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Editorial

Introduction to the Special Issue “Life in the Time of a
Pandemic: Social, Economic, Health and Environmental
Impacts of COVID-19—Systems Approach Study”

Oz Sahin 1,2,3,* and Russell Richards 2,4,*

1 School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia
2 Cities Research Institute, Griffith University, Southport, QLD 4222, Australia
3 Griffith Climate Change Response Program, Griffith University, Southport, QLD 4222, Australia
4 UQ Business School, University of Queensland, Brisbane, QLD 4072, Australia
* Correspondence: o.sahin@griffith.edu.au (O.S.); r.richards@business.uq.edu.au (R.R.)

The preambles in many of the articles in this Special Issue have highlighted how
COVID-19 has affected, and is continuing to affect, the way that individuals, groups,
organisations and countries operate. The health implications of COVID-19 have seen
decision makers take drastic interventions to address the threat to health associated with
this disease. However, this has had cascading effects on other aspects of society and the
environment. As expressed in the information provided for this Special Issue, “Life in the
Time of a Pandemic: Social, Economic, Health and Environmental Impacts of COVID-19—
Systems Approach Study”, the role of governments around the world has been aimed at
containing and reducing the socioeconomic impacts of COVID-19; however, their respective
responses have not been consistent. Some 18 months after our call for papers, COVID-19
continues to challenge how governments and individuals manage this pandemic.

The resulting Special Issue from our call comprises nine research papers. These nine pa-
pers reflect a good diversity of foci and methodologies, ranging from conceptual/qualitative
papers that provide exploration of networks to data-driven models that take advantage
of the proliferation of data that have been created during the pandemic, through to fully
parameterised deterministic density-based and agent-based process modelling.

In this Special Issue, the first article, by Sahin et al. [1], provides the broad context for
the complexity of the COVID-19 pandemic, highlighting the multifaceted, and intrinsically
intertwined characteristics of this ‘system’. This communication paper produced a prelimi-
nary causal loop diagram (CLD) that endeavoured to map out this wicked complexity and
advocated the need for considering ‘deep leverage’ (interventions) points as part of the
management plans. CLDs are a commonly used technique in systems thinking, providing
an illustrative map of network causality for a system. The second article, by Strelkovskii
and Rovenskaya [2], thus provides a timely critique of CLDs that have been developed for
COVID-19, including that developed by Sahin et al. [1], producing a set of good practices
for creating and presenting these causal maps.

Unsurprisingly, disease models using the ubiquitous susceptible–infected–recovered
(SIR) or susceptible–exposed–infected–recovered (SEIR) frameworks are featured in two
papers (Bärwolff [3]; Brereton and Pedercini [4]). Such density-based dynamic models
enable the evolving nature of ‘what if’ health-management scenarios to be tested over a
period of time from the safety of a numerical playground. Specifically, it has been used
in these two papers to assess the effectiveness of ‘lockdowns’ against indicators such as
infection rates, as explored by these two papers.

Several papers drew upon the large number of data that have been produced throughout
the COVID-19 pandemic to undertake data-driven analysis. For example, Bertone et al. [5]
parameterised Naïve Bayesian networks with such data in their analysis of the impact of
lockdown timing on case and mortality numbers. Whilst these data have proven to be a
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goldmine when it comes to creating data-driven (and process-based) models, as highlighted
in many of the articles in this issue, it has also created a ‘proliferation of multiple views’
as investigated by Stella. In this paper, Stella [6] used an analysis of media responding to
the WHO declaration of the global pandemic and semantic frame theory with emotional
profiling to reconstruct the ‘plurality of views and emotions’ elicited from this declaration.
This showed that this declaration elicited a wide spectrum of perceptions, including anger
and grief, but also trust.

From a business perspective, COVID-19 has severely restricted mobilisation, which has
disrupted traditional businesses operations. However, it is recognised that this has also cre-
ated opportunities within the digital landscape. For example, the article by Sorooshian [7]
focused on ‘change readiness’ for the digitisation of tourism. A key finding was that
business tourism and event tourism were the most ready for this to occur. The article by
Sindhu and Mor [8] highlighted how COVID-19 had facilitated an increase dependence
of consumers using digital platforms and identified the importance of measurement and
evaluation strategies, and customer as co-creators, as enabling factors for branded content.

The final paper (Harré et al. [9]) presented a comprehensive use of agent-based mod-
elling to evaluate a variety of different mechanisms through which crises can propagate
from the micro-economic behaviour through to an economy’s aggregate dynamics. This
includes an exploration of the impacts of the government’s COVID-19 policy on Australia’s
housing market.

Due to the timing of this Special Issue, much of the focus of these nine papers has
been on the dynamics of COVID-19 during 2020 and early–mid 2021. As we enter 2022,
vaccination programs are well established in many countries (particularly the ‘Global
North’) and the narrative of ‘opening up’ and ‘living with COVID’ is becoming an increasing
catchcry. However, COVID-19 is still globally pervasive with reported infection rates higher
now than they were during 2020–2021, and decision makers continue to grapple with
balancing health and economics.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: COVID-19 is a wicked problem for policy makers internationally as the complexity of
the pandemic transcends health, environment, social and economic boundaries. Many countries
are focusing on two key responses, namely virus containment and financial measures, but fail to
recognise other aspects. The systems approach, however, enables policy makers to design the most
effective strategies and reduce the unintended consequences. To achieve fundamental change, it is
imperative to firstly identify the “right” interventions (leverage points) and implement additional
measures to reduce negative consequences. To do so, a preliminary causal loop diagram of the
COVID-19 pandemic was designed to explore its influence on socio-economic systems. In order to
transcend the “wait and see” approach, and create an adaptive and resilient system, governments
need to consider “deep” leverage points that can be realistically maintained over the long-term and
cause a fundamental change, rather than focusing on “shallow” leverage points that are relatively
easy to implement but do not result in significant systemic change.

Keywords: COVID-19; pandemic; wicked problem; systems approach; leverage points

1. Introduction

The COVID-19 pandemic has emerged as a problem of wicked complexity for policy makers
internationally [1]. The virus and its necessary management strategies have thrown many countries
into economic recession [2] and exacerbated existing social problems such as health care access,
unemployment and inequality. A few countries have rapidly responded to the pandemic and have
had success in its early containment, yet many countries have scrambled to implement interventions
and measures when major implications of the disease started to appear.

Policy makers around the world have been mainly focusing on two key responses, namely, virus
containment and financial measures for cushioning the resulting economic impact (i.e., jobs subsidies,
unemployment benefits, government supported loans, etc.) [3]. However, they have been conducting
these assessments separately from a “wait-and-see” perspective and often have not systematically
examined this problem with consideration to a feasible and sustainable long-term strategy for managing
the pandemic. Many countries have failed to learn from past epidemics of coronaviruses such as Severe

Systems 2020, 8, 20; doi:10.3390/systems8020020 www.mdpi.com/journal/systems
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Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), where these
types of viruses have historically long incubation periods [4]. A few countries have responded to this
pandemic rapidly [5] with the readiness to sacrifice an early economic loss to prevent worse long-term
economic impacts that would occur if the virus had spiralled out of control.

Systems thinking is a framework that can help policy makers to better understand the big picture
through identifying the multi-faceted consequences of decision making in order to better weigh options
and design the most effective strategies to manage the impacts of unintended consequences [6–8].
Effectively containing the virus and keeping the mortality rate low while maintaining economic,
social and environmental goals is of importance in effectively managing this pandemic. The aim of this
communication piece is to visualise the complexity in managing the COVID-19 pandemic through a
systems lens by identifying the interconnectivity between health, economic, social and environmental
aspects. This was explored via the development of a preliminary causal loop diagram (CLD) to identify
important feedback loops. In the systems thinking field, CLD is a powerful tool for dealing with
complex problems which has the ability to uncover the underlying feedback structures and leverage
points in a system [9–11]. Moreover, causal loop modelling has been widely applied in health systems
research [12–14].

2. A Wicked Complexity

In an increasingly connected world, the actions of individuals and governments and their
resulting consequences are deeply entwined within the socio-economic and environmental systems.
Recognising that the impacts of the COVID-19 pandemic transcend many boundaries (e.g., health,
communities, science, politics, environment and economics) will help policy makers to determine the
“right” intervention in a timely manner and implement additional interventions to reduce negative
consequences. A CLD was developed to represent this complex problem through the identification
of cause-and-effect links and feedback loops (Figure 1). This preliminary CLD was a product of the
collective knowledge of the authors supported by geographical data by Johns Hopkins University [15]
and a review of various governments’ responses to the COVID-19 pandemic. The process of developing
the preliminary CLD is presented in Appendix A.

Interventions (i.e., leverage points) are central to mitigating this pandemic. International travel
restrictions, business restrictions, effectiveness of health crisis management, testing, awareness and
social distancing campaigns and economic stimulus packages are among the interventions that have
been implemented in many countries. Each intervention, undoubtedly, will have a trade-off between
aspects of the system. An example is where the mandated “social distancing” rules can have a
significant and immediate impact on business operations with potentially long-term economic and
social consequences. Furthermore, delays will also exist in the system to indicate the time required for
an intervention to be implemented or for a change to have an impact on the overall system. There is
also a delay between the infection and when the symptoms appear (i.e., incubation period) which has
caused more challenges in preventing an outbreak [16].

The existence of feedback loops within the system indicates two-way relationships between actions
and consequences. These feedback loops can be used to identify if an intervention is able to create a
system-wide change or if there is a need to improve or introduce a new solution. There are two types
of feedback loops: reinforcing and balancing loops [8,17]. Reinforcing loops are responsible for the
creation of an exponential growth or decay in the system, whereas balancing loops will balance a system
until an equilibrium has been achieved. The dominance of reinforcing loops in this system indicates
that there are more sources of growth, erosion and failure which decision makers need to address
and minimise. Many countries have failed to realise and address these reinforcing loops [18]; thus,
causing a near-collapse effect in the system that is exhibited by a massive outbreak in many countries.

4
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Figure 1. A preliminary causal loop diagram demonstrating the complexity of the COVID-19 pandemic
environmental–health–socio–economic system.

We have seen in a very short time, how the gradual increase of interventions has led to
unprecedented economic consequences [19]. The social distancing rules have created a restriction
on some business operations; thus, some business closures are inevitable, consequently leading to
an increase in unemployment rates (loop R12). The international and interstate travel restrictions
have caused stock market volatility and have been prohibitive to international trading and mobility
(loop R4 and R11). They also caused disruptions to almost every industry sector, including education
systems and the interconnectivity between transport industries and the tourism and hospitality sector
(loop R3). The International Monetary Fund (IMF) suggested that the world’s economy will shrink
by three percent this year, which is far worse than the 2008–2009 financial crisis [20]. This restrictive
economic activity has led to some governments providing financial packages to affected businesses
and employees (loop B5).

From the health perspective, a higher proportion of vulnerable populations will lead to a higher
number of confirmed cases (loop B1). Population vulnerability is influenced by the accessibility of
health services (loop R7); whilst a higher number of confirmed cases will increase health services’
load (loop R2). However, fewer confirmed cases do not always reflect the actual infection rate as it
is also dependent upon the effectiveness of the testing campaign (loop R10). Health care systems in
many countries, particularly in developing countries, are overwhelmed with the exponential growth
of cases [21–23]. Loop R9 (Figure 1) also demonstrates how a higher number of confirmed cases
reinforces the speed of government actions that will lead to the introduction of additional measures.
The non-infected loop can act as a reinforcing loop (R1) to reflect the number of recovered populations
as well as a balancing loop (B6) if there is an increased risk of transmissions due to the increased extent
of social interactions.

Conversely, positive environmental benefits should also be considered in the policy analysis
system, such as the measurable decline in regional air pollution and greenhouse gas emissions due to
reductions in ground and air travel. This improvement of air quality has been observed at a global scale
as a result of decline in significant travel, business and social activities [24]. Although there has been a
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reduction on the waste generation volume due to a downward shift in economic activities, waste from
personal protective equipment and testing kits will inevitably rise as the number of vulnerable in a
population that need to be tested increases [25]. Furthermore, a culture shift related to panic buying
will also contribute to food waste generation.

The human social network is the most challenging to manage in this pandemic with a high risk of
catastrophic social order demise if inconsiderate policy is enacted [26]. This is a delicate balancing
act; for example, maintaining social distancing will substantially reduce virus transmission (loop B3),
however, long periods of isolation may have long lasting effects on mental well-being. Furthermore,
this pandemic has caused global panic, heightened fear and eroded trust in governments and within
communities. The prevalence of reinforcing loops R5 (trust), R6 (sense of security) and R8 (panic buying)
reflects the increasing social issues that need to be addressed. We have seen multiple instances of
societal behavioural changes such as panic buying (e.g., toilet paper and sanitiser), the emergence of
organised crime, domestic violence, increased and targeted global xenophobia against certain ethnic
groups [18,27] and more recently abuse of health care workers as people’s fears lead to irrationality
and anxiety. These social problems stem from bounded rationality and responses to their panic and
fear [28] where misinformation and confirmation bias may be contributing factors. Beside its social
impacts, panic and fear may also increase hygiene practices among communities (loop B2).

3. Placing Interventions in the Right Place at the Right Time

Countries have taken different roads in addressing this global pandemic, leading to an activation
of different leverage points. Two questions arise “Have the most widely used global interventions so
far targeted relatively ineffective leverage points? Has current intervention been focused too heavily on
‘shallow’ leverage points?”. As Meadows stated [8], there are twelve places in enacting leverage points
ranging from “shallow” to “deep” (Figure 2). “Shallow” leverage points refer to interventions that
are relatively easy to implement, yet bring a non-significant systemic change, while “deep” leverage
points will cause a fundamental change.

Figure 2. Leverage points to intervene a system. Adapted from Meadows [8].

Policies enacted in the interests of public health have had economic side effects. The extent,
of course, will largely depend on the depth of the early intervention, the ability of governments to
enact policy to limit the damage to the economy and the strength of the economy prior to the event.
The travel restriction is a good example of both shallow and deep leveraging points as travel restrictions
can change the direction to which a system is oriented by preventing infection being transmitted into a
population by non-symptomatic carriers. Australia followed a series of largely ineffective (or shallow)
international travel restrictions in the early stages where a ban was in place for flights from the source
of the outbreak. It was not until it enacted a complete ban for all international and interstate flights
(i.e., deeper leverage point) that the spread of new cases appeared to slow down.
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While encouraging social distancing and vigilance in personal hygiene are critical measures to
reduce the risk of human-to-human transmission, it is challenging for the general public to consciously
change their behaviour overnight and maintain these behaviours long-term [29]. Regardless of laws
put in place, there remains a threat of public complacency, particularly once infection rates decrease.
Government policies need to consider deeper leverage points that can be realistically maintained over
the long-term, as infection rates trend up and down. Public confidence and trust in governance may be
negatively impacted with regular “shallow”, knee-jerk daily or weekly rule changes.

4. Lessons Learned

A systemic change could transcend the “wait and see” paradigm into a more proactive approach
that is imperative for creating an adaptive and resilient system. Regardless of the approach taken,
countries which have demonstrated a capacity to assess this problem systemically and comprehensively
over various time horizons will emerge from this crisis in a much better position than those that have
just tackled each incremental problem in an isolated and knee-jerk manner. It is possible that with a
more proactive approach in implementing “deeper” interventions (deep leverage point), governments
can be “flattening the curve” more effectively; consequently, limiting the impact of economic recession
and associated socio-economic difficulties.

Government interventions will always struggle to completely prevent all types of virus
transmission over the long term. However, effective government decisions must consider strategies that
reduce infection rates, while dynamically accounting for the economic, social and environmental goals.
Putting our “systems thinking” hat on to tackle this wicked problem, will help us to understand that
there are always ever-moving and conflicting goals existing in any system, and will help those policy
architects to develop best-practice (and deeper) interventions that will help to minimise unintended
negative outcomes.

This communication piece reports on the development of a preliminary CLD which depicts the
complexity and the multi-faceted nature of the COVID-19 pandemic from health, economic, social and
environmental perspectives. This piece aims to demonstrate the COVID-19 pandemic complexity across
health–socio–economic–environmental boundaries using a systems thinking visual as a precursor
for the special issue “Life in the Time of a Pandemic: Social, Economic, Health and Environmental
Impacts of COVID-19—Systems Approach Study” in the Systems journal. It is not intended to provide
a full explanation of this issue but rather provide an example of how visualising the complexity of a
system can help us to identify leverage points and the key important trade-offs that exist in the system.
There remains a need to develop a system dynamics (SD) model that will be able to quantify this
system. Such a model will assist policy makers in enacting an effective strategy for preparing nations
in defending themselves against future pandemics by revealing the complexity, dynamic behaviour
and trade-offs between different objectives. We would be foolish to not learn from the lessons around
complexity and system interactions that this COVID pandemic has presented.

Author Contributions: O.S., H.S., E.S., R.R., S.M., and S.H. conducted stakeholder workshops, developed the
preliminary causal loop diagram and drafted the manuscript. S.R., R.A.S., and C.D.B. conducted stakeholder
workshops and improved the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Glossary

Variable Name Description

Access to health services Access into the health care system
Air pollution The amount of harmful substances in earth’s atmosphere

Awareness campaign
Marketing effort to educate individuals about an issue (e.g., need in regular
hand washing, coverage of coughing/sneezing, usage of tissues and bin
tissues, etc.)

Business closure Closure of businesses due both temporarily and due to bankruptcy
CO2 concentration Concentration of carbon dioxide in earth’s atmosphere
Confirmed cases Positive tested population
Crime and violence Intentional harm
Culture shift Shift in communities’ culture (e.g., panic buying, business culture, etc.)
Economic activities Stable manufacture of goods and the provision of services
GDP Gross domestic product

Government’s stimulus package
Government’s financial assistance to support businesses, households,
and individuals

Health care worker load Number of patients per health care professional

Health services capacity
Availability of facial masks, hospital beds, medication, treating medical staff,
public health services

Hygiene practice
Regular hand washing, coverage of coughing/sneezing, usage of tissues and
bin tissues

International trades Export and import of goods and services
International travel restrictions Travel ban to international flights to curb imported cases
Interventions Action plan of the government to controlling pandemic and its impacts
Level of effectiveness of government
health crisis actions

Effective operational action plan of the government; innovative steps to
enable an effective intervention

Level of goods and services Goods and services available in the market
Mental well-being Social and emotional well-being of individuals

Misinformation and fake news
Pseudo-news, deliberate disinformation, conspiracy theories or hoaxes spread
via traditional news media or online social media

Non-infected population Fatalities, recovered, negative tested, non-tested population
Panic and fear Sudden anxiety, hysterical and irrational behaviour
Productivity Rate of goods and services being produced

Racism
Prejudice, discrimination, or hatred directed at someone because of their
colour, ethnicity or national origin

Restrictions on business Temporarily closure of non-essential businesses, ‘take-away’ only policy
Social interaction Ability to meet (an)other individual(s)

Speed of government actions
Coordinated and timely operational action plan of the government to address
health crisis

Stability of education system
Uninterrupted work of education institutes, high number of enrolled
international students at universities

Stability of supply chain
Uninterrupted distribution of goods and services, (i.e., no delays), availability
of goods and services available in the market

Stability of tourism and hospitality
industry

Uninterrupted flow of both international and domestic visitors, stable work of
hospitality businesses and events

Stability of transportation industry Stable work of airlines, train services, shipping industries

Testing campaign
Campaign to promote public awareness about COVID-19 testing if they have
any symptom

Trust in governments
Community trust and confidence towards parliament, the cabinet, the civil
service, local councils, political parties, politicians

Trust within communities The degree of trust towards a certain group of people
Unemployment rate Share of the labour force that is jobless

Vulnerable populations
Elderly, socioeconomically disadvantaged (uninsured, homeless), individuals
with a pre-existing medical condition

Waste generation The amount of waste generated by households, industries and health systems
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Abstract: The complexity, multidimensionality, and persistence of the COVID-19 pandemic have
prompted both researchers and policymakers to turn to transdisciplinary methods in dealing with
the wickedness of the crisis. While there are increasing calls to use systems thinking to address the
intricacy of COVID-19, examples of practical applications of systems thinking are still scarce. We
revealed and reviewed eight studies which developed causal loop diagrams (CLDs) to assess the
impact of the COVID-19 pandemic on a broader socioeconomic system. We find that major drivers
across all studies are the magnitude of the infection spread and government interventions to curb
the pandemic, while the most impacted variables are public perception of the pandemic and the
risk of infection. The reviewed COVID-19 CLDs consistently exhibit certain complexity patterns, for
example, they contain a higher number of two- and three-element feedback loops than comparable
random networks. However, they fall short in representing linear complexity such as multiple causes
and effects, as well as cascading impacts. We also discuss good practices for creating and presenting
CLDs using the reviewed diagrams as illustration. We suggest that increasing transparency and rigor
of the CLD development processes can help to overcome the lack of systems thinking applications to
address the challenges of the COVID-19 crisis.

Keywords: causal loop diagram; systems thinking; COVID-19; network theory

1. Introduction

Despite a significant progress on vaccination, with almost four billion vaccine doses
administered, the daily number of new COVID-19 cases worldwide is still around the
500,000 mark, and the daily number of deaths is close to 10,000 as of late July 2021 [1].
Furthermore, various new mutations of the virus, an uneven distribution of vaccines across
different countries, the unwillingness of large parts of the populations in some countries to
receive vaccination, as well as other factors contribute to the persistence of the COVID-19
crisis as the most pressing issue globally [2].

The COVID-19 pandemic is not only a grand challenge for the public health system,
but it has also affected virtually all areas of human life. The spread of the virus, as well as
various mitigation and adaptation measures have had a widespread effect on economic
activity, job security, social relations, mental health, and trust in others and institutions [3].
This makes the challenge of “getting back to normal life” truly multi-dimensional and
calls for an interdisciplinary approach [4]. However, multiple and potentially lagged
interdependencies between various components of the affected systems are difficult to
oversee and comprehend by the human brain in the absence of special tools, while the
lack of a holistic perspective increases the risks of unintended adverse consequences [5,6].
Systems thinking has been suggested to unravel this challenge by accounting for essential
links and feedback loops between issues that both scientists and policymakers tend to
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consider in isolation, creating a shared understanding of the problem and identifying
potential leverage points [7,8].

Some scholars responded to this call advocating the use of systems thinking in a rather
general sense [9–11], while others came up with some concrete examples of the application
of systems thinking, usually through employing causal loop diagrams [2,4,12–16] or system
dynamic models [17–19].

Causal loop diagramming (also termed systems mapping) is a principal qualitative
system thinking tool used both inside academia and for communicating with policymakers
and the general public [20]. Causal loop diagrams (CLDs) constitute a schematic descrip-
tion of the considered system depicting its components and the (causal) relations between
them. Components are connected by directed links. Each link represents an impact (causal
influence) of one component on another. The impact can be positive, in which case an
increase/decrease of the state of the impacting component leads to an increase/decrease
of the state of the impacted component, or negative, in which case an increase/decreases
of the state of the impacting component leads to the opposite change of the state of the
impacted component, i.e., a decrease/increase. CLDs are useful for formalizing mental
models of individuals and groups, rapid identification of the possible drivers of the con-
sidered system’s dynamics, and communicating feedback and archetypal structures in the
considered system [20]. CLDs can be used as a standalone qualitative modeling tool or as a
step toward developing a quantitative simulation, e.g., a system dynamics model [21].

This paper aims to review the state-of-the-art studies that construct CLDs to inves-
tigate the impact of the COVID-19 pandemic on a broader human–society–environment
system. This review intends to formulate methodological as well as applied insights.
Methodologically, our analysis provides observations (a) on what seems to be a common
practice in research involving causal loop diagramming to analyze the socioeconomic
impacts of COVID-19 from the systems perspective; (b) on major gaps in the existing
CLDs that deal with systems impact of COVID-19; and (c) on what seems to be a good
practice in the development, presentation, and analysis of CLDs. Observations (a), (b),
and (c) can be useful for future CLD developers for benchmarking their work against the
state-of-the-art, for positioning and focusing their research, and for increasing the impact of
their research, respectively. The applied insights of this paper include observations that can
guide quantitative model development to further analyze the multi-dimensional impacts
of COVID-19 and policy-relevant observations.

The paper is organized as follows. The approach to the selection of studies for
the review as well as key methods for the analysis of the selected CLD set is described
in Section 2. In Section 3, we present the results of the analysis of the selected studies
including a summary of the selected papers and their scope (Section 3.1), analysis of
commonly and rarely used concepts across the reviewed CLDs (Section 3.2), basic network
statistics of the reviewed CLDs (Section 3.3), major drivers and impacted components
(Section 3.4), complexity patterns (Section 3.5), and, finally, the discussion of good practices
for the CLD development, presentation and analysis as used by the authors of the reviewed
CLDs (Section 3.6). Section 4 provides a discussion and conclusions.

2. Methods and Scope

To identify relevant studies, first, we conducted a formal literature search in the Scopus
database using the following search query:

TITLE-ABS-KEY (COVID-19 AND ((“causal loop diagram*”) OR (“influence dia-
gram*”) OR (“systems map*”))).

Therefore, we also accounted for terms that are sometimes used interchangeably to
CLDs, i.e., systems maps and influence diagrams.

This search yielded 12 papers. Seven out of these were discarded from the further
analysis, as they focused either only on the virus spread itself, i.e., being epidemiological
models, e.g., [22], or on a too-narrow phenomenon, e.g., [23] focusing on the routine
childhood immunization or [24] focusing on the development of branchless banking. One
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of the remaining five papers was a conference paper [25] that then was developed into a
journal article by the same author and contained the same CLD, so we also disregarded
this conference paper from our analysis and included only the journal article [2].

Then, we also reviewed the citations of the remaining four papers and, using both
Scopus and the Google Scholar database added four more works containing relevant
CLDs—one journal paper, two preprints, and one blog post. Ultimately, eight studies
satisfying the scope of our review were selected for a detailed analysis. These eight
publications are summarized in Table 1.

Table 1. Reviewed studies (sorted by date of publication, ascending).

Authors/CLD ID Title Date Published Type Reference

(Wicher, 2020) The COVID-19 case as an example of
Systems Thinking usage 15 March 2020 Blog [26]

(Bradley et al., 2020) A systems approach to preventing and
responding to COVID-19 28 March 2020 Paper in a

peer-reviewed journal [16]

(Sahin et al., 2020)

Developing a Preliminary Causal
Loop Diagram for Understanding the

Wicked Complexity of the
COVID-19 Pandemic

18 June 2020 Paper in a
peer-reviewed journal [12]

(Bahri, 2020) The Nexus Impacts of the COVID-19:
A Qualitative Perspective 8 August 2020 Preprint [14]

(Tonnang et al., 2020)

COVID-19 Emergency public health
and economic measures causal loops:

A computable framework.
In COVID-19

10 September 2020 Preprint [15]

(Klement, 2020) Systems Thinking About SARS-CoV-2 28 October 2020 Paper in a
peer-reviewed journal [13]

(Kontogiannis, 2021)

A qualitative model of patterns of
resilience and vulnerability in

responding to a pandemic outbreak
with system dynamics

10 November 2020 Paper in a
peer-reviewed journal [4]

(Zięba, 2021) How can systems thinking help us in
the COVID-19 crisis? 8 June 2021 Paper in a

peer-reviewed journal [2]

To analyze the selected CLDs, we use both qualitative and quantitative methods. First,
in Section 3.1 we discuss the research focus of the reviewed studies.

Second, in Section 3.2 we reveal commonly and rarely used concepts across the eight
reviewed studies by identifying synonymic variables and computing simple statistics of
the appearance of distinctively different notions across all CLDs.

Third, in Section 3.3 we analyze structural properties of the reviewed CLDs employing
a number of approaches from the graph theory. Indeed, a CLD can be considered as a
directed graph (a digraph) determined by its adjacency matrix A =

(
aij

)
, i, j = 1, . . . , n,

where aij = 1/aij = −1 if component i makes a positive/negative impact on j and aij = 0 if
i has no link into j; here, n is the total number of components in the considered system [27].
We compute and compare basic network statistics for the CLDs under review, including
the number of nodes and links, as well as the average node degree, i.e., the average total
number of the incoming and outgoing links associated with a node. We further analyze the
dependence of links on the CLD size across the reviewed CLDs.

Fourth, in Section 3.4, for each CLD, we compute the statistics of the number of
incoming and outgoing links associated with a node (in- and out-degree). Using the
Frederic Vester’s approach that was originally suggested in [28] and further developed by
other authors in [29], we identify active components (drivers) and passive (most impacted)
components of a CLD as nodes that have a high number of outgoing and incoming links,
respectively. Components with high number of both link types are regarded as critical
hubs in the corresponding CLDs.
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Fifth, in Section 3.5, in each CLD we identify network motifs—basic microstructures,
which can be considered as network building blocks. Following [30,31], we focus on
(i) bidirectionality (a two-component feedback loop), (ii) multiple causes, (iii) multiple
effects, (iv) an indirect effect, (v) a moderated effect, and (vi) three-component feedback
loops (see Table 2). Motif (i) includes two nodes, while motifs (ii)–(vi) include three nodes.
Furthermore, we run a conditional uniform random graph (CUG) test [30] to compare the
prevalence of these motifs in the reviewed CLDs to their prevalence in the ensembles of
random networks with the same number of nodes and edges (so-called “N, m” model
family [32]) which is used as the null model.

Table 2. Network motifs used for analysis. Nodes highlighted with red depict impacting components, nodes highlighted
with green depict impacted components. In the cases of bidirectionality and feedback loops, it is assumed that there is no
dominant impact in any direction.

# Motif Name Motif Description (Following [33]) Motif Schematic View

(i) Bidirectionality A node impacts and is impacted by another adjacent node
 

(ii) Multiple causes Two non-adjacent nodes impact another node, adjacent to
both of them  

(iii) Multiple effects A node impacts two adjacent nodes which are non-adjacent
between each other  

(iv) Indirect effect A node impacts a non-adjacent node through a third node
 

(v) Moderated effect A node impacts an adjacent node both directly and through
a third node  

(vi) Feedback loop
(3 components)

Three adjacent nodes impact each other in one direction, i.e.,
clockwise, or counterclockwise  

Sixth, in Section 3.6 we review how the eight CLDs were developed and presented in
terms of the description of the design procedure, availability of lists of components, links
and feedback loops, visualization, software implementation (source code), and methods
employed for the CLD analysis. We selected these features as dimensions of good practice
based on commonly used guidelines, e.g., [20] and our own practical experience.

3. Results

3.1. Research Focus

In terms of the research ambition, which the reviewed papers set for themselves,
all eight papers share a similar approach that can be described as going “beyond health
effects”. This includes unraveling and visualizing the complexity and interconnectivity of
different subsystems within the socioeconomic system, adding a transdisciplinary focus to
COVID-19 policies, and identifying leverage points. Two papers specifically emphasize
certain sectors, namely, refs. [2,26] concentrated on the role of media in the pandemic
development coverage, and, in addition, ref. [2] considered the role of businesses behavior.
We summarized the addressed research question in Table 3.
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Table 3. Research questions addressed by the reviewed studies.

CLD ID Research Question/Focus

(Wicher, 2020) “I focused on the media and my role, as an individual, in the COVID-19.”

(Bradley et al., 2020)
“< . . . > provide a framework to look beyond the chain of infection and better understand the
multiple implications of decisions and (in)actions in face of such a complex situation involving
many interconnected factors.”

(Sahin et al., 2020) “< . . . > visualise the complexity in managing the COVID-19 pandemic through a systems lens by
identifying the interconnectivity between health, economic, social and environmental aspects.”

(Bahri, 2020) “< . . . > provide readers a qualitative analysis how the COVID-19 may affect our susceptible
population, healthcare facilities and economy.”

(Tonnang et al., 2020) “< . . . > envision linkages between the elements of the contagion, healthcare, and the economy, and
visualize key components that characterize the whole system.”

(Klement, 2020) “< . . . > try to identify and study system structures and causal loops of the problem at hand,
integrating all relevant disciplines within an inter- and transdisciplinary approach.”

(Kontogiannis, 2021)
“< . . . > unravel the nexus of social and institutional forces that affect the parameters of ‘system
dynamics’ models < . . . >”; “< . . . > explore how CLDs, their modular blocks (i.e., system
archetypes) and leverage points could be used to model < . . . > principles of resilience.”

(Zięba, 2021) “How do businesses respond to the prolonged exposure to the COVID-19 crisis? What kind of
actions are they prone to undertake and what are the drivers of those actions?”

3.2. Common and Rare Components

In this section, we discuss similarities and differences between the components in-
cluded in the CLDs by the authors of the reviewed studies. All eight CLDs accounted for
the magnitude of the infection spread, and, in addition, studies [4,13,15,16] distinguished
between the number of actually infected people and diagnosed cases (“Certified infections
rates”1 vs. “Infectious population” [4], “Number of positive tests” vs. “Infected popula-
tion” [13], “Diagnosed” vs. “Infected” [15] and “Number of cases detected” vs. “Number
of infectious people” [16]); studies [14,15] additionally distinguished between symptomatic
and asymptomatic virus carriers. Six out of eight papers also separately accounted for
the number of COVID-19 deaths. Three papers [4,14,15] use variables that are commonly
included in SIR-type models, i.e., susceptible, recovered, and hospitalized populations [34].

The next most commonly included aspects across the eight CLDs are panic and/or
fears (accounted for by six papers, i.e., “Panic and fear” [4,12], “Anxiety, panic and
fear” [13], “Public outrage” [16], or just “Fears” [15]), as well as public awareness (“Alert-
ness “ [4], “Awareness campaign” [12], “Advisories and media reports” [15], “Effectiveness
of public health risk communication” and “Public awareness“ [16], “Situational aware-
ness” [26]), business closures (lockdowns), unemployment (or “People out of work” [4]),
impact on the healthcare system (“Hospital strain” and “Medical staff attrition” [4] “Health
care worker load” [12], “Occupied health facilities” and “Shortage of health facilities” [14,15],
“Impact on healthcare system” [26]), and social distancing (or “Avoidance of public
space“ [26])—each accounted for by five papers.

On the other hand, only two papers included the influence of the pandemic on the
environmental issues, i.e., air pollution [12,13]. The former paper also accounted for the
“Waste generation” and “CO2 concentration”. Social challenges such as (a lack of) “Trust
within communities”, “Crime and violence”, and “Racism” [12], as well as the “Conflicts
of interest” [13] appeared in only one paper, correspondingly. The role of vaccines was also
highlighted only in two papers (“Development of vaccines”, “Production with promising
but not yet certified vaccine”, and “Availability of vaccines” [4] and “Vaccination” [15]),
while [4] is the only study which accounts for the role of research institutions (“Research
institutes mobilisation”). Some issues that are generally considered important factors for
the spread of COVID-19 and its impact, for example, social and economic inequality [35,36],
are absent in all reviewed CLDs.

An exhaustive list of concepts used in all CLDs is provided in the Supplementary
Material (Table S1).
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3.3. Basic Network Properties of COVID-19 CLDs

Basic CLD network properties provide a simple indication of the system complexity.
Table 4 presents the summary statistics that includes the number of nodes, the number of
links, and the average node degree across the eight reviewed CLDs. CLDs vary significantly
in terms of the number of nodes that they include: The smallest one (17 nodes) is by [2]
who studied the business response to the COVID-19 crisis, and the largest one (78 nodes)
is by [4], who analyzed the resilience of healthcare, government, social, and economic
subsystems to the COVID-19 shock. Half of the reviewed CLDs have between 21 and
25 nodes, which corresponds to the commonly accepted standard [37].

Table 4. Comparative statistics of graph representations of the reviewed CLDs. The CLD highlighted
in italics is an outlier in terms of average degree.

CLD ID Nodes (n) Links (l) Average Degree ( 2l
n )

(Wicher, 2020) 21 37 3.52
(Bradley et al., 2020) 21 34 3.24
(Sahin et al., 2020) 38 88 4.63

(Bahri, 2020) 24 42 3.50
(Tonnang et al., 2020) 50 91 3.64

(Klement, 2020) 25 42 3.36
(Kontogiannis, 2021) 78 125 3.21

(Zięba, 2021) 17 32 3.77

Mean 34 61 3.61

Interestingly, across the reviewed CLDs, the number of links scales approximately
linearly with the number of nodes. This can be seen in Figure 1 depicting the average
node degree, which is twice the ratio of the number of links to the number of nodes.
Excluding [12] as an outlier [38]2, we obtain that across the remaining seven CLDs, the
average node degree is 3.46 ± 0.21. Such a narrow window of the average degree suggests
that in most cases, the CLD developers in these seven studies regarded three to four links
per element as an appropriate representation of the system’s complexity in the context of
their study. Study [12] involved a broader expert community into the design of their CLD,
and this seems to have resulted in a more complex CLD with a much higher number of
links and hence a higher average node degree—conceivably due to a larger heterogeneity
of the views involved in the CLD construction [31].

3.4. Major Drivers and Most Impacted Components

Following Vester, in order to understand how a complex system can be managed, it is
useful to identify active and passive components, as well as critical hubs in the correspond-
ing CLD [28]. Active components have a substantial influence on other components of the
system; changes in such components often trigger significant changes in the entire system,
hence such components are often referred to as drivers. Passive (impacted) components
tend to be sensitive to changes in other parts of the system. They can serve as indicators of
the reaction of the system to a change, while they usually have a weak influence on the
other components of the system. Critical hubs both strongly influence and are strongly
influenced by other components of the considered system and often play an essential role
in the formation of feedback loops [29].
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Figure 1. Average node degree across the reviewed CLDs as a function of their size, i.e., the number
of nodes. The blue line represents the estimated linear trend excluding the outlier [12]. The slope
is −0.004 with p-value 0.379, and hence the hypothesis that the average degree is independent on
the network size cannot be rejected at the significance level at least 99.9%. The mean average degree
value is 3.46 ± 0.21.

To identify the active and passive components in the reviewed CLDs, following the
spirit of [28], for each reviewed CLD we obtain the in- and out-degree distributions, i.e., the
observed frequencies of in- and out-degree values3 and set a threshold which marks the
highest distribution quantile. Here, we adopt the 10% right tail4. Those components, whose
in-degree/out-degree is higher than the corresponding threshold value5 are identified
as candidate active/passive components. More details of the implementation of this
procedure can be found in the Supplementary materials.

As components of a complex system typically both influence and are influenced by
other components of the system, some may have both high out- and in-degrees. To deal
with such cases, following [29], for each CLD component, we compute an active/passive
quotient (APQ), i.e., the ratio of its out-degree to the in-degree. As “truly” active and
passive components, for the further analysis, we select only those candidate active/passive
components which have APQs greater/smaller than one. Furthermore, we determine
critical hubs6 as components that have a high product of out- and in-degrees. Table 5
summarizes the definitions used.

Table 5. Classification of system components following Vester.

Active Passive Critical Hubs

Out-degree In the top decile Any Not in the top decile In the top decile
In-degree Any In the top decile Not in the top decile In the top decile

Product of in-degree and out-degree Any Any In the top decile In the top decile
Active/passive quotient >1 <1 Any 1
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Across eight CLDs, two to seven components are classified as active7. A higher out-
degree acts as an indicator of a higher importance of the component. In all reviewed
papers, except [15], the magnitude of the infection spread expressed in terms of “Number
of infected people” [26], “Infectious population” [4], “Number of positive tests” [13],
“Confirmed cases” [12], “Perceived number of infectious people” [16], or, more generally,
“Seriousness of the COVID crisis” [2] is a very important active component with the
highest or second-highest out-degree. In both studies, where the infections are the second-
ranked, the active component with the strongest influence is “(Policy) interventions” [12,13].
Government measures, “Lockdowns” and “Government imposed restrictions”, are also
important active components in [2,15], and both have the second highest out-degree in
their corresponding CLDs.

“Health system” and “Centre for Disease Control” have the highest and the second-
highest out-degree in [4,15] correspondingly.

An essential role of communication and media is reflected by the presence of “Public
attention towards COVID-19” in [26], “Effectiveness of public health risk communication”
in [16] and “Digital channels” in [15], and “Popularity of social media” in [2] among the
active components in their corresponding CLDs. “Economic activities” [12] and “Economic
pressure” [4] as well as “Unemployment” [15] also appear as important drivers in these
papers. Finally, “Research Institutes Mobilization” imposes a strong influence on the entire
system in [4].

Across the reviewed CLDs, two to nine components were classified as passive. The
public perception of the pandemic is the most critical passive component in the CLDs of [2],
expressed as “Perceived seriousness of COVID crisis”; of [12,13], expressed as “(Anxiety),
panic and fear”; and of [16], expressed as “Public outrage”. At the same time, “Chance of
getting infected” has the highest in-degree in the CLD by [26]. The CLDs of [14] and [4,16]
follow them, with “Infected droplets or surfaces”, “Infection rate”, and “Transmission
events” having the second highest in-degree, correspondingly.

The most crucial passive component of the CLD by [4] is “Capacity to respond”. At
the same time, “Budget for fight the COVID-19” has the second-highest degree in the CLD
by [26]. The most impacted component of [14]’s CLD is “Recovered population”, while
for [15], it is the “Isolated population”.

Economic effects of the pandemic impact are reflected by the presence of “GDP
loss fraction” [4], “Total demand” [15], and “Business closures” [12] among the passive
components in the corresponding CLDs. Finally, influence of the pandemic on mental well-
being is highlighted by the respective passive nodes in the CLDs of [13,14]. Interestingly,
“Immune system” is active in the CLD of [15]’s CLD and passive in the CLD of [13].

“GDP” [14,15], “Situational awareness” [26], “Symptomatic population” [14], “Dead
population” [14,15], “Isolated population” [14,15], “Hospitalized population” [4], “Mobi-
lization of policies” [4], and “Vaccination” [15] can be defined as “critical hubs” as they
impact and are impacted by many other components. For example, the numbers of symp-
tomatic, hospitalized, and isolated people depend on how fast the virus spreads, but they
also influence further contamination.

