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Preface to ”Situation Awareness for Smart
Distribution Systems”

Smart distribution systems are the next-generation large-scale, interconnected electric power

grids equipped with numerous widely distributed intelligent nodes. Their operations—ranging from

power delivery to voltage regulation, fault response, outage management, and many others—are

strongly affected by electricity users, and vice versa. As modern societies accelerate toward a

future with massive electrification, the power distribution domain is also embracing a fast-changing

landscape, with new systems and technologies for distributed generation, storage, consumption,

sensing, control, control, protection, and optimization. Over the last decade, we have witnessed

enormous opportunities, challenges, efforts, and progress toward an electrified future with smart

distribution systems. Situation awareness, a term originating from military operations, is based on

the inclusive view of the environment to provide comprehensive perception, comprehension, and

prediction. Situation awareness in SDS transforms complex and intangible situation information into

bases for making decisions through signal processing, data mining, knowledge engineering, and,

more recently, artificial intelligence, which enables and/or empowers automated decision making in

the next-generation power distribution systems.

While it is encouraging to witness extensive efforts in this field, situation awareness remains an

emerging research direction for smart distribution systems, with many open yet important questions

to answer in the future, making it a timely topic to focus on in this Special Issue. In this Special

Issue, we present 10 recent studies on a wide range of topics in situation awareness for smart

distribution systems.

Integrated energy systems: Efficient and accurate situation awareness is the key to the effective

management of integrated energy systems. However, the traditional situation awareness of power

systems cannot fully adapt to the strong nonlinearity and uncertainty. We are pleased to present four

papers related to this topic in this Special Issue.

Fault management: The prognosis, diagnosis, and responses of faults also play an important role

in smart distribution systems, which have recently attracted significant attention due to the need for a

more resilient and reliable grid. We are pleased to present two papers on fault detection of generation

systems and secondary equipment.

Non-intrusive load monitoring: As the last mile of the electric power infrastructure, smart

distribution system operations critically rely on non-invasive load monitoring to understand the

patterns of users’ energy consumption in a privacy-preserved manner. We are pleased to present

one paper related to this topic.

Load forecasting: Accurate prediction of load demand—considering diversified generation and

consumption profiles in the distribution grid—is the basis of efficient, flexible, and reliable operations

in smart distribution systems. We are pleased to present two papers on the latest load forecasting

techniques in this special issue.

Operation and maintenance: Proactive operation and maintenance is an effective strategy to

ensure non-disrupted power distribution and extend the lifecycle of power systems. Our Special

Issue is pleased to conclude with a review of operation and maintenance for situation awareness in

smart distribution systems.

Leijiao Ge, Jun Yan, Yonghui Sun, and Zhongguan Wang

Editors
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1. Introduction

In recent years, the accelerating climate change and intensifying natural disasters have
called for more renewable, resilient, and reliable energy from more distributed sources
to more diversified consumers, resulting in a pressing need for advanced situational
awareness of modern smart distribution systems. The continuous connection of distributed
generation, energy storage, and renewable energy to the grid also enriches the power
supply while introducing new consumption patterns and pressures to the power systems.

Modern situation awareness for the smart distribution systems is based on a holistic,
panoramic view of the entire operating environment, including the power supplies and
the user behaviors, to provide comprehensive perception, comprehension, and prediction
for the system. While advanced situational awareness has been widely used in military,
transportation, justice, and other fields, it has also become an enabling technology following
the digitization and informatization of society.

In this Special Issue, we present ten recent studies on a wide range of topics in the
situation awareness for smart distribution systems.

2. Short Review of Contributions

Situational awareness is essential for the planning and operation of an integrated
energy system (IES), which needs to coordinate between different energy sources based
on the accurate states of all interconnected systems. In [1], Li et al. proposed a novel
situational-awareness-based planning strategy to optimize the system capacity, where a
bi-level model optimizes multiple environmental and economic objectives while addressing
the system stability requirements. Solved by an improved NGSA-II algorithm and the
Cplex solver, their model effectively improves system stability and reduces carbon emission
for wind–photovoltaic–thermal power systems.

Microgrids with hydrogen, wind, solar, storage, and other energy sources have become
a new norm of IES. In [2], Wang et al. proposed a two-stage IES energy management model
for wind–PV–hydrogen–storage microgrids based on receding horizon optimization to
tackle the impacts of uncertainties and fluctuations. Their day-ahead optimization in the
first stage and intra-day optimization in the second stage have successfully mitigated the
uncertainties and maintained the grid stability at low operation costs across the microgrid.

The increasing penetration of renewables such as wind power brings uncertainties
with significant challenges to the economic dispatch for IES. To tackle this, [3], Liu et al.
proposed a distributed two-stage chance-constrained dispatch model that can optimize the
IES operation with robustness against wind uncertainty. Considering practical operation
constraints and acceptable risk levels, the new model can be solved efficiently by mixed-
integer tractable programming. Its effectiveness is demonstrated on an IEEE electricity–
gas–heat test case with reduced operating costs.

Energies 2022, 15, 4164. https://doi.org/10.3390/en15114164 https://www.mdpi.com/journal/energies1
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The development of IES poses new challenges to traditional demand response (DR)
programs in distribution grid energy management and optimization. In [4], Li et al. pro-
posed an integrated DR optimization method based on combined models of responsive
electric loads, building thermal dynamics, day-ahead scheduling, and user participation.
The final optimal scheduling mechanism can effectively reduce the operation cost of a
community while considering users’ willingness to participate and the utility’s require-
ment of dispatching, while the robustness is further enhanced based on the conditional
value-at-risk (CvaR) theory.

DC series arc faults pose severe challenges to the safety of photovoltaic (PV) systems
in a smart distribution grid. In [5], Wang et al. proposed a lightweight convolutional neural
network (CNN)-based detector to enable the fast and accurate detection of DC series arc
faults on resource-limited embedded sensors in PV systems. As an edge-friendly solution,
their computationally efficient model can nonetheless precisely detect most faults in various
test conditions on the UL1699B test platform.

While numeric data are the norm of smart distribution system instruction, text data
such as event logs and operator reports comprise another crucial information source. In [6],
Liu et al. proposed a short-text classifier for secondary distribution equipment based on
convolutional neural networks (CNNs). Contextual semantic features are auto-extracted
from words to mine the fault information in text descriptions of faults and defects, which
demonstrates their effectiveness on the real operation data from a regional power grid.

Non-intrusive load monitoring is a key for informed and flexible energy management
in smart distribution systems. In [7], He et al. proposed a new denoising auto-encoder
(DAE)-based strategy that can effectively disaggregate the residential load without ad-
ditional data acquisition. Based on regular active power measurements, their method
outperforms traditional hidden Markov model (HMM)-based techniques and accurately
monitors household appliance consumption in a non-intrusive manner.

As electric vehicles become the future norm of transportation, their charging demand
has also become a focus of short-term load forecast in distribution systems. In [8], Zhang
et al. proposed a combined strategy of multi-channel convolutional neural network and
temporal convolutional network (MCCNN–TCN) to improve the short-term load forecast of
EV-charging demands. By finding temporal characteristics and dependencies in time-series
data from urban charging stations and meteorological information, the strategy effectively
improved the forecast performance over other state-of-the-art methods.

Thermal load is another important focus of load forecast in distribution systems due
to their sensitivity to human preferences and seasonal patterns. In [9], Sun et al. proposed
a new load forecast method based on innovative models of thermal comforts and the
attention mechanism in long short-term memory (LSTM) networks. Validated on real-
world data from Northern China, the new strategy achieved a more accurate forecast of the
electric-heating loads to improve the safety and stability of smart distribution systems.

Situational awareness is essential in the high-quality operation and maintenance of
smart distribution systems. In [10], Ge et al. provided a brief yet inclusive review of
detection, comprehension, and projection technologies to enhance situational awareness
in smart distribution systems. The review is expected to provide researchers and utility
engineers with insights into technical achievements, barriers, and directions of situational
awareness for future smart distribution systems.

3. Conclusions

We sincerely hope the papers included in this Special Issue will inspire future research
into situation awareness for smart distribution systems. We strongly believe that there is a
need for more work to be carried out, and we hope this issue provides a useful open access
platform for the dissemination of new ideas.

Author Contributions: Conceptualization, L.G. and J.Y.; methodology, L.G. and Y.S.; software, Z.W.
and L.G.; validation, L.G., J.Y., and Y.S.; formal analysis, L.G.; investigation, L.G.; resources, L.G.
and J.Y.; data curation, J.Y. and L.G.; writing—original draft preparation, L.G. and J.Y.; writing—
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review and editing, L.G.; visualization, L.G.; supervision, L.G.; project administration, L.G.; funding
acquisition, L.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Science and Technology project of the Headquarters of State
Grid Corporation of China, grant number 5400-202128572A-0-5-SF.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: With the development of integrated energy systems (IES), the traditional demand response
technologies for single energy that do not take customer satisfaction into account have been unable to
meet actual needs. Therefore, it is urgent to study the integrated demand response (IDR) technology
for integrated energy, which considers consumers’ willingness to participate in IDR. This paper
proposes an energy management optimization method for community IES based on user dominated
demand side response (UDDSR). Firstly, the responsive power loads and thermal loads are modeled,
and aggregated using UDDSR bidding optimization. Next, the community IES is modeled and
an aggregated building thermal model is introduced to measure the temperature requirements of
the entire community of users for heating. Then, a day-ahead scheduling model is proposed to
realize the energy management optimization. Finally, a penalty mechanism is introduced to punish
the participants causing imbalance response against the day-ahead IDR bids, and the conditional
value-at-risk (CVaR) theory is introduced to enhance the robustness of the scheduling model under
different prediction accuracies. The case study demonstrates that the proposed method can reduce
the operating cost of the community under the premise of fully considering users’ willingness, and
can complete the IDR request initiated by the power grid operator or the dispatching department.

Keywords: community integrated energy system; energy management; user dominated demand
side response; conditional value-at-risk

1. Introduction
1.1. Background and Motivation

The development of energy cogeneration and integration technologies as well as
renewable energies (e.g., photovoltaic (PV)) has attracted many scholars to undertake
research on integrated energy systems (IES). The term IES takes into consideration many
kinds of energy subsystems, e.g., electricity supply, gas supply, heating, cooling [1,2].
Different forms of energy are coupled and closely connected through energy conversion
equipment (e.g., combined heat and power (CHP) unit, electric heating equipment), and can
meet the diverse energy demands of users. However, because of its multienergy coupling
characteristic, it is impossible to design, plan and optimize separately the operation of
various energy supply systems as the traditional distributed energy supply system does [3].
Therefore, how to efficiently deal with the complementarity and substitution between
different energy streams has become a key issue to realize energy cascade utilization and to
improve comprehensive energy utilization efficiency. Additionally, the traditional energy
management system (EMS) framework cannot adapt to the coexistence and interaction
features of centralization and distribution in IES [4,5] (e.g., the energy management policy

Energies 2021, 14, 4398. https://doi.org/10.3390/en14154398 https://www.mdpi.com/journal/energies5
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proposed in [6] only considers the electric energy, and cannot be applied to deal directly
with multienergy flow problems). Therefore, it is necessary to study the integrated energy
management system (IEMS) technology for multienergy flow.

The control objects of the IEMS can be divided into three layers. The upper layer is
the system-level multienergy flow transmission network, which involves the production,
transmission and safe operation of energy such as gas, electricity, and heat. The middle
layer is a local microenergy unit, with industrial parks, smart communities, and intelligent
buildings as typical application scenarios, and it involves the coordinated scheduling and
optimized operation of multiple energy sources. The lower layer is the user-level integrated
producer and consumer. The multienergy complementarity and alternative features of
IEMS not only provide users with more options for energy use, but also bring optimization
space for the overall regulation and operation of the system. With the development of IES,
existing studies based on the traditional demand response (DR) technologies for a single
energy source (electric energy) [7–9] can no longer meet users’ actual needs, and there is an
urgent need to study integrated demand response (IDR) technology for integrated energy.
Reasonable use of user-side responsive resources to participate in the IDR of the system
will play an important role in realizing the two-way interaction between the supply and the
demand and the win–win situation [10]. On the other hand, information communication
and engineering measurement and control technology have developed rapidly recently.
Having access to a large number of smart sensors has greatly increased the amount of
multienergy flow information that can be collected by the middle layer and user layer of
IEMS. The IEMS can adjust in time based on the measurement or user feedback information,
and improve energy efficiency and operating economy on the premise of ensuring the
user’s energy comfort.

Thus far, the IDR strategies and mechanisms have been studied for many purposes.
In [11], the concept of IDR was first proposed and gas turbines were introduced to supply
power to the power grid during peak time, converting part of the power load into gas
load. Additionally, the incentive effect of natural gas prices on IDR was analyzed through
Nash game theory. In [12], the physical constraints of the natural gas network and the
heating network were processed by piecewise linearization, and an IDR optimal transaction
strategy model based on the mixed-integer second-order cone programming algorithm and
transaction price incentive was proposed. The authors in [13] summarized the development
of IDR from the aspects of system modeling, optimization strategy and power market
mechanisms, and affirmed the positive effect of IDR on improving the flexibility of IES
load response. In [14], an IDR model based on medium- and long-term time dimensions
considering system dynamics was proposed, and taking flexible loads, energy storage, and
electric vehicles into account, an IES scheduling model was established in order to simulate
the benefits for users participating in IDR. In [15], a day-ahead and intraday optimization
scheduling model based on the demand side response was proposed, and the scheduling
times for different energy subsystems were considered to perform rolling optimization
scheduling.

Current research mostly focuses on the impact of market price mechanisms and the re-
fined modeling of IES equipment and networks on IDR [16,17]. It is assumed that users will
continue to participate in IDR events satisfactorily under certain price incentives, or users
will maximize their responsive load during IDR events. Additionally, users are assumed
to allow their own load equipment to be adjusted by EMS or energy service providers.
However, most research ignored users’ willingness to participate in DR programs. In fact,
users are not necessarily willing to give the control of the equipment to EMS or energy
service providers underprice incentives [18]. Users may not provide the maximum re-
sponsive load during IDR due to privacy reasons. In [18], a survey was conducted on
the willingness of 1499 households from a state in Australia to participate in a direct load
control (DLC) plan, and the results showed that only about 13% of customers accepted the
DLC plan. For users, the main reason for reluctance to participate in the DLC program is
that users have low trust in energy companies. At present, there are very few studies on the
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relationship between user satisfaction with participating in IDR events and response load
capacity. In [19], a user dominated demand side response (UDDSR) scheme that allows
energy users to dynamically choose to join or withdraw from DR events was put forward.
In this scheme, users can submit flexible DR bids to community EMS for participating
in DR events. That is, users can flexibly choose the working hours of each household
device. However, this scheme only focuses on electric load, and fails to consider the overall
optimization within IES.

1.2. Novelty and Contribution

In this paper, an energy management optimization method for community IES based
on UDDSR is put forth, where users can submit the day-ahead IDR bid for load responses
that fully meets their own comfort, and respond to the IDR requests issued by the power
grid operator or dispatching department according to the planned capacity of the IDR bid
on the next day. Additionally, an aggregated buildings thermal model is introduced to
establishe the adjustable thermal load model, and the user’s power load adjustable time,
power load adjustable capacity, thermal load adjustable time and heating temperature
are set as optimized parameters to establish a day-ahead scheduling model. Considering
the uncertainty of PV output, user load, outdoor temperature, and user actual UDDSR
response capacity in the community IES, a penalty mechanism is introduced to punish
the participants making imbalanced response against the day-ahead IDR bids, and the
conditional value-at-risk (CVaR) theory is introduced to enhance the robustness under
different prediction accuracy.

The contributions of this paper are summarized as follows:

(1) The interruptible power load, shiftable power load, and adjustable thermal load are
modeled, respectively, and are optimized by UDDSR scheme in order to obtain the
aggregated IDR bids.

(2) An aggregated buildings thermal model is introduced to measure the temperature
requirements of the entire community of users for heating. The adjustable thermal
loads of the IDR bids submitted by users are modeled within the context of air
temperature, and can be optimized by regulating the indoor temperature of users.

(3) From the overall perspective of system operation, a day-ahead scheduling optimiza-
tion model for the community IES based on UDDSR is established, and the CVaR
theory is introduced to deal with the uncertainties in IES.

2. Demand Response Load Modeling Based on UDDSR

In this paper, the detailed UDDSR optimization approach is based on the mechanism
described in [19]. This mechanism allows users to submit flexible bids for DR events and
achieves the optimal aggregation of these bids within the DR events. However, it only
considers electric equipment including interruptible appliances (e.g., heating systems) and
shiftable appliances (e.g., electric vehicles). In this section, the UDDSR optimization with
adjustable thermal loads is further studied within the IDR events.

2.1. UDDSR Optimization with Adjustable Thermal Loads

In this paper, thermal loads of the aggregated buildings are modeled within the
context of air temperature, and can be adjusted by regulating the indoor temperature of
end users. Regarding the adjustable thermal loads of the IDR bids, the maximum and
minimum of the heating temperature, the maximum adjustable temperature for heating,
and the adjustable time period for heating can be set by users. Since this paper studies
the centralized temperature regulation in the case of central heating, the community
energy management system (CEMS) will first classify users according to the maximum
adjustable temperature for heating in the IDR bids. For users who have the same adjustable
temperature, CEMS will select as many users as possible who are willing to adjust the
heating temperature within the IDR request period to participate in the UDDSR thermal
load response according to (1). Additionally, CEMS will select the minimum of the highest

7
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temperatures and the maximum of the lowest temperatures submitted by all users in the
IDR bids as the temperature constraint range of the central heating, as demonstrated in (2).

min
t∈T

VAR(Mt
u) (1)





Tinmin =
Numax
i=1

{
Tl,i
}

Tinmax =
Nu

min
i=1
{Tu,i}

(2)

where Mt
u is the total number of users willing to participate in UDDSR thermal load

response at time t; Tinmin/Tinmax is the minimum/maximum indoor temperature that
costumers are willing to accept, respectively; Tl,i/Tu,i is the minimum/maximum heating
temperature submitted by the user i.

2.2. Adjustable Thermal Loads Model Based on UDDSR

According to [20], the thermodynamic model of the aggregated buildings can be
formulated as the RC equivalent circuit model, as demonstrated in Figure 1, where R is
the equivalent thermal resistance of the house shell; Cair is the air specific heat; Lt

AC is the
adjustable thermal load at time t; Tt

in and Tt
out are the indoor and outdoor temperature at

time t.
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Figure 1. Thermodynamic model of the aggregated buildings.

Therefore, the relation equation between indoor temperature and adjustable thermal
load is as follows:

dTt
in

dt
= − 1

R · Cair
· Tt

in +
1

Cair
·
(

Lt
AC +

1
R
· Tt

out

)
(3)

The discrete model of (3) is

Tt
in = Tt−∆t

in · e−
∆t

R·Cair +
(

R · Lt
AC + Tt

out
)
·
(

1− e−
∆t

R·Cair

)
(4)

where e is a constant; ∆t is the scheduling interval and is assumed to be 1 h in this paper.
Then, the adjustable thermal load Lt

AC is calculated from:

Lt
AC =

1
R
·

Tt

in − Tt−∆t
in · e−

∆t
R·Cair

1− e−
∆t

R·Cair

− Tt
out


 (5)





Tinmin − Tadj · Tt
DRH ≤ Tt

in ≤ Tinmax − Tadj · Tt
DRH∣∣∣Tt

in − Tt−∆t
in

∣∣∣ ≤ ∆Tmax

Tinmin, Tinmax, Tadj ≥ 0
(6)

where Tadj is the maximum adjustable indoor temperature allowed by end users during
IDR event; Tt

DRH , determined by IDR bids, is the adjustable time of thermal load allowed
by users, and if Tt

DRH = 1/Tt
DRH = 0, the thermal load can/cannot be adjusted; ∆Tmax is the

maximum indoor temperature variation during ∆t, and it should be less than 2 ◦C in order
not to affect the comfort of users.

8
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2.3. Electric Loads Model Based on UDDSR

In the community CHP system, the electric loads includes interruptible power loads
and shiftable power loads. Based on the aggregated IDR bids obtained from UDDSR
optimization in [19], the total response power of the interruptible appliances during the
IDR event should be less than the maximum interruptible power at the same time after the
aggregated IDR bid. Thus the interruptible power load is expressed as

0 ≤ Lt
DRE,int ≤ Lt

DRE,intmax (7)

where Lt
DRE,int is the interruptible power load at time t; Lt

DRE,intmax is the maximum
interruptible power load at time t, which can be obtained from aggregated IDR bid of
end users.

The shiftable load model is expressed as

Lt
DRE,sh f = Lt

DRE,sh f ,out − Lt
DRE,sh f ,in (8)

T

∑
t=1

Lt
DRE,sh f ,out =

T

∑
t=1

∣∣∣Lt
DRE,sh f ,in

∣∣∣ (9)

{
0 ≤ Lt

DRE,sh f ,out ≤ Lt
DRE,sh f ,outmax

Lt
DRE,sh f ,inmax ≤ Lt

DRE,sh f ,in ≤ 0
(10)

where Lt
DRE,sh f is the total shiftable power load at time t; Lt

DRE,sh f ,out and Lt
DRE,sh f ,outmax

are the load and the maximum load shifted from time t to other time; Lt
DRE,sh f ,in and

Lt
DRE,sh f ,inmax are the load and maximum load shifted to time t, respectively; T is the opti-

mized scheduling cycle; Lt
DRE,sh f ,outmax and Lt

DRE,sh f ,inmax can be obtained from aggregated
IDR bid of end users.

3. Distributed Generator and Co-Supply Equipment Model
3.1. PV Model

PV is a common distributed generation device in the community, and can be mod-
eled as:

Pt
PV = Pstc ·

Gt

Gstc
· (1 + ε(Tt

s − Tstc)) (11)

where Pt
PV is the PV output power; Pstc is the maximum PV output power under standard

test conditions; Gt is the light intensity and Gstc is that under standard test conditions; ε
is the PV power temperature coefficient; Tt

s is surface temperature of PV and Tstc is that
under standard test conditions.

3.2. Power Supply Equipment Model
3.2.1. Microgas Turbine (MT) Model

MT is an important CHP equipment in community CHP system, and its model is as
follows: {

Pt
MT = Vt

MT · Hng · ηMT
Qt

MT = Vt
MT · Hng · (1− ηMT − ηloss)

(12)

where Pt
MT is the MT output power at time t; Vt

MT is the MT gas consumption at time t; Hng
is the calorific value of natural gas; ηMT is the MT power generation efficiency; Qt

MT is the
MT output heat power at time t; ηloss is the MT power loss efficiency.

3.2.2. Gas Boiler (GB) Model

GB burns natural gas to provide heat for community users and can be modeled as:

Qt
GB = Vt

GB · Hng · ηGB (13)

9
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where Qt
GB is the GB output heat power at time t; Vt

GB is the GB gas consumption at time t;
ηGB is the GB heat production efficiency.

3.2.3. Waste Heat Recovery (WHR) Device Model

WHR can recover the flue gas waste heat after MT power generation to improve the
energy utilization efficiency, and can be modeled as:

Qt
WHR = Qt

WH · ηWHR (14)

where Qt
WHR is the WHR recovered heat power at time t; Qt

WH is the MT waste heat at
time t; ηWHR is the WHR heat recovery efficiency.

3.2.4. Heat Exchanger (HE) Model

HE can convert the heat of hot stream into hot water to provide heating for community
end users, and is modeled as:

Qt
HE = Qt

HE,in · ηHE (15)

where Qt
HE/Qt

HE,in is the HE heat power output/input at time t; ηHE is the HE heat
exchange efficiency.

3.3. Energy Storage Equipment Model
3.3.1. Battery (BT) Model

The charging and discharging of BT can greatly improve the utilization rate of the
response load on the user side, and the model of BT is:

Wt
BT = Wt−∆t

BT · (1− ηBT,loss) +

(
Pt

BT,ch · ηBT,ch −
Pt

BT,dis

ηBT,dis

)
· ∆t (16)

where Wt
BT represents the stored energy in BT; ηBT,loss is the power loss rate of BT; Pt

BT,ch
and Pt

BT,dis are the charging and discharging power of BT, respectively; ηBT,ch and ηBT,dis
are the charging and discharging efficiency of BT, respectively.

3.3.2. Thermal Storage Tank (TST) Model

When the output thermoelectric power ratio of MT does not match the thermoelectric
load ratio of community users, TST can compensate for the difference of thermoelectric
ratio through heat storage and release behavior, and improve the utilization efficiency of
user-side response heat load. TST can be modeled as:

Wt
TST = Wt−∆t

TST · (1− ηTST,loss) +

(
Qt

TST,ch · ηTST,ch −
Qt

TST,dis

ηTST,dis

)
· ∆t (17)

where Wt
TST is the amount of heat stored in TST at time t; ηTST,loss is the energy loss rate of

TST; Qt
TST,ch is the heat storage power of TST; ηTST,ch is the heat storage efficiency; Qt

TST,dis
is the heat release power; ηTST,dis is the heat release efficiency.

4. Community CHP System Model Based on UDDSR

In this paper, the community CHP system consists of MT, GB, WHR, HE, PV, BT and
TST, and its structure diagram is shown in Figure 2.

10
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Then, an energy hub model based on the bus bar form [21] is adopted to model the
community CHP system. The bus bar structure of the community system is shown in
Figure 3, and the flow relations of electricity, gas and heat energy are marked by arrows.
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4.1. Day-Ahead Energy Optimization Model

In the community system studied in this paper, by participating in the UDDSR re-
sponse arranged by CEMS, users can submit the day-ahead IDR bid of load response that
fully meets their own comfort, and respond to the IDR request issued by the power grid
operator or dispatching department the next day according to the planned capacity of
IDR bid. For users, they can reduce or transfer unnecessary loads during the IDR event,
and at the same time receive the subsidy of IDR response from the grid operator. For the
entire community energy system, CEMS can schedule the user loads to the greatest extent
according to the IDR bid plan of users, and thus achieve “peak clipping and valley filling”
in energy use. Meanwhile, on the basis of ensuring the stability of the system operation, the
overall operation cost of the system can also be reduced, and the economy of the system
operation can be improved.

The goal of system optimization is to minimize the total cost of system operation
and the temperature change caused by the thermal load response adjustment within the

11
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allowable range of users, so as to ensure their satisfaction with energy use as much as
possible. This can be described as the objective function below:

min

{
Ctotal +

N

∑
t=1

δt ·
(

Tt
in − Tre f

)2
}

(18)

where Ctotal is the total cost of system operation; Tref is the national standard indoor
optimum temperature; δt is a time-varying parameter that measure the thermal comfort of
users, and during the UDDSR event, δt is relaxed to achieve the purpose of temperature
regulation and consumption reduction, while in other moments δt plays the role of making
the indoor temperature close to the optimal temperature; N is the optimal scheduling cycle.

The total cost of system operation is calculated by the following function:

Ctotal = Cgrid + Cng + Com + CUDDSR (19)

where Cgrid is the cost of electricity purchasing from the grid; Cng is the cost of natural gas;
Com is the cost of equipment operation and maintenance; CUDDSR is the total subsidy for
UDDSR participation given to users by the operator.

Cgrid and Cng can be calculated as:

Cgrid =
N

∑
t=1

et
P · Pt

grid (20)

Cng =
N

∑
t=1

egas ·
(
Vt

MT + Vt
GB
)

(21)

where Pt
grid is the power purchased from the grid; et

p is the market price; egas is the price of
natural gas.

Com can be calculated as:

Com =
N

∑
t=1

(
Com,MT · Pt

MT + Com,GB ·Qt
GB + Com,PV · Pt

PV
)

(22)

where Com,MT, Com,GB and Com,PV are the unit power operation and maintenance costs of
MT, GB, and PV, respectively.

CUDDSR can be calculated as:

CUDDSR = Cu + Ces (23)

Cu =
N

∑
t=1

et
DRE ·

(
Lt

DRE,int +
∣∣∣Lt

DRE,sh f

∣∣∣
)

+ et
DRH · Lt

DRH (24)

Ces =
N

∑
t=1

eBT · (Pt
BT,ch − Pt

BT,dis) + eTST · (Qt
TST,ch −Qt

TST,dis) (25)

Lt
DRH =

1
R
· ∆Tt

1− e−
∆t

R·Cair

(26)

∆Tt = max
{

Tt
in0 − Tt

in, 0
}

(27)

where Cu is the load response subsidy for users; Ces is the energy storage subsidy; et
DRE

is electric load response compensation per unit power; et
DRH is the thermal load response

compensation per unit power; Lt
DRH is the change of thermal power caused by lowering

the room temperature ∆Tt within the range allowed by users at time t; Tt
in0 is the indoor

temperature before UDDSR event; eBT is the unit power subsidy for the charging and
discharging behavior of BT; eTST is the unit power subsidy for heat storage and release
behavior of TST.

The operation constraints are described as follows.

12
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1. Energy balancing constraints

Pt
grid + Pt

MT + Pt
PV − Pt

BT,dis = Lt
AE − Lt

DRE,int − Lt
DRE,sh f + Pt

BT,ch (28)

(Qt
GB + Qt

MT · ηWHR) · ηHE −Qt
TST,dis = Lt

AH + Lt
AC + Qt

TST,ch (29)

where Lt
AE and Lt

AH are the basic electrical load and basic hot water load at time t after
load aggregation, which cannot be scheduled during the UDDSR event.

2. Energy supply constraints

Pt
grid ≤ Pgridmax (30)

PMTmin ≤ Pt
MT ≤ PMTmax (31)

0 ≤ Qt
GB ≤ QGBmax (32)

where Pgridmax is the maximum interactive power between the community system and the
power grid per unit time; PMTmax and PMTmin are the maximum and minimum generating
power of MT; QGBmax is the maximum heating power of GB.

3. Energy storage constraints

For BT, the constraints are:

0 ≤ Pt
BT,ch · St

BT,ch ≤ PBT,chmax (33)

PBT,dismax ≤ Pt
BT,dis · St

BT,dis ≤ 0 (34)

St
BT,ch + St

BT,dis ≤ 1 (35)

WBTmin ≤Wt
BT ≤WBTmax (36)

where St
BT,ch and St

BT,dis are 0–1 variables representing the charging and discharging state
of BT; PBT,chmax and PBT,dismax are the maximum charging and discharging power of BT;
WBTmax and WBTmin are the maximum and minimum energy storage capacity of BT.

For TST, the constraints are:

0 ≤ Qt
TST,ch · St

TST,ch ≤ QTST,chmax (37)

QTST,dismax ≤ Qt
TST,dis · St

TST,dis ≤ 0 (38)

St
TST,ch + St

TST,dis ≤ 1 (39)

WTSTmin ≤Wt
TST ≤WTSTmax (40)

where St
TST,ch and St

TST,dis are 0–1 variables representing the heat storing and releasing state
of TST; PTST,chmax and PTST,dismax are the maximum heat storing and releasing power of
TST; WTSTmax and WTSTmin are the maximum and minimum heat storage capacity of TST.

4.2. CVaR-Based Energy Optimization Model

The day-ahead energy optimization model mentioned in the above section is based
on the accurate prediction of the basic electric and heat loads, PV output, and outdoor
temperature. It ignores the error between the predicted value and actual value, and
assumes that users will maximize the UDDSR response according to the response load
capacity of the IDR bid. However, actually, the prediction error may have a significant
impact on the optimization results, and users may not respond according to the maximum
capacity after UDDSR bid, which must be taken into consideration. In order to solve the
above questions, CVaR is applied.

13
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4.2.1. CVaR Model

CVaR theory was firstly used to solve the optimal portfolio problem of investment
risk related to financial hedging. It is mainly used to measure the investment loss when
the investment loss exceeds the expected maximum loss (i.e., Value-at-Risk (VaR)) under a
given confidence level. The CVaR model is shown as follows.

CVaRcon = E[ f (X, γ)| f (X, γ) > VaRcon] (41)

where CVaRcon is the average excess loss under a given confidence level; con is the confi-
dence level; f (X, γ) is the loss function; X is the investment portfolio; γ is the risk variable;
VaRcon is the expected maximum loss under the con; E[.] expresses the expect function.

If the probability of γ in different scenarios is known, the formulation of discrete CVaR
can be expressed as follows.

CVaRcon = VaRcon +
1

1− con

N

∑
t=1

pt
γmax{ f (X, γ) − VaRcon, 0} (42)

where pt
γ is the probability of γ occurring at time t; N is the number of discrete time

intervals.
However, (42) needs to obtain VaR at the same confidence level first, which complicates

the computing process. To increase the computing speed, the relaxation method in [22]
is applied to solve CVaR and VaR simultaneously. The relaxed CVaR discrete function is
converted into a common optimization problem, and its calculation formula is expressed
as follows.

min g(X, α) = α +
1

1− con

N

∑
t=1

pt
γmax{ f (X, γ) − α, 0} (43)

where CVaRcon is the minimum value of g(X, α); α is the intermediate variable after relax-
ation of VaR, and when g(X, α) goes to the minimum, α is equal to VaRcon.

4.2.2. Day-Ahead Energy Optimization Model Based on CVaR

In the community CHP system, the uncertainties include the prediction errors of elec-
tric and heat load, PV output and outdoor temperature, and the response load fluctuation
of UDDSR. In this section, the random simulation algorithm is used to generate a set of
uncertinty scenarios. It is assumed that the probability distribution of forecast errors and
load response fluctuation obeys the normal distribution with the mean value being the
forecast, i.e., γ~N(rforecast, σ2), and the probability distribution formula is:

h(r) =
1√
2πσ

· e
−(r−r f orecast)

2

2σ2 (44)

where r is the uncertainty variable; σ is the standard deviation of r; rforecast is the forecast
value of r.

According to (43), the day-ahead energy optimization model based on CVaR is formu-
lated as follows.

CVaRcon = minα +
1

M(1− con)

M

∑
i=1

φi (45)

{
φi ≥ Ctotal,i − E[Ctotal,i] − α
φi ≥ 0(i = 1, 2, . . . M)

(46)

where Ctotal,i is the total cost of system operation in scenario i; E[Ctotal,i] is the expected
cost of system operation in all simulated uncertainty scenarios; φi is the middle variable in
scenario i; M is the total number of uncertainty scenarios.
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Then, after considering the uncertainties of forecast error and response fluctuation,
the total cost of system operation can be converted into:

Ctotal = Cgrid + Cng + Com + CUDDSR − Cpunish (47)




Cpunish =
N
∑

t=1
et

punish ·
∣∣Lt

DRE − Lt
DRE0

∣∣

Lt
DRE = Lt

DRE,int + Lt
DRE,sh f

(48)

where Cpunish is the penalty fee when users do not respond according to the response
load optimized by day-ahead UDDSR; Lt

DRE is the total actual response load; Lt
DRE0 is the

response load optimized by day-ahead UDDSR.
Additionally, according to (18), the objective function can be converted into

min

{
E[Ctotal,i] + β · CVaRcon +

1
M
·

M

∑
i=1

N

∑
t=1

δt ·
(

Tt
in,i − Tre f

)2
}

(49)

where β is the uncertainty factor, i.e., the willingness of the community system to take risks,
and β Є[0,1].

Meanwhile, the purpose of the energy optimization based on CVaR is to meet the
operating conditions in all uncertainty scenarios, thus the bus balancing constraints can be
converted into:

Pt
grid + Pt

MT + Pt
PV,i − Pt

BT,dis ≥ Lt
AE,i − Lt

DRE,int,i − Lt
DRE,sh f ,i + Pt

BT,ch (50)

(Qt
GB + Qt

MT · ηWHR) · ηHE −Qt
TST,dis ≥ Lt

AH,i + Lt
AC,i + Qt

TST,ch (51)

5. Case Study

The proposed model is conducted on a community IES modified from a central
neighborhood in Anhui province in China. The community structure diagram is presented
in Figure 2. The forecast curves of electricity load, hot water load, PV output and outdoor
temperature of the system on a typical winter day is shown in Figure 4. In the appendix,
the peak-valley time-of-use electricity price, the subsidy for users participating in UDDSR
and the gas price are shown in Table A1, the equipment operating parameters are shown
in Table A2, and the equipment cost and subsidy parameters are shown in Table A3, which
are all modified from [23]. The cases were compiled with Python 3.7, and solved by
Gurobi solver.
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5.1. Day-Ahead Energy Optimization Based on UDDSR

In order to verify the impact of the UDDSR mechanism on the whole community
system, the outputs of the system equipment before and after the UDDSR response were
analyzed.

5.1.1. Energy Optimization Results without UDDSR Response

When users do not participate in the UDDSR response, the community CHP optimizes
energy consumption according to the prediction values of electric and heat loads, PV
outputs, and outdoor temperature. The optimization results of equipment outputs are
shown in Figure 5. It can be seen that during the valley period of the electricity price, since
the cost of purchasing electricity from the grid is lower than that of MT generation, the
electrical load is almost entirely satisfied by the power supply from the grid. Meanwhile,
since the cost of heat production per unit power of GB is lower than that of MT, and the heat
load at this time is higher, GB gives priority to full power to ensure heat supply. During
the peak period of the electricity price, the cost of power supply from MT is lower than
the electricity price, thus the power supply of MT increases significantly. At this time, the
remaining heat load is supplemented by GB.

On the other hand, due to the CHP characteristics of MT, after complementing the
heat load, MT has excess power. BT charges at the time of 04:00–05:00 and 15:00–16:00 to
dissipate the excess power, and discharges during the peak period of power consumption,
which improves the energy utilization rate and operating economy of the system. Similarly,
when MT produces too much heat, TST uses the heat storage and release characteristics to
meet the thermal load demand.
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Figure 5. Energy optimization results without UDDSR response. (a) Optimization results of electric bus; (b) optimization
results of heat bus.

The change of indoor heating temperature is depicted in Figure 6. It can be observed
that the indoor temperature is always maintained near the optimal room temperature, and
the heating needs are met.
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5.1.2. Energy Optimization Results with UDDSR Response

When users participate in the UDDSR response, they submit a flexible IDR bid to
CEMS according to their own energy demand. The bid content includes the interruptible
load, the shiftable load, the time and capacity of the adjustable load and the CEMS aggre-
gates and optimizes the responsive loads of the users. Based on the aggregated results
of the responsive loads, the energy use of the community CHP system is optimized. The
UDDSR bid results are shown in Figure 7. In this figure, the green curve indicates the
adjustable time of the heating temperature allowed by users. When L_DRH State >0, the
upper and lower limits of the heating temperature are allowed to be reduced by Tadj, i.e.,
the heating range is changed into Tinmin- Tadj ≤ Tt in ≤ Tinmax- Tadj; when L_DRH State
< 0, the heating temperature cannot be reduced, i.e., the thermal load cannot be adjusted.
In this case, it is assumed that Tadj = 1, Tinmin = 18, Tinmax = 26. It can be seen that the
operating costs of the community CHP system are lower when users perform UDDSR
based on the optimized IDR response load, compared with performing UDDSR according
to the maximum response capacity of the aggregated IDR bid.
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The optimization results of the equipment output after the UDDSR response are shown
in Figure 8. Figure 8a indicates that after the UDDSR response, the power purchasing from
the grid during the peak load period is significantly reduced, since part of the unnecessary
load is interrupted or shifted. Figure 8b indicates that during the period of 00:00–05:00 and
21:00–23:00, the MT heat supply is significantly reduced, and the heat load of the users has
been adjusted.

Figure 9 represents the comparison of the electric heating load before and after the user
response. It can be observed that the UDDSR mechanism has an obvious “peak-shaving
and valley-filling” effect on the community system, and can successfully complete the
demand response events initiated by the grid operator or dispatching department.

Figure 10 displays the indoor heating temperature changes before and after UDDSR
response. After the UDDSR response, the heat load during the period of 00:00–05:00 and
21:00–23:00 has been reduced to a certain extent. Although the actual room temperature
has been lowered, it is still higher than Tinmin- Tadj. This means the community system
does not operate according to the minimum heating temperature, which guarantees the
energy satisfaction of users to the greatest extent, and verifies the accuracy and validity of
the heating temperature constraint in (18)
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The comparison of system operating costs before and after UDDSR response is shown
in Table 1. It can be seen that after participating in the UDDSR response, users can directly
receive a load response compensation of RMB 250.49 (including power load and thermal
load response compensation). The total daily operating cost of the community system
is reduced by RMB 543.75, and the saving rate can reach 3.09%. The results verify the
effectiveness of the proposed UDDSR mechanism.

Table 1. System operation costs before and after UDDSR response.

Before UDDSR After UDDSR Saving (%)

Electricity purchasing cost (RMB) 7344.90 6715.64 8.57%
Gas purchasing cost (RMB) 9153.34 9001.82 1.66%

Operation and maintenance (RMB) 1122.07 1108.60 1.20%
Power load response compensation (RMB) 0 205 /

Thermal load response compensation (RMB) 0 45.49 /
BT subsidies (RMB) 0 5.70

Adjustable temperature (◦C) 0 1 /
Total cost (RMB) 17,620.31 17,076.56 3.09%

5.2. CVaR-Based Energy Optimization

In this subsection, the random simulation sampling method based on (44) is used to
model the uncertainties that the community system may face. Four scenarios where the
maximum prediction error and maximum load response fluctuation (maximum uncertainty
fluctuations) are not more than 5%, 10%, 15% and more than 15% are set for comparison.
Among them the maximum prediction error of outdoor temperature is set to be not more
than 2 ◦C. The number of subscenarios in the uncertainty scenario set for each scenario is
100. The influence of different confidence levels con and different uncertainty coefficients β
on the system optimization results is analyzed.

5.2.1. Energy Risk Optimization Results Based on CVaR

Scenario 2, where the maximum uncertainty fluctuation does not exceed 10%, is
taken as an example to analyze the optimization results when con = 0.95, β = 1. A set of
uncertainty scenarios is depicted in Figure 11.
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Figure 11. Uncertainty scenarios set with maximum risk fluctuation ≤10%.

The electrical load response is assumed to fluctuate below the optimal response
obtained by day-ahead optimization based on UDDSR, i.e., the case only considers the
situation where the actual response of users does not meet the standard. The adjustable
thermal load is allowed to be regulated at 00:00–05:00 and 21:00–23:00, and this setting has
a certain logical consistency with the heating needs of users.

The system energy optimization results of scenario 2 are depicted in Figure 12. From
Figure 12a, it can be observed that when β = 1, the power supply of the community
system is greater than the predicted electric load in most periods. In Figure 12b, L_AC0
is the thermal load of users before the UDDSR response, and the heating power of the
community system during 00:00 and 06:00–13:00 is greater than the predicted heating load.
The community system adopts a completely conservative risk avoidance strategy, i.e., to
make the system operate normally under the interference of any risk fluctuations in the
second scenario, the system equipment output as much power as possible to meet the
electric and heating demand of users.

Figure 13 shows the changes in indoor temperature in the four scenarios. It can be
seen that the greater the risk fluctuation, the greater the indoor temperature variation.
However, the change of the indoor temperature remains within 2 ◦C per unit time, and the
indoor temperature is kept within the upper and lower limits allowed by users.
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Figure 12. System energy optimization results with maximum uncertainty fluctuation ≤10%. (a) Optimization results of
electric bus; (b) optimization results of heat bus.

The comparison of system operating costs in the four scenarios is shown in Table 2.
When the maximum risk fluctuation is less than or equal to 5%, the expected total cost of
system operation is reduced by RMB 158.7 compared with the total cost without UDDSR
response, that is, a saving of 0.9%. When the maximum risk fluctuation is less than or
equal to 10%, the expected cost of the community system operating in the second scenario
is RMB 212.33 higher than that without UDDSR response. The system only needs to pay
1.21% more in operating expenses to deal with the impact of 10% risk fluctuation. When
the maximum risk fluctuation is larger than 10%, the expected cost of system operation
will continue to rise as the risk fluctuation becomes larger. Once the prediction error is
large, the system must pay high costs in order to avoid operational risks. On the other
hand, the average excess loss of the system increases with the increase in risk fluctuations,
indicating that the system needs to increase investment to better deal with risks, which
verifies the rationality of the algorithm proposed in this paper.

Energies 2021, 14, x FOR PEER REVIEW 18 of 24 
 

 

  
(a) (b) 

Figure 12. System energy optimization results with maximum uncertainty fluctuation ≤10%. (a) Optimization results of electric bus; 
(b) optimization results of heat bus. 

The comparison of system operating costs in the four scenarios is shown in Table 2. 
When the maximum risk fluctuation is less than or equal to 5%, the expected total cost of 
system operation is reduced by RMB 158.7 compared with the total cost without UDDSR 
response, that is, a saving of 0.9%. When the maximum risk fluctuation is less than or 
equal to 10%, the expected cost of the community system operating in the second scenario 
is RMB 212.33 higher than that without UDDSR response. The system only needs to pay 
1.21% more in operating expenses to deal with the impact of 10% risk fluctuation. When 
the maximum risk fluctuation is larger than 10%, the expected cost of system operation 
will continue to rise as the risk fluctuation becomes larger. Once the prediction error is 
large, the system must pay high costs in order to avoid operational risks. On the other 
hand, the average excess loss of the system increases with the increase in risk fluctuations, 
indicating that the system needs to increase investment to better deal with risks, which 
verifies the rationality of the algorithm proposed in this paper. 

  
(a)  (b)  

Figure 13. Cont.

21



Energies 2021, 14, 4398
Energies 2021, 14, x FOR PEER REVIEW 19 of 24 
 

 

  
(c)  (d)  

Figure 13. Comparison of indoor heating temperature in different scenarios (con = 0.95, β = 1): (a) maximum uncertainty fluctuation 
≤5%; (b) maximum uncertainty fluctuation ≤10%; (c) maximum uncertainty fluctuation ≤15%; (d) maximum uncertainty fluctuation 
>15% (about 50%) 

Table 2. System operation costs in different scenarios (con = 0.95, β = 1). 

Scenarios Before UDDSR 1 2 3 4 
Maximum risk fluctuation 0% ≤5% ≤10% ≤15% >15% 

Electricity purchasing cost (RMB) 7344.90 6889.18 7293.46 8048.00 11529.32 
Gas purchasing cost (RMB) 9153.34 9208.27 9177.42 9338.93 9765.28 

Power load response subsidies (RMB) 0 203.25 200.87 196.98 183.88 
Thermal load response subsidies (RMB) 0 37.32 45.13 26.54 20.97 

BT subsidies (RMB) 0 5.70 5.70 5.71 5.93 
Imbalance response penalty (yaun) 0 3.77 8.81 17.21 46.23 

Adjustable tmperature (°C) 0 1 1 1 1 
Total expected cost of operation (RMB) 17,620.31 17,461.61 17,832.64 18,739.14 22,662.36 

CVaR (RMB) 0 4.13 5.21 17.45 41.01 
Total cost savings ratio / 0.90% −1.21% −6.34% −28.61% 

5.2.2. Impact of Confidence Level and Uncertainty Coefficient of CVaR on Energy Use 
Optimization 

To further study the impact of confidence level con and uncetianty coefficient β (the 
risk preference of system operators) on the system optimization results, scenario 2 is used 
as an example to construct the following test set. 

{ }= 0.99,0.95,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0con   (52)

{ }β = 1,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0   (53)

The performance of the expected cost of community system operation on the test set 
under scenario 2 is shown in Figure 14. The expected cost of system operation decreases 
as the confidence level decreases. This is because the predicted value of the uncertainty 
variable is used to generate the scenario. The lower the value of con, the lower the proba-
bility that the predicted value of the uncertainty variable is included in the uncertainty 
scenario set (i.e., the closer the uncertainty variable is to the predicted value). On the other 
hand, β represents the weight of CVaR in the optimization objective function. The larger 

Figure 13. Comparison of indoor heating temperature in different scenarios (con = 0.95, β = 1): (a) maximum uncertainty
fluctuation ≤5%; (b) maximum uncertainty fluctuation ≤10%; (c) maximum uncertainty fluctuation ≤15%; (d) maximum
uncertainty fluctuation >15% (about 50%).

Table 2. System operation costs in different scenarios (con = 0.95, β = 1).

Scenarios Before UDDSR 1 2 3 4

Maximum risk fluctuation 0% ≤5% ≤10% ≤15% >15%
Electricity purchasing cost (RMB) 7344.90 6889.18 7293.46 8048.00 11529.32

Gas purchasing cost (RMB) 9153.34 9208.27 9177.42 9338.93 9765.28
Power load response subsidies (RMB) 0 203.25 200.87 196.98 183.88

Thermal load response subsidies (RMB) 0 37.32 45.13 26.54 20.97
BT subsidies (RMB) 0 5.70 5.70 5.71 5.93

Imbalance response penalty (yaun) 0 3.77 8.81 17.21 46.23
Adjustable tmperature (◦C) 0 1 1 1 1

Total expected cost of operation (RMB) 17,620.31 17,461.61 17,832.64 18,739.14 22,662.36
CVaR (RMB) 0 4.13 5.21 17.45 41.01

Total cost savings ratio / 0.90% −1.21% −6.34% −28.61%

5.2.2. Impact of Confidence Level and Uncertainty Coefficient of CVaR on Energy
Use Optimization

To further study the impact of confidence level con and uncetianty coefficient β (the
risk preference of system operators) on the system optimization results, scenario 2 is used
as an example to construct the following test set.

con = {0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0} (52)

β = {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0} (53)

The performance of the expected cost of community system operation on the test set
under scenario 2 is shown in Figure 14. The expected cost of system operation decreases as
the confidence level decreases. This is because the predicted value of the uncertainty vari-
able is used to generate the scenario. The lower the value of con, the lower the probability
that the predicted value of the uncertainty variable is included in the uncertainty scenario
set (i.e., the closer the uncertainty variable is to the predicted value). On the other hand, β
represents the weight of CVaR in the optimization objective function. The larger the weight,
the more the system tends to avoid uncertainties. Therefore, when con is determined, the
expected cost of the system increases with the increase of β.
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Figure 15 shows the average excess loss CVaR that the community runs under uncer-
tainty on the test set. The average excess loss of the system decreases with the increase in
the CVaR weight. The larger the CVaR weight, the more prone the system is to uncertainties,
and the system will try to reduce possible uncertainty-induced losses even if this results in
of higher operation costs. On the other hand, when β is determined, the average excess loss
increases with the rise of con. This is because CVaR measures the tail uncertainty outside
the confidence interval. The larger con is, the greater the deviation between the uncertainty
variables and the predicted value in the uncertainty scenario, and the greater the possible
uncertainty loss is.

To more clearly show the relationship between CVaR and the expected cost of system
operation, a case where con = 0.95 is analyzed. In this case, the uncertainty variables
contained in the uncertainty scenario set are more volatile, and the system is faced with
greater possible uncertainties. The results are shown in Figure 16. When β increases, the
expected cost of the system continues to increase, while the average excess loss of the
system continues to decrease. This is because the greater β is, the more the system prefers
to avoid uncertainties, and the system is willing to pay higher operating costs in exchange
for lower excess losses.

Figure 14. The changes of expected cost of system operation with con and β (maximum uncertainty
fluctuation ≤10%).

Figure 15. The changes of CVaR with con and β (maximum risk fluctuation ≤10%).
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6. Conclusions

This paper proposes an energy optimization method for community IES based on
UDDSR. The thermal model of aggregated buildings is introduced to measure users’
adjustable thermal load, and the responsive loads including power loads and thermal
loads are aggregated and optimized through UDDSR optimization. Then, a day-ahead
scheduling model is proposed to optimize the energy management for the community
IES, and CVaR theory is introduced to deal with the volatility of PV output, user load,
outdoor temperature, and user actual UDDSR response load. The case study shows
that the proposed UDDSR mechanism can effectively reduce the operating costs under
the premise of fully considering the willingness of users to participate in IDR events.
Additionally, the optimization method based on CVaR enables the community system to
pay less than 2% in additional operating costs to deal with the energy deviation caused by
the maximum uncertainty of 10%, thus verifying the correctness and effectiveness of the
method presented in this paper. For further study, the relationship between user energy
consumption behavior and response capacity can be explored, so as to construct a reward
and punishment mechanism that is more suitable for the energy needs of users.
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Appendix A

Table A1. The electricity price, subsidy for UDDSR participators and gas price.

