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Preface to ”Electron Scattering in Gases—From Cross

Sections to Plasma Modeling”

Experimental studies of electron scattering in gases, at the beginning of the XXth century,

contributed to the formulation of modern, wave-like Quantum Mechanics: The minimum of the cross

sections in Ar, Kr, Xe, now known as the Ramsauer–Townsend’s effect, was a puzzle for the theory,

even within the old Quantum. An explosion of interest in atomic processes started with the advent

of space flights. Dr Donald Rapp, the author of one of the most accurate sets of cross-sections for

electron-impact ionization of molecules wrote me in February 2021: “I didn’t realize it at the time,

but I had the best possible position one could imagine. I was given a laboratory, a lab assistant,

association with several co-workers, and a budget. And I could work on anything I chose, provided

it had at least a distant relationship to the ionosphere.”

The 1960s also witnessed “the combination of powerful new theoretical techniques together with

the availability of electronic computers of increasing capacity”, quoting the opera magna The Theory

of Atomic Collisions by N.F. Mott and H.S.W. Massey. Today, cross-sections for electron (and positron)

scattering are needed not only to understand atomic processes in planetary nebula and atmospheres

of the Solar System, but first of all to model successfully plasma processes for numerous industrial

implementations, starting with semiconductors. In concomitance, the versatility (and the precision)

of theoretical methods starts to surpass the experiment.

Here, we present a “cross-section” of different approaches, different applications, different

processes: from industrial plasmas [85, 100] to molecules of biological interest [62, 77, 98], from

experiments at ultra-low temperatures [52, 74] to processes relevant for thermonuclear synthesis [76].

Thanks to a global response to the invitation, this volume hosts in an equilibrated manner

experimental aspects [52, 71, 74, 98], ab-initio theories [33, 43, 59, 64, 76] and semi-empirical

approaches [2, 90, 91, 97, 99], both to electron and positron scattering.

We hope that this volume may constitute a short but useful overview of scientific approaches

and interests, as portrayed in 2021.

Grzegorz Piotr Karwasz

Editor
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Editorial

“Atoms” Special Issue (Electron Scattering in Gases—From
Cross Sections to Plasma Modeling)

Grzegorz P. Karwasz

Institute of Physics, Uniwersytet Mikołaja Kopernika w Toruniu, 87 100 Torun, Poland; karwasz@fizyka.umk.pl

Experimental studies of electron scattering in gases, under the name of “cathode
rays”, started before the “official” discovery of the electron by J. J. Thompson (in 1897). At
the beginning of the XXth century, experiments on electron scattering contributed to the
formulation of modern, wave-like quantum mechanics; the minimum of the cross sections
in Ar, Kr, Xe, now known as the Ramsauer–Townsend’s effect (see [1] and references
therein), cannot be explained even within “old” quantum mechanics. An explosion of
the interest in atomic processes started with the advent of space flights. Dr Donald Rapp,
the co-author of one of the most accurate measurements of electron-impact ionization
of molecules [2], wrote the following in February 2021: “I didn’t realize it at the time,
but I had the best possible position one could imagine. I was given a laboratory, a lab
assistant, association with several co-workers, and a budget. And I could work on anything
I chose, provided it had at least a distant relationship to the ionosphere.” Today, cross
sections for electron (and positron) scattering are needed, not only to understand the
atomic processes in planetary nebula and atmospheres of the solar system, but first of all to
model plasma processes for numerous implementations, from semiconductor industries to
thermonuclear reactors.

In this volume, we present a “cross-section” of different approaches, applications
and processes, from industrial plasmas [3,4] to molecules of biological interest [5–7]; from
experiments at ultra-low temperatures [8,9] to processes relevant for thermonuclear synthe-
sis [10]. Thanks to a global response to the invitation, this volume hosts in an equilibrated
manner the experimental aspects [6,8,9], ab-initio theories [7,10–12] and semi-empirical
approaches [13–16], both for electron and positron scattering [11,15–17].

In principle, the more detailed our knowledge is of cross sections, the more precise
modeling of plasma parameters can be carried out, but only in principle. Mohr et al. [3]
stress that calculations of cross sections, in particular for the formation of neutral fragments
and radicals in electron collisions, are time consuming. Therefore, even if the present
methods, such as UK R-Matrix codes, are highly versatile, for chemical processes well-
targeted modeling must be planned. Mohr et al. present an example of such an approach
for the SF6/O2 mixtures used in semiconductor etching. The cross sections for the two
“input” gases are known, but for the SOFx species, which may be formed in the plasma,
they are not known. The authors evaluate the unknown ionization and dissociation cross
sections and then estimate the densities of electrons and radicals. The validity of this
approach resides in the economizing computer (and man) power needed to model real
situations in plasma reactors.

Chung et al. [4] apply cross sections to optical diagnostics of argon plasma. They
assume the corona model, i.e., no collisional interaction between excited states, and no
cascading in the de-excitation. The model includes numerous processes, such as stimu-
lated absorption, collisional de-excitation, quenching of metastables on walls etc. More
than 20,000 optical transitions are accounted for (primarily from NIST, LXCAT and other
databases, and from different theories). Six models, based on alternative datasets, are
compared with the authors’ experiments with capacitively and inductively coupled plasma.
The corona model applies somewhat better to the second type of reactor. Chung et al. show

Atoms 2022, 10, 54. https://doi.org/10.3390/atoms10020054 https://www.mdpi.com/journal/atoms1
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that the present knowledge of cross sections is vast, but other processes, such as quenching
and recombination on walls, should be included to obtain more successful modeling.

Three papers discuss “edge-cutting” experiments in electron scattering. Ptasińska [5]
presents a review on the role of very-low (below few V) electrons in radiation damage of
living cells. The experiments (on molecules in gas phase) showed that low-energy electrons
are resonantly captured by DNA constituents (sugars or nucleobases), via a dissociative at-
tachment (DA) process. The experiments detected negatively charged fragments produced
in such a dissociation. However, the DA mechanism with DNA does not explain the high
lethality of ionizing radiation (electrons from ionization events are the main product of
radiation slowing-down processes). In living cells, it is probably the water molecule, which
via a resonant electron capture, produces OH and H radicals that together with solvated
electrons “kill approximately 70% of cells”. Therefore, Ptasińska proposes new experiments
aiming to detect “the missing part” of the radiation damage, i.e., neutral radicals.

Collisions of electrons with nano-droplets is the conceptual pathway leading from scat-
tering on single atoms to studies of condensed matter; single scattering events occur in the
“bulk-like” environment. Liquid helium droplets are able to capture atoms and molecules,
clusters may form inside them and the spectroscopy of cold molecules inside a neutral
matrix is possible. Laimer et al. [9] used a tandem mass spectrometer to study the collision
of electrically charged He droplets with electrons with variable energy (0–120 eV). By
changing the energy of the first electron beam, from 40 eV to 30 eV, positively or negatively
charged droplets, with up to 100 million He atoms, can be produced. For positively charged
droplets and 22.5 eV collision energy, Laimer et al. observed predominantly a reduction
in the charge, while for 120 eV, an increase in the charge was observed (i.e., additional
ionization). Laimer et al. discuss several reaction channels, such as Penning ionization
in the collision of two metastable He atoms, or electron detachment (combined with the
ionization) in the collision of a metastable anion with a metastable He atom. Reactions,
probably, undergo via resonant-like processes.

Helium, differently from Ar, Kr and Xe, does not show Ramsauer–Townend minimum
in the integral elastic (and momentum transfer) cross sections. Borghesani [8] measured the
drift velocities of electrons in moderately dense (up to 10 MPa) helium. Drift conditions
(temperature, gas densities and the electric field) have been chosen to evidence the different
regimes of scattering, including the low-field region where scattering is well approximated
by a rigid-sphere model and the intermediate region where a bubble of solvated electron
moves in the electrical field. The paper is an excellent matching between quantum and
classical physics.

García-Abenza et al. [6] carried out a critical evaluation using recent data by Song et al. [18]
for electron scattering on H2O. Their methodology, which is “capable of delivering the most
accurate datasets”, combines both the theory (event-by-event Monte Carlo simulation and
Geant4DNA code) and the experiment (the transmission of magnetically confined electrons
in gas cell). The independent-atoms model was used to extend differential cross sections for
elastic and inelastic scattering into angles that are not measurable in angular-distribution
experiments (below 10◦ and above 130◦). The comparison of the simulations with the
transmission-current experiment shows that, particularly at high collision energies, more
insight is needed into the differential cross sections, especially for inelastic processes with
small energy losses.

In this context, the prototype of the so-called magnetic-angle changer spectrometer,
projected by Kłosowski and Piwiński [19] to measure differential cross sections in a wide
angular range, is particularly interesting. The device consists of as many as 30 pairs of
circular wires arranged into coils. The task was to maintain the bending magnetic field low
(below 1 mT), in order to avoid the influence of that field on the configurations/populations
of metastable atoms in the region of scattering. Numerical simulations show that the
spectrometer should allow measurements in the low-angle range, down to 0◦. Above 60◦,
the spectrometer introduces a quite large (of few degrees) angular spread of the incident
electron beam, which limits its use.
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Total cross sections, which comprise elastic and inelastic processes (rotational, vibra-
tional and electronic excitation, and ionization), are easily measured (see [1]), but are quite
difficult to be calculated. Uddin et al. [20] calculated the total cross section for electron scat-
tering (6–5000 eV energy) on butanol and pentanol isomers. They used spherical complex
optical potential in which the static (Hartree–Fock), exchange (Hara’s) and polarization
potentials constitute the real part, and the energy-dependent, imaginary part is responsible
for the “absorption” (i.e., electronic excitation and ionization) processes. For butan-1-ol,
the comparison with experiments is possible as both the integral elastic and the total cross
sections match the measurements well. The cross sections for different isomers (five within
the pentanol and four within butanol group) show some differences only in the low energy
range (below 20 eV).

The ionization of atoms and molecules, at least in the case of electron collisions,
has rather vast experimental coverage. This allows us to test different theoretical and
semi-empirical approaches, which, in turn, allow us to predict cross sections for species
inaccessible for direct measurements, such as highly charged ions [10], molecular metasta-
bles [15] or metals [14].

Campeanu and Whelan [11] calculated triple differential cross sections (TDCS) both
for positron and electron scattering on inert gases. The comparison between electrons
and positrons allows one to test the exchange effects. Differential cross sections, and
particularly those measured in coincidence experiments, bring much more information
on the scattering processes than integral values. Campeanu and Whelan concentrated on
scattering geometries in which the impinging electron loses more than half its energy, so
the recoil effects of the nucleus are significant. Additionally, they modified the kinematics
of scattering in order to identify possible role of distortion, post-collision interaction and
interference effects. For electron scattering on helium and neon, the theoretical TDCS,
different scattering geometries agree very well with the experiments. The paper shows the
importance of few-body effects in the ionization process, including the interference effects
for non-coplanar geometries and multiple scattering at high energies.

Laricchiuta et al. [21] applied the Binary-Encouter Bethe (BEB) approach to calculate
the ionization cross section of the N2 (A 3Σu

+ ), CO (a 3Π) and H2 (c 3Πu) and (a 3Σg
+

metastables. Orbital energies needed as the input data to BEB were obtained from the
unrestricted Hartree–Fock approach. The N2 metastable state is long-lived (2.4 s), so its
presence significantly changes the kinetics of nitrogen discharges. Laricchiuta et al.’s results
suggest that available experimental determinations may be underestimated by a factor of
two. In turn, H2 metastables show even higher total ionization cross sections, up to about
10 × 10−16 cm2 at their maxima.

A similar model, derived from the BEB approach, has been applied by Franz et al. [15]
for positron ionization of diatomic molecules. In the high energy limit, according to the
Born approximation, positron and electron-scattering cross sections should merge. This
has been theoretically and experimentally proved for H2 at energies above 100 eV (see a
recent review [22]) but is still uncertain for heavier targets. In particular, in the case of
positron scattering and in the energy range between 10–100 eV, a high contribution comes
from the formation of the bound electron-positron state (positronium), which leaves the
target molecule in the ionized state, making the experimental distinction difficult. The two
cases, ionization by electrons and positrons, should show different threshold dependences;
after the ionization, the two electrons fly in the opposite directions (in the first case) or in
the same direction (for the electron–positron pair). The BEB approach by Franz et al. takes
into account these differences. For H2 and N2, the results with the “correct” threshold law
reproduce the experimental data very well. The agreement is worse for O2 and CO, but it
can be also caused by uncertainties in experiments.

Golyatina and Maiorov [14] discuss integral ionization cross sections. They propose
a simple, three-parameter power-like fit, deriving from early (1912) Thomson’s formula.
The authors make a vast review of experiments for as many as 28 atomic targets, starting
from hydrogen to platinum and uranium, including noble gases and transitions metals. For
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the targets that received somewhat better experimental (and theoretical) coverage, such
as alkali metals, the quality of the fit may be judged as good. However, as in the case of
positron-impact ionization, more experiments are also needed for the electron ionization of
metal vapors.

Two contributions discuss the vibrational excitation. This subject needs new ap-
proaches, as the simplified Born approximation works well only in some cases, such as the
excitation of infrared-active modes. Ayouz et al. [7] present results for vibrational excitation
(and de-excitation) of three modes in H2O by electron impact, while Poveda et al. [17]
demonstrate the excitation of the ν = 0 → 1 mode in H2 by positron impact.

Ayouz et al. [7] used the fixed-nuclei reactace matrix, obtained numerically from the
UK molecular R-Matrix code (UKRMol) with the Quantemol-N system. The calculation for
the equilibrium geometry predicts the following 4 resonances: 2 narrow at 7.8 eV and 10 eV
and 2 wider at 6.7 eV and 11 eV. The calculated excitation cross sections agree well with the
recent “recommended” values [18] up to 4 eV. At higher energies, the resonant scattering
increases significantly (by a factor of two, as compared to the theory) the vibrational
excitation. For the stretching modes, different theories systematically underestimate the
experiment. The choice of different orbital basis sets does not improve this discrepancy.
Ayouz et al. hypothesized two possible reasons for this discrepancy, one physical, another
numerical, including the capturing of the incoming electron into the molecule in the excited
vibrational state and/or the underestimation of the polarization interactions in the close-
coupling approach.

The vibrational excitation by positron impact, as in CF4, follows the Born approxi-
mation. However, the annihilation rate for positrons colliding with molecules possessing
numerous vibrational models, such as complex hydrocarbons, [23] shows sharp resonant
enhancements just below the threshold for vibrational modes (we call them “Surko res-
onances”). Poveda et al. [17] used a wave-packet dynamics for the vibrational ν = 0 → 1
excitation of H2 molecules by positron impact. They used well-established molecular
parameters of the molecule (the internuclear distance and the polarizability), and a cut-off
polarization. The model reproduces the experimental determination very well in the range
from the threshold up to 3 eV. The same model with much higher polariziability values
gives a sharp threshold peak, but does not change the cross sections at higher (1–3 eV)
energies. This may be a valid indication for the explanation of “Surko” resonances, and
links to the discussion of the vibrational excitation in H2O.

Applications of atomic physics in thermonuclear plasmas require knowledge of cross
sections for “exotic” systems, including heavy atoms and highly charged ions, for scat-
tering energies up to tens of keV. The present volume brings two such contributions.
Khandker et al. [12] calculated differential, integral elastic, momentum transfer, viscosity,
total inelastic and grand total cross sections, together with spin polarization parameters
for electron and positron scattering on Rn atoms and ions of radon isonuclear series (up
to Rn+86), in the energy range from 1 eV to 1 MeV. A short range complex optical poten-
tial has been used; for charged particles, this potential is supplemented by the Coulomb
interaction; the Dirac partial wave analysis has been employed. Differential cross sections
for electron scattering show phenomena related to the interference between partial waves
(i.e., Ramsauer minima) at energies as high as 2000 eV. The absorption potential is particu-
larly important at intermediate energies, up to 500 eV, decreasing elastic scattering by a
factor of two. For positron scattering, the influence of the absorption potential persists up
to 50 keV. Above 10 keV, the positron and electron scattering cross sections coincide.

Electron-impact excitations of dipole-allowed transitions in the extreme UV range of
Xe+7–Xe+10 ions were calculated by Sahoo and Sharma [10]. Cross sections for 9, 18, 75
and 57 transitions for Xe+7, Xe+8, Xe+9 and Xe+10 ions, respectively, have been calculated.
The multi-configuration Dirac–Fock method with QED corrections was used for the atomic
structure calculations. Cross sections were calculated in the relativistic distorted-wave
approach. Generally, the energy levels and transition rates agree well with the available
experiments and theories. Transitions that involve the change in the spin have lower
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cross sections than spin-conserving transitions. Sahoo and Sharma also give the fitting
formula for the cross sections, including in the low energy range, a series of powers of
energy (somewhat resembling the fit of the ionization cross sections by Golyatina and
Mayorov [14]), and the Bethe–Born formula at high energies. Rate coefficients are given for
electron temperatures from 5 to 100 eV.

The opposite, i.e., near-to-zero, energy range is “attacked” by Fedus, who re-proposes
the modified-effective range theory. This is a semi-empirical approach that allows one
to relate the integral elastic, differential elastic and momentum transfer cross sections in
the very low energy range. As in this energy range only few partial waves contribute
significantly to scattering, the method uses few fitting parameters, such as the zero-energy
cross section (i.e., the scattering length) and the effective range. In the MERT fit used in
the past both by experimentalists and theoreticians, these were cross section developed
into series of power of energy. As a consequence, the applicability of the fit was limited
to energies below 1 eV. A modification that consists of the development not of cross
sections but of phase shifts [24] allowed one to extend the applicability of MERT up to
the threshold for inelastic processes, both for positron and electron scattering. Fedus re-
analyses experimental cross sections, both from beam and swarm experiments, in five noble
gases (He-Xe). Fedus gives MERT parameters, together with their uncertainties, for single
experimental sets of data, as well as for the whole ensemble of data. For He and Ne, Fedus
additionally applies the hard-sphere model, similar to the work of Borghesani [8]. The
model with radii of the hard spheres obtained from MERT analysis reproduces the phase
shift for the s, p, d waves up to 1–3 eV, in pretty good agreement with other theories.

The volume concludes with our contribution [16] that proposes the re-opening of
the discussion on some possible “invariance” parameters in electron and positron scat-
tering. All the contributions of this volume relate total and partial cross sections to other
atomic/molecular parameters. The question is if all these cross sections are somehow
inter-related, i.e., if the rise of the ionization cross section is dependent on the decreasing
of the elastic cross section. The absorption model by Khandker et al. [12] would suggest
so. However, even this volume shows that the low and high energy ranges are treated
separately, both in experiments and in theories. Can we “sew” back the energy ranges,
and consider the total (i.e., elastic and inelastic) cross sections in the “whole” energy range,
from zero to infinity? Can we further relate such an integral part of the total cross section
with other molecular parameters, such as the total number of electrons or polarizability?
For our study conducted for electron and positron scattering on molecules that received
sufficient experimental coverage, N2, CO2, CH4, CF4 would suggest some relations, but
they are still far from being conclusive.

We hope that this volume may constitute a short but useful overview of the scientific
approaches and interests in electron and positron scattering and plasma applications, as
portrayed in December 2021.
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19. Kłosowski, Ł.; Piwiński, M. Magnetic Angle Changer for Studies of Electronically Excited Long-Living Atomic States. Atoms 2021,
9, 71. [CrossRef]

20. Uddin, N.; Modak, P.; Antony, B. On the Electron Impact Integral Cross-Sections for Butanol and Pentanol Isomers. Atoms 2021, 9,
43. [CrossRef]

21. Laricchiuta, A.; Celiberto, R.; Colonna, G. Electron Impact Ionization of Metastable States of Diatomic Molecules. Atoms 2022, 10,
2. [CrossRef]

22. Karwasz, G.P.; Karawacki, M.; Carelli, F.; Fedus, K. Hydrogen molecule as seen in electron and positron scattering. Mol. Phys.
2022, e2070087. [CrossRef]

23. Sullivan, J.P.; Gilbert, S.J.; Surko, C.M. Excitation of Molecular Vibrations by Positron Impact. Phys. Rev. Lett. 2001, 86, 1494.
[CrossRef] [PubMed]

24. Idziaszek, Z.; Karwasz, G.P. Applicability of modified effective-range theory to positron-atom and positron-molecule scattering.
Phys. Rev. A 2006, 73, 064701. [CrossRef]

6



atoms

Article

Targeted Cross-Section Calculations For Plasma Simulations

Sebastian Mohr 1,*,†, Maria Tudorovskaya 1,†, Martin Hanicinec 1,2,† and Jonathan Tennyson 2,†

Citation: Mohr S.; Tudorovskaya, M.;

Hanicinec, M.; Tennyson, J. Targeted

Cross-Section Calculations For

Plasma Simulations. Atoms 2021, 9, 85.

https://doi.org/10.3390/

atoms9040085

Academic Editor: Grzegorz Piotr

Karwasz

Received: 3 September 2021

Accepted: 18 October 2021

Published: 21 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Quantemol Ltd., 320 Angel, 320 City Road, London EC1V 2NZ, UK; tudorovskaya@gmail.com (M.T.);
hanicinecm@quantemol.com (M.H.)

2 Department of Physics and Astronomy, University College, Gower St., London WC1E 6BT, UK;
j.tennyson@ucl.ac.uk

* Correspondence: s.mohr@quantemol.com
† These authors contributed equally to this work.

Abstract: Gathering data on electron collisions in plasmas is a vital part of conducting plasma
simulations. However, data on neutral radicals and neutrals formed in the plasma by reactions
between different radicals are usually not readily available. While these cross-sections can be
calculated numerically, this is a time-consuming process and it is not clear from the outset which
additional cross-sections are needed for a given plasma process. Hence, identifying species for
which additional cross-sections are needed in advance is highly advantageous. Here, we present a
structured approach to do this. In this, a chemistry set using estimated data for unknown electron
collisions is run in a global plasma model. The results are used to rank the species with regard to their
influence on densities of important species such as electrons or neutrals inducing desired surface
processes. For this, an algorithm based on graph theory is used. The species ranking helps to make
an informed decision on which cross-sections need to be calculated to improve the chemistry set
and which can be neglected to save time. The validity of this approach is demonstrated through an
example in an SF6/O2 plasma.

Keywords: cross-section calculations; R-matrix; plasma simulation

1. Introduction

Plasma simulations are vital tools in both academic and industrial settings to investi-
gate plasma discharges in order to gain a better understanding of the underlying processes
and improve plasma applications. In general, plasma simulations consist of two domains:
the physical model, such as fluid or particle-based numerical model; and the chemistry
set which describes the chemical reactions taking place in the plasma. For a successful
simulation, both the physical model and the chemistry need to be chosen carefully so that
they take all important effects into account; on the other hand, the investigator does not
want to spend time on, for example, gathering data on chemical reactions which ultimately
do not have a significant influence on the results or include those in the chemistry set which
potentially increases the calculation time significantly without any benefit. One type of
data which are regularly missing for a complete chemistry set are cross-sections for electron
collisions with neutral particles which are formed in the plasma; especially in gas mixtures
with multiple molecular gases, new species are created by chemical reactions between
the fragments of electron collision dissociation. Such cross-sections can be calculated, for
example, with the UK R-Matrix codes [1,2]. However, this is a time-consuming process
and calculating cross-sections for all possible species formed might not be necessary as
their impact on important plasma parameters such as the density of electrons or neutrals
participating in desired surface reactions is negligible. Therefore, we present a structured
approach to identify species which have a significant influence on the discharge before
conducting precise cross-section calculations; this allows the investigator to improve the
chemistry set without spending time on unnecessary calculations. The paper is structured
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as follows: First we present the different steps in this approach. It requires running a
global plasma model, so a short overview of the model used is given. Then the method,
based on the directed relation graph theory [3–6], of identifying key species for which
cross-sectional data are missing is presented. This is followed by an overview of the actual
cross-section calculations. After the general discussion, an example of using this method
for an SF6/O2 plasma [7–17] is given, showing the impact of adding new cross-sectional
data to a chemistry set using estimated data for electron collisions. Finally, conclusions
are drawn.

2. Materials and Methods

In this work, we present a methodical approach to identify species with unknown
cross-sections in a plasma chemistry set for which precise cross-section calculations improve
the accuracy of the plasma simulation significantly. On the other hand, this also prevents
one from performing time-consuming cross-section calculations which ultimately will not
have a significant influence. This method consists of three steps:

• Running a plasma simulation;
• Identifying species significantly influencing the densities of specified target species;
• Calculating missing cross-sections.

2.1. Plasma Simulation

In the first step, a plasma simulation is conducted to produce densities and, specifically,
production and consumption rates in both the gas phase and via plasma-surface interac-
tions. In general, any kind of plasma simulation from which these rates can be extracted
can be used; to keep the calculation time short, a global plasma model is the recommended
choice, however. In this work, we use the Quantemol GlobalModel which is available
online in Quantemol DataBase (QDB) [18], a plasma chemistry database. Detailed docu-
mentation can also be found in QDB, see https://quantemoldb.com as of 20 October 2021.
In short, this global model solves the reactor-averaged continuity equations for heavy par-
ticles and the electron energy balance equation. The electron density is obtained via charge
neutrality. The input parameters are power, pressure, neutral gas temperature, flows, and
geometrical factors to determine the power density and diffusive losses. Rates for chemical
reactions, for both electrons and ions, are characterised by parameterized rate coefficients;
currently the modified Arrhenius form is supported. The values of the parameters can be
obtained from Maxwellian electron energy distribution functions (EEDF) or ones obtained
from a Boltzmann solver by fitting them to a set of electron temperature–rate coefficient
pairs. In this work, Maxwellian EEDFs were used to keep the calculation time short. The
result of the global model comprises the densities of all used species and the electron
temperature. From these, the rates for both gas phase and plasma–surface interactions
can easily be obtained in combination with the reaction set and the geometrical factors. In
order to use the model to identify important species with missing cross-sections, electron
collisions for these species need to be included. In the absence of precise data, this means
that estimated rate coefficients, for example in analogy to the same processes for similar
species, must be used. This way, the influence of a specific species can at least be estimated,
if not precisely predicted.

2.2. Identifying Key Species

An algorithmic method is used to identify which species have a significant influence
on the modelled densities of the set of user-specified species, referred to as species of
interest. The set of species of interest is one of the inputs to the method, and needs to be
identified by the researcher. The species of interest will generally be tailored to a specific
modelling application. As an example, some major etchant species might be appropriately
identified as species of interest for a specific etching process model, as well as electrons
(as the electron density is a fundamental plasma parameter). The method is loosely based
on the directed relation graph (DRG) theory of Lu and Law [3–5], originally developed
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for the combustion modelling community, but adapted for a plasma environment and
expanded to also include the effects of plasma–surface interactions. Only a brief overview
of the algorithm is given here, while the reader is referred to the full description of the fast
graph–theoretical species ranking method given in [6].

To identify which species significantly influence the densities of some of the specified
species of interest, a directed graph is instantiated with all the species present in the
modelled system represented by the graph nodes. The directed edges in the graph are
weighted by the direct interaction coefficients, which are generally functions of the reaction
rates Rj of the volumetric and surface reactions in the chemistry set, and represent a
measure of asymmetric coupling between two species (or the edge nodes) that are directly
related through some of the reactions. Coupling between two species, however, exists even
if they do not share any elementary reactions. The indirect asymmetric coupling coefficients
WAB between species A and B are therefore defined, reflecting the global (often indirect)
effect of the presence of species A (or rather all of its reactions) on the modeled density of
the species B. The indirect coupling coefficients are computed by a methodology based on
the well-established Dijkstra’s search for the “shortest path” in the chemistry graph [19].

Each species Xi is then given a ranking score C, such as

Ci = max
k

WXiXk , (1)

where the index k runs over all the species of interest specified by the user, while the index
i runs over all the remaining species. The input to the method (next to the set of species of
interest) are the reaction rates of all the volumetric and surface reactions in the chemistry
set (obtained from the plasma simulation, as described in Section 2.1) The output is a listing
of all the species (except the species of interest), ranked with regard to how much they
influence the densities of the species of interest. This allows one to make an informed
decision on what additional rigorous cross-section calculations are required. It should
be noted that there is no strict criterion on which ranking score threshold distinguishes
significant species, so this still lies within one’s discretion. For example, one might first aim
to calculate cross-sections for reactions without precise data involving the higher-ranked
species, and if that proves not to change the results for the species of interest significantly,
one might neglect the lower-ranked species.

2.3. Cross-Section Calculations

In this work, ionization and dissociation cross-sections for SOF4 are calculated with
the QEC (Quantemol-Electron Collisions) software developed by Quantemol Ltd for calcu-
lating electron collision properties [2]. The calculations are based on the ab initio R-Matrix
theory [20], specifically, it employs the UKRmol+ code suite [1]. In order to ensure good con-
vergence, the cc-pVDZ basis set and configuration interaction level of theory was employed
for the calculations allowing for excited electron configurations. There were 52 electrons
frozen in 26 orbitals, while the active space was 4 fully occupied and 4 virtual orbitals.

Ionization cross-sections are calculated using the semi-empirical Binary-Encounter-
Bethe (BEB) method [21]. The implementation of BEB within QEC uses Hartree–Fock
wave functions and Koopman’s theorem to provide thresholds to ionization [22] which are
obtained from the quantum chemistry code MOLPRO [23].

The total dissociation cross-sections are obtained by adding up the excitation cross-
sections to dissociative states of the target molecule. The dissociation limit is calculated by
building a potential energy curve. Stretching the S-F bond(s) and the S-O bond and calcu-
lating the total energies at these stretched geometries is carried out in order to determine
the most likely ionisation channel. We find that S-F bond breaking is more likely to occur.
In this approximation, the state is considered dissociative if the excitation energy exceeds
the dissociation energy. According to [24], the bond strength is 4.2 eV while the excited
state is found at 8.5 eV above the ground state. Therefore, we consider all excited states
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dissociative. Moreover, the excitation energy is more than twice the bond breaking energy,
and we assume that 2 S-F bonds will be broken in the dissociation process.

3. Example SF6/O2 Plasma

SF6/O2 discharges are commonly used, for example, for etching silicon [7–17]. The
main chemical etchant is atomic F [10,11,14,16,17]. The addition of oxygen can serve two
purposes; they induce reactions of the form

SFx + O → SOFx−1 + F (2)

which increase the density of atomic F [7,9,16]. On the other hand, oxygen atoms can
form a protective layer on the side wall of an etched trench, prohibiting isotropic chemical
etching by F [8,11–15,17]. Cross-section sets for SF6 and O2 separately are quite easily
obtained. However, no such data exist in ready-to-use form for the SOFx species generated
by reaction (2). It is, however, conceivable that under specific process conditions, the
ionization and dissociation of these species can significantly contribute to the respective
production processes as well as the collisional electron energy losses. Hence, we present an
example of how to use the discussed method to identify significant missing cross-sections
and their calculation.

For the first step, the initial plasma simulation, we constructed an SF6/O2 set the
following way:

• Electron collision processes for O2 and O species were taken from [25–27];
• Electron collision processes for SFx were taken from [28–30];
• Electron collision processes for F were taken from [31];
• Neutral–Neutral reactions, specifically the creation of SOFx species, were taken

from [7];
• Ion–Ion recombination and charge exchange, both symmetric and asymmetric, were

included for all possible combinations with generic rate coefficients;
• Electron collision ionization and dissociation for SOFx were included with estimated

rate coefficients in analogy to SFx, e.g., SF5 rate coefficients were used for SOF4. We
assumed that the neutral dissociation process splits one F and the ionization produces
the SOF+

x ion. One exception is SOF4 which produces SOF+
3 + F on ionization.

For similar reaction sets used in plasma simulations see, for example, [15,16]
The global model was run using this set with the following process parameters:

• Power: 500 W;
• Pressure: 10 Pa;
• Radius: 10 cm;
• Height: 10 cm;
• Total flow: 100 sccm;
• Relative oxygen flow: 10–90%.

It should be noted that these process parameters are not intended to reproduce
a specific experiment/process but were chosen to demonstrate the effect of using our
proposed method.

The species ranking algorithm was employed with F and electrons as species of
interest. Figure 1 shows the 5 highest ranking species for a relative oxygen flow of 50%.
Out of the SOFx species SOF4 and SOF3 are among them, with SOF4 ranking higher. Thus,
ionization and dissociation cross-sections for SOF4 were calculated.
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Figure 1. Species ranking with regard to the productions of electrons and F for a relative oxygen flow
of 50%. Cross-sections for all SOFx species are estimated.

Figure 2 shows the calculated ionization cross-section and resulting rate coefficient
in comparison with the estimated one; Figure 3 shows the same for the dissociation. We
observe some major differences:

• The calculated ionization cross-section is significantly larger than the estimated ones,
by about a factor of 4 throughout the entire energy range up to a 1000 eV. However, the
threshold energy is also larger, 15.19 eV compared to 11.8 eV for the estimated cross-
sections. As a result, the ionization rate coefficient for the calculated cross-section is
smaller for low electron temperatures and larger for high electron temperatures. The
rate coefficients differ by about a factor of 2 at most.

• While the calculated dissociation cross-section shows significantly smaller values over
a large range of energies, it also has a lower threshold energy; concerning the rate
coefficients, the larger values of the estimated cross-section has a larger influence
than the higher threshold energy. Hence, the estimated rate coefficient is significantly
larger than the precisely calculated one over the majority of the investigated electron
temperature range.

• The analysis of the neutral dissociation also showed that a breakup into SOF2 + 2F is
more likely than into SOF3 + F (see the explanation above). Hence, this dissociation
reaction was also changed with regard to the reaction products.

Figure 2. Calculated and estimated ionization cross-section and rate coefficient for SOF4.
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Figure 3. Calculated and estimated dissociation cross-section and rate coefficient for SOF4.

To illustrate the effect of using calculated cross-sections instead of estimated ones,
Figure 4 shows the density for F and electrons for a varied oxygen flow under otherwise
the same process conditions. The calculated, precise cross-sections yield consistently higher
densities of both F and electrons; only for very small oxygen flows <20% no significant
difference is observed.

Figure 4. Electron and F density for a variation of the relative oxygen flow. The graphs compare the
respective densities between the chemistry set with precisely calculated and the set with estimated
cross-sections for the dissociation and ionization of SOF4.

The higher density of F for the set with the calculated cross-sections can be explained
by the significantly higher electron density which increases the production of F from
SOF4 despite the smaller rate coefficient. The higher electron density in turn is a result of
differences in the energy necessary to create one electron-ion pair ε. This is defined as

ε = εion + ∑
i

εiki
kion

(3)

with the ionization potential εion, the characteristic energy loss per collision εi and the rate
coefficients kion for ionization and ki for other electron collisions. The sum is taken over all
other collision types. This parameter determines the plasma density achieved in a given gas
mixture; the lower ε, the higher the plasma density. Figure 5 shows this energy for SOF4
using the estimated and calculated rate coefficients. As can be seen, ε is about an order
of magnitude smaller for the calculated rate coefficients, mostly as a result of the much
smaller rate coefficient for dissociation. For relative oxygen flows above 20%, SOF4 is one
of the most abundant neutrals, only topped by either F or O. Figure 6 shows the ε for SOF4,
F, and O weighted by their relative densities for each simulated case. As can be seen, when
using the estimated cross-sections, electron collisions with SOF4 significantly contribute
to the collisional energy losses and can even be the major contributors. When using the
precisely calculated ones, however, its weighted ε is at least one order of magnitude smaller
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than either the one for F or O both of which do not differ significantly between the different
sets. This leads to the significantly increased electron density for the set using calculated
cross-sections.

Figure 5. Energy per electron–ion pair for SOF4 as a function of electron temperature derived from
calculated and estimated cross-sections.

Figure 6. Electron energy per electron–ion pair weighted by their respective relative densities for
SOF4, F, and O as a function of the relative oxygen flows.

Furthermore, if we repeat the ranking on the simulation using the calculated cross-
sections, we see in Figure 7 that SOF3 is now missing from the top-ranked species due to the
missing dissociation channel from SOF4. Other SOFx also do not appear, so it is unlikely
that calculation of cross-sections for these would improve the simulation significantly.
Therefore, by doing the analysis via the species ranking we could

• improve the accuracy of our plasma simulation by calculating precise cross-sections
which were formerly missing and had to be estimated;

• save time by ruling out species for which precise cross-section calculations will un-
likely improve the simulation significantly.
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Figure 7. Species ranking with regard to the productions of electrons and F for a relative oxygen flow
of 50%. Cross-sections for SOF4 are precisely calculated.

4. Conclusions

We have presented a method to identify important missing cross-sections in a chem-
istry set and how adding them to a chemistry set affects the results of plasma simulations.
The method consists of three steps:

• Run a plasma simulation such as a global model with a chemistry set containing
estimates for missing cross-sections.

• Use the results of the plasma simulation in a species ranking algorithm. This identifies
the species with missing cross-sections who potentially influence the densities of
target species such as major etchants.

• Calculate precise cross-sections for high-ranking species and substitute these for the
estimated ones.

This method gives a fast option to identify for which species precise cross-sections
are needed and for which more precise data are not necessary to significantly improve the
results of the simulation, preventing wasted time on unnecessary calculations.

This method was demonstrated for an SF6/O2 plasma. For a specific set of process
conditions, SOF4 and SOF3 were identified as potential targets for precise cross-section
calculations. As higher-ranking species, first only cross-sections for SOF4 were calculated.
Adding them to the existing set showed major differences in both the density of F and
electrons. Furthermore, SOF3 was not among the highest-ranking species anymore, so the
calculation of cross-sections for this species could be skipped. Hence, the suitability of
the proposed method to quickly improve plasma simulations via targeted cross-sections
calculations was demonstrated.
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Abstract: Optical emission spectroscopy has been widely used in low-temperature argon plasma
diagnostics. A coronal model is usually used to analyze the measured line ratios for diagnostics
with a single temperature and density. However, many plasma processing conditions deviate
from single temperature and density, optically thin conditions, or even coronal plasma conditions
due to cascades from high-lying states. In this paper, we present a collisional-radiative model to
investigate the validity of coronal approximations over a range of plasma conditions of Te = 1–4 eV
and Ne = 108–1013 cm−3. The commonly used line ratios are found to change from a coronal limit
where they are independent of Ne to a collisional-radiative regime where they are not. The effects
of multiple-temperature plasma, radiation trapping, wall neutralization, and quenching on the line
ratios are investigated to identify the plasma conditions under which these effects are significant. This
study demonstrates the importance of the completeness of atomic datasets in applying a collisional-
radiative model to low-temperature plasma diagnostics.

Keywords: argon optical emission spectroscopy; plasma processing; coronal models; collisional-
radiative model; nonlocal thermodynamic equilibrium plasmas; population kinetics; radiation
transport; opacity effects; Non-Maxwellian plasmas

1. Introduction

Argon plasmas are widely used for plasma processing applications, and the informa-
tion on the thermodynamic properties of plasma, such as electron temperature, density,
and electron energy distribution function, plays an important role in the control and
performance of plasma applications [1–3].

Plasma spectroscopy is a non-intrusive diagnostic technique that provides information
on not only the thermodynamic properties of plasma but also the atomic-level population
distributions and radiative properties. For many decades, argon optical emission spec-
troscopy (OES) has been used to obtain electron temperature and density information from
the measured line ratios, and more recently, the shape of the electron energy distribution
functions [4–7]. For spectroscopic analysis, a population kinetics model should be built to
couple the atomic-level population distributions and radiative properties with the plasma
thermodynamic properties. For low-electron-density plasmas, a coronal model has been
generally adopted to interpret the spectral line intensity distribution [1–3], where an excited
atomic state emitting a line of interest is assumed to be populated from the ground state or
a metastable state by collisional excitation and depopulated by spontaneous emission to
the lower states.
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This assumption is valid only if there is no collisional coupling with states other
than the ground state, and there are negligible radiative cascades from the upper states.
Therefore, the application of the coronal model for spectroscopic analysis is simple, as
it requires only collisional excitation rates and spontaneous emission rates of the related
atomic transitions. This model has been widely used to explain the emission observed in
astrophysical coronal plasmas, tokamak plasmas, and low-density plasmas.

However, the validity of the coronal model may not hold for industrial processing
plasmas, even those with relatively low densities. For example, an external electric field
is applied in the plasma generation devices of inductively coupled plasma (ICP) and ca-
pacitively coupled plasmas (CCP), where electrons tend to have non-Maxwellian energy
distributions [8,9]. If high-energy electrons exist as a tail, highly excited states, such as auto-
ionizing states and ionized states, may be significantly populated, and the radiative cas-
cades from these states may enhance the population density of the excited states of optical
lines. If high-energy electrons are under-populated when compared with the Maxwellian
distribution, resulting in the lower-energy electrons being overpopulated, the collisional
deexcitation and recombination rates may increase the rate of downward processes.

Radiative self-pumping effects may need to be considered when the plasma size is
very large, in the order of centimeters [1–3]. Even if the ion density is low, line opacities
can be higher than unity, and the self-pumping effects can reduce the radiative downward
processes. In this case, the atomic-level population distribution is a function of the plasma
size and, to some degree, the nonlocal plasma conditions. CCP and ICP plasmas may
have time dependence in the electron energy distribution function, as some applications
use a pulsed-mode operation. Then, the plasma conditions fluctuate over time during the
optical measurements, and the observed emission is time integrated. If this is significant, a
time-dependent population kinetics model could help test whether the level population
distribution converges to a steady-state population within the pulsed operation.

A critical consideration for modeling processing plasmas was found to be the bound-
ary effect, where the atomic state population can be modified by wall contacts. While
plasma and material (or wall) interactions are not very well characterized, the diffusion
of plasmas near the boundary layer plays a significant role in the population distribution
and charge state distribution. It is empirically known that the ground state of a singly
ionized argon charge state is neutralized by contact with the wall, and, more importantly,
the metastable states of neutral argon atoms are depopulated by contact with the wall.
Therefore, the interaction with the wall complicates the analysis, as the population cascades
from the high-lying states and the ionized states will be dependent on the wall interaction;
moreover, the metastable state population may be quenched [3,10].

A coronal model is a limiting case of a collisional-radiative (CR) model at low density;
hence, a general analysis of OES measurements can be performed with a CR model, which
includes all relevant atomic processes, beyond a coronal approximation. A well-constructed
CR model should provide results consistent with those of a coronal model if the plasma
conditions are close to the coronal equilibrium. It has the advantage of allowing the
investigation of the validity of coronal approximation for a given plasma condition and
identifying the line ratios to provide diagnostic information. Another advantage is that
the metastable population distributions are more reliably calculated over a wide range of
plasma conditions [11].

In this paper, we present a CR model for near-neutral argon OES and investigate the
issues described above for a wide range of plasma conditions. This model is developed
based on the principles outlined recently by a nonlocal thermodynamic equilibrium (NLTE)
kinetics workshop series [12–18] and a book on the review of NLTE code development over
the last 20 years [19]. The atomic datasets and sources used in the model are discussed and
evaluated in comparison with the optical measurements. The CR model results are dis-
cussed for various non-coronal conditions described above and compared with the existing
measurements. This study demonstrates the importance of the completeness of atomic
datasets in applying a collisional-radiative model to low-temperature plasma diagnostics.
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2. Materials and Methods

2.1. Construction of a Collisional Radiative (CR) Model

To determine the relationship between the observed emission spectra and plasma
thermodynamic properties, we need to obtain the atomic-level population distribution as a
function of the plasma thermodynamic properties, as the radiative properties of plasmas,
such as spectral emission and absorption, are a function of the atomic level population. The
emission coefficient is proportional to the upper-level population of radiative transition,
and the absorption coefficient is proportional to the lower-level population distribution
minus the upper-level population multiplied by the ratio of the statistical weights. The
atomic-level population distribution is determined using collisional processes involving
mainly electrons and radiative transitions due to spontaneous radiative processes and
stimulated radiative processes by the nonlocal radiation field. In this study, we focus on
electron-driven collisional processes while ignoring atom–atom or atom–ion collisions,
assuming that the atomic density was substantially low. However, Ar2 molecular emissions
have been observed [3], and such processes involving atomic collisions could be important
in understanding population kinetics of processing plasma. An atomic-level population
distribution is obtained from a set of time-dependent rate equations, including collisional
and radiative transitions, as shown in Equation (1):

dni
dt

= −ni

NL

∑
j �=i

Wij +
NL

∑
j �=i

njWji, 1 ≤ i ≤ NL, (1)

where NL is the number of atomic levels considered in the model. The rates between i and
j states, Wji, and Wij are described in Equation (3) in two cases, where the i state is lower
than the j state.

Wij = Bij J̄ij + NeCij + βij + Neγij + σij (2)

Wji = Aji + Bji J̄ij + NeDji + Qji + NeαRR
ji + Neκ

EC
ji + N2

e δji + νji.

The collisional and radiative processes considered in the model are as follows: For
bound–bound transitions:

• Aji spontaneous emission,
• Bij stimulated absorption (i � j) or emission (i � j),
• Cij collisional excitation,
• Dji collisional deexcitation,
• Jij mean radiation field of a unit of energy per squared area per second per pho-

ton frequency, and
• Qji wall quenching of metastable states.

For bound–free transitions:

• Aji spontaneous emission,
• αij radiative recombination,
• βij photoionization plus stimulated recombination,
• γij collisional ionization,
• δij collisional recombination,
• κij electron capture,
• σij autoionization, and
• νij wall neutralization to the neutral ground state.

Recent advances in CR models have shown that dielectronic recombination (DR)
processes play a key role in determining the charge state distribution [17,19]. The process
is usually modeled with a substantial number of multiply excited autoionization channels,
and a model must include all collisional and radiative processes originating from the
autoionization channels. At low densities, the states with a very large principal quantum
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number contribute to the DR rate coefficients, and the model becomes prohibitively large.
Therefore, for coronal and near-coronal plasmas, the DR rate coefficients have been used
instead of detailed counting of the autoionization and electron capture processes. This
approach is adopted in this work, and only the bound states were included in the CR
model of neutral atom and one singly ionized state.

A non-Maxwellian NLTE kinetics code NOMAD is used to solve the rate equations for
the atomic-level population distribution and one-dimensional radiative transport equation
in a uniform plasma approximation for spectral intensities and power intensities [20].
This code has many useful options for investigating the atomic population kinetics over
a wide range of plasma conditions. It is suitable for time-dependent plasmas or two-
temperature Maxwellian plasmas and includes radiation trapping effects for a finite plasma
size. Wall neutralization effects are included with an enhanced recombination rate to
promote recombination processes from singly ionized argon to neutral argon. Similarly,
wall quenching is added to the two metastable states to allow decay to the neutral ground
state. With regard to the construction of a CR model for near-neutral argon, only a limited
number of atomic states have been reported and evaluated; hence, the rest of required
atomic datasets that are required should be obtained through code calculations or widely
used empirical data. In this section, atomic data are evaluated to ensure tractability of the
CR model.

2.2. Atomic Structures

The atomic energy levels of a neutral argon atom are taken from the NIST (National
Institute of Standards and Technology atomic spectra database [21]. The highest state
included in the NIST database corresponds to the 58d levels that are 15.75558 eV below
the continuum limit of 15.7596117 eV. As the most dominant optical emission arises from
3p5 4p, and spectral emissions from the 8s levels or above are hardly observed, a total of
229 bound levels up to 3p5 7h levels of neutral argon atoms, and one level of singly ionized
argon ion are included in the model. Because the highest level included in the model is
15.65940 eV, there is an approximately 1 eV gap between the highest level in the model and
the continuum limit. It will be interesting to include higher-n Rydberg states and evaluate
the effects of collisional cascades through these states. It should be noted that such high-n
Rydberg states may no longer be bound because of interactions with ions, electrons, and
external electric fields [22], and the highest available bound states could lie much lower
than the continuum limit in the plasma with large external electric fields. In this study,
the autoionizing states are ignored, and the autoionization and electron capture processes
are accounted for by including DR rates in the model. Only bound states are included in
this model.

2.3. Spontaneous Emission

Spontaneous emission rates are key atomic data for OES models, especially for plasma
conditions at the coronal limit. This is because the population distribution of excited
states is determined by collisional excitation from the ground state and the sum of all
possible spontaneous emission rates to lower states. Therefore, a complete set of radia-
tive transitions originating from the level of interest is required. However, there are
only a few recommended spontaneous emission rates available in the NIST atomic spec-
troscopy database for strong lines. For this model, 404 transitions are taken from the NIST
database, and 51 transitions are taken from the B-spline R-matrix (BSR) calculations [23].
Additional rates are taken from various sources: multiconfiguration Dirac–Hartree–Fock
(MCDHF) data for 1048 transitions [24,25], Los Alamos National Laboratory (LANL) data
for 1349 transitions [26], and flexible atomic code (FAC) data for 15,265 transitions [27].
Available transitions from the ATBASE code developed at the University of Wisconsin
(WISC) are also added [28]. The LANL data are calculated by the LANL group by using
the Hartree–Fock method proposed by Cowan [29], and the FAC data are calculated by
solving the Dirac equations in the jj coupling scheme by using a parametric potential. The
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ATBASE code is also based on the Cowan code. Owing to the lack of electron correlation,
the FAC data are known to show poor agreement with other code results or experiments
for neutral atom cases. Comparisons among the available datasets show that the accuracy
of the FAC data varies over a range.

The oscillator strengths and ratios with the NIST evaluated data, where available, are
listed along with the data sources in Tables 1–6 for dominant radiative transitions from
Paschen 2p3, 2p1, 3p9, 3p6, 3p1, and 5p5 levels to lower levels. For example, the Paschen
notation, the 2p1 level refers to 3p5(2P◦

1/2)4p2[1/2]0, and 3p1 level refers to 3p5(2P◦
1/2)5p

2[1/2]0. The oscillator strengths of the radiative transitions from the Paschen 2p levels to
1s levels are found to be comparable for all sources within a factor of 2. The MCDHF data
differ within a factor of two from the NIST or BSR data for most transitions. However,
there are a few outliers in the LANL and FAC datasets. For high-lying levels, such as the
3p levels, the agreement is far from reasonable (marked in red) and differs by a factor of at
least 10, especially for the transitions of 3d levels. For the 5p5 level, the problem is even
worse because there are only two published datasets (from NIST and MCDHF), while the
remaining datasets contain FAC data for which the accuracy is not guaranteed.

The credibility of the oscillator strength and, therefore, the spontaneous emission
rate data is a serious concern not only for collisional radiative models but also for coronal
models. In the coronal model, the level population distribution and line ratio analysis
are simple functions of the collisional excitation rate from the ground state and the total
spontaneous emission rate from the upper level. Denoting the upper-level population as
Nu and the ground level population as Ng, Nu is written as a function of the collisional
excitation rate Cgu and the sum of all spontaneous emission rates to the lower level j Auj
as follows:

Nu = Ng
Cgu

∑j Auj
. (3)

The uncertainty in Auj influences the determination of the level population distribu-
tion and, therefore, the line ratio analysis. The issue of uncertainties in the spontaneous
emission rates is demonstrated in Section 3.1, where the sensitivities of different CR models
are discussed.

Table 1. Oscillator strengths of neutral argon levels (2p3). The top row contains the upper level, and the 1st column contains
the lower level. The 2nd column shows the oscillator strength, the 3rd column shows the ratio of various sources to the
evaluated NIST or BSR values, and the 4th column shows the data source. The ratios deviating substantially from unity are
marked in red.

2p3

Ω Ratio
Data

Source
Ω Ratio

Data
Source

Ω Ratio
Data

Source

1s5

0.029 NIST

1s4

0.115 NIST

1s2

0.394 BSR

0.037 1.31 MCDHF 0.150 1.30 MCDHF 0.494 1.25 MCDHF

0.021 0.74 LANL 0.109 0.95 LANL 0.528 1.34 LANL

0.036 0.96 WISC 0.124 0.83 WISC 0.445 0.90 WISC

0.047 2.21 FAC 0.146 1.34 FAC 0.317 0.60 FAC
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Table 2. Oscillator strengths of neutral argon levels (2p1) from various sources. The ratios deviating substantially from
unity are marked in red.

2p1

Ω Ratio Data Source Ω Ratio Data Source

1s4

0.0005 NIST

1s2

0.1250 NIST

0.0011 2.10 MCDHF 0.1529 1.22 MCDHF

0.0052 9.87 LANL 0.1494 1.20 LANL

0.0030 2.71 WISC 0.1350 0.88 WISC

0.1088 20.97 FAC 0.0021 0.01 FAC

Table 3. Oscillator strengths of neutral argon levels (3p9) from various sources. The ratios deviating substantially from
unity are marked in red.

3p9

Ω Ratio
Data

Source
Ω Ratio

Data
Source

Ω Ratio
Data

Source

1s5

0.004 NIST

3d4′

0.073 NIST

3d1′′
0.112 LANL

0.006 1.75 LANL 0.209 2.87 LANL 0.004 0.04 WISC

0.005 1.40 WISC 0.180 2.47 WISC 0 0 FAC

0.007 1.19 FAC 0.029 0.39 FAC

2s5

0.718 MCDHF

3d3

0.007 NIST

3d4

0.083 LANL 0.651 0.91 LANL

0.000 0.01 LANL 0.060 0.72 WISC 0.715 1.00 WISC

0.009 1.30 WISC 0.003 0.03 FAC 0.936 1.30 FAC

Table 4. Oscillator strengths of neutral argon levels (3p6) from various sources. The ratios deviating substantially from
unity are marked in red.

3p6

Ω Ratio
Data

Source
Ω Ratio

Data
Source

Ω Ratio
Data

Source

1s5

0.004 NIST

3d4

0.092 LANL

3d2

0.000 LANL

0.006 1.59 LANL 0.088 0.95 WISC 0.001 2.17 WISC

0.005 1.38 WISC 0.001 0.01 FAC 0.000 0.84 FAC

0.002 0.43 FAC

3d1′′
0.011 LANL

3s1′′′′
0.002 LANL

1s4

0.001 NIST 0.004 0.35 WISC 0.009 5.74 WISC

0.001 0.98 LANL 0.015 1.34 FAC 0.000 0.22 FAC

0.002 1.41 WISC
3s1′′

0.008 LANL

0.003 1.88 FAC

2s5

0.416 MCDHF 0.001 WISC

1s2

0.000 NIST 0.358 0.86 LANL

3s1′′′
0.118 LANL

0.000 1.46 LANL 0.389 0.94 WISC 0.042 0.36 WISC

0.000 8.03 FAC 0.235 0.66 FAC 0 0 FAC

3d5

0.053 LANL

2s4

0.006 MCDHF

2s2

0.201 MCDHF

0.036 0.68 WISC 0.008 1.29 LANL 0.173 0.86 LANL

0.010 0.18 FAC 0.008 1.26 WISC 0.215 1.07 WISC

3d3
0.162 LANL 0.698 85.31 FAC 0.004 0.02 FAC

0.077 WISC 3s1′ 0.019 LANL
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Table 5. Oscillator strengths of neutral argon levels (3p1) from various sources. The ratios deviating substantially from
unity are marked in red.

3p1

Ω Ratio
Data

Source
Ω Ratio

Data
Source

Ω Ratio
Data

Source

1s4

0.00001 BSR

2s4

0.19130 MCDHF

2s2

0.0037 MCDHF

0.00015 13.90 LANL 0.17222 0.90 LANL 0.0016 0.43 LANL

0.00391 358.26 FAC 0.16800 0.88 WISC 0.0080 2.15 WISC

1s2

0.00361 NIST 0.11080 0.64 FAC 0.0761 20.48 FAC

0.00660 1.83 LANL
3d2

2.088e−16 LANL
3s1’

0.2024 LANL

0.00600 1.66 WISC 0.01800 8617.39 WISC 0.0340 0.17 WISC

0.00448 0.68 FAC 0.01256 6013.02 FAC

Table 6. Oscillator strengths of neutral argon levels (5p5) from various sources. The ratios deviating substantially from
unity are marked in red.

5p5

Ω Ratio
Data

Source
Ω Ratio

Data
Source

Ω Ratio
Data

Source

1s4 0.0010 FAC 3s1’ 0.0067 FAC 5d5 0.0569 FAC

1s2
0.0003 NIST 3s4 0.0014 FAC

4s4
0.2336 MCDHF

0.0016 4.98 FAC 4d2 0.0007 FAC 0.0416 0.18 FAC

3d1 0.0002 FAC 4s1’ 0.1134 FAC 5d2 0.2246 FAC

2s2 0.0059 FAC 3s1 0.0974 FAC

2.4. Collisional Excitation

Collisional excitation cross-sections are taken from the following five data sources
available at the LXCAT website (https://fr.lxcat.net, accessed on 2 November 2021) in
addition to the LANL and FAC data: Biagi [30], BSR [31], IST [32], Puech [33], and NGFS-
RDW [34]. Measured optical emission cross-sections [35–37] have been frequently used in
OES analyses. Apparent cross-sections or optical emission cross-sections are not appro-
priate for use in the CR model, as these cross-sections include population cascades from
other levels. These can be used under strictly coronal conditions; however, only direct
cross-sections should be considered in the CR model. The BSR data are known to be most
accurate for neutral and near-neutral systems, and the data for neutral argon have been
favorably evaluated through cross-section measurements of metastable and ground state
excitation to 4p levels by Boffard et al. [3]. However, the available BSR data [31] are limited
to the Paschen 3s (3p5 5s) levels. Paschen 3p (3p5 5p) data from the Puech database by
Puech and Torchin [33] and the IST data (IST-Lisbon database) [32] are available. A few
transitions to 3p5 4d, 5d, and 6d levels from the ground state are available from the Biagi
database [30]. NGFSRDW data are calculated by the relativistic distorted wave (RDW)
method [34], and either the distorted wave calculations or first-order many body theory
are used. The distorted wave method is used for the FAC data. A perturbative approach,
such as RDW/DW methods, produces larger direct cross-sections when compared with
the BSR cross-sections, even when the BSR includes resonance contributions by cascades
through highly excited states.

The cross-sections of a few transitions are compared for eight data sources for the
low-lying levels in Figure 1. The comparison shows that the cross-sections differ by a factor
of two or more for most transitions in different data sources. A better agreement is found
for forbidden transitions, but, for most transitions, the agreement is not good. The BSR data
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tend to lie below most other data sources, and the NGFSRDW and Boffard data generally
lie higher than the other data. Perturbative methods are known to provide slightly higher
cross-sections than non-perturbative methods, such as the R-matrix method. The FAC
data show fast-decaying cross-sections. At the temperatures of interest, 0.5 eV–3 eV, the
threshold values determine the rate coefficients. This is problematic, as transition data
involving high-lying levels are only available from the FAC data calculated from the
distorted wave method, which is known to be less accurate near threshold values and
more accurate at high energies. The FAC data are scaled down by a factor of 10 after
comparing them with higher quality datasets for the available transitions. Van Regemorter
cross-sections are used if the oscillator strengths are available [38]. In this model, we
adopted the BSR dataset as the base dataset and used other data sources for the missing
transition data in the order of Biagi, Puech, IST, Boffard, NGFSRDW, LANL, and FAC. Van
Regemorter cross-sections were also compared and used for the missing transition data. As
demonstrated in Section 3.1, the level population distribution and line ratios are sensitive
to the completeness of the collisional transition data, as well as the accuracy of the data.

Figure 1. Comparison of collisional excitation cross-sections from the ground state to Paschen levels
2p1 (upper) and 3d’4 (forbidden transition) (lower) for various available sources.
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2.5. Ionization and Recombination

Bound-free transitions, collisional ionization, radiative recombination, dielectronic
recombination (DR), and collisional recombination are considered in the model. The
ionization rate coefficient from the ground state is taken from the Biagi database. The BSR
and LANL cross-sections are compared with the Lotz formula [39]. The DR rate coefficient
is obtained from Mazzotta et al. [40]. FAC datasets are used for the collisional ionization
data and radiative recombination data for all excited states.

3. Results

3.1. Sensitivity to Model Completeness

Six CR models, shown in Table 7, are compared to demonstrate the sensitivity of
the line ratio analysis to the scope and completeness of the atomic datasets used in the
model. Base model A utilizes BSR, Biagi, and Puech collisional data from LXCAT and
Van Regemorter cross-sections [38] using NIST oscillator strengths (NIST-VR). LANL and
FAC refer to collisional data by LANL code and FAC code. MCDHF-VR/LANL-VR/FAC-
VR refers to Van Regemorter collisional data using the MCDHF/LANL/FAC oscillator
strengths. MCDHF-GF/LANL-GF/FAC-GF refers to the MCDHF/LANL/FAC oscillator
strengths to be used in addition to the NIST oscillator strengths. Model B adds LANL/FAC
collisional data in addition to the base model A. Model C adds oscillator strengths from
MCDHF and LANL code to model B. Model D adds oscillator strengths from the FAC code
to model C. Model E utilizes the base model A and adds only Van Regemorter collisional
data using MCDHF/LANL/FAC oscillator strengths. Model F is our final and most
complete model, as well as includes the LANL/FAC collisional data and Van Regemorter
data using the available oscillator strengths.

Table 7. Total number of transitions included in the 6 models.

A B C

BSR 441 A model 768 B model 17,256

Biagi 11 LANL 846 MCDHF-GF 999

Puech 10 FAC 15,411 LANL-GF 999

NIST-VR 306 Total 17,256 Total 18,255

Total 768

D E F (Complete Model)

C model 18,255 A model 768 D model 30,787

FAC-GF 12,532 MCDHF-VR 496 MCDHF-VR 496

Total 30,787 LANL-VR 624 LANL-VR 624

FAC-VR 13,937 FAC-VR 13,937

Total 15,825 Total 45,844

The calculated line ratios of 425.9 nm/750.4 nm analyzed by Boffard et al. [1] are
compared to demonstrate the sensitivities of the CR model to the model completeness.
The 425.9 nm line corresponds to the transition between 3p5(2P◦

1/2)4s 2[1/2]◦1 (Paschen 1s2)
and 3p5(2P◦

1/2)5p 2[1/2]0 (Paschen 3p1) states. The upper level Paschen 3p1 level is pop-
ulated from the ground state, and the cross-section is provided by the Puech data. The
750.4 nm line corresponds to the transition between 3p5(2P◦

1/2)4s 2[1/2]◦1 (Paschen 1s2)
and 3p5(2P◦

1/2)4p2[1/2]0 (Paschen 2p1) states. The upper-level Paschen 2p1 level is pop-
ulated from the ground state, and the cross-section is provided by the BSR data. The
cross-sections to the upper levels 3p1 and 2p1 from the ground state stay the same for
all 6 models; however, the line ratio of 425.9 nm/750.4 nm changes significantly, as the
additional transitions to other levels are included in the model. In Figure 2, the line ratios
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are plotted as a function of the electron temperature Te and electron density Ne of 108 cm−3.
The addition of LANL/FAC collisional data in model B do not change the line ratio of
425.9 nm/750.4 nm significantly. However, when the oscillator strengths (i.e., spontaneous
emission rates) of the MCDHF/LANL/FAC data are added to the model, the ratio de-
creased by more than a factor of 2. As the additional oscillator strengths are included for
Van Regemorter rates, the ratio decreased even further, and the results are closer to the
measured data [41,42] in Section 4.1 and to the calculations performed using the measured
optical emission cross-sections by Boffard et al. [1]

The comparison in Figure 2 shows the importance of including all relevant sponta-
neous emission rates when calculating the line ratios at the coronal conditions, such as
Ne = 108 cm−3 considered here. Figure 3 shows quite different trends in the line ratio
comparisons at Ne of 1013 cm−3, the highest density case of this investigation. The line
ratio is much closer among different models, as collisions make the level population dis-
tributions deviate from the coronal limit by increasing the collisional depopulation to be
comparable with the spontaneous emission rates. All five models (model B–model F) are
closer to the measured data [41,42] in Section 4.1, slightly below the coronal calculations of
Boffard et al. [1].

Figure 2. Line ratios of Ar 425.9 nm and 750.4 nm as a function of Te at Ne = 108 cm−3 for six models
considered in this work. Simulation results were compared with the calculations by Boffard et al. [1]
and the measured data [41,42].

A CR model should converge to a coronal limit if Ne is sufficiently low and the line
ratio is independent of Ne. However, as Ne increases, the line ratio deviates from the ratio at
the coronal limit, as demonstrated for the line ratio of Ar 357.2 nm/Ar 425.9 nm in Figure 4.
The transition at Ar 357.2 nm corresponds to the transition between the 3p5(2P◦

1/2)4s
2[1/2]◦1 (Paschen 1s2) and p5(2P◦

3/2)7p 2[1/2]0 (Paschen 5p5) states. Unfortunately, there is
no reliable collisional data from the ground state to the 5p5 level, except for the measured
optical emission cross-section for the transition from the 5p5 level to the 1s2 level. The
optical emission cross-section is 4.6 × 10−20 cm2 at 25 eV [35]. The direct excitation
cross-section is related to the sum of all optical emission cross-sections of transitions
originating from the 5p5 level, as follows. The branching ratio of the 357.2 nm transition
is roughly 1/3; hence, a factor of 3 may be chosen as the apparent cross-section of the
5p5 level. Then, the apparent cross-section is the sum of the direct cross-section and
cascade contribution, and the direct cross-section should be greater than 4.6 × 10−20 cm2

but smaller than 3 times 4.6 × 10−20 cm2. Hence, the BSR cross-section was scaled to
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be approximately 8.5 × 10−20 cm2 at 25 eV was used. The line ratios are compared
with the measurements and calculations by Boffard et al. [1] in Figure 4 as a function
of Ne. All 6 models showed very large differences in the results of the line ratio of
Ar 357.2 nm/Ar 425.9 nm at Te = 2 eV. The decreasing trend of the line ratio with Ne agrees
with the Boffard data.

Figure 3. Line ratios of Ar 425.9 nm and 750.4 nm as a function of Te at Ne= 1013 cm−3 for the six
models considered in this work. Simulations were compared with calculations by Boffard et al. [1]
and the measured data [41,42].

Figure 4. Comparison of line ratios of Ar 357.2 nm and 425.9 nm between simulations and values
reported by Boffard et al. [1] at Te = 2 eV.

The most complete model F agrees best with the Boffard data, although the absolute
value differs by approximately 20–30%. This is likely to be attributed to the uncertainties in
the spontaneous emission rates, as well as collisional rates involving the 5p5 level, as most
transition data involving this level are from the FAC code. Although quite sensitive to
Ne, the line ratios are found to be insensitive to Te under 4 eV, the maximum temperature
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considered in the simulations. In the following results, we use the most complete model F
as our model for discussion.

3.2. Radiation Trapping Effects

The effects of radiation trapping on the line intensities and ratios are discussed in
the context of the measured pressure dependence of optical emission cross-sections for
the selected levels of Ar by Boffard et al. [1]. Radiation trapping for Paschen 2px − 1sy
(x = 1 − 10, y = 2 − 5) lines is attributed to the large number of atoms in the 1s metastable
and resonance levels, direct trapping from the ground state, or indirect contributions due
to cascades from the higher resonance levels. It was suggested to use Ar np1 and np5 levels
(both J = 0) to avoid the radiation trapping effects because the optical excitation from the
metastable state is weak.

The radiation trapping effects are functions of parameters, such as atomic density, ther-
modynamic conditions, plasma size, line shapes, etc. To investigate the radiation trapping
effects, we assume the following: First, the atomic density or gas pressure is the most impor-
tant parameter influencing the trapping effects, and it is fixed at 1013 cm−3 in our comparison.
Second, different Ne and Te will produce different lower level population distributions; there-
fore, we compares the lines for the same density and temperature to maintain the lower-level
population the same for comparison. Third, the length of the line of sight increases the optical
depth and, hence, the radiation trapping effect linearly, which allows the comparison of the
radiation trapping effect in a straightforward manner. Finally, different line shape profiles can
modify the optical depths and, hence, the radiation trapping effect. In this investigation, the
line shape is calculated for the Doppler profile and is, therefore, fixed.

Figures 5 and 6 compare the ratios of the line intensities of 451.1 nm and 750.4 nm with
(10 cm plasma size) and without the radiation trapping effect as a function of Te for the
electron densities of 108 - 1013 cm−3. If the radiation trapping effects are insignificant, the
ratios of line intensity for the 10 cm case and the optically thick case will be close to unity.
The ratios deviate from 1 more significantly for 451.1 nm emitted from the 2p5 level than
for 750.4 nm emitted from the 2p1 level for Ne below 1012 cm−3. A slight Te dependence
on the radiation trapping effects was observed in the case of 451.1 nm, and the lower Te
ratios deviated further away from unity. As Ne increases further, collisions change the
ground and metastable level population significantly, and the combined effects drive the
line intensities away from the coronal limit and the optically thin case.

Figure 5. Comparison of intensity ratios of 451.1 nm with (10 cm plasma size) and without radiation
trapping effect (optically thin case) for different electron densities and temperatures.
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Figure 6. Comparison of intensity ratios of 750.4 nm with (10 cm plasma size) and without radiation
trapping effect (optically thin case) for different electron densities and temperatures.

In OES analysis, the radiation trapping effects are usually considered with the gas
pressure. It is a dominant factor, but the radiation trapping effects should be considered
with all factors that influence the population kinetics, for example, gas density, Ne, and
Te, as well as the length of the line of sight. In addition, if wall recombination and
quenching, or two-temperature distribution effects are combined, the radiation trapping
effects may be even more dramatic because these effects modify the lower-level population
distribution significantly.

3.3. Non-Maxwellian Electron Energy Distributions

Plasmas are frequently found to deviate from a single temperature Maxwellian electron
energy distribution. It is useful to understand how line intensities change with non-thermal
electron energy distribution functions. We compares two cases: (1) 99% bulk Te of 1–4 eV
and 1% of 10 eV non-thermal electrons and (2) 60% bulk Te of 1–4 eV and 40 % of 0.1 eV
cold electrons for different electron densities. Radiation trapping was not considered. The
first example involves the observation of the effects of 1% 10 eV non-thermal electrons on
line ratios of 99% 1–4 eV electron plasmas for a range of electron densities.

Figure 7 shows the ratios of the enhancement due to hot electrons. The ratios of the
two lines in the analysis can remain the same if the two line intensities are enhanced by the
same factor. In this case, the ratio of the enhancement is close to unity; therefore, the line
ratios can be used as a robust diagnostic of the bulk plasma conditions regardless of the
existence of small fractions of Non-Maxwellian electrons. Comparing the two line ratios,
357.2 nm/425.9 nm and 425.9 nm/750.4 nm, we find that the former is rather insensitive to
the addition of 1% hot electrons, whereas the latter is modified significantly at 1–2 eV. The
changes in the ratio become smaller as Ne becomes higher.