At the same time, our analysis of in- and out-degree distributions (Figure S1 in Sup-
plementary Material) shows that six out of eight reviewed CLDs demonstrate a prevalence
of transmitter variables, i.e., those with zero in-degree, over receiver variables, i.e., with
zero out-degree, thus highlighting a shock character of the COVID-19 pandemic, which is
considered as an external perturbation to a wider socioeconomic system.

A synthesis overview of active and passive components and critical hubs across all
eight CLDs is schematically presented in Figure 2. These components are essential as “they
are likely to have a bearing on a large number of issues and research questions” [39].
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Figure 2. Summary of active and passive components of the systems. Concepts in red circles
denote active components aggregated across the reviewed studies, concepts in green circles denote
aggregated passive components, and concepts in yellow circles denote aggregated critical hubs.

3.5. Structural Complexity: Motifs

To measure how the reviewed CLDs reflect system complexity beyond the basic
network statistics and to obtain insights regarding the degree to which a CLD represents a
specific type of causality [30], we measure the prevalence of certain network motifs (listed
earlier in Table 2) in each diagram.

For each of the reviewed CLDs, we generated 1000 random graphs with the same
numbers of nodes and edges as the corresponding reviewed CLD. Then, for each of the six
motif types, we calculated the expected number of motifs across the simulated random
graphs and compared it with the actually observed number of motifs in the reviewed CLD.
As a measure of motif prevalence, we chose a difference between the observed motif count
and the corresponding expected value [31]. To be able to compare among CLDs which have
different number of components and links, we standardize both the observed and expected
numbers of motifs using the mean and standard deviation of the corresponding ensemble
of random graphs (i.e., we compute z-scores) [31]. Therefore, the motif differences are
measured in the number of standard deviations (Figure 3).

Our findings illustrate that all reviewed studies accounted for more bidirectional
structures (feedback loops with two components) than might be expected. In this sense,
the most prominent study is [15]8. Six out of eight studies also had more three-component
feedback loops than corresponding random networks. Four studies underrepresented
and four studies overrepresented the moderated effects. At the same time, almost all
studies demonstrated a lower prevalence of multiple effects (with the exception of [12]) and
indirect effects (with the exception of [13]). In all studies, multiple causes were observed
less frequently than in random networks.

Additionally, we find that there is no clear pattern between a motif’s prevalence in
CLDs and its size (measured by the number of components), as well as between a motif’s
prevalence and the date of its publication, i.e., more recent CLDs do not necessarily contain
more complex causal structures than the early maps.
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Figure 3. Grey dots represent the standard score9 (z-score) of the number of motifs across 1000 real-
izations of the randomly generated graphs. The red mark depicts the actually observed indicator
standardized in the same manner, so the red mark denotes the number of standard deviations by
which the actually observed number of motifs differs from the mean of the distribution.

3.6. Good Practices of Creation and Visualization of CLDs

Here, we focus on the design procedure, availability of lists of components, links
and feedback loops, visualization, software implementation (source code), and methods
employed for the CLD analysis as important dimensions of good practice for developing
and presenting CLDs. These features are selected based on commonly used guidelines,
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e.g., [20] and our own practical experience. Table 6 summarizes how these features are
covered in the reviewed CLDs.

Table 6. Design and analysis features of the reviewed CLDs10.

CLD ID Design Procedure
List of Components, Links,

and Feedback Loops
Visualization Features

Software
Implementation

Analysis
Methods

(Wicher, 2020) Based on an
analytical article N/A Feedback loops marked N/A Feedback loops

(Bradley et al., 2020) N/A N/A The essential feedback loop is
highlighted by color Vensim Feedback loops

(Sahin et al., 2020) Based on
expert workshops Components Subsystems highlighted by colored

areas; feedback loops marked Vensim Feedback loops

(Bahri, 2020) Based on data analysis
and literature review N/A Separate CLDs of subsystems and

archetypes; feedback loops marked Vensim
Feedback loops,

system
archetypes

(Tonnang et al., 2020)
Formal description of

the
development process

Feedback loops Subsystems highlighted by colored
links; feedback loops marked Vensim Feedback loops

(Klement, 2020) Built upon existing CLD N/A Subsystems highlighted by colored
areas; feedback loops marked N/A Feedback loops

(Kontogiannis, 2021)
Built upon an existing

SIR model and
expert interviews

Feedback loops

Separate CLDs of archetypes;
archetypes highlighted by color on

the main CLD; feedback
loops marked

Vensim
Feedback loops,

system
archetypes

(Zięba, 2021)
Based on “mental

database, observation,
and intuitive approach”

N/A Feedback loops marked Vensim Feedback loops

An important prerequisite for the credibility, transparency, and replicability of a CLD
is the description of its design procedure [40]. For example, the CLD presented in [12] was
based on several expert workshops, which are briefly described in the paper’s appendix
(Appendix A) [12]. The CLD of [13] is based on this CLD. Expert workshops represent a
useful source of unique knowledge and insights to address wicked problems [41]. Infor-
mation on the workshop participants (can be anonymized) and other workshop details
is useful for the readership to fully appreciate what the CLD represents. Using a coding
procedure that formally translates participant statements into elements of a CLD can be
recommended [42]. Another way to develop a CLD can be desk research. According to
the descriptions provided, in six out of eight reviewed papers, the authors used their own
mental models complemented by literature reviews to produce their CLDs.

We argue that a comprehensive description of the system’s components (and ideally
interconnections between them) and data sources that were used to inform them is im-
portant for the CLD validation. One of the reviewed studies provided such a description
([12], Appendix A). Some papers contain literature-based evidence for justifying some key
interconnections between the components of their CLDs [2,4,13,14]. We believe that while
general knowledge can often be sufficient to draw causal links, in some cases, especially
when it involves a novel phenomenon, such as in the case of COVID-19, justifying links
with the available evidence can greatly increase the CLD’s credibility. For example, the
CLD in [13] includes a “# of positive tests”→“COVID-19 deaths” link and no “Infected
population”→“COVID-19 deaths” link. We find that this is not completely straightforward,
and as readers, we would appreciate a justification of this choice.

Using colors and other ways to evince the CLD structure often improves its compre-
hensibility [43]. Among the eight reviewed papers, three papers mark subsystems within
the considered systems: [12,13] highlight different subsystems using areas of different
colors and [15] highlights links in different subsystems using different colors11. Both
approaches seem to be helpful for better reading of the CLDs to which they were applied.

Furthermore, [4] uses different colors to highlight system archetypes, which are
commonly encountered combinations of reinforcing and balancing feedback loops, often
leading to an undesired behavior of the considered system [44,45]12. This study, along
with [14], also presents separate maps of system archetypes, which constitute the building
blocks of the full CLD. This is considered a useful practice by [20].
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At least six out of eight reviewed CLDs were implemented using Vensim software13,
which is a commonly used tool for designing CLDs (and systems dynamics models). None
of the papers provided a source file of their model. For researchers who would wish to use
a CLD developed by other authors, having such a file would save efforts on reproducing it,
especially if the CLD is rather large.

The main methodological approach to the CLD analysis in all eight reviewed papers
is based on the selection and discussion of several major feedback loops, which is a
standard practice in the field. Feedback loops are essential to understand the behavior
of a system’s model and identify potential leverage points [46,47]. CLDs can contain
thousands of feedback loops [48], however, it is often enough to discuss the most essential
ones which are relevant to the problem at hand. Moreover, it has been proposed that the
CLD dynamics are largely driven by a relatively small subset of feedback loops, namely, a
Shortest Independent Loop Set (SILS) introduced by [27] is defined as a “set of shortest
loops which are necessary to fully describe the feedback loop complexity of the model” [49].

For discussing feedback loops and their role, it is essential that each one that is referred
to is depicted separately and/or described textually in a way that allows readers to clearly
see all the constituting links [50]. For example, [4,15], two studies with the largest numbers
of feedback loops discussed, provide tables listing loops and their interpretation, which
helps readers to follow the authors’ argumentation. Moreover, [4,26] give distinctive names
to their loops, as suggested by [20], to increase the understanding of the function of each
loop. In terms of feedback loops visualization, all studies except for [16] label the discussed
feedback loops in their CLDs, which helps in following the corresponding discussion in the
paper. The commonly accepted labelling style is to use either “RX”, “BX”, or just “X”, where
“X” is the identificatory (number) of the analyzed loop, “R” refers to a reinforcing loop, and
“B” refers to a balancing loop. Two papers, [4,14], go deeper and, following [51], identify
and analyze archetypal structures in CLDs which are indicative of system modularity [52].

Feedback loops and systemic archetypes enable a better understanding of some of the
challenges which make the COVID-19 pandemic a wicked problem. This type of analysis
shows the capability of systems thinking to be of particular use to make a step towards
problem structuring [53]. Furthermore, it can help to identify leverage points, which can
steer the systems towards a desired goal or away from an undesired behavior [47]. This is
explicitly emphasized in two of the reviewed papers [4,12].

4. Discussion and Conclusions

In this paper, we analyzed eight studies aimed to illustrate the complexity and multi-
dimensionality of the COVID-19 crisis using a practical tool of systems thinking—causal
loop diagrams (CLDs). Here, we highlight some of the observations. First, we observed
that the key components of the reviewed CLDs are consistent across all eight studies,
however, different studies put different emphases on the main drivers and main affected
components of the analyzed systems. This diversity of both drivers and affected variables
supports the need for a transdisciplinary response to the pandemic [13].

The insights on common and rare components (Section 3.2), as well as on drivers
and the most affected elements (Section 3.4) can be useful for future CLD developers and
quantitative modelers to guide their research. For example, CLD analysts may decide to
focus on gaps revealed in the existing CLDs, e.g., inequality, or they may choose to focus on
the most important components to dig deeper into their dynamics and impacts. However,
the scope of some CLDs could be quite narrow, and therefore, reusing concepts from them
for a more general study should be done carefully.

Quantitative modeling and in particular systems dynamics (SD) modeling [21] can
benefit from this review, as modelers can use the discussed CLDs a basis for their models.
The author of [4] supports this point of view: “[CLDs] have the potential to be converted
into Stock and Flow diagrams that allow quantification of results”. For example, CLDs
can be used to extend the traditional SIR-type system dynamic models to make them
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more realistic and useful for decision making [22]. The most essential system components
identified in this review can guide the choice of variables in models.

Our insights in this part can also be useful for policy makers. The analysis of drivers
(Section 3.4) can indicate candidate leverage points for the mitigation of the adverse
consequences of COVID-19 and improve the resilience of the socioeconomic system to
“provide a basis for effective response to the control of the pandemic” [4] and “bounce
forward” from the shock caused by the pandemic [7]. The analysis of the most impacted
components carried out in the same subsection can draw the attention of policy makers to
areas where unintended and unwanted effects may be anticipated.

Second, we observed that the average number of links per node across the reviewed
CLDs does not depend on the diagram size (Section 3.3). We proposed that this might
be because the CLD developers regarded three to four links per node as an appropriate
representation of complexity in their studies. This and other observations discussed in
Section 3.3 can be useful for future developers of CLDs in the context of COVID-19 for
benchmarking their models and planning their efforts and scope.

Third, we revealed a higher-than-expected prevalence of two- and three-component
feedback loops in the reviewed CLDs (Section 3.5). This is different from the results
obtained by [30], which found a low prevalence of these feedback structures in cognitive
maps developed in the context of sustainable agriculture. This difference can be explained
by the fact that the CLDs that we reviewed were developed by researchers familiar with
systems thinking, which, according to [30], leads to a higher complexity of the developed
cognitive models. Furthermore, in the same subsection and consistently with [30], almost
all of the CLDs that we reviewed underrepresent “multiple effects” and “indirect effects”
motifs, and they also underrepresent “multiple causes” motifs, which are, on the contrary,
prevalent in [30]. The latter fact can probably be attributed to the novelty of the COVID-19
pandemic. Interestingly, while all authors discuss the feedback loops identified in their
CLDs, none of them explicitly analyze multiple causes or effects for any components
of the considered system14. This could be attributed to the fact that humans tend to
perceive effects as more abstract and distant phenomena than causes, as suggested by
the construal-level theory [54]. These observations can be useful for CLD developers for
benchmarking their analysis as well as for researchers generally focusing on complexity
and systems thinking.

Fourth, our observations made in Section 3.6 on good practices of development, pre-
sentation and analysis of CLDs can be helpful for future CLD developers. In terms of
CLD development, we suggested that a detailed description of the design procedure en-
hances trust in the developed CLD. In terms of CLD presentation, highlighting meaningful
subsystems of a large system helps reading a complex CLD. Finally, in terms of analysis,
feedback loops and other smaller structures which constitute CLD building blocks such as
archetypes and motifs can shine the light on the system complexity and help understand
its behavior.

We conclude that despite the numerous recent calls to use systems thinking for ad-
dressing the complexity of the COVID-19 crisis, its practical applications are currently
scarce; for example, [2] notes in this regard that “systems thinking approach to analyze
the consequences of the COVID-19 outbreak is relatively novel and not extensively used”.
More recent studies generally do not contain more complex causal structures than the
earlier ones. Therefore, we assume that they do not build upon the past models. Only one
of the reviewed CLDs is explicitly based on another existing CLD. A plausible explanation
of this fact is that CLDs are often developed for a specific purpose with a further aim to
inform a more sophisticated model or analysis. However, we are not aware if any of the
reviewed CLDs have been used for such a purpose up to the date of our writing.

We suggest (Section 3.6) that CLDs could benefit from a rigorous description of the
development procedure and information sources used. This would improve their credibility
and enable other researchers to enhance them further or conduct other types of analysis.
Moreover, sharing the model source file can also be beneficial, especially since most of the
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reviewed maps showed consistency in the most important components and interactions
and the degree of their complexity. Therefore, the reusability of CLDs could be key to
enhance the efficiency of research efforts and/or to promote more advanced studies.

Being a useful systems-thinking tool, CLDs also have a series of limitations. As with
every model, a CLD constitutes a major simplification of the considered real system. CLDs
do not distinguish stocks and flows, which, along with the feedback structures, are the
essential concepts in modeling systems behavior [20,46]. CLDs are inherently static and
therefore cannot account for the dynamics of the modeled system, i.e., behavior over
time [46]15, without being translated into a computer simulation model. CLDs invite users
for a mental simulation, which, however, can be challenging even for relatively simple
CLDs [20].

Notwithstanding these limitations, we argue that the reviewed papers demonstrate the
power of systems thinking to inform a holistic picture of the pandemic’s impact on a broader
socioeconomic system. Indeed, CLDs are helpful for an initial exposition of the complexities
brought about by COVID-19 for policymakers and the general public. They promote critical
thinking [53] and show how deeply the pandemic affects all areas of human activity and
that there is no easy “silver bullet” to solve this wicked problem [55], thus calling for a
transdisciplinary approach. We suggest that building more comprehensive CLDs and
having formal tools for their analysis [27,43,49] can further unleash the potential of systems
thinking to inform decision making in circumstances of a wicked problem, such as the
COVID-19 crisis—either as a standalone tool or as an input to more sophisticated models
and analyses. As no single modelling approach can serve as a panacea for addressing a
complex policy issue, CLDs should ideally be used in combination with other methods
and models to provide reliable policy advice.
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Notes

1 Here, and in what follows, the names of CLD components in quotation marks are those originally used by their authors in the
reviewed publications.

2 The average node degree of the CLD from [12] constitutes 2.2 standard deviations from the mean of the ensemble of the eight
CLDs under review. A threshold of two standard deviations is often considered enough to determine outliers in small-size
samples [38].

3 These can be computed as sums of the absolute values of rows and columns of the respective adjacency matrices.
4 The 10% threshold is our choice to delimit a group of the most impacting/impacted components from the others. We show this

in the distribution plots of the in- and out-degrees for each reviewed CLD (Supplementary Materials Figure S1).
5 If several components with the same degree were divided by the top decile, all of them were considered.
6 Vester originally classified all components with a high product of in- and out-degrees as critical, thus often including active and

passive components. In this review, we emphasize the role of components, which are both systems drivers and indicators, but
formally could not be classified as either active or passive. Formally we included components which either (i) have different in-
and out-degrees less than top deciles or (ii) have equal in- and out-degrees in the top deciles, and, at the same time, have the
product of in-degree and out-degree in the top deciles of the corresponding distributions of in- and out-degrees for each CLD.
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Vester also considers buffer components which have a low product of in- and out-degrees. These are beyond of scope of our
analysis.

7 The CLD by [14] does not have any active components fulfilling our criteria.
8 Their CLD contained eight standard deviations more of the bidirectional structures than the random networks’ mean.
9 A linear transformation of raw data that provides that the mean and the variance of the distribution are 0 and 1, correspondingly.

The standard score thus gives the number of standard deviations by which the actual data point is above or below the mean
value.

10 Table entries marked with “N/A” indicate that the corresponding aspect has been neither explicitly articulated by the authors or
the reviewed studies nor it could be identified straightforward by the review authors.

11 We assume that the authors of the reviewed CLDs have defined such subsystems a priori classifying components substantially,
e.g., economic, social, healthcare, etc. However, it is also possible to recognize subsystems after a CLD has been developed, for
example, using graph clustering methods.

12 Usually four generic problem archetypes are specified [45]: (i) the underachievement, (ii) relative achievement, (iii) relative
control, and (iv) out-of-control. While also being “building blocks” of CLDs containing few components, these are different to
motifs discussed in Section 3.5.

13 Three studies mention this explicitly, while the CLDs of three more studies have a typical visual appearance, which allowed us to
attribute them to this software.

14 Analysis of multiple causes and multiple effects (along with detection of feedback loops) for each component of a CLD can be
performed using Vensim software (which was used to develop the majority of the reviewed CLDs and is commonly used for this
purpose).

15 Although six out of eight reviewed CLDs account for time delays for some of the links helping to qualitatively understand the
speed of impact propagation, this still does not enable a formal analysis of the modeled systems’ dynamics.
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2. Zięba, K. How can systems thinking help us in the COVID-19 crisis? Knowl. Process Manag. 2021, 1–10. [CrossRef]
3. The OECD Forum Network towards a People-Centred, Inclusive, and Sustainable COVID-19 Recovery: OECD Launches the

Centre on Well-Being, Inclusion, Sustainability and Equal Opportunity (WISE). Available online: https://www.oecd-forum.
org/posts/towards-a-people-centred-inclusive-and-sustainable-covid-19-recovery-oecd-launches-the-centre-on-well-being-
inclusion-sustainability-and-equal-opportunity-wise (accessed on 18 December 2020).

4. Kontogiannis, T. A qualitative model of patterns of resilience and vulnerability in responding to a pandemic outbreak with
system dynamics. Saf. Sci. 2021, 134, 105077. [CrossRef]

5. Ilmola-Sheppard, L.; Strelkovskii, N.; Rovenskaya, E.; Abramzon, S.; Bar, R. A Systems Description of the National Well-Being
System. Available online: http://pure.iiasa.ac.at/id/eprint/16318/ (accessed on 2 September 2021).

6. Ioannidis, J.P.A. Coronavirus disease 2019: The harms of exaggerated information and non-evidence-based measures. Eur. J. Clin.
Investig. 2020, 50, e13222. [CrossRef] [PubMed]

7. Hynes, W.; Trump, B.; Love, P.; Linkov, I. Bouncing forward: A resilience approach to dealing with COVID-19 and future systemic
shocks. Environ. Syst. Decis. 2020, 40, 174–184. [CrossRef]

8. Reynolds, S. COVID-19 Means Systems Thinking Is No Longer Optional. Available online: https://www.thinknpc.org/blog/
covid-19-means-systems-thinking-is-no-longer-optional/ (accessed on 22 July 2021).

9. Haley, D.; Paucar-Caceres, A.; Schlindwein, S. A Critical Inquiry into the Value of Systems Thinking in the Time of COVID-19
Crisis. Systems 2021, 9, 13. [CrossRef]

10. Jackson, M.C. How We Understand “Complexity” Makes a Difference: Lessons from Critical Systems Thinking and the Covid-19
Pandemic in the UK. Systems 2020, 8, 52. [CrossRef]

11. Hassan, I.; Obaid, F.; Ahmed, R.; Abdelrahman, L.; Adam, S.; Adam, O.; Yousif, M.A.; Mohammed, K.; Kashif, T. A Systems
Thinking approach for responding to the COVID-19 pandemic. East. Mediterr. Health J. 2020, 26, 872–876. [CrossRef]

12. Sahin, O.; Salim, H.; Suprun, E.; Richards, R.; MacAskill, S.; Heilgeist, S.; Rutherford, S.; Stewart, R.A.; Beal, C.D. Developing a
Preliminary Causal Loop Diagram for Understanding the Wicked Complexity of the COVID-19 Pandemic. Systems 2020, 8, 20.
[CrossRef]

13. Klement, R.J. Systems Thinking About SARS-CoV-2. Front. Public Health 2020, 8, 1–6. [CrossRef] [PubMed]
14. Bahri, M. The Nexus Impacts of the COVID-19: A Qualitative Perspective. Preprints 2020, 2020050033. [CrossRef]
15. Tonnang, H.; Greenfield, J.; Mazzaferro, G.; Austin, C.C. COVID-19 Emergency Public Health and Economic Measures Causal

Loops: A Computable Framework. SSRN Electron. J. 2020. [CrossRef]
16. Bradley, D.T.; Mansouri, M.A.; Kee, F.; Garcia, L.M.T. A systems approach to preventing and responding to COVID-19. EClini-

calMedicine 2020, 21, 100325. [CrossRef]
17. Taylor, I.; Masys, A.J. A System Dynamics Model of COVID-19 in Canada: A Case Study in Sensemaking. In Sensemaking for

Security; Masys, A.J., Ed.; Springer: Cham, Switzerland, 2021; pp. 179–199.

27



Systems 2021, 9, 65

18. Sy, C.; Ching, P.M.; San Juan, J.L.; Bernardo, E.; Miguel, A.; Mayol, A.P.; Culaba, A.; Ubando, A.; Mutuc, J.E. Systems Dynamics
Modeling of Pandemic Influenza for Strategic Policy Development: A Simulation-Based Analysis of the COVID-19 Case. Process
Integr. Optim. Sustain. 2021, 1–14. [CrossRef]

19. Niwa, M.; Hara, Y.; Sengoku, S.; Kodama, K. Effectiveness of Social Measures against COVID-19 Outbreaks in Selected Japanese
Regions Analyzed by System Dynamic Modeling. Int. J. Environ. Res. Public Health 2020, 17, 6238. [CrossRef]

20. Sterman, J.D. Business Dynamics: System Thinking and Modeling for a Complex World; Irwin McGraw-Hill: Boston, MA, USA, 2001.
21. Homer, J.; Oliva, R. Maps and models in system dynamics: A response to Coyle. Syst. Dyn. Rev. 2001, 17, 347–355. [CrossRef]
22. Kumar, A.; Priya, B.; Srivastava, S.K. Response to the COVID-19: Understanding implications of government lockdown policies.

J. Policy Model. 2021, 43, 76–94. [CrossRef] [PubMed]
23. Adamu, A.A.; Jalo, R.I.; Habonimana, D.; Wiysonge, C.S. COVID-19 and routine childhood immunization in Africa: Leveraging

systems thinking and implementation science to improve immunization system performance. Int. J. Infect. Dis. 2020, 98, 161–165.
[CrossRef]

24. Shahabi, V.; Azar, A.; Faezy Razi, F.; Fallah Shams, M.F. Simulation of the effect of COVID-19 outbreak on the development of
branchless banking in Iran: Case study of Resalat Qard–al-Hasan Bank. Rev. Behav. Financ. 2020, 13, 85–108. [CrossRef]

25. Zieba, K. How can Systems Thinking Help Us Handling the COVID-19 Crisis? In Proceedings of the 21st European Conference
on Knowledge Management ECKM 2020, Coventry, UK, 3–4 September 2020.

26. Wicher, D. The COVID-19 Case as an Example of Systems Thinking Usage. Available online: https://agilejar.com/2020/03/a-
great-example-of-systems-thinking-covid-19-case/ (accessed on 22 July 2021).

27. Oliva, R. Model structure analysis through graph theory: Partition heuristics and feedback structure decomposition. Syst. Dyn.
Rev. 2004, 20, 313–336. [CrossRef]

28. Vester, F. The Art of Interconnected Thinking; MCB Publishing House: München, Germany, 2007.
29. Forgie, V.E.; van den Belt, M.; McDonald, G.W. Extending the Boundaries of Economics to Well-Being: An Interlinked Thinking

Approach. In Feedback Economics; Cavana, R.Y., Dangerfield, B.C., Pavlov, O.V., Radzicki, M.J., Wheat, I.D., Eds.; Springer: Cham,
Switzerland, 2021; pp. 521–544.

30. Levy, M.A.; Lubell, M.N.; McRoberts, N. The structure of mental models of sustainable agriculture. Nat. Sustain. 2018, 1, 413–420.
[CrossRef]

31. Aminpour, P.; Gray, S.A.; Singer, A.; Scyphers, S.B.; Jetter, A.J.; Jordan, R.; Murphy, R.; Grabowski, J.H. The diversity bonus in
pooling local knowledge about complex problems. Proc. Natl. Acad. Sci. USA 2021, 118, e2016887118. [CrossRef] [PubMed]

32. Butts, C.T. Social network analysis: A methodological introduction. Asian J. Soc. Psychol. 2008, 11, 13–41. [CrossRef]
33. Aminpour, P.; Schwermer, H.; Gray, S. The relationship between social identity and cognitive diversity in environmental

stakeholders. PsyArXiv 2021. [CrossRef]
34. Bärwolff, G. Mathematical Modeling and Simulation of the COVID-19 Pandemic. Systems 2020, 8, 24. [CrossRef]
35. Ahmed, F.; Ahmed, N.; Pissarides, C.; Stiglitz, J. Why inequality could spread COVID-19. Lancet Public Health 2020, 5, e240.

[CrossRef]
36. Stok, F.M.; Bal, M.; Yerkes, M.A.; de Wit, J.B.F. Social Inequality and Solidarity in Times of COVID-19. Int. J. Environ. Res. Public

Health 2021, 18, 6339. [CrossRef] [PubMed]
37. Betley, E.; Sterling, E.; Akabas, S.; Gray, S.; Sorensen, A.; Jordan, R.; Eustice, C. Modeling links between corn production and beef

production in the United States: A systems thinking exercise using mental modeler. Lessons Conserv. 2021, 11, 26–32.
38. Wilcox, R.R. The Normal Curve and Outlier Detection. In Fundamentals of Modern Statistical Methods; Springer: New York, NY,

USA, 2010; pp. 29–45.
39. Niemeijer, D.; de Groot, R.S. A conceptual framework for selecting environmental indicator sets. Ecol. Indic. 2008, 8, 14–25.

[CrossRef]
40. Kim, H.; Andersen, D.F. Building confidence in causal maps generated from purposive text data: Mapping transcripts of the

Federal Reserve. Syst. Dyn. Rev. 2012, 28, 311–328. [CrossRef]
41. Vennix, J.A.M. Group Model Building: Facilitating Team Learning Using System Dynamics; John Wiley & Sons Ltd.: Chichester, UK,

1996; ISBN 978-0-470-86668-9.
42. Eker, S.; Zimmermann, N. Using Textual Data in System Dynamics Model Conceptualization. Systems 2016, 4, 28. [CrossRef]
43. Stämpfli, A. A Domain-Specific Language to Process Causal Loop Diagrams with R. In Operations Research Proceedings 2019.

Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, 4–6 September
2019; Neufeld, J.S., Buscher, U., Lasch, R., Möst, D., Schönberger, J., Eds.; Springer International Publishing: Berlin/Heidelberg,
Germany, 2020; pp. 651–657.

44. Schoenenberger, L.; Schmid, A.; Tanase, R.; Beck, M.; Schwaninger, M. Structural Analysis of System Dynamics Models. Simul.
Model. Pract. Theory 2021, 110, 102333. [CrossRef]

45. Wolstenholme, E.F. Towards the definition and use of a core set of archetypal structures in system dynamics. Syst. Dyn. Rev. 2003,
19, 7–26. [CrossRef]

46. Lane, D.C. The emergence and use of diagramming in system dynamics: A critical account. Syst. Res. Behav. Sci. 2008, 25, 3–23.
[CrossRef]

47. Saleh, M.; Oliva, R.; Kampmann, C.E.; Davidsen, P.I. A comprehensive analytical approach for policy analysis of system dynamics
models. Eur. J. Oper. Res. 2010, 203, 673–683. [CrossRef]

28



Systems 2021, 9, 65

48. Kampmann, C.E. Feedback loop gains and system behavior (1996). Syst. Dyn. Rev. 2012, 28, 370–395. [CrossRef]
49. Schoenberg, W. LoopX: Visualizing and understanding the origins of dynamic model behavior. arXiv 2019, arXiv:1909.01138.
50. Dhirasasna, N.; Sahin, O. A Multi-Methodology Approach to Creating a Causal Loop Diagram. Systems 2019, 7, 42. [CrossRef]
51. Senge, P.M. The Fifth Discipline: The Art and Practice of the Learning Organization; Doubleday: New York, NY, USA, 1990;

ISBN 1368304091100.
52. Schoenenberger, L.; Schmid, A.; Schwaninger, M. Towards the algorithmic detection of archetypal structures in system dynamics.

Syst. Dyn. Rev. 2015, 31, 66–85. [CrossRef]
53. Cavana, R.Y.; Mares, E.D. Integrating critical thinking and systems thinking: From premises to causal loops. Syst. Dyn. Rev. 2004,

20, 223–235. [CrossRef]
54. Trope, Y.; Liberman, N. Construal-level theory of psychological distance. Psychol. Rev. 2010, 117, 440–463. [CrossRef] [PubMed]
55. WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. Available online: https://www.who.int/

director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---3-august-20
20 (accessed on 29 July 2021).

29





systems

Article

Effectiveness of the Early Response to COVID-19:
Data Analysis and Modelling

Edoardo Bertone 1,2,*, Martin Jason Luna Juncal 1, Rafaela Keiko Prado Umeno 3,

Douglas Alves Peixoto 3, Khoi Nguyen 2,3 and Oz Sahin 2,3

1 School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia;
martin.lunajuncal@griffithuni.edu.au

2 Cities Research Institute, Griffith University, Southport, QLD 4222, Australia;
k.nguyen@griffith.edu.au (K.N.); o.sahin@griffith.edu.au (O.S.)

3 KODE Consulting, Parkwood, QLD 4214, Australia; rafaela.keiko@gmail.com (R.K.P.U.);
kode.consulting2020@gmail.com (D.A.P.)

* Correspondence: e.bertone@griffith.edu.au; Tel.: +61-07555-28574

Received: 6 May 2020; Accepted: 16 June 2020; Published: 18 June 2020

Abstract: Governments around the world have introduced a number of stringent policies to try to
contain COVID-19 outbreaks, but the relative importance of such measures, in comparison to the
community response to these restrictions, the amount of testing conducted, and the interconnections
between them, is not well understood yet. In this study, data were collected from numerous online
sources, pre-processed and analysed, and a number of Bayesian Network models were developed,
in an attempt to unpack such complexity. Results show that early, high-volume testing was the
most crucial factor in successfully monitoring and controlling the outbreaks; when testing was low,
early government and community responses were found to be both critical in predicting how rapidly
cases and deaths grew in the first weeks of the outbreak. Results also highlight that in countries
with low early test numbers, the undiagnosed cases could have been up to five times higher than the
officially diagnosed cases. The conducted analysis and developed models can be refined in the future
with more data and variables, to understand/model potential second waves of contagions.

Keywords: Bayesian Networks; COVID-19; pandemic; system thinking

1. Introduction

Based on official estimates, as of early May 2020, there are over 3,000,000 cases of COVID-19
worldwide with over a quarter of a million deaths. Such numbers are the result of a disease with a
much higher (around 1%) fatality rate than a typical seasonal influenza [1]. Furthermore, it is caused
by a virus (SARS-CoV-2) that is transmitted very efficiently, including by people who are only mildly
ill or presymptomatic [2]. This high transmission ability by relatively healthy people makes it very
difficult to contain the COVID-19 outbreak.

At the time of writing, most governments around the world have taken numerous actions in
response to the COVID-19 pandemic to try to “flatten the curve”, i.e., reduce the transmission rate in
order to have a number of cases spread over a longer period of time. This is to avoid overcrowding
hospitals over a short-term period, while also buying time to better prepare the country through more
dedicated tools and facilities and better testing/tracing capabilities, with the end goal of “holding on”
until a vaccine or an effective cure is developed. The magnitude and timing of government responses
have varied remarkably. Countries such as Italy established a very heavy lockdown, with significant
economic consequences, while other countries such as Sweden have adopted a lighter approach,
with very limited restrictions and in turn, lower direct economic impacts. Of equal importance, is how
society, and each individual, has reacted to the pandemic threat and adapted their lifestyle to the
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newly imposed rules or recommendations. Although it is proven that residents of heavily affected
areas suffered from anxiety, stress, and other mental health issues [3], recent research also shows that
the community response to COVID-19-related physical distancing measures is not necessarily high,
and can vary considerably based, for instance, on a community’s education and trust in science [4].

In synthesis, it is sensible to state that the effectiveness of a government response to the COVID-19
outbreak relies on its people, and that in turn, the community response is affected by the way their
government handles the pandemic crisis, starting from how much and how consistently the importance
of respecting restrictions is highlighted through different media outlets.

These complex interactions and the interconnectedness between government response, population
response, COVID-19 cases, and deaths, and in turn, community mental health, country economy,
climate, pollution, education system, population density, population age distribution, global travels,
etc., makes understanding the causes and effects of the COVID-19 pandemic almost impossible with
traditional approaches and with available data. Consequently, a systems thinking approach [5]
is recommended to better quantify and understand such complex behaviours. This has been
previously used by some authors to model complex multi-disciplinary problems [6,7]. A conceptual
model, i.e., casual loop diagram, illustrating all the factors affecting the COVID-19 pandemic
system, has been developed elsewhere [8]. Several of the aforementioned variables across the
environmental-health-socio-economic subsystems are inherently difficult to numerically quantify;
however, for some key variables, such as government and community responses, data currently exist
through a number of online resources or other research studies. Therefore, by using a combination of
traditional data-driven analyses and more complex systems approaches, such as Bayesian Networks [9],
it was possible to model a small sub-system within the larger, overall COVID-19 pandemic network, to
gain a better understanding and quantification of why certain countries have faster outbreaks and/or
more deaths at this point in the pandemic crisis.

2. Results

2.1. Data Analysis Outputs

Firstly, Figure 1 illustrates a breakdown of countries hit the most by COVID-19 as of mid-April,
based on how quickly the virus went out of control and caused several deaths. Specifically, it shows
how many days passed before significant negative milestones, in terms of death counts, were reached.
For every figure presented, the bullets represent the actual measurements whilst the lines are simply
connecting the bullets for visual clarity.

Spain was the country that recorded the fastest spike in deaths, with only 31 days between
recording the 100th case and 10,000 official deaths. Following Spain, Italy recorded the second quickest
high death count, followed by the USA, France, and the UK, respectively. Following the 10,000 deaths
milestone in Europe, both Italy and Spain were more successful than the UK and France in slowing
down the death rate. Similarly, though the USA trajectory was the same, the exponential increase in
deaths continued past the first 10,000 deaths, reaching the sad milestone of 20,000 deaths far quicker
than any other country. In contrast, Germany recorded lower and later deaths at the beginning of the
outbreak, as well as a slower increase in death count. Canada and Sweden had even an even slower
and more delayed death count, while at the time of writing, Japan recorded only a few hundred deaths,
which also started to accumulate well after the first few registered COVID-19 cases.

Figure 2 illustrates how prompt the overall response of different governments was in the early
stages of their respective national COVID-19 outbreaks. A complete figure showing the overall time
series based on normalized (Figure A1) and overall (Figures A2 and A3) number of cases, as per
10 April 2020 is provided in the Appendix A.

The lowest government action (GA—refer to Section 4.2) early scores were from Scandinavian
governments, such as in Sweden and Norway. Spain, Italy, France, and Germany followed thereafter.
The quickest countries to implement measures were Saudi Arabia, UAE, Japan, the USA, and Canada.
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Australia had a moderate early response, though a constant stepwise introduction of new measures
quickly made it the country with the highest GA score. Noticeably, these charts put the government
action in perspective, based on the country population. Australia has a population which is about 13
times lower than the USA; hence, if the government action score was compared against the absolute
number of cases, Australia would comparatively have a much prompter and earlier response, while
the USA would plummet in this ranking (Figures A2 and A3). In Appendix A, the same charts for the
Stringency Index [10,11] are presented for comparison purposes (Figures A4–A6). The trends are quite
similar with the main differences being France, Italy, and Spain having comparatively a higher early SI
than GA, while the USA, UAE, and Australia had lower SI scores in comparison to their respective
GA results.

Figure 1. Number of days (starting from the day when 100 COVID-19 cases were recorded) before n
COVID-19 deaths were recorded, where n is displayed along the x-axis (capped at 20,000 deaths).

Figure 2. Overall government action score for different countries vs. recorded number of cases in
proportion to country’s population, limited to 0.05%.
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Figure 3, in contrast, displays the calculated overall population action score (refer to Section 4.2),
and its variation over time during the early stages of the outbreak.

Figure 3. Overall population action score for different countries vs. recorded number of cases in
proportion to country’s population.

Both the UK and the USA started with very low scores, with values increasing over time to
low-to-medium range values, with the UK score then decreasing again. Despite appearing to have
an early and steep score increase, the large populations of the USA and UK compared to the other
countries shown in Figure 3 highlights that their increase in population score was not particularly
prompt when considering the absolute number of cases (Appendix A—Figure A7), but instead it
occurred when several cases were already recorded. Germany and Sweden, although slightly better,
recorded low scores and little improvement over time, while France started low but had a more
significant improvement as cases increased. Canada, Italy, and Singapore had moderate initial scores,
with improvements over time (Italy did not have early data as the outbreak in the country began before
the survey study commenced). Japan, the UAE, and Saudi Arabia all had very high scores, although
the latter showed a decrease over time.

Figure 4 displays the total number of reported tests performed over time in relation to the number
of recorded cases.

A stark difference can be noticed between Australia, Germany, and Canada, and other countries
such as the UK, USA, Sweden, Italy, and France. By the time 5000 cases were recorded in each country
of the former group, approximately three times more tests were performed than by the countries in the
latter group. Japan’s testing numbers fall between the two aforementioned groups. Countries with no
or limited data to more recent days (e.g., Spain or UAE) are not shown in Figure 4.

Relating to the above figure, Figure 5 displays the relationship between the amount of testing
performed and the number of patients recovered in intensive care units (ICUs) at a specific point in
time, when 5000 cases were officially recorded.

A non-linear negative relationship is evident, illustrating that countries with very low number
of patients in ICUs, such as Australia, Germany, and the UAE, were, with the exception of the USA,
those who performed the highest number of early tests. All countries recording high numbers of ICUs
(e.g., Italy, Sweden, France) also performed the lowest number of early tests. As shown in later tables
(Table 1) and Appendix charts (Figure A9), those countries with higher patients in ICUs and lower
testing had a shorter time delay between the number of cases and number of deaths.
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Figure 4. Number of COVID-19 tests performed by different nations before n cases were recorded,
where n varies along the x-axis.

Figure 5. Relationship between the number of tests performed at the time 5000 COVID-19 cases were
recorded, and the number of patients in ICUs at the time 5000 cases were recorded. Only countries
with available data that recorded at least 5000 cases at the time of writing were included.

Table 1. Qualitative summary of the results and data for each analysed country.

Country
Days Before

10,000 Deaths
Early ICU Early Gov

Action
Early SI Early Pop

Action

Early
Testing

Lag to Death

(R2)

Australia L H M L but + H 7 (0.53)
Canada M H H M H 14 (0.9)
France 36 H L M L L 6, 14 (~0.5)

Germany L L L L H 12 (0.91)
Italy 34 H L H H L 6 (0.94)
Japan M L but + M H M 10 (0.71)

Norway M M L but + L 12 (0.62)
Saudi
Arabia H H H but − 8 (0.69)

Spain 31 L M L 2 (0.94)
Sweden H L L L L 7 (0.79)

UAE L M H H H 8 (0.74)
UK 38 H M M L L 7 (0.92)

USA 35 L H M L L 7 (0.97)

“H” = high; “M” =medium; “L” = low; “+” = increasing with time; “−” = decreasing with time; blank = no data.
“Lag to death” = number of days between number of cases and number of death providing the highest correlation.
R2 = coefficient of determination.
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2.2. Bayesian Network Outputs

Figures 6 and 7 show the sensitivity analysis outputs of the Bayesian Network (BN) models,
which were developed to predict the number of days before 5000 cases were reached (BN 1), and the
number of days (starting from the day when 100 cases were recorded) before 1000 deaths were reached
(BN 2). The numbers “0.02” and “0.05” relate to the % of cases (0.02% and 0.05%) against the total
country population, as per Figures 2 and 3. In the figures, variables are ranked from those having
the highest variance of beliefs (thus higher sensitivity) to those having the lowest one. Although the
two BNs can be used to predict the two aforementioned variables, the focus in this section is on the
sensitivity analysis since, rather than predicting, the main objective was to try to understand what
factors cause a more (or less) rapid spread of the virus in the analysed countries. Sensitivity analysis
made it possible to rank the different input variables in terms of their importance in affecting such
spread, and thus they fulfil the purpose of identifying those population/government actions that most
successfully helped reduce the diffusion rate of the virus.

Figure 6. Sensitivity analysis outputs from BN 1, for the target node (days before 5000 cases). BN child
nodes ordered from left to right based on variance of beliefs score.

It can be noticed that early (i.e., at 0.02% and at 5000 cases) government action is the most
important factor in predicting the number of days before 5000 cases are recorded, since they are
the two variables with the highest variance of beliefs. Conversely, the very early population action
(0.02%) was much more important than population action at 0.05%, meaning that the way individuals
behaved since the very beginning of the outbreak was crucial in establishing the transmission rate of
the virus; however, the government response was even more crucial. Importantly, three out of the six
most important variables were related to early number of tests. Finally, SI related variables were less
important compared to the equivalent GA ones, providing an indication that the herein developed
GA better captures the relevance of government actions in relation to the early transmission rate of
the virus.