Time period Electricity Price
(RMB/kWh)

Power Load
Response Subsidy

(RMB/kWh)

Thermal Load
Response Subsidy

(RMB/kWh)

Imbalance
Response Penalty

(RMB/kWh)

Gas Price
(RMB/m3)

Peak time
((09:00–13:00],
[17:00–20:00))

1.19 0.3 0.2 0.6 3

Normal time
((06:00–08:00],
[14:00–16:00))

0.75 0.1 0.2 0.4 3

Valley time
((00:00–05:00],
[21:00–23:00))

0.36 0.05 0.2 0.18 3

Table A2. The equipment operating parameters.

Parameter Value Parameter Value

MT generating efficiency 0.36 TST heat releasing efficiency 0.95

MT maximum output power 500 kW TST self-loss rate of thermal energy 0.04

MT minimum output power 10 kW TST maximum capacity 100 kWh

GB heat production efficiency 0.85 TST minimum capacity 0 kWh

GB maximum thermal output power 600 kW TST maximum heat storage/release power 50 kW

GB minimum thermal output power 0 kW Maximum power purchased from the grid 1000 kW

BT charging efficiency 0.95 Minimum power purchased from the grid 0 kW

BT discharging efficiency 0.95 Maximum power of interruptible power load Lt
DRE,intmax

BT self-loss rate of electrical energy 0.04 Maximum power of shiftable power load Lt
DRE,sh f ,outmax/Lt

DRE,sh f ,inmax

BT maximum capacity 100 kWh Maximum indoor temperature 26

BT minimum capacity 0 kWh Minimum indoor temperature 18

BT maximum charging/discharging power 50 kW Optimum indoor temperature 21

TST heat storing efficiency 0.95 Maximum adjustable temperature Tadj

Table A3. The operation and maintenance cost of equipment and subsidy parameters.

Equipment Operation and Maintenance Cost (RMB/kWh) Equipment Subsidy (RMB/kWh)

MT 0.075 BT 0.01

GB 0.08 TST 0.01

PV 0.01
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Abstract: The accuracy of the electric heating load forecast in a new load has a close relationship with
the safety and stability of distribution network in normal operation. It also has enormous implications
on the architecture of a distribution network. Firstly, the thermal comfort model of the human body
was established to analyze the comfortable body temperature of a main crowd under different
temperatures and levels of humidity. Secondly, it analyzed the influence factors of electric heating
load, and from the perspective of meteorological factors, it selected the difference between human
thermal comfort temperature and actual temperature and humidity by gray correlation analysis.
Finally, the attention mechanism was utilized to promote the precision of combined adjunction model,
and then the data results of the predicted electric heating load were obtained. In the verification, the
measured data of electric heating load in a certain area of eastern Inner Mongolia were used. The
results showed that after considering the input vector with most relative factors such as temperature
and human thermal comfort, the LSTM network can realize the accurate prediction of the electric
heating load.

Keywords: electric heating; load forecasting; thermal comfort; attention mechanism; LSTM neu-
ral network

1. Introduction

Electric heating is a clean, efficient, and flexible form of heating equipment. In recent
years, coal-fired heating has been gradually replaced by electric heating in northern China.
In order to control urban haze pollution and improve the quality of life of residents, in
recent years, the relevant departments of the state have launched the policies of “electricity
instead of coal” and “electricity instead of oil” [1]. These policies promote the process
of clean energy gradually replacing polluting energy and greatly improve the effect of
reducing pollutant emissions. With the continuous improvement of residents’ requirements
for indoor comfort, the scale of electric heating in winter is increasing year by year, and
electric heating is used more and more frequently. Meanwhile, the daily maximum load in
winter is also increasing.

Electric heating equipment can be divided into centralized (direct heating electric
boiler, regenerative electric boiler, etc.) and distributed (heating cable, electric heating film,
carbon crystal heating, etc.). Because electric heating in operation will not produce pollution
gas and noise, it is very clean and environmentally protective. The typical characteristics
of electric heating are high power, concentrated load, easy-to-produce peak load, and large
peak valley difference, and thus it has a great impact on distribution lines [2]. Therefore,
accurate load forecasting of electric heating load has great practical significance.

The influence of meteorological factors on short-term load forecasting cannot be ig-
nored. The relevant literature mainly analyzes the factors such as temperature, humidity,
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wind, and precipitation. The article [3] studies the influence of meteorological time series
characteristics on urban power consumption and proposes a prediction method different
from traditional methods. Articles [4,5] analyzed the prediction model of meteorological
sensitive load under the influence of temperature, humidity, snowfall, and other meteoro-
logical factors, and put forward the strategy of data processing.

Electric heating load is a kind of temperature control load [6]. In recent years, scholars
from all over the world have carried out research work on temperature-controlled load
characteristics. The authors of [7,8] predicted the dispatchable capacity and the ability to
respond to grid dispatching from the perspective of temperature-controlled load providing
auxiliary services for the power system. In the study of [9], the characteristic law of typical
microgrid temperature-controlled load is analyzed, and a physical model and a rough
scheme for optimal scheduling is established. The authors of [10,11] analyzed and modeled
the typical temperature control load characteristics in the centralized area, evaluated the
load more accurately in the multi-state situation, and proposed a real-time management
and control scheme for the temperature control load.

Load forecasting is based on historical load and weather data in order to analyze the
possible influence of historical load data on future load changes, so as to achieve accurate
load forecasting in a certain period of time in the future [12]. Short-term load forecasting
only forecasts the data of each period in the next few days. The classical load forecasting
algorithms generally include artificial neural network (ANN) [13], support vector machine
(SVM) [14], and gray neural network [15]. For the learning of time series data, the long-
short term memory (LSTM) network algorithm is more mature. In the study of [16], the
convergent cross mapping (CCM) method was used to study the internal relationship
between power consumption and temperature, wind speed, and other factors. The LSTM
neural network model was established, and the urban power consumption was predicted.
The results show that the accuracy was good. In [17], different training steps of electric
heating load forecasting are compared on the basis of the LSTM network. The results show
that LSTM network can achieve accurate electric heating load forecasting in different time
scales.

The research on the influence of absolute temperature on power load forecasting has
been relatively mature. Few studies have considered the influence of users’ thermal com-
fort temperature in different environments, taking the difference between users’ thermal
comfort temperature and air temperature as the input of load forecasting model.

On the basis of the analysis of electric heating load characteristics in distribution
network, this paper focused on the analysis of meteorological factors and the comfort
temperature of a main crowd. Firstly, the interfering factors of electric heating load were
studied by gray relational analysis method. Then, the thermal comfort temperature model
of residents was constructed. Finally, the historical data of electric heating load were
connected with the traditional influencing factors and the difference between thermal
comfort temperature and air temperature, and the electric heating load was predicted by
the improved LSTM network. Meanwhile, the proposed model was compared with other
models. The results showed that the prediction effect of the proposed method was better.

This paper proposes an electric heating load forecasting method based on improved
human thermal comfort model and improved LSTM neural network. The main contribu-
tions of this paper are as follows:

1. Modeling the thermal comfort of the human body.
2. The difference between the user’s thermal comfort temperature and the temperature

is introduced, rather than the absolute temperature value as the input in the network
model.

3. On the basis of LSTM network, we added attention mechanism and dropout layer.

2. Thermal Comfort Model of the Human Body

The use of electric heating devices in heating areas in China (such as eastern Inner
Mongolia) has gradually become mature, and its comfort is very important to the user
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experience. In the use of decentralized electric heating, human thermal comfort will affect
the heating time, heating temperature, and other factors, thus affecting the electric heating
load data. As the most important driving force of user response, thermal comfort should
be considered in load forecasting.

Indoor environment quality will directly affect the physical and mental health and
work efficiency of human body. It is very important and fundamental for people in a heated
area to achieve a comfortable indoor temperature. Thermal comfort is used to indicate
that most people are satisfied with the objective thermal environment, both physically and
psychologically. It is mainly affected by physical conditions, physiological conditions,
and psychological conditions [18]. The physical conditions include the heat transfer
performance and shading coefficient of the walls and windows of the building where
people live, the internal disturbance of lighting and equipment, the growth rate of indoor
microorganism, and so on, which are not affected by the human body’s own activities.
Physiological conditions include the change of perspiration rate caused by the roughness
or cracking of human skin, the intensity of exercise when carrying out routine activities,
and the regulation of local or overall sensation of radiation temperature. Psychological
conditions refer to the deviation between the factors and psychological expectation in the
thermal environment, which are closely related to subjective feeling.

At present, the thermal comfort of people’s environment is usually analyzed accord-
ing to the ISO 7730 thermal comfort model [19], which is proposed by the international
standards organization. The calculation results are expressed by predicted mean vote
(PMV), and the formula is as follows [20,21]:

PMV =
[
0.303× e−0.036M + 0.028

]
×
{
(M−W)− 3.05× 10−3×

[5733− 6.99× (M−W)− Pa]− 0.42× [(M−W)− 58.15]
−1.7× 10−5 ×M× (5867− Pa)− 0.0014×M× (34− ta)−
3.96× 10−8 × fcl × [(tcl + 273)4 − (tr + 273)4]− fcl × hc×
(tcl − ta)}

(1)

where M is metabolic rate of human body, W/m2; W is the mechanical power consumed
by the human body, W/m2; Pa is partial pressure of water vapor in ambient air around
human body, Pa; ta is air temperature around human body, ◦C; tr is average radiation
temperature, ◦C; fcl is the ratio of clothing area covered by human body to bare area; tcl
is the temperature of outer surface for clothing, ◦C; and hc is the heat transfer coefficient,
W/(m2·K).

ISO 7730 thermal comfort model has a high accuracy in obtaining the user comfort
temperature range, but it is difficult to obtain the real-time environmental data required by
the model. Therefore, the ISO 7730 model can be simplified properly without affecting the
accuracy. In [22], the Rohles simplified model was improved, and the results were extended
to a wider range of clothing insulations. Only the indoor air temperature and relative
humidity in the test environment were used as the input parameters, and therefore the
thermal comfort parameters can be easily evaluated. The results show that the method is
very close to ISO 7730 thermal comfort model and is easy to operate and greatly enhanced.
The simplified and improved model is as follows:

IPMV = aTa + bPv − c (2)

where IPMV is index value of PMV; Ta is indoor temperature; Pv is relative humidity, %;
and a, b, and c are known parameters.

When the indoor temperature and relative humidity are on the high side or on the
low side, they will interfere with people’s core temperature. At present, people’s heating
temperature is increasing day by day, and therefore the temperature of people’s thermal
comfort zone will also rise as a whole, and the regulation ability of cold and heat stimulation
of people who stay in the thermal comfort zone for a long time will be weakened. In the
end, peoples’ sensitivity and reaction time to adjust the temperature will become longer.
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When the indoor temperature is not the expected thermal comfort temperature, people
will adjust the temperature setting to achieve the expected value. Therefore, in order to
consider the impact of users’ thermal comfort temperature, we used the difference between
the air temperature and human thermal comfort temperature to improve the input data of
LSTM neural network prediction model.

3. Analysis of Factors Affecting Electric Heating Load
3.1. Load Characteristics of Electric Heating

Electric heating load is different from general electric load, and it has obvious seasonal
climate characteristics. Taking the electric heating data of a certain year in eastern Inner
Mongolia as an example, from the change trend of annual load curve, we found that the
electric heating load in northern region is more intensive in winter (December to March
of the next year), in which December to January are the months with the lowest average
temperature. From the daily load curve, we found that electric heating load also has
obvious characteristics of daily type. From Monday to Friday, the load of office buildings is
higher, while the load of weekends and holidays is lower, but the load of commercial and
residential electric heating is higher, and the overall trend of daily change is not large. It can
be seen from Figure 1 that the typical daily load curve of electric heating in eastern Inner
Mongolia presents the characteristics of morning peak, afternoon trough, and evening
peak. In terms of electricity consumption, this is mainly due to the start-up of industrial
and commercial electric heating in the morning, the general rise of temperature in the
afternoon, and the start-up of residential load gathering in the evening.
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Figure 1. Typical electric heating load curve of a coal to electricity area in eastern Inner Mongolia. Figure 1. Typical electric heating load curve of a coal to electricity area in eastern Inner Mongolia.

The key areas of electric energy substitution in eastern Inner Mongolia are distributed
electric heating and centralized electric heating, and electric heating accounts for more
than 50% of the proportion of electric energy substitution in eastern Inner Mongolia. With
the increasing application of electric heating and large-scale access to the power grid, the
impact on the operation of the power system is to further narrow the gap between the
winter and summer load.

3.2. Correlation Analysis of Electric Heating Load and Influencing Factors

The idea of association analysis is to compare the similarity degree of data series, so as
to clarify the association degree and regular pattern between each series. It belongs to an
effective and practical method of gray system theory to analyze the correlation degree of
various factors in the research object system [5,23]. In order for the variation characteristics
of electric heating load in winter in eastern Inner Mongolia to be studied, the relationship
between the meteorological factors such as temperature difference (the difference between
human thermal comfort temperature and actual temperature), relative humidity, wind
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speed and snow falling, and electric heating load should be analyzed. The calculation steps
of correlation analysis method are as follows:

Step 1: Construct electric heating load characteristic sequence and influence factor
sequence. The electric heating load sequence is expressed as X0, and the related influencing
factor sequence is expressed as Xi; the complete sequence is as follows:

X0 = (x0(1) x0(2) · · · x0(k) · · · x0(n)) (3)

Xi = (xi(1) xi(2) · · · xi(k) · · · xi(n)) (4)

where k is serial number; n is number of samples, k = 1, 2, · · · , n; and i is the number of
related factors, i = 1, 2, · · · , m.

Step 2: Obtain the correlation degree.
(a) Each sequence is dimensionless as the initial value, as shown in the following

formula:
X′ i =

Xi
xi(1)

=
(
x′ i(1)x′ i(2) · · · x′ i(n)

)
(5)

where i = 1, 2, · · · , m, and X′ i is initial value after processing.
(b) Determine the difference between electric heating load sequence and each influ-

encing factor ∆i.
∆i(k) =

∣∣x′0(k)− x′ i(k)
∣∣ (6)

∆i = (∆i(1) ∆i(2) · · ·∆i(k) · · ·∆i(n)) (7)

Record the minimum value of all sequence differences as a, the minimum range is b.




a = min{∆i(1), ∆i(2), · · · , ∆i(k), · · · , ∆i(n)}
b = max{∆i(1), ∆i(2), · · · , ∆i(k), · · · , ∆i(n)}

i = 1, 2, · · · , m
(8)

(c) Find the correlation coefficient of each sample in the sequence γi(k).

γi(k) =
a + εb

∆i(k) + εb
(9)

where γi(k) is the correlation coefficient between the k-th parameter of the i-th subse-
quence and the k-th parameter of the electric heating load sequence, and ε is the resolution
coefficient, usually 0.5.

(d) Calculate the average correlation coefficient as the following:

γi =
1
n

n

∑
k=1

γi(k) (10)

where i = 1, 2, · · · , m.
Step 3: Analyze the correlation coefficient.
Obtain the correlation coefficient between the electric heating load data series X0 and

each related factor series Xi. The larger the correlation coefficient, the greater the influence
of the factor series on the electric heating load data series. Therefore, the correlation
coefficient between electric heating load and various factors can be calculated, as shown in
Table 1.

It can be seen from the data in Table 1 that temperature difference and humidity are
the most influential factors on electric heating load data, while snowfall and wind speed
are relatively less influential. This is mainly because temperature difference and humidity
will affect human thermal comfort to a greater extent. Although snowfall and wind speed
will also affect people’s psychological expectation and feeling of temperature and humidity,
their influence is relatively small relative to temperature difference and humidity.

31



Energies 2021, 14, 4525

Table 1. Coefficient of correlation between electric heating load and meteorological factors.

Influence Factor Correlation
Coefficient Influence Factor Correlation

Coefficient

Temperature difference 1 0.9601 Snowfall 0.8326
Humidity 0.9416 Wind speed 0.7952

1 Table notes: In this paper and Table 1, “temperature difference” refers to the difference between human thermal
comfort temperature and actual temperature.

After the most relevant factors of electric heating load are analyzed, in addition to the
historical electric heating load data, temperature difference data and humidity also become
the main source data of electric heating load prediction.

4. Improved LSTM Neural Network Prediction Model
4.1. Long Short-Term Memory Network

Due to the inherent time series of load data, the selected forecasting model must have
a good ability to express the time series characteristics. In this paper, the long short-term
memory network (LSTM) was taken as the main body and improved as the model to study
its applicability for short-term load forecasting modeling of electric heating load in eastern
Inner Mongolia.

LSTM is a kind of special recurrent neural network (RNN). It can use the information
learned at the last moment to learn at the current moment and can set gradient threshold
to prevent the gradient disappearing or exploding in RNN training. LSTM algorithm adds
cell state C to the original RNN hidden layer to keep the long-term state, thus solving
the long-term dependence problem of RNN. Therefore, LSTM is superior to other neural
network models. Figure 2 is the schematic diagram of LSTM expansion structure.
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In Figure 2, the input of LSTM consists of three parts: the input value at the current
time xt, the output value at the previous time ht−1, and the cell state at the previous time
ct−1. The output of LSTM consists of the output unit state ct and the output value of hidden
layer ht.

Compared with RNN, LSTM redesigns the internal memory unit while maintaining
its basic structure. The architecture diagram of each unit of LSTM is shown in Figure 3.
The key of every LSTM cell is the control of cell state c. There are three control gates in the
unit state, which are forgetting gate ft, input gate it, and output gate ot. Through these
gates, information can be filtered or added to achieve a new unit state.

According to Figure 3, from left to right, it can be seen that the unit state of the
previous time ct−1 and the output value of the hidden layer of the previous time ht−1
together memorize the historical information of the sequence data. Step-by-step analysis of
LSTM architecture can be divided into three parts.
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The first step is to filter the information selectively. The forgetting gate removes the
information in the last unit according to ht−1 and xt, that is, it removes the useless part of
the information learned at the last moment. The forgetting gate is as follows:

ft = σ
(
wf·[ht−1, xt] + bf

)
(11)

where σ(·) is Sigmoid activation function, wf is the weight of forgetting gate, and bf is the
bias of forgetting gate.

The second step is to generate new information that needs to be updated. This part
is combined by input gate it and candidate value C̃t. ht−1 and xt use sigmoid function to
obtain the data that need to be input into the cell state (i.e., input gate) and create a new
candidate state through tanh layer. The formula is as follows:

it = σ(wi·[ht−1, xt] + bi) (12)

C̃t = tanh(wc·[ht−1, xt] + bc) (13)

where it is information to memorize, that is, input gate; C̃t is the candidate value to
update the original cell state; wi and wc represent the weight of input gate and candidate
value, respectively; and bi and bc represent the bias of input gate and candidate value,
respectively.

The third step is to generate new cell state ct and hidden layer outputs ht. By multi-
plying the input gate it and the candidate value C̃t and adding them to the forgetting gate
ft, one can obtain the updated cell state value ct, as shown in the following formula:

ct = f·ct−1 + it·kt (14)

The new cell state ct is processed by a tanh function, and then multiplied by the
output gate ot to obtain the output value of the hidden layer ht:

ot = σ(wo·[ht−1, xt] + bo) (15)

ht = ot·tanh(ct) (16)

where wo is the weight of output gate, and bo is the bias of output gate.
Through the analysis of LSTM structure system, we can see that using LSTM to

replace neurons in RNN to build load forecasting model can solve the problem of long-
term dependence and we can learn the hidden historical operation law in power load
forecasting.
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4.2. Improved LSTM with Attention Mechanism

For different times, the brain will focus on the areas that need to be focused on and
reduce or ignore the attention to other areas. This kind of attention allocation mechanism
can help people to obtain important and detailed information and reduce the influence of
other irrelevant information.

Attention mechanism refers to the idea of human brain attention resource alloca-
tion [24]. By assigning different probabilities to generate different attention distribution
coefficients, the model can better learn the information in the input sequence and improve
the accuracy of the model.

The attention structure is shown in Figure 4, where xt(t ∈ [1, n]) is the input to the
hidden layer of the LSTM model, ht(t ∈ [1, n]) is the hidden layer output through the
LSTM corresponding to each input, αt(t ∈ [1, n]) is the probability distribution value of
the attention mechanism output to hidden layer, and y is the LSTM output value with
attention mechanism.
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The formulas of attention weight matrix and eigenvector in attention mechanism are
as follows:

et = ustanh(wsht + bs) (17)

αt =
exp(et)

t
∑

n=1
en

(18)

V =
n

∑
t=1

αtht (19)

where et is the non-normalized weight matrix, and ws, bs, and us represent randomly
initialized attention mechanism weight matrix, bias vector, and time series matrix, respec-
tively.

To sum up, the structure of the improved LSTM electric heating load forecasting
model designed in this paper is shown in Figure 5, which is mainly composed of input
layer, LSTM layer, attention layer, dropout layer, and output layer. The function of dropout
layer is to prevent over learning and set the discard rate, so that some neurons extracted
from the model can be “discarded” (do not participate in network training).
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Considering the climate characteristics of northern China, according to the results of
correlation analysis, we took the historical electric heating load data from January to March
l, the difference between human thermal comfort temperature and air temperature ∆t, and
relative humidity pv as the original sample set of the prediction model. The sample data
were standardized by 0-1 as the input matrix Xs of the model. The data of temperature and
relative humidity were from the National Meteorological Data Center.

The input data Xs of the input layer was simply extracted with feature vectors, and
the neural network unit was controlled by three “gates” structures. The output data of
LSTM layer was the matrix H = [h1 · · · hi · · · hn], which represents the output value of
electric heating load of this layer. The input of attention mechanism was the output matrix
H of LSTM layer, and the feature vectors V were obtained by different attention weights.

5. Case Study
5.1. Date Preprocessing

The data used in this paper are the historical data of 66 days of electric heating load
from January to the first week of March in 2018 in an area of eastern Inner Mongolia. At the
same time, the thermal comfort of 300 individuals of different ages was investigated, and
the model parameters were fitted by Equation (2), and the thermal comfort temperature
of the main population was obtained. Among the 300 individuals, there were 150 men
and 150 women, mainly young people aged about 20 years old and middle-aged and old
people aged about 60 or 70 years old.

The thermal comfort questionnaire survey was conducted on the subjects, and the
temperature and relative humidity during the survey were investigated. The model
parameters of the same user under different clothing and activity intensity were obtained
by fitting (see Table 2).

It can be seen from Table 2 that users had different adaptability to temperature under
different clothes and different activity intensities. In order to make the model more
universal, we took the average value of 23.275 ◦C as the thermal comfort temperature of
the human body.
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Table 2. Thermal comfort model parameters of users.

Clothing
Fever/clo

Activity
Intensity/met a b c Thermal Comfort

Temperature/◦C

0.5
Weak 0.6 0.263 0.456 6.576 26.5
Strong 1.2 0.267 0.378 6.243 23.7

1
Weak 0.6 0.145 −0.127 2.823 22.6
Strong 1.2 0.114 −0.135 2.211 20.3

5.2. Parameter Setting and Analysis

The input data were divided into training set and test set. The first 90% of the input
samples were taken as the training set for the data samples of model fitting; the last 10%
of the input sample was taken as the test set to evaluate the accuracy of the final model,
that is, the training prediction of the prediction day. We set the initial learning rate as 0.05,
learning decay rate as 0.6, and data training cycle as 250. In addition, the dropout layer
discard rate was set to 0.25.

The number of hidden layers of the LSTM network and the number of LSTM units
in each hidden layer had an impact on the accuracy of electric heating load forecasting.
Under-learning or over-learning will affect the accuracy of the model. The enumeration
method was used to record the training effect of different hidden layers and different
number of neurons in each layer, so as to determine the optimal network structure. Firstly,
the number of hidden layers was set to 1, and different numbers of neurons were set one
by one to train and record MAPE; then, we kept the optimal number of neurons in the first
layer, set the number of hidden layers to 2, continued to set the number of different units
one by one for training, and so on. In this paper, the maximum number of hidden layers
was set to 3, and the performance of each training is shown in Table 3.

Table 3. Forecasting performance of different LSTM network structures.

Number of Hidden Units 1 Hidden LayereMAPE/% 2 Hidden LayerseMAPE/% 3 Hidden LayerseMAPE/%

5 4.2486 8.5961 7.3803
10 8.5121 7.607 5.0794
15 6.7676 6.4442 10.6352
20 4.4361 5.0683 9.1701
25 7.5099 7.4918 9.3492
30 6.7286 9.7442 9.7862
35 8.7444 5.6755 6.7193
40 10.7386 10.2154 8.7017

According to the results in Table 3, when the number of hidden layers was 1 and
the number of neurons in each layer was 5, the minimum eMAPE was 4.2486%; when the
number of hidden layers was 2, the number of neurons in the first layer was fixed to 5, and
the number of neurons in the second layer was set to 20, and the minimum eMAPE was
5.0683%. When the hidden layer was 3, the first two layers were fixed with the optimal
number. When the number of neurons in the third layer was 10, the minimum eMAPE was
5.0794%.

5.3. Test Results and Analysis

In order to verify the performance of the thermal comfort model and the improved
LSTM neural network method proposed in this paper, we selected the optimal prediction
model (one hidden layer, five neurons per layer). In addition, the hourly load from January
to early March 2018 was used as the dataset to test the prediction performance of the model,
which was compared with the other three cases.

Figure 6 shows the mean absolute percentage error (MAPE) of the prediction results
of the proposed method. Figure 7 shows the comparison curve between the actual electric
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heating load and the load predicted by each method. The curve LSTM-T-A represents
the prediction result of the LSTM model with thermal comfort temperature and attention
mechanism added, the curve LSTM-T represents the prediction result with thermal comfort
temperature added only, and the curve LSTM-A represents the prediction result with
attention mechanism added only. The curve LSTM represents the LSTM prediction results
without thermal comfort temperature and attention mechanism. It can be seen from
Figure 7 that compared with the other three methods, LSTM-T-A had little change in
amplitude compared with the real value, and the curve characteristics were closest to the
real value.
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Figure 7. Forecast results of electric heating load.

The MAPE (Mean Absolute Percentage Error), MAE (Mean Absolute Error), and
RMSE (Root Mean Square Error) of the above four models are shown in Table 4. In addition
to comparing the improved part of LSTM, the errors of SVM and ANN are also compared.
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Table 4. Prediction performance comparison of different neural network algorithms.

Models eMAPE/% eMAE/MW eRMSE/MW

LSTM-T-A 4.2486 109.3525 141.2577
LSTM-T 9.5517 228.4801 297.6025
LSTM-A 11.3527 293.5961 358.2558

LSTM 12.7182 311.0858 399.6952
SVM 13.6543 346.7190 424.6283
ANN 14.7216 384.1764 457.4381

It can be seen from Figure 7 and Table 4 that for the LSTM model, the improvement af-
ter adding human thermal comfort temperature and attention mechanism will significantly
improve the prediction accuracy of electric heating load. LSTM-T-A prediction curve fitted
the real value best, and the selected error index values were the smallest, which showed a
better prediction effect.

6. Conclusions

According to the load of electric heating in northern China, we analyzed the load
characteristics of electric heating in winter and constructed the thermal comfort temperature
model of the human body. The main meteorological factors affecting electric heating load
were screened out by the gray correlation analysis method. Meanwhile, the difference
between thermal comfort temperature and actual temperature of main users was analyzed
and considered. Attention mechanism and dropout layer were added to improve the
LSTM neural network, and the optimal number of hidden layers and hidden neurons were
obtained.

The actual electric heating load data were used to verify the model and were compared
with several models. The results show that:

1. Comprehensive historical data showed that the shape of the typical daily load curve
of electric heating load fluctuated greatly, and the peak valley difference was large.
Moreover, the electric heating load had a strong time correlation, which was closely
related to temperature, relative humidity, and thermal comfort temperature.

2. It is necessary to find the optimal number of hidden layers and neurons in order to
mine more data information and improve the prediction accuracy of improved LSTM
network.

3. As far as the improvement of LSTM prediction method is concerned, considering
human thermal comfort temperature and attention mechanism accuracy, the training
effect is the best. When considering the difference between thermal comfort tempera-
ture and air temperature in the model input, we found that the conclusion was more
accurate and performed better than SVM, ANN, and other algorithms, and thus it is a
more suitable electric heating load forecasting method.
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Abstract: In order to meet the requirements of high-tech enterprises for high power quality, high-
quality operation and maintenance (O&M) in smart distribution networks (SDN) is becoming in-
creasingly important. As a significant element in enhancing the high-quality O&M of SDN, situation
awareness (SA) began to excite the significant interest of scholars and managers, especially after
the integration of intermittent renewable energy into SDN. Specific to high-quality O&M, the paper
decomposes SA into three stages: detection, comprehension, and projection. In this paper, the state-
of-the-art knowledge of SND SA is discussed, a review of critical technologies is presented, and a
five-layer visualization framework of the SDN SA is constructed. SA detection aims to improve the
SDN observability, SA comprehension is associated with the SDN operating status, and SA projection
pertains to the analysis of the future SDN situation. The paper can provide researchers and utility
engineers with insights into the technical achievements, barriers, and future research directions of
SDN SA.

Keywords: smart distribution network; situation awareness; high-quality operation and maintenance;
critical technology; comprehensive framework

1. Introduction
1.1. Motivation

Due to the rapid development of emerging information and communication tech-
nologies (ICT) and advanced metering infrastructure (AMI), distribution networks are
in an evolvement from passive to active distribution networks (ADN), also called smart
distribution networks (SDN) [1]. In addition, with the rapidly increasing penetration of dis-
tributed generations (DGs) inspired by the smart grid (SG) concept [2], the SDN integrates
multiple renewable energy sources (RES) and focuses on reliable operation [3]. To achieve
the environmental objective for gas emission reduction and accommodate the high penetra-
tion of DGs, supervisory control and data acquisition (SCADA) systems are employed to
monitor the SDN, and distribution management systems (DMS) and energy management
systems (EMS) act as decision-support information systems for the coordination of remote
SDN equipment. Additionally, the widespread application of devices such as distribution
transformer terminal unit (TTU), feeder terminal unit (FTU), remote terminal unit (RTU),
and distribution automation terminal (DTU) contributes to the maturity of SDN [4,5].

Operation and maintenance (O&M) cost is an economic factor that the SDN manage-
ment must consider. Mansor et al. [6] presented operational planning of SDN based on
utility planning concepts, considering the cost minimization of O&M, switching, losses,
and reliability. Based on the volatilities of wind speed and demand load, ref. [7] presented
advanced real-time dispatching strategies to minimize long-run expected cost instead of
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immediate myopic cost. In addition, the quality of O&M technology directly affects the
operating status of SDN. To prevent persistent faults in distribution transformers (DTs),
Al Mhdawi et al. [8] proposed a remote condition internet of things (IoT) monitoring and
fault prediction system using customized software-defined networking technology. In [9], a
multi-status simulation based on event-driven for the SDN O&M was investigated, which
can simulate the specific events in the SDN with different time constants within the same
simulation framework. To improve the reliability of SDN O&M, Kiaei et al. [10] proposed
a hybrid fault location for SDN using available multi-source data, which can precisely
calculate the fault location in distribution networks with many sub-laterals. The O&M level
of multi-terminal SDN directly connected to each user determines the power quality of
end-users. Among multiple O&M technologies, situation awareness (SA) emerges and is
gradually integrated into the SDN. Facing a high proportion of RES, adequate monitoring,
analysis, and prediction of the SDN operating status are urgent. Therefore, comprehen-
sive SA, which contains detection, comprehension, and projection, becomes a significant
guarantee for the optimal operation of SDN [11]. Due to the strong adaptability, SA can
dynamically evolve with the future SDN technology development to provide higher quality
O&M of SDN.

The concept of SA means to percept elements in the environment within a volume
of time and space, comprehend their meaning, and project their future status [12]. In
general, the process of SA can be divided into three stages: situation detection, situation
comprehension, and situation projection [13]. To visualize the concept of SA, SA can be
analogous to human psychology. In psychology, the sensory, perception, and behavioral
habits can be expressed as follows:

1. The sensation is the brain’s reflection of various attributes in objective things that
directly act on the human sensory organs [14]. Human cognition of objective things
starts with sensation. It is the initial detection of complex things and the basis of
complex cognitive activities such as perception and behavior. That is similar to the
concept of situation detection.

2. Based on sensory information, perception processes multiple sensory information
in a specific way, interprets the sensory information on individual experience, and
taps the deep meaning of sensory information. That is similar to the concept of
situation comprehension.

3. Based on sensory and perception, behavior refers to human activities after receiving
internal and external stimuli. The theory of planned behavior [15] can explain human
decision-making behaviors from the perspective of perceptual information processing
and predict the future behavioral tendency based on the expectation value theory [16].
That is similar to the concept of situation projection.

Therefore, the human collects multiple sensory information and relies on perception to
process the sensory information. The following behaviors can be explained and predicted
by the theory of planned behavior [17]. The human situation refers to the comprehensive
integration of mental activity, physiological state, and environmental information. Similarly,
the basic principle of the SA corresponds to the above psychological terms, which represents
detecting, comprehending, and projecting various elements with specific spatial–temporal
properties [18]. In general, three SA stages can be defined as follows:

1. Situation detection. The task of the stage is to detect essential features in the environ-
ment. Multi-dimensional data can be collected and completed in this stage. In addi-
tion, situation detection is the data basis of situation comprehension and projection.

2. Situation comprehension. The essence of the stage is to understand the environment
through data analysis. Specifically, the data obtained in the situation detection are
integrated, and the connection and potential information between multi-source data
are explored.

3. Situation projection. The core of situation projection is to achieve the practical appli-
cation of SA knowledge. Based on the information gained from situation detection
and comprehension, this stage can predict the future environmental situation in time.
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1.2. Related Work

Although it initially appeared as a tool in the military [19], SA has been researched
across a wide range of domains for individual and team activities. For example, [20] pre-
sented the distributed swarm SA of unmanned aerial vehicles based on the representative
SA model. A convolutional neural network (NN) has been proposed for road traffic SA
in [21]. For telecommunication, network SA becomes a security priority to perceive the
network threat globally [22]. For robotics, Anjaria et al. [23] investigated the relation-
ship between the SA theory and cybernetics and adopted this relationship to validate the
feasibility of implementing SA-based information security risk management (ISRM) in
organizational scenarios. SA has also been identified as a critical skill in maintaining safety
in high-risk industries. For example, the influence of some variables on safety performance
was investigated, and the mediating effects of SA were examined in [24]. In agriculture,
Irwin et al. [25] explored SA among farmers in the United Kingdom when operating heavy
agricultural machinery. In navigation, considering existing models of SA and ontology-
based approach for maritime SA, seaborne SA was applied to navigation safety control
in [26]. For healthcare, SA has been recognized as a critical technology for making effective
and quick decisions for emergency response [27].

For the SDN, the situation represents the operating status of the SDN’s equipment,
structure, status, security, and environment. SDN SA is also composed of the same three SA
stages. In the situation detection stage, the information related to critical elements of the
SDN is captured and completed. In the situation comprehension stage, the operating status
of SDN and the potential information of the perceived data are analyzed. In the situation
projection stage, the future behavior of SDN components based on their operating status
and the perceived information is predicted [28]. Compared with the past, the architecture of
SDN has undergone tremendous changes. The traditional distribution network is passive
where the operation, control, and management modes are all determined by the power
of the transmission network. In the developing SDN, AC/DC hybrid [29], multi-energy
complementarity [30], energy internet [31], and other distribution network forms emerge.
In addition, the higher proportion of RES and the disorderly access of DGs also lead to a
significant increase in the SDN uncertainty. For example, the outputs of wind turbines and
photovoltaic generators are greatly affected by meteorology rather than produced entirely
based on the plan. These changes make SDN have more complex operating conditions
and fault types. Moreover, there is a variety of system states that should be monitored for
SA detection, which cannot be fully covered by remote measurement devices. Meanwhile,
with the increase of regional electrical loads, power electronic devices become diverse, and
the requirements for power quality increase. Therefore, it is urgent to explore the SDN SA
from the perspective of high-quality O&M.

In the modern SDN, it is challenging to operate SA efficiently as the SDN has di-
versified characteristics in network topology, equipment types, energy types, and system
configurations. Many studies have been trying to tackle the challenge from different aspects.
For example, a security SA of the SDN was conducted by the random deletion of network
nodes to simulate the network attack, which can meet the requirements of energy internet
and is highly compatible with the RES [32]. Facing the power uncertainty brought by
a high proportion of RES, a hybrid factor analysis (FA), gray wolf optimization (GWO),
and generalized regression neural network (GRNN) was proposed for short-term load
forecasting [33]. Due to the lack of definitions of a generic indicator framework that can
uniformly characterize the critical operating states of the SDN, limited work has been
done to evaluate the effectiveness of the SDN SA. To quantify the SDN SA performance
effectively, ref. [18] proposed an improved interval-based analytic hierarchy process-based
subjective weighting and a multi-objective programming-based objective weighting. To
transfer more knowledge of the real-time SDN situation to the control center operator, [34]
proposed two design strategies for SDN SA in real-time distribution operations. One
strategy is for the preparation of standardized data acquisition networks. The other is a
real-time security analysis for SDN. Diez et al. [35] presented a graphical user interface for
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a power grid based on SA-oriented design principles, where the control room operators
can achieve an appropriate SA level.

1.3. Contributions

Although SA has become a significant element in enhancing the O&M of SDN, there
are very few studies about SDN SA. For the early stage of SDN SA, ref. [18] presented a
candidate SA framework for SDN, consisting of situation perception, situation comprehen-
sion, situation projection, and communication networks over the physical SDN elements.
It is a pity that the background and functions of the critical technologies have not been
explained in detail. To this end, this paper constructs a five-layer comprehensive framework
to introduce the critical technologies of SDN SA, which can be regarded as a solid base
for high-quality O&M in SDN. To the best of our knowledge, only [13] initially explored
critical technologies of situation perception, comprehension, and projection prospect from
the perspective of system access. However, its preliminary exploration of SA for SDN is
merely a vision. Modern SDN technology is constantly updated, and high-quality O&M
has become the core demand. Traditional SA cannot meet the O&M requirements of the
existing SDN. To this end, this paper provides a more detailed and appropriate descrip-
tion of SDN SA from the perspective of O&M. The critical technologies of different SA
stages are selected based on their significance to O&M, their relevance to SA, and their
practicality to SDN. Based on the presented technical framework of SDN SA, distribution
network researchers and utility engineers can be provided with insights into the technical
achievements, barriers, and future research directions of SDN SA.

The purpose of this paper is to provide an updated picture of the SDN SA and
contribute to the high-quality O&M of SDN. In order to promote the development of SA
technology in the power distribution field, the research background and concept of SDN
SA are clearly explained in Section 1. The challenges and objectives of future SDN SA are
analyzed, which indicate the exploration directions of SDN SA. In addition, a five-layer
comprehensive framework is presented to help the researchers understand the SDN SA
in Section 3. Specifically, this paper constructs a virtuous circle between SDN and SA to
improve the O&M quality of SDN, where SA transmits the SDN situation information to
the management team, who formulated measures to guide the SDN to a better situation.
To adapt to the evolving SDN, the critical technologies of SA are updated and analyzed
based on the O&M requirements. Ultimately, we believe this paper can provide positive
guidance for the future research and application of SDN SA.

1.4. Organization

The present paper is structured as follows: an overview of the objectives and challenges
of SDN SA is discussed in Section 2. A five-layer comprehensive framework of SDN SA is
conducted in Section 3. From the O&M perspective, the analysis of the critical technologies
for situation detection, situation comprehension, and situation projection is proposed in
Sections 4–6, respectively. Finally, the paper is concluded and prospected in Section 7.
The brief review aims to address the challenges faced in the deployment of SDN SA and
provide helpful information and guidance in selecting suitable technologies for specific
SDN applications.

2. Description of Situation Awareness for Smart Distribution Networks
2.1. Objectives of Situation Awareness for Smart Distribution Networks

1. The primary goal is to achieve real-time or quasi-real-time SA for SDN, which can
accurately obtain the critical information of SDN, quickly determine the operating
status of the distribution networks, and predict the development trend of SDN at
the same time [11]. Based on the historical records of SDN data, SA provides a
comprehensive SDN situation to ensure high-quality O&M.
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2. Observability is a significant technical indicator of SA. High-level SA can provide SDN
with a highly visual situation and solve the shortcomings of insufficient measurement
devices in the SDN [35].

3. SA has a significant contribution to SDN reliability. Specifically, conduct the SDN
self-healing technology, detect potential SDN risks, and predict security situations in
advance. Finally, a scientific basis for the SDN active defense can be provided [13].

4. Through continuous innovation of intelligent algorithms, SA is cultivating SDN
self-adaptive capabilities [36]. Based on the information obtained by SA, SDN can
independently recognize and improve the situation in an informed way.

2.2. Challenges of Situation Awareness for Smart Distribution Networks

Due to SDN’s diverse scenarios with more equipment and complex operating status,
traditional SA cannot adapt to the modern SDN environment. The O&M challenges for
modern SA are as follows:

1. Situational detection challenges. New measurement technologies such as AMI [37]
and phasor measurement units (PMUs) [38] are gradually deployed in SDN. Therefore,
the data dimensions collected by SDN scale rapidly, which inevitably increases the
computational pressure of SA. Due to the insufficient measurement devices, the
collected data are challenging to recognize the poor operating status of the SDN.
Therefore, the input data of the SA system are asymmetric, and some missing data are
necessary to be accurately completed by calculation. How to comprehensively detect
SDN status remains a challenging point in high-quality O&M.

2. Situational comprehension challenges. Large-scale DGs lead the traditional dispatch
mode to unsuitable. As a result, the phenomenon of reverse power transmission at
the distribution network terminals is prominent, and the risk of voltage fluctuations
and power loss increases [39]. In addition, different SDN topologies, operation modes,
energy types, and automation levels have higher requirements for the compatibility of
situational comprehension in different regions. Traditional situation comprehension
technology is challenging to adapt to the current SDN. As the decision center of
SDN, situation comprehension should assist the high-quality O&M of multi-form
SDN. How to accurately understand the operating situation of the SDN is the focus
of research.

3. Situation projection challenges. Unlike passive distribution networks, SDN has a
higher proportion of DGs and electric vehicles (EVs) and more diverse operating
modes [40]. The uncertain outputs of DGs and EVs lead to an imbalance between
power supply and consumption. Although the SDN flexibility is improved, the
RES outputs, three-phase unbalanced load, EV charging, inspection schedule, and
stability margin are challenging to determine in the situation projection. Additionally,
situation projection for complex scenarios requires sufficient mathematical analysis,
computational capability, and robustness capability. How to effectively predict the
operational trend of SDN needs to be solved urgently.

3. Comprehensive Framework of Situation Awareness

A five-layer comprehensive framework of SDN SA is shown in Figure 1, which
includes distribution network equipment, communication network, situation detection,
situation comprehension, and situation projection. In addition, SCADA systems [41], 5G
communications [42], distribution automation systems [43], distribution network equip-
ment [44], SA systems, and communication networks [45] are integrated into Figure 1. First,
the distribution network equipment at the bottom layer transmits measurement informa-
tion, equipment status, and network topology to the communication network at the second
layer. Then, the communication network summarizes the SDN data and transmits it to situ-
ation detection at the third layer. After situation detection collects the data, it completes the
pre-processing, completion, and visualization of multi-source data through various critical
technologies. Meanwhile, the processed information is transmitted to the management
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team and situation comprehension at the fourth layer. Situation comprehension combines
various critical technologies to explore the detected data, analyze the operating status of
SDN, and provide information support for the high-quality O&M. An intelligent O&M
mode can be realized based on the operating status of SDN. In addition, SDN historical
data is transmitted to the situation projection at the top layer. Next, the situation projection
combines meteorological, economic, social, resource, and other factors to predict the devel-
oping situation of SDN. After experiencing the forward cycle, the predicted information is
fed back to the situation comprehension at the fourth layer. Next, situation comprehension
can summarize and analyze all the information and then transmit a more comprehensive
SDN situation to the management team. As a result, the management team and the SA
system can coordinate to operate an optimal SDN based on the exact situation. A virtuous
circle of SA is constructed for the high-quality O&M of SDN.
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4. Critical Technologies of Situation Detection

Situation detection includes data acquisition, processing, completion, and visualiza-
tion, which is the prerequisite of situation comprehension and projection [11]. To improve
the SDN visibility, the comprehensive perception of the SDN is realized in both breadth
and depth, whose implementation framework is shown in Figure 2. First, multi-source
SDN data are collected by smart meters, terminal equipment, PMU, TTU, FTU, DTU, and
other equipment. Then, the data are preliminarily processed through pre-processing tech-
nologies such as data storage, data fusion, and data cleaning. Next, the critical technologies
of situation detection are used in data completion and data presentation to improve the
observability of SDN, including big data analytics, 5G communication, virtual acquisition,
and optimal configuration of measurement. Finally, the completed data are sent to the
situation comprehension and projection. To our knowledge, the four critical technologies
can synergistically contribute to situation detection effects.
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When facing the core O&M goals, enough collected data are significant for situation
comprehension to analyze the operating status of SDN. To deal with the uncertainties, it is
necessary to have enough data for situation projection to predict the future SDN situation.
Otherwise, inaccurate or incomplete SDN data might mislead O&M in a worse direction.
Thereby, data construction is the foundation of SDN O&M. With the rapid development of
the SDN construction, the power data stored in the SDN enterprise database show explosive
growth with the O&M [46]. These data are usually stored in the form of unstructured
data, such as images and text, which contain vital information about the operating status
of SDN equipment. Through SDN situation detection technology, the O&M data can be
collected, mined, and completed, where the data abundance can provide the possibility for
high-quality SDN O&M.

4.1. Big Data Analytics

In the data-intensive era of SDN, SA data are large-scale, multi-source, changeable,
and heterogeneous. Recently, studies have been looking into SDN situation detection,
and big data analytics technology has gradually been applied to SA. Most of the existing
methods employ different ways to store different data types, which leads to the inefficiency
of data queries and analyses. To this end, Tao et al. proposed a graph database-based
hierarchical multi-domain SA data storage to store the situation information, combining
multi-dimensional data to improve the SDN visibility after data pre-processing [47]. An
innovative data-fusion method was proposed in [48] to detect incipient faults by integrating
data collected from multiple sources instead of a single data source. Using the status
information of SDN equipment, a defect texts mining model for a secondary device in a
smart substation was proposed in [49] to achieve the accurate classification of secondary
device defect texts. In addition, power equipment data mining is a rapidly growing area of
big data analytics, contributing to more O&M data. As a use case, the H-mine algorithm
was adopted in [50] to quickly mine fault data of the secondary system of smart substations.
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4.2. 5G Communication

Communication technology is the core factor that affects SDN observability. Wireless
communication systems were preferred over wired for various reasons and various ap-
plications with reliable costs at lower speeds [51], which expands the infrastructure and
provides easily accessible connections even in remote areas. Due to the characteristics
of low power consumption, low cost, high capacity, low latency, high bandwidth, and
multiple functions, flexible 5G communication technology has begun to be invested in the
SCADA system [52]. Basnet et al. [53] simulated the false data injection (FDI) attack and
the syn flood distributed denial of services (DDoS) attacks on 5G-enabled remote SCADA
systems, which can detect the stealthy cyber-attacks that bypass the cyber layer and go
unnoticed in the monitoring system with more than 99.9999% detection accuracy for both
training and validation data.

The IoT enables all energy consumption and production components to be connected,
improves O&M visibility, and provides real leverage at every stage of energy flow from
use to supply and end-user [54]. Due to 5G’s higher data transmission speed and lower
transmission delay than the existing 4G networks, 5G would ensure the convergence of
widespread broadband, perception, and intelligence and then promote the development
of IoT. A comprehensive review of the role of 5G cellular networks in the growth of IoT
technology was presented in [51]. For example, the implementation of IoT based on
the smart inverters can be achieved such as a solar-charged inverter that employs WiFi
technology to engage in two-way communication with the user, informing the user of
both the battery voltage of the inverter and run time of the loads which the user chooses
to run. The deployment of advanced wireless networks in SDN would allow faster data
transmission and processing [55]. 5G communication technology might become the future
road of sustainable energy systems paving to state-of-the-art technologies and networks.
In [55], 5G was employed to optimize demand-side response management in integrated
energy systems. Combining the 5G and measurement equipment, such as PMU and AMI,
can enhance the distribution network O&M [56]. Moreover, 5G-based SA provides the
possibility of precise load control at the millisecond level [57]. The energy consumption
reduction of 5G networks in SDN will become a vital research direction.

4.3. Virtual Acquisition

To improve the completeness of O&M data, SDN virtual acquisition technology is
becoming a research hotspot. The technology is independent of the full coverage of the
SDN measurement equipment installed, such as sensors, collectors, and concentrators. For
areas that cannot be equipped with monitoring systems to collect real-time data, the virtual
acquisition uses machine learning techniques based on data from similar areas to generate
data for the objective areas [58]. Similar areas and dates can be selected based on data
clustering results. By mining the inherent mapping relationship between the objective
distribution network and similar areas, the anonymous data can be supplemented by
historical data in similar areas and existing real-time data. The data supplement method
can be based on machine learning such as NN [59]. Currently, the virtual acquisition
technology remains in its infancy. The authors of [58] presented a virtual acquisition of
distributed PV data based on the combination of bat algorithm and wavelet NN, which
realizes the acquisition of O&M data of nine distributed PV stations when only one station
is equipped with complete measurement equipment. In addition, a virtual acquisition
based on a mixture of grey relational degree and back-propagation NN was proposed
in [60], which can accurately acquire unknown O&M data of distributed PV without
complete measurement equipment. In the future, virtual acquisition technology is worthy
of research.

4.4. Optimal Configuration of Measurement

SDN SA strongly relies on various digital measurement devices and well-designed
monitoring systems. The AMI is a typically configured infrastructure that integrates many
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technologies to achieve its objective, including meter data management systems, communi-
cation networks in different levels of the infrastructure hierarchy, smart meters, and ways
to integrate the acquired data into software application platforms and interfaces [61]. To
ensure data observability, the AMI adopts measurement equipment configuration opti-
mization, PMU configuration optimization, and data analysis technology. Dua et al. [62]
proposed a novel method to detect the configuration of the distribution network by col-
lecting and processing real-time measurement from the optimally placed micro-phasor
measurement unit. The authors of [63] presented a data-driven method based on the
measurements of micro-phasor measurement units to deal with the optimal hourly con-
figuration of the distribution network in a real-time manner. PV intelligent edge terminal
(IET) is one of the notable devices to achieve high-quality O&M with a high proportion
of distributed PV [64]. A mathematical model and improved coyote optimization were
proposed in [64] to optimize the configuration of PV IETs, which acquires the optimal
number, location, and connection way of PV IETs.

5. Critical Technologies of Situation Comprehension

Situation comprehension is the data analysis stage, which explores the potential infor-
mation of the data collected in the situation detection. Many key operational performance
indicators need to be correctly evaluated in SDN, such as reliability [65], flexibility [66],
stability [67], and power quality [68], which are integrated into the analysis of the SDN
situation. As the foundation of high-quality O&M, the implementation framework of situa-
tion comprehension is shown in Figure 3. First, SDN data are collected and completed by
situation detection. Then, the data are transferred to the situation comprehension system to
explore potential information. By conducting critical technologies of situation comprehen-
sion, many key operational performance indicators can be acquired and used as the data
basis for O&M technologies. Then, the technologies contribute to high-quality O&M based
on the situation comprehension results and return the calculation results to the situation
guidance. Ultimately, the intelligent O&M combined with situation comprehension and
management can be realized. The critical technologies of situation comprehension include
uncertain power flow calculation, hybrid state estimation (HSE), reliability analysis, voltage
stability analysis, flexibility evaluation, and power quality evaluation technology.