In summary, if Ne is high and Te is high, the effect of 1% 10 eV electrons will be
negligible, and the line ratios can be used as a bulk temperature diagnostic. The commonly
used line ratios of 425.9 nm/750.4 nm are shown to be more sensitive to the addition of
hot electrons; hence, one should be cautious when using this line ratio as a bulk tempera-
ture diagnostics. Investigation of the population mechanisms revealed that the cascades
from high-lying states are significant for low-lying states, such as 2p1, the upper level of
750.4 nm. The population cascades increase the enhancement significantly at low tempera-
tures, leading to a large enhancement in the line intensity and deviation from the single Te
line ratio of 425.9 nm/750.4 nm.
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Figure 8 shows that the ratios of line intensity ratios are rather insensitive to the
40% cold electrons when Ne is sufficiently low. Contrary to the expectation that the line
intensities will be reduced due to lower collisionalities, the line intensities are enhanced in
the case of 2–4 eV. The ground state population is found to have significantly changed by
adding 40% cold electrons in the case of 2–4 eV, where the ground state of neutral atoms
is mostly ionized (without wall effects). With the cold electrons, the collisional ionization
rate is 40% smaller while radiative recombination and dielectric recombination are higher,
which leads to a lower charge state distribution and, hence, higher ground-state population
of neutral atoms. Therefore, reduced high-lying and ionized state populations result in
reduced cascades from those states and increase the validity of the coronal models for line
ratio analysis. The modified line ratios with 40% cold electrons are lower than that in the
single temperature case, whereas those with 1% 10 eV non-thermal electrons are generally
higher than that in the single temperature case.

Figure 7. Comparison of the ratios of line ratios of 357.2 nm/425.9 nm and 425.9 nm/750.4 nm with
1% 10 eV non-thermal electrons to those of lines with single-temperature electrons under various
plasma conditions.

Figure 8. Comparison of the ratios of line intensity ratios of 357.2 nm/425.9 nm and 425.9 nm/
750.4 nm when 40% 0.1 eV cold electrons exist to the line ratios with only thermal electrons.

30



Atoms 2021, 9, 100

3.4. Wall Recombination and Quenching Effects

All the investigations in the previous subsections are performed without considering
the boundaries, that is, the wall effects. However, processing plasmas is unique in the
sense that the steady-state operation of the plasma is sustained by externally applied
fields compensatory energy and particle losses by the wall or boundaries. The main
function of the wall in terms of population kinetics is to provide a substantial amount of
recombination to the plasma. In general, argon plasmas at 2 eV and Ne of 1013 cm−3 should
ionize substantially to the singly ionized system considering the atomic ionization and
recombination rate coefficients. However, Langmuir probe measurements show that the
degree of ionization is as low as 1%.

This introduces a difficulty in building a general CR model because the charge balance
should be coupled with the diffusion of atoms to the wall and the spatial distribution of
plasma conditions established by wall contact [7,10]. Because the diffusion and spatial
behavior of plasmas is out of the scope of this work, we focus on the effect of wall re-
combination on the line ratio analysis. The main influence is the reduction in the charge
state population; consequently, the cascades from the ionized states through Rydberg
or high-lying states are significantly reduced, as well. To investigate the effect of wall
recombination on the line ratios, we added an ad-hoc wall recombination rate to the total
recombination rate to make the charge states comparable to those from the Langmuir
probe measurements.

As expected from the fact that the wall recombination reduces the ionization, which
in turn increases the ground state population, the modified line ratios have similar trends
to those in the case of 40% cold electrons, as shown in Figure 9. There is a slight difference
in that the enhancement is similar for all lines because only the ground state population
changes, whereas, with the 40% cold electrons, the collisional rates change according to
the bulk electron temperatures. The ratio of line intensity ratios will be close to unity if
the wall effects are negligible. As shown in Figure 9, the commonly used line ratios of
357.2 nm/425.9 nm and 425.9 nm/750.4 nm are not significantly affected by wall recombi-
nation for low Ne cases, where the coronal approximation is relatively good.

Figure 9. Comparison of the ratios of line intensity ratios for 357.2 nm/425.9 nm and 425.9 nm/
750.4 nm with wall recombination to the line ratios without wall recombination.
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Additionally, it is noted that the wall contact changes the metastable population
distributions. Metastable state populations play an important role in stepwise excitation
and ionization as Ne increases. Therefore, the quenching of the metastable population
distribution could be very important in line ratio analysis. The wall quenching rate is as-
sumed to be the same as the wall recombination rate, assuming that the wall recombination
and quenching rates are a function of the diffusion velocity of particles regardless of their
quantum state in this comparison. The results show that the quenching of metastable states
did not result in any significantly greater difference than the wall recombination. The line
ratios were modified in the same way as that in the case of wall recombination for 357.2 nm,
425.9 nm, and 750.4 nm. It is cautioned that lines sensitive to metastable populations are
likely to be affected to a greater extent by wall quenching.

4. Discussion

We use the CR model to analyze OES measurements and discuss spectroscopic diag-
nostic of low temperature plasmas in this section. The CR models are built using several
combinations of atomic datasets described in the previous section. Unfortunately, the uncer-
tainties of the atomic datasets are large, and most transition data beyond the 3p5 5s levels
are not evaluated as discussed in the previous section. Therefore, it is difficult to evaluate
the accuracy of the CR model applied to the line-ratio analysis. One may be tempted to
choose a set of atomic data to best reproduce the experimental dataset. However, because
spectroscopic measurements are influenced by many factors, such as non-thermal electron
energy distributions, radiation trapping, wall neutralization and quenching, and collisions
with atoms and other impurities in the plasmas, determining the quality of atomic datasets
based on plasma spectroscopic measurements is not appropriate. Instead, we investigated
the model sensitivities due to different atomic datasets and model completeness and exam-
ined the effects of these factors on the line ratio analysis to establish the uncertainties of
spectroscopic diagnostics. In this section, we compare our CR model with measurements
where the electron density Ne and temperature Te are measured by Langmuir method.
This comparison will help identify robust diagnostic line ratios that can be used to collect
plasma information. For the simulations discussed below, the plasma conditions are fixed
at a gas density of 1013 cm−3, and the electron density Ne and temperature Te are varied
in the range of 108–1013 cm−3 and 1–4 eV, respectively. The size of the plasma is zero in
all the results, except for the comparisons of the radiation trapping effects, which used a
10 cm plasma size.

4.1. Comparisons with Optical Emission Spectroscopy Measurements

The final and the complete CR model (F model) is compared with the measured line
ratios of the spectra from inductively coupled plasma (ICP) and capacitively coupled
plasmas (CCP). The capacitively coupled plasmas (CCP) had an argon gas pressure of
20 mTorr and RF power of 200–700 W. The Langmuir probe measurements indicate that
the electron densities change from 1 × 1010 cm−3 to 2.5 × 1010 cm−3 and electron tem-
peratures stay constant at −3.2 eV over the RF power variation assuming Maxwellian
distribution. The inductively coupled plasma (ICP) conditions measured by the Langmuir
probe vary from 5 × 1010 cm−3 to 2 × 1011 cm−3. and 1.5 to 2.5 eV, depending on the
change in gas pressure from 6 mTorr to 20 mTorr. The Langmuir probe measurements for
inductively coupled plasma (ICP) and capacitively coupled plasmas (CCP) are shown in
Figures 10 and 11, respectively.
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Figure 10. Langmuir probe measurements of electron density and temperature as a function of RF
power in the CCP plasma. The gas pressure was fixed at 20 mTorr.

Figure 11. Langmuir probe measurements of electron density and temperature as a function of gas
pressure in the ICP plasma. The input power was fixed at 500 W.

The CR calculations are performed for the experimental conditions of density and
temperature. The plasma size is assumed to be 1.7 cm from the D-gap of 3.4 cm for CCP
plasmas, and the wall recombination is added to make the degree of ionization very low, as
observed. A single Te was assumed. The CR results are compared with the CCP OES data
measured from the experimental features in Figure 12. The CR results are compared with
the ICP OES data for the 425.9 nm and 750.4 nm line ratios. It is noted that Ne changes from
5 × 1010 cm−3 to 2 × 1011 cm−3. The line ratio of 425.9 nm and 750.4 nm is sensitive to
Ne above 1 × 1011 cm−3. Figure 13 shows the comparison between the CR results and ICP
data for Ne = 1× 1010 to 1 × 1012 cm−3 with and without radiation trapping effects. This
shows that the dependence of the line ratio on Ne is different with and without radiation
trapping. With radiation trapping, the line ratio increases with Ne. In contrast, the optically
thin cases show that the line ratios decrease with increasing Ne. The measured line ratios
are slightly lower than the CR results. The trend with increasing Ne (decreasing Te) agrees
with the optically thin case.
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Figure 12. Comparison of line ratio of 425.9 nm/750.4 nm between CR results and CCP data for
Ne = 5 × 1010 cm−3 to 2 × 1011 cm−3. A slightly lower Te corresponds to a lower Ne and lower RF
power. The measured line ratios have some dependence on Ne, whereas the simulations do not.

Comparisons with the CCP and ICP data show that the single-temperature CR model
predicts the electron density and temperature ranges from the measured line ratios compa-
rable to the Langmuir measurements. The experimental conditions may be included in the
CR model as a refinement, such as the multi-temperature cases, different radiation trapping
conditions, or wall quenching ratios. However, the calculated line ratios do not change
dramatically from the single temperature values. The source of discrepancies between CR
results and ICP plasma data below 2 eV needs more investigation.

Figure 13. Comparison of line ratio of 425.9 nm/750.4 nm between CR results and ICP data for
Ne = 1 × 1010 to 1 × 1012 cm−3 with and without radiation trapping effects. A lower Te corresponds
to a higher Ne value. The optically thin case reproduces the measured line ratios better by producing
lower line ratios for higher Ne values, i.e., above 1 × 1011 cm−3.

5. Conclusions and Future Work

A CR model employing a complete set of atomic data is constructed to verify the
coronal approximation for the OES analysis in plasma processing. Atomic datasets consist
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of data from various sources, mainly from NIST atomic spectroscopy databases and LXCAT
databases. Low-lying states have relatively reliable atomic data from the evaluated NIST
data and BSR collisional data. The data for the high-lying state are provided by the LANL
and FAC code data, which introduce uncertainties in the analysis of lines originating
from those levels. Comparisons of six models with different atomic datasets show that
it is critical to have a complete set of atomic data to ensure reasonable and credible line
intensities and, hence, line ratios for application in OES.

A non-LTE kinetics code, NOMAD, is used to solve the rate equations for the level
population distributions. The code contains time-dependent population kinetics options,
radiation trapping effects, and multi-temperature options. The line ratios change when
the radiation trapping effects are included and non-thermal electrons are considered. Wall
recombination and quenching do not affect the line ratios if the coronal approximation
is valid for the plasma conditions. It is found that, for electron densities >1012 cm−3,
the plasma is in the CR regime, and the coronal approximation is not valid; therefore,
line ratio analysis should consider plasma conditions, such as multi-temperature effects,
radiation trapping, wall recombination, and quenching. Comparisons with the CCP
and ICP OES measurement show that our CR model yields comparable result with the
Langmuir probe measurements of the plasma conditions. In this study, we focus on only a
few line ratios analyzed by Boffard et al. [1] and others [2]. In the future, additional line
ratios will be studied to provide electron temperature and density diagnostics over a wide
range of plasma conditions, particularly with greater focus on wall recombination and
quenching rates.
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Abstract: Ionizing radiation releases a flood of low-energy electrons that often causes the frag-
mentation of the molecular species it encounters. Special attention has been paid to the electrons’
contribution to DNA damage via the dissociative electron attachment (DEA) process. Although
numerous research groups worldwide have probed these processes in the past, and many significant
achievements have been made, some technical challenges have hindered researchers from obtaining
a complete picture of DEA. Therefore, this research perspective calls urgently for the implementation
of advanced techniques to identify non-charged radicals that form from such a decomposition of
gas-phase molecules. Having well-described DEA products offers a promise to benefit society by
straddling the boundary between physics, chemistry, and biology, and it brings the tools of atomic
and molecular physics to bear on relevant issues of radiation research and medicine.

Keywords: ionizing radiation; electron scattering; dissociative electron attachment; mass spectrome-
try; DNA damage

1. Background and Knowledge Gap

Over the past several decades, significant resources in the atomic and molecular
physics community have been directed towards the understanding of collisional processes
with biomolecular targets. They are of great importance in radiation research and provide
a breadth of potential interests to the life sciences and their applications. However, to trans-
late the outcomes of these molecular processes into a cellular environment, it is necessary
to advance our knowledge of scattering processes. A comprehensive understanding of the
physical and chemical processes involved at the molecular level remains elusive, even in
terms of a single collision between a particle and a target molecule. To achieve a better
picture of such physical events, one of the areas that has shown a significant increase in
interest, particularly in the electron-scattering community, is a fundamental understanding
of electron–biomolecule interactions.

In general, electron–molecule interactions occur in a plethora of physicochemical
processes in all types of matter, including living matter, because electrons, together with
generated ions and excited molecules, are the most abundant products of ionizing radia-
tion [1]. If the electrons are produced in the condensed phase, they are often referred to
as “secondary electrons.” These secondary electrons are created as a result of high-energy
photon absorption or during the passage of impinging particles and are due to further
inelastic collisions with electrons bound in matter [1]. Moreover, it is commonly accepted
that secondary electrons with a lesser amount of energy than the ionization energy of water
(~12.5 eV) are “low-energy electrons (LEEs).” A single LEE that interacts with atoms or
molecules can determine physical and chemical transformations. For example, it can induce
the cleavage of a chemical bond, thus damaging molecules and generating a population of
reactive species such as ions and radicals. Subsequently, these reactive species may interact
within the medium and lead to form new products or induce further damage.

The pioneering work of Sanche and coworkers in 2000 demonstrated that LEEs can
induce severe DNA damage [2]. Since then, a “boom in scientific interest” has emerged
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and has led to the exploration of the effects of electron scattering from molecules of
biological relevance in the gas and condensed phases. During collisions at energies below
the molecular target’s ionization threshold, LEEs can be scattered elastically or can lead
to rotational, vibrational, and electronic excitation or electron attachment to the target.
The excitation can then lead to a neutral dissociation process and the attachment to a
dissociative electron attachment (DEA) process (Figure 1). Both quantum processes occur
at specific energies, which are referred to as resonances; they correspond to the various
energy levels of the transient state and can result in the formation of at least one or more
radicals if molecular bond breakage occurs [3].

Figure 1. Schematic diagram for the DEA process: e− + AB → AB−# → A− + B in which AB is a
molecular target, AB−# is a vibrationally excited transient negative ion (TNI), A− is a negative ion
product, B is a neutral radical formed, ΔH0 is the reaction enthalpy, EA(A) is the electron affinity
of neutral fragment A, and D(A-B) is the bond (A-B) dissociation energy. First, the TNI is formed
through a vertical transition from the electronic ground state of the neutral molecule to the potential
energy surface of the negative ion within the Franck–Condon region. Then, primarily, the TNI will
decay into the neutral molecule by electron auto-detachment. If the lifetime of TNI is long enough
that the doorway of dissociation becomes accessible, the system stabilizes by breaking down into an
anion fragment (A−) and a neutral fragment (B) or multiple neutral fragments. Experimentally, the
ion yield of A− is monitored by scanning the electron energy and is shown as a resonant peak that
reflects the initial Franck–Condon transition.

In Sanche’s pioneering work, resonant structures were also observed in the quantum
yields measured in the formation of strand breaks in DNA caused by LEEs as a function of
incident electron energy. They were compared to the DEA yields for the two condensed-
phase analogues of the DNA constituents, thymine and tetrahydrofurfuryl alcohol, and for
water [2]. In the experiments with the DNA analogues, the dissociation patterns observed
were the ones in which the molecule lost a hydrogen anion, which is the anion that is then
detected with mass spectrometry. The resemblance of both yields, that is, for electron-
induced single-strand breaks (SSBs) and double-strand breaks (DSBs) in DNA, and the
dissociation of the condensed-phase compounds, prompted the authors to conclude that
DNA damage can be initiated by resonant electron attachment to different locations in
DNA that is followed by bond dissociation. Already at that time, the DEA process had been
intensively studied for a few decades because of ready access to mass-spectrometric tools.
Then, the DEA studies have been even more extensive for molecules with a wide range
of complexity, from simple diatomic molecules to more complex biomolecular systems in
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the gas and condensed phases, as well as in clusters [4]. Furthermore, the current state
of the art in research on LEE collisions with biomolecules, including DEA studies, was
reviewed recently [5]. The authors collected and summarized the main findings in this field,
showing the way they are relevant to fundamental and applied studies, highlighting recent
experimental and theoretical developments, and attempting to indicate further needs to
advance the field. One of the needs in technical development they indicated is the necessity
to detect radicals formed during DEA. In the past, only a handful of studies had been
published that attempted to investigate radicals attributable to LEE impact, particularly in
the condensed phase. Researchers have realized that radical detection would provide a
complete description of the dissociation processes that must be employed to determine the
mechanism of radiation damage in any biological system, including DNA.

2. Radiation Damage to DNA

Generally, radiation damage to DNA in an aqueous solution can be subdivided
into direct damage and indirect damage [6]. The term “direct damage” refers to the
ionization of DNA itself or the electron/hole transfer to DNA from its immediate solvent
shell. The term “indirect damage” refers to DNA’s attack by the highly reactive species
produced by radiation, including free radicals. Free radicals are atomic or molecular
species that contain at least one unpaired electron in their structure, and they are stable
in vacuo. All reactive species, both radicals and non-radicals (which, contrary to radicals,
are closed-shell species), are products of the dissociative excitation and ionization of water
and other cellular components present in the surrounding medium, and their possible
reaction mechanisms have been studied extensively [6]. However, despite this effort, there
remains controversy over the importance and contribution of both direct and indirect
effects to DNA damage in vivo. In addition to the complexity of the cellular environment
and radiation quality (particle type and energy), there are many factors that contribute
to this challenge, such as the different model systems used or different theoretical and
experimental approaches taken. Typical radiation chemistry experiments have shown
that the doses that are used to damage genetic compounds in the solution are at least one
order or even four orders of magnitude greater in these experiments than those that are
used to kill mammalian cells [7]. This discrepancy in the level of doses raises a major
concern about the precise estimation of radiation effects. Informal estimates of indirect
damage to DNA derive from the fact that water, which constitutes 70% to 80% of the
cellular mass, absorbs most of the energy of the impinging ionization radiation (~99%) and
leads to the production of three types of radicals, the hydroxyl radical (OH), hydrogen
(H), and solvated electrons that can attack DNA within a picosecond of diffusion time [6].
Indeed, the early studies on OH formed because of the radiolysis of water showed that
indirect effects were responsible for killing approximately 70% of cells [7]. For more than
half a century, a vast number of experimental studies had been dedicated to acquiring
an understanding of radiation-induced DNA damage by radiolytic species, both radicals
and non-radicals, including reactive oxygen and nitrogen species, and providing detailed
pathways of their reaction mechanisms [8]. Simultaneously, theoretical attempts were made
to describe the action of radiation on DNA through modeling along with the rapid increase
in the development of programming languages and computer coding in recent decades
attributable to the access to faster and higher-performing technology [1]. Thus, water is
the main source of reactive species in an aqueous solution; however, other compounds
in a cell located in close proximity to DNA can also provide reactive species, which then
induce damage to DNA. For example, proteins wrapped around DNA can play the role of
a double-edged sword. On the one hand, they provide physical shielding from ionizing
radiation, which protects DNA and decreases damage to it [9]. However, on the other
hand, the constituents of a protein can release free radicals upon exposure to ionizing
radiation [10], and some model studies have shown that amino acids can increase DNA
damage [11].
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In addition to studies on radical-induced DNA damage, there have been wide dis-
cussions on the role of secondary electrons that are precursors of solvated electrons [12].
The quanta of radiation can generate up to several thousand secondary electrons per event,
with kinetic energies as high as half of the energy of the primary quanta down to 0 eV,
which includes the formation of LEEs (see Figure 2). LEEs also dominate the secondary
electron emission distribution from biomolecular targets exposed to different energies of
primary radiation [13,14].

Figure 2. An illustrative representation of LEEs produced from interactions between high-energy
radiation and cellular constituents. The inelastic collisions of these LEEs with surrounding molecules
cause their damage, e.g., DNA damage, and produce distinct energetic species, i.e., excited species,
ions, and radicals that are further driving forces in a wide variety of radiation-induced chemical
reactions.

Another physical process, i.e., intermolecular Coulomb decay (ICD) [15], which is one
of the well-established mechanisms involved in biological systems, can also produce free
electrons [16]. This process can be initiated by photon absorption by a molecule with a
higher ionization potential than that of a neighboring molecule in a weakly coupled system.
The excitation energy of the molecule is released by energy exchange with the neighboring
molecule, which leads to the emission of an electron from the neighboring molecule rather
than from the molecule excited initially. The kinetic energy of the emitted electron is
typically on the order of several electron volts (<15 eV) [17]. For example, a recent study of
the impact of slow, highly-charged ions (Xe40+ ion with 0.6 keV) on graphene reported that
up to 80 electrons per ion can be produced in a single event [17]. Moreover, because of the
Coulomb explosion of two cationic radicals that are formed during this process, the system
decomposes. Therefore, ICD has been proposed to be another important factor in base-pair
fragmentation [18] and DNA-strand breaks [19,20]. For example, it has been estimated
that the ICD that produces radicals and LEEs may contribute up to 50% of the SSBs at the
DNA–water interface during low-energy ionization events.

Undoubtedly, the complexity of the radiation-induced processes in the cellular environ-
ment, and the secondary electrons’ contribution to the damage of living matter, including
the process of DEA [21–23], remains the subject of vigorous debate among physicists and
chemists. Beyond the physical and chemical changes induced by ionizing radiation, ioniz-
ing radiation has also two general types of adverse biological effects: deterministic and
stochastic [24,25]. Deterministic effects cause immediate changes in a cell (e.g., cell death),
and their severity occurs only above a certain threshold of radiation dose. Stochastic effects
cause long-term changes, and although their probability of occurrence increases with the
radiation dose, their severity is the same regardless of how low the dose of radiation was
to which the cell was exposed. Hence, any single stochastic event even with a low cross
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section for its appearance but leading to DNA damage attributable to ionizing radiation
can ultimately lead to fatal results in the cell [25]. Thus, all processes that involve LEEs
play essential roles in radiation damage to biomolecules and contribute to the alteration
and/or fragmentation of biomolecules; they therefore need to be understood and clearly
identified [26,27].

3. The State of the Art of Detection Techniques for Neutrals Formed due to LEE
Impacts

Generally, the electron attachment to any molecule triggers several dissociation path-
ways of a transient negative ion (TNI) (see Figure 1). In the DEA process, the resulting
fragments are a negative ion and its counterpart. The counterpart can be a single radical
that has no charge or several radical fragments, which are neutrals. Most DEA experi-
mental studies employ mass spectrometric instrumentation to detect negative fragments
from gas-phase molecules or those desorbed from films [5]. Only a few studies have
reported the detection of non-charged fragments because such detections require certain
techniques to be incorporated into existing DEA experimental setups or the modification
of these setups (which increases the costs of such apparatus significantly). In some cases,
changes to these very sensitive set-ups are impossible to make. Despite these challenging
technical issues, some results have been reported for neutral desorbed from thin films
of nitromethane [28], thymine, bromo-uracil-substituted oligonucleotides [29], modified
forms of 11-mercaptoundecanoic acid [30], and DNA [31]. In these cases, electron or photon
ionization mass spectrometry was used. In addition, to obtain more information about
any species remaining on the irradiated films that could not be desorbed, other in vacuo
or ex vacuo analysis techniques were used [27]. However, there has been only one report
on detecting radicals that were non-charged species formed from the DEA process of
molecules in the gas phase [32]. This study used a double-step ionization technique to
identify the neutrals from the dissociation of carbon tetrachloride (CCl4) at close to a 0 eV
electron impact. Previously, a similar approach was taken at much higher electron energies
than those at which DEA occurs for many plasma-related compounds [33–40]. In these
plasma studies, appearance mass spectrometry was used, which is based on the difference
between the appearance potential for the ionization of radicals and that for the dissociative
ionization of precursor molecules [40]. It has been used widely in the diagnostics of neutral
species in plasmas [41]. This technique has been applied successfully in cross-sectional
measurements of electron-impact neutral dissociation of gas-phase methane (CH4) into
CH3 and CH2 radicals [33,34]; carbon tetrafluoride (CF4) into CF3, CF2, and CF [35]; sili-
con tetrafluoride (SiF4) into SiF3, SiF, and Si [36]; trifluoromethane (CHF3) into CF3, CF2,
CF, CHF2, and CHF [37]; and sulfur hexafluoride (SF6) into SF3, SF2, and SF [38,39]. To
date, no studies of biomolecules in the gas phase have been performed, while the neutral
products have been studied only for halogenated compounds [32–40] or small molecules,
particularly hydrocarbons [41]. However, the neutrals formed from these compounds were
not produced at energies corresponding to DEA, which occurs below 12 eV, but at much
higher energies, above 14 eV and most often at approximately 70 eV, an electron energy
region with the highest cross-section for ionization.

In all of these gas-phase studies, neutrals were detected indirectly by ionizing them,
and charged products were seen with mass spectrometry. To achieve this, either one electron
source or two ionization sources were used. In a study published on DEA to CCl4, the
experimental setup was the same as for the conventional gas-phase DEA experiments with
one electron source, which was pulsed [32]. In this study, a target molecule was subjected
to an electron beam of alternating energies to induce different types of interactions at
each step. In each step, the electron beam’s desired combination of energy and pulse
frequency was applied. Moreover, the ionic fragments acquired in each step could also
be specified with respect to their mass and charge (Figure 3). Thus, in the first step, the
electron energy was set at the known resonance peak for the DEA processes and was
kept the same throughout the measurement. In contrast, while the electron energy of the
second step was scanned, the electron energy was changed at a fixed increment in each
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iteration of the two steps to determine the energy at which the signal from the expected
radical fragment occurred. This energy corresponded to the ionization threshold of the
species that was needed to form a cation. The iteration of both steps was repeated until
the cation signal appeared. However, rather than repeating these steps using only one
electron source, another electron source could be used in the second step to ionize radicals.
The choice to use one or two sources would depend on accessible resources, the electron
sources’ electronic properties, such as electron beam frequency and energy range, and the
experimental set-up’s geometry.

Figure 3. (a) A time flow of the experiment for the neutral products from DEA to CCl4 using a
stepwise electron spectroscopy technique [32]; (b) the Cl− ion formation by DEA to CCl4; (c) the
ionization threshold for the CCl+3 ion from the CCl3 radical and the appearance energy of the CCl+3
fragment due to the dissociation of CCl4 upon the electron impact. In the first step of the acquisition
scheme (a), the electron beam energy E1 was set at approximately 0 eV, and the electrons interact
with the molecular beam in the collision region during time t1. The Cl− ions (formed by DEA to
CCl4 (b)) were acquired during the same period t1. Then, the electron energy was increased to E2,
which was slightly below the ionization energy of CCl3. The energy E2 continued to be increased in
each iteration until the ion signal for CCl+3 was clearly detectable. During the second step (t2), the
electron beam of energy E2 interacts with the mix of CCl4 and the products that resulted from the
interaction in the first step, i.e., Cl− and CCl3. The mass spectrometer was set to detect the ion yield
of CCl+3 during the second step t2. Because there was a mix of CCl4, Cl−, and CCl3 during the second
step inside the electron–molecule interaction region, the CCl+3 acquired could be produced by both
the electron impact fragmentation of CCl4 molecules (from the target beam) and the electron impact
ionization of the CCl3 fragment formed during time t1. However, there was a difference between
the appearance energy of CCl+3 from CCl4 and the ionization energy of the CCl3 (c). In other words,
the appearance energy of CCl+3 was over 3 eV higher than the ionization energy of CCl3. During the
experiment, the electron energies in the steps, E1 and E2, were controllable. The same procedure can
be applied to detect or exclude other possible neutrals, e.g., CCl, CCl2, and so on, produced in the
DEA process by properly adjusting the E2 value. In addition, the period of t1 and t2 is controllable
as well. For example, it was set such that t1 and t2 were equal to 1 s and 0.1 s, respectively, in the
experiment published for the CCl3 detection from DEA to CCl4 [32].

Regardless of the experimental arrangements, the general idea is that the neutral
precursor can be identified by comparing the threshold energies necessary to ionize a
given species. Typically, the appearance energy (i.e., the minimum energy required for the
molecule to dissociate and for its ionization to provide a cationic fragment simultaneously)
is much higher than the ionization energy (i.e., the minimum energy required to remove the
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valence electron) (see Figure 3). Another way to detect radicals using mass spectrometry is
by electron attachment that leads to the formation of an anion. In some cases, identifying
neutrals by the electron attachment method is preferable when the electron affinity is high
for a given radical, as will be mentioned below for the nucleobase moieties [42].

Other ionization techniques can be used to detect radicals, as in the case of desorbed
species produced via DEA in the condensed phase, where the photon beam was used
to ionize the products [28,31]. In addition to these two ionization methods, i.e., electron
ionization and photoionization, technical approaches can be adopted by detecting the
emission light from the excited neutral species, such as using Fourier transform infrared
spectroscopy or laser-induced fluorescence. These techniques can be complementary to
those in which mass spectrometry is involved.

4. Molecular Targets of Opportunity

Because no experimental studies have described all of the products formed by DEA,
many possibilities are open for the advancement of our understanding of this process and
are necessary to provide its complete picture. Thus far, in attempts to provide detailed
fragmentation channels, neutral species are deduced based upon anionic species formed
in the experiment and predicted by computational quantum modeling methods, which
calculate the most energetically favorable fragmentation channels. This is determined
by the reaction enthalpies of possible products; however, this approach disregards the
formation of TNI as a precursor species before dissociation.

4.1. Nucleobabses

Beyond the fundamental description of DEA processes, detecting neutral radicals is
essential from the perspective of DNA radiation damage, particularly in the case of DSBs by
LEEs. It has been shown that the formation of a TNI can lead to SSBs in DNA attributable
to the direct interaction of an LEE with the DNA’s sugar–phosphate backbone or due to
electron capture by a nucleobase and charge transfer to the DNA backbone [2]. However,
it is still unclear how a single LEE with an energy of between 5 and 15 eV can cause a
DSB. The molecular description of the mechanism for DSBs can support more complex
decomposition pathways [43] that involve direct and indirect effects of LEEs [44,45], and it
still requires further investigation. One of the possible pathways is radical formation via
DEA in close proximity to the sugar–phosphate backbone. Thus, these neutral radicals can
be produced from the DNA itself or the surrounding molecules. For example, one of the
most abundant anionic species for all nucleobases (NB) is the anion fragment formed via H
loss in the following reaction:

e− + NB → NB−# → H + NB−
−H (1)

in which NB−# is the TNI, H is the hydrogen radical, and NB−
−H is a closed-shell anion

of the nucleobase with H loss. Like nucleobases, all studied amino acids also yield H
loss upon electron impact as the most abundant dissociation channel [5]. The resulting
hydrogen radicals can interact with the DNA strand and cause damage [11], because the H
radical is an electrophilic species with a strong preference for attacking electron-rich sites,
although at a lower rate than the OH radical [6].

Interestingly, the detection of neutral products of the channel complementary to
Reaction 1, in which the hydrogen anion is formed (Reaction 2), can be of great significance
in severe damage to DNA.

e− + NB → NB−# → NB−H + H− (2)

in which NB−# is the TNI, H− is the closed-shell hydrogen anion, and NB−H is a neutral
radical of the nucleobase without hydrogen. The resulting radical is an excellent electron ac-
ceptor and can receive electrons from the neighboring constituents to form the closed-shell
species. The values of adiabatic electron affinity of the neutral radicals of the nucleobases
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(U—uracil, T—thymine, A—adenine, C—cytosine, G—guanine) without hydrogen follow
the order (U−H > T−H > A−H > C−H > G−H), which differs somewhat from the order
of electron affinity for the closed-shell nucleobases [42]. The formation of these radicals
and their further interaction with DNA can potentially lead to a strand break or dimer
formation (e.g., the thymine dimer). Although the formation of H− from nucleobases is
well established, no measurements have been performed to detect the neutral NB−H in a
DEA process.

Therefore, one of the important groups of molecules that would shed light on LEE
effects on DNA damage are the nucleobases. Radicals created via DEA to nucleobases can
have severe consequences, because the pyrimidine dimer, particularly thymine dimer, is
a common result of ultraviolet radiation damage to DNA [6]. DEA to thymine has been
studied extensively, and their anionic fragments have been identified and characterized
well with respect to their resonant structures [46–53]. Therefore, the initial effort could focus
on detecting radicals of nucleobases without hydrogen (Reaction 2). To identify NB−H
formation, the electron energy should be set at one of the resonant energies, i.e., above
4 eV, where H− is observed for nucleobases (first-step ionization). A mass spectrum in the
positive mode could be recorded at an electron ionization energy of 70 eV (second-step
ionization), which for most molecular species has the highest cross-section for ionization.
The presence of NB+

−H indicates solely the formation of NB−H in Reaction 2, as in earlier
electron ionization studies, no NB+

−H was formed from NB. To confirm these assignments,
the complementary negative ion mode can also be performed, in which the electron energy
can be scanned at the fixed mass corresponding to NB−H . This allows observation of the
resonant formation of anions from NB−H (second-step ionization). Because the electron
affinity for NB−H and the probability of the closed-shell anion formation are high [54], the
resonant structure in ion yields is expected. A similar methodology can be used to detect
other neutral fragments from nucleobases.

4.2. Water

As mentioned above, OH radicals from surrounding water molecules can also cause
indirect DNA damage, and it has been suggested that an electron energy above 5 eV causes
DSBs that are correlated with the presence of H2O–DNA complexes [45].

Therefore, it is of great importance to detect neutral radicals from DEA to water, which
is a simple, yet vital, system for understanding the chemical reactivity that leads to DSBs in
DNA. An early attempt to study free radicals from water dissociation was performed at an
electron impact of 100 eV [55]. DEA to gas-phase water has been studied extensively and
remeasured frequently by several groups, and cross sections for DEA have been compiled
recently [56]. Three anionic fragments, i.e., H-, OH-, and O-, produced from intact water
molecules were observed experimentally:

e− + H2O → H2O−# → H− + (OH) or (O + H) (3)

e− + H2O → H2O−# → OH− + (H) (4)

e− + H2O → H2O−# → O− + (H + H) or (H2

)
(5)

To study neutral fragments (stated in parentheses in Reactions 3–5) formed through
DEA to water, the electron energy should be set at the resonance energy where a specific
negative ion was observed (first-step ionization), as shown in Figure 4. Then, the mass
spectrometer should be set at the mass corresponding to the counterpart neutral fragment
of the anion observed while the electron energy is scanned either in the positive or negative
modes of the mass spectrometer (second-step ionization). The positive mode (cation
detection) can determine the threshold energy for the neutral fragments’ ionization. One
must keep in mind that the energy scans can include the contribution from water molecules
present in the chamber (hereafter denoted as background H2O) while performing the
second-step ionization. However, the appearance energies and anionic resonances of
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cations and anions produced from background H2O, respectively, have been documented
well [56,57], and they differ from those expected from neutral fragments. Therefore, the
signals obtained from background H2O can be subtracted. The scheme of the experimental
procedure is presented in Figure 4 for Reaction 3. For example, the appearance energy
for OH+ from gas-phase water is 18.2 eV, whereas the ionization of the OH fragment is
approximately 5 eV lower [57]. Therefore, by scanning the ion yield for mass 17 as a
function of electron energy, one can deduce whether the cation observed derives from
an intact water molecule or the counter-product of the DEA process. The negative mode
(anion detection) can be used to observe the resonant formation of an anion from neutral
fragments. It is also expected that the anion yield features formed from gas-phase water
differ from those fragments, because the electron affinity for an intact molecule differs
from that of neutral fragments. It is important to note that there are reports of radical
detection from water dissociation attributable to LEE-induced neutral dissociation, but not
via DEA [56].

Figure 4. Experimental procedure for neutral fragment identification from water using the two-step
ionization method (see the description in the text). The cross mark indicates that the ionization
threshold for a neutral fragment differs from the appearance energy of the same fragment formed
directly from water and that the resonance structure for anion formation will show different spectra.

5. Conclusions

A continuing quest to understand fundamental phenomena induced by ionizing
radiation, particularly LEEs, which are invariable primary products in any irradiated
matter, is still the ongoing focus of the radiation research community. Although these free
or quasi-free electrons do not travel very far because of their many inelastic collisions,
and because they become thermalized within approximately 1 picosecond, they play an
essential role in the dissociation of molecules along their way and in the production of
longer-lived species such as radicals [22,58,59].

Despite the extensive research by atomic and molecular physics groups on LEE inter-
actions with gas-phase and condensed-phased biomolecules, some fundamental aspects
remain unexamined at the molecular level. One of these is detecting radicals from the DEA
process, which is a missing puzzle for obtaining a complete picture of this process. Because
stable radicals formed in this process are non-charged species, it is not possible to detect
them directly by mass spectrometry, which is used commonly to study DEA. Therefore,
modified mass spectrometric techniques or other currently available technical advances
need to be used to reveal detailed fragmentation patterns. Obtaining fully described
patterns can be incorporated into the database of electronic properties of biomolecules,
which are invaluable to build accurate theoretical and computational models of radiation
effects [5,60]. This can reveal new mechanistic information on DNA damage during irradia-
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tion and can be used to plan radiotherapy treatment. The discovery of all products formed
via DEA will transform our fundamental understanding of LEE interactions with biomolec-
ular systems and has the great potential to yield physical information on the chemistry and
biology of radiation-induced damage of living cells. Thus, a thorough understanding of
this basic and significant collisional process may lead more broadly to enhanced medical
applications in the fields of radiotherapy, radiodiagnostics, and radiation protection.
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Abstract: The accuracy of the most recent recommended cross sections dataset for electron scattering
from gaseous H2O (J. Phys. Chem. Ref. Data 2021, 50, 023103) is probed in a joint experimental and
computational study. Simulations of the magnetically confined electron transport through a gas cell
containing H2O for different beam energies (3, 10 and 70 eV) and pressures (2.5 to 20.0 mTorr) have
been performed by using a specifically designed Monte Carlo code. The simulated results have been
compared with the corresponding experimental data as well as with simulations performed with
Geant4DNA. The comparison made between the experiment and simulation provides insight into
possible improvement of the recommended dataset.

Keywords: electron scattering cross sections; electron transport in gases; electron track simulation

1. Introduction

Water (H2O) is the main constituent of all living organisms, it is a key molecular
compound in the interaction of primary radiation with biological systems, where radiolysis
(photoelectric and Compton effects) dictates the type of prevalent local chemistry at the
molecular level. Additionally, the outcome provided by event-by-event Monte Carlo
simulations, which require reliable and consistent sets of cross sections as input data [1–3],
has been widely used in modelling radiation protocols in hospitals and/or clinical units
devoted to radiotherapy treatment planning. Water has been attracting the attention of the
international scientific community for several decades. In particular, in the last 20 years,
we note widespread interest across the globe in cross sections for electron scattering
from water at both the experimental and theoretical levels [4–17] (see also references
therein). However, there is still no consensus on a recommended set of cross sections for
electron scattering from H2O, particularly regarding dipole driven cross sections where
important discrepancies are found. In fact, rotational excitations play a significant role
in those discrepancies, as they are either not properly accounted or even not resolved in
experimental setups at electron scattering angles close to 0 degrees, making the computation
of the total cross section (TCS) [18] or the momentum transfer cross sections (MTCSs)
required for deriving swarm transport coefficients [7,11] more difficult. Therefore, it is of
major interest to evaluate the reliability of the proposed datasets.

Atoms 2021, 9, 98. https://doi.org/10.3390/atoms9040098 https://www.mdpi.com/journal/atoms51
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In the Madrid laboratory, we have successfully implemented a well-proven methodol-
ogy capable of delivering the most accurate dataset [19–21] through a procedure combining
experimental and simulation methods. In this study we aim at evaluating the reliabil-
ity and applicability of the most recent recommended cross sections dataset for electron
scattering from gaseous H2O [22]. For this purpose, we have used those cross sections
as input data for our novel event-by-event Monte Carlo code. The simulated results are
then compared with the experimental data for the transmitted intensity of magnetically
confined electrons [23] at different energies in the range of 3 to 70 eV, through a gas cell
at different sample pressures (2.5 to 20.0 mTorr). Finally, we compare those results with
simulations performed with the Geant4DNA [24–27] code for the same conditions.

2. Results and Discussion

In this section we present the cross sections for electron scattering from H2O recom-
mended by Song et al. [22], together with a brief description of their origin. Next, we
probe these cross sections as input data for our Monte Carlo simulation. A comparison
with the results obtained using Geant4DNA relative to the experimental data is then
thoroughly discussed.

2.1. Recommended Cross Sections

The most recent compilation from the literature (up to the end of 2019) on electron
scattering cross sections data from water has been reported by Song and collaborators [22].
Their recommended TCSs are based on the elastic + rotational excitation R-matrix calcu-
lations of Tennyson and co-workers from 0.01 up to 7 eV [28–30], the experimental data
of Szmytkowski and Mozejko [31] together with those from Kadokura et al. [32] between
7 and 50 eV, and those from Muñoz et al. [18] from 1 up to 10,000 eV. For the elastic integral
cross sections (ICSs), Song et al. [22] followed the previously recommendation of Itikawa
and Mason [10] adding the theoretical values of Faure et al. [29] for energies between
0.1 and 7 eV. For the electron energy range between 7 and 50 eV, Song et al. interpolated
the theoretical values of Faure et al. [29] and used the experimental data recommended by
Itikawa and Mason [10] above 50 eV. As far as elastic differential cross sections (DCSs) are
concerned, the most recent measurements of Matsui et al. [33] were recommended in the
incident energy range of 2−100 eV [22].

Regarding inelastic processes, the vibrational excitation integral cross sections rec-
ommended are those from Khakoo et al. [34] for incident energies of 10–100 eV, whereas

the data of Seng and Linder [35] is used from threshold up to 10 eV. Concerning
∼
A

1
B1

electronic excitation cross section, Song et al. [22] recommend Ralphs et al. [36] for energies
below 17 eV and the BE f-scaled data for energies above 17 eV [37,38]. For the excitation

of the
∼
a

3
B1 state, the data of Matsui et al. [33] for energies above 12 eV and Ralphs’s

for energies below 12 eV are recommended. It is relevant to note that excitation cross
sections for 3A2, 1A2, 3A1, and 1A1 electronic states were also reported by Ralphs et al. [36],
yet these were not recommended by Song et al. [22] based on the disagreement found
between that data and the previous experimental results of Thorn et al. [37], the latter
thoroughly discussed in ref. [39]. For rotational excitations, Song et al. [22] recommend
the previous cross sections from J′ ′(000) to J′ = 0–3, [10], together with the calculated data
of Machado et al. [40] up to 100 eV electron impact energy. The recommended data for
water neutral dissociation yielding •OH radical formation in the ground and first excited
states and O (1S), are from Harb et al. [41] and Kedzierski et al. [42], respectively. Finally,
the recommended electron-impact ionization cross sections are those from Lindsay and
Mangan [43] based on previous measurements of Straub et al. [44].
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2.2. Input Data for Our Simulation

The required input data for electron transport simulation based on event-by-event
Monte Carlo methods are the total cross sections, the partial integral cross sections, the
angular distribution functions, and the energy loss distribution functions of all the relevant
physical processes (both elastic and inelastic). For the present simulations we have used
those cross sections, with complementary data for both elastic and inelastic DCSs.

We note that Song et al. [22] recommended elastic ICSs and DCSs, which are rotation-
ally unresolved. Therefore, in our simulation we have not explicitly included rotational
excitations but rather considered both elastic and rotational excitation processes as a sin-
gle rotationally unresolved elastic process (see Section 3.2 for further details). Moreover,
Song et al. [22] recommended DCSs values are reported between 10–20◦ and 130◦ scat-
tering angles, based on the R-matrix calculation of Faure et al. [29] to complement the
experimental DCSs from Matsui et al. [33]. However, not all of the data required to ei-
ther extend the available DCS values to all the scattering angles or to interpolate to all
the required energies are available from ref. [29]. For this reason, we have repeated the
calculation of elastic electron scattering cross sections for a larger number of scattering
energies employing exactly the same model used by Faure et al. (see Section 3.3).

With these additional results (available online1), we have extrapolated, after appropri-
ate scaling, the recommended DCSs to 0◦ and 180◦ covering thus the whole angular range
for electron impact energies below 15 eV. Above this energy, we followed a similar proce-
dure by using the sum of our elastic IAM-SCAR+I [45–47] calculation and the rotational
excitation cross sections calculated within the first Born approximation [48,49]. In Figure 1
we show the results of our calculated DCSs and the recommended experimental values for
some selected incident energies.

Figure 1. Rotationally summed differential cross sections calculated with the R-matrix method for
energies below 15 eV and differential elastic IAM-SCAR+I plus rotational (Born) cross sections for
higher energies, compared to the recommended experimental values at 4, 10, 30, and 50 eV [33].

A very important input dataset which was not considered at all in the recent re-
view [22] pertains to DCSs for the inelastic processes, from which the inelastic angular
distribution function can be derived. As it is required for our simulations, and in order
to show the relevance of these data for the shape and magnitude of the transmission
spectra, we have considered two different cases. In case A, we assumed that all inelastic
processes lead to isotropic scattering, whereas in case B, the inelastic angular distribution
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is assumed to be the same as that of the elastic scattering. In the latter case, we have used
the ‘uncorrected’ (see Section 3.3 R-matrix DCSs for electron energies below 15 eV and the
IAM-SCAR+I (pure elastic) DCSs for energies above 15 eV (see Figure 2).

 
(a) (b) 

Figure 2. Theoretical elastic differential cross sections for H2O. (a) Uncorrected (see text) R-matrix results in the electron
energy range 1–15 eV. (b) IAM-SCAR+I results in the electron energy range 20–100 eV.

Another requirement for the input of our simulation code is an energy loss distri-
bution function for each inelastic process considered (see Figure 3). We have used the
experimental averaged energy loss spectrum from Muñoz et al. [18] for the ionization
energy loss distribution, as well as for the electronic excitation and neutral dissociation
processes. For vibrational excitations, we have used the electron energy loss spectrum from
El-Zein et al. [50] following the same procedure as noted by Blanco and co-workers [51].

Figure 3. Proposed electron energy loss distribution function associated to each inelastic process in
the energy range 1–100 eV. See legend for the different processes depicted.
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Finally, it is also important to note that the present TCSs are given by the sum of the
partial ICS for each of the physical processes considered in the simulation. Therefore, our
TCSs do not exactly match those recommended by Song et al. [22], although these values
lie in the 7% range of reasonable uncertainty which can be generally attributed to obtaining
TCS data. Table 1 summarizes the ICS and TCS used as input data for our simulation.

Table 1. Integral cross sections (ICS) for each considered physical process and total cross section (TCS), used as input data
for the present Monte Carlo simulation of electron transport through gaseous H2O together with TCS recommended values
of ref. [22]. Energy in eV and cross sections in units of 10−20 m2.

Energy
Elastic +

Rotational
Electron

Attachment
Ionization

Vibrational
Excitation

Electronic
Excitation

Neutral
Dissociation

TCS a TCS b

0.1 987.8 0 0 0 0 0 987.8 987.8
0.2 533.1 0 0 0.096 0 0 533.2 533.1
0.3 368.1 0 0 2.764 0 0 370.9 368.1
0.4 282.1 0 0 2.509 0 0 284.6 282.1
0.5 229.0 0 0 1.446 0 0 230.4 229
0.6 193.0 0 0 0.945 0 0 193.9 193
0.7 166.9 0 0 0.948 0 0 167.8 166.9
0.8 147.2 0 0 0.951 0 0 148.15 147.2
0.9 131.7 0 0 0.861 0 0 132.6 131.7
1 119.3 0 0 0.830 0 0 120.13 119.3

1.2 101.8 0 0 0.826 0 0 102.7 100.6
1.5 81.6 0 0 0.826 0 0 82.4 81.8
2 63.1 0 0 0.489 0 0 63.6 63.1
3 43.6 0 0 0.674 0 0 44.3 43.6
4 36.2 0 0 0.598 0 0 36.8 36.2
5 31.5 8.2 × 10−4 0 0.760 0 0 32.3 31.5
6 28.6 0.0328 0 1.005 0 0 29.6 28.6
7 25.5 0.0331 0 1.122 0.01 0 26.6 25.5
8 22.8 0.0128 0 1.112 0.10 0 24.0 22.8
9 21.2 0.0144 0 1.047 0.180 0.034 22.5 21.2
10 20.8 0.0054 0 0.955 0.268 0.103 22.13 20.9
12 19.0 0.0054 0 0.738 0.225 0.213 20.17 19.5
15 16.5 3.6 × 10−4 0.126 0.438 0.193 0.330 17.6 17.2
17 15.1 1.0 × 10−4 0.245 0.316 0.175 0.390 16.3 16.5
20 13.6 0 0.428 0.225 0.155 0.481 14.9 15.7
25 11.7 0 0.761 0.15309 0.129 0.681 13.4 14.1
30 10.1 0 1.02 0.1217 0.148 0.893 12.3 12.9
35 8.9 0 1.26 0.10089 0.133 1.056 11.4 12.2
40 7.9 0 1.43 0.08432 0.131 1.169 10.7 11.5
45 7.3 0 1.59 0.07144 0.129 1.245 10.3 10.9
50 6.6 0 1.72 0.0617 0.126 1.30 9.8 10.2
75 4.4 0 2.04 0.04101 0.112 1.44 8.10 8.6

100 3.4 0 2.16 0.0168 0.098 1.41 7.11 7.4
a Sum of the partial ICSs used in the present simulation. b Recommended TCS values from Song et al. [22].

2.3. Experiment vs. Simulation

The main goal of this study is to evaluate the reliability of a recently recommended
dataset of cross sections for electron scattering from H2O to be used for modelling purposes.
A well-proven procedure to validate the accuracy of a given cross sections dataset is via
event-by-event Monte Carlo simulations of the magnetically confined electron transport
through a gas cell, as proven in previous studies [19–21]. As described in Section 3.1, under
these conditions, after any collision event the expected scattering angle is transformed into
an energy loss in the axial direction. Therefore, the results given by the simulations are
very sensitive to both the integral and the differential cross sections used as input data. As
the cross sections for elastic processes have only been recommended up to 100 eV [22], we
focused our analysis in the low-energy range to make a comparison between the results
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from the simulation and the experiment for three different electron energies (viz. 3, 10,
and 70 eV). Moreover, for each incident energy, we considered two different cases for
the pressure in the gas cell, except for the lowest energy (see below). This methodology
provides some insight into the effect of increasing the number of multiple collisions, which
is relevant for the accuracy and reliability of the input data dependent simulation results.

In Figures 4–6 we depict the integrated transmission curves obtained from our sim-
ulations and from Geant4DNA for electron beam incident energies of 3, 10, and 70 eV,
respectively. The experimental distributions obtained with the magnetically confined elec-
tron beam system are also plotted in these figures for comparison. For 3 eV, we restrict the
transmitted spectrum to a gas pressure of 2.5 mTorr given that at higher pressures we have
encountered reasonable instabilities; for 10 eV, the electron transmission was obtained at
5.0 and 10.0 mTorr; and for 70 eV, at 10.0 and 20.0 mTorr.

Figure 4. Experimental and simulated transmission spectra (i.e., the intensity of the electrons with
a corresponding axial kinetic energy above the retarding potential barrier) of a 3 eV electron beam
through 2.5 mTorr of gaseous H2O.

 
(a) (b) 

Figure 5. Experimental and simulated transmission spectra (i.e., the intensity of the electrons with a corresponding
axial kinetic energy above the retarding potential barrier) of a 10 eV electron beam through (a) 5.0 and (b) 10.0 mTorr of
gaseous H2O.
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(a) (b) 

Figure 6. Experimental and simulated transmission spectra (i.e., the intensity of the electrons with a corresponding axial
kinetic energy above the retarding potential barrier) of a 70 eV electron beam through (a) 10.0 and (b) 20.0 mTorr of
gaseous H2O.

For each incident energy we obtained, in general, a good agreement between the
simulations and the experimental results for the lowest pressure values considered, while
significant discrepancies were found for the highest-pressure values. The results obtained
from the simulations performed with Geant4DNA are qualitatively similar to ours but
with some systematic discrepancies, which can be attributed to the differences between our
input cross sections and those derived from the models considered by Geant4DNA at low
energies (see Section 3.2 for further details).

With respect to the results at 3 eV, the main discrepancy appears in the low retarding
potential region of the spectra, particularly below 1 V (i.e., where electrons with axial
kinetic energies below 1 eV are incorporated to the integral transmission curve), where
our simulation shows a significant enhancement which is not visible in the Geant4DNA
results and is just slightly appreciable in the experimental data. This suggests that the
recommended rotationally unresolved DCSs are overestimating the high angle contribution.
However, as we mentioned in a previous study dealing with a larger polyatomic molecule,
para-benzoquinone [20], a lower probability of the low-energy electrons reaching the
detector would also contribute to such discrepancy.

At 10 eV we notice that both our simulation and the Geant4DNA results remain
systematically below the experimental transmission curve. At this energy, elastic processes
are still predominant, such that the observed systematic underestimation suggests a sub-
stantial overestimation of the recommended integral elastic cross sections. In addition, at
this energy both electronic excitation and neutral dissociation channels are becoming more
significant, so perhaps the overestimation of the elastic cross section at 10 eV is accompa-
nied by an underestimation of the cross section of one of these inelastic processes. Hence,
a more accurate cross sections dataset of these processes might significantly improve the
agreement between simulations and experiment.

For an incident energy of 70 eV, all inelastic channels are now open, and their influence
in the transmission spectra becomes at least as important as that of the elastic one. Our
simulations reproduce the experimental results with excellent agreement for retarding
potentials above 60 V, suggesting reasonably accurate integral cross sections. However,
some discrepancies appear below that energy, which can be attributed to the contribution
of the DCSs. As we mentioned in Section 2.1, a set of DCSs for the inelastic processes was
absent from the recommended dataset [22], which we are using as input for our simulation.
When comparing the present simulations using the two limit assumptions for the inelastic
angular distributions (Case A, isotropic; and Case B, the same as that for pure elastic
processes) with the experimental results, we observe a significant discrepancy in the slope
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of the transmission spectrum in the 20–60 V retarding potential range for both cases. In
fact, the experimental results seem to lie somewhere in-between these two cases. Moreover,
the results obtained with Geant4DNA, in no better agreement with the experimental data
than ours, also show a transmission slope which lies in-between our two simulation cases.
The discrepancies below 20 V (i.e., where electrons with axial kinetic energies below 20 eV
are incorporated to the integral transmission curve) can again be mainly explained by the
lower probability of low-energy electrons reaching the detector. Therefore, the results at
this incident energy suggest that the inelastic angular distributions play a major role in
shaping the transmission spectra. Taking this into account, the incorporation of inelastic
DCSs to the cross section compilation of H2O should lead to a major improvement in the
simulation of electron tracks through gaseous water.

Finally, in order to better illustrate the magnitude of the discrepancies found between
the present simulated and experimental results as a function of pressure, Table 2 shows
the number of processes and the total deposited energy per incident electron for different
electron energies and gas pressures. A close inspection of this table reveals that the number
of total interactions notably increase with pressure (by a factor of 3 or 4, at 10 and 70 eV,
respectively). As the number of total interactions per incident electron increases, the
discrepancies between the simulation and experiment are magnified due to the higher
number of times that the cross sections data, with their respective uncertainties, are used.
At 70 eV incident energy, ionization processes are significant and, accordingly, a high
number of secondary electrons are produced, thus making the simulation more challenging.
In addition, at the highest pressure considered (20.0 mTorr), the formation of water clusters,
which are not considered in our simulations, might be playing a non-negligible role. It is
important to note that despite the simulation including all inelastic processes, electronic
excitations and electron attachment have such a low rate in the considered experimental
conditions that their influence in the shape of the transmission curve is too small to enable
evaluation of the accuracy of the associated recommended cross sections from this study.

Table 2. Average number of interactions for each physical process and total energy deposited (bottom
row) per initial electron at different incident energy and gas pressure conditions. Simulations were
performed for case A (isotropic inelastic scattering assumption).

Process
3 eV

2.5 mTorr
10 eV

5.0 mTorr
10 eV

10.0 mTorr
70 eV

10.0 mTorr
70 eV

20.0 mTorr

Elastic + Rotational 1.99 2.41 6.07 3.77 14.43
Ionization 0.0 0.0 0.0 0.36 0.70

Electronic Exc. 0.0 0.03 0.06 0.03 0.09
Vibrational Exc. 0.03 0.10 0.23 0.07 0.32

Attachment 0.0 0.001 0.002 0.001 0.002
Neutral Dissociation 0.0 0.01 0.02 0.27 0.55

Total Interactions 2.02 2.54 6.38 4.50 16.09
Deposited Energy 0.009 eV 0.271 eV 0.620 eV 5.002 eV 9.902 eV

3. Materials and Methods

In this study we have combined the use of experimental and computational methods
in a powerful procedure to validate the accuracy of a given cross sections dataset for
electron scattering from gaseous water molecules. Such procedure has previously been
applied with success to other molecules of biological interest, such as furfural [19], para-
benzoquinone [20], and pyridine [21]. In the following subsections, we briefly describe the
experimental setup used, as well as the simulation and computational procedures.
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3.1. Magnetically Confined Electron Beam Experiment

The experimental results of the transmitted electron intensity spectra through gaseous
H2O have been performed in a state-of the art magnetically confined electron beam ex-
periment (see Figure 7) which has been described in detail elsewhere [23]. Some recent
improvements in the performance of this experimental setup have been achieved after
introducing small modifications consisting mainly on the replacement of the grids by
collimators with apertures of 1.5 mm in diameter, which are depicted in Figure 7 as Ci
(i = 1–7). This modification allows one to apply the potentials along the electrons’ path
avoiding the formation of secondary electrons and it does not affect the working princi-
ple of this setup, which consists of the axial magnetic confinement of the electron beam
(around 0.1 T) inside both the nitrogen gas trap and the scattering chamber (see Figure 7).
As reported before [23], under these conditions, any collision event converts the expected
scattering angle into an energy loss in the axial direction. A hairpin filament generates
the electron beam which is guided through a nitrogen gas trap where it can be cooled,
thereby reducing its initial energy spread of 500 meV down to about 100–200 meV in the
optimal working conditions. Subsequently, before entering the scattering chamber, where
a constant pressure of gaseous H2O is introduced through a leak valve, the electron beam
is pulsed. Using a retarding potential analyzer (RPA), at the exit of the scattering chamber,
the integrated transmission for electrons up to a given axial kinetic energy is recorded and,
by performing an energy scan, the integrated transmission curves can be obtained.

Figure 7. Schematic representation of the magnetically confined electron beam experiment: EG, electron gun; GT, gas
trap; IC, interphase chamber; PC, pulse-controlling system; SC, scattering chamber; RPA, retarding potential analyzer; AD,
detection area; MCP, microchannel plate detector; C1–C7 various transmission collimators; P1, P2, P3, differential pumping
system; BEG, BGT, BIC, BSC, BAD, axial magnetic fields of the different chambers generated by the corresponding solenoids
(S1–S7); W1–W4, water cooling system; G1, G2, gas inlet to the GT and SC, respectively. (See also text and ref. [23] for
further explanation).

3.2. Simulation Procedure

A specifically designed and developed event-by-event Monte Carlo code, fully built
and implemented in Python, has been used to simulate the transmitted intensity of mag-
netically confined electrons through gaseous H2O.

This code has a modular structure that allows one to easily implement, revise, and
modify each of the physical processes involved in a specific simulation. When simulating
charged particles tracks, the code considers the different physical processes by sampling
the step length between collisions, the interaction type, the energy loss, and the angular
deflection of the scattered particles. This sampling procedure is performed from the
probability distributions derived from the input dataset consisting of the total cross sections,
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the partial integral cross sections, the energy loss spectra, and the differential cross sections.
Special attention is needed for sampling the scattering angle of the rotational excitations
as their DCS are very strongly peaked in the forward scattering direction and a double
logarithmic fitting for the interpolation at low angles is required in order to perform an
accurate sampling. This is especially important in the present simulations, where rotational
excitations and pure elastic collisions are merged into one single quasi-elastic process.

In the present study, we generated 104 incident electrons with an initial energy distri-
bution obtained from the experimental transmission measurements with no gas (0 mTorr)
in the collision chamber for each specific condition (incident energy and gas pressure)
investigated. Although we could have achieved an electron beam energy resolution of
around 100–200 meV, for the present study we have worked with suboptimal conditions
(see Supplementary Information in Supplementary Materials for the precise energy resolu-
tion determination) in order to make even more challenging for the simulation to reproduc
the transmitted energy spectra. This number of electrons was found to be enough to ensure
that statistical uncertainties on the simulated transmitted intensities are less than 1%. It is
also important to note that the RPA only affects the axial component of the emerging elec-
trons’ momentum. Therefore, the simulated transmitted intensity is obtained by measuring
only the kinetic energy associated with such component.

We have also performed simulations using the Geant4DNA [2,26] code, which is an
extension of the well-known multipurpose Monte Carlo simulation toolkit Geant4 [52]. This
extension includes models for processes relevant to the simulation of biological damage
induced by ionizing radiation at the DNA scale. These processes mainly account for
low-energy electron collisions with water and other DNA analogue molecules such as
tetrahydrofuran (THF) and pyrimidine. The Geant4DNA simulation procedure has been
thoroughly described by the Geant4DNA collaboration [2,3] so no further details will
be given here. Among the available models for low-energy electron transport through
water, we have selected those which have the lowest energy limit in their applicability. For
elastic processes, we have used the Screened Rutherford model; for electronic excitations
and ionizations we have selected the Emfietzoglou model; and for vibrational excitations
and electron attachment we have applied the Sanche Excitation model and the Melton
Attachment model, respectively.

3.3. Theoretical Calculation of Elastic and Rotational Cross Sections

The electronically elastic cross sections below 15 eV were calculated using the R-matrix
method, as implemented in the UKRmol1 suite [53], within the fixed-nuclei approximation.
As mentioned above, the model used in these calculations is identical to that employed
by Faure et al. [29]. The model can be briefly summarized as follows (see [54] for more
details): the molecular geometry corresponds to rOH = 1.81a0 and an angle between the OH
bonds α = 104.5◦. The Dunning DZP basis set was used for O and the TZP for H, this latter
augmented with one diffuse s and two p functions, to generate pseudonatural orbitals
that best describe (within this basis) the ground state and lowest six excited states of H2O.
Seven target states were included in the close-coupling expansion: a complete active space
configuration interaction model was used to expand the electronic state wavefunctions, in
which the 1s orbitals of O were kept frozen and the eight remaining electrons were allowed
to occupy the orbitals in the active space (2a1, 3a1, 4a1, 5a1, 1b1, 2b1, 1b2). This model
produces a good description of the target states [54]: the ground state dipole moment
(a critical quantity when describing electron scattering from a polar molecule) obtained
is μ = 0.7334 a.u. (the experimental value is μ = 0.7295 a.u.). An R-matrix radius of 10 a0
was sufficient to ensure the electronic density associated to these states was negligible
outside the R-matrix sphere. Gaussian type orbitals with angular momentum l ≤ 4 were
used to describe the continuum. Using this model, K- and T-matrices were generated
and used as input to a modified version of POLYDCS [55]. This modification enables
the use of T-matrices and therefore the accurate calculation of elastic DCS above the first
electronic excitation threshold. K-matrices were used to calculate DCS below the first

60



Atoms 2021, 9, 98

excitation threshold (as done by Faure et al.) and T-matrices were employed to perform the
calculations above it.

The DCS are determined (by POLYDCS) using a closure formula which compensates
for the truncation of the partial wave expansion of the continuum and, at the same time,
removes the divergence of this expansion in the fixed-nuclei approximation [56]. The
dipolar Born approximation is used to calculate the contribution of partial waves not
included in the R-matrix calculation: the cross sections thus determined are said to be
‘Born-corrected’. The cross sections thus obtained are not rotationally elastic: they are
rotationally summed over a number of final states (the initial rotational state was assumed
to be the one corresponding to J = 0 in our calculations). The ‘uncorrected’ cross sections for
energies ≤7 eV presented in Figure 2. Correspond to performing a POLYDCS calculation
assuming the molecule is non-polar, i.e., no Born-approximation based terms are added to
the differential cross sections, but the frame transformation is performed. The uncorrected
results for 7 eV < E ≤ 15 eV were calculated using the T-matrices and a different program
that implements a similar approach, DCS [57].

4. Conclusions

The accuracy of the cross sections dataset for electron collisions with H2O recom-
mended by Song et al. [22] has been critically evaluated by simulating the transmission
of magnetically confined electrons with 3, 10, and 70 eV kinetic energy through different
pressures of water vapor using their data as input. Also, simulations using Geant4DNA
have been performed and compared with the experimental results and those from our own
Monte Carlo simulation code.

The recommended dataset from ref. [22] presents two main deficiencies to serve as
input for our simulation code: (a) the elastic DCSs recommended are experimental values
and do not extend either to angles below 10–20◦ or above 130◦. Thus, we had to extrapolate
these by using an extended R-matrix dataset for incident energies up to 15 eV and a
dataset calculated with the IAM-SCAR+I method for electron energies in the range of
15–100 eV; (b) angular DCSs for the inelastic processes are absent in the recommended
dataset, so we have performed simulations considering two limit cases (A and B) in order
to gain a better understanding of the role played by the inelastic angular distributions in
shaping the transmission curves. Case A considered that all inelastic processes yielded an
isotropic scattering distribution, while case B assumed that the inelastic angular distribution
contributes equally as the pure elastic scattering.

In general, a good agreement in the transmission spectra, although with some discrep-
ancies, has been obtained for all incident energies at the lowest pressures considered here.
Nonetheless, some insight as to how to improve the cross section dataset has been gained
by considering the observed discrepancies. Some inaccuracy in the rotationally unresolved
elastic DCSs at 3 eV is suggested by the disagreement found in the low energy region of
the transmission spectra. At 10 eV, the results suggest an overestimation of the integral
elastic cross sections. The results obtained at 70 eV with our two simulations assuming
different angular distributions for the inelastic processes revealed the importance of these
DCSs for an accurate simulation of the electron transport process. Therefore, the present
results clearly show the need to incorporate recommended data for those inelastic DCSs in
order to improve the simulations of electron transport through gaseous H2O.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atoms9040098/s1. Table S1: IAM-SCAR+I elastic DCS H2O; Table S2: FBA rotational DCS H2O;
Table S3: Simulation input elastic+rotational DCS H2O, SI: Transmitted Spectra No Gas. The elastic
DCS and integral cross section calculated with the R-matrix method are available for download here:
https://doi.org/10.5281/zenodo.5566537.
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Abstract: Cross-sections and thermally averaged rate coefficients for vibration (de-)excitation of a
water molecule by electron impact are computed; one and two quanta excitations are considered
for all three normal modes. The calculations use a theoretical approach that combines the normal
mode approximation for vibrational states of water, a vibrational frame transformation employed
to evaluate the scattering matrix for vibrational transitions and the UK molecular R-matrix code.
The interval of applicability of the rate coefficients is from 10 to 10,000 K. A comprehensive set of
calculations is performed to assess uncertainty of the obtained data. The results should help in
modelling non-LTE spectra of water in various astrophysical environments.

Keywords: water; vibrational excitation; R-matrix; electron-molecule collisions; interstellar medium

1. Introduction

The water molecule is fundamental in a variety of research fields, such as biochemistry,
meteorology and astrophysics. On Earth, water exists in all three phases (gas, liquid and
solid), and life as we know it would not be possible without liquid water. Water is also
ubiquitous in astronomical environments, from the Solar System to distant galaxies, where
it is observed in both gaseous and solid forms (see ref. [1] for a review). Collisions between
free electrons and water molecules thus play an important role in molecular environments
as diverse as biological systems, cometary atmospheres and stellar envelopes.

Electron-H2O collisions have been extensively studied for many years, both theoreti-
cally and experimentally (for a recent review see ref. [2]). Vibrationally elastic and inelastic
cross-sections have been measured and computed, and the agreement between experiment
and theory is generally good. Rotational and vibrational excitation is dominated by dipole-
allowed Δj = 1 and Δν = 1 transitions, respectively, except possibly in the presence of
resonances. We note, however, that cross-sections for individual rotational transitions (vi-
brationally elastic or inelastic) have not been measured so far. As a result, the best available
cross-sections for rotational excitation are those computed by Machado et al. [3] for energies
above 7 eV and those of Faure et al. [4] for lower energies, as recommended by refs. [2,5].
Because experiments can hardly distinguish between the two stretching excitations (sym-
metric and asymmetric) of water, vibrational measurements usually provide cross-sections
for bending excitation (010) and for the sum of the two stretching excitations (100) and
(001) (in normal mode notations). From their compilation of literature data, Song et al. [2]
recommend the experimental vibrational cross-sections obtained by Khakoo et al. [6] for
energies above 3 eV and those of Send and Linder [7] for lower energies. The most accurate
theoretical data are the cross-sections of ref. [8] obtained by combining the vibrational
coupled-channel theory with an interaction potential described as a sum of electrostatic,
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electron exchange and polarization contributions. The agreement with measurements is
generally good for the bending mode but the combined stretching-mode cross-section is
about a factor of two smaller than the experimental data for energies below 10 eV. We note
that the theoretical data of refs. [4,8] were used by Faure and Josselin [9] to derive rate
coefficients in the temperature range of 200–5000 K for use in astrophysical models.

In all previous experimental and theoretical studies, only dipole-allowed vibrational
transitions Δν = 1 were reported. In the envelopes of giant stars, however, water has been
observed in high-energy rotational transitions within several vibrational states, i.e., (010),
(100), (001) and (020) [10]. Such environments are not in local thermodynamic equilibrium
(LTE), and the observed spectra contain precious information about local physical condi-
tions. For example, one strong maser (microwave amplification by stimulated emission of
radiation) transition at 268.149 GHz, arising from jkakc = 652 → 743 in the (020) vibrational
state, was detected towards the evolved star VY CMa [11]. In order to extract information
from such non-LTE spectra, cross-sections for one-quantum but also two-quantum transi-
tions (Δν = 1 and 2) need to be computed. In addition, rovibrational state-to-state data
are required. In all previous works for electron collisions with water, however, vibrational
cross-sections were computed for one-quantum transitions only and without considering
specific initial and final rotational states. It should be noted, in this context, that Stoecklin
and co-workers have recently performed rovibrational state-to-state close-coupling calcu-
lations for the quenching of the bending mode (010) of water by (spherical) H2 [12] and
helium atoms [13].

In the present work, new theoretical calculations for the vibrational (de-)excitation
of water by electron-impact are performed using the R-matrix theory combined with
the vibrational frame transformation. Similar preliminary calculations were presented in
ref. [2]. Here, we provide, for the first time, cross-sections for two-quantum transitions and
for all three vibrational modes. Rate coefficients are deduced, and simple fits are provided
in the temperature range from 10 to 10,000 K for use in models. The theoretical approach is
briefly introduced in the next section. The results are presented and discussed in Section 3.
Conclusions are summarized in Section 4.

