora-3 dichotomy [45].

Let W still represent a set of intersections of lineaments, and a fuzzy set of high
seismicity objects is defined as a set of pairs:

B = {w, μB(w)|w ∈ W }. (16)

That said, membership function μB(w) is:

μB(w) = μB1,B2(w) =

⎧⎨
⎩

1, w ∈ B1 ∩ B2
0.5, w ∈ B1ΔB2
0, w /∈ B1 ∪ B2

= (B1 ∪ B2)\(B1 ∩ B2), (17)
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where B1 and B2 are the sets of objects recognized as high seismicity ones by the Barrier-3
and Cora-3 algorithms, respectively. Then high seismicity objects in the integral result are
the intersections for which μB(w) > 0.

Figure 6 provides the example of an interpretation of results for strong earthquake-
prone areas recognition with M ≥ 6.0 in the Caucasus and the Altai–Sayan–Baikal region
using a fuzzy set construction (16–17). In the Altai–Sayan–Baikal region in line with the
obtained independent results of recognition (Figure 2), all considered epicenters of strong
earthquakes are located in the vicinities of objects attributed to class B by both algorithms.
Whether or not the epicenter of the 2021 earthquake should be treated as a “missed target”
error, the number of missed recognition targets in cases where a fuzzy function is used
(Figure 6a) is the same for each algorithm (Figure 2). In this case, recognition using the
Formulas (16) and (17) only increases the number of sought high seismicity objects, where
strong earthquakes have not been recorded until the present.

Figure 6. Presentation of a joint result of earthquake-prone areas recognition with M ≥ 6.0 by the Barrier-3 and Cora-3
algorithms as a fuzzy set of vicinities of the intersections of lineaments: (a) the Altai–Sayan–Baikal region (white circles—
epicenters of earthquakes with M ≥ 6.0 (1900–2012); blue star—epicenter of the earthquake, which occurred on 11 January
2021); (b) the Caucasus (white circles—epicenters of earthquakes with M ≥ 6.0; minor ones—before 1900; medium ones—
1900–1992; major ones—after 1992). Highlighted in red are the vicinities of intersections of lineaments with membership
function to the high seismicity set μ = 1; in blue, μ = 0.5; in green, μ = 0. The function μ is determined by the formula (17).

The situation in the Caucasus is different. The fuzzy function approach a priori
improves the quality of the result here. In Figure 4, out of 62 epicenters of the considered
earthquakes with M ≥ 6.0, 8, and 9 epicenters, respectively, lie outside of the high seismicity
areas recognized by the Barrier-3 and Cora-3 algorithms. That said, as few as 4 epicenters
are located outside of the zones identified as high seismicity ones (red and blue ellipses in
Figure 6b) based on the Formulas (16) and (17).

The integral result (Figure 6) identifies 41.2% of objects in the Altai–Sayan–Baikal
region and 59.9% in the Caucasus as high seismicity ones. That said, for the studied EPA
problem, the result is typically treated as nontrivial if not more than 60% of objects are
classified as high seismicity ones [4]. The recognition obtained based on the Formulas (16)
and (17) meets this condition for both regions. At the same time, this allows obtaining a new
nontrivial result for both regions and halving the number of missed targets in the Caucasus.

The improvement of recognition result when construction (16–17) is used derives from
the fact that the employment of fuzzy mathematics enables integrating the criteria of two
independent recognitions performed by the Barrier-3 and Cora-3 algorithms. This allows,
to some extent, compensating incomplete and sometimes defective input data [45].

3.2. FCAZ Recognition of the Strongest Earthquake-Prone Areas

Three regions of the Pacific Seismic Belt are considered. Within their limits by the
FCAZ method the areas prone to the strongest earthquakes with M ≥ 7.75 are recognized.
The epicenters of earthquakes with the focal depth of up to 70 km from the ANSS catalog
(1963–2013, the mountain belt of the South American Andes), the earthquakes catalog of
Kamchatka and the Commander Islands (1962–2015, the coast of the Kamchatka Peninsula),
and the catalog of the Kuril–Okhotsk region (1962–2009, the coast of the Kuril Islands) are
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used as recognition objects. To select the magnitude threshold MR, starting from which the
epicenters were used as recognition objects, completeness magnitude Mc was assessed in
the catalogs [46–48]. Taking into account Mc assessment, it was decided to use as FCAZ
recognition objects in the Andes the earthquake epicenters with M ≥ MR = 4.5 (16,556
epicenters) [21]; in Kamchatka, M ≥ MR = 3.5 (44,113 epicenters) [49–51]; in the Kuril
Islands, M ≥ MR = 4.2 (11,725 epicenters). In Figure 7a, the totality of blue and green colors
shows recognition objects in the mountain belt of the South American Andes.

Figure 7. Mountain belt of the Andes: (a) FCAZ recognition objects—the epicenters of earthquakes
with M ≥ 4.5 and recognized DPS clusters; (b) FCAZ zones prone to earthquakes with M ≥ 7.75 and
the epicenters of earthquakes with M ≥ 7.75.

The lists of the strongest crustal earthquakes, beginning in 1900, have been formed based
on the above-listed instrumental catalogs, EPA recognition works, and the catalog of strong
earthquakes in the USSR from ancient times to 1975 [52]. As a result, the catalog of the strongest
earthquakes of the mountain belt of the Andes contains 24 events for the period of 1900–2013;
the catalog of Kamchatka, 8 (1900–2015); and that of the Kuril Islands, 11 (1900–2009). The
epicenters of earthquakes with M ≥ 7.75 are shown in Figures 7b and 8.
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Figure 8. FCAZ zones prone to earthquakes with M ≥ 7.75 and the epicenters of earthquakes with M ≥ 7.75: Pacific Coast
(a) of the Kamchatka Peninsula; (b) of the Kuril Islands.

The DPS clustering of the epicenters of earthquakes, which represent FCAZ recogni-
tion objects, was performed as follows. Initially, the DPS algorithm was employed with
density level α1(β1). The obtained dense set of objects W1(α1(β1)) was excluded from
further consideration and the algorithm was applied for the second time to the remaining
subset with density level α2(β2). This allowed obtaining new DPS clusters W2(α2(β2)),
where W2 = W\W1(α1(β1)). Subsequent iterations were performed similarly. All con-
nected components forming part of W1(α1(β1)) ∪ W2(α2(β2)) ∪ . . . ∪ Wk(αk(βk)) were
declared as sought DPS clusters.

Four iterations of DPS clustering were performed in the mountain belt of the South
American Andes; two iterations, in Kamchatka; and three, in the Kuril Islands. The
optimal values of the β parameter—the maximality level of density of DPS clusters—were
computed automatically using the artificial intelligence block. It should be noted that 67%
of recognition objects in the mountain belt of the Andes were included in the recognized
DPS clusters; 73.3%, in Kamchatka; 77.5%, in the Kuril Islands. DPS clusters are highlighted
in green in Figures 7 and 8.

In each of the three regions, the E2XT algorithm was applied to DPS clusters. The opti-
mal values of its input parameters ω and v were computed using the artificial intelligence
block. That said, a regular geographical graticule and connection type C8 was used. In
Figures 7b and 8, the totality of green and red colors shows mapped FCAZ zones.

Figures 7b and 8 show that FCAZ zones are well aligned with the location of the
epicenters of the known strongest earthquakes. Out of 24 earthquakes with M ≥ 7.75
in the mountain belt of the Andes, only one epicenter (4.2%) is located outside of FCAZ
zones (Figure 7b) and creates a missed target error. This is an epicenter of the earthquake
which occurred on 24 May 1940, more than 20 years before the commencement of systemic
instrumental seismological observations in the region. Accordingly, the location of the
epicenter can be distorted and this only error can be irrelevant.

Out of the eight strongest earthquakes considered in the Pacific Coast of the Kamchatka
Peninsula, the epicenter of just one (12.5%) does not belong to the recognized FCAZ zones
(Figure 8a). This is an epicenter of the Ozernovskiy earthquake with M = 7.75 in Koryakia,
which occurred on 22 November 1969, in the north of the considered region.

In 2006 the Olyutorskoye earthquake occurred in Koryakia to the north of the border
of the considered region, its magnitude was similar to the Ozernovskoye (Figure 8a). The
missed target error of the Ozernovskoye earthquake and non-inclusion of the Olyutorskoye
earthquake area in the considered region is caused by the fact that their epicenters are
located outside of today’s subduction zone. The conditions for the occurrence of these
earthquakes outside of the subduction zone are dramatically different from the remaining
considered strongest earthquakes in the region. This is also justified by the fact that the
epicenters of both earthquakes lie outside of the territory in respect of which work is
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underway to make a long-term forecast of the strongest earthquakes using the method of
Academician of RAS S.A. Fedotov [53]. Accordingly, the epicenter of the Ozernovskoye
earthquake is possibly not a missed target error.

On the Pacific Coast of the Kuril Islands (Figure 8b), the epicenter of just one (9%)
out of 11 known earthquakes with M ≥ 7.75 is a missed target error (the earthquake dated
1 May 1915, with M = 8.3). Let us note here that the identification of the areas prone to
earthquakes on the Pacific Coast of the Kuril Islands using pattern recognition methods
has not been previously performed. It is undertaken in this paper for the first time.

It is noteworthy that the FCAZ zones recognized in the mountain belt of the South
American Andes contain 69% of earthquake epicenters with M ≥ 5.0 from among those
present in the instrumental catalog used for recognition purposes. That said, they occupy
approximately half of the area of the seismically active mountain belt of the Andes and
the active subduction zone. FCAZ zones on the Kamchatka coast contain 73% of the
epicenters of earthquakes, with M ≥ 4.0 among those present in the instrumental catalog
and occupying 40% of the area of seismically active Kuril-Kamchatka and Aleutian Arcs
falling within the boundaries of the considered region. On the coast of the Kuril Islands,
FCAZ zones contain 81% of the earthquake epicenters with M ≥ 5.0 among those present
in the catalog. The aforesaid allows interpreting, with a high degree of reliability, the
recognized FCAZ zones (Figures 7b and 8) as the areas prone to earthquakes with M ≥ 7.75
in the mountain belt of the Andes and on the Pacific Coast of the Kamchatka Peninsula
and the Kuril Islands.

The recognized zones prone to the strongest earthquakes in Kamchatka and on the
Kuril Islands are well aligned with the results of a long-term seismic forecast for IX 2013–
VIII 2018, using the method of Academician of RAS S.A. Fedotov. In [53], earthquakes
with M = 5.7–7.2 were expected throughout the Pacific Coast of Kamchatka with a varying
probability level. That said, during the above-mentioned time interval, earthquakes with M
≥ 7.7 were expected in the coastal zone of the Avacha Bay and near the shores of Southern
Kamchatka. Fairly big FCAZ zones are situated in these areas as well (Figure 8a).

The best justification for the reliability of recognition results is a pure experiment,
i.e., the analysis of the alignment of FCAZ zones and the location of the epicenters of
earthquakes (with M ≥ M0) that occurred after the end of the instrumental catalog used
for recognition purposes. For instance, three earthquakes with M ≥ 7.75 occurred in the
mountain belt of the South American Andes after 2013: on 1 April 2014, with M = 8.2
(northwest of the Chili coast), on 16 September 2015, with M = 8.3 (Chili coast), and on 16
April 2016, with M = 7.8 (Ecuador). Information about these strongest earthquakes was not
used for recognition purposes in any manner whatsoever.

The epicenters of earthquakes of 2014, 2015, and 2016 are shown in Figure 7b using
black, purple, and blue stars, respectively. The first two epicenters are located strictly
inside the FCAZ zones. The third one is a short distance away from the boundaries of the
recognized zones. This allowed obtaining an argument in favor of the reliability of the
completed FCAZ recognition, both weighty and independent from research results.

Summarizing the results obtained, an important achievement should be noted. For
the first time, the strongest earthquake-prone areas were successfully recognized based on
the objective classification without involving morphostructural zoning and the formation
of learning sets. That said, the results are generally well aligned with those previously
obtained independently using the EPA method (for details, see below). Accordingly, it is
shown that FCAZ method is applicable to the system observation of regions with a very
high seismicity level.

3.3. FCAZ Recognition of the Areas Prone to Strong and Significant Earthquakes for One and
Several Threshold Magnitudes

The regions with a lower seismicity level than in the previous section of the arti-
cle: California, the Altai–Sayan region and the Baikal–Transbaikal region, the Caucasus,
as well as the Crimean Peninsula, and the northwestern Caucasus are considered. The
sets of recognition objects were formed based on the epicenters of crustal earthquakes
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from the following catalogs: ANSS (1960−2012, California), Earthquakes in the USSR
and Earthquakes of Northern Eurasia (1962–2008, the Caucasus; 1962–2008, Crimea and
northwestern Caucasus; 1962–2009, the Altai–Sayan region; and 1962–2010, the Baikal–
Transbaikal region). Based on the assessment of Mc, it was decided to use the epicenters
of earthquakes with M ≥ MR = 3.0 (31,874 epicenters) as recognition objects in Califor-
nia [54–56]; in the Altai–Sayan region, M ≥ MR = 2.8 (3647 epicenters) [57]; in the Caucasus,
M ≥ MR = 3.0 (6980 epicenters) [21,22,58,59]; in Crimea and northwestern Caucasus, M
≥ MR = 2.0 (2398 epicenters) [60,61]; and in the Baikal–Transbaikal region, M ≥ MR = 2.7
(11,297 epicenters) [35].

In Figure 9, the totality of green and red colors shows the recognized FCAZ zones
prone to strong earthquakes in California (M ≥ 6.5) and significant earthquakes in the
Altai–Sayan region (M ≥ 5.5), in the Caucasus (M ≥ 5.0), and in the Crimean Peninsula
and northwestern Caucasus (M ≥ 4.5).

Figure 9. FCAZ zones prone to earthquakes: (a) California, M ≥ 6.5 (black stars—epicenters of earthquakes with M ≥ 6.5
from 1836 through 2010; blue and white stars—M ≥ 6.5, since 2014); (b) the Caucasus, M ≥ 5.0 (black stars–M ≥ 5.0 for the
period of 650–2008; blue stars—M ≥ 5.0, since 2009); (c) the Altai–Sayan region, M ≥ 5.5 (blue stars—M ≥ 5.5 for the period
of 1902–2008; yellow stars—M ≥ 5.5, since 2011); (d) Crimea and the northwestern Caucasus, M ≥ 4.5 (black stars—M ≥ 4.5
for the period of 1900–2008; blue stars—M ≥ 4.5, since 2009).
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At first sight, out of 33 strong earthquakes with M ≥ 6.5 (1836–2010) in California, the
epicenters of 5 (15%) do not fall within the FCAZ zones (Figure 9a). It should be noted that
three of them are located offshore in the Pacific Ocean at a great distance from the coast and
are thus not caused by the tectonics of the studied region. Two other earthquakes occurred
in 1857 and 1906 a long time before the commencement of systematized instrumental
observations in the region. If thus these special cases are excluded from consideration, we
will see that, in fact, the result contains no missed target errors [54].

It should be noted that in California, FCAZ zones contain 83% events with M ≥ 4.5
among those present in the instrumental catalog. After the end of the catalog used to select
recognition objects, two strong earthquakes occurred (Figure 9a). The epicenters of both lie
strictly within the FCAZ zones. Accordingly, we have grounds to believe that recognition
resulted in building sought areas prone to strong earthquakes with M ≥ 6.5 in California.

In the Altai–Sayan region, out of 48 (1902–2008) significant earthquakes with M ≥ 5.5,
only 7 epicenters (15%) are located outside of the recognized FCAZ zones (Figure 9c). It
should be noted that 6 of them occurred before the commencement of active seismological
observations. That said, 3 epicenters are situated in Mongolia, 2 are located in the south of
the Krasnoyarsk region, where a small number of seismic stations now function.

FCAZ zones contain 67% of the earthquake epicenters with M ≥ 4.0 from among
those present in the catalog. After the end of the used instrumental catalog, five significant
earthquakes occurred in the region (Figure 9c). Of them, four epicenters are located strictly
inside FCAZ zones. Summing it up, the totality of provided arguments allows stating that
the results of FCAZ recognition in the Altai–Sayan region shown in Figure 9c have a high
degree of reliability [57].

In FCAZ research in the Altai–Sayan region, an attempt was also made to recognize
zones with the lowest possible number of missed target errors. For this purpose, localization
radius rq(W) was varied in DPS clustering through changes in a preset interval of values of
parameter q. Of all obtained recognition variants, an optimal one was selected, i.e., having
the lowest number of omissions of significant earthquake epicenters. This variant had two
missed targets less than the main variant of FCAZ zones (Figure 9c).

The epicenters of these two significant earthquakes, which make up the difference in
the number of missed target errors, are located within and at the border of Mongolia. That
said, the resulting area of optimal zones was 1.5 times higher than in the main recognition
variant (Figure 9c). Accordingly, in the case of optimal FCAZ zones, the number of false
alarms grows inevitably, adversely affecting the reliability of recognition. In this regard,
the final choice was made in favor of the main recognition variant (Figure 9c) [57].

In the Caucasus, out of 106 (650–2008) significant earthquakes with M ≥ 5.0, the
epicenters of 8 (7.5%) are located outside of FCAZ zones (Figure 9b). Explaining these
missed targets, note that three earthquakes occurred in 957, 1250, and 1667 long before
the commencement of systemized instrumental observations in the region. Three more
unrecognized epicenters are situated at a great distance from seismic networks based on
which the catalogs used for recognition were created. This casts doubt on the fact that these
earthquakes are real missed targets. Accordingly, certain missed targets are two epicenters
of significant earthquakes.

It should be noted that FCAZ zones contain 68% of the epicenters of earthquakes
with M ≥ 4.0 among those present in the instrumental catalog. The epicenters of all three
significant earthquakes which occurred after the end of the used instrumental catalog
are located strictly inside of FCAZ zones (Figure 9b). This is an argument in favor of the
reliability of the FCAZ recognition results [22].

It should be noted that the subregion in the northwestern part of the Caucasus (white
triangle in Figure 9b) was excluded from consideration due to the lack of earthquake epi-
centers representing recognition objects in this region. FCAZ recognition in this subregion
turns out to be impossible. This area forms part of the united region Crimea—northwestern
Caucasus, in which FCAZ recognition was performed for M0 = 4.5 [21].
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The number of earthquakes with M ≥ M0 must be sufficient to assess the level of their
alignment with the recognized FCAZ zones. In the instrumental catalog of earthquakes of
the Crimea and northwestern Caucasus region, there are just 5 events with M ≥ 5.0 and
17, since 1900. That said, the magnitudes of earthquakes of the early 20th century can be
overstated. For that reason, two different magnitude thresholds of the earthquake locations
being recognized M0 = 4.5 and M0 = 5.0 were considered in the region.

As can be seen from Figure 9d, FCAZ zones are well aligned with the location of
the epicenters of significant earthquakes (1900–2008) with M ≥ 4.5. Only 5 (11.4%) out of
44 epicenters are situated outside of recognized zones. It should be noted that all missed
earthquakes occurred before the commencement of the used instrumental catalog. That
said, 3 earthquakes have magnitudes M = 4.5–4.7 identified to a precision of ±0.5. For the
threshold M0 = 4.5, it is fairly safe to say that there are only two missed targets. FCAZ
zones contain 67% of the earthquake epicenters, with M ≥ 3.5 among those present in
the catalog.

The recognized FCAZ zones (Figure 9d) turn out to be connected with the events of
higher magnitude threshold M0 = 5.0. At the moment of recognition, there are 17 known
earthquakes with M ≥ 5.0 in the region. The epicenters of 15 (88.2%) of them are located
within or at the boundaries of FCAZ zones. Accordingly, if we consider earthquakes with
M ≥ 5.0, then FCAZ zones can be interpreted as areas prone to the same events. That said,
two missed targets are the same two Black Sea earthquakes as in the previous reasoning
about the threshold M0 = 4.5.

Nine earthquakes with M ≥ 4.5 occurred in the considered region after the end of
the used instrumental catalog. The epicenters of eight of them lie strictly within FCAZ
zones. The only missed target error is the epicenter of the earthquake, with M = 4.6 located
offshore in the Black Sea.

The considered Crimea–Caucasus region is the first one for which FCAZ zones were
interpreted for two different magnitude thresholds. In other words, in the recognition
problem of the areas prone to earthquakes, there was variation in the magnitude threshold
M0 [60].

The above statistical data allows, to a great extent of reliability, interpreting FCAZ
zones (Figure 9) as the areas prone to strong earthquakes in California and the areas
prone to significant earthquakes in the Altai–Sayan region, the Caucasus, as well as in the
Crimean Peninsula and the northwestern Caucasus.

The description of the first-ever successive recognition of the areas prone to earth-
quakes for several magnitude thresholds in the same region is given further. This recogni-
tion was performed using the SFCAZ method mentioned above, which further develops
FCAZ. Successively studied were the areas prone to earthquakes with M ≥ 5.5, M ≥ 5.75,
and M ≥ 6.0 in the Baikal–Transbaikal region [35].

Phase one of the research entailed the solution of a classical problem of recognizing
the areas prone to significant earthquakes (M ≥ M0 = 5.5). Figure 10a shows the recognized
zones that are well aligned with the earthquake epicenters with M ≥ 5.5. Out of 71 such
earthquakes, the epicenters of two (2.8%) are located outside of recognized zones, thus
creating missed target errors. These two earthquakes occurred before the commencement
of active instrumental observations in the region (1929 and 1957) and have a magnitude
M = 5.6, identified to a precision of ±0.5 [52], and their epicenters are located outside of the
Russian Federation. Accordingly, their actual magnitude can be lower than the threshold
M0 = 5.5 and the completed recognition is likely to have no missed targets.

Totally new are the second and third phases of successive recognition. Phase two
entailed studying the areas prone to significant earthquakes with M ≥ 5.75 in the same
Baikal–Transbaikal region. To that end, only the epicenters that were included in DPS
clusters during phase one were used as recognition objects. Accordingly, inside the DPS
clusters that define high seismicity zones for M ≥ 5.5, subclusters and morphogenetic areas
prone to stronger significant earthquakes were recognized.
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Figure 10. Baikal–Transbaikal region: (a) zones prone to earthquakes with M ≥ 5.5 and the epicenters
of earthquakes with M ≥ 5.5; (b) zones prone to earthquakes with M ≥ 5.75 and the epicenters
of earthquakes with M ≥ 5.75; (c) zones prone to earthquakes with M ≥ 6.0 and the epicenters of
earthquakes with M ≥ 6.0.

The zones recognized in this way are well aligned with the earthquake epicenters with
M ≥ 5.75 (Figure 10b). The epicenters of just 3 (10%) of 30 such significant earthquakes lie
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outside of their boundaries. These are the epicenters of earthquakes with a fairly inaccurate
identification of magnitude: M = 5.8 ± 0.5 and M = 5.8 ± 0.2 [52]. The magnitude of
the third earthquake was recalculated from the energy class. The magnitudes of these
three earthquakes are highly likely to have the values of M < 5.75, and the earthquakes
themselves are highly unlikely to constitute the subject matter of research. It should be
noted that the recognized territories form part of high seismicity zones for the magnitude
threshold M0 = 5.5, identified during phase one of the research.

Phase three entailed recognizing the areas prone to strong earthquakes with M ≥ 6.0.
The epicenters of earthquakes included in the DPS clusters during phase two have already
been used as recognition objects. Out of 17 earthquakes with M ≥ 6.0, the epicenters of
just two (11.7%) are located outside of recognized zones (Figure 10c). The first one is the
epicenter of the 1939 earthquake with M = 6.0 ± 0.3 [52]; the second one which occurred in
2008, with M = 6.3, is located at the distance of 0.15◦ of the mapped zones.

After 2010, 3 earthquakes with M ≥ 5.5 occurred in the considered region. The
epicenters of two of them lie strictly within the zones corresponding to their magnitudes,
which is an argument in favor of the reliability of SFCAZ recognition results.

Successive recognition using the SFCAZ method made it possible to obtain a chain of
high seismicity areas, in which the zones for greater threshold magnitudes are inserted in
the relevant zones for smaller ones. Accordingly, the results of successive recognition can
be used in practical seismic zoning. The results of completed successive recognition allow
us to argue that the performed transition from FCAZ to SFCAZ does not impair the quality
of obtained results [35].

After the end of the used instrumental catalogs, 22 earthquakes with M ≥ M0 occurred
in 5 considered regions. These events allowed conducting a pure experiment. It should be
noted that 19 epicenters (86.3%) are located within high seismicity zones. Such a result of a
pure experiment should be recognized as successful. This yielded an objective argument in
favor of result reliability for completed FCAZ recognition.

The earthquake with M = 7.1, which occurred in California on 6 July 2019 (white star
in Figure 9a), deserves a separate mention. The epicenter of this earthquake is located
inside FCAZ zones in the territory with no prior strong earthquakes. It should be noted
that this epicenter is located outside of the zones recognized by the EPA method [62].

4. Discussion

4.1. Justification of Reliability of FCAZ Recognition Results

Simultaneously with the pure experiment (see above) or in the absence of the same,
reliability was assessed based on the computational control experiments. FCAZ recognition
employs two types of control experiments—individual seismic history and complete
seismic history.

In the individual seismic history experiment, FCAZ zones are constructed based on
findings from the DPS clustering of the earthquake epicenters (with M ≥ MR) only for
20 years preceding the events with M ≥ M0. The experiment ends with an analysis of the
relative position of the recognized zones and the epicenter of the earthquake with M ≥ M0,
for which the zones were constructed.

The complete seismic history experiment excludes from the used instrumental catalog
the epicenters for the past few years during which events with M ≥ M0 have occurred.
FCAZ zones are recognized through the use of DPS clustering of the epicenters remaining
in the catalog. The experiment ends with an analysis of the location of the earthquake
epicenters with M ≥ M0 from the discarded part of the catalog relative to the recognized
FCAZ zones.

It should be noted that to improve the objectivity of computational experiments, they
are conducted using the same values of the FCAZ method parameters (q, β, δ, ω, v, C) (i.e.,
the DPS and E2XT algorithms) as for the main recognition variant. The values β, ω, and v
in the main recognition variant (see above) were computed in an automated manner by the
artificial intelligence blocks [21].
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Series of control experiments were conducted for the mountain belt of the South Amer-
ican Andes, the Pacific Coast of the Kamchatka Peninsula, California, and the Caucasus.
Figure 11 shows typical results of experiments in California as an example.

Figure 11. California: (a) computational individual seismic history experiment for the earthquake dated 22 December 2003;
(b) computational complete seismic history experiment (1960–1990) and the epicenters of earthquakes with M ≥ 6.5.

A comparative analysis of the spatial location of 29 FCAZ zones recognized in the
individual seismic history experiments and the main results of FCAZ recognitions (see
above) demonstrated a high degree of their similarity. That said, the epicenters of 27 out of
29 earthquakes involved in the experiments are located inside or at the boundaries of the
recognized zones.

The FCAZ zones recognized in the course of complete seismic history experiments in
terms of their forms and spatial location are close to the FCAZ zones of the main recognition
variants. The zones include 25 out of 27 epicenters of earthquakes with M ≥ M0, which
occurred years later (in particular, 10–25 years) after the date of the last recognition object
(earthquake epicenter). For instance, in California, the epicenter of the earthquake with
M = 7.1 (white star in Figure 11b), which occurred 28.5 years after the end of the catalog
used in the experiment is located strictly inside FCAZ zones.

The results of control experiments demonstrate the stability of FCAZ recognition in
time and space. This confirms the reliability of the main recognition variants in the studied
regions as the zones prone to the strongest, strong, and significant earthquakes.

A comparative analysis of FCAZ zones and the EPA zones recognized earlier [4,62–64]
was conducted in the mountain belt of the Andes, on the Pacific Coast of Kamchatka,
in California, and the Caucasus. FCAZ zones typically occupy a smaller area than EPA
zones. An exception is the mountain belt of the Andes, where FCAZ recognition covered a
larger area. Figure 12 shows the comparison of FCAZ zones and EPA zones in Kamchatka
and California.

In Kamchatka, high seismicity territories identified by both methods have a common,
northeastern strike due to the subduction zone (Figure 12a). That said, FCAZ zones are
typically located northwest of EPA zones. This is because most objects recognized as high
seismicity ones using the EPA method were formed by the intersection of a deep-water
trench with the morphostructural lineaments of rank II and III. At the same time, the main
part of the epicenters that represent FCAZ recognition objects are located in the Benioff
zone (seismic focal zone) within the continental slope before the trench and are generated
by the convergent interaction of two lithospheric plates.
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The FCAZ zones are well aligned with the epicenters of known strongest (the Andes
and Kamchatka), strong (California), and significant (the Caucasus) earthquakes. A check
of this kind of alignment for EPA zones is not a clearly formulated objective. The reason
is the construction peculiarities of morphostructural zoning scheme and the selection of
EPA recognition objects, especially in the Pacific Seismic Rim regions. Moreover, EPA
has no formalized transition from the classification of point objects to sought flat high
seismicity zones with unambiguous boundaries. EPA solves this nontrivial problem
by the trivial construction of circles with a radius proportionate to the magnitude of
recognized earthquakes around the objects classified as high seismicity ones. Circles
coincide with the areas initially used to compute the values of characteristics of the objects.
The reasonableness of such transition is not obvious.

Figure 12. Comparison of the zones prone to earthquakes recognized by FCAZ and EPA methods: (a) Pacific Coast of the
Kamchatka Peninsula; (b) California.

As regards the events with M ≥ M0, which constitute the material for pure experiment
for both methods (FCAZ and EPA), seven out of eight epicenters of such earthquakes are
located inside or at the boundaries of FCAZ zones. That said, only four epicenters are
guaranteed to be located inside the EPA zones. It should be noted that the epicenter of the
earthquake dated 6 July 2019, with M = 7.1 in California is situated strictly inside the FCAZ
zones, yet outside of the EPA zones. Summing it up, it is safe to say that the result of FCAZ
recognition offers a whole range of benefits as compared with EPA results.

To ascertain the contribution of foreshock and aftershock sequences to the formation of
the final result of FCAZ recognition, for the first time, epicenters from declustered catalogs
were used as recognition objects. On the Pacific Coast of the Kamchatka Peninsula and in
California, the FCAZ zones recognized based on complete and declustered catalogs turned
out to be almost coinciding. This evidences that for the considered regions the existence of
foreshock and aftershock sequences in the catalogs does not have a significant impact on
the results of recognition of high seismicity areas as part of the FCAZ clustering method.

The optimal values of the parameter β computed automatically (the maximality of
density in the DPS clusters, and in fact, the algorithm’s “look” at the topology of the set
of recognition objects and the separability of their dense condensations from the loose
complement) for both recognitions in Kamchatka turned out to be very close: −0.2 and −0.2
for the declustered catalog; −0.15 and −0.2 for the complete catalog. Similar optimal values
β in California are different. This can be explained by the fact that after a declustering of
the catalog, the number of recognition objects went down by 68%, causing a change in the
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quantitative-spatial distribution of the set of objects. At the same time, the experiment in
California can also be treated as successful since the results show that declustering a set of
FCAZ recognition objects has not led to a significant change in either the DPS clusters or,
in fact, the FCAZ zones [65].

4.2. FCAZ Recognition as the Problem of Advanced Systems Analysis

The FCAZ recognition problem is considered from the standpoint of advanced systems
analysis [e.g., https://siiasa.ac.at/ access date: 30 July 2021]. The process and result of iden-
tification of potentially high seismicity hazard zones represent a complicated system [66].
The condition of the system depends on both spatial coordinates of recognition objects
and on time. The results of FCAZ recognition obtained above follow from the algorithmic
analysis of the currently identified objects W = {w}, which represent numerous epicenters
of, generally speaking, fairly weak earthquakes.

For today, FCAZ performed a reliable recognition of sought high seismicity areas in
several mountainous countries. Substantiations of such reliability are given for a certain
period. This period is not long enough in both geological and real-time. In practice, it
means tens, maximum hundreds of years. This period is characterized by the fact that a
set of objects w ∈ W does not change drastically throughout the period. Here, a drastic
change means not only the emergence of the clouds of new epicenters of earthquakes
with M ≥ MR in previously aseismic areas but also significant alteration of the object
distribution topology.

Let Δt be a time interval during that the set W did not undergo any drastic changes. It
is natural to assume that the FCAZ result obtained at the moment t1 will take place until
the moment t2 = t1 + Δt. Since t2, the set W, has significantly changed its spatial form
and/or topology. Consequently, at the moment t2 it is necessary to perform a new FCAZ
recognition taking into account the newly received initial data.

Treating this reasoning as the first step of the induction process also makes it easy to
determine Δit and the succession of the pairs:

{(ti, FCAZ(ti)) : i = 1, 2, . . .}, (18)

where time values ti are the moments when FCAZ recognitions are repeated.
It should be noted that generally speaking, Δit �= Δjt, ∀ i, j = 1, 2, . . . , i �= j studying

the dependence of Δit on changes to the set W over time represents an independent
nontrivial problem of systems analysis, which falls beyond the scope of this paper.