In relation to Figure 7, the three most important variables (i.e., with highest variance of beliefs)
were all related to an early population response. Very early testing and stringency related variables
followed, but with considerably lower importance (i.e., lower variance of beliefs). Overall, it appears
that, while early testing amount emerged as important for predicting both early cases and early deaths,
early government action was found to be significant in predicting/controlling early cases, while early
population action was more important in predicting the early number of deaths.
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Figure 7. Sensitivity analysis outputs from BN 2, for the target node (days before 1000 deaths following
100 cases). BN child nodes ordered from left to right based on variance of beliefs score.

3. Discussion

The table below (Table 1) qualitatively summarises the data presented in the Results section for
each country. At the time of writing, only France, Italy, Spain, the UK, and USA had reached 10,000
COVID-19 related deaths. Interestingly, all of them have a very low amount of early testing performed,
as well as poor government or population responses (or both). Lack of early high testing numbers
seems to emerge as a crucial, missing action that resulted in an uncontrolled, rapid spread of the virus.
The more early, timely, and targeted tests, the more people with mild symptoms could be identified,
thus isolating them before they could spread the virus further. Unlike previous outbreaks such as
Ebola, the lethality of COVID-19 is significantly lower and usually results in mild to no symptoms
for most infected people. As a result, it is much more difficult to identify and control. Therefore,
it is logical that a lack of appropriate amounts of testing in the early days of the outbreak did not
allow those countries to contain the virus. The under-detection of infected patients is clear from the
significantly higher number of patients in ICUs, given the same overall number of cases diagnosed.
Early studies [12] showed that approximately 4% of symptomatic patients in different Asian countries
had to go through the ICU; in Italy, once the number of daily tests was finally boosted throughout
April, the proportion of ICU patients compared to the total active cases followed a decreasing trend,
from 4% towards 2%. With statistical studies and early serological surveys showing that the true
number of infected, and particularly asymptomatic patients being significantly higher than reported
through tests [13], it is safe to say that the number of patients in ICU would represent much less than
2% of the real, total amount of infected people. Regardless, even if 2% is taken as a reference, given 462
patients had already recovered in Italian ICUs at the time 5000 cases were detected, this translates to
a more realistic figure of infected patients being over 23,000, which is almost five times higher than
the official 5000 recorded cases, resulting from only 42,000 tests. With over 18,000 untested cases and
the vast majority of them most likely having mild or no symptoms, while also being able to move
around for several days before the first major lockdown rules were established on 9 March 2020, the
Italian COVID-19 outbreak was already well underway and unnoticed before significant action could
be taken. Our results from Figure 6 illustrate that early government action is crucial in controlling the
speed of the outbreak, especially if early tests were limited: this is sensible since early government
responsiveness could have helped in Italy and other countries to better control the untested, infected
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citizens who likely contributed significantly to the spread. Instead, the consequence was an early
overcrowding of hospitals, leading to an extremely high number of deaths. The shorter lag between
the time series of daily cases and daily deaths supports this hypothesis, since it seems that due to
overcrowding and unpreparedness, hospitalised and ICU patients had less support and lower chances
of survival, with only a week passing between the peaks in cases and peaks in deaths. This is similar
for the other hard-hit European countries. Our findings from Figure 7 point at the early response of
the population as critical in limiting the number of deaths within the first few weeks of the outbreak;
with the death toll being a more robust measure of the diffusion of the virus, compared to the number
of cases (biased and proportional to the number of tests performed), the citizen’s risk perception of the
virus, and the way they abide to the restrictions and rules established by their respective governments
emerged as crucial indicators of the severity of the early spread of the COVID-19 outbreaks.

Interestingly, the population’s response is itself affected by the government response; countries
such as the UK and USA, whose initial public messages seemed to downplay the severity of the
COVID-19 emergency, had a low initial population response (Figure 3), with citizens not feeling
particularly worried and in turn, not practicing increased personal hygiene or wearing face masks. A
systems thinking approach is crucial for understanding all these interconnections; the proposed BN
models provide a first step in this direction. With a greater quantity of more reliable data becoming
available, these models can be improved and refined over time.

Germany is the only large European country that successfully contained the outbreak from a death
toll perspective; despite limited government action aside testing, the very high number of early tests
allowed them to more effectively control the outbreaks and individual clusters, since a higher number
of infected people with mild symptoms were detected and isolated. The delay between recorded
number of cases and recorded number of deaths for this country is two weeks, resulting from an early
testing response, an excellent healthcare system and a younger average population than Italy [14]. All
other countries with a high amount of early tests, such as Australia and Canada, were able to control
the outbreak and, in the case of Australia, completely “flatten the curve” at the time of writing, thus
managing to contain the number of cases and deaths, as it can be seen from the data we collected
and analysed. Hence, it seems that early government action becomes crucial only if early testing was
limited (leading to several untested, infected people, free to spread the virus in their communities if
no strict rules are imposed). This seems to be validated by the example of South Korea, which is not
analysed in this study due to partial lack of necessary data, where government measures were limited,
but the country managed to control the outbreak and flatten the curve by establishing an aggressive
testing and contact tracing regime, while also enforcing quarantine policies [15].

An interesting case is provided by Sweden. Sweden is well-known for having adopted a “relaxed”
approach to dealing with the COVID-19 pandemic [16]. In order to avoid catastrophic economic
consequences, they did not impose a full lockdown, with very mild restrictions put in place instead.
Although the government view suggested that they would rely on the citizens to do the right thing,
the surveys highlight that the population response was instead quite poor. This unexpected response
is then aggravated by a very low number of early tests performed. Although the number of cases and
deaths seem to be relatively low, they are comparatively much higher than neighbouring Scandinavian
countries such as Norway and Finland, and still rising at the time of writing. The high number of early
patients in ICUs, coupled with low testing, seems to point at a higher number of actual infected cases
(as high as 13,000 undetected) which, with more delay compared to other European countries, is now
causing a gradual spread.

There are obviously several other factors that might play a role in the spread of COVID-19,
which were not analysed here due to the lack of data or scientific evidence, such as population density
and age distribution, or climate [17,18]. The developed BNs provide a way to quantify the importance
of the analysed factors and provide a probabilistic prediction of the speed of the spread of COVID-19.
Once more research consistently highlights the importance of other factors; these and related data can
be easily incorporated in the BN structure and algorithms to reduce uncertainty.
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4. Materials and Methods

4.1. Data Collection

The data used in this study were collected from numerous freely available online sources. Data for
number of cases, deaths, cases in serious conditions, and tests were collected from Worldometers.info. As
the website states, Worldometer is run by a team of international researchers, developers, and volunteers
without any political, governmental, or corporate affiliation. With regards to COVID-19 data, the
data are collected regularly from official Government sources or reliable media outlets. The data is
then validated by a team of researchers before being published online. The data were collected for
the February 1–April 16 period, i.e., from the onset of the outbreak to the time where the exponential
trajectory of many European countries started to slow down, and in turn, where the effects of certain
government measures became evident. The data were collected during a specific day, and when time
series versions were not available, we accessed archived versions of the Worldometer COVID-19 main
webpage through websites such as web.archive.org. Data about number of COVID-19 tests were also
collected, or validated against, data from ourworldindata.org. Population behavioural response data
were collected from a publicly available dataset, illustrating the results of a research work, conducted
by YouGov and the Imperial College London—over population samples from 29 different countries.
The data is in the form of weekly survey responses to 18 questions in relation to COVID-19 [19]. All the
available data up to April 16 were collected. Regarding the quantification of the response of different
governments, a full database of descriptive information consisting of a range of government actions
around the world was available and downloaded from the ACAPS Government Measure Dataset [20]
and other available online sources, as of 2 April 2020.

4.2. Data Pre-Processing and Analysis

The government action data were grouped into one of the following categories: visa restrictions,
additional health documents required on arrival, border closure, domestic travel restrictions,
emergency administrative structures, economic measures, restriction enforcement and surveillance,
health protection, health screenings in airports and borders, lockdown, limit public gatherings,
public services closures, psychological support, quarantine policies, schools closure, state of emergency
declared, strengthening public health system, and testing policy. Once the category was chosen,
each intervention was then assigned a degree of severity, on a scale from 1 to 4 (maximum). For instance,
discouraging certain travel types was classified as a visa restriction Level 1, while a complete travel
ban was denoted as Level 4. In addition, since certain measures were location-specific, this was
incorporated within the severity degree. For instance, a strict lockdown on a specific region was
given a score of 2, similar to a mild lockdown that was enforced over an entire nation. A strict,
nationwide lockdown would be a Level 3 out of 3. Subsequently, since some of the categories could
be cross-correlated, 5 wider groups were created by summing the scores of the relevant categories.
These 5 groups were: (1) Political (e.g., special structures and enforcement groups); (2) coping/curing
(e.g., testing measures, health facilities); (3) external control (e.g., border closures, visa restrictions);
(4) internal control (e.g., lockdown, no public gatherings, school closures); and (5) socio-economic
(e.g., government support to unemployed). Finally, an overall “government action score” GA was also
calculated for each country by summing all the five individual scores. All such scores were calculated
over the entire analysed time period, daily. These scores were then analysed over time, and in relation
to the number of normalised cases (i.e., in relation to the nation’s population).

Similar indexes, at the time of writing, have been developed elsewhere such as the Stringency
Index (SI), which relies on a slightly different set of government response indicators and aggregated
indices [10,11]. Such SI was also analysed in a similar fashion to the herein developed government
action score for comparison purposes; this was done towards the end of our research work, hence SI
data were collected from [10] and analysed as of 2 May 2020. SI-related variables were included in the
developed Bayesian Networks, as explained in Section 4.3.
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With regards to the population behavioural response, an overall “Population Action Score” was
also calculated by averaging the survey results to a number of relevant questions, specifically: % of
people (1) with fear of catching the virus, (2) avoiding crowds, (3) wearing a face mask, (4) practicing
improved personal hygiene, and (5) not touching objects outside. This overall score was also analysed
against the normalised number of cases. Analyses on results for individual survey questions, not
shown here, was also conducted before calculating the overall Population Action Score.

Visual data inspection and time series analyses were performed to check the rapidity of the spread
of the virus, by calculating the number of days before a country reached certain milestones with regards
to cases and deaths. For these days, the number of tests conducted, as well as the number of patients
in ICUs, was collected when available and used to understand their relationships with the rate of the
virus spread, along with the other data. Furthermore, the time series for number of cases and the time
series for number of deaths were analysed, and the time delay (lag) between them, which maximised
the coefficient of determination (R2), was also calculated for each country. Twenty-nine countries were
initially selected, though not all were fully or partially analysed, due to either missing data or due to
having, at the time of writing, limited cases and deaths. Figure A9 shows the results for the final set of
the 17 countries analysed where data availability was sufficient at the time of writing.

4.3. Model Development and Application

Following the outcomes of the data analysis, a number of candidate input variables were selected
and used to develop data-driven naïve and Tree-Augmented Naïve (TAN) Bayesian Network models,
to try to predict critical variables linked to an early spread of the virus, specifically (1) Number of days
before 5000 cases were reached (BN 1); and (2) number of days (after 100 cases) before 1000 deaths
were reached (BN 2). Bayesian Networks rely on Bayesian theory, which in turn implies that the
Bayes’ theorem [21] can be used to infer or also update the degree of ‘belief’ given new information.
They are made of variables called “nodes”; each variable is discretised in a number of “states”. An “arc”
connects a “parent” node to a “child” node. The relationship between a child node and its parent
node(s) is quantified through a so-called conditional probability table (CPT). Populating CPTs can be
performed based on either numerical, or qualitative (e.g., expert opinion), data. Bayesian Networks
are an increasingly popular probabilistic modelling approach, which is well suited when only limited,
uncertain, and incomplete data are available, such as for this case [9,22,23]. Figure 8 illustrates the
structure of one of the developed BN.

Node discretisation and conditional probability table elicitation was performed and optimised
from the data. In general, a naïve BN consists of only one parent node with multiple child nodes;
more theoretical details can be found elsewhere, e.g., [9,24]; a TAN BN instead relaxes the strong
independence assumption between all the child nodes given the parent [25], and thus arcs between
child nodes are added. This can be noticed in Figure 8, where obvious links were added between
those child nodes logically dependant on each other (from a temporal point of view). The final TAN
structures were preferred to the naïve BN structures as typically they perform better [26] and they
add logical connections between, in this case, temporally related nodes. The software used was
Netica 5.22 32 bit (Norsys Software Corp, Vancouver, BC, Canada); the Netica API is available for
download from their website [27]. Sensitivity analyses were completed using the in-built Netica
algorithms; specifically, the sensitivity of different nodes was quantified by the “variance of node
beliefs” (formerly named “quadratic score” in older Netica versions): this is defined as the expected
change, squared, of the beliefs of the target node, taken over all of its states, due to a finding at the
node in consideration [28]. It varies between 0 and 1, where 0 would represent that the target node is
independent of the node in consideration, while the higher the value, the more sensitive the target
node is to the node in consideration.
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Figure 8. TAN Bayesian Network structure for “days after 100 cases before 100 deaths” (BN 2). Blue
nodes: Government action score variables. Dark blue nodes: Stringency Index variables. Light green
nodes: Cases variables. Yellow nodes: Testing variables. Light blue nodes: Population action score
variables. “at 0.02” or “at 0.05”: the day that 0.02% or 0.05% of the country’s population tested positive.

5. Conclusions

A number of data analysis and modelling approaches were deployed to understand the importance
and effectiveness of early government and population responses to COVID-19 outbreaks in several
countries. Out of all the data and variables considered, high numbers of early tests emerged as the
most crucial measure to control the transmission rate, as greater numbers of earlier tests lowered
the number of undiagnosed and non-isolated cases. We estimated that countries with a low initial
testing regime, such as Italy, might have had five times more actual cases than what was diagnosed.
Following testing, early effective government responses were strongly related to slowing down the
number of new recorded cases. Finally, the level of early population response, which in many ways
is related to the type of government approach, was strongly related to the number of early deaths,
which is a more reliable indicator of the spread of the virus. These conclusions point at the equally
important contribution of a rapid government response and an early population-based behavioural
change to abide with the new rules and health recommendations, which, in conjunction with aggressive
early testing policies, assisted in controlling and managing early COVID-19 outbreaks. Due to the
interconnectedness of the study’s variables, a systems thinking approach is recommended for future
studies to capture the inherent complexities of such a multidisciplinary problem. The developed
Bayesian Network models have the ability to capture some of this complexity and related uncertainty,
and can be refined and expanded to include more variables and data in the future, when they become
available, to gain an even better understanding and improvement of the early management COVID-19
outbreaks. This will be of crucial importance as governments have started to lift some of the restrictions
and are preparing for a potential “second wave” of infections.
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Appendix A

Figure A1. Overall government action score for different countries vs. recorded number of cases in
proportion to country’s population.

Figure A2. Overall government action score for different countries vs. recorded number of cases.
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Figure A3. Overall government action score for different countries vs. recorded number of cases
(limited to 5000).

Figure A4. Stringency Index for different countries vs. recorded number of cases in proportion to
country’s population (limited to 0.05%). Updated 2 May 2020.
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Figure A5. Stringency Index for different countries vs. recorded number of cases in proportion to
country’s population. Updated 2 May 2020.

Figure A6. Stringency Index for different countries vs. recorded number of cases (limited to 5000).
Updated 2 May 2020.
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Figure A7. Overall population action score for different countries vs. recorded number of cases (limited
at 15,000).

Figure A8. Bayesian Network structure for “days before 5000 cases”. Blue nodes: Government
action score variables. Dark blue nodes: Stringency Index variables. Yellow nodes: Testing variables.
Light blue nodes: Population action score variables. “at 0.02” or “at 0.05”: the day that 0.02% or 0.05%
of the country’s population tested positive.
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Figure A9. Coefficient of determination R2 between time series of number of daily deaths at time t and
number of daily cases at time (t–n), where n is in days.
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Abstract: This work uses cognitive network science to reconstruct how experts, influential news outlets
and social media perceived and reported the news “COVID-19 is a pandemic”. In an exploratory corpus
of 1 public speech, 10 influential news media articles on the same news and 37,500 trending tweets,
the same pandemic declaration elicited a wide spectrum of perceptions retrieved by automatic language
processing. While the WHO adopted a narrative strategy of mitigating the pandemic by raising public
concern, some news media promoted fear for economic repercussions, while others channelled trust
in contagion containment through semantic associations with science. In Italy, the first country to
adopt a nationwide lockdown, social discourse perceived the pandemic with anger and fear, emotions
of grief elaboration, but also with trust, a useful mechanism for coping with threats. Whereas news
mostly elicited individual emotions, social media promoted much richer perceptions, where negative
and positive emotional states coexisted, and where trust mainly originated from politics-related
jargon rather than from science. This indicates that social media linked the pandemics to institutions
and their intervention policies. Since both trust and fear strongly influence people’s risk-averse
behaviour and mental/physical wellbeing, identifying evidence for these emotions is key under a
global health crisis. Cognitive network science opens the way to unveiling the emotional framings of
massively read news in automatic ways, with relevance for better understanding how information
was framed and perceived by large audiences.

Keywords: COVID-19; computational cognitive science; semantic networks; text mining; social
media mining; emotions

1. Introduction

On 11 March 2020 the World Health Organization (WHO) declared COVID-19 a pandemic.
Simultaneously, a secondary infodemic of COVID-19 news flooded information systems, overwhelming
large audiences with a deluge of content about the COVID-19 spread [1]. In addition to this infodemic
of fake news, even fact-checked articles reported a wide variety of contrasting views about the
pandemic, e.g., diminishing the threat posed by the pathogen, creating alarm about the impact of
the novel coronavirus over the economy or trying to convey the importance of social distancing for
containing virus spreading. This massive proliferation of multiple views about the novel coronavirus
overwhelmed large audiences with limited attention, ultimately promoting anxiety and inhibiting
people from understanding the exact and correct dynamics of the pandemic [2].

In order to reduce anxiety and stress, identifying the contents promoted by this “battle of ideas”
is urgently needed, also given how semantic and emotional content can deeply influence how we
perceive and respond to massive events [2–4].

This manuscript outlines how recent tools from computational cognitive science [5,6] can crucially
reconstruct how experts, news media and social media perceived and discussed the COVID-19
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pandemic. Theoretical grounding is provided by semantic frame theory, which indicates that the
meaning attributed in language to individual words or concepts is fundamentally built over conceptual
associations with other concepts [7–9]. Hence, meaning cannot be attributed to words/concepts in
isolation but it rather requires access to their semantic frame, i.e., the set of concepts linked to a
given conceptual entity as occurring in language. Therefore, understanding the cognitive reflection
attributed by individuals to the real world in terms of perceived meaning depends on the semantic
frame in which concepts are entwined together. For instance, in a text if “pandemic” is conceptually
related to other jargon like “disease”, “spreading” and “pathogen” then the text author(s) framed
“pandemics” as a phenomenon related to disease diffusion. Conceptual relationships might be of
different types, like word co-occurrences (see also the interesting historical investigation of “risk”
in [10]) or syntactic/semantic links (like words specifying each other in a sentence or possessing
the same meaning, see also [5]). Semantic frames arise from the associative structure of language
and contain both semantic and emotional content [9,11]. Recent research pointed out how different
populations can reconstruct semantic frames containing very different emotions around the very
same concept, e.g., online users related the very same hashtag #coronavirus to more pronounced
fear-eliciting content when discussing the medical emergency and to more trustful concepts when
discussing lockdown and other measures preventing contagion [12]. The identification of the emotional
content of a given portion of language is called emotional profiling and it has been recently applied
also to the investigation of online perceptions of COVID-19 [12–15].

This manuscript combines semantic frame theory with emotional profiling in order to reconstruct
the plurality of views and emotions on the COVID-19 pandemic that were presented to millions of
individuals by: (i) the authoritative WHO declaration of 11 March 2020, (ii) influential news media
reporting such declaration and (iii) online social media. Attention is given to the first news that
officially declared COVID-19 as a global pandemic for the whole world and not limited to Wuhan or
China only. This news, “COVID-19 is a pandemic”, started with the declaration by the WHO dated
11 March 2020 and it then reverberated across the above information channels. The structure of the
paper includes a Methods section, outlining the linguistic datasets and the network analysis used
here, followed by a Results section, reporting on the semantic frames and emotional profiles across
eight basic emotions [11] of all the above declarations/articles/social media discourse. A Discussion
section comments on the plurality of semantic views found in this exploration. The Discussion also
interprets such results in light of relevant theories from cognitive science and other studies about
the psychological impact of COVID-19 in relation to anxiety management, grief elaboration and
psychological distress.

2. Material and Methods

This exploratory study focused on how COVID-19 was perceived by different information
channels and investigated a corpus including three different sources of textual data: 1 speech transcript
(WHO declaration), 10 news media articles on the same news (i.e., reporting the WHO declaration)
and 37,500 tweets from social media (discussing the COVID-19 pandemic in the immediate aftermath
of the WHO declaration). Notice that the requirement for articles to be on the same news crucially
reduced the sample size of investigated texts.

This section outlines relevant information about the datasets and methods used in the main text.

2.1. Data Access: SPEECH Transcript and News Media Articles

The main analysis investigated the structure of linguistic knowledge as expressed in texts.
This study did not generate any new data. The 10 news media analysed here were identified as influential
by using a Google query as implemented in Mathematica 11.3. The Google query “COVID-19 WHO
pandemic” on 1 April 2020 provided the top-ranked ten articles reported in Table 1, mostly produced
between 10 and 12 March 2020. Notice that all investigated articles were:
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(1) Produced, published and updated between 10 March and 22 March, which is the immediate
aftermath of the WHO declaration of the COVID-19 outbreak being a pandemic (dated 10 March
2020). A total of 9 out of 10 articles were produced and updated between 10 March and 12 March,
guaranteeing a temporal coherence of the considered dataset, i.e., a collective of articles being
produced within the same time window of the investigated Twitter dataset (see also Section 2.2);

(2) As reported in their titles, all the investigated articles focused on the same news of COVID-19
being declared a pandemic by the WHO. This is an important indicator that the considered news
articles did not focus on local happenings but rather analysed and interpreted the COVID-19
pandemic in light of the WHO declaration.

Table 1. News media articles investigated in this study, with online links and labels (Media 1–10).

Media ID and Link News Outlet Article Title Number of Words

Media1 ABC News What the WHO pandemic
declaration means. 748

Media2 Business Insider The coronavirus is officially a
pandemic. 576

Media3 BBC Coronavirus: What is a pandemic
and why use the term now? 318

Media4 Channel News Asia Threat of coronavirus pandemic
now “very real”: WHO 553

Media5 New Scientist
COVID-19: Why won’t the WHO

officially declare a coronavirus
pandemic? (Updated 11 March)

801

Media6 National Geographic Coronavirus is officially a
pandemic. 1588

Media7 CNBC
World Health Organization

declares the coronavirus outbreak
a global pandemic

939

Media8 Telegraph
Coronavirus outbreak declared a

pandemic: what does it mean, and
does it change anything?

1387

Media9 Times World Health Organization
Declares COVID-19 a “Pandemic.” 625

Media10 Washington Post WHO declares a pandemic of
coronavirus disease COVID-19 1035

The speech transcript of the WHO declaration of COVID-19 being a pandemic was obtained from
the official website of the WHO (www.who.int, Last Accessed: 22 September 2020) and it included
778 words.

2.2. Data Access: Social Media Tweets

This analysis featured 37,500 Italian trending tweets gathered by Complex Science Consulting
through the Twitter-approved account @ConsultComplex between 11 March and 17 March 2020. All the
investigated tweets had to feature the hashtag #pandemic together with one of the following hashtags:
#coronavirus, #COVID-19, #COVID. For instance, tweets featuring both #pandemic and #COVID were
included in the analysis. Only tweets identified as trending by the Mathematica 11.3 “Popular” flag
in the Twitter crawler ServiceConnect [] were considered in this analysis. The analysis focused on
Italy given its resonance across the media due to the dramatic escalation of COVID-19 contagions in
March 2020. A different dataset was also crawled by Complex Science Consulting within the same
time period and investigated separately by [12].
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Media links and pictures were discarded. Whereas in other studies, like [12], hashtags were used
in order to infer different topics embedded in tweets, in which hashtags were integrated with other
words in text. Hashtags were translated in Italian words, where possible, by using a simple overlap rule
between the hashtag content with no \# symbol and Italian words (e.g., #COVID became “COVID”).
Tweets in languages different from Italian were not considered in this analysis. The resulting dataset
included 37,500 tweets, each one treated as a string of text. No user-level information was used in
the investigation (e.g., usernames, number of followers, etc.). No tweet-level information was used
(e.g., number or likes, number of retweets, etc.), except for the timestamp, which was used in order to
select only messages produced between 11 March and 17 March 2020.

Although this work focused on Italian social media, the investigated tweets were influenced by
the WHO declaration too and they were gathered in the next few days after the declaration itself.
Hence, the social discourse analysed here cannot be considered independent from the views portrayed
in news articles. Establishing a direct causal link between exposure to news articles and social media
reactions goes beyond the scope of this explorative study and it represents a delicate research question
that started being successfully explored only in recent studies [16,17]. Instead, this investigation
focuses on comparing the semantic frames and emotional perceptions about the COVID-19 pandemic
in the aftermath of the WHO declaration across different online sources.

2.3. Forma Mentis Networks as Knowledge Graphs Extracted from Text

This manuscript adopted the recent framework of forma mentis networks—as already introduced
in previous studies—that used automatic text processing for reconstructing how social media discussed
the gender gap in science [5] and for exploring online perceptions and emotions in Italy after the
release of national lockdown [13]. On the one hand, [5] also showed that textual forma mentis
networks in annotated texts are successful in determining the topic of a text. On the other hand, [13]
showed that textual forma mentis networks are sensitive enough to highlight flickering emotions over
time in the social discourse around specific topics and hashtags. The interested reader is referred
to these prior works for more details. Here, the methodology of textual forma mentis networks is
reported in a concise yet self-contained manner. Based on cognitive data and text processing, forma
mentis networks are knowledge graphs [5] representing the mental lexicon, a cognitive system storing
linguistic information and driving word acquisition and use [6,9]. Representing conceptual associations
between words as a network of nodes (words) and links (syntactic/semantic associations), textual
forma mentis networks (TFMNs) extract both knowledge and affective patterns, as embedded in the
text and are representative of a given author’s mindset. Other approaches also represented texts as
complex networks though they focused mainly on co-occurrences between words, did not consider
the cognitive/emotional dimensions of words but were successful in identifying patterns like writing
styles [18]. Several successful approaches also used syntactic relationships in order to investigate how
words tend be assembled in sentences in order to minimise dependency crossings and thus, potential
confusions about understanding knowledge and its meaning (for a review, see [19]). Here, TFMNs focus
on associative knowledge, linking together concepts according to meaning specifications provided in
language (see [5]). When we read sentences, we do not explicitly observe such a conceptual network,
but we mentally reconstruct it in order to understand meaning. Consider the example “pandemics and
diseases are terrible”, a sentence specifying that both the concepts “pandemic” and “disease” have a
specific feature, i.e., being “terrible”. A textual forma mentis network would represent such a sentence
as a network connecting the conceptual nodes “pandemic” and “disease” to “terrible”. In other words,
textual forma mentis networks highlight the syntactic network of conceptual associations underlying
a given text and conveying a given meaning. TFMNs thus reconstruct the syntactic and semantic
structure of texts, also providing the advantage of visualising, highlighting and exploring conceptual
associations in texts under the lens of network science. Syntactic relationships were extracted by
using the language models available in TextStructure[], a command implemented in Mathematica
11.3. For instance, in the sentence “hospitals are full” there is a syntactic relationship specifying
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a property (being “full”) of “hospitals”, thus linking “hospital” (stem for “hospitals”) and “full”.
Semantic relationships indicating meaning overlap (i.e., “disease” and “sickness” being synonyms
in some contexts) were retrieved by using WordNet 3.0 in English and its Italian translation [20].
All words in texts were stemmed in order to represent different inflected forms with the same concept
(e.g., “talking”, “talked” and “talks” all representing “talk”). English words were stemmed by using
the WordStem[] function implemented in Mathematica 11.3. Stemming considers only the core of a
word, discarding inflections and suffixes (e.g., “learning” and “learns” would be represented with the
same stem “learn”). In Italian, words were stemmed by using the Snowball C stemming algorithm as
implemented in R. Italian words were translated into English for easier visualisation.

Figure 1 provides a visual scheme of the different operations leading from textual data to
reconstructed, quantitative perceptions of a given topic or keyword. It must be underlined that
the application of the same unsupervised methodology across different texts enables a quantitative
comparison of the semantic content and emotional portrayals included in the language used by different
authors. The cognitive datasets enabling emotional profiling are described in the next Section.

Figure 1. A scheme of the different phases leading to reconstructing emotional profiles and semantic
content in texts via textual forma mentis networks.

2.4. Emotional Profiling and Cognitive Datasets

Combined with the Emotion Lexicon by Mohammad and Turney [21], TFMNs can identify the
emotional profile of a given concept in a collection of texts. The emotional profile of a concept C,
here was defined as the number of words eliciting a given emotion associated/linked to C, i.e., words
in the network neighbourhood of C [5,12,13]. Hence, the emotional profile of a concept in a forma
mentis network was computed by counting how many words elicited a given emotion in the network
neighbourhood of a concept (e.g., 35% of the neighbours of “pandemic” elicited fear). The emotions
considered here were the ones included in the NRC Emotion Lexicon, namely: anger, anticipation,
disgust, fear, joy, sadness, surprise and trust. In counting the associations giving rise to a given
emotional profile, negations were considered by associating antonyms to negated words. In presence
of words exclusively linked to a negation (e.g., “love” and “not”), antonyms directly substituted
negated words (e.g., “hate” was considered for the emotional profiling, replacing “love” and “not”).
In the presence of words linked to a negation and to other concepts of the same sentiment (e.g., “love”
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connected to both “not” and “faith”), both antonyms and negated words were considered (e.g., “hate”
and “love” were both considered for the emotional profiling, replacing “love” and “not”). The NRC
Emotion Lexicon in Italian was obtained from the English one by adopting a consensus translation
with services including Google Translate, Bing Translator and DeepL. Where at least two out of three
translator services provided the same translation for a word, that one was used. In all other cases
translation was human coded by the author. On a random sample of 200 words, the accuracy of
translation was estimated to be 93%. This required also an additional human coding of the translation,
checking for and correcting mistakes according to the author’s expertise.

Counting words provides an emotional profile indicating how rich a given semantic frame/network
neighbourhood is in terms of words eliciting the above emotions. However, the NRC lexicon features
more words eliciting certain emotions and fewer words eliciting other emotional states, so that
considering word counting by itself might be provide biased results if no null model is considered.
In the current study, the null model for emotional profiles was random word sampling from the NRC
lexicon, i.e., sampling at random from the lexicon as many words as observed in the emotional profile
and computing the relative random emotional profile. Z-scores were computed between the empirical
emotional profiles of “pandemic” and a distribution of 1000 random samples. The confidence interval
relative to a 0.05 significance level was adopted as the neutrality range, i.e., a range where no emotional
pattern was identified.

Notice that emotional profiles were visualised through emotion wheels, following the visualisation
method originally proposed by Plutchik [11]. A blue/grey/red colour scheme was used in order to
cluster together negative emotions (in red), neutral emotions (in grey) and positive emotions (in blue).

3. Results

Semantic frames and emotions, as attributed in the processed texts, highlight interesting patterns
on how the COVID-19 pandemic was announced by WHO and discussed by news outlets and social
media users.

3.1. Investigating the Knowledge and Emotions in the Whole WHO Declaration

Figure 2 visualises the WHO declaration of “COVID-19 is a pandemic” in terms of a knowledge
graph, a textual forma mentis network representing the mindset (in Latin forma mentis) portrayed in
the declaration in terms of concepts (nodes) linked by semantic and syntactic relationships (cf. Methods).
Larger nodes are relative to concepts with a higher closeness centrality (see [22]), i.e., connected by
fewer links to all other concepts in the network. Since previous studies indicated how closeness in
forma mentis networks captures semantic prominence (see [5]), the knowledge graph indicates how
the WHO declaration mainly revolved around “country”. Other prominent concepts (i.e., high in
closeness centrality) were “we”, “not”, “take”, “case”, “change”, “tell” and “numbers”, indicating
that the speech adopted a first-person narrative revolving around countries and the change (of the
pandemic) due to the registered numbers of cases. This is not surprising but comes as a confirmation
that a network metric (closeness centrality) can identify key aspects of an apparently unstructured
piece of text (in this case the WHO declaration of COVID-19 being a pandemic).

In addition to this reality check, the knowledge graph also visually represents key aspects of a text.
For instance, in Figure 2 words are clustered in communities as identified by a Louvain algorithm [22].
Communities are defined as network regions made of tightly interconnected nodes and in a forma
mentis network a community can provide contextual knowledge describing the meaning attributed to
concepts across sentences [5]. By considering the community including “pandemic” one can notice
that the WHO speech presented the concept of a pandemic to the general audience in relationship to
“health”, “change”, “crisis” and even “economy”: the WHO presented the pandemic as a challenging
crisis not only for global health but also for the economy. Positive terms like “protect”, “together” and
“calm” appeared within the same community of “pandemic” and indicate a tendency for the speech to
call for calmness and a communal protection against such crisis.
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Figure 2. Left: Knowledge graph representing syntactic associations between words of positive (cyan),
negative (red) and neutral (black) sentiment and semantic overlap between synsets (green) as extracted
from the WHO Declaration of COVID-19 being a pandemic, 11 March 2020. Larger font size indicates
higher closeness centrality and conceptual prominence in the text (see Section 2). Top right: Prominent
words in the discourse as detected from syntactic and semantic associations. Bottom right: Emotion
wheel, counting how many words elicited a given emotion in the knowledge graph. Emotions stronger
than random expectation were marked with a check (Z-test against random word sampling, significance
level of 0.05).

The overall emotional profile of the speech is reported in Figure 2 (bottom, right). The words
adopted in the WHO declaration elicited strong emotional patterns of fear, anger and sadness but also
levels of trust higher than random expectation. Combinations of fear and sadness indicate concern,
according to Plutchik’s wheel of emotions [11], but what about the combination of positive and negative
emotions? The co-existence of concern and trust indicates a clear narrative strategy pursued by the
WHO in their speech: to clearly explain the dangers posed by the COVID-19 emergency to the general
public, while subsequently adopting also trustful language focusing on how to face the crisis itself.

3.2. Investigating Knowledge and Emotions around “Pandemic” across Texts

Forma mentis networks were built not only for the WHO declaration, but for all the considered
articles and aggregated tweets. Rather than investigating the whole networks, attention was given to
the individual semantic frames, i.e., the network neighbourhoods, of “pandemic” across texts. Figure 3
(top) reports the semantic frames and emotional profiles of “pandemic” in the WHO declaration,
within two of the 10 investigated articles and within social discourse. Figure 3 (bottom) provides the
complete spectra of emotional profiles across all the investigated media.
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Figure 3. Top: Syntactic associations between positive (cyan), negative (red) and neutral (black) words
as used in the WHO pandemic declaration (A), two influential news media reporting the WHO’s
declaration (B,D) and 37,500 tweets with #pandemic posted right after the WHO’s declaration (C).
Emotions stronger than random expectation were marked with a check (z-test against random word
sampling, significance level of 0.05). Larger concepts were more prominent in the semantic structure of
the used language. Bottom: Emotional intensities of 10 different news media are reported. The grey
bar in the foreground represents the error bound of neutral intensities (see Section 2).

As reported in Figure 3, the WHO declaration pictured “pandemic” as a phenomenon linked
to control and mitigation, with associated concepts eliciting a moderate level of fear and expressing
concern about the COVID-19 pandemic. Hence, the overall concern found in the WHO’s whole
declaration is present also around the specific semantic framing attributed by the WHO to “pandemic”,
as expected from a speech centred around massive pathogen diffusion.

The other semantic frames and emotional profiles reported here are the most dissimilar from the
WHO’s one. News media four provided a highly polarised perception of “pandemic”, combining
fear-inducing links to “threat” with more trustful concepts about the future, a combination indicating
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submission, apprehension and passive acceptance of COVID-19 being a pandemic. Instead, news media
seven depicted a more neutral and trustful frame for the COVID-19 pandemic, using neutral jargon,
explaining the epidemiological definition of a pandemic and conveying emotions of trust into waking
up, getting ready and taking action. These patterns were absent in the original WHO declaration and
have thus to be considered as cognitive alterations attributed to the way individual journalists framed
the news “COVID-19 is a pandemic”. It should be stressed that these alterations emerge from a purely
quantitative modelling of texts and do not require any human coding or reading of the underlying texts.

Social media strongly debated over the COVID-19 pandemic. Here, attention was given to Italy,
the first European country struck by COVID-19 and reacting with a national lockdown (see [12]).
In 37,500 Italian tweets (see Section 2), “pandemic” spawned a social discourse featuring contrasting,
affect-polarising concepts like “help”, and “hope” together with “risk” and “attack”. The resulting
emotional profile was strongly trustful, dominated by a positive awareness of the coronavirus and
the need to offer assistance against it, but also mixed with patterns of fear (against the risks of the
pandemics), anger (against a global threat) and anticipation (for a better future).

Anger and fear are both natural evolutionary mechanisms for coping with threats [11] and are
also natural responses in elaborating grief about a negative event, as indicated by the Kübler-Ross
model [23]. These emotions are therefore expected when perceiving a pandemic and were also strongly
detected in other studies focusing on different datasets related to social discourse about the COVID-19
pandemic (see [15]). Interestingly, in here grief-related emotions attributed to “pandemic” were found
to be dominated by more positive ones, expressing awareness and willingness to act upon the recently
declared health emergency. In this way, the perception of the “pandemic” itself is quantitatively found
to be way richer in positive/trustful concepts than the framing portrayed by the WHO.

4. Discussion and Conclusions

The same event can be described in text through different semantic frames, eliciting different
emotions and perceptions. The real challenge in AI is quantifying and reconstructing these frames
without human coding and in the absence of training data. This manuscript tested knowledge
modelling via cognitive network science, as a quantitative way for automatically identifying key
concepts and their emotional perceptions in texts, e.g., articles and social media messages. The semantic
and emotional frames reconstructed here around the news “COVID-19 is a pandemic” open quantitative
ways for tracking how COVID-19 was discussed by experts, news media and social networks.

Fear, anger and trust about the pandemic were detected in news outlets and social media reaching
large audiences. It is crucially important to keep track of any massive release of information vehiculating
these emotions, since the latter can strongly influence an individuals’ perception, mental well-being
and real-world behaviour [11,24–26]. As recent studies from computational social science pointed
out [27], both negative and positive emotions can give rise to emotional contagion over social media,
a phenomenon where emotions pass from user to user by the mere act of reading a post/message
portraying a certain emotional profile and without any real-world experience giving grounding to the
transmitted emotions. Hence, emotional contagion over social media can infect unaware audiences
and potentially de-stabilise public opinion about the COVID-19 crisis [1]. A recent investigation on the
reopening after lockdown found that online users on Twitter tended to retweet more those messages
richer in fear-eliciting jargon [13], further indicating the possibility for fear-eliciting content to give rise
to emotional contagions of fear over social media.

According to cognitive science, contagions of fear and anger would have different repercussions.
Responding to threats with anger greatly inhibits risk perception [24], leading to resisting risk-reduction
policies (e.g., lockdown or social distancing). Instead, fear heightens risk perception, thus leading
to more risk-averse behaviour [24]. However, prolonged states of fear are detrimental for correctly
identifying threats and can also induce higher levels of cortisol, which impair both mental wellbeing
and the immune system [26]. Hence, a deluge of fear-inspiring semantic frames, like the ones found in
some news media in this exploratory study, might have concrete repercussions over the COVID-19
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contagion, influencing people’s immune systems and bolstering their susceptibility to pathogens.
The exact quantification of this relationship between COVID-19 fear levels and health susceptibility
remains an open question for future research. However, it should be noted that fear can also assume
a positive role in hampering the pandemics. In a sample of 324 people, Harper and colleagues [28]
recently found that moderate levels of fear were functional in promoting public health compliance
and boosting positive behavioural changes (e.g., social distancing) aimed at containing the contagion.
This positive role played by fear aligns with the moderate levels of fear found in the semantic frame of
“pandemic” in the WHO declaration, providing further support to the narrative expedient adopted by
the WHO of raising concern about the novel coronavirus, with concerning jargon related to epidemics
and also including mitigation measures.

Trust was identified in the semantic frames of “pandemic” as discussed by social media and some
news outlets. The reconstructed semantic frame reported here indicated how news outlets channelled
trust through scientific knowledge, a “scientific explanation” strategy useful for improving individuals’
awareness about the mechanisms driving the pandemic and its containment. Recent studies also
outlined how eliciting trust is a good strategy not only for reducing the incidence of fear and anger but
also in order to boost compliance with regulations and responsible health behaviour [29]. The “scientific
explanation” strategy was not found in the semantic frames extracted from social media discourse,
where trust-eliciting concepts were not linked to scientific jargon but were rather connected to “politics”.
This confirms that trust can indeed come from different sources, as also channelling feelings of trust
towards politics can make large audiences comply with public health orders like respecting social
distancing [29,30]. Notice that higher levels of trust towards science and politics, as outlined here with
this study, were also found by previous investigations targeting populations under recent lockdown
caused by the COVID-19 pandemic [12,30].

Tracking the levels of perceived trust around the COVID-19 pandemic and identifying the sources
of such trust, be it scientific knowledge or politics, is a crucial challenge for better understanding
compliance with regulations. In fact, audiences with little trust in the institutions can mine the
credibility of governments, both fostering divisive politics and hampering nationwide adoption of
strategies for pandemic containment [29].