2. Theoretical Approach

The theoretical approach employed in this study is presented in detail in refs. [14–17].
Here, we sketch below only the main ideas.

2.1. Ab Initio Calculations

Our model employs the fixed-nuclei reactance matrix (K-matrix) obtained numerically
using the UK molecular R-Matrix code (UKRMol) [18,19] with the Quantemol-N expert
system [20]. The K-matrix for the e−−H2O collisions is computed for each geometry
configuration of the molecule. It is labelled by the irreducible representations of the
molecular point group. The ground-state electronic configuration of H2O at its equilibrium
geometry of the C2v point group is

X1 A1 : 1a2
1 2a2

1 1b2
2 3a2

1 1b2
1.

Performing the R-matrix calculations, we freeze the 2 core electrons 1a2
1 and keep

8 electrons free in the active space of 2a1, 3a1, 4a1, 5a1, 1b1, 1b2, 2b2, 3b2 molecular orbitals.
A total number of 508 configuration state functions (CSFs) are used for the above-ground
state. All the generated states up to 10 eV were retained in the final close-coupling calcula-
tion. We employed an R-matrix sphere of radius 10 bohrs and a partial-wave expansion
with continuum Gaussian-type orbitals up to l ≤ 4.

Several basis sets, including DZP (double zeta-polarization contracted [21]) and cc-
pVTZ (correlation-consistent polarized valence triple-zeta [22]) types, were tested to inves-
tigate the stability of the target properties, such as the dipole moment and ground state
energy. Finally, we chose the cc-pVTZ basis set with the above complete active space (CAS)
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to perform the scattering calculations. In the following, this calculation will be referred
as Model 1.

One of the important features of the present theoretical approach is the use of an
energy-independent S-matrix. A convenient way to identify a weak or a strong energy
dependence of the matrices is the eigenphase sum. Figure 1 displays the eigenphase sum
of different irreducible representations at equilibrium and at displacements away from the
equilibrium along each normal mode coordinate. Here and below, all normal coordinates
are dimensionless. At equilibrium, the lowest resonance is found at 7.8 eV and has the
2B1 symmetry.
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Figure 1. The sum of eigenphases as a function of the electron scattering energy for equilibrium
geometry and displacements qi = ±1.0835 along each normal mode. The eigenphase sums for
q3 = +1.0835 and q3 = −1.0835 of the asymmetric stretching mode are identical. The curves are
color coded according the different symmetries of the e− + H2O system (see the left upper panel).

To construct elements of the scattering matrix for transitions from one vibrational
level v to another v′, which are then used to compute the cross−section, one needs the
vibrational wave functions of the target molecule. At low collisional energies, the molecule
can be characterized by three normal modes of vibration: bending, symmetric stretching
and asymmetric stretching with respective frequencies ω2, ω1 and ω3 and corresponding
coordinates q = {q2, q1, q3}. In this study, for the vibrational motion of H2O, we use the nor-
mal mode coordinates and vibrational wave functions in the normal-mode approximation.

The electronic structure and normal mode frequencies are determined by the com-
plete active space self-consistent field (CASSCF) method using the ab initio quantum
chemistry package MOLPRO [23]. The cc-pVTZ basis set is employed for all the atoms.
Table 1 gives the optimized geometry and vibrational frequencies, obtained in the present
calculation, and compares the results with available experimental data. Figure 2 shows
how inter-particle distances r1, r2 and the bond angle θ change as functions of normal
mode coordinates: bond lengths. Note that displacements along the bending and sym-
metric stretching modes do not break the C2v molecular symmetry, while the asymmetric
stretching mode reduces the symmetry to the Cs group.
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Bending (a) 

Symmetric stretching (b) 

Asymmetric
stretching (c) 

Figure 2. Normal modes of H2O. The figure shows the dependence of inter-particle distances r1, r2

and the bond angle θ as functions of normal mode coordinates: (a) bending, (b) symmetric stretching
and (c) asymmetric stretching. The arrows indicate the direction and magnitude of displacements
for each mode. Bond lengths are given with solid lines with values on the left axis, while the bond
angle is given with a dashed line with values on the right axis of each panel. Note that the curves
of the bond lengths r1 (black) and r2 (red) are indistinguishable for the bending and symmetric
stretching modes.
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Table 1. The structure and vibrational frequencies (in eV) of H2O obtained in this study and compared
with experimental data from ref. [24].

Mode This Study Exp. [24,25]

Bending (010) 0.207 0.198
Symmetric stretching (100) 0.472 0.453

Asymmetric stretching (001) 0.488 0.466

Bond lengths r1, r2 (Å) 0.958 0.958
Bond angle θ (Degrees) 104.44 104.50

2.2. Cross-Sections for Vibrational Excitation

The fixed-geometry reactance matrix K(q) is transformed to the fixed-geometry scat-
tering matrix S(q). The channels (indexes) of two matrices correspond to different states
of target, which could be excited at a given scattering energy, and different partial-wave
quantum numbers of the incident electron. For water, the first excited electronic state is
at 7.14 eV above the ground vibronic level [2,26]. Here, we consider energies below the
excitation of the lowest excited states. Therefore, each channel in the scattering matrix
is labeled with the partial-wave indexes only, which are the angular momentum l of the
incident electron and its projection λ on the molecular axis of symmetry.

The scattering matrix S(R) is then converted by the vibrational frame transformation

Sv’v = ∑
l′λ′ lλ

∫
dqχv’(q)Sl′λ′ ,lλ(q)χv(q) (1)

to the matrix Sv′v in the representation of vibrational channels. Functions χv are vibrational
wave functions of the target molecule.

In this study, we consider excitation of one mode at a time with one or two quanta,
while the two other modes are kept in their ground state. Although the integral in the above
expression is formally over the three normal-mode coordinates, in practice, we integrate
only over one coordinate, which is the one corresponding to the mode that is being excited.
For the example, the excitation of the mode i from state vi to v′i is given with the integral

Sv′ivi
≈ ∑

l′λ′ lλ

∫
dqiχv′i

(qi)Sl′λ′ ,lλ(q)χv′i
(qi) (2)

evaluated over the coordinate qi, with values of the two other normal-mode coordinates
(the matrix Sl′λ′ ,lλ(q) depends on all three coordinates) fixed at the equilibrium values,
i.e., 0. The integral is evaluated using the Gaussian–Legendre quadrature with 10 points.
Functions χvi are eigenfunctions of one-dimensional harmonic oscillator in the dimension-
less coordinate qi, i.e., solutions of the equation(

− d2

dq2
i
+ q2

i

)
χvi = (2vi + 1)χvi . (3)

Having the scattering matrix in the vibrational representation, the cross-section for
the v′i ← vi process is given

σv′i←vi
=

πh̄2

2mEel
|Sv′ivi

− δv′ivi
|2 , (4)

where m and Eel are the mass and energy of the incident electron.

69



Atoms 2021, 9, 62

3. Results

3.1. Cross Sections

Figure 3 gives the computed cross-sections for transitions between the three lowest
vibrational levels for the three modes. Both excitation and de-excitation cross-sections were
calculated. There have been several experiments measuring cross-sections for excitation
of the ground vibrational level by one quantum. In the experiments, contributions from
the two stretching modes were not resolved. Figures 4 and 5 compare the present results
with the experimental [6,7,27,28], theoretical [8,29] and previously evaluated and recom-
mended [2,30] data available in the literature. See the review of ref. [2] for details about
the data.

For the bending mode and energies below 3 eV, the present cross-section agrees well
with the experiment by Seng and Linder [7] but is somewhat below the data obtained from
a swarm analysis by Yousfi and Benabdessadok [30]. At energies above 4 eV, the present
values are below by about 30% than the swarm data and by a factor of two than the
recent experiment by Khakoo et al. [6]. For the stretching mode (Figure 5), all available
experimental data generally agree with each other, while the present results and other
previous theoretical cross-sections are all systematically below the experimental values.
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Figure 3. The calculated cross sections as functions of the electron scattering energy for the vibrational excitation of H2O for
different vibrational states vi = 0, 1, 2 of the three normal modes i (see the text for detailed discussion): (a) cross−sections
for the bending mode, (b) for symmetric stretching mode and (c) for asymmetric stretching mode.
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It is worth mentioning that in the beam experiments, a wide resonant structure near
8 eV is observed. It is especially pronounced in the experiment by Khakoo et al. [6]
and less pronounced, manifested rather as a shoulder, in the swarm data by Yousfi and
Benabdessadok [30]. In our calculations, we observe four resonances near that energy:
two narrow resonances of 2B1 symmetry at 7.8 eV and of 2 A1 symmetry at 10 eV, and two
wider resonances: a 2 A2 resonance at 6.7 eV and a 2B2 resonance at 11 eV with a width
of about 1 eV. Therefore, the resonant structure observed in the experiments (with unre-
solved rotational structure) can be explained well by the presence of these four resonances.
However, it is clear that the theory is unable to reproduce the magnitude of the excitation
cross-section correctly, as observed in the experiments. Therefore, it is likely that in the
present and previous theoretical calculations, an effect, responsible for a larger vibrational
excitation at energies above 3 eV, is not accounted for. One possibility is that in this region
of energies, the resonant states, mentioned above, can capture the electron into their vi-
brational states, which would significantly enhance the excitation cross-section. A similar
resonant mechanism was observed in electron-impact vibrational excitation CO [31]. An-
other consideration is that close-coupling calculations, such as the ones performed here, do
not provide a converged treatment of polarization interactions [32]. It is, therefore, possible
that the underestimation of polarization effects contributes to the under prediction of the
vibrational excitation cross-section.

3.2. Rate Coefficients

The excitation cross-sections were used to compute the thermally averaged rate coeffi-
cients (see, for example, Equation (13) of ref. [14]). The coefficients are shown in Figure 6.
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Figure 6. Same as Figure 3 for the calculated rate coefficients. Dashed lines represent de-excitation transitions, while the
solid lines of the same colour refer to opposite processes.
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Similarly to the previous studies [14,33,34], for a more convenient use in models, the
numerical rate coefficients are fitted to the following analytical formula

α
f it
υi

′←υi
(T) =

1√
T

e−
Δ

υi
′←υi
T P f it

υi
′υi
(x), (5)

where

P f it
υi

′υi
(x) = a0 + a1x + a2x2 and x = ln(T). (6)

The coefficients aj (j = 0, 1, 2) are fitting parameters. The quantity P f it
υi

′υi
(x) is the

(de-)excitation probability. It weakly depends on the scattering energy. In Equation (5),
Δυi

′←υi
is the threshold energy defined as

Δνi
′νi

=

{
Eνi

′ − Eνi > 0 for excitation,
0 for de-excitation.

(7)

The coefficients aj are obtained for each pair of transitions v′ ↔ v from a numerical
fit. The numerical parameters of aj listed in Tables 2–4. To use the fit, temperature T in
Equation (6) should be in kelvins.

Table 2. Parameters a0, a1 and a2 of the polynomial P f it
υi

′υi
(x) of Equations (5) and (6) between the three lowest vibrational

states for the bending mode of H2O. The pairs of the final and initial vibrational levels for each normal mode are at the
second line in each header of the tables. The third line in each header gives the threshold energies Δυi

′←υi in Equation (7).

v′i ← vi 1 ← 0 2 ← 0 0 ← 1 2 ← 1 0 ← 2 1 ← 2

Δv′i ,vi
(K) 2403 4807 0 2403 0 0

a0 5.76 × 10−7 2.23 × 10−8 2.63 × 10−7 1.08 × 10−6 8.33 × 10−9 3.99 × 10−7

a1 −6.32 × 10−8 −3.05 × 10−9 2.24 × 10−8 −1.19 × 10−7 7.07 × 10−10 6.83 × 10−8

a2 2.76 × 10−9 1.95 × 10−10 −2.97 × 10−9 5.30 × 10−9 −5.27 × 10−11 −7.34 × 10−9

Table 3. Same as Table 2 for the symmetric stretching mode of H2O.

v′i ← vi 1 ← 0 2 ← 0 0 ← 1 2 ← 1 0 ← 2 1 ← 2

Δv′i ,vi
(K) 5489 10978 0 5488 0 0

a0 2.92 × 10−7 1.01 × 10−8 1.10 × 10−7 5.69 × 10−7 6.62 × 10−9 2.32 × 10−7

a1 −5.68 × 10−8 −1.06 × 10−9 −8.08 × 10−9 −1.07 × 10−7 −1.82 × 10−10 −1.79 × 10−8

a2 4.29 × 10−9 7.76 × 10−11 1.09 × 10−9 8.00 × 10−9 2.39 × 10−11 2.16 × 10−9

Table 4. Same as Table 2 for the asymmetric stretching mode of H2O.

v′i ← vi 1 ← 0 2 ← 0 0 ← 1 2 ← 1 0 ← 2 1 ← 2

Δv′i ,vi
(K) 5673 11345 0 5672 0 0

a0 3.56 × 10−7 1.66 × 10−8 4.27 × 10−8 6.64 × 10−7 4.49 × 10−9 8.57 × 10−8

a1 −9.80 × 10−8 −3.59 × 10−9 −1.51 × 10−8 −1.82 × 10−7 −5.01 × 10−10 −2.94 × 10−8

a2 7.05 × 10−9 2.45 × 10−10 1.66 × 10−9 1.31 × 10−8 5.15 × 10−11 3.15 × 10−9

3.3. Assessment of Uncertainties

The main source of uncertainty of the present results is due to electron scattering
calculations. To assess the uncertainty, we computed the cross-section-varying parameters
of the scattering model. The main scattering model (Model 1) is described above. In the
second set of calculations (Model 2), the electronic basis was reduced from cc-pVTZ to DZP,
and the same CAS (CAS1) was employed. In Model 3, we freeze the 2a1 and 1b2 molecular
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orbitals, which leads to a reduced complete active space (CAS2) in the configuration
interaction calculations with respect to Model 1 by two orbitals. In Model 4, a larger
basis cc-pVQZ (correlation-consistent polarized valence quadruple-zeta) and CAS1 were
used. Figure 7 demonstrates a comparison of cross-sections obtained using the models.
As evident from the figure, reducing the basis set from cc-pVTZ to DZP (Model 1 vs. Model 2)
changes the results by about 30% (stretching) and 50% (bending), while increasing the basis
set from cc-pVTZ to cc-pVQZ (Model 1 vs. Model 4) changes the result less, by about 5–15%.
Therefore, the convergence of Model 1 with respect to the basis set is about 5% (stretching)
and 15% (bending). Changing the CAS (Model 1 vs. Model 3) changes the cross-sections
by about 5–10%. Therefore, we estimate the uncertainty of Model 1 to be about 20% for the
bending mode and about 10% for the stretching mode.
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Figure 7. Cross sections for the excitation of the bending (left panel) and stretching (right panel) modes obtained using the
four different models (see the text). Model 1 is used to produce final results of the study. The three other models, in which
the basis set and the CAS were changed compared to Model 1, are used to assess the uncertainty of the results: Model
1—the cc-pVTZ basis and CAS1; Model 2—the DZP basis and CAS1; Model 3—the cc-pVTZ basis and CAS2; Model 4—the
cc-pVQZ basis and CAS1.

4. Conclusions

Summarizing the results of the present study, we computed cross-sections for the
vibrational excitation of the water molecule by electron impact using a purely ab initio
approach. We would like to stress that cross-sections for excitation by two quanta in one
collision were obtained and reported for the first time. The uncertainty of the obtained
cross-sections is estimated to be 20% for the excitation of the bending mode and 10% for
the stretching modes. The resonant structure observed in experimental data near 6–10 eV
was characterized using the ab initio calculations. The overall agreement of the present
cross-sections with the experiment is within experimental uncertainties (including different
experiments) for the bending mode. For the stretching modes, the present theory gives
cross-sections somewhat smaller than in the experiment: The difference is slightly larger
than the combined uncertainties of the experiment and the theory. Finally, thermally
averaged rate coefficients were derived from the obtained cross-sections. The coefficients
were fitted to an analytical formula for a convenient use by modellers.

Rotationally resolved vibrational cross-sections are currently being computed and
will be reported later.

Finally, we note that the methodology for computing non-resonant vibrational excita-
tion cross-sections employed here has recently been incorporated, with some simplifica-
tions, into the QEC (Quantemol Electron Collisions) expert system [35] used to run the new
(UKRmol+) UK Molecule R-matrix code [36]. The main simplifications are: (1) The integral
of Equation (2) is evaluated using the linear approximation for the scattering matrix near
the equilibrium geometry [37–40]. (2) The electron-scattering calculation for all geometries
are performed without taking into account any symmetry of the molecule, i.e., the C1 group
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of molecular symmetry is used. As here, MOLPRO is used to automatically generate the
normal modes.
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Abstract: We report new accurate measurements of the drift mobility μ of quasifree electrons in
moderately dense helium gas in the temperature range 26 K ≤ T ≤ 300 K for densities lower
than those at which states of electrons localized in bubbles appear. By heuristically including
multiple-scattering effects into classical kinetic formulas, as previously done for neon and argon,
an excellent description of the field E, density N, and temperature T dependence of μ is obtained.
Moreover, the experimental evidence suggests that the strong decrease of the zero-field density-
normalized mobility μ0N with increasing N from the low up to intermediate density regime is
mainly due to weak localization of electrons caused by the intrinsic disorder of the system, whereas
the further decrease of μ0N for even larger N is due to electron self-trapping in cavities. We suggest
that a distinction between weakly localized and electron bubble states can be done by inspecting the
behavior of μ0N as a function of N at intermediate densities.

Keywords: electron mobility; multiple-scattering effects; disordered systems; weak localization

1. Introduction

The study of the transport properties of excess electrons in dielectric gases or liquids
may shape detailed knowledge of the dynamics and energetics of electron states in disor-
dered media and of the relationship between the electron-host atom interactions and the
thermodynamic properties of the system. In particular, the negative density effect, i.e., the
decline of the electron drift mobility μ with increasing gas number density N, initially ob-
served in dense helium [1–7], has attracted a great deal of theoretical work [8–15] because
of the possible connection between multiple-scattering effects at a high density and the
electron localization induced by the intrinsic disorder of the medium [16,17].

Several multiple-scattering theories have been developed for the thermal electrons
mobility μ0, i.e., in the limit of vanishingly small density-reduced electric field E/N → 0,
where E is the drift electric field. All these theories are based on a complex shift of
the electron kinetic energy in a dense medium [18,19] and on quantum corrections to
the electron-atom scattering rate when the electron mean free path � and the thermal
electron wavelength λT become comparable [11,20]. They are proved quite successful at
the description of the density dependence of the zero-field limit of the density-normalized
electron mobility μ0N in helium.

Unfortunately, the theoretical prediction for μ0N in dense neon was proven wrong
or, at best, incomplete [21], mainly because it was based on the assumption of a nearly
energy-independent momentum-transfer scattering cross section σmt. Moreover, these
theories explained the different density effects (negative in helium and neon but positive
in argon, i.e., μ0N increasing with N [22,23]) by invoking different physical mechanisms
according to the sign of the scattering length a.

In order to give a unique description of the electron-atom scattering process in a
dense gas, independent of the sign of a, we have developed a model [24] that heuristically
incorporates the multiple-scattering effects introduced by previous theories [25,26].
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We briefly recall here the main three multiple-scattering effects that are taken into
account in the heuristic model. The first one is the density-dependent energy shift Ek(N)
of the electron kinetic energy ε. EK is the zero-point kinetic energy arising from the
exclusion of the electron from the hard-core volume of the atoms [27]. It can explicitly
be obtained by replacing the fluid structure with a locally ordered array of hard-sphere
scatterers and by matching the electron wave function with its asymptotic expression at
the surface of the Wigner–Seitz sphere [28] of volume 4πr3

ws/3 = 1/N centered on each
atom, thereby getting [29]

Ek(N) =
h̄2

2m
k2

0. (1)

m is the electron mass, h̄ = h/2π, and h is the Planck’s constant. The wave vector k0 is
determined by the eigenvalue equation

tan [k0rws + η0(k0)] = k0rws, (2)

in which η0(k) is the s-wave phaseshift [30]. In order to account for the superposition of the
tails of the atomic potentials, −η0(k0)/k0 is replaced by the hard-core radius of the Hartree-
Fock potential ã =

√
σT(k0)/4π, in which σT is the total scattering cross section [27].

This energy shift produces a large effect if the momentum-transfer scattering cross section
is a rapidly varying function of the electron energy.

The second effect is due to correlations among scatterers. The electron wave packet
encompasses a volume of the gas whose linear dimension is of the order of the electron
wavelength λ = h̄/

√
2mε. This volume contains many atoms, and the electron is scattered

off all of them simultaneously. The total amplitude of the scattered wave is obtained
by summing up coherently all partial scattering amplitudes contributed by each atom.
The net result is that the scattering cross section is weighted by the static structure factor
of the gas S(0) = NkBTχT [31]. Here, kB is the Boltzmann’s constant, and χT is the gas
isothermal compressibility.

Finally, the third multiple-scattering effect is the enhancement of the electron backscat-
tering rate due to quantum self-interference of the electron wave function scattered off
atoms located along paths connected by time-reversal symmetry [32]. The strength of this
effect depends on the ratio of the electron thermal wavelength λT to the electron mean
free path � = 1/Nσmt. For λT/� ≤ 1, a perturbative treatment is adequate yielding for the
scattering rate ν the linearized expression [10]

ν(ε) = ν0

(
1 + f

λ

�

)
= ν0

(
1 + f

h̄ν0

ε

)
, (3)

in which ν0 =
√

2ε/mNσmt is the scattering rate in the dilute gas limit, and f is a number
of order unity [10]. This perturbative treatment is adequate for argon [23] and neon [21]
because their cross sections are relatively small at thermal and shifted energies.

However, for helium, σmt is so large and the experimental N so high that λ/� � 1.
In this case, we are in presence of the so-called weak localization regime in the jargon of the
theory of disordered systems [33,34]. If disorder is enhanced by increasing N, electrons
become completely localized with exponentially decaying wave functions (known also as
Anderson localized states) [16], and a mobility edge appears at the finite energy εc [35,36].

At the mobility edge the scattering rate diverges. Polischuk obtains the mobility edge
with a sophisticated diagrammatic technique [12]. The same result can be obtained by
following a more simple, intuitive approach. The correction term enhancing the scattering
rate in Equation (3) must be proportional to the actual scattering rate ν(ε) rather than to
the unperturbed scattering rate ν0. It is then easy to get

ν(ε) =
ν0

1 − f h̄ν0/2ε
=

ν0

1 − f λ/�
(4)
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that perfectly agrees with the result of Polischuk [12]. The location of the mobility edge
corresponds to the Ioffe-Regel criterion for localization λ � � [25], and the mobility edge
energy is obtained as

εc =
2
m

[
f
2

h̄NS(0)σmt(εc)

]2
. (5)

in which the cross section enhancement due to correlation among scatterers is included.
We note that there is some disagreement in the literature about the value of f . Its value is
f = 2π/3 ≈ 2.09 for Polischuk [12] and f = 2 for Atrazhev [10]. The difference is quite
small (≈ 4 %) and does not significantly affect the results.

The heuristic model [23] is obtained by including the above-mentioned multiple-
scattering effects into the equation for the mobility of the classical kinetic theory [26].
Its advantage is that it also predicts the electric field dependence of μ in addition to the N
dependence of μ0. Moreover, it does not entail adjustable parameters and can be applied to
all noble gases independently of the sign of the electron–atom scattering length.

The density-normalized mobility is given by [26]

μN = − e
3

(
2
m

)1/2 ∞∫
εc

[
ε

σ�
mt(ε)

]
dg(ε)

dε
dε. (6)

g(ε) is the Davydov–Pidduck energy distribution function [26,37]

g(ε) = A exp

⎧⎨⎩−
ε∫

0

[
kBT +

Me2

6mz

(
E

Nσ�
mt(z)

)2
]−1

dz

⎫⎬⎭ (7)

Here, M is the atom mass, and A is the normalization constant given by enforcing
the condition

∫ ∞
0 ε1/2g(ε)dε = 1. σ�

mt is the effective momentum-transfer scattering cross
section that takes into account the three multiple-scattering effects, and it is expressed by

σ�
mt(ε) = F (w)σmt(w)

[
1 − f h̄

F (w)σmt(w)

(2mw)1/2

]−1

, (8)

in which w = ε + Ek is the shifted energy. F (w) is given by

F (w) =
1

4w2

2w∫
0

q3S(q)dq. (9)

For not too large values of the exchanged momentum q, the Ornstein–Zernike approx-
imation [38] can be used, yielding a Lorentzian form of the structure factor

S(q) =
S(0) + (qL)2

1 + (qL)2 , (10)

in which L2 = 0.1l2[S(0)− 1], and l ≈ 0.1 nm is the short-range correlation length [39].
The previous formulas do not have any adjustable parameters and allow the re-

searchers to compute μN as a function of E, N, and T for any gas whose cross sections and
thermodynamic equation of state are known. In particular, the density dependence of μ0N
can simply be obtained by setting E/N = 0 in Equation (7).

The model we have outlined is developed to describe the mobility of quasifree elec-
trons by possibly taking into account the existence of weakly localized, non-propagating
states. It has proven extremely successful when applied to argon [23,40] and neon [21,24].

However, in this latter case, sufficiently high-density and low-temperature electrons
get self-trapped in (partially) empty cavities giving birth to low-mobility electron bubbles
for which the use of the heuristic model is no longer applicable. In cold, dense helium
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gas, the formation of electron bubbles is also a well-known phenomenon [1–3,6,7,41,42].
The comparison of the theoretical predictions for the quasifree electrons has, thus, to be
made only for such N and T ranges, in which electron bubbles are not significantly present.
It is interesting to note, however, that the previous multiple-scattering theories for μ0N
were applied to an extended N range, thereby leading, in our opinion, to some confusion
about the relationship between Anderson-localized and bubble states.

Therefore, we have carried out new, accurate measurements in broad T and N ranges
in order to gain insight both in the process of electron bubble formation at high densities
and at higher temperatures and in the behavior of quasifree electrons up to intermediate
densities. The results on bubble formation have already been published [42]. In this
paper, we will present mobility data from low up to intermediate density in the range
26 K ≤ T ≤ 300 K in order to investigate the behavior of quasifree electrons, compare the
previous multiple-scattering theories with the present heuristic model, and shed some light
on the relationship between disorder-induced non-propagating states and self-trapped
states in bubbles.

The paper is organized as follows: In Section 2, the details of the experiments are briefly
described. In Section 3, the experimental results are presented and discussed. In Section 4,
we will discuss if experimental data allow the distinction between Anderson-localized
states and electron bubbles with the aid of the prediction of the heuristic model.

Following the Conclusions in Section 5, in Appendix A, we will give some details on
the different effects on the mobility of the two relevant energy scales, EK and εc, which are
necessary for the description of the experimental electron mobility.

2. Experimental Details

The measurements are carried out using the pulsed photoemission technique and
apparatus exploited in previous measurements of electron mobility, O−

2 mobility, and
resonant electron attachment in dense helium, neon, and argon gases and have already
been thoroughly described [21,40,42–47]. We recall here only the main technical features of
the experiment.

A high-pressure cell is mounted on the cold head of a cryocooler inside a triple-shield
thermostat. The cell can withstand pressure up to P ≈ 10 MPa and can be cooled down to
T ≈ 25 K. The cell temperature is stabilized within ±0.01 K, and the pressure is measured
with an accuracy of ±1 kPa. The gas used is ultra-high purity helium with nominal O2
content of 1 ppm. However, in order to make accurate mobility measurements, the impurity
content must be lowered by recirculating the gas in a closed loop through a LN2-cooled
activated-charcoal trap and a commercial Oxisorb cartridge [48]. The final impurity content
is estimated to be a fraction of one ppb. The gas density N is computed from the measured
values of T and P by means of an accurate equation of state [49,50].

The parallel plate drift capacitor is located in the cell and is energized by a d.c. high-
voltage generator [51]. A thin slice of electrons is photoinjected from the cathode by a short
pulse (≈ 4μs) of VUV light produced by a Xe flashlamp [52] and is drifted towards the
anode. The injected charge amounts to 4 through 400 fC, depending on the gas pressure
in the cell and on the applied electric field strength, and is low enough to avoid space-
charge effects.

The current induced at the anode by the drifting electrons is passively integrated to
improve the signal-to-noise ratio. The voltage signal is acquired by a digital oscilloscope
and fetched by a personal computer for offline analysis. Several signals are acquired for
any experimental conditions and are software-averaged to improve the signal quality.

The drift time τ is obtained by analyzing the time evolution of the voltage signal at
the anode [53]. The drift velocity is obtained as vD = τ/d, where d is the drift distance, and
the mobility is obtained as μ = vD/E, where E is the applied electric field. The estimated
accuracy on μ is much better than 5 %.
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3. Experimental Results and Discussion

In this section, the experimental data will be presented and discussed.

3.1. The Need for Accurate Measurements

The present measurements in helium are aimed at validating the heuristic model
developed for the description of the mobility of quasifree electrons in dense noble gases [23].
This goal justifies the need for new accurate measurements of the mobility. Actually, the
main attention in the past was focused onto the negative density effect shown by μ0N
that eventually leads to the formation of electron bubbles. As μ0N decreases by nearly
five orders of magnitude in a restricted density range at low temperature [2–4,6,7,41],
the mobility at low and medium density, where no localization takes yet place, was not
investigated with the necessary accuracy in the past. In order to clarify this point, the
present μ0N data for T = 77.2 K are compared in Figure 1, with one of the most accurate
experiments at nearly the same temperature [4].

Figure 1. μ0N vs. N at T ≈ 77 K. Comparison of the present measurements accuracy at T = 77.2 K (closed points) with
literature data at T = 77.6 K (open squares) [4].

Literature data are more scattered than the present ones, especially at low density,
where they strongly disagree with the classical kinetic theory prediction based on the
commonly accepted momentum-transfer scattering cross section [30]. On the contrary, it
will be shown in the following that the present data agree very well with this prediction.
At lower temperatures, the accuracy of literature data in the low density range is even
worse [2,3,41].

3.2. Choice of the Correct Density Range to Explore

Another important point to be discussed before proceeding is the determination of
the density range in which the quasifree electron mobility is not affected by the presence of
electrons localized in cavities. As the mobility of the electron bubbles is roughly four to
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five orders of magnitude smaller than that of quasifree electrons, any significant presence
of them would spoil the comparison of the experimental outcome with the theory for
quasifree electrons.

Actually, the present measurements were carried out in very broad N and T ranges be-
cause of the great interest in ascertaining whether the phenomenon of electron self-trapping
in cavities also occurs at higher temperatures than previously observed. The high-density
μ0N data [42] have shown that localization takes place at any T, indeed, provided that N
is large enough to yield an excess Helmoltz free energy of the localized state with respect
to the quasifree one ΔA(N, T) � 0 with |ΔA(N, T)| � kBT, in which kB is the Boltzmann
constant. The excess free energy ΔA(N, T) was computed by adopting a simple electron
bubble model [54], taking into account that the gas has no surface tension and that the
helium atoms have non-negligible thermal energy at the temperatures of the experiment.
The threshold density N� at which quasifree electrons and electron bubbles are equiproba-
ble is obtained by solving the equation

ΔA(N�, T) = 0, (11)

yielding a quite satisfactory agreement with the data [42]. However, at N�, the fraction of
electron bubble states is 50 %, and its contribution to the mobility is far from negligible.
Thus, the threshold density, above which they cannot actually be neglected any longer,
must experimentally be determined by inspecting the electric field dependence of μ for
different N. A typical example is shown in Figure 2 for T = 26.1 K .

Figure 2. μN vs. E/N at T = 26.1 K for densities close to the onset of the electron self-trapping in bubbles. From top:
N = 17.33, 19.47, and 22.76 in units of 1026 m−3. 1 mTd = 10−24V m2. The line ∝ (E/N)−1/2 is the prediction of the
classical kinetic theory for scattering of quasifree, epithermal electrons off hard spheres [26]. The presence of electron bubble
states for the highest N is proven by the rise of μN above its zero-field limit (shown as a constant line) before joining the
high-field behavior.
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Helium can be considered a hard-sphere scatterer to a good approximation as its
momentum-transfer scattering cross section σmt is roughly independent of energy (it varies
from 4.87 Å2 at energy ε = 0 to 6.8 Å2 at ε = 1 eV) [30]. For such a system, the classical
kinetic theory predicts that, at constant T, μN is constant at weak electric field and is
proportional to (E/N)−1/2 at a high field. By inspecting Figure 2, in which the electric
field dependence of μN is shown for T = 26.1 K for some N, we note that μN at the lower
N follows the classically expected behavior. If N is further increased, the behavior of μN
changes even qualitatively. At weak fields, μN is constant but, upon a further increase
of the field strength, μN increases with E/N and shows a maximum before joining the
density-independent, high-field region. This specific behavior, observed for N large enough
even at very low temperature [6,7], was previously reported also in dense neon gas [44]
and is intepreted as the field-assisted hindrance to self-trapping or field-assisted release
of electrons from the bubbles [55]. This interpretation is also supported by experimental
evidence in liquid neon [56].

The logical consequence drawn from the observed field dependence of μN is that
a temperature-dependent threshold Nthdensity exists for electron bubble states of low
mobility to be experimentally detected. In Figure 3, Nth is reported along with the computed
density N�.

Figure 3. Temperature dependence of the threshold density Nth for the onset of bubble state formation as determined by
the inspection of the field dependence of μN (closed points). Open squares: temperature dependence of the density N� at
which quasifree electrons and electron bubbles are equiprobable according to the bubble model [42]. The lines are only a
guide for the eye.

As a result, the analysis of the mobility of quasifree electrons will be restricted to
N ≤ Nth(T).
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3.3. Density Dependence of the Zero-Field Limit of the Density Normalized Mobility

In Figure 4, μ0N is shown as a function of N for several T. As previously discussed,
the data are shown only for N < Nth to be sure that only quasifree electrons contribute
to the mobility. At the highest temperatures, the pressure necessary to reach Nth exceeds
the experimental cell capability, and thus, the measurements are restricted to not too high
density values. At all temperatures, μ0N shows the well-known negative density effect that
is extremely well described by the heuristic model, represented by the solid lines through
the data in the figure.

According to the model, three density-dependent processes combined to determine
the behavior of the mobility: the quantum density-dependent shift of the kinetic energy
of the electron Ek(N), the correlation among scatterers, and the quantum self-interference
of the electron wave packet scattered by atoms located along paths connected by time-
reversal symmetry. In the case of helium, the first one is not very effective because σmt
does not depend very much on the electron energy. On the contrary, this effect is very
important in neon [21,43] and argon [22,24,40,57–59], whose cross sections are strongly
energy dependent [13,60].

The correlation among scatterers is a second process that increases the scattering
cross section by the long-wavelegth limit of the static structure factor S(0) = NkBTχT .
The effect of S(0) is very important close to the critical point, which, for helium, occurs for
Tc = 5.2 K and Nc = 104.8 × 1026 m−3 [49,50]. As the present experiment is carried out for
T � Tc, S(0) ≈ 1 always, its effect is quite negligible.

Figure 4. μ0N vs. N. T = 26.1 K (closed points), T = 64.4 K (open squares), T = 199.5 K (closed diamonds), and T = 295.5 K
(open points). Lines: heuristic model prediction. The data are only presented for N ≤ Nth, at which electron bubbles are
still either absent or present in a negligible proportion. The error bars for the highest T are of the same size of the dots and
are not shown.

The last process is the quantum self-interference of the electron wave packet scattered
off atoms located along paths connected by time-reversal symmetry. As discussed in the
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Introduction, this process leads to an increase of the scattering rate, which is ∝ λ/�, i.e.,
proportional to the ratio of the electron quantum wavelength λ to its mean free path �.
However, if the scattering cross section is large, i.e., if the mean free path is short, and
the temperature is low, i.e., the electron thermal wavelength is large, the quantum self-
interference process is so strong to lead to the weak electron localization via the appearance
of the mobility edge [11,12,17]. Electrons in the low-energy tail of the distribution function
below the mobility edge energy εc do not propagate. In helium, this is the dominant
process that produces most of the observed negative density effect of the mobility.

The mobility edge introduces an infrared cutoff in the electron energy distribution
function, which gives rise to a strong exponential decrease in μ0N with increasing N.
On one hand, the quite fair agreement with experiments of the older theories, all of
which are based on a complex shift of the electron energy in a dense disordered medium
due to multiple-scattering effects [13–15], is explained by various additional assump-
tions (not all fully correct) invoked by the authors, as discussed in the literature [8,9,20].
Their apparent success is due to the fact that they predict an exponential decrease of the
mobility with increasing N. It has also to be noted that these theories invoke different
phenomena to explain the different density effects observed in repulsive gases (such as
helium and neon) and in attractive gases (such as argon) [10,12,14].

On the other hand, the heuristic model takes into account all the three multiple-
scattering effects in a natural way. Their relative weight is automatically accounted for
by the strength and energy dependence of the scattering cross section and by the thermo-
dynamic state of the gas through which electrons are drifted. As a further benefit, the
heuristic model treats the scattering of low energy electrons in noble gases in a unified way
independently of the sign of the scattering length.

The heuristic model shares with the theories of Atrazhev [10] and of Polischuk [12]
the concept of enhancement of the scattering rate due quantum self-interference (that
eventually leads to the appearance of the mobility edge) but accounts for the two additional
multiple-scattering effects (quantum density-dependent shift of the electron kinetic energy
in the dense disordered medium and correlation among scatterers), although their influence
only marginally affects the electron mobility in helium in the particular thermodynamic
conditions of the experiment.

3.4. Validation of the Accuracy of the Present Experiment and of Its Outcome

A way to validate the accuracy of the results of the present experiment is to show that
the present data agree well with the prediction of the classical kinetic theory in the limit of
low density [26]. If N → 0, all multiple-scattering effects vanish. Both the mobility edge εc
and the energy shift Ek(N) tend to 0 and the long wavelength limit of the structure factor
S(0) → 1. In this limit, the classical formula predicts

μ0N → (μ0N)0 =
4e

3
√

2πm(kBT)5

∞∫
0

ε

σmt(ε)
e−ε/kBT dε. (12)

The zero-density extrapolation of the mobility obtained from the investigated isotherms
(some of which are reported in Figure 4) are compared in Figure 5 with the theoretical pre-
diction, Equation (12), based on O’Malley’s low-energy electron-helium cross section [30].
The data are in excellent agreement with the classical prediction, thereby lending credibility
to the accuracy of the experiment. It has to be noted that both the data as well as the theo-
retical line are extremely well fitted to an inverse power law of the temperature, namely
(μ0N)0 ∝ T−0.536. The exponent differs from the value −1/2, which is typical of gas of
hard-sphere scatterers, because of the weak energy dependence of the electron-helium
momentum-transfer scattering cross section.
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Figure 5. (μ0N)0 vs. T. The solid line is the prediction of the heuristic model which, for N → 0, must coincide with the
classical kinetic prediction [26]. Data and theory are well fitted to the inverse power law T−0.536 close to the T−1/2 behavior
of a gas of hard-sphere scatterers.

An additional confirmation of the validity of the heuristic model is obtained by
inspecting how it is able to reproduce the electric field dependence of the experimental
data. In Figure 6, we show typical μN vs. E/N data for T = 64.4 K for several N < Nth,
i.e., for densities below the onset of electron bubble formation. The heuristic model is able
to accurately describe the field dependence of μN for well over a decade in N and nearly
three decades in E/N. Similar results are obtained at all temperatures.

A small discrepancy between the experiment and model can still be spotted in the
transition region between thermal and epi-thermal behavior. On one hand, this discrepancy
could be ascribed to imperfect knowledge of the scattering cross section at energies higher
than thermal. On the other hand, it has to be noted that, for any given N, the same energy
shift EK(N) is used for all fields and energies in Equation (6), although it is obtained by a
solving Equation (2), which is only valid for s-wave scattering.
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Figure 6. μN vs. E/N for T = 64.4 K. Densities (from top, in units of 1026 m−3): N = 2.79, 12.95, 18.20, 27.54, 31.38.
The solid lines are the predictions of the heuristic model.

4. Weakly Localized States vs. Electron Bubble States

It is well known that electrons in cold dense helium, either liquid or gas, do give origin
to states localized in cavities (for a review, see Ref. [61]). The cavities form as a consequence
of the delicate balance between the free energies of the quasifree and the localized electrons
and because the medium is compliant enough not to withstand the quantum pressure
exerted by the wavefunction of the localized electron that pushes away the nearby atoms,
thereby digging out the cavity.

On the other hand, it is also well known that a static structural disorder can lead
to the vanishing of electron diffusion because of the formation of Anderson-localized
states [12,16,17,35]. In this case, the electron wave function exponentially decays with
distance owing to multiple-scattering effects induced by the disorder. Under this re-
spect, helium is a school case of a dense, disordered system consisting of (nearly) hard-
sphere scatterers.

It still unclear, however, if Anderson-localized states might be precursors of electron
bubbles. Actually, non-propagating states might remain for a time long enough to favor
the enhancement and stabilization of the cavity because of the medium compliance.

We believe that the actual measurements might give some hints to solve this issue.
As an argument, we will investigate the experimental behavior of μN as a function of E/N
for densities at which electron bubbles definitely exist [42].

In Figure 7, the field dependence of μN is reported for T = 26.1 K and for
N = 32.36 × 1026 m−3 and N = 34.31 × 1026 m−3. μN is constant at weak fields and
shows a rapid enhancement towards the electron epithermal behavior ∼E/N−1/2 for
stronger fields.
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Figure 7. Left scale: μN vs. E/N for T = 26.1 K for N = 32.36 (closed points) and N = 34.31 (open points). The solid and
dotted lines are the predictions of the heuristic model. N is in units of 1026 m−3. Right scale: the average electron energy for
N = 34.31 × 1026 m−3 (dash-dotted line), which includes the contribution of Ek(N).

For these densities, the heuristic model fails at reproducing the low-field mobility
predicting far too large values. The rationale for this failure might be that, for these
densities, there is coexistence of both weakly localized electrons and self-trapped electrons
in bubbles. The heuristic model obviously accounts for the Anderson-localized states
through the infrared cutoff in the electron energy distribution function due to the mobility
edge. On the contrary, the measured mobility is a weighted sum of the contributions of the
quasifree states, which are very mobile, and of the electron bubbles, which, though very
slowly, do still propagate.

The heuristic model predicts that μN increases upon increasing E/N before reaching
the epithermal behavior. This increase takes place at much weaker E/N values than experi-
mentally observed. The transition between the low- and high-field behavior experimentally
occurs in the same field region in which the average electron energy (dashed–dotted line
in Figure 7) starts increasing above its thermal value 〈ε〉 ≥ (3/2)kBT + Ek(N). We note
that, in this field range, the electron drift velocity becomes comparable with the sound
speed ≈ 300 m/s [50,62].

We, thus, draw the conclusion that Anderson-localized states cannot be precursors
of electron bubbles. Actually, if they were such precursors, the decrease of their number
upon increasing field should lead to an increase of the measured mobility that, by contrast,
remains constant. The mobility only increases at stronger fields where the average electron
energy and the drift velocity are large enough to hinder the electron self-trapping process
in cavities.

Such point of view is further confirmed, in our opinion, if the fraction of quasifree
electrons is compared with the mobility behavior as a function of the reduced field.
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The fraction ffree of quasifree states with energy in excess of the mobility edge energy
εc is given by

ffree =

∞∫
εc

ε1/2g(ε)dε. (13)

In Figure 8, we plot the experimental mobility (closed points) and the model prediction
(solid line) for T = 34.5 K and N = 41.74 × 1026 m−3 and compare their behavior with ffree
(dashed line, right scale).

Figure 8. Left scale: μN vs. E/N for T = 34.5 K for N = 41.74 × 1026 m−3 (closed points) and prediction of the heuristic
model (solid line). Dashed line: the fraction of quasifree electrons ffree (right scale).

At such high a density, μ0N is well below the predicted value by the heuristic model
and by all other theoretical models [10,12–14] because a non-negligible fraction of electrons
are localized in bubbles and significantly contributes to the mobility decline with density.
By inspecting Figure 8, it can be noted that the quasifree electron fraction is ffree ≈ 10 %
at low fields and rapidly increases towards ffree = 100 % at high fields. However, its rise
begins at much weaker field strength than the mobility rise. Therefore, we can conclude
that the reduction of the fraction of non-propagating states below the mobility edge is not
the principal mechanism of the mobility increase with electric field at high densities and
that these weakly localized states are probably not the precursors of the electron states
self-trapped in cavities.

5. Conclusions

In this paper, we have presented new and accurate experimental measurements of
electron mobility in helium gas in a wide temperature range for low to intermediate
densities. The experimental ranges have been selected in a way to exclude the presence of
electron bubbles that might spoil the theoretical analysis.
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We have shown that the heuristic model, originally developed for neon and argon,
also works very well for helium. On one hand, it encompasses the multiple-scattering
effects taken into account also by previous theories. It supersedes them because all the
multiple-scattering effects are included at once in a unified picture. In particular, for helium,
the main effect is produced by the presence of a disorder-induced mobility-edge that leads
to a nearly exponential decrease of the zero-field limit of the density-normalized mobility
μ0N by shrinking the phase space available to freely propagating electrons.

On the other hand, at least for the noble gases, the heuristic model treats the electron-
atom scattering process in a dense, disordered medium as a unique phenomenon that
does not depend if the electron-atom interaction potential is mainly attractive or repulsive.
The different density effect shown by different gases is only a manifestation of the energy
dependence of the scattering cross sections.

Moreover, in comparison with the previous theories, the present heuristic model is
also able to describe the electric field dependence of the quasifree electron mobility with
great accuracy.

In helium, owing to the near energy independence of the scattering cross section
and to the distance from the criticality of the present measurements, the most important
multiple-scattering process affecting the electron mobility is the existence of a disorder-
produced mobility edge at which the scattering cross section diverges. States with energy
below the mobility-edge energy do not propagate and are weakly-localized, and thus, the
phase space of propagating electrons shrink. The resulting infrared cutoff in the electron
energy distribution function leads to a strong, nearly exponential decrease in μ0N with
increasing density that explains the approximate success of previous theories.

The availability of an accurate theoretical model and experimental measurements
has allowed us to suggest a clear distinction between disorder-induced, non-propagating,
Anderson-localized states and electron bubbles. From the theoretical analysis of the experi-
mental data in a thermodynamic state in which electron bubbles are present, the conclusion
can be drawn that Anderson-localized states may coexist with electron bubbles.

It would be interesting if an analysis similar to the present one could be carried out
on measurements of electron mobility in dense carbon dioxide [63,64], ammonia [65],
and methanol [66] that show a significant negative density effect and even self-trapping
in cavities.
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Appendix A. Influence of Ek(N) and of εc on the Mobility of Quasifree Electrons

Two characteristic energies have to be considered in the heuristic model to produce an
accurate description of the mobility data without any adjustable parameters, namely the
density-dependent energy shift Ek(N) and the mobility edge energy εc. εc slightly depends
on T because of S(0). However, for all T and N of the present experiment, S(0) ≈ 1 within
less than 10 %, and εc turns out to practically be temperature independent.

The two energies are very different values, as shown in Figure A1. Roughly speaking,
Ek is more than ≈20 times larger than εc at all densities.
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Figure A1. The density dependence of the energy shift Ek (left scale) and of the mobility edge energy
εc (right scale).

Despite this big difference between the two quantities, in the case of helium gas,
the smaller one produces the bigger effect on the mobility. Actually, Ek(N) produces a
rigid shift of the electron energy distribution function whose zero is shifted from ε = 0 to
ε = Ek(N). By a suitable change of variables in the integrals for the mobility [23], it can be
shown that the effect of Ek is to force the evaluation of the energy-dependent electron-atom
scattering cross section at the shifted energy, as demonstrated by Equation (8). If the cross
section is nearly independent of energy, as is the case of helium, its evaluation at a shifted
energy gives nearly the same value, and the effect on the mobility is small. On the contrary,
the action of Ek produces the dominant effect in neon [21,43,44] and argon [22,23,40,58],
whose cross sections very rapidly vary with energy.

The action of the mobility edge energy is more subtle. It introduces an infrared
cutoff in the mobility integrals. Electron states with energies below εc do not propagate.
Thus, the cutoff actually shrinks the phase space available to the freely propagating states.
For thermal electrons and (nearly) energy-independent cross sections, the zero-field density
normalized mobility is given by

μ0N ∝
∞∫

εc

εe−ε/kBT dε = e−εc/kBT
∞∫

0

(z + εc)e−z/kBT dz ∼ e−εc/kBT(μ0N)0. (A1)

Loosely speaking, the classical mobility (μ0N)0 is thus multiplied by an exponential
factor of the form exp (−εc/kBT). Actually, the exact integral weakens the quadratic
density dependence of εc in the argument of the exponential. In any case, the strong
density dependence of the exponential leads to the observed negative density effect of the
electron mobility in helium. Furthermore, in neon and argon, the quantum self-interference
effect leads to the appearance of a mobility edge. However, in these gases, the cross section
at thermal energies is so small that εc ≈ 0 and can safely be neglected, thus allowing the
other multiple-scattering effects to fully manifest.

As mentioned before, the infrared cutoff εc leads to a reduction of the fraction ffree of
freely propagating electron states. It is interesting to investigate how ffree depends on T, N,
and E/N as a consequence of the presence of εc.
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In Figure A2, we show the influence of N on the field dependence of ffree at constant T.
For all N, the action of the electric field is to broaden the electron energy distribution function
so that the fraction of states with energy ε > εc always increases with the increasing E/N.

Figure A2. ffree as a function of E/N at T = 26.1 K. From top: N : 5, 10, 20, 30, 40, 50 (in units of
1026 m−3). Note that for T = 26.1 K, the threshold density is Nth � 20.

At a low density, ffree is practically always equal to 1. Upon increasing N, ffree steadily
decreases. The higher the density is, the larger the field strength required to produce larger
proportions of quasifree electrons is.

Similar considerations can be made about the effect of temperature on ffree at constant
density, as shown in Figure A3.

At constant N and T, the action of the field is the same as discussed for the previous
figure. At constant E/N and N, the action of T is clear. Upon increasing T, the electron
energy distribution gets broader, and the average electron energy increases, thereby in-
creasing the fraction of electrons with energy in excess of εc. It has to be once more noted
that, at the density of Figure A3 for T � 50 K, a large number of electrons are self-trapped
in bubbles.

It is finally interesting to note that fraction of quasifree states at E/N = 0 is a universal
function of yc =

√
εc/kBT ∝ N/

√
T

lim
E/N→0

ffree =
2√
π

yce−y2
c + erfc(yc), (A2)

in which erfc(x) is the error function [12].
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Figure A3. ffree vs. E/N at N = 50 × 1026 m−3 for several T. From top:
T (K) = 300, 200, 150, 100, 50, 26.1 .
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Abstract: A beam of size-selected charged helium droplets was crossed with an electron beam, and
the ion efficiency curves for the product droplets in all different charge states were recorded. We
estimate that the selected helium droplets on their passage through the electron beam are hit by
several hundred electrons which can interact with the individual He atoms of the droplets. Reaction
channels corresponding to the removal or capture of up to eight electrons were identified, and in all
cases, inelastic scattering and the formation of metastable helium played a significant role.

Keywords: electron ionization; electron capture; helium droplets; cross section

1. Introduction

Ionization, neutralization, and fragmentation of ions upon electron impact are funda-
mental processes in natural and technical plasmas [1,2]. Cross sections can be calculated, for
instance, by utilizing the semiclassical Deutsch–Märk formalism [3] or the binary-encounter-
dipole theory [4,5]. For H2

+, the electron ionization cross sections were determined by
full quantum calculations [6], and excellent agreement was found with the experimental
values [7]. The experimental determination of cross sections of ionic targets is a challenging
task, and only very few instruments have been designed for this purpose. The groups
of Defrance and Salzborn independently developed a method to obtain absolute cross
sections by determining the overlap geometry between the ion beam and the electron beam
by scanning the electron beam through the ion beam either mechanically [8] or with a pair
of deflector plates [9,10]. Dolder and Peart obtained the overlap by moving an aperture
through the region where the ion and electron beam overlap [11]. The electron impact on
large molecular target ions was investigated for fullerene cations by Matt et al. [12], who
reported an increase in the charge state with and without fragmentation. The group of
Salzborn extended these studies and determined the absolute cross sections for positively
and negatively charged fullerene ions [13,14]. To our knowledge, no data are available for
larger clusters.

Helium droplets have been investigated since their first production by Becker and
coworkers in 1961 [15], but it took almost 30 years until the scientific community became
aware of their full potential. With the discovery that helium droplets are able to capture
atoms [16] and molecules [17], the formation of clusters and complexes [16,18] and the
spectroscopy of cold molecules in the most inert matrix were achieved [17,19]. Aside from
optical spectroscopy of neutral dopants [20–23], mass spectrometry of charged products
formed via various ionization techniques is a commonly utilized method [24–27]. The
high excitation and ionization energy of helium requires rather advanced light sources
and makes electron guns simple alternatives that are frequently utilized. Mass spectra
obtained upon electron ionization of undoped helium droplets are dominated by small
helium cluster ions of the form Hen

+. According to the literature, these cluster ions are
predominantly formed via electron ionization of a He atom and subsequent resonant hole
hopping toward the center of the droplet [28–30]. After typically 11 hops, vibrationally
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excited He2
+ is formed that is either ejected from the droplet or becomes solvated by

polarized neighboring He atoms and thereby forming a so-called Atkins snowball [31].
Mateo and Eloranta determined from electronic structure calculations a linear He3

+ ionic
core of such snowballs [32]. However, since positively charged ions are strongly heliophilic,
the mass spectrometric observation of small helium cluster ions implies that these have to
be ejected from large droplets or are the residue from the evaporation of small, charged
helium droplets. Based on the binding energy of He2

+, the internal energy of vibrationally
excited He2

+ is able to vaporize only 3500 He atoms at most. Thus, a different mechanism
such as Coulomb repulsion between more than one charged species is required to explain
the ejection of low-mass ions from larger He droplets.

Recently, Laimer et al. discovered that both the positive [33] and negative ioniza-
tion [34] of helium droplets, aside from the low-mass ions often recorded in mass spec-
trometers, also leads to the formation of a massive, charged residual droplet that contains
the majority of the mass of the neutral precursor. In fact, the mass loss due to evaporation
of neutral He atoms and ejection of low-mass ions is negligible for droplets containing
several million He atoms. In both studies, neutral helium droplets were ionized via electron
bombardment. Then, a first spherical sector electrostatic energy analyzer selected a narrow
slice from the charged droplet distribution, and these droplets were bombarded by a second
electron beam. A second energy analyzer was used to analyze the mass per charge values of
the final product droplets and investigate the arrangement of charge centers. Furthermore,
these droplets can become highly charged, with appearance sizes for multiply charged
droplets being more than an order of magnitude larger for anionic droplets [34].

In the present paper, we investigate in detail the processes that lead to a change in the
charged state of large differently charged helium droplets upon electron bombardment.
Ion efficiency curves are measured in the electron energy range between 0 eV and 120 eV
for all possible charged product ions formed upon electron bombardment of the mass
per charge of selected helium droplets, utilizing a tandem set-up consisting of an electron
ionization source followed by an electrostatic energy analyzer. The underlying mechanisms
that are involved in changes in the charge state are identified by analyzing the positions of
the resonances and the thresholds of the corresponding processes for individual charge
states. In the case of positively charged helium droplets, an increase in the charge state
preferentially proceeds at electron energies higher than 25 eV, whereas a reduction in the
charge state happens at two narrow resonances of 2 eV and 22 eV, which can be assigned to
electron attachment and the formation of intermediate He*−, respectively.

2. Materials and Methods

Neutral He droplets were formed via expansion of He gas (99.9999% purity, Messer
Austria GmbH, Gumpoldskirchen, Austria) with a stagnation pressure of 2 MPa through a
pinhole nozzle with a diameter of 5 μm (A0200P, Plano GmbH, Wezlar, Germany) attached
to an oxygen-free copper block (MB-OF101 with a residual-resistance ratio, RRR > 200,
Montanwerke Brixlegg, Brixlegg, Austria) that was mounted to the second stage of a
closed-circuit cryocooler (RDK-408D2, Sumitomo Heavy Industries Ltd., Tokyo, Japan).
Through a combination of the cooling by the cryocooler and resistive heating, we were able
to control the temperature of the compressed He down to 4.2 K. In the present investigation,
temperatures of 7 K and 9 K were selected, and 11.7 mm downstream from the nozzle,
the droplets passed through a skimmer with an aperture of 0.8 mm on their way into the
first ionization source. Here, the droplets were ionized by the impact of electrons with a
kinetic energy of 40 eV and an electron current of 300 μA for promoting the formation of
positively charged droplets and 30 eV and 430 μA for negatively charged droplets. The
ionizer design was based on a Nier-type electron source using a tungsten coil filament.
Charged droplets were then mass-per-charge selected by a spherical sector electrostatic 90◦
energy analyzer with a central radius of 7 cm and a distance between the plates of 2 cm.
The resolving power of the two energy analyzers was limited by the apertures and was
determined from the width and position of the precursor peaks to E/ΔE~63. The m/z-
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selected charged droplets could then be ionized further by a second electron ionization
source of the same type as the first one. A second electrostatic analyzer identical to the
first one was then employed to analyze the final mass-per-charge ratio of the droplets,
which were detected with a Channeltron-type secondary electron multiplier (Dr. Sjuts,
KBL 510). The energy resolution when measuring electron energy-dependent ion efficiency
curves was estimated by analyzing the signal decrease for the cationic precursor peak
signal around 22 eV. A Gaussian fit on the derivative of the slope gave an upper limit of
±0.65 eV for the spread in electron energy. A residual gas pressure of about 10−6 Pa was
achieved with turbomolecular pumps (one HiPace 2300, two HiPace 700 and one TMU 521,
Pfeiffer Vacuum Technology AG, Aßlar, Germany) backed by two oil-free roughing pumps
(ACP 40, Pfeiffer Vacuum Technology AG, Aßlar, Germany). A schematic diagram of the
apparatus is shown in Figure 1.

 

Figure 1. Schematic of the experimental set-up.

The velocity distributions at different nozzle temperatures of the droplet beam were
measured recently by Laimer et al. via a time-of-flight method by pulsing the electron
energy [35]. The velocities of the singly charged He droplets of the selected precursor mass-
per charge-values at 7 K and 9 K ranged from v = 155 to 169 m/s and 196 m/s, respectively.
The kinetic energy of a charged droplet passing the electrostatic energy analyzer could be
determined from the electric field E applied and its central radius, with the mass-per-charge
value of the droplet being equivalent to 2E/v2.

3. Results and Discussion

3.1. Penetration Depth of the Electrons in the He Droplets

The high density and large size of He droplets lead to non-uniform ionization and
excitation probability of the He atoms inside. Using Beer’s law, the density of liquid helium
(0.02 Å−3 [36]) and the cross sections for electron ionization and excitation of helium
atoms [37], the penetration depth of electrons can be determined as a function of their
kinetic energy. Figure 2 shows the distance at which the electron current is attenuated to
1/e = 37%. The horizontal line indicates the diameter of a He droplet containing 5.7 million
He atoms. The vertical line corresponds to the ionization energy of He. For droplets of
this size, metastable He formation at collision energies around 22 eV can be expected to
happen throughout the volume of the droplet, whereas electron ionization is preferentially
happening close to the surface and facing the impinging electron beam.
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Figure 2. Penetration depth of electrons in liquid helium, determined from Beer’s law using the
bulk density of He and the cross sections for electron excitation and ionization. The horizontal line
indicates the diameter of a He droplet containing 5.7 million He atoms, and the vertical line indicates
the ionization energy of He.

3.2. Cations to Cations

Positively charged He droplets were formed upon electron bombardment of neutral
He droplets (expansion conditions of 7 K and 2 MPa, average neutral droplet size of
1.1 × 107 [38]) with an electron energy of 40 eV and an electron current of 300 μA. This
results in a log-normal-shaped m/z distribution with an average value of about 7 million
He atoms per charge [35]. The first energy filter (Analyzer 1 in Figure 1) selected a narrow
slice of this distribution at a relative m/z of 2.7 × 106 He atoms per charge (corresponding
to a relative m/z value of 1 in Figure 3). In the second ion source (IS 2 in Figure 1), the
selected droplets were crossed with a 210-μA electron beam, and depending on the electron
energy, differently charged product droplets were formed. At 22 eV (blue line in Figure 3),
most product droplets had higher m/z values than the selected precursor, thus indicating a
reduction of the charge state. Peaks at the exact fractional numbers demonstrated negligible
mass loss due to evaporation of neutral He atoms, as was already observed previously [33].
At 120 eV, an increase in the charge state resulted in lower m/z values (purple line in
Figure 3). The presence of differently charged precursor droplets and a relatively poor
energy resolution of the energy analyzer resulted in a curve where only the most intense
product channels could be seen as narrow peaks at fractional number m/z values, such as
1/4, 1/3, 1/2, 2/3 and 3/4. By setting the second ion source to 80 eV and 100 μA, the formation
of very highly charged droplets was strongly reduced, which enabled a better assignment
of individual reaction channels (red line).
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Figure 3. Charge distributions of positively charged He droplets resulting from electron bombard-
ment of mass-per-charge selected positively charged He droplets containing 2.7 × 106 He atoms per
charge. Electron energy of 22.5 eV resulted predominantly in a reduction in the charge state (blue
line), whereas 120 eV (purple line) increased the charge state and led to a pile-up of peaks at a relative
m/z value of 0.11 or 3 × 105 He atoms per charge. The red line was measured with the second ion
source set to 80 eV and a reduced current of 100 μA.

3.2.1. Ion Efficiency Curves

The ion efficiency curves of all major product charge states were measured, recording
the ion yield at the corresponding relative m/z values as a function of the electron energy
of the second ion source from 0 eV to 120 eV. For a selected mass-per-charge value of
5.7 million He atoms per charge, most reaction channels that led to an increase in the charge
state are plotted in Figure 4. The corresponding reaction channels found at relative m/z
values lower than one are plotted in Figure 3. The curve labels are ordered according to the
ratio of the initial and final charge states of the droplets. Reactions with zi/zf close to one
(yellow to red lines) exhibited an asymmetric peak structure with a maximum at around
30 eV, followed by a minimum at 10 eV and a gentle increase up to 120 eV. Additionally,
reaction channels with much lower zi/zf values (blue to purple lines) exhibited a relatively
narrow peak-like shape quite different to typical electron ionization cross sections of atoms
and small molecules. A similar resonance-like behavior was previously observed for the
partial cross sections of fragment ions of fullerenes [39]. In that case, with increasing
electron energy, neutral C2 loss transforms larger product ions into smaller ones, resulting
in narrow, peak-like cross section curves. In the present case, the removal of an additional
electron at higher electron energies became more likely and thereby led to a decrease in
the ion yield of lower-charged species and, at the same time, an increase in the signal of
higher-charged product droplets.
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Figure 4. Ion efficiency curves for electron ionization of positively charged He droplets with a
mass-per-charge ratio of 5.7 million He atoms per charge. The curves’ labels are sorted according to
the ratio of the precursor to final charge state, which is equivalent to the relative m/z values of the
corresponding peaks in Figure 3. Note the two pronounced anomalies in the ion signal of several
curves around 44 eV and 66 eV, designated by vertical dashed lines.

Since the first energy analyzer only selected the mass per charge, the peak at a relative
m/z = 1/2 corresponded to singly charged He droplets containing 5.7 million He atoms that
became doubly charged. However, it would also contain the signal from reactions where
multiply charged droplets with an initial charge state zi containing zi times 5.7 million
He atoms were ionized into a final charge state of zf = 2zi. The reaction channel that did
not lead to a change in the charge state (designated as 1/1, the light gray line) is plotted
with its corresponding y-axis drawn at the right side of the diagram. Both the maxima
and threshold energies of the curves shifted to higher electron energies with decreasing
zi/zf values. In addition, several curves exhibit pronounced peaks and wiggles at around
44 eV and 66 eV. These peaks match the resonances reported by Mauracher et al. [40],
where He∗− and He2

∗− were efficiently formed and ejected from undoped He droplets.
Ion efficiency curves for two other initial m/z values are shown in the Supplementary
Materials (Figures S1 and S2). Droplet formation at 9 K resulted in neutral droplets that
contained on average 4 million He atoms [38]. Thus, the contribution of multiply charged
droplets at a selected m/z value of 4 × 106, for instance, was substantially lower than in the
case of the same selected m/z values when the He source was operated at a temperature of
7 K. This led to better separation of the peaks at lower relative m/z values. The appearance
energy values for three different mass-per-charge values selected by the first analyzer (the
ion efficiency curves for two data sets obtained for 2.7 and 4 million He atoms per charge
are shown in the Supplementary Materials in Figures S1 and S2) were obtained by utilizing
the vanishing current method for all curves where a well-defined final charge state was
distinguishable. All appearance energies obtained by this method possessed an error of
±1 eV introduced by a background signal. The results are listed in the Supplementary
Materials in Table S1 and plotted in Figure 5 as a function of the difference of the final
and initial charge states zf − zi. Despite the significant uncertainty in the determination
of threshold values, it is apparent that all reaction channels followed the same trend, and
it is remarkable that the threshold values for the reactions +1 → +5 and +5 → +9 were
almost identical, albeit with a five times higher initial charge state for the latter process.
The linear fit to the data in Figure 5 gave a value of 19.83 eV for zf − zi = 0, which is almost
exactly the excitation energy of a He atom into the metastable 23S state. The slope of the
linear fit in Figure 5 is 1.66 eV. The cross section of a He droplet containing N > 104 He
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atoms was 4πr2, with r = 0.22 × N1/3. Thus, a droplet containing 5.7 million He atoms
had a geometric cross section of 19,400 nm2. The electron beam had a diameter of about
1 mm and a current of 300 μA. During the passage of such a droplet through the electron
beam, which took about 6.5 μs (1 mm/155 m/s), we could estimate that this droplet would
be hit by 234 electrons. The threshold energy required for multiple ionization would be
determined by the most energetic process that one of these electrons had to drive. The
energy of 19.83 eV indicates a mechanism that requires two metastable He atoms for the
formation of a cation, as proposed by Renzler et al. [41]. Thereby, at least 2 × (zf − zi)
metastable He atoms have to be formed to increase the charge state of a He droplet from zi
to zf. The electrons emitted by the processes were as follows:

He∗ + He∗ → He+ + He + e− and

He∗− + He∗ → He+ + He + e−

These electrons had kinetic energies in the order of 15 eV and thus were easily ejected
from the droplets. Both the electrostatic interaction of electrons with multiply charged
He droplets and the Coulomb energy required to accommodate additional charges in He
droplets containing millions of He atoms were in the range of 0.1 eV and could not account
for a slope of 1.66 eV.

At a hypothetical threshold energy, all projectile electrons have to escape after inelastic
scattering and He* formation with essentially no excess kinetic energy, which becomes less
probable for an increasing number of electrons. Thus, we propose that the unexpected
increase of the appearance energy with increasing charging of He droplets (as seen in
Figure 5) is simply related to the diminishing probability for the escape of large numbers
of low-energy electrons.

×
×

×

Figure 5. Appearance energies of the ion efficiency curves for electron ionization of positively
charged He droplets, plotted as a function of the difference of the final and initial charge states zf − zi.
Different symbols designate different expansion conditions and selected mass-per-charge values by
the first energy analyzer. The black line is a linear fit to the data with a slope of 1.66 eV per removed
electron. A general uncertainty of ±1 eV for every threshold, determined by the vanishing current
method, is plotted as a single error bar symbolically.

Figure 6a shows the ion efficiency curves for reactions that led to a reduction in the
charge state of positively charged He droplets, having an initial mass-per-charge value of
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5.7 million He atoms per charge. The corresponding reaction channels are found at relative
m/z values larger than 1 in Figure 3. The color-coded curves are labeled with the ratio of
the initial and final charge state zi/zf of the corresponding reaction channels in ascending
values. In addition, the reaction channel that did not lead to a change in the charge state
(designated as 1/1, the light gray line) is plotted with its corresponding y-axis at the right
side of the diagram.

 
(a) (b) 

Figure 6. (a) Ion efficiency curves for electron capture of positively charged He droplets with a mass-per-charge ratio of
5.7 million He atoms per charge upon electron bombardment. The curves labels are sorted according to the ratio of the
precursor to the final charge state. (b) Selection of every second data from (a), shown in more detail in the energy range
around the 22 eV and 30 eV resonances.

The reduction of the charge state (i.e., the capture of the projectile electron) requires a
minimum energy of about 2 eV, where a more- or less-pronounced resonance can be seen,
followed by a second broad feature at around 10 eV and a narrow peak at around 22 eV,
again followed by a broad peak at around 30 eV and a very weak resonance at around
44 eV. Table S2 in the Supplementary Materials lists the positions of these resonances for
all ion efficiency curves measured for two different mass-per-charge values of the initially
selected positively charged droplets. The ion efficiency curves for m/z = 2.7 million He
atoms per charge are shown in the Supplementary Materials in Figure S3. Figure 6b shows
the energy range between 17 eV and 40 eV in more detail.

According to Figure 7, the actual positions of the features around 22 eV and 30 eV
seemed to depend on the ratio of the final and initial charge states. For both initially
selected mass-per-charge values (designated by solid symbols for 2.7 and open symbols for
5.7 million He atoms per charge), the data followed the same nonlinear trend. The lines
were allometric fits to the data of the form of

y = a + b·xc,

The fitting parameters were a = 22.42 (25.28), b = −2.14 (6.79) and c = 3.25 (3.28) for
the two resonances, respectively.

Both resonance positions exhibited a smooth monotonic behavior. The low-energy
resonance started at low zf/zi values of 22.5 eV and dropped with increasing zf/zi to less
than 21 eV. In contrast, the high-energy resonance increased from 25 eV at zf/zi = 0.2 to
30 eV at zf/zi = 0.9. Both curves followed a similar power dependence with fit parameters
c = 3.25 and 3.28 for the low- and high-energy resonances, respectively. Large zf/zi values
corresponded to the single-electron capture of a highly charged He droplet, whereas
small values were obtained when a highly charged droplet captured zi − 1 electrons or a
positively charged droplet was neutralized (i.e., zf = 0). The values of 22.42 eV and 25.28 eV
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for zf/zi = 0 indicate electronic excitation and threshold ionization of He atoms as potential
underlying processes, respectively. The formation of He* as well as the formation of He+

additionally generated one or two low-energy electrons, respectively, which if trapped
inside the droplet would reduce its charge state.