Energy equipment such as wind power, photovoltaic, DC electrolysis of water into
hydrogen, hydrogen storage, AC ice storage, and water storage equipment has been increas-
ingly connected to SDN. The introduction of various energy equipment increases the need
for real-time scalable and reliable monitoring, control, and protection of SDN. Situation
comprehension establishes the mathematical model compatible with multiple types of
SDN terminal equipment, adopts the SDN information provided by situation detection to
evaluate the SDN key operational indicators, and then realizes the flexible correction of
SDN operating status. Based on the critical technologies of the situation comprehension
above, the management team can take more specific measures to improve the quality of
O&M. For example, the configuration optimization of DGs based on the results of situation
comprehension can be applied to improve the economy of SDN O&M. Meanwhile, many
uncertainties and power data in SDN can be determined through situational understanding
to reduce the blindness of O&M decision making. In addition, self-learning evaluation
technology can achieve dynamic evaluation and the weight balance of multiple indicators
to effectively evaluate the key operational indicators of SDN [69]. To coordinate different
DGs and energy storages, coordinated dispatch technology can be adopted to build an
integrated energy system based on the results of situation comprehension and contribute
to high-quality O&M [70]. In addition, the popularization of electric IoT gives SDN more
powerful computing capabilities, which promotes the miniaturization and intellectualiza-
tion of IoT terminals. As IoT has found its way to SDN, demand-side management can be
more efficient in the presence of IoT [71]. Edge computing technology [72] enables flexible
collaboration between smart terminals and improves the response speed of SDN O&M. In
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sum, situation comprehension can provide O&M with richer information through various
technologies and help the management team make the optimal decision.
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5.1. Uncertain Power Flow Calculation

Uncertain power flow calculation (PFC) technology involves interval PFC [73], fuzzy
PFC [74], and probabilistic PFC [75], which estimate the influence of uncertain factors
on the SDN. Unlike deterministic PFC, only a single uncertain PFC can provide SDN
with more information of power flow within a volume of time and space, reducing the
number of repeated PFC caused by uncertain SDN parameter changes. The known and
to-be-calculated quantities in deterministic PFC are considered as random variables. The
SDN’s uncertain PFC model can be established based on affine arithmetic, fuzzy numbers,
or probability statistics theory. Liu et al. [76] presented an interval PFC method for multi-
terminal DC distribution networks to deal with the uncertainties of DG output powers and
loads. The power flow of DC distribution network in affine arithmetic is explained by the
following equation:

Pk = −Uk
n
∑

j=1
gkjUj k = 1, 2, . . . , n (1)

where Pk is the nodal power of the kth load node in affine form, gkj is the admittance of the
positive line from the kth node to the jth node, Uk is the positive voltage of the kth node
in affine form, Uj is the positive voltage of the jth node in affine form, and n is the total
number of nodes. The interval PFC algorithm provides an essential tool for SDN SA to
solve the uncertainties of loads and RES outputs.

Due to the uncertainties of the DGs and loads, Yang et al. [77] presented a random
fuzzy PFC model, which adopts cumulant technology in the random stage and the fuzzy
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simulation in the fuzzy stage. The normal distribution can usually represent the load power,
and their random fuzzy models are explained by the following equation:

f (PLoad ) = 1√
2πξσP

exp
(
− (PLoad −ξµP)

2

2ξσP2

)

f (QLoad ) = 1√
2πξσQ

exp
(
− (QLoad −ξµQ)

2

2ξ2
σQ

) (2)

where PLoad and QLoad are the active and reactive load powers, ξµP and ξµQ are the means
of the active power and reactive power, and ξσP and ξσQ are standard deviations of the
active power and reactive power.

Liu et al. [78] presented an improved dependent probabilistic sequence algorithm
based on the traditional linear PFC to obtain the probability distribution information of
power flow, which can achieve more accurate results and computational efficiency of proba-
bilistic PFC. The following equation explains the nth node’s voltage probability distribution:

P{Xn = Xn0 + i · (∆S · ∆P)} = ∆Xn(i) (3)

where ∆P is discrete step length of power, ∆S is discrete step length of sensitivity factor,
Xn is nth node’s voltage, Xn0 is reference state of nth node’s voltage, ∆Xn(i) is a variety
of nth node’s voltage, and i is the number of a corresponding expansion sequence group.
Simultaneously, the lth branch flow’s probability distribution can be expressed by the
following equation:

P{Zl = Zl0 + i · (∆T · ∆P)} = ∆Zl(i) (4)

where ∆T is discrete step length of sensitivity factor, Zl is lth branch’s power flow, Zl0 is
reference state of lth branch’s power flow, and ∆Zl(i) is a variety of lth branch’s power flow.
Because of the low demand for the sample size, this method is suitable for SA to analyze
the power flow uncertainties of SDN with incomplete measurement information.

5.2. Hybrid State Estimation

The current distribution network O&M data mainly come from the SCADA system.
To improve the estimation accuracy in the distribution network, PMU with more compre-
hensive measurement information has gradually become popular in SDN [79]. A PMU
delivers time-synchronized values of voltage and current phasors and other system-related
quantities [80]. However, the current SDN remains in a state where many traditional and
new measurement devices coexist. The main challenge in the HSE is the mismatch of the
refresh rates between the SCADA and PMU measurements [81]. Therefore, there is an
urgent need for PMU/SCADA HSE technology to improve the accuracy and breadth of SA.

A novel HSE method was presented in [82], which decouples the SCADA and PMU
measurements to deal with different accuracy levels between them. The novel HSE model,
based on weighted least-squares formulation including both SCADA and PMU measure-
ments, is as:

minx=(xPMU,xn−PMU)
J(x) = [z− h(x)]T · R−1 · [z− h(x)]
s.t. c(x) = 0 : λ

xPMU − xst−PMU = 0 : µ

(5)

where x is the vector of system states including voltage angles and magnitudes, λ is the
Lagrange multiplier vector of the equality constraints of zero injection busses, xst-PMU is
the PMU states estimated, µ is the Lagrange multiplier vector, xPMU and xn−PMU indicate
the PMU and non-PMU states, R is the covariance matrix, z is a vector consisting the
system measurements, vector h(x) includes nonlinear functions which relate the states with
the measurements through power flow equations, J(x) is the Jacobian matrix, and c(x) is
constraint condition. The condition number, as well as the run time of the HSE method,
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are significantly better than those of conventional state estimation, which can effectively
improve the efficiency of the situation comprehension.

Considering the fast applications of intelligent electronic equipment in the SDN,
Kong et al. [83] presented an HSE method based on SCADA and PMU measurements,
which can help situation comprehension effectively converge and quickly track the system
states while ensuring the estimation accuracy. To comprehensively utilize multi-source
measurement data, future research should explore suitable data processing methods for
the differences between different measurement devices regarding frequency, time scale,
structure, and delay.

5.3. Reliability Analysis

As a significant part of the SG, DG penetration in the SDN becomes an ever-increasing
problem, and the protection system has significant influences on SDN reliability. Therefore,
the comprehensive reliability evaluation of SDN consists of primary distribution networks
and a protection system. As the traditional reliability assessment of distribution networks
ignores the influence of relay protection and the complex configuration mode of the area-
centralized distribution protection system, Xiao et al. [84] proposed an improved failure
mode and effect analysis method to evaluate the comprehensive reliability of SDN based
on fault location and protection system. Alves et al. [85] presented a reliability assessment
methodology to evaluate instantaneous and average measurements of reliability and avail-
ability, which is validated in a low-voltage distribution network. Aiming to evaluate the
potential rate of exposure to the failure of system components, smart monitoring systems
(SMSs) are applied in SG to improve the component reliability. Honarmand et al. [86]
presented a new mathematical model to evaluate the reliability of a distribution network
equipped with the process-oriented SMSs using the Markov method, which shows SMSs
increase the reliability of the distribution network by 90%. The uncertainty of EV charging
load challenges the distribution network, especially SDN with a higher proportion of
DGs. The objective of [87] is to conduct a comprehensive analysis of spatial–temporal EV
charging from the perspective of both system reliability and EV charging service reliability.

The least erroneous knowledge on fault detection and location in SDN helps with
the restoration process, expedites maintenance, and reduces power outage duration.
Khavari et al. [88] presented a novel framework for fault detection and location for SDN
equipped with data loggers, including faulty section identification, area detection, and high
impedance fault location. Gilanifar et al. [89] presented a multi-task logistic low-ranked
dirty model for fault detection in SDN utilizing the distribution PMU data, which improves
the fault detection accuracy by the similarities in the fault data streams among multiple
locations across an SDN. Automatic and accurate fault detection and location are critical
components of effective situation comprehension. In addition, low voltage direct current
(LVDC) distribution systems have recently been considered an alternative to power system
infrastructure. Mohanty et al. [90] proposed a fault location based on the offline connection
of external discharge equipment using the probe power unit. However, the offline method
relies on isolating the faulty section first, while extra operating time is required. To tackle
this, Jia et al. [91] presented an online fault location technology for the DC distribution
network, which calculates the fault distance based on voltage resonance. Wang et al. [92]
proposed a new fault let-through energy-based DC fault location working strategy to
facilitate post-fault network maintenance.

5.4. Voltage Stability Analysis

With the development of existing SDN structures, the probability of a voltage collapse
in distribution networks has increased. Voltage stability represents the ability to keep node
voltages within an acceptable range after a disturbance [93]. A stable SDN can maintain the
voltage near an acceptable value after the disturbance occurs. Otherwise, voltage collapse
will occur. To prevent potential risk, it is necessary to predict the voltage collapse. The
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voltage drop caused by overload causes most of the voltage instability problems. Therefore,
finding the network nodes prone to voltage collapse becomes a research hotspot.

Sadeghi et al. [93] presented a novel approach for static voltage stability evaluation
in distribution networks, introducing a new indicator to assess the voltage stability of
distribution networks. The voltage stability indicator VSI is as follows:

VSI = V2
1 − 4

(
|V2||V1| cos(δ1 − δ2)− |V2|2

)
(6)

where V2 is the receiving end bus voltage and V1 is the sending end bus voltage. δ1 and δ2
are voltage angles at the sending and receiving buses, respectively. The voltage stability
indicator includes only the bus voltage and voltage angle, which is suitable for SDN SA
with high response speed requirements.

The penetration level of DGs is increasing and has a significant impact on voltage
stability. Hu et al. [94] presented a relatively available transmission capacity indicator
(RATCI) based on the power transfer margin of the power–voltage curve considering the
distribution network resistance, which is defined as follows:

RATCI = (Pcri − P0)/Pcri (7)

where P0 is an initial operational point of the system and Pcri is the critical point of the
system. The novel RATCI assesses the voltage stability by combining DGs and the defined
reactive power types, helping SA achieve the optimal penetration rate of the RES while still
maintaining voltage security.

In some scenarios, voltage stability can be evaluated accurately by separate static
modeling of the distribution network. Nevertheless, simultaneous dynamic modeling of
distribution networks is needed in other cases [95]. Song et al. [96] proposed a novel voltage
stability indicator using the network-load admittance ratio, where simulation results verify
that the indicator has satisfactory linearity with load increase and acceptable estimation
accuracy of the voltage stability margin.

5.5. Flexibility Evaluation

As a vital operation indicator of situation comprehension, the flexibility evaluation of
distribution networks is gradually being paid attention to by scholars with the increasing
penetration of RES. Meanwhile, the SDN faces challenges from decentralizing DGs and
the electrification of heating and transportation. To this end, Fonteijn et al. [97] proposed
four theoretical possibilities for flexibility as a solution for congestion management based
on four pilot projects on congestion management in the Netherlands. However, limited
attention has been paid to the probabilistic characteristics of uncertain regions. Ge et al. [98]
presented a new sequential flexibility assessment based on the feasibility analysis of the
uncertain region of PV active power and load demand, which explores the influence
of probabilistic characteristics of uncertain variables on flexibility assessment. To tackle
random disturbances and improve O&M quality, a large number of power electronic
devices such as soft normally open point (SNOP) are integrated into SDN. The authors
of [99] presented a new node flexibility assessment model of distribution systems for
SNOP integration. As a new variable load, EVs can increase the system flexibility through
interactions with the grid and promote RES consumption. Liu [100] proposed a flexibility
evaluation method considering the interaction between distribution networks and EVs.

5.6. Power Quality Evaluation

One of the significant purposes of situation comprehension is to analyze the power
quality of SDN. With the gradual deployment of sensitive loads in frequency converters
and relays, voltage sag has become a significant power quality issue of SDN. To improve the
comprehension of voltage sag severity in SDN, Guo et al. [101] proposed a comprehensive
weight-based severity evaluation of voltage sag. In most practical distribution networks,
there is insufficient information available about harmonic contents of customers for SA.
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Therefore, Amini et al. [102] proposed a novel assessment model of harmonic distortion
level emphasizing the impedance characteristics of the network buses, which can also be
employed as a valuable tool in SDN, where harmonic contents of nonlinear loads are not
available. The acceptable value of impedance characteristic Zacc is determined based on
voltage and current of network buses as follows:

Zacc =
Vh
Ih

(8)

where Vh and Ih are acceptable harmonic voltage and current of ith buses, respectively.
If the impedance characteristic is less than the acceptable value, it can be ensured that
harmonic voltage limits will be satisfied if harmonic currents are within the standard range.

Time-varying nonlinear loads in SDN frequently interfere with the judgment of the
SA system. To this end, Lamedica et al. [103] presented a novel model of time-varying
nonlinear loads in SDN based on demand conditions, which achieves a pre-evaluation of
harmonic disturbances under variable conditions using normal and uniform distribution
to randomize the electrical values of the nonlinear loads. In addition, Bajaj et al. [104]
presented an analytic hierarchy process-based approach for evaluating and benchmark-
ing the power quality performance of grid-integrated renewable energy systems, which
includes voltage harmonic distortion, current harmonic distortion, voltage and frequency
fluctuations, and voltage imbalances. For example, power quality indicators of voltage and
current harmonic distortion [104] can be expressed as follows:

TVHD =
100×

√
V2

rms −V2
f−rms

Vf−rms
(9)

TCHD =
100×

√
I2
rms − I2

f−rms

If−rms
(10)

where TVHD is total voltage harmonic distortion, TCHD is total current harmonic distortion,
Vrms is RMS value of overall voltage, Vf_rms is RMS value of fundamental frequency voltage,
Irms is RMS value of overall current, and If_rms is RMS value of fundamental frequency
current. Power quality indicators of voltage and frequency fluctuations [104] can be
expressed as follows:

VSS = 1−
(

Va + Vb + Vc

3

)
(11)

FRR = 100× fm − fr

fr
(12)

where VSS is voltage sag score, FRR is frequency regulation ratio, f m is the measured value
of frequency, and f r is the rated frequency. Va, Vb, and Vc are post-sag RMS voltages of
phases A, B, and C, respectively. Power quality indicator of voltage imbalance VIF [104]
can be expressed as follows:

VIF =
82 ·

√
V2

abe + V2
bce + V2

cae

average line voltage
(13)

where Vab, Vbc, and Vca are three-phase imbalanced line voltages. Vabe is the difference
between the line voltage Vab and the average line voltage, Vbce is the difference between
the line voltage Vbc and the average line voltage, and Vcae is the difference between the
line voltage Vca and the average line voltage.
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6. Critical Technologies of Situation Projection

Situation projection is the stage of state prediction to predict the SDN development,
evaluate the operational risks, and provide predicted information for SDN management.
With the intelligent O&M, the self-adaptation of SDN relies on accurate situation projection.
The implementation framework of the situation projection is shown in Figure 4. First, a
large amount of processed data from situation detection and situation comprehension is
transferred to the situation projection system. Then, multiple factors such as meteorology,
economy, society, resources, and load are comprehensively considered. In addition, state-
of-the-art intelligent algorithms such as deep learning [105] and Adaboost [106] are applied
to situation projection. Finally, critical technologies of situation projection are conducted to
simulate and predict the SDN developing trend in different aspects. Meanwhile, the pre-
dicted information is sent back to SDN to provide theoretical support for optimal decision
making. The critical technologies of situation projection include three-phase unbalanced
load prediction technology, renewable energy output prediction technology considering
uncertainty, state-of-energy estimation technology, fault prediction and inspection manage-
ment technology, and security situation projection technology.
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With the rapid development of new SDN equipment, the O&M of SDN is facing
many urgent issues. The integration of high-penetration RES [107] and EVs [108] into the
distribution systems increases the uncertainty of SDN operations. In addition, various
equipment faults [109] and three-phase unbalance problems [110] can frequently occur in
SDN. The security situation is also a vital challenge in establishing secure communication
networks for SDN [28]. To this end, situation projection is employed to simulate the
behaviors and predict the future development of SDN. The critical technologies of situation
projection are related to the security, stability, reliability, and other aspects of the SDN.
The goal of situation projection is multifaceted, including reducing the occurrence of
three-phase unbalance, assessing the operating risks, evaluating the state-of-energy of
EVs, addressing the uncertainty of RES output, assuring information security, providing
information support, and guiding SDN management to achieve high-quality O&M [11].
To sum up, situation projection plays a role in SDN in the energy transformation and the
upgrade toward future smart cities.

6.1. Three-Phase Unbalanced Load Prediction

Three-phase unbalance means that the amplitude of the three-phase currents or voltage
in the power system is inconsistent, and the amplitude difference is beyond the prescribed
range [111]. The difference in electricity and electricity usage time between the three phases
leads to an unbalanced current [112]. The problem of power three-phase unbalance is
closely related to the O&M quality of SDN.

To this end, some studies have investigated three-phase unbalanced predictions. Based
on the hierarchical temporal memory, a three-phase unbalanced forecasting model was
proposed in [112], where the encoder was adopted for binary coding, the spatial pooler
was used for frequency pattern learning, the temporal pooler was employed for pattern
sequence learning, and the sparse distributed representations classifier was conducted for
unbalance forecasting. Based on the historical data, Han et al. [113] adopted the Elman
NN to forecast the daily power consumption of each user and three-phase outlet current
in the distribution networks on the day of phase modulation. Therefore, the line loss
and three-phase load unbalance can be effectively reduced by changing the access phase
sequence of the load. For the unbalanced three-phase SDN, Zhou et al. [114] developed
regression analysis for PFC and adopted recurrent NN to predict the load demands. The
model that requires fewer distribution-level PMU than nodes is more suitable for existing
distribution networks.

6.2. Renewable Energy Output Prediction Considering Uncertainty

Despite the transformation of the SDN energy structure, the intermittency of RES
affects the stable operation of SDN. In order to solve the uncertainty issue of RES output,
many scholars study the prediction of RES output. The renewable energy output prediction
technology quantifies the impact of the RES uncertainty, which can provide a compre-
hensive RES situation, offer theoretical support for SDN scheduling and configuration,
and ensure high-quality O&M. In general, the prediction methods can be divided into (a)
physical model prediction and (b) data-driven prediction.

The physical model prediction refers to modeling the physical characteristics of
RES [115]. Cui et al. [116] established mathematical models of PV cells and inverters
to calculate PV output under different conditions. However, the physical model prediction
involves multiple links and has high requirements on the parameters of PV power station
components. Therefore, the method may suffer complex modeling, poor robustness, and
poor prediction accuracy [117].

Meanwhile, RES output prediction based on the data-driven method mainly considers
historical output and meteorological data, which can overcome the shortcomings of the
physical model prediction. To deal with the short-term PV output uncertainty characteris-
tics, Ge et al. [118] proposed a PV output prediction technology based on a GRNN. The
GWO was adopted to optimize the network parameters of GRNN and achieved a high
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precision in day-ahead short-term PV output forecasting. In addition, Wang et al. [119]
proposed a two-stage attention mechanism prediction model based on long short-term
memory (LSTM) for the problem of wind power output prediction.

The above research is deterministic renewable energy forecasting. In recent years, the
uncertain method for forecasting RES output has attracted widespread attention from schol-
ars. Algorithms such as probability and statistics laws, interval estimation, and probability
theory were employed to predict the RES output [120]. Peng et al. [121] proposed an interval
prediction based on the gated recurrent unit for wind power forecasting. Yang et al. [122]
proposed a probability prediction for wind power output, which is compatible with SDN
areas containing various uncertain parameters.

6.3. State-of-Energy Estimation

The state-of-energy is a vital evaluation index for energy optimization and manage-
ment of power battery systems in EVs. Unlike the state-of-charge, state-of-energy is the
residual energy of the battery in traditional applications, represents the integral result of
battery power, and refers to the product of current and terminal voltage. Additionally,
the state-of-energy affects the terminal voltage like the state-of-charge. Based on NN,
Zhao et al. [123] combined fault and defect diagnosis results with big data statistical regula-
tion to construct a comprehensive EV battery system fault diagnosis. The charging energy
of EVs changes based on different actual operating conditions, and the complexity of these
changes increases the difficulty of prediction.

To tackle this challenge, Dong et al. [124] presented an online model-based estimation
approach against uncertain dynamic load currents and environmental temperatures, which
simulates battery dynamics robustly with high accuracy. As a result, the estimates of the
dual filters can converge to the real state-of-energy with an error no greater than 4%. To
accurately estimate the state-of-charge and state-of-energy for a lithium-ion battery pack,
Zhang et al. [125] estimated the battery’s energy state online using an adaptive H infinity
filter, which can estimate the battery states in real-time with the higher accuracy compared
with an extended Kalman filter and an H-infinity filter.

6.4. Fault Prediction and Inspection Management

With the increasingly complex SDN structure, there are many types of faults in the
distribution network. Additionally, the redundancy of influencing factors increases. Ac-
cording to the configuration of maintenance personnel, constructing a dynamic inspection
strategy can provide reliable decision support for high-quality O&M and reduce the risk of
accidents. The main challenges of inspection management include extracting fault features
and decoupling fault location layers [126]. Fu et al. [127] proposed a short-term preventive
inspection scheduling for SDN, considering the support potential of the DGs and batteries;
the results show that the supporting potential of DGs and batteries in preventive main-
tenance scheduling contributes to a significant reduction of load losses. Liu et al. [128]
established various constraints between lines based on the network topology and proposed
an optimization model for the inspection plan of distribution network equipment. The
results show that the proposed inspection scheduling effectively reduces outage power loss.
Moreover, accurate and fast fault prediction in SDN is significant for increasing reliability,
fast restoration, optimal electrical energy consumption, and customer satisfaction [129].
Due to the causal ambiguity of written fault records, [130] demonstrated using natural lan-
guage processing techniques to disambiguate the free text in maintenance tickets to achieve
supervised learning of fault prediction technologies. Tsioumpri et al. [131] demonstrated
that localized weather data could support fault prediction on distribution networks, taking
evasive behaviors for imminent events over short timescales.

6.5. Security Situation Projection

Existing security measures are insufficient to avert attackers’ infringement into wireless
SDN communication networks [132]. The security situation projection becomes significant
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to build a secure and resilient SDN. It remains challenging to rapidly extract SDN security
situation elements and identify abnormal situations [28]. To hide personal power consump-
tion data from the adversary, Shakila et al. [132] presented the concept of time-variant key
generation along with lightweight encryption and device verification technique. To address
the security issues of the wireless, private time-division long-term evolution (TD-LTE)
network in SDN, Chen et al. [133] proposed a systematic security protection architecture.
Considering the security of wireless public network access, Liu et al. [134] proposed a wire-
less public network access control based on the Bayesian classification, which realized the
intelligent distribution of communication networks and improved the operating efficiency
of SDN. Although the introduction of smart meters improves measurement and control
functions of SDN, cyber-attacks such as electricity theft are constantly emerging, where the
attackers increase the power consumption record of other users while reducing their own
records. To this end, Tao et al. [135] presented a statistical strategy using the information
on higher-order statistics of power consumption, which can detect electricity theft attacks
and identify the attackers and victims.

7. Conclusions

With the development of distribution network automation, SA has gradually been
popularized and applied in SDN. As more SDN operating technologies and energy forms
appear, critical technologies of SA need to be adjusted to adapt to the evolving SDN. Con-
solidating the critical technologies of SDN SA, promoting the organic integration of various
technologies, and improving them based on the implementation effect of SA will be the
future research directions. To provide technical support for high-quality O&M of SDN,
this paper explains the background of SDN SA, introduces the SA concept, establishes a
five-layer integrated framework for SA, and finally analyzes the critical technologies of
SA. Especially in SDN SA, the situation detection guarantees the SDN observability by
completing the information related to critical elements of the SDN, the situation compre-
hension facilitates the O&M quality by exploring the operating status and the potential
information of SDN, and the situation projection assists O&M personnel in decision making
by forecasting the future behavior of SDN components based on their operating status and
the perceived information.

For the future perspectives in SDN SA, the scope of SA will be extended from SDN
to underdeveloped distribution networks. Future studies will focus on the synergetic
effect of personnel, equipment, events, and networks. With the advancement of intelligent
algorithms, the improvement of SA operational efficiency will be one of the key research
directions. Only a fast-response SA can assist in realizing the intelligent O&M of SDN.
In addition, the proposed virtuous circle of SA and SDN is a significant element in the
high-quality O&M, while proposing a proper SA effect evaluation method can prevent SDN
from falling into a vicious circle. The critical techniques of SA will continue to expand as
power demands change and SDN technology advances. We believe this paper can support
the development and application of the future SDN SA system.
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ICT Information and communication technologies
AMI Advanced metering infrastructure
ADN Active distribution networks
SDN Smart distribution networks
DGs Distributed generations
SG Smart grid
RES Renewable energy sources
SCADA Supervisory control and data acquisition
DMS Distribution management systems
EMS Energy management systems
TTU Transformer terminal unit
FTU Feeder terminal unit
RTU Remote terminal unit
DTU Distribution automation terminal
O&M Operation and maintenance
DTs Distribution transformers
IoT Internet of things
SA Situation awareness
NN Neural network
ISRM Information security risk management
FA Factor analysis
GWO Gray wolf optimization
GRNN Generalized regression neural network
PMUs Phasor measurement units
EVs Electric vehicles
FDI False data injection
DDoS Distributed denial of services
IET Intelligent edge terminal
PFC Power flow calculation
HSE Hybrid state estimation
SMSs Smart monitoring systems
LVDC Low voltage direct current
RATCI Relatively available transmission capacity indicator
SNOP Soft normally open point
LSTM Long short-term memory
TD-LTE Time-division long-term evolution
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80. Ruiz, S.; Ahmadi, H.; Gardašević, G.; Haddad, Y.; Katzis, K.; Grazioso, P.; Petrini, V.; Reichman, A.; Ozdemir, M.K.; Velez, F.; et al.
Chapter 6—5G and beyond networks. In Inclusive Radio Communications for 5G and Beyond; Oestges, C., Quitin, F., Eds.; Academic
Press: Salt Lake City, UT, USA, 2021; pp. 141–186.

81. Ozsoy, B.; Gol, M. A Hybrid State Estimation Strategy with Optimal Use of Pseudo-Measurements. In Proceedings of the IEEE PES
Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 21–25 October 2018.

82. Kabiri, M.; Amjady, N. A New Hybrid State Estimation Considering Different Accuracy Levels of PMU and SCADA Measure-
ments. IEEE Trans. Instrum. Meas. 2019, 68, 3078–3089. [CrossRef]

83. Kong, X.Y.; Chen, Y.; Xu, T.; Wang, C.S.; Yong, C.S.; Li, P.; Yu, L. A Hybrid State Estimator Based on SCADA and PMU
Measurements for Medium Voltage Distribution System. Appl. Sci. 2018, 8, 1527. [CrossRef]

84. Xiao, F.; Xia, Y.J.; Zhou, Y.B.; Zhou, K.P.; Zhang, Z.; Yin, X.G. Comprehensive reliability assessment of smart distribution networks
considering centralized distribution protection system. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 40–50. [CrossRef]

85. Alves, G.; Marques, D.; Silva, I.; Guedes, L.A.; da Silva, M.D. A Methodology for Dependability Evaluation of Smart Grids.
Energies 2019, 12, 1817. [CrossRef]

86. Honarmand, M.E.; Ghazizadeh, M.S.; Hosseinnezhad, V.; Siano, P. Reliability modeling of process-oriented smart monitoring in
the distribution systems. Int. J. Electr. Power Energy Syst. 2019, 109, 20–28. [CrossRef]

87. Xue, P.; Xiang, Y.; Gou, J.; Xu, W.T.; Sun, W.; Jiang, Z.Z.; Jawad, S.; Zhao, H.J.; Liu, J.Y. Impact of Large-Scale Mobile Electric
Vehicle Charging in Smart Grids: A Reliability Perspective. Front. Energy Res. 2021, 9, 241. [CrossRef]

88. Khavari, S.; Dashti, R.; Shaker, H.R.; Santos, A. High Impedance Fault Detection and Location in Combined Overhead Line and
Underground Cable Distribution Networks Equipped with Data Loggers. Energies 2020, 13, 2331. [CrossRef]

89. Gilanifar, M.; Cordova, J.; Wang, H.; Stifter, M.; Ozguven, E.E.; Strasser, T.I.; Arghandeh, R. Multi-Task Logistic Low-Ranked
Dirty Model for Fault Detection in Power Distribution System. IEEE Trans. Smart Grid 2020, 11, 786–796. [CrossRef]

90. Mohanty, R.; Balaji, U.S.M.; Pradhan, A.K. An Accurate Noniterative Fault-Location Technique for Low-Voltage DC Microgrid.
IEEE Trans. Power Deliv. 2016, 31, 475–481. [CrossRef]

91. Jia, K.; Li, M.; Bi, T.; Yang, Q. A voltage resonance-based single-ended online fault location algorithm for DC distribution networks.
Sci. China-Technol. Sci. 2016, 59, 721–729. [CrossRef]

62



Energies 2022, 15, 828

92. Wang, D.; Psaras, V.; Emhemed, A.A.S.; Burt, G.M. A Novel Fault Let-Through Energy Based Fault Location for LVDC Distribution
Networks. IEEE Trans. Power Deliv. 2021, 36, 966–974. [CrossRef]

93. Sadeghi, S.E.; Foroud, A.A. A new approach for static voltage stability assessment in distribution networks. Int. Trans. Electr.
Energy Syst. 2020, 30, e12203. [CrossRef]

94. Hu, S.; Xiang, Y.; Zhang, X.; Liu, J.Y.; Wang, R.; Hong, B.W. Reactive power operability of distributed energy resources for voltage
stability of distribution networks. J. Mod. Power Syst. Clean Energy 2019, 7, 851–861. [CrossRef]

95. Abbasi, S.M.; Karbalaei, F.; Badri, A. The Effect of Suitable Network Modeling in Voltage Stability Assessment. IEEE Trans. Power
Syst. 2019, 34, 1650–1652. [CrossRef]

96. Song, Y.; Hill, D.J.; Liu, T. Static Voltage Stability Analysis of Distribution Systems Based on Network-Load Admittance Ratio.
IEEE Trans. Power Syst. 2019, 34, 2270–2280. [CrossRef]

97. Fonteijn, R.; van Amstel, M.; Nguyen, P.; Morren, J.; Bonnema, G.M.; Slootweg, H. Evaluating flexibility values for congestion
management in distribution networks within Dutch pilots. J. Eng. -Joe 2019, 2019, 5158–5162. [CrossRef]

98. Ge, S.Y.; Xu, Z.Y.; Liu, H.; Gu, C.H.; Li, F.R. Flexibility evaluation of active distribution networks considering probabilistic
characteristics of uncertain variables. IET Gener. Transm. Distrib. 2019, 13, 3148–3157. [CrossRef]

99. Chen, Y.W.; Sun, J.J.; Zha, X.M.; Yang, Y.H.; Xu, F. A Novel Node Flexibility Evaluation Method of Active Distribution Network
for SNOP Integration. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 188–198. [CrossRef]

100. Liu, X.O. Research on Flexibility Evaluation Method of Distribution System Based on Renewable Energy and Electric Vehicles.
IEEE Access 2020, 8, 109249–109265. [CrossRef]

101. Guo, X.H.; Li, Y.; Wang, S.Y.; Cao, Y.J.; Zhang, M.M.; Zhou, Y.C.; Yosuke, N. A Comprehensive Weight-Based Severity Evaluation
Method of Voltage Sag in Distribution Networks. Energies 2021, 14, 6434. [CrossRef]

102. Amini, M.; Jalilian, A.; Behbahani, M.R.P. A new method for evaluation of harmonic distortion in reconfiguration of distribution
network. Int. Trans. Electr. Energy Syst. 2020, 30, e12370. [CrossRef]

103. Lamedica, R.; Ruvio, A.; Ribeiro, P.F.; Regoli, M. A Simulink model to assess harmonic distortion in MV/LV distribution networks
with time-varying non linear loads. Simul. Model. Pract. Theory 2019, 90, 64–80. [CrossRef]

104. Bajaj, M.; Singh, A.K. An analytic hierarchy process-based novel approach for benchmarking the power quality performance of
grid-integrated renewable energy systems. Electr. Eng. 2020, 102, 1153–1173. [CrossRef]

105. Du, S.; Li, T.; Yang, Y.; Horng, S.-J. Deep Air Quality Forecasting Using Hybrid Deep Learning Framework. IEEE Trans. Knowl.
Data Eng. 2021, 33, 2412–2424. [CrossRef]

106. Chen, L.; Li, M.; Su, W.; Wu, M.; Hirota, K.; Pedrycz, W. Adaptive Feature Selection-Based AdaBoost-KNN With Direct
Optimization for Dynamic Emotion Recognition in HumanRobot Interaction. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 5,
205–213. [CrossRef]

107. Azizivahed, A.; Arefi, A.; Ghavidel, S.; Shafie-khah, M.; Li, L.; Zhang, J.; Catalao, J.P.S. Energy Management Strategy in Dynamic
Distribution Network Reconfiguration Considering Renewable Energy Resources and Storage. IEEE Trans. Sustain. Energy 2020,
11, 662–673. [CrossRef]

108. Viet Thang, T.; Islam, M.R.; Muttaqi, K.M.; Sutanto, D. An Efficient Energy Management Approach for a Solar-Powered EV
Battery Charging Facility to Support Distribution Grids. IEEE Trans. Ind. Appl. 2019, 55, 6517–6526.

109. Liang, J.; Jing, T.; Niu, H.; Wang, J. Two-Terminal Fault Location Method of Distribution Network Based on Adaptive Convolution
Neural Network. IEEE Access 2020, 8, 54035–54043. [CrossRef]

110. Kong, W.; Ma, K.; Wu, Q. Three-Phase Power Imbalance Decomposition Into Systematic Imbalance and Random Imbalance. IEEE
Trans. Power Syst. 2018, 33, 3001–3012. [CrossRef]

111. Sun, M.; Demirtas, S.; Sahinoglu, Z. Joint Voltage and Phase Unbalance Detector for Three Phase Power Systems. IEEE Signal
Processing Lett. 2013, 20, 11–14. [CrossRef]

112. Li, H.; Shi, C.; Liu, X.; Wulamu, A.; Yang, A. Three-Phase Unbalance Prediction of Electric Power Based on Hierarchical Temporal
Memory. Cmc-Comput. Mater. Contin. 2020, 64, 987–1004. [CrossRef]

113. Han, P.; Pan, W.; Zhang, N.; Wu, H.; Qiu, R.; Zhang, Z. Optimization Method for Artificial Phase Sequence Based on Load
Forecasting and Non -dominated Sorting Genetic Algorithm. Autom. Electr. Power Syst. 2020, 44, 71–80.

114. Zhou, W.; Ardakanian, O.; Zhang, H.T.; Yuan, Y. Bayesian Learning-Based Harmonic State Estimation in Distribution Systems
With Smart Meter and DPMU Data. IEEE Trans. Smart Grid 2020, 11, 832–845. [CrossRef]

115. Wang, K.; Qi, X.; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural
network. Appl. Energy 2019, 251, 113315. [CrossRef]

116. Cui, C.; Zou, Y.; Wei, L.; Wang, Y. Evaluating combination models of solar irradiance on inclined surfaces and forecasting
photovoltaic power generation. IET Smart Grid 2019, 2, 123–130. [CrossRef]

117. Ogliari, E.; Dolara, A.; Manzolini, G.; Leva, S. Physical and hybrid methods comparison for the day ahead PV output power
forecast. Renew. Energy 2017, 113, 11–21. [CrossRef]

118. Ge, L.; Xian, Y.; Yan, J.; Wang, B.; Wang, Z. A Hybrid Model for Short-term PV Output Forecasting Based on PCA-GWO-GRNN. J.
Mod. Power Syst. Clean Energy 2020, 8, 1268–1275. [CrossRef]

119. Wang, X.; Li, P.; Yang, J. Short-term wind power forecasting based on two-stage attention mechanism. IET Renew. Power Gener.
2020, 14, 297–304.

63



Energies 2022, 15, 828

120. Chen, Y.; Li, T.; Zhao, C.; Wei, W. Decentralized Provision of Renewable Predictions Within a Virtual Power Plant. IEEE Trans.
Power Syst. 2021, 36, 2652–2662. [CrossRef]

121. Peng, X.; Xu, Q.; Wang, H.; Lang, J.; Li, W.; Cai, T.; Duan, S.; Xie, Y.; Li, C. A Novel Efficient DLUBE Model Constructed by Error
Interval Coefficients for Clustered Wind Power Prediction. IEEE Access 2021, 9, 61739–61751. [CrossRef]

122. Yang, M.; Lin, Y.; Han, X. Probabilistic Wind Generation Forecast Based on Sparse Bayesian Classification and Dempster-Shafer
Theory. IEEE Trans. Ind. Appl. 2016, 52, 1998–2005. [CrossRef]

123. Zhao, Y.; Liu, P.; Wang, Z.; Zhang, L.; Hong, J. Fault and defect diagnosis of battery for electric vehicles based on big data analysis
methods. Appl. Energy 2017, 207, 354–362. [CrossRef]

124. Dong, G.; Chen, Z.; Wei, J.; Zhang, C.; Wang, P. An online model-based method for state of energy estimation of lithium-ion
batteries using dual filters. J. Power Sources 2016, 301, 277–286. [CrossRef]

125. Zhang, Y.; Xiong, R.; He, H.; Shen, W. Lithium-Ion Battery Pack State of Charge and State of Energy Estimation Algorithms Using
a Hardware-in-the-Loop Validation. IEEE Trans. Power Electron. 2017, 32, 4421–4431. [CrossRef]

126. Mao, T.; Yao, J.; Xin, J.; Kang, T.; Deng, D.; Zhao, J. Intelligent Overhaul and Safety Check Management System of 110 kV
Distribution Network. Autom. Electr. Power Syst. 2013, 37, 125–129.

127. Fu, J.; Nunez, A.; De Schutter, B. A Short-Term Preventive Maintenance Scheduling Method for Distribution Networks With
Distributed Generators and Batteries. IEEE Trans. Power Syst. 2021, 36, 2516–2531. [CrossRef]

128. Yongmei, L.I.U.; Wanxing, S. Optimization Model for Distribution Equipment Maintenance Scheduling Based on Network
Topology and Genetic Algorithm. Power Syst. Technol. 2007, 31, 11–15.

129. Dashti, R.; Daisy, M.; Mirshekali, H.; Shaker, H.R.; Aliabadi, M.H. A survey of fault prediction and location methods in electrical
energy distribution networks. Measurement 2021, 184, 109947. [CrossRef]

130. Stephen, B.; Jiang, X.; McArthur, S.D.J. Extracting Distribution Network Fault Semantic Labels From Free Text Incident Tickets.
IEEE Trans. Power Deliv. 2020, 35, 1610–1613. [CrossRef]

131. Tsioumpri, E.; Stephen, B.; McArthur, S.D.J. Weather Related Fault Prediction in Minimally Monitored Distribution Networks.
Energies 2021, 14, 2053. [CrossRef]

132. Shakila, B.; Tuithung, T. Security Enhancement in Smart Distribution Grid with Light-Weight Dynamic Key Encryption. J. Sci. Ind.
Res. 2019, 78, 847–851.

133. Chen, L.; Dong, X.; Wu, Z.; Liu, Z.; Chen, B. Security Analysis and Access Protection of Power Distribution Wireless Private
TD-LTE Network. In Proceedings of the China International Conference on Electricity Distribution (CICED), Xi’an, China,
10–13 August 2016.

134. Yajing, L.; Fengjie, S.; Shengjin, L.; Fang, L. Research on security isolation method for wireless public network oriented to smart
power distribution service. In Proceedings of the 4th IEEE International Conference on Computer and Communications (ICCC),
Chengdu, China, 7–10 December 2018; Institute of Electrical and Electronics Engineers Inc.: Chengdu, China, 2018; pp. 1160–1165.

135. Tao, J.; Michailidis, G. A Statistical Framework for Detecting Electricity Theft Activities in Smart Grid Distribution Networks.
IEEE J. Sel. Areas Commun. 2020, 38, 205–216. [CrossRef]

64



Citation: Liu, H.; Fan, Z.; Xie, H.;

Wang, N. Distributionally Robust

Joint Chance-Constrained Dispatch

for Electricity–Gas–Heat Integrated

Energy System Considering Wind

Uncertainty. Energies 2022, 15, 1796.

https://doi.org/10.3390/en15051796

Academic Editor: Luigi Fortuna

Received: 23 January 2022

Accepted: 10 February 2022

Published: 28 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Distributionally Robust Joint Chance-Constrained Dispatch for
Electricity–Gas–Heat Integrated Energy System Considering
Wind Uncertainty
Hui Liu 1,2, Zhenggang Fan 1,2, Haimin Xie 1,2,* and Ni Wang 1,2

1 School of Electrical Engineering, Guangxi University, Nanning 530004, China; hughlh@gxu.edu.cn (H.L.);
zhenggfan@163.com (Z.F.); w_n604@163.com (N.W.)

2 Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University,
Nanning 530004, China

* Correspondence: xhm2230@163.com; Tel.: +86-18777122236

Abstract: With the increasing penetration of wind power, the uncertainty associated with it brings
more challenges to the operation of the integrated energy system (IES), especially the power subsys-
tem. However, the typical strategies to deal with wind power uncertainty have poor performance in
balancing economy and robustness. Therefore, this paper proposes a distributionally robust joint
chance-constrained dispatch (DR-JCCD) model to coordinate the economy and robustness of the
IES with uncertain wind power. The optimization dispatch model is formulated as a two-stage
problem to minimize both the day-ahead and the real-time operation costs. Moreover, the ambiguity
set is generated using Wasserstein distance, and the joint chance constraints are used to ensure
that the safety constraints (e.g., ramping limit and transmission limit) can be satisfied jointly under
the worst-case probability distribution of wind power. The model is remodeled as a mixed-integer
tractable programming issue, which can be solved efficiently by ready-made solvers using linear
decision rules and linearization methods. Case studies on an electricity–gas–heat regional integrated
system, which includes a modified IEEE 24-bus system, 20 natural gas-nodes, and 6 heat-node system,
are investigated for verification. Numerical simulation results demonstrate that the proposed DR-
JCCD approach effectively coordinates the economy and robustness of IES and can offer operators a
reasonable energy management scheme with an acceptable risk level.

Keywords: distributionally robust optimization (DRO); integrated energy system (IES); joint chance
constraints; linear decision rules (LDRs); Wasserstein distance

1. Introduction

In order to achieve the 1.5 ◦C temperature control target set by the Paris Climate Agree-
ment [1], the proportion of global power generation via renewable sources will continue to
rise. By 2050, renewable energy is expected to account for 86% of the power generation
source. Wind power, in particular, will meet more than 35% of power demand and become
the main source of power generation at that time [2]. However, as the penetration of
renewable energy sources (RESs) increases, the power network will be exposed to greater
risks due to the uncertainty of RESs. Therefore, there is an urgent need to improve the
flexibility of power systems or mitigate the variability. Constructing regional integrated
energy systems (IESs) has been proved as an effective way to provide more flexibility
to accommodate renewable sources and reduce the impact of uncertainty on the power
system [3].

Many researches have concentrated on the optimal dispatch of IESs to cope with the
uncertainties associated with renewable energy. Two common strategies include stochastic
programming (SP) [4–9] and robust optimization (RO) [10,11]. To handle uncertainties
of load demand and renewable energy, Yong et al. [4] propose a low-carbon optimal
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stochastic operation model using power-to-gas technology. In a building energy system,
a multistage-based scenario-driven approach is proposed to deal with solar power un-
certainty and nonschedulable load uncertainty [5]. However, stochastic programming
either relies on scene samples to approximate deterministic distributions [6] or assumes a
predefined probability distribution that random variables follow [7]. As a result, it imposes
a substantial computational burden on optimization [8] and adds difficulty to scenario
selection [9]. Compared to stochastic programming, the robust optimization approach does
not require any assumptions about wind power probability distribution, because it can
ensure system-operational robustness by using uncertainty sets to make optimal decisions
under the worst renewable fluctuation cases [10]. Robust optimization can provide a more
reliable scheme while considering wind power uncertainty [11], but it compromises system
cost-effectiveness and may result in over-conservative solutions.

Distributionally robust optimization (DRO), an effective strategy to overcome weak-
nesses of stochastic programming and robust optimization, loads all possible wind power
probability distributions information into an ambiguous set to incorporate uncertain wind
power distributions. In addition, DRO can ensure that all the possible wind power prob-
ability distributions in the ambiguous set are met by making the best decision under the
worst-case probability distribution [12]. There are several studies on distributionally robust
energy models based on moment-based ambiguity sets such as mean vector, covariance ma-
trix, and higher moment information [13–15]. Reference [13] develops a two-stage voltage
and natural gas pipe pressure management model for photovoltaic power in IES, where the
photovoltaic power uncertainty is modeled by an ambiguity set containing the first-order
moment and second-order moment information. Using the same moment information,
a distributionally robust optimal power flow problem is formulated to solve renewable
energy and load uncertainties [14]. Due to the distributions of renewable forecast errors
practically containing higher moment information, the first two moment-based ambiguous
sets may cause unnecessary conservatism. Therefore, Reference [15] proposes a DRO
model for an energy hub system with an energy storage function, where the ambiguity set
contains the first two moments and multimodal information of photovoltaic power fore-
casting errors. Despite all this, there may be the same moment information among different
distributions, which makes it difficult to determine the worst-case probability distribution.

The other approach to characterizing ambiguity sets is on account of the statistical
distance between the true probability distribution and possible probability distributions.
One type of discrepancy-based ambiguity set is established by Kullback–Leibler divergence.
To guarantee the safe operation of the natural gas system under hydrogen injection when
utilizing power-to-gas technology, Ref. [16] develops a natural gas security DRO program-
ming for IES using a Kullback–Leibler divergence-based ambiguity set to capture wind
uncertainty. However, only in the circumstances that potential distributions are supported
on a set of limited values, the Kullback–Leibler divergence-based ambiguity set can be
observed through historical data [17]. In contrast, the ambiguity sets based on Wasserstein
distance, which include all possible probability distributions that have a narrow gap with
the discrete empirical distribution, are introduced and have been increasingly used. With a
Wasserstein-distance-based ambiguity set to deal with renewable energy uncertainties, a
power-flow DRO problem with multi-stage feedback policies is formulated in [18]. In [19],
considering dynamic line rating and operational risk, a power flow DRO approach is
established, which constructs the ambiguity set via combining the moment information and
Wasserstein distance. To avoid the calculation issue arising from a large number of historical
data sets, Ref. [20] proposes a distance-based aggregation method, and the Wasserstein-
distance ambiguity set is introduced to a distributionally robust unit commitment problem.
Regarding wind power uncertainty, the Wasserstein-distance-based ambiguity set has
shown good performance in both finite-sample guarantees and confidence sets.

Although the DRO method with chance-constrained problems has been extensively
addressed in optimal power flow [21–23], its research on energy optimization and man-
agement is still in the early stage. A distributionally robust individual chance-constrained
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energy dispatch model is put forward for an islanded heat and electricity system in [24]
while considering the uncertain renewable generation. However, due to the confidence
levels considered separately, the individual chance constraints will result in high-risk costs
and may even result in confidence levels as low as 0% for any individual constraint [25].
Therefore, a joint chance-constrained DRO model is proposed for the combined electricity
and natural gas system to address renewable energy uncertainty while using the ambiguity
set with the confidence bands of the true density function [26]. Joint chance constraints can
improve the simultaneous satisfaction of multiple safety conditions with a high probability,
but the ambiguity set only includes marginal distribution information, which will result in
a conservative solution.

Therefore, a two-stage distributionally robust joint chance-constrained dispatch (DR-
JCCD) model is proposed for the electricity–gas–heat IES with the Wasserstein distance-
based ambiguity set, considering the wind power uncertainty. The main contributions of
this paper are as follows:

1. For the electricity–gas–heat IES, a distributionally robust joint chance-constrained
dispatch model is proposed to boost the system flexibility while considering wind
power uncertainty.

2. A two-stage scheme is adopted to deal with wind power uncertainty. In the day-ahead
stage, energy outputs and reserve capacity of multiple energy devices are scheduled
considering the probability distributions of uncertain wind power forecasting errors
from historical data, and then the power outputs are adjusted accordingly in the
real-time stage. As a result, a cost-effective IES operation is achieved.

3. A Wasserstein distance-based ambiguity set focused on the empirical distribution of
wind forecasting errors is established to provide strict finite samples and approximate
the behavior of wind uncertainty.

4. The proposed model is transformed into a mixed-integer tractable programming
problem by linear decision rules and the linearization approach, which can be solved
efficiently by ready-made solvers.

The remainder of this paper is organized as follows. Section 2 presents the detailed
mathematical formulation for both the day-ahead and the real-time operation, where the
nomenclature could be found in Appendix A. Section 3 develops effective approximate
and re-modeled schemes for the distributionally robust joint chance-constrained model
under the Wasserstein ambiguity set. Numerical results are shown in Section 4. Finally,
conclusions and future work are given in Section 5.

2. DR-JCCD Modeling of IES
2.1. Framework for Electricity–Gas–Heat IES

As illustrated in Figure 1, a typical framework of the electricity, gas, and heat IES
uses a constrained transmission infrastructure to coordinate power generation and natural
gas resources. The configuration of multiple energy carriers employed in the energy
hub includes Combined Heat and Power (CHP), gas-fired generations, and an electric
boiler. CHP transforms natural gas into electricity and heat concurrently. Natural gas-fired
units transform natural gas into electricity, allowing them to respond swiftly to power
fluctuations. An electric boiler is introduced to supply enough heat power flexibly, and
three different energy sources are used to meet local electricity, gas, and heat demands.
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2.2. Formulation of Day-Ahead Operation

The day-ahead operation schedules the output and reserve capacity of thermal gen-
erations, natural gas-fired generations, and CHP. In addition, it determines the natural
gas output of gas sources. The objective of the day-ahead operation is to minimize the
expected operation cost, including generation cost, reserve capacity costs for traditional
units, natural gas-fired units, and CHP, as well as the cost of consuming natural gas from
the source, as shown in Equation (1)

min
PDA, PRT(ζ),
r+, r−

∑
ie ∈ Ie,ig ∈ Ig,
t ∈ T

λ{·}P
DA
{·},t + λig Ggas,t + λ+

{·}r
+
{·},t+ λ−{·}r

−
{·},t + EP[γcPw

{·},t(ζ)] (1)

The detail constraints for day-ahead operation include constraints of the power sys-
tem, natural-gas system, heating system, and multiple energy converters, as listed in
Equations (2)–(29).