It should be noted that trust and fear are not direct opposites. According to the Atlas of Emotions [11],
trust and awareness can turn anger into a constructive motivation towards facing the threat or source of
anger itself—in this case the COVID-19 pandemic. This interconnectedness suggests a highly nuanced
perception of social media users towards facing the COVID-19 pandemic, as also found within other
studies focusing on Twitter data [12,14] and other social media platforms [1,15].

The above points outline a complex landscape of real-world implications for the different
emotional perceptions of the COVID-19 pandemic. The current semantic/emotional frames can be a
valid compass for navigating such landscape, with some limitations. This exploratory study considers
only textual information, thus neglecting other types of communication through visual or verbal cues.
Nonetheless, the plurality of perceptions quantified here, in a statistically robust way, indicate how
already processing only textual sources might provide richly complex semantic frames and emotional
profiles about how the COVID-19 pandemic is perceived, discussed and reported to large audiences.

Another limitation of this study was neglecting how potential automated accounts might have
biased social discourse. Recent investigations [3,31] found that social bots, i.e., user accounts piloted by
automatic software, were capable of influencing human behaviour by fostering negative, conspiratorial
and anxious perceptions in online platforms. Applying the same tools of cognitive network science
explored and tested here to the investigation of the semantic frames produced by social bots represents
an interesting future research direction.

Besides the above limitations, the main advantage of cognitive network science is its ability
to capture linguistic associations, semantic frames and emotions in a transparent way, enabling a
visualisation of conceptual associations in texts and without requiring training data for machine learning.
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Future research should build upon cognitive network science for a better understanding of social
media, possibly in synergy with other promising and successful automatic approaches to knowledge
modelling [32–37]. Access to large-scale corpora of news media articles would enable prompt
identification of outlets promoting distorted mindsets (“COVID-19 is just a flu”) or panic-inducing
misinformation. Additional cross-validation through careful human coding should be pursued as well,
with the aim of further characterising how the semantic information highlighted by textual forma
mentis networks is understood and processed by individuals. This calls for future research endeavours
beyond the scope of the current preliminary study but always within the growing area of cognitive
data science.

A richer understanding of the context of promoting negative perceptions should also be pursued
in the analysis of political debate, like in [33], where cognitive networks can unveil how political
parties or politicians discuss the COVID-19 emergency. The current methodology can also identify how
people perceive health risks and concrete symptoms of COVID-19, integrating recent powerful analyses
extracting the symptoms of the novel coronavirus from social discourse [35] and complementing
interesting dynamical patterns of grief elaboration and COVID-19 recently unearthed in social
platforms by Aiello and colleagues [15]. Notice that the representation of textual knowledge in
tweets produced here could also be integrated with other representations based on word embedding
models [32,34,36] and powering recent natural language approaches to identifying topics in tweets
discussing COVID-19 [36,37]. Forma mentis networks and other models of natural language processing
all aim towards the common direction of monitoring and understanding large volumes of messages
with the ease of lightweight and automatic knowledge extraction methodologies.

In this time of uncertainty, about the evolution of the coronavirus pandemic and the impact
of lockdowns, having a clear, misinformation-free perception of the COVID-19 pandemic is
fundamental [38].The cognitive network science framework outlined in this work can tackle this
challenge, effectively capturing and reproducing a plurality of views promoted about the COVID-19
pandemic. Access to such information opens new ways for policy makers to act based on how large
audiences perceive the COVID-19 pandemic and its repercussions and thus represents an impactful
direction for future research.
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Abstract: The current pandemic is a great challenge for several research areas. In addition to virology
research, mathematical models and simulations can be a valuable contribution to the understanding of
the dynamics of the pandemic and can give recommendations to physicians and politicians. Based on
actual data of people infected with COVID-19 from the European Center for Disease Prevention
and Control (ECDC), input parameters of mathematical models will be determined and applied.
These parameters will be estimated for the UK, Italy, Spain, and Germany and used in an SIR-type
model. As a basis for the model’s calibration, the initial exponential growth phase of the COVID-19
pandemic in the named countries is used. Strategies for the commencing and ending of social and
economic shutdown measures are discussed.

Keywords: mathematical epidemiology; SIR-type model; model parameter estimation; non-pharmaceutical
intervention; dynamical systems; COVID-19/SARS-CoV2

1. Introduction

COVID-19 is a recent emerging disease caused by the emerging coronavirus. As there is no
immunity to this virus, the spread of the disease has been rampant worldwide. As no serious vaccine
or medication exists, it is necessary to look for effective non-pharmaceutical interventions to control
the pandemic. Here, I use an SIR-type model to understand and analyze the COVID-19 pandemic
with the aim of stopping or reducing the spread of the COVID-19 virus.

The dynamic development of sub-populations of susceptible (S), infected (I), and recovered
(R) people in a certain region—for example, the population of a country or a part of a federation—
depending on non-pharmaceutical interventions is the aim of the modeling. Deterministic models are
discussed. These are simple but effective for describing the progression of the pandemic. They are able
to fit the description of the average infection dynamics in macroscopic sub-populations only1.

The main scope of this paper is the investigation of certain lockdown measures to flatten the
curve of infected people over time and of the appropriate strategies for returning from lockdown to
normality. To find appropriate model parameters, real data of the early stages of the pandemic are
analyzed. Suggestions about favorable points in time at which to commence with lockdown measures
based on the acceleration rate of infections conclude the paper.

There are also more complex deterministic models, which include sub-populations other than S,
I, and R (see [1,2]), but these models have dynamic properties similar to those of the basic SIR model.
On the other hand, additional data, which are not available, are needed for the extension of the basic
model. This why I can perform the investigations on the basis of the SIR model without a loss of
generality with respect to the aim of this paper.

1 A finer resolution of the pandemic is possible with stochastic agent-based models, which will not be discussed in this paper.
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It is necessary to remark that the considered SIR model is not able to describe the full asymptotic
behavior of a pandemic, as is done in [3]. In addition, the role of super-spreaders, investigated in [4]
and [5], cannot be described with the basic macroscopic SIR model.

2. The Mathematical SIR Model

First, I note one important presupposition for the model. I suppose that the distribution of the
included sub-populations is equal, i.e., the density is approximately constant. This is a very strict
supposition, but this is acceptable, for example, for cities and congested urban areas like New York or
the Ruhr area in Germany. At the beginning of the pandemic, exponential growth of the number of
infected people is supposed.

In the so-called SIR model of Kermack and McKendrick [6], I denotes the infected people,
S denotes the susceptible people, and R denotes the recovered people. It is a deterministic model.
I constrain the investigations to the species I, S, and R only. The dynamics of infections and recoveries
can be approximated by the following system of ordinary differential equations:

dS
dt

= −κβ
S
N

I (1)

dI
dt

= κβ
S
N

I − γI (2)

dR
dt

= γI . (3)

β represents the number of others that one infected person encounters per unit time (per day).
γ is the reciprocal value of the typical time from infection to recovery. N is the total number of people
involved in the epidemic disease, and N = S + I + R. κ is equal to one in the case of an undisturbed
pandemic without any interventions or lockdowns. Later, I will specify κ as a function to describe
lockdown measures.

The currently available empirical data suggest that the coronavirus infection typically lasts for
some 14 days. This means that γ = 1/14 ≈ 0.7.

The choice of β is more complicated and will be considered in the following.
The equation system (1)–(3) belongs to the mathematical category of dynamical systems.

3. The Estimation of β Based on Real Data

I used the European Center for Disease Prevention and Control [7] to obtain data on the people
infected with COVID-19 for the period from 31 January 2019 to 8 April 2020.

At the beginning of the pandemic, the quotient S/N was nearly equal to 1. In addition, at the
early stage, no one had yet recovered. Thus, I can describe the early regime using the ordinary
differential equation

dI
dt

= βI

with the solution
I(t) = I0 exp(βt) . (4)

The logarithm of (4) leads to
log I(t) = log I0 + βt .

Based on the table of logarithms of the infected people versus time, (tj, log Ij), j = 1, . . . , k, I look
for I0 and β which minimize the function

L(I0, β) =
k

∑
j=1

[log I0 + βtj − log Ij]
2 . (5)

64



Systems 2020, 8, 24

The solution of this linear optimization problem is trivial, and it is available in most computer algebra
systems as a ”black box” of the logarithmic–linear regression.

Figure 1 shows the results for the same periods as above for Spain and the UK2.

(a) (b)

Figure 1. Course of the pandemic; β-value from the logarithmic–linear regression. (a) Results for Spain
(31 January 2020 to 20 March 2020); (b) Result of the UK (30 January 2020 to 20 March 2020).

Figure 1 shows that the logarithmic–linear regression implies unsatisfactory results. It must be
said that the evaluated β-values are related to the stated period. For the logarithmic–linear regression
method, I guessed the respective periods for every country through a visual inspection of the graphs
of the infected people versus time.

Instead of the above-used table of logarithmic values, the table (tj, Ij), j = 1, . . . , k is used with
the aim of a better approximation. I am looking for periods in the spreadsheets of infected people per
day where the course can be described by a function of type (4).

Choosing a period [t1, tk] for a certain country, I search for the minimum of the function

F(I0, β) =
k

∑
j=1

[I0 exp(βtj)− Ij]
2 ,

i.e.,
min

(I0,β)∈R2
F(I0, β) . (6)

I solved this non-linear minimum problem with the damped Gauss–Newton method. The results
of the above-discussed logarithmic–linear method for β and α proved as good starting iterations for the
Gauss–Newton method. I found the subsequent results for the considered countries. Thereby, I chose
these periods for the countries with the aim of approximating the infection’s progression with a good
quality. Figure 2 shows the graphs and the evaluated parameters for Germany and Spain.

I found some information on the parameters of Italy in [8]—for example, β = 0.25—and I presume
that this is a result of the logarithmic–linear regression by the Italian health administration.

A deeper look at the real data shows that the exponential behavior of the dynamic of the number
of infected people was found only in the very beginning of the pandemic. In the German hotspot of
Bavaria, I found the result β = 0.22658 for the period from 24 February to 20 April 2020 with non-linear
regression. With the logarithmic–linear approach, I found a quite similar value, β = 0.23.

2 The numbers of more than 4-digits at the ordinate of the following figures should be understand as numbers with a comma
in the middle, for example 10,000 should be understand as 10,000 and so on.
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(a) (b)

Figure 2. Results from 31 January 2020 to 20 March 2020. (a) German results; (b) Spanish results.

In conclusion, I can state that the estimation of the parameter β is complicated but successful in
most of the considered countries and regions. The results of the solution of the minimum problem (6)
to evaluate β are, in most cases, better than the results of the minimization of function (5) with respect
to the fitting of the real data.

To illustrate the different quality and quantity of the β estimation, I use Italy as an example in
Figure 3.

(a) (b)

Figure 3. Italian results (from 31 January 2020 to 20 March 2020). (a) Results of Italy with the β-value from
the logarithmic–linear regression; (b) Results of Italy with the β-value from the non-linear minimization.

4. Numerical Computations for Germany and Spain

I disclaim qualitative mathematical considerations like existence and uniqueness of solutions of
the dynamical system of (1)–(3) and concentrate my interest on practical application and numerical
experiments. The numerical solution of the ordinary differential equation system of the modified SIR
model was done with a Runge–Kutta integration method of the fourth order. The independence of the
time discretization of the solution method was tested by a systematic time-grid refinement. At the end,
I found that time-steps of half a day could be used. For all of the following computations, the β results
of the solution of the non-linear minimization problem are used.

With the choice of a β-value of 0.215 (see Figure 2a)—which is evaluated on the basis of the real
data from the ECDC—and γ = 0.07, one gets the progress of the pandemic’s dynamics, pictured in
Figure 4a (I0 denotes the initial value of the I species, that is, 31 January 2020. Imax stands for
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the maximum of I. The total number N for Germany is guessed to be 70 million). R0 is the basis
reproduction number of persons infected by the transmission of a pathogen from an infected person
during the infectious time (R0 = β/γ), shown in the following figures3. For the early 30 days, I found
a β-value of 0.36 for China/Wuhan. This shows that the German situation with β = 0.215 and R0 ≈ 3
is moderate compared to the Chinese situation with the values β ≈ 0.36 and R0 ≈ 5. I have to mention
that these values vary compared to those found by other authors, but the relationships between the
German and the Chinese values are similar.

(a) (b)

Figure 4. One-year results of Germany and Spain; S—green, I—red, R—blue. (a) German progression
over one year, starting at the end of January 2020; (b) Spanish progression over one year, starting at the
end of January 2020.

The data from the ECDC, the data from the German Robert Koch Institute, and the data from
the Johns Hopkins University ([9]) are not really correct; thus, I have to reasonably assume that there
are a number of unknown cases. It is guessed in [10] that the data cover only 15% of the real cases.
Considering this, I obtained slightly changed results, and in the subsequent computations, I will
include an estimated number of unknown cases in the initial values of I.

I use the β-value 0.249 (see Figure 3) and γ = 0.07 for Spain, and I get the run pictured in Figure 4.
N is set to 40 million.

Let me now discuss the case of strict social distancing. To do this, I reduce the β-values after a few
days to β = 0.14 for both Germany and Spain.

The results in Figure 5 compared to the results without the reduction of β (Figure 4) show the
consequences. The climax of the number of infected people moved to the autumn of the year with
hard inconveniences for the population, but the wanted flattening was achieved.

To investigate the influence and sensitivity of the simulation results with the parameter β and
the number N (sum of infected, susceptible, and recovered people), I used the German data and a
variation of these data. In Figure 6b, I see that variation of the amount N leads, more or less, to a
proportional scaling4. The variation of β showed a non-monotone and non-linear influence of β on the
results, pictured in Figure 6a.

3 The values of R0 in all of the following figures are applied to the β-value of the beginning of the pandemic.
4 N = 12 million is the population of Bavaria.
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(a) (b)

Figure 5. German and Spanish results over one year; S—green, I—red, R—blue. (a) German
progression over one year with reduced β, starting at the end of January 2020; (b) Spanish progression
over one year with reduced β, starting at the end of January 2020.

(a) (b)

Figure 6. One year runs depending on β and N. (a) German succession of one year depending on a
β-variatio; (b) Result of one year depending on N (β = 0.215).

5. Looking for Other Strategies of a Temporary Lockdowns and Extensive Social Distancing

In all countries concerned by the COVID-19 pandemic, a lockdown of social life has been discussed.
In Germany, the lockdown started on 16 March 2020. The effects of social distancing to decrease the
infection rate can be modeled by a modification of the SIR model. Now, I consider κ in the equation
system (1)–(3) as a time-dependent function (instead of κ = 1 in the original SIR model).

κ is a function with values in [0, 1]. For example,

κ(t) =

{
0.5 for t0 ≤ t ≤ t1

1 for t > t1, t < t0

indicates a reduction of the infection rate of 50% in the period [t0, t1] (Δt = t1 − t0 is the duration of
the temporary lockdown in days). A good choice of t0 and tk will be complicated.
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If I respect the chosen starting day of the German lockdown, 16th of March 2020 (this conforms to
the 46th day of the relational year started at the end of January 2020), and I work5 with

κ(t) =

{
0.2 for 46 ≤ t ≤ 76
1 for t > 76, t < 46,

then I get the result pictured in Figure 7a.

(a) (b)

Figure 7. Results with lockdowns; S—green, I—red, R—blue; 30 days lockdown, starting on 16 March
2020. (a) German progression over one year, starting at the end of January 2020; (b) Spanish progression
over one year, starting at the end of January 2020.

The numerical tests showed that a very early start of the lockdown, resulting in a reduction of
the infection rate β, causes the typical Gaussian curve to be delayed by I; however, the amplitude
(maximum value of I) does not really change.

It is known from other pandemics, such as the Spanish flu ([11,12]) or the swine flu, that the
development of the number of infected people looks like a Gaussian curve. The interesting points
in time are those where the acceleration of the numbers of infected people increases or decreases,
respectively.

These are the points in time where the curve of I changes from a convex to a concave behavior or
vice versa. The convexity or concavity can be controlled by the second derivative of I(t).

Let us consider Equation (2). By differentiation of (2) and the use of (1), I get

d2 I
dt2 =

β

N
dS
dt

I +
β

N
S

dI
dt

− γ
dI
dt

= − β

N

2
SI2 + (

βS
N

− γ)(
βS
N

− γ)I

= [(
βS
N

− γ)2 − (
β

N
)2SI]I .

With that, the I-curve will change from convex to concave if the relation

(
βS
N

− γ)2 − (
β

N
)2SI < 0 ⇐⇒ I >

( βS
N − γ)2N2

β2S
(7)

5 I will understand 20% of normality by a lockdown, this means κ = 0.2.
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is valid. The switching time follows

t0 = min
t
{t > 0, I(t) > (

βS(t)
N

− γ)2N2)/(β2S(t))} . (8)

A lockdown starting at t0 (assigning β∗ = κβ, κ ∈ [0, 1[) up to a point in time t1 = t0 +Δt, with Δt

as the duration of the lockdown in days, will be denoted as a dynamical lockdown (for t > t1, β∗ is
reset to the original value β).

t0 indicates the point in time up to which the growth rate increases and after which it decreases.
Figure 8a shows the result of such a computation of a dynamical 30-days lockdown. I obtained t0 = 108
(κ = 0.2). The result is significant. In Figure 9a, a typical behavior of d2 I

dt2 is plotted (in Figure 9b, d2 I
dt2 in

the dynamical lockdown case).

(a) (b)

Figure 8. Results over one year; S—green, I—red, R—blue. (a) German progression over one year,
starting at the end of January 2020, dynamical lockdown; (b) Spanish progression over one year,
starting at the end of March 2020, dynamical lockdown.

(a) (b)

Figure 9. Typical history of the second derivatives of I. (a) History of the second derivative of I;
(b) History of the second derivative of I with dynamical lockdown.

The result of a dynamical 30-day lockdown for Spain is shown in Figure 8b, where I found
t0 = 106 (κ = 0.2).
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Data from China and South Korea suggest that the group of infected people with an age of 70 or
more is of a magnitude of 10%. This group has a significantly higher mortality rate than the rest of
the infected people. Thus, I can presume that, as a high-risk group, α = 10% of I must be especially
sheltered and possibly medicated very intensively.

Figure 10a shows the German time history of the above-defined high-risk group with a dynamical
lockdown with κ = 0.2 compared to the regime without social distancing. The maximum number
of infected people decreases from approximately 1.7 million people to 0.8 million in the case of the
lockdown (30-day lockdown).

This result proves the usefulness of a lockdown or strict social distancing during an epidemic
disease. I observe a flattening of the infection curve as requested by politicians and health professionals.
With strict social distancing for a limited time, one can save time to find vaccines and time to improve
the possibilities of helping high-risk people in hospitals.

(a) (b)

Figure 10. History of the high-risk groups depending on a dynamical lockdown. (a) German history;
(b) Spanish history.

To see the influence of social distancing, I look at the Spanish situation without a lockdown and
with a dynamical lockdown of 30 days in Figure 10b (κ = 0.2) for the 10% that includes high-risk people.

The computations with the SIR model show that the limited social distancing with a lockdown
will be successful with a start after a time greater or equal to t0, found by the evaluation of the second
derivative of I (formula (8)). If the limited lockdown is started at a time less then t0, the effect of such
social distancing is not significant.

Bavaria is one of the origins of the German pandemic and is still under strict observation.
Therefore, I will consider the simulation results for this German hotspot. I use β = 0.215 and
N = 12 million as parameters. In Figure 11 the results for one year without and with lockdowns
are shown.

In Figure 12a, the consequences of a 40-day social distancing/dynamical lockdown for the
development of the number of high-risk infected people are shown. Because of the increasing number
of infected people after the 40-day lockdown, I simulated a step-wise return to normality. After the
40-day lockdown, two 40-day periods follow with 60% and 80% of normality, respectively. The result
of this simulation is shown in Figure 12b.
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(a) (b)

Figure 11. Bavarian one-year results; S—green, I—red, R—blue. (a) Bavarian one-year progression
without lockdown; (b) Bavarian one-year progression with lockdown.

(a) (b)

Figure 12. Bavarian one-year results for the high-risk people. (a) Bavarian one-year progression.
(b) Bavarian one-year progression, with the green curve representing the step-wise return to normality.

The results for Bavaria with the considered step-wise lockdown can be passed to other regions
or countries with pandemics. Such a strategy should be preferred instead of a complete return to
normality after rigorous social distancing.

If I write (2) of the SIR model in the form

dI
dt

= (κβ
S
N

− γ)I,

I realize that the number of infected people decreases if

κβ
S
N

− γ < 0 ⇐⇒ S < N
γ

κβ
(9)

is complied with. The relation (9) shows that there are possibilities for the reduction of infected people
to be inverted and the medical burden to be reduced.

(a) The first possibility to decrease the number of infected people is the reduction of the infection
rate κβ. This can be achieved through strict lockdowns, social distancing at appropriate times,
or rigid sanitary measures.
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(b) The second way consists of the reduction of the stock of the species S. This can be achieved
through immunization or vaccination.

(c) The isolation of high-risk people (70 years and older) is another possibility for the reduction
of the number of infected people. In addition, positive tests for antibodies reduce the stock of
susceptible persons.

If there is quantitative information on the isolation of infected people through quarantine, the SIR
model can be extended by a species X, which quantifies symptomatic and quarantined infected people.
This was considered in [2] for the Chinese province of Hubei.

6. Discussion and Conclusions

In this paper, I used a modified SIR model to describe the progression of the COVID-19 pandemic.
I find that the timing of the lockdown is crucial in the progression of a pandemic. It could be shown
that a very early start of limited social distancing measures of a period of Δt days leads only to a
displacement of the climax of the pandemic, but not really to an efficient flattening of the curve of the
number of infected people.

The intervention measures are more efficient, and one can observe a descent in the number
of infected people if the social distancing is started beyond the dynamical lockdown time t0.
However, in this case, a second bump of the curve of infected people will also occur. A stepwise
return to normality turned out to be the most efficient way to overcome the climax of a pandemic.

For the calibration of the SIR model, i.e., the evaluation of the parameter β, the non-linear
regression comes up with significantly better results than the log–linear regression. This is evident
with the comparison of the graphs of the evaluated exponential functions.

It must be noted again that the parameters β and κ were guessed very roughly. In addition,
the percentage representing the group of high-risk people, α, is possibly overestimated. Depending on
the capabilities and performance of the health systems of the respective countries, those parameters
may look different. The interpretation of κ as a random variable is thinkable, too.

I have to point to the second bump in the progression of the number of infected people as an
important issue of limited lockdowns. This must be respected in all decisions of physicians and
politicians in connection with the handling of the pandemic. The simulations for Bavaria pictured in
Figure 12 show that there are return strategies that can reduce further ramps of the progression of the
number of infected people.

In conclusion, it must be said that the results of the simulations using the SIR model describe,
in a way, the worst case. A lot of interventions made by politicians and physicians can disturb the
progression of the pandemic in a positive way. However, not all measures and interventions can be
described by SIR-type models. This allows the conjecture that the real pandemic will be weaker than
the simulation results of the model.
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Abstract: Background: The UK was one of the countries worst affected by the COVID-19 pandemic
in Europe. A strict lockdown from early 2021 combined with an aggressive vaccination programme
enabled a gradual easing of lockdown measures to be introduced whilst both deaths and reported case
numbers reduced to less than 3% of their peak. The emergence of the Delta variant in April 2021 has
reversed this trend, and the UK is once again experiencing surging cases, albeit with reduced average
severity due to the success of the vaccination rollout. This study presents the results of a modelling
exercise which simulates the progression of the pandemic in the UK through projection of daily
case numbers as lockdown lifts. Methods: A simulation model based on the Susceptible-Exposed-
Infected-Recovered structure was built. A timeline of UK lockdown measures was used to simulate
the changing restrictions. The model was tailored for the UK, with some values set based on research
and others obtained through calibration against 16 months of historical data. Results: The model
projects that if lockdown restrictions are lifted in July 2021, UK COVID-19 cases will peak at hundreds
of thousands daily in most viable scenarios, reducing in late 2021 as immunity acquired through
both vaccination and infection reduces the susceptible population percentage. Further lockdown
measures can be used to reduce daily cases. Other than the ever-present threat of the emergence of
new variants, the most significant unknown factors affecting the profile of the pandemic in the UK
are the length and strength of immunity, with daily peak cases over 50% higher if immunity lasts
8 months compared to 12 months. Another significant factor is the percentage of unreported cases.
The reduced case severity associated with vaccination may lead to a higher proportion of unreported
mild or asymptomatic cases, meaning that unmanaged infections resulting from unknown cases
will continue to be a major source of infection. Conclusions: Further research into the length and
strength of both recovered and vaccinated COVID-19 immunity is critical to delivering more accurate
projections from models, thus enabling more finely tuned policy decisions. The model presented in
this article, whilst by no means perfect, aims to contribute to greater transparency of the modelling
process, which can only increase trust between policy makers, journalists and the general public.

Keywords: COVID-19; UK; vaccination; immunity; policy; system dynamics; modelling; uncertainty

1. Introduction

The COVID-19 pandemic is an unprecedented global crisis. The unusual nature of
the SARS-CoV-2 virus, which can be deadly for one person whilst having no symptoms
for another, was misunderstood by scientists and policy makers during the early stages
of the pandemic, leading to underestimation of case numbers and focus on control of
symptomatic infections [1]. Modelling studies [2,3] and research on the prevalence of
COVID-19 antibodies in the UK population [4] indicated early on that confirmed cases
were less than half of true infection estimates, and this reality is reflected in global pandemic
planning guidance [5] and in the continuing use of measures such as lockdowns, which
restrict social contact irrespective of known infection status across an entire population.

The United Kingdom (UK) was one of the countries worst affected by COVID-19 in the
developed world, characterized by a slow initial response, lack of border controls, changing
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regional guidance and ease of movement between regions [6]. The UK is made up of four
countries—England, Scotland, Wales and Northern Ireland, each with the autonomy to
establish their own COVID-19 controls—but as 84% of the population resides in England,
the profile of the pandemic in England and the measures taken there are the most significant
driver of the UK’s COVID-19 statistics. The escalating number of cases and deaths in the
UK led to their being the first country to give authorisation for emergency use of the
Pfizer/BioNTech (PB) vaccine. The vaccination programme started on 8 December 2020
and committed funds for an initial 30 million doses [7]. The AstraZeneca (AZ) vaccine
was authorised on the same basis for rollout commencing 4 January 2021, with 100 million
doses ordered. These vaccines delivered the capability to immunise 50 million people,
effectively covering the entire eligible population of the UK for two doses each [8]. By end
June 2021, 78 million vaccinations had been administered, with 33 million people fully
vaccinated. The Moderna vaccine was also approved by the UK Government [9], and in
mid-April 2021, it started rolling out to under 30 year olds as an alternative to AZ.

Mass vaccination has two main objectives: to protect individuals from death and
severe illness and to increase the number of immune individuals to the point where enough
people are protected from the virus to protect the population as a whole (herd immunity).
For both vaccinated and recovered individuals, the longevity of protection from infection
and the degree of protection conferred are still uncertain. The level of population protection
required for herd immunity in the UK, or any other country, has been estimated but is as
yet unknown.

As the COVID-19 pandemic has evolved, new strains have emerged, and in the UK,
the Alpha variant and Delta variant have successively become dominant. Each of these
strains have been more infectious than their predecessors, increasing the challenges to
health systems.

Modelling studies have reached a new level of public health importance in 2020/2021
as policy makers have seen their value for predicting and analysing the future progres-
sion of the COVID-19 pandemic and allowing a comparison of interventions and policy
decisions. There are broadly two modelling approaches being used. Mechanistic (dy-
namic) models such as the Imperial College London (ICL) model [10] reflect the underlying
transmission process and contain non-linear feedback loops and delays, enabling longer
term projection and inference of the results of changing assumptions or scenarios [11].
Statistical models, for example the Institute for Health Metrics and Evaluation model [12],
use regression based or machine learning methods. These models do not account for how
transmission occurs and are therefore not so well suited for long term projections about
epidemiological dynamics. The Scientific Advisory Group for Emergencies (SAGE) in
the UK uses a number of models to inform its advice [13]. In order to support a broad
public debate on the upcoming precautionary measures against COVID-19, we develop a
simulation model with three purposes:

1. to investigate the likely effects of lockdown easing on the UK pandemic, exploring
the remaining uncertainties on vaccine efficacy and post-infection immunity;

2. to estimate the unknown proportion of COVID-19 cases in the UK and the role of
unknown cases in the spread of the disease;

3. to increase the transparency of the modelling and analysis process, by focusing on
containing the model detail complexity and clearly establishing the implications of
different assumptions.

2. Background

2.1. Recovered and Post-Vaccination Immunity

As the COVID-19 epidemic continues in the UK, recovered population immunity is
building. There is growing consensus amongst researchers that recovered immunity will
not be lifelong and may be ineffective against new strains. Seasonal coronaviruses such
as COVID-19, which infect mucosal surfaces and do not have a viremic phase, typically
result in antibody responses that are detected for months or a few years [14]. Estimates

76



Systems 2021, 9, 60

of the longevity of recovered immunity range from at least 5 months to more than 12
months [15–17]. The longevity and level of protection of post-vaccination immunity is not
necessarily the same as that of recovered immunity and will also become better understood
with elapsed time, as will the protection which it gives against emerging variants. The first
studies specific to COVID-19 reported that in the short term, recovery from infection gave
83% protection (95% CI 76–87%) from reinfection for at least 5 months [18,19]. Results
from newer UK population research released in April 2021 showed 70% (95% CI 62–77%)
protection from reinfection after either infection or vaccination [20]. Clinical trials continue
to investigate vaccine efficacy, the protective effect of past infection and the effectiveness of
both vaccines and past infection against emerging COVID-19 strains.

2.2. Transmissibility after Vaccination

Vaccine efficacy has three components: prevention of infection, reduction of disease
severity and prevention of transmission [21]. Results from clinical trials focus on prevention
and severity of infection, which is directly measurable, rather than on prevention of
transmission. For this study, the relevant component of vaccine efficacy is its effectiveness
in protecting against onwards transmission of the virus. Research shows that the UK’s
vaccination programme has resulted not only in protection from infection but also in
a lower viral burden if infected, leading to a much higher proportion of asymptomatic
and mild infections. Comparison of viral burden in vaccinated and unvaccinated groups
shows a 65% decrease three weeks after one dose of either AZ or PB, and a 70% decrease 1
week after a second dose [20]. Viral burden can be used as a proxy for post-vaccination
transmissibility decrease, which is not directly measurable.

2.3. Known, Unknown and Asymptomatic Cases

Asymptomatic transmission is recognised as a significant contributor to the COVID-19
pandemic, both from pre-symptomatic individuals and from those who never develop
symptoms [22,23]. The effect of vaccines in reducing the severity to asymptomatic or mild
disease may also mean that more cases go undetected in the community, contributing to
increased transmission [24]. At least 50% of new infections are estimated to have originated
from exposure to individuals with infection but without symptoms [25]. Evidence suggests
a 42% lower transmission rate for asymptomatic cases [26,27]. It is broadly acknowledged
that there is massive global under-reporting of symptomatic COVID-19 cases for many
reasons ranging from perception of low personal risk from COVID-19 infection to lack
of trust in health services, lack of testing capacity and a desire to avoid the negative
consequences of enforced isolation [28]. The unknown proportion of cases is thus likely
to be higher than the truly asymptomatic proportion and the modelling exercise uses
optimisation techniques to estimate this unknown proportion.

3. Method and Data Sources

3.1. Model Development

We developed a dynamic model of the COVID-19 pandemic based on the established
Susceptible-Exposed-Infected-Recovered (SEIR) compartmental infectious disease model
structure [29]. The model, shown in Figure 1, was constructed using Stella Architect
software supplied by isee systems, Lebanon, NH, USA.
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The SEIR system structure is based on a reinforcing feedback loop of exponentially
growing infections over time, balanced by an eventual reduction of susceptible individuals
due to death or increasing population immunity. Speed of transmission is tracked by the
calculated reproduction number, Rt, with daily case numbers reducing when Rt falls below
1 (R0, initial reproduction number, is often used incorrectly in place of Rt).

The model includes the effects of the social distancing and infection spread measures
used to control the spread of COVID-19. Infections are classified as known or unknown,
with the parameters associated with contact rates given different values depending on
known/unknown status. The effects of a vaccination programme, which reduces the
susceptible population, and the effects of recovered immunity drop-off [30], which increases
the susceptible population, are also included.

The model consists of stocks, flows and auxiliary variables including intermediate
calculations for the determination of flows. Stocks represent levels or state variables,
including the numbers of people in the different infectious states or the numbers of vaccine
doses available; these are represented by rectangles. Flows represent the rates at which
people and doses transition between states and are represented by valve symbols. These
rates are determined by time constants or probability estimates of moving to one state or
another. The model captures the fundamental drivers of the COVID-19 pandemic and
does not provide spatial or individual-level disaggregation. Its lack of detail complexity is
meant to provide transparency in the modelling and analysis process, whilst allowing the
exploration of a broad range of alternative scenarios.

The model runs from 1 February 2020, when the total population is susceptible, to
31 December 2021, with a time step of 6 h. Individuals acquire the infection, incubate the
disease during an initial latent period and then become infectious. Each stage introduces
a delay into the system. An individual’s infectious state is at first unknown, then, as the
disease becomes symptomatic, it becomes known in a proportion of the infected population.
Some individuals’ infectious state is never known to health authorities, either because they
are asymptomatic or because they do not recognize or wish to disclose their symptoms for
various reasons. Most infected individuals recover, with a proportion of known infected
individuals dying. Recovered individuals acquire a level of protective immunity, which
reduces the susceptible population. The model also projects the effects of potential future
UK Government interventions by simulating increased lockdowns when known daily
cases rise above threshold levels. All equations, auxiliary variable values and initial values
of stocks are listed in Supplementary Materials Table S1.

3.2. Model Data Sources

The infection rate in the model is calculated from the susceptible population and the
daily infecting contact rate, which is affected by social distancing, hygiene and lockdown
measures and is significantly lower for known infected individuals. Infectivity in the model
increases from 5 December 2020 and again from 13 April 2021, reflecting the emergence of
the ‘UK variant’ B.1.1.7, now known as the Alpha variant, which was measured as 35%
more contagious (95% CI 2–69%) [31,32] and then the ‘Delta variant’, assumed to be twice
as contagious as the original virus. The model uses data for the PB and AZ vaccines only,
as the Moderna vaccine has not yet been deployed in quantity in the UK.

The values of the parameters used in the model, shown in Table 1, were established in
two ways:

1. For parameters where reliable data was available from published research, e.g., virus
incubation time, the median values from the research were used;

2. For parameters where data was either unavailable or considered unreliable, the Powell
optimisation method was used to calibrate the model and confirm a narrow spread of
95% confidence intervals.

79



Systems 2021, 9, 60

Table 1. Major parameter values used in model.

Parameter Value Unit Source

Incubation duration (non-infectious latent
period) 3.5 Days [33]

Disease duration stage 1 unknown 2 Days [33,34]

Disease duration stage 2 known 8 Days [33,34]

Disease duration stage 2 unknown 5 Days [33,34]

Time from known disease till death 11 Days [34]

Vaccine rollout speed PB/AZ 130,000/380,000 Doses/day [35,36]

Vaccine protection against onwards transmission
21 days after dose 1 PB/AZ 65% $ - [20]

Vaccine protection against onwards transmission
7 days after dose 2 PB/AZ 70% $ - [20]

Length of immunity after vaccination or recovery 8 $ Months [15]

Maximum population immunity 70% - [37]

Average immunity protection post recovery 70% $ - [20]

Unknown infectiousness ratio * 72% $ - [5,26,27,38–40] and
model optimisation

Unconstrained infecting daily contact
rate unknown 0.56 $ - model optimisation

Unconstrained infecting daily contact
rate known 0.14 $ - model optimisation

Known proportion estimate February 2021 21% $ - [2] and model optimisation

Relative infectivity after alpha variant identified 1.32 $ - [32] and model optimisation

Relative infectivity after delta variant identified 2.0 $ [41]

* Starting point was the best estimate used by Center for Disease Control and Prevention based on multiple assumptions and conflicting
research papers. $ Value used for base case of model.

3.3. Lockdown Effectiveness Timeline Estimation

As social distancing and lockdowns have proven to be one of the most effective ways
of combating the spread of the virus [42], a composite measure of lockdown effectiveness
based on the timeline of the various restrictions and their easing measures was a key part
of the model. This measure is known as the ‘lockdown percentage’. It varies throughout
the life of the model and measures the timeline of social distancing, mask wearing and
movement restriction measures and varies between 0% and 100%, where 0% represents
society with no restrictions in place and 100% a hypothetical total restriction scenario with
no contact and therefore no transmission of the virus.

From January 2021, the UK Government implemented a set of country lockdown
plans which specified staged step downs separated by a minimum of five weeks, with 7
day’s notice of each change [43] to enable the observation of the data before proceeding.
The dates of the most significant measures taken and the future plans [43] are shown in
Table 2. The lockdown percentage timeline was estimated from this table and compared
with data from a UK social distancing measures adherence study [44].
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Table 2. Dates of significant measures.

Event Date

First two UK COVID-19 cases confirmed 1 February 2020
UK Government Coronavirus action plan 3 March 2020

First COVID-19 death 3 March 2020
Contact tracing abandoned 12 March 2020
UK-wide lockdown effected 26 March 2020

Prime Minister admitted to hospital with COVID-19 symptoms 4 April 2020
COVID-19 alert levels system announced 1 May 2020

Lockdown eased, workers return, outdoor exercise with another 13 May 2020
Lockdown eased, non-essential shops reopen 15 June 2020

Restaurants and pubs open 4 July 2020
Restaurant ‘eat out to help out’ campaign 3 August 2020

One of every three cases in 20–29-year-olds, fast growth in younger people 7 September 2020
England—‘Rule of Six’ announced to curb social gatherings 14 September 2020

England—three-tier alert framework implemented 14 October 2020
Northern Ireland—4-week ‘circuit breaker’ lockdown starts 16 October 2020

Wales—3-week ‘firebreak’ lockdown starts 23 October 2020
Scotland—5-tier alert system starts 2 November 2020

England—4-week national lockdown starts at new tier 4 5 November 2020
New COVID-19 strain (Alpha variant) B.1.1.7 detected in UK 13 November 2020

England—4-week lockdown ends 3 December 2020
PB immunisation rollout starts 8 December 2020

London and Scotland, new tier 4 lockdown 20 December 2020
Christmas one day lockdown relaxation 25 December 2020

AZ immunization rollout starts 4 January 2021
England, Scotland—tier 5 lockdown to 22 February 6 January 2021

England—lockdown extended to 8 March 27 January 2021
Schools return 8 March 2021

Non-essential retail, outdoor hospitality and attractions reopen 12 April 2021
New COVID-19 strain (Delta variant) B.1.617.2 detected in UK 15 April 2021

Indoor hospitality and sporting events with limited capacity reopen 17 May 2021
Planned England and Scotland ‘Freedom day’ 21 June deferred to 19 July 14 June 2021

FUTURE CHANGES:
England—mandatory mask rules lifted, nightclubs reopen, full capacity events 19 July 2021
Scotland—level zero, up to 10 people meet indoors, nightclubs remain closed 19 July 2021

3.4. Model Calibration and Optimisation

The model was calibrated against historical UK COVID-19 case, death and vaccination
data up to 12 July 2021 sourced from Johns Hopkins University [36]. Calibration was done
using an optimisation process to find the model variables which produced the best fit to
the historical data. The variables which were used for optimisation were: the known and
unknown infecting contact rates, the infectiousness ratio of unknown to known cases and
the known proportion of cases. This optimisation produced the model ‘base case’ which
was used as the starting point for varying uncertainties. Optimisation was also performed
for differing immunity length scenarios. The relative infectivity of the Alpha variant and
the Delta variant were calibrated by later optimisations.

After calibration, the following validation checks were performed:

• The ‘new susceptible’ and ‘recovered susceptible’ stocks in the model were validated
against UK COVID-19 antibody prevalence studies to ensure that the population
fraction of people with antibodies, who can be presumed to have recovered from
COVID-19, aligns with the modelled fraction [4];

• Modelled UK case fatality rates were compared with historical data to ensure broad
alignment [36];

• The reproduction number Rt, calculated by the model over time, was compared with
studies of the initial R0 and the ongoing COVID-19 Rt values to check consistency [45];
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• The unknown infectiousness ratio was compared with previous research to ensure
that it was at least as high as the estimated asymptomatic infectiousness ratio [26,27].

The major assumptions made in the model in addition to the assumed parameter
values were:

• The relative infectivity increases at two points in time due to the new Alpha and Delta
variants;

• Vaccination proceeds at a steady daily rate in all scenarios and is offered to the total
eligible population irrespective of whether an individual is known to have recovered
from COVID-19;

• The maximum achievable population immunity fraction of 70% is capped by inel-
igible population sectors (pregnant women and most children under 18), vaccine
hesitancy [37] and logistical difficulties;

• The second dose of a vaccine is given 12 weeks after the first dose;
• The protective effect of the first dose of the vaccine is established 21 days after admin-

istration, and increased protection is established 7 days after the second dose;
• The average time lag between symptom onset and the reporting of a positive case to

the data source is 4 days.

3.5. Uncertainty Modelling

Having established the model ‘base case’ through calibration and validation, uncertain
parameters in the model were then varied between the 95% CIs reported in clinical trials,
enabling the exploration of the effect on future daily case rates. A summary of the areas of
uncertainty investigated is shown in Table 3.

Table 3. Scenarios simulated in model.