Figure 7. Positions of the resonances for charge reduction as a function of the ratio of the final and
initial charge states, determined from the ion efficiency curves shown in Figure 6a,b. Bold symbols
designate mass-per-charge values of the selected precursor droplets of 2.7 million He atoms per
charge, and open symbols represent those of 5.7 million He atoms per charge. A general uncertainty
of ±0.65 eV for all resonance positions considering the spread in electron energy of the set-up is
plotted as a single error bar for both resonances.

The charge centers of the multiply charged He droplets were located close to their
surface [33], quite different from the highly charged water droplets [42,43]. The mass of a
droplet scales with the cube of its radius, whereas the surface is only proportional to the square
of the radius. Droplets with the same mass-per-charge values were selected by the energy
analyzers. However, with the increasing charge state z, their surface charge densities rose with
z1/3. Thus, the energy gain of an electron due to the Coulomb attraction from charged droplets
having the same mass-per-charge ratio was larger for droplets having a high initial charge
state zi, albeit with a larger radius. This explains qualitatively the lowering of the low-energy
resonance to a value of 20.3 at zf/zi = 1, which was close to 19.8 eV for the formation of He in
the 23S state. The high-energy resonance reached a value of 32 eV at zf/zi = 1, and a tentative
explanation for this resonance is dissociative electron attachment to impurities, such as H2O
from the residual gas captured by large He droplets or H2 impurities in the He gas used for the
droplet formation. Both H2O and H2 exhibit resonances for dissociative electron attachment
at about 10 eV when embedded in He droplets [44,45] and subsequent resonances upshifted
by the energy required to form metastable He in droplets (i.e., 19.8 + 1.66 = 21.46 eV). The
probability for both impurities to be found in a droplet increased with the size of the droplet;
in the case of water, it scaled with the geometric cross section that was proportional to the
number of He atoms in the droplet to the power of 2/3, and for hydrogen, it was proportional
to the number of He atoms. Thus, highly charged droplets are inevitably prone to more
impurities and exhibit more intense peaks at these electron energy ranges. However, as the
droplets were already initially charged, we expect that these impurities are preferentially
localized at the charge centers.

3.2.2. Total Cross Sections

For ionization (increase in the charge state, red line) and electron capture (decrease in
charge state, blue line), we summed up all measured ion efficiency curves and plotted them in
Figure 8 together with the channel that did not lead to a change in the charge state (light gray
line). With the second ion source turned off, we recorded a signal of 40,000 cps. If only cationic
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droplets were formed, the sum of all cationic product ions (black solid line in Figure 8) should
have been a constant line at 40,000 cps. Two narrow resonances at 2 eV and 22 eV as well as a
weaker feature at 44 eV could be assigned to neutralization or the formation of negatively
charged droplets via electron capture and He*− formation. At electron energies higher than
60 eV, a monotonic decrease of the sum of the cationic droplets was observed, which resulted
from droplets having either a final charge state zf < 1 (anions or neutral) or being very large
(unresolved reaction channels to high charge states in Figure 3). Only reaction channels with
zf/zi ≤ 6 were recorded in the present study. Thus, a substantial part of the cationic products
was missing which, according to Figure 4, was expected to have a maximum ion yield at
electron energies larger than 80 eV. This readily explains the gradual loss of cationic product
droplets at electron energies higher than 60 eV.

Figure 8. The sum of all ion efficiency curves measured for charging (zf > zi, red line) and electron
capture (zf < zi, blue line) of positively charged He droplets with an initial mass-per-charge ratio of
5.7 million He atoms per charge. The light gray line represents the ion efficiency curve of the selected
charged precursor droplets, and the bold black line is the sum of these three channels (i.e., the yield
of all positively charged product ions).

In Figure 9, the loss of positively charged He droplets (40,000 cps minus the sum
of all positively charged product ions, the black line in Figure 8) is plotted (black bold
line) together with the anion efficiency curve for the formation of negatively charged He
droplets upon electron irradiation of neutral droplets with an average size of 1.8 million
He atoms [38] (blue line).

Figure 9. The loss of positively charged He droplets upon electron irradiation (black bold line) in
comparison with the formation of negatively charged He droplets upon electron capture into neutral
He droplets.
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3.3. Anions to Cations

In this section, we will focus on the interaction of electrons with negatively charged
He droplets that are formed upon electron bombardment of neutral He droplets at the same
expansion conditions (7 K and 2 MPa, average droplet size of 11 million He atoms [38])
with an electron energy of 30 eV and an electron current of 430 μA. The first energy filter
(Analyzer 1 in Figure 1) selected a narrow slice of a log-normal-shaped distribution at a
relative m/z of 3.2 × 107 He atoms per charge (corresponding to a relative m/z value of
1 in Figure 10a). In the second ion source (IS 2 in Figure 1), the selected droplets were
crossed with a 175-μA electron beam and an electron energy of 60 eV. The contribution of
multiply charged precursor droplets was very low, although only 4 million He atoms were
sufficient to stabilize two negatively charged ionic centers [34]. Plotting the curve versus
the reciprocal of the relative m/z value led to peaks centered at the corresponding charge
state of the product ions (Figure 10b). Individual peaks could be resolved in this figure up
to z = 27.

 
(a) (b) 

Figure 10. (a) Charge distributions of positively charged He droplets resulting from electron bombardment of mass-per-
charge selected, negatively charged He droplets containing 32 million He atoms per charge. The electron energy of the
second ion source (IS 2 in Figure 1) was set to 60 eV at an electron current of 175 μA. (b) The same data plotted as a function
of the reciprocal of m/z, exhibiting pronounced peaks at integer values of z up to z = 27.

3.3.1. Ion Efficiency Curves

Ion efficiency curves for the formation of cationic He droplets upon electron ionization
of negatively charged precursors containing 12 million He atoms per charge are plotted in
Figure 11. The left diagram (a) contains data upon electron ionization of a singly charged
anionic helium droplet, and the right diagram (b) shows data of a doubly charged anionic
helium droplet. The conversion of anions into cations requires a certain amount of energy
to remove at least two electrons from a large droplet. Penning ionization of He∗−, as
described by Renzler et al. [41], would be a possible mechanism, as well as direct ionization
of a He atom of the droplets. In both cases, the electrons require enough kinetic energy to
escape the Coulomb attraction by the now positively charged droplets.

3.3.2. Appearance Energies

Via the vanishing current method, the threshold energies were determined with an
uncertainty of ±1 eV for all reaction channels measured at two initial mass-per-charge
values of −12 and −32 million (shown in the Supplementary Materials, Figure S4) He
atoms per charge, and the values are summarized in Table S3 and plotted in Figure 12
as a function of the final charge state zf of the resulting cationic droplets. In contrast to
the cations shown in Figure 5, the x-axis corresponds to the final charge state and not
the difference zf − zi. Again, we assigned a slope of the fit of 1.34 eV to the decreasing
probability of the ejection of an increasing number of low-energy electrons. The only
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difference with the initially positively charged droplets (shown in Figure 5) was the fact
that the appearance energies did not seem to depend on the initial charge state. The
repulsive Coulomb interaction between the electrons and the initially negatively charged
He droplets supported the escape of low-energy electrons. However, we were only able to
obtain data for zi = −1 and −2.
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→
→
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→

(a) (b) 

Figure 11. (a) Ion efficiency curves for electron ionization of negative singly charged He droplets with a mass-per-charge
ratio of 12 million He atoms per charge. The curves are sorted according to the final charge states of the resulting positively
charged droplets. (b) Ion efficiency curves for the formation of positively charged He droplets upon electron ionization
doubly charged anionic He droplets containing 24 million He atoms.

×
×

Figure 12. Appearance energies of the ion efficiency curves for electron ionization of negatively
charged He droplets and the formation of cations, plotted as a function of the final charge states zf of
the positively charged product droplet for two He droplet source temperatures (12 and 32 million
He atoms per charge, designated as open circles and filled squares, respectively). The black line is a
linear fit to the data with a slope of 1.34 eV per removed electron. A general uncertainty of ±1 eV
that applies to every threshold, determined by the vanishing current method, is represented by a
single error bar.
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3.4. Anions to Anions

The ion efficiency curve for the attachment of an electron to an already negatively
charged droplet is shown exemplarily for a triply charged anionic He droplet containing
120 million He atoms in Figure 13. This process proceeded via two narrow resonances
located at 3 eV and 22 eV, and above 30 eV, an almost linear rise of the ion efficiency curve is
observed. At these energies, He+ was likely formed, and the net charge would be reduced
if both the projectile and secondary electron were trapped in the large He droplet having a
diameter of 220 nm. This increase of negative charging at electron energies higher than
30 eV was expected to be one of the loss channels for cationic He droplets mentioned in
Section 3.2.2.

Figure 13. Anion efficiency curve for the single electron capture of a triply charged anionic He
droplet containing 120 million He atoms. The process is preferentially operational at two narrow
resonances of 3 eV and 22 eV.

4. Conclusions

The interaction of electrons with mass-per-charge-selected He droplets containing
millions of He atoms was studied in detail. Ion efficiency curves were determined for
individual reaction channels that could be assigned to the removal or addition of elec-
trons. In contrast to the single-collision conditions typically used for electron scattering
experiments with molecular or atomic targets, the huge geometric cross section of the
investigated helium droplets and the high electron currents chosen in the present study
ensured multi-collision conditions, with up to several hundred electron hits per droplet.
As was already reported previously [33,34], the mass loss due to neutral He evaporation or
asymmetric Coulomb explosion was negligible, and so the interaction of electrons with
large He droplets essentially only changed their charge states. Individual relative cross
section curves for charging positively charged He droplets clearly showed that with in-
creasing electron energy product, the droplets were preferentially ending up in higher
charge states. Threshold energies at 22 eV and intensity anomalies in several ion efficiency
curves demonstrate that metastable He formation is an important mechanism at all electron
energies, since the cross section for electron ionization of He∗ is almost 20 times larger than
that of ground state helium [37]. The total cross section for ionization exhibited a steep
increase from 25 eV to 35 eV, followed by a gentle rise up to 70 eV and an exponential
decrease at higher electron energies. The latter we explained with ionization into highly
charged droplets that could not be assigned in the present experiments. In the case of
electron capture, low-energy electrons can be directly trapped, preferentially with kinetic
energies around 2 eV or after inelastic scattering and He∗ formation at 22 eV and, to a less
extent, at 44 eV. At these electron energies, we observed the loss of positively charged He
droplets into neutral or negatively charged products.

Some results obtained in the present study for He droplets may also hold for droplets
and nanoparticles made of other atoms and molecules, such as water. In that case, similar
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experiments could provide valuable insight into the radiation physics and chemistry of
water as well as the initial processes happening in electrospray ionization.
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* Correspondence: lklos@fizyka.umk.pl

Abstract: A new geometry of a magnetic angle changer (MAC) device is proposed, which allows
experiments to be run on electron impact excitation of long-lived states of target atoms. The de-
tails of the device’s design are presented and discussed together with a numerical analysis of its
magnetic field.
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1. Introduction

A magnetic angle changer (MAC) [1,2] was invented two decades ago as a device
which allows the running of low-energy (below 100 eV) electron collisional experiments
in the full range of scattering angles when a crossed-beam geometry is applied. Several
various types of such devices have been used since then, allowing differential cross sections
(DCS) and electron impact coherence parameters (EICP) to be obtained for numerous
targets at various electron impact energies. A summary of such devices can be found in a
review by G. King [3]. The most interesting devices worth mentioning are the MAC of M.
Allan, using a single power supply [4], the MAC of B. Mielewska, providing zero magnetic
field in the central part of the device [5], and the MAC of I. Linert providing a broad region
of the homogeneous field [6].

Briefly, a MAC is a set of coaxial magnetic coils. Its total magnetic dipole moment
is usually zero, providing negligible magnetic fields outside the device, which does not
disturb electron beam sources or detectors of scattered particles. The device is symmetric,
with a symmetry plane perpendicular to the main axis. The symmetry plane is transparent
to electrons (no coils), identical to the experiment’s scattering plane. The electron–target
interaction region is placed in the central point of the MAC device.

The magnetic field of the MAC bends the electrons’ trajectories in a way where the
final direction is shifted by an angle defined by the electron’s kinetic energy, the device’s
geometry, and electric currents flowing through its coils. This is very useful in experiments
conducted at very large scattering angles, around 180◦. Without a MAC, this would require
placing an electron beam source (electron gun) and electron detector at the same angular
position. If the MAC is used, electrons scattered at such large angles are deflected to a
region where detectors can be physically placed.

Additionally, for inelastic scattering, the device can separate electrons scattered at 0◦
from the primary beam, allowing experiments to be run at very small scattering angles.

The magnetic field in the central region of the MAC (identical with the scattering
region) is usually of the order of millitesla. Such a relatively weak field does not influence
scattering processes significantly. It may, however, cause some issues in the interpretation
of experimental results, especially in the EICP measurement.

The EICP can be defined as various sets of parameters describing the shape, orien-
tation, and alignment of the electron charge cloud of collisionally excited atoms. More
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details can be found in the review by Andersen et al. [7]. In the case of P states of two-
valence-electron atoms, the most convenient EICPs are Andersen parameters Pl , γ and
L⊥ [8], defined as follows. An atom in its P state can be described as a superposition of
three possible magnetic substates:

|P〉 = a−1|m = −1〉+ a0|m = 0〉+ a+1|m = +1〉, (1)

where a−1, a0, and a+1 are complex coefficients. Due to the planar symmetry of the
scattering system, additional conditions for the coefficients appear. The mathematical form
of these conditions depends on the choice of axes used to describe the atom. If a so-called
natural reference frame is used, then such a condition is simply a0 = 0. In such a frame,
the quantization axis is perpendicular to the scattering plane defined by the momentum
vectors of incoming and outgoing electrons. Equation (1) is then simplified to:

|P〉 = a−1|m = −1〉+ a+1|m = +1〉. (2)

Then the angular part of electron cloud density in spherical coordinates (θ, φ) can be
described using the expression:

|Ψ(θ, φ)|2 =
3

8π
sin2 θ(1 + Pl cos(2φ − 2γ)), (3)

where Pl is the shape parameter and γ is the alignment angle. They are related to the a
coefficients (assuming normalization) with the expressions:

Pl = 2|a−1a+1| (4)

γ =
1
2

arg
(−a∗−1a+1

)
(5)

The third parameter L⊥ is angular momentum transfer, and it is given with the expression:

L⊥ = |a+1|2 − |a−1|2. (6)

Moreover, it is related to the shape parameter with the equation:

L2
⊥ + P2

l = 1. (7)

The geometrical interpretation of the parameters is presented in Figure 1.
In experiments on the EICP measurements in a weak magnetic field, an additional

effect analogous to a well-known Hanle effect [9] is present, which was described in
detail in the past [10,11]. The phenomenon was initially observed as a modification of the
polarization state of light resonantly scattered by atoms placed in a magnetic field [12]. The
effect finds numerous applications in atomic physics and astrophysics [13], and is used
for example, to determine magnetic fields in laboratory plasmas [14] or in astronomical
objects [15].

The Hanle-like effect we intend to avoid here is caused by the same mechanism in
terms of quantum mechanics. The difference is that the atoms are excited not by resonant
light, but by electron impact.

The presence of the magnetic field causes slight energy shifting in the atom’s state, de-
pending on the atom’s magnetic dipole moment orientation and the magnitude of the field.
For simplicity, we may assume that the magnetic field is parallel to the quantization axis in
the considered reference frame. The energy shifts have opposite signs for both substates in
Equation (2), causing a time-evolving phase shift between |m = −1〉 and |m = +1〉. This
way, the charge cloud from Equation (3) will precess with Larmour frequency:

ω =
Be
2m

, (8)
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where B is the magnetic field, e is the elementary charge, and m is the electron mass.

Figure 1. Geometrical interpretation of EICP. The 3-dimensional plot represents the angular part
of the electron charge cloud in an atom’s P state described with Equation (3). The value of |Ψ|2
corresponds to the distance of the particular point of the surface from the center of the reference
frame. The scattering plane is defined by the electron’s initial and final wave vectors�kin and�kout.
The axes’ orientation is chosen to form a so-called natural frame, where the quantization axis Z is
perpendicular to the scattering plane. The electron is scattered at the angle θe. The alignment angle is
denoted with γ. The shape parameter is given by the expression: Pl =

l−w
l+w , where l and w are the

length and width of the charge cloud, respectively.

Such a precession affects the measurement readout. The EICPs are usually studied
using the electron-photon coincidence technique [16,17]. In such experiments, photons
emitted from electron-impact excited atoms are detected. The information on EICP of the
atom is written in the polarization state of the photon and in angular distribution of its
emission probability. Such polarization or distribution can be determined experimentally.

There is a finite time interval between the collision act and photon emission, given
by an exponential distribution described with the excited state’s lifetime τ. This way, the
precession of the charge cloud in the finite time leads to blurring the measurement results
to P̃l and γ̃ values given with the expressions obtained by convolution of cloud rotation
and exponential decay [10]:

γ̃ = γ +
1
2

arctan
Beτ

m
, (9)

P̃l =
Pl√

1 +
(

Beτ
m

)2
. (10)

It is worth noting that the magnetic field does not influence the angular momentum
transfer L⊥.

There are two ways of dealing with the problem of the MAC’s field effect: One is to
predict the effect’s magnitude and include corrections in experimental data analysis, as was
done in the e-Ca superelastic scattering experiment by the Manchester group [18]. Since
Ca’s 41P1 state has a lifetime of 4.5 ns [19], then at 1 mT, the corrections are about 23◦ for γ
and 0.69 for Pl , which are acceptable values.

The other way is to provide a near-zero magnetic field in the scattering region, allowing
the Hanle-like effect to be reduced, as presented in our angular-correlation coincidence
experiment on e-He scattering [10,20,21].

Both approaches are sufficient if the lifetime of the atomic state excited during the
collision is short, of the order of a nanosecond. The situation becomes more complicated
if the lifetime is longer, such as He 23P state’s 98 ns [22]. In such a case, the corrections
cannot be used, as the 1 mT field would blur the results of the shape parameter to 6%
of its actual value, where the alignment angle cannot be determined well. On the other
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hand, excitation to the triplet state is very interesting as one of few examples where we can
observe purely spin-exchange collisions. The EICP for such scattering were measured only
in a limited range of energies and scattering angles [23] and analyzed theoretically in only
a few approaches [24,25].

Additionally, in the case of He’s 23P state, a central-zero-field MAC would be useless,
as the scattering region has finite dimensions, approximately 1 mm in diameter. The zero
magnetic field is available only at the center of the MAC, but the field reaches up to 0.1 mT
in outer parts of the finite region. This way, the Hanle-like effect of up to 30◦ would be
observed in the outer layers of the scattering area. The experimental results would then
include the magnetic field’s effect averaged over the interaction region, which would be
very difficult to deconvolve.

2. New Magnetic Angle Changer Geometry

To bypass the issues described above, a MAC of improved geometry can be used. It
combines the features of three devices mentioned above (Allan’s, Mielewska’s and Linert’s).
Besides assuring zero magnetic dipole moment and zero magnetic field in the central
region, it should also provide zero magnetic field in the center’s vicinity. In other words,
the magnetic field should be a homogeneous zero value in the whole scattering region.

To describe such a MAC, it is convenient to use cylindrical coordinates. The center of
the device is the origin of the coordinate system, and the main axis is the system’s Z axis.
The position of each coil, denoted with index i, is then given with its radius ri and distance
from the symmetry plane zi. Each coil transmits an electric current Ii (positive value for
counterclockwise currents and negative for clockwise). For simplicity, one can assume the
MAC is made of non-magnetic material with negligible magnetic susceptibility (copper in
the experiment).

The zero magnetic moment condition is then fulfilled by the equation:

N

∑
i=1

Iir2
i = 0, (11)

where N is the total number of wire coils used in the MAC (N = 30 in the proposed design).
The zero-field condition is fulfilled by the equation:

N

∑
i=1

Iir2
i(

r2
i + z2

i
) 3

2
= 0. (12)

To provide the homogeneity of the field, the second derivative of the magnetic field
along the Z coordinate should be zero:

∂2

∂Z2

N

∑
i=1

Iir2
i(

r2
i + (zi − Z)2

) 3
2

∣∣∣∣∣∣
Z=0

= 0, (13)

which leads to a condition, which is a generalization of a Helmholtz coil:

N

∑
i=1

Iir2
i (r

2
i − 4z2

i )(
r2

i + z2
i
) 7

2
= 0. (14)

For simplicity of operation, it was assumed at the design stage that all the wires would
be supplied with an electric current of the same value. Various geometries satisfy these
conditions (11), (12), and (14). One of them was chosen for practical realization. The choice
was made based on further numerical simulations of the electron beam’s behavior. The
selected MAC, among all the geometries we found, provided the best efficiency of bending
the electron’s trajectories and the lowest angular spread of the beam (see Section 2.2).
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2.1. The Device Used in the Experiment

The cross section of the proposed MAC is presented in Figure 2, together with the
produced field.

(a) (b)

Figure 2. The geometry of the proposed MAC coil. Panel (a) represents the cross-section through the
wires. For clarity, the cores used to wind the coil are not shown. The colors of the wires indicate the
direction of the electric current. Additionally, the magnetic field function at 3 A of the driving current
is presented to show the wide field-free area in the central part of the device. The magnetic field was
calculated numerically by integration of field contribution from all conductors using the Biot–Savart
law. Panel (b) represents magnetic field lines in the cross-section of the MAC, also obtained from
Biot–Savart.

The device consists of 30 pairs of circular wires arranged into coils. Details of their
geometry are collected in Table 1.

Table 1. Collected information on the geometry of the MAC’s coils. ri refers to the radius of i−th coil,
and zi is its distance from the device’s symmetry plane.

i ri [mm] zi [mm] Current Direction

1 9 3 +
2 9 4 +
3 9 5 +
4 10 3 +
5 10 4 +
6 10 5 +
7 11 11.9 +
8 11 12.9 +
9 11 13.9 +

10 13 5 −
11 13 6 −
12 13 7 −
13 14 5 −
14 14 6 −
15 14 7 −
16 16 5 −
17 16 6 −
18 16 7 −
19 21 5 −
20 21 6 −
21 21 7 −
22 21 8 −
23 21 9 −
24 21 10 −
25 24 12.8 +
26 24 13.8 +
27 24 14.8 +
28 25 12.8 +
29 25 13.8 +
30 25 14.8 +
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The device was set up using copper cores and 0.9 mm insulated copper wires. Such
choice enables good heat transmission, essential for cooling at several amperes of operating
current. Additional cooling was provided using a tap water system analogous to the one
used with the previous MAC [10]. Photographs of the ready-to-use device are presented in
Figure 3.

(a) (b)

Figure 3. Photographs of the MAC constructed based on the proposed design. Panel (a) shows the
device’s overview, with a ruler to indicate the size. Panel (b) shows the gap in the MAC’s symmetry
plane (scattering plane in the experiment). Some material is left in the gap to provide mechanical
support of the upper part.

2.2. Numerical Analysis of the MAC’s Performance

To prove the efficiency of the MAC, a set of numerical simulations was performed.
Trajectories of electrons traveling through the device’s field were calculated by integrating
classical equations of motion using well-known Runge–Kutta methods with Lorentz forces
and magnetic fields calculated from the Biot–Savart law, analogous to the method described
in our previous works [10]. Example trajectories are presented in Figure 4.

Figure 4. Example trajectories of electrons in the MAC’s field obtained numerically at a 4 A coil
current and 100 eV electron energy (projection in device’s symmetry plane). The circle denotes the
MAC’s contour. The electrons are incoming from the right and are deflected up at about 50 degrees.

Similar simulations were repeated in various current and energy conditions for elec-
tron beams of 1 mm in diameter. This allowed us to determine the MAC’s deflection
efficiency and estimate the angular spread of the electron beam introduced by the magnetic
field. The deflection angle ϑ of the electron’s trajectory can be calculated numerically in
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simulations, providing its nonlinear dependence from an expression IMAC√
E

, where IMAC

is the MAC’s electric current, and E is the electron’s kinetic energy. At low scattering
angles, where the function is close to linear, such calculations can be simplified by using
the approximate expression [10]:

ϑ ≈ 2e√
2mE

∫ ∞

0
B(r)dr (15)

where e and m are the electron’s charge and mass, and B(r) is the magnetic field function,
proportional to IMAC (example presented in Figure 2a). Numerically obtained deflection
angles are presented in Figure 5.

Figure 5. The deflection angle of electron trajectories obtained numerically. It is clear that at lower
deflection angles, the linear function from Equation (15) provides a good approximation.

Additionally, since the magnetic field can cause some angular spread of the deflection
angles, some additional simulations were performed for electron beams of finite width
(1 mm in diameter). The estimated spread is presented in Figure 6.

Figure 6. Numerically obtained angular spread of the electron beam introduced by the presence of
the MAC’s magnetic field.
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It is clear that for deflection angles below 60 degrees, the angular spread is low and can
be neglected for most electron scattering experiments, where beam divergences are usually
greater than 1 degree. At deflection angles above 80 degrees, the spread grows rapidly,
limiting the range of the MAC’s use. On the other hand, the deflection of an electron beam
of 60◦ is sufficient for most experiments involving backward scattering.

3. Summary

To summarize, a new, efficient magnetic angle changer was designed and built. Nu-
merical analysis shows its efficiency for electron beams typically used in electron scattering
experiments. The device can provide a near-zero, homogeneous magnetic field in its central
part. It may allow experiments on electron impact coherence parameters to be run in the
full range of scattering angles for atomic states with lifetimes close to 100 nanoseconds
(such as the 23P state of the helium atom, as mentioned above), which will be the topic of
further research of our group.
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Abstract: The need for a reliable and comprehensive database of cross-sections for many atomic
and molecular species is immense due to its key role in R&D domains such as plasma modelling,
bio-chemical processes, medicine and many other natural and technological environments. Elastic,
momentum transfer and total cross-sections of butanol and pentanol isomers by the impact of
6–5000 eV electrons are presented in this work. The calculations were performed by employing
the spherical complex optical potential formalism along with single-centre expansion and group
additivity rule. The investigations into the presence of isomeric variations reveal that they are more
pronounced at low and intermediate energies. Elastic, total cross-sections (with the exception of
n-pentanol) and momentum transfer cross-sections for all pentanol isomers are reported here for the
first time, to the best of our knowledge. Our momentum transfer cross-sections for butanol isomers
are in very good agreement with the experimental and theoretical values available, and in reasonable
consensus for other cross-sections.

Keywords: electron scattering; integral cross sections; alcohols; isomeric effect; butanol; pentanol

1. Introduction

Recently, there has been a heightened interest in the study of higher alcohols for
their significant role in industrial applications and research. Species such as butanol and
pentanol are axial to the development of bio-fuels [1] and are the mainstay of all major
proposed solutions to the looming world energy crisis. To understand the processes that
follow the ignition of plasma and to model the spark ignition behaviour of such bio-fuels,
many fundamental data are required that can be sourced from electron-scattering studies
of these molecules [2]. Moreover, there is a pressing need for a reliable and comprehensive
database of cross-sections for these species, as they play a key role in R&D domains such
as plasma modelling [3], bio-chemical processes [4], health [5], environment [6], etc.

In the present times, the isomers of higher alcohols have also been seen as viable
alternatives of their n-structure counterparts as bio-fuels [7]. Electron-scattering data,
however, are scarcely available for such molecules. These data are also critical for the
accurate modelling of planetary atmospheres [8]. In order to facilitate a complete dataset of
cross-sections [9], we report the data for elastic (Qel), momentum transfer (Qmtcs) and total
cross-sections (Qt) for butanol and pentanol isomers under the present theoretical study.
This is in continuation to the theoretical calculations of total ionisation cross-sections (Qion)
for the same species, reported in our earlier work [10].

Our calculations were performed using the spherical complex optical potential
(SCOP) [11,12] methodology and the group additivity rule (GAR) [13], along with single-
centre expansion applied to model the charge density of each group, efficiently. A visual
approach to the selection of groups on the basis of the electrostatic potential surface of
the target molecule was employed, the details of which are provided in ref. [10]. The
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input parameters such as polarizability, ionisation energies, etc., for pentanol isomers were
also calculated in our earlier work [10], though the first excited states of the targets were
calculated in this work, the data being unavailable for the same in the literature. The next
section describes our theoretical methodology followed by results and discussions with
conclusions presented in the final section of this article.

2. Theoretical Methodology

We used the SCOP [14] formalism for the calculation of cross-sections that employ a
model optical potential to represent the scattering dynamics, expressed as:

Vopt = Vreal(r, Ei) + iVim(r, Ei) (1)

The Schrödinger equation for the system was then solved by the partial wave analysis
using the potential in Equation (1), yielding the solutions as complex phase shifts that
are used to obtain cross-sections. The potential represented by the first term on the right-
hand side of Equation (1) is the sum of static potential (Vst), exchange potential (Vex) and
polarization potential (Vpol).

Vreal = Vst + Vex + Vpol (2)

The static potential was derived from the charge density (ρ) of the atomic constituents
of the target molecule where ρ is expanded about the scattering centre, which is the atom in
case of atomic targets. In our case, however, the targets are molecules with hydrogen atoms
attached to either a carbon atom or an oxygen atom, which are much heavier than the
hydrogen itself. Consequently, the charge density of the hydrogen atom is expanded about
the heavier atom, i.e., the carbon or the oxygen atom. This is called single-centre expansion.
Due to the large size of our targets, it is fair to assume that they are composed of multiple
independent scattering centres, comprising groups of atoms. The contributions of single-
electron collisions from these groups may be added linearly to obtain the cross-section for
the whole molecule, a process that is known as the group additivity rule. To remove any
ambiguity in the identification of these groups, we devised a selection mechanism based
on the electrostatic potential surface of the molecule, described in our earlier work [10].

The static potential was obtained from the parameterized Hartree–Fock wave equation
by Cox and Bonham [15], while the exchange potential was calculated using Hara’s [16]
non-parametric, free-electron gas model. The parameter-free, correlation polarization
potential by Zhang et al. [17] was used to account for the polarization effects.

The second term on the right-hand side of Equation (1) corresponds to the loss of
scattered flux due to electronic excitation and ionization channels. The absorption potential
is a quasi-free Pauli-blocking type and its expression as given by Staszewska et al. [18] is:

Vabs(r, Ei) = −ρ(r)

√
Tloc

2

(
8π

10k3
FEi

)
θ(p2 − k2

f − 2Δ)(A1 + A2 + A3) (3)

Here, the local kinetic energy is:

Tloc = Ei − (Vst + Vex + Vpol) (4)

where kf is the Fermi wave vector given by k f = 3
√

3π2ρ(r) and p is the momentum
of the incident electron computed as p2 = 2Ei. The dynamic functions A1, A2 and A3
are dependent on the ionisation potential (IP), the Heaviside unit step function θ(x) and
the Δ parameter, the value of which is such that it limits the value of the total inelastic
cross-section. As approximated by Staszewska, the value of Δ is equal to IP, which is a
constant. The inelastic channels are closed for incident energies lower than Δ, but below
the ionization threshold, however, there is a finite probability of excitation to discrete states.
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An energy dependent form of Δ checks the excessive loss of flux into the inelastic channels
at intermediate energies, which is represented as:

Δ(Ei) = 0.8I + β(Ei − I) (5)

The constant β is calculated by setting Δ = I (ionization energy) for Ei = Ep, Ep being
the incident energy where the inelastic cross-section is maximum. It is fair to consider the
inelastic channels to be opened at the first excitation energy requiring energy dependency
of Δ. For energies higher than Ep, however, Δ is fixed at ionization energy.

The optical potential constructed in Equation (1) for the target molecular system was
incorporated in the Schrödinger equation, which was solved numerically using Numerov’s
method under partial wave analysis. The solutions yielded complex phase shifts, which
carry information about scattering dynamics and were employed to calculate relevant
cross-sections. The elastic cross-section for l partial waves is calculated as:

Qel(Ei) =
π

k2

∞

∑
l=0

(2l + 1)|ηl exp(Reδl)− 1|2 (6)

and the inelastic cross-section is given by:

Qinel(Ei) =
π

k2

∞

∑
l=0

(2l + 1)
(

1 − η2
l

)
(7)

where, ηl = exp(−2lmδl) is the absorption factor for each partial wave with the number of
partial waves, in our case being capped at 61, satisfying convergence of the results in our
calculations. The sum of Equations (6) and (7) gives the total cross-section (Qt), i.e.:

Qt = Qel + Qinel (8)

The complex phase shifts obtained as the solutions of Schrödinger equation were also
used to calculate the momentum transfer cross-section using:

Qmtcs(Ei) =
4π

k2

∞

∑
l=0

(l + 1) sin2[δl+1(k)− δl(k)] (9)

We used the same data for target parameters, calculated by us or otherwise, as in our
earlier work [10] and is displayed in Tables 1 and 2. This includes ionisation energies (IP)
and molecular polarizabilities.

The excitation energies listed in Tables 1 and 2 were calculated using Gaussian soft-
ware [19]. The geometry of the molecules was optimized using the hybrid functional
(B3LYP) along with 6-311++G (d,) basis set within density functional theory [20,21]. Ex-
cited states calculations [22] were performed by implementing time dependent density
functional theory on these optimized structures.

Table 1. Target properties (butanol isomers).

Target Species IP (eV) [23]
Polarizability

α (Å3)
First Excited State

(eV)

Butan-1-ol 9.99 ± 0.05 8.57 [24] 6.23
Butan-2-ol 9.88 ± 0.03 8.57 [24] 6.29

2-methylpropan-1-ol 10.02 ± 0.03 8.92 [25] 6.24
2-methypropan-2-ol 9.90 ± 0.03 8.92 [25] 6.23
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Table 2. Target properties (pentanol isomers).

Target Species IP (eV) [10]
Polarizability
α (Å3) [10]

First Excited State
(eV)

Pentan-1-ol 10.00 10.118 6.25
Pentan-2-ol 9.78 10.112 6.30
Pentan-3-ol 9.78 10.056 6.30

2-methylbutan-1-ol 9.86 10.000 6.20
3-methylbutan-2-ol 9.88 10.014 6.19

3. Results and Discussion

The calculated cross-sections of molecules are represented graphically (Figures 1–13).
Atomic units were used for calculations with the cross-section values in the units of Å2

on the Y-axis and energy of the projectile in eV on the X-axis (logarithmic scale on both
axes). Comparison data for the molecules are plotted in separate figures and, wherever
it is not available, calculated data of all isomers of the target molecule are plotted in the
same graph.

Figure 1. Elastic cross-section of butan-1-ol: solid black line represents present result, solid circles
(red) depict experimental data from Khakoo et al., dashed (blue) line is ICS from Gomes et al.,
dash-dot line (green) is from Bhardvaja et al. and pink dash-dot-dot line represents pseudopotential
calculations from Khakoo et al.

Figure 2. Solid lines (black) represent butan-2-ol, dashed lines (red) represent 2-methylpropan-1-ol
and dotted lines (blue) represent 2-methylpropan-2-ol results. Lines (only) show present results and
lines with open circles are results from Bettega et al.
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Figure 3. Elastic cross-section of pentan-1-ol: solid black line shows present results, dashed blue line
displays results by de Oliviera et al. and dash-dot red line represents results by Bhardvaja et al.

 
Figure 4. Elastic cross-section of pentanol isomers (present): black dashed line is for pentan-1-
ol, purple dotted line represents pentan-2-ol, red dash-dot-dot line represents pentan-3-ol, violet
dash-dot line represents 2-methylbutan-1-ol and green solid line represents 3-methylpropan-2-ol.

 

Figure 5. Total cross-section butan-1-ol: black solid line shows present results, red circles are
experimental results by Gomes et al., purple squares are ‘hybrid TCS’ by Gomes et al., blue dashed
lines are calculated values by Gomes et al., green dash-dot-dot line is from Bhardvaja et al. and
orange dash-dot-dash line shows TCS + rotational from Gomes et al.
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Figure 6. Total cross-section of butanol isomers (present): solid (black) line represents butan-1-ol,
dashed (olive) line is for butan-2-ol, dash-dot (red) line is for 2-methylpropan-1-ol and dash-dot-dot
(blue) line represents 2-methylpropan-2-ol.

Figure 7. Total cross-section pentan-1-ol: solid (black) line represents present results and dashed
(red) line represents results by Bhardvaja et al.

 

Figure 8. Total cross-section of pentanol isomers (present): dashed (black) line represents penta-1-ol,
dotted (purple) is for pentan-2-ol, dash-dot-dot (red) line is for pentan-3-ol, dash-dot (blue) line
represents 2-methylbutan-1-ol and solid (olive) line represents 3-methylbutan-2-ol results.
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Figure 9. Momentum transfer cross-section of butan-1-ol: solid (black) line shows present results,
circles (red) represent experimental results of Khakoo et al. and dashed (pink) line shows calculated
results of Bettega et al.

Figure 10. Momentum transfer cross-section of butanol isomers (present): solid (black) line represents
butan-1-ol, dashed (olive) line is for butan-2-ol, dash-dot (red) line is for 2-methylpropan-1-ol and
dash-dot-dot (blue) line represents 2-methylpropan-2-ol.

Figure 11. Momentum transfer cross-section for butanol isomers: present results are depicted as lines
and results from Bettega et al. are shown as lines with open circles. Butan-2-ol results are shown in
black, 2-methylpropan-1-ol in red and 2-methypropan-2-ol results in blue colour.
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Figure 12. Momentum transfer cross-section of pentan-1-ol: solid (black) line shows present results,
dashed (blue) lines show calculated (SE) results of de Oliviera et al. and dash-dot (red) line represents
calculated (SEP) results of de Oliviera et al.

 
Figure 13. Momentum transfer cross-section of pentanol isomers: dashed (black) line represents
penta-1-ol, dotted (purple) is for pentan-2-ol, dash-dot-dot (red) line is for pentan-3-ol, dash-dot
(blue) line represents 2-methylbutan-1-ol and solid (olive) line represents 3-methylbutan-2-ol results.

3.1. Elastic Cross-Section

Our elastic cross-section values for butan-1-ol (Figure 1) were on the higher side for
lower energies (<10 eV) as compared to the experimental data of Khakoo et al. [26], their
calculated results and that of Gomes et al. [27]. This may be inherent to our methodology
and can be attributed to the fact that we considered inelastic channels open at the first
excitation energy albeit there being no distinction between the various open channels. The
number of scattering centres in straight chain isomers was larger than the branched ones
in our implementation of group additivity rule [10], to which their higher cross-section
values below the ionization threshold can be attributed. This, however, improved the
overall results, especially in the context of contribution to energies above the ionisation
threshold. The agreement with experimental results at intermediate energies, therefore,
was reasonable within the given stated range of uncertainties. Just above the ionization
threshold, present data points overestimate the reported results since the inner excitations
were not included in the present case. These inner excitations were dominating inelastic
channels besides the ionization above the ionization threshold. Therefore, elastic cross-
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section reduces significantly just above the ionization threshold. Our results (Figure 2)
show a distinct difference in the elastic cross-sections of straight chain isomers as compared
to the branched ones, and the same can be observed in the results of Bettega et al. [28] too,
although the difference in their case is marginal. It is noteworthy here, that the branched
isomers of alcohols are polar molecules due to the presence of hydroxyl group. This effect
is mitigated for straight chain isomers.

The integral elastic cross-sections of pentan-1-ol reported by de Oliviera et al. [29]
have higher values at intermediate energies than calculated elastic cross-sections of
Bhardvaja et al. [30] and our results (Figure 3), though the trends appear similar. The
effect of the isomeric structure on the elastic cross-section of pentanol isomers, however,
appears to be of minor significance in our results (Figure 4) except for 3-methylbutan-2-ol.
This deviation from the trend in comparison with butanol isomers needs more investi-
gation, as this secondary amyl alcohol has a methyl group as well as a hydroxyl group
attached to the inner carbon atoms.

3.2. Total Cross-Section

The experimental total cross-section (TCS) for butan-1-ol reported by Gomes et al. [27]
in the energy range 80–400 eV starts off higher than all theoretically calculated cross-
sections, including their own and falls of more rapidly approaching 400 eV. All theoretical
calculations, more or less, show an identical trend in results, though differing in mag-
nitude. Our results are in excellent agreement with experimental data between 250 and
400 eV. Gomes et al. [27] derived a ‘hybrid TCS’ from the elastic integral cross-section
of Khakoo et al. and the calculated total ionization cross-section of Ghosh et al. [31] by
adding Binary-Encounter-Bethe (BEB) with an implementation of outer valence Green’s
function (OVGF), which is shown in (Figure 5). Given the fact that there is a difference in
magnitude of the ‘hybrid TCS’ and experimental TCS of Gomes et al. [27], it is noteworthy
that our results at the lower end of intermediate energies are in good agreement with the
former and at the higher end with the latter. A comparison of total cross-sections of butanol
isomers (Figure 6) continues to display the trend observed in the case of our results for
their elastic cross-sections.

Our calculated TCS of pentan-1-ol (Figure 7) is in very good agreement with the
calculated results of Bhardvaja et al. [30], except for very low and very high energies.
There are no experimental results available for the same to the best of our knowledge for
comparison with our data. Interestingly, the TCS results of pentanol isomers (Figure 8)
inherited the same features from their elastic cross-sections and here again, 3-methylbutan-
2-ol displays a deviation from the trend observed in butanol isomers.

3.3. Momentum Transfer Cross-Section

The Qmtcs results of butan-1-ol from our calculations (Figure 9) are in excellent
agreement with experimental results of Khakoo et al. [26] and the theoretical results of
Bettega et al. [28]. Here again our results below 10 eV were quite high as compared to the
other two. The reason is same as for the elastic curve.

As far as a comparison of our Qmtcs results for butanol isomers (Figure 10) is concerned,
they showed a similar trend as Qel and Qt, i.e., the values were higher in magnitude for
straight chain isomers than the branched ones. The agreement, when compared with
calculated results (Figure 11) of Bettega et al. [28], is in parts and is better for butan-2-ol.

There are no experimental data available for pentan-1-ol to the best of our knowledge,
hence, we compared the present results (Figure 12) with static-exchange and static-exchange
plus polarization calculations of de Oliviera et al. [29], which are in very good agreement
with our results except for energies lower than the ionisation threshold. Since there is no
experimental or theoretical data available for Qmtcs of isomers except for pentan-1-ol, a
comparison of our results (Figure 13) shows that they are in line with the observations
for our elastic and total cross-sections. The isomer effect here again is not significant for
the ones other than 3-methylbutan-2-ol, which has values higher in magnitude in low
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to intermediate energy range as compared to others. The trend shown by all isomers,
however, is consistent and along expected lines.

4. Conclusions

Electron-scattering elastic, total and momentum transfer cross-sections for butanol
and pentanol isomers were calculated and presented in this study. The SCOP method was
employed for the calculations. Taking into consideration the large size of the molecules, the
group additivity rule was used with scattering centres identified based on the electrostatic
potential surface generated for each target. The first excited states were calculated for all
the target species and cross-sections are reported for incident electron energies ranging
from 6 to 5000 eV. With this dataset, the cross-section database is complete for both butanol
and pentanol isomers. While our elastic and total cross-sections for most target isomers
are in good agreement with available measured and/or calculated results, our momentum
transfer cross-section calculations are in excellent agreement with available data for butan-
1-ol. There was a small but significant difference observed in the cross-sections of straight
chain and branched isomers, although the trends are contrary for butanol and pentanol,
which is not appreciable at higher energies.
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Abstract: Triple differential cross sections (TDCS) are presented for the electron and positron impact
ionization of inert gas atoms in a range of energy sharing geometries where a number of significant
few body effects compete to define the shape of the TDCS. Using both positrons and electrons
as projectiles has opened up the possibility of performing complementary studies which could
effectively isolate competing interactions that cannot be separately detected in an experiment with a
single projectile. Results will be presented in kinematics where the electron impact ionization appears
to be well understood and using the same kinematics positron cross sections will be presented. The
kinematics are then varied in order to focus on the role of distortion, post collision interaction (pci),
and interference effects.

Keywords: ionization; electron; positron; few body

1. Introduction

In a coincidence experiment, a projectile of momentum k0, energy E0 impinges on a
target atom and ionizes it. The ejected electron and scattered projectile are detected with
their angles and energies resolved. The momentum vectors of the scattered projectile, k1
and the ejected electron, k2, form a plane and thus we can define all possible kinematics by
the set (k0, k1, k2, Φ, θ1, θ2), where Φ defines the angle k0 makes to the plane of detection,
the “gun angle”, see Figure 1.

Figure 1. The incoming projectile has momentum k0 and energy E0, and it comes in at an angle Φ
with respect to the plane in which the two final state particles are detected at angles θ1, θ2 with respect
to the projection of the incoming direction on their plane. Φ = 0◦ corresponds to coplanar geometry,
Φ = 90◦ to perpendicular plane geometry. Θ12 is the angle between the two detected particles.

The great advantage of the coincidence approach is that it allows us to focus on
particular geometries and kinematics where three subtle body effects can be observed.
In less differential measurements, these effects will be swamped by the gross features
of the interactions. Thus far, complementary studies of electron and positron impact
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ionization have been restricted to asymmetric geometries [1–3] with E1 >> E2, and θ1
small where the triple differential cross section tends to have the same character as the first
Born approximation, being symmetric about the direction of momentum transfer with the
only significant structures coming from target wave function effects [4]. In these kinematics,
it is particularly difficult to disentangle the different few body contributions [5,6]; this
problem is enhanced because what few differences there are tend to be in the absolute size
of the cross section which is extremely demanding to measure accurately [7]. In this paper,
we focus on energy sharing geometries and explore the possibility of observing differences
in the shape of the cross section. In energy sharing geometries, we are dealing with a
“hard collision” where the incident electron loses more than half its energy; conservation of
momentum then requires the lost projectile momentum to be carried off by the recoiling ion
and we would, therefore, expect the nucleus to play an important role. The conventional
second Born approximation struggles to include the e± interaction with the nucleus [8]
and is not best suited for these geometries. A full close coupling calculation would be ideal
that is very computationally demanding, and it is not readily applicable to multi-electron
targets [5,9,10]. Our ambition here is to focus on mechanisms and to give direction to the
ongoing coincidence studies of electron and positron impact ionization. The distorted
wave Born approximation (DWBA) [11–13] is only the first order in the projectile—target
electron interaction; however, it allows for the elastic scattering of the incoming projectiles
and outgoing particles in the field of the atom/ion. Furthermore, the DWBA has provided
excellent agreement with electron impact ionization in energy sharing kinematics and,
because of its relative simplicity and flexibility, is an ideal vehicle to explore positron
scattering and the different few body mechanisms.

2. Scattering Approximations

2.1. Electron Impact

In the DWBA, the TDCS for ionization of the nl orbital of an inert gas atom is given by:

d3σ
dΩ1dΩ2dE = 2(2π)4 k1k2

k0

l
∑

m=−l
[| fnlm|2 + |gnlm|2 − Re( f ∗nlmgnlm)] (1)

where f is the direct amplitude and g the exchange amplitude. In the DWBA, the direct
and exchange amplitudes are given by

fnlm(k1, k2) = 〈χ−(k1, r1)χ
−(k2, r2)| 1

‖r1−r2‖ |χ
+
0 (k0, r1)ψnlm(r2)〉

gnlm(k1, k2) = 〈χ−(k1, r2)χ
−(k2, r1)| 1

‖r1−r2‖ |χ
+
0 (k0, r1)ψnlm(r2)〉 (2)

In (2), χ+
0 (k0, r1) is the distorted-wave representing the incident electron and is calcu-

lated in the static-exchange potential of the neutral atom. The χ−’s are the distorted waves
that are calculated in the static-exchange potentials of the ion and then orthogonalized to
ψnlm. These are normalized to a delta function i.e.,

〈χ±(k, r)|χ±(k′, r)〉 = δ(k − k′) (3)

For the target wave functions, we use the Hartree–Fock orbitals given in [14]. The
electron–electron interaction occurs exactly once, and no account is taken of post collisional
interaction (pci) between the two final state electrons. In our calculations below, the
full non-local exchange potential is not used and rather a localized version [13,15–18] is
employed. Its use greatly simplifies the static exchange calculations in that one only needs
to solve differential rather than integro-differential equations. Because we treat each of the
exiting electrons as moving in the field of a spin 1

2 ion, there is an inherent ambiguity in the
choice of exchange potential in the final channels, and we could choose it to be singlet or
triplet [9,13]. For most energies, there is little or no difference between results calculated
with the singlet or triplet potentials [13,18], but, at low energies, there is a weakness in
the singlet form in that, for some energies, it can become complex. A method has been
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proposed in [16] to make the potential real again if this happens, but this method results
in a discontinuous singlet potential and generally gives results in poorer agreement with
experiments than the equivalent triplet calculation, see [4,13]. In addition, we orthogonalize
both outgoing waves to the bound orbital ψnlm so that the direct amplitude fnlm has the
correct behavior as the momentum transfer q ≡ k0 − k1 tends to zero.

We can explore the effect of elastic scattering by the atom/ion by “switching” these
interactions on and off in (2). This can lead to some interesting insights into what is
happening and is a way of investigating multiple scattering mechanisms [12,19]. For
example, by replacing the distorted wave χ+

0 (k0, r1) with a plane wave (2π)−3/2eik0 , we
effectively “switch-off” the interaction between the incoming projectile and the atom.

The neglect of pci will be important at low energies [12,20]. To take some account of it,
a Gamow factor Ne−e− [12,21] has been employed:

d3σDWBApci

dΩ1dΩ2dE
= Ne−e−

d3σDWBA

dΩ1dΩ2dE
(4)

where
Ne−e− =

γ

eγ − 1
(5)

with
γ =

2π

‖k1 − k2‖ (6)

The Ne−e− factor tends to give the dominant angular behavior of the TDCS at low
energies, and it does correctly force the cross section to go to zero when k1 = k2. However,
the overall normalization is lost. To ameliorate this, it is has been proposed [4,17] to
normalize Ne−e− so that it is fixed to 1 when the angle between k1 and k2 is 180◦, i.e.,
when we have a colinear arrangement. A modified version of the Ne−e− factor has been
suggested by Ward and Macek [22]. These authors suggested replacing Ne−e− with

Me−e− = Ne−e−|1F1(−iν3, 1,−2ik3r3av)|2 (7)

where
k3 = 1

2‖k1 − k2‖
ν3 = − 1

‖k1−k2‖
r3av = 3

ε [
π

4
√

(3)
(1 + 0.627

π

√
ε ln ε)]2

(8)

with ε being the total energy of the two emerging electrons. The factor r3av was chosen by
the requirement that the Me−e− factor reproduces the correct Wannier threshold law. In this
way, it is hoped that Me−e− should be able to stand on its own without renormalization.
Certainly at low energies, this hope was not realized in the case of helium or hydrogen [4].

2.2. Positron Scattering

The DWBA TDCS equations look similar to (1) and (2), except that, in this case,
there is no exchange amplitude gnlm and the distorted-waves χ+

0 (k0, r1) and χ−(k1, r1)
for the positron are generated in the static potential, which is the minus of the static
potential for electron impact. The distorted-wave χ−(k2, r2) for the slow ejected electron is
orthogonalized to the bound state. There is now no longer any ambiguity in the choice of
exchange potential. The ground state of our targets is spin singlet (S = 0) and therefore the
ejected electron wave function must be calculated in the singlet static-exchange potential.

To estimate pci, we now change the sign of γ in (5).

Ne+e− =
Γ

eΓ − 1
(9)

with
Γ = − 2π

‖k1 − k2‖ (10)
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We still have the problem of choosing a normalization. Once again, we could assume
that, when the three particles are colinear (θ12 = 180◦), the pci effects are minimal and
normalize Ne+e− = 1 at the point. This is not ideal but is probably the best we can do. An
undesirable feature is that, while Ne−e− → 0 as Θ12 → 0, Ne+e− goes to infinity in this limit,
see Figure 2.

Figure 2. Plot of the Gamov factors for electron, dashed red and positron, solid black, with
θ1 = θ2, E1 = E2 = 1 eV.

3. Results

3.1. Coplanar Symmetric Geometry

In these geometries, both outgoing particles have equal energies E1 = E2 and are
detected with the same angle,

η = θ1 = θ2 =
Θ12

2
(11)

The incoming projectile loses more than half its kinetic energy in the interaction;
in such a “hard” collision, one expects collisions with the nucleus to play an important
role and, as such, they are ideal testing grounds for the DWBA. There are a number of
interesting experiments in coplanar symmetric geometry (i.e., Φ = 0◦) [23–25]. For impact
energies between 500 eV and 100 eV, the DWBA does well. We illustrate this in Figure 3a.
The physics underlying the form of the TDCS are easily understood in terms of a simple
model [26] in which the target electron is assumed to be at rest relative to its nucleus, and
the ionization process is viewed as a free collision between the incident and target electron.
Two mechanisms leading to a coplanar symmetric final state may be distinguished. In
the first, the incident electron collides with a target electron; conservation of energy and
momentum would suggest that the electrons would emerge at 90◦ to each other. Of course,
this is an over simplification since we should also take into account the fact that the tar-
get electron is not free but is in an atom with a definite binding energy and momentum
distribution. Nevertheless, we would expect this mechanism to be responsible for the
main peak near η = 45◦. The second mechanism involves a double collision in which the
incident electron is first elastically backscattered from the nucleus, and then the ionization
process is, as before, a nearly free electron–electron collision with the electrons emerging
at right angles to each other but now in the backward directions, i.e., at η = 135◦. The
DWBA contains both mechanisms, and we do as expected see two peaks at approximately
the correct angles. It is instructive to perform a model calculation where the incident
electron is replaced with a plane wave, and we designate this approximation as DWD-
WPW. Intuitively, in DWDWPW, the second mechanism is effectively “switched off”. In
Figure 3b, we show a comparison between the DWBA and the DWDWPW. As expected,
the large angle peak has disappeared. In addition, in Figure 3b, we show the DWBA
calculation for positron impact ionization. There is no large peak in the positron case but

138



Atoms 2021, 9, 33

rather an intimation of a suppressed structure where the peak should be. We interpret this
as a reflection of the weaker backward scattering of positrons as compared to electrons.

Figure 3. TDCS for the ionization of helium in coplanar symmetric geometry (i.e., Φ = 0◦) for
E0 = 200 eV. (a) Electron impact: experiment [25], theory DWBA (singlet exchange potential), no
polarization no pci, experiment was relative and has been normalized to give the best visual fit to
the DWBA; (b) Comparison of the TDCS calculated in the DWBA for positron: dotted green line, for
electron: DWBA, solid red and the model calculation, DWDWPW, dashed black.

As the impact energy is lowered, the DWBA, as given by (1) and (2), performs less
well. Experiment [24,27] finds a large angle peak that grows relative to the binary as the
impact energy is decreased until it is approximately equal to the binary for E0 = 50 eV [24].
On the other hand, the large angle peak in the DWBA remains orders of magnitude smaller.
The DWBA takes no account of polarization or capture of the incoming electron into the
final ion state, nor of electron–electron repulsion in the final state—all of which could be
quite important not only as effects in themselves but also as they interfere with each other.
In [12], an attempt was made to take these effects in a simple model: pci was included via
the Gamov factor and an “ad-hock” polarization potential added in the initial and final
channel, i.e.,

Vpol =

{
− α

2r4 r ≥ r0

− α
2r0

4 r < r0
(12)

where α = 1.39 was the polarizability of neutral helium He(1s2) in the incident channel
and the polarizability of He+(1s)(α = 0.28125) for the outgoing channels and r0 = 0.7565.
It was only with the combination of both pci and polarization for which shape agreement
could be found with experiment. The polarization potential used in [12] was essentially
chosen to give good agreement with the experiments of [24], but it worked well for a range
of low energies. We show an example in Figure 4. Whelan et al. [28] extended the model to
hydrogen where the incident channel polarization potential defined by analogy to He, i.e.,
α was taken to be the polarizability of H and

rH
0 = rHe

0
< r >H
< r >He

(13)

where< r > denotes the expectation value of r in the ground state of the atom. Whelan et al. [28]
predicted that a double peak structure would be seen in coplanar symmetric geometry
for H at an impact energy of 20 eV, a prediction that was immediately confirmed by
experiment [29,30]. The positron results in Figure 4c show nothing of the structure found
in the electron case.

139



Atoms 2021, 9, 33

Figure 4. TDCS for the ionization of helium in coplanar symmetric geometry (i.e., Φ = 0◦) for
E0 = 54.6 eV. (a) Various theoretical curves for electron impact, dotted black: DWBA (singlet
exchange potential); solid blue: DWBA (singlet exchange potential) with polarization but no pci,
green dashed line with crosses: DWBA (singlet exchange potential) with pci but no polarization;
red solid line, DWBA with polarization and pci; (b) Electron impact; experiment [27], theory DWBA
(singlet exchange potential) with polarization and pci; (c) Solid blue curve DWBA (singlet exchange
potential) for electron impact with polarization and pci, dashed red curve DWBA for positron impact
with polarization and pci, green dashed-double dotted DWBA for positron impact with polarization
but no pci.

3.2. Non Coplanar Energy Sharing Geometries

In the electron experiments of [31] on helium, the angle Φ was varied and a deep
minimum in the TDCS observed for Φ = 67.5◦ (see Figure 5). In [20,32], DWBA calculations
were presented, and the deep minimum reproduced. In the same paper, it was shown
that the minimum existed even in the simplest calculation of this type where neither
polarization nor post collisional electron–electron interaction was included. Rasch et al.
explored the possibility of such distinct interference effects being observed in other targets,
and they found that such a structure would be observed in other closed shell atoms but
only for s states. They predicted such that it would be evident in Ne(2s) at an impact
energy of 110.5 eV for Φ ≈ 42◦. This predication was subsequently confirmed [33]; see
Figure 6. In addition, shown in this figure is the DWBA with Ne−e− and the deep minimum
is still visible, but, as would be expected, the cross section is reduced for smaller values
of Θ12. The equivalent positron impact calculation is also shown. The deep minimum
has been replaced by a shallower and wider one, and the minimum value shifted towards
smaller η values. The inclusion of Ne+e− enhances the cross section for smaller Θ12 values.
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In Figure 5, we show the experimental TDCS for the electron impact ionization of
He [31] compared with our DWBA calculation, with and without pci. The minimum per-
sists if shifted by a few degrees once polarization is added. Recently, in [34], this geometry
was reexamined in a number of approximations. Their time dependent close coupling cal-
culation (TDCC) is reasonably close to the DWBA, but their 3DW approximation only gives
a shallow indentation at the critical angle, and, while both the Coulomb Born calculations
(with and without Me−e− ) produce a deep minimum it has been shifted to larger angles
away from the experiment and is four orders of magnitude too deep. In Figure 5b, we
show the positron impact TDCS, in the DWBA, for the same kinematics. A deep minimum
is no longer seen.

Figure 5. TDCS for ionization of helium with a projectile impact energy of E0 = 64.6 eV, and “gun
angle” of Φ = 67.5◦: (a) comparison of theory and experiment for electron impact, experiment [31]:
solid blue curve DWBA (using singlet exchange) with no pci; red dashed double dotted DWBA
(singlet exchange potential) with pci; (b) electron impact as in subfigure (a), positron impact black
dashed DWBA (singlet exchange potential), no pci, dotted green, DWBA (singlet exchange potential)
with pci.

In order to produce the sharp features seen in Figure 5, we undertook a series of model
calculations, shown in Figure 7.

First, we considered a first Born approximation type calculation, i.e., a non exchange
calculation with a plane wave for the incoming and scattered electron and the wavefunction
of the ejected electron calculated in the static potential of the ion and no pci. Next, we
added the Ne−e− factor “switched on” the singlet static exchange potential distortion for the
scattered electron; this we designate as PWDWPW. Then, we “switched on” distortion for
the ejected electron, and this is our DWDWPW model. Finally, we replaced the scattered
electron plane wave with a distorted wave to give us the regular DWBA. It is only when we
have distorted waves in both the incident and final channels do we see the sharp minimum.
The minimum is to be seen with and without pci and the inclusion of polarization makes
no difference. It is found only when we include distortion for all the electrons. It is
entirely absent from the positron calculation. Our model calculations indicate that it is
not a result of pci nor of target polarization and is only present when we allow for the
elastic scattering for both the incoming and outgoing electrons. The evaluation of the TDCS
involves computing a six-dimensional integral over a highly oscillatory argument, and, as
such, destructive interference effects may yield very small values for certain cases. This
is the only explanation that is consistent with all the model calculations. Thus, we can
interpret the structure as the result of a purely quantum mechanical interference effect.
This is in agreement with the predictions of [20] for neon.
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Figure 6. Left panel: TDCS for the electron impact ionization of Ne(2s), E0 = 110.5 eV, Φ = 42◦, experimental points [33];
solid line DWBA calculation of [20], dashed line theory convoluted over the experimental angular uncertainty. Right panel:
TDCS for the electron and positron impact ionization of Ne(2s), E = 37 eV, Φ = 40◦, electron impact DWBA (singlet
exchange potential), solid blue, DWBA (singlet exchange potential)+Ne−e− short dashed red, positron impact: DWBA, long
dashed black, DWBA+Ne+e− , green dotted.

Figure 7. TDCS for the electron impact ionization of helium, E0 = 64.6 eV, Φ = 67.5◦ comparison of
different model calculations: 1st Born, as described in the text dotted black line; PWDWPW: purple
dashed line; DWDWPW green dashed dotted line; DWBA solid blue line.

It is of interest to see if the same type of structure can be observed in open shell
systems. In [13], a similar deep minimum was observed in the TDCS for the electron
impact of hydrogen in coplanar symmetric geometry for an impact energy of 29 eV in a
pure DWBA calculation with no pci or polarization. However, when pci and polarization
are added, this deep minimum disappears, and this is probably a refection of the very
strong polarization potential used. A recent paper [35] predicts, using a Coulomb Born
(CB1) approximation, that there will be a deep minimum in the TDCS forthe positron
impact ionization of hydrogen at an impact energy of 100 eV and a gun angle of 56.13◦.
We have repeated their calculation using the DWBA, (see Figure 8) and while there is
something of the same feature in our DWBA calculations, our dip is seven orders of
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magnitude shallower, and it is wider. This not altogether surprising since interference
effects are very delicate, and it is likely that the position and magnitude of this effect in the
Coulomb Born calculations of [35] will depend on their choice of effective charge, which is
somewhat arbitrary.

Figure 8. TDCS for the positron impact ionization of hydrogen in energy sharing geometry,
E0 = 100 eV, Φ = 56.13◦. DWBA:solid red DWBA +Ne+e− : dashed black

3.3. Energy Sharing Perpendicular Plane Geometry

There are experiments in the perpendicular plane [27,36], i.e., Φ = 90◦. These exper-
iments were analyzed in [12,19] with a simple multiple scattering argument to explain
the general behavior of the cross section and obtained very good agreement with the
experiment using a DWBA approach. Within the DWBA, there are only two paths to the
perpendicular plane:

1. Single scattering: For a free collision between an incident and a stationary electron
resulting in two outgoing electrons of equal energy, conservation of energy and
momentum requires all three vectors k0, k1, k2 to lie in the same plane with Θ12 = 90◦.
Now, the atomic electron is not free but rather in a bound state with a momentum
distribution, for both electrons to end up in the perpendicular plane as the result of a
single collision, the incoming electron would have to collide with a bound electron
that had momentum

k = κ − k0 (14)

where κ.k0 = 0, thus both electrons will emerge in the perpendicular plane with
momentum κ = k1 + k2. Since the electron distribution in the helium atom is sharply
peaked to zero, the most probable value will be

κ = 0

= k1 + k2

⇒ k1 = −k2

⇒ Θ12 = 180◦ (15)

Thus, for single scattering, one would expect a single peak at η = 90◦. This is purely a
wavefunction effect, and it would be misleading to interpret the back to back emission
as being in some way related to the Wannier mechanism [37], since the peak is seen in
the DWBA without pci.

2. Double scattering: here, the incoming electron is first elastically scattered into the
plane perpendicular to the incoming beam and then in a second collision ionizes the
atom with both final state electrons coming out at roughly 90◦ to each other.
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As ‖k0‖ increases, it becomes more difficult for the electron to ionize via the single
scattering mechanism and thus the double scattering mechanism will dominate at higher
energies, and the most favorable condition for single scattering will be k0 ≈ 0. This
interpretation was is in qualitative accordance with the experiment of [27,36]. At the lowest
energy, a single peak at η = Θ12

2 = 90◦ is observed. As the impact energy is increased,
secondary peaks are observed in the vicinity of η = 45◦ and 135◦.

The DWBA calculations [12] reproduce these features and are generally in good agree-
ment with the relative experiments. At low energies, Ehrhardt and collaborators [38,39]
measured the cross sections for a fixed angle of Θ12 = 180◦, and a common point to all
the planes was obtained by rotating the gun angle. In Figure 9 (left panel), we show a
comparison between this absolute measurement and the distorted wave approximation
scaled by the Me−e− and Ne−e− , with the latter normalized to 1 when Θ12 = 180◦. The
DWBA +Ne−e− is in remarkably good agreement with the absolute experimental value
while the DWBA+Me−e− is significantly too small. The DWBA with Ne−e− also gives a
better fit to the relative measurements of [40] (middle panel). In Figure 9 (right panel), we
also show a comparison between the (e−, 2e−) and (e+, e+e−) cross sections, for the small
energy E values. In both the electron and positron cases, there is no indication of a double
scattering peak, and the positron cross section is much smaller.

Figure 9. TDCS for the ionization of helium with Φ = 90◦, θ1 = θ2 = η, E1 = E2 = E eV. Electron
impact: The absolute measurement of [38] (left panel) is shown, and the relative measurements
of [40] (middle panel) the DWBA (triplet exchange) without pci, solid blue line; DWBA with Ne−e−

factor normalized to 1 at Θ = 180◦, dashed red line, DWBA with Me−e− dotted green line; Positron
impact (right panel): DWBA without pci, solid black line, DWBA +Ne+e− , dashed red.

In Figure 10, we show a comparison between theory and experiment for E0 = 64.6,
E = 20 eV. The “double scattering” peaks are visible in the electron case for DWBA without
pci, and its addition tends to suppress the peaks at 45◦ and 135◦, even though they are still
clearly visible in the measurement. It would appear that, in this case, the use of Ne−e− is
too strong. We also show the DWBA for positron impact which is now almost structureless
and much smaller in size.

In the positron case, the cross section is greatly reduced in absolute size, and the
double scattering peaks at η ≈ 45◦ and η ≈ 13◦ are missing for all impact energies. For our
lowest energy E1 = E2 = 1 eV, in Figure 9, we do see a peak in the positron case for η = 90◦,
but the maximum value is much smaller than in the electron case. For E1 = E2 = 20 eV,
this peak completely disappears.
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Figure 10. TDCS for electron (left panel) and positron impact (right panel) ionization of helium in
the perpendicular plane (Φ = 90◦), E0 = 64.6 eV, experimental points [31]. The theoretical curves are:
solid red curve: DWBA with no pci; green dashed dotted DWBA with pci.

4. Conclusions

Our electron scattering calculations show many interesting structures that highlight
different and sometimes competing few body effects. In coplanar symmetric geometry, we
find that, for high impact energies, the DWBA theory correctly reproduces the experimental
results. However, for low impact energies, the agreement with the experiment is obtained
only by adding corrections for both polarization and post-collisional electron–electron
interaction. For non-coplanar symmetric geometries, a deep minimum in the TDCS is
seen experimentally for certain gun angles. The DWBA theory reproduces this minimum
even without polarization and pci. We interpret these structures in terms of interference
effects, and it is necessary to allow for both the elastic scattering of the incoming electron
and the exiting electrons if these structures are to appear. The experimental data in the
perpendicular plane are well reproduced by the DWBA approximation that allows for two
different pathways into the perpendicular plane, a single scattering mechanism at low
impact energies, and a multiple scattering mechanism at elevated energies. The equivalent
structures in the positron case are much less pronounced. Indeed, we find little evidence
for the strong interference effects that are seen in the TDCS for e+ on atomic hydrogen in
the Coulomb Born calculations of [35]. The particular structures predicted in the Coulomb
Born calculations are probably an artifact of the choice of effective charge.
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Abstract: Calculations are presented for differential, integrated elastic, momentum transfer, viscosity,
inelastic, total cross sections and spin polarization parameters S, T and U for electrons and positrons
scattering from atoms and ions of radon isonuclear series in the energy range from 1 eV–1 MeV.
In addition, we analyze systematically the details of the critical minima in the elastic differential
cross sections along with the positions of the corresponding maximum polarization points in the
Sherman function for the aforesaid scattering systems. Coulomb glory is investigated across the ionic
series. A short range complex optical potential, comprising static, polarization and exchange (for
electron projectile) potentials, is used to describe the scattering from neutral atom. This potential
is supplemented by the Coulomb potential for the same purpose for a charged atom. The Dirac
partial wave analysis, employing the aforesaid potential, is carried out to calculate the aforesaid
scattering observables. A comparison of our results with other theoretical findings shows a reasonable
agreement over the studied energy range.

Keywords: electron and positron scattering; spin asymmetry; critical minima; total polarization;
coulomb glory

1. Introduction

Lepton scattering from atoms and ions is of immense importance in both experimental
and theoretical studies. Electron (e−) scattering from neutral atomic targets is an efficient
tool to glean projectile-target interaction [1], the structure of atoms or molecules and matter
in bulk. The electrons passing through matter are not only scattered, but also produce
ions of different charges. Explicit interpretation of the spectroscopic observations and
theoretical modeling of the formation and time evolution of artificial, terrestrial, space
and astrophysical plasmas require the electron-ion scattering cross section data [2]. On the
other hand, positron-ion scattering is important for understanding the dynamics of the
collisions of positrons with ions, atoms and molecules in interstellar medium [3]. For the
positron (e+) projectile, phaseshifts are very sensitive to the polarization as the repulsive
static potential partially cancels the attractive polarization potential [4]. Therefore, e+-atom
collision can furnish a useful, and sometimes more sensitive test of the techniques used for
studying the lepton scattering processes.

The elastic differential cross section (DCS) data can provide detailed information
on collision dynamics and the optical potential. The total cross section (TCS) as well as
its integrated elastic cross section (IECS) and inelastic cross section (INCS) determine
the mean free path between two elastic collisions. The momentum-transfer cross section
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(MTCS) is used to compute the average momentum transferred by the projectile to the
target on collision. The viscosity cross section (VCS) is needed for expansion of the multiple
scattering formula used as an input to the Monte Carlo simulation of the electron transport
in solids. Regarding collision dynamics, more detailed information can be unfolded by
studying spin asymmetry parameters S, T and U. The S parameter, the so called Sherman
function, associated with leptons spin-polarized perpendicular to the scattering plane,
serves to measure the beam polarization [5]. The angle of rotation of the component of the
polarization vector in polarized projectiles can be obtained by other two parameters T and
U. The determination of critical minima (CM) points in the DCS is useful as a complete
spin polarization of the scattered projectile occurs in the vicinity of these CMs [6,7]. All
aforesaid observables of lepton scattering from neutral atoms, ions, and molecules have
many applications in various pure and applied sciences.