2.2.1. Constraints for the Power System

The reserve capacity from thermal generations, natural gas-fired generations,
and CHP is shown in Equations (2) and (3), followed by their power output limits in
Equations (4) and (5). The adjustments of multiple energy devices for the uncertain wind
power forecasting errors are limited by Equation (6), which must be within the reserve ca-
pacity range. The ramping up/down constraints are restricted by Equations (7) and (8) [17].
Energy balance is presented in Equation (9). Constrain Equation (10) is used to ensure that
the power flows are well within the capacity limits of the transmission lines. Note that {·}
is the index and set of thermal units, gas-fired generations, and CHP.

0 ≤ r+{·},t ≤ R+
{·}, {·} = ie, gg, chp (2)

0 ≤ r−{·},t ≤ R−{·}, {·} = ie, gg, chp (3)

PDA
{·},t + r+{·},t ≤ Pmax

{·} , {·} = ie, gg, chp (4)

Pmin
{·} ≤ PDA

{·},t − r−{·},t, {·} = ie, gg, chp (5)

− r−{·},t ≤ Pw
{·},t(ζ) ≤ r+{·},t, {·} = ie, gg, chp (6)

(PDA
{·},t + r+{·},t)− (PDA

{·},t−1 − r−{·},t−1) ≤ PRU
{·} , {·} = ie, gg, chp (7)

(PDA
{·},t−1 + r+{·},t−1)− (PDA

{·},t − r−{·},t) ≤ PRD
{·} , {·} = ie, gg, chp (8)
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However, constraints Equations (6) and (10) may not always be satisfied [27] due to
the uncertain wind power forecasting errors, or the strict restrictions may result in high
operational costs. Additionally, individual chance constraints may not be satisfied simulta-
neously with a certain confidence level. To deal with this problem, the two constraints are
converted into joint chance constraints in Equations (11) and (12).

P{−r−{·},t ≤ PRT
{·},t(ζ) ≤ r+{·},t} ≥ 1− εgen, {·} = ie, gg, chp ∀ie, gg, chp (11)

P{− f max
le ≤ Qg(PDA

ie,t + PRT
ie,t(ζ)) + Qw(ωDA

j,t + ζ j,t)−Qd(Pd
ke,t + PEB

be,t) ≤ f max
le } ≥ 1− εgrid ∀le (12)

2.2.2. Constraints for Natural Gas System

Equation (13) explains the relation between the natural gas pressure of gas compres-
sors’ headend nodes and terminals. The nodal natural gas balance is given in Equation (14),
whose total demand includes gas load, gas consumed by CHP, and gas-fired units. Con-
straint Equation (15) implies that gas flows only in the positive/negative direction, which
cannot exist simultaneously in the gas pipelines. Equation (16) is the Weymouth gas
flow equation [28], which describes the relationship between natural gas pressure and
natural gas flow in a steady-state condition. The constraints of natural gas pressure at
each node and the limits of the natural gas flow in each gas pipeline are represented by
Equations (17) and (18), respectively.

ψjg,t = ρcψig,t (13)

wsource
jg,t + ∑

ig jg∈Z(jg)
wig jg,t − wchp

jg,t − wgg
jg,t − wload

jg,t = ∑
jgkg∈Z(k)

wjgkg,t (14)

wig jg,t + wjgig,t = 0 (15)

wig jg,t = Cig jg

√∣∣∣ψ2
ig,t − ψ2

jg,t

∣∣∣ (16)

ψmin ≤ ψig,t ≤ ψmax (17)

wig jg,min ≤ wig jg,t ≤ wig jg,max (18)

2.2.3. Constraints for Heating System

A closed-cycle heating system is employed, which comprises supply and return
pipelines. Hot water is selected as the heat medium for transmission, and quality adjust-
ment is adopted by adjusting the temperature of the heat medium. When the water from
different pipelines flows into the same node, there will be a mixture of water described by
Equations (19) and (20) [29]. Then, Equations (21) and (22) show that the temperature of
the output at each node is equal to the mixed water temperature. Equation (23) presents
the relationship between heat demand and the heat flow. Furthermore, Equation (24)
takes the loss of heat transmission into consideration. The nodal heat balance is given in
Equation (25) [30].

∑
b∈S−i

(Tps,outb
b,t ·msb) = Tms

ih,t · ∑
b∈S−b

msb (19)
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∑
b∈S+

i

(Tpr,outb
b,t ·mrb) = Tmr

ih,t · ∑
b∈S+

b

mrb (20)

Tps,inb
b,t = Tms

ih,t, b ∈ S+
ih

(21)

Tpr,inb
b,t = Tmr

ih , b ∈ S−ih (22)

dheat
ih,t = Cpmsb(T

ms
ih,t − Tmr

ih,t) (23)

Toutb
b,t = (Tinb

b,t − Ta) exp(− ςbLb

Cpmb ) + Ta (24)

HDA
chp,t + HDA

EB,t = ∑
ih∈Ih

dheat
ih,t + ∑

ih jh∈J(jh)
Hloss

ih jh,t (25)

2.2.4. Constraints for Multiple Energy Converters

Various energy converters are applied to make use of natural gas and electricity
resources conjointly to realize the policy to adopt a balanced energy mix. The constraints
Equations (26)–(29) detail the energy input–output relationship energy converters, i.e., CHP,
gas-fired generations, and electric boiler.

HDA
chp,t = η

chp
he PDA

chp,t (26)

PDA
chp,t = η

chp
ge wchp,DA

ig,t (27)

PDA
gg,t = η

gg
ge wgg,DA

ig,t (28)

HDA
EB,t

= ηEB
he PEB,DA

be,t (29)

2.3. Formulation of Real-Time Operation

The real-time stage considers the re-dispatch and adjustive actions to address wind
power uncertainty. The second-stage objective function contains two parts: (I) fines for
the overrated or underrated schedule in the day-ahead stage and (II) fines for wind power
curtailment or load shedding, as shown in Equation (30).

min
PDA, PRT(ζ),
r+, r−

∑
ie ∈ Ie,ig ∈ Ig,
t ∈ T

λ{·}|PDA
{·},t − PRT

{·},t|+ λig Ggas,t + λshed
ke ∑

ke∈Ke

lshed
ke,t + λ

spil
ie |∑

j∈J
ωRT

j,t − (ωDA
j,t + ζ j,t)| (30)

Constraints for the real-time operation are the same as the constraints in the day-ahead
stage, Equations (7), (8), (10) and (13)–(29), and at the same time include Equations (31)–(34).
The constraint Equation (31) requires the load shedding quantity to be no more than
actual energy demands. Wind power curtailment quantity is restricted by Equation (32).
Constraint Equation (33) limits the adjusted power outputs of traditional generations,
gas-fired generations, and CHPs. Equation (34) is the real-time power balance constraint
considering wind spills and load shedding.

0 ≤ ∑
ke∈Ke

lshed
ke,t ≤ ∑

ke∈Ke

Pd
ke,t+ ∑

be∈Be

PEB
be ,t (31)

0 ≤ PRT
spi,t ≤ ∑

j∈J
(ωDA

j,t + ζ j,t) (32)

PDA
{·},t − r−{·},t ≤ PRT

{·},t ≤ PDA
{·},t + r+{·},t, {·} = ie, gg, chp (33)
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∑
ie∈Ie

(PDA
ie,t + PRT

ie,t) + ∑
gg
(PDA

gg,t + PRT
gg,t) + (PDA

chp,t + PRT
chp,t) + ∑

j∈J
ωRT

j,t +

∑
le∈Le

f DA,ini
le,t

+ ∑
ke∈Ke

lshed
ke,t = ∑

ke∈Ke

Pd
ke,t + ∑

be∈Be

PEB,RT
be,t + ∑

le∈Le

f DA,inj
le,t + PRT

spi,t
(34)

3. Proposed Solution Method

The proposed two-stage DR-JCCD problem cannot be solved easily due to the wind
power uncertainty and the chance constraints. To find a solution to this problem, firstly,
a Wasserstein distance-based ambiguity set is used to collect the uncertain wind power
distributions information. Then, based on this ambiguity set, the day-ahead objective
function is reformulated through linear decision rules by considering the decision vari-
ables’ ambiguity in the worst-case expectation. Moreover, the joint chance constraints
are transformed into tractable constraints through the Bonferroni approximation and the
Worst-Conditional Value-at-Risk approximation. Furthermore, the Weymouth gas flow
equation of the proposed model will increase computational burden due to its nonlinear
and nonconvex nature. Therefore, the linear programming technique is utilized to solve
the gas flow equation.

3.1. Basic Formulation

The proposed model is described as

min
x∈X

c′x + sup
P∈Dζ

EP[Q(x, ζ)] (35)

s.t. Ax, < b (36)

P{g(
_
f )} ≥ 1− εgrid (37)

P{h(PRT
{·},t(ζ))} ≥ 1− εgen (38)

min
y

f ,y (39)

s.t. Ex + Fy + Gζ ≤ h (40)

The objective function Equation (35) is to minimize the day-ahead operation cost
and the expected cost caused by the energy adjustments Equation (1) combined. x is the
decision including the energy output, reserve capacity, and adjustment of multiple energy
devices. Dζ indicates the ambiguity set containing possible probability distribution P of
wind data. Equations (36)–(38) present the day-ahead constraints. The real-time model is
shown in Equations (39) and (40), where f represents the coefficient of decision variables
in Equation (39).

3.2. Wasserstein Distance-Based Ambiguity Set

In order to estimate the probability distributions of wind power uncertainty, it is
important to build an effective ambiguity set. Although potential probability distribution
is uncertain, an enormous number of recorded historical data are accessible. Therefore, an
empirical distribution PN = 1

N ∑N
k=1 δζk can be considered as the approximate substitution

for the true distribution P, where δζk presents the Dirac measure on the wind power
forecasting error sample ζk [31]. To estimate the distance between the true distribution P
and an empirical distribution PN, the Wasserstein distance is defined as follows.

Definition of the Wasserstein distance [32]: The Wasserstein distance dw(P1, P2) :
RW × RW → R is defined via

dw(P1, P2) = inf





∫

Rw×Rw

‖ζ1 − ζ2‖∏(dζ1, dζ2)



 (41)
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where ‖ζ1 − ζ2‖ is the distance between random variables ζ1 and ζ2. Additionally, 1-norm is
applied in this paper due to its superior numerical tractability. M(Ξ) denotes all probability
measures of wind power uncertainty supported on the polyhedron Ξ =

{
ζ ∈ RW : Hζ ≤ h

}
.

The Wasserstein distance serves to establish an array of ambiguity sets. Every ambiguity
set differs from the empirical distribution within the preset distance [33]:

Dζ , {P ∈ M(Ξ) : W(P, PN) ≤ ρ} (42)

3.3. Reformulation of Objective Function

It is complex and time-consuming to directly find the exact solution to DRO problems
when the decision variables are coupled with random variables. Therefore, the use of
LDRs [34], which is a typical approximate method that can deal with the coupling rela-
tionship between decision variables and uncertain parameters, is used to approximate the
model [35]. In this context, the objective function Equation (35) can be reformulated as a
conic program [32].

max
P∈Dζ

EP[γT
c (Y0 + Yζ)]

=





max
P∈Dζ

∫
Ξ γT

c (Y0 + Yζ)P(ζ)dζ

s.t. 1
N

N
∑

i=1

∫
Ξ ‖ζ −

∧
ζi‖Pi(dζ) ≤ ρ ∀i ≤ N

=





min
λo ,so ,γo

λoρ + 1
N ∑N

i=1 so
i

s.t. γT
c (Y0 + Y

∧
ζi) + γo

i
T(h− H

∧
ζi) ≤ so

i ∀i ≤ N
‖HTγo

i − (Y0 + Y)Tc‖∗ ≤ λo ∀i ≤ N

(43)

where γo
i , λo, and so are auxiliary variables.

3.4. Approximation of Joint Chance Constraints

Joint chance constraints Equations (11) and (12) include a series of constraints of energy
output adjustment and transmission lines separately. We consider the two joint chance
constraints in a general form.

P[Al x + (BlY + Cl)ζ ≤ bl ∀l ≤ L] ≥ 1− ε (44)

where l represents the index of energy devices or transmission lines and is the total quantity
of energy devices or transmission lines. ε is a predefined confidence level.

Then, the joint chance constraints can be divided into L individual chance constraints
whose confidence level is ε l = ε/L by the Bonferroni conservative approximation [36]:

min
P∈Dζ

P[Al x + (BlY + Cl)ζ ≤ bl ] ≥ 1− ε l

= min
P∈Dζ

P[Al x + (BlY + Cl)ζ − bl ≤ 0 ] ≥ 1− ε l
(45)

The worst-case Conditional Value-at-Risk approximation can be used to transform
Equation (45) [24] into

max
P∈Dζ

P− CVaRεl [Al x(BlY + Cl)ζ − bl ]

= max
P∈Dζ

inf
τl

{
τl +

L
ε EP[(Al x(BlY + Cl)ζ − bl − τl)

+]
}

= max
P∈Dζ

inf
τl

{
EP[max

{
τl , L

ε (Al x(BlY + Cl)ζ − bl)
}
]
}

(46)
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which can be rewritten as

inf
τl ,λl ,sl ,γl

λlρ + N−1∑N
i=1 sil

s.t. τl ≤ sil ∀i, ∀l
L
ε (Al x− bl) +

L
ε (BlY + Cl)

∧
ζi + (1− L

ε )τl

+γT
il (h− H

∧
ζi) ≤ sil ∀i, ∀l

‖HTγil − L
ε (BlY + Cl)

T‖∗ ≤ λk ∀i, ∀l
γil ≥ 0 ∀i, ∀l

(47)

3.5. Reformulation of the Weymouth Gas Flow Equation

The Weymouth gas flow Equation (16), applied to characterize the natural gas flow,
is nonlinear and nonconvex. These properties make the optimization of natural gas sys-
tem operation an NP-hard problem. The problem can be solved by mixed-integer linear
programming techniques [37]. Among linear programming techniques, piecewise lin-
ear functions describing nonlinearities and binary variables can avoid local optima due
to nonconvexities.

Assuming that natural gas flows from pipe node ig to pipe node jg, the variable ψ2
ig ,t

is replaced by the second-order conic ψ,
ig ,t, representing the pressure of the pipe node ig.

Then, Equation (13) can be transformed into the constraint as follows:

w2
ig jg,t = C2

ij(ψ
,
ig,t − ψ,

jg,t) (48)

Next, the square term of each pipeline on the left hand of the equation can be piecewise
approximated into m linear segments shown in Figure 2.
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When the direction of the gas flow is from node ig to node jg, the range of the gas flow
wig jg ,t is from 0 to wig jg ,max, which is the maximum flow in the pipelines. The transformed
model of w2

ig jg ,t is shown as:

0 ≤ Al
ig jg,t ≤ δl

ig jg,td
l
ig jg (l = 1)

δl
ig jg,td

l−1
ig jg ≤ Al

ig jg,t ≤ δl
ig jg,td

l
ig jg (l ≥ 2)

m
∑

i=1
δl

ig jg,t = 1 δl
ig jg,t = 0, 1; Al

ig jg,t = ωig jg,t

f l
ig jg = 0 (l = 1); f l

ig jg = (dl−1
ig jg )

2
(l ≥ 2)

kl
ig jg =

dl
ig jg

f l
ig jg
− f l−1

ig jg

l ≥ 2

dl
ig jg =

ωig jg,maxl
m

ψ2
min ≤ ψ,

ig,t ≤ ψ2
max

(49)
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Finally, the Weymouth gas flow equation is transformed into the form as:

C2
ig jg(ψ

,
ig,t − ψ,

jg,t) =
m

∑
i=1

[(Al
ig jg,t − dl−1

ig jg )k
l
ig jg + f l

ig jg δl
ig jg,t] (50)

Therefore, the two-stage distributionally robust joint chance-constrained dispatch
model considering wind power uncertainty can be converted into a mixed-integer conic
reformulation with Equations (1) and (30) as the objective function and Equations (2)–(5),
(7)–(9), (11)–(15), (17)–(29), (31)–(34), (43), (47), and (50) as the constraints, which can be
solved directly by calling Gurobi solver under Matlab.

4. Case Study

As shown in Figure 3, a regionally integrated energy system for electricity, gas, and
heating comprising a modified IEEE 24-bus system, 20 natural gas nodes, and 6 heat nodes,
was used to test the validity of the proposed DR-JCCD model. The detailed information
for the generators and natural gas sources are given in Appendix B. The power and the
gas subsystems have three coupled points: buses 13 and 23 in the power subsystem are
severally connected with natural gas nodes 3 and 19 via two gas-fired generators, and a
CHP at bus 22 is linked with gas node 6. The heat demand is satisfied by the gas turbine at
power bus 22, and an electric boiler supplied by power bus 13.
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Figure 3. Modified 24-electricity bus, 20-natural gas node, and 6-heat node system for regional IES.

4.1. Robust Performance with Different Sample Sizes

In general, by using another dataset diverse from the experimental one, out-of-sample
performance is a helpful tool for assessing the robustness of the optimal schedules [37].
Additionally, sampling errors that comes from limited historical data may cause poor
out-of-sample performance in operation. In this condition, the empirical evidence based
on out-of-sample forecasting errors is used to measure the robustness of the model in
this paper.

As illustrated in Figure 4, an unwise decision that ignores ambiguity (by setting
ρ = 0) has a large out-of-sample size, which is the maximum cost ($5.37× 107). Therefore,
this unwise decision is costlier than a more advanced decision that takes the ambiguity
of uncertain wind power into account by setting an appropriate distance ρ. The largest
difference in cost is up to $5.1 × 105. In short, the distance ρ precisely regulates the
conservativeness of the optimal decision. A considerable distance will make optimal
decisions more independent of the characteristics of the historical data and offer stronger
robustness to energy adjustments and reserve policies.
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Furthermore, a model considering uncertain variable ambiguity is more competitive
for larger sample sizes N. For example, as shown in Figure 4, the acquisition cost of out-of-
sample sizes is higher when using an N = 20 training sample ($5.35× 107) versus an N = 100
training sample ($5.32× 107). This is due to the fact that a smaller sample size results in a
poorer robustness choice in the first stage, necessitating a higher cost for adjustment at the
second stage. It is now obvious that the out-of-sample acquisition cost decreases gradually
as the training sample size increases. It further implies that, with adequate data support,
the proposed solution is fairly robust to wind uncertainty.

4.2. The Influence of Different Confidence Levels

Because risk levels of renewable energy uncertainty can be estimated by confidence
level or the parameter ε, we investigate the influence of a series of confidence levels on the
total cost. The whole system cost with different parameters 1− ε, including 99%, 95%, 90%,
75%, 65%, 55%, and 45%, are summarized in Figure 5.
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With the same ρ, when the ε increases from 0.01 to 0.55, the marginal cost gradually
decreases from $5.39× 107 to $5.32× 107, as shown in Figure 5. The largest marginal
cost difference is $7× 105 among the listed confidence levels. This is because the lower
the decision-risk maker’s tolerance, the greater the necessity for the reserve to balance
the unpredictability of wind turbine output, and the greater the amount of natural gas
consumed. Meanwhile, a small ε value represents a low tolerance level of risk-taking. It
means that as the level of confidence diminishes, the marginal cost decreases. In particular,
when the confidence level change from 99% to 95%, the marginal cost dramatically decreases
by $5× 105, which accounts for 71% of the largest marginal cost difference. Therefore, it
will cost more to achieve more a reliable operation of the system. It acts as a reminder to
decision-makers that in practice, they should choose an adequate confidence level to avoid
the significant costs associated with high-reliability standards.
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4.3. Comparisons among DR-JCCD, RO, and SP

To assess the effectiveness of the proposed DR-JCCD in balancing robustness and
economy, this subsection compares the operating costs among the DR-JCCD approach, RO,
and SP methods.

As shown in Figure 6, the total expected costs of the DR-JCCD model increase as the
confidence level increases. The expected costs of the DR-JCCD model are always between
the RO and SP, regardless of how the expenses change. Meanwhile, the RO approach has a
higher total expected cost than its counterparts by at least $1× 104 and at most $6.4× 105

due to overly conservative decisions on energy reserve and dispatch. In particular, when the
Wasserstein distance is zero, the total expected cost of DR-JCCD is equal to the anticipated
expenses of SP. According to the definition of the Wasserstein distance, the ambiguity set
contains only empirical probability distributions of wind power on this condition. When
the Wasserstein radius approaches infinity and the confidence level reaches 100%, DR-JCCD
almost degrades into RO, where the cost of DR-JCCD is only 0.02% lower than the cost of
RO. This is because the former has the tendency to contain all probability distributions.

Energies 2022, 15, x FOR PEER REVIEW  12  of  19 
 

 

 

10
7

T
o
ta
l 
ex
p
ec
te
d
 c
o
st
 (
$)

5.32

5.33

5.34

5.35

5.36

5.37

5.38

5.39

0.4
0.3

0.2
0.1 0

99%
95%

90%
75%

65%
55%

45% 310  

Figure 5. The impact of different confidence levels on the operational cost. 

With the same   , when the     increases from 0.01 to 0.55, the marginal cost gradu‐

ally decreases from $ 75 39 10.   to $ 75 32 10. , as shown in Figure 5. The largest marginal 

cost difference is $ 57 10   among the listed confidence levels. This is because the lower the 

decision‐risk maker’s  tolerance,  the greater  the necessity  for  the reserve  to balance  the 

unpredictability of wind turbine output, and the greater the amount of natural gas con‐

sumed. Meanwhile, a small     value  represents a  low  tolerance  level of  risk‐taking.  It 
means that as the level of confidence diminishes, the marginal cost decreases. In particu‐

lar, when the confidence level change from 99% to 95%, the marginal cost dramatically 

decreases by  $ 55 10 , which  accounts  for  71% of  the  largest marginal  cost difference. 

Therefore, it will cost more to achieve more a reliable operation of the system. It acts as a 

reminder to decision‐makers that in practice, they should choose an adequate confidence 

level to avoid the significant costs associated with high‐reliability standards. 

4.3. Comparisons among DR‐JCCD, RO, and SP 

To assess  the effectiveness of  the proposed DR‐JCCD  in balancing robustness and 

economy, this subsection compares the operating costs among the DR‐JCCD approach, 

RO, and SP methods. 

As shown in Figure 6, the total expected costs of the DR‐JCCD model increase as the 

confidence level increases. The expected costs of the DR‐JCCD model are always between 

the RO and SP, regardless of how the expenses change. Meanwhile, the RO approach has 

a higher total expected cost than its counterparts by at least $ 41 10   and at most $ 56 4 10.
due to overly conservative decisions on energy reserve and dispatch. In particular, when 

the Wasserstein distance is zero, the total expected cost of DR‐JCCD is equal to the antic‐

ipated expenses of SP. According to the definition of the Wasserstein distance, the ambi‐

guity set contains only empirical probability distributions of wind power on this condi‐

tion. When the Wasserstein radius approaches infinity and the confidence level reaches 

100%, DR‐JCCD almost degrades into RO, where the cost of DR‐JCCD is only 0.02% lower 

than the cost of RO. This is because the former has the tendency to contain all probability 

distributions. 

 

0.55.32

5.33

45% 0.4

5.34

5.35

55%

5.36

5.37

65% 0.3

5.38

5.39

75% 0.290% 95%
099%

10
7

RO DR‐JCCD SP

T
o
ta
l 
ex
p
ec
te
d
 c
o
st
 

($
)

3

10


 

Figure 6. Comparison of total expected costs among DR‐JCCD with different   , RO, and SP. Figure 6. Comparison of total expected costs among DR-JCCD with different ε, RO, and SP.

Moreover, the acquisition cost of out-of-sample size of the DR-JCCD model decreases
with the increase in training sample size. However, this cost is always between RO and SP,
as illustrated in Figure 7.
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Figure 7. Comparison acquisition cost of out-of-sample size among DR-JCCD with different sizes of
training samples, RO, and SP.

Moreover, the acquisition cost of out-of-sample size of the DR-JCCD model decreases
with the increasing training sample size. However, this cost is always in-between RO and
SP, as illustrated in Figure 7.

From a different perspective, RO, which dispatches and reserves more energy in the
worst case of wind power generation, has the most robustness of the three techniques.
However, taking accurate dispatch and reserve into account, the proposed approach has
lower operational costs than RO. This is due to the fact that it bases its decisions on
the worst-case probability distribution of wind power generation, which means more
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information on uncertain wind power considered. It also has a higher energy reserve than
the SP to cope with the wind power uncertainty.

To sum up, by employing partial distributional information, the DR-JCCD approach
realizes that the robustness of the model is well-balanced with its economy.

4.4. Analysis of Energy Conversions in Energy Balance

Different confidence levels will result in various solutions in multi-energy manage-
ment. Here, 1− ε = 95% is chose to show the energy mutual assistance effect of gas-
fired generations and CHP in the gas system. Note that positive values in Figure 8 rep-
resent the result of day-ahead operation, while negative values represent the result of
real-time dispatch.
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A small amount of natural gas is transformed into power at 1:00–3:00 and 24:00 owing
to the large output of wind power, as illustrated in Figure 8. At this time, the results
of the day-ahead operation will not be adjusted in real-time. Because the influence of
the expectation of wind power real-time deviation at the first stage is considered, the
adjustment may always take a cut action to revise the results over day-ahead dispatch
between 4:00 and 23:00, where the maximum adjustment amount accounts for 19.83% of
the day-ahead dispatch. It can reduce unnecessary costs and verify the robustness of the
decisions made at the first stage. Meanwhile, by CHP and gas-fired units, the natural gas
system effectively supports the power grid under wind power uncertainty.

The output of the heating system is shown in Figure 9. Additionally, the difference
between the heating source and heating demand is precisely the transmission loss, as
shown in Figure 9a,b. According to Figure 9c, the CHP and electric boiler convert the
electricity in order to meet the heating demand, where CHP is the dominant heating source
with 83% of the heating capacity and the electric boiler assists with 17% of the heating
capacity. When the wind power is abundant at 1:00–5:00 and 23:00–24:00, the electric boiler
transforms more wind power to heat, enhancing the IES capacity of wind power utilization
in IES.

4.5. Effect of Gas-Fired Generations on Electric Peak Shaving

Peak shaving in a multi-energy system proactively adjusts actions of energy utilization
to broaden energy sources or reduce short-term multi-energy demand at peak periods.
As a device of multi-energy cooperation, gas-fired generations have a positive effect on
Electric Peak shaving, as illustrated in Figure 10. At the peak of power consumption, gas-
fired generation systems quickly adjust their output to meet the power demand, thereby
reducing the regulatory burden of the power system. Especially at 11:00, the supply of
gas-fired generators reaches its maximum, accounting for 22.26% of the power demand.
This demonstrates the advantages of multi-energy cooperation in the proposed model. This
is particularly the case when the regulation resource is limited or the regulation cost is too
high in a subsystem.
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Figure 10. Actions of gas-fired generations in Electric Peak-shaving.

5. Conclusions

A two-stage distributionally robust joint chance-constrained dispatch model for
electricity–gas–heat IES with wind power uncertainty is investigated in this paper. The
wind power generation uncertainty is captured in the model by employing the worst-case
probability distributional information in an ambiguity set based on Wasserstein distance. In
light of the operational risk caused by wind power uncertainty, the joint chance constraints
ensure that multiple safety conditions are met simultaneously with a high confidence level.
Next, by the linear decision rules and linear incremental method, the problem is reformu-
lated as a mixed-integer tractable optimization issue. The effectiveness of the proposed
model is corroborated on an electricity–gas–heating regional integrated energy system with
a modified IEEE 24-bus system, with 20 natural gas nodes and 6 heat nodes. Notably, the
proposed DR-JCCD method can pay 1.3% less than the RO method and achieve a more
robust out-of-sample performance than the SP approach at risk, which is a shaving of 22.3%
on the acquisition cost of out-of-sample size. Hence, the proposed model achieves a good
balance between economy and robustness. Furthermore, the higher the risk preference of
the decision-maker, the cheaper the operating cost of the optimization solutions will be,
but this will also lessen the robustness of this scheme. To put it differently, the DR-JCCD
method can provide decision-makers with information on cost and risk.

With the increase in the number of wind power data, the statistical wind power
characteristics are closer to the true wind power distribution. However, a large number of
data sets will bring about a calculation issue. Therefore, it is necessary to consider effective
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scene reduction technology in future work. For more flexible energy management, the IES
can take more functional interdependent coupling devices into account and integrate a
multi-energy demand response. In addition, multiple uncertainties can be considered in
future work, such as various uncertain energy supply and energy demand.
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Appendix A

Table A1. Nomenclature.

Nomenclature

Indices and sets η
gg
ge Efficiency coefficient of gas-fired units.

t,T Index and set of time periods. ηEB
he Efficiency coefficient of electric boiler.

le, Le Index and set of transmission lines. ε Confidence levels of chance constraints.

ie, Le Index and set of traditional units. λie , λgg, λchp
Cost coefficients for traditional units,
gas-fired units, and CHPs.

gg,GG Index and set of gas-fired units. λ+
ie

, λ−ie
, λ+

gg Cost coefficients up and down reserve of
traditional units, gas-fired units, and CHPs.Chp, CHP Index and set of CHPs. λ−gg, λ+

chp, λ−chp

j,J Index and set of wind farms. λig Cost coefficient for natural gas source.

ke, Ke Index and set of power demand. λshed
ke

, λ
spil
j

Cost coefficient for load shedding and
wind spilling.

be, Be Index and set of electric boilers. Variables

ig, jg, kg, Z Index and set of gas nodes. r+ie,t
, r−ie,t

, r+gg,t Up and down reserve capacity of
traditional units, gas-fired units, and CHPs.b Index and set of heat pipes. r−gg,t, r+chp,t, r−chp,t

ih, Ih Index and set of heat nodes.
PDA

ie,t
, PDA

gg,t , PDA
chp,t

Active power output of traditional units,
gas-fired units, and CHPs day head.S−ih , S+

ih
Index and set of heat pipes at the end/head
of node ih.

Parameters Pw
ie,t
(ζ), Pw

gg,t(ζ), The adjustment of traditional units,
gas-fired units and CHPs responding to
uncertain wind forecasting errors.R+

ie , R−ie, R+
gg Maximum up and maximum down reserve

capacity of traditional units, gas-fired units,
and CHPs.

Pw
chp,t(ζ)

R−gg, R+
chp, R−chp PEB

be,t
Active power consumed by electric boiler.
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Table A1. Cont.

Nomenclature

Pmax
ie

, Pmin
ie

,
Maximum and minimum limits of active
power output of traditional units, gas-fired
units, and CHPs.

lshed
ke,t

Load shedding at bus ke in period t.

Pmax
gg , Pmin

gg , PRT,spi
j,t

Wind spilling of wind farm j in period t.

Pmax
chp , Pmin

chp Sup
t PRT

ie,t
, PRT

gg,t The real-time adjustments of traditional
units, gas-fired units and CHPs.PRU

ie
, PRD

ie

Maximum ramp-up and ramp-down rate of
traditional units, gas-fired units, and CHPs.

PRT
chp,t

PRU
gg , PRD

gg
f ini
le,t

, f inj
le,t

Injected active power flow at bus ie and je.
terminal servicesPRU

chp , PRD
chp

f max
le

Maximum active power flow of line le. ψig ,t Pressure of gas node ig.

Qg, Qw, Qd Matrices of power transfer
distribution factors. wsource

ig ,t Output of natural gas sources.

Pd
ke ,t, W load

ig
Electricity, gas load in period t. wig, jg, t Gas flow of pipeline ig, jg.

ωDA
j,t

Forecasting output of wind farm j in
period t. wchp

lg, t, wgg
lg, t

Injected gas flow of gas turbine and
gas-fired units.

ζ j,t Uncertain wind forecasting errors.
Tps,inb

b,t , Tps,outb
b,t

Inlet/Outlet temperature of feed piping b
in period t.ρc Gas compressor coefficient.

Cig jg The coefficient for Weymouth equation.
Tpr,inb

b,t , Tpr,outb
b,t

Inlet/Outlet temperature of return piping b
in period t.msb , mrb Heating water mass of feed/return piping.

dheat
ih,t

Heating demand at heat piping node ih in
period t. Tms

ih, t, Tmr
ih, t

Mixed temperature at node ih of
feed/return piping in period t.

Cp Specific heat capacity of water.

Ta Ambient temperature.
HDA

chp,t, HDA
EB,t

Heat output of CHPs and electric boilers in
period t day ahead.ξb Heat transfer coefficient of heat piping b.

Lb Length of heat piping b. Hloss
ig, jh, t Heat loss of heat piping in period t.

η
chp
ge , η

chp
he

Efficiency coefficient of CHPs.

Appendix B

Table A2. Parameters of traditional units, gas-fired units and CHPs.

No. Pmax
{·}

(MW)
Pmin

{·}
(MW)

λ{·}
(k$/MWh) Bus Ramp up

(MW)
Ramp down

(MW) Type

1 304 40 17.5 1 150 150 0
2 304 40 20 2 150 150 0
3 600 70 15 7 300 300 0
4 1182 60 22.5 13 590 590 1
5 120 30 30 15 60 60 0
6 310 30 22.5 15 105 105 0
7 310 30 25 16 105 105 0
8 800 50 5 18 400 400 0
9 800 50 7.5 21 400 400 0
10 652 50 22.5 22 325 325 2
11 620 60 15 23 310 310 1
12 700 40 22.5 23 350 350 0

Where type 0\1\2 represents traditional units\gas-fired units\CHPs.
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Table A3. Parameters of natural gas sources.

No. Gas Node wig,jg, min(Mm3) wig,jg, max(Mm3)
λig

($/Mm3)

1 1 0.9 1.7391 85,000
2 2 0 1.26 85,000
3 5 0 0.72 85,000
4 8 1.0 2.3018 62,000
5 13 0 0.27 62,000
6 14 0 1.44 62,000
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Abstract: Mounting concerns pertaining to energy efficiency have led to the research of load monitor-
ing. By Non-Intrusive Load Monitoring (NILM), detailed information regarding the electric energy
consumed by each appliance per day or per hour can be formed. The accuracy of the previous residen-
tial load monitoring approach relies heavily on the data acquisition frequency of the energy meters.
It brings high overall cost issues, and furthermore, the differentiating algorithm becomes much
more complicated. Based on this, we proposed a novel non-Intrusive residential load disaggregation
method that only depends on the regular data acquisition speed of active power measurements.
Additionally, this approach brings some novelties to the traditionally used denoising Auto-Encoder
(dAE), i.e., the reconfiguration of the overlapping parts of the sliding windows. The median filter is
used for the data processing of the overlapping window. Two datasets, i.e., the Reference Energy
Disaggregation Dataset (REDD) and TraceBase, are used for test and validation. By numerical testing
of the real residential data, it proves that the proposed method is superior to the traditional Factorial
Hidden Markov Model (FHMM)-based approach. Furthermore, the proposed method can be used
for energy data, disaggregation disregarding the brand and model of each appliance.

Keywords: load disaggregation; denoising auto-encoder; REDD dataset; TraceBase dataset;
machine learning

1. Introduction

At present, the household electric meter can only measure total electricity consumption,
and not the individual electric consumption of various loads. Energy disaggregation is the
computational process of distinguishing individual power consumptions of an electrical
appliance from the mixed measurement. The application of NILM can help households
reduce their cost of energy consumption. According to related studies, with the energy
consumption information of each appliance, users can realize energy conservation of
more than 12% [1]. In addition, with the increasing installation of renewable energy, the
distribution network needs faster and more accurate demand-side response capability. The
realization of this capability depends on load disaggregation [2,3].

The load disaggregation of residential electrical equipment is an important direction of
smart grid research. The user’s electrical equipment has the characteristics of wide variety,
large scale, and large differences in the load characteristics [4]. At present, with the pilot and
promotion of load disaggregation for residential users, many local load monitoring devices
have been deployed. In actual use, it is found that load monitoring devices generally
undergo sample data training or learning process in advance. The difficulties in field use
are threefold: firstly, due to the low efficiency of the algorithm, the real-time performance of
load disaggregation is difficult to guarantee; secondly, due to the wide variety of electrical
equipment and complex working conditions, it is difficult to find an algorithm to accurately
identify each electrical equipment, and thirdly, when users deploy new devices, they often
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cannot be identified correctly, which brings great limitations to field usage. Therefore, it
is necessary to consider adopting a method to solve the problem of online disaggregation
and synchronization of local load disaggregation equipment [5,6].

Load disaggregation can be divided into intrusive methods based on hardware devices
and non-intrusive methods based on software algorithms (Nonintrusive Load Monitoring—
NILM) [7–9]. In 1992, Hart addressed the energy data disaggregation problem for the
first time using Finite State Machine (FSM), which led to the new approaches based on
Hidden Markov Models (HMM), and Factorial Hidden Markov Models (FHMM) [10–13].
The essence of these methods is to model the specific electrical signatures or features
of each device, either manually or automatically. Ref. [14] proposed an intrusive load
disaggregation method based on distributed power Measurement and Actuation Units
(MAUs). MAUs are connected between the device plug and the power outlet. The MAU
device can measure the power consumption of a single device and control the power failure
of the device for demand-side response. Because the invasive method requires additional
installation of equipment, the user’s responsiveness is relatively low. More research on
load disaggregation focus on non-invasive methods. For example, [15] separates the
high frequency collected load current data to build a load feature library to realize non-
intrusive automatic load monitoring of adaptive users and [16] proposes a non-intrusive
load disaggregation method based on generalized regression neural network. This method
needs to obtain data such as power, harmonics, switching time, and so on. Ref. [17] proposes
separating the superimposed loads based on the transient reactive power characteristics of
the load at opening moment, and the coded Particle Swarm Algorithm (E-PSO) is deployed
for disaggregation. The above studies all have high load disaggregation accuracy; however,
all of them have high requirements for data measurement. Whether it is the high-frequency
load current data or the transient waveform when the load is turned on, the ordinary
electric meter needs to be transformed before these data can be obtained, adding additional
cost to the customers.

In recent years, some scholars proposed to only use low-frequency single measurement
for load disaggregation [18–21]. Ref. [18] uses the effective value of current to identify the
load, and Ref. [19] only uses the steady-state time domain active and reactive power to
identify the turn-on or turn-off status of electrical equipment. A common defect of these
methods is that the disaggregation accuracy is poor when multiple loads with similar
steady-state waveforms are turned on at the same time.

In terms of disaggregation algorithms, load disaggregation based on machine learn-
ing methods is known as a research hotspot [22–28]. Various mature machine learning
algorithms are applied to load disaggregation, such as Factorial Hidden Markov Model
(FHMM), Artificial Neural Network (ANN), decision tree, etc. In these studies, Deep Neu-
ral Networks (DNNs) seem to have certain advantages in both the accuracy and handiness.
Ref. [27] proposed a Fully Convolutional Noise Reduction Encoder Algorithm (FCN-dAE)
for load disaggregation of non-residential large buildings. This algorithm can train the
weight coefficients more effectively in the process of time series modeling. It has a more
stable gradient, which simplifies and speeds up the training process. Three difference neu-
ral network architectures have been investigated and compared by Kelly and Knottenbelt
in [10].

This paper proposes a non-intrusive load disaggregation method that only relies on
a single active power measurement at a conventional data acquisition rate. This method
requires less measurement and does not require additional installation of hardware and
equipment or modification of existing electric energy meters. In terms of the algorithm, this
paper is based on the improved Denoising Auto-Encoder algorithm, which can better distin-
guish loads with similar steady-state power waveforms. Compared with the literature [28],
this paper obtains the adjacent maximum value through the maximum pooling operation in
the encoding stage, so that the activation function in the analysis window is more indepen-
dent, and the length of the feature map and the elements of the fully connected layer can
also be reduced. Two datasets, i.e., the Reference Energy Disaggregation Dataset (REDD)
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and TraceBase, are used for test and validation. By numerical test of the real residential
data, it proves that the proposed method is superior to the traditional Factorial Hidden
Markov Model (FHMM)-based approach. Besides, the proposed method can be used for
energy data disaggregation, disregarding the brand and model of each appliance.

This study is organized as follows: Section 2 briefly reviews the four mainstream
datasets for NILM, i.e., the REDD, TraceBase, UK-DALE, and Dataport. In Section 3,
the proposed disaggregation algorithm is introduced. It elaborates the improvements of
the dAE and the two-step procedure of implementing the modified algorithm. Section 4
discusses the test, results, and performance of the proposed method. The proposed DAE
network is trained on REDD and TraceBase datasets, and the test results are compared with
an FHMM-based approach. Section 5 presents the research conclusions.

2. Dataset Review and Comparison

There are many open-source datasets for non-invasive load disaggregation research
worldwide. The commonly used ones are as follows:

(1) REDD dataset [29]. Its full name is the Reference Energy Disaggregation Dataset,
developed by J. Kolter and M. Johnson of MIT, and is the first dataset for NILM
research. The REDD dataset provides high-frequency data sampled at 15 kHz and
low-frequency data sampled at 0.5 Hz and 1 Hz. A total of 10 households, 119 days,
268 devices, 1 T electricity consumption data were recorded. Figure 1 is an example of
the REDD dataset, showing the electricity usage of various devices in a household
over the course of a day. The REDD dataset can be processed with Excel, which is
easy to operate. The data download website is: http://redd.csail.mit.edu (accessed
on 25 November 2021).

(2) TraceBase dataset [14]. The TraceBase dataset was developed by A. Reinhardt of
Darmstadt University in Germany. It monitors and records more than ten homes and
offices, 31 different types of equipment, 122 devices, and 1270 pieces of load electricity
data. Figure 2 shows the electricity consumption of a dishwasher over a period. The
entry on the left is time, and the two numbers on the far right represent the average
active power consumption within 1 s and 8 s, respectively. The TraceBase dataset is
also stored in the form of an Excel table. The format of the data entry is shown in
Figure 2. The data download website is: http://www.TraceBase.org (accessed on
25 November 2021).

(3) UK-DALE dataset [30]. Developed by J. Kelly and W. Knottenbelt of Imperial College
London, the UK-DALE dataset provides 16 kHz energy consumption data for the
whole house and 1/6 Hz energy consumption data for a single device. It is the
first dataset for load disaggregation in the UK. This dataset recorded the electricity
consumption data of five households, one of which was monitored for up to 655 days.
The monitoring equipment recorded the active power of a single device as well as the
apparent power of the entire house every 6 s, with the voltage and current of three
households sampled at 44.1 kHz but reduced to 16 kHz when stored. In addition,
the active power, apparent power, and voltage RMS were calculated according to
the measured voltage and current, and the calculation frequency was 1 Hz. This
dataset is a file in HDF5 (Hierarchical Data Format) format, which needs to be read
and analyzed with NILMTK, a non-intrusive load monitoring tool. However, the
NILMTK package needs to be loaded and configured with Anaconda software, which
is relatively complicated to use.

(4) Dataport dataset [31]. The Dataport dataset was developed by Pecan Street company
and is the most comprehensive dataset for NILM research. In total, it contains up to
722 households’ power consumption data and individual device’s power consumption
data. Its data sampling rate is low, sampling once a minute. The Dataport dataset is
free for member universities, but a paid download is required for commercial use.
Like the UK-DALE dataset, this dataset also requires the use of the NILMTK tool for
data analysis and statistics.
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Figure 1. The power waveform of each load in a household in one day.

Figure 2. The data format of the TraceBase dataset.

This paper only uses low-frequency active power data. Considering that the REDD
dataset and the TraceBase dataset are relatively simple to use, and the data volume is
sufficient for machine learning training, the REDD dataset and the TraceBase dataset are
used for sample training and method verification.

3. The Proposed Load Disaggregation Algorithm

Usually, a household has multiple electrical devices turned on at the same time, so its
total active power is composed of the sub-power of each electrical device. What we need
to do is to extract the power characteristics of each electrical device and use it to separate
the individual power consumption from the total power mixture. This separation process
can be regarded as noise reduction in image processing or speech recognition. Typical
noise reduction treatments include removing noise from old photos, or removing noise
from a piece of sound, or even filling in the unclear parts of an image. The essence of
load disaggregation is load decomposition. The total mixed power can be regarded as
the picture or recording that needs to be processed, and the power generated by other
unconcerned equipment can be regarded as “noise”.

3.1. Improved Denoising Auto-Encoder Algorithm

The Auto-Encoder algorithm (AE) belongs to unsupervised learning and does not
require labeling of training samples. AE consists of a three-layer network. First, the input
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layer is encoded and compressed, stored in the intermediate layer (or called the encoding
layer), and then the intermediate layer is decoded, and a reconstructed new vector is output
in the output layer. So, in essence, AE consists of two processes: encoding and decoding.
In the encoding process, the deterministic mapping fθ maps the input vector x to a hidden
agent y, and fθ is the encoder. A typical encoder adopts the nonlinear affine mapping model
shown in Equation (1).

fθ(x) = s(Wx + b) (1)

where θ = {W, b} represents the parameter set, W is the weight matrix of d′ × d, and b is
the offset vector of d’. In the decoding process, the previously obtained hidden agent y is
mapped back to reconstruct a d-dimensional vector z in the input space, z = gθ′(y). gθ′

is the decoder. A typical decoder adopts the squeezed nonlinear radial mapping model
shown in Equation (2).

fθ(x) = s(Wx + b) (2)

where θ′ = {W′, b′}. The meanings of W′ and b′ are similar to those of W and b in
Formula (1). It should be noted that the d-dimensional vector z obtained after decoding is
not a reconstruction of the input vector x in the full sense, but a reconstruction of probability
theory, because the probability distribution parameters of p(X|Z = z) (especially its mean)
may increase the probability of x. One of the simplest compression methods is to reduce
the dimensionality of the input vector, so linear AE with only a single hidden layer can be
regarded as a special principal component analysis method (PCA). But unlike PCA, AE can
contain multiple layers and the network function can be nonlinear.

Denoising Auto-encoder (dAE) is a special autoencoder whose purpose is to separate
a “clean” target signal from a noisy input, proposed by P. Vencent et al. in 2008 [32].
The dAE algorithm first artificially adds a random “noise” signal x̃( x̃ ∼ qD(

~
x |x )) to the

input vector x. Similar to an auto-encoder, dAE maps the noisy input signal x̃ to a hidden
agent y = fθ(x̃) = s(Wx̃ + b), which constructs a decoded output vector z = gθ′(y). The
structure of the denoising autoencoder is shown in Figure 3. The parameters θ and θ’ are
trained to minimize the average reconstruction error during training, i.e., to make the
output z as close as possible to the original uncontaminated input vector x, so that z is
now a deterministic function of

~
x. It is worth noting that although dAE is still to minimize

the reconstruction loss between the original input x and the reconstructed agent y, it still
needs to maximize the lower bound of mutual information between the original input x
and the reconstructed agent y. However, at this time y is obtained by using deterministic
mapping for “polluted” input, so its feature extraction and learning ability is stronger than
traditional autoencoders.

Figure 3. The structure of Denoising Autoencoder (the signal obtained by adding random noise to
the original input x, fθ is the encoder, y is the intermediate proxy after encoding and mapping, gθ′ is
the decoder, z is the reconstruction input, and LH(x, z) is the reconstruction loss, which is used to
measure the reconstruction error).

In the load separation stage, the load identification method based on dAE generally
uses a sliding window to analyze the input mixed power signal y(t), and the length of the
sliding window is determined by the use time of the corresponding electrical equipment.
Therefore, for a mixed power obtained by turning on multiple devices at the same time,
the sliding windows will be overlapped. Traditional denoising autoencoder-based load
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decomposition methods use the average value of the overlapping parts to reconstruct
this overlapping window [10]. A problem with this approach is that when a device’s
on-time is only included in this overlapping window for a small fraction of time, the
load identification results can be significantly higher than the actual power usage. As the
window slides, the identified error will further increase. Here we use the median filter to
process the overlapping part, that is, the output signal of the overlapping part is the result
of y(t) after median filtering. Specifically, because the power change of the overlapping
window is relatively small, the output value of the overlapping window can be replaced by
the statistical median of all values in a neighborhood of a certain size. This neighborhood
is called a window. The wider the window, the smoother the output will be, but it may also
wipe out useful signal features. Therefore, the size of the window should be determined
according to the actual hybrid power characteristics.

3.2. Decomposition Steps Based on Improved DAE

The problem of non-intrusive load identification can be expressed by Equation (3).

y(t) =
N

∑
i=1

yi(t) + e(t) (3)

where yi(t) represents the electrical quantity of a single electrical device, and this electrical
quantity may be power, voltage, or current. Without loss of generality, we consider it the
active power value. y(t) indicates the total electricity consumption of this household. e(t)
represents the total measurement error, where we consider the measurement error to be 0.
N represents the number of electrical appliances in this household. Therefore, according to
Formula (3), the NILM problem is to use the algorithm to obtain the power consumption
value of a single electrical device when only the total load power is known. We transform
the load decomposition into a noise reduction problem, as shown in Equation (4).

y(t) = yk(t) + ck(t), k = 1, 2, . . . , N (4)

ck(t) =
N

∑
i=1,i 6=k

yi(t) (5)

where ck(t) represents the sum of the power of all other devices except device k, and yk(t)
represents the load k that needs to be separated. Therefore, to obtain the value of the active
power consumed by the load k of interest, one only needs to separate ck(t) from the total
load yk(t).

The separation steps based on the improved dAE algorithm are as follows:
Stage 1: Encoding the network:

1. One or more one-dimensional convolutional layers process the original total input
power value to generate a set of feature maps;

2. Each convolutional layer sequentially goes through a linear activation function, a
maximum pooling layer, an additional convolutional layer, and a pooling layer, and
finally forms a fully connected multilayer perceptron;

3. The fully connected layer is processed by the modified linear unit (ReLU) activation
function to end the entire encoding process.

Stage 2: Decoding the network:

4. Upsampling the fully connected multilayer perceptron through deconvolution;
5. Up-pooling the results in 4 (the inverse process of max-pooling);
6. Continue to upsample the results in 5 through deconvolution;
7. Obtain the decoded and reconstructed noise reduction signal.

In stage 1 and step 2, the adjacent maxima are obtained through the maximum pool-
ing operation, so that the activation function positions in the analysis window are more
independent, and the length of the feature map and the number of fully connected layer
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elements can also be reduced. The modified linear unit (ReLU) activation function com-
pares the magnitude of the input with zero and outputs a larger value, thereby avoiding
negative values of the load power after decomposition. The goal of this modified dAE
training network is to minimize the mean squared error (MSE) between the output and
the activation function of the device to be separated, using a stochastic gradient descent
(SGD) method for training parameter optimization. Unlike traditional dAE, which requires
artificially adding noise data to the input data, in NILM research, only the power of non-
research objects is used as noise. It can be seen that the noise reduction automatic coding
for NILM research is not equivalent to the traditional image or sound noise reduction but
uses noise reduction as a training standard to better learn how to extract useful features, so
as to better construct high-level acting.

4. Performance Evaluation

In this section, the proposed improved dAE network is trained on the measured
data of REDD and TraceBase, and the test results are compared with the factorial Hidden
Markov Model (FHMM) algorithm [28]. All codes are in Python language, and NILMTK
and Pandas tools are used to analyze the data. The neural network training environment is
Win10 Home Edition, Intel i5-10210U processor, 8 G memory, and NVIDIA GeForce MX110
graphics card.

4.1. Performance Metrics

The evaluation of the NILM algorithm can be divided into two aspects: the accuracy of
energy decomposition and the correctness of equipment state detection. In terms of energy
decomposition, the evaluation indicators are authenticity, accuracy, and F1 index, which
are represented by R(E)

i , P(E)
i , and F(E)

1 , respectively. The specific calculation formulas of
the first two indicators are shown in Formulas (6) and (7).