Accordingly, an analytical approach to the recognition of potentially high seismicity
areas as a complex system that changes over time, even though stable over fairly long local
intervals, was created in the present paper. The approach is based on the dynamic changes
of the principal parameters of the system. The latter justifies the attribution of algorithmic
succession T(i) × FCAZ, where T = {ti; i = 1, 2, . . .} is defined by the formula (18), to
systems analysis methods. The general scheme of this method is illustrated in Figure 13,
where μi is the measure of recognition quality at the moment ti.

Figure 13. Illustration of the systems analysis method developed based on FCAZ recognition. Deep
red color shows the values of the FCAZ recognition quality measure at different time intervals.

Let FCAZγ1(Wt1) : G = Bt1 � Ht1 be the result of FCAZ recognition (M ≥ M0) at the
moment t1. That said:
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• Wt1 = {w} is the finite set of recognition objects (the epicenters of earthquakes with
M ≥ MR) at the moment t1, |Wt1 | = nt1 ;

• G = {g} denotes certain coverage of the considered region by square objects, on
which the E2XT algorithm works;

• γ1 = {δ, C, ω, v, q, β} is a set of values of free parameters of FCAZ selected for an
optimal recognition at the moment t1;

• Bt1 ⊂ G and Ht1 ⊂ G are the subsets of objects g ∈ G classified as high seismicity
and low seismicity ones, respectively, i.e., the objects g ∈ Bt1 are fairly close, and the
objects g ∈ Ht1 are fairly distant from known and potential areas prone to strong
earthquakes, Bt1 ∪ Ht1 = G, Bt1 ∩ Ht1 = ∅.

Let B0,t1 denote the set of epicenters of strong earthquakes that had occurred by the
moment t1. It is obvious that the higher the value of the inclusion measure of epicenters B0,t1

in the subset of high seismicity objects Bt1 , the better FCAZ recognition at the moment t1:

μ
(

B0,t1 ⊂ Bt1

)
=

∣∣B0,t1 ∩ Bt1

∣∣/∣∣B0,t1

∣∣. (19)

The quality of the FCAZ recognition problem considered above is determined by the
fact that the results of future (after the appearance of new objects with time) expansions
FCAZγ(Wt) : G = Bt � Ht tend to the limit characterized by the condition:

lim
t→∞

μ(B0,t ⊂ Bt) → 1. (20)

Let us assume by the moment t2 = t1 + Δt Zt1,t2 more strong earthquakes occurred,
B0,t2 = B0,t1 ∪ Zt1,t2 , i.e., bringing their total number to

∣∣B0,t2

∣∣ = ∣∣B0,t1 ∪ Zt1,t2

∣∣. That said,
the total number of occurring earthquakes with M ≥ MR among the recognition objects
increased by zt1,t2 to a total of nt2 = nt1 + zt1,t2 . Let us denote this new set of objects
Wt2 = {w}. In this new situation, at the moment t1 + Δt we have important additional
information in place, which was not available to us at the moment t1. Accordingly, it is
necessary to perform FCAZ recognition this time based on Wt2 to obtain the expansion
FCAZγ2(Wt2) : G = Bt2 � Ht2 (Figure 13).

FCAZ recognition is determined by the selection of free parameters γ = {δ, C, ω, v, q, β}.
The parameters of the E2XT algorithm, as well as its result, directly depend on the recognized
DPS clusters. In turn, β in DPS is the maximality level of density of DPS clusters, which depends
on the spatial arrangement of objects. Due to the earthquakes with M ≥ MR, which occurred
over the time Δt = t2 − t1, the spatial distribution of objects w ∈ Wt2 will differ from the
distribution of objects w ∈ Wt1 . For this reason, the selection of values γ2 = {δ, C, ω, v, q, β}
for FCAZγ2(Wt2) : G = Bt2 � Ht2 must be performed by the above-mentioned artificial
intelligence blocks. These blocks ensure the selection of optimal values of input parameters
accounting the spatial distribution of recognition objects at a given moment in time.

It is clear that the spatial distribution of a set of objects Wt2 can be so dramatically
different from the spatial distribution of Wt1 that Bt1 will not be a proper subset Bt2 . In
other words, the threshold (20) can fail to be achieved. To prevent this kind of situation
and create a successive monotonous growing of FCAZ zones as the high seismicity areas
recognized at the moment t2, the integration of the zones Bt1 and Bt2 should be taken, i.e.,
Bt2 = Bt2 ∪ Bt1 .

FCAZ recognition in the subsequent moments in time tk = tk−1 + Δt, k = 3, 4, . . . is
constructed similarly following the process of induction.

Based on the FCAZ results presented in this paper, the moment in time when control
experiments were conducted (e.g., complete seismic history), for any of the studied regions
is fixed as t1. Then t2 is the moment for which the main result of FCAZ recognition was
obtained. Then the comparison of sets of recognition objects and FCAZ zones at the
moments t1 and t2 allows concluding that in respect of all regions considered over the
time intervals Δt = t2 − t1, the sets of objects w ∈ W did not undergo any drastic change.
Accordingly, given such fixed t1 and t2, the moment t2 is not yet time for the performance
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of new FCAZ recognition taking into account new initial data. In this situation, pure
examination and computational control experiments gain special importance.

Similarly, the time has not yet come for new FCAZ recognition either if we take t1 as
the moments for which the main results of FCAZ recognition are obtained and take as t2,
for instance, the year 2021.

5. Conclusions

The problem of recognition of the areas prone to strong (with M ≥ M0) earth-
quakes [4,5,67,68] is studied in this paper using two methods developed by the authors.
Their fundamental difference lies in the selection of recognition objects.

In the first method, objects are vicinities of intersections of lineament axes constructed
using a formalized technique of morphostructural zoning. In the second method, objects
are constituted by the epicenters of all earthquakes that meet the condition M ≥ MR, where
threshold MR is significantly lower than the magnitude threshold M0 of the recognized
earthquake areas.

The methods also differ in the sets of characteristics of object description and the
employed pattern recognition algorithms. In the first case, these are geological-geophysical
and geomorphologic characteristics and the original Barrier-3 algorithm. In the second
case, these are the characteristics of epicenters of weak earthquakes and systems analysis
procedure for the objective recognition of dense condensations of FCAZ.

Despite the critical differences between these two original methods, their recognition
results are well aligned in the Altai–Sayan–Baikal region and the Caucasus. The territories
classified as high seismicity ones by both methods should be viewed as the most hazardous
since they are recognized as such by independent methods based on different recognition
objects and their characteristics.

The first method allows, from the standpoint of dynamic systems analysis, repeatedly
solving the problem of classification of lineament intersections into high and low seismicity
ones. This relies on the fact that learning is every time performed only for one high
seismicity class, which is easy to form with due regard for new strong earthquakes that
have occurred. This, in turn, contributed significantly to the development of the classical
EPA approach towards the recognition of high seismicity areas [3–5,67,69,70].

Previously, there was a problem of identification of the learning set of the objects in
whose vicinities strong earthquakes cannot occur. This problem is solved in the paper by
developing an original method for image recognition called Barrier-3.

This algorithm makes it possible to classify objects into high and low seismicity
based on one learning class. Barrier-3, having information about the objects with known
epicenters of earthquakes with M ≥ M0 in their vicinities, enables finding a set of the
so-called similar objects.

The recognition of the areas prone to earthquakes is the first developed method to
rely on the hypothesis about the association of epicenters of strong earthquakes with the
intersections of morphostructural lineaments, which was confirmed in [18]. Accordingly,
building the morphostructural zoning map is an important phase of the first method for
studying the problem. That said, despite the logical formalization conducted as early as
1977 by a group of mathematicians under the guidance of I.M. Gelfand, the process of
morphostructural zoning remains ambiguous. In this regard, a question was pending:
Can the recognition of strong earthquake-prone areas be performed without constructing
morphostructural zoning model? [22]. This paper answers this question positively based
on the use of the systems analysis method FCAZ.

The employment of DMA algorithms in this paper, which use the epicenters of earth-
quakes as recognition objects, justifies this positive answer. Accordingly, the system FCAZ
approach is a new step in the study of a recognition problem of strong earthquake-prone areas.

The recognition process of the high seismicity hazard zones in tectonically active re-
gions represents a complicated system. The condition of the system depends on both spatial
coordinates of recognition objects and on time. In this regard, FCAZ recognition is viewed
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in this paper from the perspective of the systems analysis. The system–mathematical model
of FCAZ recognition as a complicated dynamic system was developed. The space-and-
time model T(i) × FCAZ for recognition of the areas prone to the strongest, strong, and
significant earthquakes makes it possible to develop a schedule of subsequent iterations
for the recognition of high seismicity hazard zones for the regions studied in this paper.

The following regions with varying seismicity levels were studied by Barrier-3 and
FCAZ methods in this paper:

• Barrier-3—the Altai–Sayan–Baikal region (M ≥ 6.0) and the Caucasus (M ≥ 6.0).
• FCAZ—mountain belt of the South American Andes (M ≥ 7.75), the Pacific Coast of

the Kamchatka Peninsula (M ≥ 7.75), and the Kuril Islands (M ≥ 7.75); California
(M ≥ 6.5); the Baikal–Transbaikal region (M ≥ 5.5, M ≥ 5.75, M ≥ 6.0); the Altai–Sayan
region (M ≥ 5.5); the Caucasus (M ≥ 5.0); the Crimean Peninsula and northwestern
Caucasus (M ≥ 4.5, M ≥ 5.0).

The Altai–Sayan–Baikal region, the Pacific Coast of the Kuril Islands, and the Crimean
Peninsula were first studied with the employment of methods for the recognition of
earthquake-prone areas. Moreover, the Baikal–Transbaikal region was used as an example
of the first recognition of earthquake-prone areas for the finite succession of growing
magnitude thresholds M1

0 < M2
0 < M3

0. The joint presentation of the recognition results
obtained by the Barrier-3 and Cora-3 algorithms in the Caucasus based on their composition
with a fuzzy set allowed halving the number of missed targets.

It was shown, using California and the Pacific Coast of the Kamchatka Peninsula
as an example, that the existence of foreshock and aftershock sequences in the catalogs
of earthquakes does not have a significant impact on the FCAZ recognition results. A
totality of control experiments conducted in this paper demonstrates the reliability and
reproducibility of the interpretation of FCAZ zones as the areas prone to the strongest,
strong, and significant earthquakes.

In the studied regions, FCAZ zones occupy a relatively small area as compared with
the total seismicity field, which makes up 30%–40% of the total seismicity space and
50%–65% of the space where earthquakes with M ≥ MR occur. This illustrates the spatial
nontriviality of the obtained results.

Findings from the paper also demonstrate that low seismicity can actually “manifest”
the properties of geophysical fields, which in the classical EPA approach are used directly
as the characteristics of recognition objects.
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Abbreviations

The following abbreviations are used in this manuscript:
ANSS Advanced National Seismic System
Barrier-3 Pattern recognition algorithm with one learning class
Cora-3 Pattern recognition algorithm with two learning classes

(the most common dichotomy algorithm in the EPA approach)
DMA Discrete Mathematical Analysis
DPS Discrete Perfect Sets (algorithm in the structure of the FCAZ method)
E2XT Extension (algorithm in the structure of the FCAZ method)
EPA Earthquake-Prone Areas
FCAZ Formalized Clustering and Zoning
MSZ Morphostructural zoning
SFCAZ Successive Formalized Clustering and Zoning
Top 3 Rank of three strongest characteristics in Barrier-3 algorithm
M Magnitude
M0 Magnitude threshold of strong earthquakes
MR Magnitude threshold, starting from which the epicenters were used as

recognition objects in FCAZ method
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Abstract: The forecasting of the evolution of natural hazards is an important and critical problem
in natural sciences and engineering. Earthquake forecasting is one such example and is a difficult
task due to the complexity of the occurrence of earthquakes. Since earthquake forecasting is typically
based on the seismic history of a given region, the analysis of the past seismicity plays a critical
role in modern statistical seismology. In this respect, the recent three significant mainshocks that
occurred in Alaska (the 2002, Mw 7.9 Denali; the 2018, Mw 7.9 Kodiak; and the 2018, Mw 7.1
Anchorage earthquakes) presented an opportunity to analyze these sequences in detail. This included
the modelling of the frequency-magnitude statistics of the corresponding aftershock sequences.
In addition, the aftershock occurrence rates were modelled using the Omori–Utsu (OU) law and
the Epidemic Type Aftershock Sequence (ETAS) model. For each sequence, the calculation of the
probability to have the largest expected aftershock during a given forecasting time interval was
performed using both the extreme value theory and the Bayesian predictive framework. For the
Bayesian approach, the Markov Chain Monte Carlo (MCMC) sampling of the posterior distribution
was performed to generate the chains of the model parameters. These MCMC chains were used
to simulate the models forward in time to compute the predictive distributions. The calculation
of the probabilities to have the largest expected aftershock to be above a certain magnitude after a
mainshock using the Bayesian predictive framework fully takes into account the uncertainties of the
model parameters. Moreover, in order to investigate the credibility of the obtained forecasts, several
statistical tests were conducted to compare the performance of the earthquake rate models based on
the OU formula and the ETAS model. The results indicate that the Bayesian approach combined with
the ETAS model produced more robust results than the standard approach based on the extreme
value distribution and the OU law.

Keywords: epidemic type aftershock sequence model; extreme value distribution; Bayesian predictive
distribution

1. Introduction

The Pacific Ring of Fire is one of the most seismically active regions of the world.
Alaska and western Canada are a part of this ring and are prone to the occurrence of
significant earthquakes. This geographic region is characterized by high seismic activity and
is capable of producing megathrust earthquakes. These earthquakes can pose significant
hazard and are also capable of triggering tsunamis or intense ground shaking [1] and
subsidiary hazards such as liquefaction, landslides and aftershocks [2]. While tsunamis
pose a serious threat to coastal areas, ground shaking can cause damage to infrastructure
and endanger human life. Therefore, it is important to perform a comprehensive statistical
analysis of the aftershock sequences in the Aleutian subduction zone and central Alaska.
Moreover, the occurrence of large aftershocks poses a significant risk to the infrastructure
that has been affected by a mainshock. Therefore, estimating the probabilities for the
occurrence of the largest expected aftershocks plays an important role in post-mainshock
decision-making [3,4].
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One of the earliest empirical studies of the difference between the magnitude of the
mainshock and its largest aftershock was conducted by Båth [5], who postulated that the
largest aftershock is on average 1.2 magnitudes lower than the mainshock regardless of
the magnitude of the mainshock. Vere-Jones [6,7] proposed that the magnitude difference
between the mainshock and the largest aftershock was independent of the number of events.
Reasenberg and Jones [8] were one of the first in developing an aftershock forecasting model.
They introduced a parametric model that was capable of computing the probabilities of
aftershocks in a certain time window after a mainshock for California. Michael et al. [9]
proposed the methodology which aforementioned model parameters can be estimated
with Bayesian updating from both the ongoing aftershock sequence and from historic
aftershock sequences.

An important step in the calculation of the probability of having an earthquake above a
certain magnitude is the estimation of the model parameters that describe the seismicity rate
and the frequency-magnitude distribution. Those parameters are highly dependent on the
lower cut-off magnitude, m0. The correct estimation of the cut-off magnitude plays a crucial
role in earthquake forecasting and modelling. Mignan and Woessner [10] emphasized that
a high-value of the cut-off magnitude can result in under-sampling of useful data and
a low-value of the cut-off magnitude can result in uncertainty and bias of the estimated
seismicity parameters and forecasting model, respectively.

The other issue in aftershock forecast modelling is the catalogue incompleteness right
after the occurrence of strong mainshocks [11,12]. This early catalogue incompleteness
can affect significantly the estimation of the parameters of the earthquake decay rate. The
uncertainties in the estimation of the parameters of the aftershock decay rate can result
in significant miscalculation of the probabilities for the occurrence of largest events. The
empirical prior probability distribution was presented by Omi et al. [13] to reduce the
uncertainty of the parameter estimation of the ETAS model regarding the incompleteness
of the earthquake catalogues.

Utilizing generic parameters to create an aftershock forecast model for the early days
after the mainshocks is one of the possible ways to control the catalogue incompleteness.
Page et al. [14] introduced a method for generic parameter estimation by using tectonic
zoning of García et al. [15] to improve the spatial distribution of forecasted events. In this
approach, Bayes’ rule and aftershock records are used to update the generic parameters. In
addition, the distribution of the regional generic parameters can be considered as a prior
and the aftershock data can be used to calculate the posterior distribution. Michael et al. [9]
applied this approach to the 2018 Anchorage aftershock sequence. They reported that the
use of the generic parameters for the forecast model leads to the overestimation of the
seismic activity.

One of the critical tasks in statistical seismology is the ability to accurately and reliably
forecast the evolution of earthquake sequences. A consistent approach for earthquake
forecast testing has been implemented in the Collaboratory for the Study of Earthquake
Predictability (CSEP) [16–19]. In this framework, the gridded rate forecast is used in which
the selected geographic area is separated into zones then the number of earthquakes in
each zone is estimated [19]. In addition, the number of earthquakes in each forecast bin is
considered to be independent of the other bins and follows the Poisson distribution. Several
statistical tests were developed as part of the CSEP framework to examine earthquake
forecasts. As a result of these developments, it is possible to determine if a particular
forecasting scheme is able to accurately replicate locations, magnitudes, and the observed
numbers of earthquakes [19,20]. Various forecasting algorithms can also be compared
using the aforementioned likelihood-based tests. For example, retrospective aftershock
forecasting of the 2011 Tohoku, Japan; 2010 Canterbury, New Zealand; 2016 Kaikoura,
New Zealand; and 2019 Ridgecrest, California earthquakes were tested by using this
approach [4,21–24].

In this study, the analysis of three major earthquake sequences that occurred in Alaska
in the past 20 years was conducted to test retrospectively the ability to forecast the magni-
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tudes of the largest expected aftershocks. Specifically, the 23 January 2018 Mw 7.9 Kodiak
earthquake occurred in the Gulf of Alaska near Kodiak Island at 09:31:40.89 UTC at a
depth of 14 km [25,26]. There was no significant damage reported. The earthquake woke
residents in Anchorage which was located 560 km northeast from the epicenter. It was
also felt in parts of British Columbia, Canada. The 2018 Mw 7.1 Anchorage earthquake
happened approximately 15 km north from Anchorage, Alaska on 30 November of 2018 at
17:29:29.33 UTC at a depth of 46.7 km [9,27]. A few minutes later, a magnitude 5.8 after-
shock shook the region. Significant damage has been reported to infrastructure, buildings,
and airports [9]. Moreover, we investigated the characteristics of the 3 November 2002,
Mw 7.9 Denali earthquake that occurred in central Alaska along a shallow strike-slip fault
on the Denali-Totschunda fault system [28,29]. The details of the selected mainshocks are
listed in Table 1 and the spatial distributions of the mainshocks with the corresponding
aftershock sequences during the first 14 days are shown in Figure 1.

Table 1. The dates of occurrence, epicentre locations, magnitude and depth of the analyzed mainshocks.

Name Date Time Latitude Longitude Magnitude Depth

Denali 3 November 2002 22:12:41 63.5141 −147.4529 7.9 Mw 4.2 km
Kodiak 23 January 2018 09:31:40 56.0039 −149.1658 7.9 Mw 14 km

Anchorage 30 November 2018 17:29:29 61.3464 −149.9552 7.1 Mw 46.7 km

In this study, the left truncated exponential distribution was utilized to model the
magnitude frequency statistics [30]. Moreover, the modified Omori–Utsu (OU) law [31]
and Epidemic Type Aftershock Sequence (ETAS) model [32] were used to approximate the
rate of the aftershocks. In addition, two statistical approaches including the extreme value
distribution and Bayesian predictive distribution were utilized to compute the probabilities
of having the largest expected aftershocks to be above a certain magnitude during the
evolution of each sequence.

The paper is structured as follows: Section 2 begins with the specification of the
earthquake catalogues and follows by defining the statistical methods to analyze the
aftershock sequences. The results of the statistical analysis are provided in Section 3. In
Section 4, discussion of the results and concluding remarks are given.

(a)

Figure 1. Cont.

67



Appl. Sci. 2022, 12, 1809

(b)

(c)

Figure 1. Maps of the occurrence of the aftershock sequences generated by the three significant
Alaska mainshocks: (a) the 2002 Mw 7.9 Denali sequence with m0 = 3.0; (b) the 2018, Mw 7.9 Kodiak
sequence with m0 = 3.2; and (c) the 2018 Mw 7.1 Anchorage sequence with m0 = 2.8. The events
during 30 days after each mainshock are plotted. The blue solid circles represent the aftershocks
above m0. Black points are all events between magnitude 2.5 and m0. The focal mechanisms of the
studied mainshocks are plotted as beach balls. Quaternary faults are plotted as light brown line
segments [33].

2. Materials and Methods

2.1. Earthquake Catalogue

In order to analyze the 2002, Mw 7.9 Denali; the 2018, Mw 7.9 Kodiak, and the 2018,
Mw 7.1 Anchorage earthquake sequences, the United States Geological Survey (USGS)
earthquake catalogue https://earthquake.usgs.gov/earthquakes/search/ (accessed on 18
December 2021) was used. The spatial distribution of aftershocks during 30 days after each
mainshock are shown in Figure 1. The focal mechanisms of the mainshocks were obtained
from the USGS website [34–36].

The 2002 Denali, Alaska, earthquake sequence occurred along the Denali-Totschunda
faults which is a right-lateral strike-slip fault system. The Mw 7.9 mainshock nucleated on
the Susitna Glacier thrust fault and propagated further along the Denali fault and continued
along the Totschunda fault [29]. The parameters of the elliptical region for this aftershock
sequence, are given in Table 2 and the sequence for 30-day is depicted in Figure 1a. The
plotted fault plane solution for this mainshock in Figure 1a was taken from the the USGS
website [34].
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The 2018 Mw 7.9 Kodiak, Alaska, earthquake took place in the Gulf of Alaska southeast
of Kodiak Island. The mainshock location and the focal mechanism reflect a strike-slip
faulting system within the shallow lithosphere of the Pacific plate near the subduction
zone [37]. In Table 2 the details of the studied sequence for this mainshock are reported.
In addition, the earthquake sequence during 30-day after the mainshock occurrence is
demonstrated in Figure 1b. The focal mechanism of the 2018 Mw 7.9 Kodiak, Alaska,
earthquake suggests a steeply dipping fault either as a right-lateral system that strikes
the north-northwest or as a left-lateral fault that strikes west-southwest. The fault plane
solution for the mainshock in Figure 1b was obtained from the USGS website [35].

The 2018 Mw 7.1 Anchorage, Alaska, earthquake happened as the result of a normal
faulting rupturing north from Anchorage, Alaska. The location and mechanism of the
focal mechanism reflect a moderately dipping north-south fault system fault within the
subducting Pacific slab [38,39]. Details of the analyzed earthquake sequence are presented
in Table 2 and the sequence of 30-day is illustrated in Figure 1c. The indicated moment
tensor for this mainshock in Figure 1c was acquired from USGS [36].

Table 2. The parameters of the elliptical regions used for the identification of the aftershock sequence
and the corresponding lower magnitude cutoffs m0.

Elliptical Aftershock Zone

Mainshock Name Start Date and Time Center
Declination

Radii Magnitude Cut-Off, m0

Latitude Longitude R1 R2

Denali 3 November 2002 (22:12:41) 63.1 −145.40 117.5 1.85 0.55 3.0
Kodiak 23 January 2018 (09:31:40) 56.2 −149 40 0.85 0.65 3.2

Anchorage 30 November 2018 (17:29:29) 61.425 −149.91 35 0.22 0.16 2.8

For the statistical analysis of seismicity, several time intervals were utilized to estimate
properly the parameters of the models describing the evolution and the statistics of the
aftershock sequences. For the estimation of the model parameters, the training time interval,
[T0, Te], is considered. In order to properly account for the impact of preceding earthquakes
on the earthquake rate, the training time interval is divided into an initial time interval,
[T0, Ts], and a target time interval, [Ts, Te]. The seismicity parameters are estimated in the
target time interval. A forecasting time interval, [Te, Te + ΔT] is also considered to analyze
the evolution and the statistics of the seismicity. The schematic illustration of the time
intervals for the analysis of the aftershock sequences is shown in Figure 2.

Mainshock Training time interval Forecasting time interval

T0

Initial time interval Target time interval ΔT

Ts Te

� �
� �

� �
� �

�
Time

Figure 2. An illustration of the time intervals used in the analysis.

Earthquakes occur due to sudden energy release associated with the slippage of faults
and are characterized by finite rupture areas. However, for statistical analysis of seismicity,
the point assumption is utilized to characterize each earthquake. On time scales larger
than the propagation of rupture along the fault, earthquakes can be treated as points in
time and space. This idealization helps to describe the earthquake process by point process
models. The point process becomes a marked point process by assigning magnitudes to
each event. Therefore, each earthquake can be characterized by the magnitude, mi, and the
occurrence time, ti, in order to generate a stochastic marked point process during a specific
time interval, S = {(ti, mi)} : i = 1, 2, . . . , n.
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2.2. Gutenberg–Richter Scaling and the Exponential Distribution

Gutenberg and Richter [40] proposed the relationship that describes the frequency-
magnitude statistics of earthquakes. This relationship between the frequency of event
occurrences and the event magnitudes is one of the most commonly used empirical laws in
statistical seismology. They suggested the following equation:

N(m ≥) = 10(a−bm), (1)

where N(m ≥) is the total number of earthquakes above magnitude m and N(0 ≥) = 10a

and b is the value of the slope of the fitted line to the N on a logarithmic scale. Vere-
Jones [30] emphasized that the distribution of earthquake magnitudes is described by the
exponential distribution for m ≥ m0 with the probability density, fθ(m), and cumulative
distribution function, Fθ(m):

fθ(m) = βe−β(m−m0), (2)

Fθ(m) = 1 − e−β(m−m0), (3)

where m0, is the lower magnitude cut-off that is above the catalogue completeness magni-
tude mc and θ = {β} is the model parameter which can be obtained from all earthquakes
above m0 in target time interval [Ts, Te]. The parameter β is related to the b-value of the
Gutenberg–Richter (GR) scaling:

β = b ln(10). (4)

The Maximum Likelihood Estimation (MLE) is the most common approach to estimate
the b-value or parameter β. Bender [41] suggested an estimator for β by taking into account
the binning of the magnitude. Tinti and Mulargia [42] proposed an approach to calculate
the uncertainties of the parameter β at a given confidence level.

2.3. Omori–Utsu Law

For the first time, Omori [43] introduced a formula for the aftershock sequence decay
rate, λ(t), that is inversely related to the elapsed time after the mainshock. Utsu [31]
proposed a modification of the Omori law which is known as the Omori–Utsu (OU) law.
Utsu [31] modified the original intensity to the following form:

λω(t) =
K

(t + c)p , (5)

where λω(t) is the earthquake rate at a given time t with magnitudes above m0, and set of
parameters ω = {K, c, p}, and t is the time elapsed since the occurrence of the mainshock
at T0 = 0. The parameter K is the productivity of the sequence, c is the characteristic time,
and p is the rate of the decay in time. By considering the non-homogeneous Poisson process
for the occurrence of earthquakes, the parameters ω = {K, c, p} can be determined by
using the MLE approach [44,45]. In addition, in this model, the parameter uncertainties
can be estimated from the inverse of the Fisher information matrix that is computed from
the likelihood function.

2.4. The Epidemic Type Aftershock Sequence (ETAS) Model

A more realistic approximation of the earthquake rate was proposed by Ogata [46],
where he suggested that each earthquake could be considered as a trigger for the next
events in the sequence. The conditional intensity of the temporal ETAS model, λω(t|Ht), at
time t is defined as [46]:

λω(t|Ht) = μ + A
Nt

∑
i:ti<t

eα(mi−m0)

( t−ti
c + 1)p

, (6)
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where ω = {μ, A, c, p, α} is the set of parameters of temporal conditional intensity with a
reference magnitude m0 and the occurrence history of earthquakes, Ht, during the time
interval [T0, t]. Nt is the number of the earthquakes with magnitudes above m0 in the
time interval [T0, t]. In the ETAS model, μ specifies the average rate of background events
that transpire independently of any other events. c is the temporal characteristic time, p
governs the rate of decay of triggered events as a power law, and A controls the event
productivity. The parameter α determines the degree of aftershock clustering. Larger
values of α correspond to more pronounced aftershock sequences with stronger variability
in earthquake magnitudes. In contrast, the impact of event’s magnitude on aftershock
generation is reduced by smaller α values. The estimation of the ETAS model parameters is
achieved by maximizing the log-likelihood function:

log L = ∑
i:ti≤Te

λω(ti|Hti )−
∫ Te

Ts
λω(t|Ht) dt. (7)

In general, the consistency of the ETAS model is measured on the basis of a transformed
time. The transformed time τi for a given event is computed by using the cumulative
conditional intensity at time ti as

τi =
∫ ti

0
λω(t) dt. (8)

If the fit of the model is accurate, the sequence of earthquakes should obey a stationary
Poisson process in the transformed time. Furthermore, the cumulative number of observed
earthquakes in transformed time can be close to a straight line [13]. The deviation of the
cumulative number of observed events from the straight line indicates that the model does
not fit well the earthquake sequence.

2.5. Extreme Value Distribution

By considering a non-homogeneous Poisson sequence of earthquakes, the probability
of having an extreme earthquake with a magnitude above m in the forecasting time interval,
[Te, Te + ΔT] can be obtained from the Extreme Value Distribution (EVD) [47]:

PrEV{mex ≥ m|θ, ω, ΔT} = 1 − e−{Λω(ΔT)[1−Fθ(m)]}, (9)

where mex is the magnitude of the largest expected event, ω is the set of parameters of
seismicity rate λω(t), Fθ(m) is the cumulative distribution function of the events’ magnitude
with the set of parameters θ, and Λω(Δt) is a productivity function that is given as:

Λω(ΔT) =
∫ Te+ΔT

Te
λω(t) dt. (10)

By considering the exponential model, Equation (3), for describing the magnitude
distribution and the UO model, Equation (5), for the intensity of the productivity function,
Equation (9) can be rewritten as:

PrEV{mex ≥ m | θ, ω, ΔT} =

1 − exp
{
−
[

K
(Te + c)1−p − (Te + ΔT + c)1−p

p − 1

]
(e−β(m−m0))

}
, (11)

for p �= 1, and the set of parameters {θ, ω} can be obtained during the target time interval
[Ts, Te]. Therefore from Equation (11), the probability of having an earthquake with a
magnitude above m in a forecast time interval [Te, Te + ΔT] can be obtained, which is the
same approach as in Reasenberg and Jones [8].
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2.6. Bayesian Predictive Distribution

The obtained parameters of the aftershock sequence model during the training time
interval play a crucial role in calculating the EVD. The uncertainty of the parameters have
a significant impact on the calculation of the corresponding probabilities. Shcherbakov
et al. [3,48] incorporated the model uncertainties into the computation of the probabilities
for the occurrence of the largest expected earthquakes by applying the Bayesian predictive
distribution (BPD) approach, in which the BPD can be defined as:

PrB{mex ≥ m | S, Δt} =
∫

Ω

∫
Θ

PrEV(mex ≥ m | θ, ω, ΔT)p(θ, ω | S) dθdω, (12)

where Θ and Ω are the frequency-magnitude distribution and seismicity rate parameter
domains, respectively. PrEV(mex ≥ m | θ, ω, ΔT) is the EVD and p(θ, ω | S) is the posterior
distribution function, which quantifies the uncertainties of the model parameters.

Since the ETAS model deviates from a non-homogeneous Poisson process the EVD for
the largest magnitudes is not given by Equation (9). Shcherbakov et al. [3] suggested to use
the stochastic simulations to approximate the extreme value distribution and ultimately
the BPD. In this approach, the Metropolis-within-Gibbs algorithm is used to sample from
the conditional posterior distribution to generate the chain of the model parameters using
the Markov Chain Monte Carlo (MCMC), then the model parameter chain is used to
simulate the ETAS model during the forecasting time interval [Te, Te + ΔT]. At the end, the
maximum magnitude is taken from each sequence of events to construct a distribution that
approximates the BPD.

When performing MCMC sampling a certain initial part of the parameter chain is
discarded as “burn-in”. The Gamma distribution was considered for the prior distribution
of the model parameters. As burn-in the first 50% of Markov chains were discarded and
the second half was utilized for calculation of the BPD.

2.7. Forecast Validation

To evaluate the number of forecasted earthquakes by a specific model in the fore-
casting time interval, the N-test can be used [4,17,19,49]. It tests the distribution range
of the number of the forecasted events versus the number of observed earthquakes. In
addition, in order to test the magnitude distribution of the forecasted earthquakes the
M-test can be applied [4,17,19,49]. The N and M-tests examine the consistency of the fore-
casts with respect to observations, and the R-test can be used to compare the performance
of different forecasting models [17]. In addition, to evaluate statistical forecast the T-test
can be applied [49]. In formulating the T-test, the sample information gain per earth-
quake of the model Λ2 over the model Λ1 is defined as IN(Λ2, Λ1) = R21/Nobs, where
Nobs is the number of observed earthquakes during the forecasting time interval ΔT and
R21 = L(M|Λ2) − L(M|Λ1) is the log-likelihood ratio of the two models. The detailed
explanation and implementation of these tests applied to the time-dependent models such
as the ETAS and OU rates can be found in Shcherbakov [4].