To date, a considerable number of attempts, both experimentally [8–11] and theoreti-
cally [12–17], have been made to study the collisions of electrons with rare-gas atoms. Due
to the inertness and availability, rare-gas atoms are often used as targets in experimental
studies of scattering in a goal to understand lepton-atom interaction and test collision
dynamics. The recent development of rare-gas halide high-power lasers has increased
interest in studies the electrons scattering from inert gases. In physical sciences radon is
used as a tracer because of its short half-life (3.8 days). Despite such applications, studies
on e±–radon scattering, particularly across the isonuclear series, are limited. To date, as
we are aware, there is no experiment on e−/e+–radon scattering available in the literature.
The high cost and radioactivity of radon stand as barrier to a experimental research with it.

On the theoretical side, Kapil and Vats [18] performed relativistic calculations of
the DCS, IECS and MTCS as well as S, T and U for positrons scattering by radon and
radium atoms in the energy range 2–500 eV. The same observables in the same energy
range for electrons scattering from Yb, Rn and Ra were calculated by Neerja et al. [19].
At energies Ei = 20–1000 eV, the TCS for positron scattering from all the rare gases were
reported by Baluja and Jain [12]. IECS, MTCS and VCS for the neutral atomic targets (ZT
= 1–92) were tabulated by Mayol and Salvat [20] for 100 eV to 1 GeV electrons, and by
Dapor and Miotello [21] for 500–4000 eV positrons. Sin Fai Lam [13] predicted DCS, TCS
and S for low energy (Ei ≤ 30 eV) electrons from krypton, xenon and radon atoms. It is
worth mentioning that all of these cross sections were calculated only for neutral atomic
targets. This fact underscores the necessity for the study of lepton-ion scattering from
the perspectives of fundamental and practical importance. Furthermore, this situation
motivates us to undertake the study of scatterings of electrons and positrons from radon
atoms and ions up to charge state q86+.

In this study, we have investigated elastic DCS, IECS, MTCS, VCS, INCS, TCS, S, T
and U for both electrons and positrons scattering from radon isonuclear series including
neutral atoms as well as ions over a wider energy range of 1 eV ≤ Ei ≤ 1 MeV. In DCSs of
the e−-Rn system, we have investigated CM and determined maximum spin polarization
(MSP) points in the vicinity of these CMs. Coulomb glory, the amplification of elastic
backscattering of electrons from positive ions owing to the electrostatic screening of nu-
clear potential by atomic electrons, has been investigated throughout the ionic series of
radon. The aforesaid scattering observables are obtained by solving Dirac relativistic equa-
tion within the framework of partial wave analysis using a modified Coulomb potential
(MCP) [15] in the form

V(r) = Vmc(r) =
zqe2

r
+ Vsr(r). (1)

The first term on the right-hand side of the above equation is the long-range Coulomb
potential due to the Coulomb interaction between primary electron or positron with the
target with the ionic charge q. e is magnitude of the electron charge, and z = −1 for
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electron and +1 for positron. The short-range part, Vsr(r) is given by a local complex optical
potential [22–25] in the form

Vsr(r) = Vop(r) = VR(r)− iWabs(r), (2)

where, VR(r) and iWabs(r) denote, respectively, the real and imaginary parts of the potential.
The real part consists of static, exchange and correlation–polarization potentials. The
electron number density of the target, required for the generation of these components,
is obtained numerically from the multiconfiguration Dirac–Fock wavefunctions [26]. In
case of e±-atom scattering, the long-range part of Equation (1) is absent and, therefore, the
interaction potential becomes pure short ranged optical potential given in Equation (2).
For unscreened nuclear targets, on the other hand, the short-range part of Equation (1)
vanishes, and the scattering reduces to pure Coulomb scattering.

Our results are compared with other calculations available in the literature. The rest of
this paper is organized as follows. Section 2 gives the outline of the theory. In Section 3, we
present potential details and numerics. Results of our theory and comparison with existing
calculations are given in Section 4. In Section 5, we draw our conclusions. Atomic units
(h̄ = me = e = 1) are used throughout unless otherwise indicated.

2. Theory

2.1. Optical Potential

In our MCP approach, the Coulomb potential is complemented by a short-range
complex optical potential given in the following form

Vsr(r) = Vst(r) + Vex(r) + Vcp(r)− iWabs(r). (3)

Here, the real components Vst(r), Vex(r), Vcp(r) are, respectively, the static, the ex-
change and the correlation polarization potentials. Furthermore, the imaginary component
Wabs(r) represents the absorption potential. The static potential Vst(r) arises from the
electrostatic interactions of the projectile with the target electrons and protons. The ex-
change potential Vex(r) is used to handle the non-local rearrangement collisions between
primary and bound electrons arising due to their indistinguishability. For positron scat-
tering, Vex(r) = 0 as there is no exchange probability between the projectile and bound
electrons. The correlation polarization potential Vcp(r) describes the distortion of the target
charge distribution by the projectile electron or positron. The absorption potential Wabs(r)
incorporates the loss of beam intensity to various inelastic channels during the collision.

2.1.1. Static Potential

The electrostatic potential Vst(r) in Equation (3), at a distance r from the nucleus of
the target, is given by

Vst(r) = ze[φn(r) + φe(r)], (4)

where, φn(r) and φe(r) are, respectively, potentials due to nuclear and electronic charge
distributions. Under static-field approximation, the interaction potential is completely
determined by the nuclear and electronic charge distributions. In the present study, we
consider a Fermi nuclear charge distribution [27] and the Dirac–Fock electron density, gen-
erated from relativistic Hartree–Fock wavefunctions by Desclaux [26]. The static potential
can, therefore, be presented as [28]

φn(r) = e
∫

dr′ �n(r′)
|r − r′| and φe(r) = −e

∫
dr′ �e(r′)

|r − r′| . (5)

Here, �n and �e, the number densities of protons and orbital electrons, respectively,
are normalized as
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∫
�(r)4πr2dr =

{
Z − q, for �e
Z, for �n

(6)

with Z − q being the number of dressing electrons of the target and Z, the atomic number
of the target.

2.1.2. Exchange Potential

The exchange potential Vex(r) in Equation (3), a type of semi-classical exchange
potential [29], is obtained from the non-local exchange interaction with the help of a
WKB-like approximation for the wave functions. It is expressed as

Vex(r) =
1
2
[Ei − Vst(r)]− 1

2
{[Ei − Vst(r)]

2 + 4πa0e4�e(r)}1/2. (7)

Here, Ei and a0 are the incident electron energy and the Bohr radius, respectively.

2.1.3. Polarization Potential

The correlation polarization potential Vcp(r) in Equation (3) is a combination of long
range Buckingham potential Vcp,B(r) and a short-range correlation potential Vco(r). This
global type correlation-polarization potential is expressed as [30]

V±
cp(r) ≡

{
max{V±

co(r), Vcp,B(r)} if r < rc
Vcp,B(r) if r ≥ rc,

(8)

where rc is the outer radius at which the above two contributions intersect for the first time.
The long-range part, independent of the charge of the incoming projectile, has the

following asymptotic form

Vcp,B(r) = − αde2

2(r2 + d2)2 , (9)

with αd is the dipole polarizability of the target. The phenomenological cut off parameter d
is given by [31]

d4 =
1
2

αda0(Z − q)−1/3b2
p, (10)

where, bp is an adjustable parameter that decreases as the projectile energy increases and is
expressed by the following empirical formula [30]

b2
p = max{(E − 50 eV)/(16 eV), 1}. (11)

At r < rc, the asymptotic expansion completely breaks down, and the interaction
potential for the correlation between the projectile and electron cloud can be described by
the following analytic expression given by Perdew and Zunger [32]

V(−)
co (r) = − e2

a0
(0.0311 ln(rs)− 0.0584 + 0.00133rs ln(rs)

−0.0084rs), for rs < 1 (12)

and

Vco(r) = − e2

a0
β0

1 + (7/6)β1r
1
2
s + (4/3)β2rs

(1 + β1r
1
2
s + β2rs)2

, for rs ≥ 1 (13)

where, β0 = 0.1423, β1 = 1.0529 and β2 = 0.3334.
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For positron impact scattering, the present study uses the correlation potential of
Jain [33] as given by

V(+)
co (r) = e2

2a0
{−1.82r−1/2

s + [0.051 ln(rs)− 0.115] ln(rs)

+1.167}, for rs < 0.302, (14)

V(+)
co (r) =

e2

2a0

[
−0.92305 − 0.09098r−2

s

]
, for 0.302 ≤ rs < 0.56, (15)

and

V(+)
co (r) = e2

2a0

[
− 8.7674

(rs+2.5)3 +
−13.151+0.9552rs

(rs+2.5)2 + 2.8655
(rs+2.5) − 0.6298

]
,

for 0.56 ≤ rs < 8.0. (16)

For 8.0 ≤ rs ≤ ∞ (i.e., at the asymptotic region), the polarization potential is accurately
given by Equation (9). The parameter rs is given by the following equation

rs ≡ 1
a0

[
3

4π�e(r)

] 1
3
. (17)

2.1.4. Absorption Potential

The absorption potential Wabs(r) in Equation (3) is a semi-relativistic imaginary poten-
tial proposed by Salvat et al. [34]. This negative imaginary term is included in the optical
potential to account for the loss of incident flux from elastic channel to inelastic channels
above the inelastic threshold. This absorption potential depends on the cross section for
binary collisions between the projectile and target electron. Within the framework of Born–
Lindhard formulation a non-relativistic formulation of the absorption potential for electron
scattering can be obtained under local density approximation (LDA) as by Salvat [30]

Wnr
abs = Aabs

h̄
2
[vnr

L �e(r)σbc(EL, �e, Δ)]. (18)

Here, vnr
L is the non-relativistic velocity with which the projectile interacts as if it were

moving within a homogeneous gas of density �e. This velocity is given by

vnr
L =

√
2EL/me (19)

corresponding to the local kinetic energy

EL(r) =
{

E − Vst(r)− Vex(r) for electron
max{E − Vst(r), 0 } for positron.

(20)

The term σbc(EL, �e, Δ) in Equation (18) represents the non-relativistic Born approxi-
mated cross section for collisions involving energy transfer greater than a certain energy
gap Δ. This energy gap is the threshold energy for the inelastic channel and accounts
for the minimum energy lost by the projectile. The energy gap adopted for the present
computation is given by

Δ =

{
ε1 for electron
I − 6.8 for positron

(21)

with ε1 is the first excitation energy, I is the ionization potential and 6.8 eV is positronium
binding energy.

The relativistic effects are accounted by Salvat [30] in the expression (18) by introducing
the relativistic velocity

vr
L = c

√
EL(EL + 2mec2)

(EL + mec2)2 (22)
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The semi-relativistic form for Wabs is

Wabs =
vnr

L
vr

L
Wnr

abs =

√
2(ErmL + mec2)2

mec2(EL + 2mec2)
× Aabs

h̄
2
[vn

L�e(r)σbc(EL, �e, Δ)], (23)

where, c is the velocity of light in vacuum. The value of the empirical parameter Aabs
depends on the projectile-target combination and can be determined by fitting the available
data. In the present calculations, Aabs = 2 for electron and 1 for positron scattering.

2.2. Dirac Partial Wave Analysis

The relativistic Dirac equation for a projectile moving with a velocity v in a central
field VmC(r) is given as[

cα.p + βm0c2 + VmC(r)
]
ψ(r) = (E + m0c2)ψ(r), (24)

with E + m0c2 being the total energy of the projectile and the operators α and β, the usual
4 × 4 Dirac matrices. Solutions of the Dirac equation are the spherical waves and are given
by [35]

ψEκm(r) =
1
r

(
PEκ(r)Ωκ,m(r̂)
iQEκ(r)Ω−κ,m(r̂)

)
, (25)

where PEκ(r) and QEκ(r) are the upper- and lower-component radial functions and Ωκ,m(r̂)
are the spherical spinors. κ = (�− j)(2j + 1) is the relativistic quantum number with j and
� being the total and orbital angular momentum quantum numbers. The radial functions
PEκ(r) and QEκ(r) of Dirac spherical waves are the solutions of the coupled system of
differential equations [35]

dPEκ

dr
= −κ

r
PEκ(r) +

E − V + 2m0c2

c
QEκ(r) (26)

and
dQEκ

dr
= −E − V

c
PEκ(r) +

κ

r
QEκ(r). (27)

The spherical waves in Equation (25) are normalized so that the large-component
radial function PEκ(r) oscillates asymptotically with unit amplitude and takes the following
form

PEκ(r) ∼ sin
(

kr − �
π

2
− η ln 2kr + δκ

)
. (28)

Here, k = p
h̄ =

√
E(E+2mec2)

h̄c is the relativistic wave number of the projectile and

η = qe2me
h̄k is the Sommerfeld parameter. The global phase shift δκ , describing the large r

behavior of the spherical wave solutions, is given by the following equation

δκ = Δκ + δ̂κ , (29)

with Δκ being the Dirac-Coulomb phase shift of the potential tail and δ̂κ , the complex inner
phase shift caused by the complex short-range potential. Dirac-Coulomb phase shift Δκ is
given by [36]

Δκ = arg[ζ(E + 2mec2)− i(κ + λ)ch̄k]− (λ − �− 1)π
2

+ arg Γ(λ + iη)− S(ζ, κ)π, (30)
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where, ζ = qe2

h̄c ≈ qα = q/137, λ =
√

κ2 − ζ2, and S(ζ, κ) = 1 if ζ < 0 and κ < 0, and = 0
otherwise. The phase shift Δκ can now be used to obtain the direct and spin flip scattering

amplitudes for the scattering of e± from Coulomb potential Vcoul =
zqe2

r as

f (C)(θ) = 1
2ik ∑∞

�=0{(�+ 1)[exp(2iΔ−�−1)− 1]

+�[exp(2iΔ�)− 1]}P�(cos θ) (31)

and

g(C)(θ) =
1

2ik

∞

∑
�=0

{exp(2iΔ�)− exp(2iΔ−�−1}P1
� (cos θ). (32)

To calculate the inner phase shifts δ̂κ , the integration of radial equations is started
at r = 0 and extended outwards up to a distance rm beyond the effective range of the
interaction potential. For r > rm the potential takes asymptotic Coulombian form and the
normalized upper-component radial Dirac function can be written as

PEκ(r) = cos δ̂κ f (u)Eκ (r) + sin δ̂κg(u)
Eκ (r). (33)

f u
Eκ(r) and gu

Eκ(r) regular and irregular Dirac–Coulomb functions, respectively. The phase
shifts δ̂κ can now be obtained by matching the outer analytical form to the inner numerical
solution at rm. The continuity of the radial function PEκ(r) and its derivative is required for
this boundary condition. This procedure gives

exp(2iδ̂κ) =
Dout[ f (u)Eκ (rm) + ig(u)

Eκ (rm)]− [( f (u)Eκ )
′
(rm) + i(g(u)

Eκ )
′
(rm)]

[( f (u)Eκ )′(rm)− i(g(u)
Eκ )

′(rm)]− Dout[ f (u)Eκ (rm)− ig(u)
Eκ (rm)]

, (34)

where the primes indicate the derivatives with respect to r and Dout, the logarithmic
derivative of the outgoing numerical radial function at the matching point. The complex
form of the phase shift δ̂κ is due to the complex short-range potential Vsr(r) in Equation (3).
The scattering amplitudes f sr(θ) and gsr(θ), for the short-range potential, are given as

f sr(θ) = 1
2ik ∑∞

�=0{(�+ 1) exp(2iΔ−�−1)
[
exp(2iδ̂−�−1)− 1

]
+� exp(2iΔ�)

[
exp(2iδ̂�)− 1

]}P�(cos θ) (35)

and

gsr(θ) = 1
2ik ∑∞

l=0{exp(2iΔ�)
[
exp(2iδ̂�)− 1

]
− exp(2iΔ−�−1)

[
exp(2iδ̂−�−1)− 1

]}P1
l (cosθ). (36)

Here, Pl(cos θ) and P1
l (cos θ) are, respectively, the Legendre polynomials and associ-

ated Legendre functions. θ is the scattering angle.
For the scattering of electrons and positrons from neutral atoms, Equation (29) reduces

as δκ = δ̂κ . Therefore, the direct and spin flip scattering amplitudes can be written as

f (θ) = f at(θ) =
1

2ik

∞

∑
l=0

[(l + 1){exp(2iδκ=−l−1)− 1}+ l{exp(2iδκ=l)− 1}]Pl(cos θ) (37)

and

g(θ) = gat(θ) =
1

2ik

∞

∑
l=1

[exp(2iδκ=l)− exp(2iδκ=−l−1)]× P1
l (cos θ). (38)

In the present MCP approach, to describe e±-ion scattering, the scattering amplitudes,
f (θ) and g(θ), are employed as

f (θ) = f sr(θ) + f C(θ), g(θ) = gsr(θ) + gC(θ). (39)
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2.3. Scattering Cross Sections

Once the phase shifts and the scattering amplitudes are determined, the elastic DCS
per unit solid angle for unpolarized e± are obtained by the following equation

dσ

dΩ
= | f (θ)|2 + g(θ)|2. (40)

In case of bare nucleus, the contributions to scattering amplitudes from short-range
potential become zero and, therefore, the DCS per unit solid angle for the elastic scattering
of e± by the bare radon is calculated using

dσ

dΩ
= | f C(θ)|2 + |gC(θ)|2. (41)

The initially unpolarized e± beam becomes polarized after being scattered in the
direction θ. The degree of this spin polarization is given by Sherman function [37]

S(θ) ≡ i
f (θ)g∗(θ)− f ∗(θ)g(θ)

| f (θ)|2 + |g(θ)|2 . (42)

The integrated elastic, momentum transfer, viscosity, total and inelastic cross sections
are defined by the following respective expressions

σel =
∫ dσ

dΩ
dΩ = 2π

∫ π

0
(| f (θ)|2 + |g(θ)|2) sin(θ)dθ, (43)

σm = 2π
∫ π

0
(1 − cos θ)

(
dσ

dΩ

)
sin(θ)dθ, (44)

σv = 3π
∫ π

0

[
1 − (cos θ)2

]( dσ

dΩ

)
sin(θ)dθ, (45)

σtot =
4π

k
Im f (0) (46)

and
σine = σtot − σel (47)

Here, Imf(0) denotes the imaginary part of the direct scattering amplitude in the
forward direction at θ = 0.

The Coulomb glory effect is estimated by scaling DCS in Equation (40) as [38]

dσ̃

dΩ
=

(
4E
q

)2 dσ

dΩ
(48)

The scaled Rutherford differential cross section (SRCS), independent of energy and
ionic charge, is given as

dσ̃c

dΩ
=

1
sin4 θ/2

. (49)

The value of SRCS is unity at 180◦ and hence the scaled differential cross section
(SDCS), dσ̃

dΩ in Equation (48) represents the ratio of e−-ion DCS and corresponding Ruther-
ford DCS at θ = 180◦.

3. Numerical Analysis

In Figure 1a,b, we present r-dependence real part of the short-range potential Vsr as
well as the Coulomb potential Vc both for electron and positron projectiles. We present
separately the contribution of static potential Vst(r), because it dominates the optical
potential. All of these potentials are plotted as a function of distance r from the nucleus. The
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Bohr radius a0 = h̄2

me2 = 1 a.u., and the location of the nth electronic shell is approximated
as

r = a0
n2

Z
. (50)

It is worth mentioning that, due to the presence of the exchange and the absorption part
in optical potential, there are some dependence on the collision energy, and the potentials
shown in Figure 1 are calculated for 1 keV. The nuclear radius of radon is �1.4 × 10−4 a.u.
At r < 10−4 a.u., the nuclear potential accounts for the finite nuclear size and is derived
from the Fermi charge distribution. As in Figure 1a, the electronic potential coincides with
the Coulomb field in the region r � 10−3 a.u., i.e., outside the nucleus, but well inside the
K-shell. The respective potentials for positron scattering are shown in Figure 1b. Due to
opposite charge of the projectile the optical potential for positron scattering has basically a
sign reversal as compared to the electronic potential.

Figure 1. Potentials (multiplied by r) for electrons (a) and positrons (b) as a function of distance r
from the nucleus. Shown are the real part VR (——, red) and its static part Vst (−−−−, black) of
the short range OPM potential. The Coulomb field Vc = −Z/r is also included (· · · · · · , blue). In (c)
shown is the r dependence of electron charge density.

Figure 1c displays the r-dependence of electronic number density �e for the radon
atom. This figure demonstrates clearly the electronic shell structure as well as the positions
of hump appearing in the density distribution. From Equation (50), one gets r ≈ 0.016,
0.065, 0.147 and 2.344 a.u., respectively, for the K-, L-. M- and N-shells, which agree nicely
with the humps in the corresponding density. Two more humps are present in �e, the
positions of which are, however, underpredicted by the above formula since there are only
18 and 8 electrons in the O and P-shells, respectively.

Figure 2 demonstrates the sensitivity of different constituents of the real part of Vsr
used in the present study to predict DCS and S(θ) both for electrons and positrons scattering
from 222Rn atoms. For a sample case the energy dependence of the DCS and of the S(θ) are
given at the scattering angle θ = 90◦, proceeding from Vst to Vopt by successively including
Vex, Vcp and Wabs. It is evident from this figure that the static potential Vst is the dominant
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contributor to both DCS and S(θ) over the entire energy range. The remaining components
(i.e., the exchange Vex, the polarization Vcp and the absorption Wabs) have very small
contribution except at lower energies. For electron impact scattering, in Figure 2a,b, the
inclusion of the Vex leads to a considerable modification of the structures both in DCS and
S(θ). Furthermore, this influence of Vex remains important up to 100 eV for the DCS and
50 eV for the S(θ). Due to the absence of Vex, the DCS and S(θ) for positron scattering, in
Figure 2c,d, show monotonous behavior. This behavior indicates that the atomic electrons
just screen the nuclear field in the case of positron impact, while they act as individual
scattering centers for electron scattering.

Figure 2. Energy dependence of (a,c) the DCS and (b,d) the Sherman function S(θ) for electron
(a,b) and positron (c,d) impact on 222Rn at a scattering angle of 90◦. Shown are the results (· · · · · · ,
black) from Vst; (· · · · · · , blue) from Vst + Vex; (− − −−, green) from VR = Vst + Vex + Vcp and
VR = Vst + Vcp, respectively, for electron and positron projectiles; and (——, red) from Vopt =

Vst + Vex + Vcp − iWabs for electron scattering and Vopt = Vst + Vcp − iWabs for positron scattering,
respectively.

The polarization potential Vcp contributes significantly only at energies below 10 eV
and its contribution decreases rapidly at higher energies. At this lower energies, the Vcp
counteracts Vex by reducing the excursions in the DCS and in S. However, for positron
scattering, the Vcp induces some minor modulations into the monotonous DCS and S(θ) at
Ei = 10–100 eV. The absorption potential Wabs diminishes the contribution of Vst starting
from the ionization threshold (∼10 eV) and continues up to 5 keV for the DCS, but up to
100 eV for the S(θ). It is worth mentioning that the magnitudes of both the DCS and S(θ)
are several fold lower for positron projectile signifying that the positron scattering is rather
weaker as compared to its electron counterpart.

In Figure 3, we present DCS and Sherman function for 50–5000 eV electrons impact
on 222Rn to demonstrate the effect of different contributions to the Vsr. One can notice,
from Figure 3a at 50 eV, a significant difference between the DCS results from Vst and Vopt,
particularly in the forward hemisphere. This is due to the greater influence of the other
potential constituents on the cross section at lower energies than so at higher energies. The
absorption potential remains important at energies up to about 500 eV, decreasing the DCS
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by up to a factor of 2. Even at 5 keV, its influence is still visible. Comparison is also made
with the result for a pure Coulomb field Vc, for which the DCS diverges at zero angle. It
is seen that the Vsr results gradually approach the Coulombic behavior with increasing
energy. This happens due to the deeper penetration of the projectile at higher energies
and thereby making the effect of the screening of the nucleus by the surrounding electrons
lesser and lesser.

Figure 3. Angular dependence of (a,c,e) the DCS and (b,d,f) the Sherman function for electrons at
50 eV (a,b), 500 eV (c,d) and 5000 eV (e,f) colliding with 222Rn. Shown are the results from Vst (· · ·,
black) and Vopt (——, red). Included also are the results for the Coulomb field Vc (· · ·, blue).

As concerns the Sherman function with its three resonance structures at the DCS
minima, the sign of the excursion is conserved at the first two structures, but reversed at
the third one when other contributions are added to Vst. With increasing energy, oscillatory
behavior of the Sherman function from the Coulomb field gradually matches the respective
behavior induced by the full Vsr potential. Figure 4 displays the respective results for
positron impact. The correlation-polarization potential induces oscillations both in the DCS
and in S(θ) at small energies. The influence of the absorption potential is even stronger than
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for electrons, particularly for the spin asymmetry. Furthermore, the Coulombic behavior is
not yet approached at 5 keV.

Figure 5 displays energy dependence of the DCS and the Sherman function for
e±-222Rn scattering comparing the predictions of the Vst and Vsr with those of the Coulomb
field Vc. For electron impact scattering, as seen in Figure 5a, the differences between the
DCS results predicted by Vsr and those by Vc gradually decrease with increasing energy,
and almost vanish at energies beyond 10 keV. In the case of S(θ), in Figure 5b, the os-
cillatory behavior induced by these two potentials gradually matches with increasing
incident energies. Same features are observed for the positron impact scattering as evident
in Figure 5c,d. However, the differences between the DCS results predicted by these two
potentials persist in more higher energies (50 keV) indicating that the influence of the
absorption potential is even stronger than for electrons.

Figure 4. Same as Figure 3, but for the positron impact scattering.
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Figure 5. Energy dependence of (a,c) the DCS and (b,d) the Sherman function S(θ) for electron (a,b)
and positron (c,d) impact scattering from 222Rn at a scattering angle of 90◦. Shown are the results
from Vst (· · · · · · , black), Vopt (——-, red) and Vc (· · · · · · , blue).

4. Results and Discussion

4.1. Electron Scattering from Neutral Radon

The DCS for electrons elastically scattered from neutral radon calculated using our
modified Coulomb potential over a wide range of energies 10 eV ≤ Ei ≤ 10 keV are
presented in Figures 6–9. As seen in these figures, the number of minima in the present
DCS distributions varies with energy from 1 at Ei = 10 eV to 3 at 20 ≤ Ei ≤ 200 eV and
to 4 at 300 ≤ Ei ≤ 700 eV. The DCS again reveals 3 minima at 900 ≤ Ei ≤ 1000 eV and
2 at 1500 ≤ Ei ≤ 5000 eV. With a further increase in the collision energy to Ei ≥ 6000 eV,
the number of minima reduces to 1. These minima in the cross sections, the so-called
Ramsauer–Townsend (R-T) structures [39], are due to diffraction effects arising from the
quantum-mechanical nature of matter. The R-T structures disappear when the collision
becomes so energetic that the lepton-atom interactions occur inside the K-shell. These
structures are, therefore, of great interest to study collision dynamics.

161



Atoms 2021, 9, 59

Figure 6. Angular dependence of the differential cross section of electrons scattering from 222Rn
at impact energies Ei = 10, 20, 30, 40, 50 and 60 eV. Shown are the results from our MCP (——),
Neerja et al. [19] (· · · · · · ) and Sin Fai Lam [13] (−−−).
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Figure 7. Angular dependence of the differential cross section of electrons scattering from 222Rn at
Ei = 70, 80, 90, 100, 150 and 200 eV. Included are the results from Neerja et al. [19] (· · · · · · ) at 100 and
200 eV.
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Figure 8. Angular dependence of the differential cross section of electrons scattering from 222Rn at
Ei = 300, 400, 500, 600, 700 and 900 eV.
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Figure 9. Angular dependence of the differential cross section of electrons scattering from 222Rn at
1 ≤ Ei ≤ 10 keV.

As there is no experimental data for this scattering system, we compare our DCS
results with the optical model calculations of Neerja et al. [19] available at 10–200 eV and
semi-relativistic calculations of Sin Fai Lam [13] at 20–30 eV. For Ei ≥ 300 eV, we have found
neither any experimental nor other theoretical results to compare with. We anticipate that
the present results might be useful for applications and comparisons for future experimental
as well as theoretical studies. The comparison, where possible, revealed that the three
methods exhibit oscillations at about the same scattering angles but with little differences in
the magnitude. These differences signify the sensitivity of the theoretical models involving
different interaction potentials. It is worth mentioning that Neerja et al. [19] used optical
potential but without the long-range Coulomb potential. The poor agreement of our results
with those of [19], at 10 eV in Figure 6a, may be due to the onset of the inelastic threshold

165



Atoms 2021, 9, 59

that interplay between the real and imaginary components of the optical potential due to
dispersion.

In Figures 10–12, we present our MCP results of the Sherman function S for e−-222Rn
scattering at incident energies 10 ≤ Ei ≤ 1000 eV. One can see in these figures that the
minima in S(θ) are strongly related to the minima in the DCS distributions. However,
the structures in S(θ) are much more pronounced than those in the DCS. This is expected
because the spin asymmetry is more sensitive to the choice of potentials and methods of
calculations. It is also evident that, at low energies (Ei ≤ 100 eV), the magnitudes of | S |
are higher at forward scattering angles than at backward angles. This is due to the effect of
the exchange potential that deepens the minima, but is less important at backward angles.
In contrast, at higher energies (≥150 eV), the magnitude of | S | gets larger with increasing
scattering angle. This is the effect of the stronger nuclear field on the spin polarization at
the smaller projectile-nucleus distance.

Figure 10. Angle dependent Sherman function S for elastic scattering of 10, 20, 30, 40, 50 and 60 eV
electrons from neutral radon atoms: — curves, present calculations (MCP); · · · · · · curves, ref. [19]
and −−− curves, Ref. [13].
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Figure 11. Same as Figure 10, but at impact energies of 70, 80, 90, 100, 150 and 200 eV.

Because of the absence of any experimental data we compare our S results again
with the calculations of Neerja et al. [19], available at 10, 50, 100 and 200 eV, and of Sin
Fai Lam [13], available at 20 and 30 eV. Similar to the DCS comparison, one can observe
that these three calculations of Sherman function agree closely with one another with
the deviations as follows: (i) a tiny differences in magnitude of | S | at the minima or
maxima positions, (ii) at 10 eV, present method predicts a minimum at 110◦, while that
from [19] is observed at 100◦, (iii) at 50 eV, the third extremum predicted by the present
method and that of Neerja et al. [19] are opposite in sign. All of these differences might be
attributed due to the different components of optical potentials used in these two methods
as already mentioned earlier. More data and calculations might be helpful to shed light on
the presence of these discrepancies.
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Figure 12. Same as Figure 10, but at impact energies of 300, 400, 500, 700, 900 and 1000 eV.

Figure 13 displays the energy dependence of the DCS and Sherman function of the
elastic e−-222Rn scattering over the energy range 1 eV ≤ Ei ≤ 1 MeV at two forward
scattering angles (θ = 30◦ and 90◦) and one backward angle (θ = 150◦). This figure
(panels a, c and e) clearly demonstrates that strong R-T structures are present in the DCSs
at all scattering angles for kinetic energies Ei < 3 keV. It is also revealed that the R-T
structures gradually fade out as Ei approaches towards the M-subshells binding energies
(3–4.6 keV [40]). Beyond 3 keV, the DCS declines monotonously with Ei. This is expected
because the pure Coulomb field of the nucleus dominates in this energy regime.
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Figure 13. Energy dependence of the DCS and the Sherman function for elastic scattering of electrons
from neutral radon atoms at scattering angles (a,b): 30◦, (c,d): 90◦ and (e,f): 150◦.

The energy variation of the corresponding Sherman function (panels b, d and f in
Figure 13) shows that the magnitude of | S | increases with the increase of scattering angles
θ. The appearance of the structure continues up to more energies at lower scattering angles
than at higher one. However, the position of the highest extremum is shifted to higher
energies with increasing the scattering angles. All of these features might be explained
as the fact that the exchange potential, which significantly affects the minima, has less
influence in the backward direction. For high energies, on the other hand, due to the
smaller projectile-nucleus distance, the stronger nuclear field has a significant effect on the
spin polarization implying that the magnitude of | S | increases with increasing scattering
angle.
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Figure 14 depicts the energy variation of additional polarization parameters U(θ)
and T(θ) at few selected angles (θ = 30◦, 90◦ and 150◦). The complete dependence of the
scattering process on the spin variables can be obtained from these parameters, where

U =
2Im f (θ)g∗(θ)

| f (θ) |2 + | g(θ) |2 (51)

and

T =
| f (θ) |2 − | g(θ) |2
| f (θ) |2 + | g(θ) |2 (52)

Figure 14. Energy dependence of the spin polarization parameters U and T for elastic scattering of
electrons from neutral radon atoms at scattering angles (a,b): 30◦, (c,d): 90◦ and (e,f): 150◦.
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As no experimental data and other theoretical studies of U and T parameters are
available in the literature, we display only our present results providing further impetus
for experimental data for anticipated applications. The spin asymmetry parameters S(θ),
U(θ) and T(θ) arise from the interference effect of the direct and spin-flip amplitudes and
they are sensitive to both the spin-dependent and correlation interactions. The values
of U and T depend on S by the conservation relation: S2 + U2 + T2 = 1, and are useful
indicators of the total polarization, S(θ) = ±1.

In Figure 15a, we display the energy dependence of the angular distribution of the
DCS minima obtained for electrons elastically scattered from neutral radon atoms. As seen
in this figure, the low-angle minima, corresponding to curves 1 and 2, are not found in
the DCSs below 11 eV, but maintain their appearance up to 1200 eV. The angular positions
of these minima vary from 28◦ at 75 eV to 83◦ at 300 eV. The intermediate-angle minima
(curve 3), on the other hand, are present at all energies below 2000 eV with the angular
positions varying between 88◦ and 120◦. The high-angle minima (curve 4) in the DCS are
seen to appear for collision energies 10.8 ≤ Ei ≤ 2500 eV.

Figure 15. Energy dependence of the angular positions (a) and the DCS values (b) of the deep minima
for electrons elastically scattered from neutral radon atoms. Furthermore, are presented the angular
dependence of the DCS and S(θ) for some incident energies in the vicinity of the critical minimum at
(Ec=20.5 eV, θc = 95.5◦) (c,d) and (Ec=1882 eV, θc = 137.5◦) (e,f).
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There are some deep minima which remain conspicuous among the minimal DCS
values. Furthermore, these deepest minima can be traced by plotting the energy dependent
angular distribution of the DCS minima, shown in Figure 15a. The present study predict
a total of 18 deep minima in the DCS, those are depicted in Figure 15b. There are 6 such
deep minima from each of the low-angle (curves 1 and 2), intermediate-angle (curve 3)
and high-angle (curve 4) regions. The low-angle minima are visible at 22.8, 39.2, 100, 284.0,
300 and 502.75 eV; the intermediate-angle minimum are at 2.5, 20.5, 38.6, 180, 381.0 and
1004.5 eV; and the high-angle minimum are at 24.8, 80, 199.0, 289.5, 608.0 and 1882.0 eV. For
these energy-dependent DCS deep minima to be a critical minimum (CM), there are three
important criteria: (i) the magnitude of the spin-flip amplitude must be larger than that of
the direct amplitude, i.e., | g(θ) |>| f (θ) |, (ii) the DCS at a CM attains a local minimum,
and (iii) in the vicinity of a CM, the scattered electrons acquires total polarization (S = ±1).

In view of criterion (i), among the 18 deep minima, shown in Figure 15b, 14 deep
minima qualify to be CM. The remaining 4 minima, located at 80, 100, 180 and 300 eV,
are not CM as | g(θ) |<| f (θ) | for them. The energy and angular positions of the
14 CMs, denoted, respectively, by the critical energies Ec and the critical angles θc, are
listed in Table 1. The positions of these CMs in terms of impact energy as well as scattering
angle are clearly shown in 3D-plot of the DCS in Figure 16. The highest critical energy
(Ec = 1882.0 eV) occurs at θc = 137.5◦ whereas the highest critical angle (θc = 155.0◦)
shows up at Ec=199.0 eV.

Figure 16. A three dimensional plot of the present DCS for electrons elastically scattered from neutral
radon atoms.
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Table 1. The positions of the DCS CM predicted by the present theory for electrons elastically
scattered from neutral radon atoms.

Ec θc | f (θ) | | g(θ) |
|(eV)| (deg.) (cm) (cm)

2.5 120.5 1.92 × 10−9 3.90 × 10−9

20.5 95.5 3.73 × 10−10 1.46 × 10−9

22.8 49.5 1.66 × 10−10 2.06 × 10−9

24.8 136.5 1.89 × 10−10 9.11 × 10−10

38.6 90.0 2.04 × 10−10 1.10 × 10−9

39.2 39.5 2.59 × 10−10 8.38 × 10−10

199.0 155.0 7.92 × 10−11 1.90 × 10−10

284.0 82.0 6.46 × 10−11 3.76 × 10−10

289.5 149.0 1.42 × 10−11 1.73 × 10−10

381.0 119.5 8.37 × 10−11 3.05 × 10−10

502.75 71.0 1.30 × 10−11 3.35 × 10−10

608.0 153.5 6.49 × 10−11 9.92 × 10−11

1004.5 101.0 1.44 × 10−11 3.05 × 10−10

1882.0 137.5 3.45 × 10−11 1.94 × 10−10

In Figure 15c–f, also we consider our predicted CMs for criteria by presenting angular
variations of DCS and Sherman function for some incident energies in the vicinity of two
CMs at (Ec = 20.5 eV; θc = 95.5◦) and (1882.0 eV, 137.5◦). As evident in Figure 15c, the
DCS attains its lowest value exactly at Ec = 20.5 eV. A slight increase in energy to 21.5 eV or
decrease to 19.5 eV, the DCS gets higher value. Similar result is also observed in Figure 15e,
where the DCS value is lowest at Ec = 1882.0 eV than the values at 1892.0 and 1872.0 eV
in the proximity. Again, from Figure 15d, it follows that, in the vicinity of the CM at
(Ec = 20.5 eV; θc = 95.5◦), the maximum spin polarization (MSP) varies from −0.990 at
(Ei = 21 eV; θ = 92.0◦) to +0.999 at (Ei = 20.15 eV; θ = 98.5◦). A similar behavior is also
observed in Figure 15f for the CM at (Ec = 1882.0 eV; θc = 137.5◦). Here, the MSP attains
to +0.989 and −0.982 at (Ec = 1937.0 eV; θc = 136.0◦) and (Ec = 1777.0 eV; θc = 139.5◦),
respectively, from positive and negative excursion. In the vicinity of each of 14 CMs, we
have calculated MSP points at which the polarization reaches extremal values of both
signs. A total of 28 such points are found and are listed in Table 2 with their energy Ed and
angular θd positions. One can see in Table 2 that a large polarization is achieved at all of
these points that can be considered as total polarization points [41]. Figure 17 displays a
3D plot of the positions of these MSP points. All these results demonstrate the efficacy of
the present theory in determining the CM positions precisely.

Table 2 also presents the energy widths ΔE, the difference between Ec and Ed, and the
angular widths Δθ, the difference between θc and θd, for each MSP point. The evaluation
of these energy and angular widths are important to know the sharpness of the DCS
and corresponding S distribution at a CM. For an example, if we consider the high-angle
CM at (Ec = 608.0 eV, θc = 153.5◦), the corresponding MSP = +0.98937 at Ed = 612.7
eV with +ΔE = | 608.0 − 612.7 | = 4.7 eV and +Δθ = | 153.5 − 153.0 | = 0.0◦,
while MSP= −0.91133 at Ed = 610.7 eV with −ΔE = | 608.0 − 610.7 | = 2.7 eV and
−Δθ = | 153.5 − 153.0 | = 0.5◦. Therefore, the widths of the DCS valley are 4.7 + 2.7 =
7.4 eV along the energy axis and 0.0◦ + 0.5◦ = 0.5◦ along the angular axis. These widths
indicate that the angular DCS distribution at the CM and the corresponding S distribution
near the MSP points are both very sharp.
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Table 2. Maximum spin polarization (MSP) with their positions (Ed, θd) and deviations in energy ΔE
and angle Δθ from the respective CM positions for e−-222Rn elastic scattering.

MSP Ed (eV) θd (deg) ±ΔE (eV) ±Δθ (deg)

+0.99912 2.90 116.5 0.40 4.0
-0.83577 4.95 124.0 2.45 3.5
+0.99897 20.15 98.5 0.35 3.0
-0.98950 21.00 92.0 0.50 3.5
+0.99888 24.10 47.5 1.30 2.0
-0.99728 21.70 52.0 1.10 2.5
+0.99172 23.70 134.5 1.10 2.0
-0.99993 25.60 137.5 0.80 1.0
+0.99863 40.60 87.0 2.00 3.0
-0.97013 34.00 92.0 4.60 2.0
+0.99630 36.70 41.0 2.50 1.5
-0.99872 40.70 38.5 1.50 1.0
+0.97862 192.00 156.0 7.00 1.0
-0.99858 201.50 154.5 2.50 0.5
+0.91586 266.00 82.5 18.00 0.5
-0.99647 299.00 82.0 15.00 0.0
+0.99018 291.50 148.0 2.00 1.0
-0.96734 276.20 150.0 13.30 1.0
+0.99993 360.00 121.0 21.00 1.5
-0.99981 401.00 118.0 20.00 1.5
+0.97688 486.00 70.5 16.75 0.5
-0.93089 517.50 71.5 14.75 0.5
+0.98937 612.70 153.5 4.70 0.0
-0.91133 610.70 153.0 2.70 0.5
+0.99497 1002.00 99.5 2.50 1.5
-0.95727 1004.00 102.5 0.50 1.5
+0.98881 1937.0 136.0 55.00 1.5
-0.98166 1777.0 139.5 105.0 2.0

Figure 17. A 3D-plot of the present Sherman function for electrons elastically scattered from neutral
radon atoms.
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In Figure 18, we resent our results of the integrated elastic (IECS), momentum-transfer
(MTCS), viscosity (VCS), inelastic (INCS) and total (TCS) cross sections for 1 eV≤ Ei ≤ 100 keV
electrons scattering from neutral radon atoms. We are not aware of any experimental data
of these observables available in the literature. Therefore, we compare our results of IECS,
MTCS, INCS and TCS with theoretical predictions of Neerja et al. [19] available at Ei =
2.0–500.00 eV and IECS, MTCS and VCS of Mayol and Salvat [20] at Ei = 100 eV–100 keV.
The comparison shows that our results agree well with those of Mayol and Salvat [20].
At Ei < 100 eV, our results disagree significantly with those of Neerja et al. [19] specially
in the vicinity of minima positions. In this energy domain, the present theory predicts
deep minima whereas the predictions from [19] show very shallow minima. One can see
that, beyond 5 eV (the first excitation energy of radon),the TCS is greater than IECS. This
expected because of the absorption of some particles into the inelastic channels.

Figure 18. Energy dependence of the (a) integrated elastic, (b) momentum-transfer, (c) viscosity,
(d) inelastic and (e) total cross sections for electron impact scattering from neutral radon atoms.
Presented are the theoretical calculations — for the present results, − − − for Neerja et al. [19],
.... for Neerja et al. [19] and ◦ ◦ ◦ for Mayol and Salvat. SEP and SEPa, respectively, denote the
static-exchange-polarization potentials and SEP with absorption potential.
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4.2. Positron Scattering from Neutral Radon

Figures 19–22 present angular dependent DCS for the elastic scattering of positrons
from neutral radon at impact energies 10 eV ≤ Ei ≤ 10 keV. As evident in these figures,
unlike electron DCSs the positron counterparts show relatively fewer number of maxima
and minima. Two significant minima are seen at Ei = 10 eV and only one at 10 < Ei ≤ 30 eV.
After that few very shallow minima are obtained within the energy domain of 40 eV ≤ Ei ≤
150 eV confined to lower scattering angles. At 200 eV and beyond, the DCS values decrease
monotonously with increasing incident energies.

Figure 19. Differential cross sections for 10, 20, 30, 40, 50 and 60 eV positrons elastically scattered
from neutral radon atoms as a function of scattering angle.
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Figure 20. Same as Figure 19, but at impact energies of (a) 70 and 80 eV, (b) 90 and 100 eV, (c) 150
and 200 eV, (d) 300 and 400 eV, (e) 500 eV, and (f) 1000 eV. In addition, the calculations of Dapor and
Miotello [21] at 500 and 1000 eV are presented.
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Figure 21. Same as Figure 19, but at impact energies of 1500, 2000, 2500, 3000, 3500 and 4000 eV. ◦ ◦ ◦
curves are the calculations of Dapor and Miotello [21].

We have not found any experimental measurements for positron impact on radon
targets. The present DCS results for positron impact scattering are, therefore, compared
with the only calculations of Dapor and Miotello [21] available for Ei = 500–4000 eV. The
comparison shows that the two calculations agree very well with each other except a slight
differences in magnitude at 500 eV for higher scattering angles.
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Figure 22. Same as Figure 19, but at impact energies of 5, 6, 7, 8, 9 and 10 keV.

In Figure 23, we display energy dependence of the DCS and of the corresponding
Sherman function for positron scattering from neutral radon atoms at three scattering angles
30◦, 90◦ and 150◦. As seen in this figure, minor structures appear in the DCS distributions
at lower scattering angles, and they fade with the increase of energy. The present DCSs
are again compared with those of Dapor and Miotello [21]. Similar to the case of electron
scattering, the Sherman function increases with increasing scattering angles. However, the
positron spin polarization is considerably smaller than that of its electron counterpart. This
might be due to the Coulomb-dominated behavior of the positron potential [42].
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Figure 23. Energy dependence of the DCS and the Sherman function for positrons elastically scattered
from neutral radon atoms at scattering angles (a,b): 30◦, (c,d): 90◦ and (e,f): 150◦.

Energy dependence of the spin polarization parameters U and T for positrons elas-
tically scattered from neutral radon atoms are depicted in Figure 24 at θ = 30◦, 90◦ and
150◦. It is observed in this figure that, as expected, the variation of U and T with energy are
opposite to each other. Starting from zero, the magnitude of | U(θ) | increases very slowly
up to Ei = 10 keV, and beyond that it increases rapidly and reaches its maximum value. The
maximum value of | U(θ) | is obtained at θ = 90◦. Below and beyond this scattering angle,
the | U(θ) | values decrease. The parameter T, on the other hand, starts at its maximum
and slowly decreases with energies. Beyond Ei = 10 keV, the values of | T(θ) | sharply fall
to its minimum, which is the lowest at θ = 90◦. We are not aware of any experimental or
any other theoretical studies regarding these parameter for e± − Rn scattering. We expect
that the present study will encourage both experimental and theoretical groups to pay their
attention to this scattering system.
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Figure 24. Energy dependence of the spin polarization parameters U and T for positrons elastically
scattered from neutral radon atoms at scattering angles (a,b): 30◦, (c,d): 90◦ and (e,f): 150◦.

For e+-222Rn scattering, the present results of IECS, MTCS, VCS, INCS and TCS
calculated for 1 eV ≤ Ei ≤ 1 MeV are presented in Figure 25. It is noticeable that all these
results are considerably different in values and shape from their electron counterparts. The
magnitude of these cross sections is two to three times smaller than those due to electron
scattering. Regarding the shape, on the other hand, some structures are clearly visible in
IECS, MTCS and VCS curves for electron scattering, whereas they are very shallow in the
case of positron scattering. These variations certainly support the fact that the e+-222Rn
interaction is rather weaker as compared to its electron counterpart. It is worth mentioning
that the interaction potentials involved in these two projectiles are drastically different.
In the case of positron projectile, the static potential (Vst) is repulsive and the exchange
potential (Vex) is absent as opposed to the electron projectile. Moreover, the polarization
potential of the short range parts also different for both the projectiles.
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Figure 25. Energy dependence of the (a) integrated elastic, (b) momentum-transfer, (c) viscosity,
(d) inelastic and (e) total cross sections for positron impact scattering from neutral radon atoms.
Presented are the theoretical calculations — for the present results, −−− for Baluja and Jain [12]
and ◦ ◦ ◦ for Dapor and Miotello [21].

Because of the absence of any experimental data of the above scattering observables
we compare our IECS, INCS and TCS results with the theoretical calculations of Baluja and
Jain [12] available for 20 eV ≤ Ei ≤ 1 keV and our IECS, MTCS and VCS results with those
of Dapor and Miotello [21] available for 0.5 keV ≤ Ei ≤ 4 keV. The comparison shows
that the present results produce a nice agreement with those of Dapor and Miotello [21].
However, a noticeable disagreement is seen between our results and those of Baluja and
Jain [12], especially in the case of IECS. This difference again might be due to the different
procedures of calculations used by these two methods.
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4.3. e± Scattering from Radon Ions

In Figures 26 and 27, the energy dependent DCS and the corresponding Sherman
function for e−-Rnq+ scattering are displayed, where q = 1, 10, 30, 50, 70 and 86 indicates
the ionic states, at a fixed scattering angle of 90◦. To the best of our knowledge, there are
neither any experimental nor any other theoretical studies on theses scattering systems
available in the literature.

Figure 26. Energy dependent DCS and corresponding Sherman function for the elastic scattering of
electrons from (a,b): Rn+, (c,d): Rn10+ and (e,f): Rn30+ at fixed scattering angle θ = 90◦.
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Figure 27. Energy dependent DCS and corresponding Sherman function for the elastic scattering of
electrons from (a,b): Rn50+, (c,d): Rn70+ and (e,f): Rn86+ at fixed scattering angle θ = 90◦.

As seen in Figures 26 and 27, the DCS values, at a particular energy, increase with
increasing ionic charge of the target. This is expected according to the Rutherford scat-
tering formula. The number of structures in DCSs increases with increasing ionic charge.
However, increasing charge state weakens the interference pattern. This might be due
to the decreasing contributions of short range potential of the bound electrons. Sharp
structures in DCS are observed at low energies. This could be explained as the interference
effect between the scattered waves due to the short range and Coulombic forces. At such
low energies, velocity of the incident electron is comparable to the velocities of the bound
electrons of the ion. Furthermore, the short range potential becomes important due to the
enhanced electron-electron correlations. The structures in the Sherman function are related
to those in the DCSs, but they are more pronounced in Sherman function distributions.

Figures 28 and 29 display the DCS and the corresponding Sherman function results
for positron projectiles elastically scattered from various ionic states of radon. It is seen
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that the variation of the cross section and the corresponding Sherman function with the
ionic charge is similar to their electron counterpart. However, the spin asymmetry for
positrons is extremely small signifying that the positron scattering is rather weaker than
the electron scattering.

Figure 28. Energy dependent DCS and corresponding Sherman function for positrons elastically
scattered from (a,b): Rn+, (c,d): Rn10+ and (e,f): Rn30+ at fixed scattering angle θ = 90◦.
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Figure 29. Energy dependent DCS and corresponding Sherman function for positrons elastically
scattered from (a,b): Rn50+, (c,d): Rn70+ and (e,f): Rn86+ at fixed scattering angle θ = 90◦.

Figure 30 displays the energy variation of the IECS, MTCS and VCS of electrons
elastically scattered from different charge states of radon ions. As seen in this figure, for
ions with lower q (< 30), the IECS increases with increasing the charge. This is expected
because of the screening effect of the surrounding electron cloud. The interaction potential
energy of the projectile electron with bound electron cloud is opposite in sign to that of
the nucleus charge. Furthermore, the screening effect of the surrounding electron cloud is,
therefore, strong for the ions of lower charge. The cross section increases as the increase
of q diminishes the screening effect. It is also evident that, for (q ≥ 30), the IECS is
almost independent of q and varies in conformity with the Rutherford scattering formula
corresponding to the nuclear charge Z. For ions with higher q, the cross section is almost
solely determined by the nuclear charge of the ion. From Figure 28, one can see the similar
trend in the energy dependent MTCS and VCS with the ion charge q.
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Figure 30. Energy dependence of the IECS, MTCS and VCS for the elastic scattering of electrons
from (a) Rn+, (b) Rn10+, (c) Rn30+, (d) Rn50+, (e) Rn70+ and (f) Rn86+.

Figure 31 presents the Coulomb glory at three different ionic states (q = 40, 55 and 70)
of radon. This Coulomb glory arises due to the electrostatic screening of nuclear potential
by atomic electrons. Because of the presence of Coulomb glory the scaled differential cross
section (SDCS) becomes maximum at θ = 180◦. An important feature of the Coulomb
glory is that for a particular ion charge, there is a critical energy at which the SDCS gets its
maximum value. In the vicinity of that critical energy the cross sections become smaller. As
seen in Figure 31a, for q = 40, the maximum SDCS is observed at Ei = 850 eV. Furthermore,
SDCS gets lower values both for increasing energy to 1200 eV or decreasing to 300 eV.
Similar results are also observed for the ionicities q = 55, in Figure 31b, and for q = 70, in
Figure 31c. The maximum SDCSs, for later two ionicities, are observed at Ei = 450 and
225 eV, respectively.
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Figure 31. Angular variation of the scaled differential cross section for e−-Rnq+ scattering at different
energies for the ionicities q = (a) 40, (b) 55 and (c) 70. Furthermore, are present the scaled Rutherford
cross sections for the same scattering systems.

Figure 31 also revealed that, for a particular ion charge, the width of the maximum
increases with increasing energy, the ratio of ion DCS to Rutherford DCS decreases with
the increase of ion charge. One can also observed that, with the increase of ion charge, the
strongest Coulomb glory shifts toward low incident energy. This is expected because the
strength of the potential of the electronic cloud at the origin is stronger for lower degree
of ionicities than higher ones. It means that ion-target of high ion charge can cause low
energy electron to get backscattered and vice versa. This causes strongest Coulomb glory
to be observed at low incident energy for higher ion charge and at comparatively high
incident energy for low ion charge.

4.4. Comparison of the Electron and Positron Impact Results

In Figure 32, we compare the energy dependent DCS and the corresponding Sherman
function results at 90◦ for the scattering of electrons and positrons from neutral radon
atoms. The basic features of the DCS in the energy region above some tens of eV up to a few
keV are oscillations originated due to the diffraction of the projectile beam by the atomic
target electrons. The structures disappear when the collision becomes energetic enough
so that the beam has passed even the innermost K-shell electrons before the scattering
events take place. As seen in Figure 32a, for electron impact scattering, three DCS minima
appear within Ei = 30 eV to 3 keV, and beyond that the DCS decreases monotonously with
increasing energy. For positron impact scattering, on the other hand, the number of DCS
minima reduces to 2 and confined to low energies: the first minimum is at 2 eV and the
second one at 20 eV. The reduced number of DCS minima for positron projectile is due to the
absence of exchange potential, and low energy structure is the influence of the correlation
polarization potential. One can also see from Figure 32a that the values of positron DCS at
all energies are smaller than those of electron DCS. This feature supports the fact that the
target electrons do not serve as scattering centers for the positrons. Instead, they screen the
central field, thereby lowering the DCS as compared to its electron counterpart.
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Figure 32b displays the Sherman function results comparing between the electron and
positron impact scattering. For the case of electron scattering, pronounced structures are
observed in the Sherman function, the positions of which strongly correlate to those in the
DCS. For positron projectile, on the other hand, no structure appears up to 100 keV, and the
value of spin asymmetry is extremely low. This fact can be related to the repulsive potential
which prevents the positron to penetrate the nucleus in contrast to its electron counterpart.

Figure 32. Comparison of (a) the differential cross section and (b) the corresponding Sherman
function for the collisions of electrons and positrons from neutral radon targets at the scattering angle
of 90◦.

In Figure 33, we compare our spin polarization parameters U and T results, respec-
tively, in Figure 33a,b, between electron and positron impact scatterings at fixed angle
θ = 90◦. It is revealed that, for electron scattering, multiple structures appear in both U and
T up to several hundred keV. However, the structures are more stronger at lower energy
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and become less pronounced with increasing energy. For positron scattering, on the other
hand, no structures are observed in U and T. Starting from zero the U parameter increases
very slowly with energy up to 300 keV and then increases rapidly. The same feature is also
observed in the case of T parameter but with opposite sign.

Figure 33. Comparison of (a) the differential cross section and (b) the corresponding Sherman
function for the collisions of electrons and positrons from Rn50+ ion targets at the scattering angle
of 90◦.

Figure 34 compares the DCS and the Sherman functions of the electron and positron
impact scattering from Rn50+ ion targets. There is no significant difference between electron
and positron DCSs except a shallow minimum observed at 200 eV in electron DCS. In
electron impact Sherman function shows multiple structures with higher excursion with
increasing energy, whereas the Sherman function, for positron impact scattering, is almost
zero all through the displayed energy domain.
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Figure 34. Comparison of (a) the differential cross section and (b) the corresponding Sherman
function for the collisions of electrons and positrons from Rn50+ ion targets at the scattering angle
of 90◦.

In Figure 35, we depict energy variation of the IECS, MTCS, VCS, INCS and TCS
results for electron scattering from neutral radon atoms in comparison with those for
positron impact scattering. The comparison shows, at higher energy region (well above
1 keV), no significant difference in the above mentioned observables between the two
collision systems. However, at lower energy region (Ei < 1 keV), the cross sections produce
a remarkable change with changing the projectile. The R-T structures, for electron projectile,
are stronger both in number and intensity than those for positron counterpart. This result
indicates that the exchange, the polarization and the absorption potentials almost vanish at
energies beyond 1 keV. Furthermore, the static part, opposite in sign for the two projectiles,
is the sole contributor to the scattering and the potentials, with the same magnitude but
opposite in sign, make the same contribution to the scattering.
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Figure 35. Comparison of IECS, MTCS, VCS, INCS and TCS results for the collisions of electrons
and positrons from neutral radon at the scattering angle of 90◦.

5. Conclusions

In this paper, we report on the calculations of DCS, IECS, MTCS, VCS, INCS, TCS
and spin asymmetry parameters S, U and T for both the electrons and positrons impact
scattering from radon isonuclear series over a wide collision energy 1 eV ≤ Ei ≤ 1 MeV.
The aforesaid scattering observables have been calculated within Dirac relativistic partial
wave analysis employing a modified Coulomb potential. For the first time, the present
study furnishes the detailed analysis of the CM in the DCS distributions and the total
spin-polarization in the elastic scattering of electrons from neutral radon atoms. We also
present SDCS and RDCS, and demonstrate the Coulomb glory effects. We have not found
any experimental results, available in the literature, of these scattering observables for
these scattering systems. However, a comparison of our evaluated cross sections shows a
reasonable agreement with the available theoretical results.
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As expected, in the low energy DCSs, the present study observes interference struc-
tures for electron scattering and structureless behavior in the case of positron scattering,
whereas high energy DCSs for these two projectiles are similar in pattern. This indicates
that the exchange potential, present in e−-atom interaction, is responsible for the produc-
tion of maxima-minima. The same effect causes greater number of maxima- minima in the
angular distributions of DCS and S , at different energies, for the former scattering system
than the latter. Furthermore, this effect is negligible at high energies, thereby leading to
the almost parallel behavior of the DCS for both the projectiles. This study also reveals
the effect of the short-range potential , originating from the screening bound electrons, on
the cross section up to to charge state Rn30+. Beyond this charge state, the cross section
is almost independent of the charge state, due to the dominance of nuclear potential and
diminution of screening effect. The energy dependence of the IECS, MTCS, VCS, INCS
and TCS shows a non-monotonous pattern of the minimum-maximum type up to the
collision energy of 1 keV. At all energies and for both the aforesaid projectiles, the DCS
maximum occurs at the scattering angle θ = 0 and it gradually falls off with the increase
of the scattering angle in region of small angles. This arises due to the property of the
Legendre polynomial factor in the expression for f (θ) in the Equation (30).

For the present electron impact scattering, we obtain 18 deep DCS minima including
14 CMs, where the DCS attains its smallest value. In the proximity of these CMs, we
determine 28 MSP points where the spin polarization varies from +0.92 to +1.00 and from
−0.84 to −1.00, respectively, in positive and negative excursions. All of these MSP points
can be termed as the total polarization points. These results demonstrate the efficacy of the
present modified Coulomb potential in determining accurately the deepest DCS valley and
CM positions. Pronounced Coulomb glory effect, an amplification of elastic backscattering
due to the attractive screened Coulomb potential, is observed in the angular distribution of
elastically scattered electrons. Because of the strength of the potential of electronic cloud
to scatter electron through θ = 180◦, the strongest Coulomb glory effect is seen to shift
towards lower charge state. All of these analyses for e±-Rn scattering systems still await
verification by future experimental as well as theoretical studies.
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Abstract: The vibrational excitation cross-section of a diatomic molecule by positron impact is
obtained using wave-packet propagation techniques. The dynamics study was carried on a two-
dimensional potential energy surface, which couples a hydrogenlike harmonic oscillator to a positron
via a spherically symmetric correlation polarization potential. The cross-section for the excitation of
the first vibrational mode is in good agreement with previous reports. Our model suggests that a
positron couples to the target vibration by responding instantly to an interaction potential, which
depends on the target vibrational coordinate.

Keywords: positron; model potential; wave-packet propagation; vibrational cross-section

1. Introduction

A fundamental question in positron–matter interaction is how a positron couples to
the vibrational modes of molecules, after experimental measurements [1–3] and theoretical
models [4–11] agree appreciably for vibrational excitation cross-sections for low-energy
positron–molecule scattering. The observation of this phenomenon in great detail fol-
lows the development of high-intensity, monoenergetic positron beams [12,13], which, in
turn, cool the source of positron via inelastic collisions, presumably involving vibrational
modes [11,14] with a buffer gas of molecules.

The prominent consequence of the strong coupling between the positron and the nu-
clear degrees of freedom refers to the abnormally large positron annihilation rates observed
in polyatomic targets [15–17]. The resonant features of the annihilation spectra have been
described using a Breit–Wigner amplitude, which relies on the existence of a positron–
molecule bound state or vibrational Feshbach resonance (VFR) [18], mainly populated
by the infrared active modes of the molecule [17,18]. The VFRs are further enhanced by
intramolecular vibrational energy redistribution [18]. On the other hand, the multimodal
nature of positron annihilation on molecules was uncovered within a projection operator
approach [19,20]. This model suggests that resonances in the annihilation phenomenon
arise from the formation of a transient positron–molecule complex, with a lifetime long
enough to give rise to narrow vibrational resonances via constructive interference [19,20].
This model attributes an important role to the correlation-polarization forces, as the mecha-
nism that triggers the positron–molecule attachment, not only involving bound states but
virtual states as well [19,20]. The coupling of the positron to molecular vibrations appeared
to be more intriguing after experimental measurements of annihilation rates revealed that
the positron can couple directly to a quasi-continuum of multimode vibrational states [21].
In order to describe the observed data, it was necessary to average the annihilation param-
eter over all the energetically allowed multimode vibrational excitations, also assuming
that the positron couples to the quasi-continuum of states with the same strength [21].
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The richness of the positron–molecule physics is closely related to the ability of the
molecule to bind a positron. As the positron is a light positive particle, the formation of
a positron–molecule complex results from the compromise between a flexible attractive
electron cloud and a quasi-rigid repulsive nuclei structure. This picture is supported by
a collection of experimental [22,23] and theoretical results [24–28] that indicate an strong
correlation between positron–molecule binding energies and molecular properties such as
dipole moment, polarizability, ionization potential, and number of π-electrons. However,
for a quantitative description of the bonding between a molecule and a positron, a subtle
effect should be taken into account, e.g., the nonzero probability amplitude that a target
electron tunnels to the positron-attractive well. This effect, which appears as a virtual
positronium formation in the many-body positron–molecule self energy, is responsible for
a dramatic increase in the positron–molecule attachment [29].

In this work, the interaction of a positron with a diatomic molecule is studied using
a potential energy surface (PES) that couples a correlation-polarization potential curve,
for the positron–target interaction, with a hydrogenlike harmonic oscillator. On this
PES, a time-dependent wave-packet propagation is performed and the cross-section for
the excitation of the first vibrational mode of the oscillator is computed, a procedure
somewhat similar to that of the reference [30]. In seeking comparison, the mass and
natural frequency of the harmonic oscillator were chosen with values close to those known
for a hydrogen molecule. The coupling between the molecular vibrational and positron
translational modes was described using a linear representation of the H2 polarizabilities
as a function of the H–H internuclear separation, reported by Kołos and Wolniewicsz [31].
The computed 0 → 1 vibrational excitation cross-section then displays good agreement
with previously reported experimental and theoretical results, suggesting that the oscillator
embedded in the positron continuum couples to it through a correlation polarization force,
which depends on the target oscillatory coordinate. Since the present model employs
harmonic approximation, only the 0 → 1 vibrational excitation is accounted for. While
more sophisticated positron–vibration couplings could in principle be considered, the
available experimental data for H2 are limited to the fundamental vibrational transition.

In the next section, the model potential is described in detail. The wave-packet
propagation method is presented in Section 3. The results and discussion are given in
Section 4 and some conclusions given in Section 5. Atomic units are assumed throughout
the text, unless otherwise stated.

2. The Model Potential

The model potential is written as the sum of oscillator (OSC) and positron (POS)
components as follows:

V(r, R) = Vosc(R) + Vpos(r, R) (1)

where r is the scattering coordinate for the projectile–target distance relative to the center
of mass of the system and R is the internal coordinate of the target vibrational mode.

The OSC term in the above equation is the potential energy of a harmonic oscillator

Vosc(R) =
1
2

μω2R2 (2)

where the reduced mass is set to μ = 1000, corresponding to a homonuclear diatom with
atomic mass M = 2000. The natural frequency ω = 0.02 (4389.5 cm−1) provides a harmonic
oscillator with parameters close to those of the hydrogen molecule.

The POS term includes the static (Vst) and the correlation-polarization (Vcp) potentials.
The former is represented in the form

Vst(r) =
( a1

r

)a2
exp (−a3ra4) (3)
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which reproduces the spherically symmetric static potential energy of H2, at the Hartee–
Fock level, where {ai} = {1.1973, 2.6633, 0.6179, 1.2003}.

The Vcp term, in turn, is written as

Vcp(r, R) = −α(R)
2r4 fρ(r) (4)

where
α(R) = aR + α0 (5)

with a = 4.35 and α0 = 5.18 is a linear approximation (referred to as 1.4 a0) to the dipole
polarizability for H2 from Kołos and Wolniewitz [31].

In Equation (4),

fρ(r) = 1 − exp
(
− r6

ρ6

)
(6)

is the cut-off function proposed by Mitroy and Ivanov [32] in order to damp the −1/r4

term at short distances. The cut-off parameter ρ is chosen to reproduce the desirable
result [26,32]. In this case, ρ = 5 leads to a cross-section close to the experimental values.

Figure 1 shows one-dimensional cuts of the different components of the two-
dimensional PES in the function of r, for R = 0 and ρ = 5. The inset shows the ab
initio values of the H2 polarizability and the straight line from Equation (5). We observed
that with this simple representation, the cross-section was almost indistinguishable from
those of a model that fits all the data to a higher degree polynomial. This is so because the
average position of the wave-packet in the R coordinate oscillates very close to the origin
of the quadratic well.
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Figure 1. Cuts of the different components of the model potential. The empty dots in the inset are
the data from ref. [31]. See text for details.

This model potential assumes a very simple anzatz for the coupling of a low-energy
positron to a harmonic vibrational mode. The coupling is included as a parametric de-
pendence of the positron–target correlation-polarization potential Vcp on the oscillator
coordinate R. Note that, here, the target potential remains unchanged under the action of
the positron field, a plausible assumption for a small, weakly polarizable molecule as H2.
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3. Wave-Packet Dynamics

The time propagation of the wave packet (WP) was performed using a split evolution
operator in the form

Ψ(r, R, t + Δt) = e−iK Δt
2 e−iVΔte−iK Δt

2 Ψ(r, R, t) (7)

where V is the PES from Equation (1) and

K =
p2

2m
+

P2

2μ
(8)

is the total kinetic energy operators involving the momenta p and P—conjugates of r and
R, respectively.

In Equation (8), m is the reduced mass of the system defined as

m =
mp M

mp + M
(9)

where M = 2000 is the total mass of the oscillator and mp = 1 is the positron mass.
The initial WP was prepared as the normalized product

Ψi(r, R, t = 0) = g(r)χi(R) (10)

where χi(R) is the wave function of the i-th state of a harmonic oscillator with energy εi. In
the present study, the oscillator is initially in its ground state, i = 0.

In Equation (10), g(r) represents an incoming Gaussian wave packet

g(r) =

(
1

2πδr2
0

)1/4

e−(r−r0)
2/4δr2

0 eik0r (11)

with initial average position r0, initial average momentum k0 toward the interaction region,
and full width at half maximum (FWHM) Δr0 = 2

√
ln 2δr0.

Equations (7)–(11) were represented in a discretized grid of the r × R space with
Nr × NR points. At every instant, the WP was propagated using Equation (7) by doing
a sequence of forward-backward-forward fast Fourier transforms (FFTs) between the
coordinate and momentum spaces.

The cross-section (CS) for the vibrational excitation from state i to state j is obtained
by applying a method commonly used for reactive and nonreactive scattering [33,34]. The
method consists in expanding the outgoing wave function Ψ(r∞, R, t) evaluated at large
separations r = r∞ in the eigenstates of the oscillator,

Ψi(r = r∞, R, t) = ∑
f

Ci f (t)χ f (R) (12)

such that the coefficients of the expansion, computed as

Ci f (t) =
∫ Rmax

Rmin

χ∗
f (R)Ψi(r∞, R, t)dR (13)

represent the flux of the initial WP into the f -th vibrational channel after the scattering event.
Hence, the probability of a transition from the vibrational state i to state j of the

oscillator will be proportional to the squared modulus of the Fourier transform of the
coefficient Ci f (t). The i → f vibrational excitation CS as a function of the initial positron
momentum k is computed as

σi f (k) =
π

m
k f

ki

∣∣∣∣ C̃i f (E)
g̃(k)

∣∣∣∣2

(14)
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where C̃i f (E) and g̃(k) are the FFTs of Equations (11) and (13), respectively. In Equation (14),

ki(j) =

√
2m

[
E − εi(j))

]
, where E is the total energy, which is conserved during the propagation.

The total propagation time was 131,072 atomic units (3.17 ps), large enough for |C(t)|2
to fall below 10−7, thus guaranteeing that the initial WP is completely dissociated. At
this point, a problem arises if the WP is partly reflected back into the interaction region at
the edges of the grid. Considering that it is impractical to prevent the WP from reaching
the grid’s edge during the whole time propagation, by using sufficiently large grids,
the usual solutions involve the use of a complex absorbing potential in the dissociation
regions [35]. In the present case, we choose a more straightforward solution [36], which
consists in multiplying the WP, in the last Δrdamp dissociation region of the grid, by a
damping function

exp
(
−bdampΔr3

damp

)
(15)

which smoothly decreases from 1 to zero near the grid edge. Due to the quadratic increase
in the potential with the R coordinate, it was not necessary to apply a similar damping along
the R-edge of the rectangular grid. Note further, that the damping should be applied at
time intervals Δtdamp larger than the propagation time step to avoid nonphysical reflections
of the WP.