R(E)
i =

∑T
t=1 min(ŷi(t), yi(t))

∑T
t=1 yi(t)

(6)

P(E)
i =

∑T
t=1 min(ŷi(t), yi(t))

∑T
t=1 ŷi(t)

(7)

where ŷi(t) represents the separated energy signal, yi(t) represents the real energy con-
sumption of the device, and T represents the total number of samples. In order to analyze
the overall performance of the load disaggregation algorithm, we analyze the average
authenticity and accuracy of all equipment, and calculate as follows:

R(E) =
1
N

N

∑
i=1

R(E)
i (8)

P(E) =
1
N

N

∑
i=1

P(E)
i (9)

where R(E) and P(E) represent the average value obtained by considering the authenticity
and accuracy of all equipment load resolution, respectively, reflecting the overall perfor-
mance of the NILM algorithm. The metric F(E)

1 is the geometric mean of authenticity and
accuracy, calculated as follows:

F(E)
1 = 2

R(E)P(E)

R(E) + P(E)
(10)

In addition, we also define the standard error NEP of load identification, which is
used to represent the sum of the deviation between the equipment energy consumption
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obtained after decomposition and the standard energy consumption. This deviation sum is
normalized by the total real equipment energy consumption, and its calculation formula is:

NEPi =
∑T

i=1|yi(t)− ŷi(t)|
∑T

t=1 yi(t)
(11)

The detection of equipment status refers to the detection of the on/off status of
the equipment, which can be decomposed into four indicators, true positive (TP), false
positive (FP), false negative (FN), and true negative (TN). The specific definitions of the
four indicators are as follows:

TPi =
T

∑
t=1

(si(t) = on, ŝi(t) = on) (12)

FPi =
T

∑
t=1

(si(t) = o f f , ŝi(t) = on) (13)

FNi =
T

∑
t=1

(si(t) = on, ŝi(t) = o f f ) (14)

TNi =
T

∑
t=1

(si(t) = o f f , ŝi(t) = o f f ) (15)

In Equations (12)–(15), si(t) and ŝi(t) represent the real state and identification state
of the device i at time t, respectively, and on and off represent the two states of the device.
The authenticity and accuracy of identification based on device status are defined as:

R(S)
i =

TPi
TPi + FNi

, P(S)
i =

TPi
TPi + FPi

(16)

Similarly, considering the authenticity and accuracy of all equipment status detection
and identification, the indicators are obtained:

R(S) =
1
N

N

∑
i=1

R(S)
i , P(S) =

1
N

N

∑
i=1

P(S)
i (17)

Thus, the index F(S)
1 based on the device state is obtained:

F(S)
1 =

2R(S)P(S)

R(S) + P(S)
(18)

In addition, we also use the Matthews Correlation Coefficient (MCC) as the identifica-
tion accuracy index, which is defined as:

MCCi =
TPiTNi − FPiFNi√

(TPi + FPi)(TPi + FNi)(TNi + FPi)(TNi + FNi)
(19)

The overall Matthews Correlation Coefficient is

MCC =
1
N

N

∑
i=1

MCCi (20)

The value of MCC is in the range of [−1, 1]. The larger the value is, the more accurate
the identification is, and the value of 0 is a random prediction.

90



Energies 2022, 15, 2290

4.2. Test Result
4.2.1. Performance Test Using REDD Dataset

In this REDD dataset, Household 1 and Household 2 data were selected as test subjects.
The data is updated every 3 s, so it contains a total of 28,800 pieces of data in one day.
In order to verify the effectiveness of the proposed dAE-based algorithm, we tested and
compared the load decomposition effects of 10 kinds of electrical equipment in Household 1
and 8 kinds of electrical equipment in Household 2, respectively. Among them, the 10 kinds
of electrical equipment in family 1 are oven, refrigerator, dishwasher, sterilizer, lamp, dryer,
microwave oven, bathroom heater, electric heater, stove. The 8 kinds of electrical equipment
in Household 2 are kitchen appliance 1, kitchen appliances 2, lamp, stove, microwave,
dryer, refrigerator, dishwasher.

In the process of data training, considering that the device may show different power
waveforms in different time periods, for each device, 10 days of data are selected for
training, and the other 10 days of data are used for testing and verification. Therefore, a
total of 576,000 pieces of data are used. In the REDD dataset, the power consumption data
of all 10 electrical devices exceeds 600,000.

To keep it concise, only the power decomposition results of three electrical appli-
ances in Household 1 are presented, namely dishwasher, refrigerator, and lamp (shown in
Figure 4). The abscissa in the figure is the time, and the unit is seconds. Because we hope
to better observe the load disaggregation effect of the improved dAE algorithm and the
FHMM algorithm, only the power waveform during the time when the device is turned on
is selected, so the abscissa time only lasts for 6000 s, that is 2000 data points. In Figure 4,
the waveform of line 1 represents the actual power curve of the load, the waveform of
line 2 represents the load identification result based on the improved dAE algorithm, the
waveform of line 3 represents the load identification result based on the standard DAE
algorithm, and the waveform of line 4 represents the load identification result based on the
FHMM algorithm.

Figure 4. Identification results of three devices in home 1. (Line 1: the actual power curve of the
load; Line 2: the load identification result based on the improved dAE algorithm; Line 3: the load
identification result based on the standard dAE algorithm; Line 4: the load identification result based
on the FHMM algorithm).

It should be noted that commonly used household electrical equipment can be divided
into three categories from the operating state: single state class, continuous change class,
and multi-state class:
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Single state class: This means that there is only one stable state after the device is
turned on, and the power generally remains unchanged, such as lamps, kettles, microwave
ovens, etc.

Continuous change type: This means that the power of the device will have a continu-
ous increase/decrease process during the process of turning on/off, such as TV (power
change 50 W–75 W), computer (80 W–100 W), etc.

Multi-state class: Refers to the device having multiple power states during operation,
such as refrigerators, washing machines, dishwashers, dryers, etc.

Among these three types of electrical equipment, the identification of single-state and
continuous-change types is relatively simple, while the multi-state type is easily confused
with other equipment due to its great difference in power in different state stages.

As can be seen from Figure 4, for lamps belonging to the single-state category, the
identification effects of the three algorithms are good, which can well reflect the on and off
states of the device, and the calculation of the power consumption value is also relatively
accurate. For the dishwashers and refrigerators belonging to the multi-state category, the
load identification effect based on the improved dAE algorithm is better, which is reflected
in two aspects: (1) It decomposes the real power consumption value of the equipment more
accurately; (2) It detects the different state stages of the equipment more accurately, thereby
reducing the probability of misjudgment.

Figure 5 shows the usage of the dishwasher in Household 1 on a certain day, and
its usage time is in the interval of 10,000–12,000 s. This interval is enlarged and the
identification results of the two algorithms are compared, as shown in Figure 6.

It can be clearly seen from the figure that the load identification algorithm based on
the improved dAE only has a little jitter in the high-power operation state; the jitter error
does not exceed 5%, and can well fit the switching process between the states. Overall,
the identification method based on FHMM has a higher power decomposition result; the
amplitude is close to 20% and cannot accurately represent the load switching process. The
result from standard dAE is also included for comparison, from which we can see that it
has much more fluctuation. Especially at the time 1100 s, there is a big spike.

Figure 5. The actual daily energy consumption of Household 1’s dishwasher.
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Figure 6. Actual energy consumption of dishwasher in Household 1 in one day.

Table 1 compares the four indicators of the three algorithms. These four indicators are
defined and explained in Section 4.1. They represent the accuracy of energy consumption
disaggregation (the bigger the better), the accuracy of the device status detection (the bigger
the better), the NEP, which represents the deviation of the power disaggregation result
from the actual value (the smaller the better), and the Matthews Correlation Coefficient
(MCC), which represents the accuracy of the state detection (the closer to 1 the better). Due
to space limitations, the table only lists the comparison of 5 kinds of equipment. It can be
seen from the table that all indicators obtained by the improved dAE algorithm are better
than the FHMM algorithm. The percentage of improvement regarding improved dAE and
standard dAE is listed on the far-right side of the table, and the bold font indicates better
performance of the proposed algorithm.

Table 1. Comparison of identification indexes of several equipment using REDD dataset.

Algorithm Index Oven Refrigerator Dish
Washer Lamp Washer

Dryer
Overall

Performance Improvement *

FHMM

F(E)
1 % 33.2 22.7 50.0 45.3 80.3 46.30

F(S)
1 % 78.6 42.6 21.5 36.3 52.3 46.26
NEP 2.652 0.709 3.222 1.562 0.441 1.7172
MCC 0.223 0.420 0.478 0.423 0.652 0.4392

Standard
dAE

F(E)
1 % 42.6 45.6 70.5 59.6 85.4 60.74

F(S)
1 % 82.6 58.1 44.9 55.0 66.2 61.36
NEP 1.852 0.652 1.256 1.006 0.333 1.020
MCC 0.455 0.558 0.658 0.455 0.742 0.574

Improved
dAE

F(E)
1 % 78.5 66.84 88.8 69.0 99.3 80.50 32.5%

F(S)
1 % 92.3 65.96 65.3 67.5 74.5 73.11 19.1%
NEP 0.389 0.520 0.226 0.265 0.225 0.325 68.1%
MCC 0.674 0.685 0.783 0.885 0.898 0.785 36.8%

* percentage of improvement regarding the improved dAE and standard dAE.

Due to the variety of types of household electrical appliances, there may be differences
in the power consumption behavior of different types of equipment. To test the generality
of the algorithm, we trained the network using the data of Household 1, Household 3, and
Household 4, and the trained network decomposes the ensemble power of Household
2. Figure 7 shows the results of identifying each device in Household 2 after using the
data of Household 1 for network training. Due to space limitations, only the comparison
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results of three devices are shown, namely stove, microwave, and sterilizer. In Figure 7,
the waveform of line 1 represents the actual power curve of the load, the waveform of
line 2 represents the load identification result based on the improved dAE algorithm, the
waveform of line 3 represents the load identification result based on the standard dAE
algorithm, and the waveform of line 4 represents the load identification result based on the
FHMM algorithm. It can be seen from the figure that, for single-state microwave ovens and
sterilizers, all three algorithms can properly identify the equipment, while for stoves with
multiple states, the improved dAE algorithm is obviously better than the standard dAE or
FHMM algorithm.

Figure 7. Identification result of Household 2 after using the network trained by dataset of House-
hold 1 (Line 1: the actual power curve of the load; Line 2: the load identification result based on the
improved dAE algorithm; Line 3: the load identification result based on the standard dAE algorithm;
Line 4: the load identification result based on the FHMM algorithm).

4.2.2. Performance Test Using TraceBase Dataset

The TraceBase dataset contains 31 different types of devices, 122 devices, and 1270 pieces
of load power consumption data. The data collection interval is 1–2 s. We used two algo-
rithms to identify 20 of these devices, and selected the identification results of TV sets,
desktop computers, and electric irons to display, as shown in Figure 8. In order to better
illustrate the pattern of electric iron, the abscissa axis is truncated from time 0 to 800 s be-
cause the power assumption is 0 afterwards. As can be seen from the figure, the improved
dAE algorithm has obvious advantages in both identifying the power consumption of the
real equipment and detecting the different stages of the equipment.

Figure 9 compares the recognition performance of the three algorithms on a desktop
computer from 15,000 s to 25,000 s. It can be seen from the figure that the jitter error of the
load identification algorithm based on the improved dAE does not exceed 4%, and it can
well fit the switching process between states, while the decomposition method based on
standard dAE and FHMM are not accurate at the time of load start and stop. Additionally,
the overall decomposed load power is too high. Table 2 compares the four indexes of the
three algorithms. It can be seen from the table that all indicators obtained by the improved
dAE algorithm are better than the standard dAE or FHMM algorithm, and the overall
performance value is listed on the second far-right side of the table.

94



Energies 2022, 15, 2290

Figure 8. Identification Results of the three devices in TraceBase. (Line 1: the actual power curve of
the load; Line 2: the load identification result based on the improved dAE algorithm; Line 3: the load
identification result based on the standard dAE algorithm; Line 4: the load identification result based
on the FHMM algorithm).

Figure 9. PC load identification results over a period of 15,000–25,000 s.

Table 2. Comparison of identification indexes of several equipment using TraceBase dataset.

Algorithm Index Coffee
Machine LCD-TV Desktop Wash

Machine Electric Iron Overall
Performance Improvement *

FHMM

F(E)
1 % 65.6 45.3 33.3 35.9 39.6 43.94

F(S)
1 % 60.4 56.3 35.6 52.52 54.1 51.784
NEP 0.744 0.523 2.250 6.235 9.601 3.8706
MCC 0.732 0.729 0.420 0.452 0.333 0.5332

Standard
dAE

F(E)
1 % 74.2 66.6 44.3 55.2 52.3 58.52

F(S)
1 % 71.0 74.2 45.3 62.3 65.4 63.64
NEP 0.653 0.387 2.023 5.236 6.200 2.9000
MCC 0.741 0.774 0.625 0.650 0.661 0.6902
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Table 2. Cont.

Algorithm Index Coffee
Machine LCD-TV Desktop Wash

Machine Electric Iron Overall
Performance Improvement *

Improved
dAE

F(E)
1 % 87.3 77.6 55.6 65.2 87.6 74.66 27.60%

F(S)
1 % 88.9 85.3 65.4 72.3 74.1 77.20 21.30%
NEP 0.520 0.125 1.985 1.690 3.652 1.5944 45.00%
MCC 0.812 0.874 0.898 0.870 0.704 0.8316 20.50%

* percentage of improvement regarding the improved dAE and standard dAE.

5. Conclusions

This paper proposes a non-intrusive load identification method that only relies on
single active power measurements at a conventional sampling rate. This method is based
on the Denoising Auto-Encoder (dAE) algorithm, which regards the total mixing power as
a picture or a recording that needs to be processed, and the power generated by other un-
concerned devices as “noise”. The load power of the individual equipment is disaggregated
from the total mixed power.

In the performance evaluation test, the REDD and TraceBase datasets are used to
compare the effectiveness between the proposed method and the Factorial Hidden Markov
Model (FHMM) algorithm, and four specific metrics for power disaggregation and state
detection performance are introduced. The test results show that the proposed method has
obvious advantages in both identifying the actual power consumption of the device and
detecting the state of the device. In addition, the proposed algorithm has good generality
and can effectively identify the same equipment of different models or brands.
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Abstract: As the construction of smart grids is in full swing, the number of secondary equipment is
also increasing, resulting in an explosive growth of power big data, which is related to the safe and
stable operation of power systems. During the operation of the secondary equipment, a large amount
of short text data of faults and defects are accumulated, and they are often manually recorded by
transportation inspection personnel to complete the classification of defects. Therefore, an automatic
text classification based on convolutional neural networks (CNN) is proposed in this paper. Firstly,
the topic model is used to mine the global features. At the same time, the word2vec word vector
model is used to mine the contextual semantic features of words. Then, the improved LDA topic
word vector and word2vec word vector are combined to absorb their respective advantages and
utilizations. Finally, the validity and accuracy of the model is verified using actual operational data
from the northwest power grid as case study.

Keywords: secondary equipment; CNN; short text classification

1. Introduction

With the accelerated development of the power system, the number of secondary
equipment is also increasing. Therefore, there is an explosive emergence of power big
data, which hides massive information. This is related to the safe and stable operation of
the power system [1–4]. However, a small proportion of these data can be used to mine
important information, and research on these data has become a current hot topic. Among
these data, the first category is the time-series structured data represented by output power,
temperature and humidity of the equipment and its environment, and the light intensity
of the optical module. This type of data mining work is relatively mature; the other is
based on semi-structured and unstructured data represented by text, images, audio, etc.,
which are difficult to express using relational databases. The low value density of these
data restricts the mining of unstructured data [5].

During the operation of the secondary equipment, a lot of short text data of faults
and defects have been accumulated. These data are often manually recorded by the
transportation inspection personnel and rely on the experience of professionals to complete
the classification of defects. However, due to the subjective and empirical constraints of
transport inspection personnel, the fault data are difficult to classify accurately. At the same
time, the high volume of fault data requires a great deal of human participant involvement,
and efficiency is difficult to be guaranteed. Moreover, the text information of secondary
equipment faults has a short length and sparse semantic features. The improvement of the
classification model for short text data is also the focus and hotspot [6].

The earliest text classification can be traced back to an article published by Maron in
1961 on the method of text classification using the Bayesian formula. In the next 20-odd
years, a series of classification rules were manually built on the basis of expert knowledge
to construct a classifier. This method often requires the experience and knowledge of a large
number of expert engineers in related fields, which is difficult to effectively promote [7]. In
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addition to the development of disciplines such as artificial intelligence, machine learning,
pattern recognition, and statistical theory, text classification technology has entered a more
intelligent automatic classification era, and text classification methods based on expert
knowledge and experience have gradually withdrawn from the historical stage. Using
Bayes’ [8,9] neural network [10] and support vector machine [11] and other methods to
liberate people from heavy tasks, and with high classification efficiency and accuracy, the
machine learning methods have developed rapidly in the field of Chinese text classification.
Benefits from the development of the machine learning, neural network method are the
most prominent [12]. According to some papers, it can be concluded that the long and
short-time neural network models used to mine context features has a significant effect on
the classification of long document text data [13,14], and the convolutional neural network
model has a significant effect on the classification of short text data [15]. In [16], the CNN
model was proposed for brain tumor classification. In [17], a feature fusion method based
on an ensemble convolutional neural network and deep neural network was used for
bearing fault diagnosis. In [18], an enhanced convolutional neural network was designed
and analyzed.

The text classification technology is also widely used in professional fields, such as
social science information, biomedicine, and so on [19]. There are also endless categories
of patents [20], academic papers, academic news, and even the content of WeChat public
accounts. In social media, the classification of user emotion recognition is an important
part [21]. In e-commerce, user evaluation of products can help companies understand user
satisfaction with products [22]. In biomedicine, intelligent triage can save a lot of medical
resources and improve the quality and efficiency of services [23].

Text data mining in the power industry is still in the emerging field, and foreign
countries have studied the relationship between the historical fault data and the weather to
further predict the fault of the substation. However, these text mining methods are mostly
based on traditional machine learning methods, seldom adopt deep learning methods,
and lack research on the classification of a specific device type or the fault text data itself.
Generally speaking, the text mining technology is still in its infancy in the field of electric
power, especially the research on text information of secondary equipment faults; most of
the research is only based on traditional machine learning methods, and the classification
model lacks pertinence [24]. Moreover, due to the short text length and lack of sufficient
context for semantic feature analysis, when mining this type of text data, it is easy to cause
high-dimensional information features to be sparse, resulting in a serious lack of semantic
relations, and ultimately resulting in poor classification results [25]. Considering that some
faulty text data are short and the traditional convolutional neural network is insufficient
for feature extraction, in this paper, convolution kernels of various sizes are used to extract
features from short text data.

Based on the above discussions, this paper focuses on a mass of short text data
produced in the secondary equipment operation production management system and
conducts related research on automatic text classification based on convolutional neural
networks. In order to solve the problem of poor topic focus and sparse text density in
short text data, an improved LDA topic model was proposed based on the Relevance
formula for the problem of insignificant characteristics caused by excessive repetition
of feature text information [26]. By setting different weighting coefficients to adjust the
sampling of words, the problem of repeated vocabulary of different types of defective data
was solved. Afterwards, the RLDA model and the word2vec [27] model were combined
together, and the document-topic vector was constructed using the RLDA subject word
model to obtain the global features. At the same time, the local features attained by using
the word2vec word vector technology to mine the latent semantic features were combined.
Construct the input matrix of convolutional neural network. Considering the superiority
of convolutional neural for feature extraction at the level of short text information word
vectors, convolutional neural networks were employed for extracting feature text vectors
and classifying text vectors. The traditional convolutional neural network uses a single size
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convolution kernel to extract features. When faced with different document lengths, the
classification results are not ideal. On the basis of the original convolution model, this paper
proposes to use deep convolution kernels of multiple sizes to mine text features in depth to
enhance their ability to extract locally sensitive information. Finally, the actual operation
data of a northwestern power system company were used to conduct a comparative
experiment to test the validity of the presented model and the accuracy of the classification
algorithm in this paper.

2. Lower-Level Modeling and Optimization
2.1. Data Analysis

This paper randomly selects 1000 defect text data from a power company in a north-
western province from 2015 to 2019, according to the length of the string statistics as shown
in Figure 1.
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Figure 1. Interval diagram of text information length distribution of secondary equipment faults in a
northwestern power system.

The fault data selected were caused by the manufacturing of the same auxiliary device
from two different devices recorded by the same person in charge of a northwest power
system in January 2017. The two devices belong to the 220 kV plant, and the same batch
was delivered by the same company. The secondary equipment protection device of the
model PSIU601GC-B-E1 omitted the same data and the content that has less influence on
the classification result. The content is shown in Table 1.

Table 1. Example of the text information record of a second equipment failure in a northwestern
company in January.

Number Defects and Treatment Methods Defect Classification

1

The main set B intelligent terminal sends a GOOSE
link interruption general alarm, which does not

affect the normal operation of the B set protection
and needs to be exited for inspection.

Serious defect

2
General alarm of GOOSE in A set of intelligent

terminals of Yanhua Temple Line, data of GOOSE
network is interrupted.

Critical defect
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Compared with the general Chinese short text, the text of the secondary equipment fault
defect of the power system not only contains the unique attributes of the Chinese language
family and the Asian-European language family, but also has the following characteristics:

(1) Fault and defect data are deeply involved in the professional field of power sys-
tems, including many low-frequency words such as electrical professional vocabulary,
equipment names, and equipment models. Because the same vocabulary is in dif-
ferent fields, it brings different common names or abbreviations, such as GIS, which
represents the geographic location information system at the large level of the power
system, and gas insulated combined electrical appliances at the device level.

(2) Due to the classification of the secondary equipment based on the fault category, the
same fault location, such as the problem of the display screen, has different defect level
definition results according to the display screen, blue screen, and display failure.

(3) Most of the fault data are based on the data manually recorded by the transport
inspection personnel. The details of the text records are slightly different. The text
length of each piece of defect data varies greatly. The shortest data are less than ten
characters, and the longest data can be up to more than 100 morphemes.

(4) The defect data of different fault categories have high similarity and lack sufficient
semantic co-occurrence. Traditional text mining methods have limitations for short
text data mining and classification with high similarity.

Through the above feature analysis of short text, it is not ideal to directly apply the
topic model to text classification.

2.2. Text Classification Process for Chinese Characters

For text classification for Chinese characters, the machine learning method is always
utilized to find the correspondence between text features and its categories, and relevant
technology is used for automatic classification of new text because of its laws.

The steps of the aforementioned text classification model for Chinese characters can
be summarized as follows. Firstly, the preprocessing of the text is completed, where
the unnecessary information is removed, such as clauses, word segmentation, and stop
words. This step is implemented according to the text length and text. The specific
content is related. Then, the text can be expressed, namely, the text is transmitted into
a computer-recognizable and processed form, which is usually expressed by a matrix or
a vector. The text representation affects the effect of later text classification because it is
related to the extraction of text features. Then, a suitable classifier is selected to classify
the text and output the predicted classification result. Finally, the aforementioned two
results of the classifier are compared (practical and predicted results). If the prediction
results meet a prior standard, the training is completed, where this standard could be the
prediction accuracy rate and iterations. Otherwise, the corresponding parameters need to
be adjusted by means of the comparison result, and the classification is re-classified until
the classification prediction result reaches the standard.

3. Short Text Data Model of Secondary Equipment Faults in Power Systems Based on
LDA Topic Model and Convolutional Neural Network
3.1. Improved Text Classification Process

The quality of text representation directly affects the effect of final classification.
Transforming Chinese language into a structured language that can be recognized by the
computer is the process of feature extraction and semantic abstraction of Chinese text. The
traditional LDA model uses the external corpus or the method of merging short texts to
improve the semantic information between words, but the word vector captured by the
topic model is the word bag model, that is, the two phrases “a before B” and “B before
a” are characterized as the same word vector after extracting the features from the topic
model. However, most of the original data in this paper were based on the manual records
of operation and maintenance personnel, and it is difficult for different people to form a
standardized recording method. In the face of short text feature mining with poor context
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dependence such as fault data, the classification result obtained by directly using LDA
model is poor.

In this paper, the RLDA model was used to extract global features to construct the
subject word vector, and the word2vec model was used to mine the potential feature vector
extracted by local features. The two features were combined to absorb their respective
advantages as the input of the convolutional neural network.

3.1.1. Text Preprocessing

Consulting the published work [28], the collected short text data can be labeled as
serious, critical, and general defects for the secondary equipment. In a ratio of 7:2:1, the
obtained text short messages could be defined as training set, verification set, and test set.
The top 30 terms in terms of frequency without text pre-processing are shown in Figure 2.
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Analyzing and summarizing the natural language characteristics of the defective text
data, the secondary equipment defect text data cleaning was based on the following steps:

(1) Remove useless characters. Defective text generally involves a great deal of spaces.
Some useless characters should be filtered, such as punctuation and so on, because
they are not related to the text content. In Chinese, the words “I” and “do” are used a
lot. By utilizing excessive words, the accuracy of the segmentation is increased and
the efficiency is decreased. Meanwhile, the words “no” and “yes” are also used a lot
in prepositions, conjunctions, and adverbs. These words are usually meaningless.

(2) English characters are uniformly given in the form of lowercase. In the secondary
equipment, the recording format of the defect text is not standardized due to the fact
that it includes a lot of English characters, such as “10 KV”, “10 kv”, and “10 Kv” for
the description of transformer grades. They all represent the same voltage level, but
the recording format is different.

(3) The repeated records and fragmentary text are detected and removed. When the
defect records are uploaded, some problems, including data loss and repeated data
entry, are produced easily for operation and maintenance personnel due to improper
operations. The text classification and information mining are not easy to implement
by using such data, where these data should be processed in advance to guarantee
the quality of the text.

(4) A professional dictionary should be constructed for secondary equipment. The
establishment of a special dictionary corresponding to the professional field is the
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basic work of text mining in various professional fields. The quality and quantity
of words included in its professional dictionary determine the accuracy of word
segmentation and the part of speech tagging in text preprocessing. Due to the large
number and miscellaneous types of electrical secondary equipment, the number of
words related to the construction of this field is very huge, and there are thousands
of words describing the equipment itself, such as the transformer station names,
equipment protection proper terms, and so on.

3.1.2. Text Classification Model by Using LDA

The LDA topic model features based on short text data from secondary equipment are
explained as follows:

(1) Initializing model parameters α, β and K, where α, β and K are the denoted prior
parameters file-theme distribution parameter, theme-word distribution parameter,
and the number of themes K, respectively [26].

(2) Traverse and classify short text data, and for each word wi in terms of the list Li, build
θi = Dirichlet(α) where θi and Li, stand for the document-topic distribution and the
adjacent word of wi respectively.

(3) Suppose that Z satisfies the Dirichlet prior distribution, where Z is the potential word
set. Moreover, the computational formula φZ = Dirichlet(β) is utilized in this step, in
which φZ stands for the topic-word distribution.

(4) In view of each word in Li, choose words Zj ∼ θi and wj ∼ φZj with Zj ∼ θi and
wj ∼ φZj being potential and neighboring words, respectively; attain short texts with
the help of the documents. Then, the subject matter is inferred from the secondary
device short text data on the basis of the following expression:

P(wi|d) =
fd(wi)

Len(d)
(1)

where fd(wi) represents the frequency of the words in the document, and Len(d) stands for
the length of the short text d.

Inspired by [26], the expectation of the topic distribution for document-generating
words can be regarded as the distribution of document-generating topics:

P(z|d) = ∑
wi∈Wd

P(z|wi)P(wi|d) (2)

where P(z|d) , Wd, and P(z|wi) are the probability of the text generating words, the short
text set, and the probability of the word generating topics, respectively.

The LDA topic generation model was established. Then, we needed to implement the
Gibbs sampling estimation based on the corresponding model parameters and give the
number of iterations. Finally, the topic distribution matrix of any text in the corpus could
be obtained after completing the model training.

3.1.3. Improved LDA Topic Analysis Model Based on Relevance Formula

In this paper, the LDA topic model was improved by introducing a weighting coef-
ficient λ in the topic correction layer to realize the model’s potential topic extraction and
topic correction function for secondary equipment fault text information. The proposed
model is shown in Figure 3. The Relevance formula is as follows:

r(w, k|λ ) = λ· log(φk,w) + (1− λ)·φk,w

pw
(3)

where r(w, k|λ ) represents the degree of relevance of word w and topic k under the set
weight coefficient λ. The value range of λ is (0 ≤ λ ≤ 1). φk,w is the probability distribution
matrix of the words w under the topic k, and the marginal probability of the words under
the topic-term matrix φ.
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From Equation (3), we can dynamically adjust the relationship between words and
subjects by establishing weight coefficients. When the weight coefficient λ is close to 1,
the more frequent the words appear in the word frequency, the higher contribution to
the document theme, that is, the more frequent words in the default document are more
relevant to the topic; when the weight coefficient λ is close to 0, the improved model
indicates that the word appears more frequently in the selected topic, but less frequently in
other topics; that is, the words and topics generally appear concomitantly.

3.2. Fusion of Word2vec Model and RLDA Model

In order to increase the interpretability of the text feature vector to the text representa-
tion, the improved LDA subject word model was proposed based on the Relevance formula
to extract the global features to construct the subject word vector, and the latent feature
vector extracted using the word2vec algorithm. By combining two features, the following
new text feature representation is given by

v′m = [zT
m, θT

m]
T

(4)

where zm is the latent semantic vector representation of the document, θm is the latent
text-topic vector of the text extracted based on the improved topic model of the Relevance
formula, v′m is the combined semantic feature representation vector, and T is the transpose
operation on the matrix.

The topic vector and the latent semantic vector are different in the dimension rep-
resentation of the word vector. In order to eliminate the influence of the difference in
magnitude generated by the fusion of the two vectors on the final classification result, this
paper summarizes the two vectors zm and θm. In a one-way combination, the processing
method is as follows:

vm =

[
zT

m
‖zm‖

,
θT

m
‖θm‖

]T

(5)

The vectors combined by normalization not only regularize the length and eliminate
the gap in magnitude between the two vectors, but also the new vectors generated by the
fusion have both topical and potentially topical features.

In the following, the text classification model is constructed based on convolutional
neural network. By means of the convolutional neural network, a four-layer model was
developed, which is shown in Figure 4.
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The detailed design are presented as following four parts:

(1) The first layer
The first layer could be defined as the input layer. In this layer, a length of text data
was selected, and the vectorization of the text data was implemented with the help
of step C. Employing the matrix I ∈ Rm×n as the input and defining the number of
words as m, m represents the number of rows in the input layer. Similarly, we defined
the dimension of the text vector as n, which can represent the columns of the input
layer. Then, all word data could be divided into word vectors of equal dimensions,
namely, the number of columns is the same in the input layer. Accordingly, matrix
I ∈ Rm×n was constructed. During the training process, we employed the stochastic
gradient descent method to adjust the word vector.

(2) The second layer
The second layer was named as the convolution layer. Each scale includes two
convolution kernels that have the scales of 3× n, 4× n, 5× n Then, for the input matrix
I ∈ Rm×n of the input layer, we needed to implement the convolution operation and
acquire the matrix features of the input layer. The corresponding result vector could be
attained (ci(i = 1, 2, 3, 4, 5, 6)), which was input to the pooling layer for data compression.
Meanwhile, the activation function ReLU was used to activate the convolution result.
After each convolution operation, one convolution result will be obtained:

ri = W · Ii:i+h−1 (6)

where the size of i = 1, 2, · · · , s − h + 1 and Ii:i+h−1 are the size of convolution kernel,
which represents the number i of h × n matrix block from top to bottom when the matrix
I is operated in sequence; “·” means that the elements at the corresponding positions of
two matrix blocks are multiplied first and then added. Meanwhile, the activation function
ReLU was used to activate the convolution result. Nonlinear processing was carried out for
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each convolution result ri, and the result ci was obtained after each operation. The formula
is as follows:

ci = ReLU(ri + b) (7)

where b is the offset coefficient. Each such operation will produce a nonlinear result ci.
Because i = 1, 2, · · · , s− h + 1, after s− h + 1 convolution operations on the input matrix
from top to bottom, we should arrange the results in order, and obtain the vector of the
convolution layer c ∈ Rs−h+1, which is shown as:

c = [c1, c2, . . . , cs−h+1] (8)

(3) The third layer
We defined the third layer as the poling layer and employed the maximum pooling
method for pooling. For the convolution result vector ci, the largest element was
chosen as the feature value, which is defined as pj(j = 1, 2, 3, 4, 5, 6). Then, the value
pj was injected in succession into the vector p ∈ R6×1, which was input to the output
layer of the next layer. Vector p stands for the global features of the text data, and it can
reduce the dimensionality of the features and enhance the efficiency of classification.

(4) The fourth layer
Here, the output layer was utilized to name the fourth layer. We plugged the pooling
layer completely into the output layer. In the pooling layer, we selected the vector
p as an input, which was classified with the help of a SoftMax classifier. Then, the
final classification result was output. The probability was computed using SoftMax
classification, which is as follows:

L(pj) =
epj

6
∑

j=1
epj

(9)

where the formula (9) refers to the probability that belongs to the secondary device category.
The fault level was output for the secondary equipment. The traditional convolutional

neural network used a single size convolution kernel to extract features. When faced with
different document lengths, the classification results were not ideal. On the basis of the
original convolution model, the deep convolution kernels of multiple sizes were utilized to
mine text features in depth to enhance their ability to extract locally sensitive information,
so that they can represent more feature information. To make a clear statement, the overall
flow chart of the proposed model in this paper is shown in Figure 5.
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4. Case Study
4.1. RLDA Model Experiment

In order to compare the advantages and disadvantages of the LDA model and the
improvement of the LDA model based on the Relevance formula in terms of prediction
ability and generalization ability, this experiment used the theme consistency (coherence
score) indicator. Generally, the larger the value, the stronger the predictive ability and
generalization ability of the model, indicating that the model was more practical. According
to the characteristics of the experimental data set, the main parameter values set by the text
are shown in Table 2, and K represents the number of topics contained.

Table 2. Parameter setting of the RLDA model.

Parameter Value

Hyperparameter α 50/K

Hyperparameter β 0.01

Gibbs sampling iterations 1000

Input word vector Word2vec

Filter size (3,4,5)

Number of filters per size 100

Activation function ReLU

Pooling strategy 1-max pooling

Dropout rate 0.5
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In this paper, the comparison experiment was carried out by changing the value of
the number of topics K. Under different values of the number of topics, the corresponding
coherence score value of the improved LDA model based on the Relevance formula was
calculated according to the theme consistency calculation formula. The experimental
comparison results are shown in Figures 6–9. As shown in Figure 6, as the number of topics
continued to increase, the coherence score had a process of increasing first, then decreasing,
and then slowly smoothing out. The score is the highest when the number of topics is about
seven to eight.
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With the help of the LDAvis toolkit, the model topics with topic number seven and
topic number eight were reduced to a two-dimensional plane for visual display. The results
are shown in Figure 7. The left half is the topic model with the number of topics eight,
and the right half is the theme model with theme seven. The greater the degree of topic
intersection, the greater the difficulty of distinguishing the topic. The degree of intersection
between the topics of the model with eight topics was much greater than that of the model
with seven topics. Therefore, this article was in the pursuit of model generalization ability.

When the weighting factor λ was close to 1, it indicated a high frequency of occurrence
in the word frequency and a high contribution from its document topic. We can conclude
that the relevance to the topic was higher in the default document. When the weight
coefficient λ was close to 0, the improved model indicated that the word appeared more
frequently in the selected topic, but less frequently in other topics; that is, the generality
between words and topics appeared. Considering the influence of relevance and concomi-
tates, the consistency score of the model was repeatedly calculated, and the result was
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found to be the best when λ was 0.52. The relationship between the weight coefficient and
the consistency score is shown in Figure 8. When λ was 0.52, the relationship between the
theme of topic 1 and the words is shown in Figure 9.

4.2. Results and Analysis of Evaluation Index of Classification Effect

Text classification effect evaluation is an important module of text classification. It
usually uses the mixed matrix as the basis, also known as the error matrix. It is usually
expressed in two-dimensional tables. The classification results can be visually analyzed
through the confusion matrix [29,30]. The confusion matrix is shown in Table 3.

Table 3. Mixed matrix of classification results.

Classification Category Manually Marked as
Belonging to

Manually Marked as Not
Belonging to

Classifiers marked as
belonging to TP TN

Classifier marked as not
belonging to FP FN

For classification results, internationally recognized evaluation indicators were used:
accuracy rate P, recall rate R, and F1 values. The calculation formula is as follows:

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

F1 =
2× P× R

P + R
(12)

where TP indicates the number of samples that a certain type of text is correctly identified
as a class, FP indicates the number of samples that a certain type of text has to be identified
as other classes, and FN indicates that the text of other types is confirmed as the number
of samples of the class. In order to verify the effectiveness of the improved input feature
matrix, the CNN text classification method based on word2vec was compared with the
experiments in this paper. It compared precision P, recall R, and F1 values.

In the next study, we will test the superiority of the presented method of this paper,
which was compared with traditional machine learning methods such as SVM, LR, KNN,
and other models to find the accuracy of each algorithm model on the same data set. The
experimental results are shown in Table 4.

Table 4. Comparison of the experimental results with machine learning methods.

Classifier Name F1 Value (%)

LR 51.20
SVM 54.53
KNN 51.20
CNN 55.36

WORD2VEC + CNN 63.63
LDA + CNN 63.00

WORD2VEC + TEXTCNN 78.54
WORD2VEC + RLDA + TEXTCNN 81.69

Compared with the traditional machine learning methods LR, SVM, and KNN, due to
the large corpus short text in this experiment, the F1 values of the results were basically
around 50%, and the accuracy of the highest SVM model classification results was only
54.53%. The accuracy of the typical CNN model classification results is only 55.36%. The
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effect of machine learning classification was not ideal. The traditional LDA topic model
extracts features and lacks contextual semantic information, which makes it difficult to
achieve ideal results in short text classification. The F1 value of the experiment was only
63.00%. Compared with the traditional CNN, the model of WORD2VEC + TEXTCNN
was 14.91% higher than WORD2VEC + CNN. The text was improved on the traditional
LDA theme model. The weight coefficient λ was used to adjust the relationship between
words and subjects. Finally, the F1 of the WORD2VEC + RLDA + TEXTCNN model
was the highest, up to 81.69%, whether it was with traditional machines. Compared
with the traditional convolutional neural network learning algorithm, the F1 results were
significantly improved. Therefore, the generalization ability and practicability of the model
constructed in this paper have satisfied the possibility of practical application.

5. Discussion

Aiming at the problem of multi-type and complex secondary equipment in power
systems and the low accuracy of word segmentation results, in this paper, a stop words
dictionary and a professional dictionary in the field of secondary equipment in power
system were constructed. An improved LDA topic analysis model based on the Relevance
formula was proposed. By setting different weight coefficients, the feature similar words
in texts with different defect categories were separated to solve the problem of feature
sparseness. An improved algorithm was proposed by integrating the improved LDA topic
model with word2vec, where the global features were mined by using the topic model,
and the context semantic features were mined by using the latent semantic word vector
model, which can better extract the short text features. The multi-scale convolution kernel
was used to extract features to enhance its ability to extract local sensitive information, and
further to conduct in-depth mining of text semantic information.

There are also some problems, such as a large number of professional dictionaries
in the field of secondary equipment are constructed in the preprocessing process, which
improves the professionalism of this model to some extent. However, the direct application
of this model to other fields is likely to lead to poor generalization ability. All these topics
are left for the future and ongoing research topics.

6. Conclusions

In this paper, for the problem of short text information of secondary equipment faults
in the power system and the high repetition of words between different defect categories,
an LDA topic model based on the Relevance formula was built to dynamically adjust
the correlation between topics and words. In addition, considering that the topic model
itself has insufficient ability to extract short text features, the word2vec latent semantic
feature vectors were fused to compensate for contextual semantic information. Considering
that some fault text data were short, the traditional convolutional neural network had
insufficient feature extraction, and multiple sizes of convolution kernels were used to
extract features from short text data. Finally, using the fault text data generated by the
actual operation of a power system company in a northwestern province to verify the
method in this paper, the results showed that the algorithm has a certain practicality.
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Abstract: The large fluctuations in charging loads of electric vehicles (EVs) make short-term forecast-
ing challenging. In order to improve the short-term load forecasting performance of EV charging
load, a corresponding model-based multi-channel convolutional neural network and temporal con-
volutional network (MCCNN-TCN) are proposed. The multi-channel convolutional neural network
(MCCNN) can extract the fluctuation characteristics of EV charging load at various time scales,
while the temporal convolutional network (TCN) can build a time-series dependence between the
fluctuation characteristics and the forecasted load. In addition, an additional BP network maps the
selected meteorological and date features into a high-dimensional feature vector, which is spliced
with the output of the TCN. According to experimental results employing urban charging station
load data from a city in northern China, the proposed model is more accurate than artificial neural
network (ANN), long short-term memory (LSTM), convolutional neural networks and long short-
term memory (CNN-LSTM), and TCN models. The MCCNN-TCN model outperforms the ANN,
LSTM, CNN-LSTM, and TCN by 14.09%, 25.13%, 27.32%, and 4.48%, respectively, in terms of the
mean absolute percentage error.

Keywords: electric vehicle; short-term load forecasting; convolutional neural network; temporal
convolutional network; climate factors; correlation analysis

1. Introduction

The growth of the electric vehicle industry has captivated governments, automakers,
and energy companies. EVs are seen as a viable solution to the depletion of fossil resources
and rising pollution [1]. It is widely believed that the popularity of EVs can reduce
greenhouse gas emissions (mainly carbon dioxide) [2]. Meanwhile, falling battery prices
and government incentives will also promote rapid growth in the scale of EVs [3]. However,
the increased charging demand resulting from the rapid development of EVs also poses
various challenges to the grid. The EV charging load has a great impact on the stable
operation of the distribution network [4], including the decline of power quality and the
difficulty of optimizing and controlling the operation of the power grid [5,6]. The research
on EV charging load forecasting is carried out not only to ensure the economical and stable
operation of the power system [7] but also to support the development of EVs [8].

EV charging load forecasting approaches are now separated into probabilistic models,
time series models, and machine learning models. The probabilistic modeling method estab-
lishes probabilistic models of residents’ charging and travel behavior using statistical and
queuing theory, followed by load forecasts using Monte Carlo simulation. Taylor J et al. [9]
utilized the Monte Carlo method to establish a large-scale charging demand model, con-
sidering EV type, penetration rate, charging scenario, etc. In [10], it is assumed that the
arrival time of EVs at the charging station follows Poisson distribution, and the charging
load prediction is carried out based on queuing theory. With the deepening of research, the
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temporal and spatial distribution of EV charging load has attracted the interest of many
researchers. Shun et al. [11] established a probabilistic model of the temporal and spatial
distribution of EVs based on travel chains and Markov decision processes. Chen et al. [12]
applied the OD matrix analysis method to plan the driving path of the logistics electric
vehicle and solve the charging demand load value through the mixed-integer program-
ming model. Xing et al. [13] proposed a data-driven EV charging load prediction method,
which is based on Didi user travel data to establish a traffic network model, a vehicle
spatiotemporal transfer model, and a resident travel probability model.

Currently, time series and machine learning algorithms are commonly employed to
forecast EV charging load in the short term. The exponential smoothing model [14], the lin-
ear regression (LR) model [15], and the autoregressive integrated moving average (ARIMA)
model [16] are the most often used time series models. While time series models have
straightforward structures and require minimal training, they are incapable of capturing
the nonlinear properties of load series. With the rapid advancement of artificial intelligence
technology, intelligent algorithms such as artificial neural networks (ANNs) and deep
neural networks are increasingly used to forecast EV charging load. The neural network
has excellent power for feature extraction and the ability to form nonlinear mapping rela-
tionships [17], which effectively addresses the time series model’s shortcomings. In [18],
the SVR founded on an evolutionary algorithm is proposed for electric bus charging load
forecasting. Yi et al. [19] proposed a multi-step EV load prediction model established on
long short-term memory (LSTM), and the results suggest that the model is capable of
accurately predicting sequence data. In [20], LSTM models show better performance and
provide higher accuracy compared to the prediction results of ANNs. The gated recurrent
unit (GRU) is a characteristic and efficient variant of LSTM. The GRU is characterized by
making the network structure simpler. Zhu et al. [21] introduced GRU into short-term
forecasting of EV charging load. In order to further improve the short-term load forecasting
performance, some forecasting methods combined with LSTM and other recurrent neural
networks (RNN) have also been proposed. Feng et al. [22] proposed an EV charging load
prediction method based on a combination of the multivariate residual corrected grey
model (EMGM) and LSTM network. Dabbaghjamanesh et al. [23] applied Q-Learning
Technique based on ANN and RNN to improve the short-term prediction accuracy of
EV charging load. The model based on LSTM and GRU is capable of learning long-term
temporal correlations; however, due to the lack of convolution in the model, the feature
extraction capability still has to be enhanced. Therefore, it is difficult for the above models
to effectively utilize and extract the feature information in the EV charging load.

When confronted with this problem, approaches for extracting features are seen to
be one of the most viable solutions. The convolutional neural networks (CNN) have
excellent feature extraction [24], which is often used for feature extraction in short-term
load forecasting. Li et al. [25] applied an evolutionary algorithm-optimized CNN model
for EV charging load prediction. In addition, the CNN-LSTM model combining CNN and
LSTM is often used in traditional short-term forecasting of power loads [26]. In the CNN-
LSTM model, CNN extracts the feature information of load-related influencing factors, and
LSTM is used to learn the temporal dependency between the feature information sequence
extracted by CNN and the output [27]. Yan et al. [28] proposed a hybrid model based on
CNN and LSTM to predict the short-term electricity load of a single household. However,
most methods ignore the long-term temporal relationship of input variables, causing the
load forecasting model to lack adequate prior knowledge.

Furthermore, EVs are abundant in urban areas, and EV users’ travel behavior is influ-
enced by many random factors, resulting in increasingly complicated fluctuations in the
charging load of EVs. Given this problem, accurate forecasting by using a short-term load
forecasting model on a single time scale is difficult [29]. Short-term load forecasting can be
enhanced by decomposing the load into multiple intrinsic mode functions and then sepa-
rately predicting and reconstructing the sub-model prediction results [30]. Wang et al. [31]
proposed a “decomposition-predict-reconstruction” prediction model based on empiri-
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cal mode decomposition (EMD) and LSTM, which effectively improved the accuracy of
load prediction.

One-dimensional convolutional neural networks (1DCNN) can extract one-dimensional
sequence features, commonly used to extract time series feature information. Wang et al. [32]
utilized 1DCNN to extract the fusion features of bearing vibration signal and sound signal
to realize bearing fault diagnosis. In [33], the influent load is first decomposed by EMD, and
then 1DCNN extracts the latent features of each intrinsic mode function’s periodic signal.
However, although the 1DCNN model can achieve feature extraction at various time scales
by adjusting the scope of the receptive field, it cannot extract the time series dependencies
between time series data. With the advent of advanced TCN models that combine the
advantages of CNN feature processing and RNN time-domain modeling, it is possible to
extract time series dependencies between long intervals of historical data [34]. Yin et al. [35]
proposed a feature fusion TCN structure that fuses model output features at multiple time
delay scales. The TCN built on the convolutional network can process data in parallel on a
large scale and has a faster computing speed than the RNN such as LSTM [36]. Although
the signal decomposition method can obtain the components of EV charging load at various
time scales, it still necessitates the selection and construction of low-dimensional features
with a high degree of differentiation, which not only adds subjectivity and complexity to
this identification method but also risks losing important information.

On the basis of the foregoing research, an EV charging load forecasting model based on
the MCCNN-TCN is proposed in this paper. The MCCNN model can mine the fluctuation
features of EV charging load at multi-time scales. The TCN model can establish the global
time-series dependencies between the local time-series feature information at different
time scales extracted by the MCCNN model. In addition, accurate load forecasting is
frequently reliant on a thorough understanding of the elements that contribute to increasing
or decreasing consumer demand [37]. The EV charging load is affected by numerous aspects,
including weather temperature, date type, traffic conditions, user travel behavior, etc. [8].
Therefore, this paper introduces the maximum information coefficient (MIC) and Spearman
rank correlation coefficient and proposes a similar day method based on weighted gray
correlation analysis to screen historical loads. The main contributions of this paper are
described as follows:

(1) The MIC was applied to eliminate input data redundancy and reduce the complexity
of the model. The MIC was used to choose meteorological variables that have a
substantial link with EV charging load. The selected meteorological variables were
utilized as an input to both the prediction and comparable day selection models;

(2) A similar day selection model based on weighted grey relational analysis was pro-
posed. The Spearman rank correlation coefficient of the week average daily load was
used to calculate week type similarity. Then, by selecting meteorological variables
obtained by MIC and week type similarity as the input, a similar day selection model
based on weighted gray correlation analysis was used to choose a similar day load
used as the forecasting model’s input;

(3) An MCCNN-TCN model framework was built. Combining the multi-channel
1DCNN model with the TCN model can establish global temporal dependencies
between time series features at multiple time scales, which effectively improves the
prediction performance.

The remainder of this paper is organized as follows. In Section 2, a short-term EV
charging load forecasting framework based on the MCCNN-TCN model is introduced. In
Section 3, experiments are conducted with a real dataset of grid companies and compared
with other models. In Section 4, the model proposed in this paper is analyzed compared
to other state-of-the-art methods based on experimental results. In Section 5, the paper’s
conclusions and future research are given.
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2. Materials and Methods
2.1. Selecting Similar Days
2.1.1. Screening of Meteorological Features Based on Maximum Information Coefficient

As a new type of electric load, EV charging load is not only related to residents’ travel
behavior but also affected by meteorological factors such as weather and temperature [38].
In order to lower the input size of the similar day model and forecast model, relevant
meteorological features that strongly correlate with EV charging load must be selected [36].
At the same time, since meteorological features and EV charging load are both nonlinear
time series, this paper uses MIC to examine the nonlinear relationship between each
meteorological variable and EV charging load. Unlike other traditional correlation analysis
methods, the benefit of MIC is that it does not require any assumptions about the data
distribution and is acceptable for both linear and nonlinear data [39]. The MIC is calculated
as follows [40].

For a binary dataset, D and D ∈ R2, divide D into a grid of x rows and y columns.
The obtained grid G based on different division methods forms set A. Find the maximum
mutual information maxI(D|G) in set A, conserve it as:

I∗(D, x, y) = max
G∈A

I(D|G) (1)

where D|G is the distribution of the binary data set D on the grid G.
The maximum normalized mutual information of the binary dataset D at different

scales is formed into the feature matrix M(D), and the elements of the feature matrix are
defined as:

M(D)x,y =
I∗(D, x, y)

log2 min(x, y)
(2)

The MIC is calculated by:

MIC(D) = max
rc<B(n)

{M(D)x,y} (3)

where n indicates the size of the sample, B(n) is a function about the size of the sample,
and the constraint indicating the total number rc of squares of the grid G is less than B(n),
generally B(n) = n0.6 [41]. A greater MIC value between the two variables indicates a
stronger correlation.

2.1.2. Quantifying Week Type Similarity Based on Spearman Correlation Analysis

The characteristics of EV charging load in different months, seasons, and week kinds
are investigated in this article to study the relationship between EV charging load and date
types. The EV charging load has the maximum consumption level in December and the
lowest in April, as shown in Figure A1 in the Appendix A. The consumption level of EV
charging load in winter and fall is significantly higher than in spring and summer, and the
load in winter represents a tendency of rising first and then reduce. In contrast, the load in
summer has a fluctuating and rising trend, as shown in Figure A2 in the Appendix A. EV
charging load consumption level is highest on Saturday and lowest on Monday, as shown
in Appendix A Figure A3. In summary, it is critical to pay attention to the effect of date type
on the charging load of EVs. In this paper, the date types were divided into season types
and week types, and the similarity between week types under each season was established
as the input of the similar day model. In order to avoid human subjective participation in
setting the week types map value, using the average daily EV charging load between week
types calculated the similarity between week types in this paper.