3. Results

In this section the obtained results of the analysis of the recent three significant main-
shocks that occurred in Alaska (the 2002, Mw 7.9 Denali; the 2018, Mw 7.9 Kodiak, and the
2018; Mw 7.1 Anchorage earthquakes) are summarized.

3.1. Frequency-Magnitude Statistics Analysis

The aftershocks of the three mainshocks within elliptical regions as shown in Figure 1
were used to obtain the frequency-magnitude statistics. The fitting of Equation (2) was done
to all three sequences and during specific target time intervals. To estimate the parameter β
from Equation (2) the MLE approach was used [41]. The model parameter uncertainties
were estimated using the method of Tinti and Mulargia [42]. In addition, the method of
goodness of fit test [50] was utilized to estimate the magnitude of completeness mc for the
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three sequences. Specifically, m0 was selected as the magnitude above which at least 95%
of the observed data are modeled by Equation (2). The results are presented in Figure 3.
Moreover, to investigate how the earthquake magnitudes evolve over time, they are plotted
versus the sequential number in Figure A1. This can be used to inspect the early magnitude
incompleteness of aftershock sequences and can be used to justify the use of a chosen
magnitude threshold [51].

Anchorage GR fit GFT = 96.7% 
b = 0.906 ± 0.082 
a = 5.216 ± 0.246

Denali GR fit GFT = 95.4% 
b = 0.749 ± 0.053 
a = 5.134 ± 0.176

Kodiak GR fit GFT = 96.6% 
b = 1.035 ± 0.059 
a = 6.394 ± 0.214

Figure 3. The frequency-magnitude statistics of aftershock sequences for 30 days from the mainshock
occurrence. The lines are the Gutenberg–Richter scaling fit, Equation (1). The open symbols represent
the cumulative numbers corresponding to each aftershock sequence. The estimated a and b-value
with 95% confidence intervals are given in the legend. The cumulative numbers of aftershocks for
the 2002, Denali aftershocks for m ≥ 3.0 are plotted as red circles, the 2018, Kodiak aftershocks for
m ≥ 3.2 cumulative numbers are plotted as purple diamonds, and blue squares are used to depict the
2018, Anchorage aftershocks for m ≥ 2.8.

In order to analyze the frequency-magnitude statistics of the 2002, Denali earthquake
sequence, m0 = 3.0 was considered as a cut-off magnitude, and the analysis was performed
during [Ts, Te] = [0, 30] days after the mainshock occurrence on 3 November 2002 (22:12:41
UTC) for the earthquakes within the elliptical region given in Figure 1a. The total number
of aftershocks during the selected time interval was 771 with the maximum magnitude 5.6,
respectively. The fit of the GR relation is demonstrated in Figure 3. The estimated b-value
and a-value for the analyzed earthquake sequence are 0.749 ± 0.053 and 5.134 ± 0.176,
respectively. The magnitude-frequency statistics analysis of the 2018, Kodiak earthquake
sequence was performed during [Ts, Te] = [0, 30] days after the mainshock that occurred on
23 January 2018 (09:31:4 UTC) for earthquakes with the cut-off magnitude m0 = 3.2 within
an elliptical region shown in Figure 1b. In total 1207 earthquakes with the magnitude
ranging from 3.2 to 5.5 occurred in the analyzed elliptical region during the specified
time interval. The estimated b-value and a-value for selected earthquake sequence are
1.035 ± 0.059 and 6.394 ± 0.214, respectively (Figure 3). For analyzing the frequency-
magnitude statistics of the 2018, Anchorage earthquake sequence, m0 = 2.8 was considered
as a cut-off magnitude, and the analysis was carried out during [Ts, Te] = [0, 30] days after
the mainshock occurrence on 30 November 2018 (17:29:29 UTC) for the earthquakes within
an elliptical region of Figure 1c. In total 476 earthquakes within the magnitude range of
2.8–5.2 occurred in the analyzed spatiotemporal window. The obtained b-value and a-value
for Anchorage earthquake sequence are 0.906 ± 0.082 and 5.216 ± 0.246 respectively. The
fit of the GR relation is plotted in Figure 3.
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3.2. Aftershock Decay Rate Modelling

To begin with, we obtained the first-order approximation to the background seismic-
ity rate within the presented elliptical regions in Figure 1 for each analyzed aftershock
sequence. In this evaluation the background rate was estimated as the ratio of the number
of earthquakes to the number of days, during the time interval that started on 1 January
2000, and ended 30 days before each mainshock. The estimated background rates, the
corresponding time intervals, and cut-off magnitude for each analyzed mainshock are
reported in Table 3.

Table 3. Background Seismicity Rate.

Name Start Time End Time m0 μ (Events per Day)

Denali 1 January 2000 3 October 2002 3.0 0.1
Kodiak 1 January 2000 23 December 2017 3.2 0.005

Anchorage 1 January 2000 30 October 2018 2.8 0.02

Subsequently, the aftershock decay rate was modeled by using the OU law, Equation (5),
for the three sequences during the target time interval of [Ts, Te] = [0.001, 30] days. The
obtained parameters of the OU model with 95% confidence interval and the model fits are
shown for the Anchorage sequence in Figure 4 and for the Denali and Kodiak sequences in
Figure A2.

Decay rate
OU fit 
K = 76.72 ± 11.25 
c = 0.06 ± 0.03 
p = 1.17 ± 0.10

Figure 4. The log-log plot of the aftershock decay rate for the 2018, Mw 7.1 Anchorage aftershock
sequence with magnitudes m ≥ 2.8 are presented as open squares. The blue solid line is the
corresponding fit of the OU law, Equation (5), to the aftershock sequence. The obtained parameters
from the OU law, Equation (5), with the 95% confidence intervals are reported in the legend.

The estimated set of parameters of the OU law, Equation (5), with 95% confidence inter-
vals for the 2002, Denali earthquake sequence are ω = {K = 202.72± 48.35, c = 0.29 ± 0.13,
p = 1.22 ± 0.11} (Figure A2a). Similarly for the 2018, Kodiak earthquake sequence
the obtained parameters of the OU law, Equation (5) with 95% confidence intervals are
ω = {K = 225.91 ± 46.84, c = 0.31 ± 0.18, p = 0.88 ± 0.09} (Figure A2b). Finally, for
the 2018, Anchorage earthquake sequence the estimated parameters of the OU law are
ω = {K, c, p}, {76.71 ± 11.25, 0.06 ± 0.03, 1.17 ± 0.1}, respectively. The fit of the OU law
and the estimated parameters from Equation (5) are demonstrated in Figure 4.

Furthermore, we used the ETAS model, Equation (6), to estimate the aftershock decay
rate during the target time interval [Ts, Te] = [0.06, 30] days for the three aftershock
sequences. For comparison we present the OU fit and the ETAS model fit for the 2018,
Anchorage earthquake sequence in Figure 5. A similar plot for the other two sequences is
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given in Figure A3. Figure 6 illustrates the fit of the ETAS model in transformed time for
the 2018, Anchorage earthquake sequence.

T
s

T
e

 = 0.020 ± 1.223
A = 3.944 ± 4.598
c = 0.002 ± 0.004
p = 1.107 ± 0.109

 = 2.141 ± 0.348

ETAS fit
Omori-Utsu fit
Earthquake magnitudes

Figure 5. The aftershock sequence and corresponding earthquake magnitudes during 2018, Mw 7.1
Anchorage sequence with m ≥ 2.8. The ETAS model fit, Equation (6), for the target time interval of
[Ts, Te] = [0.06, 30] is plotted as a solid blue line, and the obtained set of parameters are reported
with 95% confidence intervals. The OU law fit, Equation (5), is plotted as a black dashed line
for comparison.
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 = 0.020 ± 1.223
A = 3.944 ± 4.598
c = 0.002 ± 0.004
p = 1.107 ± 0.109

 = 2.141 ± 0.348

Cumulative number
Rate of the ETAS model

Figure 6. The cumulative number of observed aftershocks in transformed time and corresponding
rate of the ETAS model for the 2018, Mw 7.1 Anchorage aftershock sequence with m ≥ 2.8. The ETAS
model fit, Equation (6), for the target time interval of [Ts, Te] = [0.06, 30] days is plotted as a solid
blue line, and the obtained set of parameters are reported with 95% confidence intervals.

Finally, the statistical properties of the aftershock sequence initiated by the M7.1 An-
chorage, Alaska, earthquake are investigated in detail during several additional target time
intervals. Specifically, the sequence was analyzed during several target time intervals starting
from the occurrence of the mainshock and ending at Te = [1, 2, 3, 4, 5, 6, 7, 10, 14, 21, 30]
days. The evolution of the estimated parameters with 95% confidence intervals for both
models OU and ETAS during 2018, Mw 7.1 Anchorage earthquake sequences are shown
in Figure A4. Obtained estimations for the b-value of the GR relation, Equation (1) with
95% confidence intervals are demonstrated in Figure A4a. The evolution of the OU model
parameters are shown in Figure A4b. We presented the evolution of the estimation of the
ETAS model parameters in Figure A4c.
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3.3. Retrospective Forecasting of the Largest Expected Aftershocks

In order to calculate the probability of having the magnitude of the largest expected
aftershock to be above a certain magnitude and during a predefined forecasting time
interval the EVD, Equation (9), and BPD, Equation (12), are used. In this analysis, the OU
law, Equation (5), and the ETAS model, Equation (6), are utilized to calculate the aftershock
decay rate, and the frequency-magnitude distribution is estimated from the exponential
distribution, Equation (3).

To illustrate the applicability of the methods, one particular example is illus-
trated in case of the 2018 Anchorage sequence. The training time interval was set to
[Ts, Te] = [0.06, 14] days and the forecasting time interval of ΔT = 7 days was considered.
The lower magnitude cut-off m0 = 2.8 was used. The computed distributions using the
EVD, Equation (9), and BPD, Equation (12) are plotted in Figure 7. For the BPD analysis, to-
tal of 20,000 MCMC sampling of the posterior distribution was performed. The first 10,000
iterations were discarded as “burn-in” and the remaining 10,000 samples were utilized to
perform stochastic simulations of the ETAS or OU processes. The resulting distributions
of the OU and ETAS model parameters estimated from the MCMC chains are reported in
Table A1 and plotted in Figures A5 and A6, respectively.

Moreover, two cases are considered for computing the probabilities for the occurrence
of the largest expected aftershocks above a certain magnitude during the evolution of
the three sequences. For the first case, we considered a constant forecasting time interval
ΔT = 7 days. As for the target time intervals, we considered the following ending times
Te = [1, 2, 3, 4, 5, 6, 7, 10, 14, 21, 30] days with the lower magnitude thresholds of 3.0, 3.2,
and 2.8 for the 2002, Denali, 2018, Kodiak, and 2018, Anchorage sequences, respectively. In
this analysis, the BPD, Equation (12), with the exponential distribution, Equation (3), for the
frequency magnitude statistics, and the ETAS model, Equation (6), for the occurrence rate
of the earthquakes were utilized. The obtained results for the probabilities of the largest
expected earthquakes greater than mex ≥ 5.0, 6.0, 7.0 are shown in Figure 8. Furthermore,
the probabilities of having the largest expected aftershock to be above magnitude 6.0 were
computed utilizing the EVD, Equation (8), combined with the OU law, Equation (5), and
using the BPD, Equation (12), combined with the OU law, Equation (5), or the ETAS model,
Equation (6). The obtained results for analyzed mainshocks are presented in Figure 9.
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Figure 7. The EVD and BPD for the 2018, Mw 7.1 Anchorage aftershock sequence during the 7-day
forecast time interval after the training time interval of 14 days. The blue solid line represents the
BPD using the ETAS model with 10000 MCMC sampling steps using the Gamma prior. The orange
line represents the obtained BPD using the OU model and the yellow line is the plot of the EVD with
the OU law, Equation (11).
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Figure 8. The probabilities to have the largest expected aftershocks to be larger than mex ≥ 5.0, 6.0, 7.0
using the BPD, Equation (12), during a constant forecasting time interval ΔT = 7 days and for the
varying target time intervals. (a) The 3 November 2002, Mw 7.9 Denali sequence with m ≥ 3.0.
(b) The 23 January 2018, Mw 7.9 Kodiak sequence with m ≥ 3.2. (c) The 30 November 2018, Mw 7.1
Anchorage sequence with m ≥ 2.8.
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Figure 9. The comparison of the probabilities to have the largest expected aftershock during the
forecasting time interval ΔT = 7 days for the three sequences: (a) the 3 November 2002, Mw 7.9
Denali for m ≥ 3.0; (b) the 23 January 2018, Mw 7.9 Kodiak for m ≥ 3.2; (c) the 30 November 2018,
Mw 7.1 Anchorage for m ≥ 2.8. The blue triangles are computed using the BPD, Equation (12), with
an earthquake decay rate given by the ETAS model, Equation (6). The purple squares are computed
using BPD, Equation (12), with an earthquake decay rate given by OU law, Equation (5). The green
circles give probabilities computed using the EVD, Equation (11).
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In the second case, a constant target time interval [Ts, Te] = [0.06, 2] days was con-
sidered. However, the forecasting time interval was varied as ΔT = [1, 2, 5, 7, 10, 14]
days to compute the probabilities of the occurrence of the largest expected aftershocks.
The computed probabilities for the largest anticipated earthquakes mex ≥ 5.0, 6.0, 7.0 are
illustrated in Figure A7. In addition, the comparison of the two approaches to compute the
probabilities (EVD versus BPD) combined with either the OU law or the ETAS model are
shown in Figure A8.

3.4. Testing the Model Forecasts

Several tests were conducted to evaluate the forecast during the time interval [Te, Te +
ΔT] by comparing the simulated results with the observed seismicity. To check the perfor-
mance of forecasts for the number of aftershocks and magnitude distribution, the N and
M-tests were performed, respectively. The details of the implementation of the tests can be
found in Shcherbakov [4].

For the three aftershock sequences the number of forecasted aftershocks in the fore-
casting time interval ΔT = 7 days and using the following target time intervals Te =
[1, 2, 3, 4, 5, 6, 7, 10, 14, 21, 30] days are given in Figure 10. For comparison, in the same
figure the observed number of earthquakes are shown as blue circles for each prediction
time interval ΔT. In addition, for the constant target time interval [Ts, Te] = [0.06, 2] days
and varying forecasting time intervals ΔT = [1, 2, 5, 7, 10, 14] days the number of fore-
casted and observed earthquakes are shown in Figure A9. To investigate the effect of the
magnitude cutoff, we also performed the same analysis for earthquakes above magnitude
3.5. This is reported in Figure A10.

(a)

(b)

Figure 10. Cont.
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(c)

Figure 10. The number of forecasted and observed aftershocks in the forecasting time interval ΔT = 7
days for the three sequences: (a) the 3 November 2002, Mw 7.9 Denali sequence for m ≥ 3.0; (b) the
23 January 2018, Mw 7.9 Kodiak sequence for m ≥ 3.2; (c) the 30 November 2018, Mw 7.1 Anchorage
sequence for m ≥ 2.8. The red triangles show the average number of forecasted earthquakes using the
ETAS model and the black squares illustrate the average number of forecasted earthquakes using OU
law. The shading bands represent 95% confidence intervals. The blue circles represent the observed
number of earthquakes in each forecasting time interval.

In addition, M-test was performed to assess the consistency of the distribution of the
magnitudes of the forecasted events. The results of the performance of the OU law and
ETAS model are reported by computing the quantile score, κ [4,19]. κ is defined as the
proportion of the forecasted magnitudes compared to the observed magnitudes in each
magnitude bin. The obtained quantile scores for the constant forecasting time interval
ΔT = 7 days are given in Figure 11. In addition, in Figure A11 the outcomes for the
M-test for the constant target time interval [Ts, Te] = [0.06, 2] days are plotted for the three
aftershock sequences.

1+7d 7+7d 10+7d 14+7d 21+7d 30+7d
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ETAS
MCMC

0.025 & 0.05 
 quantile

(a)

Figure 11. Cont.

80



Appl. Sci. 2022, 12, 1809

1+7d 7+7d 10+7d 14+7d 21+7d 30+7d

OU
MCMC

ETAS
MCMC

0.025 & 0.05 
 quantile

(b)
1+7d 7+7d 10+7d 14+7d 21+7d 30+7d

OU
MCMC

ETAS
MCMC

0.025 & 0.05 
 quantile

(c)

Figure 11. The obtained quantile scores from the M-test for the constant forecasting time interval
ΔT = 7 days for the three sequences: (a) the 3 November 2002, Mw 7.9 Denali for m ≥ 3.0; (b) the
23 January 2018, Mw 7.9 Kodiak for m ≥ 3.2; (c) the 30 November 2018, Mw 7.1 Anchorage for
m ≥ 2.8. The red triangles demonstrate the obtained quantile scores from the ETAS model and the
black squares illustrate the quantile scores of OU law. The blue dashed lines represent the 0.025th
and 0.05th quantiles.

In order to evaluate and compare the models, the R-test and T-test were applied for
both cases by considering the ETAS model versus the OU law. In the R-test the quantile
score, α, was calculated. α is the proportion of the simulated likelihood ratios, over the
observed likelihood ratios [17]. The values of α that are greater than a specific level of
significance support the model that was chosen as a base model, in this case it is the ETAS
model. The obtained result for the α from the OU law versus the ETAS model is shown in
Figure 12. Furthermore, in Figure 13, the ratio of the likelihood score of the ETAS model
and the OU law over the number of the observed events in the forecasting time interval
is given. The T-test is used to assess whether the sample information gain is statistically
different from zero. This is used to select the preferred model [49]. Lastly, the Bayesian
p-value of the BPD analysis using either the ETAS model or the OU law are illustrated for
both cases in Figure 14.
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Figure 12. The obtained quantile scores from the R-test to compare the forecast based on the OU law
versus the ETAS model for the three sequences: (a) the 3 November 2002, Mw 7.9 Denali for m ≥ 3.0;
(b) the 23 January 2018, Mw 7.9 Kodiak for m ≥ 3.2; (c) the 30 November 2018, Mw 7.1 Anchorage for
m ≥ 2.8. The black squares illustrate the quantile scores in the case with the constant forecasting time
interval of ΔT = 7 days. The red triangles show the obtained quantile scores from the second case
with the constant target time interval of [Ts, Te] = [0.06, 2] days. The blue dashed lines represent the
0.025th and 0.05th quantiles.
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Figure 13. The sample information gain of the ETAS model versus the OU law over the number of
observed data for the three sequences: (a) the 3 November 2002, Mw 7.9 Denali for m ≥ 3.0; (b) the 23
January 2018, Mw 7.9 Kodiak for m ≥ 3.2; (c) the 30 November 2018, Mw 7.1 Anchorage for m ≥ 2.8.
The black solid squares illustrate the sample information gain for the first case with the fixed the
forecasting time interval of ΔT = 7 days. The red triangles demonstrate the sample information gain
for the second case for the constant target time interval [Ts, Te] = [0.06, 2] days.
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Figure 14. For both cases the Bayesian p-value of the BPD from the ETAS model and the OU law are
illustrated for the three sequences: (a) the 3 November 2002, Mw 7.9 Denali for m ≥ 3.0; (b) the 23
January 2018, Mw 7.9 Kodiak for m ≥ 3.2; (c) the 30 November 2018, Mw 7.1 Anchorage for m ≥ 2.8.
The green squares and the red triangles illustrate the obtained p-value from the first case, with the
fixed forecasting time interval ΔT = 7 days. The yellow diamonds and purple circles demonstrate
the p-value for the second case with the constant target time interval of [Ts, Te] = [0.06, 2] days. The
blue dashed lines represent the 0.025th and 0.05th quantiles.
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4. Discussion and Conclusions

To describe the three aftershock sequences which occurred in the Alaska region,
statistical models were used in this study. To be more precise, the frequency-magnitude
statistical analysis was performed using the GR relation, and the occurrence rates of the
aftershock sequence were estimated by the OU law and the ETAS model. The EVD and BPD
approaches were used to calculate the probability of having the largest expected aftershock
above a certain magnitude during evolution of each sequence for various training and
forecasting time intervals.

The frequency-magnitude distributions and estimated GR parameters for analyzed
sequences are shown in Figure 3. The frequency-magnitude distribution of the Denali
aftershock sequence, was characterized by a broad distribution of event magnitudes which
led to a relatively low b-value (0.749 ± 0.053) (Figure 3). The 2002, Denali mainshock was
followed by several large aftershocks with the largest being 5.6 magnitude which occurred
in the first 24 h after the mainshock. The frequency-magnitude statistical analysis of the
aftershock sequence of the Kodiak 7.9 magnitude earthquake with the cut-off magnitude 3.2
for the target time interval [Ts, Te] = [0, 30] days was performed (Figure 3). The frequency-
magnitude distribution of the 2018, Kodiak sequence indicates a typical GR fit with b-value
(1.035 ± 0.059). The mainshock was followed by several large aftershocks with the largest
being 5.5 magnitude event. It should be noted the epicenter of the 2018, Kodiak earthquake
was located in a remote area in the North Pacific. The analysis of the 2018 Anchorage
sequence produced the b-value of 0.906 ± 0.082 (Figure 3). The largest aftershock with a
magnitude 5.8, was close to the expected magnitude from Båth’s law [5] which states that
the largest aftershock is on average 1.2 magnitudes lower than the mainshock.

In order to analyze the occurrence rate of the aftershock sequence of the selected
mainshocks, the Omori–Utsu law, Equation (5), and the ETAS model, Equation (6), were
utilized. The obtained results from the analysis of the decay rate of the aftershock sequences
show that the parameter p is comparable for both models (the OU law and the ETAS model)
except for the 2018 Kodiak sequence.

Computing the probability of having a largest expected aftershock with a magnitude
above a given value during different forecasting time intervals after the mainshock was one
of the main objectives of this work. The EVD and BPD approaches were used to accomplish
this objective.

The obtained result of this analysis indicates that the BPD method using the ETAS
model is more conservative than BPD using the OU law and the EVD approach. In
addition, for the aforementioned approaches, the probabilities of having an earthquake
with magnitude 6 and above were calculated for both cases (Figures 9 and A8).

Moreover, in order to compare characteristics of analyzed sequences the probabilities
to have the largest expected aftershocks to be larger than mex ≥ 5.0, 6.0, 7.0 were estimated
by using the BPD, Equation (12), for both cases (Figures 8 and A7). The results of this
analysis show that the Anchorage sequence had a lower potential to generate aftershocks
with mex ≥ 5.0, 6.0, 7.0 compared to other analyzed sequences. These statistical results
can be explained directly by the number of events in the aftershock sequence and the
magnitude of the mainshock. This increases the probability of occurrence of an aftershock
with a certain magnitude in a predefined time interval after the mainshock. In the present
implementation of the EVD and BPD analysis we used the unbounded GR distribution. It
was suggested that more realistic truncated magnitude distribution can be more appropriate
for forecasting [52,53]. This can be easily incorporated in the analysis as well.

The N-tests, M-test, R-test, and T-test were performed to evaluate the goodness of the
models’ results in the forecasting time interval [Te, Te +ΔT] by comparison of the simulated
results and observed seismicity. The number of the forecasted earthquakes was evaluated
by the N-test and the results are shown in Figures 10 and A9 for both cases. In both cases,
for the Anchorage sequence, a more accurate forecast for the number of earthquakes was
accomplished by the ETAS model, while for two other sequences the OU law performed
better. It should be noted as a result of the branching nature of the ETAS model, it shows a
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wider confidence interval range compared to the OU law. The obtained results from the
M-test demonstrate higher consistency in generating the distribution of the magnitudes for
the ETAS model compared to the OU law for both cases, Figures 11 and A11. For the model
comparison, the R-test was performed (Figure 12). The α quantile score is higher than the
thresholds representing the rejection of the OU hypothesis in favor of the ETAS model.
The T-test results are given in Figure 13. The ETAS model performed better in case of the
Denali and Kodiak sequences, however, the OU model was more accurate in estimating the
rate and the corresponding forecasting performance in case of the Anchorage sequence in
its early days. This is also evident when plotting the information gain both for the fixed
forecasting time interval ΔT = 7 days with varying training time intervals and in case of
the fixed training time interval with varying forecasting time intervals (Figure 13c). The
posterior predictive p-value test was performed to assess the fit of the posterior distribution
of Bayesian models by comparison of the posterior predictive distribution and the observed
data. In Figure 14 the results of Bayesian p-value analysis are given. They indicate that the
forecasts based both on the ETAS model and OU formula are consistent in reproducing the
maximum event during each corresponding forecasting time interval.

The obtained results indicate that for the sequences analyzed the forecasting based on
the ETAS model and the OU formula produce comparable results for shorter time intervals
after the mainshocks. However, the EAST model is more realistic in terms of reproducing
the seismicity on longer time scales. Moreover, the ETAS model performs better when the
mainshock sequence is preceded by a well defined foreshock sequence [3].

The ETAS model typically performs better with increased number of events in the
sequence. However, this is limited by the current earthquake catalogues which typically
have relatively high level of completeness that results in fewer events.
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OU Omori–Utsu
USGS United States Geological Survey

Appendix A

Table A1. Forecast model parameters distribution from 10,000 MCMC sampling for 2018, Anchor-
age sequence.

Model Parameter Mean Std 95% CI

Omori–Utsu law, Equation (5), β 2.077 0.093 [1.897, 2.261]
with Exponential frequency K 144.3 2.838 [138.8, 149.7]

magnitude distribution, c 0.220 0.019 [0.185, 0.261]
Equation (3), p 1.4 0.046 [1.311, 1.491]

ETAS model, Equation (6), β 2.28 0.11 [2.07, 2.50]
with Exponential frequency μ 0.001 0.0003 [0.0004, 0.0017]

magnitude distribution, A 0.104 0.03 [0.06, 0.16]
Equation (3), c 0.028 0.008 [0.013, 0.045]

p 1.113 0.034 [1.048, 1.184]
α 2.42 0.097 [2.257, 2.659]
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Figure A1. Plot of the magnitudes versus sequential numbers of the earthquakes in the study regions
for the three sequences: (a) 3 November 2002, Mw 7.9 Denali (b) 23 January 2018, Mw 7.9 Kodiak
(c) 30 November 2018, Mw 7.1 Anchorage. The corresponding times in days after each mainshock are
depicted by doted vertical lines.
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Decay rate
OU fit 
K = 202.72 ± 48.35 
c = 0.29 ± 0.13 
p = 1.22 ± 0.11

(a)

Decay rate
OU fit 
K = 225.91 ± 46.84 
c = 0.31 ± 0.18 
p = 0.88 ± 0.09

(b)

Figure A2. The log-log plot of the earthquake decay rates for: (a) the 2002, Mw 7.9 Denali sequence
with m ≥ 3.0; (b) the 2018, Mw 7.9 Kodiak sequence with m ≥ 3.2 are presented as open squares. The
blue solid lines are the corresponding fit of the OU law, Equation (5), to the aftershock sequences. The
obtained parameters from the OU law, Equation (5), with the 95% confidence intervals are reported
in the legends.
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Figure A3. The aftershock sequence and corresponding earthquake magnitude for: (a) the 2002, Mw
7.9 Denali sequence with m ≥ 3.0; (b) the 2018, Mw 7.9 Kodiak sequence with m ≥ 3.2. The ETAS
model fit, Equation (6), for the target time interval of [Ts, Te] = [0.06, 30] is plotted as a solid blue
line, and the obtained set of parameters are reported with 95% confidence intervals. The OU law fit,
Equation (5), is plotted as a black dashed line for comparison.
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(a)

K
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c
p

A

(c)

c
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Figure A4. The model parameter estimation during the aftershock sequence of the 2018, Anchorage
for all the events with magnitude 2.8 and greater. (a) The estimated b-value, Equation (1), (b) the
parameters {K, c, p} of the OU law, Equation (5), and (c) the parameters {A, c, p, α} of the ETAS
model, Equation (6). The error bars represent the 95% confidence intervals during the target time
intervals, {1, 2, 3, 4, 5, 6, 7, 10, 14, 21, 30}, days after the mainshock.
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Figure A5. The distribution of each parameter and the matrix plot of the pairs of the OU parameters
that computed using the MCMC sampling for the 2018, Mw 7.1 Anchorage sequence with m ≥ 2.8.

Figure A6. The distribution of each parameter and the matrix plot of the pairs of the ETAS parameters
computed using the MCMC sampling for the 2018, Mw 7.1 Anchorage sequence with m ≥ 2.8.
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Figure A7. The probabilities to have the largest expected aftershocks to be larger than mex ≥ 5.0,
6.0, 7.0 using the BPD, Equation (12), during a constant target time interval of [Ts, Te] = [0.06, 2]
days and for the varying target time intervals. (a) The 3 November 2002, Mw 7.9 Denali sequence
with m ≥ 3.0. (b) The 23 January 2018, Mw 7.9 Kodiak sequence with m ≥ 3.2. (c) The 30 November
2018, Mw 7.1 Anchorage sequence with m ≥ 2.8.
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Figure A8. The comparison of the probabilities to have the largest expected aftershock during the
target time interval of [Ts, Te] = [0.06, 2] days for the three sequences: (a) 3 November 2002, Mw
7.9 Denali (b) 23 January 2018, Mw 7.9 Kodiak (c) 30 November 2018, Mw 7.1 Anchorage. The blue
triangles are computed using the BPD, Equation (12), with an earthquake decay rate given by the
ETAS model, Equation (6). The purple squares are computed using BPD, Equation (12), with an
earthquake decay rate given by OU law, Equation (5). The green circles give probabilities computed
using the EVD, Equation (11). The aftershock magnitudes are modelled using Equation (3).
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(a)

(b)

(c)

Figure A9. The number of forecasted and observed aftershocks in the forecasting time interval
ΔT = [1, 2, 5, 7, 10, 14] days for (a) The 3 November 2002, Mw 7.9 Denali for m ≥ 3.0; (b) The
23 January 2018, Mw 7.9 Kodiak for m ≥ 3.2; (c) The 30 November 2018, Mw 7.1 Anchorage for
m ≥ 2.8 by using the constant target time interval [Ts, Te] = [0.06, 2] days. The red squares show
the average number of forecasted earthquakes using the ETAS model, Equation (6), and the black
triangles illustrate the average number of forecasted earthquakes using OU law, Equation (5). The
shading bands represent 95% confidence intervals. The blue circles represents the observed number
of earthquakes in the forecast time interval.
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(a)

(b)

(c)

Figure A10. The number of forecasted and observed aftershocks in the forecasting time interval
ΔT = 7 days for the three sequences: (a) the 3 November 2002, Mw 7.9 Denali sequence for m ≥ 3.5;
(b) the 23 January 2018, Mw 7.9 Kodiak sequence for m ≥ 3.5; (c) the 30 November 2018, Mw
7.1 Anchorage sequence for m ≥ 3.5. The red triangles show the average number of forecasted
earthquakes using the ETAS model and the black squares illustrate the average number of forecasted
earthquakes using OU law. The shading bands represent 95% confidence intervals. The blue circles
represent the observed number of earthquakes in each forecasting time interval.
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Figure A11. The obtained quantile scores from the M-test for the constant target time interval
[Ts, Te] = [0.06, 2] days for (a) The 3 November 2002, Mw 7.9 Denali for m ≥ 3.0; (b) The 23 January
2018, Mw 7.9 Kodiak for m ≥ 3.2; (c) The 30 November 2018, Mw 7.1 Anchorage for m ≥ 2.8. The red
triangles demonstrate the obtained quantile scores from the ETAS model, Equation (6), and the black
squares illustrate the quantile scores of OU law, Equation (5). The blue dashed lines represent the
0.025th and 0.05th quantiles.
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Abstract: The efficiency of earthquake clustering investigation is improved as we gain access to larger
datasets due to the increase of earthquake detectability. We aim to demonstrate the robustness of a
new clustering method, MAP-DBSCAN, and to present a comprehensive analysis of the clustering
properties in three major seismic zones of Greece during 2012–2019. A time-dependent stochastic
point model, the Markovian Arrival Process (MAP), is implemented for the detection of change-points
in the seismicity rate and subsequently, a density-based clustering algorithm, DBSCAN, is used for
grouping the events into spatiotemporal clusters. The two-step clustering procedure, MAP-DBSCAN,
is compared with other existing methods (Gardner-Knopoff, Reasenberg, Nearest-Neighbor) on a
simulated earthquake catalog and is proven highly competitive as in most cases outperforms the
tested algorithms. Next, the earthquake clusters in the three areas are detected and the regional
variability of their productivity rates is investigated based on the generic estimates of the Epidemic
Type Aftershock Sequence (ETAS) model. The seismicity in the seismic zone of Corinth Gulf is
characterized by low aftershock productivity and high background rates, indicating the dominance
of swarm activity, whereas in Central Ionian Islands seismic zone where main shock-aftershock
sequences dominate, the aftershock productivity rates are higher. The productivity in the seismic
zone of North Aegean Sea vary significantly among clusters probably due to the co-existence of
swarm activity and aftershock sequences. We believe that incorporating regional variations of
the productivity into forecasting models, such as the ETAS model, it might improve operational
earthquake forecasting.