Table 1 collects the parameters employed in the propagation. The center of the WP
was initially placed at r0 = 100 a.u., with an initial kinetic energy of 0.82 eV. To ensure that
only the outgoing WP is involved in the computation of the coefficient from Equation (13),
r∞ was set to 200 a.u. This point is twice as far as the initial WP, which has an initial FWHM
of 20 a.u. After going through r∞, the WP was damped with Equation (15) over the region
Δrdamp, which represents almost 80% of the total size of the grid along the r coordinate.
Such a large damping region was necessary to counteract the rapid spreading of the WP,
due to the small mass of the projectile. In turn, the values for Δtdamp and bdamp were chosen
by trial-and-error, until it was verified that a negligible amount of the dissociated WP
reached the edge of the grid.

Table 1. Parameters of the dynamics (in a.u.).

Parameter Value

Grid parameters
rmin 0.0
rmax 1200
Nr 1024

Rmin −1.0
Rmax 1.0
NR 32
r∞ 200
Δt 0.01

Δrdamp 950
Δtdamp 1000
bdamp 10−7

Initial WP parameters
r0 100

Δr0 20
k0 −0.245

Δk0 0.14

Note that we used a FFT power-of-two algorithm, implying that the number of
grid points must be a power of two along the r and R coordinates. Hence, considering
that the the cost of a propagation is very sensitive to the grid size, we first performed a
convergence test. Thus, we found that for Nr = 210 and NR = 25, the computed cross-
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section was indistinguishable from those obtained if the grid size was twice as large for
either coordinate. Further, as a simple test, it was verified that by representing the quadratic
well of Equation (2) with a grid of 32 points in the interval from −1 to 1, the energy spectra
of the oscillator was accurately reproduced by applying a screening technique on the
time-dependent propagation [37].

The initial WP was chosen narrow enough in position so that an energy interval wide
enough around 0.54 eV, the threshold for the first vibrational mode of the oscillator, is well
covered. However, note that the narrower the WP in position, the faster it will spread;
then, a good compromise was found by setting the FWHM Δr0 = 20 a.u. The bandwidth
in energy of the initial WP can be estimated as

ΔE =
(k0 + Δk0/2)2

2m
− (k0 − Δk0/2)2

2m
(16)

where Δk0 is the FWHM of the initial WP in the momentum space.
From Equation (16), ΔE ≈ 1 eV, such that around the average initial incident energy

k2
0/2m = 0.82 eV, the cross-section can be reliably described. This can be seen in the red

curve of Figure 2, which represents the 0 → 1 vibrational excitation CS, computed with
the present method. Notice that the curve is smooth between the threshold energy and
2 eV, after which it begins to show a slightly oscillatory behavior, increasing in amplitude
with energy. For a good description of the CS for energies above 2 eV, The WP should
have a FWHM less than 20 a.u., but it would be necessary to choose a new set of damping
parameters in order to remove WP reflections at the edge of the grid.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2  2.5  3

σ
0→

1 
(a

.u
.)

Incident Engergy (eV)

ρ=5, a=4.35, α0=5.18

Theory, [10]

Theory, [7]

Theory, [4]

Experiment, [1]

Figure 2. Comparison of the 0 → 1 vibrational excitation CSs, in function of the incident positron
energy. The solid red line is the present result.

4. Results and Discussion

Figure 2 shows a comparison of the presently computed 0 → 1 vibrational excitation
CS, as a function of the initial positron energy, with previous results obtained with other
methods [4–6,10]. Our results show the typical behavior of the cross-section with a sharp
onset at threshold, followed by a peak with maximum around 0.5 a.u. height, falling down
to zero as the energy increases. The good agreement with reported theories [4–6,10] and
one experiment [1] suggests that the present model potential is appropriate to describe the
0 → 1 excitation CS of the oscillator. In this sense, it becomes arguable that the coupling
between the positron and the first vibrational mode of the target can be accounted for
by the instantaneous response of the molecule to the positron through the R-dependent
attractive correlation polarization potential.
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Figure 3 shows the 0 → 1 vibrational excitation CSs from different PESs obtained by
changing, one at a time, the values of the cut-off parameter ρ and the slope a of the α(R)
function, given by Equation (5). From the figure, it is clear that a decrease (increase) in
the value of a leads to a decrease (increase) in the cross-section as a whole, as expected
from the fact that a is a measure of the coupling strength between the translational and
vibrational degrees of freedom. In turn, an increase (decrease) of ρ around 5 gives rise to
an decrease (increase) in the cross-section, leaving its characteristic shape unchanged.
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Figure 3. Vibrational excitation CSs in function of the incident energy for different values of the ρ

and a parameters in Equations (5) and (6), respectively.

The influence of the parameter α0 on the cross-section was also investigated. Figure 4
shows cuts of the PES along the r coordinate for R = 0, with increasing values of the target
polarizability at equilibrium, α0. The other parameters of the Vcp terms, ρ and a, were fixed
at 5 and 4.35, respectively. This trend describes the situation for a positron, which couples
with the same strength (a = const.) to an increasingly polarizable target. The deepest well
corresponds to a target eight times more polarizable than that of the hydrogen molecule.
Using this family of PESs, propagations were carried out with the same parameters of
Table 1. The resulting 0 → 1 vibrational excitation CSs are shown in Figure 5. From the
figure, it is clear that the cross-section tends to depict a threshold resonance as the target
polarizability increases, presumably due to the emergence of a bound state as the potential
well becomes deeper.

The above discussion suggests that for the hydrogen molecule, the typical behavior
of the 0 → 1 vibrational excitation CS arises from a weak coupling between the positron
and the molecular vibration, mainly dominated by the dependence of the positron–target
correlation-polarization potential on the vibrational coordinate. In the present model, this
is represented by the dependence of the polarizability on the R coordinate. Moreover, as
the target becomes more polarizable, the coupling between the positron and the vibrational
modes may be enhanced by the emergence of resonances or even bound states. In such a
scenario, commonly observed in large polyatomics, the nucleus skeleton of the molecule
would be appreciably perturbed by the presence of the positron field; thus, increasing the
coupling between the positron and the molecular vibration.
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Figure 5. 0 → 1 vibrational excitation CSs obtained with the different PESs from the Figure 4.

5. Conclusions

In this work, we show that a simple model that couples a harmonic oscillator to a
positron through a correlation-polarization potential can capture the main physics involved
in a single-mode vibrational excitation by positron impact. Here, this phenomenon was
studied using a time-dependent wave-packet propagation. The 0 → 1 vibrational excitation
cross-section was computed by projecting, at every time step, the dissociated wave-packet
with the first excited state of the oscillator. The cross-section shows good agreement with
reported values and suggests that the target vibration can be coupled to the positron
continuum by the dependence of the target polarizability on the vibrational coordinate. On
the other hand, the 0 → 1 vibrational excitation cross-section tends to depict a threshold
resonance for an increasingly polarizable target. Future work will be devoted to studying
positron coupling with higher vibrational modes, in which case, a more realistic description
of the oscillator beyond the harmonic approximation would be required.
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Abstract: In the present work, a detailed study on the electron impact excitation of Xe7+, Xe8+, Xe9+

and Xe10+ ions for the dipole allowed (E1) transitions in the EUV range of 8–19 nm is presented.
The multi-configuration Dirac–Fock method is used for the atomic structure calculation including
the Breit and QED corrections along with the relativistic configuration interaction approach. We
have compared our calculated energy levels, wavelengths and transition rates with other reported
experimental and theoretical results. Further, the relativistic distorted wave method is used to
calculate the cross sections from the excitation threshold to 3000 eV electron energy. For plasma
physics applications, we have reported the fitting parameters of these cross sections using two
different formulae for low and high energy ranges. The rate coefficients are also obtained using our
calculated cross sections and considering the Maxwellian electron energy distribution function in the
electron temperature range from 5 eV to 100 eV.

Keywords: MCDF wavefunctions; wavelengths; transition rates; relativistic distorted wave method;
cross sections; rate coefficients

1. Introduction

Spectroscopic and collisional data of highly charged xenon ions in the extreme ultra-
violet (EUV) spectral range play a vital role in several research areas. For example, laser
produced xenon plasma exhibits [1] the possibility to become an EUV source for the next
generation lithography. Xenon ions are detected in the UV spectrum of the astrophysical
objects viz., hot DO-type white dwarf [2] and planetary nebula [3]. In the next generation
fusion reactor ITER, xenon is expected to be used as edge plasma coolant. Xenon ions
being used in ion thruster for electric propulsion [4] plays key role in making the modern
space exploration cheaper. Since emissions from various charged species of xenon ions
carry information about the plasma parameters and impurities, their atomic structure and
dynamical properties in the EUV range are essential for the accurate diagnostics of the
aforementioned plasmas. Therefore, in this work we have focused on the electron impact
excitation of the electric dipole (E1) transitions in Xe7+, Xe8+, Xe9+ and Xe10+ ions in the
EUV region 8–19 nm. We consider excitation of E1 transitions that are responsible for the
most intense lines of the spectra.

To determine the emission properties of xenon ions, experiments have been performed
with either laser or gas discharge-produced plasmas. Churilov and Joshi [5] recorded xenon
spectra in the 7–17 nm region on a 10.7 m grazing incidence spectrograph and analyzed
the 4p64d9–(4p64d85p + 4p64d84f + 4p54d10) transition array of Rh-like Xe9+. They also
identified the resonance transitions arising from the excited 4d9(6p + 5f + 7p + 6f) states
of Pd-like Xe8+ and 4d105s 2S–4d95s4f 2P transitions for Ag-like Xe7+. Churilov et al. [6]
observed the transition array 4d8–(4d75p + 4d74f + 4p54d9) of Xe10+ using a low inductance
vacuum spark and a 10.7 m grazing incidence photograph in the EUV region 10.5–15.7 nm.
These lines were analyzed using Hartree–Fock (HFR) calculations in relativistic mode
with the help of the Cowan suite of codes [7]. Fahy et al. [8] reported the EUV spectra of
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Xe6+ to Xe41+ in the wavelength region of 4.5 to 20 nm using the electron beam ion trap
(EBIT) facility at NIST while varying electron beam energy from 180 eV to 8 keV. They also
calculated the transition probabilities and wavelengths using the HF approximation with
the Cowan code [7]. Ali and Nakamura [9] observed the EUV spectra of Rh-like Xe9+–Cd-
like Xe6+ and Cu-like Xe25+–Se-like Xe20+ using a compact electron beam ion trap (CoBIT)
and a flat-field grazing incidence spectrometer in the wavelength range of 15–20 nm with
an uncertainty of 0.05 Å. The electron beam energy was varied between 200–890 eV during
these measurements. Ali and Nakamura [10] also used their experimental facilities to
record EUV spectra of highly charged Xe8+–Xe11+ and Ba18+–Ba21+ ions in the wavelength
range 9–13 nm. Merabet et al. [11] studied spectra of various xenon ions (Xe2+ –Xe10+)
in the EUV region 10–16 nm using a compact electron cyclotron resonance ion source
(CECRIS) equipped with a grazing monochromator operating in 4–90 nm.

Various theoretical studies have been carried out to report energy levels, wavelengths,
oscillator strengths and transition probabilities of xenon ions. Safronova et al. [12] calcu-
lated the atomic properties of Pd-like ions Xe8+ with nuclear charge ranging from Z = 47
to 100 using relativistic many-body perturbation theory (RMBPT) with Breit correction.
Ivanova [13] used the relativistic perturbation theory with a model potential to calcu-
late the energy levels of Ag-, Pd- and Rh–like ions with Z = 52–86. Motoumba et al. [14]
reported transition probabilities and oscillator strengths for the transition array 4d8 –
(4p54d9 + 4d75p + 4d74f) of Xe10+ in the EUV spectral range of 10.2–15.7 nm. These results
were obtained using two different methods viz., the semi-empirical pseudo-relativistic
Hartree–Fock (HFR) method and the relativistic multiconfiguration Dirac–Hartree–Fock
(MCDHF) theory within the relativistic configuration interaction (RCI) approximation.
Motoumba et al. [15] also employed the above two methods to report transition probabil-
ities and oscillator strengths for 92 spectral lines of Xe9+ ion in the range of 11–16.4 nm.
Shen et al. [16] used Flexible Atomic Code (FAC), based on a fully relativistic approach, to
calculate the energy levels, oscillator strengths, electron impact collision strengths as well
as effective collision strengths for Xe10+.

It is clear from the above discussion that most of the previous experimental or theo-
retical studies on Xe7+–Xe10+ ions have focused on their spectroscopic properties, while
the electron impact cross section data are scarcely reported. However, various studies
in the past have clearly demonstrated that using accurate cross section results in a colli-
sional radiative model provides a better agreement with the measurements on the plasma
parameters, viz., electron temperature and density [17–20]. Therefore, reliable cross sec-
tions are essential for the success of any plasma model. In general, suitable theoretical
methods are employed to carry out cross section calculations due to limitations, such as
accurate identification of the fine-structure levels for open shell ions, in performing the
scattering experiments.

In the present work, we have studied electron impact excitation of Xe7+, Xe8+, Xe9+

and Xe10+ ions. The core shell configuration (1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6) is removed
in the representation of the ground and excited state configurations of these four ions. We
have considered the transition arrays 4d105s 2S1/2–(4d95s4f + 4d95s5p) for Xe7+, 4d10 1S0–
(4d95p + 4d94f + 4d96p + 4d95f + 4d97p + 4d96f) for Xe8+, 4p64d9–(4p64d85p + 4p64d84f
+ 4p54d10) for Xe9+ and 4d8–(4d75p + 4d74f + 4p54d9) for Xe10+. These arrays result into
9, 18, 75 and 57 E1 transitions in Xe7+ through Xe10+ in EUV range. We have used multi-
configuration Dirac–Fock method within RCI approximation to calculate the energy levels,
wavelengths and transition rates. These results are compared in detail with the previously
reported measurements and theoretical calculations. The target ion wavefunctions are
further implemented in the evaluation of the transition (T−) matrix amplitude using
relativistic distorted wave (RDW) approximation and excitation cross sections are obtained
up to 3000 eV electron energy. The analytical fitting of the electron excitation cross sections
is also performed as it is more convenient to feed the analytical expression with fitting
parameters for plasma modeling. Further, assuming electron energy distribution to be
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Maxwellian, we have also calculated excitation rate coefficients using our cross sections for
electron temperature range 5–100 eV.

2. Theory

In order to calculate the energy levels, wavelengths and transition probabilities, we
have obtained MCDF wavefunctions of Xe7+–Xe10+ ions using GRASP2K code [21]. In
the MCDF method, the atomic state functions (ASFs) are written as linear combination
of configuration state functions (CSFs) having same parity P and angular momentum
quantum number J, as follows:

Ψ(PJM) =
n

∑
i=1

aiΦi(PJM) . (1)

Here ai refers to the mixing coefficient of the CSF Φi(PJM) which are anti-symmetrized
products of a common set of orthonormal orbitals. In our calculations, we take as many
CSFs as are having at least 0.001% value of the mixing coefficient. The configurations
that are included in the atomic-structure calculations of xenon ions are listed in Table 1.
These configurations are shown here in their non-relativistic notations. The MCDF method
implements a self-consistent field procedure for obtaining the radial functions and the
mixing coefficients. Further, we performed RCI calculations by considering the Breit and
quantum electrodynamic (QED) corrections in the Dirac–Coulomb Hamiltonian. The
transition probabilities are computed from the matrix element of dipole operator of the
electromagnetic field.

Table 1. Configurations of the initial and final states and the CSFs in non-relativistic notations.

Ions Initial State Final State CSFs

Xe7+ 4d105s 4d9(5s5p, 4f5s)
even

4d10(5s, 5d, 6s, 6d),
4d9(5s5d, 5s6s, 5s7s,
5s2, 5p2)

odd
4d10(4f, 5p, 6p),
4d9(4f5s, 5s5p, 5s5f,
5s6f, 5p5d)

Xe8+ 4d10 4d9(4f, 5p, 5f, 6p, 6f, 7p)
even

4d10, 4d9(5s, 5d, 6s, 6d,
7s, 7d), 4d8(5s2, 5p2,
5d2)

odd 4d9(4f, 5p, 5f, 6p, 6f, 7p,
7f)

Xe9+ 4d9 4d8(4f, 5p), 4p54d10
even

4d9, 4d8(5s, 5d, 6s, 6d,
7s, 7d), 4p54d9(5p, 5f),
4d7(5s2, 5p2, 5d2, 5f2,
5s5d, 5s6s, 5s6d, 5p5f)

odd
4d8(4f, 5p, 5f, 6p, 6f,
7p), 4d7(5s5p, 5s5f,
5s6p), 4p54d10, 4d64f3

Xe10+ 4d8 4d7(4f, 5p), 4p54d9
even 4d8, 4d75d, 4p54d8(5p,

5f), 4d6(5s2 + 5p2)

odd
4d7(4f, 5p, 5f, 6f),
4p54d9, 4p54d85d,
4d54f3

We further use the bound state wavefunctions of the ion in the relativistic distorted
wave theory to determine the electron impact excitation parameters. The T-matrix in the
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RDW approximation for excitation of an N electron ion from an initial state a to a final state
b can be written as [22]:

TRDW
a→b (γb, Jb, Mb, μb; γa, Ja, Ma, μa) =

〈
χ−

b

∣∣V − Ub(N + 1)|Aχ+
a 〉 . (2)

Here, Ja(b), Ma(b) denote the total angular momentum quantum number and its as-
sociated magnetic quantum number in the initial(final) state, whereas, γa(b) represents
additional quantum numbers required for unique identification of the state. μa(b) refers
to the spin projection of the incident(scattered) electron. A is the anti-symmetrization
operator to consider the exchange of the projectile electron with the target electrons and
Ub is the distortion potential which is taken to be a function of the radial co-ordinates of
the projectile electron only. In our calculations, we choose Ub to be a spherically averaged
static potential of the excited state of ion. In the above Equation (2), V is the Coulomb
interaction potential between the incident electron and the target ion. The wave function
χ
+(−)
a(b) represents the product of the N-electron target wave functions Ψa(b) and a projectile

electron distorted wave function F+(−)
a(b) in the initial ‘a’ and final ‘b’, states, that is:

χ
+(−)
a(b) = Ψa(b)(1, 2, ..., N))F+(−)

a(b) (ka(b), N + 1). (3)

Here, ‘+(−)’ sign denotes an outgoing(incoming) wave, while ka(b) is the linear
momentum of the projectile electron in the initial(final) state. Equation (2) contains entire
information about the excitation process. We, however, are interested in computing only
the integrated cross section which is obtained by taking square of the mode value of the
complex T-matrix with appropriate normalization, as expressed below:

σa→b = (2π)4 kb
ka

1
2(2Ja + 1) ∑

Mbμb Maμa

∫
|TRDW

a→b (γb, Jb, Mb, μb; γa, Ja, Ma, μa)|2dΩ . (4)

3. Results and Discussion

3.1. Atomic-Structure Calculations

We have used GRASP2K code [21] to perform MCDF and RCI calculations to obtain
energy levels, wavelengths and transition rates of Xe7+–Xe10+ ions. Our energy values
are presented and compared with other theoretical and experimental results through
Tables 2–5 for the four ions. The fine-structure states are represented in the relativis-
tic j − j coupling scheme in which all shells, excluding s, split into two subshells with
j = l ± 1/2. For example, a p shell will be broken as p̄ with j = 1/2 and p with j = 3/2. In
order to identify the levels, their indices are assigned in each table. This will help to clearly
recognise the states for which wavelengths, transition rates, electron impact cross sections
and excitation rate coefficients will be presented.

Table 2. Comparison of our calculated energy levels (in eV) with other results for Xe7+. A fully filled subshell is omitted in
the relativistic representation of the configurations.

Index State ∗ J State Present NIST [23]

1 4d105s 2S1/2 1/2 5s1/2 0.0000 0.0000
2 4d95s5p (5/2, 3P1) 3/2 (4d5

5/25s1/2)2
5p̄1/2 66.2099 67.1436

3 4d95s5p (3/2, 3P0) 3/2 (4d̄3
3/25s1/2)1

5p̄1/2 67.1423 68.2470
4 4d95s5p (3/2, 3P0) 3/2 (4d̄3

3/25s1/2)2
5p̄1/2 68.1925 69.0120

5 4d95s5p (3/2, 3P1) 1/2 (4d̄3
3/25s1/2)1

5p̄1/2 69.1417 69.9456
6 4d95s5p (3/2, 3P2) 1/2 (4d̄3

3/25s1/2)1
5p3/2 69.5680 70.4968

7 4d95s5p (5/2, 1P1) 3/2 (4d5
5/25s1/2)3

5p3/2 72.9254 72.5665
8 4d95s5p (3/2, 1P1) 1/2 (4d̄3

3/25s1/2)2
5p3/2 74.7061 74.3872

9 4d95s4f 2P1/2 1/2 (4d5
5/24 f7/2)1

5s1/2 103.5676 100.5830
10 4d95s4f 2P3/2 3/2 (4d5

5/24 f7/2)1
5s1/2 103.6716 100.6000

∗ Notation as per the NIST [23] database.
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Table 3. Same as Table 2 but for Xe8+.

Index State ∗ J State Present Other Reported

1 4d10 1S0 0 4d6
0 0.0000 0.0000 a

2 4d95p 3P2 2 4d5
5/25p̄1/2 71.0998 71.3452 b

3 4d95p 3P1 1 4d̄3
3/25p̄1/2 73.4043 73.7114 a

4 4d95p 3P0 0 4d̄3
3/25p3/2 74.9525 75.3707 b

5 4d95p 1P1 1 4d̄3
3/25p̄1/2 75.0407 74.9951 a

6 4d95p 3D3 3 4d5
5/25p3/2 74.9691 75.0613 b

7 4d95p 3D1 1 4d̄3
3/25p3/2 76.5287 76.6556 a

8 4d95p 3D2 2 4d̄3
3/25p3/2 76.8981 77.0124 b

9 4d94f 3P0 0 4d5
5/24 f̄5/2 81.5153

10 4d94f 3P1 1 4d5
5/24 f̄5/2 81.8543 82.5053 a

11 4d94f 3P2 2 4d5
5/24 f7/2 82.5160

12 4d94f 3D3 3 4d5
5/24 f̄5/2 85.4793

13 4d94f 3D1 1 4d̄3
3/24 f̄5/2 86.1987 86.3315 a

14 4d94f 3D2 2 4d̄3
3/24 f7/2 86.4396

15 4d94f 1P1 1 4d5
5/24 f7/2 106.6396 103.2057 a

16 4d96p 3P2 2 4d5
5/26p̄1/2 117.0829

17 4d96p 3P1 1 4d5
5/26p3/2 118.2765 119.4365 a

18 4d96p 3P0 0 4d̄3
3/26p3/2 119.8886

19 4d96p 1P1 1 4d̄3
3/26p̄1/2 119.4555 120.5896 a

20 4d96p 3D3 3 4d5
5/26p3/2 118.5929

21 4d96p 3D1 1 4d̄3
3/26p3/2 120.3813 121.4157 a

22 4d96p 3D2 2 4d̄3
3/26p3/2 120.5895

23 4d95f 3P0 0 4d5
5/25 f̄5/2 122.3364

24 4d95f 3P1 1 4d5
5/25 f̄5/2 122.5205 123.0839 a

25 4d95f 3P2 2 4d5
5/25 f7/2 122.7973

26 4d95f 3D1 1 4d5
5/25 f7/2 124.0985 124.5409 a

27 4d95f 3D3 3 4d5
5/25 f̄5/2 123.3075 125.8984 b

28 4d95f 3D2 2 4d̄3
3/25 f7/2 124.8695

29 4d95f 1P1 1 4d̄3
3/25 f̄5/2 129.4696 128.5494 a

30 4d97p 3P2 2 4d5
5/27p̄1/2 138.0878

31 4d97p 3P1 1 4d̄3
3/27p̄1/2 140.2617 140.1840 a

32 4d97p 3P0 0 4d̄3
3/27p3/2 140.5323

33 4d97p 1P1 1 4d5
5/27p3/2 138.7018 141.6688 a

34 4d97p 3D3 3 4d5
5/27p3/2 138.8464

35 4d97p 3D1 1 4d̄3
3/27p3/2 140.7750 142.2001 a

36 4d97p 3D2 2 4d̄3
3/27p3/2 140.8804

37 4d96f 3P0 0 4d5
5/26 f̄5/2 140.6424

38 4d96f 3P1 1 4d5
5/26 f̄5/2 140.7218 142.0305 a

39 4d96f 3P2 2 4d5
5/26 f7/2 140.8523

40 4d96f 3D3 3 4d5
5/26 f̄5/2 141.0695

41 4d96f 3D1 1 4d5
5/26 f7/2 141.7116 142.9743 a

42 4d96f 3D2 2 4d̄3
3/26 f7/2 142.8798

43 4d96f 1P1 1 4d̄3
3/26 f̄5/2 144.2122 145.1465 a

∗ LS Coupling notation, a—Churilov and Joshi [5], b—NIST [23].
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Table 4. Same as Table 2 but for Xe9+.

Index Configuration J Level † State Present Exp [5] HFR [15] MCDHF [15]

1 4d9 5/2 0 4d5
5/2 0.0000 0.0000 0.0000 0.0000

2 4d9 3/2 16725 4d̄3
3/2 2.0213 2.0736 2.0736 2.0485

3 4d85p 7/2 629040 4d4
45p̄1/2 77.7037 77.9911 78.0033 77.0501

4 4p54d10 3/2 629234 4p3
3/2 80.4530 78.0151 77.9893 79.0030

5 4d85p 3/2 644130 4d4
25p̄1/2 79.8222 79.8620 79.8418 80.1652

6 4d85p 5/2 646494 (4d̄3
3/24d5

5/2)3
5p̄1/2 79.9613 80.1551 80.1541 79.2899

7 4d85p 7/2 646880 (4d̄3
3/24d5

5/2)3
5p̄1/2 79.9342 80.2029 80.1946 79.3275

8 4d85p 3/2 654245 (4d̄3
3/24d5

5/2)2
5p̄1/2 80.9040 81.1161 81.1284 80.2543

9 4d85p 1/2 656520 4d4
05p̄1/2 81.2487 81.3981 81.3843 80.5229

10 4d85p 5/2 657645 (4d̄3
3/24d5

5/2)2
5p̄1/2 81.4372 81.5376 81.5389 80.7503

11 4d85p 7/2 658993 4d4
45p3/2 81.5424 81.7048 81.7286 80.8887

12 4d85p 3/2 662160 (4d̄3
3/24d5

5/2)2
5p̄1/2 82.0310 82.0974 82.1027 81.3059

13 4d85p 5/2 664256 4d4
45p3/2 82.4106 82.3573 82.3841 81.7013

14 4d85p 5/2 668525 (4d̄3
3/24d5

5/2)3
5p3/2 82.6723 82.8866 82.8941 82.0430

15 4d85p 7/2 669531 4d4
25p3/2 82.9641 83.0113 83.0269 82.2869

16 4d85p 5/2 671045 4d4
25p3/2 83.2829 83.1990 83.2350 82.5064

17 4d85p 7/2 672762 (4d̄3
3/24d5

5/2)3
5p3/2 83.2202 83.4119 83.4178 82.5993

18 4d85p 3/2 674159 4d̄2
25p̄1/2 83.5709 83.5851 83.5608 82.8836

19 4d85p 5/2 675652 4d̄2
25p̄1/2 83.7487 83.7702 83.7698 83.0561

20 4d84f 7/2 676893 4d4
44 f̄5/2 83.7547 83.9241 83.9372 84.1222

21 4d85p 3/2 677421 (4d̄3
3/24d5

5/2)1
5p̄1/2 84.1519 83.9895 83.9671 83.4135

22 4d85p 1/2 677704 4d4
25p3/2 84.2510 84.0246 84.0003 83.5000

23 4d84f 5/2 678351 4d4
44 f̄5/2 83.9360 84.1048 84.0633 84.2632

24 4d85p 1/2 681425 4d̄2
25p3/2 84.3833 84.4860 84.4868 83.7512

25 4d84f 3/2 682437 4d4
44 f̄5/2 84.4992 84.6114 84.7406 84.8364

26 4d85p 5/2 682838 (4d̄3
3/24d5

5/2)2
5p3/2 84.7124 84.6612 84.6886 83.9971

27 4d85p 3/2 682998 (4d̄3
3/24d5

5/2)3
5p3/2 84.8127 84.6810 84.6763 84.1210

28 4d85p 7/2 684240 (4d̄3
3/24d5

5/2)2
5p3/2 84.8282 84.8350 84.8315 84.2146

29 4d84f 1/2 684807 4d4
44 f7/2 84.7890 84.9053 84.9555 84.9699

30 4d84f 7/2 687770 4d4
44 f7/2 85.1100 85.2727 85.2648 85.3875

31 4d85p 3/2 688121 4d4
25p3/2 85.5122 85.3162 85.3159 84.7514

32 4d84f 3/2 689190 4d4
44 f̄5/2 85.2771 85.4487 85.4144 85.6617

33 4d85p 5/2 690757 (4d̄3
3/24d5

5/2)4
5p3/2 85.6074 85.6430 85.6177 84.9183

34 4d85p 5/2 694056 (4d̄3
3/24d5

5/2)1
5p3/2 86.2761 86.0520 86.0376 85.5415

35 4d85p 1/2 695239 (4d̄3
3/24d5

5/2)1
5p3/2 86.5389 86.1987 86.4222 85.8222

36 4d84f 3/2 697440 4d4
44 f7/2 86.3697 86.4716 86.5023 86.7867

37 4d84f 5/2 698751 (4d̄3
3/24d5

5/2)2
4 f̄5/2 86.8275 86.6341 86.6812 86.9352

38 4d84f 5/2 701155 (4d̄3
3/24d5

5/2)3
4 f7/2 86.5695 86.9322 86.9251 87.1944

39 4d85p 5/2 701735 4d̄2
25p3/2 87.1092 87.0041 87.0408 86.3731

40 4d84f 1/2 702652 (4d̄3
3/24d5

5/2)3
4 f7/2 86.9067 87.1178 87.1082 87.2971

41 4d85p 7/2 703997 (4d̄3
3/24d5

5/2)4
5p3/2 87.5382∗ 87.2845 87.2566 86.8773

42 4d85p 1/2 705669 (4d̄3
3/24d5

5/2)2
5p3/2 87.7952 87.4918 87.4907 87.0046

43 4d84f 7/2 708748 4d4
24 f̄5/2 87.8852 87.8736 87.8309 88.2534

44 4d84f 5/2 711392 (4d̄3
3/24d5

5/2)4
4 f7/2 88.2139 88.2014 88.1999 88.5561

45 4d84f 5/2 713643 (4d̄3
3/24d5

5/2)3
4 f̄5/2 88.4606 88.4805 88.4592 88.9055

46 4d84f 5/2 721870 4d4
24 f7/2 89.6583 89.5005 89.5035 89.9423

47 4d85p 1/2 723216 4d̄2
05p̄1/2 90.7099 89.6674 89.7097 89.5125

48 4d84f 1/2 725785 4d̄2
24 f̄5/2 90.0249 89.9971 90.0379 90.3918

49 4d84f 1/2 737104 4d̄2
24 f̄5/2 91.8734 91.3893 91.4296 91.9682
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Table 4. Cont.

Index Configuration J Level † State Present Exp [5] HFR [15] MCDHF [15]

50 4d85p 3/2 745212 4d̄2
05p3/2 92.9879 92.3946 92.3705 92.0573

51 4d84f 3/2 749681 (4d̄3
3/24d5

5/2)2
4 f̄5/2 90.9563 ∗ 92.9486 92.8513 93.7464

52 4d84f 1/2 753489 (4d̄3
3/24d5

5/2)2
4 f̄5/2 94.3872 93.4208 93.4519 94.4965

53 4d84f 5/2 864592 4d4
44 f7/2 106.0721 ∗ 107.1958 107.1838 109.8049

54 4d84f 7/2 870470 4d4
24 f7/2 107.4877 ∗ 107.9246 108.0401 110.2660

55 4d84f 3/2 874794 4d̄2
24 f̄5/2 107.6293 ∗ 108.4607 108.4489 110.8660

56 4d84f 5/2 887203 4d̄2
24 f̄5/2 109.4709 ∗ 109.9992 110.0328 112.3180

57 4p54d10 1/2 924721 4p̄1/2 116.2848 ∗ 114.6508 114.6494 115.8723
† Energy levels (in cm−1) as represented in Churilov and Joshi [5], ∗ Values with 4d64f3 configuration included.

Table 5. Same as Table 2 but for Xe10+.

Index Configuration J Level † State Present Exp [6] HFR [14] RCI [14]

1 4d8 4 0 4d4
4 0.0000 0.0000 0.0000 0.0000

2 4d8 2 13140 4d4
2 1.7415 1.6292 1.6811 1.8015

3 4d8 3 15205 4d̄3
3/24d5

5/2 1.8204 1.8852 1.8617 1.8688
4 4d8 2 26670 4d̄3

3/24d5
5/2 3.4080 3.3067 3.3112 3.4620

5 4d8 0 32210 4d4
0 4.2453 3.9935 4.0264 2.5905

6 4d8 1 34610 4d̄3
3/24d5

5/2 4.5407 4.2911 4.3065 4.5968
7 4d8 4 40835 4d̄3

3/24d5
5/2 5.4872 5.0629 5.0460 5.3922

8 4d8 2 42900 4d̄2
2 5.4003 5.3189 5.3556 5.5356

9 4d8 0 88130 4d̄2
0 11.0871 10.9267 10.9460 9.7872

10 4d75p 3 725825 (4d̄3
3/24d4

4)5/2
5p̄1/2 89.8310 89.9909 90.0196 89.8633

11 4d75p 4 731458 (4d̄3
3/24d4

4)7/2
5p3/2 90.4439 90.6893 90.7270 90.5293

12 4d75p 3 733755 4d3
9/25p3/2 90.7887 90.9741 91.0248 90.8299

13 4d75p 4 737388 (4d̄3
3/24d4

4)7/2
5p3/2 91.1980 91.4245 91.4241 91.1814

14 4d75p 4 739542 (4d̄3
3/24d4

2)7/2
5p̄1/2 91.5316 91.6916 91.7102 91.6168

15 4d75p 5 740348 (4d̄3
3/24d4

4)11/2
5p̄1/2 91.7221 91.7915 91.7767 91.7197

16 4d75p 3 741800 (4d̄3
3/24d4

4)7/2
5p3/2 91.8900 91.9715 91.9751 91.8800

17 4d75p 3 744955 4d3
3/25p3/2 92.3054 92.3627 92.3530 92.9385

18 4d75p 1 745470 (4d̄3
3/24d4

2)3/2
5p̄1/2 92.3464 92.4265 92.4299 92.3399

19 4d75p 3 749351 (4d̄2
24d5

5/2)5/2
5p̄1/2 92.9282 92.9077 92.9050 93.5021

20 4d75p 2 750512 (4d̄3
3/24d4

4)7/2
5p3/2 93.1118 93.0517 93.0693 93.4798

21 4d75p 2 753795 (4d̄3
3/24d4

2)1/2
5p3/2 93.4853 93.4587 93.4608 93.8036

22 4d75p 1 754745 4d3
3/25p3/2 93.8957 93.5765 93.6211 93.7532

23 4d75p 4 756016 (4d̄2
24d5

5/2)9/2
5p̄1/2 93.6887 93.7341 93.7260 93.7626

24 4d75p 1 758337 (4d̄3
3/24d4

4)5/2
5p3/2 94.4733 94.0218 94.0413 94.2022

25 4d75p 3 761266 (4d̄3
3/24d4

4)5/2
5p3/2 94.3337 94.3850 94.3938 95.3887

26 4d75p 4 763070 (4d̄3
3/24d4

2)7/2
5p3/2 94.5816 94.6087 94.6466 94.6785

27 4d75p 1 765770 (4d̄3
3/24d4

2)1/2
5p3/2 95.2934 94.9434 94.9681 95.4116

28 4d75p 3 766860 (4d̄3
3/24d4

2)7/2
5p3/2 95.0988 95.0786 95.0791 96.0978

29 4d75p 1 767369 (4d̄3
3/24d4

2)3/2
5p3/2 95.2028 95.1417 95.1611 95.1833

30 4d75p 2 773315 (4d̄2
24d5

5/2)3/2
5p3/2 96.1325 95.8789 95.9466 96.4209

31 4d75p 3 773715 (4d̄2
24d5

5/2)7/2
5p3/2 96.1320 95.9285 95.9088 96.9597
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Table 5. Cont.

Index Configuration J Level † State Present Exp [6] HFR [14] RCI [14]

32 4d75p 4 773968 (4d̄3
3/24d4

4)11/2
5p3/2 96.3462 95.9598 95.9886 96.3065

33 4d75p 1 775030 (4d̄2
24d5

5/2)3/2
5p3/2 96.4126 96.0915 96.1071 96.2977

34 4d75p 3 780503 (4d̄2
24d5

5/2)9/2
5p3/2 97.1319 96.7701 96.8204 97.9562

35 4d75p 1 784035 (4d̄2
24d5

5/2)1/2
5p3/2 97.4966 97.2080 97.2402 97.4814

36 4d75p 2 786580 4d̄3/25p3/2 97.6818 97.5235 97.5240 97.4868
37 4d75p 5 789029 (4d̄2

24d5
5/2)9/2

5p3/2 97.9360 97.8272 97.8676 97.9756
38 4d75p 1 791805 4d̄3/25p3/2 98.5246 98.1714 98.1737 100.6760
39 4d75p 3 795135 4d̄3/25p3/2 98.9541 98.5842 98.5785 99.8198
40 4d75p 3 801225 (4d̄2

04d5
5/2)5/2

5p̄1/2 99.9998 99.3393 99.3609 100.7918
41 4d75p 1 830260 (4d̄2

04d5
5/2)5/2

5p3/2 103.9132 102.9392 103.0239 103.4795
42 4d74f 4 892420 4d3

9/24 f7/2 110.8675 110.6460 110.6962 113.0177
43 4d74f 3 894941 (4d̄3

3/24d4
4)11/2

4 f̄5/2 111.3093 110.9586 111.0141 113.5215
44 4d74f 5 897383 4d3

9/24 f7/2 110.9844 111.2614 111.2278 113.2369
45 4d74f 3 908390 4d3

3/24 f7/2 112.8340 112.6261 112.6093 114.9623
46 4d74f 4 911082 (4d̄2

24d5
5/2)5/2

4 f̄5/2 112.7247 112.9598 112.9980 115.0362
47 4d74f 2 911665 (4d̄2

24d5
5/2)9/2

4 f̄5/2 112.7447 113.0321 113.0446 115.4546
48 4d74f 3 912600 (4d̄3

3/24d4
4)7/2

4 f7/2 113.3634 113.1480 113.1855 115.4796
49 4d74f 1 913877 (4d̄3

3/24d4
4)7/2

4 f7/2 112.8179 113.3064 113.3154 116.2031
50 4d74f 2 924500 (4d̄3

3/24d4
4)5/2

4 f7/2 113.9633 114.6234 114.6270 117.0618
51 4d74f 4 925626 (4d̄3

3/24d4
4)11/2

4 f7/2 114.0579 114.7631 114.7761 117.6640
52 4d74f 0 933343 (4d̄2

24d5
5/2)5/2

4 f̄5/2 117.7646 115.7198 115.7151 118.1618
53 4d74f 3 935035 4d̄3/24 f̄5/2 115.4998 115.9296 115.9595 118.3774
54 4d74f 5 938628 (4d̄2

24d5
5/2)9/2

4 f̄5/2 116.8915 116.3751 116.4192 118.7650
55 4p54d9 2 944705 4p̄1/24d̄3

3/2 118.9159 117.1285 117.1295 119.3615
56 4p54d9 2 951795 4p̄1/24d5

5/2 120.5650 118.0076 118.0396 120.3551
57 4p54d9 3 957488 4p̄1/24d5

5/2 122.7719 118.7134 118.7241 121.5465
† Energy levels (in cm−1) as represented in Churilov et al. [6].

Table 2 presents a comparison of our results for Xe7+ with the NIST values [23]. In
addition to the j − j coupling representation, we have also included the notations of the
states used in the NIST database to make the comparison convenient between the two
sets of the results. We find from Table 2 that our calculated energies show an average
deviation of nearly 1.5% with the corresponding energies from the NIST database [23]. A
maximum variation of nearly 3% is found for the 5s4f 3P1/2,3/2 levels. We have listed only
those levels in Table 2 that are reported to be involved in emitting intense lines in the EBIT
measurements of Fahy et al. [8] and Ali and Nakamura [9].

For Xe8+, in our calculations we got two levels with leading contribution from 4d97p
1P1, one at 138.7018 eV (53.65% 4d5

5/27p3/2
1P + 37.44% 4d̄3

3/27p̄1/2
3P + 8.79% 4d̄3

3/27p3/2
3D) and another at 140.2617 eV (44.29% 4d5

5/27p3/2
1P + 30.70% 4d̄3

3/27p̄1/2
3P + 24.90%

4d̄3
3/27p3/2

3D). Considering the maximum contribution, we have classified the level at
138.7018 eV as 4d97p 1P1, and 140.2617 eV as 4d97p 3P1. This changed the energy order of
1P1 and 3P1 in our calculations with respect to those reported by Churilov and Joshi [5]. As
can be seen from Table 3, the agreement between the measurements [5] and our results is
within 0.8% for most of the cases. The maximum difference of nearly 3 eV is found for the
4d94f 1P1 level.

The energy levels of Xe9+ are listed in Table 4 and are compared with the measure-
ments [5] as well as HFR and MCDHF calculations of Motoumba et al. [15]. The open-shell
structure of Xe9+ leads to the formation of a large number of closely spaced fine-structure
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levels for its ground and excited state configurations. Consequently, it becomes extremely
difficult to correctly identify these states as well as to label them uniquely in LS coupling
notations. Churilov and Joshi [5] reported Xe9+ levels with the wavenumbers (in cm−1)
which are also included in Table 4 to guide us in right recognition of the states. From
our calculations, we found that the inclusion of the triple excitation 4d64f3 improves the
match between the present energies and measurements for the higher 4d84f levels, while
it deteriorates the agreement for other levels. Thus we have considered two sets of calcu-
lations for Xe9+, one with and the other without including the CSF 4d64f3. The energies
marked with * in Table 4 indicate the inclusion of the CSF 4d64f3. For 4p54d10 levels, our
energy results overestimate the measurements [5] and theoretical results [15] by nearly
2 eV. Except for this transition, in most of the cases our energies show better agreements
with the experimental results than the MCDHF calculations [15].

Table 5 presents a comparison of the present energies with the experimental energies
from Churilov et al. [6] and RCI and HFR calculations of Motoumba et al. [14] for Xe10+.
Similar to Xe9+, Xe10+ has an open shell structure and hence, we have included the
wavenumbers reported in [6] so that the small spaced levels can be rightly identified. We
learnt that adding the CSF 4p44d10 improves the energy of the 4d8 levels, while including
the CSF 4d54f3 with triple excitation improves the energy of the higher 4d74f levels. The
order of a few levels from 4d8 , 4d75p and 4d74f configurations are not as per the order
reported in the measurements [6]. Similar cases are also observed in the RCI results [14].
Our reported energies show a deviation of nearly 2-4 eV for the 4p54d9 levels, however,
they are in good agreement with the RCI calculations by Motoumba et al. [14].

The comparison of our calculated wavelengths and transition rates with other theoret-
ical and experimental results is shown through Tables 6–9. For Xe7+, Table 6 includes the
measurements from NIST EBIT and Cowan code calculations reported by Fahy et al. [8],
compact EBIT results from Ali and Nakamura [9] as well as HFR calculations of Churilov
and Joshi [5]. Though Table 6 shows a maximum deviation of 3.5 Å for levels of 4d95s4f
configurations with indices 9 and 10, a good agreement is found between our reported
transition rates and the calculated results from Cowan code [8].

Wavelengths and transition rates for Xe8+ from the present work are reported and
compared in Table 7 with the measurements and other calculations [5,8–10,13]. Overall,
our calculations are in good agreement with other results. However, a maximum deviation
of 3.4 Å is found in the wavelength corresponding to 1 → 15 (4d10 1S0 → 4d94f 1P1)
transition. This is because from Table 3 our calculated energy of the 4d94f 1P1 level is
overestimated by nearly 3 eV in comparison to the result reported by Churilov and Joshi [5].
It is further noticed for the above transition that our calculated wavelength shows a better
match with that from Ivanova [13] and there is a good agreement among various values of
the transition rate.

Table 6. Wavelengths and transition rates of Xe7+ for the transitions from 4d105s 2S1/2 state.

Index Jb
Wavelength (nm) Transition Rate (A) (1010) (s−1)

Present Other Reported Present Other Reported

10 3/2 11.9593 12.32 a, 12.56 b, 12.332 c, 12.3243 d 128.093 140.75 b, 211.225 d

9 1/2 11.9713 12.56 b, 12.3265 d 122.349 141 b, 210.8 d

8 1/2 16.5963 16.668 c 1.934
7 3/2 17.0015 17.09 a, 17.09 b, 17.087 c 3.131 4 b

6 1/2 17.8218 17.6 a, 17.61 b, 17.603 c 0.399 0.35 b

5 1/2 17.9319 17.73 a, 17.76 b, 17.726 c 4.740 5 b

4 3/2 18.1815 17.98 a, 17.92 b, 17.958 c 0.766 0.5 b

3 3/2 18.4659 18.15 a, 18.07 b 0.050 0.125 b

2 3/2 18.7259 18.44 a, 18.31 b, 18.4322 c 0.165 0.25 b

Experimental results: a—Fahy et al. [8], c—Ali and Nakamura [9], d—Churilov and Joshi [5]. Theoretical results: b—Fahy et al. [8].
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Table 7. Wavelengths and transition rates of Xe8+ for the transitions from 4d10 1S0 state.

Index Jb
Wavelength (nm) Transition Rate (A) (10 10) (s −1)

Present Other Reported Present Other Reported

43 1 8.5973 8.5420 a, 8.54 b, 8.54 c 13.099 12.333 a, 11.333 c

41 1 8.7491 8.6718 a∗ 3.246 3.167 a

38 1 8.8106 8.7294 a∗ 0.012 0.033 a

35 1 8.8073 8.7190 a∗ 0.110 0.033 a

33 1 8.9389 8.7517 a 1.783 1.333 a

31 1 8.8395 8.8444 a, 8.85 b, 8.85 c 1.686 1.933 a, 2.333 c

29 1 9.5763 9.6449 a, 9.63 b, 9.61 c, 9.639 d, 9.6218 f 57.797 51.267 a, 46.667 c

26 1 9.9908 9.9553 a, 9.963 f 2.201 2.2 a

24 1 10.1195 10.0732 a∗, 10.0731 f 0.114 0.1 a

21 1 10.2993 10.2116 a∗ 0.205 0.267 a

19 1 10.3791 10.2815 a, 10.28 b, 10.29 c, 4.599 3.7 a, 4 c

17 1 10.4826 10.3808 a, 10.38 b, 10.39 c, 2.878 2.967 a, 3 c

15 1 11.6265 12.0133 a, 12.02 b, 12.00 c, 12.019 d, 11.5787 f 157.520 151.8 a, 152 c

13 1 14.3835 14.3614 a, 14.36 b, 14.31 c, 14.3127 f 0.207 0.2 a, 0.2 c

10 1 15.1469 15.0274 a, 15.1155 f 0.031 0.033 a

7 1 16.2010 16.1742 a, 16.18 b, 16.15 c, 16.177 e, 16.1343 f 1.700 1.5 a, 8.333 c

5 1 16.5223 16.5323 a, 16.53 b, 16.50 c, 16.536 e, 16.511 f 7.129 8.033 a, 1.333 c

3 1 16.8906 16.8202 a, 16.7548 f 0.001 0.007 a

Experimental results: a—Churilov and Joshi [5], a∗—calculated wavelengths from the energy levels [5], b—Fahy et al. [8], d—Ali and
Nakamura [10], e—Ali and Nakamura [9]. Theoretical results: c—Fahy et al. [8], f —Ivanova [13].

Table 8. Wavelengths and transition rates of Xe9+. a and b denote the indices of initial and final levels, respectively.

a Ja b Jb
Wavelength (nm) Transition Rate (A) (1010) (s−1)

Present Exp [5] HFR [15] MCDHF [15] Present HFR [5] HFR [15] MCDHF [15]

2 3/2 57 1/2 10.8507 11.0133 11.0134 10.8926 182.421 189.800 192.000 155.000
1 5/2 56 5/2 11.3258 11.2714 11.2679 11.0387 2.746 1.617 1.717 0.613
1 5/2 55 3/2 11.5196 11.4312 11.4325 11.1833 30.098 123.550 125.500 137.000
2 3/2 56 5/2 11.5388 11.4879 11.4844 11.2437 170.353 177.667 180.000 154.000
1 5/2 54 7/2 11.5347 11.4880 11.4758 11.2441 174.181 180.000 183.750 155.000
1 5/2 53 5/2 11.6887 11.5661 11.5674 11.2913 154.107 163.267 166.333 146.000
2 3/2 55 3/2 11.7400 11.6541 11.6554 11.3938 126.264 47.375 48.250 13.300
1 5/2 51 3/2 13.6312 13.3390 13.3530 13.2255 0.177 0.300 0.199 0.118
1 5/2 50 3/2 13.3334 13.4189 13.4225 13.4682 0.210 0.325 0.393 0.448
2 3/2 52 1/2 13.4232 13.5729 13.5682 13.4112 3.761 3.100 3.390 2.600
2 3/2 50 3/2 13.6297 13.7272 13.7307 13.7747 0.358 0.450 0.365 0.172
1 5/2 46 5/2 13.8285 13.8529 13.8524 13.7849 0.072 0.067 0.082 0.062
2 3/2 49 1/2 13.7987 13.8816 13.8753 13.7883 0.764 1.050 1.210 0.585
1 5/2 45 5/2 14.0158 14.0126 14.0160 13.9456 0.043 0.050 0.041 0.039
2 3/2 48 1/2 14.0885 14.1032 14.0948 14.0344 0.448 0.150 0.019 0.023
1 5/2 43 7/2 14.1075 14.1094 14.1162 14.0487 0.096 0.125 0.166 0.100
2 3/2 47 1/2 13.9797 14.1545 14.1476 14.1754 0.450 0.550 0.635 0.880
1 5/2 41 7/2 14.1635 14.2046 14.2091 14.2712 0.512 0.525 0.514 0.565
1 5/2 39 5/2 14.2332 14.2505 14.2444 14.3545 0.079 0.067 0.059 0.109
1 5/2 36 3/2 14.3551 14.3382 14.3331 14.2861 0.031 0.225 0.104 0.050
2 3/2 45 5/2 14.3435 14.3488 14.3524 14.2745 0.123 0.100 0.127 0.095
2 3/2 44 5/2 14.3846 14.3954 14.3956 14.3322 0.072 0.050 0.026 0.026
1 5/2 34 5/2 14.3706 14.4079 14.4105 14.4941 0.080 0.083 0.073 0.068
1 5/2 33 5/2 14.4829 14.4771 14.4811 14.6004 0.433 0.233 0.230 0.412
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Table 8. Cont.

a Ja b Jb
Wavelength (nm) Transition Rate (A) (1010) (s−1)

Present Exp [5] HFR [15] MCDHF [15] Present HFR [5] HFR [15] MCDHF [15]

1 5/2 32 3/2 14.5390 14.5096 14.5156 14.4737 0.093 0.475 0.455 0.029
2 3/2 42 1/2 14.4548 14.5150 14.5152 14.5939 7.686 10.050 10.350 10.000
1 5/2 31 3/2 14.4990 14.5325 14.5324 14.6292 2.850 2.350 2.338 2.550
1 5/2 30 7/2 14.5675 14.5397 14.5411 14.5202 0.146 0.038 0.049 0.013
2 3/2 40 1/2 14.6061 14.5788 14.5804 14.5438 0.220 0.100 0.065 0.164
2 3/2 39 5/2 14.5713 14.5983 14.5920 14.7032 3.675 3.017 3.150 4.417
2 3/2 38 5/2 14.6643 14.6107 14.6119 14.5614 0.055 0.267 0.380 0.028
1 5/2 28 7/2 14.6159 14.6148 14.6154 14.7224 0.241 0.125 0.141 0.353
1 5/2 27 3/2 14.6186 14.6413 14.6421 14.7388 0.728 0.600 1.003 0.973
1 5/2 26 5/2 14.6359 14.6448 14.6400 14.7605 0.011 0.217 0.243 0.084
1 5/2 25 3/2 14.6728 14.6532 14.6310 14.6145 0.331 0.400 0.181 0.005
2 3/2 37 5/2 14.6197 14.6622 14.6540 14.6059 0.001 0.183 0.207 0.021
2 3/2 35 1/2 14.6696 14.7381 14.7381 14.8026 0.750 0.950 0.910 0.990
1 5/2 23 5/2 14.7713 14.7418 14.7479 14.7139 0.356 0.100 0.105 0.001
1 5/2 21 3/2 14.7334 14.7618 14.7658 14.8638 5.566 5.650 5.925 6.700
2 3/2 34 5/2 14.7154 14.7640 14.7664 14.8497 1.073 1.100 1.093 0.930
1 5/2 20 7/2 14.8033 14.7734 14.7711 14.7386 0.141 0.163 0.155 0.022
1 5/2 19 5/2 14.8043 14.7956 14.8006 14.9278 3.264 5.350 5.750 6.983
1 5/2 18 3/2 14.8358 14.8333 14.8376 14.9588 0.014 1.300 1.238 0.190
2 3/2 33 5/2 14.8331 14.8359 14.8406 14.9613 1.752 2.150 2.183 1.933
2 3/2 32 3/2 14.8920 14.8709 14.8768 14.8283 0.025 1.200 1.163 4.98E−5
2 3/2 31 3/2 14.8500 14.8942 14.8944 14.9915 2.532 3.325 3.675 3.525
1 5/2 16 5/2 14.8871 14.9020 14.8957 15.0272 2.046 2.217 2.450 3.033
1 5/2 15 7/2 14.9443 14.9358 14.9330 15.0673 1.215 2.438 2.413 1.413
1 5/2 14 5/2 14.9971 14.9583 14.9569 15.1121 0.727 1.100 1.145 0.733
2 3/2 29 1/2 14.9798 14.9682 14.9592 14.9520 0.239 0.450 0.250 0.002
2 3/2 27 3/2 14.9755 15.0089 15.0097 15.1067 6.018 6.050 6.775 6.775
2 3/2 26 5/2 14.9937 15.0124 15.0075 15.1295 0.849 0.933 0.990 0.805
2 3/2 25 3/2 15.0324 15.0216 15.0206 14.9761 0.095 0.650 0.081 0.021
2 3/2 24 1/2 15.0536 15.0444 15.0216 15.1750 0.524 0.700 0.880 1.070
1 5/2 13 5/2 15.0447 15.0544 15.0495 15.1753 3.238 3.967 4.067 3.383
1 5/2 12 3/2 15.1143 15.1020 15.1011 15.2491 0.136 0.325 0.323 0.172
2 3/2 23 5/2 15.1358 15.1141 15.1219 15.0805 0.099 0.117 0.074 0.003
2 3/2 22 1/2 15.0778 15.1291 15.1336 15.2218 0.333 0.400 0.414 0.277
2 3/2 21 3/2 15.0960 15.1356 15.1397 15.2380 0.714 0.175 0.158 0.615
1 5/2 11 7/2 15.2049 15.1747 15.1702 15.3278 0.931 1.075 1.118 1.070
2 3/2 19 5/2 15.1705 15.1762 15.1763 15.3053 0.385 0.667 0.743 0.643
1 5/2 10 5/2 15.2245 15.2058 15.2055 15.3540 1.691 1.833 1.867 1.640
2 3/2 16 5/2 15.2574 15.2832 15.2763 15.4098 0.470 0.217 0.228 0.333
1 5/2 8 3/2 15.3249 15.2849 15.2825 15.4489 0.035 0.100 0.098 0.017
2 3/2 13 5/2 15.4230 15.4433 15.4381 15.5656 0.225 0.200 0.218 0.253
1 5/2 7 7/2 15.5108 15.4588 15.4604 15.6294 0.018 0.038 0.038 0.023
1 5/2 6 5/2 15.5055 15.4680 15.4682 15.6368 0.252 0.317 0.342 0.275
2 3/2 12 3/2 15.4962 15.4935 15.4924 15.6432 0.344 0.325 0.353 0.305
1 5/2 5 3/2 15.5325 15.5248 15.5287 15.4661 0.043 0.050 0.039 0.495
2 3/2 9 1/2 15.6492 15.6300 15.6327 15.7993 0.004 0.050 0.036 0.013
2 3/2 8 3/2 15.7176 15.6857 15.6833 15.8536 0.009 0.050 0.045 0.037
1 5/2 4 3/2 15.4108 15.8924 15.8973 15.6936 0.253 0.300 0.535 0.041
1 5/2 3 7/2 15.9560 15.8972 15.8947 16.0914 0.012 0.025 0.020 0.015
2 3/2 5 3/2 15.9361 15.9388 15.9428 15.8717 0.182 0.125 0.155 0.008
2 3/2 4 3/2 15.8079 16.3262 16.3316 16.1114 0.004 0.050 0.061 0.148
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Table 9. Wavelengths and transition rates of Xe10+. a and b refer to the indices of initial and final levels, respectively.

a Ja b Jb
Wavelength (nm) Transition Rate (A) (1010) (s−1)

Present Exp [6] HFR [14] RCI [14] Present HFR [6] HFR [14] RCI [14]

3 3 57 3 10.2507 10.6125 10.6094 10.3598 9.089 14.486 14.286 10.286
6 1 56 2 10.6861 10.9027 10.9013 10.7106 83.644 60.560 61.000 52.200
7 4 57 3 10.5712 10.9093 10.9066 10.6741 173.558 151.143 152.857 128.000
8 2 57 3 10.5634 10.9339 10.9364 10.6873 13.424 19.071 19.429 16.714
8 2 56 2 10.7658 11.0026 11.0028 10.7982 40.687 94.460 95.800 78.400
8 2 55 2 10.9222 11.0889 11.0924 10.8925 141.509 87.940 87.600 74.400
2 2 48 3 11.1075 11.1179 11.1192 10.9066 14.753 28.657 28.143 14.571
6 1 52 0 10.9504 11.1268 11.1288 10.9175 191.711 189.600 191.000 158.000
7 4 54 5 11.1292 11.1384 11.1323 10.9360 191.990 194.364 196.364 165.455
1 4 44 5 11.1713 11.1435 11.1469 10.9491 186.179 189.364 191.818 162.727
3 3 47 2 11.1774 11.1552 11.1514 10.9155 78.606 78.420 84.200 98.000
3 3 46 4 11.1794 11.1622 11.1561 10.9551 182.634 185.556 187.778 161.111
2 2 45 3 11.1605 11.1706 11.1770 10.9565 107.137 147.571 150.000 139.714
1 4 43 3 11.1387 11.1739 11.1684 10.9217 87.638 160.143 161.429 140.571
7 4 53 3 11.2700 11.1834 11.1785 10.9735 0.118 12.786 12.957 11.343
3 3 45 3 11.1684 11.1954 11.1952 10.9630 26.167 22.714 22.286 11.257
1 4 42 4 11.1831 11.2055 11.2004 10.9703 172.910 174.444 176.667 152.222
8 2 53 3 11.2611 11.2089 11.2098 10.9874 92.121 162.857 164.286 142.000
6 1 50 2 11.3308 11.2373 11.2385 11.0243 28.806 41.460 41.800 43.400
7 4 51 4 11.4197 11.3021 11.2990 11.0432 155.527 162.444 16.556 14.778
6 1 49 1 11.4506 11.3731 11.3738 11.1091 66.408 50.433 52.000 38.333
6 1 47 2 11.4584 11.4020 11.4021 11.1841 54.737 27.100 28.800 22.200
7 4 40 3 13.1183 13.1515 13.1458 13.0111 7.707 5.029 5.171 0.054
8 2 40 3 13.1062 13.1865 13.1891 13.0307 1.540 1.771 1.829 0.102
7 4 39 3 13.2651 13.2573 13.2557 13.1301 3.479 7.029 6.886 7.100
4 2 34 3 13.2287 13.2658 13.2590 13.1208 2.749 1.857 1.900 0.002
6 1 36 2 13.3114 13.2983 13.3005 13.3474 2.258 3.380 3.440 1.422
8 2 38 1 13.3138 13.3529 13.0699 12.7538 2.321 4.700 4.700 0.023
7 4 37 5 13.4111 13.3655 13.3573 13.3916 2.955 2.482 2.564 2.864
4 2 30 2 13.3713 13.3934 13.3841 13.3375 4.881 3.920 4.040 0.045
3 3 25 3 13.4018 13.4037 13.3991 13.2575 0.283 4.257 4.300 0.667
1 4 17 3 13.4320 13.4238 13.4250 13.3405 4.862 5.457 5.714 0.071
9 0 41 1 13.3566 13.4750 13.4651 13.2331 6.771 6.733 6.867 5.867
2 2 22 1 13.4540 13.4844 13.4853 13.4836 6.748 4.800 4.867 3.733
8 2 35 1 13.4625 13.4927 13.4935 13.4845 3.525 5.467 5.567 6.767
3 3 23 4 13.4959 13.4987 13.4965 13.4921 5.388 6.456 6.233 3.178
1 4 15 5 13.5174 13.5072 13.5093 13.5177 3.961 5.718 5.736 3.064
4 2 28 3 13.5220 13.5100 13.5106 13.3840 2.332 4.043 3.943 0.281
1 4 14 4 13.5455 13.5219 13.5191 13.5329 1.240 1.178 1.267 0.680
4 2 27 1 13.4934 13.5298 13.5270 13.4839 4.786 4.967 5.133 0.134
3 3 21 2 13.5258 13.5393 13.5355 13.4861 1.369 4.120 4.300 0.980
8 2 34 3 13.5160 13.5571 13.5554 13.4152 1.427 1.614 1.629 1.413
1 4 13 4 13.5951 13.5614 13.5614 13.5975 4.420 3.500 3.556 5.289
3 3 20 2 13.5812 13.5997 13.5936 13.5338 1.859 1.820 1.908 2.380
5 0 29 1 13.6310 13.6025 13.6045 13.3903 2.424 2.500 2.573 1.057
3 3 19 3 13.6085 13.6213 13.6182 13.5305 2.642 3.829 3.986 1.024
1 4 12 3 13.6564 13.6290 13.6209 13.6502 1.642 1.686 1.729 0.766
7 4 32 4 13.6458 13.6401 13.6332 13.6375 6.981 4.122 5.633 1.533
7 4 31 3 13.6780 13.6451 13.6452 13.5402 2.142 2.229 2.371 0.001
2 2 18 1 13.6840 13.6547 13.6624 13.6941 2.273 3.367 3.467 2.187
8 2 33 1 13.6228 13.6584 13.6619 13.6604 1.970 2.867 3.010 2.347
4 2 24 1 13.6149 13.6670 13.6652 13.6636 2.825 3.300 3.137 1.877
1 4 11 4 13.7084 13.6713 13.6656 13.6955 1.087 4.689 4.778 1.756
8 2 31 3 13.6649 13.6829 13.6919 13.5615 2.588 1.914 2.014 1.087
2 2 16 3 13.7533 13.7238 13.7312 13.7640 1.030 2.122 2.200 1.154
1 4 10 3 13.8019 13.7778 13.7730 13.7970 1.203 1.871 1.900 1.186
7 4 26 4 13.9161 13.8459 13.8374 13.8862 0.999 2.214 2.122 1.311
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For Xe9+, our wavelengths and transition rates are compared with the measure-
ments [5] and HFR and MCDHF results [15] in Table 8. Our reported wavelengths show
a good match with the experimental results [5] with an average difference of 0.5 Å. The
two transitions 1 → 4 and 2 → 4, where 1, 2 and 4 refer to the indices assigned to the states
of Xe9+, show a maximum difference of nearly 5 Å. However, their transition rates are in
good agreement with the reported results from Churilov and Joshi [5].

In Table 9, measurements and theoretical results from Churilov et al. [6] as well as
HFR and RCI results of Motoumba [14] are included for Xe10+ along with our calculated
wavelengths and transition rates. Previous studies [6,24] showed that there are two possible
strong transition arrays of Xe10+ in 11.1 nm–11.3 nm and 13 nm–14 nm regions with possible
applications in EUV Lithography [1]. Thus, we have reported results only for the transitions
that fall in these ranges for Xe10+. The HFR and RCI wavelengths are calculated from the
energy levels provided in [14]. Our results show a maximum deviation of nearly 3.5 Å from
measurements and HFR calculations. This discrepancy is found for the transitions from
the 3rd, 7th and 8th states to the 57th state. Overall, a better match is seen between the
present results and the RCI calculations. Our calculated transition rates agree well with the
corresponding values from Churilov et al. [6] except for a few cases, that is, 3 → 25, 3 → 21
and 1 → 11 transitions. However, the present transition rates are in reasonable agreement
with the RCI calculations for these transitions.

3.2. Cross Sections and Rate Coefficients

The atomic wavefunctions of the four ions are used in our RDW program to calculate
the electron impact excitation cross sections for the E1 transitions in Xe7+–Xe10+ ions. In
the previous subsection, we have given a detailed comparison of our calculated results
for energy levels, wavelengths and transition rates with other experimental and theoret-
ical results and found an overall satisfactory agreement. This ensures the quality of the
target ion’s wavefunctions that are crucial in determining the accuracy of the scattering
parameters. Moreover, the RDW method has been successfully implemented in the pre-
vious work on a variety of targets from closed to open-shell systems and neutral atoms
to multiply or highly charged ions atoms/ions [25–30]. It has also been found that using
RDW cross sections in a collisional radiative (CR) model provides plasma parameters that
are in better agreement with the measurements [31–34]. Therefore, the success of a CR
model depends heavily on the accuracy of the collision cross sections being fed to the
model. In this connection, we have calculated cross sections for 9, 18, 75 and 57 transitions,
respectively, for Xe7+, Xe8+, Xe9+ and Xe10+. Their excitation energies, as discussed earlier,
lie in the EUV region. For the sake of simplicity in presenting our results, we have shown
only a few transitions graphically through Figure 1 for Xe8+. However, cross sections
for all the transitions considered in the four ions are provided in the supplementary file
through Tables S1–S4 in the incident electron energy range 200–3000 eV. We notice the
usual behaviour of the cross sections from Figure 1, that is, they decrease with increasing
electron energies and their magnitudes follow the increasing order of the transition rates.
Transitions which involve the change of the spin of the state have lesser cross sections as
compared to those with the same spin.

Further, to make available our cross sections in a convenient manner, we have per-
formed the fitting of our cross sections Equation (4) with two analytical forms. The first
form is a rational fit and suitable for low energy, given by:

σa→b =
∑n

i=0 xiEi

1 + y1E + y2E2 , (5)

where σa→b is the excitation cross section from the initial level a to final level b and E is the
energy of the incident electron. Both the cross section and the energy are considered in
atomic units. xis and yis are fitting coefficients. The second fitting, appropriate for high
energy, is performed using the Bethe–Born formula, that is,
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σa→b =
1
E
(d0 + d1 ln(E)). (6)

The Bethe–Born fitting is valid for energy above 2000 eV in the present case. The fitting
parameters are provided in Tables 10–13 for Xe7+, Xe8+, Xe9+ and Xe10+ ions, respectively.
The fitted and calculated cross sections agree within 5%.

Figure 1. Integrated cross sections of Xe8+ as a function of incident electron energy.
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We have also obtained the rate coefficient ka→b at an electron temperature T for a
transition from initial level a to final level b. For this purpose, our calculated excitation
cross sections are used in the following expression:

ka→b = 2
(

2
πme

)1/2
(kBT)−3/2

∫ ∞

Eab

E σa→b(E) exp
(
− E

kBT

)
dE, (7)

where me represents the mass of electron, kB is the Boltzmann constant, Eab denotes the
excitation threshold energy for the transition from a to b and σa→b(E) is the calculated
cross section at the incident electron energy E. The rate coefficients are provided through
Tables 14–17 for Xe7+–Xe10+ ions in the electron temperature range 5–100 eV. The values
of rate coefficients rise rapidly at first and then there is a slower logarithmic increase. In
order to clearly demonstrate this trend, Figure 2 displays rate coefficients for the transitions
reported in Table 7 for Xe8+. The same behaviour has been noticed in our previous work
on excitation of highly charged xenon ions [25].