Scenario

Immunity
Length Post
Vaccination

and Post
Recovery

Protection from
Infection Given

by Recovered
Immunity

Vaccine Protection
3 Weeks after 1st

Dose

Vaccine
Transmission

Protection 1 Week
after 2nd Dose

Future Known
Proportion of Cases

Lockdown
Characteristics

Base Case 8 months [15] 70% [20] PB/AZ 65% [20] PB/AZ 70% [20] 50% -

Recovered immunity
protection variations

8 months 62%/70%/87%
[15–17,19,20] PB/AZ 65% PB/AZ 70% 50% -

Vaccine protection
variations

8 months 70% PB/AZ
60%/65%/70% [20]

PB/AZ
62%/70%/77% [20] 50% -

Known proportion of
cases variations

8 months 70% PB/AZ 65% PB/AZ 70% 50%/37.5%/25%/12.5% -

Lockdown sensitivity
variations

8/12 months 70% PB/AZ 65% PB/AZ 70% 50%

Delays from 3.5 to
21 days,

Case thresholds
from 5000 to 25,000,
Lockdown increase

from 25% to 50%

There is no published research data available for post-vaccination immunity length, so this was assumed to be the same as post-recovery
immunity. The proportion of known COVID-19 cases may reduce due to lowered disease severity; the model was run using values of 0%,
25%, 50% and 75% reduction in the absence of published research.

4. Results

4.1. Model Fit to Actuals

Figure 2 shows the reported historical and modelled 7-day averages for the UK’s new
known daily COVID-19 cases from 1 February 2020 to 12 July 2021. The error statistics
calculations (R2: = 0.97, RMSPE = 3.6% and Theil’s inequality coefficient = 0.07) confirm
a good fit of the simulated results to historical actuals. The lockdown percentage is
represented as a black line with its scale on the right axis. The left axis shows the scales for
the actual and modelled new known daily cases and deaths, with cases climbing to 60,000
in January 2021. The x-axis markings show the beginning of each month.
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Figure 2. Daily UK reported COVID-19 cases 1 February 2020 to 12 July 2021.

The effect of the first UK-wide lockdown, which was estimated as 75% effective [44],
can be seen in April 2020, with known case numbers peaking 16 days later. The gradual
easing of the lockdown from 5 July 2020 resulted in an increase in known cases from August
2020, with the UK Government ‘Eat out to help out’ scheme estimated to have raised
infection rates by 8 to 17% [46]. The lockdown percentage increased from mid-October
2020 in response to rising rates as the English tiered alert system started and Northern
Ireland and Wales imposed ‘firebreak lockdowns’, followed by regional restrictions in
Scotland and a four-week English lockdown starting 5 November in an attempt to reduce
case numbers before the Christmas period. The effect of these consolidated lockdowns
was to reduce the known case numbers from mid-November 2020 for 16 days, only for
them to climb from 5 December 2020 onwards as the UK moved into its holiday period.
The emergence of the more contagious Alpha variant in December 2020 accelerated the
new case rate and made a strict lockdown in January 2021 necessary to contain the ‘second
wave’. The lockdown was effective in reducing cases, which peaked at 60,000 per day 12
days after the Christmas lockdown relaxation and then fell below 2000 per day in May 2021.
However, the Delta variant, which became dominant in the UK in April 2021, combined
with easing of lockdown restrictions in April and May, reversed the downwards trend and
cases climbed to over 30,000 per day in July 2021.

The optimisation process described in Section 3.2 calculated a relative infectiousness
value of 72% for unknown cases, which is in the range supported by the research [5].
The known proportion of 21% of cases at the end of January 2021 was also obtained
through optimisation, assuming a logarithmic growth rate from the beginning of the
model’s timeframe. This is in the range supported by other models [2] and helps to explain
why non-discriminatory lockdowns were adopted as the only effective means of controlling
the spread of COVID-19 before vaccines were developed. The known proportion was
assumed to increase to 50% by end March 2021 as cases fell, testing capability improved
and self-testing became mandatory for certain professions, e.g., teaching. This assumption
was validated by a comparison of reported cases against random population sampling.

4.2. Exploring Uncertainty

The scenarios identified in Table 3 were simulated by varying the selected variables
whilst keeping other variables at ‘base case’ levels.
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4.2.1. Uncertain Immunity Length

The ‘base case’ defined in Table 3 assumes 8 months average immunity, either after
vaccination or recovery from infection [15], a 65% reduction in transmission protection
after one dose, a 70% reduction after two doses of either the PB or AZ vaccine and 70%
protection from reinfection after recovery from COVID-19 [20]. Research to date reports
that immunity is likely to vary between 5 and 12 months [15–17,19], and Table 4 shows
the simulated scenarios. Immunity against emerging variants may be different and is not
accounted for in this model.

Table 4. Varying immunity scenarios.

Scenario
Immunity

Length

Recovered
Immunity
Protection

Vaccine Protection 3
Weeks after 1st

Dose

Vaccine
Protection 1 Week

after 2nd Dose

Future Known
Cases

Immunity length
variations 5/8/12 months 70% PB/AZ 65% PB/AZ 70% 50%

The model was run from 1 February 2020 to 31 December 2021 to simulate the ‘base
case’ of 8 months immunity and shorter and longer average immunity lengths of 5 and 12
months. Figure 3 shows the projected daily known cases for the three scenarios, assuming
a stepped lockdown percentage decrease from March 2021 onwards, which reduces to 20%
in mid July 2021 according to the current UK Government timelines [43]. The figure of 20%
assumes that some distancing restrictions are still in place until the end of 2021, that people
will continue to exercise caution and that businesses will continue risk reduction policies
such as disinfection and management of crowds.

Figure 3. Daily UK COVID-19 cases projected to end 2021 with varying immunity lengths.

For the ‘base case’, the solid red line in Figure 3 shows the model’s projection of a
continuing rapid increase in known daily cases, driven by increased transmission opportu-
nities and an increased susceptible population percentage as those infected in early 2021
lose their immunity. This peaks in September 2021 at 260,000 daily known cases when
population immunity created by both vaccination and recovery from infection reduces
the susceptible percentage and numbers start to fall. This projection is starkly different
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from the pre-Delta variant scenario, which is represented by the dotted red line. In this
scenario, immunity from both vaccination and recovery would have contained daily known
cases below 3000 from May 2021. Increasing the average immunity length to 12 months is
projected to contain the surge to 160,000 daily known cases, peaking in October 2021. If
immunity only lasts for 5 months, the surge is higher and a peak of 430,000 daily known
cases is reached in August 2021. A 5-month immunity scenario assuming no Delta variant
would also see cases rising more slowly, peaking in December 2021. The 5-month immunity
scenarios, however, seem unlikely as actual known daily cases are not surging fast enough
in July 2021 to align with the model’s projections.

The results shown in Figure 3 are based on the assumption that from May 2021
onwards, 50% of cases continue to be detected due to increased testing capability. However,
this detection rate may well be unachievable at these high case levels, in which case
reported results would show lower numbers than those projected in the simulation.

4.2.2. Uncertain Immunity Effectiveness

Research has produced a range of effectiveness results and confidence intervals for
both recovered and vaccinated immunity. Table 5 shows the varying immunity effectiveness
scenarios simulated. The scenarios reflect the 95% CI range of post-vaccination and post-
recovery immunity protection from the results of clinical research [20], assuming the ‘base
case’ for other values [15–17,19,20]. The 95% CI ranges for recovered and vaccinated
immunity are different, and this is reflected in the scenarios used. Figure 4 shows the
modelled projections for these scenarios.

Table 5. Varying immunity effectiveness scenarios.

Scenario
Immunity

Length

Recovered
Immunity
Protection

Vaccine
Protection 3

Weeks after 1st
Dose

Vaccine
Protection 1 Week

after 2nd Dose

Future Known
Cases

Vaccine protection
variations

8 months 70% PB/AZ
60%/65%/70%

PB/AZ
62%/70%/77% 50%

Recovered immunity
protection variations

8 months 62%/70%/87% PB/AZ 65% PB/AZ 70% 50%

Figure 4. Daily known case projections with varying immunity protection.
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Figure 4a projects that if post-vaccination protection from infection is at the lower
boundary of 62% after two doses, known infections will build to 320,000 in September.
Using the higher boundary of 77% protection after two doses, the model projects that
known daily cases will peak at 210,000 before dropping as herd immunity from both
vaccination and recovery reduces the susceptible percentage.

Figure 4b shows the projected range of known cases for recovered immunity variation.
The model projects that the lower value of recovered immunity of 62% will result in a daily
known case surge to 280,000 in September 2021, reducing to 215,000 with the higher value
of 87%. As described in Section 4.2.1, 50% detection at these high daily case numbers may
be unachievable, which would reduce the reported case peaks.

4.2.3. Uncertain Known Proportion

The results presented so far show only the known proportion of COVID-19 cases in the
UK. As vaccination reduces not only the case numbers but also the average case severity,
the unknown proportion may increase further as the proportion of mild or asymptomatic
cases grows, even with increased ease and availability of testing. Table 6 shows the
scenarios modelled.

Table 6. Varying known proportion scenarios.

Scenario
Immunity

Length

Recovered
Immunity
Protection

Vaccine
Protection 3

Weeks after 1st
Dose

Vaccine
Protection 1

Week after 2nd
Dose

Future Known Cases

Known
proportion
variations

8 months 70% PB/AZ 65% PB/AZ 70% 50%/37.5%/25%/12.5%

Figure 5a,b project the daily known and total cases for 2021 for the ‘base case’ scenario
with the percentage of known cases to unknown ranging from 50% to 12.5%. The base case
assumes that 50% of cases are known.

Figure 5. Daily known and unknown UK COVID-19 cases in 2021 with varying known proportion assumptions.
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As expected, the projected known case numbers drop as the unknown proportion
rises. The projected total cases would be expected to increase when a lower percentage
of the cases are known because transmission is not being managed through isolation of
infected individuals. However, because unknown cases are assumed to be less infectious
and of a shorter duration than known cases [26,27], a 75% reduction in the proportion of
known cases (from 50% to 12.5%) generates only a 40% increase in total case numbers.

4.2.4. Modelling the Effect of Interventions

The UK Government’s planned landmark date of 21 June 2021, ‘Freedom day’, when
masks could be removed and other significant restrictions would be lifted, was moved to
19 July as daily case numbers started to rise in May 2021 [47]. This rise, driven by the more
transmissible Delta variant and the eased restrictions, raises the question of whether further
lockdowns should be considered despite the increasing vaccination numbers. From the
results shown in Figures 3–5, it can be seen that varying immunity length has a larger impact
on case number projections than varying vaccination and recovered immunity protection
within their likely ranges. Therefore, potential lockdown scenarios were explored with
differing immunity length assumptions, as shown in Table 7.

Table 7. Varying lockdown initiation scenarios.

Scenario
Immunity

Length

Recovered
Immunity
Protection

Vaccine
Protection 1st

Dose

Vaccine
Protection 2nd

Dose

Future Known
Cases

Lockdown Daily
Case Threshold

Lockdown%

Lockdown effects for
varying immunity

lengths
5/8/12 months 70% PB/AZ 65% PB/AZ 70% 7 days 50,000 20% addition

Figure 6a,b simulate the effects of a Government policy which reacts to daily known
cases rising above 50,000 by increasing lockdown levels by 20%. The 20% is a theoretical
number which could be made up of a number of different measures, e.g., self-isolation
restrictions, masks, number limits. A 7-day reaction time is built into the simulation, in
line with current Government policy.

Figure 6. Lockdown interventions when cases rise above 50,000.

Figure 6a projects that for an 8-month immunity length, a 3-month-long return to the
40% lockdown level would be required from late July 2021 to return cases to below 50,000.
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For a 12-month immunity length, a 2-month return to the 40% lockdown level would
be required, starting at a similar time. Figure 6b projects that for a 5-month immunity
length, the 50,000-case threshold will be breached in July and continuing lockdown at the
July levels would reduce the peak daily numbers to 250,000 before they drop down in
November 2021.

4.2.5. Lockdown Policy Sensitivities

The scenarios shown in Table 8 were used to simulate the sensitivity of the lockdown
policy to the length of time before initiating lockdown.

Table 8. Varying lockdown initiation delay scenarios.

Scenario
Immunity

Length

Recovered
Immunity
Protection

Vaccine
Protection 1st

Dose

Vaccine
Protection 2nd

Dose

Delay before
Lockdown

Lockdown Daily
Case Threshold

Lockdown%

Lockdown delay
variations

8 months 70% PB/AZ 65% PB/AZ 70% 3.5, 7, 10.5,
14, 17.5, 21 days 5000 25% addition

5 months 70% PB/AZ 65% PB/AZ 70% 3.5, 7, 10.5,
14, 17.5, 21 days 5000 25% addition

Figure 7 projects the results of varying the lockdown notice period between 3.5 and 21
days after known cases reach 50,000. Figure 7a shows that the 8-month immunity ‘base
case’ with a 20% increase in lockdown percentage results in a shorter delay and a lower
peak in cases. The highest peak is projected for the 21-day lead time. Figure 7b shows
the same pattern for the 12-month immunity assumption, with maximum daily infections
reaching 96,000 for a 3.5-day lead time and 136,000 for a 21-day lead time.

Figure 7. Effect of varying time to initiate lockdown.

The scenarios shown in Table 9 were used to simulate the sensitivity of the lockdown
policy to the case threshold before initiating lockdown.
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Table 9. Varying lockdown case threshold scenarios.

Scenario
Immunity

Length

Recovered
Immunity
Protection

Vaccine
Protection 1st

Dose

Vaccine
Protection 2nd

Dose

Delay before
Lockdown

Lockdown Daily
Case Threshold

Lockdown%

Lockdown case
threshold
variations

8 months 70% PB/AZ 65% PB/AZ 70% 7 days
25,000, 50,000,

75,000,
100,000

20% addition

12 months 70% PB/AZ 65% PB/AZ 70% 7 days
25,000, 50,000,

75,000,
100,000

20% addition

Figure 8 projects the results of varying the daily known case threshold for initiating
lockdown between 25,000 and 100,000, assuming a 7-day lead time as per the current UK
Government policy. Figure 8a shows that, for the 8-month immunity ‘base case’, the lower
the case threshold, the lower the peak of daily cases. In all scenarios, cases fall rapidly as
the susceptible percentage reduces due to increasing population immunity from the large
numbers of recovered infections and vaccinations. Figure 8b shows the same pattern for
the 12-month immunity scenario with lower peaks because of the greater level of retained
recovered population immunity.

Figure 8. Effect of varying number of known cases required to initiate lockdown.

The model was used to simulate extreme lockdown scenarios as shown in Table 10.

Table 10. Testing extreme lockdown scenarios.

Figure Scenario
Immunity

Length

Recovered
Immunity
Protection

Vaccine
Protection 1st

Dose

Vaccine
Protection
2nd Dose

Delay before
Lockdown

Lockdown
Daily Case
Threshold

Lockdown%

9a
Long delay &

high case
threshold

8/12 months 70% PB/AZ 65% PB/AZ 70% 21 days 100,000 20% addition

9b
Severe

lockdown
8/12 months 70% PB/AZ 65% PB/AZ 70% 7 days 50,000 40% addition

The extreme effects of a high threshold of 100,000 cases and a 21-day delay before
lockdown initiation were projected in Figure 9a; for the 8-month immunity base case, the
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case threshold is reached in August 2021 and lockdown is initiated in early September 2021,
continuing for 2 months with daily known cases peaking at 250,000. For the 12-month
immunity scenario, a shorter lockdown starting in September is required, and daily cases
peak at 160,000. Figure 9b projects the effect of a 40% lockdown increase rather than the
20% used in other scenarios and shows how, for the 8-month immunity base case, reduced
transmission opportunity lowers daily cases from a peak of 107,000 to below the 50,000-case
threshold, requiring another lockdown phase in late 2021 to reduce case numbers again.
The 12-month immunity scenario only requires one lockdown to control case numbers as
ongoing vaccinations continue to reduce the susceptible percentage.

Figure 9. Extreme simulations for lockdowns.

4.2.6. Change in Susceptible Percentage

In February 2021, 100% of the UK population was susceptible to infection with COVID-
19. The susceptible percentage dropped as people became immune either through infection
or vaccination. The movement of the susceptible percentage is illustrated in Figure 10 for
immunity length variation scenarios, with and without new lockdown interventions after
June 2021, as shown in Table 11.

Table 11. Susceptible percentage illustrations.

Figure Scenario
Immunity

Length

Recovered
Immunity
Protection

Vaccine
Protection 1st

Dose

Vaccine
Protection
2nd Dose

Delay before
Lockdown

Lockdown
Daily Case
Threshold

Lockdown%

10a
Immunity
variations

5/8/12
months 70% PB/AZ 65% PB/AZ 70% - - -

10b

Immunity
variations

with
lockdown

intervention

5/8/12
months 70% PB/AZ 65% PB/AZ 70% 7 days 50,000 20% addition
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Figure 10. Susceptible population percentage with differing immunity and interventions.

Figure 10 shows the susceptible percentage reducing as the pandemic progresses.
The steeper downward slopes correlate with periods of higher infection rates during
which more people acquire recovered immunity. In Figure 10a, for the 5-month immunity
scenario, the susceptible percentage drops slowly through April to July 2021 as increasing
numbers are vaccinated. It then falls steeply to 13% because the infection surge, which is
seen in Figure 3, generates recovered immunity before increasing in September 2021 as this
immunity erodes. The 8-month and 12-month immunity scenarios follow a similar pattern
but with less pronounced slope changes.

Figure 10b shows the susceptible percentages for the three immunity scenarios with
lockdown interventions implemented. For all scenarios, lockdowns as illustrated in Figure 6
are required to reduce daily known cases below 50,000. These have the effect of slowing
the susceptible percentage reduction by reducing case numbers and hence generating less
recovered immunity.

5. Discussion

5.1. Implications of Findings

The UK Government’s approach to the COVID-19 pandemic in the UK, though initially
hesitant, turned around in early 2021 when strong lockdown measures were put in place
and an ambitious vaccination programme was commenced. The UK’s aggressive pursuit of
vaccination is paying off, with half the population fully vaccinated at the beginning of July
2021. Were it not for the emergence of the Delta variant, assuming that immunity gained
from either infection or vaccination lasts at least 8 months, the UK would be assured that
it could lift restrictions and keep COVID-19 case numbers at a low level throughout the
remainder of 2021. However, sharply rising case numbers in July 2021 are changing the
landscape, with health workers once again fearful of being overwhelmed by COVID-19
cases [48]. The vaccination programme has reduced both the transmission and severity
of the disease, meaning that hospitalisation and death rates will be greatly reduced, but
with half the population still unvaccinated or incompletely vaccinated, and the scenarios
projecting hundreds of thousands of daily cases, daily deaths are likely to reach into the
hundreds [36] without containment measures.

The most significant influencer of ongoing infection rates, other than the emergence
of another more infectious variant, is likely to be the length of protection conferred by
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vaccinated and recovered immunity. Immunity length is a significant unknown, which will
only become clearer as results from longitudinal studies on vaccinated and recovered indi-
viduals emerge. The modelling used by the UK Government’s SAGE advisory group [13]
specifically excludes waning immunity and the future emergence of variants, so these are
significant gaps. There are no tools to predict the profile of future variants but further
research to understand immunity length, particularly vaccinated immunity, which has a
more significant influence in the UK than recovered immunity, is critical for informing
policy and for reducing the uncertainty surrounding the various scenarios.

As cases surge, the vaccinated sector of the population will be protected from serious
illness and death but vaccination status in the UK is uneven, with lower uptake amongst
disadvantaged groups and ethnic minorities, leaving these groups vulnerable. The unvacci-
nated population will only be effectively protected through herd immunity, which research
indicates will be reached with a susceptible percentage of 30% or less [49,50]. The limits on
the percentage of the population able to be vaccinated will become the main constraint to
achieving herd immunity. About 22% of the UK population are not currently eligible for
vaccination (21% under 18, 0.7% pregnant), which means that 90% of eligible adults need to
be vaccinated to achieve a 70% total. With the highest infection prevalence in teenagers and
20–24-year-olds [47], extending vaccinations to children is a logical next step to increasing
herd immunity, and further research and trials on the safety and efficacy of vaccines for
children and pregnant women are required to inform policy. Continuing education and
reassurance for the vaccine-hesitant sector of the population is also required to address
resistance. It seems likely that for herd immunity to be maintained, regular booster doses of
COVID-19 vaccinations will be needed; the practice of immunizing newly eligible people
will be insufficient to control the spread of the virus.

Cases are likely to shift from known to unknown because of the reduction in infection
severity post-vaccination. As nothing other than lockdown appears to work when there are
many unknown cases, a capability which maintains or improves the proportion of known
cases is important. The potential for more unknown cases, explored in Section 4.2.3, is a
concern and strengthening policies which encourage routine testing mitigates against the
growing unknown proportion, and thus the unseen burden of disease. The projections
for known cases in Figures 3 and 4 are based on the known proportion remaining at 50%,
which is why they are so high in some scenarios.

The current Government policy of 7 day’s warning of a change in lockdown status
seems a reasonable balance between people’s need for notice and the infection growth
which takes place in those 7 days, although there is a case for reducing notice to curb growth.
Any argument for a low lockdown case threshold to curb growth has been overtaken by
events in July 2021, with over 50,000 daily cases being reported. The load on the health
services will be a critical consideration in decisions about further restrictions; modelling
that is outside the scope of this article.

5.2. Modelling Discussion

The UK Government’s SAGE advisory group uses three models from the Imperial
College London, Warwick University and the London School of Medicine and Tropical
Hygiene groups [13]. The assumptions used by the models are documented, but the public
cannot easily see or understand the models or the process by which the results are obtained.
This generates mistrust and skepticism, especially as the incorporation of new factors such
as the emergence of the Delta variant cannot be done instantaneously.

This model, whilst it has more limitations than the larger models, has the advantage
of being able to be displayed on one page, making it potentially more accessible and
transparent. It is an aggregated model, with no split into age bands with their differing
profiles and vulnerabilities. It does not account for urban/rural differences or for country
differences within the UK. Many aspects of the simulation, for example, vaccine rollout
ramp up and the emergence of the Alpha and Delta variants, are simplified. However, it is
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a useful tool for representing COVID-19 transmission in the UK and can be used to project
the effects of policies and interventions across a range of uncertainties.

5.2.1. Uncertainty

The model is based on a set of significant assumptions based on evolving clinical
research which suggests a range of scenarios. Of particular importance are:

• length of recovered immunity;
• vaccine efficacy in reducing transmission;
• duration and relative infectiousness of asymptomatic and mildly symptomatic cases;
• ongoing uncertainty on the proportion of unknown cases which continue to drive infec-

tions.

The strategies for dealing with uncertainty in COVID-19 modelling proposed by
Wang/Flessa [51] have been followed for this modelling exercise. It is evident both from
the results and the discussion that changes in key assumptions, including future lockdown
percentages, can have significant impacts on the projections in the model. Changes in
the vaccine mix may also change the model projections. Every month that the pandemic
progresses, new research with a direct bearing on the model assumptions is produced, so
there is an opportunity for ongoing refinement.

5.2.2. Confidence in the Results for Given Assumptions

An important decision in the modelling process is which values to fix as constants
and which to determine through a ‘try for fit’ calibration process. If one attempts to vary
all of the assumed values in the model, there are too many degrees of freedom to be
able to obtain meaningful results. It is certainly possible to obtain similar results with
different parameter values, in line with the concept of equifiniality, which demonstrates
that different sets of parameters can lead to the same or similar results [52]. There is a
balance between fixing assumptions to reduce the number of values in play, enabling a
meaningful optimization process to be run, and choosing to fix assumptions which are
not certain enough, introducing error into the model. The method used in this exercise,
which relies on fixing values which have research backing and calibrating the other values
against historical data through a curve-fitting exercise, has introduced a level of rigour to
the process.

5.2.3. Comparison with Other Models

A significant difference between this model and many other models produced is the
inclusion of loss of immunity. Most of the earlier COVID-19 models excluded loss of
immunity, although Struben recognises it as a factor which will need to be considered as
the pandemic evolves [53]. One other UK-specific exception is the ‘Testing and Tracking in
the UK’ study from the Wellcome Foundation [54], which concludes that the emergence
of a new wave of infection depends on the rate at which immunity is lost. This model
supports this finding.

A number of studies investigate the difficult issue of true population infection rates for
COVID-19 and the high proportion of unknown infections. The ongoing model comparison
reporting from the ‘Our World in Data’ project [2] lists two well-known models from
Professor Neil Ferguson’s team at the Imperial College London (ICL) and from the Institute
for Health Metrics and Evaluation (IHME), which track the estimated total COVID-19
infections against reported infections for many countries. The ICL model shows, after
the ‘first wave’, when testing was immature, total UK cases varied between four and six
times the number of known cases, only reducing to roughly double the known cases in late
March 2021. The IHME model is more optimistic, showing the total UK cases as no more
than double the number of known cases after the first peak and showing no unknown
cases in the UK in late March 2021. This model is more aligned with the ICL model, and we
believe its findings to be more plausible on the basis that not all infections will be reported
for various reasons including asymptomatic or mild infection. Backcasting studies also
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support estimates in line with the ICL model [55,56]. None of the models or studies project
forwards, so forecasting the known proportions at the current level seems to be the only
reasonable option despite the large peaks which are projected.

5.2.4. Generalisation

Finally, whilst this model was built for the UK, the only thing which makes it country-
specific is the calibration of the parameters and the lockdown profile. It may not be suitable
for countries with lower case rates, where factors such as the efficiency of contact tracing
have more influence, but otherwise, it is structurally generic and could be adapted for
other countries or regions. Whilst decisions in managing this pandemic cannot be based on
modelling alone, the predictive power of dynamic modelling can serve as a powerful tool
to inform policies and intervention decisions. Never has modelling been more important
in the field of public health.

6. Conclusions

Whilst there continues to be considerable uncertainty surrounding the progression
of the COVID-19 pandemic in the UK, this modelling exercise identifies the key factors
generating this uncertainty and projects the results of lockdown changes under a variety
of scenarios. UK policy makers set a reasonable course to enable the countries to exit
from lockdown, but the infection surge resulting from the emergence of the Delta variant
has given yet another challenge which can only be addressed by an ongoing focus on
vaccination and potentially by further social restrictions.

The model, whilst by no means perfect, is useful for projection purposes, and its sim-
plicity and transparency are meant to provide further insight to the modelling and analysis
process to both policy makers and the general public. As with any model, the assumptions
behind it are critical to its accuracy. New COVID-19 research is being published all the
time, and the model can continue to be refined and updated as both the research and policy
evolves and more historical data is produced.
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Abstract: Tourism provides many advantages for Sweden and the whole world, as well as its travelers.
Since almost all types of tourism are currently in crisis as a result of the current COVID-19 pandemic,
information and communication technology is expected to play a role, not only during the crisis but
also in the post-COVID-19 era. Thus, with no expectations from types of tourism, Sweden needs to
broaden its digital tours. As a result, this letter aims to classify the transition readiness of industry
clusters for this digitalization move. An extended version of the TOPSIS technique was formulated
and validated, plus a new framework for measuring digitalization readiness for this purpose. Lastly,
analysis of the collected data proves that business tourism could lead the change, though adventure
and rural tourism are at the farthest point from being considered ready to change.

Keywords: tour and traveling; digitalization shift; change readiness; expanded TOPSIS; COVID-19

1. Introduction

The tourism industry encompasses a broad variety of events, as tourism is described as
persons traveling to and staying in places outside their typical environment for a maximum
of a year for business, leisure, or any other dedications [1]. Scholars [2] believe that tourism
plays a crucial role in the growth and development of all countries. Any crisis for tourism
could be a challenge for many subdivisions, as in recent decades, tourism has stretched
into various types [3,4]: adventure tourism, urban tourism, cultural tourism, event tourism,
etcetera. In 2019, approximately 1.5 billion international tourist arrivals were estimated
worldwide, and prior to the 2020 pandemic, international travel was forecast to expand
more than three percent per year [5].

The World Health Organization (WHO) announced a worldwide pandemic in March
2020: the COVID-19 pandemic, which was a disease caused by the SARS-CoV-2 coronavirus.
The COVID-19 pandemic is still a challenge in 2021 for the whole world. More or less,
people are in mandatory quarantine or quarantine of their own volition and travels are
minimized due to the pandemic [6]. Accordingly, the tourism industry is facing a crisis
due to this virus. It is a serious issue, as Peceny et al. [7] said that even a slight change
in this industry has a massive impact on all of society. Although the tourism industry
has experienced different crises, the impact of the current crisis is more shocking than
any earlier ones, at least from an economical perspective [8]. Thus, many professionals,
including Higgins-Desbiolles [9] and Gretzel et al. [8], call for an urgent solution for the
industry to handle and recover from this crisis. However, which types of the tourism
industry should be targeted for urgent intervention need to be assessed, as well as which
types are capable of better adapting to the circumstances.

Scholars argue that tourism is not only generating financial growth and job oppor-
tunities, but also significantly contributes to quality of life [2]. However, this pandemic
lockdown has caused a negative impact on people’s daily lives and several reports have
recently alerted us about the mental health burden of this pandemic (i.e., [10–13]). Due
to this pandemic, a lot of people are suffering from heightened mental health problems,
such as depression, anxiety, and sadness, which have emerged as significant public health
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challenges. These can also lead to severe behavioral and physical health issues with serious
effects, with both social and personal costs [10]. Therefore, studies to mitigate this mental
health burden are called for by many scientists [14,15]. It would be interesting to see how
reactivation of the tourism industry can play a role in solving this mental health burden
due to the lockdowns. The solution could be transportation-free tourism; however, this has
yet to be thoroughly researched.

Clearly, another impact of this pandemic is the extensive rise in the use of ICT [16,17].
Garfin [16] said, while considering possible negative consequences, that a thoughtful
approach to using ICT can be effective and necessary for coping during the COVID-19
pandemic and as societies move into a new future. COVID-19 is a psychological framing
of what might result in post-pandemic tourism behavior [18]. Garfin [16] believed that
the ongoing COVID-19 pandemic provides opportunities to investigate core values for
expanding the conscientious use of technology to mitigate the negative impact of stress
and improve people’s lives. This pandemic heightens the significant importance of ICT,
even though this technology had influenced different aspects of people’s daily life for a
long time [1,19]. However, among the advantages of ICT implementation is permitting
processes to be accessible with subordinate cost and additional efficiency [1].

Additionally, Chamarro [20] said it is very clear that people’s lives after the COVID-19
crisis will be marked by the experience of intensive use of ICT during the pandemic. In
tourism there is evidence for the successful implementation of ICT [21]; therefore, it is
predictable that digitalization will remain in tourism, even after COVID-19, as a new
normal [8,22].

Not only now, but even long before COVID-19, the ICT industry began to collabo-
rate with tourism. The phenomenon of digital tours has arisen from the integration of
information technology and tourism [5]. Digital tours cannot be a negative trend because
they are expected to decrease some of the industry’s severe consequences. Traditional
tourism contributes significantly to the rising levels of air pollution [23], and the negative
result on the host nation includes noise, overcrowding, and pollution with leftovers [24],
as well as the probability of losing cultural values and authenticity, as noted by Ogarlaci
and Tonea [23]. In addition, traditional travelers are concerned about political risks such
as political instability and terrorism, as well as other hazards for travelers due to natural
catastrophes, and a lack of healthcare and clean food or water [25]. The entire list of
unfavorable industry outcomes is lengthier, and identifying them requires an individual
extensive literature study, but the positive outcomes are also numerous.

Nonetheless, for good or bad, the COVID-19 pandemic has rapidly catapulted ICT to
the forefront of people’s lives. Now it has significantly exacerbated long-foreseen patterns;
it has rapidly pushed a lot of industries that have been able to operate remotely. In brief,
ICT has made a major impact on the travel industry [26] and now the industry should be
based on this consumer-centric technology in order to satisfy the emerging experienced
customers [27]. Hence, it is expected that a positive trend of interest in digital tours in the
post-COVID era will be seen.

Not only is there a digitalization push from the COVID-19 pandemic, but also from a
different perspective, the Fourth Industrial Revolution (also sometimes known as Industry
4.0) in recent years has rapidly been upsetting industries, including the tourism indus-
try [28]. Tourism is greatly involved in Industry 4.0 digital transformation [29]. Tourism
4.0, as defined by Peceny et al. [7], involves reducing the harmful effects of tourism (e.g.,
tourism’s carbon footprint) and simultaneously improving it through the merging of ICT
with the tourism experience. This has turned out to be key to resilience in tourism [8].

Considering the fact that digital tours are an essential supplement for the industry not
only during the COVID-19 crisis but also for future tourism, the digitalization readiness
of the industry is the key foundation of tourism success. In theory, a crucial step to
understanding the capacity to launch and accept a change in ways that provide value, limit
risk, and sustain performance is referred to as readiness measurement [30]. Despite the
importance of the area, very few studies contribute to this important field, especially when it
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comes to the different types of tourism in the industry. Although there is attractiveness and
pushes for virtual and digital travels, stakeholders’ readiness (service supply and travelers’
demand) to transition to the modern industry is critical [27], as is technology usability [31].
With regard to the digitalization of tours as a change in an industry system, the author uses
a framework with three readiness metrics out of the system theory perspective [32], with
input (supply) response, output (demand) response, and process (technology) readiness,
as shown in Figure 1, due to the gap in the literature. In a separate article [33], the author
gives insight into these readiness metrics.

Figure 1. Change readiness from a system approach.

This study focuses on tourism digitalization readiness; however, it is willing to address
tourism in Sweden in order to reach a decision on the specific goal of this study. The tourism
industry in Sweden has a considerable turnover and plays a noteworthy role in several
respects [34]. Sweden is among the top digitalized EU (European Union) economies [35],
though there is not enough research focusing on the tourism industry in Sweden. Due to the
different characteristics and approaches of societies, studies from other countries may not
be fully applicable here. More studies on the tourism industry of Sweden are needed [36],
so Sweden’s tourism industry is targeted as the scope of this research. Different types
of tourism in the industry, with different levels of digitalization readiness, are active in
the country. Hence, comparing the readiness for digital tourism could provide a better
understanding of capabilities, available benchmarks, and digitalization implementation
experiences for Swedish tourism policymaking. In a few words, the main goal of this
article is to compare different types of tourism in Sweden based on their readiness for a
digitalization shift in order to answer the question, “Which types of tourism in Sweden are
more (or less) prepared for the digitalization switchover?”

2. Method

Three criteria were defined to measure the change readiness of the industry—demand
response, industry response, and technology readiness—hence, multi-criteria decision-
making (MCDM) approaches were targeted for this research. Sweden is active in more than
one type of tourism; hence, among MCDM approaches, techniques from multiple-attribute
decision-making (MADM) are appropriate. The hierarchical structure of this research is
constructed in Figure 2.

Figure 2. Hierarchical structure of this research.
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An ideal tourism cluster that fully satisfies all three readiness measures does not exist
practically, so the selected MADM techniques should approximate and list the closest
clusters to the ideal. MADM-TOPSIS (techniques for order preference by similarity to an
ideal solution) is based on the principle that the listing of the alternatives must be with
the concept that priority is given to the option closest to the ideal and the one farthest
away from the worst [37,38]. The TOPSIS approach has successfully addressed numerous
real-world issues, particularly in recent years, due to its rationality [39]; its accuracy was
compared to other MADM techniques and it was recommended [40]. Applied mathematical
modeling [38] has communicated the hierarchical structure of TOPSIS per Figure 3. The
definition of TOPSIS as ranking the alternatives has received progressive attention from
researchers who focus on multiple criteria decision-making approaches [37].

Figure 3. Hierarchical structure of TOPSIS.

There are no constraints reported on the distribution of data, the number of alternatives
and criteria, or the sample size of experts in this method. A report on optimizing the use
by an expert panel [41] indicated that even a handful of experts in a panel were preferred
in several published studies to reach a consensus decision, as the quality of the experts
is deemed to be more significant than the size of the panel. A bigger panel may cause
too much variety in the feedback and result in a high degree of inconsistency. Hence, the
number of experts should be kept to a minimum.

Based on a previous practice [42], the calculation steps of the classic TOPSIS process
are listed in Figure 4.

To utilize TOPSIS and due to a lack of literature and the novelty of the COVID-19
situation, primary data were required for this study. For tourism-related data, a panel of
experts was invited for group decision-making (GDM), which makes use of its members’
varied experiences and interests. Since the scope of this research was defined for tourism
in Sweden, the panel of experts was professionals in the field in Sweden who had studied
the industry and were aware of existing tourism activities in Sweden.

The expert selection process is important for enhancing the reliability and validity of
the research results. Hence, a list of experts was selected based on the number of indexed
publications in the past three years in Scopus, by searching the two keywords of “tour
*” in title, keywords, and abstract, and “Sweden” in affiliation. A dozen scholars were
listed with the highest publications, though after reviewing the scope and title of their
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publications, the eight most relevant authors were invited for data collection regardless of
any conciliation such as academic level, gender, or age.

 
Figure 4. TOPSIS calculations.

Before the data collection in March 2021, in a live online seminar for the pre-study
step, a few researchers from the Centre for Tourism (CFT) at Gothenburg University were
consulted to comment on the improvement of the prepared data collection tool. In addition,
a short follow-up meeting a week later with the seminar chair was organized to review
the comments received from the seminar and changes to the data collection instrument.
As a result, it was chosen to restrict the spectrum of the study to seven tourism types, and
the instrument’s framework was designed as shown in screenshot in Figure 5 (for tourism
experts). The scales for the answers ranged from −4 to +4, or from “extremely against” to
“extremely supportive.” The criteria weights were built to accept answers on a 10-point
scale, ranging from 10% to 100%.

For technology (ICT) concerns, one expert was invited who had both work-related
(nearly 10 years in ICT-related scopes) and related educational backgrounds (with a mas-
ter’s degree in ICT-related fields and a few professional certifications in the area) who
also self-reported his awareness of the current ICTs for travel digitalization. Comparably,
for ICT-related data collection instruments, there were the same seven types of tourism
and similar scales for measuring readiness (technology and user capacity at a fair cost) for
digital/virtual travels.

Next, to improve the consensus in the data collection phase, a list of an operational
definition of key terms presented to the panels was included in the prepared questionnaires,
as shown in Appendix A. Additionally, in the absence of standard terminology in the
tourism research literature, it was predicted that supplying this list would yield more
reliable results.

Even so, when using MADM techniques such as TOPSIS, it is often assumed that
decision-making is conducted with a panel or a task group, and still further work is needed
to improve a comprehensive problem-solving technique [39]. Hence, for the analysis of
the collected data, classic TOPSIS was not capable to consider inputs from two groups of
experts. Sorooshian and Parsia [43] also explained this as one of the constraints of existing
MADMs; they suggested a supplementary procedure for solving this issue, called decisions
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with altered sources of information, which will be included in this study. This procedure
adds a few sub-steps to the MADM data entry of that can be summarized as: Step 1,
construction of a decision matrix with inputs from the main source of information; Step 2,
completion of the decision matrix with inputs from the altered source of information; and
Step 3, normalizing the decision matrix.

 

Figure 5. Instrument framework.

Additionally, considering the fact that the research focus of the tourism experts might
not cover the whole industry, an add-on consideration of unbalanced expertise was added
to the TOPSIS process. For this, experts were asked to refer to the questions asked about
each cluster of the tourism industry, and grade their level of expertise. The confidence level
for each aspect of the tourism industry was designed to accept scales from 0% to 100%.
Sorooshian [44] suggested the application of this confidence/level of expertise through
a weighted average of inputs when dealing with group decision-making with a panel of
experts with unbalanced expertise.

For the ICT expert, since the needed information was collectible, an assignment was
designed and the expert was asked to have the questions but, if needed, answer them
after a mini-research (internet search and asking his colleagues) with updated relevant
information.

After the above-listed considerations, an expanded TOPSIS, TOPSIS for group decision-
making with multiple sources of data through panels of experts with unbalance expertise,
was taken into consideration for the data analysis. Figure 6 presents the summary of the
steps taken for this study.
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Figure 6. Research flow.

3. Results

After collecting the required data, the calculation steps of the expanded TOPSIS
resulted in the following outcomes:

By calculation of the mean, the weights of the decision criteria based on inputs from
both panels of experts were calculated: demand response (5.67), industry response (2.67),
and technology readiness (7.67).

Part A of Table 1 shows the average inputs from the tourism-panel decision matrix
after the consideration of unbalanced expertise for group decision-making. However, part
B shows the average input from the ICT-panel decision matrix after the consideration of
unbalanced expertise for group decision-making.

Table 1. Decision matrix.

Alternatives
Part A Part B

Demand Response Industry Response Technology Readiness

Urban tourism 0.43 −1.3 2
Cultural tourism 0.9 0.27 3

Rural tourism −0.13 −1.17 0
Adventure tourism −0.67 −0.13 1

Event tourism 1.47 0.53 4
Business tourism 2.03 1.03 4

Entertainment tourism −0.4 0.27 2

Appendix B shows the output from the application of a web-based software, Decision
Radar Ez-TOPSIS (https://decision-radar.com/Topsis.html (accessed on 30 April 2021)),
for decision-making with the TOPSIS method.

Finally, Table 2 reports the results of the hierarchy ranking of the tourism clusters
starting from the closest to the ideal (fully ready to be digitalized).

Table 2. Results.

Rank Cluster Score

1 Business tourism 1.00
2 Event tourism 0.84
3 Cultural tourism 0.67
4 Urban tourism 0.43
5 Entertainment tourism 0.38
6 Adventure tourism 0.24
7 Rural tourism 0.20
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Therefore, here in this study, from the analysis of the collected data, business tourism
followed by event tourism seems to be more ready than other clusters of the industry for a
digitalization shift whenever it is needed. With many of us moving our business work on-
line as a result of COVID-19 and social distancing, the use of video conferencing programs
has grown exponentially. Video conferencing promotes long-distance and international
connectivity and improves teamwork while minimizing travel costs [45]. There are many
video-conferencing programs available, including Skype, Zoom, Facetime, Zoho Meeting,
Highfive Meeting, GoToMeeting, Google Hangouts Meet, Slack, Cisco WebEx, and Eyeson,
to name a few [46]. For instance, although only 10 million people attended Zoom meetings
before COVID-19 became widespread at the end of 2019, consumption had skyrocketed to
300 million by April 2020 [47].