The data on electric vehicle charging load do not follow a normal distribution. Ad-
ditionally, the Spearman coefficient does not require that the data remain normal [42]. As
a result, this paper proposes utilizing the Spearman coefficient to quantify the similarity
of week types. The week types under each season were divided into seven (Monday to
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Sunday), and then the Spearman coefficient was calculated for the average daily load
between the week types. The correlation value indicative is represented by Fh

kg, as in (4):

Fh
kg = 1− 6 ∑ A2

t
n(n2 − 1)

t = 1, . . . , 96 (4)

where k and g represent the week type; h represents the season, h = 1, 2, 3, 4; n is the load
sample number; and At indicates the difference of the position between the t-th daily load
samples of week type k and week type g.

2.1.3. Similar Days Selection Model Based on Weighted Grey Correlation Analysis

When calculating the gray correlation, the traditional gray correlation analysis as-
signs the same weight to each feature, ignoring each influencing factor’s difference [43].
Therefore, each influencing factor’s weight is first analyzed based on the improved entropy
weight method in this paper. Then the correlation degree between the forecasting day and
history day is calculated based on the weighted grey correlation degree analysis.

According to the historical data, the entropy Ej of the j-th meteorological feature is
calculated [44]: 




Ej = α·
i=1
∑
n

bij ln bij, j = 1, 2, · · · , m

α = − 1
ln n

bij =
aij

i=1
∑
n

aij

(5)

where n is the number of historical days, m indicates the dimension of the day feature;
aij represents the value of the j-th feature of the i-th historical day. Additionally, if bij = 0,
bij ln bij = 0.

According to the entropy of each meteorological feature, the weight of the j-th day
feature based on the improved entropy weight method is calculated as [45]:

wj =

exp
(

m
∑

t=1
Et + 1− Ej

)
− exp

(
Ej
)

m
∑

l=1

(
exp

(
m
∑

t=1
Et + 1− El

)
− exp(El)

) (6)

The correlation coefficient of each day’s feature is calculated using gray correlation
analysis [18]. The following are the feature sequences of the forecasting and history days:

{
Xd = [xd(1), xd(2), · · · , xd(m)]

Xd−i = [xd−i(1), xd−i(2), · · · , xd−i(m)]
(7)

where Xd represents the feature sequence of the forecasting day d, Xd−i represents the
factor sequence of the history day d − i. The correlation coefficient of the j-th feature of Xd
to Xd−i is:

ξd−i
d (j) =

minmink|xd(j)− xd−i(j)|+ ρmaxmaxi|xd(j)− xd−i(j)|
|xd(j)− xd−i(j)|+ ρmaxmaxij|xd(j)− xd−i(j)| (8)

where xd(j) and xd−i(j) are the j-th feature of the forecasting day d and the history day
d − i, respectively, ρ is the distinguishing coefficient and ρ = 0.5.

Based on calculating the grey correlation coefficients ξ of the factors and their weights
w, the weighted grey correlation between forecast day d and historical day d − i can be
expressed as follows:

rd−i
d =

m

∑
j=1

wjξ
d−i
d (j) (9)
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The first 14 days of the forecasting day are defined as a similar day rough set in this
paper. Because the capacity of the similar day rough set is limited, it is not assumed that as
the date distance increases, the similarity between the forecasting day and the historical day
decreases. Furthermore, derived from the past EV charging load data, the average number
of days with a Spearman’s correlation coefficient larger than 0.4 between the forecasting
day and each historic day in the similar day rough set is 3. In addition, the adjacent daily
load is added to the similar day set to ensure time consistency between the forecasting day
load and the historical day load. According to the above analysis, the size of the similar
day set in this paper is 4.

2.2. Multi-Channel Convolutional Neural Network and Temporal Convolutional Network Model

Because the charging load of EVs is influenced by various factors, including weather
conditions, residents’ travel habits, and the traffic network, there is a high level of short-
term volatility, making short-term load forecasting more complex. It was demonstrated
that extracting the characteristics of EV charging load at various time scales is an effective
strategy for improving prediction accuracy [31]. Different influencing factors affect the
features of EV charging load at different time scales. In this regard, the paper proposes
the MCCNN-TCN model framework. As illustrated in Figure 1, the model framework is
divided into three layers: a multi-channel 1DCNN feature extraction layer, a multi-channel
TCN layer, and an output layer. The model framework can extract EV charging load
characteristics at various time scales and construct a worldwide time-series dependency
between the historical and predicted day loads. The multi-channel 1DCNN is utilized
as the gate of the MCCNN-TCN model to extract the local features of the input time
series at different time scales. Deepening the TCN network can expand its receptive field,
establishing the temporal dependencies between global features. The output layer’s job is
to create a nonlinear relationship between the forecasting load, meteorological and calendar
features, and historical load. Sections 2.1.1 and 2.1.2 show that the meteorological and date
factors impact the EV charging load, in addition to the influence of the historical load on the
forecasting load. As a result, this paper combines the TCN model’s output historical load
feature vector with a high-dimensional feature vector derived from meteorological and
date features. Then, it is input into a fully connected neural network. The fully connected
neural network’s output is forecasting day load.

The length of the 1DCNN layer’s input feature map is sn, where s is the number of
similar days and n is the number of daily load samples. The role of the multi-channel
1DCNN is to extract the features of a one-dimensional time series consisting of EV charging
load sequences in similar daily sets at different time scales. The TCN layer takes the
output of the multi-channel 1DCNN model as input and captures the global temporal
dependencies at different time scales. The BP layer maps the feature composed of the
meteorological factors simultaneously as the forecasting day load and the date type of
forecasting day to the high-dimensional feature space. The high-dimensional feature vector
obtained by integrating the BP model’s output and the TCN model’s output is used as the
input of the fully connected layer in the output layer of the MCCNN-TCN.
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Figure 1. Multi-channel convolutional neural network and temporal convolutional network (Where,
@ is preceded by the number of channels and followed by the output of the convolution layer).

2.2.1. Multi-Channel 1D Convolutional Network Model

CNN is a great neural network model that uses convolution kernels to extract essential
information automatically [46]. Figure 2 shows the basic architecture of the 1DCNN,
which can extract latent features in time series using multiple convolution kernels of the
same weight. The same convolution kernel obtains a class of related features during the
convolution process. Its mathematical model is described as [47]:

Hi = f (Hi−1 ⊗Wi + bi) (10)

where Hi indicates the input of layer I; Hi−1 indicates the output of layer i − 1; Wi and
bi indicate the weight matrix and the corresponding bias vector of the convolution ker-
nel of layer i, respectively; ⊗ indicates for convolution operation; and f indicates the
activation function.

Following the convolution operations, the pooling layer uses data downsampling to
downsample a huge matrix into a small one, reducing the amount of computation and
avoiding overfitting. The pooling layer mathematical model is as follows:

Hi = down(Hi−1) (11)

where Hi−1 and Hi indicate the features before and after pooling, respectively, and “down()”
indicates the pooling function.
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Figure 2. Structure of one-dimensional convolutional neural network.

As shown in Figure 3, the multi-channel 1DCNN is made up of numerous parallel
1D convolution blocks. The first convolutional layer of the multi-channel 1DCNN has a
varied convolution kernel size. Long-term scale characteristics of EV charging load can be
extracted using big convolution kernels. Short-time-scale characteristics of EV charging
loads can be extracted using little convolution kernels. Rough features of EV charging load
at different time scales are obtained after the first convolutional layer. This paper extracts
detailed features by adding numerous convolutional layers with a convolution kernel of
three to the initial convolutional layer to fully mine the detailed information under various
EV charging load time scales. The first convolutional layer kernel size K of each channel is
represented as follows:

K = 2n + 1 (12)

where n ∈ ( 1, 2, 3, . . . , N), N is the number of channels. The value of N depends on the
length of the input layer time series.

Furthermore, earlier research has revealed that when the depth of the neural network
increases, residual connections can effectively handle the problems of gradient disappear-
ance and network overfitting [48]. As a result, each channel of the multi-channel 1DCNN
is assigned a residual connection in this paper. The residual connection mathematical
model is:

xl+1 = xl + F(xl , wl) (13)

where xl+1 is the output of layer l + 1, xl is the input of layer l, and F(xl , wl) is the residual
of layer l.
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2.2.2. Temporal Convolutional Network Model

The TCN developed by Bai et al. in 2018 is an algorithm for processing time series [49].
The TCN combines causal convolution, dilated convolution, and residual block to address
the problem of extracting long-term time-series information.

The core of TCN is the residual dilated causal convolution unit (RDCCU), which con-
sists of two rounds of dilated causal convolution with the same dilation factor, WeightNorm
layer, activation function, Dropout layer, and residual connections formed by direct map-
ping of the input [35]. Multiple residual dilated causal convolutional units are connected to
form a multi-layer TCN network structure, as shown in Figure 4.
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The fundamental core structure of the RDCCU is the dilated causal convolution [50],
which is composed of causal convolution and dilated convolution [51]. The structure of the
dilated causal convolution is shown in Figure 5.
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Causal convolution refers to obtaining the output of time t through the convolution
of elements at time t and earlier in the previous layer. It ensures that there will be no
future information leakage, meeting the requirements of power load forecasting. Dilated
convolution can expand the receptive field by increasing the dilation factor [52] and cap-
ture long enough historical information without increasing the depth of the model [53],
which improves the efficiency of model training. Dilated convolution makes the input of
the previous layer sampled at intervals, and the dilation factor d of each layer increases
exponentially by 2, which can be described as:

l =
n

∑
d=1

[
(K− 1) · 2d + 1

]
(14)

As illustrated in Figure 5, the kernel size of each dilated causal convolutional layer is 3.
The dilation factor d grows from 1 to 4, which raises the effective history of neurons in the
output layer from 3 to 15. In addition, to maintain the whole sequence information, each
layer’s output is zero-padded to match the number of input sequences. The mathematical
model of dilated causal convolution is as follows [49]:

y(s) = (x∗d f )(s) =
i=0

∑
k−1

f (i)·xs−d·i (15)

where x is the input and y is the output.
Residual connections are a key structure of the RDCCU. The RDCCU is defined as

follows [49]:
o = artivation(x + F(x)) (16)

The output of the multi-channel 1DCNN is arranged in a T*n two-dimensional data
structure according to the channel direction and fed into the first RDCCU of the TCN model.
The internal procedure of the RDCCU is shown in Figure 6. The width of the convolution
kernel of the RDCCU corresponds to the number of input data channels. The number
of output channels of this RDCCU is equal to the number of convolution kernels in the
RDCCU. The output of the RDCCU is seamed in the channel direction and used as the
input to the next RDCCU.
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work, include the temperature, humidity, precipitation, visibility, wind speed, and 
weather type. Among them, the temperature, humidity, and precipitation need to be in-
terpolated by spline, and the purpose is to obtain the sampling value simultaneously with 
the load. Other data includes date type, season, etc. 

All of the experimental models were run in the Python 3.6 programming environ-
ment, implemented under the Pytorch framework. The hardware used for the experi-
ments was a PC with an Intel Core i7-10300H CPU, NVIDIA RTX 2060 GPU, and 32 GB of 
RAM. 

  

Figure 6. An illustration of the inputs and outputs of one residual dilated causal convolution unit.

3. Results

The subject of the study in the paper is EV charging load short-term forecasting in
the urban area of a city in northern China. The dataset was data collected from 38 public
DC charging stations in the city’s urban area, from 1 January 2019 to 31 March 2020. The
number of charging stations in residential, commercial, work and leisure areas is 8, 12, 11,
and 7. These charging stations have 298 charging poles, each with a maximum charging
power of 60 kW. The dataset included the active power of the charging poles, the transaction
power, the charging start time and the charging end time, etc. The active power of the
charging poles was sampled at 15 min intervals.

Meteorological data, which can be obtained from China Meteorological Data Network,
include the temperature, humidity, precipitation, visibility, wind speed, and weather type.
Among them, the temperature, humidity, and precipitation need to be interpolated by
spline, and the purpose is to obtain the sampling value simultaneously with the load. Other
data includes date type, season, etc.

All of the experimental models were run in the Python 3.6 programming environment,
implemented under the Pytorch framework. The hardware used for the experiments was a
PC with an Intel Core i7-10300H CPU, NVIDIA RTX 2060 GPU, and 32 GB of RAM.

3.1. Input Variables Selection and Processing

According to the investigation of influencing factors on EV charging load, these factors
were divided into meteorological factors, date features, and similar daily load in this paper.
Next, three types of features are selected and processed.

The MIC between each meteorological factor and EV charging load was calculated
except for weather conditions. Table 1 shows the MIC and Pearson correlation coefficient
between EV charging load and temperature, humidity, precipitation, visibility, and wind
direction. As shown in Table 1, the EV charging load has a strong correlation with tem-
perature, humidity, and rainfall but a weak correlation with visibility and wind speed. At
the same time, the influence of weather conditions on the charging load of EVs cannot be
ignored [25]. The min–max normalization was used to linearly transform the raw tem-
perature, humidity, and rainfall data to [0, 1]. The number of index mapping databases
is referenced in Ref. [18]. In this paper, the mapping values were set to 0.1, 0.2, and 0.3
for the weather types sunny, cloudy and overcast, respectively, and 0.7, 0.1, and 1.5 for
the weather types light rain or snow, rain or snow, and heavy rain or snow, respectively.
Therefore, this paper selected weather type, temperature, humidity, and rainfall as the
meteorological features that affect the EV charging load. Thus, this paper selected the
temperature, humidity, rainfall, and weather conditions among meteorological factors as
similar daily selection and prediction models.
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Table 1. Correlation coefficient between electric vehicle charging load and meteorological factors.

Temperature Humidity Precipitation Visibility Wind Speed

MIC 0.778 0.788 0.461 0.033 0.343
PCC 0.865 −0.881 −0.459 0.042 0.767

Since the month, season, and week type affect the EV charging load fluctuation
characteristics, the season, month, day, week type, weekday, and holiday, selected as date
features, were used as the input of the prediction model. Table 2 depicts the date features.

Table 2. Date feature factors.

Date Feature Detailed Description

Season 1~4 represent spring, summer, fall, and winter
Month 1~12 represent January to December

Day 1~31 represents No. 1 to No. 31
Week 1~7 represents Monday to Sunday

Workday 0 represents a workday, 1 represents a weekend
Holiday 0 represents a non-holiday, 1 represents a holiday

Similar daily loads were obtained from the similar days model. The min–max normal-
ization was adopted to constrain EV charging load to [0, 1]. After that, the forecasted load
values were exponentiated to establish a nonlinear relationship between the exponentially
mapped forecasted load values and the historical loads. It eliminates the lagging problem
when the model takes the last moment of the input sequence as the forecasting load value.

3.2. Performance Evaluation

The paper considered the root mean square error (RMSE), the mean absolute error
(MAE), and the mean absolute percentage error (MAPE) while assessing the performance
of the forecasting model. These are the statistical metrics defined:

RMSE =

√√√√√
i=1
∑
N

(
yi − y f i

)2

N
(17)

MAPE =
i=1

∑
N

∣∣∣∣
y f i − yi

yi

∣∣∣∣×
100
N

(18)

MAE =
1
N

i=1

∑
N

∣∣∣y f i − yi

∣∣∣ (19)

where N indicates the number of validation or testing instances. yi and y f i represents the
actual load and forecasted load of the i-th instance, respectively.

Each statistical metric has different advantages and disadvantages. The RMSE eval-
uates the performance of a predictive model based on the mean absolute error of the
deviation between predicted and actual loads. However, it is susceptible to outliers. In
comparison to the RMSE, the MAE reflects the mean absolute error between forecasted and
actual loads. It is more resilient to outliers than the RMSE but does not show the real degree
of prediction bias. The MAPE is a forecast accuracy measure that considers the relative
difference between forecasted and actual loads. However, the MAPE does not apply when
the actual load is zero. Therefore, it is vital to employ multiple statistical metrics to assess
the prediction performance.
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3.3. Similar Daily Load Selection Based on Weighted Grey Correlation Analysis

The weather condition, temperature, humidity, rainfall, and week type are selected
as daily features for the similar day in this paper. Since weather conditions and week
type similarity are coarse-grained features, while temperature, humidity, and rainfall are
fine-grained features, it is necessary to select the coarse-grained amounts of temperature,
humidity, and rainfall. This paper selected daily maximum temperature, mean temperature,
minimum temperature, as well as daily mean humidity and daily average rainfall as coarse-
grained characteristics. Therefore, weather conditions, daily maximum temperature, daily
average temperature, daily minimum temperature, humidity, rainfall, and week type
similarity were selected as daily features. According to the selected day characteristics and
the weighted gray correlation degree, a similar day set of the forecasting day was obtained.

Taking the EV charging load forecast on 15 December 2019 as an example, the weather
forecast parameters on that day are shown in Table 3. Because the selected December
belongs to winter, the week type similarity obtained by Spearman correlation analysis in
this season is shown in Table 4.

Table 3. Forecasting day meteorological and date type parameters.

Forecasting Day Week
Type

Weather
Condition

Maximum
Temperature/◦C

Minimum
Temperature/◦C

Mean
Temperature/◦C

Relative
Humidity/%

Mean
Rainfall/mm

15 December 2019 Sun cloudy 0.1 −4.5 −2.4 51 0

Table 4. Values of winter day type similarity.

Mon Tues Wed Thurs Fri Sat Sun

Mon 1
Tues 0.8271 1
Wed 0.8758 0.9082 1

Thurs 0.7951 0.9044 0.9008 1
Fri 0.8270 0.8485 0.7898 0.8670 1
Sat 0.7800 0.8193 0.8665 0.7986 0.7299 1
Sun 0.9113 0.8573 0.8897 0.7934 0.7698 0.7512 1

According to the historical meteorological data and week type before the forecast day
(1 December 2019 to 14 December 2019), the weighted grey correlation degrees between
the forecasting day and the historical days were calculated to obtain a similar day set. The
results of a similar day set are shown in Table 5.

Table 5. Selection results of similar days.

Date 3 December
2019

6 December
2019

10 December
2019

14 December
2019

similarity 0.7219 0.7773 0.8122 0.6711

3.4. Validating the Multi-Channel Convolutional Neural Network and Temporal Convolution
Network Model
3.4.1. Hyperparameters of the Multi-Channel Convolutional Neural Network and
Temporal Convolution Network Model

From the similar day model results, it can be seen that the length of the similar day
historical load sequence of the forecasting day is 384. In this paper, the number of channels
of the multi-channel 1DCNN model was set to 4 to fully exploit the characteristics of EV
charging load at different time scales. In the multi-channel 1DCNN model, the convolution
stride in each channel was set to 1, and the activation function Tanh was selected to perform
nonlinear mapping on the results after each convolution. The hyperparameters of the
multi-channel 1DCNN model are shown in Table 6. The TCN model hyperparameters are
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shown in Table 7. The hyperparameters of the BP model and output layer are shown in
Table 8. In this paper, meteorological features, date features, and similar daily loads were
selected as input variables for the MCCNN-TCN model, as shown in Table 9.

Table 6. Layer architecture of the multi-channel 1D convolutional neural network-temporal convolu-
tion network.

Channel No. Layer Input Output Kernel Kernel
Number Padding Stride Activation

Function

C1

Input 1× 384× 1 1× 384× 1 - - - -
Residual Layer 1× 384× 1 1× 384× 1 - - - - -

1D Conv1 1× 384× 1 1× 384× 4 1× 3 4 1 1 Tanh
1D Conv2 1× 384× 4 1× 384× 1 4× 3 1 1 1 Tanh
1D Conv3 1× 384× 1 1× 384× 1 1× 3 1 1 1 Tanh

Adding Layer 1× 384× 1 1× 384× 1 - - - - Tanh

C2

Input 1× 384× 1 1× 384× 1 - - - -
Residual Layer 1× 384× 1 1× 384× 1 - - - - -

1D Conv1 1× 384× 1 1× 384× 4 1× 5 4 2 1 Tanh
1D Conv2 1× 384× 4 1× 384× 1 4× 3 1 1 1 Tanh
1D Conv3 1× 384× 1 1× 384× 1 1× 3 1 1 1 Tanh

Adding Layer 1× 384× 1 1× 384× 1 - - - - Tanh

C3

Input 1× 384× 1 1× 384× 1 - - - -
Residual Layer 1× 384× 1 1× 384× 1 - - - - -

1D Conv1 1× 384× 1 1× 384× 4 1× 9 4 4 1 Tanh
1D Conv2 1× 384× 4 1× 384× 1 4× 3 1 1 1 Tanh
1D Conv3 1× 384× 1 1× 384× 1 1× 3 1 1 1 Tanh

Adding Layer 1× 384× 1 1× 384× 1 - - - - Tanh

C4

Input 1× 384× 1 1× 384× 1 - - - -
Residual Layer 1× 384× 1 1× 384× 1 - - - - -

1D Conv1 1× 384× 1 1× 384× 4 1× 17 4 8 1 Tanh
1D Conv2 1× 384× 4 1× 384× 1 4× 3 1 1 1 Tanh
1D Conv3 1× 384× 1 1× 384× 1 1× 3 1 1 1 Tanh

Adding Layer 1× 384× 1 1× 384× 1 - - - - Tanh

Table 7. Layer architecture of the temporal convolutional network.

Layer Input Output Kernel Dilation Dropout

Residual blocks 1 384× 4 384× 4 4× 3× 4 1 0.1
Residual blocks 2 384× 4 384× 2 4× 3× 2 2 0.1
Residual blocks 3 384× 2 384× 1 2× 3× 1 4 0.1

Table 8. Layer architecture of BP and Output layer.

Layer Input Output Activation Function

BP 10 16 Sigmoid
Output layer 400 1 -

Table 9. Input variables description.

Type of Feature Variables x Detailed Description

Load features x1~x384
Historical load values on the 4

historical similar days

Meteorological features x385~x388

Temperature, humidity, precipitation at the
forecast time t and weather condition on the

forecasting day

Date features x389~x394
Season, month, day, week, workday, holiday

on the forecast day
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3.4.2. Comparative Analysis of Single-Channel and Multi-Channel Convolutional Neural
Network and Temporal Convolution Network Model

On the same data set, compared with the prediction results of the single-channel
1DCNN-TCN model, the advanced nature of the MCCNN-TCN proposed in this paper was
verified. Each single-channel 1DCNN-TCN and MCCNN-TCN had the same TCN structure,
with the only distinction being the number of 1DCNN channels. The single-channel
1DCNN-TCN models were set as follows: Model 1: C1-TCN; Model 2: C2-TCN; Model 3:
C3-TCN; Model 4: C4-TCN. Each single-channel 1DCNN-TCN model and MCCNN-TCN
model, whose loss function is the MSE, were trained with the Adam optimizer, a learning
rate of 0.001, and a batch size of 512.

From 1 June 2019 to 31 August 2019, the training set, validation set, and test set were
selected according to the ratio of 8:1:1. Each model outputs a load forecast value at one
time each time, and the one-day forecast value refers to the cyclic forecast load value at
96 times. The RMSE, MAPE, and MAE values of each single-channel 1DCNN-TCN and
MCCNN-TCN model on the test set are shown in Table 10.

Table 10. Prediction results of single-channel and multi-channel 1D convolutional neural network
and temporal convolution network model.

Layer RMSE/kW MAE/kW MAPE/%

C1-TCN 8.39 6.52 13.42
C2-TCN 9.26 7.32 15.57
C3-TCN 9.68 7.40 15.73
C4-TCN 9.75 7.49 15.88

MCCNN-TCN 7.62 5.79 11.50

From Table 10, it can be seen that the prediction performance of Model 1 to Model 4
decreases as the extracted time scale increases. This is due to the fact that the single-channel
1DCNN-TCN at the long-term scale loses the local short-term variation features of the EV
charging load. The reason why the prediction performance of Model 1 is lower than that of
the MCCNN-TCN model is that Model 1 lacks attention to the change trend features of
EV charging load at a long-time scale. The advantage of the MCCNN-TCN model is that
it can extract the local short-term change features and long-term change trend features of
the EV charging load. Therefore, the RMSE, MAPE, and MAE values of the MCCNN-TCN
model are lower than those of the single-channel 1DCNN-TCN models. It can be shown
that extracting the multi-scale features of EV charging load can significantly improve the
prediction accuracy.

3.4.3. Comparative Analysis of Different Forecasting Models

In order to evaluate the forecasting accuracy and superiority of the model proposed in
this paper, ANN, LSTM, CNN-LSTM, and TCN prediction models, whose model structures
are shown in Appendix B Figures A4–A7, were chosen for comparison. Table 11 shows
the ANN, LSTM, and CNN-LSTM models’ input. The TCN model’s inputs are equal to
those of the MCCNN-TCN model. The loss function of ANN, LSTM, CNN-LSTM, and
TCN models is MSE. Meanwhile, ANN, LSTM, CNN-LSTM, and TCN models were trained
with the Adam optimizer, with a learning rate of 0.001 and a batch size of 512. The dataset
was selected between 1 January 2019 and 31 March 2020, with an 8:1:1 ratio for the training,
validation, and test sets.
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Table 11. Input variables description of ANN, LSTM, and CNN-LSTM models.

Type of Feature Variable x Detailed Description

Electrical features
x1~x64

Historical load values from time t to t + 16 on
historical similar days

x65~x80
Historical load values at the time t − 16 to

t − 1 on the forecasting day

Meteorological features x81~x84

Temperature, humidity, precipitation at the
forecast time t and weather conditions on the

forecasting day

Date features x85~x90
Season, month, day, week, workday, holiday

on the forecast day

The forecasting load curve of the model mentioned above on the test set from 1 March
to 7 March 2020 is shown in Figure 7. It can be seen from Figure 7 that the original load is an
approximately constant value from 0:00 to 6:00 am every day. The forecasting value of this
period, except for the BP model, the forecasting value of all models fluctuates and deviates
from the actual value. Although the forecasting value of the ANN model remains constant,
it deviates significantly from the actual value. The MCCNN-TCN model fluctuates less
than other models and is proximate to the actual value. At the peak of the load curve, the
predicted values of the LSTM, ANN, and CNN-LSTM models all deviate to a certain extent
and lag significantly compared with the actual values. The TCN model has a significant
deviation from the actual values. In comparison to other models, the changing trend of the
MCCNN-TCN model is compatible with the actual situation, and the predicted value is
more proximate to the actual value. In the rising stage of the load curve, the forecasting
value of the MCCNN-TCN model can also maintain a trend similar to the actual value. By
analyzing the forecast effect of each prediction model in three stages, it can be seen that the
MCCNN-TCN model can improve the accuracy of the short-term load forecasting of EV
charging load. This is because the MCCNN-TCN model can not only learn the variation
law of EV load on a long timescale but also pay attention to the short-term fluctuation
characteristics of EV charging load.
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The RMSE, MAPE, and MAE of each model on the test set are shown in Table 12. It
can be seen from Table 12 that the MAPE of the MCCNN-TCN model is 13.24%, which
is 14.09%, 25.13%, 27.32%, and 4.48% higher than that of the ANN, LSTM, CNN-LSTM,
and TCN models, respectively. The RMSE of the MCCNN-TCN model is 4.92 kW, which
is also significantly less than that of other models. The absolute prediction error boxplots
of the five models on the test dataset are shown in Figure 8. The wider the boxplot, the
more spread out the prediction errors are. It can be seen from Figure 8 that the prediction
error range of the MCCNN-TCN model is the narrowest while the LSTM is the widest,
and the median absolute error of the MCCNN-TCN model is smaller than that of ANN,
LSTM, CNN-LSTM, and TCN. From the prediction results, the MCCNN-TCN model is
more effective than the ANN, LSTM, and CNN-LSTM models in complex fluctuation time
series prediction.

Table 12. Prediction results of different models.

Layer RMSE/kW MAE/kW MAPE/%

ANN 9.85 7.43 27.43
LSTM 12.16 9.59 38.47

CNN-LSTM 13.21 10.19 40.66
TCN 6.02 4.59 17.82

MCCNN-TCN 4.92 3.49 13.34
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In addition, it can be seen from Appendix A Figure A2 that in different seasons, the
charging load of EVs will show different characteristics. Therefore, this means that the
performance of the model proposed in this paper needs to be evaluated further during
each season. According to the four seasons defined by meteorology, spring is from March
2019 to May 2019, summer is from June 2019 to August 2019, autumn is from September
2019 to November 2019, and winter is from December 2019 to February 2020. In this paper,
each season’s historical load and meteorological data are selected, respectively, and the
training set, the verification set, and the test set are selected according to the ratio of 8:1:1.
The prediction errors of different models on the test set of each season are presented in
Table 13.
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Table 13. Comparison of forecasting errors of models in each season.

Spring Summer Fall Winter

RMSE/kW MAE/kW MAPE/% RMSE/kW MAE/kW MAPE/% RMSE/kW MAE/kW MAPE/% RMSE/kW MAE/kW MAPE/%

ANN 14.67 10.93 36.86 18.04 13.22 24.44 17.74 13.51 20.27 11.50 8.68 31.52
LSTM 13.09 9.88 32.22 20.41 14.73 28.04 18.34 14.10 24.80 11.95 9.41 35.17

CNN-LSTM 13.24 9.84 29.97 20.37 15.13 26.45 19.17 14.29 21.81 12.30 9.28 33.29
TCN 8.03 6.12 20.90 9.97 7.34 13.55 8.66 6.42 10.05 5.75 4.22 16.01

MCCNN-TCN 6.36 4.45 14.24 8.96 6.25 10.80 7.49 5.32 7.53 5.29 3.78 13.65

As shown in Table 13, by comparing the prediction results of the five models in each
season, the advanced nature of the model proposed in this paper can be verified intuitively.
Although the prediction performance of each prediction model is different in different
seasons, the MCCNN-TCN model proposed in this paper has a significant decrease in
MAPE, RMSE, and MAE compared with other models in each season. By taking the spring
test set as an example, compared with other models, the MAPE of the MCCNN-TCN
model decreased by 22.62%, 17.98%, 15.73%, and 6.66%, and the MAE decreased by 6.48,
5.43, 5.39, and 1.67, respectively. In addition, on the test set of each season, the RMSE,
MAE, and MAPE of the MCCNN-TCN model and the TCN model are smaller than those
of other models. However, since the TCN model does not have the characteristics of
multi-time scale feature extraction, its RMSE, MAE, and MAPE in each season are higher
than those of the MCCNN-TCN model. Additionally, the MCCNN-TCN model’s mean
absolute error is relatively concentrated and much lower than the other models under each
season, as illustrated in Figure 9. Comparing the prediction results on the test set for each
season demonstrates that the MCCNN-TCN model proposed in this paper has a stable
prediction performance. This shows that the MCCNN-TCN model can adapt to the load
forecasting demand of each season in a year and has good robustness and engineering
application value.
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Figure 9. Box plot of absolute prediction errors for different methods in each season.

4. Discussion

By comparing with the single-channel 1DCNN-TCN model, it can be demonstrated
that the method of extracting EV charging load feature information at different time scales
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by setting multiple parallel 1DCNN passes can significantly improve the short-term load
prediction performance.

The results in Table 12 show that the MCCNN-TCN model can effectively improve
short-term load prediction by using an approach that extracts EV charging load features at
multiple scales and relies on TCN to establish long-time dependencies between features.
The ANN model has the disadvantage of only establishing superficial nonlinear mapping
relationships, which leads to a weaker ability to extract temporal correlations of EV charging
loads. Recurrent neural network models such as LSTM have memory properties. They
can learn long-term temporal correlations, but feature extraction is weak due to the lack of
convolution in their models. This leads to its poor effectiveness in predicting EV charging
loads characterized by substantial fluctuations over short periods. The TCN model has
superior predictive capabilities over the LSTM and CNN-LSTM due to the availability of
convolutional units for extracting shallow temporal features and establishing temporal
dependencies. However, the TCN model can only extract features at a single scale, and
therefore its prediction performance is poorer than that of the MCCNN-TCN. Further,
the results in Table 13 show that the predictive performance of the MCCNN-TCN model
proposed in this paper is stable and outperforms those of the comparison models under
different seasons.

Combined with the above analysis, it can be seen that the EV charging load prediction
model proposed in this paper has a high prediction accuracy. However, the model proposed
in this paper relies on the accuracy of meteorological data and EV charging load data to
achieve high accuracy prediction. Therefore, some problems need to be noted in the
engineering application of this method. On the one hand, if there are deviations in the
meteorological data measurement of the forecasting day, this will affect the selection of
similar daily loads. This paper uses several meteorological and date factors as day features
when selecting similar day loads. Additionally, the adjacent day loads of the forecasting day
to be measured are also added to the similar day set, making the similar day selection model
somewhat fault-tolerant. On the other hand, in the power system, there are disturbances in
the power load data from the measurement system caused by errors in the electric power
system, outliers due to data encoding errors, and EV charging start and end times falling
between load sampling points. Suppose the deviation from the actual value is slight. In
that case, the deviation from the actual value obtained from the prediction model will also
be slight. Conversely, suppose there are significant deviations from the actual values. In
that case, the actual values need to be estimated using data pre-processing techniques such
as mean-fill, interpolation, and algorithmic mean filtering.

5. Conclusions

Due to the randomness of EV charging behavior, the short-term fluctuation character-
istics of EV charging load are obvious in one day. In order to improve the load prediction
accuracy, this paper proposes the MCCNN-TCN load model, which considers the multi-
time scale characteristics of EV charging loads. The multi-channel 1DCNN model was used
to extract the features of EV charging load at multiple time scales. The TCN model was
used to establish global temporal dependencies between the features.

By considering the influence of various factors on the load, MIC and Spearman
coefficient were used to reduce the meteorological feature dimension and establish the
similarity of date types, respectively. Then, taking the selected meteorological features and
the similarity of date types as the daily features, a similar day selection model based on the
weighted grey correlation degree was established to select similar daily loads. The selected
meteorological features, date features, and similar daily loads were used as the input of the
MCCNN-TCN model.

From the comparative experiments of single-channel 1DCNN-TCN and MCCNN-
TCN, it can be seen that MCCNN-TCN can improve the prediction accuracy of EV charging
load. This shows that the prediction performance can be improved by extracting the
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feature information of time series at different time scales and establishing global time
series dependencies.

According to the prediction results compared with ANN, LSTM, CNN-LSTM, and
TCN models, compared with these models, due to the unique structure of the MCCNN-
TCN network, it can learn the multi-scale features of the EV charging load time series and
master the changing law of EV charging load.

The MCCNN-TCN network constructed in this paper also lacks the consideration of
real-time electricity price factors. In the future, we can further consider the selection of richer
feature data and take advantage of big data to improve the accuracy of load forecasting.
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Appendix A

Based on the EV charging load dataset used in Section 3 of the paper, the characteristics
of EV charging load in different months, seasons, and week kinds are investigated. The
box plot of EV charging load in each month is shown in Figure A1, and the average daily
EV charging load curves for different seasons and different week kinds are shown in
Figures A2 and A3, respectively.
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Figure A1. Average electric vehicle charging load per month.
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Figure A2. Average electric vehicle charging load for each season.
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Figure A3. Average daily electric vehicle charging load for different weeks.
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Abstract: Hydrogen and renewable electricity-based microgrid is considered to be a promising
way to reduce carbon emissions, promote the consumption of renewable energies and improve the
sustainability of the energy system. In view of the fact that the existing day-ahead optimal operation
model ignores the uncertainties and fluctuations of renewable energies and loads, a two-stage
energy management model is proposed for the sustainable wind-PV-hydrogen-storage microgrid
based on receding horizon optimization to eliminate the adverse effects of their uncertainties and
fluctuations. In the first stage, the day-ahead optimization is performed based on the predicted
outpower of WT and PV, the predicted demands of power and hydrogen loads. In the second stage,
the intra-day optimization is performed based on the actual data to trace the day-ahead operation
schemes. Since the intra-day optimization can update the operation scheme based on the latest
data of renewable energies and loads, the proposed two-stage management model is effective in
eliminating the uncertain factors and maintaining the stability of the whole system. Simulations
show that the proposed two-stage energy management model is robust and effective in coordinating
the operation of the wind-PV-hydrogen-storage microgrid and eliminating the uncertainties and
fluctuations of WT, PV and loads. In addition, the battery storage can reduce the operation cost,
alleviate the fluctuations of the exchanged power with the power grid and improve the performance
of the energy management model.

Keywords: sustainable wind-PV-hydrogen-storage microgrid; energy management; power-to-hydrogen;
receding horizon optimization; storage

1. Introduction

In order to protect the environment and cope with the energy crisis, the renewable
energies, such as wind and solar, are being exploited in a more widespread way. However,
the randomness and intermittency of renewable electricity are still challenging issues for
the large-scale connection to the power grid [1].

Since hydrogen has the advantages of high-energy density, being environmentally
friendly and easy storage, it has been regarded as a promising energy carrier and electricity
storage medium to reduce carbon emission, improve the sustainability of the energy system,
promote the consumption of renewable energies and alleviate their volatility [2]. Hydrogen
can either be produced centrally from renewable electricity through electrolyzers situated
close to wind or PV power plants and then transported to hydrogen consumers or can be
directly generated on sites close to hydrogen consumers [3]. Though mass production in a
central manner is more economical, the high transportation cost may erase the advantages
of this hydrogen production mode. Consequently, the distributed hydrogen production
mode based on a renewable energy microgrid is considered to be an effective way to reduce
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hydrogen production and transportation costs and promote the consumptions of distributed
renewable energies [4]. The distributed hydrogen production mode based on a renewable
energy microgrid has attracted more attention, and research is focused on the aspects of
modeling, techno-economic analysis, cooperative operation and optimal planning, etc. For
example, the accurate modeling method of the advanced alkaline electrolyzer system is
proposed and demonstrated in [5]. The techno-economic feasibility of the production of
hydrogen from the PV-wind microgrid has been evaluated in [6]. A cooperative operation
method to increase profits for wind turbines and onsite hydrogen production and fueling
stations has been proposed in [7]. A Nash-bargaining-based cooperative planning and
operation method for a wind-hydrogen-heat multi-agent energy system has been proposed
in [8]. In addition, optimal capacity planning of an isolated, batteryless, hydrogen-based
microgrid is proposed in [9].

Due to the stochastic volatility of renewable electricity, such as wind power and PV,
not only affecting the stable operation of the hydrogen production system, but also affecting
hydrogen purity, the question of how to relieve the adverse effects of the uncertainties and
volatility of the renewable energies is still a critical challenge and an open problem, which
has drawn more and more attention. The energy management strategy based on model
predictive controller or receding horizon optimization is considered to be one of the promis-
ing methods. For instance, an energy management strategy is proposed for a renewable
hydrogen-based microgrid in [10], and both the long- and short-term optimal operation
schedules are obtained by the model predictive controller. In [11], an energy management
strategy based on the receding-horizon stochastic optimization method is proposed to
increase renewable penetration and improve operational flexibility of the PV-hydrogen mi-
crogrids. In [12], a flexible weighted model predictive control energy management strategy
is proposed for a multi-energy microgrid with the hydrogen energy storage system and
the heat storage system. In [13], a real-time energy management method based on model
predictive control is proposed for a microgrid composed of PV, battery, electrolyzer and fuel
cell. In [14], in order to maximize the operational benefit of the microgrid and minimize
the degradation causes of each storage system, energy management based on the model
predictive control method is proposed. The energy management strategies proposed above
all show good performance in relieving the uncertainties of renewable energies or loads.
Furthermore, the energy storage as well as the demand response technologies is also help-
ful in mitigating the power fluctuations of the renewable energy microgrid. For example,
in [15], the conventional operation strategy, demand response strategy for peak shaving,
has been comparatively studied for grid-connected photovoltaic (PV)-hydrogen/battery
systems and the battery storage has an important role in reducing the operation cost and
mitigating the power fluctuation. In [16], the accurate model of a hybrid energy system
including solar energy, lithium-ion battery and hydrogen is proposed; the coordinated op-
erations of the short-term lithium-ion battery and long-term hydrogen storage show great
advantage in keeping energy balanced and mitigating the power fluctuation of renewable
energies. In [17], the advantages in reducing operation cost and relieving the intermittent
use of a pumped-storage system with a dynamic tariff demand response strategy have
been demonstrated in a system consisting of wind turbines, a photovoltaic array and a
pumped hydro energy storage system. In order to improve the reliability and mitigate
the stochastic volatility of wind farms, an optimal coordination operation and planning
method of kinetic energy storage is proposed in [18]; simulation results show that the
proposed method is effective in identifying the minimum capacity of kinetic energy storage
and improving power supply reliability. Likewise, an optimization energy management
method is proposed in [19] to reduce the operation cost of a wind power plant-flywheel
energy storage system; simulation results show that the flywheel energy storage method is
effective in relieving the stochastic fluctuation of wind power. In [20], a planning method is
proposed to optimize the structure of the PV-wind-electrochemical storage system, and the
energy storage system has been shown to play an important role in improving the power
supply reliability.
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These research results have laid a good foundation for the energy management prob-
lem of the renewable-energy-based microgrid. However, the energy management problem
for the wind-PV-hydrogen-battery microgrid is still an open problem; the questions of how
to mitigate the adverse effects of the stochastic and uncertain factors of renewable electricity
and how to coordinate the operation of the whole system still need further investigation.

In order to alleviate the uncertainties and fluctuations of outpower of WT and PV, and
the power and hydrogen demands, this paper proposes a two-stage energy management
model for the sustainable wind-PV-hydrogen-storage microgrid based on receding horizon
optimization, and the role of energy storage has also been explored. The main contributions
are as follows.

(1) A two-stage energy management model based on receding horizon optimization is
proposed to tackle the uncertainties and randomness of renewable energies and loads,
as well as to minimize the operation cost.

(2) The day-ahead optimization is performed to minimize the overall operation cost,
while the intra-day optimization model is carried out to trace the day-ahead schemes
and minimize the deviations of the intra-day and the day-ahead operation strategies.

(3) The roles of battery storage in reducing operation cost and improving the performance
of the energy management model have been explored and demonstrated.

The remainder of this paper is organized as follows. Section 2 introduces the struc-
tures and the subsystem models of the sustainable wind-PV-hydrogen-storage microgrid.
Section 3 proposes the two-stage energy management model. Section 4 presents the simu-
lation and result analysis. At last, Section 5 draws the conclusion.

2. The Sustainable Wind-PV-Hydrogen-Storage Microgrid

Figure 1 illustrates the sustainable wind-PV-hydrogen-storage (WPHS) microgrid. It
is mainly composed of wind turbines (WT), photovoltaics (PV), battery storage and the
power-to-hydrogen (P2H) subsystem. The WPHS microgrid is responsible for meeting the
hydrogen demands and power demands of the end users. The sustainable WPHS microgrid
is connected to the upstream power grid, and the renewable electricity is mainly consumed
locally to produce hydrogen and meet the power loads. Bilateral power exchange with
the power grid is supported, the surplus power can be fed back to the power grid to make
profit and the insufficient electricity can also be purchased from the power grid. Therefore,
the WPHS microgrid comprises a high proportion of renewable energy systems, which can
realize the sustainability of energy supply. The models of WT, PV, battery storage and the
power-to-hydrogen subsystem are as follows.
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Figure 1. The schematic of wind-PV-hydrogen-storage microgrid.
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2.1. The Wind Turbine Model

The outpower of wind turbine can be expressed as the function of wind speed [15].

Pt
WT =





0 vt ≤ vin, vt ≥ vout
vt−vin
vr−vin

PRWT vin ≤ vt ≤ vr

PRWT vr ≤ vt ≤ vout

(1)

where Pt
WT is the outpower of wind turbine at time slot t; vt is the wind speed at time slot t;

vin and vout are cut-in and cut-out wind speed, respectively; vr is the rated wind speed of
wind turbine; PRWT is the rated power of wind turbine.

2.2. The PV Model

The outpower of PV panels can be expressed as the function of solar radiation intensity
and the cell temperature [21].

Pt
PV = NPV · PrSTC · It

ISTC
[1 + 0.005 · (Tt − 25)] (2)

where Pt
PV is the outpower of PV array; NPV is the number of PV panes; ISTC is the

standard irradiance, 1000 W/m2; PrSTC is the rated power of each PV panel at standard
test conditions (cell temperature is 25 ◦C, irradiance is 1000 W/m2); It and Tt are irradiance
and cell temperature (which approximates to the ambient temperature) at time slot t.

2.3. The Battery Storage Model

The battery storages are helpful in alleviating the volatility of renewable energies. Let
Et

bat be the energy stored in the batteries at time slot t; Emin
bat and Emax

bat denote the minimum
and maximum capacity of battery storages, respectively. Let Pt

bat,c and Pt
bat,d denote the

charging and discharging power, respectively, and let Pmax
bat,c and Pmax

bat,d denote the maximum
values of charging and discharging power, respectively. Then, the battery storage model
can be formulated as follows [22].





Et
bat = Et−1

bat + (Pt
bat,cebat,c −

Pt
bat,d

ebat,d
)∆t

0 ≤ Pt
bat,c ≤ ut

bat · Pmax
bat,c

0 ≤ Pt
bat,d ≤ (1 − ut

bat)·Pmax
bat,d

Emin
bat ≤ Et

bat ≤ Emax
bat

ET
bat = E1

bat

(3)

where the first equation of Equation (3) denotes the stored energy variation during time
interval ∆t before and after charging or discharging. The second and third items of
Equation (3) indicate that the charging and discharging power cannot exceed their maxi-
mums. ut

bat is a binary variable to avoid charging and discharging power simultaneously.
The fourth item of Equation (3) denotes that the stored energy should be constrained
between the minimum and maximum capacity. The last item of Equation (3) shows that
the stored energy at the end of the dispatch period is to be equal to its initial value.

2.4. The Power-to-Hydrogen Subsystem Model

The power-to-hydrogen production system mainly consists of alkaline electrolyzer,
hydrogen compressor and hydrogen storage tank.

2.4.1. The Model of Electrolyzer

Currently the alkaline electrolyzer (AE) and proton exchange membrane (PEM) are
two major ways to produce hydrogen from electricity. The alkaline electrolyzer technology
is more mature and economic, and was thus chosen to produce hydrogen in this paper.
Since the start and response speed of the electrolyzer is quick [16], the ramp up/down
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constraints are assumed to be satisfied in this paper. The mass of hydrogen production of
AE is approximately linear to the consumed power [23].

{
mt

H2
= ηH2 Pt

el · ∆t
0 ≤ Pt

el ≤ Pmax
el

(4)

where mt
H2

is the hydrogen mass produced at time slot t, kg; ηH2 is hydrogen production
rate, kg/kW · h; Pt

el denotes the power consumed by electrolyzer at time slot t, kW; ∆t is
the time step; Pmax

el is the maximum power of electrolyzer.

2.4.2. The Model of Hydrogen Compressor

A hydrogen compressor is used to compress the hydrogen into high-pressure hydro-
gen. The power consumption of the hydrogen compressor can be expressed as follows [24]:





Pt
com =

CH2 mt
comTinκ

ηcom(κ−1)

[(
Pout
Pin

) κ−1
κ − 1

]

0 ≤ Pt
com ≤ Pmax

com

(5)

where Pt
com is the electric power consumed by compressor at time t; CH2 is the specific

heat of hydrogen at constant pressure, 14.304 kJ/kg · K; mt
com is the hydrogen flow rate

through compressor at time t, kg/s; Tin is the inlet hydrogen temperature (293 K); ηcom is
the efficiency of compressor (0.7); κ is the isentropic exponent of hydrogen (1.4); Pmax

com is the
maximum power of hydrogen compressor.

2.4.3. The Model of Hydrogen Storage Tank

The compressed hydrogen is stored in the hydrogen storage tank. The pressure of the
hydrogen tank can be formulated as follows [25].





Mt+1
H2

= Mt
H2

+ mt
H2

− Lt
H2

Mmin
H2

≤ Mt
H2

≤ Mmax
H2

Mmin
H2

= γminCR
tank, Mmax

H2
= γmaxCR

tank

M0
H2

= MT
H2

= γ0CR
tank,

(6)

where Mt
H2

is the stored hydrogen mass in the hydrogen tank at time slot t, kg; Lt
H2

is the
hydrogen load at time slot t, kg; CR

tank is the capacity of hydrogen tank, kg; γmin and γmax

denote the minimum and maximum ratio of the rated capacity of hydrogen tank; M0
H2

and
MT

H2
are the stored hydrogen at the initial and end time slot, respectively.

3. The Two-Stage Energy Management Model

The randomness and uncertainty of the outpower of WT and PV will affect the stable
operation of the whole system and may reduce the hydrogen purity. As illustrated in
Figure 2, in order to alleviate these adverse effects, a two-stage energy management model
based on receding horizon optimization is proposed for the wind-PV-hydrogen-storage
microgrid. In the first stage of the energy management model, the day-ahead optimization
is performed to minimize the total operational cost based on the predicted outpower of
WT and PV, as well as the predicted power and hydrogen demands, the time-of-use price,
the feed-in tariff and the operation constraints of the whole system. In the second stage of
the energy management model, the intra-day optimization model based on the receding
horizon optimization is executed to eliminate the power fluctuations caused by the forecast
errors. The specific day-ahead optimization and intra-day optimization models will be
formulated in the following subsections.
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batλ denotes the degradation cost coefficient. 
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Figure 2. The schematic of the two-stage energy management model.

3.1. The Day-Ahead Optimization Model

The objective of the day-ahead operation is to minimize the comprehensive operation
cost CDAC, which is composed of the operational and maintenance costs of PV (CPV) and
WT (CWT); the degradation costs of batteries (Cbat) and electrolyzer (Cel); and the net energy
cost (Ce).

The operational and maintenance costs of PV and WT are formulated as the functions
of their output power. 




CPV =
T
∑

t=1
λPV Pt

PV∆t

CWT =
T
∑

t=1
λWT Pt

WT∆t
(7)

where T is the total number of time slots, λPV and λWT are maintenance cost coefficients of
PV and WT, respectively; their values are assumed to be 0.005 ¥/kWh and 0.0045 ¥/kWh,
respectively [26]. Pt

PV and Pt
WT are output power of PV and WT at time slot t, respectively.

The degradation of energy storage is caused by charging and discharging, as well as
the depth of discharge. Refs. [27,28] have shown that the degradation density function of
the state of charge (SoC) is almost flat between minimum and maximum of Soc. Thus, as in
the model in [29–31], the amortized battery degradation cost Cbat can be computed by the
power of discharging and charging (Equation (8)), while the degradation cost of battery
considering the depth of discharge can be found in [17,32].

Cbat =
T

∑
t=1

λbat

(
Pt

bat,c + Pt
bat,d

)
∆t (8)

where Pt
bat,c and Pt

bat,d are the charging and discharging power of battery, respectively. λbat
denotes the degradation cost coefficient.

Similarly, the amortized degradation cost Cel of electrolyzer can be expressed as follows.

Cel =
T

∑
t=1

λel Pt
el∆t (9)

where Pt
el and λel are the consumed power and degradation cost coefficient of electrolyzer,

respectively.
The microgrid is allowed to buy electricity from the utility grid when its electricity is

insufficient and it may sell power back to the grid when its power is surplus. Then, the
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net energy cost is formulated as the electricity purchasing cost minus the revenue from
selling electricity.

Ce =
T

∑
t=1

(
πbPt

b − πsPt
s
)
∆t (10)

where πb and πs denote the electricity buying and selling prices, respectively.Pt
b and Pt

s are
the power purchased from and sold to the utility grid, respectively.

Then, the objective of the day-ahead optimization model can be expressed as follows.

min CDAC = min(CPV + CWT + Cbat + Cel + Ce) (11)

The power balance should be satisfied at each time slot.