Table 10. Cross section fitting parameters of Xe7+ for the transitions from 4d105s 2S1/2 state.

f Jf x0 x1 x2 x3 y1 y2 d0 d1

10 3/2 5.576E−01 1.286E−02 5.801E−04 −2.658E−06 3.022E−02 3.335E−03 −7.154E+00 4.556E+00
9 1/2 2.882E−01 −3.583E−02 1.310E−05 – −8.965E−02 −4.299E−03 −3.466E+00 2.192E+00
8 1/2 2.390E−02 3.721E−03 −1.498E−05 1.072E−07 4.181E−01 7.597E−03 −1.399E−01 9.347E−02
7 3/2 6.595E−02 2.499E−03 −2.743E−05 1.472E−07 1.469E−01 1.871E−04 −6.290E−01 3.595E−01
6 1/2 −1.778E−03 −3.447E−03 2.617E−06 −5.192E−08 −1.066E+00 −3.835E−02 −3.549E−02 2.399E−02
5 1/2 6.352E−02 2.428E−03 3.769E−08 – 1.411E−01 1.820E−03 −4.145E−01 2.920E−01
4 3/2 5.399E−02 1.287E−02 −3.358E−05 2.916E−07 1.143E+00 2.860E−02 −1.234E−01 9.544E−02
3 3/2 −4.022E−03 −1.981E−04 1.350E−06 – −7.126E−01 1.596E−03 −9.671E−03 6.795E−03
2 3/2 −7.036E−03 −1.887E−03 1.368E−05 −8.193E−08 −8.662E−01 −9.805E−03 −1.633E−02 1.929E−02

Table 11. Cross section fitting parameters for Xe8+ for the transitions from 4d10 1S0 state.

f Jf x0 x1 x2 x3 y1 y2 d0 d1

43 1 1.044E−01 −7.849E−03 −1.655E−05 – 1.709E−02 −7.292E−03 −3.341E−02 7.487E−02
41 1 2.816E−02 −2.014E−03 −4.603E−06 – 2.605E−02 −7.363E−03 −3.341E−02 7.487E−02
38 1 −4.591E−04 2.936E−05 −4.303E−08 6.919E−10 −3.475E−01 1.789E−02 6.634E−04 2.572E−04
35 1 1.021E−04 −9.405E−05 −3.567E−07 8.948E−10 −2.412E−01 −1.337E−02 −3.167E−03 2.348E−03
33 1 6.951E−03 −2.716E−03 −9.772E−06 3.338E−08 −5.202E−01 −2.366E−02 −6.374E−02 3.891E−02
31 1 4.165E−03 −1.042E−03 1.409E−06 −1.362E−08 −2.356E−01 −7.107E−03 −5.827E−02 3.553E−02
29 1 3.780E−01 −2.712E−02 −4.510E−05 – −6.424E−03 −4.922E−03 −1.935E+00 1.679E+00
26 1 1.775E−02 −4.449E−03 −1.445E−05 – −1.671E−01 −2.114E−02 −8.387E−02 7.213E−02
24 1 −2.540E−03 2.083E−04 3.607E−06 −1.109E−08 −4.955E−01 3.809E−02 −3.575E−03 3.621E−03
21 1 4.408E−04 −2.197E−04 4.829E−07 −3.464E−09 −2.846E−01 −6.943E−03 −1.061E−02 6.779E−03
19 1 2.079E−02 −5.369E−03 −8.215E−06 – −2.274E−01 −1.032E−02 −2.413E−01 1.562E−01
17 1 1.443E−02 −5.786E−03 −9.969E−06 – −3.936E−01 −1.756E−02 −1.552E−01 1.008E−01
15 1 1.214E+00 −4.966E−02 −1.393E−04 – 1.188E−02 −2.411E−03 −1.232E+01 7.758E+00
13 1 −1.350E−02 −6.530E−04 4.946E−06 −1.905E−08 −6.725E−01 −7.720E−04 −2.388E−02 1.930E−02
10 1 −5.999E−02 2.896E−03 −5.797E−05 3.560E−07 −8.149E−01 −1.112E−02 3.911E−03 1.751E−03
7 1 6.010E−02 9.396E−03 −4.047E−05 2.538E−07 4.611E−01 7.450E−03 −3.543E−01 2.263E−01
5 1 2.421E−01 2.923E−02 −5.968E−05 4.494E−07 3.173E−01 6.359E−03 −1.526E+00 1.009E+00
3 1 1.897E−03 1.477E−04 −4.298E−06 3.734E−08 −6.075E−01 1.325E−01 4.609E−04 2.199E−06

Table 12. Cross section fitting parameters for Xe9+. a and b refer to the indices of the initial and final levels, respectively.

a Ja b Jb x0 x1 x2 x3 y1 y2 d0 d1

2 3/2 57 1/2 3.056E−01 1.176E−02 −1.971E−05 1.321E−07 1.698E−01 1.873E−03 −1.717E+00 1.207E+00
1 5/2 56 5/2 1.374E−02 1.759E−03 2.290E−06 2.758E−09 4.156E−01 1.212E−02 −5.725E−02 4.089E−02
1 5/2 55 3/2 8.823E−02 6.827E−03 1.098E−05 −5.737E−09 2.423E−01 6.028E−03 −4.267E−01 3.146E−01
2 3/2 56 5/2 1.035E+00 6.391E−02 6.011E−05 1.005E−07 2.016E−01 4.138E−03 −5.513E+00 4.014E+00
1 5/2 54 7/2 9.348E−01 5.812E−02 5.689E−05 8.184E−08 2.015E−01 4.163E−03 −5.017E+00 3.643E+00
1 5/2 53 5/2 6.786E−01 5.081E−02 8.792E−05 −7.732E−08 2.280E−01 5.637E−03 −3.405E+00 2.515E+00
2 3/2 55 3/2 5.657E−01 4.438E−02 8.448E−05 −9.669E−08 2.339E−01 6.025E−03 −2.817E+00 2.086E+00
1 5/2 51 3/2 1.483E−03 −2.150E−03 −6.311E−06 2.082E−08 −4.478E−01 −9.066E−02 7.413E−03 4.252E−03
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Table 12. Cont.

a Ja b Jb x0 x1 x2 x3 y1 y2 d0 d1

1 5/2 50 3/2 −1.633E−03 −6.857E−04 −1.676E−06 3.357E−09 −8.329E−01 −5.028E−02 −1.824E−03 3.502E−03
2 3/2 52 1/2 −9.315E−03 −1.618E−02 −7.248E−05 1.933E−07 −2.187E+00 −1.254E−01 −6.090E−02 4.506E−02
2 3/2 50 3/2 −8.411E−03 −1.331E−03 −7.320E−07 −3.433E−09 −1.015E+00 −3.252E−02 −6.624E−03 9.189E−03
1 5/2 46 5/2 −9.020E−03 −6.737E−05 −6.880E−06 – −8.231E−01 −9.125E−02 −1.445E−03 1.805E−03
2 3/2 49 1/2 −6.386E−03 −1.075E−03 −8.103E−06 3.510E−08 −9.694E−01 −4.186E−02 −1.319E−02 9.703E−03
1 5/2 45 5/2 −8.198E−03 2.644E−04 −9.617E−06 6.500E−08 −9.794E−01 −3.430E−02 −5.128E−04 1.133E−03
2 3/2 48 1/2 −4.603E−03 −2.201E−04 4.850E−06 −1.938E−08 −9.938E−01 1.151E−02 −9.463E−03 6.154E−03
1 5/2 43 7/2 −5.336E−03 −3.585E−04 −2.002E−05 1.056E−07 −9.708E−01 −3.847E−01 −1.592E−03 1.153E−03
2 3/2 47 1/2 −7.349E−04 −4.381E−04 −1.050E−07 −1.474E−09 −6.940E−01 −1.885E−02 −9.577E−03 6.063E−03
1 5/2 41 7/2 −2.347E−04 −1.700E−03 −2.480E−06 3.769E−10 −7.088E−01 −2.624E−02 −2.996E−02 1.924E−02
1 5/2 39 5/2 −3.032E−04 −1.082E−04 3.069E−07 −2.097E−09 −5.188E−01 −9.640E−03 −3.506E−03 2.239E−03
1 5/2 36 3/2 −9.068E−03 3.793E−04 −9.565E−06 6.537E−08 −1.031E+00 −1.342E−02 1.092E−03 5.686E−04
2 3/2 45 5/2 −1.961E−02 −6.052E−04 −1.407E−05 – −1.028E+00 −8.287E−02 −4.095E−03 5.313E−03
2 3/2 44 5/2 4.846E−03 6.598E−04 5.100E−06 – −3.904E−01 9.545E−02 2.191E−04 2.778E−03
1 5/2 34 5/2 −1.394E−03 −3.671E−04 −3.059E−07 −1.188E−09 −6.339E−01 −3.262E−02 1.056E−05 2.350E−03
1 5/2 33 5/2 −1.103E−03 −1.120E−03 −9.484E−07 −2.286E−09 −7.425E−01 −2.403E−02 −2.029E−02 1.306E−02
1 5/2 32 3/2 −8.471E−03 2.335E−04 −1.088E−05 8.284E−08 −1.071E+00 −2.748E−02 −1.700E−03 1.823E−03
2 3/2 42 1/2 4.540E−02 1.850E−02 −1.009E−05 2.004E−07 1.437E+00 4.170E−02 −1.740E−01 1.142E−01
1 5/2 31 3/2 1.616E−02 −1.804E−03 −2.207E−04 1.562E−06 1.606E−01 −6.303E−02 −8.327E−02 5.704E−02
1 5/2 30 7/2 −3.222E−02 1.096E−03 −3.375E−05 2.293E−07 −1.239E+00 −1.772E−02 −5.527E−03 5.304E−03
2 3/2 40 1/2 −6.778E−03 5.727E−05 −2.581E−06 2.117E−08 −1.105E+00 3.250E−03 −4.217E−03 3.194E−03
2 3/2 39 5/2 1.929E−02 −1.219E−02 −2.534E−05 – −4.571E−01 −2.306E−02 −2.481E−01 1.680E−01
2 3/2 38 5/2 −1.191E−02 6.834E−05 −5.442E−06 – −1.034E+00 −3.971E−02 −1.653E−03 2.362E−03
1 5/2 28 7/2 −9.910E−03 −3.222E−04 2.103E−06 – −1.018E+00 2.659E−03 −1.408E−02 9.679E−03
1 5/2 27 3/2 7.091E−04 −1.521E−03 −4.489E−06 1.017E−08 −7.348E−01 −3.350E−02 −2.288E−02 1.492E−02
1 5/2 26 5/2 −7.491E−04 −2.049E−04 −1.806E−07 – −5.123E−01 −6.014E−02 1.927E−03 3.460E−04
1 5/2 25 3/2 −1.649E−02 −7.656E−04 −1.481E−05 – −1.169E+00 −8.421E−02 −9.228E−03 6.756E−03
2 3/2 37 5/2 1.347E−02 −1.652E−04 1.441E−06 – −1.463E−01 1.037E−01 3.325E−03 −4.932E−04
2 3/2 35 1/2 −6.915E−03 −2.359E−03 −1.747E−06 −3.947E−09 −1.913E+00 −5.451E−02 −1.792E−02 1.170E−02
1 5/2 23 5/2 −2.843E−02 1.988E−04 −1.981E−05 1.415E−07 −1.255E+00 −1.060E−02 −1.509E−02 1.099E−02
1 5/2 21 3/2 3.088E−02 5.424E−03 3.431E−06 – 4.729E−01 1.200E−02 −1.802E−01 1.181E−01
2 3/2 34 5/2 −3.461E−02 −2.093E−02 4.367E−05 −4.088E−07 −3.517E+00 −9.442E−02 −7.586E−02 5.100E−02
1 5/2 20 7/2 1.357E−03 9.443E−04 7.988E−06 – −4.844E−01 9.045E−02 −4.634E−03 5.359E−03
1 5/2 19 5/2 −7.530E+24 −4.281E+24 −3.989E+21 – −3.507E+26 −1.152E+25 −1.611E−01 1.053E−01
1 5/2 18 3/2 −4.844E−04 −3.854E−05 −5.814E−09 – −6.284E−01 −1.850E−02 3.802E−04 3.062E−04
2 3/2 33 5/2 4.114E−04 −1.002E−02 −3.286E−05 8.621E−08 −8.233E−01 −3.897E−02 −1.274E−01 8.530E−02
2 3/2 32 3/2 6.895E−03 8.497E−05 1.816E−06 – −2.211E−01 1.019E−01 1.099E−03 4.752E−04
2 3/2 31 3/2 8.890E−03 −6.060E−03 −1.281E−05 – −4.683E−01 −2.365E−02 −1.242E−01 8.251E−02
1 5/2 16 5/2 1.358E−03 −7.669E−03 −2.180E−05 4.608E−08 −8.152E−01 −3.729E−02 −1.020E−01 6.715E−02
1 5/2 15 7/2 −1.196E−03 −7.781E−03 −3.165E−05 9.722E−08 −8.377E−01 −4.796E−02 −6.951E−02 5.389E−02
1 5/2 14 5/2 −1.384E−03 −2.995E−03 −7.747E−06 1.481E−08 −8.195E−01 −3.810E−02 −3.340E−02 2.437E−02
2 3/2 29 1/2 −8.195E−04 −3.932E−04 −6.083E−07 – −7.390E−01 −2.853E−02 −5.428E−03 3.977E−03
2 3/2 27 3/2 5.091E−02 4.394E−03 −3.825E−05 1.917E−07 3.152E−01 1.431E−03 −3.033E−01 2.013E−01
2 3/2 26 5/2 −1.883E−03 −5.228E−03 −1.323E−05 2.773E−08 −9.040E−01 −3.855E−02 −6.374E−02 4.271E−02
2 3/2 25 3/2 −1.608E−02 4.219E−04 −1.286E−05 8.943E−08 −1.603E+00 −6.194E−03 −3.532E−03 3.001E−03
2 3/2 24 1/2 −2.617E−03 −8.798E−04 1.155E−06 −1.013E−08 −1.011E+00 −2.273E−02 −1.343E−02 8.797E−03
1 5/2 13 5/2 4.754E−03 −1.234E−02 −2.252E−05 – −7.931E−01 −3.492E−02 −1.657E−01 1.097E−01
1 5/2 12 3/2 −1.464E−03 −5.047E−05 3.431E−06 −1.568E−08 −6.706E−01 1.973E−02 −4.436E−03 3.120E−03
2 3/2 23 5/2 −8.887E−03 3.393E−04 1.236E−05 −4.550E−08 −1.347E+00 7.738E−02 −6.560E−03 4.980E−03
2 3/2 22 1/2 −7.425E−04 −8.053E−04 −2.337E−06 5.950E−09 −1.032E+00 −4.496E−02 −8.145E−03 5.670E−03
2 3/2 21 3/2 −3.277E−03 −3.982E−03 −1.117E−05 2.534E−08 −1.107E+00 −5.097E−02 −3.367E−02 2.447E−02
1 5/2 11 7/2 −2.037E−03 −5.243E−03 −1.403E−05 2.794E−08 −8.092E−01 −3.785E−02 −6.029E−02 4.342E−02
2 3/2 19 5/2 −5.526E−03 −2.375E−03 −8.007E−07 −9.625E−09 −9.796E−01 −3.047E−02 −2.758E−02 2.007E−02
1 5/2 10 5/2 −5.526E−03 −2.375E−03 −8.007E−07 −9.625E−09 −9.796E−01 −3.047E−02 −8.592E−02 5.951E−02
2 3/2 16 5/2 4.399E−04 −3.478E−03 −1.542E−05 4.863E−08 −8.465E−01 −4.849E−02 −3.464E−02 2.494E−02
1 5/2 8 3/2 −6.707E−04 6.903E−05 1.874E−06 −7.268E−09 −6.758E−01 7.029E−02 −1.007E−03 8.332E−04
2 3/2 13 5/2 −7.900E−04 −1.675E−03 −4.275E−06 8.673E−09 −9.697E−01 −4.261E−02 −1.788E−02 1.233E−02
1 5/2 7 7/2 −2.075E−04 1.583E−04 3.899E−06 −1.582E−08 −6.766E−01 1.330E−01 −7.710E−04 8.472E−04
1 5/2 6 5/2 −3.073E−03 −1.153E−03 −7.322E−07 −3.743E−09 −8.339E−01 −3.073E−02 −9.964E−03 9.362E−03
2 3/2 12 3/2 −3.205E−03 −2.176E−03 −5.431E−06 1.109E−08 −1.065E+00 −5.010E−02 −1.519E−02 1.277E−02
1 5/2 5 3/2 −2.835E−03 3.474E−04 4.194E−06 −1.756E−08 −8.477E−01 9.561E−02 1.555E−03 1.078E−03
2 3/2 9 1/2 4.353E−04 2.770E−05 2.759E−07 – −6.872E−01 2.183E−01 −2.835E−05 6.334E−05
2 3/2 8 3/2 −1.293E−03 4.224E−05 −6.818E−07 3.227E−09 −5.073E−01 1.955E−04 1.282E−05 2.775E−04
1 5/2 4 3/2 −6.739E−02 1.116E−03 −1.703E−05 9.089E−08 −1.792E+00 7.802E−03 2.555E−03 7.192E−03
1 5/2 3 7/2 3.370E−04 3.605E−04 1.689E−06 – −6.613E−01 1.489E−01 9.439E−04 5.927E−04
2 3/2 5 3/2 −5.758E−04 −1.325E−03 −6.612E−06 2.215E−08 −1.067E+00 −6.396E−02 −9.803E−03 7.328E−03
2 3/2 4 3/2 −3.864E−02 1.479E−03 −2.660E−05 1.627E−07 −1.324E+00 7.284E−03 8.685E−03 6.476E−04
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Table 13. Cross section fitting parameters for Xe10+. a and b refer to the indices of the initial and final levels, respectively.

a Ja b Jb x0 x1 x2 x3 y1 y2 d0 d1

3 3 57 3 3.856E−02 3.924E−03 7.081E−06 −6.509E−09 4.070E−01 1.123E−02 −1.383E−01 9.985E−02
6 1 56 2 6.774E−01 7.074E−02 1.372E−04 −1.478E−07 4.034E−01 1.167E−02 −2.190E+00 1.707E+00
7 4 57 3 6.893E−01 6.159E−02 9.215E−05 −3.809E−08 3.926E−01 1.023E−02 −1.975E+00 1.605E+00
8 2 57 3 8.608E−02 8.873E−03 1.555E−05 −1.118E−08 3.964E−01 1.111E−02 −2.862E−01 2.217E−01
8 2 56 2 2.070E−01 2.263E−02 4.735E−05 −6.084E−08 4.225E−01 1.266E−02 −6.544E−01 5.100E−01
8 2 55 2 7.935E−01 9.191E−02 2.120E−04 −3.230E−07 4.528E−01 1.434E−02 −2.329E+00 1.853E+00
2 2 48 3 1.169E−01 1.671E−02 4.725E−05 −9.097E−08 5.033E−01 1.795E−02 −3.641E−01 2.829E−01
6 1 52 0 3.670E−01 4.161E−02 9.169E−05 −1.278E−07 4.516E−01 1.411E−02 −1.045E+00 8.425E−01
7 4 54 5 1.342E+00 1.887E−01 5.396E−04 −1.066E−06 4.967E−01 1.772E−02 −4.146E+00 3.237E+00
1 4 44 5 1.340E+00 1.922E−01 5.601E−04 −1.131E−06 5.109E−01 1.846E−02 −4.056E+00 3.175E+00
3 3 47 2 3.669E−01 4.715E−02 1.266E−04 −2.403E−07 5.117E−01 1.771E−02 −9.723E−01 7.893E−01
3 3 46 4 1.397E+00 1.998E−01 5.833E−04 −1.179E−06 5.124E−01 1.855E−02 −4.192E+00 3.286E+00
2 2 45 3 8.901E−01 1.243E−01 3.531E−04 −6.938E−07 5.056E−01 1.803E−02 −2.655E+00 2.088E+00
1 4 43 3 4.440E−01 5.528E−02 1.411E−04 −2.504E−07 5.055E−01 1.708E−02 −1.162E+00 9.482E−01
7 4 53 3 −7.137E−04 −1.310E−04 −2.108E−07 4.500E−10 −8.434E−01 −2.446E−02 −2.417E−03 1.560E−03
3 3 45 3 1.678E−01 2.262E−02 6.238E−05 −1.203E−07 5.242E−01 1.848E−02 −4.570E−01 3.664E−01
1 4 42 4 1.091E+00 1.469E−01 4.094E−04 −8.016E−07 5.137E−01 1.814E−02 −3.034E+00 2.429E+00
8 2 53 3 8.118E−01 1.212E−01 3.721E−04 −7.946E−07 5.407E−01 2.022E−02 −2.344E+00 1.847E+00
6 1 50 2 3.221E−01 4.756E−02 1.453E−04 −3.097E−07 5.539E−01 2.078E−02 −8.763E−01 7.014E−01
7 4 51 4 1.079E+00 1.696E−01 5.509E−04 −1.248E−06 5.823E−01 2.269E−02 −2.918E+00 2.326E+00
6 1 49 1 4.580E−01 7.460E−02 2.517E−04 −5.931E−07 5.912E−01 2.345E−02 −1.269E+00 1.001E+00
6 1 47 2 6.249E−01 1.035E−01 3.485E−04 −8.087E−07 5.947E−01 2.369E−02 −1.746E+00 1.376E+00
7 4 40 3 −6.599E−02 −6.468E−02 −1.212E−04 8.066E−08 −4.000E+00 −1.507E−01 −2.142E−01 1.338E−01
8 2 40 3 −6.633E−03 −1.035E−02 −1.276E−05 −1.813E−08 −1.862E+00 −6.513E−02 −7.919E−02 4.795E−02
7 4 39 3 −4.284E−02 −3.422E−02 −7.159E−05 8.431E−08 −4.292E+00 −1.691E−01 −9.679E−02 6.300E−02
4 2 34 3 −2.599E−02 −3.106E−02 −5.495E−05 4.580E−08 −3.017E+00 −1.093E−01 −1.452E−01 8.824E−02
6 1 36 2 −7.498E−02 −5.240E−02 −1.229E−04 2.234E−07 −4.902E+00 −1.883E−01 −1.384E−01 8.802E−02
8 2 38 1 −4.106E−03 −5.230E−03 2.451E−06 −5.463E−08 −1.424E+00 −4.290E−02 −5.329E−02 3.259E−02
7 4 37 5 −1.177E−02 −1.583E−02 −1.377E−05 −7.590E−08 −1.439E+00 −5.348E−02 −1.325E−01 8.631E−02
4 2 30 2 −3.874E−02 −4.511E−02 −1.002E−04 1.610E−07 −3.260E+00 −1.246E−01 −1.880E−01 1.155E−01
3 3 25 3 −2.119E−03 −8.258E−04 2.084E−06 −1.516E−08 −1.192E+00 −2.525E−02 −1.124E−02 7.022E−03
1 4 17 3 1.777E+45 1.063E+45 2.215E+42 – 1.010E+47 3.643E+45 −1.483E−01 9.076E−02
9 0 41 1 −1.387E−01 −1.824E−01 −3.238E−04 2.822E−07 −3.300E+00 −1.189E−01 −7.989E−01 4.791E−01
2 2 22 1 −2.337E−02 −3.028E−02 −6.264E−05 8.367E−08 −2.559E+00 −9.786E−02 −1.581E−01 9.771E−02
8 2 35 1 −7.682E−03 −1.075E−02 −1.771E−05 1.329E−08 −1.830E+00 −6.477E−02 −8.502E−02 5.116E−02
3 3 23 4 1.788E+58 1.091E+58 2.091E+55 – 5.632E+59 1.994E+58 −2.775E−01 1.688E−01
1 4 15 5 −2.640E−02 −2.772E−02 −2.200E−05 −9.703E−08 −2.014E+00 −6.763E−02 −1.927E−01 1.188E−01
4 2 28 3 −2.220E−02 −2.563E−02 −4.240E−05 2.213E−08 −2.721E+00 −9.858E−02 −1.307E−01 8.002E−02
1 4 14 4 −5.409E−03 −6.585E−03 −1.025E−05 2.949E−09 −1.821E+00 −6.558E−02 −4.963E−02 3.060E−02
4 2 27 1 −1.486E−02 −1.840E−02 −3.223E−05 1.495E−08 −2.129E+00 −8.117E−02 −1.111E−01 6.996E−02
3 3 21 2 −1.110E−02 −5.965E−03 9.139E−06 −8.721E−08 −2.402E+00 −5.948E−02 −3.898E−02 2.400E−02
8 2 34 3 −6.230E−03 −8.586E−03 −8.745E−06 −2.580E−08 −1.466E+00 −5.191E−02 −7.861E−02 4.892E−02
1 4 13 4 −3.719E−02 −3.551E−02 −7.262E−05 9.392E−08 −2.661E+00 −1.010E−01 −1.755E−01 1.101E−01
3 3 20 2 −4.863E−03 −6.681E−03 −8.585E−06 −7.385E−09 −1.738E+00 −6.104E−02 −5.406E−02 3.297E−02
5 0 29 1 3.633E−02 7.715E−04 −6.337E−06 – 1.444E−01 −5.032E−04 −2.978E−01 1.827E−01
3 3 19 3 −2.710E−02 −2.308E−02 −2.867E−05 −2.763E−08 −3.004E+00 −1.040E−01 −1.065E−01 6.603E−02
1 4 12 3 1.856E−03 −3.206E−03 −1.852E−05 6.647E−08 −6.132E−01 −3.804E−02 −4.826E−02 3.226E−02
7 4 32 4 −4.462E−02 −5.445E−02 −1.052E−04 1.327E−07 −2.618E+00 −9.698E−02 −2.883E−01 1.760E−01
7 4 31 3 −2.038E−02 −1.556E−02 −2.229E−05 −1.144E−08 −3.069E+00 −1.105E−01 −6.650E−02 4.226E−02
2 2 18 1 −8.687E−03 −9.822E−03 −1.700E−05 1.232E−08 −2.372E+00 −8.731E−02 −5.611E−02 3.469E−02
8 2 33 1 −8.895E−03 −7.900E−03 −1.006E−05 −1.118E−08 −2.212E+00 −7.918E−02 −4.668E−02 2.964E−02
4 2 24 1 −1.114E−02 −1.292E−02 −2.677E−05 3.928E−08 −2.530E+00 −9.591E−02 −6.866E−02 4.244E−02
1 4 11 4 −4.827E−03 −4.479E−03 2.534E−07 −4.019E−08 −1.354E+00 −4.395E−02 −4.338E−02 2.779E−02
8 2 31 3 −1.813E−02 −2.261E−02 −2.995E−05 −1.856E−08 −2.118E+00 −7.447E−02 −1.504E−01 9.168E−02
2 2 16 3 −5.591E−03 −5.854E−03 1.359E−06 −5.623E−08 −1.363E+00 −4.263E−02 −5.966E−02 3.723E−02
1 4 10 3 −5.785E−03 −2.121E−03 8.237E−06 −5.687E−08 −1.435E+00 −2.622E−02 −2.446E−02 1.538E−02
7 4 26 4 −4.329E−03 −3.606E−03 5.849E−06 −6.065E−08 −1.192E+00 −3.268E−02 −4.228E−02 2.680E−02
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Table 14. Rate coefficients for Xe7+ for the transitions from the state 4d105s 2S1/2 at electron temperatures 5, 10, 20, 30, 50,
70, 100 eV.

Index Jf 5 10 15 20 30 50 70 100

10 3/2 4.754E−23 1.111E−18 2.983E−17 1.507E−16 7.403E−16 2.561E−15 4.301E−15 6.296E−15
9 1/2 2.326E−23 5.378E−19 1.439E−17 7.259E−17 3.560E−16 1.230E−15 2.064E−15 3.020E−15
8 1/2 3.282E−22 4.250E−19 4.351E−18 1.356E−17 4.104E−17 9.603E−17 1.362E−16 1.756E−16
7 3/2 1.548E−21 1.689E−18 1.638E−17 4.981E−17 1.474E−16 3.401E−16 4.805E−16 6.186E−16
6 1/2 2.863E−22 2.176E−19 1.848E−18 5.218E−18 1.419E−17 3.013E−17 4.076E−17 5.054E−17
5 1/2 3.073E−21 2.303E−18 1.974E−17 5.645E−17 1.572E−16 3.456E−16 4.780E−16 6.049E−16
4 3/2 1.513E−21 1.015E−18 8.318E−18 2.315E−17 6.232E−17 1.320E−16 1.787E−16 2.217E−16
3 3/2 4.540E−22 2.561E−19 1.906E−18 4.933E−18 1.184E−17 2.120E−17 2.540E−17 2.758E−17
2 3/2 9.381E−22 4.936E−19 3.642E−18 9.475E−18 2.329E−17 4.412E−17 5.565E−17 6.444E−17

Table 15. Rate coefficients for Xe8+ for the transitions from the state 4d10 1S0 at electron temperatures 5, 10, 20, 30, 50, 70,
100 eV.

Index Jb 5 10 15 20 30 50 70 100

43 1 2.593E−27 3.429E−21 3.495E−19 3.414E−18 3.198E−17 1.807E−16 3.674E−16 6.093E−16
41 1 1.123E−27 1.154E−21 1.082E−19 1.012E−18 9.086E−18 4.956E−17 9.922E−17 1.626E−16
38 1 6.405E−29 5.562E−23 4.740E−21 4.131E−20 3.321E−19 1.547E−18 2.759E−18 3.962E−18
35 1 4.422E−29 3.994E−23 3.516E−21 3.154E−20 2.664E−19 1.345E−18 2.562E−18 4.002E−18
33 1 3.437E−28 2.673E−22 2.309E−20 2.091E−19 1.839E−18 1.011E−17 2.070E−17 3.518E−17
31 1 2.381E−28 2.160E−22 1.962E−20 1.821E−19 1.639E−18 9.172E−18 1.889E−17 3.223E−17
29 1 1.835E−25 5.586E−20 3.501E−18 2.688E−17 1.987E−16 9.355E−16 1.769E−15 2.796E−15
26 1 2.470E−26 4.364E−21 2.275E−19 1.589E−18 1.067E−17 4.629E−17 8.436E−17 1.294E−16
24 1 7.512E−27 1.070E−21 5.033E−20 3.277E−19 1.985E−18 7.497E−18 1.236E−17 1.692E−17
21 1 4.471E−27 5.306E−22 2.387E−20 1.536E−19 9.361E−19 3.693E−18 6.413E−18 9.485E−18
19 1 6.855E−26 7.798E−21 3.552E−19 2.337E−18 1.494E−17 6.366E−17 1.168E−16 1.826E−16
17 1 5.769E−26 5.811E−21 2.537E−19 1.632E−18 1.019E−17 4.252E−17 7.724E−17 1.199E−16
15 1 5.115E−23 1.601E−18 4.726E−17 2.497E−16 1.278E−15 4.531E−15 7.652E−15 1.120E−14
13 1 3.100E−23 1.180E−19 1.668E−18 5.972E−18 1.999E−17 4.738E−17 6.447E−17 7.717E−17
10 1 1.695E−22 4.140E−19 5.012E−18 1.651E−17 5.025E−17 1.071E−16 1.351E−16 1.472E−16
7 1 5.544E−22 8.580E−19 9.307E−18 2.984E−17 9.275E−17 2.215E−16 3.166E−16 4.104E−16
5 1 3.354E−21 4.494E−18 4.655E−17 1.460E−16 4.447E−16 1.046E−15 1.487E−15 1.918E−15
3 1 1.862E−22 1.917E−19 1.715E−18 4.803E−18 1.219E−17 2.161E−17 2.459E−17 2.429E−17

Table 16. Rate coefficients for Xe9+ at electron temperatures 5, 10, 20, 30, 50, 70, 100 eV. a and b denote the indices of the
initial and final levels, respectively.

a Ja b Jb 5 10 15 20 30 50 70 100

2 3/2 57 1/2 2.383E−24 1.587E−19 5.989E−18 3.566E−17 2.043E−16 7.829E−16 1.355E−15 2.002E−15
1 5/2 56 5/2 2.130E−25 8.764E−21 2.815E−19 1.545E−18 8.152E−18 2.922E−17 4.910E−17 7.100E−17
1 5/2 55 3/2 2.345E−24 8.050E−20 2.438E−18 1.301E−17 6.680E−17 2.349E−16 3.918E−16 5.639E−16
2 3/2 56 5/2 2.992E−23 1.010E−18 3.043E−17 1.620E−16 8.309E−16 2.921E−15 4.879E−15 7.033E−15
1 5/2 54 7/2 2.686E−23 9.102E−19 2.746E−17 1.463E−16 7.508E−16 2.642E−15 4.413E−15 6.363E−15
1 5/2 53 5/2 2.498E−23 7.347E−19 2.115E−17 1.100E−16 5.514E−16 1.903E−15 3.152E−15 4.516E−15
2 3/2 55 3/2 2.270E−23 6.375E−19 1.807E−17 9.330E−17 4.640E−16 1.592E−15 2.630E−15 3.762E−15
1 5/2 51 3/2 3.640E−24 2.313E−20 3.949E−19 1.570E−18 5.934E−18 1.595E−17 2.333E−17 2.996E−17
1 5/2 50 3/2 1.068E−24 8.286E−21 1.508E−19 6.185E−19 2.407E−18 6.610E−18 9.761E−18 1.265E−17
2 3/2 52 1/2 6.258E−24 4.673E−20 8.517E−19 3.528E−18 1.409E−17 4.068E−17 6.262E−17 8.526E−17
2 3/2 50 3/2 4.433E−24 2.793E−20 4.728E−19 1.866E−18 6.962E−18 1.836E−17 2.652E−17 3.363E−17
1 5/2 46 5/2 4.080E−24 2.194E−20 3.467E−19 1.308E−18 4.574E−18 1.099E−17 1.473E−17 1.701E−17
2 3/2 49 1/2 4.423E−24 2.486E−20 4.047E−19 1.566E−18 5.731E−18 1.489E−17 2.139E−17 2.703E−17
1 5/2 45 5/2 4.347E−24 2.078E−20 3.161E−19 1.170E−18 4.018E−18 9.509E−18 1.265E−17 1.450E−17
2 3/2 48 1/2 4.152E−24 1.929E−20 2.938E−19 1.097E−18 3.860E−18 9.644E−18 1.354E−17 1.676E−17
1 5/2 43 7/2 2.148E−24 8.938E−21 1.300E−19 4.711E−19 1.588E−18 3.733E−18 4.999E−18 5.834E−18
2 3/2 47 1/2 2.157E−24 1.088E−20 1.717E−19 6.560E−19 2.384E−18 6.244E−18 9.103E−18 1.179E−17
1 5/2 41 7/2 6.800E−24 3.097E−20 4.759E−19 1.803E−18 6.552E−18 1.742E−17 2.581E−17 3.413E−17
1 5/2 39 5/2 1.605E−24 6.755E−21 9.910E−20 3.623E−19 1.244E−18 3.050E−18 4.267E−18 5.303E−18
1 5/2 36 3/2 7.305E−24 2.834E−20 4.022E−19 1.439E−18 4.775E−18 1.099E−17 1.444E−17 1.635E−17
2 3/2 45 5/2 1.533E−23 6.025E−20 8.618E−19 3.103E−18 1.042E−17 2.450E−17 3.286E−17 3.836E−17
2 3/2 44 5/2 2.408E−23 9.221E−20 1.306E−18 4.673E−18 1.555E−17 3.598E−17 4.744E−17 5.394E−17
1 5/2 34 5/2 4.306E−24 1.681E−20 2.411E−19 8.731E−19 2.973E−18 7.226E−18 1.003E−17 1.230E−17
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Table 16. Cont.

a Ja b Jb 5 10 15 20 30 50 70 100

1 5/2 33 5/2 7.734E−24 2.884E−20 4.129E−19 1.506E−18 5.247E−18 1.338E−17 1.938E−17 2.508E−17
1 5/2 32 3/2 8.124E−24 2.833E−20 3.885E−19 1.368E−18 4.475E−18 1.024E−17 1.350E−17 1.546E−17
2 3/2 42 1/2 4.613E−23 1.794E−19 2.640E−18 9.847E−18 3.555E−17 9.538E−17 1.431E−16 1.921E−16
1 5/2 31 3/2 2.637E−23 9.957E−20 1.449E−18 5.368E−18 1.922E−17 5.112E−17 7.628E−17 1.018E−16
1 5/2 30 7/2 2.690E−23 9.245E−20 1.263E−18 4.442E−18 1.453E−17 3.327E−17 4.382E−17 5.005E−17
2 3/2 40 1/2 8.092E−24 2.731E−20 3.721E−19 1.310E−18 4.313E−18 1.006E−17 1.351E−17 1.587E−17
2 3/2 39 5/2 8.348E−23 3.020E−19 4.332E−18 1.594E−17 5.666E−17 1.498E−16 2.231E−16 2.973E−16
2 3/2 38 5/2 1.412E−23 4.577E−20 6.131E−19 2.134E−18 6.910E−18 1.571E−17 2.066E−17 2.361E−17
1 5/2 28 7/2 1.513E−23 5.111E−20 6.990E−19 2.471E−18 8.200E−18 1.942E−17 2.651E−17 3.191E−17
1 5/2 27 3/2 7.840E−24 2.748E−20 3.892E−19 1.421E−18 5.004E−18 1.310E−17 1.940E−17 2.575E−17
1 5/2 26 5/2 3.487E−24 1.151E−20 1.551E−19 5.417E−19 1.765E−18 4.079E−18 5.473E−18 6.466E−18
1 5/2 25 3/2 1.754E−23 5.701E−20 7.676E−19 2.686E−18 8.794E−18 2.041E−17 2.736E−17 3.212E−17
2 3/2 37 5/2 2.612E−23 8.661E−20 1.166E−18 4.058E−18 1.308E−17 2.922E−17 3.762E−17 4.153E−17
2 3/2 35 1/2 8.531E−24 2.871E−20 3.986E−19 1.435E−18 4.941E−18 1.252E−17 1.808E−17 2.334E−17
1 5/2 23 5/2 3.329E−23 1.023E−19 1.352E−18 4.686E−18 1.519E−17 3.496E−17 4.667E−17 5.457E−17
1 5/2 21 3/2 6.701E−23 2.214E−19 3.085E−18 1.120E−17 3.930E−17 1.031E−16 1.531E−16 2.039E−16
2 3/2 34 5/2 3.199E−23 1.060E−19 1.473E−18 5.324E−18 1.855E−17 4.807E−17 7.077E−17 9.338E−17
1 5/2 20 7/2 4.990E−23 1.496E−19 1.952E−18 6.705E−18 2.141E−17 4.792E−17 6.233E−17 7.021E−17
1 5/2 19 5/2 6.960E−23 2.199E−19 3.011E−18 1.082E−17 3.750E−17 9.691E−17 1.426E−16 1.882E−16
1 5/2 18 3/2 2.000E−24 5.880E−21 7.619E−20 2.608E−19 8.315E−19 1.883E−18 2.500E−18 2.927E−18
2 3/2 33 5/2 6.316E−23 1.953E−19 2.647E−18 9.443E−18 3.243E−17 8.286E−17 1.211E−16 1.588E−16
2 3/2 32 3/2 2.371E−23 6.748E−20 8.645E−19 2.939E−18 9.270E−18 2.045E−17 2.630E−17 2.916E−17
2 3/2 31 3/2 5.716E−23 1.761E−19 2.392E−18 8.560E−18 2.958E−17 7.634E−17 1.124E−16 1.484E−16
1 5/2 16 5/2 5.005E−23 1.504E−19 2.023E−18 7.194E−18 2.466E−17 6.305E−17 9.231E−17 1.213E−16
1 5/2 15 7/2 5.519E−23 1.598E−19 2.115E−18 7.445E−18 2.517E−17 6.324E−17 9.144E−17 1.185E−16
1 5/2 14 5/2 2.637E−23 7.384E−20 9.644E−19 3.368E−18 1.128E−17 2.803E−17 4.028E−17 5.194E−17
2 3/2 29 1/2 5.911E−24 1.642E−20 2.119E−19 7.313E−19 2.397E−18 5.766E−18 8.082E−18 1.012E−17
2 3/2 27 3/2 1.516E−22 4.372E−19 5.824E−18 2.066E−17 7.093E−17 1.827E−16 2.692E−16 3.564E−16
2 3/2 26 5/2 3.923E−23 1.106E−19 1.452E−18 5.093E−18 1.717E−17 4.313E−17 6.249E−17 8.130E−17
2 3/2 25 3/2 1.773E−23 4.711E−20 5.928E−19 2.005E−18 6.334E−18 1.422E−17 1.869E−17 2.147E−17
2 3/2 24 1/2 1.122E−23 3.018E−20 3.867E−19 1.333E−18 4.372E−18 1.056E−17 1.488E−17 1.878E−17
1 5/2 13 5/2 9.271E−23 2.564E−19 3.361E−18 1.182E−17 4.012E−17 1.022E−16 1.496E−16 1.970E−16
1 5/2 12 3/2 9.180E−24 2.314E−20 2.848E−19 9.505E−19 2.958E−18 6.595E−18 8.745E−18 1.032E−17
2 3/2 23 5/2 1.708E−23 4.313E−20 5.355E−19 1.804E−18 5.711E−18 1.302E−17 1.745E−17 2.065E−17
2 3/2 22 1/2 6.343E−24 1.703E−20 2.196E−19 7.625E−19 2.539E−18 6.291E−18 9.032E−18 1.164E−17
2 3/2 21 3/2 2.815E−23 7.500E−20 9.657E−19 3.354E−18 1.118E−17 2.778E−17 3.997E−17 5.162E−17
1 5/2 11 7/2 5.762E−23 1.441E−19 1.813E−18 6.215E−18 2.043E−17 5.007E−17 7.158E−17 9.197E−17
2 3/2 19 5/2 3.113E−23 7.863E−20 9.875E−19 3.371E−18 1.097E−17 2.635E−17 3.707E−17 4.675E−17
1 5/2 10 5/2 6.855E−23 1.713E−19 2.166E−18 7.467E−18 2.480E−17 6.178E−17 8.934E−17 1.162E−16
2 3/2 16 5/2 3.111E−23 7.636E−20 9.594E−19 3.297E−18 1.091E−17 2.709E−17 3.910E−17 5.074E−17
1 5/2 8 3/2 6.708E−24 1.494E−20 1.753E−19 5.679E−19 1.698E−18 3.579E−18 4.538E−18 5.060E−18
2 3/2 13 5/2 1.836E−23 4.113E−20 5.002E−19 1.689E−18 5.481E−18 1.336E−17 1.910E−17 2.461E−17
1 5/2 7 7/2 1.445E−23 2.902E−20 3.275E−19 1.038E−18 3.015E−18 6.128E−18 7.566E−18 8.171E−18
1 5/2 6 5/2 2.825E−23 5.938E−20 6.983E−19 2.301E−18 7.188E−18 1.659E−17 2.279E−17 2.810E−17
2 3/2 12 3/2 2.849E−23 6.095E−20 7.265E−19 2.421E−18 7.711E−18 1.832E−17 2.573E−17 3.246E−17
1 5/2 5 3/2 1.985E−23 3.999E−20 4.555E−19 1.459E−18 4.336E−18 9.195E−18 1.178E−17 1.333E−17
2 3/2 9 1/2 5.039E−24 9.325E−21 1.017E−19 3.152E−19 8.889E−19 1.736E−18 2.079E−18 2.160E−18
2 3/2 8 3/2 1.994E−23 3.579E−20 3.874E−19 1.199E−18 3.385E−18 6.657E−18 8.035E−18 8.436E−18
1 5/2 4 3/2 1.038E−22 2.259E−19 2.666E−18 8.742E−18 2.687E−17 5.941E−17 7.797E−17 8.977E−17
1 5/2 3 7/2 4.994E−23 7.990E−20 8.335E−19 2.534E−18 7.045E−18 1.374E−17 1.659E−17 1.750E−17
2 3/2 5 3/2 1.982E−23 3.436E−20 3.840E−19 1.244E−18 3.873E−18 9.131E−18 1.286E−17 1.635E−17
2 3/2 4 3/2 1.237E−22 2.181E−19 2.388E−18 7.519E−18 2.207E−17 4.647E−17 5.915E−17 6.580E−17
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Table 17. Rate coefficients for Xe10+ at electron temperatures 5, 10, 20, 30, 50, 70, 100 eV. a and b denote the indices of the
initial and final levels, respectively.

a Ja b Jb 5 10 15 20 30 50 70 100

3 3 57 3 6.000E−26 7.754E−21 3.640E−19 2.411E−18 1.531E−17 6.323E−17 1.124E−16 1.689E−16
6 1 56 2 2.790E−24 2.205E−19 8.794E−18 5.371E−17 3.146E−16 1.220E−15 2.113E−15 3.114E−15
7 4 57 3 2.171E−24 1.945E−19 8.079E−18 5.035E−17 3.006E−16 1.182E−15 2.056E−15 3.037E−15
8 2 57 3 2.751E−25 2.488E−20 1.038E−18 6.481E−18 3.882E−17 1.532E−16 2.674E−16 3.965E−16
8 2 56 2 9.893E−25 7.177E−20 2.781E−18 1.675E−17 9.668E−17 3.707E−16 6.388E−16 9.381E−16
8 2 55 2 5.066E−24 3.116E−19 1.143E−17 6.695E−17 3.761E−16 1.410E−15 2.407E−15 3.510E−15
2 2 48 3 1.071E−24 5.457E−20 1.881E−18 1.069E−17 5.826E−17 2.137E−16 3.617E−16 5.247E−16
6 1 52 0 2.469E−24 1.475E−19 5.359E−18 3.124E−17 1.746E−16 6.520E−16 1.111E−15 1.617E−15
7 4 54 5 1.287E−23 6.416E−19 2.195E−17 1.243E−16 6.750E−16 2.468E−15 4.173E−15 6.047E−15
1 4 44 5 1.376E−23 6.577E−19 2.219E−17 1.247E−16 6.727E−16 2.446E−15 4.125E−15 5.966E−15
3 3 47 2 3.669E−24 1.742E−19 5.860E−18 3.288E−17 1.769E−16 6.407E−16 1.077E−15 1.553E−15
3 3 46 4 1.452E−23 6.885E−19 2.317E−17 1.300E−16 7.004E−16 2.543E−15 4.287E−15 6.197E−15
2 2 45 3 8.931E−24 4.316E−19 1.461E−17 8.227E−17 4.444E−16 1.617E−15 2.728E−15 3.946E−15
1 4 43 3 4.116E−24 2.030E−19 6.917E−18 3.905E−17 2.114E−16 7.693E−16 1.296E−15 1.871E−15
7 4 53 3 1.136E−26 4.820E−22 1.543E−20 8.382E−20 4.312E−19 1.475E−18 2.386E−18 3.302E−18
3 3 45 3 1.646E−24 7.888E−20 2.662E−18 1.496E−17 8.062E−17 2.926E−16 4.926E−16 7.109E−16
1 4 42 4 1.116E−23 5.272E−19 1.771E−17 9.930E−17 5.340E−16 1.935E−15 3.256E−15 4.699E−15
8 2 53 3 9.624E−24 4.211E−19 1.380E−17 7.640E−17 4.060E−16 1.458E−15 2.447E−15 3.525E−15
6 1 50 2 4.261E−24 1.742E−19 5.579E−18 3.054E−17 1.604E−16 5.707E−16 9.531E−16 1.368E−15
7 4 51 4 1.660E−23 6.233E−19 1.940E−17 1.048E−16 5.426E−16 1.910E−15 3.176E−15 4.544E−15
6 1 49 1 7.470E−24 2.725E−19 8.402E−18 4.515E−17 2.328E−16 8.167E−16 1.357E−15 1.940E−15
6 1 47 2 1.036E−23 3.753E−19 1.155E−17 6.197E−17 3.192E−16 1.119E−15 1.859E−15 2.659E−15
7 4 40 3 1.002E−23 9.276E−20 1.818E−18 7.811E−18 3.238E−17 9.658E−17 1.511E−16 2.088E−16
8 2 40 3 3.387E−24 3.162E−20 6.211E−19 2.672E−18 1.109E−17 3.311E−17 5.187E−17 7.179E−17
7 4 39 3 6.289E−24 5.238E−20 9.900E−19 4.175E−18 1.697E−17 4.969E−17 7.704E−17 1.055E−16
4 2 34 3 7.327E−24 6.276E−20 1.199E−18 5.088E−18 2.085E−17 6.167E−17 9.628E−17 1.330E−16
6 1 36 2 9.279E−24 7.476E−20 1.397E−18 5.855E−18 2.365E−17 6.886E−17 1.065E−16 1.455E−16
8 2 38 1 3.278E−24 2.632E−20 4.907E−19 2.054E−18 8.282E−18 2.409E−17 3.726E−17 5.100E−17
7 4 37 5 1.082E−23 8.116E−20 1.479E−18 6.121E−18 2.439E−17 7.020E−17 1.080E−16 1.470E−16
4 2 30 2 1.187E−23 9.201E−20 1.701E−18 7.097E−18 2.860E−17 8.351E−17 1.296E−16 1.782E−16
3 3 25 3 1.059E−24 7.892E−21 1.425E−19 5.845E−19 2.290E−18 6.415E−18 9.664E−18 1.286E−17
1 4 17 3 1.007E−23 7.484E−20 1.364E−18 5.654E−18 2.263E−17 6.571E−17 1.018E−16 1.397E−16
9 0 41 1 4.570E−23 3.583E−19 6.650E−18 2.783E−17 1.126E−16 3.301E−16 5.139E−16 7.089E−16
2 2 22 1 1.136E−23 8.316E−20 1.508E−18 6.231E−18 2.486E−17 7.200E−17 1.114E−16 1.526E−16
8 2 35 1 5.936E−24 4.313E−20 7.792E−19 3.214E−18 1.279E−17 3.691E−17 5.698E−17 7.800E−17
3 3 23 4 2.014E−23 1.433E−19 2.576E−18 1.060E−17 4.215E−17 1.218E−16 1.883E−16 2.582E−16
1 4 15 5 1.563E−23 1.092E−19 1.947E−18 7.973E−18 3.147E−17 9.015E−17 1.386E−16 1.889E−16
4 2 28 3 1.011E−23 7.061E−20 1.260E−18 5.168E−18 2.046E−17 5.887E−17 9.080E−17 1.242E−16
1 4 14 4 4.171E−24 2.861E−20 5.068E−19 2.069E−18 8.143E−18 2.327E−17 3.573E−17 4.867E−17
4 2 27 1 9.004E−24 6.406E−20 1.149E−18 4.723E−18 1.872E−17 5.384E−17 8.293E−17 1.132E−16
3 3 21 2 3.436E−24 2.378E−20 4.215E−19 1.718E−18 6.736E−18 1.909E−17 2.912E−17 3.937E−17
8 2 34 3 6.615E−24 4.622E−20 8.232E−19 3.368E−18 1.328E−17 3.793E−17 5.821E−17 7.920E−17
1 4 13 4 1.636E−23 1.086E−19 1.903E−18 7.730E−18 3.027E−17 8.615E−17 1.320E−16 1.795E−16
3 3 20 2 4.594E−24 3.078E−20 5.411E−19 2.201E−18 8.637E−18 2.464E−17 3.783E−17 5.156E−17
5 0 29 1 2.657E−23 1.727E−19 3.009E−18 1.220E−17 4.774E−17 1.362E−16 2.093E−16 2.856E−16
3 3 19 3 9.822E−24 6.462E−20 1.129E−18 4.580E−18 1.791E−17 5.092E−17 7.803E−17 1.061E−16
1 4 12 3 6.170E−24 3.904E−20 6.709E−19 2.692E−18 1.037E−17 2.897E−17 4.387E−17 5.890E−17
7 4 32 4 2.599E−23 1.671E−19 2.902E−18 1.174E−17 4.586E−17 1.306E−16 2.006E−16 2.737E−16
7 4 31 3 7.252E−24 4.551E−20 7.824E−19 3.146E−18 1.219E−17 3.434E−17 5.237E−17 7.088E−17
2 2 18 1 5.581E−24 3.495E−20 6.011E−19 2.419E−18 9.395E−18 2.660E−17 4.071E−17 5.536E−17
8 2 33 1 4.742E−24 3.085E−20 5.366E−19 2.170E−18 8.453E−18 2.392E−17 3.654E−17 4.952E−17
4 2 24 1 6.198E−24 4.066E−20 7.104E−19 2.882E−18 1.128E−17 3.216E−17 4.938E−17 6.731E−17
1 4 11 4 5.338E−24 3.267E−20 5.556E−19 2.218E−18 8.514E−18 2.372E−17 3.593E−17 4.829E−17
8 2 31 3 1.404E−23 8.905E−20 1.538E−18 6.204E−18 2.415E−17 6.854E−17 1.051E−16 1.431E−16
2 2 16 3 7.166E−24 4.264E−20 7.187E−19 2.858E−18 1.094E−17 3.046E−17 4.617E−17 6.218E−17
1 4 10 3 3.794E−24 2.168E−20 3.586E−19 1.408E−18 5.291E−18 1.437E−17 2.139E−17 2.826E−17
7 4 26 4 6.860E−24 3.659E−20 5.936E−19 2.313E−18 8.653E−18 2.359E−17 3.535E−17 4.712E−17
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Figure 2. Excitation rate coefficients of Xe8+ as a function of electron temperature.

4. Conclusions

We employed the MCDF approach within the framework of the Dirac–Coulomb
Hamiltonian, including the Breit and QED corrections using the GRASP2K program [21]
and calculated the energy levels, wavelengths and transition rates for the electric dipole
allowed transitions of Xe7+, Xe8+, Xe9+ and Xe10+ ions in the EUV range of 8–19 nm. These
results are compared with other reported experimental and theoretical results and, overall,
a good agreement is found. After confirming the reliability of our ionic wavefunctions,
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we used them in the RDW method to calculate the excitation cross sections for a total
of 159 transitions in the four ions. To make our cross sections conveniently available for
plasma modelling, we obtained the fitting parameters for these cross sections for both
low and high incident electron energies. The maximum error in fitted cross sections is
found to be well within 5% for most of the cases. Further, these cross sections are used to
calculate the excitation rate coefficients for several electron temperatures ranging from 5 to
100 eV, assuming a Maxwellian electron energy distribution. Our cross sections and rate
coefficients are reported for the first time, as no other experimental or theoretical results
are available. We hope our results will be useful for the successful interpretation of EUV
emissions from various sources.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-2004/
9/4/76/s1, Table S1: Cross sections (10−20 m2) for Xe7+ for the transitions from 4d105s 2S1/2 state at
incident electron energies 200, 300, 400, 500, 700, 1000, 1200, 1500, 2000, 2500, 3000 eV. Table S2: Cross
sections (10−20 m2) for Xe8+ for the transitions from 4d10 1S0 state at incident electron energies 200,
300, 400, 500, 700, 1000, 1200, 1500, 2000, 2500, 3000 eV. Table S3: Cross sections (10−20 m2) for Xe9+ at
incident electron energies 200, 300, 400, 500, 700, 1000, 1200, 1500, 2000, 2500, 3000 eV. a and b refer to
the indices of the initial and final levels, respectively. Table S4: Cross sections (10−20 m2) for Xe10+ at
incident electron energies 200, 300, 400, 500, 700, 1000, 1200, 1500, 2000, 2500, 3000 eV. a and b refer to
the indices of the initial and final levels, respectively.
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Abstract: We report on an extensive semi-empirical analysis of scattering cross-sections for electron
elastic collision with noble gases via the Markov Chain Monte Carlo-Modified Effective Range Theory
(MCMC−MERT). In this approach, the contribution of the long-range polarization potential (∼r−4)
to the scattering phase shifts is precisely expressed, while the effect of the complex short-range
interaction is modeled by simple quadratic expression (the so-called effective range expansion with
several adjustable parameters). Additionally, we test a simple potential model of a rigid sphere
combined with r−4 interaction. Both models, the MERT and the rigid sphere are based on the
analytical properties of Mathieu functions, i.e., the solutions of radial Schrödinger equation with
pure polarization potential. However, in contrast to MERT, the rigid sphere model depends entirely
upon one adjustable parameter—the radius of a hard-core. The model’s validity is assessed by
a comparative study against numerous experimental cross-sections and theoretical phase shifts.
We show that this simple approach can successfully describe the electron elastic collisions with
helium and neon for energies below 1 eV. The purpose of the present analysis is to give insight into
the relations between the parameters of both models (that translate into the cross-sections in the
very low energy range) and some “macroscopic” features of atoms such as the polarizability and
atomic “radii”.

Keywords: electron elastic scattering; noble gases; scattering cross-sections

1. Introduction

Although great attention was devoted to electron collisions with atoms of noble
gases over the years [1], scattering in a very low-energy range is still challenging both
experimentally and theoretically. On the one hand, experiments at very low energies
are scarce and burdened with high uncertainties since hard-to-reach energy and angular
resolutions are required to carry out trustworthy measurements [2]. On the other hand,
the theoretical description of complex (many-body) short-range effects in the electron–atom
collision reached a high level of fidelity (see for example [3,4]), but numerical calculations
become more and more computationally expensive and time-consuming with lowering
electron energy. The most advanced contemporary theories involve such large basis sets
and complicated equations that they are not easily applied to each specific target for
which data are needed urgently. Therefore, a great value in understanding angular and
energy variations of low-energy collisions can be brought by semi-empirical models, which
give some insight into the relations between cross-sections and some “macroscopic” (i.e.,
measurable in other phenomena) features of the targets, like their polarizability and/or
atomic “radii”. Surprisingly, the very low-energy range is important for plasma modeling:
say, in argon, which is the main component of “gas-discharge lamps”, the mean temperature
of electrons is 0.3 eV, i.e., the energy of the Ramsauer–Townsend minimum [5]. Noble
gases are used also as additives in swarm experiments, to derive the very-low energy cross
sections for molecules with other possible processes, like the vibrational excitations (CH4,
C2H2 [6,7]).
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The effective range theory (ERT) is one of the most popular semi-empirical ways
to describe slow-electron collisions with atoms. Originally, ERT has been introduced as
a tool in the analysis and interpretation of low-energy neutron–proton scattering [8,9].
The theory expresses the s-wave scattering phase shift as a series of the projectile (neutron)
momentum k. The series contains two adjustable parameters: A0—the scattering length
and R0—the effective range of the interaction. O’Malley et al. [10] modified the ERT to
show that a similar expression could be used to describe the scattering of a charged particle
(such as electron and positron) by neutral atoms and simple non-polar molecules, i.e., in
the presence of the long-range polarization potential (∼r−4). Later similar energy series
expansions to that for s-wave phase-shift were introduced for higher partial waves (p and d
waves) [11]. Due to its simplicity, the Modified Effective Range Theory (MERT) has gained
considerable popularity. It has been frequently used to extrapolate measured cross-sections
to the zero-energy [12–17]. Moreover, it is also used a support for complex multi-body
calculations to determine the scattering length, see, for example [18,19].

Buckman and Mitroy [20] showed that the applicability of the original MERT is limited
to very low energies (<1 eV) for noble gases. At such low energies, the experimental data
to be extrapolated are scarce and characterized by relatively large uncertainties. The variety
of experimental technique reflects in different possible systematic uncertainties. In case
of integral (total) cross sections (ICS) these may be errors in pressure determination (due
to the gas outflow from the scattering cell), angular resolution errors (due to the finite
dimensions of detectors) and shift in energy determination (due to extremely fast timing of
the signal in time-of-flight experiments). In the case of differential cross sections (DCS)—
additionally, the impossibility of measuring small (below 10◦) and large (above some
130◦) scattering angles plays an important role. The contribution of all these errors to
experimental data makes the MERT analysis less reliable. Idziaszek and Karwasz [21]
proposed an alternative approach to the MERT series: phase shifts were obtained solving
the Schrödinger equation with long-range polarization potential analytically using Mathieu
functions, and the effective-range expansion was introduced only for the short-range part
of the interaction potential. We showed [22–25] that such an approach allows expanding
MERT applicability to much higher energies, where more accurate data are available. It is
true for both positrons and electrons. The most significant advantage of the method is its
simplicity—just a few parameters are used to describe the effect of complex, many-body
interaction during the electron/positron collisions with atoms and molecules. Moreover,
a new approach to MERT can be used to correct ex posteriori the experimental errors,
as shown in [16]. Furthermore, understanding the physics behind the MERT parameters
can help to provide more valuable data for an inverse scattering theory approach [26]. This
approach aims to reconstruct the scattering potential from the experimental cross-sections,
and MERT can potentially be a part of the inversion procedure.

In [27], we showed that an even simpler semi-empirical model than MERT could
describe very low-energy positron (antielectron) interaction with noble gases, namely the
rigid sphere approach. In this model, the interaction is described as a combination of an in-
finitive wall (hard-sphere) and the long-range polarization potential (∼r−4). Consequently,
one needs just one parameter (“the atomic radii”) to describe cross-sections at energies
much below 1 eV. So far, this simple model has not been tested thoroughly for electron
scattering by single atoms.

The goal of the present work is twofold. Firstly, we carry out an extensive (statistical)
MERT analysis of a vast amount of datasets for electron collision with noble gases to
study the systematics of parameters appearing in the effective-range expansion of the
short-range potential. Using Monte Carlo methods, we provide confidence ranges for
MERT parameters that are crucial for accurate predictions of cross-sections at low energies.
At the same time, we examine the convergence of various available experimental data
within the applied model. Secondly, we verify the applicability of the rigid sphere model
to the low-energy electron scattering by noble gases. The paper is organized as follows:
in Section 2, the principles of MERT and the rigid sphere model are briefly described.
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In Section 3, the results of both models are presented and discussed. The paper concludes
with a summary in Section 4.

2. Theoretical Models

2.1. Modified Effective Range Theory

The relative motion of a light electrically charged point particle and closed-shell atom
is described by the following radial Schrödinger equation (within a partial-wave formalism
in atomic units): [

d2

dr2 − l(l + 1)
r2 +

(
e2μ

h̄2

)
α

r4 + Vs(r) + k2
]

Ψl(r) = 0, (1)

where l is the angular momentum quantum number, k is the wavenumber, α is the dipole
polarizability, and Vs(r) is the short-range potential. Note that the atomic units are em-
ployed throughout this paper. In particular, the electron mass (me), the Planck constant (h̄)
and the elementary charge (e) are equal to unity. Consequently, the reduced mass of the
electron–atom system (μ) can be also approximated to one.

Since Vs(r) can be neglected at large r, O’Malley et al. [10] proposed to include its
contribution in appropriate boundary conditions subjected to analytical solutions of the
Schrödinger equation with pure long-range polarization potential (∼r−4):[

d2

dr2 − l(l + 1)
r2 +

(
e2μ

h̄2

)
α

r4 + k2
]

Φl(r) = 0. (2)

The latter equation is identical with Mathieu’s modified differential equation; hence
Φl(r) can be expressed in terms of Mathieu functions, whose behavior at small and large
distances r is determined by the standard boundary conditions (according to the quantum
scattering theory) imposed on the scattering wavefunction:

Φl(r)
r→0∼ r sin

(√α

r
+ γl

)
and Φl(r)

r→∞∼ sin(kr − l
π

2
+ ηl

)
(3)

where γl is a parameter determined by the short-range part of the interaction potential,
while ηl is the scattering phase shift.

The boundary conditions provide the following expression for the scattering phase shift:

tan ηl =
m2

l − tan2 δl + Bl tan δl(m2
l − 1)

tan δl(1 − m2
l ) + Bl(1 − m2

l tan2 δl)
, (4)

where Bl = tan(γl + lπ/2) and δl = π
2 (νl − l − 1

2 ). Here ml and νl denote the energy-
dependent parameters which can be determined numerically from properties of the Math-
ieu functions (see the numerical procedures described in [21,22]).

Integral elastic (σIE), momentum transfer (σMT), and differential elastic (dσ/dω) cross-
sections (all measured experimentally) are calculated using the standard partial wave
expansions:

σIE =
4π

k2

∞

∑
l=0

(2l + 1) sin2 ηl(k) (5)

σMT =
4π

k2

∞

∑
l=0

(l + 1) sin2[ηl(k)− ηl+1(k)] (6)

dσ

dω
=

1
k2 |

∞

∑
l=0

(2l + 1) exp ηl sin ηl(k)Pl(cos θ)|2 (7)

where θ is the scattering angle and Pl(x) are the Legendre polynomials.
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O’Malley et al. [10] showed that energy dependence of parameter Bl(k), related to the
unknown short-range potential, has the following general form:

Bl(k) = bl(0) +
1
2

√
αe2μ/h̄2ρl(0, k)k2. (8)

where bl(0) is the zero-energy contribution and

ρl(0, k) =
∫ ∞

0
Φl(0, r)Φl(k, r)− Ψl(0, r)Ψl(k, r)dr. (9)

Thus far all equations are exact. O’Malley et al. [10] proposed to approximate the
latter parameter by the energy-independent value at zero-energy. Then Bl(k) takes a form:

Bl(k) ≈ bl(0) +
1
2

√
αe2μ/h̄2Rlk2, (10)

where Rl = ρl(0, 0). Equation (10) is similar to the effective range expansion of the
scattering phase-shift in absence of the long-range potentials used to describe neutron–
proton collisions [8,9]. Hence, in analogy to the original effective-range theory, we can
call Rl as the “effective-range”, though the physical meaning of this parameter is rather
different. Since the error is of the order k4, it is expected that the approximation is valid
at low energies. We have already shown [21,22] that ρl(0, k) changes rather slowly with
increasing energy since MERT (using approximation (10)) is able to describe the scattering
cross-sections almost up to the energy thresholds for the first inelastic processes.

In the zero energy limit both integral elastic (Equation (5)) and momentum transfer
cross-sections (Equation (6)) can be expressed by the s-wave scattering length (A0):

σIE(k) ≈ σMT(k) = 4πA2
0, for k → 0. (11)

The s-wave scattering length can be expressed in terms of b0 as A0 = −
√

αe2μ/h̄2/b0.
At low energies, the leading contributions come mainly from the first two or three

partial waves (l = 0, 1, 2) while the contributions of higher partial waves are small and they
are not modified by the short-range forces due to very high centrifugal barriers associated
with large l numbers. Therefore the scattering phase-shifts experienced by higher partial
waves can be described by the relations provided by Ali and Fraser [28]:

tan ηl(k) = αalk2 + (α2bl + βcl)k4, for large l, (12)

where

al =
π

(2l + 3)(2l + 1)(2l − 1)
, (13)

bl =
π[15(2l + 1)4 − 140(2l + 1)2 + 128]

[(2l + 3)(2l + 1)(2l − 1)]3(2l + 5)(2l − 3)
, (14)

cl =
3π

(2l + 5)(2l + 3)(2l + 1)(2l − 1)(2l − 3)
. (15)

Here β is the effective quadrupole polarizability of the target atom. The effective
quadrupole polarizability comprises two terms: the adiabatic quadrupole interaction and
the non-adiabatic dipole interaction, which in general are opposite in sign and of almost
the same magnitude.

Substituting Equations (4) and (10) for two or three first partial waves (and Equation (12)
for higher partial waves) into Equations (5)–(7) one gets relations which can be fitted to ex-
perimental data in order to determine the unknown parameters (bl and Rl) of the effective
range expansion of Bl(k).
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2.2. Rigid Sphere Approach

In the rigid sphere model, the interaction potential between the charged particle and
the neutral polarizable atom has the following form:

V(r) =
{

∞, r < r0
−αe2/2r4, r > r0

(16)

where r0 is the radius of rigid sphere.
Since the radial Schrödinger equation for the potential V(r) can be solved exactly

using Mathieu functions, we showed in reference [27] that the expression for the scattering
phase-shift of lth partial wave takes a following form:

tan ηl =
sin δl − [Clm2

l + cot(πνl)(m2
l − 1)] cos δl

cos δl + [Clm2
l + cot(πνl)(m2

l − 1)] sin δl
, (17)

where ml , νl and δl are the same parameters as in Equation (4). Energy-dependent pa-
rameter Cl(k) can be determined from the continuity conditions imposed on the Mathieu
functions at r = r0 (see [27] for more details). The only adjustable parameter is r0, the radius
of the rigid sphere.

For a potential in Equation (16) the s-wave scattering length can be described ana-
lytically as a function of dipole polarizability (α) and the radius of the hard-sphere (r0)
as [29]:

A0 =
√

α cot
(√α

r0

)
. (18)

Integral elastic (σIE), momentum transfer (σMT), and differential elastic (dσ/dω) cross-
sections can be calculated using Equations (5)–(7).

3. Results

3.1. MERT

One can use nonlinear least-square regression procedures to fit MERT to chosen cross-
section datasets and determine unknown parameters in the effective range approximation
given by Equation (10). However, due to the multiparameter nature of the model, it seems
to be more appropriate to use a Bayesian statistical inference for parameter estimation [30].
In contrast to the classical fitting, the Bayesian inference does not provide single point
estimation in parameter space but rather the probability density functions (PDFs) of model
parameters whose final form is shaped by (experimental or theoretical) observational
data. Once posterior PDFs for each parameter are known, it is useful to provide a point
estimation representing “best-fit” values together with an estimate of its errors. It can be
done using either the mode or the mean value of PDF with the variance of distribution
representing its uncertainty [30]. Generally, the larger the standard deviation of the pa-
rameter, the less sensitive model is to the changes of this parameter. Alternatively, one
can give a credible region representing the predictive probability limit of the model due to
parameters uncertainties (see [30] or [31] for a definition of this quantity).

Bayesian parameter estimation requires the computation of multi-dimensional inte-
grals; a good solution for this computational problem consists of implementing Markov
Chain Monte Carlo (MCMC) methods [30]. MCMC algorithms using prior PDF and like-
lihood functions generate a sequence of model parameters from a Markov Chain whose
final stationary distribution is a desired posterior distribution. Here we adapt the MCMC
Matlab toolbox by M. Laine [32] containing the Delayed Rejection and Adaptive Metropolis
(DRAM) sampling algorithm with multivariate Gaussian proposal distributions introduced
by Haario and co-workers [33]. We assume a Gaussian likelihood and (uninformative)
prior PDF functions.

We choose available experimental total cross-sections (TCS) and momentum transfer
cross-sections (MTCS) below the ionization threshold as the observational data. TCS are
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measured usually in the most accurate (and absolute) way using electron beam techniques
(where electron collisions with single atoms are studied), while MTCS are derived indirectly
from the measurements of swarm transport parameters (where a cloud of electrons drifting
in an external electric field through dense atomic gas is investigated). Below the ionization
energy, TCS correspond to integral elastic cross-sections described by Equation (5), while
MTCS are given by Equation (6). To check the predictive capabilities of the present model,
the mean values of MERT parameters are used to calculate differential cross-sections (DCS,
Equation (7)) and compare with experiments. DCS are more sensitive than TCS and MTCS
to the correct values of the scattering phase-shift, so the comparison with the experimental
DCS is a good test for the correctness of the model.

3.1.1. Helium

In Figure 1a,b we show an example of Markov Chains (106 steps) for MERT parameters
and corresponding posterior PDFs obtained by fitting the model to experimental TCS for
electron–helium scattering by Buckman and Lohmann [34]. It was verified that below the
ionization threshold (24 eV) only two first partials waves (l = 0 and l = 1) are distorted by
the short-range interaction. Consequently, only four MERT coefficients (b0, R0, b1, and R1)
were used as the fitting parameters. The solid line in Figure 1c shows the MERT model
using mean values of determined PDFs, while the darkened gray area represents a 99%
prediction interval.

Similar MCMC fits were done to other data including TCS by Szmytkowski et al. [35]
and Shigemura et al. [36], as well as MTCS data available in the LXCat database:
https://nl.lxcat.net/home/ (accessed on 1 August 2021). The latter data source includes cal-
culations from S.F. Biagi’s FORTRAN code Magboltz 8.97 [37], the IST Lisbon dataset, [38],
and the Morgan dataset [39]. The mean values and standard deviations of MERT param-
eters are given in Table 1. In all studied cases, both PDFs for b0 and R0 parameters are
characterized by relatively narrow standard deviations, however only b0 mean values
are comparable with each other. Although mean R0 differs between fits, its values are
relatively small, not far from zero. It suggests that the short-range interaction is rather
weakly dependent on incident electron energy below the ionization threshold and the scat-
tering is strongly governed by the scattering length alone (A0). Large standard deviations
for b1 and R1 demonstrate that model is weakly sensitive to both parameters. It reflects
a small contribution of p-wave to the scattering process in almost the entire considered
energy range. Although the p-wave phase shift increases slowly with electron energy, its
contribution to cross-sections reaches of only about 20% at 20 eV i.e., the maximum energy
considered. Consequently, it is difficult to determine b1 and R1 more precisely.

Table 1. Mean values and standard deviations of MERT parameters (appearing in the effective range
approximation, Equation (10)) for e−+He elastic scattering. The results were calculated using the
dipole polarizability α = 1.407 a3

0 [40] and the effective quadrupole polarizability β = 0.0 a5
0.