With many cross-country examples, Arshad [46] explained that ICTs have allowed
business meetings and events to retain a semblance of normalcy during quarantine, en-
abling them to transfer their meetings electronically while maintaining transportation-free
tours. Hence, this motivates the scores from this ICT expert’s research, where the maxi-
mum technology readiness is given to business and event tours. The usage trend during
the COVID-19 pandemic presents support for positive support for both demand and the
industry. Many ICTs are available for free, but paid programs are available that even can
enable individuals to communicate in a virtual meeting room. Participants can appear as
full-body avatars, replicating much of the body language that is often missed via regular
video-conferencing software. Undoubtedly, demand for these services has also jumped
dramatically since the start of COVID-19 [45].

Additionally, although cultural, urban, and entertainment types of tourism are less
ready than business and event tourism, the results of this study indicate that adventure
and rural tourism are far from ideal in terms of digitalization change readiness. Not only is
there a high cost of technology for the satisfaction of the travel motivation of these groups,
in proving the input data (with negative values) from expert panels, one article [48], for
instance, analyzed the impact of real nature experiences against virtual nature experiences
on well-being. Although the results show that interactive digital nature experiences may
have comparable recovery effects to physical nature experiences, they offer only virtual
reality where physical nature opportunities are limited, and there are many health benefits
to aiming for a real walk in physical nature. The article argued that there also might be
positive effects of light, physical activities (such as differences in seating and walking
possibilities), and other moderating factors while traveling to real nature. Similarly, despite
the existence of adventure virtual reality programs, a muscle-function analysis revealed
that activation grades during such virtual reality programs were generally mild [49], which
is not fully aligned with the travel motivation of adventure or rural tourists.

Last but not least, as the journal of the CiTUR Centre for Tourism Research, Develop-
ment and Innovation recently expressed, contemporary and future tourism is expected to
be dependent on two tendencies, development of technological innovations and sustain-
ability [50]. This research is predicted to guide contributions to ICT-related innovations
in tourism. It was stated [51] that ICT has the potential to lower travel costs, increase
liquidity, and increase stability. It could also aid in the maintenance of social distancing in
the pandemic, as ICT will link individuals again with no direct presence. As a result, this
technology will deal with COVID-19-specific issues.

Now the public’s confidence in this technology has grown, as has their ability to
communicate and shift their attitudes toward technology. People have begun to disregard
privacy concerns in order to reap greater technological benefits [51]. However, only those
aspects of the tourism industry that recognize the benefits of ICTs and have effective man-
agement would be capable of improving their innovation and resistance [27]. Considering
that theories on change management have highlighted the benefit of ensuring readiness for
any change [52], as a roadmap for tourism strategists, this study is predicted to contribute
to the concept of change management prior to formulating an action plan to encourage
(or even discourage) a digitalization shift due to the COVID-19 crisis, post-COVID-19
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trends, Fourth Industrial Revolution, environment and tourist attraction protection, or any
other reason.

4. Conclusions

In response to the present tourism industry crisis, the purpose of this research was to
comment on the readiness of tourist sector clusters for digital transformation. To do so,
an expanded version of the TOPSIS technique was proposed to tackle MADM problems
when working with altered and unbalanced inputs from expert panels. The proposed
new approach converts the classic decision matrix to a multi-level, multi-panel, multi-
criteria, and multi-alternative decision matrix. This expanded method was implemented to
compare change readiness for transforming travel in tourism industry clusters for inbound
and domestic Swedish tourism. Furthermore, due to a shortage of literature, a framework
for measuring change readiness with a system perspective was adopted as an additional
contribution to this work. Next, this research finding shows that business and event tourism
can lead the transformation during and after the COVID-19 crisis. These two can better
deal with the crisis because of their potential to serve the transition. However, adventure
and rural tourism are the furthest away from being ready to adjust, and therefore suffer
the most from the current crisis. Hence, it is to be expected that the findings of this study
will assist authorities in assisting the industry with smarter decision- and strategy-making.

However, to fully understand the potential of the digitalization of travel, more studies
are needed. Among the limitations of this study were the general questions asked about
the readiness measures, as was commented on by one of the experts in response to the
invitation to participate in this study. Hence, future works may use a qualitative approach
to data collection through open-ended questions to bring more details to the analysis.
When transitioning to digital tours, researchers may also suggest findings on the resilience
management of tourism services (hotels, travel agents, etc.).
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Appendix A

Table A1 shows definition of the terminology used in this research.

Table A1. Operational definitions.

Definition
Presented to Experts of:

Tourism ICT

Digital tour/traveling Any virtual (computer-generated) and/or online visits that reduce
the need for travel and/or transportation X X

Demand response Tourists’ reaction to the digitalization shift for virtual and/or
online travels X

Industry response Industry (service providers of the industry) reaction to the
digitalization shift for virtual and/or online travels X

Technology readiness Availability of suitable technology infrastructure and knowledge to
change to virtual and/or online travels at a reasonable price X

Urban tourism Includes visits to cities, towns, and the like X X
Cultural tourism Travel to learn about other people, see architecture, art, history, etc. X X

Rural tourism
Undertakings in a non-urban territory, including coastal and nature

tourism, stays in the countryside and rural retreats,
national parks, etc.

X X

Adventure tourism It characteristically needs professional skills or physical exertion, and
has some amount of risk. X X
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Table A1. Cont.

Definition
Presented to Experts of:

Tourism ICT

Digital tour/traveling Any virtual (computer-generated) and/or online visits that reduce
the need for travel and/or transportation X X

Demand response Tourists’ reaction to the digitalization shift for virtual and/or
online travels X

Industry response Industry (service providers of the industry) reaction to the
digitalization shift for virtual and/or online travels X

Technology readiness Availability of suitable technology infrastructure and knowledge to
change to virtual and/or online travels at a reasonable price X

Urban tourism Includes visits to cities, towns, and the like X X
Cultural tourism Travel to learn about other people, see architecture, art, history, etc. X X

Rural tourism
Undertakings in a non-urban territory, including coastal and nature

tourism, stays in the countryside and rural retreats, national
parks, etc.

X X

Adventure tourism It characteristically needs professional skills or physical exertion, and
has some amount of risk. X X

Event tourism Attending any event or exhibition X X
Business tourism Travel for business X X

Entertainment tourism To enjoy entertainment activities, such as the circus, concerts,
and clubbing X X

Travel motivation Any specific reason, needs, or desires of tourists as the primary
reason for traveling X

Appendix B

The output from Decision Radar Ez-TOPSIS presented in Figure A1.

 
Figure A1. Software report.
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Abstract: This study aims towards identifying and modelling the significant factors which act as
enablers for the branded content to be used strategically by marketers as a marketing tool in the
COVID-19 era. A qualitative approach was adopted for this study, and significant factors associated
with branded content were identified from the literature review and primary survey. The factors were
then verified by the experts in the area of branding and digital marketing. Total interpretive structural
modelling (TISM) and Decision-making Trial and Evaluation Laboratory (DEMATEL) techniques
were used to model the factors as per their contextual relationships. As per the model outcomes from
TISM and DEMATEL approaches, branded content is an efficient marketing tool that promises value
delivery to stakeholders. This, in turn, depends on the authenticity and transparency in content
development and distribution. The most significant driving enablers for the system suggest efficient
measurement and evaluation strategies and the customer as co-creator for the branded content.

Keywords: branded content; marketing; total interpretive structural modelling; decision-making
Trial and Evaluation Laboratory

1. Introduction

Marketing as a concept and practice has embraced various definitions and approaches.
With the change in time and versatile consumer behaviour, marketing tools adopted by
marketers demand responsiveness. The visible indication for this is seen in the recent
outbreak of pandemic COVID-19, which has almost shaken the full dynamics of marketing.
There is a sudden upsurge in the quantum of online buyers in the year 2020. A few years
back, online retailing contributed only around 3%of total retail in India, which is now
expected to be around 8% in 2021 [1,2]. Marketers have observed record hit for search on the
internet for their products or services. Digital platforms have become necessary for almost
every marketer due to the upsurge of digital content and various entrants. The content
used for product promotion may be created by the marketer itself or developed through
any other company or user-generated. The content thus generated is called branded
content, which may be defined as “any output fully/partly funded or at least endorsed
by the legal owner of the brand which promotes the owner’s brand values, and makes
audiences choose to engage with the brand based on a pull logic due to its entertainment,
information or education value” [3]. The term branded content is not new and is being
used across all major continents globally through close association with Branded Content
Marketing Association (BCMA) for over a decade [4]. Marketers try to reach as close to the
consumer as possible to promote their products by providing brand information through
user-generated or brand-generated content [5].

Branded content may be a video, an article, an audiovisual, a blog, a magazine, or
an event, etc. [3]. For this study, branded content created by the marketers themselves
or through outsourcing in digital form is considered for discussion. It is different from
traditional advertising, where the promotional content comes as a push factor, intermitting
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with the customer’s program of choice. Instead, digital branded content is used as a pull
factor, where a separate video or digital content is there, with the aim of least obtrusion
in the customer’s running show. The customer decides to watch or read branded content
out of choice rather than out of compulsion. But this does not mean that branded content
intends to replace traditional advertisements; instead, they both can be used strategically
where traditional advertisements focus on sales and branded content focus on brand image
and brand extension [4]. In other words, digital branded content is any digital form
of media that is “intentional, brand-authored media used to establish or extend brand
identity or affinity” [6]. It is also established from the concept of permission marketing
that consumers don’t like to be disturbed by promotional content without their choice [7].
The customer, therefore, may feel more associated with the brands of their choice through
branded content and content delivery. The experience of branded content acts as a driver
for customer engagement with the brand and gives a feeling of virtual association [8].
Creating and managing the correct branded content which can promote the brands remains
a challenge for marketers always [9].

The pandemic period has allowed marketers to exploit the opportunity of bringing
the product closer to consumers through branded content. While buying from home, the
consumer looks for product reviews, feedbacks, and product details deeply. A branded
content revolves broadly around five areas viz. choice, deliverable vs. discipline, engage-
ment, mode of delivery, and value [3]. Scanty research is available on understanding all the
aspects of branded content as a marketing strategy. As per a few experts, the effects of a
pandemic may go as long as up to the year 2022. After that, whether marketing will begin
as before the COVID-19 period or whether it will be a new normal is a question to ponder
upon, and the trend shows more chances for getting the new normal trend to be set up.
Various researchers have emphasized that being innovative digitally can help companies
survive this pandemic. During this pandemic, more companies have started using What-
sApp, Google Meet, Zoom, etc., reflecting the path ahead [10]. In such a scenario, marketers
need to focus deeply and strategically on branded content as a competitive strategy. This is
where the need for this study is realized.

This study is built upon the following research questions:

R1. Which are the major enabling factors for the branded content to be used strategically
by marketers as a marketing tool.

The study aims to highlight the major factors that can act as enablers for branded
content success.

R2. What should be a guiding framework for long-term sustainability for branded content
as a strategic marketing tool, based on the interaction among identified factors?

Not all the factors need equal focus and efforts from marketers; therefore, an effort has
been made to model the factors in a meaningful and contextual hierarchical relationship.
The qualitative approach for data collection and analysis was approached, where factors
were identified through extensive literature review and primary data and were validated
through expert opinion. The factors were then modelled through Total Interpretive Struc-
tural Modelling (TISM) and Decision-making Trial and Evaluation Laboratory (DEMATEL)
Techniques. This study emphasizes strategically approaching the branded content to be
used as a marketing tool in the COVID-19 scenario and lays the foundation for marketers
and policymakers.

This study further has sections, where Section 2 presents the literature review, and
Section 3 discusses the methodology, including TISM and DEMATEL techniques. Section 4
is the results and analysis, and Section 5 presents the discussion and practical implications.
Section 6 gives the conclusion, and Section 7 is the limitations and future research directions
for this study.
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2. Literature Review

The concept of online presence or digital marketing is not new for marketers or
consumers. Digital marketing is there for years, and marketers adopt everyday innovative
approaches to make close bonds with consumers [4] and studying the consumer attitude
and behaviour in the technology-driven sharing economy [11–13]. Consumers are targeted
through social media channels, display advertisements, and search engines [14–16]. Online
social platforms are most interactive and communicative to reach consumers [17]. Various
retail marketers are using social media platforms to promote their brands, often taking
the help of brand communities on social media platforms [18–20]. Research suggest
that, if designed and directed by marketers for brand promotion, social media platforms
can develop a sense of belongingness and interactivity among consumers [21]. Branded
content is relatively still a new topic [4]. Branded content is developed to provide focused
information entertainingly to a specific target set of consumers. Influencer-marketed
branded content is prominent, wherein the marketer chooses a personality to create and
market its branded content [19,22]. The content needs to be vivid and deeply connected
with the products [20]. Effective content formats also impact influencer marketing [23].

The branded content development and distribution have become a buzz feature for
marketers nowadays, which is discussed widely with content marketing [3]. The terms
branded content, and branded content marketing should be used carefully as both carry
a separate meaning and require separate attention from marketers. In one way, branded
content marketing may be considered an enabler for making the content reach its target
customers. The key to using branded content efficiently lies in the adequately defined
content and carefully selected medium to make it available to consumers. The Branded
Content Marketing Association (BCMA) suggested a few rules for branded content success
as a marketing tool. The suggestions include that interesting and original branded content,
promotion of content, combined campaigns that can enhance the positive image of a brand,
and synergistically with traditional advertising [6]. Authors tried to sensitize the readers
about the benefits of relating branded content with crowd culture through social media [24].
Branded content integration may also be done by either placing the product or brand in the
movie or TV program, or it may be used to portray the real use by using any celebrity [25].
Webisode communication is also a branded content strategy wherein movies or series are
broadcasted on the internet related to a brand [26].

The significant factors as enablers for branded content to be used as an efficient
marketing tool may be discussed as follows:

2.1. Factor 1: Branded Content Distribution and Promotion Strategy

Branded content must be delivered and distributed to the consumers most effectively
once created. The distribution of the promotion aspect of branded content is discussed
under the umbrella of content marketing. An efficient content marketing influences con-
sumers’ purchase intentions and loyalty to brands [27]. Consumers tend to have different
brand perceptions based on how the content is promoted and presented to consumers [4].
The time of content delivery impacts its popularity [28]. There are various channels avail-
able for branded content delivery, so choosing the best content delivery method is a crucial
for marketers these days [6,29].

2.2. Factor 2: Quality of Content

The branded content needs to be creative, informative, and engaging. Marketers use
different forms of content to engage the consumers and pass the brand message in a more
focussed manner [6,27,30]. Consumers look for different types of content for different
product types, like complete information and advice for health products and automobiles,
while inspirational content for fashion products [19]. The type and quality of content
decide the engagement power of consumers with the brand [31]. The richness of the
content and proper usage of images impact the popularity of branded content amongst the
consumers [28].
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2.3. Factor 3: Authenticity

Consumers consult the branded content to get adequate information about the brand.
Therefore, the credibility of branded content is an important decisive factor for consumer
choice [32]. Content authenticity affects the brand image directly by impacting consumer
trust. Consumers often relate the authenticity of any engagement initiative with brand
perception; if the initiative matches with perception, it is considered authentic [33]. The
authenticity of branded content depends to a great extent on the source and mode of
content development.

2.4. Factor 4: Transparency

The amount of disclosure in the branded content relates to transparency and ethics [34].
Consumers expect brand marketers to be transparent in their content descriptions and
delivery methods, but marketers need to consider various business decisions. Therefore,
the level of transparency in branded content is tricky, and it needs to be managed with due
diligence. Lack of transparency also may disorient the consumers and may lead to a lack of
trust in the brands. As per the study conducted [35], companies may introduce disclaimers
with new formats of creating branded content to protect the credibility and transparency of
brands. The advertising of branded content also needs due consideration and compliance
with the legislative mechanism for bringing in required transparency [36].

2.5. Factor 5: Value Delivery to Stakeholders

Branded content success as a marketing tool depends on how it is embraced by
consumers [3]. Also, besides consumers, branded content should provide value to its other
stakeholders that prominently involve the marketer company and the company if hired to
develop branded content on behalf of the marketer. If the branded content can provide
value to the stakeholders, it can only sustain the competition and prove a competitive
tool for the marketer. There needs to be an affinity between the marketer and the media
providers for delivering branded content [37].

2.6. Factor 6: Measurement and Evaluation of Branded Content

As per [6], the branded content needs to be evaluated for quality, and its impact needs
to be measured for its success. BCMA suggests a content evaluation system known as
Branded Content Evaluation System (BSES), which focuses on overall content performance,
component-wise impact, and anything the marketer needs to do differently from the
competitors. Many companies face difficulties related to content production and curation
and ROI measurements [38].

2.7. Factor 7: Customer as Co-Creator

The branded content gets enriched when the consumer becomes one of the participants
in creating it. Marketers are exploring online communities of consumers as a tool for brand
co-creation [39]. Marketers invite consumers to participate in the co-creation of brand
content through various means [40,41]. Studies claim that consumers usually believe the
reviews or content provided by other consumers more than those professionally created [4].
Also, if inviting suggestions from customers, the marketers should respond or attend to
those suggestions or concerns to have content and product improvements [6]. Table 1
presents a summary of the literature.
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Table 1. Summary of Literature Support for the Identified Factors.

Sr. No Factors Literature Support

1 Content distribution and promotion strategy [4,6,25,27–29]

2 Quality of content [6,19,20,22,27,28,30,31]

3 Authenticity [32]

4 Transparency [34]

5 Value delivery to stakeholders [3,37]

6 Measurement and evolution of branded content [6,38]

7 Customer as co-creator [4,6,39,40]

3. Methodology

This study aims to identify the significant factors that may act as enablers for branded
content and be strategically used as a marketing tool by marketers in the COVID-19 era. For
this purpose, a qualitative approach was adopted. As a first step, literature was screened
to identify the significant factors associated with branded content. The identified factors
(14 factors) were then randomly circulated online in the last week of June 2020 to a few
respondents for responses on factor appropriateness. A brief questionnaire was prepared
for this purpose and posted on social media platforms like Watsapp and LinkedIn. The
responses were received from 83 respondents. A very brief summation of the same is
mentioned in Table A2 (Appendix B). The final list of factors was prepared based on
responses received and the literature survey (as mentioned in section two above). The
factors were then verified by the experts in the area of branding and digital marketing.
Also, the experts were asked to identify the contextual relationship between the variables
as per the requirements of the TISM and DEMATEL approach. A total of five experts
were approached for this purpose, including three academicians in leading management
institutes in Delhi-NCR, and two were from the industry. The domain experts were chosen
based on their Linkedin profile and experience in the subject. For response collection
purposes, all the five experts were called on a virtual meeting two times during 2nd July to
13th July 2020, and the researcher recorded their observations and comments. Based on the
suggestions from the experts, TISM and DEMATEL approaches were applied. Both these
approaches have demonstrated their strength for modelling variables in different research
domains. TISM is an extension of the Interpretive Structural Modeling (ISM) approach. It is
preferred over ISM, as it overcomes a few of the drawbacks of the ISM approach such as in
ISM no logic is provided for the identified relationships between the variables. In contrast,
in TISM, the interpretive logic knowledge base matrix is prepared to provide logic for each
linkage. TISM approach identifies the structural relationship between the variables [42–45],
and DEMATEL further provides the strength of those relationships, along with providing
the cause and effect relationship among the variables [46–48]. Further, in this section, the
methodology for TISM and DEMATEL approaches are discussed.

3.1. Total Interpretive Structural Modelling (TISM)

Total interpretive structural modelling (TISM) is a qualitative approach for identifying
the contextual relationships between the factors under study [49,50]. TISM highlights the
driving power or dependence of one factor over others and thereby identifies the significant
linkages. The steps involved in TISM [51–53] are discussed as below:

Step 1: Identification of relevant factors from the literature review and validation
from experts.

Step 2: Developing the interpretive logic-knowledge base matrix for the contextual
relationship (“lead to” type) amongst the factors, as per inputs from the experts, and
marking the entries as YES or NO. Wherever one particular factor leads to another factor,
entry is made as ‘YES’ in the matrix, and wherever the ‘lead to’ relation is missing, entry
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is made as ‘NO’ in the matrix. Also, the experts are asked to provide a logical reason for
the proposed relationship between the factors, and the reason is mentioned in the column
against the ‘YES’ entry.

Step 3: Transformation of the interpretive logic-knowledge base matrix into a binary
matrix (reachability matrix) by making (i,j) entry of YES as (i,j) entry of 1 in the reachability
matrix, and (i,j) entry of NO as (i,j) entry of 0 in the reachability matrix. The reachability
matrix is then scrutinized for transitive links as per the following formula:

‘If factor1 leads to factor 2, and factor 2 leads to factor 3, then factor 1 should also
lead to factor 3’and wherever it is found, transitivities are included in the form of 1* in the
reachability matrix.

Step 4: The factors differ in their magnitude and direction to influence other factors
in the system. In the TISM approach, factor level partitioning is done to allot level to
each factor as per its magnitude and direction of influence. The step of allotting level to
any factor is called iteration. For each iteration, the reachability set (consists of all the
factors that this factor leads to, including self) and the antecedent set (consists of all the
factors that lead to this factor, including self) are identified intersections are recorded
under the intersection set. Levels are allotted to any factor whenever its reachability and
intersections set becomes equal, and then that specific factor is removed from further
iterations. Iterations in this way continue till levels are allotted to each factor.

Step 5: Carrying out MICMAC analysis for grouping the factors into four clusters
viz. ‘autonomous’, ‘dependent’, ‘linkage’ and ‘drivers’ based on their driving power and
dependence.

Step 6: Preparing the diagraph/TISM model, based on the levels achieved by each
faculty, to represent the direction of influence of one factor on another graphically.

3.2. DEMATEL

The DEMATEL technique is used for developing and interpreting the causal or effect
relationship between the identified factors [54]. The DEMATEL approach consists of the
following steps [55–59].

Step 1: Developing the direct relation matrix (D): To develop the direct relation matrix
(D), the pair-wise relationships amongst the factors are established first. For this purpose,
expert opinion is sought for evaluating all the pairs of factors on a scale of 0–4, where value
0 denotes ‘no influence’ and value 4 denotes ‘extreme strong influence’ of one factor on
another in the pair. Accordingly, a non-negative matrix (n × n) is achieved for n factors for
each expert. After that, the responses of all the experts are averaged and accordingly, the
direct relation matrix (D) is obtained by following the below-mentioned formula:

D =
1
n ∑n

k=1 Dk
ij

Step 2: Developing the normalized direct relation matrix (N): The normalized direct
relation matrix (N) is obtained by normalizing the direct relation matrix (D), by using
the formula:

N = D/k
K = maxi,j

(
maxi ∑n

j=1 ai,jmaxj ∑n
i=1 ai,j

)
, i, j = 1, 2, 3

Step 3: Developing the total relation matrix (R)
Total relation matrix (R) is obtained from the normalized matrix by using the formula:

R = N(I − N)−1

where I represent the identity matrix. The total relation matrix (R) depicts the type of
relationship (influence); one factor has over other factors.

Step 4: Developing the causal diagram: The causal diagram in DEMATEL is obtained
by plotting the values of (D+R) and (D−R), where ‘D’ denotes the sum of rows, and ‘R’
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denotes the sum of columns, respectively, for each factor. The value of the sum of rows
(‘D’) shows the sum of the influence of one particular factor on other factors, and the
value of the sum of columns (‘R’) shows the sum of the influence of other factors on
that respective factor. Similarly, values of (D+R) reflects the strength of the relationship
of the particular factor with the system. Similarly, values of (D−R) reflect the nature of
relationships amongst all the factors. The positive value of (D−R) of the factor shows that
the respective factor belongs to the cause group. The negative value of (D−R) of factor
indicates that the respective factor belongs to the effect group. The (D+R) and (D−R) values
are further plotted on the x and y-axis to obtain the causal diagram.

4. Results and Analysis

4.1. TISM Modelling

Step-wise results from TISM modelling are discussed as follows.
Step 1: Identification and listing of the relevant factors: A total of seven factors were

identified from the literature review and primary survey, which may act as enablers for
branded content to be used as a marketing strategy. All seven factors are described in
Section 2 above. Also, the factors were verified by the experts, as mentioned in Section 3
beginning.

Step 2: Defining Contextual Relationship and developing an Interpretive logic-
knowledge base. The Interpretive logic-knowledge base matrix was prepared as per
the methodology in step 2 in Section 3 above and is placed as Table A1 (Appendix A).

Step 3: Development of a reachability matrix from the Interpretive logic-knowledge
base and then scrutinize the matrix for transitivity. The interpretive logic-knowledge
base was transformed into a binary matrix following the process described in step 3 in
Section 4 above. The reachability matrix obtained is placed in Table 2. Further, as per the
rule for transitivity discussed in step 3 in Section 4 above, the final reachability matrix is
prepared and placed in Table 3. Also, the transitivities such obtained were included in the
interpretive logic-knowledge base (Table A1), by replacing the entry of NO with the entry
of YES, for that respective transitive entry and also the word ‘transitive’ was written in the
respective column of that entry. Further, the driving power (calculated by adding up the
number of 1s in the row) and dependence (calculated by adding up the number of 1s in the
column)for each factor were calculated and recorded in the final reachability matrix.

Step 4: Carrying out level partitioning of the reachability matrix: As per the process of
level partitioning detailed in step 4 of Section 3 above, In this study, a total of four iterations
were required to allot levels to each factor. The consolidated level partition table is placed
as Table 4.

Step 5: MICMACAnalysis: The purpose of MICMAC Analysis is to divide the iden-
tified factors into four different clusters as per the driving power and dependence of
the factors. The four clusters thus identify and group the factors as autonomous, depen-
dent, linkage, and independent factors [44,60–63]. The grouping of factors in this study is
presented in Figure 1 and discussed as below:

Table 2. Initial Reachability Matrix.

(i,j) 1 2 3 4 5 6 7

1 1 0 1 1 1 0 0

2 0 1 1 0 1 0 0

3 0 0 1 1 1 0 0

4 0 0 1 1 1 0 0

5 0 0 0 0 1 0 0

6 1 1 1 1 0 1 0

7 1 1 0 1 1 0 1
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Table 3. Final Reachability Matrix(Transitivity).

(i,j) 1 2 3 4 5 6 7 Driving Power

1 1 0 1 1 1 0 0 4

2 0 1 1 1 * 1 0 0 4

3 0 0 1 1 1 0 0 3

4 0 0 1 1 1 0 0 3

5 0 0 0 0 1 0 0 1

6 1 1 1 1 1 * 1 0 6

7 1 1 1 * 1 1 0 1 6

Dependance 3 3 6 6 7 1 1

* Transitivity.

Table 4. Consolidated Level of Factors.

Factors Reachability Set Antecedent Set Intersection Set Level

1 1,3,4,5 1,6,7 1 3

2 2,3,4,5 2,6,7 2 3

3 3,4,5 1,2,3,4,6,7 3,4 2

4 3,4,5 1,2,3,4,6,7 3,4 2

5 1 1,2,3,4,5,6,7 1 1

6 1,2,3,4,5,6 6 6 4

7 1,2,3,4,5,7 7 7 4

Figure 1. MICMAC Analysis.

Cluster I: This cluster groups together Autonomous Factors in the system. Such
factors do not significantly relate to other factors and have weak driving power and weak
dependence. In this study, no factors emerged into this group, reflecting that all the factors
show some other types of relationships.

Cluster II: This cluster groups together Dependent Factors in the system. Such factors
have weak driving power and high dependence on other factors. In this study, value
delivery to stakeholders (5), transparency (4), and authenticity (3) were grouped into this
cluster. These factors are strategic for the system but need the support of other factors to be
achieved successfully.
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Cluster III: This cluster groups togetherLinkage Factors in the system. Such factors
have driving power and dependence both as high. They are the most unstable ones, and
any change on other factors can easily reflect on these factors and other factors. In this
study, no factor emerged as a linkage factor, which might be because all the identified
factors have either significant driving power or dependence, but not both.

Cluster IV: This cluster groups together Independent Factors in the system. Such
factors have high driving power and low dependence on other factors. In this study,
measurement and evaluation strategies (6), the customer as co-creator (7), quality of the
content (2), and distribution and promotion strategy (1) got categorized into this cluster.

Step 6: TISM Model/Diagraph
All the factors are represented graphically in the sequence as per their driving powers

and dependence, and the model thus obtained is known as the TISM model or Diagraph.
In this study, the seven factors were placed as per their level partitions, where the factor
with level one was placed at the top, followed by next-level factors. Factors are connected
through arrows, which always point upward in vertical interrelationships, and arrows
point to both sides in case of horizontal or same level factors. The dotted lines in the model
reflect the indirect ‘lead to’ relation between the factors. The TISM model so generated is
placed as Figure 2.

Figure 2. TISM Model.

As per the TISM model, the factors viz. measurement and evaluation strategies (6);
and the customer as co-creator (7) emerged as the most significant driving forces for other
factors. This signifies that for branded content to be used strategically for brand promotion,
it is essential to have well-designed and practice measurement and evaluation strategies.
These measurement and evaluation strategies help keep the quality of content higher and
its delivery platforms efficient. The marketer needs to draft methods to measure the impact
of branded content on the marketing and promotion aspects of their products. Similarly,
the content development and delivery are to be evaluated frequently on pre-decided
parameters with much precision. Equally, the strong enabler is the customer as co-creator
(7), which also has high driving power. This is realized that if branded content focuses
on and usage of user-generated content, its impact becomes manifold. Both these driving
forces are significant to maintain transparency and credibility in the system for all the
stakeholders. As per the model, next in the hierarchy in driving power are the quality of
the content (2); and distribution and promotion strategy (1). With ideal measurement and
evaluation strategies and involving the customer as content co-creator, it helps develop
excellent quality content and content distribution in the most user-acceptable manner.
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Consumers seek complete and accurate information about the product before buying, and
that is what they expect the branded content should provide them. Also, not all ways of
making the content available to consumers are effective. Marketers need to identify the
delivery method, which suits their product type and the profiling of consumers in the
best suitable manner. These four driving forces discussed above lead to branded content’s
transparency (4), and authenticity (3) for the customers.

Consequently, all these factors lead to value delivery to stakeholders (5). As emerged
from the model, value delivery to stakeholders eventually decides the fate of the system’s
success. Stakeholders involve the customers, content developers, platform providers, and
marketers (if different from content creators and distributors). Unless the stakeholders get
something worth higher sales, better product reviews, acceptance, and increased profits,
only branded content should be sustained as a promotion strategy.

4.2. DEMATEL Model

The methodology explained in Section 3.2 above was adopted, and consequently,
the step-wise results obtained from applying the DEMATEL technique on the factors are
discussed below:

Step 1: Direct relation matrix (D)
The direct relation matrix (D) was developed by identifying the pair-wise relationship

between the identified factors, as per the method and formula explained in step 1 of
Section 3.2. The direct relation matrix is placed in Table 5.

Table 5. Direct Relation Matrix (D).

(i,j) 1 2 3 4 5 6 7

1 0 0 4 4 4 0 0

2 0 0 3 4 4 1 0

3 0 1 0 3 4 1 1

4 2 3 4 0 4 1 2

5 1 3 4 4 0 2 2

6 4 4 4 4 4 0 4

7 3 4 4 4 4 3 0

0 = No influence; 1 = Low influence; 2 = Medium influence; 3 = High influence; 4 = Very High influence.

Step 2: Normalised direct relation matrix (N)
The normalized direct relation matrix (N) was obtained by normalizing the direct

relation matrix (D) using the formula mentioned in step 2 in Section 3.2 above. Accordingly,
the matrix obtained is mentioned in Table 6.

Table 6. Normalized direct relation matrix (N).

(i,j) 1 2 3 4 5 6 7

1 0.00000 0.00000 0.16667 0.16667 0.16667 0.00000 0.00000

2 0.00000 0.00000 0.12500 0.16667 0.16667 0.04167 0.00000

3 0.00000 0.04167 0.00000 0.12500 0.16667 0.04167 0.04167

4 0.08333 0.12500 0.16667 0.00000 0.16667 0.04167 0.08333

5 0.04167 0.12500 0.16667 0.16667 0.00000 0.08333 0.08333

6 0.16667 0.16667 0.16667 0.16667 0.16667 0.00000 0.16667

7 0.12500 0.16667 0.16667 0.16667 0.16667 0.12500 0.00000
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Step 3: Total relation matrix (T)
The total relation matrix (T) obtained as per the formula mentioned in step 3 of

Section 3.2 above is placed in Table 7.

Table 7. Total relation matrix (T).

(i,j) 1 2 3 4 5 6 7

1 0.06131 0.11857 0.32363 0.31631 0.32787 0.06875 0.07862

2 0.07056 0.12810 0.29613 0.32584 0.33642 0.11172 0.08615

3 0.06824 0.15930 0.16650 0.27339 0.31505 0.10733 0.11553

4 0.16357 0.27125 0.38438 0.23748 0.39407 0.13350 0.17423

5 0.13603 0.28087 0.39091 0.38698 0.25808 0.17170 0.18199

6 0.29029 0.38800 0.50638 0.50215 0.52024 0.13855 0.29606

7 0.24202 0.36991 0.47674 0.47292 0.48995 0.23829 0.13982

Step 4: Developing the causal diagram based on values of (D+R) and (D−R):
From the total relation matrix, the values of (D+R), i.e., the sum of influences given

to factors, and (D−R), i.e., the sum of influences received by factors, were calculated, as
shown in Table 8.

Table 8. The sum of influences (given to and received by) the factors.

Factors D R (D+R) (D−R)

1 1.2950615 1.032015 2.327076437 0.26304664

2 1.3549088 1.715992 3.070900834 −0.361083279

3 1.205329 2.544663 3.749992006 −1.339334033

4 1.7584737 2.515068 4.273541299 −0.756593956

5 1.8065666 2.641663 4.448229307 −0.835096164

6 2.6416627 0.969843 3.61150587 1.671819602

7 2.4296369 1.072396 3.502032547 1.35724119

The factors were ranked based on their (D+R) values, reflecting the relative importance
of the factor in the system and the degree of the relation of one factor with other factors.
The same is highlighted in Table 9.

Table 9. The relationship strength rankings.

Ranks Factor (D+R)

1 5 4.448229

2 4 4.273541

3 3 3.749992

4 6 3.611506

5 7 3.502033

6 2 3.070901

7 1 2.327076

Similarly, the factors were also ranked based on their values of (D−R), reflecting the
kind of relation between the variables and summarised in Table 10.
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Table 10. The relation type and relative rankings.

Ranks Cause-Group Factor (+ve Value of D−R) (D−R)

1 6 1.671819602

2 7 1.35724119

3 1 0.26304664

Ranks Effect-Group Factor (−ve Value of D−R) (D−R)

1 3 −1.339334033

2 5 −0.835096164

3 4 −0.756593956

4 2 −0.361083279

Finally, (D+R) and (D−R) values were plotted to obtain the causal diagram (Figure 3).

 

Figure 3. The Causal diagram.

Inferences

The values of (D+R) and (D−R) were calculated and shown in Table 8. Further, in
Table 9, the values of (D+R) were ranked, where value delivery to stakeholders (5) got the
highest value of (D+R), followed by transparency (4), authenticity (3), measurement and
evaluation strategies (6), customer as co-creator (7), quality of content (2), distribution and
promotion strategy (1). The factors with higher values of (D+R) show higher prominence
with the system. Similarly, the positive and negative values of (D−R), as shown in Table 10
categorize the factors into cause or effect groups. The factors with a positive value of (D−R)
are categorized into cause group factors. The factors with a negative value of (D−R) are
categorized into effect group factors.

In this study, measurement and evaluation strategies (6); and the customer as co-
creator (7) got the higher positive values of (D−R), which shows that these two factors
have a high impact on other factors. But the (D+R) value of both the factors is low, which
may be accounted for low levels of ‘R’. The next factor with a positive but low value of
(D−R) is distribution and promotion strategy (1), which shows that this factor doesn’t
impact other factors much. Also, this factor has the least (D+R) value, which shows that
the factor does not carry much prominence with the system.

Further, in this study, four factors got categorized into effect group factors due to
their negative (D−R) values, where authenticity (3), emerged with the highest value of
negative (D−R), which shows that other factors are greatly impacting this factor. The
high value of (D+R) also shows that this factor has high prominence with the system. The
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next two factors with high values of negative (D−R) are value delivery to stakeholders
(5) and transparency (4). This shows that these two factors are also impacted by other
factors significantly. Also, both these factors have the highest value of (D+R), making them
significant and connected to the system. The factor with a low value of negative (D−R) is
the quality of the content (2), and the same as a low value for (D+R) as well, which makes
the factor getting moderately impacted by other factors.

Based on the outcomes from both the models, viz. TISM and DEMATEL, most factors
emerged common in both the models, in terms of impact creating or dependency. Like,
value delivery to stakeholders (5) emerged as the most dependant factor as per TISM
model, and as per DEMATEL approach also this factor emerged with high prominence
with the system, due to high value of (D+R) and got categorized into effect group, due to
negative value of (D−R). Similarly, as per the TISM model, measurement and evaluation
strategies (6); and the customer as co-creator (7) emerged as strong driving forces. As per
the DEMATEL approach, these factors emerged as cause group factors due to positive
values (D−R).

Further, authenticity (3) and transparency (4) emerged as dependant forces in the
TISM model and DEMATEL approach as well both of them emerged as effect group factors
with negative values of (D−R). But, the factors viz. distribution and promotion strategy (1);
and quality of the content (2) emerged as driving powers in TISM, while in DEMATEL,
distribution and promotion strategy (1) emerged as weak cause group factor, and quality
of the content (2) emerged as weak effect group factor. This may be attributed to either less
value of ‘D’ or ‘R’ associated with these factors.

5. Discussion and Practical Implications

The results obtained in the study highlight the relationship between the identified
factors and the strength of their relationships as well. It emerged that branded content
needs to promise value delivery to all the stakeholders, but the value delivery depends
on several other associated factors. Customers should be promoted to be co-creator for
branded content to enhance the credibility and acceptability of branded content. At the
same time, the company needs to be vigilant in devising the measurement and evaluation
strategies for the branded content. The measurement and evaluation strategies adopted
by the company and decisions to involve customers as co-creator, directly and indirectly,
impact the authenticity and transparency of the content. Customer trust needs to be
created by developing quality content and appropriate distribution and promotion of the
content. Due to this reason, companies take due care in adopting content distribution and
promotion strategies.

This study emphasizes the strategic adoption and implementation of branded content
as a marketing tool for the new normal (post-COVID-19 era). The marketers need to
evolve continuously to keep the consumers engaged and attached to their brands. They
need to cover up the limitations of traditional marketing, find ways to impact and convey
their business values and digital branded content can be a tool for that. Digital content
producers and advertisers need to integrate to frame powerful, thematic messages which
can enhance organic viewership and brand preference [64]. In 2020, those companies who
have focused on the content and its delivery could engage with customers more effectively.
This pandemic has changed the habits and buying behaviour of consumers. While sitting
and buying at home, the consumer looks for product reviews and details more minutely.
As per a Forbes’ study in 2016, the customers displayed 59% higher recalls than display
advertising. The TISM tool applied in this study highlights that content distribution is very
important for its success and in practical business life; this statement can be justified by
looking at how ‘Facebook’ is giving success to the digital content distribution of companies.
Apart from Facebook, marketers are exploring options of creating their advertisements
and promoting through their apps like Apple news, google search and Snapchat, etc. [65].
This study emphasized the need for careful designing of quality branded content to ensure
increased brand loyalty. Few studies in literature also substantiate this point whereby it is
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suggested to frame and deliver more informative content for high involvement product
brands like a laptop; while for low involvement product brands like coffee, the content
needs to be more attractive and attention seeker [9,27]. The way consumers perceive
the usefulness and ease of use of content impact their attitude towards branded content,
reflecting their purchase intentions further [26], which can benefit their brand if properly
exploited by marketers establishment. Branded content can be a competitive tool for
marketers in the coming days, wherein it can act as a bridge between the brand and
the consumer relationship [66]. The younger generation mostly tends to escape from
traditional advertising and feel connected with informative and entertaining promotions.
There is always a quest for new content online which can be captured by branded content
intelligently in the days to come.

6. Conclusions

Branded content is emerging as a subtle way of communicating about the brand with
its users. The recent pandemic of COVID-19 has made consumers look towards online
modes of buying, by choice or out of compulsion. Consumers now have to depend on
online product or service reviews for making informed decisions. This is where the role
of branded content pitches in. Marketers are innovating their ways to exploit the true
worth of branded content as a robust marketing strategy. This study reflected the few
factors that can enable branded content to be used as a robust marketing strategy. Authors
have used the TISM and DEMATEL techniques to enable the strategic model framing
of the identified enablers, to identify the appropriate way of approaching the enablers.
This study outcome projected that branded content needs to provide value to different
stakeholders, profit to the platform provider, increased sales to marketers, and genuine
information to consumers. Value delivery again depends on the level of authenticity the
content promises to the consumers. Marketing these days have become so vulnerable
to mistrust and broken brand-consumer relationships. Stakeholders need transparency
in content development and delivery. The quality of the branded content and the way
it is delivered to the consumers make a huge difference to the success of this marketing
strategy. The marketers, therefore, need to be very particular and focused on devising and
implementing the measurement and evaluation strategies for the quality of the content and
its delivery. The marketers need to draft the strategies depending on the type of product
or service they are dealing with and the specific environment the brand is existing. Also,
measuring the impact of branded content usage on the brand’s sales is equally essential for
marketers. Various marketers are exploring the options of including consumers in their
process of branded content development to enhance the value of branded content. This
study reflects the importance of strategically approaching the concept of branded content
so that stakeholders get the real worth of this much-needed strategy.