Pt
PV + Pt

WT + Pt
b + Pt

bat,d = Pt
bat,c + Pt

el + Pt
com + Pt

s + Pt
load (12)

where Pt
b and Pt

s are the power buying from and selling to the power grid at time slot t,
respectively. Pt

load is the predicted power load at time slot t.
The buying and selling power cannot happen simultaneously. Let Pmax

grid denote the
maximum power allowed when selling to or buying from the power grid, and χt

bs denote
the binary variable; then, the constraints of power exchanged with the power grid can be
formulated as follows. {

0 ≤ Pt
b ≤ χt

bsPmax
grid

0 ≤ Pt
s ≤

(
1 − χt

bs
)

Pmax
grid

(13)

Furthermore, the operation constraints of WT, PV, battery storage and the power-
to-hydrogen subsystem should be satisfied. Then, the day-ahead optimization model in
compact form can be expressed as follows.

min CDAC = min





T
∑

t=1
λPV Pt

PV +
T
∑

t=1
λWT Pt

WT +
T
∑

t=1
λbat

(
Pt

bat,c + Pt
bat,d

)

+
T
∑

t=1
λel Pt

el +
T
∑

t=1

(
πbPt

b − πsPt
s
)





s.t. (1)− (6), (12)− (13)

(14)

3.2. The Intra-Day Optimization Model

According to the day-ahead operation schemes, the intra-day optimization model will
be performed to minimize the operation errors based on the ultra-short-term prediction
data of WT, PV, power and hydrogen demands. The intra-day optimization model is built
based on the receding horizon optimization, which is an effective method to tackle the
uncertainty and volatility of renewable energies and loads. The main idea of the receding
horizon operation is illustrated in Figure 3. It mainly contains the following three steps [3].
(1) Take the day-ahead operation schemes as set points; at the time slot k, solve the intra-day
operation strategies during the receding horizon based on the real-time predicted values
of renewable energy generation, power loads and hydrogen loads. (2) From the first step,
obtain the operation strategies over the k-th to the (k + M − 1)-th time slot. Only the
operation strategies at the k-th slot are implemented. (3) Move to the k + 1-th time slot,
update the prediction data and repeat the first two steps. It is obvious that by means
of receding horizon optimization, the operation strategies are updated step-by-step to
alleviate the impacts of the uncertainty and volatility of renewable energies and loads.

The objective of the intra-day energy management is to trace the day-ahead operation
schemes based on the updated predicted data for the output power of PV and WT, the
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power loads and hydrogen loads. Take the day-ahead operation strategies as set points and
the objection function intra-day energy management can be expressed as follows.

min CIDC = min





k+M−1
∑

t=k


 w1

(
Pt

grid − P̂t
grid

)2
+ w2

(
Pt

el − P̂t
el
)2

+w3
(

Pt
com − P̂t

com
)2

+ w4
(

Pt
bat − P̂t

bat
)2







s.t.





(1)− (6), (12)− (13)
∆Pt

grid =
∣∣∣Pt

grid − P̂t
grid

∣∣∣ ≤ ∆Pmax
grid

∆Pt
el =

∣∣Pt
el − P̂t

el

∣∣ ≤ ∆Pmax
el

∆Pt
com =

∣∣Pt
com − P̂t

com
∣∣ ≤ ∆Pmax

com

∆Pt
bat =

∣∣Pt
bat − P̂t

bat

∣∣ ≤ ∆Pmax
bat

(15)

where Pt
grid = Pt

b − Pt
s , Pt

bat = Pt
bat,c − Pt

bat,d, P̂t
grid, P̂t

el , P̂t
com and P̂t

bat denote the day-ahead
operation schemes of buying power, electrolyzer, compressor and battery storage. w1, w2,
w3 and w4 are weight factors; they can be optimized based on their significance. In this
paper, they are assumed to have equal weights. ∆Pmax

grid , ∆Pmax
el , ∆Pmax

com and ∆Pmax
bat are the

admissible maximum errors of exchanged power, the power of electrolyzer, the power
of compressor and the net charging power of battery storage, respectively. The objective
function (15) of the intra-day operation model is to minimize the operation deviation
between the intra-day strategies and the day-ahead strategies. The constraints are the
operation limitations of each component and the power exchange with the power grid. The
decision variables are the operation strategies of each component and the power exchange
with the power grid; the decision variable vector is x =

[
Pt

grid, Pt
el , Pt

com, Pt
bat

]
. More details

about the input and output variables of the two-stage energy management model can be
found in Appendix A.
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Figure 3. Schematic of receding horizon optimization.

4. Numerical Analysis
4.1. Basic Parameter Settings

The microgrid in Figure 1 is taken as an example to demonstrate the proposed two-
stage energy management method. In the first stage, the day-ahead optimization is per-
formed based on the predicted outpower of WT and PV, the predicted power and hydrogen
loads. In the second stage, the intra-day optimization is performed based on the actual data.
Without loss of generality, the actual data are assumed to be the sum of predicted data and
the forecast error. Assume that the day-ahead forecast errors of wind power, PV, power
and hydrogen demands follow standard normal distribution. The standard deviation
for the day-ahead forecast errors of wind power, PV, power and hydrogen demands is
set as 25%, 20%, 15% and 15% of their day-ahead forecast data, respectively. In fact, the
ultra-short-term prediction data of WT, PV, power and hydrogen demands can be predicted
by the long short-term memory (LSTM), neural network or other artificial intelligence
methods [33]. In this paper, the prediction cycle is 1 h, and the control cycle is 30 min and
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the receding horizon optimization is performed once per 5 min. Therefore, the intra-day
optimization model will be executed 288 times during the 24 h.

The predicted and actual output power of WT and PV is shown in Figures 4 and 5 [34],
respectively. The predicted and actual power load and hydrogen load are illustrated in
Figures 6 and 7 [7,34], respectively. Table 1 gives the power prices of the power grid [35]; the
buying price is time-of-use price and the feed-in price is fixed price. The other parameters
of the micro are given in Table 2 [34,35]. The maximum of the deviations for Pt

grid, P̂t
el , P̂t

com

and P̂t
bat are 200 kW.
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Figure 4. The predicted and actual outpower of WT.
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Table 2. The parameters of the WPHS microgrid.

ηH2 0.0192 ηcom 0.7 Smax
B 5700 kWh ∆Pmax

grid 200 kW
Pmax

el 5000 kW κ 1.4 Smin
B 600 kWh ∆Pmax

el 100 kW
Pmax

grid 6000 kW mmin
H2

0 kg St=0
B 600 kWh ∆Pmax

com 10 kW
RH2 14.304 mmax

H2
1000 kg Pmax

bat,c 2100 kW ∆Pmax
bat 200 kW

Tin 40 ◦C Pmax
com 500 kW Pmax

bat,d 2400 kW

4.2. The Analysis and Discussions of the Simulation Results

Figures 8–11 show the day-ahead schemes and the intra-day operation strategies of
buying or selling power, charging and discharging power of battery storage, electrolyzer
and compressor, respectively. Figures 12 and 13 illustrate the storage states of battery
storage and hydrogen tank, respectively.

150



Energies 2022, 15, 2861

Energies 2022, 15, x FOR PEER REVIEW 12 of 21 
 

 

Table 1. Power prices (¥/kWh). 

Time Slots Buying Price Selling Price 
01:00–07:00, 23:00–24:00 0.3376 0.4 
12:00–14:00, 19:00–22:00 0.8654 0.4 
08:00–11:00, 15:00–18:00 0.5980 0.4 

Table 2. The parameters of the WPHS microgrid. 

2Hη  0.0192 comη  0.7 max
BS  5700 kWh max

gridP∆
 200 kW 

max
elP  5000 kW κ 1.4 min

BS  600 kWh max
elP∆  100 kW 

 

6000 kW 
2

min
Hm  0 kg 0t

BS =
 600 kWh max

comP∆  10 kW 

2HR  14.304 
2

max
Hm  1000 kg max

bat,cP  2100 kW max
batP∆  200 kW 

Tin 40 °C max
comP  500 kW max

bat,dP  2400 kW   

4.2. The Analysis and Discussions of the Simulation Results 
Figures 8–11 show the day-ahead schemes and the intra-day operation strategies of 

buying or selling power, charging and discharging power of battery storage, electrolyzer 
and compressor, respectively. Figures 12 and 13 illustrate the storage states of battery 
storage and hydrogen tank, respectively. 

 
Figure 8. The exchanged power with power grid. 

max
gridP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time(h)

-2000

-1000

0

1000

2000

3000

4000

5000

6000

Th
e 

bu
yi

ng
 o

r s
el

lin
g 

po
w

er
 (k

W
)

Day-ahead scheme

Receding horizon optimization strategy

Figure 8. The exchanged power with power grid.
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Figure 9. The charging and discharging power of battery storage.
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Figure 10. The power of electrolyzer.

151



Energies 2022, 15, 2861

Energies 2022, 15, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 9. The charging and discharging power of battery storage. 

 
Figure 10. The power of electrolyzer. 

 
Figure 11. The power of compressor. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time(h)

-2000

-1000

0

1000

2000

3000

Th
e 

ch
ar

gi
ng

 o
r d

is
ch

ar
gi

ng
 p

ow
er

of
 b

at
te

ry
 st

or
ag

e 
(k

W
)

Day-ahead scheme

Receding horizon optimization strategy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time(h)

0

1000

2000

3000

4000

5000

Th
e 

po
w

er
 o

f e
le

ct
ro

ly
ze

r (
kW

)

Day-ahead scheme

Receding horizon optimization strategy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time(h)

0

50

100

150

200

250

Th
e 

po
w

er
 o

f c
om

pr
es

so
r (

kW
)

Day-ahead scheme

Receding horizon optimization strategy

Figure 11. The power of compressor.
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Figure 12. The storage state of battery storage.
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Figure 13. The storage state of hydrogen tank.
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4.2.1. The Day-Ahead Simulation Results

The simulation results of Figures 8 and 9 show that the sustainable WPHS microgrid
buys more electricity from the power grid during the valley periods and flat periods than
the peak periods. This is because the buying power price is low during the valley and flat
periods; in order to reduce the operation cost, the microgrid buys more electricity to meet
the demands of power loads, produce hydrogen or charge the batteries. During the peak
periods, the required power of the WPHS microgrid is mainly met by the battery storage,
the WT and PV. In addition, it can be seen from Figures 10, 11 and 13 that the hydrogen
is produced and stored in the tank during the valley periods, and the tank discharges
hydrogen during the flat and peak periods to satisfy hydrogen demand. Figures 9 and 12
show that the battery storage mainly stores the electricity during the valley or flat periods
and discharges power during the peak periods to reduce the operation cost. Therefore,
the day-ahead optimization can effectively coordinate the operation of the WT, PV, battery
storage and power-to-hydrogen subsystems, and realize high-efficiency operation.

4.2.2. The Intra-Day Simulation Results

Figures 8–13 show that the intra-day operation strategies are effective in tracing the
day-ahead operation schemes and eliminating the effects of the volatility of renewable ener-
gies, power and hydrogen loads. Furthermore, the intra-day operation strategies of battery
storage and hydrogen tank can completely trace their day-ahead states. The maximum
deviations of exchanged power, the power of electrolyzer, the power of compressor and
the power of battery storage are 199.45 kW, 81.34 kW, 3.48 kW and 191.62 kW, respectively.
They all satisfy their maximum error constraints. Therefore, the intra-day optimization
model is able to improve the operation stability of the WPHS microgrid and eliminate the
adverse influence of the fluctuations of WT, PV, power and hydrogen demands.

4.2.3. The Simulation Results of WPHS Microgrid without Battery Storage

In this section, the sustainable WPHS microgrid in Figure 1 without battery storage is
taken as the comparative microgrid (WPH microgrid) to demonstrate the roles of battery
storages. Figures 14–17 illustrate the day-ahead schemes and the intra-day operation
strategies of buying or selling power, electrolyzer and compressor, respectively. Figure 17
illustrates the storage states of hydrogen tank. It can be seen that the proposed two-stage
energy management model is robust and effective in coordinating the operation of the
sustainable WPH microgrid, and intra-day receding horizon optimization strategies can
effectively trace the day-ahead schemes. The operation costs for the microgrid with and
without battery storage are 27,727 CNY and 31,815 CNY, respectively. The battery storage
can reduce the operation cost dramatically by 12.85%. Furthermore, the maximum of
the deviation of the receding horizon optimization strategy and the day-ahead scheme
is 202.0123 kW and 231.5762 kW for the microgrid with and without battery storage,
respectively. This deviation is reduced by 12.77% when the battery storage is considered.
Therefore, the battery storage can also alleviate the fluctuations of the exchanged power
with power grid and improve the performance of the intra-day optimization model.

Remark 1. Though other methods, such as the scenario-based stochastic programming method
and robust optimization [36], can also tackle the uncertainties, the former needs the probability
distribution of uncertain factors and a huge number of scenario simulations, which may be a heavy
burden. While the robust optimization can incorporate the uncertainties with a range without
underlying probability distributions, and the optimal solutions in the worst case can be obtained,
however, these solutions are very conservative [36]. The two-stage energy management method
needs neither probability distribution nor huge scenario simulations; the robust solutions can be
obtained based on the updated predicted data.
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Figure 14. The exchanged power with power grid of WPH microgrid.
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Figure 15. The power of electrolyzer of WPH microgrid.
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Figure 16. The power of compressor of WPH microgrid.
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Figure 17. The storage state of hydrogen tank of WPH microgrid.

5. Conclusions

A two-stage energy management model is proposed for the sustainable wind-PV-
hydrogen-storage microgrid based on receding horizon optimization. In the first stage,
the day-ahead optimization is performed based on the predicted outpower of WT and
PV, the predicted demands of power and hydrogen loads. In the second stage, the intra-
day optimization is performed based on the actual data to trace the day-ahead operation
schemes. The following conclusions are drawn.

(1) The proposed two-stage optimization is effective in managing the operation of the
micro and eliminating the uncertainties and fluctuations of WT, PV and loads. The
day-ahead optimization can effectively coordinate the operations of the WT, PV,
battery storage and power-to-hydrogen subsystems, and realize the high-efficiency
operations. The intra-day optimization model is able to improve the operation stability
of the WPHS microgrid and eliminate the adverse influence of the fluctuations of WT,
PV, power and hydrogen demands.

(2) The proposed two-stage energy management model is robust and effective in coor-
dinating the operation of the sustainable WHP microgrid, and intra-day receding
horizon optimization strategies can effectively trace the day-ahead schemes. In ad-
dition, the battery storage can reduce the operation cost dramatically by 12.85%, as
well as alleviate the fluctuations of the exchanged power with the power grid, and the
maximum deviation of the exchanged power between the day-ahead and intra-day
strategies is reduced by 12.77% when the battery storage is considered.

Furthermore, in the future work, more accurate models of each component, including
consideration of the startup cost and ramp time of the green hydrogen system will be
considered. The demand side management issue is another interesting topic, which can be
integrated in the two-stage energy management model. The mean efficiency of the whole
process of the system can also be discussed and analyzed in the future work.
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Abbreviations

PV Photovoltaic WT Wind turbine
WPHS Wind-PV-hydrogen-storage WPH Wind-PV-hydrogen
Parameters and variables of wind turbine model
Pt

WT Outpower of WT at time slot t PRWT Rated power of WT
vt Wind speed at time slot t vin Cut-in wind speed
vout Cut-out wind speed vr Rated wind speed of wind turbine
Parameters and variables of PV model
Pt

PV Outpower of PV array NPV Number of PV panes
ISTC Standard irradiance PrSTC Rated power of each PV panel at standard test conditions
It Irradiance at time slot t Tt Temperature at time slot t
Parameters and variables of battery storage model
Et

bat Energy stored in the batteries at time slot t Emin
bat Minimum capacity of battery storages

Emax
bat Maximum capacity of battery storages Pt

bat,c Charging power at time slot t
Pt

bat,d Discharging power at time slot t Pmax
bat,c Maximum charging power

Pmax
bat,d Maximum discharging power ut

bat Binary variable
Parametersand variables of power-to-hydrogen system
ηH2 Hydrogen production rate Pmax

el Maximum power of electrolyzer
mt

H2
Hydrogen mass-produced at time slot t Pt

el Power consumed by electrolyzer at time slot t
CH2 Specific heat of hydrogen at constant pressure Tin Inlet hydrogen temperature
ηcom Efficiency of compressor Pout/Pin Compression ratio of hydrogen
Pmax

com Maximum power of compressor mt
com Hydrogen flow rate through compressor at time

κ Isentropic exponent of hydrogen Mt
H2

Stored hydrogen mass in the hydrogen tank at time slot t
Lt

H2
Hydrogen load at time slot t CR

tank Capacity of hydrogen tank
γmin Minimum ratio of the rated capacity of hydrogen tank γmax Maximum ratio of the rated capacity of hydrogen tank
Variables of the two-stage energy management model
CDAC Day-ahead comprehensive operation cost CPV Operational and maintenance costs of PV
CWT Operational and maintenance costs of WT Cbat Degradation costs of battery storage
Cel Degradation costs of electrolyzer Ce Net energy cost
λPV Maintenance cost coefficient of PV λWT Maintenance cost coefficient of WT
λbat Degradation cost coefficient of battery storage λel Degradation cost coefficient of electrolyzer
Pt

b Buying power from the power grid at time slot t Pt
s Selling power to the power grid at time slot t

Pt
load Predicted power load at time slot t χt

bs Binary variable
Pt,0

H2, fs
Hydrogen production at time slot t Pt,0

el, fs
Power consumed by electrolyzer device at time slot t

Appendix A

Take the exchanged power with power grid, the power of electrolyzer, the power of
compressor, the charging/discharging power of battery storage, the power storage state
of battery storage and the hydrogen storage state of hydrogen tank to constitute state
vector x(k) =

[
Pgrid(k) Pel(k) Pcom(k) Pbat(k) Ebat(k) MH2(k)

]T; take the incre-
ment power of electrolyzer, the increment power of compressor and the increment charg-
ing/discharging power of battery storage to constitute the control variables
u(k) =

[
∆Pel(k) ∆Pcom(k) ∆Pbat(k)

]T ; take the increment power of the ultra-short-
term predicted power of wind turbine, PV, power load and hydrogen load as distur-
bance input vector r(k) =

[
∆PWT(k) ∆PPV(k) ∆Pload(k) ∆LH2(k)

]T ; take the ex-
changed power with power grid, the power of electrolyzer, the power of compressor
and the charging/discharging power of battery storage as the output variable vector
y(k) =

[
Pgrid(k) Pel(k) Pcom(k) Pbat(k)

]T; then the multi-input and multi-output
state space model can be formulated in the following matrix form [34]:
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x(k + ∆t) =




Pgrid(k + ∆t)
Pel(k + ∆t)
Pcom(k + ∆t)
Pbat(k + ∆t)
Ebat(k + ∆t)
MH2(k + ∆t)



=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







Pgrid(k)
Pel(k)
Pcom(k)
Pbat(k)
Ebat(k)
MH2(k)




+




−1 −1 −1
1 0 0
0 1 0
0 0 1
0 0 ηbs

ηH2 0 0







∆Pel(k)
∆Pcom(k
∆Pbat(k)


+




1 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 −1







∆PWT(k)
∆PPV(k)
∆Pload(k)
∆LH2(k)




(A1)

y(k) =




Pgrid(k)
Pel(k)

Pcom(k)
Pbat(k)


 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0







Pgrid(k)
Pel(k)

Pcom(k)
Pbat(k)
Ebat(k)
MH2(k)




(A2)
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Abstract: Although photovoltaic (PV) systems play an essential role in distributed generation systems,
they also suffer from serious safety concerns due to DC series arc faults. This paper proposes a
lightweight convolutional neural network-based method for detecting DC series arc fault in PV
systems to solve this issue. An experimental platform according to UL1699B is built, and current data
ranging from 3 A to 25 A is collected. Moreover, test conditions, including PV inverter startup and
irradiance mutation, are also considered to evaluate the robustness of the proposed method. Before
fault detection, the current data is preprocessed with power spectrum estimation. The lightweight
convolutional neural network has a lower computational burden for its fewer parameters, which can
be ready for embedded microprocessor-based edge applications. Compared to similar lightweight
convolutional network models such as Efficientnet-B0, B2, and B3, the Efficientnet-B1 model shows
the highest accuracy of 96.16% for arc fault detection. Furthermore, an attention mechanism is
combined with the Efficientnet-B1 to make the algorithm more focused on arc features, which can
help the algorithm reduce unnecessary computation. The test results show that the detection accuracy
of the proposed method can be up to 98.81% under all test conditions, which is higher than that of
general networks.

Keywords: photovoltaic (PV) system; DC series arc fault; power spectrum estimation; attentional
mechanism; lightweight convolutional neural network

1. Introduction

With the frequent occurrence of climate changes caused by global warming [1], envi-
ronmental problems have attracted more and more attention. In order to reduce carbon
dioxide emissions, the use of fossil energy is limited and green energy is more and more
widely used. Solar energy is a kind of green energy that adds no pollution to the environ-
ment. Photovoltaic (PV) systems can convert solar energy into electric energy for people
to use conveniently [2]; they play an essential role in distributed generation systems [3],
so they are widely used in households and other places where solar energy is plenti-
ful [4]. However, arc faults on the DC side of a PV system may cause severe electrical fires
due to the high temperature above 5000 ◦C, which may ignite surrounding combustible
material [5].
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Due to the harmfulness of the DC arc faults in PV systems, in 2011 the National
Electrical Code (NEC) required that roof PV systems with DC voltage higher than 80 V
must be equipped with series DC arc fault circuit breakers. In 2014, this requirement was
applied to all types of photovoltaic systems to reduce the fire hazard caused by the DC
arc fault [6]. Moreover, the location of arc faults is stochastic, and arc current may be
disturbed by high-frequency noise due to the pulse width modulated (PWM) control of the
PV inverter [7], which makes it challenging to detect DC arc faults.

DC arc faults in PV systems can be categorized as parallel arc faults and series arc
faults [8,9]. Parallel arc faults are generally caused by line-to-line and line-to-ground short
circuit faults. The current amplitude of parallel arc faults can be larger than the current
amplitude in a normal state, and can be easily detected by current changes [10]. Poor
connection of wires or insulation deterioration can result in a series arc fault. Conversely,
the current for a series arc fault does not increase due to the limitations of the series load,
and the current is more likely to be affected or even masked by the noise from the series
load, which makes the detection of series arc faults more challenging than it is for parallel
arc faults [11,12]. This research focused on series arc faults.

In order to solve the problem of DC arc fault detection, many scholars have proposed
different detection methods. A series of physical characteristics occurs in the process of
arc faults, such as arc light and electromagnetic radiation. Murakami et al. [13] used a
high-speed camera to observe the light emission of arcs. Yue et al. [14] detected arc fault
using intermittent discharges or sparks occurring before series DC arc faults. In [6,15], a
method based on high-frequency components of electromagnetic radiation was used to
detect DC arc faults. Using physical characteristics to detect an arc fault is not complicated.
However, the arc location in a PV system is stochastic, so it is difficult to judge the arc
location and detect arc faults accurately.

Since arc current is independent of arc fault location, it is the most common parameter
for arc fault detection. Arc current usually has the characteristics of transient and stochastic
changes, which can be detected by different time domain methods, frequency domain
methods, and time-frequency domain methods. In [16,17], circuit current data were used
to identify arc faults by the time-domain method. Park et al. [18] used the time domain
method to detect an arc fault initially, then used the frequency domain method to ensure
the accuracy of the detection. Gu et al. [19] proposed a method based on fast Fourier
transform (FFT) to detect arc faults. However, FFT does not reflect the time domain
information, so it is impossible to determine the exact time of arc occurrence [20]. Liu
et al. [21] proposed a method combining the time domain and the time-frequency domain
to analyze circuit current and PV-side voltage, which improved the anti-interference ability
of arc fault detection. Wang et al. [22] and Chen et al. [23] used wavelet transform to
analyze arc signals with multiple resolutions in the time-frequency domain. These methods
are superior to the methods of detecting the physical characteristics of DC arc faults and are
not affected by the location of the arc fault. They are simple and easy to realize, at low cost.
However, the thresholds used to judge normal states and arc fault states are set artificially
and need to be adjusted, due to different PV systems’ current and voltage complexities [24].
Therefore, more efficient arc fault detection methods are required.

In recent years, some scholars have explored artificial intelligence methods in arc fault
detection. The neural network has become the first choice because of its robust feature
learning and detail recognition ability. Li et al. [25] proposed an arc fault detection method
based on a back propagation (BP) neural network, and the accuracy was 95.23%. Yang
et al. [26] proposed a temporal domain visualization convolutional neural network (TDV-
CNN) method. The current data was filtered and converted into gray images as the input
of the CNN, and the accuracy of arc fault detection was 98.7%. Lu et al. [27] proposed
domain adaptation combined with a deep convolutional generative adversarial network
(DA-DCGAN) to detect DC arc faults. The PV loop current data were converted into a
2D matrix as the input of DA-DCGAN. Pedersen et al. [28] used a radial basis network to
detect DC arc faults. The network’s inputs were vectors that simplified the processing steps
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of the input data. Other neural networks can also be applied to arc fault detection. The
neural network methods have high accuracy and do not need to set the threshold artificially.
To further improve the accuracy of arc fault detection, the depth scaling, width scaling,
and resolution scaling of the network need to be increased. However, if the three scales
are added together, this dramatically increases the requirement for computer computing
resources. Therefore, most existing methods add one network scaling to improve accuracy.

Although the existing AI-based arc fault detection methods have achieved good
accuracy, higher than 95%, the accuracy needs to be further improved to reduce fire risk.
Moreover, existing methods have not considered the situation of high current value and the
influence of normal operations, such as PV inverter startup and irradiance mutation, on arc
fault detection; therefore, the robustness of the methods needs to be improved. Furthermore,
the number of model parameters of the existing methods is vast. The computational burden
is too enormous for industrial embedded microcontrollers to implement.

In this paper, we propose a lightweight convolutional neural network-based method
for detecting DC series arc faults in PV systems.

The main contributions of this paper are as follows:

1. Since the actual DC arc faults of PV systems are very stochastic, it is difficult to capture
a large amount of DC series arc fault data directly for algorithm research of arc fault
detection. Therefore, this paper establishes a DC arc fault experimental platform for
an arc fault detection device (AFDD) installed within the inverter in the UL 1699B
standard and analyzes DC series arc faults under different current values from 3 A to
25 A. Moreover, PV inverter startup and irradiance mutation are also considered, to
evaluate the robustness of the algorithm.

2. Due to the complex working conditions of PV systems, it is essential to find the
apparent characteristics of the current signal for arc fault detection. This paper takes
the DC series arc current signal in PV systems as the research object and analyzes its
power spectrum characteristics. The AR model of the DC current signal is established
to obtain the power spectrum images, by exploring the principles of commonly used
power spectrum estimation methods. The results show that the power spectrum
images of current data in normal states and arc fault states have apparent differences.

3. An algorithm based on a lightweight convolutional neural network is proposed to
detect DC series arc faults in PV systems. The gray images of the power spectrum of
the DC current data are fed into the network model, and the detection accuracy of
the proposed method is 98.81%, which is higher than the accuracies of GoogLeNet,
AlexNet, and existing general networks. This algorithm, with fewer model parameters,
has a low computational burden, provides better performance during the running
process, and is feasible to run in an embedded microprocessor.

2. Data Collection and Analysis
2.1. Arc Fault Experiment Platform

Since the actual DC arc faults in PV systems have stochastic characteristics, it is
challenging to directly capture a large amount of DC arc current data for the arc fault
detection algorithm. Therefore, a DC arc fault experimental platform is established to
generate DC series arc faults under different working conditions for collecting current data.

The experimental platform mainly includes a PV string, an arc fault generator, signal
acquisition devices, and a PV inverter. The UL1699B standard includes four application
examples for different AFDD installation positions. The first case, in which an AFDD
is installed within the inverter, was used in this experimental platform. A GOODWE
GW36K-MT three-phase inverter was used as the load, and the AFDD was installed within
the inverter. The UL1699B standard indicates that the PV simulator can replace the actual
PV string. Therefore, the ITECH IT6018C PV simulator replaced the PV string to make
the experiments more convenient and diversified. The voltage range was 0–1500 V, and
the current range was 0–40 A. The ITECH IT6018C PV can simulate the I-V curve under
various weather conditions, such as irradiance. In accordance with the UL1699B standard,
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two circuit forms were used: (1) the circuit of one PV string for a centralized power inverter;
(2) the circuit of two PV strings for a centralized power inverter. Figure 1 shows the circuit
of the two PV strings for a centralized power inverter.
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The different locations of arc faults have different effects on the DC side current of PV
systems. In accordance with the UL 1699B standard, an arc generator was added to the
circuit for simulating arc faults, as shown in 1©, 2©, and 3© in Figure 1. They are between the
PV strings, at the end of the PV strings, and at the start of the PV strings. The arc generator
was integrated into the system and combined with the system to generate a series arc fault.

In order to simulate the parasitic capacitance and inductance generated by the long line
(80 m) between the AFDD and the PV string in PV systems, an impedance network module
was added to the circuit to simulate the high-frequency characteristics of the PV system. The
impedance network parameters shown in Figure 1 were set in accordance with the UL 1699B
standard. When C1 was set to two parameters for testing—300 nF and 20 µF, respectively—the
arc fault was the most serious, so each situation had to be tested. The standard stipulates
that a decoupling network should be added in front of the impedance network to control the
output capacitance of the PV simulator and simulate the DC characteristics of the PV system.
The decoupling network is shown in Figure 2. According to the UL1699B standard, when
Impp = 3 A, R3 = R4 = 27 Ω, and when Impp = 16 A, R3 = R4 = 4.5 Ω. According to the IEC
63027 standard, when Impp = 25 A, R3 = R4 = 2.5 Ω.
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2.2. Different Operating Conditions and Power Spectra of Current Data
2.2.1. Different Operating Conditions in Experiments

Different operating conditions were used for data collection to verify the generalization
ability of the algorithm. In this experiment, we selected three various tests from the UL
1699B and IEC63027 standards, as shown in Table 1. In order to simulate the worst arc fault
situation, the impedance network component C1 was set to two parameters for testing,
300 nF and 20 µF, respectively. Each test, as shown in Table 1, was performed at the three
arc fault locations shown in Figure 1 to verify the reliability of the algorithm. The minimum
Iarc represents a realistic arc event with one or two strings at low irradiance, and Impp, Vmpp
represent current and voltage in the maximum power point, respectively. Voc represents
open-circuit voltage. The PV simulator can set the four parameters. A stepping motor
controller can set the gap and arcing speed. In this experiment, we added two situations,
as shown in Table 1: (1) a PV inverter startup, and (2) irradiance mutation, which causes
current mutation. These two situations, which belong to the normal state, were tested to
verify the robustness of the algorithm.

Table 1. Different operating conditions of DC series arc fault experiments.

Test No. Description Minimum Iarc/A Impp/A Vmpp/V Voc/V Gap/mm Arcing Speed/(mm/s)

1 Arcing test 2.5 3.0 312.0 480.0 0.8 2.5

2 Arcing test 14.0 16.0 318.0 490.0 1.1 5

3 Arcing test 22.5 25.0 318.0 490.0 2.5 5

4 PV inverter startup
2.5 3.0 312.0 480.0 / 1 /
14.0 16.0 318.0 490.0 / /
22.5 25.0 318.0 490.0 / /

5 Irradiance
mutation

Mutation from 1.25 to 2.5 Mutation from 1.5 to 3.0 312.0 480.0 / /
Mutation from 2.5 to 1.25 Mutation from 3.0 to 1.5 312.0 480.0 / /
Mutation from 7.0 to 14.0 Mutation from 8.0 to 16.0 318.0 490.0 / /
Mutation from 14.0 to 7.0 Mutation from 16.0 to 8.0 318.0 490.0 / /

Mutation from 11.25 to 22.5 Mutation from 12.5 to 25.0 318.0 490.0 / /
Mutation from 22.5 to 11.25 Mutation from 25.0 to 12.5 318.0 490.0 / /

1 The symbol “/” indicates that the test excludes this variable.

The DC arc current in PV systems presents the characteristics of stochastic high-
frequency burrs in the time domain. In contrast, the frequency spectrum amplitude in-
creases slightly in a specific frequency band (such as 40–100 kHz) in the frequency domain.
The high-frequency noise of a similar frequency band will be generated when the PV
inverter is in the PWM state, and its frequency spectrum amplitude is the same as or even
higher than the arc current signal. Therefore, it is difficult to distinguish between the normal
state and the arc fault state according to the amplitude difference. However, the PWM
noise generated by power electronic devices has regularity due to periodic modulation
and system inertia, so the current signals under different working conditions can be distin-
guished by analyzing the power spectrum. The power spectrum can describe the stochastic
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signal, which defines the power of the current signal as a function of frequency, and it is
susceptible to the change of the signal. It can essentially reflect the objective law of signal
change. The process of solving the power spectrum is called power spectrum estimation.
Modern power spectrum estimation methods mainly include parametric model spectrum
estimation and nonparametric model spectrum estimation. Compared with parametric
model spectrum estimation, nonparametric model spectrum estimation has better spectrum
estimation performance. However, it requires a large amount of calculation and model
complexity, which present challenges in meeting the real-time requirements of DC arc
fault detection in practical applications. Therefore, the power spectrum estimation method
of the parametric model, with less calculation, is selected. The general power spectrum
estimation methods of the parametric model include the autoregressive (AR) model and
the autoregressive moving average (ARMA) model.

2.2.2. AR Model

The time series x(n) of the p-order AR model is obtained by the superposition of the
signal value at the first p moments and the white noise, and the calculation formula is

x(n) = −
p

∑
m=1

amx(n−m) + w(n) (1)

In Formula (1), am is the coefficient of the corresponding time series data, and w is the
Gaussian white noise with mean value 0 and variance σ2.

The system transfer function expression of the p-order AR model is

H(z) =
1

1 +
p
∑

m=1
amz−m

(2)

According to Equation (2), the AR model is an all-pole model, which can directly
reflect the peak distribution in the power spectrum. The Fourier transform processes the
transfer function in Equation (2) to obtain the power spectrum calculation, as shown in
Equation (3):

S̃x(ω) =
k2

∣∣∣∣1 +
p
∑

m=1
ame−jωm

∣∣∣∣
2 (3)

2.2.3. ARMA Model

The time series calculation formula of the (p, q) order ARMA model is

x(n) =
q

∑
i=0

biw(n− i)−
p

∑
m=0

amx(n−m) (4)

According to Equation (4), the system transfer function of the ARMA model is

H(z) =

q
∑

i=0
biz−l

p
∑

m=0
amz−m

(5)

According to Equation (5), the ARMA model is a zero-pole model, which can directly
reflect the peak and valley distribution in the power spectrum. The Fourier transform
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processes the transfer function in Equation (5) to obtain the power spectrum calculation, as
shown in Equation (6):

S̃x(ω) =

k2
∣∣∣∣

q
∑

i=0
bie−jωi

∣∣∣∣
2

∣∣∣∣
p
∑

m=0
ame−jωm

∣∣∣∣
2 (6)

The AR model has a simpler structure and fewer calculations than the ARMA model.
Therefore, the AR model is selected as the power spectrum estimation model. After the AR
model of the DC current signal is established, the model parameters need to be calculated.

2.2.4. The Selection of Optimal Parameters in the AR Model

It can be seen from Equation (3) that the prediction accuracy of the power spectrum
depends on the coefficient am and the order p, so choosing a suitable model parameters
calculation method is necessary. Commonly used calculation methods for model parame-
ters include the Levinson-Durbin algorithm and Burg algorithm. In this paper, the Burg
algorithm was selected as the parameter calculation method for the current signal AR
model of the PV system for research, because it has the minimum sum of total mean square
error. The calculation process is as follows.

Assuming n sample data x(1), x(2) . . . , x(n), initialize the forward prediction error e f

and the backward prediction error eb, where n = 1, 2, 3, . . . , N.





ef
0(n) = eb

0(n) = x(n)
ef

m(n) = ef
m−1(n) + kmeb

m−1(n− 1)
eb

m(n) = eb
m−1(n− 1) + kmef

m−1(n)
(7)

In Equation (7), km is the reflection coefficient. The forward and backward prediction
error power ε is defined as:

ε =
N−1

∑
n=m

[ef
m(n)2 + eb

m(n)2] (8)

To minimize the error power ε, make ∂ε
∂km

= 0; the reflection coefficient km is calculated
by Equations (7) and (8):

km = −
2

N−1
∑

n=m

[
ef

m−1(n)
][

eb
m−1(n− 1)

]

N−1
∑

n=m

{[
ef

m−1(n)
]2
+
[
eb

m−1(n− 1)
]2}

(9)

In Equation (9), m = 1, 2, 3, . . . , p. Since the reflection coefficient km is an unbiased
estimation of the partial correlation coefficient, the autocovariance function Rxx of order
from 0 to p, which is related to the parameter, can be derived from the Yule-Walker formula:

Rxx(m) =





−
p
∑

k=1
am(l)Rxx(m− l), m > 0

−
p
∑

k=1
am(l)Rxx(m− l) + σp

2, m = 0

Rxx(−m), m < 0

(10)

In Equation (10), l = 1, 2, . . . , m− 1. The following Equation (11) can be obtained by
cycle calculation.





∆m = Rxx(m) +
m−1
∑

l=1
am−1(l)Rxx(m− i)

cm = −∆m/σm−1
am(l) = am−1(l) + cmam−1(m− l), l = 1, 2, . . . , m− 1

(11)
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In Equation (9), the reflection coefficient km can be used as the estimated value of cm.
The Levinson recurrence Formula (12) can be obtained by substituting it into Equation (11).
The AR model coefficient am is calculated according to the recurrence relationship:

{
am(m) = km
am(l) = am−1(l) + kmam−1(m− l)

(12)

In Equation (12), l = 1, 2, . . . , m− 1. After the calculation, add 1 to the value of m and
repeat the above steps until m = p.

After using the Burg algorithm to obtain the AR model coefficient am, it is necessary
to determine the optimal order p of the model. If the order is not selected correctly, the
estimation results will be inconsistent with reality. Using the Akaike information criterion
(AIC) to fit the asymptotic unbiased estimation of the difference between the AR model and
truth-value, the best order of the model can be determined when the model is unknown.
The smaller the AIC value, the better the fitting effect of the model.

The general form of the AIC criterion is:

AIC =− lnL + 2k (13)

where k is the number of parameters and L is the likelihood function. Assuming that the
number of current samples is N and SSR is the sum of squares of residuals, Equation (13)
can be converted to:

AIC =Nln(
SSR

N
) + 2k (14)

Equation (14) is applied to the order determination of the AR model. k represents the
order p, N is the number of samples, and SSR

N is the variance of the prediction error of the
AR model, which can be replaced by σ2

p ; then Equation (14) is converted to:

AIC(p) = lnσP
2 +

2p
N

(15)

In Equation (15), σ2
p can be calculated by the reflection coefficient kp in the Burg

algorithm by Equation (9), and the calculation formula is:

σp
2 = (1−

∣∣∣kp−1

∣∣∣2)σp−1
2 (16)

In order to obtain the optimal order of the AR model, the above arc fault experimental
platform was used to collect eighteen groups of DC side current data by tests no. 1, no.
2, and no. 3 with a 250 kHz sampling rate. The arc current is disordered and stochastic,
and it influences the calculation result, so the current in the normal state was selected for
calculating AIC values and analysis. The time window of each group of data was 10 ms.
Thus, each time a window had 2500 samples, which ensured the validity of the calculation,
and the samples were not very large. The order p was from 1 to 20, and the AIC values
corresponding to different orders could be obtained according to Equations (15) and (16).
The results are shown in Figure 3.

It can be seen from Figure 3 that when the order p = 12, the AIC value of the current
data was the smallest. When the order p increased, the AIC value changed indistinctly and
had a slightly increasing trend. Therefore, the optimal order of the DC current signal AR
model was p = 12.

The Burg algorithm was used to solve the 12-order AR model coefficient of the current
signal, and the expression of the transfer function is:

H(z) =
1

1 +
12
∑

m=1
amz−m

(17)
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Figure 3. AIC values of current data.

According to Equation (17), the power spectrum estimation expression of the 12-order
AR model of the current signal is calculated as:

S̃x(ω) =
k2

∣∣∣∣1 +
12
∑

i=1
aie−jωi

∣∣∣∣
2 (18)

When using the AR model to calculate the power spectrum of the PV system current
data, it is necessary to select a suitable time window scale to enlarge the difference in
the power spectrum of the current signal under different time windows. In particular,
the difference can reflect the changing characteristics in arc current, which is significantly
different from the normal state. Since the correlation coefficient can reflect the relationship
between two variables, the correlation coefficients of the power spectrum under different
time windows were calculated by three groups of current data in test no. 1 separately.
The characteristics of tests no. 2 and no. 3 were similar to those of test no. 1, and the
variance was also calculated. The larger the variance value, the more pronounced the
power spectrum difference in different time windows. It can be seen from Table 2 that
when 10 ms and 17 ms time windows were selected for power spectrum estimation, the
variance of the correlation coefficient in the arc fault state was considerable.

Table 2. The variance of correlation coefficient of arc fault states’ and normal states’ power spectrum
values under different time window scales.

Time Window Scale/ms Arc Fault State Normal State

1 0.05939 0.01268
4 0.06125 0.00185
6 0.07528 0.00265
8 0.06233 0.00195
10 0.24262 0.00140
12 0.02257 0.00085
15 0.18921 0.00110
17 0.37401 0.00151
20 0.21711 0.00806

In contrast, the variance of the normal state correlation coefficient was much smaller
than that of the arc fault state. However, the 17 ms time window was too long to process
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data quickly. Therefore, 10 ms was selected as the time window scale for calculating the
DC current power spectrum.

After the time window scale was determined, the power spectrum of current signals
was drawn for comparative analysis. Six groups of current data were selected by tests no.
1, no. 2, and no. 3, the 12-order AR model was established, and the power spectrum was
calculated. One of the results of test no. 1 is shown in Figure 4.
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In Figure 4, the orange line represents the power spectrum of the current in the arc fault
state. With the increase of frequency, the power spectrum values decreased gradually. The
values of the low-frequency part were significantly higher than those of the high-frequency
part. The blue line represents the power spectrum of the current in the normal state. The
power spectrum values were basically unchanged with the frequency increase, except for
0–10 kHz. In addition, the power spectrum values of arc fault were higher than those of
the normal state. The spike at 32 kHz was due to the noise interference of the PV inverter.
Therefore, the power spectrum was significantly different between the arc fault state and
the normal state, and could be used as the neural network input to detect arc fault.

2.3. Data Processing and Creating the Dataset

The power spectrum of the DC current under the normal state and the arc fault state
were different, so it could be used as the input of the neural network model for training.
We used the experimental platform to collect the current data of the tests shown in Table 1.
Tests no. 1 to no. 3 contained eighteen groups of data that included the normal state and
the arc fault state. Test no. 4 contained three groups of data, and test no. 5 contained six
groups of data. Both test no. 4 and test no. 5 belonged to the normal state.

The original data were split to extract arc fault data and normal data. Since neural
network learning requires a large amount of data, the current data collected by the ex-
perimental platform were processed into a dataset, as input for the neural network. The
dataset’s format and size were unified to facilitate network training. In order to unify
the size of the dataset, the classified data for the arc fault state and the normal state were
processed into the same time scale, and the 10 ms sampling window was taken as the unit
time window.

Since the dataset sampling rate was 250 kHz, the number of sampling points in the unit
time window was 2500. The 12-order AR model was used to obtain the power spectrum
data. According to the different range of power spectrum values under different working
conditions, the values were normalized to map the data value between [0, 1]. The deviation
standardization was used as the normalization method, and the equation was as follows:

x∗ =
x−min

max−min
(19)
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In Equation (19), max and min are the maximum and minimum values of power
spectrum data and x* is the normalized value. Each group’s normalized power spectrum
data has the same order of magnitude.

The normalized data were transferred into the two-dimensional image format. In
order to improve the training efficiency of the model, the images were processed into the
gray images shown in Figure 5. The resolution of the images was converted into 240 × 240
to meet the EfficientNet-B1 input requirement. The total number of images was 10,000 in
the dataset, including 6000 images in the training set, 2000 in the validation set, and 2000 in
the test set. After the data were processed into images, each group of data was labeled and
divided into two types: arc fault and normal.
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3. Methodology

Convolutional neural network (CNN) has emerged as a fundamental feature exaction
program for applications in image tasks. However, the existence of multiple complex
behaviors of arc current in PV systems makes some convolutional frameworks suboptimal
for the arc fault detection task. Due to the complexity of the DC series arc fault current in
PV systems, it is difficult to find a suitable set of CNN parameters, including depth, width,
and resolution size, for effectively distinguishing between the arc fault state and the normal
state using the current. Inspired by EfficientNet and the attention mechanism, this paper
proposes a model based on a lightweight convolutional neural network with a channel and
spatial attention mechanism for arc fault detection, and names it ArcDetectionNet (ADNet).

3.1. Lightweight Convolutional Backbone Network Structure

A lightweight convolutional backbone network structure, referring to the idea of Effi-
cientNet, is shown in Figure 6. H, C, and W represent three dimensions of the convolutional
neural network. First, we performed a 1 × 1 point-by-point convolution on the input data
and changed the output channel dimension according to the expansion ratio. The global
features were obtained in the channel dimension of the feature map, and then k × k depth
convolution was carried out. Second, we performed an excitation operation on the output
result. The 1 × 1 convolution result was multiplied by the activation ratio R, and the
original channel dimension was restored at the end of the 1 × 1 point-by-point convolution.
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Finally, the connection deactivation and the input jump connection were carried out. This
structure is called mobile inverted bottleneck convolution (MBConv). Each convolution
operation in this module is normalized and uses the swish activation function. The swish
activation function equation is as follows:

f (x) = x× sigmoid(βx) (20)
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Figure 6. Lightweight convolutional backbone network structure.

In Equation (20), β is a constant or trainable parameter, which defaults to 1.
The effect of the swish function is better than that of the ReLU function on the deep

network model. It has a lower bound without an upper bound, and it is smooth and
non-monotonic. This method can make the model have stochastic depth, reduce the time
required for model training, and improve model performance.

3.2. Arc Detection Attention Mechanism Module

The neural network uses the attention mechanism to generate different connection
weights between layers and obtain the output of this layer, so it can focus on specific
input characteristics, reduce the number of network operations, and improve network
performance. This paper proposes an arc detection attention mechanism (ADAM) module.
ADAM was calculated based on the channel and space dimensions for the feature map
generated by the convolutional neural network. The calculation results were multiplied
by the input data to carry out adaptive learning of features. Moreover, the module was
designed for a convolutional neural network, which could be combined with various
convolutional neural networks for end-to-end training. For example, we set the channel at-
tention mechanism and then set the spatial attention mechanism after the channel attention
mechanism. The structure of the ADAM module is shown in Figure 7.

As shown in Figure 7, the ADAM module extracts data features from two dimensions:
channel and space. The channel attention mechanism performs pooling and convolution
operations for the input data. The output data of the above processes are each channel’s
weight coefficient, and the weight coefficient is multiplied by the input data to weight and
fuse the channels. The output features weighted by the channel attention mechanism are
used as the input of the spatial attention mechanism module to weight the crucial regions
in the spatial dimension.

The channel attention mechanism module and the spatial attention mechanism module
are connected in serial. By changing the combination and position of the two modules, the
optimal combination was selected to construct the ADNet model.

The ADAM module could be added at the front of the network, after the 3 × 3
convolution layer, or at the end of the network, after 16 MBConv modules. The optimal
method was finally determined through the following experiments.

In addition to adding the ADAM module, it was also necessary to configure the other
functions of the ADNet. The adaptive moment estimation algorithm was selected as the
weight updating optimization algorithm, and the cross-entropy loss function was chosen
as the loss function. The swish function was selected as an activation function.
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4. Experimental Results and Analysis

This section analyzes the experimental results to select the optimal structure of the
proposed ADNet algorithm. The dataset included current data under the arc fault state
and the normal state in tests no. 1 to no. 5, and the samples in the test set excluded those in
the training and validation sets.

4.1. The Optimal Model Selection Based on EfficientNet

Since the ADNet network is based on the EfficientNet, and the EfficientNet model
has eight models, the best model was selected at first. Among them, EfficientNet-B1~B7
are improved from the baseline model EfficientNet-B0. In order to get the most suitable
network model, PyCharm software (JetBrains, Prague, Czech Republic) was used to build
the program, and the environment was Python 3.7 (Guido van Rossum, Harlem, The
Netherlands) and TensorFlow 2.4.0 (Google Brain, Mountain View, CA, USA). Due to the
size of the dataset, a smaller network structure in the EfficientNet series networks was
selected to reduce the number of parameters and unnecessary calculations for improving
the training speed. The resolution of the input images becomes larger from EfficientNet-
B0 to EfficientNet-B7, and the height and width of the output characteristic matrix of
each layer structure will increase accordingly; the occupation of video memory will also
increase. Therefore, the EfficientNet-B0–B3 of the EfficientNet series models were selected
for training by the dataset. The model basic parameters and training results are shown in
Table 3.

Table 3. EfficientNet-B0–B3 basic parameters and detection accuracy.

Network Model Width Depth Resolution Ratio Training Set Accuracy Test Set Accuracy

B0 1.0 1.0 224 × 224 97.06% 95.32%
B1 1.0 1.1 240 × 240 99.32% 96.16%
B2 1.1 1.2 260 × 260 98.60% 95.65%
B3 1.2 1.4 300 × 300 97.29% 95.46%
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It can be seen from Table 3 that the detection accuracy of the EfficientNet-B0~B3
networks can reach more than 95%. The EfficientNet-B1 has the highest detection accuracy,
indicating that it is suitable for the DC series arc fault detection in PV systems. At the same
time, it avoids the problem of reducing the calculation speed caused by the increasing
network complexity, which is the advantage of the EfficientNet series model.

In order to further improve the generalization ability and accelerate the convergence
speed of the ADNet, considering that not every part of the power spectrum image is
equally important, the channel attention mechanism was used, and different convolution
kernels were used to capture various features for channel weighted fusion. In addition,
the judgment of whether the circuit has an arc fault mainly depends on some critical
areas of the power spectrum image, and the characteristics of each part of the image
cannot be treated equally. Therefore, the spatial attention mechanism was used to weight
some important regions in space, to strengthen important information and suppress non-
important information.

We continued with experimental verification to find the optimal ADNet model. The
experimental results of different ADAM types used in the ADNet are shown in Table 4.
In Table 4, C represents the channel attention mechanism, and S represents the spatial
attention mechanism. Q represents putting the attention mechanism in the front of the
network, which follows the 3 × 3 convolution layer, and H represents adding the attention
mechanism to the end of the network, which follows the 16 MBConv modules.

Table 4. The ADNet detection accuracy in different ADAM types.

ADAM Type Training Set Accuracy/% Test Set Accuracy/%

CS–Q 99.92 98.36
CS–H 99.96 98.81
SC–Q 99.93 97.18
SC–H 99.95 98.38
S–Q 99.70 96.58
S–H 99.83 96.79
C–Q 99.82 97.37
C–H 99.90 97.32

According to Table 4, the ADNet model, compared with the original EfficientNet-B1
neural network model, improves the feature extraction ability of data samples and the
accuracy of arc fault detection. Among the samples, the training set accuracy and test set
accuracy of the improved CS-H model were the highest: the accuracy of arc fault detection
of the training set was 99.96%, and that of the test set was 98.81%. Therefore, adding the
channel attention mechanism first and then the spatial attention mechanism at the end of
the network model can improve the model’s detection accuracy. The ADAM module was
more effective when applied to the deep layer of the network than when applied to the
shallow layer of the network, because the characteristics of the deep layer of the network
are more robust after multiple feature extractions. Thus, the ADNet model could capture
some crucial features of power spectrum images with better robustness and performance
after ADAM operation.