Keywords: seismicity clustering; DBSCAN algorithm; markovian arrival processes; statistical seismology

1. Introduction

Earthquake clustering is an essential property of seismicity and is manifested as
the concentration of earthquakes in space and time. Due to the improvement of seismic
monitoring worldwide and the development of new powerful algorithms for earthquake
detectability [1] additional information is available, which is crucial for reliable regional
estimates of aftershock forecasting probabilities [2,3] and the determination of faulting
geometry [4,5], among others. In addition to the necessity of cluster identification, for many
studies it is important to reliably separate the background seismicity from clustered events
for the development of long-term seismic hazard maps [6–8] or the regional optimization
of background rates [9].

Among the methods that are available for the detection of seismic clusters, one of
the most widely used is the window-based approach [10] with known drawback the large
gaps after the occurrence of strong earthquakes [11]. The link-based model [12] considers
stress redistribution and the Omori law for the determination of the spatiotemporal inter-
actions among earthquakes. The stochastic declustering method of Zhuang et al. [13] is
based on the modeling of earthquake occurrences by the ETAS model [14,15], where events
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are separated into background and clustered ones according to the estimated probabili-
ties. Important clustering features can be inferred using the stochastic algorithm [16,17],
whereas it can be also used for declustering to optimize the background seismicity rate
estimates [9,18]. Marsan et al. [19] introduced an ETAS model with a time-dependent
background component for the detection of aseismic transients. The modified ETAS model
is used efficiently to reveal both main shock-aftershocks and earthquake swarms [20,21].
Finally, the Nearest-Neighbor metric proposed by Baiesi and Paczuski [22] adopts a non-
parametric definition of a cluster considering the space-time-magnitude proximity among
earthquakes. Zaliapin and Ben-Zion [23] introduced a binary threshold, η, according to
which the earthquakes are classified into clusters and background seismicity. They applied
the algorithm on a global scale, revealing a link between the clustering properties of seis-
micity and the heat flow level [24]. The method is proven to be efficient in detecting main
shock–aftershock sequences in Northeastern Italy [25], as well as earthquake repeaters in
the Sea of Marmaras [26]. Bayliss et al. [27] introduced a new approach to create proba-
bilistic cluster networks based on the intersection between the background and clustered
component of the nearest-neighbor distances.

Another approach is based on the assumption of a common physical trigger during a
seismic sequence, expressed by fluctuations in the occurrence rate [28,29]. In our method,
change-points of the intensity rate in the earthquake occurrences are detected with the use
of the MAP model [30]. The temporal distribution of the events is approximated essentially
by a non-homogeneous Poisson process, Nt, with a piece-wise constant intensity rate deter-
mined by the underlying Markov process, Jt. Simulation studies and applications on real
datasets showed that the model efficiently identifies the changes in the earthquake occur-
rence rates [31]. Recent works by Lu [32] and Benali et al. [33] are based on non-stationary
Poisson models whose rate is modulated by a hidden Markov process to determine a set of
change-points for seismicity rate. Concerning earthquake clustering, Bountzis et al. [34]
proposed the combination of the MAP model with a density-based clustering algorithm,
DBSCAN [35], for the detection of earthquake clusters in the spatiotemporal domain. They
used the method on a micro-seismicity earthquake catalog in central Ionian Islands, Greece,
efficiently revealing the clustered seismicity.

Several studies suggest that the clustering properties of seismicity (spatiotemporal
distribution, productivity rates) might be controlled by the tectonic regime. Llenos and
Michael [36] showed that the adoption of region-specific aftershock parameters can improve
forecast estimates, as the information from the tectonic region is particularly useful, and
suggest the determination of clustering features in smaller regions where high-quality
earthquake data are available. More recently, Hardebeck et al. [37] updated the generic
parameters of sequences in California incorporating the regionalization of the former work
for their determination. In this way, there was an improvement of the aftershock forecasts’
accuracy. The temporal ETAS model assumes that seismicity is evolving in the form of
independent events (background seismicity) who generate their aftershocks with each one
producing their own. It incorporates two empirical laws, the Omori–Utsu law [38] and
the productivity law used to explain the distribution of aftershocks, as well as a stable
Poissonian rate for the background seismicity. Our work utilizes the estimated parameters
of the ETAS model to investigate regional variabilities in the productivity of the sequences
and gain insights into the involved triggering mechanisms [39–41].

The aim of this study is firstly to demonstrate the efficiency of the proposed clustering
method to separate triggered from background seismicity and subsequently to investigate
and compare the clustering properties among three major seismic zones of Greece. In
particular, we focus on the statistical analysis of the detected clusters based on the ETAS
model producing generic and sequence specific parameters for each area.

The paper is organized as follows. In Section 2, the MAP-DBSCAN method for the
identification of the clusters is described and simulation results for the evaluation of the
method are deployed. MAP is used as a tool for the detection of changes in the seismicity
rate and DBSCAN is implemented to reveal spatially high-density areas. In Section 3,

100



Appl. Sci. 2022, 12, 1908

the study area along with the datasets used in the application are presented. Finally, in
Section 4, details on the detected clusters for each area are given and the ETAS regional
parameters based on the identified clusters are derived. The regional variability of the
clustering properties among the three areas is investigated based on the generic estimates
of ETAS parameters (a, K, p, c and μ) and sequence-specific parameters. A brief discussion
of the results is given in Section 5 and the main conclusions are presented in Section 6.

2. MAP-DBSCAN Method

2.1. MAP as a Tool for the Detection of Seismicity Rate Changes

In the first step, the temporal distribution of seismicity is approximated by a stochastic
point model, the Markovian Arrival Process. The MAP is a two-dimensional Markov
process (Nt, Jt)t∈R+ , where Nt counts the number of earthquakes up to time t that occur
with a rate λt. Its value is associated with the unobservable states i = 1, . . . , K, of the Markov
process Jt. In particular, when the process Jt is in state i, earthquakes occur according to
a Poisson process with rate λi and, therefore, the sojourn time in this state follows an
exponential distribution with expected value 1/λi. When an earthquake occurs, the MAP
can transit with probability pij to another state j, so now, earthquakes occur according to a
Poisson process with rate λj, or remain in the current state i with probability pii.

To represent the MAP model, we need the K × K rate matrices D0 and D1, where D0
is a diagonal matrix whose non-negative elements we denote as λ1, . . . , λK, and which
correspond to the K Poissonian rates, each one assigned to a hidden state of process Jt,
and D1 consists of the transition rates among the states, along with the occurrence of an
earthquake, which we denote as qij. Additional details on the estimation procedure of the
MAP model and its properties are given in Appendix A.

Concerning our clustering algorithm, we are interested in the evaluation of the tran-
sitions among the hidden states, namely, the detection of changes in the seismicity rate.
In particular, we define a rate threshold, λthr, according to which a potential sequence
starts when the rate of the counting process Nt achieves λt > λthr and ends as soon as the
process Jt moves for the first time to a state with a Poisson rate below that threshold. Our
main assumption is that each state corresponds to a distinct evolution phase of a seismic
sequence, independently of its underlying mechanism. In this way, the model has the
ability to approximate the temporal evolution of earthquake catalogs that incorporate both
aftershock sequences and earthquake swarms [31], as well as datasets with non-stationary
characteristics [34].

2.2. Temporal Constraints

The earthquakes above the defined rate threshold comprise the potential clusters.
However, results on methods that are based solely on changes in the seismicity rate can
sometimes be misleading. One such case is when the rate at the tail of aftershock sequences
has reached the level of the background seismicity, so it becomes difficult to discriminate
these events from background ones. One similar case is related to the sparse foreshock
activity, which, as it is shown in Lippiello et al. [42], exhibits significantly smaller frequency
than the aftershock activity. Therefore, a day rule, dt, is assigned in the sense that events
in ±dt from the potential cluster are included within. Another case that we observed is
related to the existence of fluctuations during a seismic excitation, when the seismic activity
that is triggered by the same underlying mechanism is divided into smaller clusters. For
this reason, we assign a time window, T, so that clusters in temporal distance smaller than
or equal to T are merged into one.

2.3. DBSCAN Algorithm

The merged clusters comprise seismicity concentrated in time. However, events with
temporal proximity can be spatially sparse and are falsely assigned into the same cluster.
To overcome this ambiguity, a density-based clustering algorithm, DBSCAN, is applied
to separate events in space based on a distance metric on the earthquakes’ epicentral
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distribution. Depending on the adopted distance metric, the algorithm can be used for
grouping events with waveform similarities [4] as well as earthquakes with related rupture
styles and orientations (focal mechanism clustering) [43]. Density-based algorithms search
for areas where the event density exceeds a threshold, ε. The boundaries of these areas
are set where the spatial density falls below that threshold. The DBSCAN algorithm in
particular requires as input two parameters, the upper threshold, ε, and the minimum
number of neighboring events, Npts. A cluster is defined if an earthquake i exists along
with at least Npts events within distance d ≤ ε, including itself. Earthquake i is then
considered a core point of the cluster and the algorithm moves to the investigation of
the other events. If Npts neighbors are identified, they are also considered core events;
otherwise, they consist of the boundary points of the cluster and the algorithm stops.
Events that have not been assigned to any cluster at the end of the procedure are included
to the background seismicity and are merged with events that occurred during periods
with estimated rate under the rate threshold, λthr. In this way, the algorithm can remove
events that are sparsely distributed in space. It has been efficiently applied for detecting
similarities among earthquake locations, origin times and focal mechanisms [34,44]. An
advantage of the algorithm is that it does not require as input a predefined number of
earthquake clusters, such as the k-means algorithm, where further optimization techniques
for the determination of the clusters number are necessary [45].

2.4. Performance Evaluation
2.4.1. ETAS Framework

The efficiency of the method to correctly identify spatio-temporal correlated seismicity
is evaluated on a simulated ETAS catalog, where the underlying structure of the clusters is
known a priori. Additionally, we aim to demonstrate the performance of the method com-
pared to widely used clustering algorithms. In particular, our approach is compared with
the Nearest-Neighbor (NN), Gardner and Knopoff (GK) window-based and Reasenberg
(RB) link-based algorithms. A detailed review on each one of them is given in Appendix B.

The ETAS model belongs to a wide class of branching processes where the occurrence
rate of earthquakes, known as intensity function, depends on the history of all previous
seismicity and consists of two parts given by

λ(t, x = (x, y)/Ht) = μ(x) + K ∑
j:tj<t,xj∈Σ0

ea(mj−mc)g(t) f (x), (1)

where j runs over all past earthquakes with magnitude larger than or equal to mc. The
intensity function is evaluated at each event that occurred during the time interval [tin, T]
and inside the target region Σ ⊆ Σ0. However, events in the broader region Σ0 and time
interval [t0, T], with t0 < tin, can be considered triggering events, therefore, they should be
included in the evaluation of λ(t, x). The first term of the right-hand side of Equation (1)
expresses the background seismicity μ(x) which is assumed stationary in time (mother
events) and clustered in space due to the fault network geometry. The latter term represents
the space-time-dependent seismicity (daughter events) expressed through the following
empirical laws:

• the productivity law, Kea(mj−mc), which gives the number of aftershocks triggered by
a main shock with magnitude mj;

• the modified Omori law, g(t) = (p − 1)c(p−1)(t − tj + c)−p, with p > 1, which
describes the temporal decay of aftershocks;

• the spatial distribution of aftershocks, f (x/M) = q−1
πd(mj)

q−1 [‖x − xj‖2
2 + d(mj)]

−q with

q > 1, and d(mj) = d010γ(mj−mc), which assumes an isotropic distribution of after-
shocks around the main shock.

Each mother event generates its daughters (first generation), the daughters generate
their own descendants (second generation), and so on. In this way, a cluster is defined as a
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sequence of events with a common mother event (first event in the cluster). There are also
single events, i.e., mother events without any subsequent triggered earthquake.

2.4.2. Simulation Procedure

For the simulation of an ETAS earthquake catalog, first, we need to generate the
mother events. The heterogeneity in space can be preserved from the spatial coordinates of a
declustered earthquake catalog. In particular, we implement a declustering procedure to the
earthquake catalog of Greece (Σ0 = [19◦E − 29◦E]× [33.7◦N − 42◦N]) for earthquakes with
mc = 2.5 during the period of 2011–2019, using the NN method, and then we produce Nmain
mother events according to a Poisson distribution with mean value equal to the number of
the identified background events. Their coordinates are sampled with replacement from
the declustered catalog by adding a random factor. The occurrence times are simulated
from a uniform distribution U(t0, T), where t0 = 0 and T = 20 years.

The magnitudes are independent from the earthquakes’ spatial and temporal distribu-
tion and follow the Gutenberg–Richter (GR) law truncated from the left at the completeness
magnitude, mc = 2.5, and from the right at the maximum observed magnitude of the
instrumental earthquake records in Greece plus a small factor, mmax = 7.8. The functional
form of their distribution is the following, s(m) = (βe−βm)/(e−βmc − e−βmmax ), where β
relates to the b-value of the GR law with β = blog(10), and we chose b = 1.0. After the gen-
eration of the background events, we simulate their aftershock number, following Poisson
distribution with expected rate equal to the productivity of the model, k(mj) = Kea(mj−mc) .
Their occurrence times are sampled from the modified Omori law, g(t), and the locations
from the isotropic spatial distribution function, f (x). For next-generation daughters, the
triggering step is repeated until there are no more generated events. In Table 1, we give the
parameter set that produced the ETAS catalog.

Table 1. ETAS parameters used for the synthetic earthquake catalog with mc = 2.5. The target area is
Corinth Gulf, Greece, with Σx[tin, T] = [21.3◦E − 23.2◦E]× [37.9◦N − 38.6◦N]× [2, 20]. The number
of clustered events is N = 4253 and the number of mother events is Nbg = 1595.

Parameter Parameter

K 0.1 d 2.41 × 10−5

a 2.19 q 1.805
p 1.13 γ 0.59
c 0.024 (days) μ (events/day) 4.50

2.4.3. Evaluation

The ETAS earthquake catalog is divided into either single events or mother events
with their descendants. We define by X = {Xk}k=1,. . . ,Nc the true partition of the catalog,
where Nc corresponds to the number of clusters, and with Yi = {Yn}n=1,. . . ,Nyi

, i = 1, . . . , K,
the partition after the implementation of the MAP-DBSCAN and the other K − 1 methods,
including different tuning of the algorithm’s parameters. Nyi is the number of clusters after
the implementation of method i.

Next, we define the Jaccard index [46], which is a measure to quantify the overlap
between two partitions, in our case, the true one of the ETAS catalog, X, and the one of the
i-th implemented algorithm, Yi. The Jaccard index is expressed by J1(X, Y) = a11/(a11 +
a10 + a01), where a11 indicates the number of pairs of elements which are correctly assigned
into the same cluster (true links), a01—the number of pairs of elements which are in the
same cluster in the ETAS catalog and in different clusters in the estimated one (missed
links) and a10—the number of pairs of elements which are wrongly identified as clustered
events (false links). If all the initial clusters are correctly identified by the implemented
method, then a10 = 0 = a01 and J1(X, Y) = 1. Conversely, if all pairs are wrongly identified
as clustered or independent, then a11 = 0 and, as a consequence, J1(X, Y) = 0.
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In addition, we introduce a generalization of the Jaccard index, J2(X, Y) = b11/(b11 +
b10 + b01), to identify the partition Y with the best discrimination between the background
seismicity and clustered elements, following the definition in Lippiello and Bountzis [47].
We consider as background seismicity single events and the mother events of each cluster,
i.e., the one that initiated a cascade of events. Here, b11 represents the number of common
background events in the two partitions, b10 is the number of elements wrongly identified
as mother events in the partition Y, whereas b01 corresponds to the number of true mother
events identified as clustered elements in the partition Y. In Table 2, we show the Jaccard
index values (Ji, i = 1, 2) after the implementation of the different clustering algorithms. In
particular, for the MAP-DBSCAN algorithm we show the one with the best results in terms
of the Jaccard index (MAP-DBSCAN27). In Appendix B, the results for all input parameters
are given.

Table 2. Ji, i = 1, 2, values for 3 parameter sets (PS) of RB and GK algorithms, respectively, and the
corresponding values of the MAP-DBSCAN and NN methods.

PS RB1 RB2 RB3 GK1 GK2 GK3
MAP-DBSCAN

(PS27) NN

J1 0.530 0.593 0.648 0.382 0.397 0.585 0.627 0.756
J2 0.612 0.630 0.617 0.418 0.192 0.676 0.647 0.727

The window-based method removes all the events within d(M) kilometers and t(M)
days after a main shock with magnitude M. We used three different temporal and spatial
intervals, given by Equations (A2) (GK1), (A3) (GK2) and (A4) (GK3). The Reasenberg
algorithm combines a deterministic spatial window and a probabilistic temporal one,
determined by the Omori law. We used three sets of parameters in the ZMAP tool. RB1
(Table A1) corresponds to the original parameters proposed in Reasenberg [12]. In the
second set, RB2, we extend the spatial zone by increasing the factor r f act from 10 to
20 km, whereas, in the third set, RB3, we also extend the temporal window modifying
the parameters τmin and τmax (see Table A1). The NN method separates seismicity into
background and clustered events according to the bimodal distribution of the rescaled time
and distance metrics. The algorithm needs as input two parameters, the b-value and the
fractal dimension of the earthquake locations, which are considered equal to b = 1.0 and
d f = 1.51, respectively. For the MAP-DBSCAN method, first, the optimal MAP model
and the corresponding rate threshold (λthr = λ1) are determined. Then, different temporal
constraints are tested for the merging of the potential clusters (consecutive events above
the rate threshold) and, subsequently, the DBSCAN is implemented. We set the minimum
number of neighbors equal to Npts = 2, similar to the minimum size of a cluster that can be
given as output from the other algorithms. For the distance threshold, ε, we tested a wide
range of possible values (see Table A2).

The NN method shows the best performance in the construction of the clusters
(J1 = 0.756) and in the detection of the mother events (J2 = 0.727). This is also evident by
its cumulative number of background seismicity (purple line in Figure 1a), which is the
closest one to the initial catalog (dotted black line). The temporal evolution of background
seismicity is shown in Figure 1b–f across the longitude for ease of reading as west–east
normal faults dominate the area. For the NN method, no large gaps are evident in the space-
time evolution of the declustered seismicity, although there is a significant concentration of
events between the 7th and 8th year of the catalog, which is also persistent in both RB2 and
GK3 methods (orange ellipses in Figure 1d–f) and less apparent on MAP-DBSCAN method
(orange ellipse in Figure 1c). The high efficiency of the NN method is probably related to

the metric it uses, which is similar to the ETAS one with λj(ti, xi) = (ti − tj)
−1r

−d f
ij 10bmj and

c = 0, p = 1, d = 0, q = d f and a = b. The windowing technique seems to overestimate
the temporal and spatial windows, since it removes large amounts of seismicity (blue
ellipse in Figure 1f), in accordance with previous results [11]. The same gap between the
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14th and 15th year of the catalog is also evident in the background seismicity from the MAP-
DBSCAN method, however, it is smaller and some sparse seismicity is left (blue ellipse in
Figure 1c). On the other hand, Reasenberg’s declustered catalog has more events than any
other method (pink, magenta and green line, Figure 1a) and significant concentrations of
events are visible in the space-time evolution of the background seismicity (orange and
purple ellipses in Figure 1e).

Figure 1. (a) Cumulative number of background events for each algorithm, the initial ETAS catalog
with black color and the mother events of the ETAS synthetic catalog with the black dotted line. The
space-time evolution (b) of the initial ETAS catalog and of the background seismicity for the four
best algorithms, (c) MAP-DBSCAN27 (J2 = 0.647), (d) NN (J2 = 0.727), (e) RB2 (J2 = 0.630), (f) GK3
(J2 = 0.676). Colored ellipses stand for large gaps and significant concentration of events.

Best overlapping among the true, X, and the estimated partition, Y, does not mean
necessarily the best detection for the declustered seismicity. For instance, the GK3 parti-
tion is characterized by a lower index, J1 = 0.585, than the MAP-DBSCAN27 partition,
J1 = 0.627, however, its declustering catalog is more accurate (GK3-J2 = 0.676 > J2 = 0.647-
MAP-DBSCAN27). Nevertheless, both indexes combined, the MAP-DBSCAN partition
shows a higher efficiency than the rest of the algorithms, except for the NN. The Jaccard
index values for the rest of the MAP-DBSCAN input parameters are quite stable with
small fluctuations from the best parameter set (MAP-DBSCAN27), apart from the smallest
distance cutoff, ε = 2.5 km, which seems inadequate for capturing the spatial correlations
among the events (Appendix B.4).

3. Earthquake Data

We considered three areas in the region of Greece (Figure 2a), which consist of distinc-
tive seismotectonic units. The selection of the three study areas is based on criteria related
to the homogeneity of the type of faulting, the comparatively intense continuous seismicity
and the existence of seismic excitations during the study period. The first area, Corinth
Gulf (CG) (Figure 2b), is undergoing high extensional deformation rates. The seismicity is
mainly associated with eight major faults that bound the rift to the south and dip to the
north [48]. The area of central Ionian Islands (CII) (Figure 2c) is characterized by the highest
moment rate in the Mediterranean region. Its main seismotectonic feature is the Kefalonia
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Transform Fault Zone (KTFZ) which extends for more than 100 km along the western
coastlines of Lefkada and Kefalonia Islands, comprising two distinct main branches, the
Lefkada and Kefalonia faults, respectively. Right lateral strike slip motion with a minor
thrust component is the dominant faulting type [49,50]. The third area is located in the
North Aegean Sea (NAS) (Figure 2d) and is dominated by dextral strike-slip faulting, along
the North Aegean Trough (NAT) and its parallel branches [51], as a consequence of the
westward propagation of the North Anatolian Fault into the Aegean [52]. The driving
mechanism of the active deformation in the Aegean region is the subduction of the oceanic
lithosphere of the Eastern Mediterranean under the continental Aegean microplate, forming
the Hellenic Subduction Zone and the extensional back arc Aegean area due to the slab
rollback [53].

For the investigation of the clustering properties in the three areas, we considered
earthquake datasets from the regional catalog of the Geophysics Department of the Aristotle
University of Thessaloniki [54], compiled with the recordings of the Hellenic Unified
Seismological Network (HUSN). The earthquake catalogs of CG, CII and NAS, which we
denote henceforth as D1, D2 and D3, include 25,595, 24,085 and 21,139 events, respectively,
occurring between 2012 and 2019. For the determination of their completeness magnitude,
we implemented the Goodness-of-Fit (GFT) method [55], assuming that earthquakes follow
the Gutenberg–Richter (GR) law, logN = a − bM. In particular, the differences between the
observed and the synthetic frequency-magnitude distributions are computed for increasing
magnitude bins as threshold values. The completeness magnitude is defined as the first
magnitude bin at which the difference falls under the 5% residual (Figure S1). Figure S1a–c
show the residuals for the three datasets and Figure S1d–f present the GR law for the
corresponding complete datasets. The b-value is calculated by means of the maximum
likelihood method proposed by [56] and found equal to b = 0.97, 0.88, 0.89, for the D1,
D2, D3 datasets, respectively (Table 3). The resulting magnitude threshold for the three
datasets is equal to Mc = 1.5, 2.2, 2.1, with 13,043, 6981, 8328 events (Table 3), respectively,
the epicenters of which are shown in the maps of each study area (Figure 2).

Table 3. The magnitude of completeness, Mc, for the datasets of the three areas CG, CII and NAS,
along with the productivity, a, and the b-value of the GR law. N and Nc denote the initial number of
events and the ones with M ≥ Mc, respectively.

Region Notation N Mc Nc a b

CG D1 25,595 1.5 13,043 5.57 0.97
CII D2 24,085 2.2 6981 5.80 0.88

NAS D3 21,139 2.1 8328 5.79 0.89
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Figure 2. Maps of the study areas depicting seismicity along with major faults (yellow lines). (a) The
main seismotectonic features of the area of Greece. The black lines illustrate the active boundaries
and the arrows the relative plate motions. Rectangles enclose the three study areas. (b) The area of
Corinth Gulf where the major faults are shown (yellow lines) along with seismicity during 2012–2019.
(c) The area of Central Ionian Islands where the Kefalonia Transform Fault Zone and the collision
front are shown (yellow lines) along with seismicity during 2012–2019. (d) The area of North Aegean
Sea where the NAT is traced (yellow line) along with seismicity during 2012–2019. The legend is
common for the three study areas.

4. Results

4.1. Triggered and Background Seismicity Separation

We fit MAP models with between two and seven states for each earthquake subcatalog,
computationally a very demanding process as the number of states increases, especially
for large datasets such as D3 with 13043 events. According to the BIC values, six, seven
and again six states are sufficient to approximate the temporal distribution of earthquakes
for the D1, D2 and D3 datasets, respectively. Next, we evaluate the transitions among the
hidden states of the models. Firstly, the state probabilities pi(t) = p(Jt = i) for i = 1, . . . , K
are estimated with the use of the forward and backward vectors given in Equation (A1),
and then we assign as state of the hidden process Jt, the one with the highest probability,
i.e., argmax0≤i≤K pi(t), with pi(t) = pi(tk) for tk ≤ t < tk+1. Each state i corresponds to an
occurrence rate, λi, therefore, by evaluating the transitions among the states of the model,
we detect change-points in the seismicity rate. Figure 3a–c illustrate the transitions among
the states for the datasets D1, D2 and D3, respectively. The colored box at each temporal
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interval tk ≤ t < tk+1 indicates the state with the maximum probability at the current time
and the legend contains its corresponding occurrence rate.

Figure 3. Most probable path of the hidden states of the model along with the daily frequency of
events (gray vertical lines) with (a) M ≥ 1.5 for D1, (b) M ≥ 2.2 for D2 and (c) M ≥ 2.1 for D3 datasets,
respectively. Each color is assigned to a different state i with seismicity rate λi. Inset magnifies the
transitions among the states, which are otherwise difficult to visualize due to the short sojourn times
compared to the study period. The rate threshold, λthr, is set equal to λ2 = 3.01, λ1 = 0.58, λ1 = 1.53
for the D1, D2 and D3 datasets, respectively.

The temporal patterns of dataset D1 indicate the dominance of state 2 (yellow color,
Figure 3a) with occurrence rate λ2 = 3.01 events/day for almost the entire period. Never-
theless, there is a slight decrease in the occurrence of earthquakes (λ1 = 1.23 events/day)
in the second part of the catalog, starting from 02/2016 with transitions to state 1 (red
color, Figure 3a) until almost the end of the catalog in 12/2019. This is probably related
to the lack of seismic sequences during the last part of the study period compared to the
previous intense seismic activity especially during the period 2013–2014 in the western
subarea of the CG [57]. The rate threshold is set equal to λthr = λ2, which we consider as
the background rate during the study period.

The seismicity of the CII area is dominated by the two major sequences during the
study period, the 2014 Kefalonia doublet (Mw6.1 and Mw6.0) [58] and the Mw6.5 2015
Lefkada earthquake sequence [59]. States 7 (brown), 6 (dark cyan), 4 (dark blue), 3 (orange)
and 2 (yellow) in Figure 3b are clearly associated with the aftershock evolution of the two
sequences—essentially, they approximate the Omori temporal distribution. Background
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seismicity is described by state 1 (red) with occurrence rate λ1 = 0.58 events/day, which
we set as rate threshold for the primary classification of the clusters.

Finally, dataset D3 also contains some major sequences, the 2013 Mw5.8 [60], the 2014
Mw6.9 Samothraki [61] and the 2017 Mw6.4 Lesvos earthquake sequences [62], whose
aftershock temporal distribution is approximated by states 6 (dark cyan), 4 (dark blue),
3 (orange) and 2 (yellow) of the model (Figure 3c). The rate threshold value is set equal to
λthr = λ1.

In general, we observe significant variations in the temporal evolution of the seismic
excitations between the CG and the CII and NAS areas. Figure 3 illustrates that the
daily frequency of events during seismic sequences in CII and NAS is decreasing in time,
typical of mainshock–aftershock sequences, whereas in CG we observe large fluctuations
in the daily frequency, common for earthquake swarms, as in 2014 when multiple seismic
excitations occurred in the western subarea of CG.

Consecutive events above the rate threshold λthr are classified into groups which we
call potential clusters, and then, we test four different sets of temporal constraints, (T, dt),
to the three datasets. Potential clusters within a temporal interval T are merged into one
and events that occurred in ±dt time from the potential cluster are also included. Next,
the DBSCAN algorithm is implemented to the merged clusters in order to separate them
based on their spatial density. The minimum number of neighbors for the determination
of a cluster is set equal to 4 (Npts = 4) for avoiding insignificant cases with fewer events.
This is an appropriate choice for two-dimensional data according to Ester et al. [35]. For
the determination of the distance threshold, ε, we computed the k-distances which is a
procedure proposed by Ester et al. [35], which is commonly used to constrain the distance
threshold [4]. In Appendix C we provide more details on the choice of the parameters and
how they affect the spatio-temporal evolution of background seismicity.

4.2. Cluster Analysis

Table 4 gives the chosen parameter set of the clustering algorithm for each dataset
based on the analysis in Appendix C and a summary on the statistics of the detected
clusters. In the CG area, we identified the largest number of seismic clusters (255) due to
the increased detectability of micro-seismicity (low completeness magnitude threshold),
however, they are short in size (n̄ = 18.28) and duration (τ̄ = 12.50) Conversely, the CII
area is characterized by a small number of seismic clusters (45) but with large mean size
(n̄ = 118.43) and duration (τ̄ = 54.60). The clustered seismicity is prevalent (75%), whereas
in CG and NAS, the background component is more dominant than clustered seismicity
with 64% and 56%, respectively (Table 4). In CG, this is explained by the lack of large main
shocks during the study period and the occurrence of few moderate events, the largest
number with M = 5.2 .

Concerning the CG area, the majority of the clusters are located on the western subarea
where 22 out of 27 clusters with N ≥ 30 occurred. The main activity is located offshore
between Aigion and Trizonia Island, but also north of the Psathopyrgos fault (Figure 4a).
The eastern subarea comprises smaller clusters that are mainly concentrated offshore
Xylokastro and Perachora faults, as well as near Itea Gulf (Figure 5a). The seismicity
of CII is dominated by the two major main shock–aftershock sequences, each sequence
comprising 2829 and 1396 events, respectively. Essentially, 4225 out of the 5221 clustered
events belong to these sequences (Table 4). Furthermore, 45 clusters are detected in total
with the main activity concentrated along the KTFZ (Figure 6a). The NAS area comprises
187 clusters, including both main shock–aftershock sequences and earthquake swarms
(Table 4). Figure 7a shows that the main clustered activity is concentrated along the NAT
and the sub-parallel branches, as well as in the southeastern subarea.
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Table 4. Cluster statistics and the parameter set of the clustering algorithm for the three datasets.
Nclust corresponds to the number of clustered events and Nbg to the background seismicity frequency.
τ̄ and n̄ are the mean duration in days and size of the clusters, respectively.

Dataset (T , dt, ε, Npts) Nclust Nbg
#

Clusters
τ̄ n̄

D1 (0, 5, 2.5, 4) 4662 (36%) 8381 (64%) 255 12.50 18.28
D2 (5, 5, 2.5, 4) 5221 (75%) 1770 (25%) 45 54.60 118.43
D3 (5, 5, 5, 4) 3688 (44%) 4640 (56%) 187 15.08 19.72

4.2.1. Corinth Gulf Area

The western subarea of the Corinth Gulf is characterized by rich seismic activity, espe-
cially in 2013–2014, when 13 out of the 22 clusters with N ≥ 30 occurred. One of the major
detected sequences is the 2013 Aigion swarm (C6 in Figure 4b) which initiated on 21 May
2013 with a bulk of small events and several bursts associated to earthquakes with magni-
tudes ranging between 3.3–3.7 (Figure S3) [63,64]. Two distinct excitations followed (C8 and
C10 in Figure 4b) in accordance with the ones observed by Michas et al. [65]. The first clus-
ter began on 7 July with some activity prior to the M = 3.7 event on 15 July 2013, and lasted
until 27 August, 2013 (Figure S3). The second half of 2014 is also a well-studied period
with intense seismic activity. Five clusters with N ≥ 30 are detected (C15, C16, C18, C19
and C20) in the western subarea, including the offshore M4.8 earthquake on 7 November
2014, associated with C19 (Figure 4b), and the M4.6 event on 21 September 2014, associated
with the earthquake swarm located between Nafpaktos and Psathopyrgos [66] (C15 in
Figure 4b). Persistent activity since 22 July 2014 is also observed offshore Aigion (C16),
close to the earthquake swarm, C15, which began on 7 November 2014 (Figure S5). In
2012, fewer clusters are observed, mostly during the first semester, with three clusters
comprising N ≥ 30 events, C1, C2 and C3, and a plethora of smaller clusters (Figures 4b
and S2). Between November 2013 and July 2014, the activity is sparse with three relatively
large clusters, C11, C12 and C14 (Figures 4b and S4). Six more clusters with N ≥ 30 are
observed until the end of 2017 (C21, C22, C23, C24, C25, C27, Figure 4b).

Figure 4. (a) Spatial distribution of the centroids of the identified clusters for the western subarea
of Corinth Gulf along with major faults (yellow lines). The size of the circles is proportional to the
earthquake number in each cluster, whereas the duration is represented by the color scale. (b) Spatial
distribution of the clusters with N ≥ 30 events. The index of each cluster is provided in the inset box.