7. Limitations and Future Research Directions

Like every research, this study also has limitations, including the sample size of
respondents used to finalize factors. With more responses, a mixed-method approach could
have been adopted for getting deeper insights. In the future, a similar study may be carried
out by adopting techniques like factor analysis, structural equation modelling, and neural
networking. A combination of Fuzzy-MICMAC, Fuzzy-TISM, and Fuzzy-DEMATEL can
also be adopted to cover wider linkages and relationship strengths. The way different forms
of branded content related to marketing strategy is worth research. Also, sector-specific or
consumer-specific studies may be conducted wherein branded content is discussed as a
marketing tool for specific products or services.
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Appendix A

Table A1. Interpretive Logic-Knowledge Base.

Sr. No. Variable No./Paired Comparisons Yes/No Reason/Logic

E1 Distribution and Promotion Strategy

1 E1-E2 NO

2 E2-E1 NO

3 E1-E3 YES Choice of platform/channel used supports content authenticity

4 E3-E1 NO

5 E1-E4 YES Choice of platform/channel used supports transparency

6 E4-E1 NO

7 E1-E5 YES Choice of platform/channel used supports value delivery

8 E5-E1 NO

9 E1-E6 NO

10 E6-E1 YES strong evaluation leads to better content marketing

11 E1-E7 NO

12 E7-E1 YES customer participates in decision making

E2 Quality of content

13 E2-E3 YES quality generates trust

14 E3-E2 NO

15 E2-E4 YES Transitive

16 E4-E2 NO

17 E2-E5 YES quality promises satisfaction

18 E5-E2 NO

19 E2-E6 NO

20 E6-E2 YES stringent evaluation helps in quality content

21 E2-E7 NO

22 E7-E2 YES Customer participates in relevant content generation
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Table A1. Cont.

Sr. No. Variable No./Paired Comparisons Yes/No Reason/Logic

E3 Authenticity

23 E3-E4 YES Stakeholders will not hesitate in sharing authentic content

24 E4-E3 YES more transparency ensures authentic content to be shared

25 E3-E5 YES Satisfied stakeholders

26 E5-E3 NO

27 E3-E6 NO

28 E6-E3 YES strong evaluation leads to better authenticity

29 E3-E7 NO

30 E7-E3 YES Transitive

E4 Transparency

31 E4-E5 YES Satisfied stakeholders

32 E5-E4 NO

33 E4-E6 NO

34 E6-E4 YES strong evaluation leads to more transparency

35 E4-E7 NO

36 E7-E4 YES more involvement

E5 Value Delivery to stakeholders

37 E5-E6 NO

38 E6-E5 YES Transitive

39 E5-E7 NO

40 E7-E5 YES Customer feel associated and gets value

E6 Measurement and evaluation strategies

41 E6-E7 NO

42 E7-E6 NO

Appendix B

Table A2. Respondent details of Questionnaire.

Sr. No Description Details

1. Total number of respondents 83

2. Level of education Undergraduate and above

3. Occupation Homemaker/student/employee

Few major Questions:

Q. 1. Do you prefer online shopping?
Q. 2. Have u started buying online, during the COVID-19 duration?
Q. 3. If No, what restricts you?
Q. 4. If yes, how is your experience?
Q. 5. While going for Online shopping, to how much extent do the content and reviews etc
available on the website, influence your choice? Please rate on the given scale.
Q. 6. Please rate the below-mentioned variables on the scale of importance for the success
of branded content for sales promotion:
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Sr. No. Variables
Very

Important
Important Can’t Say

Not So

Important

Completely of

No Importance

i.
The strategy for distribution and
promotion of the content

ii.
The type of technologies used for
creating the branded content

iii.
The stage of the product for which
content is created

iv.
The content needs to be trustworthy
(authenticate)

v. How much established the brand is

vi. How much transparent the content is

vii. Content quality needs to be good

viii.
Content is paid one by the brand or is
it free

ix.
Value delivery to all the stakeholders
(including you as a customer)

x.
Whether the content relates well with
traditional advertising

xi. Sufficient choices availability

xii. How much measurable the content is

xiii. Has the content evolved with time

xiv. You as a co-creator for the content
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Abstract: In this article, we consider a variety of different mechanisms through which crises such as
COVID-19 can propagate from the micro-economic behaviour of individual agents through to an
economy’s aggregate dynamics and subsequently spill over into the global economy. Our central
theme is one of changes in the behaviour of heterogeneous agents, agents who differ in terms of
some measure of size, wealth, connectivity, or behaviour, in different parts of an economy. These
are illustrated through a variety of case studies, from individuals and households with budgetary
constraints, to financial markets, to companies composed of thousands of small projects, to companies
that implement single multi-billion dollar projects. In each case, we emphasise the role of data or
theoretical models and place them in the context of measuring their inter-connectivity and emergent
dynamics. Some of these are simple models that need to be ‘dressed’ in socio-economic data to be
used for policy-making, and we give an example of how to do this with housing markets, while
others are more similar to archaeological evidence; they provide hints about the bigger picture but
have yet to be unified with other results. The result is only an outline of what is possible but it
shows that we are drawing closer to an integrated set of concepts, principles, and models. In the final
section, we emphasise the potential as well as the limitations and what the future of these methods
hold for economics.

Keywords: complexity economics; economic crisis; COVID-19; agent-based model; information
theory; global value chains; megaprojects; housing markets; economic networks

1. Introduction

1.1. The Economics of Heterogeneity and Interconnections

Crises that disturb the economic status quo have a ripple effect that can reverberate
through markets and economies around the world. The effect a crisis has on any individual
entity depends on the characteristics of the entity and the nature of its connections with
the rest of the economy, and this is one of the areas that complexity economics (CE) has
been able to contribute to [1]. CE has its origins at the Santa Fe Institute in the mid-1980s
when economists, computer scientists, and physicists came together to foster an interdis-
ciplinary approach to addressing economic problems. Since then, a number of groups
and institutions have sprung up around the world such as Oxford University’s Institute
for New Economic Thinking (INET) headed by J-D Farmer, Harvard’s Atlas of Economic
Complexity (AEC1 [2]), and MIT’s Observatory of Economic Complexity (OEC2), these
having developed through the work of Hausmann, Hidalgo and colleagues [3,4]. Recently,
some central banks, such as the Bank of England [5] and the Canadian Central Bank [6],
have begun to explore CE methods, such as agent-based models (ABMs), for policy-making
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and in their approaches to modelling market dynamics. This is an approach that has been
growing in its sophistication and accuracy with a paper by Poledna and colleagues [7]
having recently won 1st prize in the Complexity and Macroeconomics Competition held by
Rebuilding Macroeconomics for producing an ABM that is comparable in forecasting ability
to traditional DSGE (Dynamic Stochastic General Equilibrium) models.

CE has sometimes been critiqued for not being a single theory or a unified approach
to economics [8]. This is in part because in practice it is an ecology of ideas, analogies,
and methods combined with large amounts of domain-specific data that are used to address
particular problems, freely borrowing from other fields in order to do so. However, this
also belies a technical consistency in the approach CE adopts. In particular it focuses on the
formal strengths of models that have often been validated in other fields and then applies
the appropriate economic framework around the analysis, thus allowing models to develop
independently of both economic ideology and the other fields that inspired the initial
analogies. For example, ‘spin models’ [9,10], binary state models that represent agents
as, for example, buyers and sellers, have been used extensively as simple models by CE
theorists to develop their intuition for the micro-economic agent-to-agent interactions that
result in the emergence of nonlinear macro-economic dynamics. The phase transitions we
see in spin models then help frame our thinking of the non-linearities of complex market
behaviour such as the two-phase dynamics discovered by Plerou et al. [11]. This has also
been used extensively in the work of Brock and Durlauf [12] and Aoki [13], for example, in
understanding the interactions between agents and the emergence of multiple equilibrium.

These models first appeared in the field of physics which remains a significant source
of inspiration for CE [14,15], as does the mathematics of network theory [10,16] and
evolution [17,18], ideas that have been brought together in work on evolutionary game
theory on networks in order to understand the emergence of cooperation [19] and spreading
dynamics over networks [20]. On the topic of evolution in economics, Brian Arthur, who
coined the termed ‘complexity economics’, has written [21]: ... because complexity economics
looks at how structures form or solutions come to be ‘selected’, it connects robustly with the
dynamics of evolutionary economics. Evolutionary economics also explicitly accounts for the
path dependencies of outcomes and the heterogeneity of agents, as Volmir writes in his
review [22] of Nelson et al’s book [23]:

... technological trajectories are a cumulative process of searching for “new ways
to do things”, providing the reader with a framework to explain emerging be-
haviors such as lock-ins, ‘anti-commons’ problems... Since the 1960s, innovations
began to be viewed as multi-interactive phenomenon, which entails a cumulative
process between different agents and institutions, a fact ignored by standard
economics... Once the cumulative process is understood, it is impossible to deny
that there are differences in the ability of distinct firms to accumulate knowledge.

This combination of heterogeneity, path dependency, interactivity, and innovation are
all hallmarks of the ‘world view’ of CE.

With these concepts in mind, theory and empirical study in economics have been
moving into an era of networks and heterogeneous agents, and along with this progression
comes a growing awareness of the systemic risks of a highly connected society. Take, for
example, the network of international trade relations that have been a lynch pin of modern
trade development recently reviewed by Carrère et al. [24]. In this domain, a central model
has been the gravity model of trade [25], and in its simplest form is conceptualised similarly
to that of gravity in physics. In physics, the attractive forces F between two objects of
masses M1 and M2 is proportional to the product of their masses divided by the square of
the radial distance r2 between them:

F = G
M1M2

r2 (1)

where G is the universal gravitational constant. The gravity model of international trade has
a very similar form where the trade flow Ti,j between two economies with gross domestic
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products of Pi and Pj and the geographical, political, social, or some other measure of
separation is represented by Di,j, is expressed by the relation

Ti,j = C
PiPj

Di,j
(2)

where C is a constant of trade. See Anderson [26] for the theoretical foundations and
extensions. This formulation, first framed in 1954 [25], lends itself naturally to a network
analysis in which each Ti,j = Tj,i is the symmetrical weighted link in a network connecting
nodes of size Pi and Pj. For a fixed distance, as the sizes of the economies grow the flow
of trade between them increases, but if the distances between these same economies were
increased the trade flows would decrease in inverse proportion. The analysis of these
networks has been further extended to the micro-economic level through the work of
Bergstrand [27], for example, providing a much more granular conceptualisation of trade
in which the gravity model is a reduced form of a more sophisticated partial equilibrium
model of trade.

The network model of trade is more general than the gravity model though. For ex-
ample, Rauch has studied the social networks of trade [28] and the relationships between
networks and markets [29]. In a similar study, Chaney [30] looked at the network structure
of trade where firms can only export into markets in which they have contact and acquire
new contacts both at random as well as through their network of existing contacts, thereby
introducing an element of randomness to network formation. The specific varieties of
what is traded over these networks have also been considered in some detail, with Dalin
et al. [31] looking at the trade in ‘virtual water’, the amount of water needed to produce
food, and the global trade in arms studied by Arkerman and Seim [32]. Alongside this
appreciation of the role of network topology and flows of trade is a further appreciation
of the heterogeneity of the nodes themselves, i.e., the highly varied characteristics of the
countries, companies, and individuals that are the linked agents.

The recent growth of research in this area has been stimulated, at least in part, by the
growth in international trade and the use of Free Trade Agreements between a large number
of economies and consequently a need to better understand how this has shifted regional
economies. This is because although there had been no global free trade agreements since
1994 [33], whereas the number of regional or bilateral trade agreements between countries
(e.g., NAFTA, EU, and APEC) grew from 50 in 1990 to more than 280 in 2017 [34]. This
has led to a deeper interest in systemic risks such as the fragility of supply chains [35],
the interaction between trade networks, trade wars, and firm value [36], as well as trade
related climate change [37]. However, this has been in parallel with an enormous growth in
the study of ‘complex systems’ through the lens of network analysis, a field in which recent
research began with Watts and Strogatz in 1998 [38] and Barabási et al. in 1999 [39], and it
has played a core role in many fields over the last twenty years. This has particularly been
the case in economic research where the formal methods of network science have been used
by non-economists, often but not always physicists, to study the abstract properties of trade
networks [40–42]. While the recent connection between physics models and economic data
has not always been a harmonious one, it has been productive in certain fields of economics
with several articles by prominent researchers on both sides of the debate having voiced
strong opinions on the success or otherwise of these methods [43–45].

These debates have been had at the macro-economic level as well as at the market
and micro-economic levels, all of which has been a part of a steady revolution in economic
thinking over the last 30 years. Some of the earliest work using simulations or a ‘complex
systems’ approach [46] includes the work of Brian Arthur and colleagues on the simulation
of financial markets [47] and other models of collective economic behaviour [48] where
traditional assumptions, such as equilibrium or rational choice, are relaxed in order to
study the evolutionary dynamics of markets and under what circumstances an equilibrium
state might naturally come about with these assumptions relaxed [49]. Other models,
such as bifurcation models in which a form of dynamic equilibrium is presumed, are
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suited to partial equilibrium analysis in the sense that it is the non-equilibrium transition
between alternative stable states that is most interesting, see Rosser Jr.’s review of economic
Catastrophe Theory for example [50].

Within the context of complexity economics, this article reviews several recent research
directions at multiple different levels of analysis as well as some of the work that we have
carried out in recent years. This includes our work on applied network theory [20,51–54],
bifurcations and systemic risks [55–60], agent-based modelling of economic markets [61–64],
the theoretical limits of ‘rationality’ and strategic choice [20,65–69], and how information
theory can be used to understand the dynamics of these systems [70–77]. The purpose then
is to place this research in the context of the work being carried out in other groups around
the world. We hope that further developments of these areas will ultimately lead to larger
models that can be used to better understand the macro-economic response of an economy
to global shocks during a crisis such as COVID-19 or the Global Financial Crisis (GFC).
In the following subsections, we introduce the central themes of this work that are the basis
of the sections in the main body of this article.

1.2. The Household Level: Theory and Simulation

As we write in mid-2021 the pandemic continues to push economies around the
world into lockdowns where social distancing measures are put in place, restricting our
freedom of movement as well as the ability of the economy to function properly. At the
level of households, the first two sections investigate if the financial distress caused by
the pandemic could cause a new period of stress in economic markets such as the one
observed during the GFC. This topic has two parts: the first is a stylised agent-based
simulation without any real-world data, and the second is a more realistic simulation using
real data from the Greater Sydney housing market. The purpose of these case studies is to
illustrate the strengths and weaknesses of the two approaches as well as the relationship
between them.

In Section 2, we implement the modified diffusion model with financial constraints
first proposed by Gallegati et al. [78] in order to model the ‘period of financial distress’
prior to a market decline for markets in general and later used as a model of housing
markets specifically [79]. At the individual agent level such a period might occur when the
agent, such as a firm or a household, is faced with the not yet realised but highly probable
chance of not being able to meet their financial obligations [80]. In the broader sense of a
whole market this can occur because a subgroup of agents have wealth constraints that
limit their ability to buy assets outright and so they need to borrow to buy assets that then,
through the evolution of the market price, become undervalued and as the assets are then
distressed some over-leveraged agents need to sell, pushing prices down even further than
fundamentals suggest is the equilibrium price. The effect of leverage on market stability has
been extensively studied in housing markets [81,82] and agent-based models of financial
markets [83,84] and in the work of Kindleberger [85], periods of financial distress are a
general pattern in many bubbles and their subsequent crashes throughout the last several
centuries. In Kindleberger’s words [85] (p. 11):

Then an event—perhaps a change in government policy, an unexplained failure
of a firm previously thought to have been successful—occurs that leads to a pause
in the increase in asset prices. Soon, some of the investors who had financed most
of their purchases with borrowed money become distress sellers of the real estate
or the stocks because the interest payments on the money borrowed to finance
their purchases are larger than the investment income on the assets. The prices of
these assets decline below their purchase price and now the buyers are ‘under
water’—the amount owed on the money borrowed to finance the purchase of
these assets is larger than their current market value.

In Section 2, we reproduce the model of Gallegati et al. [78] to illustrate this period of
financial distress.
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In Section 3, we move from these theoretical considerations towards the more applied
level of the Australian government’s response to the COVID-19 ‘event’, to use Kindle-
berger’s terminology, and its impact on the housing market. In response to the pandemic,
the government moved to close borders [86] that reduced the influx of temporary residents
(e.g., students and short-term workers), resulting in a decrease in the demand for rental
properties and the corresponding decline of the rental prices [87] which has impacted the
income of property investors. Second, decreasing the cash rate by the Reserve Bank of
Australia [88] has increased the incentive for mortgage borrowing among households that
are otherwise stressed due to COVID-19, which has resulted in an increased demand in
housing and a corresponding increase in prices [89]. Third, the government’s ‘JobKeeper’
and ‘JobSeeker’ payment schemes [90,91] intended to support households’ individual
budgets and to stimulate their consumption activity created an auxiliary source of income
for households, which has arguably altered their budgeting incentives.

These government policy-driven macro-economic factors have combined with the
micro-economic effects of reduced spending for holidays due to travel restrictions and
other changes in household behaviour such as reductions in food wastage (as reported in
other countries during COVID-19 [92]) and so impacting household expenditure, the con-
sequences of which is household savings of $100 billion during 2020 [93].3 This has had
the consequential effect of increasing pressure on the housing market in 2021 as the extra
savings has fuelled further interest in house buying across Australian markets. As the
Australian Bureau of Statistics reported [94]:

Increased housing market activity was driven by an expansive monetary policy
and support through government policies such as Homebuilder and other state
specific initiatives, as well as pent up demand (due to lower activity during the
June quarter [2020] COVID-19 lockdown period). As auctions and open home
inspections picked up in September quarter (with the easing of social distancing
measures), greater demand than there was housing stock on the market saw
property prices rebound

These factors have contributed to an already highly valued Australian housing mar-
ket [62,63] and will likely continue to contribute to wealth and housing inequality into the
future. We emphasise this combination of government policy and micro-economic factors
because we want to illustrate how emergent consequences arise from changes in individual
behaviours during a crisis, something that needs to be explicitly modelled because there
is usually, as in the case of the GFC and COVID-19, no previous macro-economic data on
which to base sound judgement, so estimates of the impact of individual behaviour need to
be used, and how these behaviours drive the macro-economic dynamics that policy-makers
want to manage.

With this Australian-specific perspective in mind, in Section 3 we compare the methods
of Section 2 with those of a model of the Greater Sydney housing market to illustrate the
strengths of a realistic model that uses high-resolution market and socio-economic data
in which household constraints are varied to reflect key aspects of the COVID-19 crisis.
We show that the effect of COVID-19 on Sydney house prices is the opposite to that of a
bubble–crash dynamic; house prices increase significantly in the model and this has been
observed in recent price movements across Sydney and other Australian capital cities,
lending significant credence to the use of agent-based models to simulate out-of-sample
dynamics during a crisis.

1.3. Financial Markets and Systemic Risks

Financial market crises are a common topic of study for researchers outside of main-
stream economics. This is due in part to the extensive amount of data available which
allows financial markets to be analysed very well with the tools of computer science and
physics that were initially developed for studying large stochastic systems with interacting
elements. Some of the earliest work in this area that continues to drive research is in the
study of the so-called stylised facts of financial markets, such as fat tails and clustered
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volatility [95]. One of the earliest debates was over the best model to use for market
fluctuations: cascading turbulence or a truncated Lévy flight [14,15,96,97]. This led to a
long and fruitful series of investigations into the dynamics of the univariate time series of
financial market indices [98–101], with recent contributions from our group in this area as
well [102–105].

At a more granular level, the analysis of markets can be seen as an interaction between
prices that, to at least some extent, contribute to the (co-)movement of other prices, induc-
ing a dynamical asset network that can be studied for its stability properties. This type of
analysis can, for example, extract market sectors from price movements by examining the
largest eigenvalues of the market’s cross-correlation matrix [106] as well as using random
matrix theory to distinguish between random and non-random correlations [107], methods
that were originally motivated by models in physics. As an approach to understanding
crises, such as the Black Monday crash of 1987, and optimal portfolio selection, Onella
and colleagues applied correlation-based network analyses in order to understand market
risks [108–111]. Our group has extended these methods to information theoretical meth-
ods in order to study the nonlinear properties of markets and other types of nonlinear
dynamics [52,55,70,112]. Extending these methods by using information transfers between
equities such as Granger causality [113] or transfer entropy [71,114] results in fundamen-
tally different networks of relationships between equities [70] and consequently different
risk profiles depending on the different measures of relationship used.

In order to study some recent market events that have been particularly turbulent
and have yet to be studied in detail, in Section 4 we use transfer entropy (see, for example,
in [70] and [Chapter 6] in [71]) to infer a temporal flow of information between equities
during the periods covering three market events: the US Federal bail out decision of 2008,
the Flash Crash of May 2010, and the COVID-19 crash of 2020, together with three other
random control dates. For each of these events, we use tick-by-tick financial data that allow
us to study the day before the event, the day of the event, and the day after the event with
three thirty-minute periods used to compute transfer entropy of the Dow Jones Index. This
gives us considerable fine grained insight into the micro-evolution of information flows
through the market and their relationship to overall market dynamics.

1.4. Trade Networks: Internal and External Trade in Value Added

As mentioned in the first section above, trade networks are vital to the economic
development and prosperity of a country’s economy. Since the earlier work on gravity
models, work has developed extensively in understanding the relationship between trade
within a country’s economy and trade between different economies. Developments such as
the Observatory of Economic Complexity [115] (https://oec.world, accessed on 13 October
2021) have taken significant amounts of trade data and converted it into country-specific
trade network analyses that can be drilled down into the sub-market sectors as well as,
in many instances, the distinct economic regions within a country. Research stemming from
this work has established important links between these trade networks and the specifics
of income inequality [116], the environment [117], and employment [118], all issues that
are of central concern to the sustainable growth and development of a country.

These networks have developed much more slowly over time than other networked
aspects of the economy such as financial markets or housing markets, and their disruption
and subsequent recovery might also be expected to be somewhat slower. However, even
short-term shocks to trade networks can have a significant and long-lasting impact on trade
links such as agri-food trade networks [119,120] and other commodities [121,122] that are
heavily traded as physical goods across the globe. These have been studied in detail for
previous crises, for example the role of the inter-bank network of debt during the GFC [123].
In Section 5, we look at the intra- and inter-economic trade data beginning at the industry
sector level to examine patterns in the trade of goods and services between market sectors.
In working to understand the long-term shocks caused by COVID-19, we can use analyses
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of this type to form a better picture of the complexity and interrelationships of sub-market
trading and its implications of policies.

1.5. Business Sector Analysis

In Section 6, we discuss the impact of global crises on businesses through the lens of
projects and their role as vehicles for economic transformation. At an operational level,
projects are a useful framework within which organisations can plan and control the
delivery of products and services that generate income or otherwise benefit businesses
and their customers [124]. As is the case for other elements of economic development,
the effect that a crisis has on businesses or individual projects depends on their individual
characteristics and the nature of their connections with the rest of the economy. Large
projects and large portfolios of related smaller projects can have an out-sized impact on
economic development and their stalling or failure during a crisis has a consequential
knock-on effect for the rest of the economy. Using data reported during the COVID-19
pandemic, we show how projects are strongly connected with, and have been impacted
by, their respective economies, with a significant number of projects being cancelled
or suspended.

In particular, we look to a class of projects known as ‘megaprojects’ that are commonly
used to deliver very large, complex, and costly outputs such as infrastructure, water,
energy, and mining ventures [125–127]. Their extreme scale is reflective of the functional
complexity of megaprojects which are themselves often initiated to facilitate the productive
efficiency and delivery of many other goods and services. In other words, large, complex
projects are often singular economic exercises around which other economic developments
organise themselves, providing support to downstream development projects in multiple
industrial sectors.

This is most apparent in multi-billion dollar projects such as energy or road projects
that facilitate further development throughout the economy. For example, Olds [128] has
examined urban mega-projects on the Pacific rim (Vancouver, Yokohama, and Shanghai)
and the relationship between local economic development and globalisation. Similarly,
Zekovic et al. [129] has looked at megaprojects in the context of urban planning and
development. Most telling of all though is the enormous amount of infrastructure that is
required to support GDP growth in the coming decades and the role of megaprojects in
this development. In a 2017 article, Söderlund et al. [130] wrote:

One reason for such acceleration in megaprojects can be gleaned from the projec-
tions of infrastructure to meet the world’s ever-increasing needs for economic
growth and improvements. McKinsey (Garemo, Matzinger, & Palter, 2015) esti-
mates that the world needs to spend about US$57 trillion on infrastructure by
2030 to keep up with the expected GDP growth. The Organisation for Economic
Co-operation and Development (OECD) estimates that ‘global infrastructure in-
vestment needs of US$6.3 trillion per year over the period of 2016–2030 to support
growth and development’, which exceeds the figure proposed by McKinsey.

Due to their extreme scale and impact, megaprojects often play a pivotal role in the
shaping of an economy. However, the inverse may also be argued, i.e., where there is
a disruption like that caused by a global shock such as COVID-19 this can precipitate
the cancellation or pausing of megaprojects as their funding bodies reassign previously
budgeted capital to other more pressing needs and the resultant loss or delay of innovation
and value. The net effect is to push back the infrastructure necessary to support the
economic growth of the next decade.

As some countries begin to emerge from the grip of the pandemic, there are moves to
spur economic recovery by initiating large infrastructure projects. Starting (or restarting)
significant numbers of projects over a short period will likely stress delivering organisations
as they seek to rapidly revive projects and recover the work force at the same time as
competing for newly announced infrastructure projects. This restart may create shortages
of raw materials as global supply chains respond to rapidly increasing demand and
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competition as skilled resources, stressing already compromised global value chains such
as those described in Section 5.

1.6. The Structure of the Article

In the sub-sections above, we have given a brief overview of some of the recent
literature as well as a review of the tools that are used in what follows in this article.
The progression of the sections from Section 2 through Section 5 are in approximate order
of increasing degrees of coarse-graining. Section 2 is purely theoretical and every agent is
completely described at the discretion of the modeller, however this level of information
comes at the price of lacking in real-world precision. Section 3 is again a simulation, but it
is populated with realistically calibrated agents and an economic context that is based on
the real world while also being expected to faithfully reproduce empirical observations
of market behaviour. Section 4 has no explicit agents or models of interactions, instead
it empirically examines the interactions between agents that can be inferred using multi-
variate time series from financial markets. Section 5 looks at an even further aggregated
level, starting from data of entire industry sectors and looking at the trade in value added
between sectors within an economy as well as between economies. Although each of these
layers interact with each other to produce multiply layered networks of interactions, we
do not yet integrate them in a unified model; this is left for further development and is
an open research effort in this field. Finally, in Section 6, we discuss the unique aspects of
project economics and their role in development, both during and post an economic crisis.

Each section should be seen as a distinct and relatively independent case study
that illustrates methodologies or principles in action, without going into a great deal of
detail (references are provided to work describing the relevant details). In particular, we
have used the methods described above to illustrate various strengths and weaknesses of
particular ideas from CE applied to the analysis of an economy, usually with an Australian
perspective for concreteness. This is not intended to be a complete analysis of an economy,
for example, we have omitted central banks, commercial banks, and other key institutions
and markets. Nor should these be seen as an integrated approach to modelling an economy
because we have yet to make clear the connections between the different elements we will
describe. Instead, the intention is to illustrate the multiple directions of research that are
being pursued and that are now being drawn together to contribute to a unified “whole of
system” approach to modelling large scale economic phenomena. In the meantime, it is
hoped that this article gives some insight into what is presently being developed and what
the future holds for the field.

2. Periods of Financial Distress in an Agent Based Model

As mentioned in Section 1, in the work of Kindleberger [85] the initial cause of financial
distress can be the action of a few agents that by some means come to believe that they are
in stress or a bubble and that, once they have acted on this belief, the rest of the market
comes to a similar realisation and that many of them may need to sell in order to manage
their financial position. What initiates a market sell-off is a matter of ongoing debate
so to make our ideas concrete in the form of a relevant simulation we follow the work
of Gallegati et al. [78] in order to simulate an endogenous market crises. The purpose
in using this model is that it includes agent level (household) financial constraints as a
primary contributor to an asset market crisis, where the asset might be equities, houses,
or something else. These constraints are related to the costs of buying and selling the asset,
which are implicitly relative to the total household budget, if either the household budget
changes or the transaction costs change for a large enough portion of the market then
a market-wide period of financial distress may result, and it is these shifting household
constraints that we will relate to the COVID-19 crisis in Section 3.
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2.1. The Theoretical Framework

In [78], there is a population of buyers and sellers facing a binary choice problem for a
single risky asset. The simulation runs for a number of steps indexed by t and at each step
an agent i chooses a strategy wi,t ∈ {−1, 1} where −1 represents selling and +1 represents
buying. The asset’s underlying price dynamic is given by

pt = pt−1 + kwt + σzt (3)

Here, the price evolution is a sequence of n + 1 values {p0 . . . pn} with a given p0, zt
is a Weiner process (noise), and σ is the strength of the noise. Excess demand is the average
of all agents’ choices at time t where the mean strategy is wt = 〈wit〉 and therefore kwt is
the k-weighted influence that excess demand has on price (set to k = 0.4 in the original
paper). The expected excess demand at t is assumed to be we

t = wt−1. The utility for each
agent i is given by

Uit = ( p̄t − pt−1)wit + Jwitwe
t + εit (4)

in which p̄t is a single stochastic adaptive learning process for all agents:

p̄t = p̄t−1 − ρ( p̄t − pt) + σ1z1,t (5)

and ρ ∈ [0, 1] controls the adaptation speed. The strength of the agents’ interaction with
one another is controlled by the parameter J, as it is through the Jwitwe

t term that individual
choices are connected to all other choices via a mean market estimate of excess demand.
The agents make their decisions based on the expected benefit of trading using both the
recent observable price changes and the relative excess demand weighted by a herding
factor (see Equation (4)). The decision-making process each agent uses is based on a value
function Vi,t:

Vi,t =

{
Uit if Wi,t−1 > θWi,0

−∞ if Wi,t−1 ≤ θWi,0
(6)

where Wi,t is the wealth of agent i at time t, Wi,0 is the initial wealth of each agent and
θ is some real valued proportion of the initial wealth such that, if the wealth falls below
a threshold value of an agent’s initial wealth then they will not trade. Then, a choice
wit ∈ {−1, 1} is made according to the probability:

P(wit) = P(Vit(wit) > Vit(−wit)) (7)

This trading model follows the social interaction approach of Brock and Durlauf [12].
The full simulation can be summarized as carrying out the following steps for a total
number of T iterations:

1. Compute agent’s decisions wit using Equations (4), 6, and 7,
2. Asset prices are updated using Equation (3),
3. Agents realize profit/losses and update their wealth,
4. Agents compute a new expected price.

For a complete description and background of the algorithm see the original paper [78].

2.2. Simulation Results

By reproducing the original model we are able to achieve similar results to the original
article, and we note the following:

• A bubble characterized by a PFD is produced only when transaction costs are suf-
ficiently high, see Figure 1. In the absence of high transaction costs no crashes are
observed in the simulations.

• High financial costs cause a pattern of crashes in Figure 2). As a hypothesis for
the cause of financial distress, high transaction costs have the drawback of causing
repeatable patterns that are may not be realistic.
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• The evolution of the wealth and the distribution of the agents explain the bubble
(Figure 3). We can see two densities of wealth that correspond to the beginning of the
simulation and right before the crash. It demonstrates that financial distress seems to
be correlated with the occurrence of shocks.

• Changes in the herding factor, J, affect the amplitude of the bubble, making social
interaction an important component of how financial contagion spreads and how the
shock ultimately unfolds into a crisis.

Figure 1. Comparison of multiple values for transaction costs. For c = 0.5 there is a crash at t ≈ 900.
and for c = 0.7 multiple crashes occur. There are no crashes for c < 0.5.

Figure 2. Simulation for c = 0.9 for 2000 time-steps. The crash repeats at steps 300, 800, 1300, and
1800.

While in this model financial distress is caused by the presence of excessive transaction
costs, Gallegati et al. [78] make it clear that the use of transaction costs is only a modelling
tool and many other mechanisms can produce the same result. We consider an alternative
scenario with an external field factor, γ, introduced in the utility function, representing
the market sentiment and we show that, similar to high transaction costs, it too can cause
market shocks more serious than those that might be expected for an equivalent normal
distribution. As the number of equity pairs with statistically significant TE values does
change over a m
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In the presence of market sentiment, the utility function evaluated by the agents be-
comes

Uit = ( p̄t − pt−1)wit + Jwitwe
t + G + εit (8)

where G ∼ N (γ, 0.01), which means that under normal circumstances (γ = 0) the utility
to buy or to sell is not affected, but under exogenous influence the agents have a higher
propensity to either buy or sell. We consider a scenario in which an external event occurs at
timestep t = 300 and as we can see in Figure 4 this causes a steep decline in market prices,
although at a slower rate than the ones caused by financial distress.

Figure 3. The distribution of wealth over the simulation is concentrated into both the initial point
and moment before the crash.

Figure 4. The market sentiment changes to γ = −0.5 at step 300, causing a depression in the market.

2.3. Remarks

Agent-based models are a powerful tool to simulate the interactions between hetero-
geneous agents in complex economic environments and to test hypotheses about emergent
behaviour originating from those interactions. In this model, Gallegati et al. extended their
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earlier work by the inclusion of financial constraints at the individual agent level, which
endogenously induces a strong nonlinear dynamic. Such simulations are an important tool
for calibrating our intuition, in terms of interactions and constraints, for the purposes of
policy-making as they can be used to evaluate alternative scenarios and guide decisions
that can lead to better policies. However, these are only a guide, and what is needed
to extend this work to a more practical understanding of policy-relevant parameters are
agent-based models that can also be used to perform more fine-grained scenario sensitivity
testing using real data tuned to a specific market as we demonstrate in the next section.

3. Trading Houses: An Agent-Based Analysis of Stressed Markets

Our recent work looking at the Australian housing market [62] has shown that from
2016 onwards this market has been in a volatile state in which high housing prices have been
coupled with higher than usual fluctuations in their values, an aspect of the Sydney market
that is not unlike the periods of financial distress covered in Section 2. This behaviour
contrasts with the previous decade (between 2006 and 2016) in which there were periods
of both growth and decline, but the trend has been much less volatile. In this work, we
argued that the current state of high uncertainty has been caused by a combination of two
factors: the households’ trend-following aptitude, i.e., their tendency to ‘market herding’
behaviour [131,132], and their collective propensity to borrow. The former behaviour
is quantified by a parameter that reflects a household’s desire to follow the price trend,
as accounted by the balance of the monthly costs associated with acquiring a house and
the anticipated long-term gains in house value due to market growth. The latter behaviour
is quantified by either the mortgage rate or by the observed statistical relationship between
a household’s income and mortgage. Using a multi-agent model that has realistic data
and dynamics that are known to follow real market prices, we were able to probe the
model for the mechanisms that drive this new behaviour, without changing the underlying
interactions and mechanisms in the model.

It is important to realise that the higher volatility in market prices have been observed
not only in the modelled market, but also in the actual market. Such uncertainty is typically
an indication of a critical transition, when the system approaches a bifurcation point that
separates two (or more) states with relatively stable dynamics such as that studied by
Scheffer et al. [133] or the period of financial distress of Gallegati et al. As the system is
composed of a large number of interacting agents, taking account of all the factors that
influence the evolution of each individual agent—even in the real market—is too difficult a
task, resulting in the behaviour of agents being essentially indistinguishable from a stochas-
tic process. This individual stochasticity is compounded by the stochasticity associated
with the emergent collective behaviour of a large number of agents. Such phenomena have
been observed in other systems [134–136] in which the details of individual interactions
between agents are unknown and possibly not even measurable for practical purposes,
yet their collective behaviour can still be coherent overall and may provide indicators of
the existence of a bifurcation point and the associated systemic risks. Our understanding
of such phenomena in socio-economic systems is generally less clear than in these other
systems and it is an active area of research.

Agent-based modelling provides a tractable computational tool study stochastic social
systems, and housing markets are one of its feasible applications. In these models, we
mimic the actions of real households subjected to market conditions (e.g., mortgage rates,
housing stock, budgeting constraints, etc.). This allows us to not only identify possible
causal relationships between the parameters and the observed market behaviour (e.g.,
price or population distributions [63,64,137]), but also investigate various alternate realities,
i.e., what if scenarios, which otherwise are not available for direct experimentation, unlike
other applied sciences.
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3.1. Simulation Results

There are two elements that are essential specifically for housing markets, affecting
the observed price dynamics: (1) the proportion of income expenditure on non-housing
consumption and (2) deciding whether or not to buy a house and at what price point.

We investigate the effect of COVID-19-related government policy interventions by
exploring alternative financial realities compared to the one people experienced during
the 2016–2019 period, which we refer to as the Baseline model [62]. In particular, we
consider three alternative realities: denoted as the Rate, Income, and Liquidity realities.
In the alternative Rate reality, the mortgage rate is lower by 2 percentage points compared
to the baseline (e.g., from 5.3% to 3.3%). This reflects the reduction of the base rate by the
Reserve Bank of Australia and the corresponding reduction of mortgage rates by banks.
In the alternative Income reality, the proportion of income households pay to non-housing
consumption is reduced by a factor of two, compared to the baseline (i.e., from 60% to
30%). This models the effects of a large portion of households being left without an income
due to work restrictions. In the alternative Liquidity reality, the fraction of accumulated
wealth households pay to non-housing consumption is reduced to nil (from 0.25% in the
baseline model). This is another aspect of household stress when the population reduces
daily spending. Importantly, in these alternative realities, all other parameters of the
Baseline model are held constant, including households’ collective assessment of the market
(quantified by the trend-following aptitude) or various house-related taxes.

The results of the simulations are presented in Figure 5. We see that in each of the
alternative realities the nature of the price dynamics–high volatility and an upward trend—
is similar to the baseline. This is due to the fact that all alternative realities exist within
the same fundamental conditions of the 2016–2019 market, namely, high trend-following
aptitude and high propensity to borrow (see details in the original paper [62]). Yet, in the
Income reality, we observe slightly lower price volatility compared to the other realities,
which reflects higher certainty in the price trend.

We next focus on the differences between the price trends in the alternative realities
and the baseline model in Figure 6 by setting the baseline model’s index equal to zero
so that the relative price trajectories of the other realities is made clear. Here, we see that
changing household spending attitudes with respect to the accumulated wealth (as in the
Liquidity reality), does not affect the price level significantly. In contrast, changing the
spending attitude with respect to income (as in the Income reality) gradually increases the
price level by $40–60 k (thousand Australian dollars) over the course of the simulation.
Furthermore, decreasing the mortgage rate (as in the Rate reality) results in increasing
the price level by $50–70 k. With the baseline price level of $1150 k, the Rate and Income
alternative realities result in an increase of ~5.2% in overall house prices. This result is
consistent with the year on year price increase in Sydney from $1135 k in December 2019 to
$1211 k in December 2020,4 an increase of ~6.7% where the difference might be explained
by the combination of multiple factors during COVID-19.
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Figure 5. Histogram distribution of the prices from an ensemble of 64 simulations, for the alternative
realities and the baseline model. Black line corresponds to the running average of monthly averages
of the actual sales price and is the same in each plot, made available from Securities Industry Research
Centre of Asia-Pacific (SIRCA) on behalf of CoreLogic, Inc. (Sydney, Australia).

Figure 6. Difference between the median house market prices in three alternative realities and the
baseline model.

3.2. Simple versus More Complex Agent-Based Models

We should emphasise that in obtaining these results we did not perform any further
calibration of our earlier published model [62]. This tells us that our agent-based model is
capable of tracking very fine differences in household constraints that are out-of-sample
with respect to the original calibration of the model.
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In adjusting the model to reflect alternative economic realities we are changing the
constraints placed on the agents using the same principles as described in Section 2 but
now these constraints have readily identifiable interpretations in terms of a real market.
In particular, constraints such as ‘budgetary limits’, ‘taxes’, or ‘interest rates’, constraints
that have been proposed in stylised models [56,78], can be tested, calibrated, and validated
against real market data, providing a quantified foundation for informing policy decisions,
rather than models that have earlier been more qualitative in their description of market
features. It is this step from theoretical and simplified models to richer, data informed,
simulations that will make these types of models much more useful in the future.

4. Fluctuations in Equity Markets at Crises Points

An index of a financial market for trading in equities, such as the NASDAQ, the Dow
Jones Industrial Average (DJIA), or the Standard and Poors 500 (S&P500), is often taken as
a broad indicator of a country’s economic health as it can be understood as the ‘market’s
perception’ of the economic performance of the industries in which the equities are traded.
If the market, as measured by an index, is growing strongly then the underlying businesses
are often thought to be growing strongly as well, while a declining index is often taken to
be an indicator of poorly performing businesses and consequently a poorly performing
economy. For example, the S&P500 is a US-based index of the 500 highest capitalised
stocks on the New York Stock Exchange and so it is seen as an indicator of health of the US
economy. By following it one can get a feel for the relative performance of the economy
over time.

However, individual stocks and their contributions to the overall dynamics of an
index have also been studied collectively as indicators of a market in sudden crisis. See,
for example, the use of Pearson cross-correlations between equities studied by Onnela
et al. [108,109] and the use of mutual information by Harré et al. [55] to study the non-
linear dynamics of markets near crises. This is similar in principle to the measurement
of neural dynamics during and epileptic seizures [138–140] or, at the aggregate level of
entire systems, measuring the statistical signatures of tipping points in ecological and
climate time series [141–143]. Other measures have also been used to study market crises
and their potential to measure systemic risks in financial markets, for example transfer
entropy, a measure of the temporal cause-and-effect of price movements, similar in nature
to Granger’s causality [113], has been used to study the Asian market crisis of 1998 [70].
A table of the different measures and their relationships is illustrated in Figure 7, and see the
references just given for a more detailed description of these methods. This is an active area
of research in which new developments are unfolding in multiple areas. In what follows
we will use transfer entropy (TE), a measure of Granger-like causality [144], to examine
inter-price dynamics in equity markets and we will simply refer to the causal relationship
from equity Y to equity X as TY→X . For an introduction to its use in general see the book
An Introduction to Transfer Entropy [71] and for its use in economics see Chapter 6 therein.
Here, we introduce, in order of appearance, the entropy, joint entropy, and conditional
entropy and then use these to define the transfer entropy:

H(X) = − ∑
x∈X

p(x) log(p(x)) (9)

H(X, Y) = − ∑
(x,y)∈(X,Y)

p(x, y) log(p(x, y)) (10)

H(X|Y) = H(X, Y)− H(X) (11)

Now, we can define the Transfer Entropy between two time series {Xt} and {Yt} as
the difference between the entropy of {Xt} conditioned on its lag-1 history {Xt−1} minus
the entropy of {Xt} conditioned on both the lag-1 history {Xt−1} and {Yt−1}:

TY→X = H(Xt|Xt−1))− H(Xt|Xt−1, Yt−1)) (12)
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sometimes the argument to the entropies are made clearer by explicitly stating the dis-
tributions as we do below and see [71] for generalisations to different lags and further
conditional factors for the probability distributions. In plain language, the TE measures the
amount of information that flows from Yt−1 to Xt once the history Xt−1 is accounted for.
We implement this method for financial time series in the next section.