According to the above analysis, the EfficientNet-B1 and CS-H of the ADAM type
were selected; the optimal structure of the ADNet model is shown in Figure 8.
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4.2. The Selection of ADNet Training Parameters

The learning rate directly affects the convergence state of the network model, which
determines the step length of the weight iteration. The model will not converge when the
learning rate is set too large. When the learning rate is set too small, the convergence speed
of the model will become slower, and it will be unable to learn. The best initial learning
rate usually uses the search method, which starts training the model from small to large.
After many experiments, 0.001 was chosen as the learning rate of the network to accelerate
the convergence speed and save the training time.

Batch size refers to the stochastic sample size used in the gradient descent algorithm,
which affects the generalization performance of the convolutional neural network model.
In a specific range, increasing the batch size will help the stability of convergence, improve
the memory utilization rate, and speed up the processing speed of data volume. This paper
set the batch size to 8 in many experiments with the ADNet model.

Since the ADNet model has a complex structure, dropout was used, and the dropout
rate was set to 0.2 in many experiments for avoiding over-fitting, and the number of
iterations was 120 times.

4.3. Influence of Different Current Values on Detection Results

In order to study the influence of different current values on the arc fault detection
accuracy of the ADNet, we used 3 A, 16 A, and 25 A current data from the dataset to carry
on experiments. Moreover, the PV inverter startup and irradiance mutation situations were
considered the normal state to improve the robustness of the network. The results are
shown in Table 5.

Table 5. The ADNet model’s detection accuracy of different current values.

Current Value Training Set Accuracy Test Set Accuracy

3 A 100% 99.97%
16 A 99.86% 98.96%
25 A 99.68% 97.87%

overall 99.96% 98.81%

According to Table 5, with the increase of the current value, the accuracy of the
training set and test set decreased gradually. By comparing Figures 4 and 9, it can be
seen that with the increase of current values, the power spectrum values of current data
also increased. Since the difference in power spectrum values between the high-frequency
part and the low-frequency part decreased in the arc fault state, the power spectrum
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characteristics of arc fault and normal states were similar, which had a certain impact on
arc fault detection. However, according to Figure 9, whether the original power spectrum
or the normalized power spectrum was considered, the power spectrum values in the arc
fault state were basically higher than those in the normal state, and arc fault could still
be detected accurately by the ADNet model, as shown in Table 5. The ADNet model’s
detection accuracy was 98.81%, including three current levels, indicating that this method
can detect arc fault accurately.
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4.4. Detection Accuracy of Different Existing Neural Networks

The existing research rarely used the power spectrum images as the input data for
neural networks. Therefore, in order to verify whether the arc fault detection accuracy
of the ADNet model is higher than that of the existing neural network models, we built
GoogLeNet and AlexNet models to train and test with the same dataset as the ADNet
model’s and compared the accuracy of several existing arc fault detection networks. The
results are shown in Table 6.
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Table 6. The detection accuracy of different neural network models.

Model Training Set Accuracy/% Test Set Accuracy/%

GoogLeNet 96.37 96.23
AlexNet 96.91 96.83

BP neural network [25] \ 95.23
DA-DCGAN [27] 98.80 97.68

ADNet (ours) 99.96 98.81

According to Table 6, the detection accuracy of GoogLeNet, AlexNet, BP neural
network, and DA-DCGAN is 96.23%, 96.83%, 95.23%, and 97.68%, respectively, and that
of the ADNet model is 98.81%. Therefore, the arc fault detection accuracy of the ADNet
model is higher than the other existing arc fault detection networks. The results indicate
that the ADNet model has a better performance in arc fault detection.

4.5. Feasibility Analysis of Application in the Embedded Modules

The ADNet model can be used for edge applications based on embedded processors
or modules of the arc fault detection equipment, such as Raspberry Pi, because: (1) The
AR model-based data preprocessing method is employed to capture the arc features and
remove un-sensitive parts of the power spectrum, which can help to reduce the amount of
input data; (2) The ADNet model is based on EfficientNet-B1, a commonly-used lightweight
convolutional neural network. Moreover, we used the attention mechanism to combine
with the EfficientNet-B1, making the algorithm more concentrated on the arc features
while ignoring the rest information. Specifically, spatial attention was used to locate the
more sensitive part of the input signal, while channel attention was used to determine
the more valuable channels or layers in the model [29]. Therefore, the proposed method
can be further light-weighted with considerable detection accuracy; (3) Due to the above
lightweight design and operation, the total parameters of the proposed ADNet model are
only 6.58 × 106, which are less than those of other commonly used methods. Meanwhile,
the detection accuracy was higher than that of others. Table 7 shows a detailed comparison.

Table 7. The comprehensive comparison of different neural networks.

Model Total Parameters Detection Accuracy Computational Burden

GoogLeNet 10.31 M 96.23% Medium
AlexNet 14.59 M 96.83% Medium

Inception V3 [30] 23.63 M 94.10% Large
Xception [30] 22.86 M 94.50% Large

ResNet50 [31,32] 23.48 M 97.33% Large
ADNet (ours) 6.58 M 94.10% Small

The more model parameters, the greater the amount of calculation and the slower
the running speed [33]. We compared the number of network model parameters with the
built GoogLeNet, AlexNet, and several commonly used networks. As shown in Table 7,
the total of the parameters was the sum of the model parameters. The total number of
model parameters in GoogLeNet, AlexNet, Inception V3, Xception, and ResNet50, which
are commonly used convolutional neural networks, are 10.31 M, 14.59 M, 23.63 M, 22.86 M,
and 23.48 M, respectively. The quantity is too large, resulting in too much computation and
slowing down the running speed. However, the total number of parameters in the ADNet
model, which belongs to the lightweight convolutional neural network, is 6.58 M, which is
lower than that of the above networks. The results show that the proposed method achieves
the best detection accuracy, with minimum computational burden, due to the well-designed
lightweight algorithm. Therefore, the ADNet model is ready for edge applications and can
be implemented with embedded processors or modules, such as the Raspberry Pi 3B with
a quad-core 1.2 GHz CPU and 1 GB RAM. This calls for further research in the future.
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5. Conclusions

In this paper, we established an experimental platform, based on the UL1699B standard
to collect DC current data in creating a dataset, which can obtain current data efficiently.
The power spectrum image of current data can clearly distinguish the current in the normal
state and the arc fault state. Therefore, it can be used as the input for the arc fault detection
algorithm. In order to avoid the problem of excessive consumption of computing resources
due to increasing algorithm complexity, this paper proposed a detection method of DC
series arc faults in PV systems based on a lightweight convolutional neural network, which
has fewer parameters and a low computational burden. The power spectrum images were
normalized and converted into 240 × 240 gray images as the dataset. Compared with the
EfficientNet series model, the EfficientNet-B1 was selected as the optimal network. The
channel attention mechanism and the spatial attention mechanism were added to the deep
layer of the EfficientNet-B1 to construct the ADNet model for improving the network’s
detection accuracy and making it more effective. This method considered the situations of
PV inverter startup and irradiance mutation, enhancing the robustness of the network. The
results showed that the accuracy of the training set was 99.96%, and that of the test set was
98.81%, which are higher than the accuracies of GoogLeNet, AlexNet, and other commonly
used networks. According to the above analysis, this method can be used in PV systems to
detect DC series arc faults accurately and to reduce arc fire hazards. Therefore, the safety of
PV systems will be improved, and solar energy may be used sufficiently and stably.
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Abstract: In the context of new power systems, reasonable capacity optimization of multiple power
systems can not only reduce carbon emissions, but also improve system safety and stability. This
paper proposes a situation awareness-based capacity optimization strategy for wind-photovoltaic-
thermal power systems and establishes a bi-level model for system capacity optimization. The
upper-level model considers environmental protection and economy, and carries out multi-objective
optimization of the system capacity planning solution with the objectives of minimizing carbon
emissions and total system cost over the whole life cycle of the system, further obtaining a set of
capacity planning solutions based on the Pareto frontier. A Pareto optimal solution set decision
method based on grey relativity analysis is proposed to quantitatively assess the comprehensive
economic–environmental properties of the system. The capacity planning solutions obtained from the
upper model are used as the input to the lower model. The lower model integrates system stability,
environmental protection, and economy and further optimizes the set of capacity planning solutions
obtained from the upper model with the objective of maximizing the inertia security region and the
best comprehensive economic–environmental properties to obtain the optimal capacity planning
scheme. The NSGA-II modified algorithm (improved NSGA-II algorithm based on dominant strength,
INSGA2-DS) is used to solve the upper model, and the Cplex solver is called on to solve the lower
model. Finally, the modified IEEE-39 node algorithm is used to verify that the optimized capacity
planning scheme can effectively improve the system security and stability and reduce the carbon
emissions and total system cost throughout the system life cycle.

Keywords: situation awareness; capacity configuration; wind-photovoltaic-thermal power system;
carbon emission; multi-objective optimization; inertia security region

1. Introduction

In the context of the new power system, with the increased development of new
energy generation, the proportion of wind power and photovoltaic integrated into the
grid has been increasing year by year. The wind-photovoltaic-thermal power system can
effectively bring into play the complementary characteristics and synergistic effects of
different forms of energy, improve the level of new energy consumption within a certain
range, and achieve the purpose of making full use of energy resources. Reasonable system
capacity planning is the basis for the safe and stable operation of the system.

A great deal of research has been done by domestic and international scholars on
the planning of power systems containing renewable energy. The paper [1] assesses
the impact of regional and international renewable energy policy coordination on the
economics, environmental performance, and planning outcomes of the North American

Energies 2022, 15, 3298. https://doi.org/10.3390/en15093298 https://www.mdpi.com/journal/energies179



Energies 2022, 15, 3298

power sector in the context of renewable energy policy coordination and identifies the
need to integrate cost, emissions, trade, and infrastructure investment in future capacity
planning decisions for renewable energy-containing power systems through a multi-model
comparison analysis using multiple energy-economic models. The literature [2] proposes
a modeling approach adapted to the planning of power systems containing renewable
energy sources while dividing the modeling approach into four categories and concluding
that the choice of model should depend on the purpose of the study as well as the system
characteristics. It provides a reference value for the research on the planning of power
systems containing renewable energy.

Most of the existing studies on multiple power supply planning have been considered
in terms of economics and environmental protection. The literature [3] investigates the
capacity configuration of scenic power generation systems by using data, such as network
node voltage and scenic power output, through a nuclear limit learning machine method to
find the solution that minimizes the total investment cost and network losses. The paper [4]
takes into account the environmental factors and takes the CO2 emission of the whole life
cycle of the wind and solar power system as the optimization target to optimize the capacity
allocation of the wind and solar power system. The literature [5] considers the construction
and maintenance costs, energy wastage, and outage losses of wind-complementary micro-
grids, and obtains an optimal allocation model that matches the meteorological conditions
to optimize the capacity allocation of wind-complementary islanded microgrids. The litera-
ture [6] uses the lowest operating cost and the lowest system grid power supply rate as
the optimization objectives for rational planning of the configuration of integrated energy
systems, including wind power and photovoltaic power generation. A multi-objective
optimization model with the objectives of minimizing total investment, node voltage ex-
ceedance probability, and undersupply probability was developed in [7]. An improved
parallel elite non-dominated ranking genetic algorithm II is used to search for the Pareto
optimal configuration solution for the optimal configuration of the wind and solar com-
plementary system. The literature [8] investigates the optimization of wind capacity in
power systems, considering system operation, economy, and reliability. The assessment
of the economic aspects is obtained based on the social cost of the whole system, and the
probabilistic method is used to assess the reliability of the system load loss probability. The
planning problem of wind power capacity is solved through an opportunity-constrained
planning approach. The literature [9,10] investigates the assessment of power system
flexibility for the problem of planning systems with a high penetration of renewable energy
sources, such as photovoltaic power. The concept of flexibility is reviewed and indicators
for assessing the flexibility of power systems are summarised.

The above literature provides a reference for the study of multiple power supply
planning in the context of new power systems but lacks consideration of system stability.

With the massive penetration of new energy sources, the inertia support of the system
under active disturbance is severely weakened and the problem of inertia reduction cannot
be ignored. Domestic and international new energy high percentage power grids have
repeatedly experienced inertia shortages in operation, with significant frequency stability
problems, thus exposing the system to the risk of large area cut-offs and load shedding.

At this stage, most of the research on system inertia presents an inertia assessment
problem. The literature [11] describes the concept, characteristics, and assessment methods
of the inertia security region. Literature [12] introduces the concept of minimum inertia
demand for microgrids, establishes a minimum inertia demand assessment model, and
proposes an optimal solution method. [13] proposes a method for estimating system inertia
based on electromechanical oscillation parameters driven by stochastic data. Few studies
have considered the impact on the optimal allocation of wind-photovoltaic-thermal power
system capacity by taking the system inertia security region as an objective function.

Situation awareness is a technique for acquiring, understanding, and predicting the ac-
tivities of elements that can cause changes in the system’s situation [14]. Currently, situation
awareness techniques are gradually being applied in the field of power systems [15].
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Capacity planning involves finding the best capacity planning solution for building
generation capacity subject to various economic and technical constraints. In the face of
today’s stricter environmental policies and increasing uncertainty in the power system,
capacity planning studies need to be constantly innovated to meet new challenges [16]. The
application of situation awareness methods to the study of multiple power sources in the
context of new power systems is of great significance for the comprehensive awareness of
system characteristics, in-depth understanding of system performance, effective prediction
of system status, and significant improvement of grid operation efficiency.

This paper proposes a strategy for the capacity optimization of wind-photovoltaic-
thermal power systems based on situation awareness, taking into account system economy,
environmental protection, and stability. Situation awareness stage: data collection based on
elements, such as equipment, meteorological environment, and users. Situation understand-
ing stage: establishment of a bi-level model for system capacity optimization configuration.
With the upper model taking the minimization of carbon emissions and the minimization of
total system cost over the whole life cycle of the system as the optimization objective for the
initial optimization of the system capacity configuration scheme, the Pareto frontier-based
system capacity allocation scheme is obtained, and a grey relativity analysis-based Pareto
optimal solution set evaluation method is proposed to quantitatively assess the integrated
economic-environmental characteristics of the system. Using the upper model capacity
configuration scheme as the input to the lower model, the lower model takes into account
the stability, environmental protection, and economy of the system, and further optimizes
the capacity planning scheme obtained from the upper model with the objective of maxi-
mizing inertia security region and the best the comprehensive economic–environmental
properties to obtain the optimal capacity planning scheme. The upper model is solved
using the INSGA2-DS algorithm and the lower model is solved using the Cplex solver. The
data obtained in the situation awareness phase are used as the basis for understanding
and evaluating the system state characteristics according to the bi-level model for optimal
system capacity configuration. The situation prediction phase: the results of the capacity
planning scheme are evaluated and analyzed to provide an effective basis for the relevant
professionals to make decisions on the scheme. Finally, the effectiveness of the proposed
strategies and algorithms is verified through a case study.

2. Wind-Photovoltaic-Thermal Power System Model for New Power System
2.1. Characteristics of Wind-Photovoltaic-Thermal Power Systems

With the proposal to build a new power system with wind power and photovoltaic
as the main new energy sources, the proportion of new energy sources has increased
significantly, gradually becoming the main power source. Thermal power is gradually
transforming into a regulating, guaranteeing, and contingency power source. Wind, photo-
voltaic, and thermal power in the system can achieve complementarity on various time
scales and guarantee total load demand.

From the perspective of system environmental protection, the whole life cycle of a
power system generally includes four segments: manufacturing and installation, produc-
tion and operation, operation and maintenance, and recycling and disposal. Wind power
and photovoltaic power generation do not generate carbon emissions in the production
and operation stages, and their carbon emissions are mainly concentrated in the remaining
three stages. Thermal power generation generates carbon emissions in all four stages [17].
Thermal power generation, wind power generation, and photovoltaic power generation
all produce carbon emissions during the whole life cycle of the system, but the carbon
emission rate of thermal power generation is significantly greater than that of wind power
generation and photovoltaic power generation. From the perspective of system stability,
thermal power units can provide the rotational inertia required when the system is dis-
turbed, which can effectively suppress the frequency fluctuations caused by faults in the
system and is conducive to the frequency stability of the system. As wind turbines and
photovoltaic battery units have power electronic characteristics, their transmission power
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is decoupled from the grid frequency and cannot provide inertia support to the system
directly. Therefore, wind power and photovoltaic weaken the system after they replace
thermal power units on a large scale to generate electricity. The level of inertia support
is weakened by the large-scale replacement of thermal power units by wind power and
photovoltaic, which affects system stability. From the perspective of system economics, the
total cost of a thermal power plant consists of equipment investment costs, operating costs,
replacement costs, and maintenance costs. Excluding the operating costs of wind power and
photovoltaic power generation, the total cost of wind farms and photovoltaic power plants
consists of equipment investment costs, replacement costs, and maintenance costs [18,19].
Figure 1 shows the total system cost and system carbon emission characteristics.

Figure 1. Wind-photovoltaic-thermal power system characteristics.

2.2. Relationship between Carbon Emission and Stability of Wind-Photovoltaic-Thermal
Power System

For wind–photovoltaic–thermal power systems, good stability is the basis for the safe
and stable operation of the power system, and reducing system carbon emissions is a real-
istic need to achieve the “double carbon” goal. However, in the case of wind–photovoltaic–
thermal power systems, there is a contradiction between the goals of improving system
stability and reducing carbon emissions.

Figure 2 shows that the thermal share of the system is positively correlated with carbon
emissions; it is positively correlated with rotational inertia. When the share of thermal
power increases, the carbon emission of the system accelerates and the rotational inertia of
the system increases, which is conducive to improving stability. When the share of thermal
power decreases, the carbon emission of the system decreases, the rotational inertia of the
system decreases, and the stability of the system decreases.

Figure 2. Trends in carbon emissions, rotational inertia, and proportion of thermal power.
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2.3. Output Characteristics of Wind-Photovoltaic-Thermal Power Systems in the Context of New
Power System
2.3.1. Wind Turbines Model

The WT output characteristics are related to the ambient wind speed and the power
output characteristics of the unit.

Pwind =





0 v < vin
v3−vin

3

vout3−vin
3 Pwind,N vin < v < vN

Pwind,N vN < v < vout
0 v > vout

(1)

where Pwind is the output power of the WT; vin is the WT cut-in wind speed; vN is the WT
rated wind speed; vout is the WT cut-out wind speed; Pwind,N is the WT rated power.

2.3.2. Photovoltaic Model

The output of photovoltaic cells is related to the ambient temperature and the amount
of solar radiation.

Ppv =
PS
GS

GR[1− γ(TR − Tτ)] (2)

where Ppv is the output power of the PV cell; PS is the output power of the PV cell
under standard conditions; GS is the light intensity under standard conditions; GR is
the light intensity under actual conditions; γ is the power temperature coefficient, taken as
−0.5%/◦C; TR is the temperature of the PV cell under actual conditions; Tτ is the reference
temperature value, taken as 25 ◦C.

2.4. Situation Awareness Model for Capacity Planning of Wind-Photovoltaic-Thermal Power
System

Applying the situation awareness approach to the planning of multiple power sources
in the context of new power systems [13], the situation awareness-based capacity planning
model is divided into four stages: situation awareness, situation understanding, situation
prediction, and assisted decision-making [20]. Using situation awareness → situation
understanding→ situation prediction→ assisted decision making→ situation awareness
to form a closed loop to fully grasp the system state and improve the accuracy of capacity
allocation. The wind-photovoltaic-thermal power system capacity planning situation
awareness model is shown in Figure 3.

Figure 3. Situation awareness model for capacity planning of wind-photovoltaic-thermal power systems.

(1) Situation awareness: This is the stage of obtaining relevant data. This stage is mainly
used to obtain equipment parameters, meteorological data, and user data in system
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power capacity planning through system measurement techniques, meteorological
information prediction techniques, and load-side data prediction techniques.

(2) Situation understanding: This is the stage of data analysis, which aims at understand-
ing and mining the data obtained during the situation awareness stage, taking into
account system stability, economy, environmental protection, etc., and analyzing the
system operating dynamics of different capacity planning scenarios.

(3) Posture prediction: This is the state prediction phase. For the capacity planning
of multiple power systems, posture prediction is a comprehensive evaluation and
analysis of different capacity planning options.

(4) Assisted decision-making: Output the optimal solution, providing an effective basis
for decision-making by relevant professionals.

3. Bi-Level Model for Optimal Capacity Allocation of Wind-Photovoltaic-Thermal
Power Systems
3.1. Upper Level Model for Multi-Objective Optimal Configuration Considering the Environmental
Friendliness and Economy of the System

The upper-level model is based on the objective of minimizing carbon emissions and
total system cost over the whole life cycle of the system. The system capacity planning
scheme is optimized based on the system power balance constraint, installed capacity
constraint, generation unit output constraint, and thermal unit climbing constraint, and the
decision variables are wind, PV, and thermal power output at each time.

3.1.1. Objective Functions

In this paper, the annual equivalent carbon emissions of wind power, photovoltaic
power generation, and thermal power generation are calculated separately for the whole
life cycle. The carbon emissions from wind, photovoltaic and thermal power plants are ap-
portioned to the power generation process according to the carbon accounting model. The
optimization objective is to minimize the annual carbon emissions of the wind-photovoltaic-
thermal power system [21].

min F1 = min





8760
∑

t = 1
i ∈ Nwind

Pwind,i(t)RwindNwindKwind,i +
8760
∑

t = 1
j ∈ Npv

Ppv,j(t)RpvNpvKpv,j

+
8760
∑

t = 1
k ∈ NSG

PSG,k(t)RSG NSGKSG,k





(3)

where Rwind, Rpv, and RSG are the carbon emission factors of wind, photovoltaic and
thermal power respectively for the whole life cycle of the system; Pwind,i(t), Ppv,j(t), PSG,k(t)
represent the output power of the first wind turbine; Nwind, Npv, and NSG are the number
of wind turbines, photovoltaic cells, and synchronous machines respectively; Kwind,i, Kpv,j,
and KSG,k are the switching states of wind turbines, photovoltaic cells, and synchronous
units respectively.

Carbon emission factors can be calculated based on the Carbon Accounting Model [22,23].
Considering the economy, the total cost of the wind-photovoltaic-thermal power

system consists of four parts: investment cost, operation cost, replacement cost, and
maintenance cost. In this paper, only the operating costs of thermal power units are
considered, and the operating costs of wind power and photovoltaic are approximated to
be zero. The optimization objective is to minimize the total cost of the system.

min F2 = min
{

Pwind + Ppv + PSG
}

(4)
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Pwind =
Nwind

∑
i=1

(Cwind,i +
Cwind,r,i

(1 + r1)
Twind,i

+
Tt

∑
t=1

Cwind,m,i

(1 + r1)
t ) (5)

Ppv =
Npv

∑
i=1

(Cpv,i +
Cpv,r,1

(1 + r2)
Tpv

+
Tt

∑
t=1

Cpv,m,i

(1 + r2)
t ) (6)

PSG =
NSG

∑
i=1

(CSG,i +
CSG,r,i

(1 + r3)
TSG

+
Tt

∑
t=1

CSG,m,i

(1 + r3)
t + TSG

8760

∑
t=1

[
aiPSG,i(t)

2 + biPSG,i(t) + ci

]
) (7)

where Pwind, Ppv, and PSG are the total costs of wind, photovoltaic, and thermal power
plants, respectively; PSG,i(t) is the output of thermal power unit i at time t; Cwind,i, Cpv,i, and
CSG,i are the installed prices of a single wind turbine, a single photovoltaic cell unit, and a
single synchronous machine, respectively; Nwind, Npv, and NSG are the number of wind
turbines, photovoltaic cells, and synchronous machines, respectively; Cwind,r,i, Cwind,m,i are
the replacement and maintenance costs of wind turbines, respectively; Cpv,r,i, Cpv,m,i are
the replacement and maintenance costs of photovoltaic cells, respectively; CSG,r,i, CSG,m,i
are the replacement and maintenance costs of thermal power units, respectively. The cost
of replacement and maintenance of thermal units. The life cycle of the wind turbine, PV
cell, and thermal unit, respectively; the project life and discount rate, respectively. The
consumption characteristics of the thermal units are shown in ai, bi and ci respectively.

3.1.2. Conditions of Constraint

(1) Power balance constraints

Without considering the system network loss, the power generated by the system is
equal to the power consumed by the load.

PLO(t) =
Nwind

∑
i=1

Pwind,i(t)Kwind,i +
Npv

∑
j=1

Ppv,j(t)Kpv,j +
NSG

∑
k=1

PSG,k(t)KSG,k (8)

where PLO(t) represents the power consumed by the load; Pwind,i(t), Ppv,j(t), and PSG,k(t)
represents the output power of the i-th wind turbine, the j-th photovoltaic cell, and the k-th
synchronous machine, respectively; Nwind, Npv, and NSG is the number of wind turbines,
photovoltaic cells, and synchronous machines, respectively; Kwind,i, Kpv,j, and KSG,k is the
switching state of the wind turbine, photovoltaic cell, and synchronous unit, respectively.

(2) Installed capacity constraint

Wind-photovoltaic-thermal power systems should have a certain amount of spare ca-
pacity, taking into account the possibility of failure of turbines, photovoltaics, synchronous
machines, or unknown sudden increases in load in the system.

Nwind

∑
i=1

Pwind,i +
Npv

∑
j=1

Ppv,j +
NSG

∑
k=1

PSG,k ≥ λPLO,max (9)

where Pwind,i, Ppv,j, and PSG,k represent the rated power of the i-th wind turbine, the j-th PV
cell, and the k-th synchronous machine respectively; PLO,max is the maximum load power;
λ is the load power factor.

(3) Generator output constraints

The output of wind, photovoltaic and thermal power units should fluctuate within a
certain range.

0 ≤ Pwind,i(t) ≤ Pwind,i,m (10)

0 ≤ Ppv,j(t) ≤ Ppv,j,m (11)

0 ≤ PSG,k(t) ≤ PSG,k,m (12)
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where Pwind,i(t), Ppv,j(t), and PSG,k(t) represent the output power of the i-th wind turbine,
the j-the photovoltaic cell, and the k-th synchronous machine respectively; Pwind,i,m, Ppv,j,m,
and PSG,k,m represent the maximum output power of the wind turbine, the photovoltaic
cell, and the synchronous machine respectively.

(4) Climbing constraints for thermal power units

Thermal power units are required to meet a creep constraint, where the rate of change
in power cannot exceed the creep rate during normal operation and can break the creep
rate limit during start-up and shut-down.

−VLPSG,i,m ≤ PSG,i(t)− PSG,i(t− 1) ≤ VhPSG,i,m (13)

where Vh, VL are the maximum upward and downward climbing rates, respectively; PSG,i,m
is the maximum output of thermal power unit i.

3.1.3. A Pareto Optimal Solution Set Decision Method Based on Grey Relativity Analysis

Grey relativity analysis (GRA) is a method of measuring the degree of association be-
tween factors based on the degree of similarity or dissimilarity of trends between them [24].
As the upper level optimization model is multi-objective optimization and it is difficult for
the configuration solution to satisfy multiple objectives optimally at the same time [25].
The traditional method of using compromise weighting factors to transform into a single-
objective function solution will inevitably affect the decision result of the configuration
solution. To accurately evaluate the effect of multi-objective solution sets without destroy-
ing the integrity of the original solution set, this paper proposes a grey correlation method
based on the Pareto optimal solution set evaluation method.

Firstly, GRA is used to calculate the correlation value between the Pareto optimal
solution set and the ideal solution, and to establish a mapping between the Pareto optimal
solution set and the correlation value to provide a basis for the lower level optimization
model. The correlation value represents the degree of correlation between the solution set
and the ideal solution. When evaluating the upper level model capacity configuration solu-
tion, the higher the correlation degree value, the greater the degree of correlation between
the configuration solution and the ideal solution, and the better the configuration solution.

Assume that the set of optimal solutions of the upper level optimization model Pareto
is {x1, x2, . . . , xn}, where xi = {F1, F2}, i ∈ n, xi denotes the set of objective values of
configuration scheme i. Let the ideal solution x0 = {min{F1}, min{F2}}, the correlation
coefficient between the optimal solution set and the ideal solution can be solved using the
GRA algorithm to construct the set of capacity configuration scheme-correlation mappings,
{xi, γ(x0, xi)}. xi is the capacity allocation solution i, γ(x0, xi) is the correlation of xi based
on the ideal solution, characterized as a label for the superiority or inferiority of solution xi.
The larger γ(x0, xi), the better the solution.

3.2. Solving a Multi-Objective Configuration Upper Level Optimization Model for Systems
Considering Environmental Friendliness and Economy

As the optimization upper-level optimization model is a multi-objective solution
problem, the fast and elite mechanism of the non-dominated ranking multi-objective
genetic algorithm (NSGA-II) has the advantages of efficiency and directness and is an
effective method for solving multi-objective optimization problems [26].

The INSGA2-DS algorithm based on dominance strength uses (1) an improved fast
sorting method based on dominance strength, (2) a novel distance algorithm that introduces
the consideration of variance, and (3) a strategy of adaptive elite retention based on the
NSGA-II algorithm. The improved algorithms can effectively improve the convergence
and distribution problems of the NSGA-II algorithm. The introduction of the INSGA2-DS
algorithm in this paper can effectively improve the distributivity and accuracy of the system
capacity allocation scheme, avoid the flooding of good data, reduce the solution time, and
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improve the solution efficiency of the algorithm. Figure 4 shows the flow chart of the upper
optimization model solution.

Figure 4. Flow chart of the upper optimization model solution.

3.3. Optimal Configuration of the Lower Level Model Considering System Stability

To improve the frequency stability of the system, the upper model configuration
scheme is further optimized based on the upper optimized model, taking into account the
level of inertia margin of the system. The power system time-series operation simulation
method [27] is introduced to simulate the time-series operation of all the planning solutions
derived from the upper model in turn to find the inertia security region for each solution.
The optimal capacity planning scheme is then optimized with the objective of combining
the best system stability and economic and environmental characteristics. The optimization
variables are the different capacity planning solutions output by the upper model.

3.3.1. Inertia Security Region Model of the System

Inertia is the inherent ability of a power system to maintain frequency stability [28].
When the system is subjected to unpredictable power disturbances, frequency fluctua-
tions occur within the system, when the rotational inertia present in the system helps to
suppress rapid fluctuations in frequency and keep the frequency stable within a tolerable
range [29,30]. Therefore, the inertia level of the system effectively reflects the frequency
stability of the system.

According to the safety and stability standards proposed in the literature “Technical
Guidelines for Safety and Stability Control of Power Systems”, the minimum inertia
required to ensure system frequency stability under N-2 faults in power systems relying
only on primary frequency regulation and second line of defense safety and stability control
measures is the safety critical inertia value under this fault scenario. When the actual inertia
of the system is less than the safe critical inertia, the occurrence of a serious fault within the
system will trigger the system’s third line of defense safety device to act, and the system
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will be exposed to the risk of large area cut-off and load shedding. In this paper, the inertia
value corresponding to the most severe failure scenario in the N-2 safety calibration of
the system in the operating scenario is defined as the system safety critical inertia value
MSIL [6].

MSIL = max
{

MSIL,F12 , . . . , MSIL,Fij

}
(14)

where MSIL,Fij is the safety critical inertia corresponding to the failure of component i, j;
i 6= j and i, j ≤ Nt; Nt = NSG + Nw + Np; Nt is the total number of components; NSG is the
number of thermal power plants; Nw is the number of wind farms; Np is the number of
photovoltaic plants.

To quantify the system inertia level, the relative magnitude of the actual system inertia
value to the safety critical system inertia value is defined as the system inertia margin.

Km =
Msys −MSIL

MSIL
× 100% (15)

where Km is the system inertia margin; Msys is the actual system inertia value; MSIL is
the system safety critical inertia value Km is the system inertia margin at a certain time.
According to the operating characteristics of the power system, the system inertia margin
varies at different times and is not continuous. The system Inertia security region is shown
in Figure 5.

Figure 5. Inertia security region of the system.

Considering continuous operation periods, define the inertia security region of the
system, which is the area of the system inertia margin over a length of time T.

KM =
∫ T

0

[
Msys(t)−MSIL(t)

]
dt (16)

where Msys(t), MSIL(t) are the actual inertia and the safety critical inertia of the system at
time t, respectively, and T is the length of time.

When the system inertia is the inertia security region, the system inertia can mitigate
sudden changes in frequency caused by a potentially large disturbance fault in the system,
avoiding large cuts in the system and load shedding.

In order to improve the calculation efficiency of the model, the rotational inertia of the
system is considered in this paper. The rotational inertia of the turbine is ignored because
the rotational kinetic energy provided by the turbine is related to the operating conditions,
there are more variable factors, and it has less influence on the inertia of the system.
Therefore, only the rotational inertia provided by the thermal power unit is considered.

The formula for calculating the actual inertia of the system:

Msys =
NSG

∑
i=1

HiPiKi (17)
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where Msys is the actual inertia value of the generation system; Hi is the time constant of
inertia of the thermal unit i; Pi is the rated power of the thermal unit i; Ki is the switching
state of the thermal unit. When the thermal unit is on, Ki = 1, and when it is off, Ki = 0.

In the case of a power generation system, the actual inertia value of the system can be
solved using the system operating scenario for the thermal power unit and its parameters.

The following equation for calculating the safe critical inertia value of the system is
derived. Typically, when active disturbances occur in the system, ignoring damping effects,
the equation of motion for the system equivalent rotor is:

2
Msys

fN

d f (t)
dt

= Pm(t)− Pe(t) (18)

where fN is the nominal frequency; Pm(t) is the total mechanical power of the system at
time t; Pe(t) is the total electromagnetic power of the system at time t; f (t) is the system
frequency at time t.

In the event of an active disturbance in the system, |RoCoF| reaches a maximum at
the moment of the disturbance t0+ because frequency control measures act immediately to
reduce the unbalanced power:

RoCoF(t0+) = −
fN∆P

2(MSIL −Mloss)
(19)

where RoCoF(t0+) is the rate of change of system frequency for the most severe fault in the
system N-2 safety calibration fault set; fN is the nominal frequency; ∆P is the active power
disturbance from the limit expected fault; and Mloss is the loss of inertia due to the limit
expected fault.

According to Equations (18) and (19), the system safety critical inertia is obtained:

MSIL = max





Mloss − fN ∆P
2RoCoFmin

, ∆P > 0

Mloss − fN ∆P
2RoCoFmax

, ∆P < 0
(20)

where RoCoFmax is the upper limit of the rate of change of the system frequency; RoCoFmin
is the lower limit of the rate of change of the system frequency.

3.3.2. Objective Functions

To measure the degree of economy and environmental friendliness of the capacity
allocation scheme of the upper level optimization model, a correlation factor µi is proposed.
The correlation factor is calculated as:

µi =
γi
γ

(21)

0 < γi ≤ 1 (22)

where γi is the correlation of option xi; γ is the average of the correlation of all options γi
characterizes the combined economic and environmental performance of option xi. The
larger γi is, the greater the correlation between option xi and the ideal option, and the
better the combined level of economy and environmental friendliness.

The correlation factor µi measures the degree of economy and environmental friendli-
ness of the upper model capacity configuration. It is known that KM is the system inertia
security region. Obviously, the larger the system inertia safety domain is, the more bene-
ficial to system stability. In order to improve the efficiency of the solution and make the
decision scheme informative, the scenario of the maximum occurrence of the system limit
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expected failure day in one year is selected as a typical day, and the inertia safety domain
of the typical day KM1 is defined:

KM1 =
∫ 24

0

[
Msys,i(t)−MSIL,i(t)

]
dt (23)

where Msys,i(t) is the actual inertia of the system at time t for scenario xi on a typical day;
MSIL,i(t) is the critical inertia of the system at time t for scenario xi on a typical day; and µi
is the correlation factor for scenario xi.

Based on the configuration scheme of the upper level optimization model, the objective
function is established by considering the economy, environmental protection, and stability
of the system:

maxF3 = max{µiKM1} (24)

3.3.3. Conditions of Constraint

(1) System inertia and rate of change of frequency constraints

The inertia and rate of change of frequency of the system shall be maintained within a
range of:

Mmin ≤ MSIL ≤ Mmax (25)

Msys(t) ≥ MSIL(t) (26)

where Mmax and Mmin are the upper and lower limits of the system inertia, respectively.

(2) System frequency rate of change constraint

RoCoFmin ≤ RoCoF ≤ RoCoFmax (27)

where RoCoFmax and RoCoFmin are the upper and lower limits of the rate of change of the
system frequency, respectively.

4. Bi-Level Model Solving for Optimal System Capacity Allocation

For system planning, the lack of actual output parameters for wind farms and photo-
voltaic power stations makes it difficult to perform direct calculations, so historical average
meteorological data are used for output forecasting.

For the upper level model, the local historical average meteorological data information
is combined with the predicted new energy output data based on the wind turbine and
PV unit parameters, and the load data is predicted. As the upper optimization model is a
multi-objective problem, INSGA2-DS is used to solve the algorithm and output the Pareto
solution set for the upper model capacity configuration, and the Pareto optimal solution
set evaluation method based on GRA is used to obtain the solution-correlation mapping
set {xi, γ(x0, xi)} as input to the lower optimization model.

For the lower level model, first determine the various types of boundary conditions,
introduce the power system time-series operation simulation method of literature [27], carry
out year-round operation simulation based on the capacity configuration scheme of the
upper level model, and then combine the system stability control strategy to generate N-2
safety check fault sets. Then, extract the system limit expected fault maximum occurrence
day scenario, and solve the lower level optimization model [31,32]. Table 1 shows a Bi-level
model for optimal system capacity planning. Figure 6 shows the framework for optimal
capacity allocation of wind-photovoltaic-thermal power systems.
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Table 1. Bi-level model for optimal system capacity planning.

Project Upper Optimization Model Lower Optimization Model

Decision variables Wind, PV and thermal power output Upper model solving solutions
Conditions of constraint (1)(2)(3)(4) (5)(6)

Objective functions minF1, minF2 max F3
Solution algorithms INSGA2-DS Cplex solvers

Optimization objectives Minimal carbon emission and lowest total cost Combination of economy, environmental
friendliness, and stability

Figure 6. Framework for optimal capacity allocation of wind-photovoltaic-thermal power systems.

5. Case Study
5.1. Date Preprocessing

This paper uses a method for simulating the time-series operation of power systems
based on meteorological data, as the planned wind-light-fire system lacks actual output
data and is difficult to apply directly in simulation tools.

Based on the local average historical meteorological data information and historical
load data for a region of the country, predictions are made including annual wind speed,
temperature, light intensity, and annual load data, as shown in Figures 7–10. Suitable
wind turbine, PV cell, and thermal power unit parameters are selected based on the load
demand and meteorological data. The carbon emission factor parameters for the full life
cycle of the system are shown in Tables A1–A3 in Appendix A. The cost and life cycle of
each part of the system are shown in Table A4 in Appendix A. The INSGA2-DS algorithm
was set to 100 iterations and run 10 times to obtain stable results for the algorithm. The
Pareto optimal solution set for 60 sets of capacity allocation scenarios was obtained after
the upper level model optimization solution, and the scenario-correlation mapping set was
established and imported into the lower level optimization model for the solution.
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Figure 7. Full year wind speed forecast curve.

Figure 8. Full year temperature forecast curve.

Figure 9. Full year light intensity prediction curve.
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Figure 10. Full year load forecast curve.

5.2. Optimal Capacity Configuration Solution

The upper model is solved using the INSGA2-DS algorithm and the lower model is
solved using the MATLAB software solver. Table 2 shows the optimal capacity configura-
tion of the wind–photovoltaic–thermal power system that meets the requirements. Figure 11
shows the set of Pareto scenarios for the capacity configuration of the upper model.

Table 2. Optimal capacity configuration solution.

Configuration Solutions Number

Number of WT 51
Number of PV cells 104,354

Number of thermal power units 8
Costs/¥ 4.95 × 109

Carbon emission/kg 1.16 × 1010

Inertia security region/MW·s2 10,308.2
Correlation factor 1.38

Installed capacity of thermal power generation/MW 320
Installed capacity of wind power/MW 76.5

Installed capacity of photovoltaic power/MW 20.9

Figure 11. Pareto frontage diagram.

To verify the rationality of the optimal capacity allocation scheme, three different
schemes are arbitrarily selected from the output scheme class of the upper optimization
model for comparison and analysis. Option 1 is the optimal capacity allocation solution.
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5.3. Simulation Analysis of the Timing Operation of Different Planning Scenarios

This paper uses a modified IEEE-39 node system as a research case. Figure 12 shows
the modified IEEE-39 node network topology.

Figure 12. Modified IEEE-39 node network topology.

The IEEE-39 node arithmetic example is built on the MATLAB platform, with 1–8 connected
to synchronous machines, 9 to an equivalent wind farm, and 10 to an equivalent PV plant.
As the single generator output accounts for a relatively high total load, each limit expected
fault type is either a synchronous unit tripping or a new energy field station going off-grid.
The scenario of the maximum occurrence day of the limit scenario fault is selected for
analysis. Rmax and Rmin are 2 Hz/s and −2 Hz/s respectively.

Scenario 1 is the optimal capacity allocation solution derived from the lower level
model. During a typical day, 6 thermal units are expected to be on at moments 1–10;
8 thermal units are expected to be on at the remaining moments. As can be seen from
Figure 13, during periods 1–3 and 12–24 on a typical day, the wind power output is less
than the rated power because the actual wind speed is lower than the rated wind speed
of the wind turbine, and the photovoltaic units can only generate power during the day,
making it necessary for the thermal units to increase their power output to meet the power
demand at the load side while satisfying the boundary conditions. During the 4–9 period,
the wind power output reaches its maximum, and due to the low load demand at this time,
the thermal power units must reduce their output by reducing the number of units on in
order to reduce wind and light abandonment.

Figure 13. Typical daily power curve for scenario 1.
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As can be seen from Figure 14, the moment of occurrence of the limit fault of the
system in Scenario 1 is t = 5–9, the actual inertia of the system at all times during a typical
day is greater than the value of the system safety critical inertia, and the inertia margins are
all positive. The inertia of the system under the limit expected fault is sufficient to support
the frequency fluctuation, which can effectively reduce the risk of a major outage accident.

Figure 14. Typical daily inertia security region for scenario 1.

The typical daily inertia security region for scenario 1 is KM1 = 10,308.2 MW·s2,
µi = 1.38 and F3 = 14,225.316 MW·s2. As the system operating state varies with time, the
system limit failure varies from moment to moment, exhibiting the time-varying nature of
the system safety critical inertia values. When t = 3, t = 4, and t = 10, the system corresponds
to a smaller limit expected failure with a smaller inertia requirement, when the system
inertia is more abundant. In contrast, when t = 5–9, the actual inertia of the system is close
to the system’s safe critical inertia, and the system is at a low inertia level at this time.

Scenario 2 is the capacity allocation option with the largest correlation factor, and the
specific capacity allocation can be seen in Table 3.

Table 3. Different capacity configuration solutions.

Solution Configuration Scenario 1 Scenario 2 Scenario 3 Scenario 4

Number of WT 51 71 15 74
Number of PV cells 104,354 104,525 103,790 104,739

Number of thermal power units 8 7 9 7

As can be seen in Figure 15, Scenario 2 has a different share of wind, PV and thermal
power output due to the different number of installed thermal, wind and PV units compared
to Scenario 1. In the periods 2–12 and 20–24 on a typical day, wind power output is higher
due to the higher installed capacity of the turbines. Especially in the 3–12 period, wind
power output is much higher than thermal power output. At this time, the number of
thermal units must be reduced to meet the load demand.

As can be seen in Figure 16, the typical daily inertia security region for scenario 2 is
KM1 = −8614.6 MW·s2, µi = 1.55, F3 = −13,352.63 MW·s2.At moments 3–14 and 19–24, the
actual system inertia is lower than the system safety critical inertia value, with the system
inertia deficit reaching a maximum of 1233 MW·s at moment 7, when the system faces a
very high risk of frequency destabilization. This is due to the low thermal power output
and the high proportion of new energy sources. When a major fault occurs in the system,
such as a new energy source going off-grid, the system frequency will be destabilized due
to the lack of sufficient inertia support, which will result in a large-scale power outage. The
length of time that the actual inertia of the system is below the system safety critical inertia
value is 517 h throughout a year.
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Figure 15. Typical daily power curve for scenario 2.

Figure 16. Typical daily inertia security region for scenario 2.

Scenario 3 is the least costly option to consider, with a typical daily inertia security
region of KM1 = 16,802 MW·s2, µi = 0.74, and F3 = 12,433.48 MW·s2. As can be seen from
Figure 17, the system has a higher share of thermal power output and a smaller peak-
to-valley differential. In the period 8–17, the combined share of wind and PV output is
higher, peaking at around 26%. Figure 18 shows a typical daily inertia security region for
Scenario 3.

Figure 17. Typical daily power curve for scenario 3.
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Figure 18. Typical daily inertia security region for scenario 3.

Scenario 4 is the case where carbon emissions are considered to be minimal. As shown
in Figure 19, the typical daily output characteristics of scenario 4 are similar to those of
scenario 2 due to the similarity between the capacity configuration scheme of scenario
2 and that of scenario 4. The typical daily inertia security region KM1 = −8871.2 MW·s2,
µi = 1.49, and F3 = −13,218.09 MW·s2. The length of time during a year when the actual
system inertia is below the system safety critical inertia value is greater than in Scenario 2,
amounting to 780 h. Figure 20 shows a typical daily inertia security region for Scenario 4.

Figure 19. Typical daily power curve for scenario 4.

Figure 20. Typical daily inertia security region for scenario 4.
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In summary, the system is able to ensure continuous and stable power supply on a
typical day for all capacity configuration options, subject to constraints, such as meeting
load demand and weather forecast data.

5.4. Comprehensive Characterisation of Different Configuration Scenarios

A comprehensive analysis of the economy, environmental friendliness, and stability of
the four scenarios.

As can be seen from Figure 21, the inertia security region for scenarios 2 and 4 is
negative, which is because the new energy output is higher during a typical day and
the thermal units are in a lower output state, resulting in the actual inertia level of the
system is lower than the system safety critical inertia value, and therefore scenarios 2 and
4 have a frequency stability risk. As the typical day is the maximum day scenario of the
yearly limit expected fault occurrence, the inertia security region of scenarios 1 and 3 are
10,308.2 MW·s2 and 16,802 MW·s2 respectively, so there are no negative inertia margin
operation scenarios for scenarios 1 and 3 during the yearly operation.

Figure 21. Characteristics of different scenarios.

The economic analysis of different scenarios shows that scenario 3 has the lowest total
cost, which is because the unit price of new energy is higher than that of thermal units per
unit of capacity, while scenario 3 has the smallest total amount of new energy installed
and the system generation output is mainly borne by thermal units, thus the total cost of
scenario 3 is low. In addition, scenario 1 also has a lower total cost of CNY 4.951 × 109,
which is 4.18% and 6% lower than scenarios 2 and 4 respectively.

For the carbon emissions analysis, the carbon emissions from electricity generation
are smaller for scenarios 2 and 4 due to their larger installed new energy capacity. The
difference in carbon emissions between scenarios 1, 2, and 4 is not significant, within 7%.
As the installed capacity of thermal power units is higher and the installed capacity of
new energy is lower, the carbon emissions from scenario 3 are the largest, with scenario 1
emitting 3.514 × 109 kg less carbon than scenario 3, or approximately 23.25%.

An analysis of the characteristics of the different options shows that as the correlation
factor increases, the carbon emissions of the system gradually decrease, while the total cost
does not change much. Therefore, the correlation factor can be used to effectively evaluate
the merits of the capacity allocation options. Scenario 2, with the highest correlation factor,
is the best capacity allocation option if the system stability is not considered and only the
system economy and environmental protection are taken into account. However, the actual
inertia of the system will be lower than the safety critical inertia of the system during the
operation of scenario 2, which will lead to low frequency load shedding or high cycle cut-off
of the grid in case of serious failure. Therefore, the capacity configuration of scenario 2
requires an appropriate increase in the number of synchronous machines to increase the

198



Energies 2022, 15, 3298

inertia of the system, while the number of turbines and PV units should be reduced to
reduce wind and light abandonment and to enhance the economy of the system.

In summary, scenario 1 takes into account system economy, environmental friendliness,
and stability. Scenario 1 can therefore be used as the best capacity configuration for
the system.

5.5. Impact of Optimization Algorithms on Capacity Planning

To verify the superiority of INSGA2-DS in solving capacity planning problems, the
NSGA-II algorithm was used for comparative analysis. As shown in Figure 22, the Pareto
frontier solution is more widely distributed and can effectively avoid getting trapped in a
local optimum.

Figure 22. NSGA-II and INSGA2-DS optimization results.

A comparison of the operational characteristics of the two algorithms is shown in
Table 4. For the same number of populations, INSGA2-DS has a shorter computation time
than NSGA-II and converges at a faster rate, with a computational efficiency improve-
ment of about 17%. Therefore, INSGA2-DS is more suitable for the problem of capacity
optimization allocation of wind-light-fire systems.

Table 4. Comparison of NSGA-II and INSGA2-DS characteristics.

Algorithms Population
Size/Unit

Number of Convergence
Iterations/Time

Calculation
Efficiency/s

NSGA-II 300 120 101
INSGA2-DS 300 100 84

6. Conclusions

This paper proposes a situation awareness-based capacity optimization strategy for
wind–photovoltaic–thermal power systems. A bi-level model is established for the optimal
allocation of system capacity. The upper model takes into account the carbon emissions
and total system cost of the whole life cycle of the system and ensures the effectiveness
and practicality of the upper model through the system power balance constraint, installed
capacity constraint, generator output constraint, and thermal unit climbing constraint.
The Pareto-based capacity allocation scheme is solved using the INSGA2-DS algorithm,
and the Pareto optimal solution set evaluation method based on GRA is used to establish
the scheme-relation degree mapping set, which is used as the input of the lower model.
The lower model integrates the maximum inertia security region of the system, the best
economy, and environmental protection as the optimization objectives to optimize the
capacity allocation scheme. Finally, the effectiveness of the proposed strategy and algorithm
is verified by means of an arithmetic example.

199



Energies 2022, 15, 3298

This provides new practical ideas and methods for planning the capacity allocation
of wind–photovoltaic–thermal power systems in the context of new power systems, and
is a guide to the problem of planning the capacity of power sources in the context of the
new power system. The wind–photovoltaic–thermal power system capacity optimization
model developed in this paper can ensure the best system stability and minimize carbon
emissions and total costs within a certain range.

The method proposed in the paper focuses on three forms of power sources, namely
wind, light, and fire, and will be followed by subsequent studies to include multi-energy
matching of systems, such as hydropower and energy storage.
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Appendix A

Table A1. Thermal power unit parameters.

Parameters Number

Power rating/MW 40
Maximum power/MW 40
Minimum power/MW 10

a/(¥/MWh) 0.024
b/(¥/MWh) 78

c/¥ 960
Inertia time constant/s 5

R/(kg/kWh) 0.95

Table A2. Wind turbine parameters.

Parameters Number

Power rating/MW 1.5
Cut-in wind speed Vin/(m/s) 3
Rated wind speed Vn/(m/s) 10

Cut-out wind speed Vout/(m/s) 30
R/(kg/kWh) 0.012

Table A3. Photovoltaic cell parameters.

Parameters Number

Ps/(kWh) 0.2
Gs/lx 1000

γ/(%/◦C) −0.5
Tτ/◦C 25

R/(kg/kWh) 0.035
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Table A4. System component costs and life cycle.

Parameters Thermal Power Units Wind Turbines Photovoltaic Cells

Investment cost/(¥) 1.125 × 108 1.097 × 107 1242
Replacement cost/(¥) 1.125 × 108 1.097 × 107 1242

Maintenance cost/(¥/yr) 1.125 × 106 1.097 × 105 12.42
Life cycle/(yr) 15 20 30
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