The eastern subarea is characterized by more sparse activity. A major seismic sequence,
Offshore Perachora (C4 in Figure 5b), is detected, including two sub-sequences, the first
initiated on 22 September and the second on 30 September 2012 (Figure S6). Two relatively
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large clusters, C13 and C17, are observed near Itea; the former lasted almost two weeks at
the end of March, 2014, and the latter—almost three months between August and October
2014 (Figures 5 and S7).

Figure 5. (a) Spatial distribution of the centroids of the identified clusters for the eastern subarea of
the Corinth Gulf along with the major faults (yellow lines). The size of the circles is proportional
to the earthquake number in each cluster whereas the duration is represented by the color scale.
(b) Spatial distribution of the clusters with N ≥ 30 events. The index of each cluster is provided in
the inset box.

4.2.2. Central Ionian Islands Area

The two main shocks of sequence I1 (Figure 6b) with M = 6.1 and M = 6.0 occupy the
southern and the central part of the onshore area of Kefalonia Island. The 2014 Kefalonia
earthquake sequence (I1 Figure 6) started on 19 January with the first main shock occurring
on 26 January (M = 6.1), and aftershock activity extending over 35 km [58], part of which
hosted the second main shock (M = 6.0) that occurred on 3 February and the compound
aftershock activity. A sub-cluster is also detected offshore to the southwest of Kefalonia
Island (I2 in Figure 6b) that is deployed concurrently with the main sequence (Figure S8). In
addition, two distinct clusters, I3 and I4 (Figure 6b), are revealed, which occurred between
November and December 2014 (Figure S9), across the edges of the double rupture. They
might be triggered by the stress transfer of the main ruptures, indicating activation of
adjacent fault segments. The seismic activity of cluster I5 (Figure 6b) retains the most
interest because it is essentially two seismic excitations evolving at the same time. The first
initiated in the Myrtos Gulf and the second offshore the south part of Kefalonia Island.
It comprises 164 earthquakes in about 100 days (Figure S9). The activity of the I7 cluster
(Figures 6b and S10) spreads along the western coastline of Lefkada and Kefalonia Islands,
far beyond both sides of the 2015 Lefkada main rupture. To the south the aftershock activity
is sparse, probably due to the large amount of stress released in the main rupture, revealing
that the main slip is associated with a fault of about 17 km in length [59]. Apart from
cluster I4, two additional clusters (I6 and I9 in Figure S9 and Figure S11, respectively)
are detected in the area between Lefkada and Kefalonia, extending to about 15 km, which
is considered as a transition zone encompassing step-over structures [58]. All of them
relate to the E–W-oriented, parallel step-over faults, similar to the ones detected in the
microseismicity cluster analysis between September 2016 and December 2019 in the study
area [34].
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Figure 6. (a) Spatial distribution of the centroids of the identified clusters for the area of Central Ionian
Islands along with the trace of the Kefalonia Transform Fault Zone (yellow lines). The size of the
circles is proportional to the earthquake number in each cluster, whereas the duration is represented
by the color scale. (b) Spatial distribution of the clusters with N ≥ 30 events. The index of each
cluster is given in the inset box.

4.2.3. North Aegean Sea Area

The first seismic excitation with N ≥ 30 events (N1 in Figure 7b) is a sequence of
interest since two moderate events (M = 5.2 and M = 5.3) occurred in 3 weeks, both
producing their own aftershocks (Figure S12). The 2013, January 8 M = 5.8 North Aegean
earthquake [60] along with its aftershock activity (cluster N3 in Figure 7b) is also detected.
The aftershock activity is temporally divided into two clusters (Figure S13). The 24 May
2014 M = 6.9 Samothraki main shock was followed by aftershock activity confined to three
major clusters (N4, N5, N6 in Figure 7b) and some secondary clusters with N ≥ 10 events
(Figure S14), which are in accordance with the ones observed by Saltogianni et al. [61].
The seismic activity that took place near the Aegean coast of NW Turkey during January–
October 2017 [67] is divided into three clusters with N ≥ 30 (N10, N11 and N14 in
Figure 7b) and two minor clusters with 22 and 23 events, respectively (Figure S15). The
strong main shock (M = 6.4) that occurred on the 12th of June 2017 offshore, south of
the SE coast of Lesvos Island, along with its intense aftershock activity, is revealed and
illustrated in Figure 7b (N12). Two major (N ≥ 30) secondary outbursts of clustered activity
occurred concurrently on the west (N17) and east (N16) side of the sequence (Figure S16).
A thorough analysis revealing multiple spatial clusters of the sequences is conducted by
Papadimitriou et al. [62].
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Figure 7. (a) Spatial distribution of the centroids of the identified clusters for the area of North
Aegean Sea along with the trace of North Aegean Trough (yellow lines). The size of the circles is
proportional to the earthquake number in each cluster, whereas the duration is represented by the
color scale. (b) Spatial distribution of the clusters with N ≥ 30 events. The index of each cluster is
given in the inset box.

4.3. Regional Variability of Clustering Properties

In this section, we investigate regional variations in the clustering behavior of the
detected seismic sequences, in particular, on their productivity rates and on their temporal
evolution that can differ among areas with distinct seismotectonic characteristics. There-
fore, we adopt the temporal ETAS model that expresses two empirical relationships that
characterize the temporal and size distribution of earthquakes, the normalized Omori–Utsu
law, given by g(t) = cp−1(p − 1)(t − ti + c)−p, and the productivity law that is expressed
by N = k(Mi) = Kea(Mi−mc), where N is the number of triggered events by an earthquake
of magnitude, Mi, K is a constant of proportionality, which depends on the number of
triggered events per mainshock above the catalog cutoff, and a describes the impact of
magnitude on the number of triggered events.

We compute the generic parameters for the 3 areas, CG, CII and NAS, by jointly invert-
ing the ETAS parameter set θ = (p, c, a, K, μ) from the identified sequences with N ≥ 30 of
each area. In particular, LLi = ∑ni

j=1 log λ(tj)−
∫ tend

t0
λ(t)dt denotes the log-likelihood of the

i-th sequence for each area, namely, the logarithmic probability of observing ni events with
occurrence times tj, j = 1, . . . , ni, during the period of the sequence (t0, tend), and no other
events between them. The intensity function, λt, of the model is given by Equation (1),
neglecting the spatial component. We then stack all the sequences of each area, compute
their corresponding logarithmic probabilities LLi, and define as the common log-likelihood

LL =
N∗

∑
i=1

LLi, (2)

where N∗ is the number of sequences. The optimal inverted parameters are the ones that
maximize Equation (2). The results of the ETAS parameter estimation for the three regions
are shown in Table 5. There are 27 sequences in CG (Figures 4 and 5), 9 in CII (Figure 6)
and 17 in NAS (Figure 7) from 2012 until 2019 with N ≥ 30 events, however, we removed
cluster C26 from the computations, since it is located at the boundaries of the study area
(Figure 5) with part of the aftershock data being omitted. For the maximization of the
common log-likelihood LL, we implement an iterative procedure where at each step we
update the model parameters by a random factor so θnew

k = θk + u, for k = 1, . . . , 5, then,
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we compute the corresponding LLnew
i , i = 1, . . . , N∗, log-likelihood values and store the

new parameters under the condition LLnew > LL moving to the next iteration. After some
iterations, the logarithm converges and the algorithm stops. Essentially, this is a grid-based
procedure, since we use a large number of iterations.

Table 5. Generic ETAS parameter values for the three study areas. N∗ denotes the number of
sequences with N ≥ 30.

Area p c a K μ β N∗

CG 1.23 0.0171 0.82 0.74 0.43 2.13 26
CII 1.31 0.11 1.29 0.44 0.15 2.21 9

NAS 1.26 0.0324 1.04 0.51 0.28 2.03 17

The parameter a for CG (a = 0.82) is the lowest among the three areas, indicating
the dominance of swarm activity presumably due to fluid flow in accordance with many
relevant studies [65,68]. Low a values characterize areas with high heat flow [39], even
though the estimated value can be underestimated due to magnitude incompleteness after
the occurrence of the main shock or due to the existence of time-dependent background
seismicity [69]. Conversely, in CII, the estimated value (a = 1.29) is relatively larger
compared to the former region (a = 0.82), indicating the dominance of typical main shock–
aftershock sequences. In the NAS area, a moderate value is acquired (a = 1.04), probably
due to the co-existence of swarm activity and aftershock sequences. Another indicator
for the existence of swarm activity in CG is the large value of the background seismicity
(μ = 0.43) compared to NAS and CII. High values of the background rate can indicate the
existence of aseismic loading transients [40]. LLenos et al. [70] observed increased values
of the background component of the fitted ETAS model when it was applied to pre-swarm
and swarm activity, respectively.

For the comparison of the productivity among the three areas, since they have different
completeness magnitudes, we use the following relation,

N = k(Mi)P(M ≥ m∗
c ) = Kea(Mi−mc)e−β(m∗

c−mc), (3)

which yields the number of earthquakes above magnitude m∗
c , generated by a main shock

of magnitude Mi. Figure 8 shows the number of direct triggered events, K(Mi), from an
earthquake of magnitude Mi. We consider m∗

c = 2.2, which is the maximum complete-
ness magnitude among the three datasets. The exponent of the exponential magnitude
distribution is expressed by β and is defined as β = ∑N

i=1 βi/N∗, where N∗ is the number
of clusters for each dataset and βi their corresponding exponent values. Concerning the
distribution of aftershocks in time, the normalized Omori law distribution is used, given
by g(t).

In CII, the seismic sequences seem to be more productive, as shown in Figure 8, with
NAS and CG to exhibit smaller values. Combined with the higher background rate for the
area of CG (μ = 0.43), we may say that a significant part of Corinth Gulf’s sequences cannot
be contributed to the triggering effect of mainshocks but different underlying mechanisms
seem to play an important role. Conversely, in CII area, mainshock–aftershock sequences
seem to dominate, generating a rich number of aftershocks (very low background rate,
μ = 0.15, and high productivity of mother events).
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Figure 8. (a) The number of events triggered by an earthquake of magnitude Mi at CG (blue), NAS
(orange) and CII (brown), respectively. (b) The temporal distribution of triggered aftershocks.

4.4. Sequence-Specific Clustering Properties

Next, we estimate the a-values for the individual sequences of each area by maxi-
mizing LL as a function of a, K and the background rate μ, while keeping the rest of the
parameters fixed for clusters with N < 80. In this way, we increase the robustness of
the inversion procedure since there are sequences with few events. A similar procedure
was followed by Page et al. [3] and Llenos and Michael [36] who demonstrated that fitting
multiple parameters for a single sequence can be unstable and Hardebeck et al. [37] who
implemented this method for the estimation of California aftershock parameters. We intend
to investigate potential differences in the productivity (a, K) and the background rate, μ,
among sequences of each area and their relation to different underlying triggering mecha-
nisms. Productivity parameters a and K are correlated, so we enabled both to run during
the iterative procedure. We also examine the value of the background rate among sequences
since it can be also an indicator of aseismic transients in a region. Both parameters, a and K,
are not influenced by μ, as we verified it by implementing the inversion procedure, also
keeping parameters a and K fixed.

4.4.1. Corinth Gulf

In Table 6, the inverted parameters for the 26 clusters of dataset D1 with N ≥ 30 are
given. We adopt the generic values of Omori law (p and c) for clusters with N < 80 to
increase the stability of the inverted parameters. We observe relatively high background
rates for most of the sequences and low a values, in particular, a < 1 for 10 out of the
26 clusters.

Concerning the 2013 Aigion earthquake swarm and its subsequent swarms (clusters
C6, C9 and C10), we observe relatively low productivity values of the ETAS model (a = 1.31,
1.29, 1.13, Table 6) in accordance with studies suggesting pore-fluid pressure as the main
triggering mechanism during the excitation [63]. Clusters C11 and C12 are part of the same
swarm (Figure S4) that occurred offshore Psathopyrgos. Their relatively high background
rates (μ = 1.34, 1.92) show that a significant part of the clustered seismicity cannot be
explained by the empirical laws of the triggering part of the ETAS model. Cluster 14
is part of a major swarm that began on 8 June 2014 (Figure S4). Michas et al. [65] did
not find high diffusion rates that are related to fluid pore pressure. However, the large
background rate found in our study (μ = 4.86) and the low a value (a = 0.92) suggest the
existence of a non-typical mainshock–aftershock sequence, with more complex triggering
mechanisms being responsible, such as aseismic creep. Similarly, the largest cluster in the
dataset, the C15, located offshore Nafpaktos, is characterized by relatively high background
rate (μ = 1.32) and low productivity (a = 1.38), more typical values for swarm activity.
In contrast, clusters C18 and C19 that are more typical mainshock–aftershock sequences
with a distinct in magnitude event in the initiation of the sequence (Figure S5), have low

115



Appl. Sci. 2022, 12, 1908

background rates (μ = 0.05, 0.76) and relatively high productivity rates (a = 1.77, 1.80).
The two clusters near Itea Gulf show contradictory results, in particular, the first one, C13,
is characterized by a high background rate (μ = 3.41), whereas the second, C17, which
occurred four months later, exhibits a much smaller background value (μ = 0.35) more
typical for mainshock–aftershock sequences. However, biases can exist in the inversion of
the parameters for clusters with a small number of events, so we should be cautious with
the inference.

Table 6. Details on the 26 clusters with N ≥ 30 events in CG area and the inverted ETAS parameters.
The generic values of the Omori law, p and c, are adopted for clusters with N < 80.

ID Tin Tend N p c b a K μ Mmax

C1 12/1/12 23/1/12 33 1.23 0.017 1.20 0.49 0.79 1.03 3.1
C2 13/1/12 27/1/12 33 1.23 0.017 0.83 1.69 0.23 1.25 3.1
C3 4/3/12 6/4/12 65 1.23 0.017 1.03 1.53 0.26 1.05 3.0
C4 22/9/12 3/10/12 69 1.23 0.017 0.99 0.36 0.94 1.44 5.0
C5 27/12/12 1/1/13 34 1.23 0.017 0.82 1.84 0.21 1.32 3.8
C6 22/5/13 28/6/13 310 1.45 0.012 0.96 0.20 0.90 0.47 3.7
C7 8/6/13 28/6/13 144 1.11 0.007 1.22 0.60 1.30 1.00 3.0
C8 7/7/13 27/7/13 128 1.04 0.001 0.77 0.34 2.48 0.59 3.7
C9 8/9/13 13/9/13 65 1.23 0.017 1.19 1.28 0.79 2.74 2.8

C10 29/10/13 6/11/13 68 1.23 0.017 1.27 0.10 0.91 2.87 3.1
C11 19/1/14 16/1/14 33 1.23 0.017 0.92 1.26 0.50 1.37 3.8
C12 29/1/14 10/2/14 70 1.23 0.017 0.81 1.39 0.29 1.92 3.9
C13 21/3/14 1/4/14 52 1.23 0.017 0.83 2.97 0.009 3.41 4.0
C14 8/6/14 11/6/14 74 1.23 0.017 0.81 0.92 0.64 4.86 4.3
C15 21/7/14 31/10/14 506 1.37 0.051 1.04 1.38 0.34 1.32 4.6
C16 22/7/14 1/11/14 95 1.26 0.014 1.15 0.72 0.45 0.44 2.8
C17 24/7/14 26/10/14 61 1.23 0.017 0.94 1.72 0.16 0.35 3.4
C18 23/7/14 31/10/14 121 1.25 0.131 0.95 1.77 0.24 0.05 4.7
C19 7/11/14 18/12/14 228 1.07 0.071 0.92 1.80 0.55 0.76 4.8
C20 7/11/14 14/12/14 36 1.23 0.017 1.05 1.27 0.41 0.42 3.1
C21 1/10/15 6/10/15 44 1.23 0.017 1.16 1.97 0.49 1.61 2.8
C22 27/7/16 5/8/16 32 1.23 0.017 0.75 3.50 0.09 0.45 2.7
C23 1/8/16 8/8/16 147 2.79 0.160 0.98 0.10 0.85 2.98 3.4
C24 9/1/17 23/1/17 104 2.79 0.702 0.82 1.70 0.15 1.05 4.5
C25 14/7/17 17/7/17 39 1.23 0.017 0.43 0.73 0.40 5.95 4.2
C27 30/10/17 2/11/17 31 1.23 0.017 0.50 1.68 0.10 6.19 3.5

4.4.2. Central Ionian Islands

In Table 7, the inverted parameters for the nine clusters identified in the area of CII
with N ≥ 30 events are given. We maintain fixed the Omori law parameters p and c
(generic values) for clusters with N < 80. The estimated ETAS parameters of the sequence
I1 are in accordance with the existence of a main shock–aftershock sequence described in
Section 4.2. In particular, the background rate is relatively low (μ = 0.17), indicating that
the seismicity is adequately described by the triggering part of the ETAS intensity function.
The seismic activity of clusters I3 and I5 (shown by green and blue color in Figure S9,
respectively) are characterized by relatively high background rates (μ = 0.99, 0.76, Table 7).
The space-time evolution of the former indicates a rapid migration in the beginning of the
sequence (Figure S9), whereas, for the latter, it is characterized by the smallest K value
(K = 0.04) in the area although the a value is rather large. Taking into account the lack
of distinct main shocks at the initiations of the sequences, they can be characterized as
earthquake swarms, one of the few observed in an area which comprises mostly main
shock–aftershock sequences. Concerning cluster I9, located in the transition zone between
Lefkada and Kefalonia Islands, there is evidence for swarm activity due to the relatively
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high background seismicity rate (μ = 0.70). Ultimately, the major main shock–aftershock
sequences in the area, I1, I7, have the highest p values (p = 1.42, 1.45), meaning that they
are characterized by high aftershock decay in time.

Table 7. Details on the 9 clusters with N ≥ 30 events in CII area and the inverted ETAS parameters.
The generic values of the Omori law, p and c, are adopted for clusters with N < 80.

ID Tin Tend N p c b a K μ Mmax

I1 19/1/14 16/9/14 2829 1.42 0.24 0.79 1.31 0.40 0.17 6.1
I2 23/1/14 14/9/14 55 1.31 0.11 1.23 1.38 0.30 0.12 3.7
I3 5/11/14 11/12/14 134 1.36 0.06 0.99 1.44 0.29 0.99 5.1
I4 13/11/14 12/12/14 66 1.31 0.11 0.93 1.43 0.38 0.37 4.9
I5 5/1/15 27/4/15 164 1.05 0.01 0.93 2.82 0.10 0.76 4.4
I6 18/1/15 24/4/15 71 1.31 0.11 1.08 1.91 0.36 0.15 3.8
I7 13/11/15 26/6/16 1396 1.45 0.30 0.86 1.51 0.29 0.45 6.5
I8 20/11/15 25/6/16 65 1.31 0.11 0.84 0.94 0.53 0.07 4.3
I9 4/4/17 4/5/17 67 1.31 0.11 0.95 2.26 0.18 0.70 3.9

4.4.3. North Aegean Sea

In NAS area cluster N1, which consists of two moderate events (M = 5.2 and M = 5.3)
within a time period of 3 weeks, exhibits the lowest a value (a = 1.10) among the main
detected clusters, which could be an indicator of fluid diffusion in the area (Table 8).
Another case worth mentioning is the 24 May 2014, M = 6.9, Samothraki seismic sequence
which is divided into three major clusters (N4, N5, N6, in Figure 7). The estimated
background rates of the three major clusters are relatively small (μ = 0.16, 0.60, 0.29),
whereas the opposite holds for the scaling parameter, a, for the first two clusters (a =
1.82, 1.76). Concerning the seismic excitation that consists of clusters N10, N11 and
N14, the relatively low productivity rates of the ETAS model (a = 1.31, 1.29, 1.13) and,
conversely, the relatively high background rates for the first two, N10 and N11, clusters
(μ = 1.00, 0.91) may indicate fluid intrusion. This observation is in accordance with the
study of Mesimeri et al. [67] who derived high background rates after the estimation of
the ETAS model to the empirically divided 5 sub-clusters of the primary seismic activity
(January–March 2017). A fast-diminishing aftershock activity is observed for the main
shock (M = 6.4) that is located SE of Lesvos Island (N12), which is translated into a high
Omori exponent, p = 1.48. Additionally, low background rates characterize the three
main clusters, N12, N16 and N17, indicating that they are probably related to tectonic
and coseismic stress transfer from previous seismicity [62]. Worth mentioning are the
remarkable high background rates for clusters N8 (μ = 1.76) and N9 (μ = 2.78), which
could be an indicator for seismic activity driven by transient forces, however, the number
of events is rather small and could have led to significant biases in the inversion of the
parameters.

5. Discussion

The consistency and efficiency of the MAP-DBSCAN method is examined on a sim-
ulated earthquake catalog of 18 years that produces the main features of seismicity in
the region of Greece. In particular, we showed that our method is able to identify the
connections among the events generated by a spatiotemporal ETAS model, as well as the
mother events that initiated each cluster. The knowledge of the links among the events en-
abled the comparison of the method with some well known clustering algorithms, like the
Gardner and Knopoff, the Reasenberg and the Nearest-Neighbor, by the use of the Jaccard
index. This is a tool for measuring the overlap between the original partition of events into
clusters and background seismicity, and the estimated one after the implementation of each
clustering method. The results show that MAP-DBSCAN method is very competitive and
in most cases outperforms the tested algorithms. The NN achieves the best reconstruction

117



Appl. Sci. 2022, 12, 1908

of the clusters (Table 2), which is probably related to the similarity of its metric with the
ETAS metric that is used for the generation of the seismicity. The window-based method
overestimates the clustered seismicity in accordance with work by Peresan and Gentili [11],
whereas the Reasenberg link-based method seems to overestimate the background events
(Figure 1).

The advantage of using the MAP model lies in its efficiency in capturing the changes
in seismicity rate, independently of the mechanisms responsible for each seismic sequence.
Furthermore, in case of non-stationary background seismicity, the MAP model can approx-
imate the different phases by embedding multiple states into the Markov process Jt, i.e.,
distinct occurrence rates, and adopting a multiple rate threshold alternating according to
the phase of the process each time. In this way, although it is more complicated, we can
model both the non-stationary background seismicity and the triggered events without
declustering the earthquake catalog [33]. The DBSCAN algorithm does not assume any
specific spatial distribution of earthquakes and settles them into groups based solely on
their spatial density.

We applied our method to three seismic zones in Greece during 2012–2019, identifying
the major seismic sequences and a plethora of smaller ones. The rich seismic activity during
2013–2014 in the western subarea of the Corinth Gulf is detected in detail, a nontrivial issue,
especially for the area between Nafpaktos-Psathopyrgos and offshore Aigion, where multi-
ple excitations occurred in close proximity and within short periods (Figures 4, S4 and S5).
Seismicity in the eastern subarea of the Corinth Gulf is found to be more sparse with few
major clusters located near Itea Gulf (Figures 5 and S7) and offshore Perachora and Xylokas-
tro (Figure 4 and S6). On the contrary, seismicity in the Central Ionian Islands is dominated
by the two major main shock–aftershock sequences associated with the 2014 Kefalonia
and the 2015 Lefkada seismic sequences (Figure 6). Together they comprise the 81% of the
clustered seismicity in this area. Many large clusters are identified in the North Aegean Sea
area that includes both main shock–aftershock sequences and earthquake swarms.

We investigated the properties of clustering seismicity among the three study areas
with the use of the ETAS model. The results indicate that there are differences in aftershock
productivity rates between Corinth Gulf, Central Ionian Islands and North Aegean Sea,
showing that productivity can vary regionally. As showed by Page et al. [3] and LLenos and
Michael [36] adopting the regional variations of productivity can produce a significant gain
on aftershock forecasts. In the Central Ionian Islands, main shock–aftershock sequences
seem to be more productive with the North Aegean Sea and the Corinth Gulf to follow
(Figure 8). The sequences in the Corinth Gulf in particular are characterized by the highest
background rate among the three areas (Table 5), meaning that a significant portion of
clustered seismicity is not caused by the triggering of a main shock coseismic slip, but
by the contribution of different triggering mechanisms. Many studies have focused on
this area, suggesting pore-pressure changes due to fluid migration and aseismic creep as
possible triggering mechanisms for the clustered seismicity [57,71]. In the North Aegean
Sea, the swarm activity coexists with aftershock sequences, implying that for forecasting
purposes, a finer regionalization might be more appropriate.

We also investigated potential differences in the productivity and the background
rates among sequences of each region and their relation to different underlying triggering
mechanisms. Results show that the high background seismicity (μ) and low productivity
(a) values of the ETAS model are related to earthquake swarm activity triggered by fluid
pore-pressure changes, such as the 2013 Aigion swarm (clusters C6, C9 and C10, Table 6,
Figures 4 and S3) in Corinth Gulf [63] and the 2017 Tuzla earthquake swarm (clusters N10,
N11 and N14, Table 8, Figures 7 and S15) in North Aegean Sea [67]. This is in accordance
with studies suggesting the dependence of low productivity values to the existence of
fluids [39,69]. In general, 18 out of 26 clusters in Corinth Gulf have background rates
μ > 1 and low productivity values (11 out of 26 with a < 1), whereas in the Central
Ionian Islands, where main shock–aftershock sequences dominate, we observe very low
background rates of the ETAS model (all with μ < 1) and relatively high productivity
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values. In the North Aegean Sea area, we cannot observe a clear pattern, however, the
majority of the detected clusters are characterized by low background rates and relatively
high productivity, suggesting the dominance of typical main shock–aftershock sequences.

Table 8. Details on the 17 clusters with N ≥ 30 events in NAS area and the inverted ETAS parameters.
The generic values of the Omori law, p and c, are adopted for clusters with N < 80.

ID Tin Tend N p c b a K μ Mmax

N1 14/2/12 4/4/12 136 1.41 0.03 0.96 1.10 0.40 0.54 5.3
N2 27/4/12 3/5/12 30 1.26 0.03 0.53 1.64 0.16 1.07 4.8
N3 8/1/13 6/3/13 285 1.07 0.06 0.88 2.39 0.06 0.55 5.8
N4 24/5/14 9/7/14 94 1.41 0.78 0.74 1.82 0.01 0.16 6.9
N5 24/5/14 11/7/14 153 1.60 0.16 0.69 1.76 0.16 0.60 4.5
N6 24/5/14 22/6/14 83 1.49 0.04 0.64 1.25 0.30 0.29 4.4
N7 6/12/14 29/12/14 41 1.26 0.03 0.67 1.60 0.15 0.31 4.9
N8 26/3/15 2/4/15 30 1.26 0.03 0.97 1.45 0.36 1.76 4.1
N9 29/10/16 31/10/16 49 1.26 0.03 0.89 2.44 0.28 2.88 3.4

N10 26/1/17 28/3/17 568 1.29 0.04 0.73 1.31 0.36 1.00 5.1
N11 7/4/17 12/5/17 38 1.26 0.03 1.05 1.29 0.11 0.91 3.4
N12 12/6/17 8/8/17 614 1.48 0.12 0.79 1.46 0.25 0.86 6.4
N13 13/6/17 29/7/17 48 1.26 0.03 1.03 2.42 0.17 0.35 3.7
N14 15/8/17 23/10/17 38 1.26 0.03 1.06 1.13 0.39 0.26 3.5
N15 16/8/17 11/11/17 34 1.26 0.03 1.08 1.46 0.36 0.15 3.5
N16 17/8/17 8/11/17 39 1.26 0.03 1.24 2.39 0.14 0.31 3.2
N17 24/8/17 11/11/17 35 1.26 0.03 1.01 2.23 0.13 0.27 3.6

6. Conclusions

In this study, we present the efficiency of our clustering method, MAP-DBSCAN,
on a simulated earthquake catalog where the structure of the clusters is known a pri-
ori and its competitiveness against well-known clustering algorithms, as in most cases,
shows better results. The main seismic clusters in the Corinth Gulf, Central Ionian Islands
and North Aegean Sea during 2012–2019 are detected by our method and their cluster-
ing properties are investigated. The results show the existence of regional variability in
aftershock productivity and background rates. In particular, the Corinth Gulf is charac-
terized by low productivity values and high background rates related to the dominance
of earthquake swarms, whereas seismicity in the Central Ionian Islands is comprised by
main shock–aftershock sequences with high productivity. Sequence-specific parameters
verify the dependence between low productivity values and high background rates with
pore-pressure due to fluids migration. We believe that future studies on Operational Earth-
quake Forecasting should incorporate localized parameters into the models to improve the
forecasting accuracy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app12041908/s1, Figure S1a–c Residuals (purple triangles) as a function of minimum cutoff
magnitude, Mc, for the D1, D2 and D3 datasets, respectively. Blue and cyan dotted horizontal lines
indicate the 10% and 5% residual thresholds, respectively. Mc (red triangle) is found as the first
magnitude cutoff at which the confidence 95% is reached. (d–f) Incremental (red triangles) and
logarithmic cumulative frequency (blue triangles) as a function of magnitude. The black line is the GR
law fit according to the GFT method with Mc = 1.5, 2.2, 2.1 for datasets D1, D2 and D3, respectively.
Figure S2 (a) Epicentral map of the main seismic clusters during the first semester of 2012. Three
major clusters, C1, C2 and C3, and eight smaller clusters with N ≥ 10 events occurred. (b) Space-time
evolution of seismicity. Colors correspond to different clusters and the size of circles is proportional to
the earthquakes’ magnitude, Figure S3 (a) Epicentral map of the 2013 Aigion swarm and subsequent
sequences in the area with N ≥ 10 events. (b) Space-time evolution of seismicity. Colours correspond
to different clusters and the size of circles is proportional to the earthquakes’ magnitude, Figure S4 (a)
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Epicentral map of the seismic activity between November, 2013 and June, 2014. Twelve clusters with
N ≥ 10 occurred, including the C11, C12 and C14 clusters. (b) Space-time evolution of seismicity.
Colors correspond to different clusters and the size of circles is proportional to the earthquakes’
magnitude, Figure S5 (a) Epicentral map of the intense seismic activity during the second half of 2014.
Five major clusters occurred, the C15, C16, C18, C19 and C20, and four smaller clusters with N ≥ 10
events. (b) Space-time evolution of seismicity. Colors correspond to different clusters and the size
of circles is proportional to the earthquakes’ magnitude, Figure S6 (a) Epicentral map of the seismic
sequence Offsh. Perichora. One major cluster, C4, including two sub sequences, the first initiated on
22 September and the second on 30 September, 2012. b) Space-time evolution of seismicity. Colours
correspond to different clusters and the size of circles is proportional to the earthquakes’ magnitude,
Figure S7 (a) Epicentral map of the seismic activity near Itea Gulf during 2014. Two major clusters
are occurred, the C13, C17 and four smaller ones with N ≥ 10 events. (b) Space-time evolution
of seismicity. Colors correspond to different clusters and the size of circles is proportional to the
earthquakes’ magnitude, Figure S8 (a) Epicentral map of the 2014 Kefalonia earthquake sequence,
I1, and a sub-cluster, I2, that occurred offshore the southern part of Kefalonia Island. (b) Space-time
evolution of seismicity. Colors correspond to different clusters and the size of circles is proportional
to the earthquakes’ magnitude, Figure S9 (a) Epicentral map of four main clusters, I3, I4, I5 and I6
with N ≥ 30 between November, 2014 and April, 2015. (b) Space-time evolution of seismicity. Colors
correspond to different clusters and the size of circles is proportional to the earthquakes’ magnitude,
Figure S10 (a) Epicentral map of the 2017 Lefkada sequence, I7, along with two sub-clusters in the
southwestern part of Kefalonia Island. (b) Space-time evolution of seismicity. Colors correspond to
different clusters and the size of circles is proportional to the earthquakes’ magnitude, Figure S11 (a)
Epicentral map of cluster I9 located in the area between Lefkada and Kefalonia. Right: Space-time
evolution of seismicity. Colors correspond to different clusters and the size of circles is proportional
to the earthquakes’ magnitude, Figure S12 (a) Epicentral map of cluster N1 comprised by two sub-
sequences. (b) Space-time evolution of seismicity. Colors correspond to different clusters and the size
of circles is proportional to the earthquakes’ magnitude, Figure S13 (a) Epicentral map of the 2013
North Aegean sequence, denoted N3. (b) Space-time evolution of seismicity. Colors correspond to
different clusters and the size of circles is proportional to the earthquakes’ magnitude, Figure S14 (a)
Epicentral map of the 2014, Samothraki sequence confined into three major clusters, N4, N5 and N6.
(b) Space-time evolution of seismicity. Colors correspond to different clusters and the size of circles
is proportional to the earthquakes’ magnitude, Figure S15 (a) Epicentral map of the seismic activity
near the Aegean coast of NW Turkey during January–October 2017 confined into three clusters, N10,
N11 and N12. (b) Space-time evolution of seismicity. Colors correspond to different clusters and
the size of circles is proportional to the earthquakes’ magnitude, Figure S16 (a) Epicentral map of
the 2017 sequence (N12) that occurred offshore, south of the SE coast of Lesvos Island along with its
intense aftershock activity. Two major secondary bursts of activity occurred concurrently on the west
(N17) and east (N16) side of the sequence. (b) Space-time evolution of seismicity. Colors correspond
to different clusters and the size of circles is proportional to the earthquakes’ magnitude.
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Appendix A

The estimation of the MAP parameter set θ = {λi, qij} is based on the maximization
of its likelihood function, L(θ|T) = πT

arreD0τ1 D1 . . . eD0τN D11K, with interevent times, τi =
ti+1 − ti, i = 1, . . . , N, comprising the trace T = {τ1, . . . , τN} of the data, K hidden states and
N + 1 number of events. The EM algorithm [73] is used for the optimization of the likelihood
function, which is a common procedure for applications with hidden data, i.e., the change
points of seismicity rate. At each iteration of the algorithm, the log-likelihood (LL) function
is computed through the forward and backward vectors, which describe the evolution of the
process recursively. The i-th element of the forward vector f[k] = { fi(k), i = 1, . . . , K} gives
the probability to be in state i by taking into account the history of occurrences up to time
tk+1. Their values are obtained recursively through f[k]j = ∑K

i=1 f[k − 1]ie−λiτk qij(1), with
f[0] = πarr. Similarly, the backward vectors b[k] = {bi(k), i = 1, . . . , K} are defined giving
the likelihood function L(θ|T) = f[k]b[k + 1]. Additionally, the forward and backward
equations are used for the evaluation of the transitions among the states of the Markov
process Jt. This is crucial for the implementation of our method, since it allows the detection
of changes in the seismicity rate. The state probabilities of the hidden process Jt at a given
time tk are obtained by

ptk (i) = P(Jtk = i) =
p(τ1, . . . , τN , Jtk = i)

p(τ1, . . . , τN)
=

f[k − 1]ib[k]i
L(θ|T) , (A1)

For the determination of the hidden states number that is appropriate for capturing
the seismicity rate changes, the Bayesian Information Criterion (BIC) [74] is used, which
is a metric based on the maximum log-likelihood of each model. It is expressed through
BIC = −2 × LL + log(N∗)× k, where k is the number of estimated parameters and N∗
corresponds to the number of observations.