4.1. Analysis Using Transfer Entropy for the DJIA Market Shocks

The DJIA is a price-weighted index of equities for thirty of the most prominent
industrial firms in the United States and as such is seen as a very broad measure of the
manufacturing health of the US economy. Here, we look at this index of companies at
periods covering three market events: the Federal bailout decision of 2008, the flash crash
of 2010 and the COVID-19 crisis of 2020 together with three control dates where there are
no recent events of any significance. For each of these market events, the analysis focuses
on the day before the event, the day of the event, and the day after the event with three
thirty-minute periods (backwards from 11:00, 13:30, and 15:30).

Figure 7. Top line: the log differences in price movements is where the structural analysis of market
movements starts, here Alcoa (x in the lower diagrams) and Boeing (y in the lower diagrams).
Subsequent lines: Multiple methods have been used to calculate the co-movement relationships
between equities using price fluctuations. Originally discussed in [70].

Across each of these periods, trade data for each stock were aggregated into one
minute averages: di

t so that within a 1 min interval [t, t + 1] we simply calculate the average
price within that interval. The result is a time averaged binning of the continuous trade
data over 1 min intervals and we denote this: {di

t} = {di
1, di

2, . . . , di
T}. Subsequently, these

one minute intervals are used to calculate the TE over three 10 min periods within each
thirty minute window. Figure 7 illustrates the method and compares it to other common
methods, but in the notation we have here for two time series of equities {di

t} and {dj
t} the

TE is

Tj→i = H(p(di
t)|p(di

t−1))− H(p(di
t)|p(di

t−1), p(dj
t−1)) (13)

Note that this form is extended using the KSG (Kraskov, Stögbauer, and Grassberger)
algorithm for effectively estimating probability distributions. A full treatment of this
approach is available in An Introduction to Transfer Entropy [71].
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Finally, the statistical significance is evaluated by taking the trades within each interval
and reshuffling them 100 times to establish a surrogate test of the Transfer Entropy with
the temporal relationships randomised. This is used to estimate the probability that the
statistical significance of the obtained Transfer Entropy by reference to the randomised
samples using a 0.05 p-value test for significance.

The following heat maps show the equity pairs with statistically significant values of
TE, as measured by the software package JIDT [145]. Figure 8 shows the result of measuring
the pairwise TE between equities in the DJIA. In each of the four time periods (each having
a 3 × 3 matrix of heat-maps, top-left, top-right, bottom-left, bottom right) there are three
days stacked from top to bottom (the day before the event, the day of the event, and the day
after the event) and during each of these days there are three time intervals (11:00, 13:30,
15:30). Each of the 36 heat-maps is a matrix of TE from each of the 30 equities in the DJIA
(rows) to each of the equities in the DJIA (columns). Periods with an increased occurrence
of TE are highlighted with a light blue frame. The colour of each pixel is an indication of
the size of the TE value. Periods with high maximum entropy are highlighted in red.

Figure 8. Heat maps of TE for three 30 min periods on three days around a market event. From top left
to bottom right: The Federal bailout package failure during the Global Financial Crisis, the COVID-19
crash of 2020, the flash crash on the 5 May 2010, and three control dates on which nothing happened.

Looking at the event periods in Figure 8 qualitatively, entropy transmission is compar-
atively lower the day prior to each market crisis for all three cases. However, within those
periods of fewer instances of statistically significant TE, some individual pairs produce
very high values of TE. For the COVID-19 crisis, the total count of statistically significant
values of TE is highest in the late afternoon of the day of the crisis (the ‘event’) although the
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size of the transmissions shows the largest spikes in transmission occur in the morning and
early afternoon intervals. Considering the results in Figure 8 at the three market events,
there are increased incidences of equity pairs with statistically significant levels of TE,
however there are lower values of ’peak’ TE leading to a ‘blue hue’ for those periods of
heightened activity with more active pairs but fewer high values of TE.

Looking at the count of the number of equities with high TE values during a market
event in Figure 9 shows behaviour significantly different from the control sample. In the
period at the end of the day prior to each market event, the occurrence of high values of TE
is reduced and remains lower overall than the control periods. However, within that prior
afternoon before each of the market events, there is a peak of activity when statistically
significant TE values occur more frequently. This can be observed by looking at the
maximum transfer entropy value for a period across the market events in comparison to
the control data, seen in Figure 9.

Figure 9. Heat map of the of indices with maximum transfer entropy and a p-value < 0.05 for all dates.

Looking at the distribution of TE events for equities in these periods in Figure 10,
the profile is similar. Across the day, an estimate of the distribution of counts of statistically
significant TE values (using a Gaussian kernel density estimator) gives a peak count of
transfer entropy events at any one time of twelve with a transfer entropy level of 8 to 9 bits.

However, analysis of individual periods within and around the market events in
Figure 11 provides additional characteristics which distinguish the market events from the
control windows. In particular, for the flash crash of 2010 we see a peak number of equity
pairs with entropy transfer as an event occurs but that peak is skewed to the left indicating
a decrease in the number of equity pairs with higher TE levels.

For each market event there is at least one period where the distribution has an
increase in central tendency. Kurtosis measures used to capture this property have been
found to be useful in these cases.

Note that this increase may not always result in changes in the kurtosis. This is because
kurtosis captures the extent to which the tails of a distribution contain values greater or
lesser than those that might be expected for an equivalent normal distribution. As the
number of equity pairs with statistically significant TE values does change over a market
event, an increase in the central tendency for the distribution is possible without a change
to the tails of the distribution and the attendant change in kurtosis, see Figure 12. However,
a reduction in kurtosis was observed for the population of equities undergoing transfer
entropy relative to the control data (Figure 13).
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Figure 10. Transfer entropy distributions for market events. Distribution of transfer entropy for three
market events and a control sample.

Figure 11. Transfer entropy distributions for market events. Distribution of transfer entropy for the
Flash Crash market event over three 30 min intervals over a three-day period.
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Figure 12. Heat map of the count of equities with transfer entropy with a p-value < 0.05 across
key dates.

Figure 13. Heat map of the Fisher kurtosis from the distribution of equities with transfer entropy
with a p-value < 0.05 across key dates.

4.2. Remarks

There is evidence of features in the transfer entropy activity in measures taken in
and around the market events reviewed. There are similarities that can be shown with
TE measures for the GFC, the May 2010 flash crash, and more recently the COVID-19
crisis. The most fruitful insights have been on an aggregate level rather than looking at
calculations for individual stocks. This is in line with earlier results for the Asian financial
crisis that used the same methods [70], and more generally we might expect changes in
the statistics of time-series near or at a crisis point as shown in other systems [133,143]
due to their very nature being that of a non-stationary event, so although these earlier
studies use univariate time-series it is an interesting observation to see these changes at
the multivariate and interaction level of analysis. It has also been possible to demonstrate
real difference between a control population and the data from significant market events,
immediately before, during, and after those events. The challenge now is to refine the
calculations, gleaning clearer results with new parameters, a move from more qualita-
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tive observations to quantitative analysis and the search for real predictive capability
allowing the understanding of market events through the prism of transfer entropy and
associated ideas.

5. National and International Trade in Value Added

Analysing international trade as a complex network of interactions provides useful
insights into the structure (topology) and dynamics of world trade and has been used to
map out recent changes in trade relations. In an article by Fagiolo et al. [146], network
statistics were used to determine the importance of links within the weighted global trade
network between 1981 and 2000, and it was found that the majority of links were relatively
weak although countries with more intense trade relationships are more clustered together.
In another study by Bhattacharya et al. [40], it was shown that over a 53-year period to
the year 2000 the ‘rich club’ controlling approximately half of the world’s trade has been
shrinking. In a similar vein, Maeng et al. [147] used minimum spanning trees (MSTs5) to
show that international trade networks were dominated by strong links between hubs of
larger economies such as the USA, Germany, and China. Further progress was made by
Barzel and Barabási [148] when they developed a theoretical framework (independent of
its application) that uncovered universal properties of the relationship between network
topology and network dynamics. This was the first self-consistent theory of dynamical per-
turbations in complex systems that could systematically separate out distinct contributions
from the topology and the dynamics. Andrea Aria [149] from the European Central Bank
has also explored how during the Global Financial Crisis the elasticity of goods exports
was vastly different to that of services exports. Within such a large and varied range of new
results there is considerable scope for new developments. In what follows we extend some
of these ideas to networks of ‘Trade-in-Value-Added’, a relatively uncommon measure of
traded value between industries and countries, in order to extract key qualitative features.
For more concrete policy implications of network analysis see for example the work being
carried out at INET [150].

5.1. Value-Added Trade Networks

In what follows, we look at the network topology of country and industry-based
trade using national and international Trade-in-Value-Added (TiVA) tables from 2005 and
2015 made available by the OECD. Nodes in a network can be either countries or industry
sectors, links are between nodes are directed as they can be either originating from or
terminating on a node, and in general they are not symmetric. From this we can formally
represent a network as an asymmetric square matrix where the matrix entry for row i
and column j, Mi,j, represents a transfer of value from node i to node j, where generally
Mi,j �= Mj,i.

The most common form of trade network analysis is based on Gross Trade (see the
left hand diagram in Figure 14). In these networks, the cost of each good or service,
regardless of whether or not it is a component in the production of another good or service
(i.e., an intermediate input), is its cost of purchase which implicitly includes the cost of
the intermediate goods and services used in its production. These value chains describe
cumulative flows through trade networks but they offer no insights into how much value
intermediate goods and services provide to the final goods and services purchased by
consumers, also called final demand. Final demand plays an important part in the analysis
of the national impact of an economic shock because it is used to calculate a country’s Gross
Domestic Product (GDP), something that cannot be done directly from gross trade data.
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Figure 14. A comparison of gross trade with trade in value-added between countries, a similar
diagram holds for particular market segments as well. Example from the Reserve Bank of Australia
report [151].

To help address this, the OECD reports an alternative measure, the Trade-in-Value-
Added [152], that records how much intermediate value is provided to final (i.e., consumer)
demand for a good or service (see the right hand diagram in Figure 14) by both industry and
country, see Figure 15. The point to note is that summations of links in gross trade networks
will not reflect the true contribution of each market sector or country to GDP (compare the
two totals shown in Figure 14: $210 vs. $110). Furthermore, in the analysis of economic
shocks we need to distinguish between intermediate value production, which is related to
employment and supply, and consumer consumption, which is related to demand, as each
industry sector is made up of both intermediate products and final demand for products,
and these are not symmetrical relationships but they are jointly captured in the TiVA tables.
This is central to understanding the interconnected consequences of an uneven supply and
demand shock like COVID-19. For example, in the article by del Rio-Chanona et al. [150],
they were able to estimate

1. supply-side reductions due to the closure of non-essential industries (which can be
captured in part by the intermediate value added in TiVA tables), and

2. demand-side changes caused by individuals immediate response to the pandemic,
such as reduced demand for goods or services that are likely to place people at risk of
infection (which is captured by final demand in TiVA tables).

Figure 15. The original OECD TiVA table structure available from their website6. The final demand
data in green is used to construct the networks below.

From the matrix shown in Figure 15, we can see that the OECD tables can be split
into two parts: the internal economic structure of a country, represented by the trade
between industry sectors within each country, and the global trade in value, which we will
capture by aggregating total values traded between countries. In so doing, we can begin to
understand how both local and global value chains are impacted by economic crises.
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5.2. Features of Australia’s Internal Trade Patterns

Looking at the local value chains for Australia, we study the total contribution each
market sector makes to every other market sector by summing the entire row of each
industry (in the TiVA data tables) and in measuring the contribution made to an industry
we sum each industry’s entire column (also see Figure 16 below). This captures the total
consumption of value (final demand) of each market sector and the total production of
value (value added) of each market sector, and so we can plot the relationship between
these two aspects of a market sector by value on a single diagram, as shown in Figure 17.

Figure 16. Australia’s Domestic Industry Sensitivity Matrix, white cells represent low value entries
and brighter green entries represent higher value entries. Diagonals have been set to 1.

In Figure 17, we analyse Australia and compare it with that of the U.S. using data that
were obtained from the OECD’s TiVA database of input–output tables.7 In these plots, the
x-coordinate is the total value of final demand of value in each market sector: it is the sum
of all value contributed from other market sectors that contribute to the final demand of
each individual market sector indicated on the plot. The y-coordinate is a proxy for the
supply side of value each market sector provides to the final demand of the rest of the
economy, calculated by summing the value added by each sector to all other sectors.

In Australia, we observe that the supply and demand is reasonably well balanced:
sectors with low values of total inputs are closely related to sectors with a low value of
total outputs to the rest of the economy. On the other hand, high-valued input sectors also
have high-valued outputs (R2 = 0.6626). In these terms, supply and demand of value in
the national value chain of production are reasonably well balanced and a shock to each
sector is likely to have an equivalent impact on both the supply side and the demand side
of value. The two notable exceptions are education and defence that have a relatively high
supply side of value but a relatively low value of demand side of value.
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Figure 17. Log-Log plots of industry input versus industry output in millions of U.S. dollars for trade
in value added. Top: “from each industry” versus “to each industry” for sector within the Australian
economy. Bottom: “from each industry” versus “to each industry” sector within the U.S. economy
for comparison. The blue-dashed lines are the Log-Log regression (with equations and R2 values
shown) and the red-dashed line is inserted by hand with a gradient = 1.

The U.S. tells a very different story to Australia in terms of its internal economic
structure. There is very little relationship between the demand side of value and the supply
side of value (R2 = 0.0729), and a number of industry sectors such as entertainment,
construction (and other heavy industries), and transport have greater demand of value
than supply of value. On the other hand, real estate, wholesale services, and other service
are more similar between the two economies (once differences in the total size is accounted
for). Of course this is only the internal structure of the economies and the relationship
between industry sectors and their international trading partners, as expressed in the value
of overseas final demand and overseas contributions to internal final demand still need to
be accounted for in order to have a more complete economic picture.

5.3. Predicting the Impacts of Exogenous Shocks

Now that we have a framework for understanding the structure of trade, we want
to analyse how this structure might be impacted by exogenous shocks such as COVID-19.
The dataset is reduced to Australian-only input and output industries using a Domestic
Industry Sensitivity Matrix, see Figure 16. The matrix is a topological representation of the
trade input-output function of each industry which allows quantitative, structural analysis
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of important relationships between industries as well as the impacts of first and second-
order flow-on effects from perturbations in inputs or demand functions. For example, we
can see that Transport, Utilities, and Wholesale Trade contribute value to final demand for
almost every other sector in Australia, and Construction, Defence, and Education receive
value to their final demand from a large part of the Australian economy.

To demonstrate how the sensitivity matrix can be interpreted, we analyse the first-
order demand and supply effects of a 10% reduction in construction output. Tables 1 and 2
summarise the top 3 most-impacted industries from a notional value basis and a relative
basis (as a concentration of impact that industry has relative to trade with all other industries).

As the fall in construction affects the demand for input industries, we can analyse the
subsequent output effects of a fall in construction on industries that rely on construction as
an input.

These are just the first-order supply and demand effects of a temporary perturbation
in the demand and supply for an industry based on the internal trade of the Australian
economy. Longer-term impacts will propagate into second-order effects which can be
analysed using the sensitivity matrix.

Table 1. Summary of demand-side impacts on total industry input.

Demand Impacts

Industry Affected
Notional Value

Affected
Industry Affected

Effect as % of
Industry Total

Other services −2850 Non-Metallic
Minerals −9%

Wholesale Trade −1667 Wood −8%
Non-Metallic

Minerals −1107 Fabricated Metals −6%

Table 2. Summary of supply-side impacts on input industry total.

Supply Impacts

Industry Affected
Notional Value

Affected
Industry Affected

Effect as % of
Industry Total

Real Estate −2337 Real Estate −3%
Other services −533 Wood −2%

Defence −514 Utilities −1%

5.4. Features of Global Trade Patterns

The global patterns of trade between industry sectors and countries is a complex,
multiply layered network of interactions and so to simplify our analysis we only study
the total values of trade between countries. In Figure 18, we show the total trade in value
added between countries for 2005 (left) and 2015 (right) from which we can extract some
qualitative features, noting that the node representing the rest of the world (ROW) has
been held approximately constant so that we can compare relative changes in the other
countries.8 We can clearly see that the USA’s export influence has declined in these 11 years
while China has increased, matching the results of other work, for example, Deguchi
et al. [153] have reported that between 1992 to 2012 the USA decreased in global trade
authority while China has increased and recently surpassed the USA in this respect. We
can also see that the ROW has become a more central element in the network, having a
weaker relationship with the USA but a stronger role to play in trade with other region of
the world. Other features are also evident: Japan and a number of European countries have
decreased in value added trade while Korea has increased. One aspect of the structural
change in trade dynamics has been the emergence of intraregional trade and regional
supply networks, see, for example, Kelly and La Cava [151] and Zhu et al. [154]. This can
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be seen in Figure 18 where the global regions are colour coded and segmentation of the
networks by regions is apparent.

Figure 18. World trade network of value add. (Left) 2005 inputs to countries for final demand from
intermediate products. (Right) 2015 inputs to countries for final demand from intermediate products.
Country nodes are sized to represent relative differences in total exported value with the rest of the
world node (ROW) held approximately constant

5.5. Remarks

The motivation for this analysis has been to explore how a complex network-based
system can represent the characteristics of an interconnected global trade network at the
global, country, and industry levels. By probing network structures at these levels through
matrix sensitivity analysis and changing patterns in global trade, we have a method to
explore the potential demand and supply shocks that propagate through national and
global networks. Further work can extend these methods to incorporate occupations,
geographies, and work activities involved within each industry which would assist govern-
ment policymakers in crisis response, a process that has already begun with the work being
carried out at places such as INET.9 Another consideration not explored in this research is
that of the elasticity of industry supply and demand functions which would impact the
magnitude of exogenous shocks, see, for example, the work of Escaith et al. [155] on the
impact of the global financial crisis on trade networks.

6. Project Economics and the Knock-On Macro-Effects of Their Delay, Cancellation,
or Failure

Central to the economic development of a country is the delivery of innovative
products as well as the infrastructure necessary for economic expansion, such as roads
and power stations. From the view of an organisation though, projects are an important
organisational construct used to plan and control the delivery of a vast array of products
and services [124,156–158]. By definition, a project is a temporary activity undertaken
to create a unique product, service or result [159]. As temporary forms of organising,
they have the potential to generate innovative capacity and strategic flexibility [160].
Quantifying the number and scale of projects under management within a country or
across the world is difficult, but based on a study of three Western European countries
it has been shown that the degree of projectification of an economy relative to the gross
domestic product is in the order of 30% [161]. This provides us with the motivation to better
understand the effects of crises on project development and deployment in the context of
the economic growth of an economy.

Organisations vary in the degree to which they engage in and describe their work
as project focused. Yet, projects are increasingly being employed as a tool of strategic
innovation in all industries: for the delivery or development of their products or services
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for their customers, the transformation of their own structure or culture, or the design and
implementation of their strategies [124]. Broadly speaking, organisations can be separated
into at least two categories: project-based organisations and project-oriented organisations.
Furthermore, some firms offer complex and individualised solutions to their customers
that are contracted before project development starts [124]. Turner and Keegan [162] have
argued that these firms are project-based because of the customised demand of their clients.
On the other hand, some organisations choose to become project-oriented as a matter of
strategic choice [124].

Although there is no formal convention differentiating the types of projects undertaken
by these organisational typologies, there is arguably an intuitive distinction to be made.
If an organisation is project-oriented, the undertaken projects are often numerous and small
in scale (e.g., local, short-term, and lower cost). Project-based organisations, in comparison,
are often found to be involved in the delivery of large-scale investment projects with a
significant degree of complexity. If a project is sufficiently costly (>US$ 1 billion), spans
over several years, and is expected to have a significant societal or economic impact, it is
termed a megaproject.

Project-oriented organisations may have tens to hundreds (or even thousands) of
projects underway for many different clients, internal and external, at any given time. This
large number of concurrent projects presents several portfolio management challenges,
including the identification of, and intervention on projects that go off track during deliv-
ery [60]. In these portfolios, each project, and its expected outcomes, is important enough
in its own right to demand the time and resources needed to sustain it, but it is unlikely
that the delay, cancellation or failure of one or even a few projects will threaten the overall
success or survival of that firm.

The same is not true for project-based organisations, which may have just one or
two very large, long, or complex megaprojects under management at any given time.
Many other partner, supplier, and subcontractor organisations may be engaged in these
megaprojects. Therefore, the delay, cancellation, or failure of any one of these projects
may have a significant impact on the survival of the delivering organisations, and have
a much broader impact on the economies, environment, or even societies for whom they
were being delivered [163]. Flyvbjerg ([125], p. 6) defines megaprojects as being “large-
scale, complex ventures that typically cost US$1 billion or more, take many years to
develop and build, involve multiple public and private stakeholders, are transformational,
and impact millions of people”. Megaprojects are used as the preferred delivery model
for infrastructure, water and energy, mining, enterprise systems, mergers and acquisitions,
space exploration, the development of new aircraft, airports, drug development, national
broadband, and Olympic Games [125–127].

6.1. Mega-Projects and the Economy

Megaprojects facilitate the implementation of technological and organisational inno-
vations at a scale that is usually inaccessible to most organisations. Edward Merrow in
Flyvbjerg et al. [164] (p. 4) wrote:

... such large sums of money ride on the success of megaprojects that company
balance sheets and even government balance-of-payments accounts can be af-
fected for years by the outcomes. The success of these projects is so important to
their sponsors that firms and even governments can collapse when they fail.

This extreme scale is reflective of the functional complexity of megaprojects which are
themselves often initiated to facilitate the productive efficiency and delivery of many other
goods and services. It could be argued that megaprojects emerged as a managerial concept
to solve the problem of delivering such complex projects where previously existing project
management practices were found to be inadequate. As their inception, much has gone into
developing and disseminating megaproject theory in a cycle that has neo-Shumpeterian
attributes [165,166].
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Megaprojects stand out for another important reason: they are plagued with overly op-
timistic estimates of time, costs, and expected benefits [126,164]. While optimism bias is not
unique to megaprojects, given the scale and import of these projects these underestimations
have greater impact. This is well illustrated by the cities competing to hold the Olympic
Games, which have consistently underestimated and yet these errors have been repeated
every four years [126]. In their working paper, Flyvbjerg and Stewart [127] studied the cost
overruns of the Olympic Games from 1960 to 2012. They found that the Games projects
overran with 100 percent consistency. They explained that other types of megaprojects
experience cost overruns from time to time, but none were found to be this consistent.
Additionally, Flyvbjerg and Stewart [127] reported that the Games cost overruns of well
over 100 percent, was significantly larger than for other types of megaprojects including
infrastructure, construction, information, and communications technology.

Further, the environmental and social effects of megaprojects are commonly found to
have been miscalculated or not taken into account at all, and surface during construction
and operation, potentially destabilising habitats, communities and the projects them-
selves [164]. Adding to systematic underestimation, decision making around megaprojects
is further impacted by deception and delusion, in the form of strategic misrepresentation by
project promoters [164], and exacerbated by misplaced political incentives [126] or political
ambitions [167]. Referring to infrastructure megaprojects, one of the arguments commonly
made by project promoters to commit public funds is that these projects will generate
economic growth in a particular region, country or local area, but these expected regional
benefits repeatedly turn out to be unquantifiable, insignificant or even negative [164].

When faced with an economic downturn, project-based and project-oriented organisa-
tions may be impacted in quite different ways depending on the nature of their projects and
their respective products, services, and customers. In their favour, Aritua et al. [168] argue
that projects are complex adaptive systems, and as such project managers and their project
teams are always reacting to the changing environment around them. On the other hand,
some changes to a project’s environment are so large and disruptive that this more organic
response may not be able to respond adequately to protect the project and its deliverables.

6.2. COVID-19 at the Project Level

Due to their extreme scale and impact, megaprojects may play a significant role in
shaping the (socio-) economic processes of an economy. However, the reverse may also
be argued, i.e., where there is an economic disruption like that caused by the COVID-19
pandemic, this can precipitate the cancellation or pausing of megaprojects as their funding
bodies reassign previously budgeted capital to other more pressing needs with the resultant
loss or delay of innovation and value. Early investigations into the impact of COVID-19
on construction projects in the USA [169,170], UK [171], and New Zealand [172] show that
within months of the declaration of the global pandemic, construction companies were
seeing large numbers of projects cancelled or put on hold. A report from July 2020 shows
that in the United States roads and transportation projects alone, projects to the value of
US$9.6 billion had already been delayed or cancelled. As of July 2021, the US state of
California was reporting 35 cancelled construction projects (US$ 131 million), 580 delayed
projects (US$ 6.03 billion), and a further 224 (US$ 6.7 billion) that have been put on hold due
to COVID-19 [173]. Between September 2019 and 2020, construction sector employment in
the US decreased by 275,000 year on year [174], recovering from peak employment losses
between March and April 2020 of approximately one million workers [175].

This disruption to the project delivery pipeline can be expected to cause several
levels of disruption. At the local, regional, and national levels, there is the short-term
disruption to local spending on raw materials, goods and services to support projects,
and the employment of local labour. In the longer term, the discontinuance of these projects
may have far reaching impact due to the delay or non-delivery of the expected benefits
of the project. This impact could be felt in slowed or limited urban or rural development,
agricultural growth or regional tourism to name a few. In this way, the shorter term
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savings accrued through the cancellation or delay of a large infrastructure project may
be significantly outweighed by the longer term losses mentioned here. Further, there is a
significant disruption to the delivering organisations, where firms that design, plan, and
deliver these projects are faced with a severe disruption or cessation of expected cash flow,
discontinued access to the work site and to the labour needed to complete the work. At the
same time, if the project is expected to be continued in the future, these firms are faced
with several dilemmas on how to continue to make their project financing payments and
leases on critical equipment, and how to retain access to skilled labour when it is not clear
when they will be needed again.

The broad and almost simultaneous geographic impact of the pandemic has created a
unique situation where specialised firms that might ordinarily have moved resources from
one project to another when one was cancelled or delayed may now find themselves with
very few continuing projects to work with. Faced with this project pipeline contraction,
delivering organisations may decide to take protective actions by laying off employees and
other cost reduction tactics. These tactics may serve to preserve the organisation in the
short term, however, when project work eventually recovers they may find it difficult to
recover lost productivity and talent that these temporary reductions caused. The reduction
of the work force itself also has an impact on household incomes for the affected workers,
thereby affecting the national economy’s final demand just as in the case of many other
industries, see Section 5 for a more detailed analysis of the impact that job losses can have
on an economy.

As some countries begin to emerge from the grip of the pandemic, there are moves to
spur economic recovery by initiating large infrastructure projects.10 Just as the almost simul-
taneous contraction of project demand caused delivering organisations to make changes
in staffing and spending en masse, starting (or restarting) significant numbers of very
large projects over a short period will likely stress delivering organisations as they seek to
rapidly revive their projects and recover their work forces while simultaneously competing
for newly announced projects in these infrastructure spending measures. Further, this
restart may cause several other issues, such as the competition for skilled labour resources
who would ordinarily move from project to project as they asynchronously started and
ended may now be sought by many delivering organisations who are restarting projects at
a similar time.

6.3. Remarks

In this section, we have described how the impact of one or more projects being
delayed, cancelled, or failing in organisations that deliver multiple simultaneous projects
to many different customers were comparatively small as they only make up a small part
of a much larger portfolio. In this case, when one project fails, losses are somewhat easier
to accept, and now-surplus human resources may be assigned to other projects in the
portfolio. However, if a large portion of those smaller projects were being delivered to
one of the more heavily impacted sectors, a large portion of the portfolio might need to
be suspended, and may not be reinvigorated when the crisis has passed. In this case, the
an organisation may not be able to afford to support the workforce during this period of
reduced activity, which may result in layoffs and other cost reduction tactics.

The scene is different for megaprojects whose delivering organisations might have just
one or a few megaprojects underway. These megaprojects are already risky prospects, and
due to their long planning horizons and delivery timelines, they are particularly exposed to
extreme events with large negative outcomes i.e., “black swan” events [125] such as COVID-
19 or the 2008 Global Financial Crisis. Despite their devastating effect when they occur,
megaproject (and indeed smaller project) managers generally ignore the possibility of black
swan events in their planning [125]. We discussed above how big a megaproject might be,
and how reliant the delivering organisations and even governments can be on a project’s
success. Given the economic impact on the region as well as the local and global workforce,
it may not be possible to put a megaproject on hold. However, even if the project has the
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funds to proceed, it may be faced with other issues due to social distancing requirements
that affect work site staffing, or the lack of access to expert resources who may not be
able to travel to the site of a project, or shortages of raw materials as global supply chains
respond to rapidly increasing demand, stressing already compromised global value chains
(which we discuss further in Section 5). Even if a megaproject could be stopped altogether
(which is unlikely to be a contractual option [125]), in times of economic downturn the
injection of capital into the economy through local employment and other locally procured
services might provide some stability to augment national level stimulus packages.

7. Conclusions

While all economic crises are idiosyncratic in the details of their cause and effect,
the interactions between heterogeneous agents are integral to understanding the life cycle
of a crisis-instigated market failure. This point is central in both the general development
of ‘complex systems theory’, see, for example, Barzel and Barabási’s work [148] on the
interplay between topology and dynamics for perturbations to networks, as well as specifi-
cally in complexity economics, for example, Arthur’s recent overview [21]. There are two
ancillary arguments captured by the present article in support of this primary claim. First,
the particular way in which agent heterogeneity is expressed is crucial in the precipitation
of market conditions. This is because the topological structure of economic relationships is
significantly influenced by the type and degree of difference displayed by agents. Second,
in the absence of complete information, market interactions with an inter-temporal com-
ponent are significant to the precipitation of a crisis-like event. Unanticipated events that
prompt a sudden increase in agent uncertainty are essentially ‘information shocks’ that
have the potential to prompt a cascade of maladaptive agent responses that are ‘baked in’
through long term contracts and other inter-temporal mechanisms. Agent heterogeneity
and inter-temporal interaction, in other words, inform how destabilising forces unfold in a
market environment.

The article applies these interactionist principles to analyse markets at varying levels
of aggregation. At the most fine-grained level, we have the pure simulations of Section 2,
where, due to the model’s purely theoretical nature, we have complete control over the
states and interactions of the agents, essentially an entire economic reality within which
we can explore every aspect of every agent. In Section 3, we are one step removed from
the purely theoretical by introducing socio-economic data from a the Sydney housing
market while maintaining complete control over the individual agents we populate the
model with and the methods by which they interact with one another while still requiring
that their behaviour reflects observable dynamics. In the section on financial markets,
Section 4, we move even further away from the specifics of the agents, and we infer that
some form of interactions are taking place between individual agents (equity traders) in the
market and that we can measure these interaction and so infer a network from observed
price behaviours. At the most coarse-grained level of Section 5, we look at national and
international trade networks where all notion of individual agents are essentially lost and
all we have available to us are the aggregate values of final demand and value added
between market sectors and countries. In our final section, Section 6, we look at the role of
projects as institutional structures and as mechanisms of economic development, where
the relationship between multi-billion dollar projects and economic progress is writ large
and is often specifically political in the way they embody and make visible the economic
direction and ambitions of a nation.

Each of these economic layers has, to one degree or another, an underlying repre-
sentation of heterogeneous economic agents. It is also well established in the economic
literature that agent heterogeneity and inter-temporal exchange under uncertainty can
propagate economic shocks through market networks [176,177]. The intellectual fine-print
here is that these issues have historically been studied as autonomous problems, more
often than not relegated to the realm of pure theory (although the two references provided
here are notable exceptions). In cases where agent heterogeneity is considered within an
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inter-temporal exchange framework, analysis is typically limited by the methodological
constraints of analytical tractability that is often expected in orthodox economics. In the
economic discourse around crises, model tractability is a uniquely pernicious concern,
as the success of an economic model has historically been evaluated in terms of the ex-
istence of a unique stable fixed-point equilibrium [49], or now more commonly, a stable
steady state. Although it is uncertain how the institution of mainstream economics will
shift in a post-COVID world, much of the methodological conventions considered standard
economic practice developed with the belief that economies can be persistently efficient if
the appropriate market mechanisms are in place. There is reason for optimism though. In a
2021 survey of articles on the economics of COVID-19 by Padhan and Prabheesh [178], they
report a large number of studies using conventional economic methods (difference in dif-
ference, GARCH, descriptive statistics, etc.), but they also found methods similar to those
described in this article have also been used, such as Granger causality, correlation-based
minimum spanning trees, and trade network analysis (using artificial neural networks).
This indicates that along with the crisis is coming a greater diversity of approaches to
modelling and empirical analysis, which we would argue bodes well for both traditional
economics and complexity economics.

In our opinion, CE represents an epistemological maturation of economics, in that it
connects the social sciences to a broader corpus of scientific knowledge. This imposes a
sufficiently theoretically agnostic and externally accepted standard of analysis to which the
practice of economics can be measured against and verified by. As many of the method-
ological conventions within CE have been developed, applied, and verified in multiple
non-economic disciplines, CE is also methodologically consistent. The principles associ-
ated with CE methods are mutually supportive and more importantly, do not typically
contradict. As a result, the complexity framework is more data-orientated, tends to be
testable, and is also flexible relative to, for example, the axiomatic structure of general
equilibrium models. We hope and even expect that out of the current crisis will come a
broader acceptance of new economic methods and theories that will have the opportunity
to be developed and refined before the next crisis so that, when it does inevitably arrive,
we will be better prepared with sound policy advice.

Economic Research on a Global Scale

Another very important task that has been carried out during this pandemic is the
curation of data and research into central repositories for the benefit of other researchers.
One such repository of economic data relevant to COVID-19 is the Data Resources for Socio-
economic Research on COVID-19 page maintained by the European University Institute [179].
On this website can be found sections such as Macro-financial systemic impacts and links to
key databases such as the Eurostat database that gathers statistics on the economy related
to COVID-19 [180].

In addition to curating data groups, they have been curating research papers related
to the economics of the pandemic, such as the work of CEPR (Centre for Economic Policy
Research) that has gathered, vetted, and published COVID-19 economic papers since
March 2020 [181]. The variety of subject matter and methodologies covered by the different
research programs across the globe is evident in this extensive library of material and
we briefly discuss four of them here. At the level of an individual’s interaction with the
disease and policy, vaccine policy features prominently. For example, the paper by Turner
et al. [182] studies the race between the emergence of new COVID variants and the roll-out
of vaccines, estimating that

... fully vaccinating 50% of the population would have a larger effect than
simultaneously applying all forms of containment policies in their most extreme
form (closure of workplaces, public transport and schools, restrictions on travel
and gatherings and stay-at-home requirements). For a typical OECD country,
relaxing existing containment policies would be expected to raise GDP by about
4–5%.
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Stimulus packages also feature significantly in the database of articles, for example,
Falcettoni and Nygaard reviewed the literature [183] on stimulus payments in the US in
response, concluding in part that

... the poor and the young, especially those with children, should have received a
larger [economic stimulus] check, which is an allocation that would have allowed
for the same stimulus effect at half the cost of the actual allocation [as delivered
by the US government].

Another key area of research highlighted in these articles is the impact of the pandemic
on stock markets. On this topic, an article by Capelle-Blancard and Desroziers [184] showed
a number of interesting results regarding the extended evolution of market response to the
pandemic and the heterogeneity of its impact across 43 economies (dates in 2020):

1. Stock markets initially ignored the pandemic (until 21 February), before reacted [sic]
strongly to the growing number of infected people (23 February to 20 March), while
volatility surged and concerns about the pandemic arose; following the intervention
of central banks (23 March to 30 April), however, shareholders no longer seemed
troubled by news of the health crisis, and prices rebound all around the world.

2. Country-specific characteristics appear to have had no influence on stock market re-
sponse.

3. Investors were sensitive to the number of COVID-19 cases in neighbouring but mostly
wealthy countries.

4. Credit facilities and government guarantees, lower policy interest rates, and lockdown
measures mitigated the decline in domestic stock prices

A final common theme reported in the CEPR database is the work on the economic
impact of lockdowns. In a paper by Caselli et al. [185], they reported that their is a dual
mechanism in play over the first seven months of the pandemic, one due to state enforced
lockdowns and the other through voluntary social isolation in which people acted of their
own accord to help mitigate the effects of social interaction on the spread of the disease.
Further, they were able to estimate the differences between policies:

We also show that lockdowns can substantially reduce COVID-19 infections,
especially if they are introduced early in a country’s epidemic. Despite involving
short-term economic costs, lockdowns may thus pave the way to a faster recovery
by containing the spread of the virus and reducing voluntary social distancing.
[They were also able to show that the effect] ... entail[s] decreasing marginal
economic costs but increasing marginal benefits in reducing infections.

Results such as these have a clear interaction between government economic policy
and public health, a rich interaction that helps clarify many of the difficult public policy
debates that often pit economic and health factors against one another.

As a final point, we consider the potential for long term economic impacts of extended
health issues that are the result of so-called ‘long COVID’ [186]. There has been a growing
awareness of the long-term negative health outcomes caused by a cluster of medical
conditions such as shortness of breath, muscle aches and pains, and overall tiredness. These
chronic physical manifestations of contracting COVID-19 may result in long-term reduction
in individual financial stability due to the potential for job loss, long-term disability,
and the increased burden of medical costs. This reduction in economic health alongside
the reduction in overall quality of life may be one of the greatest long-term economic and
social pitfalls of chronic COVID-19-related illnesses. It is also important to note another,
less well-studied, impact of long COVID, the long-lasting cognitive deficits that come
from even relatively mild symptoms of the disease. In a recent study by Hampshire
et al. [187], in which 81,337 UK residents carried out a cognitive test and then reported on
their COVID-19 status (asymptomatic and not biologically tested, suspected infected but
not biologically tested, infected and confirmed with biological testing, admitted to hospital
but not ventilated, admitted to hospital and ventilated), they found that nearly 25% of
people who had contracted the disease suffered from at least some form of long COVID.
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While this is concerning enough, they further showed that of those patients that were not
admitted to hospital but were biologically confirmed to have had the disease the cognitive
impact was the equivalent to that of having had a stroke and being admitted to hospital and
ventilated was equivalent to a −7 IQ point impairment. While these are worrying results,
it is slightly less worrying if the disease is confined predominantly to older members of the
population where training, experience, and financial and professional stability may provide
some reduction in the overall impact on quality of life and long-term financial outcomes,
but it is less reassuring for younger people who are more at risk from recent variants of
COVID-19. This risk led US President Joe Biden on June 18 (2021) to urge young people to
be vaccinated to protect them against the new delta variant [188]. The lifetime economic
and total quality of life impact of COVID-19 is not yet well understood, but for younger
people the lifetime loss of earning power and productive ability is much greater than older
patients, a fact that may be the cause of the most long lasting effects of this pandemic.

What we have sought to show with these case studies are some of the main effects and
spillovers of a crisis and that this research is also part of a larger, diverse, and significant
push to understand the global impacts of the COVID-19 pandemic. One of the points we
have particularly emphasised is that, in response to crises such as this, the mainstream view
of ‘economic agents’ needs to be broadened to fully account for the individual’s biological,
psychological, and sociological characteristics that underpin their fundamentally non-
stationary, dynamic nature, and that, as such, economics when it is most needed during a
crisis needs to account for society’s distinctly non-equilibrium nature. This is almost by
definition an ‘out of sample’ task with significant spillover effects: there is no historical
context to readily draw upon and one country’s changing health policy can be another
country’s economic crisis. Once we take these issues seriously and begin to put more
significant resources to the task of understanding the complexity of our socio-economic
systems there is a great deal of room for us to improve our ability to respond to future
economic developments, both in and out of a crisis.
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Notes

1 https://atlas.cid.harvard.edu, accessed on 13 October 2021.
2 https://oec.world/en/resources/about, accessed on 13 October 2021.
3 Also see Australian households and businesses amass $200 billion in savings during COVID-19 pandemic 9 News, 14 January 2021, and

COVID-19 hit many Australians hard, but there were winners in the pandemic economy, ABC, 23 February 2021.
4 “Australia’s house prices soar to record highs over 2020”, https://www.domain.com.au/news/australias-house-prices-soar-to-

record-highs-over-2020-1020487/, accessed on 13 October 2021.
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5 A method for simplifying networks by using the minimum number of maximally weighted edges needed to connect all nodes
without forming loops.

6 https://www.oecd.org/sti/ind/tiva/TiVA2018_Indicators_Guide.pdf, accessed on 13 October 2021.
7 https://www.oecd.org/sti/ind/measuring-trade-in-value-added.htm, accessed on 13 October 2021.
8 China’s and Mexico’s sub-classifications are aggregated (i.e., CNH, CN1, CN2, etc.).
9 See their website: https://covid.econ.cam.ac.uk, accessed on 13 October 2021.

10 https://www.reuters.com/world/us/us-house-approves-715-bln-infrastructure-bill-2021-07-01/, accessed on 13 October 2021.
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