Appendix B

Appendix B.1. Gardner and Knopoff Window-Based Method

The procedure introduced by Gardner and Knopoff [10] for the detection of aftershocks
is based on specific magnitude dependent space-time windows. It is known as the window-
based method, and it is one of the simplest forms of aftershock identification. For each
earthquake with magnitude M, the subsequent events are assigned as aftershocks if they
occur within a temporal window t(M) and a spatial interval d(M), respectively. Foreshocks
are treated as aftershocks when a larger earthquake occurs later in the sequence. The event
is considered as an aftershock and the algorithm is repeated based on the largest magnitude.

We give in Equation (A2) the functional form of the spatial and temporal windows
suggested in Gardner and Knopoff [10], which are denoted as GK1. Additionally, in
Equations (A3) and (A4) we present alternative window parameter settings that can be
found in van Stiphout et al. [75]. We denote them as GK2 and GK3, respectively.

d = 100.1238∗M+0.983 (km) and t =
{

100.032∗M+2.7389 M ≥ 6.5
100.5409∗M−0.547 M < 6.5

days
}

(A2)

d = e1.77+
√

0.037+1.02∗M (km) and t =

{
102.8+0.024∗M M ≥ 6.5
e−3.95+

√
0.62+17.32∗M M < 6.5

days

}
(A3)

d = e−1.024+0.804∗M (km) and t = e−2.87+1.235∗M days (A4)
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Appendix B.2. Reasenberg Linked-Based Method

In this method, an interaction zone among earthquakes is assumed that is modeled
based on estimates of the stress redistribution for the spatial extent and on a probabilistic
model, the Omori law, for the temporal extent, respectively. Any earthquake that occurs
within the interaction zone of a prior earthquake is considered an aftershock and is included
in the cluster. For the Reasenberg algorithm, we used the ZMAP tool [76] and we adopted 3
different sets of parameters given in Table A1. The parameters τmin and τmax correspond to
the minimum and maximum elapsed time since the last event, in order to observe the next
correlated earthquake at a certain probability, p1. Additionally, xme f f denotes the minimum
magnitude threshold for the earthquake catalog, whose value in the clusters is raised by a
factor xk of the largest earthquake within. Finally, the parameter r f act corresponds to the
radii we adopt to consider linking a new event with the cluster.

Table A1. Input parameters for the Reasenberg clustering algorithm. The first row corresponds to the
standard parameter set [12].

PS τmin τmax p1 xk xme f f r f act

RB1 1 10 0.95 0.5 2.5 10
RB2 1 10 0.95 0.5 2.5 20
RB3 0.5 20 0.95 0.5 2.5 20

Appendix B.3. Nearest-Neighbor Method

The approach is based on the space-time-magnitude distance metric among two
earthquakes given by Baiesi and Paczuski [22]:

ηij = (tj − ti)r
d f
ij 10−bmi , (A5)

where rij is the epicentral distance between events i and j, d f is the spatial fractal dimension
and b is the component of the Gutenberg–Richter distribution. Each event j is connected
to its nearest neighbor i = argmini:tj>ti ηij if their distance, ηj, is lower than a predefined
threshold η0. The earthquake catalog is then partitioned on distinct clusters, each containing
at least one event. For the selection of the threshold value, η0, the logarithm of the nearest
neighbor distance η∗ = {ηj}j=1,...,N is considered, where N the number of events. It
follows an 1D Gaussian distribution with two components, which is essentially a mixture
model of two Gaussian densities with parameters N(μ1, σ1), N(μ2, σ2) and a1, a2 weights,
respectively. Then, the intersection of the two functional forms gives the threshold value.

There are only two free parameters, the fractal dimension d f and b value, which are
considered equal to d f = 1.51 and b = 1.0, respectively. The logarithm of the separation
distance is equal to log η0 = −5.04, based on the intersection of the two modes in the 1D
density distribution of distances (Figure A1).
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Figure A1. Distribution of the NN distances among all pairs of earthquakes of the ETAS synthetic
catalog. (a) 1D density distribution of log η, with estimated Gaussian densities for clustered (yellow)
and background (orange) components. (b) 2D joint distribution of rescaled space and time distances.

Appendix B.4. MAP-DBSCAN Method

A MAP with 7 states is chosen based on BIC, the rate threshold is set to λthr = λ1,
and different temporal windows are tested for merging the potential clusters. Finally, the
DBSCAN algorithm is implemented for 5 different distance thresholds (ε). The minimum
number of events is set to Npts = 2 for a better comparison with the other methods where
clusters with at least 2 events can be defined. In Table A2 we present details on the
parameter tuning.

Table A2. The 30 different parameter sets used for the detection of the clusters.

ε Npts PS T dt PS T dt

[2.5 5 7.5 10 12.5] 2

1–5 0 0 16–20 0 7
6–10 7 0 21–25 7 7

11–15 14 0 26–30 14 7

The method seems rather insensitive to the parameter selection. In particular, Figure A2
presents the Jaccard index values that describe the efficiency of the method to correctly
reconstruct the initial clusters (J1) as well as to identify the single events (J2). We observe
that the Jaccard index values are quite stable with small fluctuations, apart from the smallest
upper-distance cutoff, ε = 2.5 km, which seems inadequate to capture the spatial correlations
among the events. Furthermore, the contribution of the temporal constraints to the clustering
procedure seems negligible, with the exception of the two peaks for PS12 and PS27. This
is an indicator that the MAP model has already achieved a sufficient separation between
background and triggered seismicity based on the embedded multiple rates of the model.
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Figure A2. The Jaccard index values, J1 with blue and J2 with orange color, respectively, for all the
input parameters of the MAP-DBSCAN method.

Appendix C

We implemented the clustering procedure MAP-DBSCAN for 16 different combina-
tions of parameters which are shown in Table A3. For the determination of the distance
threshold ε, we computed the k-distances between events assigned to the same potential
cluster, since the DBSCAN algorithm is implemented in events that have been already
grouped into clusters based on their temporal proximity. In particular, for each event in-
cluded in the potential cluster, its k-nearest neighbor is computed and plotted in ascending
order. If we choose an arbitrary event, i, set the distance threshold ε to k-dist(i) and the
parameter Npts to k, all events with an equal or smaller k-dist value will become core points,
in other words, they will be assigned into a cluster. Ester et al. [35] proposed as best ε value
the one that corresponds to a change in the slope of the curve, as corner points indicate
a change in the degree of correlation among events. For k = 4, which corresponds to the
minimum number of neighbors (Npts), gradient changes in the slope range between 2.5 and
10 km in the datasets of both CG (Figure A3a) and NAS (Figure A3c) areas, whereas for the
CII area (Figure A3b), changes in the slope of the curves initiate slightly sooner (below 2.5).
The minimum one is chosen as equal to ε = 2.5 in order to also ensure that the location
errors of the catalog are considerably fewer.

Table A3. The 16 tested parameter of MAP-DBSCAN method for the three datasets D1, D2 and D3.

ε Npts PS T dt PS T dt

[2.5 5 7.5 10] 4 1 0 0 3 0 5
2 5 0 4 5 5

For the 16 different realizations of the clustering algorithm, MAP-DBSCAN, we inves-
tigated the spatio-temporal properties of the background seismicity. Figure A4 presents
the cumulative number of events that have not been assigned to a cluster (declustered
seismicity) for each set of parameters along with the initial datasets. Peaks and pronounced
concavities in the cumulative curves are indicators of triggered seismicity wrongly assigned
as background and vice versa. In datasets D1 and D2 we observe such concaves for thresh-
olds ε ≥ 5 km and a rather stable curve for ε = 2.5 km (Figure A4a–h), suggesting that
events are correctly separated as background and triggered ones. Therefore, the distance
threshold is set to ε = 2.5 km, for both datasets. In dataset D3, Figure A4i–l show that the
curves with ε ≥ 7.5 km exhibit large concaves, indicating that background seismicity is
incorrectly assigned to clusters. For the smallest threshold ε = 2.5 km, some small peaks
appear and thus the ε = 5 km as the optimal value was selected. Dataset D3 contains
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offshore seismicity in the NAS area, with probably higher location errors. This supports
our choice for a larger distance threshold.

Figure A3. The k-nearest neighbor plot of the potential clusters with N ≥ 100 events in (a) CG
(b) CII and (c) NAS. Black horizontal dashed lines indicate the range of ε values given as input to the
DBSCAN algorithm and each color corresponds to a potential cluster.

Figure A4. Cumulative number of the initial datasets (red line) and cumulative number of back-
ground seismicity for each parameter set (PS1-PS4) and for four different distance thresholds
(ε = 2.5, 5, 7.5, 10 km). (a–d) Dataset D1, (e–h) dataset D2 and (i–l) dataset D3.

To further explore the differences between the spatio-temporal evolution of the declus-
tered catalogs, the space-time pattern of the background events is examined, comparing
the full and the declustered catalogs. In dataset D1, a persistent gap of seismicity ap-
pears during the second half of 2014, independently of the chosen temporal constraints,
associated with the two large earthquake swarms in that period [77]. Due to the intense
seismic activity during 2013–2014 in the western Corinth Gulf [57,65], the classification of
seismicity into clusters becomes more complicated, so we have chosen a rather conservative
parameter set, PS3, with T = 0. In this way, we avoid merging distinct clusters that are
spatio-temporally close to each other. Figure A5a shows the space-time evolution of the
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declustered catalog that corresponds to the final parameter set. The main seismic excita-
tions present in Figure A5b are detected, while preserving the patterns of the background
seismicity. In dataset D2, the results are quite similar for all the tested temporal constraints,
and for this reason, we adopted parameter set PS4 with T = 5 days, which is a more
loose constrain. It is more likely for seismic excitations close in time to be part of the
same main shock–aftershock sequence, due to the two major sequences that dominate in
the study period. In the initial dataset (Figure A5c), the two major sequences are visible,
whereas they are removed after the implementation of the clustering algorithm, while
preserving the main patterns of background seismicity (Figure A5d). Finally, for the NAS
area, the differences over the temporal constraints seem negligible, therefore, we chose
parameter set PS4. Figure A5e illustrates a standard scattering of the background seismicity
in space without gaps and high-density areas, whereas the main seismic sequences visible
in Figure A5f have been identified.

Figure A5. Space-time evolution of the background and initial seismicity for dataset (a,b) D1, (c,d) D2
and (e,f) D3. Purple lines denote the cumulative number of events.
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Abstract: Seismicity-based earthquake forecasting models have been primarily studied and devel-
oped over the past twenty years. These models mainly rely on seismicity catalogs as their data source
and provide forecasts in time, space, and magnitude in a quantifiable manner. In this study, we
presented a technique to better determine future earthquakes in space based on spatially smoothed
seismicity. The improvement’s main objective is to use foreshock and aftershock events together
with their mainshocks. Time-independent earthquake forecast models are often developed using
declustered catalogs, where smaller-magnitude events regarding their mainshocks are removed from
the catalog. Declustered catalogs are required in the probabilistic seismic hazard analysis (PSHA)
to hold the Poisson assumption that the events are independent in time and space. However, as
highlighted and presented by many recent studies, removing such events from seismic catalogs
may lead to underestimating seismicity rates and, consequently, the final seismic hazard in terms
of ground shaking. Our study also demonstrated that considering the complete catalog may im-
prove future earthquakes’ spatial forecast. To do so, we adopted two different smoothed seismicity
methods: (1) the fixed smoothing method, which uses spatially uniform smoothing parameters,
and (2) the adaptive smoothing method, which relates an individual smoothing distance for each
earthquake. The smoothed seismicity models are constructed by using the global earthquake catalog
with Mw ≥ 5.5 events. We reported progress on comparing smoothed seismicity models developed
by calculating and evaluating the joint log-likelihoods. Our resulting forecast shows a significant
information gain concerning both fixed and adaptive smoothing model forecasts. Our findings
indicate that complete catalogs are a notable feature for increasing the spatial variation skill of
seismicity forecasts.

Keywords: smoothed seismicity methods; global seismicity; foreshocks and aftershocks; earthquake
forecasting model

1. Introduction

Building earthquake forecasting models is a fundamental step in any probabilistic
seismic hazard analysis (PSHA). The spatial distribution of future seismicity is usually
estimated using a seismicity catalog using two commonly adopted approaches called
zonation [1,2] and smoothed seismicity [3,4]. In this work, we focus our attention on
the smoothed seismicity approach. This approach uses statistical techniques to build a
spatially gridded model using the epicenters of seismic events. One of the first examples
of the smoothed seismicity model was developed by [3] and used the Gaussian isotropic
spatial kernel to smooth the seismicity around epicenters. This model is based on only
one parameter, i.e., the sigma of the Gaussian kernel: the larger the sigma, the larger the
smoothing and vice versa. In the Frankel model, the sigma is fixed for any event, so it is
called “fixed smoothed seismicity”. Later, [4] developed a smoothed seismicity model that
allows changing the sigma of the Gaussian kernel, and in general the size of any spatial
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kernel function, according to the local density of earthquakes. The idea of this model is
that where we have more events, we can use a smaller sigma to better define the seismic
structures (i.e., the faults) that generate the seismicity. On the other hand, where we have
fewer events, we can use a larger sigma to increase the coverage of the model in those lower
seismogenic zones. In traditional PSHA, earthquakes are modeled using a Poisson process,
where the occurrence of a future earthquake is independent of previous earthquakes from
the same source [5]. The Poisson hypothesis holds for declustered catalogs. To include
aftershocks and foreshocks within traditional PSHA, Ref. [6] presented an approach based
on [7] theorem and its consequent generalization [8]. They demonstrated that the Poisson
distribution could approximate the distribution of exceedances (also considering seismic
sequences) in some specific conditions, e.g., for a probability of 10 percent or less of having
an exceedance in 50 years (a typical value used for PSHA). Ref. [9] somewhat revised
the initial [6] procedure. Rather than using their correction factor, Ref. [9] employed the
b-value and the annual rate of the complete catalog as input for PSHA computations.

Both [6] and [9] suggest using a declustered seismic catalog only for the spatial
estimation to avoid spatial bias introduced by the seismic sequence.

Therefore, a method that wants to introduce such sequences in the spatial estimation
for PSHA needs a technique to downweigh the importance of aftershocks and foreshocks.
Indeed, any seismic sequence should have the same importance in the spatial estima-
tion of seismicity, independently from the number of events in the sequence (which can
greatly vary between the sequences). The delcustering technique is the most dichoto-
mous approach: it gives a weight equal to 1 to the mainshock and 0 to all other events
in the sequence.

In their pioneering work, Ref. [10] developed a model to determine the spatial distri-
bution of seismicity, including also the aftershocks and foreshocks in the seismic catalog.
This approach uses a statistical model for the seismicity triggering, the ETAS model [11]
and the stochastic declustering procedure [12] to assign each event the probability to be an
independent event. In fact, in the ETAS model, events in the catalogs are distinguished as
independent and dependent instead of mainshocks and aftershocks. The aftershocks of a
seismic sequence, dependent on the sequence’s mainshock, obtain a very low weight in
this framework. Ref. [10] model consists of the multiplication of each spatial kernel for the
probability to be independent of the associated earthquake. Therefore, in this framework,
the spatial density distribution of a seismic sequence is mainly concentrated near the
mainshock of the sequence (i.e., the independent event that generates all the dependent
events of the sequence). Using this method, the fault that caused the seismic sequence is
only partially reconstructed.

Our new, simple approach tries to solve that problem using a uniform weight for all
the events of the same seismic sequence (i.e., 1/M, where M is the number of events in the
seismic sequence). In this manner, it is possible to describe the fault or the system of faults
in a more coherent way, avoiding giving excessive weight to the mainshock of the sequence.
Here, we use the global seismic catalog (CMT catalog), Ref. [13] to build four different
spatial seismicity models, fixed and adaptive smoothed seismicity with and without our
correction, to take into account the seismic sequences. Finally, we use the last ten years of
the catalog to compare the performances of the models, using the spatial likelihoods of the
models to measure their efficiency.

2. Dataset

We used the global centroid moment tensor (CMT) catalog containing 11,638 earth-
quakes with a depth ≤ 50 km recorded over the past almost 40 years between 1980 and
2019 [13,14]. We considered only events above the completeness magnitude as threshold
Mw = 5.5 [13,15]. The epicenter distribution of these events is shown in Figure 1. The
current seismic sequences present in the seismic catalog have been detected by the [16]
declustering algorithm, and the related parameters are provided and implemented in the
ZMAP software [17]. Figure 2 shows the mainshocks (red dots) and foreshocks/aftershocks
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(blue dots) in three zones in the world (Chile, Mexico, and Indonesia). Table 1 shows the
number of events present in each subcatalog. We stress that the declustered catalog (i.e.,
the catalog containing only the mainshocks of the sequences) has 6440 events, about 45%
less with respect to the complete catalog. This work aims to maintain as much data as
possible and use all the available earthquakes in the catalog for the spatial distribution
modeling. We underline that the use of a global catalog, instead of regional catalogs, has
some drawbacks: a high threshold for the completeness magnitude (in our case Mw 5.5),
difficulty in recognizing volcanic events, and large uncertainties in hypocentral estima-
tion. The main advantage is a large number of strong events, which can be collected in
a few years.

 
Figure 1. Location of earthquakes in the global centroid moment tensor (CMT) catalog with a depth ≤ 50 km recorded over
the past almost 40 years between 1980 and 2019 [13,14]; blue letters indicate the zones of the zoom-in Figure 2.

Table 1. Number of events and time windows in the different catalogs from Mw ≥ 5.5.

Catalog Type Time Window Number of Events

Complete 1980–2019 11638

Declustered 1980–2019 6440

Complete–Learning 1980–2009 7977

Declustered–Learning 1980–2009 4718

Complete–Testing 2010–2019 3161
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Figure 2. Location of earthquakes in the global centroid moment tensor (CMT) catalog with a
depth ≤ 50 km recorded over the past almost 40 years between 1980 and 2019 [13,14]; (a–c) show the
mainshocks (red dots) and foreshocks/aftershocks (blue dots) in some zones in the world: Indonesia,
Mexico, and Chile.

134



Appl. Sci. 2021, 11, 10899

3. A New Smoothed Seismicity Approach

Building a spatial grid is the first step to constructing a spatial smoothed seismicity
model [3,4]. In this work, we used a global spatial regular grid, 0.5◦ by 0.5◦. Therefore, we
need to compute the contribution to each event in the seismic catalog to the generic i-th
spatial grid; the following equation describes that contribution:

fi =
N

∑
j=1

cKij Aidj (1)

where fi represents the normalized total seismic rate for the i-th spatial grid, N is the total
number of events in the complete (i.e., not declustered) catalog, c is the normalization factor(

c = 1
∑ fi

)
, Kij is the kernel function that depends on the distance between the center of the

i-th spatial cell and the epicentre of the j-th earthquake, Ai is the area of the i-th spatial cell,
and dj is the correction to take into account the foreshocks and aftershocks contribution to
the spatial model.

The following Gaussian kernel function [3] is used:

Kij =
1

2πσ2 e−
r2
ij

2σ2 (2)

where rij is the distance between the center of the i-th spatial cell and the epicentre of the
j-th earthquake, and σ is the free parameter of the model that rules the amplitude of the
smoothing. However, we note that different kernel functions can also be employed in
smoothing the epicenters from the earthquake catalog [4,18]. The smoothing distance, σ,
involved in each earthquake may be defined differently in various smoothed seismicity
models. For example, the fixed smoothed seismicity models practiced a single smoothing
distance for all earthquakes. The adaptive smoothed seismicity models represent unique
smoothing distances for each earthquake between an event and its nth closest neighbors
(NN), resulting in spatially varying smoothing distances [4]. The distance becomes smaller
in regions of high seismicity than in areas with sparse seismicity. It is one of the crucial
parameters in the smoothed seismicity models both for the earthquake rates and the spatial
variations of the earthquake activity rates in a region [19]. The correction parameter dj

represents the innovative part of our method. It is defined as following dj =
1
Sj

, where Sj is
the number of events in the seismic sequence and contains the j-th event. For example, if
a seismic sequence contains ten events, one mainshock, and nine aftershocks, each event
receives a weight, = 1

10 . Since the sum of all the weights is equal to one, the inclusion of
aftershocks does not create a spatial bias in the model [6], and it leads to a better description
of the fault that generated the sequence.

Using this simple correction may help better identify the active fault structures and
their features in a region. Removing all the aftershocks and foreshocks [3,4], giving
very high weight to the mainshocks only [10], may lead to an incomplete or biased
view of the spatial distribution of future seismicity. Conversely, considering all the
events in the sequence with a uniform weight, as in our method, increases the model’s
forecasting performance.

We underline that with Equation (1), we build normalized smoothed seismicity models,
i.e., the sum of all the rates in the spatial cells are equal to 1. In this work, we do not face the
problem of the total number of events and their magnitude frequency distribution, already
treated in [9]. In that work, the seismicity rates are corrected by a proposed technique
that allows counting all events in the complete seismic catalog by quickly adjusting the
magnitude frequency relationships. Our method differs from theirs, since we only deal
with the spatial distribution of the seismicity by using an equal weight for all the events of
the corresponding seismic sequence and incorporating aftershocks to improve the spatial
resolution of the model.
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4. Likelihood Testing for Spatial Variation of Seismicity

To perform the maximum likelihood estimation of the parameter σ (both for the
fixed and adaptive smoothing approach) and to assess the performance of the model,
we avoid considering the Poisson distribution of seismic events because this assumption
is rarely satisfied by the seismic catalogs [20,21]. Since we are interested only in the
spatial distribution of the events, and with Equation (1), we model the normalized spatial
distribution of events, we defined the log-likelihood (LL) of the observations with:

LL(X|M) =
N

∑
i=1

log( fi) (3)

where X is the set of the N observations (i.e., the epicenters of the events in the seismic
catalog), M is the spatial model, log is the natural logarithm, and fi is the seismic rate of the
spatial cell where the i-th event is located. We note that this formulation differs from the
spatial LL defined by [22] and has been commonly used in many seismic experiments [23],
since the Poisson hypothesis has been abandoned in our study. The LL of Equation (3) may
be ratified as the classical LL of a bivariate probability density function (represented by
the model, M) in case we assume the independence between the observations in the set X.
Additionally, in the case of nonindependent observations, the LL can be still used for scoring
the models (some authors, in this case, called the function “pseudo-likelihood”, [24].

To perform a pseudoprospective evaluation of the models first, we calculated the
log-likelihood values by dividing the earthquake catalog into two parts: (1) the learning
catalog, which contains the events recorded between 1980 and 2009 and is used to construct
trial smoothed seismicity models, and (2) the testing catalog, which covers the last ten
years of catalogs (2010–2019). The same LL of Equation (3) is also used to evaluate the
performance of the models.

We applied the fixed and adaptive smoothing methods with and without our cor-
rection to include aftershocks and foreshocks for a total number of four different models.
First, we used the learning catalog to compute the optimal smoothing parameters from
the maximum-likelihood estimations (MLE), which strongly vary with smoothing distance
(fixed smoothing) and neighbor number (adaptive smoothing). In the case of fixed smooth-
ing, we used a vector of possible sigma (from 5 km to 200 km, with a spacing of 5 km),
while for the adaptive smoothing, a set of possible neighbor numbers) are considered from
1 to 20, with a spacing of 1. The first part of the learning catalog (1980–1999) with a period
of twenty years is utilized to build various smoothed seismicity models with different
sigma and NN values. Finally, the nearest neighbor numbers and the correlation distances
are calculated through maximum-likelihood optimization for the four smoothed seismicity
models using the last ten years of the learning catalog (2000–2009). The results of these
estimations are summarized in Table 2 and Figure 3.

We underline that these obtained MLE values are suitable only in the case of a global
catalog: regional estimation of these parameters can lead to different MLE values (e.g.,
smaller sigma and larger NN).

Table 2. MLE of the parameters.

Model MLE

Fixed Sigma = 135

Adaptive NN = 1

Corrected Fixed Sigma = 115

Corrected Adaptive NN = 1
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Figure 3. MLE for the parameters sigma and NN for the Fixed (a), Adaptive (b), Fixedcorrected (c), and Adaptivecorrected

(d) models. Blue curves represent the log-likelihood functions, red dots the maximum of these functions.

5. Results

The final smoothed seismicity models are constructed using the entire learning catalog
and the optimized correlation distances, previously obtained and given in Table 2. The
models represent the bidimensional probability density function (PDF) of the seismicity
(the sum of all the rates is 1). The corrected fixed smoothed seismicity model is calculated
with a smoothing distance of 115 km, and it is 135 km in the case of the uncorrected
model. Both adaptive smoothed seismicity models are determined using the nearest
neighbor number equal to 1. These fixed and adaptive smoothed seismicity rate models
are illustrated in Figure 4a,b (not corrected, hereafter fixed and adaptive) and Figure 4c,d
(corrected, hereafter Fixedcorrected and Adaptivecorrected).

To check if our corrected models perform better than those uncorrected smoothed
seismicity models, we tested the Fixedcorrected and Adaptivecorrected models against the
two standard fixed and adaptive smoothed seismicity models. Therefore, we performed a
global pseudoprospective test, computing the LL (Equation (2)) of the four models using
the ten-year testing catalog (2010–2019). Here, we outline that our testing catalog is entirely
independent of the developed models. We preferred to endorse a similar computation
procedure adopted in the real global prospective tests of the Collaboratory for the Study
of Earthquake Predictability, CSEP, [23] and the global experiments [25,26]. We evaluated
the performance of the models using two different magnitude thresholds, Mw 5.5+ and
Mw6.5+, to check the robustness of our models’ forecasting locations and rates for future
earthquakes. The results of these comparisons are presented in Tables 3 and 4 for the four
developed models.
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Figure 4. Spatially smoothed seismicity models using (a) 135 km smoothing distance from the fixed and (b) the nearest
neighbor number NN = 1 from the adaptive smoothing seismicity approaches; spatially smoothed seismicity-corrected
models using (c) 115 km smoothing distance from the fixed and (d) the nearest neighbor number NN = 1 from the adaptive
smoothing seismicity approaches, employing the epicenters of the earthquakes for Mw ≥ 5.5 in the global CMT catalog
(normalized seismicity rates, i.e., PDF, are in log10 scale).

Table 3. Log-likelihood (LL) values for the smoothed seismicity models for testing catalog from
magnitude Mw 5.5 (3161 events).

Model Log-Likelihood (LL)

Corrected Adaptive −29,632

Adaptive −29,639

Corrected Fixed −31,198

Fixed −31,297

Table 4. Log-likelihood (LL) values for the smoothed seismicity models for testing catalog from
magnitude Mw 6.5 (300 events).

Model Log-Likelihood (LL)

Corrected Adaptive −2850

Adaptive −2857

Corrected Fixed −2931

Fixed −2949

For a correct interpretation of the models’ LL, we recall that large LL values (i.e., the
ones nearest to zero) indicate relatively good performances of the models, and small LL
values (i.e., the ones further from zero) indicate relative bad performances of the models.

In general, our results show that the adaptive smoothed seismicity models (Adoptive
and Adaptivecorrected) produce larger LL values and reveal better forecasting performance
with respect to those from the fixed smoothed ones (Fixed and Fixedcorrected). The LL
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values are −29,632 and −29,639 for the corrected and uncorrected adaptive smoothed
models, while they are −31,297 and −31,198 in the case of the fixed corrected and corrected
smoothed seismicity models, respectively (Table 3). The largest LL value calculated for
the adopted smoothed seismicity models arises from the use of the correction parameter
including the foreshocks and aftershocks in the global catalog. So, in general, including
smaller earthquakes in the clusters increases the performance of the future Mw ≥ 5.5 and
Mw ≥ 6.5 earthquake forecasting capability in the smoothed seismicity models.

To understand if this increase is rather significant, we interpreted the difference of the
LL values for two models in terms of the Bayes factor [27], a common interpretation for
pseudoprospective experiments [28–30]. According to [27] table, we obtained “very strong
evidence” (difference in log-likelihood ΔLL > 5) in favor of our proposed method, both for
the fixed and adaptive approaches (Table 5). In Figure 5a–c, we also present the different
maps calculated between the normalized seismicity rates (linear scale) of the adaptive and
fixed corrected models (as Adaptivecorrected − Fixedcorrected), along with the events of the
testing catalog, in the same zones of Figure 2: Indonesia (Figure 2a), Mexico (Figure 2b),
and Chile (Figure 2c). Colors in light blue to red represent positive differences (i.e., the
rate of the adaptive model is higher with respect to the fixed model), deep blue represents
negative differences (i.e., the rate of the adaptive model is lower with respect to the fixed
model), and blue represents no difference.

Table 5. Log-likelihood differences (ΔLL) between the models.

Models
Magnitude for the

Comparison
Log-Likelihood Difference,

ΔLL

Corrected Adaptive vs. Adaptive 5.5+ 7

Corrected Adaptive vs. Adaptive 6.5+ 7

Corrected Fixed vs. Fixed 5.5+ 99

Corrected Fixed vs. Fixed 6.5+ 18

Adaptive vs. Fixed 5.5+ 1658

Adaptive vs. Fixed 6.5+ 92

Figure 5. The difference between the normalized seismicity rates (linear scale) of the adaptive and fixed corrected models
(Adaptivecorrected − Fixedcorrected) in some zones in the world: Chile (a), Indonesia (b), and Mexico (c).

6. Discussion

The comparison of the four global models, fixed and adaptive smoothed seismicity
with and without our correction for the inclusion of aftershocks and foreshocks, clearly
shows better performance of the models that use the correction. This positive result
indicates that using all events of a seismic sequence instead of only the mainshock increases
the forecasting capabilities of the smoothing seismicity models. Another very interesting
result is the better performance of the adaptive approach concerning the fixed approach,
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here demonstrated for a global catalog and two different magnitude thresholds, Mw 5.5+
and 6.5+. Looking at the normalized seismicity rates in Figure 4a–d, it is possible to note
the larger smoothing for the fixed models compared to the adaptive models in the zones
where the seismicity is higher. The difference between the adaptive and fixed smoothing
approaches is evidenced in Figure 5: the large smoothing for the fixed model leads to lower
rates with respect to the adaptive model in the zones where the earthquake rate for the
testing catalog is higher (pink and red colors in Figure 5). On the contrary, the rates of the
fixed model are higher with respect to the adaptive model in the areas adjacent to the more
seismic active zones (blue colors in Figure 5). Zones far from the main seismic regions (e.g.,
intraplate zones with very few earthquakes) have a very small difference between the fixed
and adaptive seismicity rate models (light pink color in Figure 5).

The significantly better performances obtained by the adaptive smoothed approach
(Table 5) confirm at a global scale the regional results obtained by [4] for California and [31]
for Italy. Our method is more straightforward than that of [10], because it does not require
a sophisticated stochastic declustering procedure [12]. Still, it only needs to identify
the events in a seismic sequence, in this work made with the classical [16] declustering
algorithm. Despite its simplicity, our method gives encouraging good results. A possible
future work could be a comparison between our approach and the [10] approach.

Our method is based on the assumption of stationarity of the seismicity (usually
accepted in long-term modeling); however, working in smaller time and spatial scales,
some regions may exhibit different spatiotemporal variations, useful to forecast stronger
seismic events [32,33]. Abandoning the stationarity assumption, smaller earthquakes can
also be used to try to determine the current state of the seismic cycle [34] and then identify
possible temporal variations in the long-term seismic rates.

7. Conclusions

The ten-year, global, pseudoprospective earthquake spatial forecasting experiment
gives us two critical results:

(1) In general, the adaptive smoothing approach has better performance with respect to
the fixed smoothing approach also for a global catalog with large events (Mw ≥ 5.5
and Mw ≥ 6.5);

(2) Using the simple correction described in this work, the inclusion of aftershocks and
foreshocks leads to better spatial performances of the smoothed seismicity models.

A possible future improvement of our method is to include the events below the
magnitude of completeness (Mw < 5.5) in the model to enhance and better describe the
active fault structures and their segments.

Author Contributions: M.T. conceived the method; M.T. and A.A. defined the application; M.T.
performed the data analysis and created the figures; M.T. and A.A. wrote the paper. Both authors
have read and agreed to the published version of the manuscript.

Funding: This study was supported by Centro di Pericolosita’ Sismica (CPS), Istituto Nazionale di
Geofisica e Vulcanologia (INGV).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data and code used in this paper are available at: https://github.com/
MatteoTaroniINGV/SmoothedSeismicity.

Acknowledgments: This study is under the framework of the Mappa di Pericolosita’ Sismica,
MPS16 Project supported by Centro di Pericolosita’ Sismica (CPS), Instituto Nazionale di Geofisica e
Vulcanologia (INGV).

Conflicts of Interest: The authors declare no conflict of interest.

140



Appl. Sci. 2021, 11, 10899

References

1. Electric Power Research Institute. Seismic Hazard Methodology for the Central and Eastern United States; EPR/Report NP-4726;
Electric Power Research Institute: Palo Alto, CA, USA, 1986; Volume 10.

2. Meletti, C.; Galadini, F.; Valensise, G.; Stucchi, M.; Basili, R.; Barba, S.; Vannucci, G.; Boschi, E. A seismic source zone model for
the seismic hazard assessment of the Italian territory. Tectonophysics 2008, 450, 85–108. [CrossRef]

3. Frankel, A. Mapping seismic hazard in the central and eastern United States. Seismol. Res. Lett. 1995, 66, 8–21. [CrossRef]
4. Helmstetter, A.; Kagan, Y.Y.; Jackson, D.D. High-resolution time-independent grid based forecast for M ≥ 5 earthquakes in

California. Seismol. Res. Lett. 2007, 78, 78–86. [CrossRef]
5. Cornell, C.A. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 1968, 58, 1583–1606. [CrossRef]
6. Marzocchi, W.; Taroni, M. Some thoughts on declustering in probabilistic seismic-hazard analysis. Bull. Seismol. Soc. Am. 2014,

104, 1838–1845. [CrossRef]
7. Le Cam, L. An approximation theorem for the Poisson binomial distribution. Pac. J. Math. 1960, 10, 1181–1197. [CrossRef]
8. Serfling, R.J. A general Poisson approximation theorem. Ann. Prob. 1975, 3, 726–731. [CrossRef]
9. Taroni, M.; Akinci, A. Good practices in PSHA: Declustering, b-value estimation, foreshocks and aftershocks inclusion; a case

study in Italy. Geophys. J. Int. 2021, 224, 1174–1187. [CrossRef]
10. Wang, Q.; Jackson, D.D.; Kagan, Y.Y. California earthquake forecasts based on smoothed seismicity: Model choices. Bull. Seismol.

Soc. Am. 2011, 101, 1422–1430. [CrossRef]
11. Ogata, Y. Space-time point-process models for earthquake occurrences. Ann. Inst. Stat. Math. 1998, 50, 379–402. [CrossRef]
12. Zhuang, J.; Ogata, Y.; Vere-Jones, D. Stochastic declustering of space-time earthquake occurrences. J. Am. Stat. Assoc. 2002, 97,

369–380. [CrossRef]
13. Ekström, G.; Nettles, M.; Dziewonski, A.M. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes.

Phys. Earth Planet. Inter. 2012, 200–201, 1–9. [CrossRef]
14. Dziewonski, A.M.; Chou, T.A.; Woodhouse, J.H. Determination of earthquake source parameters from waveform data for studies

of global and regional seismicity. J. Geophys. Res. Solid Earth 1981, 86, 2825–2852. [CrossRef]
15. Schorlemmer, D.; Wiemer, S.; Wyss, M. Variations in earthquake-size distribution across different stress regimes. Nature 2005, 437,

539–542. [CrossRef] [PubMed]
16. Gardner, J.K.; Knopoff, L. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull.

Seismol. Soc. Am. 1974, 64, 1363–1367. [CrossRef]
17. Wiemer, S. A software package to analyze seismicity: ZMAP. Seismol. Res. Lett. 2001, 72, 373–382. [CrossRef]
18. Hiemer, S.; Woessner, J.; Basili, R.; Danciu, L.; Giardini, D.; Wiemer, S. A smoothed stochastic earthquake rate model considering

seismicity and fault moment release for Europe. Geophys. J. Int. 2014, 198, 1159–1172. [CrossRef]
19. Akinci, A. HAZGRIDX: Earthquake forecasting model for ML C 5.0 earthquakes in Italy based on spatially smoothed seismicity.

Ann. Geophys. 2010, 53, 51–61. [CrossRef]
20. Lombardi, A.M.; Marzocchi, W. The assumption of Poisson seismic-rate variability in CSEP/RELM experiments. Bull. Seismol.

Soc. Am. 2010, 100, 2293–2300. [CrossRef]
21. Kagan, Y.Y. Earthquakes: Models, Statistics, Testable Forecasts; John Wiley & Sons: Hoboken, NJ, USA, 2013.
22. Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A. Earthquake likelihood model testing. Seismol.

Res. Lett. 2007, 78, 17–29. [CrossRef]
23. Schorlemmer, D.; Werner, M.; Marzocchi, W.; Jordan, T.H.; Ogata, Y.; Jackson, D.D.; Mak, S.; Rhoades, D.A.; Gerstenberger, M.C.;

Hirata, N.; et al. The collaboratory for the study of earthquake predictability: Achievements and priorities. Seismol. Res. Lett.
2018, 89, 1305–1313. [CrossRef]

24. Savran, W.H.; Werner, M.J.; Marzocchi, W.; Rhoades, D.A.; Jackson, D.D.; Milner, K.; Field, E.; Michael, A. Pseudoprospective
Evaluation of UCERF3-ETAS Forecasts during the 2019 Ridgecrest Sequence. Bull. Seismol. Soc. Am. 2020, 110, 1799–1817.
[CrossRef]

25. Taroni, M.; Zechar, J.D.; Marzocchi, W. Assessing annual global M 6+ seismicity forecasts. Geophys. J. Int. 2014, 196, 422–431.
[CrossRef]

26. Strader, A.; Werner, M.; Bayona, J.; Maechling, P.; Silva, F.; Liukis, M.; Schorlemmer, D. Prospective evaluation of global earthquake
forecast models: 2 yrs of observations provide preliminary support for merging smoothed seismicity with geodetic strain rates.
Seismol. Res. Lett. 2018, 89, 1262–1271. [CrossRef]

27. Kass, R.E.; Raftery, A.E. Bayes factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [CrossRef]
28. Marzocchi, W.; Zechar, J.D.; Jordan, T.H. Bayesian forecast evaluation and ensemble earthquake forecasting. Bull. Seismol. Soc.

Am. 2012, 102, 2574–2584. [CrossRef]
29. Taroni, M.; Zhuang, J.; Marzocchi, W. High-Definition Mapping of the Gutenberg–Richter b-Value and Its Relevance: A Case

Study in Italy. Seismol. Res. Lett. 2021, 92, 3778–3884. [CrossRef]
30. Taroni, M.; Vocalelli, G.; De Polis, A. Gutenberg–Richter B-Value Time Series Forecasting: A Weighted Likelihood Approach.

Forecasting 2021, 3, 561–569. [CrossRef]
31. Akinci, A.; Moschetti, M.P.; Taroni, M. Ensemble smoothed seismicity models for the new Italian probabilistic seismic hazard

map. Seismol. Res. Lett. 2018, 89, 1277–1287. [CrossRef]

141



Appl. Sci. 2021, 11, 10899

32. Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A. Order parameter fluctuations of seismicity in natural time before and after mainshocks.
EPL 2010, 91, 59001. [CrossRef]

33. Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A.; Nagao, T.; Kamogawa, H.; Uyeda, S. Spatiotemporal variations of seismicity before
major earthquakes in the Japanese area and their relation with the epicentral locations. Proc. Natl. Acad. Sci. USA 2015, 112,
986–989. [CrossRef] [PubMed]

34. Rundle, J.B.; Turcotte, D.L.; Donnellan, A.; Grant Ludwig, L.; Luginbuhl, M.; Gong, G. Nowcasting earthquakes. Earth Space Sci.
2016, 3, 480–486. [CrossRef]

142



applied  
sciences

Article

Estimation of the Tapered Gutenberg-Richter Distribution
Parameters for Catalogs with Variable Completeness:
An Application to the Atlantic Ridge Seismicity

Matteo Taroni 1,*, Jacopo Selva 2 and Jiancang Zhuang 3

Citation: Taroni, M.; Selva, J.;

Zhuang, J. Estimation of the Tapered

Gutenberg-Richter Distribution

Parameters for Catalogs with Variable

Completeness: An Application to the

Atlantic Ridge Seismicity. Appl. Sci.

2021, 11, 12166. https://doi.org/

10.3390/app112412166

Academic Editors: Stefania Gentili,

Rita Di Giovambattista,

Robert Shcherbakov,

Filippos Vallianatos and Fernando

M.S.F. Marques

Received: 9 July 2021

Accepted: 3 December 2021

Published: 20 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Istituto Nazionale di Geofisica e Vulcanologia (INGV), 00143 Roma, Italy
2 Istituto Nazionale di Geofisica e Vulcanologia (INGV), 40100 Bologna, Italy; jacopo.selva@ingv.it
3 The Institute of Statistical Mathematics, Tokyo 190-0014, Japan; zhuangjc@ism.ac.jp
* Correspondence: matteo.taroni@ingv.it

Abstract: The use of the tapered Gutenberg-Richter distribution in earthquake source models is
rapidly increasing, allowing overcoming the definition of a hard threshold for the maximum mag-
nitude. Here, we expand the classical maximum likelihood estimation method for estimating the
parameters of the tapered Gutenberg-Richter distribution, allowing the use of a variable through-time
magnitude of completeness. Adopting a well-established technique based on asymptotic theory, we
also estimate the uncertainties relative to the parameters. Differently from other estimation methods
for catalogs with a variable completeness, available for example for the classical truncated Gutenberg-
Richter distribution, our approach does not need the assumption on the distribution of the number
of events (usually the Poisson distribution). We test the methodology checking the consistency of
parameter estimations with synthetic catalogs generated with multiple completeness levels. Then,
we analyze the Atlantic ridge seismicity, using the global centroid moment tensor catalog, finding
that our method allows better constraining distribution parameters, allowing the use more data than
estimations based on a single completeness level. This leads to a sharp decrease in the uncertainties
associated with the parameter estimation, when compared with existing methods based on a single
time-independent magnitude of completeness. This also allows analyzing subsets of events, to
deepen data analysis. For example, separating normal and strike-slip events, we found that they
have significantly different but well-constrained corner magnitudes. Instead, without distinguishing
for focal mechanism and considering all the events in the catalog, we obtain an intermediate value
that is relatively less constrained from data, with an open confidence region.

Keywords: statistical methods; statistical seismology; magnitude-frequency distribution; corner
magnitude; tapered Pareto; tapered Gutenberg-Richter

1. Introduction

The Gutenberg-Richter law [1] is the most widely applied magnitude frequency distri-
bution for earthquakes. If we look only to the distribution of the magnitudes, independently
from the rate of events, this law corresponds to an exponential distribution [2]. In this
case, it depends on only one parameter (the so-called b-value), controlling the slope of the
distribution, and does not have an upper bound for the magnitude. In order to have a more
physical behavior for the right tail of the magnitude distribution, two other formulations
of this law are usually applied: the truncated and the tapered Gutenberg-Richter distribu-
tions [3]. The truncated version applies a hard bound to the tail, i.e., a maximum magnitude
(Mmax). Instead, the tapered version applies a soft bound, i.e., a corner magnitude (CM):
the probability of an earthquake bigger than the corner magnitude decreases very rapidly
asymptotically reaching zero (see Figure 1).
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Figure 1. Probability density functions of the tapered (a) and truncated (b) Gutenberg-Richter
distributions, in a log10 Y-axis scale.

For these two formulations of the Gutenberg-Richter distribution, we need an extra pa-
rameter to be estimated: the maximum and the corner magnitude for the truncated and the
tapered distributions, respectively. Regarding the estimation of the maximum magnitude,
Zöller and Holschneider summarized very well the state of the art: “the earthquake history
in a fault zone tells us almost nothing about Mmax” [4]. This and other papers [5–7] clearly
show that a maximum likelihood estimation (MLE) of Mmax is not applicable, as the MLE
is equal to the maximum observed magnitude and this may be problematic, considering
the relatively short observation time as compared with mean recurrence times of large mag-
nitude events. Conversely, the corner magnitude can be properly estimated if a sufficiently
large amount of data is available [8]. The tapered Gutenberg-Richter distribution, also
called tapered Pareto distribution or “Kagan distribution” by some statistical seismologists,
was deeply investigated primarily by Kagan and Schoenberg [8], and then by Kagan [3],
Schoenberg and Patel [9], and Geist and Parsons [7]. All these works use seismic catalogs
with a single magnitude of completeness. These methods do not need any assumption on
the distribution of the number of events. However, the size of the catalog can largely be
expanded by adopting multiple levels of completeness, with a completeness magnitude
that decreases in time, as the quality and quantity of the available instrumentation improve
(Figure 2). This allows including in the estimation both the large number of relatively small
events recorded by modern monitoring networks, and the larger events that occurred in
the past, possibly also from pre-instrumental times [10].

Existing methods [10–12] that deal with this problem need an assumption regarding
the distribution through the time of the events. The distribution usually assumed is the Pois-
son distribution. This assumption is not always correct for the events in seismic catalogs, in
particular if the magnitude of completeness of the catalog is lower than Mw 6.5 [13], forcing
the application of declustering algorithms. On the other hand, declustering decreases the
number of usable data and may introduce important biases in parameter estimations [14],
which may even depend on the declustering algorithm selected.

This paper aims to develop a method to perform the parameters’ estimation for catalog
with a variable magnitude of completeness (see Figure 2), without making any assumption
on the distribution of the number of events. Thus, such a method can take the pros of
both the previously described approaches, avoiding the cons relative to the single level of
completeness and the Poisson assumption, allowing to use more data in the data estimation.

In the following, we first introduce the method and then we apply it to the Atlantic
ridge seismicity. This region is characterized by shallow seismicity with a prevalence of
normal/strike-slip mechanisms. The statistics of seismicity for oceanic spreading ridges
was already studied in Bird et al. [15] and Bird and Kagan [16], which estimated for these
zones a corner magnitude lower than other parts of the world (CM ≈ 5.8). Here, focusing
on the Atlantic ridge with a longer catalog and our newly developed methodology, we
improve the estimation of the parameters of the tapered Gutenberg-Richter distribution
exploiting the potentiality of the newly developed method.
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Figure 2. Time vs. magnitude plot for a catalog with a variable magnitude of completeness (M(i)
min).

The grey line represents the completeness, black dots the seismic events.

2. Methods

2.1. Maximum Likelihood Estimation of the Parameters

The Gutenberg-Richter distribution and all its derivations were originally devel-
oped using magnitudes. If we use seismic moments (Mom) instead of magnitudes, the
Gutenberg-Richter distributions (unbounded/truncated/tapered) correspond to the Pareto
distributions defined in Kagan [3], with slope parameter β equal to 2/3 the b-value.

The probability density function of the tapered distribution is [3]:

f (Mom) =
(

β
Mom + 1

CMom

)(
Mommin

Mom

)β
exp

(
Mommin−Mom

CMom

)
f or Mommin ≤ Mom < ∞

(1)

where Mommin is the seismic moment of completeness of the catalog, β is the parameter
controlling the slope of the distribution, and CMom is the corner moment that controls the
tail of the distribution. We stress that it is always possible to pass from the seismic moment
to the magnitude distribution (here, we adopt the relationship defined in Kanamori [17].
In this case the corner moment CMom is called “corner magnitude” (CM), and the seismic
moment of completeness corresponds to the magnitude of completeness.

If we have a seismic moment of completeness that varies with time (Mom(i)
min, Figure 2),

we can easily rewrite Equation (1) with:

f(i)(Mom) =
(

β
Mom + 1

CMom

)(
Mom(i)

min
Mom

)β

exp
(

Mom(i)
min−Mom
CMom

)
f or Mom(i)

min ≤ Mom < ∞
(2)

This relationship allows referring each observation to the completeness that holds at
the time of its occurrence: in this time frame, indeed, Equation (2) describes the statistical
distribution that holds.

Being both the parameters of the distribution (CMom and β) in common to all these dis-
tributions (Mom(i)

min is a parameter related to the seismic catalog, estimated independently),
their likelihood holds for all such distributions. Thus, if we have a seismic catalog with
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N earthquakes with moments x1, . . . , xi, . . . , xN , the log-likelihood of the tapered Pareto
distribution becomes:

LL(x1, . . . , xN |β, CMom) =
N

∑
i=1

ln
[

f(i)(xi)
]

(3)

In Equation (3) the probability density function f(i) depends on the seismic moment
of completeness relative to the i-th earthquake. In Figure 3 we summarize the scheme of
our methodology, applied to completeness thresholds relative to Figure 2: in this case the
log-likelihood of Equation (3) is obtained by summing up the log-likelihoods relative to the
three different thresholds of completeness. Notably, if the seismic moment of completeness
is the same for all the events, Equation (3) becomes the classical log-likelihood for the
tapered Pareto distribution [3].

Figure 3. Graphical representation of the log-likelihood computation scheme proposed in this paper
in the case of three different magnitudes of completeness thresholds.

To maximize the likelihood of observations, and evaluate the maximum likelihood
estimation (MLE) of the parameters β and CMom, we adopt a brute-force approach, that
is, we evaluated the log-likelihood for many potential combinations of the parameters,
covering the entire parameter space [12], This allows obtain the complete description of
the log-likelihood function: the maximum of the function (LLmax) is, by definition, the
MLE of the parameters. Moreover, this approach allows evaluating also the shape of the
log-likelihood function, which is particularly useful to assess the uncertainty associated
with the parameters’ estimation, as it will be shown in the next section.

We stress the simplicity of our approach: to move from Equation (1) to Equation (2)
we only need to substitute Mommin with Mom(i)

min, i.e., using the time-variable seismic
moment of completeness instead of the fixed one. As the parameters of the distribution that
we want to evaluate are in common to all periods, we can simply stack their likelihoods,
passing to Equation (3). Noteworthy, this is based on the same principle exploited in
Vere-Jones et al. [18], who used a standard log-likelihood function for a tapered Pareto
distribution with one or more parameters that change with times (Vere-Jones et al. [18],
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Equation (19)), as also in that case, this is possible because each distribution holds at the
time of the observation and the different likelihoods can be stacked by summing them
(Figure 3).

To check the robustness of this approach, we test its performance by estimating the
distribution parameters from synthetic catalogs, for which such parameters are known.
To this end, we simulate, using the Taroni and Selva [11] toolbox (based on the Vere-
Jones et al. [18] method), thousands of synthetic catalogs with different input parameters
(β, CMom, and magnitude of completeness), obtaining a good agreement between the MLE
of the parameters and the input parameters, as expected. The results are shown in Table 1.
The goodness of the agreement should be evaluated based on the estimated uncertainty on
the parameters. Thus, the results of this comparison are discussed in the next section.

Table 1. Input and estimated β and CM relative confidence region for thousands of simulated synthetic catalogs.

Number of
Simulated

Events

Magnitude of
Completeness

Thresholds

Percentage of
Events for

Each
Completeness

β for the
Simulations

Mean of the
Estimated β

CM for the
Simulations

Mean of the
Estimated

CM

Percentage of
Confidence Regions

Containing the Values
Used in the Simulations

100 5.5; 5.0 50%; 50% 0.67 0.659 6.5 6.467 94.0%

1000 5.5; 5.0 50%; 50% 0.67 0.669 6.5 6.498 95.0%

100 6.0; 5.0 25%; 75% 0.80 0.785 7.5 7.232 93.1%

1000 6.0; 5.0 25%; 75% 0.80 0.798 7.5 7.459 95.2%

100 6.5; 5.3 75%; 25% 0.55 0.546 7.0 6.992 94.9%

1000 6.5; 5.3 75%; 25% 0.55 0.551 7.0 7.001 94.7%

2.2. Estimation of the Uncertainties

To evaluate the uncertainties relative to the parameters’ estimation, we use a widely
applied method [3,7,8,16,19] based on asymptotic theory [20], sometimes called profile-
likelihood confidence region estimation [21]. It states that, if we want to estimate the
confidence region of the parameters (in our case, of the tapered Gutenberg-Richter), we have
to “cut” the log-likelihood function at a fixed threshold, and then look at the contour plot
of this cut. Different thresholds correspond to different confidence intervals. For example,
to obtain a 95% confidence region, we have to look at the LL = LLmax − 2.995 threshold,
where LLmax is the maximum of the log-likelihood [8]. Hereinafter, the confidence region
that describes the uncertainties on the parameters’ estimation will be represented by the
contour plot of the selected threshold (see Figure 4 for an illustrative example).

This procedure is adopted to evaluate the goodness of the agreement between input
and estimated parameters for the thousands of synthetic catalogs discussed in the previous
paragraph. In particular, we verify that the input parameters are enclosed in the 95%
confidence region for the estimated parameters about 95% of the simulations, obtaining a
very good agreement. The results are shown in Table 1.
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Figure 4. Contour plot of the bivariate log-likelihood function for the parameters of the Tapered
Gutenberg-Richter distribution; different colors represent the different log-likelihood values, accord-
ing to the color bar on the left; the black curve represents the 95% confidence region, and the black
dot represents the maximum likelihood estimation MLE.

3. Data

As reference seismic catalog, we use the global centroid moment tensor (CMT) cata-
log [22,23] of shallow seismicity (depth ≤ 50 km) from 1980 to 2019. We do not decluster
the catalog, to better exploit the potentiality of our method that does not assume any
temporal distribution for earthquakes. As already commented above, this allows using
more data and avoiding the introduction of the biases induced by declustering on the
β estimation [14,24]. We selected the events in the Atlantic ridge approximately in the
latitude range −60◦:60◦ (see Figure 5a).

Regarding the magnitude of completeness, we use Mw 5.5 from 1980 and Mw 5.0
from 2004, the ones suggested by the authors of the catalog ([23], see Figure 6). We then
carefully test this choice of completeness: as suggested by Marzocchi et al. [25], if the
catalog is complete the magnitudes must follow an exponential distribution, and the
exponentiality of the magnitudes can be tested through the Lilliefors [26] test. To apply this
test with multiple completeness levels, we can build a vector of variables by subtracting
to each magnitude the corresponding magnitude of completeness (M − MC), and test the
exponentiality of this dataset [27]. The hypothesis of exponential distribution cannot be
rejected at any confidence levels, as we obtain a very large p-value (0.50). This demonstrates
the robustness of the chosen magnitudes of completeness. A further check is also performed
in Figure 5b by plotting the M − MC vs. the sequential number of events: as suggested
by Zhuang et al. [28], a homogeneous pattern near the Y-axis (as it is possible to see in
Figure 1b) suggests the correct selection of completeness values for the catalog. The final
catalog contains 1168 events.
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Figure 5. Panel (a): events in the Atlantic ridge selected from the CMT catalog (blue dots) inside the red polygon; panel (b):
difference between the magnitude of events and the relative completeness (M − MC) vs. the sequential number of events.

Figure 6. Time vs. magnitude plot; blue dots represent seismic events, red lines the magnitude
of completeness thresholds; the solid red line represents the reference level (Mw 5.5 from 1980
and Mw 5.0 from 2004), dashed red lines represent the conservative levels (+0.1 and +0.2 on the
reference level).

4. Results

We estimate the corner magnitude and the β of the tapered Pareto distribution both
for the whole catalog and for two sub-catalogs: the one containing only normal events
and the one containing only the strike-slip events. To select the event in the sub-catalogs,
we use the classical Aki-Richards convention for rake: we consider as normal the events
with the rake of both nodal planes of the CMT catalog in the range from −45◦ to −135◦,
and as strike-slip the events with the rake of both nodal planes of the CMT catalog in the
range from −45◦ to 45◦ or 135◦ to 180◦ or −180◦ to −135◦. When the two nodal planes
have different classifications, the event is not classified. The results of this classification
are reported in Table 2. Notably, thrust and undefined events, not contained in either sub-
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catalog, represent only a small part of the events. We underline that in our computation we
do not take into account possible uncertainties in the focal mechanism estimation of the
CMT catalog; future development of the method will try to introduce these uncertainties in
the estimation process.

Table 2. Number of events, percentage (over the whole catalog), and maximum observed magnitude
for the different sub-catalogs.

Type Number of Events Percentage
Maximum Observed

Magnitude

Whole catalog 1168 100% 7.10

Normal events 595 50.9% 6.14

Strike-slip events 523 44.8% 7.10

Thrust events 27 2.3% 6.31

Undefined 23 2.0% 5.83

In Figure 7 we show the results of the estimation for the whole catalog (black curve
and dot), for the normal events (green curve and dot), and strike-slip events (red curve
and dot); the curves represent the estimated 95% confidence regions (corresponding to
2 standard deviations in normal distributions), while the dots represent the MLE. In the
case of distributions with two parameters, the confidence intervals became confidence
regions (see Figure 4), to properly capture the 2D nature of these uncertainties.

Figure 7. 95% Confidence region estimation (curves) and maximum likelihood estimations MLEs (dots) for the whole
catalog (black), and the sub-catalogs with strike-slip events (red), and with normal events (green).

Looking at the shape of the confidence regions, it is evident that the two parameters
result fairly uncorrelated. Both for normal and strike-slip events we obtain closed confi-
dence regions, i.e., the confidence regions define a finite area for the uncertainty, showing
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a well-constrained estimation for all parameters; conversely, for the whole catalog, the
confidence region is open toward large corner magnitudes, indicating an unconstrained
estimation of the corner magnitude [7,8]. These results are compatible with an infinite
corner magnitude corresponding to an unbounded Gutenberg-Richter. We also obtain a
clear distinction of the β values for the two sub-catalogs, which results averaged when
the whole catalog is used. In Table 3 we show all the MLE for the corner magnitude and
β parameters.

Table 3. Maximum likely estimation MLE of the corner magnitude and the slope β , for the whole
catalog and for the two sub-catalogs.

Type Corner Magnitude (MLE) β (MLE)

Whole catalog 7.25 0.92

Normal events 5.78 1.08

Strike-slip events 7.01 0.66

5. Discussion

By adopting the newly developed procedure, we can consider a much larger dataset
for estimating the parameters of the tapered Gutenberg-Richter distribution, as catalog
should not be declustered and different magnitude of completeness can be adopted in an
older time, extending the temporal coverture of the catalog. This allows a deeper analysis
of the Gutenberg-Richter distribution, also considering possible variations in sub-catalogs.

We applied this principle to the seismicity of the Atlantic ridge, obtaining a much-
improved description of its seismicity. In particular, the different shapes of the confidence
regions obtained considering the whole catalog and the sub-catalogs clearly demonstrate
that a mixture of different types of events (i.e., with different focal mechanisms) with
different statistical properties for the Gutenberg-Richter distribution can lead to an un-
trustworthy estimation of its parameters, artificially enlarging their confidence bounds, in
particular for the corner magnitude.

We find instead that the corner magnitude for both normal and strike-slip events is
well constrained, and incompatible with an unbounded Guttenberg-Richter distribution.
This is in agreement with the observation that the size of such a structure is rather limited
in the case of oceanic ridges [15]. The estimation of the corner magnitude for the normal
event is particularly low (CM = 5.78), but it is in line with the estimation obtained by
Bird et al. [15] for oceanic spreading ridge earthquakes (CM = 5.83). Conversely, the
undifferentiated catalog provides an averaged corner magnitude (biased with respect to
both sub-catalogs), with an open confidence region that is compatible with unbounded
distribution. Notably, the sub-catalogs almost completely cover the entire catalog, and the
thrust and unclassified events not only represent a small subset of events, but also cannot
influence the estimation of the corner magnitude, as the maximum observed magnitude
for these events is considerably smaller than the one of the whole catalog (6.31 vs. 7.10).

The slope parameter β for strike-slip event is similar to the one of Schorlemmer et al. [29]
for the global catalog; on the contrary, the β for the normal events is very high (1.08),
corresponding to a b-value equal to 1.62; however, this estimation is quite uncertain (see
Figure 7, green curve), with the 95% confidence region for β ranging from 0.90 to 1.25. This
large confidence region is compatible with the β estimated by Bird and Kagan [16] for the
normal event in the oceanic spreading ridge (β = 0.91).

The results are pretty independent of the selected completeness. In the Supplementary
Material, we perform the same estimation shown in Figure 7, but using a more conservative
magnitude of completeness, obtaining very similar results, and thus demonstrating that
these results are robust and do not depend on the chosen completeness thresholds.

As discussed above, the newly developed estimation method allows increasing the
input dataset by not requiring declustering and by allowing a variation through time
of the completeness level. While the largest reduction is due to no declustering, we not
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that also the possibility of considering different completeness levels has a considerable
impact. In Figure 8 we show the specific impact of the use of different completeness
thresholds through time, allowed by the newly developed estimation method. The results
are compared with the classical estimation method, in which one level of completeness for
the whole catalog is used (Mw 5.5 from 1980 to 2019). The lower number of events available
using only one level of completeness leads to larger confidence regions. In particular, for
normal events, the confidence region computed with the classical method (light green
curve in Figure 8) is much bigger than the one computed with the new method (green
curve in Figure 8). As expected, a larger amount of available information leads to smaller
uncertainties in the estimated parameters, especially in this case. Notably, central values
(MLEs) also change, correcting potential biases. For example, the MLE for the entire catalog
results outside the confidence bounds defined using more data.

Figure 8. 95% Confidence region estimation (curves) and maximum likelihood estimations MLEs (dots) for the classical
estimation approach (light colors: gray, pink, and light green) and the new estimation approach (dark colors: black, red,
and green). As in Figure 7, we report both results using for the whole catalog (gray and black), and the sub-catalogs with
strike-slip events (pink and red), and with normal events (light green and green).

The different shapes of the confidence region considering the whole catalog and the
sub-catalogs show the importance of separating the contribution of different classes of
earthquakes to correctly interpret their behavior. Indeed, the averaged behavior estimated
from the complete catalog is substantially incompatible with the actual behavior of each
single seismicity class. Indeed, by applying the global statistics (obtained by the full
catalog) to each individual class, we would implement the wrong statistics to different
classes, impacting the hazard in a different way. In our case study for the Atlantic ridge,
we would artificially increase the probability of high magnitude normal events. On the
contrary, compared with strike-slip events, we demonstrated that normal earthquakes
have a significantly smaller corner magnitude coupled with a significantly larger b-value,
resulting in a smaller probability of high magnitude normal events.

This not only may complicate the interpretation of the parameter estimation, but also
may have a significant impact on hazard quantifications. For example, most of the recent
ground motion prediction equations to estimate the attenuation of seismic waves from
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the source to target are dependent on faulting mechanisms, applying different attenuation
laws to the different mechanisms (e.g., [30]). This is probably even more impacting is
tsunami hazard, where different mechanisms have a different capability of deforming the
sea bottom, resulting in different tsunamigenic capabilities (e.g., [31]). For example, normal
events are typically more tsunamigenic than strike-slip events. For not introducing artificial
bias in hazard quantification, it will be therefore fundamental to individuate potential
mechanism-dependent variation of earthquake statistics and apply hazard models allowing
for the aggregation of multiple classes of seismicity (e.g., [32]).

6. Conclusions

The main findings of this work can be summarized by the following two points:

(1) We introduce a new method to estimate the parameters of the tapered Gutenberg-
Richter distribution and their uncertainties in the case of catalogs with a variable
through-time magnitude of completeness;

(2) We apply this method to the Atlantic ridge seismicity, finding a clear distinct behavior
both for the parameters β and corner magnitude, depending on the faulting mecha-
nism: larger β and smaller corner magnitude for normal events, smaller β and larger
corner magnitude for strike-slip events.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app112412166/s1. Figure S1: 95% confidence region estimation (curves) and MLE (dots) for the
whole catalog (black), strike-slip events (red), and normal events (green) (completeness thresholds
+0.1); Figure S2: 95% confidence region estimation (curves) and MLE (dots) for the whole catalog
(black), strike-slip events (red), and normal events (green) (completeness thresholds +0.2).
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Abbreviation Meaning

Mmax Maximum magnitude
MLE Maximum likelihood estimation
Mmin Magnitude of completeness
CMT Centroid moment tensor catalog
CM Corner magnitude
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Abstract: We applied a new version of physics-based earthquake simulator upon a seismogenic
model of the Italian seismicity derived from the latest version of the Database of Individual Seismo-
genic Sources (DISS). We elaborated appropriately for their use within the simulator all fault systems
identified in the study area. We obtained synthetic catalogs spanning hundreds of thousands of
years. The resulting synthetic seismic catalogs exhibit typical magnitude, space and time features that
are comparable to those obtained by real observations. A typical aspect of the observed seismicity is
the occurrence of earthquake sequences characterized by multiple main shocks of similar magnitude.
Special attention was devoted to verifying whether the simulated catalogs include this notable aspect,
by the use of an especially developed computer code. We found that the phenomenon of Coulomb
stress transfer from causative to receiving source patches during an earthquake rupture has a critical
role in the behavior of seismicity patterns in the simulated catalogs. We applied the simulator to the
seismicity of the northern and central Apennines and compared the resulting synthetic catalog with
the observed seismicity for the period 1650–2020. The result of this comparison supports the hypothesis
that the occurrence of sequences containing multiple mainshocks is not just a casual circumstance.

Keywords: numerical modeling; earthquake simulator; statistical methods; earthquake clustering;
northern and central Apennines

1. Introduction

A typical aspect of the observed seismicity in the northern and central Apennines,
and in the whole Italian region more generally, is the occurrence of earthquake sequences
characterized by multiple, similarly large mainshocks. An example of this behavior is the
quantitative model “Every Earthquake Precursory According to Scale” (EEPAS), applied
by Rhoades and Evison [1,2,3]. According to their quantitative definition, introduced
by Evison and Rhoades [4], swarms are seismic sequences constituted by at least three
earthquakes whose magnitudes are linked to each other by empirical rules.

In this study we define as a multiplet a set of two or more earthquakes, with the
following conditions: (a) the first event has a magnitude equal to or larger than a given
threshold; (b) the others occur within a time difference and distance defined by the Gardner
and Knopoff [5] criterion from each other; and (c) within a given magnitude range. This
definition is different from that usually applied for common seismicity patterns such as
foreshock–aftershock sequences and clusters (e.g., Gentili and Di Giovambattista [6]).

Building upon a previous paper (Console et al. [7]), in which we examined the aspect
of multiple mainshocks in central Italy, in this study we aim at verifying if a synthetic
catalog reproduces this kind of earthquake clustering. For this purpose, we apply a new
version of the simulator algorithm, in which the role of stress transfer among elements
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of an expanding rupture is enhanced. Moreover, we give also examples of other space-
time seismic features exhibited by synthetic catalogs, both in short- (days–months) and
long-term (years–centuries), some of which were observed in real earthquake catalogs.

In Section 2 we present a brief description of the algorithm used for detecting multiple
events in an earthquake catalog, based on the previously cited (a), (b), and (c) criteria. This
algorithm is applied for providing a possible metric for comparing real observations with
simulations.

Section 3 gives an outline of the seismotectonic model of our study area of northern
and central Apennines, along with examples of recent and historical sequences of multiple
mainshocks observed in this region.

In Section 4, after a short introduction of the new version of the simulator employed
in this study, we show the results obtained applying this simulation code to the above
mentioned seismotectonic model of the study area. Having tried three choices for the two
main free parameters present in the algorithm, for a total of nine different combinations,
we chose one of them by a criterion based on the analysis of the multiplets in the synthetic
catalog of 100,000 years. Some features of this preferred simulated catalog are then com-
pared in several ways with a real set of observations lasting only 370 years in the same
seismogenic area.

Section 5 reports other results of spatio-temporal analysis of the same 100,000 years
simulated catalog that appear to be consistent in reasonable way with real seismicity
patterns not strictly related to our study area. In particular, we show that the use of
simulators allows testing hypotheses of seismogenic models in a way that is not possible
on the basis of real observations, due to lack of completeness and homogeneity of these
observations in the long-term.

2. The Algorithm for Identification of Multiple Events

A special algorithm for the search of multiple events in a seismic catalog was created
to use it as metrics in the comparison between the simulator results and the observed
seismicity of the studied region. The computer code is “customer-built” and it was already
introduced by Console et al. [7]. There is no specific definition of “sequence with multiple
main shocks”, nor any fixed magnitude values. We give here a brief description for a
better understanding of its use. At its first level, the algorithm systematically analyzes
time-ordered couples of events to check if they meet some constitutive conditions. Once
matching couples are found, they are then used as elements for ordered noncyclic graph
construction. These graphs can be ‘traversed’ to find in them the searched multiple events
groups. In accordance with the above definitions, we developed a method based on four
criteria for our comparisons among couples of events (Table 1):

1. There is a minimum magnitude threshold for the first event of the group (hereafter
called “pivot”);

2. The magnitude of any other main shocks of the sequence must lay in a predefined
neighborhood of the pivot’s magnitude;

3. The events’ time differences must be less than a threshold time, which is a function of
event magnitudes (subject to criteria #1 and #2);

4. For any event, a magnitude dependent distance (a radius) is defined and the distance
between the epicentres must be smaller than a proper function of those radii.

The values associated to the criteria #1 and #2 are selected by the user and based on
needs, expert judgment and/or knowledge of the instrumental–historical seismicity of
the area. The relations for time (#3) and distance (#4) thresholds as a function of event
magnitudes were derived from Gardner and Knopoff [5] empiric tables and as epicentre
distance threshold. Notice that the criterion #3 does not provide for a choice, while the
criterion #4 provides for the choice among three different ways of applying the formulas
of Gardner and Knopoff [5]. In this study, we used the sum of the radii. Once launched, the
algorithm parses the catalog through a cyclic, the three-step analysis procedure is repeated
until the end of the file:
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• The first step starts with the selection of the next pivot event and the definition of a
pool of eligible events (if they exist). They are found using criterion #3;

• The second phase is a thorough analysis of all useful couples taken from the pool,
checked for fulfillment of criteria #1, #2 and #4;

• The last step is the construction of the graph, its traversal for the multiplets group
search, its eventual output in the output buffer, and the flagging of used events to not
reuse them after the next pivot search.

Table 1 summarizes the formulas, explaining the rationale by which they were used in
this study, and lists our choices for the threshold values.

Table 1. Constitutive criteria for our clustering analysis algorithm. For each criterion, the second
column shows rationale on which it is based, the third column contains formulas, and the last column
contains choices used in this paper.

Criterion Derived by Formula Our Choice

1
Threshold magnitude
for the first event
(named pivot) (Mthr)

Expert
Judgment Mpivot ≥ Mthr Mthr = 5.5

2
Magnitude differ-
ence with the pivot
(Mpivot − ME2)

Expert
Judgment

ME2 ≥ Mpivot − a
ME2 ≤ Mpivot + b

a = 0.5
b = 0.5

3
Time difference be-
tween the occurrence of
main shocks (tE2 − tE1)

Empirical Relationship (Gardner
and Knopoff [5]) (tE2 − tE1) ≤ tGK(ME1) n/a

4
Spatial distance be-
tween hypocenters
(|�xE2 −�xE1|)

Empirical Relationship (Gardner
and Knopoff [5]) + Expert Judgment

|�xE2 −�xE1| ≤ chosen from:
(a) rGK(ME1)
(b) Max[rGK(ME1), rGK(ME2)]
(c) rGK(ME1) + rGK(ME2)

(c)

Even if the algorithm cannot be called “optimal” in principle, since it is based on an
arbitrary choice among possible criteria, it is, however, quite effective, and its importance
lays in the metrics it represents for comparison among seismic catalogs.

3. Seismotectonic Model

The seismogenic model of the study area straddles northern and central Italy from the
large flat area of the Po Plain (to the north) toward the northern flank of the Gran Sasso
mountain range, the highest sector of the Apennines (to the south, Figure 1). The study
area is wider than that previously studied (Console et al. [8]) through an old version of the
simulator and the seismogenic sources now come from the latest 3.3.0 version of the DISS
(DISS Working Group [9]).

Historical and instrumental seismicity in the study area is mainly distributed along
the axis of the northern and central Apennines chain and, secondarily, in correspondence
with its foothills, plains, and coastal areas (Rovida et al. [10]). The causative sources of the
earthquakes of these two regions have different parameters and kinematics, as shown by fo-
cal mechanisms (Pondrelli et al. [11]), active stress indicators (Mariucci and Montone [12]),
geological data (see DISS Working Group [9] and references therein), and active strain data
(Devoti et al. [13]). As matter of fact, the GPS data show the crustal extension at a rate
of about 3 mm/yr across the Apennines belt and the compression towards the Adriatic
foreland (Devoti et al. [13]).

The active extension along the backbone of the Apennines is accommodated by normal
faulting, which dominates along the hinge of the chain at shallow crustal seismogenic
depth (blue polygons in Figure 1; e.g., Vannoli et al. [14]). The strongest extensional recent
earthquakes in the study area occurred during the 2016-2017 central Italy seismic sequence
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that struck central Apennines with multiple mainshocks (Table 2). The sequence initiated on
24 August 2016 with the Mw 6.2 Amatrice earthquake and was followed on 26 October 2016
by the Mw 6.1 Visso earthquake, about 25 km to the north. The largest event, the Mw 6.6
Norcia earthquake, occurred on 30 October 2016 and nucleated between the source regions
of the two previous mainshocks (e.g., Michele et al. [15]; Rovida et al. [10]). Low-magnitude
earthquakes of this sequence still occur today (http://terremoti.ingv.it/ accessed on 22
November 2021). This seismic sequence activated a circa 80 km long, NNW-SSE trending,
low-angle multiple fault systems (IDs 127 and 128 in Figure 1). These fault systems exhibit
complex ruptures and are the easternmost normal faults of the central Apennines, just west
of where compressional activity prevails (e.g., Basili et al. [16]; Bonini et al. [17]; Di Bucci
et al. [18]; DISS Working Group [9]).

Figure 1. Fault systems and earthquakes. Forty-three DISS (version 3.3.0) seismogenic fault systems
are divided into 198 quadrilaterals that best approximate the DISS composite sources, and they are
labeled with last three numbers of their DISS-IDs (DISS Working Group [9]). They are shown in
accordance with their kinematics (extensional in blue, compressional in red, strike-slip in green), and
have colored circles associated with their upper-left corners. Epicentres of the earthquakes from 1650
to 2020 A.D., with Mw ≥ 5.5, within a 5 km buffer from faults (dotted line) are shown by black circles.
Main shocks of Table 2 are labeled in black (Rovida et al. [10]).

The active compression in the Adriatic foreland is mainly accommodated by thrust
faulting (e.g., Vannoli et al. [19], Vannoli et al. [20]). Thrust faulting is widespread along
the external fronts (red polygons in Figure 1) and propagates from the inner and coastal
areas towards the offshore (to the east) and the Po Plain (to the north). Strongest recent
compressional earthquakes of the study area occurred in Emilia during the 2012 sequence.
This sequence began with the 20 May Mw 6.1 earthquake and was followed on 29 May 2012
by the Mw 5.9 earthquake; therefore, it is characterized by two similarly large mainshocks
(see also Figure 1 in Console et al. [7]). The causative faults systems of the 2012 sequence
are the external arcs of the most advanced and buried portions of the northern Apennines
(IDs 103 and 51 in Figure 1; e.g., Vannoli et al. [20]).

Therefore, the seismogenic model of northern and central Apennines includes onshore
and offshore seismogenic sources characterized by both extensional and compressive
kinematics (DISS Working Group [9]). In addition, dextral strike-slip faulting is present
in the southernmost study area, at the northern border of the Gran Sasso ridge (green
polygons in Figure 1). Generally, the transverse structures are faults inherited from older
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tectonic phases that cut the Adriatic foreland areas accommodating the segmentation of
the thrust fronts and the outward propagation of the fold and thrust belts (e.g., Zampieri
et al. [21]). Specifically, these strike-slip sources are high-angle, ENE–WSW-trending faults
bounding the central Apennines thrust fronts and the southern part of the Apennines basal
decollement. They are relatively deep (having 15–20 km of maximum depth), with shear
zones that affect the Adriatic foreland (IDs 135 and 134). The western source (ID 135) is
believed to be responsible for the seismic sequence that includes two relatively similar large
mainshocks that occurred on 5 September 1950 (Mw 5.7) and 8 August 1951 (Mw 5.3; see
Table 2).

In summary, the earthquake sequences characterized by at least two similarly large
mainshocks are rather common in the study area, affect compressional, extensional, and
strike-slip environments, and are very different from the sequences made up of a single
large earthquake followed by aftershocks of decreasing magnitude. Figure 2 shows the
epicentres of the CPTI15 catalog from 1650 to 2020, with Mw ≥ 5.0, and the colored lines
connect the multiple main shocks events recognized by the algorithm described in the text
and reported in column “Csum” of the Table 2. In the same Table the column “C1st” shows
the results of the algorithm applying the criterion 4a.

Table 2. Largest sequences in real catalog with at least two main shocks of past 370 years (1650–
2020; magnitude and locality from CPTI15). Results of algorithm for detecting sequences with
multiple main shocks in study area are shown in last two columns. Column “Csum” shows results of
algorithm applying criterion 4c, while column “C1st” criterion 4a (Y: simulated; N: not simulated).
Kin: Kinematics; N: normal; S: strike-slip; T: thrust; n.a.: not applicable; * inferred (faults and
kinematics responsible for historical earthquakes are inferred)

# Date Locality Mw Kin Causative Fault C1st Csum

1 14 Jan 1703 Valnerina 6.92 N * Two main neighboring systems of extensional faults
separated by the Olevano–Antrodoco–Sibillini
regional tectonic structure

Y Y
2 2 Feb 1703 Aquilano 6.67 N * Y Y

3 4 Apr 1781 Faentino 6.12 T * Two distinct fault systems with different current
kinematics (two segments of the Pedeapenninic
thrust front and a segment of the easternmost normal
fault system of the northern Apennines)

N Y
4 3 Jun 1781 Cagliese 6.51 N * N Y
5 17 Jul 1781 Faentino 5.61 T * N N

6 17 May 1916 Riminese 5.82 T * The faults responsible for the 1916 sequence are
compressive faults close together and located along
the coast or immediately offshore. The fault
responsible for the 1917 earthquake is an extensional
fault located along the backbone of the northern
Apennines

Y Y
7 15 Aug 1916 Riminese 5.34 T * Y Y
8 15 Aug 1916 Riminese 5.35 T * Y Y
9 16 Aug 1916 Riminese 5.82 T * Y Y
10 16 Aug 1916 Riminese 5.46 T * Y Y
11 26 Apr 1917 Alta

Valtiberina
5.99 N * N Y

12 10 Nov 1918 Appennino for-
livese

5.96 n/a Distinct extensional fault systems along the backbone
of the northern Apennines

Y Y

13 29 Jun 1919 Mugello 6.38 N * Y Y
14 6 Sep 1920 Garfagnana 5.61 N * N Y
15 7 Sep 1920 Garfagnana 6.53 N * N N
16 5 Sep 1950 Gran Sasso 5.69 S * The first two events, close to each other, most likely

belong to the same transcurrent system (see text). The
fault responsible for the third event is not known, and
it could be a relatively deep source

Y Y
17 8 Aug 1951 Gran Sasso 5.25 S * Y Y
18 1 Sep 1951 Monti Sibillini 5.25 n/a N Y

19 26 Sep 1997 Appennino
umbro-
marchigiano

5.66 N SW-dipping low-angle normal fault system straddles
the central Apennines. The three largest events of the
sequence ruptured three adjacent normal fault
segments

Y Y

20 26 Sep 1997 Appennino
umbro-
marchigiano

5.97 N Y Y
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Table 2. Cont.

# Date Locality Mw Kin Causative Fault C1st Csum

21 3 Oct 1997 Appennino
umbro-
marchigiano

5.22 N Y Y

22 6 Oct 1997 Appennino
umbro-
marchigiano

5.47 N Y Y

23 12 Oct 1997 Valnerina 5.19 N Y Y
24 14 Oct 1997 Valnerina 5.62 N Y Y
25 26 Mar 1998 Appennino

umbro-
marchigiano

5.26 N Y Y

26 20 May 2012 Pianura
emiliana

6.09 T Two parallel fault systems along the most advanced
and buried thrusts of the northern Apennines (see
text)

Y Y

27 29 May 2012 Pianura
emiliana

5.90 T Y Y

28 24 Aug 2016 Amatrice 6.18 N Multiple fault systems exhibiting complex ruptures
along the backbone of the central Apennines (see text)

Y Y
29 26 Oct 2016 Visso 6.07 N Y Y
30 30 Oct 2016 Norcia 6.61 N Y Y
31 18 Jan 2017 Aquilano 5.70 N Y Y

The seismogenic model upon which we applied the simulator code was derived from
the Composite Seismogenic Sources (CSS) of DISS, version 3.3.0 (DISS Working Group [9]).
The CSSs are parameterized crustal faults based on regional surface and subsurface ge-
ological data, and they are believed to be capable of producing Mw ≥ 5.5 earthquakes.
We converted the 43 CSSs identified in the study area into 198 quadrilaterals specifically
developed for this study, and this is consistent with all the geometrical and kinematics
parameters supplied for the CSSs (Figure 1). The Table S1 in the Supplementary Mate-
rial reports the list and the parameters of the 198 quadrilaterals recognized in the study
area. Figure S4 shows a sketch of a quadrilateral fault segment and the description of its
geometrical parameters.

Figure 2. Epicenters of CPTI15 catalog from 1650 to 2020, with Mw ≥ 5.0. Colored lines join
mainshocks of the same sequence recognized by algorithm and described in text and in Table 1. The
colors indicate the number of mainshocks for each sequence (the three sequences consisting of two
mainshocks are shown in light green, and so on; see histogram in inset).
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4. Simulation of the Seismicity

By means of a newly developed version of our physically based simulation code
Console et al. [22] and references therein), we compiled synthetic earthquake catalogs
lasting 100,000 years for events of magnitude ≥ 4.2 within the polygonal area depicted in
Figure 1. In this version, no application is performed on the State and Rate formulation, but
we adopted an enhanced role of the static Coulomb stress transfer between every ruptured
element of the fault model and all the other elements in the surrounding faults. In this new
version of the code, the magnitude distribution of the simulated catalog is controlled by
two free parameters to be selected by the user (Console et al. [7,23]):

• The strength–reduction coefficient (S–R); this coefficient controls the growth of an
initiated rupture, reducing the strength that must be exceeded for rupturing new
elements of the expanding rupture, as a proxy of weakening mechanism;

• The aspect–ratio coefficient (A–R); this coefficient limits the progress of strength
reduction if the ruptured area exceeds a given number of times the square of the
width of the rupturing fault system, discouraging rupture propagation over very long
distances.

The seismogenic model adopted in the simulation algorithm is depicted in Figure 1, and
the slip rates assumed for each fault segment are the highest values of the range reported by
the DISS database (DISS Working Group [9]; Table S1 of the Supplementary Material).

We carried out a set of tests to investigate the effect that the two above described
free parameters have on the magnitude distribution of the output catalogs, letting the
S–R parameter assume the values 0.1, 0.2, and 0.3, and the A–R parameter the values
2, 5, and 10, respectively. The results of these tests are reported in Figure S1 of the
Supplementary Material. Each 100,000 years catalog was divided in 270 groups of 370 years
(with the purpose of simulating many instances of the real catalog), counting the number
of multiplets contained in each of them. Table 3 reports the averages and the standard
deviation for the 270 elements population. Then, for each of the nine cases, we carried
out the same analysis on 50 randomized catalogs obtained from the 100,000 years original
ones by shuffling the origin time of all earthquakes by a random permutation. Finally, the
average and the standard deviation of the ratios between the total number of multiplets
in the original catalogs and those obtained from the respective randomized catalogs was
computed (Table 4).

On the basis of the above-mentioned tests, although the largest number of multiplets
is provided by the couple of parameters 0.1 and 2, we chose the simulation obtained
with the values 0.2 and 10 for the S–R and A–R parameters, respectively, which gives
the largest ratio of multiplets. Figure 3 shows the results of this simulation with the
13,845 earthquakes having Mw ≥ 5.0, evidencing the fault segments where the number of
simulated earthquakes is higher. Our simulation algorithm does not produce any seismic
activity outside the borders of the faults considered in the seismogenic model.

A comparison of seismic features detected in the CPTI15 catalog, in the time interval
1650–2020, and the 100,000 years simulated catalog for the study area is shown in Table 5.
For example, in this table we can compare the rate of earthquakes with Mw ≥ 5.0 in the
simulated catalog (0.138/yr) with the corresponding rate of earthquakes with Mw ≥ 5.0 in
the real catalog (0.573/yr). This circumstance is justified by the adoption of relatively high
values of the S–R and A–R free parameters, which favor the growth of nucleated ruptures
and accordingly produce a relatively large quantity of strong earthquakes. Moreover, we
should take into account the fact that the source model adopted in our simulation does not
include the numerous small sources, capable of producing only Mw ≤ 5.5 earthquakes.

Table 5 shows a comparison of seismic features detected in the CPTI15 catalog, in the
time interval 1650–2020, and the 100,000 years simulated catalog for the study area. In
Figure 4, we show the Magnitude–Frequency Distribution (MFD) of the simulated catalog,
compared with that of the 1650–2020 CPTI catalog for events above the completeness
threshold magnitude of 5.0.
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Another metric for comparing our simulations with the real observations is given
by the numbers of multiplets counted in the same time interval of 370 years (third line
of Table 5) and the mean ratio between these numbers and the corresponding numbers
calculated on a set of randomisations (last line of Table 5): these randomisations should
effectively destroy the presence of clustering relation among the events. The obtained
mean number could in our opinion represent the degree of “clustering” of the catalogs.
The value of the ratio systematically greater than one supports the hypothesis that the
occurrence of sequences containing multiple mainshocks is not just a casual circumstance.
Even if this procedure can give different results changing internal criteria, these criteria are
not changed while applying the procedure to the two catalogs to be compared. Figure 5
shows the distribution of the ratios between the number of multiplets identified in the
100,000 years synthetic catalog and 500 randomizations of the same catalog. The average
ratio is 2.13 ± 0.24, which denotes a good agreement between the production of multiplets
of the simulated catalog with respect to that of the observations (see also Table 5).

In Figure 4, we show the MFD of the simulated catalog, compared with that of the
1650–2020 CPTI catalog for events above the completeness threshold magnitude of 5.0.
This figure shows that the MFD of the simulated catalog does not follow a straight line
as expected according to the Gutenberg–Richter law, but exhibits a change in its slope in
the magnitude range 5.7 ≤ Mw ≤ 7.0, where the b-value decreases dramatically. This
circumstance is again due to the selection of the S–R and A–R free parameters, and the
boostered role of the Coulomb stress transfer adopted in this particular study, which
enhances the growth of nucleated ruptures, producing a sort of characteristic earthquake
model.

Figure 3. Map of 13,845 simulated earthquakes with Mw ≥ 5.0, obtained from 100,000 years simula-
tion. Point opacity is proportional to number of epicenters reported in output synthetic catalog in
each cell of fault.

We also performed a comparison between the annual seismic moment rate released
by the earthquakes of the simulated catalog and the observed ones. Adopting Hanks and
Kanamori [24] magnitude–seismic moment conversion formula, we computed the total
seismic moment released in the simulated catalog of 100,000 years. The sum is equal to
0.518 · 1022 Nm, i.e., a seismic moment rate of 0.518 · 1017 Nm/year. In a similar way, we
computed the seismic moment of all earthquakes of M > 5.0 listed in the observational
catalog from 1650 to 2020. A value of 1.35 · 1019 Nm is acquired, implying a seismic moment
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rate of 0.365 · 1017 Nm/year (Table 5). In conclusion, the seismic moment rate released by
the simulated catalog is about 1.4 times larger than that of the observed seismicity. This
could be explained by the uncertainties in the slip-rate values assumed in our seismogenic
model.

Figure 4. Cumulative (yellow line) and density (blue dots) Magnitude–Frequency Distributions
(MFD) of Mw ≥ 5.0 earthquakes of 100,000 years simulated (left panel) and observed (right panel;
CPTI15 from 1650 to 2020 AD) catalogs. Straight dotted lines show best-fit of cumulative distributions.

We should also take into account the limited size of the earthquake catalog considered
in the comparison of the observed seismic moment rate with that obtained from simulations.
In fact, the duration of the 1650–2020 catalog (370 years) is shorter than the recurrence
time on any of the fault segments reported in Table S1 and Figure 1. It is reasonable to
hypothesize that this time window, upon which 22 events with Mw ≥ 6.0 have occurred,
was characterized by a moderate seismic activity in our study area, without a significant
contribution of large magnitude events. In contrast with that situation, in the 17th and
18th centuries large magnitude earthquakes occurred in central-southern Italy, outside our
study area.

In the same way as we prepared Figure 2, we also plot in Figure 6 the epicentres of the
100,000 years simulated catalog with Mw ≥ 5.0. The comparison with Figure 2 shows that
the simulated catalog is characterized by a scarce presence of sequences with a number of
mainshocks larger than 2.

Figure 5. Histogram of ratios between number of multiplets identified in 100,000 years simulated
catalog and 500 randomizations of same catalog.
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Figure 6. Representation of sequences with multiple mainshocks in 100,000 years simulated catalog,
with Mw ≥ 5.0. Colored lines show multiple mainshocks recognized by algorithm described in text,
with colors indicating respective number of earthquakes for each of them (see histogram in log scale
in the inset).

Table 3. Average number of multiplets in 100,000 years simulated catalogs in groups of 370 years.

Free Parameters S–R = 0.1 S–R = 0.2 S–R = 0.3

A–R = 2 1.30 ± 0.07 1.10 ± 0.06 0.84 ± 0.05

A–R = 5 0.92 ± 0.05 0.71 ± 0.05 0.56 ± 0.04

A–R = 10 0.74 ± 0.05 0.65 ± 0.05 0.49 ± 0.04

Table 4. Ratio between total number of multiplets in original 100,000 years simulated catalogs and
average of respective randomized catalogs.

Free Parameters S–R = 0.1 S–R = 0.2 S–R = 0.3

A–R = 2 1.83 ± 0.11 1.77 ± 0.13 1.56 ± 0.11

A–R = 5 2.10 ± 0.20 1.94 ± 0.21 1.88 ± 0.18

A–R = 10 2.00 ± 0.18 2.13 ± 0.24 1.96 ± 0.23

Table 5. A comparison of seismic features detected in CPTI15 1650–2020 catalog and 100,000 years
simulated catalog (S–R = 0.2 and A–R = 10) for study area.

Seismic Features CPTI15 Simulation

Number of events of M ≥ 5.0 per year 0.573 0.138

Seismic moment released per year (Nm) 0.365 · 1017 0.518 · 1017

Number of multiplets in 370 years 8 0.65 ± 0.05

Average number of multiplets in 370 years in the randomized catalogs 4.63 ± 1.88 0.32 ± 0.03

Average ratio of the number of multiplets between the original and randomized catalogs 2.17 ± 1.37 2.13 ± 0.24

5. Long- and Short-Term Features of the Simulated Seismicity

A detailed analysis of the simulated 100,000 years catalog allows the detection of
interesting spatiotemporal features showing similarities with analog features existing in
the observations.
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The following stacking procedure was adopted to highlight if systematic and coherent
time features occur before or after “strong” earthquakes: (1) We take into account earth-
quakes of the simulated catalog with a magnitude greater than 5.2; (2) for each of those
events, occurring at time ti, a time interval around it (ti − Δt, ti + Δt) is considered and
subgroups of events falling inside that interval and with an epicentral distance less than
Δr are added to a stacking list. Their occurrence times are stored as counted relative to
ti, i.e, with times ranging from −Δt to +Δt; (3) Once the stacking list was filled with all
subgroups times, the resulting (−Δt, Δt) interval is divided into a proper number of bins
and events occurrences for any of the bins are counted and reported in the scatter plots.

Long-term seismicity patterns before and after a mainshock are shown in Figure 7.
This figure shows the stacked number of Mw ≥ 4.2 earthquakes that preceded and followed
an Mw ≥ 5.2 earthquake within an epicentral distance of 20 km. Here, we may note an
acceleration of seismic activity some centuries before a mainshock, a modest quiescence
starting 50 years before the mainshock and a strong aftershock occurrence in the following
five years. After this aftershock phase, a trend of long-term quiescence recovering in some
centuries is noted. In Figure S2 of the Supplementary Material we report the same kind
of plots for all the nine combinations of free parameters, showing the same trends, with
minor variations.

As far as the short-term features are concerned, a clear foreshock and aftershock
pattern of the duration of some weeks before and after a magnitude Mw ≥ 5.2 event is
visible in the stacking plot of Figure 8a. With the same time scale, Figure 8b shows a
clear trend of b-value decreasing before a mainshock of Mw ≥ 5.2 and recovering to the
average value just after it. Note that the large scattering of the b-values has no real physical
meaning, but it is simply due to the limited number of earthquakes on which the b-value is
calculated. However, this scattering is much smaller just before and after the mainshocks,
when the earthquakes rate is much larger. In Figure S3 of the Supplementary Material, we
report the same kind of plots for all the nine combinations of free parameters, showing the
same trends, with minor variations. This feature was observed in natural sequences as, for
instance, Montuori et al. [25], Papadopoulos et al. [26], Gulia and Wiemer [27].

Figure 7. Stacked number of Mw ≥ 4.2 earthquakes that preceded and followed an Mw ≥ 5.2
earthquake within an epicentral distance of 20 km in 100,000 years simulated catalog.
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(a)

(b)
Figure 8. (a) Stacked number of Mw ≥ 4.2 earthquakes that preceded and followed an Mw ≥ 5.2
earthquake within an epicentral distance of 50 km in 100,000 years simulated catalog, zooming on a
time scale spanning only 0.1 years (36.5 days); (b) average b-value in time bins of 0.365 days before
and after an earthquake of Mw ≥ 5.2 containing at least 10 events.

6. Conclusions

In this study, we assumed a definition of “multiplet” specifically tuned for the appli-
cation to the seismicity of our study area. A computer code was developed for counting
the number of multiplets detected applying such a definition to any earthquake catalog.
For the CPTI15 1650–2020 catalog, the code detected eight multiplets, which is a number
significantly higher than the average number of multiplets detected in the same way on
a set of 500 data sets obtained randomizing the occurrence times of the original catalog
(i.e., 4.63 ± 1.88 in Table 5). The result of this comparison supports the hypothesis that the
occurrence of sequences containing multiple mainshocks is not just a casual circumstance.
In this study, we also developed a new earthquake simulation code, paying particular
attention to the enhancement of stress interaction among rupturing fault elements, and
increased the number of multiplets in the simulated catalog. In this way, the number of
multiplets detected by the above mentioned computer code on a 100,000-year simulated cat-
alog (176) is 2.13 times higher than the average number of multiplets detected in the same
way on a set of 500 randomized catalogs (Table 5). Besides the production of a significant
number of multiplets, the simulated catalog exhibits long- and short-term spatiotemporal
features that can be considered realistic imitations of those commonly observed in the real
seismicity. We use a stacking procedure in which we compute the number of Mw ≥ 4.2
events that preceded and followed an Mw ≥ 5.2 earthquake in bins of five years consider-
ing the origin time at the time of every strong event in the 100 kyears simulated catalog.
Our results related to northern and central Apennines show an acceleration of seismic
activity some centuries before a mainshock, a modest quiescence starting 50 years before
the mainshock and a strong aftershock occurrence in the following five years (Figure 7). In
the same way, we analyzed the short term patterns in periods of about one month before
and after every Mw ≥ 5.2 earthquake. Our results confirm the capacity of the simulator
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code to reproduce typical foreshocks-aftershocks sequences (Figure 8a). Additionally, in
the simulated catalog for northern and central Apennines, the average b-values show a
decrease lasting a few weeks before the strong earthquakes, followed by an instantaneous
increase at the time of the earthquakes (Figure 8b). This pattern was observed by Montuori
et al. [25], Papadopoulos et al. [26], Gulia and Wiemer [27] in real earthquake sequences.

Supplementary Materials: The following items are available online at https://www.mdpi.com/
article/10.3390/app12042062/s1, Table S1: Geometric and kinematic parameters of the 198 quadri-
lateral fault segments derived from the 43 Composite Seismogenic Sources (CSS) of DISS v. 3.3.0.
Figure S1: Cumulative and density magnitude–frequency distributions of Mw ≥ 4.2 earthquake sim-
ulated catalogs, for the nine combinations of free parameters of Table 3 considered in this study. The
straight dotted lines show the best-fit Gutenberg–Richter distributions. Figure S2: Stacked number
of Mw ≥ 4.2 earthquakes that preceded and followed an Mw ≥ 5.2 earthquake within an epicentral
distance of 20 km in the 100,000 years simulated catalog, for the nine combinations of free parameters
of Table 3 considered in this study. Figure S3: (a) Stacked number of Mw ≥ 4.2 earthquakes that
preceded and followed up to 0.1 years (36.5 days) an Mw ≥ 5.2 earthquake within an epicentral
distance of 50 km in the 100,000 years simulated catalog. (b) b-value in the time bins of 0.365 days
before and after an earthquake of Mw ≥ 5.2 containing at least 10 events, for the nine combinations of
free parameters of Table 3 considered in this study. Figure S4: Sketch of a quadrilateral fault segment.
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