Data A0(a0) R0(a0) b1 R1(a0)
Mean Std Mean Std Mean Std Mean Std

TCS (1 × 10−1–20 eV) [34] 1.177 0.002 −0.058 0.015 −139 520 6 501

TCS (5 × 10−1–20 eV) [35] 1.174 0.003 0.085 0.017 −86 519 −95 511

TCS (6 × 10−3 –20 eV) [36] 1.189 0.002 0.006 0.020 −90 528 −98 511

MTCS (1 × 10−4–20 eV) [37] 1.180 0.003 0.132 0.034 −42 488 −91 475

MTCS (2 × 10−1–20 eV) [38] 1.183 0.005 0.088 0.037 17 26 −10 34

MTCS (1 × 10−2–20 eV) [39] 1.186 0.002 0.146 0.020 34 359 −87 440
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Figure 1. MCMC−MERT fit to experimental total cross−sections for electron−helium scattering by
Buckman and Lohmann [34]: (a) Markov Chains for MERT parameters (b0, R0, b1, R1) determined
during the fitting procedure. (b) Posterior probability density functions (PDFs) for MERT parameters
estimated from Markov Chains. (c) MERT calculations using mean values of PDFs (solid line) and a
99% credible region (darkened gray area).
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Interestingly, b0 is very close to −1 in all fits (see Markov chains and PDFs in
Figure 1a,b), it implies that the s-wave scattering length for He is numerically equal
(within the error of the analysis) to the square root of dipole polarizability in atomic

units: A0 ≈
√

αe2μ/h̄2. Note however that this also corresponds to the position of the
maximum value of the p-wave centrifugal barrier, see Figure 2. In other words, the position
of the maximum of the repulsive long-range potential for p-wave determines effective
spatial boundaries of the target seen by low-energy electrons when colliding with the
He atom.
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Figure 2. The positive (repulsive) part of the long-range electron−helium effective potentials for
the p and d partial waves. The distance between interacting elements is scaled by the square root of
dipole polarizability (in atomic units).

The MERT results are compared with experimental DCS in Figure 3. It is clear that the
agreement is good. It proves that e−−He elastic scattering below the ionization threshold is
governed mainly by the s-wave scattering length. The latter quantity is equal approximately
to the square root of dipole polarizability of the He atom (in atomic units).
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Figure 3. Angular dependencies of MERT−derived differential cross−sections at 1.5, 5, 12, and 20 eV
for e−−He scattering. The present results are compared with experimental data of Brunger et al. [41],
Andrick et al. [42], Register et al. [43], and Shyn [44] .
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3.1.2. Neon

Similar MCMC−MERT analysis as for He has been done for other noble gases.
For neon (Ne), TCS have been measured by many research groups below the thresh-
old (16 eV) for the first Feshbach resonance (see references in [1,35]). Generally, good
quality MERT fits can be achieved for many data. However, we found that only TCS by
Szmytkowski et al. [35] and Shigemura et al. [36] covers enough wide energy range with
sufficient resolution to determine MERT parameters confidently for both s and p partial
waves. Both partial waves provide major contributions to the scattering cross-sections in
the considered energy range. In the present analysis we take into account also swarm-
derived MTCS from the LXCat database. This includes data by Puech [45], Morgan [39],
Siglo [46] , Robertson [47], and Magboltz 8.9 [37]. The results of MCMC−MERT fits are
given in Table 2. For comparison, we also present the results of simultaneous MERT fit
(using nonlinear least-squares regression) to the large collection of TCS datasets reported
in [24].

This time, unlike for He, fitting the model to different datasets provide similar spreads
of A0 and b1 mean values. Moreover, the R0 parameter is positive in all cases, and it
is much larger than for helium. On the other hand, the R1 coefficient is small (it varies
close to zero for different datasets). Hence the contribution of short-range interaction to
the p-wave scattering is rather weakly dependent on the incident electron energy. Large
standard deviations for b2 and R2 demonstrate that the model is weakly sensitive to both
parameters since the contribution of d-wave to the scattering process is relatively small in
almost the entire considered energy range (though not negligible at the upper part of the
energy range).

In Figure 4 we compare MERT DCS with experimental data. In general, the agreement
is good except for calculations using MERT parameters obtained from MTCS of Puech [45].
The discrepancy increases with the energy. This suggests that the interplay between the
MERT parameter for p and d partial waves in this particular case is not correct.

Figure 4. Angular dependencies of MERT−derived differential cross−sections at (a) 1, (b) 5, (c) 10,
and (d) 15 eV for e−−Ne scattering. The present results are compared with experimental data of Shi
and Burrow [48], Linert et al. [49], Cho et al. [50], Register and Trajmar [43], Gulley et al. [51], and
Szmytkowski et al. [35].
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Table 2. Mean values and standard deviations of MERT parameters (appearing in the effective range approximation,
Equation (10)) for e−+Ne elastic scattering. The results were calculated using the dipole polarizability α = 2.571 a3

0 [40] and
the effective quadrupole polarizability β = 0.0 a5

0 [20].

Data A0(a0) R0(a0) b1 R1(a0) b2 R2(a0)
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

TCS (7 × 10−3–16 eV) [36] 0.228 0.004 3.710 1.970 −0.192 0.014 −0.080 0.054 −1 50 1 50

TCS (5 × 10−1–16 eV) [35] 0.225 0.007 1.955 4.18 −0.192 0.013 −0.042 0.030 0.228 501 6 501

all TCS (7 × 10−3–16 eV) [24] 0.227 - 3.697 - −0.231 - −0.028 - 0.001 - 0.361 -

MTCS (1 × 10−4–16 eV) [45] 0.241 0.002 3.652 0.180 −0.201 0.004 0.001 0.016 −0.472 40 1 50

MTCS (1 × 10−2–16 eV) [39] 0.228 0.003 4.674 0.162 −0.225 0.007 −0.063 0.023 −0.455 48 1 49

MTCS (3 × 10−2–20 eV) [46] 0.226 0.002 4.779 0.160 −0.223 0.005 −0.067 0.022 −0.235 46 0.722 48

MTCS (3 × 10−2–7 eV) [47] 0.222 0.001 5.93 0.220 −0.239 0.004 0.074 0.026 −0.101 47 2 50

MTCS (1 × 10−4–16 eV) [37] 0.224 0.001 3.596 0.366 −0.212 0.005 −0.090 0.014 0.008 0.055 0.436 0.25

3.1.3. Argon

In the case of argon (Ar), we found that the trustworthy MERT parameters can
be obtained from the fits to TCS by Buckman and Lohmann [34], Ferch et al. [15], and
Kurokawa et al. [52]. All of these datasets cover almost a full region of Ramsauer–Townsend
minimum. In addition we verified that the following swarm-derived MTCS (from the
LXCat database) can be analyzed confidently with MERT: Puech [45], Morgan [39], IST-
Lisbon [38], Hayashi [53], and Magboltz 8.9 [37]. The results of MCMC−MERT fits are given
in Table 3. Similar to Ne, both A0 and b1 are comparable for different datasets. However,
the mean values of other MERT parameters ( R0, R1, R2, and b2) are characterized by some
spread, which prevents the determination of a confidence interval for these parameters.
Nevertheless, most of the MERT parameters provide DCS that are in excellent agreement
with experimental data, as shown in Figure 5. The exception is the fit to Puech dataset [45],
where too much uncertainty for the d wave parameters is obtained and, consequently,
the compliance with the measurements is lower.

Table 3. Mean values and standard deviations of MERT parameters (appearing in the effective range approximation,
Equation (10)) for e−+Ar elastic scattering. The results were calculated using the dipole polarizability α = 11.23 a3

0 [40] and
the effective quadrupole polarizability β = 0.0 a5

0 [20].

Data A0(a0) R0(a0) b1 R1(a0) b2(a0) R2(a0)
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

TCS (1.2 × 10−1–10 eV) [34] −1.500 0.010 −0.427 0.153 −0.448 0.011 0.072 0.037 0.206 0.001 0.315 0.014

TCS (8 × 10−2–10 eV) [15] −1.490 0.010 −0.142 0.010 −0.496 0.010 0.188 0.025 1.075 0.238 −0.272 0.175

all TCS (7 × 10−3–10 eV) [52] −1.400 0.010 −0.661 0.150 −0.463 0.016 0.130 0.046 0.339 0.092 0.213 0.065

MTCS (1 × 10−3–10 eV) [37] −1.460 0.010 0.101 0.167 −0.437 0.005 −0.198 0.054 0.069 0.022 0.425 0.012

MTCS (1 × 10−2–10 eV) [53] −1.490 0.010 0.845 0.472 −0.456 0.009 −0.017 0.163 0.206 0.136 0.317 0.104

MTCS (1 × 10−3–10 eV) [38] −1.560 0.010 1.557 0.198 −0.471 0.036 0.074 0.143 1.043 0.484 −0.305 0.394

MTCS (3 × 10−3–10 eV) [39] −1.490 0.010 1.189 0.044 −0.451 0.007 0.077 0.028 0.699 0.065 −0.063 0.054

MTCS (1 × 10−4–10 eV) [45] −1.570 0.020 1.742 0.396 −0.510 0.058 0.322 0.164 7.55 19.56 −5.53 15.92
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Figure 5. Angular dependencies of MERT−derived differential cross−sections at (a) 1, (b) 5, (c) 7.5,
and (d) 10 eV for e−−Ar scattering. The present results are compared with experimental data of Gib-
son et al. [54], Weyhreter et al. [55], Cho and Park [56], Srivastava et al. [57], and Milewska et al. [58].

3.1.4. Krypton

We analyzed a huge amount of available experimental TCS [35,52,59–61] and
MTCS [37,39,46,62–67] for krypton (Kr) at low energies. We found that the fits to only
three datasets (Buckman [59], Jost [61] and Hunter [64]) provide trustworthy MERT pa-
rameters that allow reconstructing experimental DCS below 10 eV. The results of fits are
given in Table 4. For comparison, we also show the results of MERT fit (see [23]) to DCS
measured with the magnetic-field angle analyzer, as reported by Zatsarinny et al. [68].
This experimental technique allows DCS measurements in full angular range (from 0◦ to
180◦). Moreover, the data of Zatsarinny et al. [68] were obtained in a vast energy range
with incredibly high resolution (15 meV). Consequently, as we showed in [23], the MERT
parameters can be extracted quite accurately.

Similar to Ne and Ar, both A0 and b1 are comparable for all four datasets. Other MERT
parameters are determined with much lower accuracy but still provide relatively good
agreement with experimental DCS (see Figure 6).

Table 4. Mean values and standard deviations of MERT parameters (appearing in the effective range approximation,
Equation (10)) for e−+Kr elastic scattering. The results were calculated using the dipole polarizability α = 16.86 a3

0 [40] and
the effective quadrupole polarizability β = 8.0 a5

0 [20].

Data A0(a0) R0(a0) b1 R1(a0) b2(a0) R2(a0)
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

TCS (0.175–10 eV) [59] −3.280 0.010 −0.509 0.068 −0.552 0.010 0.054 0.026 0.267 0.011 0.466 0.118

TCS (0.3–10 eV) [61] −3.380 0.030 0.929 0.077 −0.664 0.012 0.121 0.027 0.249 0.019 0.503 0.026

DCS (<10 eV) [23] −3.480 - 0.533 - −0.599 - 0.125 - 0.039 - 0.720 -

MTCS (0.1–8 eV) [64] −3.380 0.020 0.340 0.128 −0.527 0.030 −0.389 0.111 0.099 0.041 0.608 0.022
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Figure 6. Angular dependencies of MERT−derived differential cross−sections at (a) 1, (b) 5, (c)
7.5, and (d) 10 eV for e−−Kr scattering. The present results are compared with experimental data
of Srivastava et al. [57], Danjo [69], Linert et al. [70], Cho et al. [71], Weyhreter et al. [55], and
Zatsarinny et al. [68].

3.1.5. Xenon

The MCMC−MERT analysis of experimental TCS data for Xenon (Xe) has already been
reported in [25]. In Table 5 we give only those MERT parameters that allow reconstructing
experimental DCS below 10 eV. The most recent experimental TCS of Kurokawa et al. [52],
and older measurements by Alle et al. [72] and Guskov et al. [73] are not included in
the present analysis because the fits to these cross-sections do not provide correct DCS.
Additionally, in the present work, we analyzed different MTCS [37,45,62,64,66,74], however
only the fit to data by Hayashi [75] is consistent with DCS. For comparison, we also present
in Table 5 the results of simultaneous robust MERT fit to all available TCS (using MATLAB
routine for nonlinear least-square regression of multiple data sets) done in reference [25].

Since the d-wave plays an important role in e−+Xe elastic scattering below 10 eV, it is
much easier to determine MERT coefficients associated with this partial wave than for other
noble gases. Consequently, this time all three parameters A0, b1, and b2 are comparable
between different sets given in Table 5. Moreover, even R2 values are also of the same
order. However, the spreads of R0 and R1 are too large to estimate the confidence intervals
for both of them. Nevertheless, such uncertainties in both parameters do not have an
important influence on DCS calculations, which are in good agreement with experiments
(see Figure 7).

Table 5. Mean values and standard deviations of MERT parameters (appearing in the effective range approximation,
Equation (10)) for e−+Xe elastic scattering. The results were calculated using the dipole polarizability α = 27.04 a3

0 [40] and
the effective quadrupole polarizability β = 16.8 a5

0 [17].

Data A0(a0) R0(a0) b1 R1(a0) b2(a0) R2(a0)
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

TCS (0.125–10 eV) [60] −6.510 0.050 −0.136 0.163 −0.690 0.048 0.023 0.040 0.220 0.035 0.593 0.040

TCS (0.2–10 eV) [61] −6.870 0.011 −0.484 0.376 −0.670 0.082 0.232 0.057 0.170 0.083 0.663 0.071

TCS (0.5–10 eV) [35] −6.750 0.500 0.462 0.526 −0.630 0.127 0.023 0.074 0.290 0.100 0.644 0.095

all TCS (0.5–10 eV) [25] −6.490 - 0.097 - −0.680 - −0.019 - 0.200 - 0.668 -

MTCS (0.001–10 eV) [53]−6.210 0.010 −0.043 0.181 −0.775 0.097 0.163 0.051 0.184 0.135 0.810 0.113
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Figure 7. Angular dependencies of MERT−derived differential cross−sections at (a) 1, (b) 5, (c) 7.9,
and (d) 10 eV for e−−Xe scattering. The present results are compared with experimental data of
Register et al. [76], Gibson et al. [77], Linert et al. [78], and Weyhreter et al. [55].

3.1.6. MERT Parameters

In Figure 8a, we show MERT-derived scattering length versus the dipole polarizability.
We use values averaged over coefficients determined in MCMC−MERT analysis of different
datasets (Tables 1–5). The standard deviations of the mean values are used to indicate
the uncertainties in the determination of coefficients. For Ar, Kr, and Xe, the attractive
polarization potential overcomes the repulsive exchange interaction due to relatively large
dipole polarizabilities. Consequently, the scattering length is negative, and it changes
linearly with polarizability (as shown by the dashed line). On the other hand, for He and
Ne, the repulsive interaction with electrons is slightly dominant, making the scattering
length positive, and a small deviation from the linear dependency A0(α) is observed.

In Figure 8b, we plot the zero-energy contribution (b1) of the short-range potential to
the p-wave scattering phase-shift versus dipole polarizability. A clear regular tendency is
observed, b1 becomes more negative with increasing polarizability. We do not give a b1 for
helium due to the high uncertainties in MCMC−MERT analysis (see Table 1). However,
the observed tendency suggests that this parameter is small (close to zero) for He.

Unfortunately, we can not make a similar plot for the b2 parameter (i.e., the zero-energy
contribution of short-range potential to the d-wave phase shift) due to too high uncertainty
related to this coefficient. Nevertheless, a careful inspection of data from Tables 3–5 (Ar, Kr,
and Xe) shows that, unlike b1, the b2 parameter is always positive.

Similarly to the b2 parameter, the “effective ranges” (R0, R1, and R2) can not be
estimated accurately and they vary depending on the dataset used for analysis. Clearly,
the effective-range corrections are relatively small in the low-energy regime in comparison
to the leading contributions due to the s-wave scattering length, the p-wave, and the d-
wave zero-energy contributions. Consequently, the effective-range parameters are strongly
affected by measurement uncertainties in the experimental data in the low-energy domain.
Extending the energy range to higher energies in MERT analysis does not work since
the effective-range approximation (Equation (10)) becomes less accurate with increasing
electron energy. Nevertheless, the present results show that the effective-range corrections
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may be comparable with leading contributions in the case of s-wave for Ne and d-wave for
Xe, where the corresponding Rl values, obtained from different fits, are of the same order
of magnitude.
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Figure 8. (a) MERT−derived s−wave scattering lengths and (b) parameter b1 for rare gases plotted
versus static dipole polarizability. The presented results are the mean values of MCMC−MERT
analysis of different experimental cross−section datasets. The standard deviations of mean values
are given to demonstrate the uncertainties in the determination of coefficients. The dashed lines are
sketched as the guide to eyes to show general tendencies in A0(α) and b1(α) dependencies.

3.2. Rigid Sphere Model

The rigid sphere model requires the proper choice of the hard-core radius r0. We
found [27] that for positron scattering on noble gases, the r0 corresponds to the positions of
the principal maxima in the radial distributions of outermost atomic orbitals. It reflects
the fact that the positron does not penetrate far inside the atom due to the strong repulsive
static potential (that can be modeled as the hard core). The first attempt to apply a similar
model for electron scattering was done by Reisfeld and Asaf [79] who proposed to use the
atomic radii calculated from the van der Waals equations of state as the hard-core radii.
They aimed to describe the scattering length for electron interaction with noble gases as a
function of atomic dipole polarizability. However, such a choice of radii was criticized by
R. Szmytkowski [80] who proved its incorrectness. If the rigid sphere model applies, we
can benefit from Equation (18) relating r0 with the scattering length. In our calculations we
use mean values of the scattering length (〈A0〉) determined in the present MERT analysis.
Such a choice of r0 determination gives negative radii for Ar, Kr, and Xe. This is obviously
an unphysical outcome, limiting our analysis only to He and Ne, where r0 is positive.
Interestingly, a similar discrepancy between negative- and positive-scattering-length gases
was noticed in multiple-scattering theories [81] describing electron interaction with dense
gases. To solve this problem, Borghesani et al. [81–83] developed a hard-sphere-like model
for electron multiple-scattering.

All parameters used in the present model are given in Table 6. The r0 for electrons
is much higher than the corresponding values for positrons [27]. It may be due to the
different nature of the repulsive potential for both particles: positrons are repelled by static
interactions while electrons are repulsed by the exchange potential.

Table 6. Parameters used in the rigid sphere model: the dipole polarizability (α), the mean value of
the scattering length determined in the present MERT analysis (〈A0〉), and the rigid sphere radius
(r0) determined from Equation (18).

Atom α(a3
0) 〈A0〉(a0) r0(a0)

He 1.407 1.181 1.50

Ne 2.671 0.228 1.14
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In Figures 9 and 10 we show the scattering phase-shifts of s, p, and d-waves as well as
the integral elastic cross-sections calculated using the rigid sphere model. Present results
are compared with other theoretical and experimental determinations. For both gases,
the model provides the s-wave and d-wave phase shifts that are in excellent agreement with
other works to as high energy as 1 eV (for neon even up to 6 eV for s-wave). For p-wave,
the agreement is worse; nonetheless, since its contribution is small compared to s-wave
at low energies, the model can reconstruct experimental total cross-sections almost up
to 1 eV for both atoms. This result suggests the in the case of He and Ne, the repulsive
exchange potential felt by an incoming slow electron is sufficiently strong to be modeled
by the infinitive barrier, while the attractive part of the potential (static and polarization)
can be described effectively by the long-range r−4 interaction.
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Figure 9. The rigid sphere model (solid lines) for low-energy e−−He scattering: (a) s−wave
phase−shift, (b) p−wave phase−shift, (c) d−wave phase−shift, and (d) integral elastic
cross−sections. The model is compared with other works: phase−shifts by McEachran and Stauf-
fer [84], Hudson et al. [85], and Williams [86]; total cross−sections by Buckman and Lohmann [34],
Ferch et al. [87], Szmytkowski et al. [35], and Shigemura et al. [36].
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Figure 10. The rigid sphere model (solid lines) for low−energy e−−Ne scattering: (a)
s−wave phase−shift, (b) p−wave phase−shift, (c) d−wave phase−shift and (d) integral elas-
tic cross−sections. The model is compared with other works: phase−shifts by Garbaty and
LaBahn [88], O’Malley and Crompton [89], McEachran and Stauffer [90], Dasgupta and Bha-
tia [91], Saha [92], Williams [86], and Cheng et al. [18]; total cross−sections by Shigemura et al. [36],
Szmytkowski et al. [35], Ferch et al. [93], Gulley et al. [51], and Kumar et al. [94].

4. Summary

We performed an extensive MCMC−MERT analysis of cross-sections for electron
scattering from noble gases in the present work. We analyzed many experimental datasets
of integral cross-sections, including total and momentum transfer cross-sections (TCS
and MTCS). We selected those experimental data that comply with the differential cross-
sections (DCS) within the current model. This statistical analysis was done to determine the
confidence ranges for the MERT parameters appearing in the effective-range expansion of
the short-range potential. We found that both the s-wave scattering length and the p-wave
leading contribution can be determined confidently from available data. We showed that
both parameters change in a regular manner with the dipole polarizability of atomic targets.
On the other hand, other MERT parameters, including the “effective ranges”, can not be
determined with the same confidence. Nevertheless, some interesting tendencies can be
spotted from the present study. In particular, the d-wave leading term seems to be positive
for Ar, Kr, and Xe, where the d-wave contribution is not negligible below the threshold for
the first inelastic process.

In the particular case of e−–He scattering, we noticed that the s-wave scattering length
is numerically equal to the square root of dipole polarizability of helium when expressed
in atomic units. Interestingly, this also corresponds to the position of the maximum of the
centrifugal potential barrier for the p partial wave. In other words, the repulsive part of
p-wave interaction potential determines effective spatial boundaries of the helium atom
“seen” by slow electrons. Similar correspondence is not observed for other noble gases.

We also verified the applicability of the rigid sphere model for low-energy electron
interaction with noble gases. As could be expected, the hard-sphere model is roughly
applicable for He and Ne only (which do not show the Ramsauer–Townsend minimum)
since their integral cross-section changes slowly in the limit of zero energy (note also a
similar approach for He by Borghesani in this issue [83]). The model can not be applied for
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argon, krypton, and xenon, where the repulsive exchange interaction is not strong enough
with respect to the attractive part of the interaction potential. Consequently, the repulsive
part can not be modeled effectively by the infinitive wall.

Finally, we showed in this paper that MERT could describe cross-sections at low
energies for such highly polarizable systems as Kr and Xe. The question remains if our
model is also applicable for other atomic targets, for example, tungsten (W) and beryllium
(Be). Knowledge of cross-sections of atoms (including metals) is decisive in modeling
plasmas, particularly in thermonuclear reactors. In tokamak-like reactors, the temperature
and plasma density in the case of carbon-lining of the walls are well predicted by the
theoretical simulations. However, in the case of a W-lined reactor, the discrepancy between
the measured and modeled densities is by a factor of three [95]. It is due to the lack of
reliable cross-sections. The study of MERT applicability for other atoms is in progress.
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Abstract: The paper presents an analysis of data on the cross sections of electron impact ionization
of atoms of alkali metals, hydrogen, noble gases, some transition metals and Al, Fe, Ni, W, Au, Hg,
U. For the selected sets of experimental and theoretical data, an optimal analytical formula is found
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1. Introduction

The values of electron-atomic collision cross sections are used in various applications
of gas-discharge plasma. The bibliography on cross sections of electron-atomic collisions
has thousands of works, and probably an exhaustive review and selection of data is
contained in the works [1–6]. However, it should be borne in mind that a critical analysis of
the results of experimental data in the review work is very difficult due to the fact that the
errors given in the original works of the order of 1–3% differ from each other sometimes by
50%. Therefore, in the review work, only a comparative analysis of the results obtained is
really possible, which shows that at best, the relative errors of measuring cross sections are
of the order of 5–10%, and more often 20–50%, sometimes reaching 100%.

The most convenient form of presenting experimental and computational-theoretical
data is the selection of analytical approximations for them. Analytical approximation is the
most convenient and simple for computer modeling, for obtaining values at intermediate
points. In addition, it allows you to analyze the accuracy of the asymptotic approximation.
We started a critical analysis and evaluation of the cross sections for electron scattering by
noble gas atoms in a wide energy range in [7–10], where we found approximations for the
cross sections of elastic and inelastic collisions of electrons with rare gas atoms. From a large
number of experimental and calculated data on ionization cross-sections, by comparative
analysis, we selected the data for approximation by our analytical dependence. Ionization
by electron impact from the ground state of the atom is, perhaps, the most frequent method
for the formation and maintenance of a gas-discharge plasma. With a large excess of the
electron energy above the ionization threshold, both experimental methods and theory
provide good accuracy in measuring cross sections. However, there are practically no
experimental data for low energies, and therefore, it is difficult to speak about the accuracy
of theoretical calculations in this energy range.
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As before, when choosing data for approximating ionization cross sections, we limited
ourselves to considering ionization from the ground state, which is sufficient for modeling
applied problems of gas-discharge plasma.

2. Approximation of the Ionization Cross Section

The formulation of the problem of finding an analytical approximation of the ioniza-
tion cross section of an atom by an electron impact is based on the use of known analytical
estimates, the results of experimental measurements and numerical quantum mechanical
calculations. In 1912, Thomson proposed the dependence of the ionization cross-section on
the electron energy of the following form [11]:

σionization(ε) =
πe4

ε

(
1
I
− 1

ε

)
≡ 4πa2

0
Ry2(ε − I)

ε2 I
(1)

which is obtained for the case of a stationary valence electron at the energy of the incident
electron ε > I. It gives a linear increase in the ionization cross section with a small
excess of the collision energy over the ionization potential and reaches the maximum value
σmax = πe4/4I2 at the energy of the incident electron ε = 2I. Here, e—elementary charge,
a0—Bohr radius, Ry—ionization energy of a hydrogen atom. A more precise expression for
the ionization cross section, which takes into account the spherically symmetric motion of
the valence electron in the Coulomb field of the atomic residue, has the form [12]:

σionization(ε) =
πe4

ε

(
5
3I

− 1
ε
− 2I

3ε2

)
(2)

In this case, the maximum value σmax ≈ πe4/2I2 at the energy of the incident electron
ε = 1.85I.

For the first time, a semi-empirical formula for approximating the initial section
I < ε < 2I of the dependence of the ionization cross section on the energy of the incident
electron was proposed by Compton and Van Voorhees in 1925 [13] σionization(ε) = Ci(ε − I).
Wannier proposed a power dependence with the exponent equal to 1.127 to approximate
the initial section: σionization(ε) = Ci(ε − I)1.127, ε > I, which takes into account the interaction
of the free and bound electrons [14].

Lotz in [15,16] analyzed the experimental and theoretical data available at that time
and proposed a formula based on the Bethe–Born approximation, which has the form

σionization(x) = [A ln x +
N

∑
k=1

Bk(Δx/x)k]/xI2, x = ε/I, Δx = x − 1, x > 1 (3)

Since the first ionization potential I can serve as a natural scale of energy in the collision
of electron with atom, it is therefore convenient to introduce the dimensionless energy:
x = ε/I, Δx = x − 1, x > 1, A, Bk—fitting constants. The Lotz Formula (3) takes into account
the universal dependence of the cross section on the ionization potential and is consistent
with the asymptotic behavior of the Bethe formula σionization(ε) = (B + Alnε)/εI [17].

There are also a number of other approaches to calculating ionization cross sections.
For example, in [18], the paper presents semi-classical formula which allows the satisfactory
evaluation of ionization cross-section for ionization of atoms. Their formula consists of
the classical binary encounter approximation and the Born–Bethe approximation. This
approach is applied to the rare gases, atomic nitrogen, and fluorine. Their approach
leads to a better agreement with experimental results than the previous classical and
semi-classical methods.

A theoretical binary dipole (BED) model which does not contain adjustable parameters
is considered in [19]. There is also considered a simplified version, the so-called binary-
encounter-Bethe (BEB) model. Both types of cross sections approximations have three basic
components: the electron exchange term, the hard collision term, and the dipole interaction
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term. The ratios between these components were determined by requiring the asymptotic
total ionization cross section to agree with the asymptotic form given by the Bethe theory.

In [20], the cross sections are computed using a combination of spherical complex
optical potential formalism and complex scattering potential method. The results obtained
for thirteen elements are presented in the form of tabular values and are in good agreement
with available measurements and theoretical data. However, it should be noted that this
good agreement again has an error of the order of 10–30%, which corresponds to the scatter
of values from different sources. In addition, in the model used, it is necessary to know the
cross sections for elastic collisions, and to calculate the ionization cross sections, a relation
is introduced between the ionization and excitation cross sections with three adjustable
parameters for each type of atom. According to the authors of the work, the error in
determining the maximum value of the ionization cross section and the position of this
peak is of the order of 10%. We took their data for manganese, for which the approximation
we obtained is in much better agreement with the dependence of the maximum of the
ionization cross section on the polarizability and ionization potential given there.

In [21], the calculated cross sections are obtained for electron–atom scattering processes
represented by a complex potential. For tungsten, ionization cross sections are discussed
in the electron energy region from threshold up to 5000 eV against the available data
from the Deutsch–Märk formalism [18] and a semi-empirical complex scattering potential.
Papers [20,21] contain a rather detailed analysis of various approaches to calculating the
cross sections for electron–atom collisions (elastic and inelastic), and data are also given on
the most reliable (according to the authors) experimental data.

Since for the numerical simulation of many problems in plasma physics, the most
convenient form of representing the dependence of the ionization cross sections on energy
is the analytical dependence, then, we made an attempt to approximate the dependence of
the ionization cross section on energy by the following new formula:

σionization(Δx) =
αΔx

(1 + βΔx)γ (4)

where α, β, γ—fitting constants. For α = 4πa0
2Ry

2/I2, β = 1, γ = 2, it coincides with
Thomson’s Formula (1). Usually, when approximating by the Lotz Formula (3), 2–3 terms
are used, whereas in our Formula (4) there is only 1 term with 3 fitting factors. In addition,
our formula does not use a logarithmic dependence, and the power dependence makes it
much more convenient to use both for theoretical analysis and for computer simulation.

To determine the coefficients α, β, γ, the problem of minimizing the root-mean-square
deviation of the cross sections from their experimental values was solved by the standard
method of coordinate descent:

Δ2 =
1
N

N

∑
i=1

[
σf it(xi)− σexp(xi)

σexp(xi)

]2

(5)

where Δ—standard deviation, σexp(xi)—experimental values, σfit(xi)—calculated values
in points xi: i = 1, . . . , N. Minimizing the relative deviation [σf it(xi)− σexp(xi)]/σexp(xi)
instead of minimizing the simple deviation σf it(xi)− σexp(xi) has the advantage of giving
the correct statistical weight to cross sections at low and high impact electron energy. The
tables show the value of the standard deviation in a percentage.

3. Results

The characteristics of atoms and experimental data, the error and parameters of the
approximation of the ionization cross sections, as well as the general characteristics of the
ionization cross sections for the found approximations are collected in twelve columns
of Tables 1–4. The first column contains the name of the element and atom number, then
the static dipole polarizability and ionization potential, which characterize the properties
of the outer electron shell of atoms. In the fourth and fifth columns are the energy range
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and the number of points of the experimental data used, then the standard deviation of
the approximation and the values of the approximation coefficients of the ionization cross
sections. In the tenth and eleventh columns are the position of the maximum cross-section
and the maximum cross-section according to the approximating formula; in the twelfth
is the constant of the linear approximation of the initial section Cion = α/I obtained from
Formula (4). The data in all the tables for α, β, γ, εm and σ(εm) are received by us and
are new.

Table 1. Characteristics of hydrogen atoms and alkali metals, error and parameters of approximation,
general characteristics of cross sections according to the found approximations.

Atom Experiment Approximation Cross Section Value

No,
Symbol

K0,
a3

0

I,
eV

ε1 ÷ εN,
eV

N Δ,
%

α,
Å2 β γ εm,

eV
σ(εm),

Å2
Ci,

Å2/eV

1, H 4.5 13.595 14.6 ÷
3998 10 2% 0.827 0.351 1.91 56.2 0.628 0.061

3, Li 162 5.392 50 ÷ 500 6 1% 5.72 0.500 1.67 21.5 3.71 1.06

11, Na 162 5.139 6 ÷ 50 21 3% 9.56 0.521 1.90 16.1 4.93 1.86

19, K 287 4.339 50 ÷ 500 6 2% 6.54 0.362 1.57 25.3 6.47 1.51

37, Rb 310 4.176 50 ÷ 500 6 7% 4.83 0.206 1.82 28.9 6.69 1.16

55, Cs 385 3.893 50 ÷ 500 6 3% 3.87 0.127 1.81 41.7 8.76 0.994

Table 2. Characteristics of noble gas atoms, error and parameters of approximation, general charac-
teristics of cross sections according to the found approximations.

Atom Experiment Approximation Cross Section Value

No,
Symbol

K0,
a3

0

I,
eV

ε1 ÷ εN,
eV

N Δ,
%

α,
Å2 β γ εm,

eV
σ(εm),

Å2
Ci,

Å2/eV

2, He 1.383 24.587 30 ÷ 4000 21 3% 0.365 0.287 1.91 119 0.34 0.015

10, Ne 2.68 21.564 30 ÷ 4000 21 6% 0.373 0.136 2.00 180 0.68 0.017

18, Ar 11.08 15.759 20 ÷ 4000 23 3% 2.92 0.285 1.86 80 2.83 0.185

36, Kr 16.74 13.996 20 ÷ 4000 22 3% 3.51 0.269 1.80 79 3.80 0.251

54, Xe 27.06 12.127 15 ÷ 4000 23 6% 4.30 0.259 1.76 74 4.99 0.355

Table 3. Characteristics of atoms of transition metals, error and parameters of approximation, general
characteristics of cross sections according to the found approximations.

Atom Experiment Approximation Cross Section Value

No,
Symbol

K0,
a3

0

I,
eV

ε1 ÷ εN,
eV

N Δ,
%

α,
Å2 β γ εm,

eV
σ(εm),
Å2

Ci,
Å2/eV

22, Ti 148 6.83 10 ÷ 10,000 18 4% 19.1 0.654 1.85 19.1 8.17 2.80

25, Mn 101 7.432 8.0 ÷ 2000 29 8% 8.39 0.413 1.62 36.4 6.9 1.13

26, Fe 88 7.90 9.0 ÷ 200 59 5% 14.8 1.15 1.44 23.5 5.3 1.87

28, Ni 67 7.663 10 ÷ 10,000 17 6% 6.04 0.405 1.86 29.7 4.12 0.787

29, Cu 40 7.724 9.0 ÷ 200 59 2% 6.86 0.645 1.52 31.0 4.0 0.891

46, Pd - 8.33 10 ÷ 10,000 17 3% 3.09 0.146 1.89 72.3 5.7 0.371

47, Ag 67 7.574 8.0 ÷ 200 60 8% 7.65 0.565 1.46 36.7 5.45 1.01

74, W 115 7.98 15 ÷ 5000 17 6% 7.12 0.379 1.62 42.0 6.39 0.891

79, Au - 9.223 16 ÷ 21,800 15 8% 16.5 0.265 1.86 49.7 17.2 1.79
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Table 4. Characteristics of atoms of some metals, error and parameters of approximation, general
characteristics of cross sections according to the found approximations.

Atom Experiment Approximation Cross Section Value

No,
Symbol

K0,
a3

0

I,
eV

ε1 ÷ εN,
eV

N Δ,
%

α,
Å2 β γ εm,

eV
σ(εm),
Å2

Ci,

Å2/eV

4, Be 37.8 9.323 9.4 ÷ 112 28 13% 3.22 0.338 2.20 32.3 2.1 0.346

12, Mg 72 7.646 8.0 ÷ 200 60 3% 13.7 0.714 1.87 19.9 5.3 1.79

13, Al 162 5.986 6.0 ÷ 200 60 5% 11.6 0.337 1.80 28.2 9.97 1.93

14, Si 37 8.157 9.0 ÷ 200 59 4% 9.97 0.503 1.61 34.8 6.82 1.22

80, Hg 34.4 10.434 10.9 ÷ 29.2 36 20% 1.00 0.222 1.74 73.9 1.37 0.096

82, Pb - 7.415 8.0 ÷ 200 60 7% 12.8 0.592 1.52 31.5 8.20 1.74

92, U - 5.65 7.5 ÷ 500 30 19% 5.04 0.329 1.73 29.2 4.72 0.89

Table 1 shows the results for the alkali metals and hydrogen atoms, because the
hydrogen atom has one electron on the outer shell, as well as alkali atoms. The standard
deviation of the found approximations is of the order of 2–7%, which corresponds in order
of magnitude to the error of the initial data.

As a reference in Table 2 shows, similar data for noble gases were obtained in our
previous work [22].

Table 3 shows the results for atoms of some transition metals. The experimental
and theoretical data for Ti, Ni, and Pd were taken from [23]; Mn—from [20]; Fe, Cu,
Ag—from [24]; W—from [21]; Au—from [25].

Table 4 shows the results for atoms of some metals, which are often used in various
technological processes as working materials (for example, in the processes of etching or
sputtering in microelectronics). Metal vapors often appear in the plasma as impurities due
to sputtering of structural elements of installations (walls, cathodes, etc.). Experimental
and theoretical data for beryllium are taken from [26]; Mg, Al, Si, Pb—from [24]; Hg—[27];
U—[28].

The results shown in Tables 1–4 allow for a critical analysis of both experimental and
theoretical-computational data. Moreover, by interpolation or extrapolation, they can be
used to obtain an estimate of the ionization cross sections for metal vapors for which data
are not available. In particular, for platinum, experiments with which are carried out in
a gyrotron discharge [29], the following values of the coefficients for approximating the
cross sections can be recommended: α = 12, β = 0.32, γ = 1.72.

4. Discussion

The experimental data and the approximating curves are shown in Figures 1–6 for H,
Li, Na, K, Rb and Cs, respectively. In all plots, the experimental and theoretical values of
the cross sections are shown by markers, and the solid curve is the found approximations.
In addition, all figures show the values of the errors of the corresponding approximations.
Solid curves in all the figures are original and obtained in this work.

Figure 1. Electron impact ionization cross sections of hydrogen in Å2.
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Figure 2. Electron impact ionization cross sections of lithium in Å2.

Figure 3. Electron impact ionization cross sections of sodium in Å2.

Figure 4. Electron impact ionization of potassium in Å2.
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Figure 5. Electron impact ionization cross sections of rubidium in Å2.

Figure 6. Electron impact ionization cross sections of cesium in Å2.

Hydrogen. For hydrogen, there are many data, both theoretical and experimental,
obtained with good accuracy. Figure 1 shows the data from the works [30,31]. The
approximation coefficients for the values of the ionization cross sections from [30] are
in Table 1.

Lithium. The data for lithium ionization cross sections are taken from [32–35] and are
shown in Figure 2. The approximation is made for the values of the cross sections from [32].
In this work, there are only 6 experimental values, but the obtained approximation is in
very good agreement with the data from [34] for low (<15 eV) energies. Therefore, we
have chosen these data to determine the coefficients of analytical approximation of the
ionization cross section.

Sodium. For sodium, there are many data [32,34,36–42]. They are shown in Figure 3. A
large scatter is observed for energies above 100 eV. For the approximation, the ionization
cross sections were taken from [38]. The obtained approximation is in good agreement
with the majority of other authors even at ε > 100 eV.

Potassium. Data from the works [32,36,37,43] were analyzed for potassium; they are
shown in Figure 4. The approximation is made for the values of the cross sections from [32].

Rubidium. The data for the ionization cross sections of rubidium were taken from the
works [32,36,37,44]. The approximation is made for the data from [32]; see Figure 5.

Cesium. The data for the ionization cross sections of cesium were taken from the
works [32,36,45,46]. The approximation is made for the data from [32]. This approximation
is in good agreement with the theory [45] in the range 40 eV < ε < 150 eV; see Figure 6.

Thus, in this work, based on a review and critical analysis of the available experimental
and theoretical data on the cross sections of electron impact ionization of alkali metal and
hydrogen atoms, we have suggested new analytical approximation formula that have an
error of the same order of magnitude as the experimental data. As preliminary results,
similar analytical approximations were obtained for the ionization cross sections of atoms
of some transition metals, and for atoms of some other metals, which are often used in
various technological processes as working materials.
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Abstract: We introduce two models for the computation of direct ionization cross sections by positron
impact over a wide range of collision energies. The models are based on the binary-encounter-Bethe
model and take into account an extension of the Wannier theory. The cross sections computed with
these models show good agreement with experimental data. The extensions improve the agreement
between theory and experiment for collision energies between the first ionization threshold and the
peak of the cross section. The models are based on a small set of parameters, which can be computed
with standard quantum chemistry program packages.

Keywords: positron impact ionization; positron-molecule scattering; binary-encounter-Bethe

1. Introduction

We present two new models for the computation of cross sections for direct ionization
of atoms and molecules by positron-impact. Positrons can ionize atoms and molecules
by direct annihilation, positronium (Ps) formation and direct ionization. It is difficult to
distinguish these channels in scattering experiments. As a consequence, the recent review
articles by Brunger et al. [1] and Ratnavelu et al. [2] show only the sum of the cross sections
for Ps-formation and direct ionization for the majority of targets. This shows the need for
the development of an accurate theoretical model for the computation of the cross sections
for direct ionization. Such a model can be used to deduct the cross section for Ps-formation
from cross sections that cannot distinguish between different ionization channels.

For electron-impact ionization, Kim and Rudd [3,4] developed the binary-encounter-
Bethe (BEB) model. In this model, the binary-encounter version of the Mott cross section
for hard collisions at low collision energies is joined with the Bethe model for soft collisions
at high collisions energies. The model gives ionization cross sections for molecules that
contain light atoms with an accuracy of 10 percent over an energy range from the ionization
threshold up to a few thousand electron volts. Another advantage of the BEB model is
that it requires only quantities, which can be computed with standard quantum chemistry
computer program packages. An attractive feature of this model is that it is free of any
fitting parameters.

In order to formulate a BEB model for positron impact ionization, the similarities
and differences between electron and positron impact have to be taken into account. For
high collision energies—above a few hundred eV—the cross sections for both projectiles
are similar. For positron-impact ionization, there is no exchange interaction between the
projectile and the target. For energies close to the ionization threshold, the cross sections for
electron and positron impact ionization are expected to be different because of the different
charges of the projectiles. In the case of electron impact ionization, two electrons are ejected
in opposite directions because of electron–electron repulsion. In contrast, after ionization
by positron impact, an electron and a positron move in the same direction because of the

Atoms 2021, 9, 99. https://doi.org/10.3390/atoms9040099 https://www.mdpi.com/journal/atoms261
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mutual attraction (see, e.g., Chapter 5 in Charlton and Humberston [5]). Klar [6] showed,
using Wannier theory [7], that, just above the ionization threshold, the cross sections for
electron-impact and positron impact follow a power law of the type

σ(E) ∝ (E − B)−α. (1)

Here, E is the energy of the incoming projectile and B is the binding energy of the
ejected electron. The exponent α has the value 1.127 if the projectile is an electron and 2.651
if the projectile is a positron. Recently Fedus and Karwasz [8] derived a binary-encounter-
Bethe (BEB) model for positron-impact ionization. Their model is very similar to the BEB
model of Kim and Rudd [3] for electron-impact ionization, but without the term describing
the electron-exchange interaction. Furthermore Fedus and Karwasz [8] take the Wannier
threshold law into account to correct the cross section for collision energies close to the
ionization threshold. This is discussed in more detail in Section 2.

Rost and Heller [9] derived a similar threshold law with the help of semi-classical
Feynman path integrals and predicted that the Wannier-type threshold law for positron
impact is valid for energies up to about 3 eV above the ionization threshold. In order to
increase the validity of the Wannier theory towards higher energies, Ihra et al. [10] extended
it with unharmonic corrections. They derived a threshold law of the form

σ(E) ∝ (E − B)−αe−β
√

(E−B), (2)

with the values α = 2.640 and β = 0.73. This equation agrees very well for energies up to
10 eV above threshold with the experimental data of Ashley et al. [11] for the cross section
for positron-impact ionization of helium. More recently, Jansen et al. [12] extended this
approach by including the contribution from higher partial waves, whereas Ihra et al. [10]
considered only the lowest partial wave (L = 0), Jansen et al. [12] included the first 4 partial
waves and found a large contribution from the D-wave. Their final expression for the
threshold law is similar to the expression from Ihra et al. [10] but with the parameters
α = 2.640 and β = 0.489.

The purpose of this paper is to generalize the BEB-model for positrons [8] to follow
the threshold law derived by Ihra et al. [10] with the parameters given in Jansen et al. [12].
In Section 2, we present the two theoretical models of Fedus and Karwasz [8], and two
new models, which fulfill the threshold law of Jansen et al. [12]. In Section 3, we show
comparisons between the theory and all recommended direct ionization cross section listed
in the review by Brunger et al. [1]. In Section 4, the paper ends with conclusions.

2. Theoretical Model

The total cross section for direct ionization by positron impact can be written as the
sum of the partial ionization cross sections for the nocc occupied orbitals

σ(E) =
nocc

∑
i

σi(E). (3)

Here, σi(E) is the partial ionization cross section for ionization from orbital i. Each of
them will be computed with the BEB models described below.

2.1. BEB-0 Model

Following the BEB model of Fedus and Karwasz [8], the partial ionization cross section
is given by

σBEB
i (E) =

Si
E + Ui + Bi

Bi
E

[
(E − Bi) +

1
2E

(E − Bi)(E + Bi) ln
E
Bi

]
. (4)
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Here, E is the kinetic energy of the incoming positron, Bi is the electron binding energy
in orbital i and Ui is the expectation value of the kinetic energy of the bound electron in
orbital i. Here, all energies are given in eV. The energy-independent prefactor is given by

Si = 4πa2
0Ni

(
R
Bi

)2
, (5)

where a0 = 0.529 × 10−10 m is the Bohr radius, Ni is the occupation number of the orbital
and R = 13.6 eV is the Rydberg constant.

With the introduction of the reduced variables

ti =
E
Bi

and ui =
Ui
Bi

(6)

the cross section can be written in the compact form, which we will refer to as BEB-0 model

σBEB−0
i =

Si
ti + ui + 1

[
ln ti

2

(
1 − 1

t2
i

)
+ 1 − 1

ti

]
. (7)

2.2. BEB-W Model

Fedus and Karwasz [8] introduced a scaling function in the denominator of the term
in front of the brackets on the right hand side of Equation (7). This term regulates the
behavior of the cross section at energies closely above the ionization threshold and ensures
that the cross section follows the Wannier law. In the following, we call this the BEB-W
model. The partial cross section is given by

σBEB−W
i =

Si

ti + ui + 1i + f W
i

[
ln ti

2

(
1 − 1

t2
i

)
+ 1 − 1

ti

]
. (8)

Here, the scaling function is given by

f W
i =

C
(ti − 1)1.65 . (9)

Here, the exponent 1.65 follows from the exponent in the Wannier theory of Klar [6].
The exact value of the constant C is not known, and the Wannier law gives only the
proportionality of the cross section. In practical application, a value of C = 1 is chosen [8].

2.3. BEB-A Model

In a similar way, we can modify the BEB-0 model so that it fulfills the threshold law
derived by Jansen et al. [12]. We define the following expression as the BEB-A model

σBEB−A
i =

Si

ti + ui + 1 + f A
i

[
ln ti

2

(
1 − 1

t2
i

)
+ 1 − 1

ti

]
. (10)

Here, we introduced the scaling function

f A
i =

C′

(ti − 1)α−1e−βi
√

ti−1
, (11)

where α = 2.640. We choose the constant C′ = 1; its value is not specified by the threshold
law by Jansen et al. [12]. Here, we introduced the value

βi = 0.489

√
Bi
2R

, (12)
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which depends on the orbital i. This follows from the use of the reduced kinetic energy ti
in the expression for the cross section, instead of the excess kinetic energy ΔE = E − Bi as
in the formulation of the threshold law.

2.4. BEB-B Model

The BEB-0 model can be modified in different ways to fulfill the threshold law of
Jansen et al. [12]. An alternative is the introduction of an additional term in the brackets
on the right hand side of Equation (7). We suggest the following expression for the partial
ionization cross section, which we will call BEB-B model.

σBEB−B
i =

Si
ti + ui + 1

[
ln ti

2

(
1 − 1

t2
i

)
+ hi(ti)

(
1 − 1

ti

)
+ gi(ti)

(
1 − 1

ti

)α
]

. (13)

Here, the prefactor in the additional term is given by

gi(ti) = Cie−βi
√

ti−1, (14)

where the coefficients Ci are not specified by the threshold law, and we set them equal
to 1. The product of the two terms is exactly the threshold law of Jansen et al. [12].
The exponential factor decreases for increasing energies and switches this term off for high
energies. The function

hi(ti) = 1 − gi(ti) (15)

switches on the second term in the brackets at collision energies, for which the cross section
reaches its maximum value.

3. Results and Discussion

In the review by Brunger et al. [1], cross sections for direct ionization are recom-
mended only for the four molecules: hydrogen (H2), nitrogen (N2), oxygen (O2) and carbon
monoxide (CO). In the following, we present results for all four molecules.

3.1. Molecular Hydrogen

The review by Brunger et al. [1] recommends for the direct ionization of molecular
hydrogen by positron impact the experimental cross section data from Fromme et al. [13].
In these experiments the authors did not distinguish between the channels for direct
ionization and Ps-formation. More recent experiments by Jacobsen et al. [14] took great care
to distinguish between these different channels. For energies up to 100 eV, their cross section
is about 30 percent lower than the values from Fromme et al. [13]. Recent calculations
by Utamuratov et al. [15] with the convergent close-coupling (CCC) method are closer to
the data from Jacobsen et al. [14] than to the data from Fromme et al. [13]. Therefore, we
compare the results from the various BEB models with the data from Jacobsen et al. [14].

In Figure 1, we compare the cross sections for direct ionization from hydrogen
molecules. The figure shows the computed cross section, which we obtained with the
four BEB models, the experimental data from Jacobsen et al. [14] and the calculations by
Utamuratov et al. [15] with the CCC method. In our calculations, we used the molecular
parameters listed in the Hwang et al. [4], which are the same as those used by Fedus
and Karwasz [8]. Therefore curves for BEB-0 and BEB-W are identical to those by Fedus
and Karwasz [8]. The BEB-0 model gives the largest cross sections. The second largest
cross sections are computed by the BEB-W model, followed by the BEB-B and BEB-A
models. Close to the threshold, the BEB-B model gives slightly larger cross sections than
the BEB-W model. For collision energies above 200 eV, all four BEB models give nearly
identical cross sections. All of them are slightly larger than the experimental cross sections.
For collision energies below 100 eV, the BEB-0 and BEB-W models overestimate the cross
section, whereas the BEB-A and BEB-B models are very close to the experimental points.
The cross sections computed with the CCC method overestimate the experimental cross
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sections for collision energies up to 100 eV. Here, results from the CCC method are very
close to those obtained with the BEB-0 model. Between 100 eV and 500 eV, the CCC-results
are close to the experimental data. Above 500 eV, they are close to the results from the four
BEB models and are higher than the experimental values.

Figure 1. Direct ionization cross sections from H2 molecules by positron impact. The results from
calculations with the four different BEB models are shown by the magenta dash-dotted line (BEB-0
model), the green dotted line (BEB-W model), the blue dashed line (BEB-A model) and the solid
red line (BEB-B model). The data from the calculations by Utamuratov et al. [15] with the CCC
method are shown by the black dash-dotted-dotted line. Also shown are the experimental data (solid
black circles with error-bars) from Jacobsen et al. [14]. The error-bars correspond to the experimental
uncertainties of 3 per cent given by Jacobsen et al. [14].

3.2. Molecular Nitrogen

In Figure 2, we show the cross sections for direct ionization of molecular nitrogen by
positron impact computed with the four BEB models. Also shown is the experimental data
set from Marler and Surko [16], which is recommended in the review by Brunger et al. [1].
In the calculations with the BEB models, we used the molecular parameters listed in the
Hwang et al. [4], which are also used by Fedus and Karwasz [8]. The BEB-0 model gives
the largest cross sections, followed by the BEB-W model. The BEB-A and BEB-B model
give nearly the same cross sections over the whole energy range. For collision energies
above 200 eV, all four BEB-models give very similar cross sections. For collision energies
below 100 eV, the BEB-0 and BEB-W models overestimate the cross section, whereas the
BEB-A and BEB-B models are very close to the experimental values.

3.3. Molecular Oxygen

In Figure 3, we show the cross sections for direct ionization of molecular oxygen by
positron impact computed with the various BEB models. As for molecular nitrogen, we
show in the same figure the experimental data set from Marler and Surko [16], which is
recommended in the review by Brunger et al. [1]. In the calculations with the BEB models,
we used the molecular parameters given in the Hwang et al. [4]. These same values for
these parameters are used by Fedus and Karwasz [8]. As observed for hydrogen and
nitrogen, the BEB-0 model gives the largest cross sections, followed by the BEB-W model,
followed by the BEB-A and BEB-B models, which give very similar results. For collision
energies above 200 eV, the cross sections obtained with the four BEB-models are nearly
identical. For collision energies below 100 eV, all four models are close to the experimental
values and within the experimental uncertainties.
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Figure 2. Direct ionization cross sections from N2 molecules by positron impact. The results from
calculations with the four different BEB models are shown by the magenta dash-dotted line (BEB-0
model), the green dotted line (BEB-W model), the blue dashed line (BEB-A model) and the solid red
line (BEB-B model). Also shown are the experimental data (solid black circles with error-bars) from
Marler and Surko [16]. The values of the error-bars show the experimental uncertainties are taken
from the Table 12 in the review by Brunger et al. [1].

Figure 3. Direct ionization cross sections from O2 molecules by positron impact. The results from
calculations with the four different BEB models are shown by the magenta dash-dotted line (BEB-0
model), the green dotted line (BEB-W model), the blue dashed line (BEB-A model) and the solid red
line (BEB-B model). Also shown are the experimental data (solid black circles with error-bars) from
Marler and Surko [16]. The values of the error-bars show the experimental uncertainties are taken
from the Table 15 in the review by Brunger et al. [1].

3.4. Carbon Monoxide

In Figure 4, we show the cross sections for direct ionization of carbon monoxide by
positron impact. The results from calculations with the four different BEB models are
shown together with the experimental data set from Marler and Surko [16], which is again
the recommended data set in the review by Brunger et al. [1]. As already observed for
the other targets, the BEB-0 model gives the largest cross section, followed by the BEB-W
model. The cross sections computed with the BEB-A and BEB-B models are the smallest
ones in this set and are very similar to each other. Above 200 eV, all four models give nearly
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identical results. The experimental data from Marler and Surko [16] are only available from
the ionization threshold up to about 100 eV. For this target, the BEB-0 model agrees best
with the available experimental data. The reason for the inferior performance of the BEB-A
and BEB-B models might be due to the dipole moment of the carbon monoxide molecule.
The threshold laws of Jansen et al. [12] have been derived for the ionization of atoms
that are non-polar species. However, one should also keep in mind that there is a larger
spread among the experimental data points than the other targets, and no experimental
uncertainties are available for this set of data in Marler and Surko [16] or in the review by
Brunger et al. [1].

Figure 4. Direct ionization cross sections from CO molecules by positron impact. The results from
calculations with the four different BEB models are shown by the magenta dash-dotted line (BEB-0
model), the green dotted line (BEB-W model), the blue dashed line (BEB-A model) and the solid
red line (BEB-B model). Also shown are the experimental data (solid black circles) from Marler and
Surko [16].

4. Conclusions

We introduced two binary-encounter Bethe models (BEB-A and BEB-B) for the calcu-
lation of cross sections for direct ionization of molecules by positron impact. Both models
fulfill the threshold laws, derived by Jansen et al. [12]. We compared these models with
the BEB-0 and BEB-W models from Fedus and Karwasz [8]. In the energy range from
ionization threshold up to the maximum of the cross section around 100 eV, the BEB-A and
BEB-B models show better agreement with the available experimental data for molecular
hydrogen and nitrogen. For molecular oxygen, the cross sections computed with all four
BEB models are within the experimental uncertainties. Carbon monoxide is the only polar
molecule in the test set. Here, the BEB-0 model performs best, followed by the BEB-W
model. This suggests that the influence of the dipole moment on the ionization cross section
is important for energies from the ionization threshold up to the peak of the cross section.

Only a very limited number of cross sections for direct ionization by positron impact
have been measured [1,2]. Furthermore, ab initio calculations are only available for the
hydrogen molecule [15]. It is not expected that this situation will change in the next few
years, because of the difficulty to distinguish direct ionization and Ps-formation channels
experimentally. Taking into account the limitations, our present conclusions are: the BEB-
A and BEB-B models are the best models for the calculation of cross sections for direct
ionization by positron impact from non-polar molecules, and for polar molecules, the
BEB-0 model seems to be the most reliable method.

There are more experimental data available for total ionization cross sections, which
are the sums of cross sections for direct ionization and Ps-formation [1]. The BEB models
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discussed in this paper can be useful to extract the cross section for Ps-formation from
this data.

Recently we suggested [17] to build up a database with cross sections for positron
collision with molecules of biological interest. In the past few years, we computed elastic
cross sections for various biomolecules [18–21]. The BEB model from this paper will enable
us to fill the database with more data.

In two other recent publications [22,23], we computed elastic cross sections with the
R-matrix method [24] and substracted them from the experimental total cross sections [1].
With this procedure, we obtained the sum of the cross sections for Ps-formation, direct
ionization and other inelastic processes (e.g., electronic excitation). The BEB-model from
this paper can help to disentangle the data further. Such cross section data are important
for simulations of the effects of ion-beams on biological materials that are currently limited
to secondary electrons (see, e.g., Taioli et al. [25]).
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Abstract: The Binary-Encounter Bethe approach was applied to the estimation of total ionization
induced by electron impact in metastable states of diatomic molecules. The cross sections recently
obtained for N2 and CO are reviewed and the new results for H2 are presented, discussing their
reliability through the comparison with other theoretical methods.

Keywords: metastable states; electron-impact ionization; BEB approach; elementary processes in
plasmas

1. Introduction

The kinetics of nonequilibrium, low-temperature plasmas is driven by the presence of
radicals and excited species that can be regarded as reactivity enhancers, activating channels
otherwise inaccessible and modifying the route to products. Mechanisms activated by
excited species can significantly affect the efficiency of plasma technologies impacting
different fields of applications, i.e., CO2 plasma reduction for environment [1], plasma-
assisted combustion [2], plasma medicine, and agriculture [3,4].

The assessed theoretical framework for the description of transient and stationary
conditions of such plasmas is the state-to-state approach [5,6], where the quantum states of
chemical species are treated independently in the master equations for the time evolution
and characterized dynamically with state-specific cross sections and rate coefficients. The
chemistry is coupled to the kinetics of free electrons and the internal and electron energy
distributions are mutually affected. In this complex scenario, the metastable states, due to
their considerably longer lifetimes with respect to radiating excited states, can play a role,
acting also as a energy reservoir in the post-discharge relaxation phase and thus sustaining
the plasma through the secondary collisions. This is the case of N2(A3Σ+

u ) state in the
nitrogen afterglow [7,8] and also in high-enthalpy hypersonic flows [9], of CO(a3Π) in CO2
discharges [10] and the odd oxygen, i.e., O2(a1Δg), O1S excited states, key in the control of
ignition delay time in combustion [11]. The metastable c3Πu and quasi-metastable a3Σ+

g
states of H2 are relevant to the collisional radiative models for the simulation of negative
ion sources for fusion [12].

Despite efforts to compile complete databases for state-resolved cross sections [13], the
knowledge of data for electron scattering processes of metastables is still very scarce, thus
requiring novel efforts of the quantum chemistry community. From the experimental point
of view it poses difficulties entailing the preparation of the molecule in the excited state.

Focussing on the ionization process, the role of vibrational excitation of the molecular
target in enhancing the ionization was investigated in the framework of classical approaches,
i.e., the Gryzinski [14–19] and the universal function method [20–22], finding in general
a small dependence on the vibrational quantum number. On the contrary a significant
impact in the chemistry is expected for processes initiated from metastable excited states,
characterized by a considerable reduction of the ionization threshold. The total ionization
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cross section of N2 metastable was obtained within the formalism of Complex Scattering
Potential [23] and also partial ionization cross sections for N2(A3Σ+

u ) and O2(a1Δg) and
O2(b1Σ+

g ) to specific final molecular ion states were estimated in Refs. [20–22]. The H2
ionization from metastable and excited states was comprehensively investigated with the
Gryzinski approach [14] and with the quantum convergent close-coupling calculations
(MCCC) [24], demonstrating the predictive character of the classical approach that well
reproduces the most accurate theoretical results.

In this paper, the total ionization cross sections for metastable states of diatomic
molecules derived in the framework of the Binary-Encounter Bethe (BEB) approach devel-
oped by Kim&Rudd [25,26] are discussed. The method, attractively combining simplicity
and accuracy, was successfully and extensively applied to many atomic and molecular
systems in the ground state, including fusion-relevant species containing heavy elements
as beryllium/tungsten oxides, hydrides and nitrides [27], and also to the ionization of
low-lying excited states of carbon, nitrogen and oxygen atoms [28]. Here, the results
recently obtained for to the metastable states of N�

2 and CO� [29] are reviewed and new
results for H2 molecule are presented, discussing the comparison with other theoretical
methods.

2. BEB Approach

The BEB approach [25,26,30] is a derivation of the binary-encounter dipole model for
electron-impact ionization of atoms and molecules, allowing the cross section estimation in
those cases where the continuum dipole oscillator strength is not available.

The total ionization cross section is expressed as the sum of contributions from the
electron shells

σion
BEB(E) = ∑

i

4πa2
0NRy2

B2(t + u + 1)

[
ln t
2

(
1 − 1

t2

)
+

(
1 − 1

t
− ln t

t + 1

)]
(1)

with Ry the Rydberg constant, B the electron binding energy in the i-th orbital participating
in the ionization process, N its occupation number. t = E/B and u = U/B, U = 〈p2/2m〉
being the average kinetic energy in the orbital.

Equation (1) is obtained assuming for the the continuum dipole oscillator strength,
d f (w)

dw , an analytical inverse power form

d f (w)

dw
=

N
(w + 1)2 (2)

where w = W/B, with W = E − B the energy of the ejected electron.

3. Results and Discussion

The BEB cross sections requires the estimation of orbital parameters entering
Equation (1). Electronic structure calculations were performed with the GAMESS pack-
age [31,32].

In Ref. [29] ab initio unrestricted Hartree Fock (UHF) calculations were performed,
with the aug-cc-pVTZ basis set, in the D2h symmetry point group at the equilibrium
geometry of the metastable N2(A3Σ+

u ) (Req = 1.2866 Å). The dominant configuration at
Req is (1σ2

g1σ2
u2σ2

g2σ2
u1π3

u3σ2
g1π1

g). Following the procedure recommended in Ref. [26] the
α and β orbital values for the binding energy and the kinetic energy were averaged. The
threshold in the BEB approach depends on the B value for the highest occupied molecular
orbital (HOMO) 1πg, and was obtained subtracting the values for the corresponding orbital
in the α and β sets. This is the most critical aspect and determines the accuracy of the
results. The UHF value of 8.47 eV [29] is in fact lower than the expected value of 10.47 eV,
which corresponds to the first allowed, one-electron process of ionization connecting the
metastable state of the N2 molecule to the first excited state of the molecular ion, i.e.,
N2(A3Σ+

u (1π3
u3σ2

g1π1
g))− e(1πg) → N+

2 (A2Πu(1π3
u3σ2

g)). This process is highly favored
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with respect to the transition to the ground state of N+
2 (X2Σ+

g (1π4
u3σ1

g)), with a threshold
of 9.41 eV, that would require a two electron transition.

The total ionization cross section is displayed in Figure 1, also plotting the results
obtained artificially modifying the binding energy of the 1πg orbital, BHOMO, to repro-
duce the experimental ionization threshold, as suggested in Ref. [26], the cross section
being shifted in energy and slightly lowered in its maximum value. It is interesting to
compare the BEB cross sections with the results obtained in the framework of the Complex
Scattering Potential-ionization contribution (CSP-ic) formalism [23]. Actually, in this the-
oretical treatment the ionization threshold is an external parameter and two model were
proposed, model A based on the theoretical value for the formation of the N+

2 (X2Σ+
g ) state,

9.41 eV, and model B where the value 10.1 eV, corresponding to the appearance potential
in Ref. [33], is chosen. The two methods agree quite well and both predict an ionization
cross section that, regardless the threshold, is greater than the experiments, also reported in
Figure 1. In fact, the N2(A3Σ+

u ) state is the only molecular metastable state investigated
experimentally [33,34], the molecular beam prepared by quasi-resonant asymmetric charge
transfer neutralization and with subsequent ionization by electron beam. The two measures
were done with a different charge-transfer gas and the existence of the metastable in the
neutralized beam was postulated on the basis of the observed lowering of the ionization
threshold with respect to the ground state. As mentioned the apparent threshold in Ref. [33]
is lower than the theoretical value predicted for the N2(A) → N+

2 (A) process and it was
attributed to presence of vibrationally excited N2(A) molecules in the beam. The reasons
for discrepancies between theory and experiments, could be attributed to the fact that all
channels are accounted for in the total ionization cross section, while experiments focus on
the nondissociative ionization process. Furthermore, the procedure for the separation of
ground and metastable contributions to the ion signal is critical and could be a source of
uncertainty in the measure.
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Figure 1. BEB cross sections for total ionization (solid lines) of N2(A3Σ+
u ) metastable [29], (dashed

line) BEB cross section with BHOMO = 10.47 eV. CSP-ic results [23] for model A (blue open dia-
monds) and model B (red open diamonds). Experiments: (close blue diamonds) [33], (close red
diamonds) [34].

The total ionization for the metastable state of CO molecule (Figure 2) was derived in
the BEB approach [29], performing multiconfiguration self-consistent field (MCSCF) calcu-
lations not only at Req = 1.20574 Å , but also varying the molecular geometry, confirming
the dominant role of the configuration (3σ2 4σ2 5σ 1π4 2π). The orbital parameters were
again obtained with unrestricted Hartree Fock approach, finding the ionization thresh-
old at 9.50 eV. This value is greater than the one estimated from the energy spectrum,
7.97 eV, corresponding to the one-electron ionization CO(a3Π)− e(2π) → CO+(2Σ+) as
lowest-threshold channel.
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Figure 2. BEB cross sections for total ionization of CO(a3Π) metastable [29].

In the case of H2, the ionization cross sections of the metastable c3Πu, of the other
bound triplet a3Σ+

g and of the three lowest singlet excited states were calculated firstly
with the classical Gryzinski approach [35], deriving vibrationally-resolved datasets rele-
vant to collisional-radiative models, and recently re-evaluated with the accurate MCCC
approach [24] for the fundamental vibrational level v = 0 of the excited states. The total
ionization for the c state was also estimated within the complex potential (CSP-ic) for-
malism [36], considering two models based on a different choice of the lowest threshold
energy for the ionization. In model A, the energy limit was set to 2.82 eV, derived from the
theoretical energy of the excited c3Πu state estimated within the R-matrix approach [37],
while in model B, the ionization was fixed at the experimental value 3.66 eV [38]. The
significance of this choice is evident in the threshold behavior of the cross section, affect-
ing the low-temperature rate of the process, however at high collision energies the two
models converge.

Here, the two triplets c3Πu and a3Σ+
g are considered. In the ab initio step, MCSCF

electronic structure calculations were preliminary performed, with the aug-cc-pV5Z basis
set, at the equilibrium internuclear distance of each electronic state, confirming that a single
determinant representation is accurate, being the configuration coefficient close to unity
for both states. The excited configurations, (1σg 1πu) for (c3Πu) and (1σg 2σg) for a3Σ+

g ,
were then treated in the EKT (extended Koopmans’ theorem) method [39], available in the
GAMESS code, obtaining a quite accurate estimation of the ionization potential values. In
fact, in the case of the a state the binding energy of the excited orbital, 3.6245 eV, is very
close to the experimental threshold value 3.639 eV, while for the c state the EKT value,
3.31702 eV, is lower than the accurate threshold at 3.66 eV. The orbital parameters for the
two states are reported in Table 1.

Table 1. Orbital binding energy, occupation number, orbital symmetry, and kinetic energy for
H2(c3Πu) (1σg 1πu) and H2(a3Σ+

g (1σg 2σg) states at the corresponding equilibrium internuclear
distance, i.e., Rc

eq = 1.0376 Å and Ra
eq = 0.98879 Å.

B [eV] N U [eV]

c3Πu
22.59329 1 Ag 15.53490
3.31702 1 B2u 5.66877

a3Σ+
g

25.5348 1 Ag 17.2390
3.6245 1 Ag 2.7310

In Figure 3, the total ionization cross sections for the c3Πu and a3Σ+
g states of H2

are displayed as a function of collision energy and compared with the other theoretical
results. For the metastable, the Gryzinski and CSP-ic approaches both give values in good
agreement with the quantum MCCC cross section, this last representing the reference,
while the BEB model is about 10% lower at the maximum, the error reducing at higher
energies. Differently, for the a state the BEB cross section compares significantly better with
the accurate MCCC values, where the Gryzinski approach overestimates the maximum.
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Figure 3. Total ionization cross section of H2 (a) c3Πu metastable and (b) a3Σ+
g states. (solid line)

BEB model; (dashed line) classical Gryzinski approach [14]; (close diamonds) MCCC method [24,40];
CSP-ic method [36] models A (blue open diamonds) and B (red open diamonds).

The ionization from excited states is characterized not only by the lowering of the
energy threshold for the process, but also by a significant enhancement of the absolute value
of the cross section with respect to the ground state. In fact, the peak value increases of a
factor from 1.5 for N2 and 1.7 for CO to 10 for H2. In the hydrogen case, the enhancement
factor is that large because of the significant difference in the binding energy of the ejected
electron in the excited configurations with respect to the ground closed-shell configuration,
that, in turn, favors the ionization process. The BEB model accuracy is acceptable also
in the case of excited metastable states and related to the accuracy of the ab initio biding
energy of the highest occupied orbital.

4. Conclusions

The derivation of cross sections for electron-impact-induced processes in metastable
states of molecular species is a requirement for the creation of a complete kinetic scheme of
nonequilibrium technological plasmas. Among electron-scattering processes, the ionization
is key in the onset of electron density and the reduction of the threshold energy, when
initiated from excited states, largely enhances the effect. The BEB model for ionization was
widely used in the literature to estimate the cross sections for atoms and molecules in their
ground states, due to the noticeable accuracy of results despite the simplicity of the formu-
lation, free of external parameters, being the orbital values entering the working equation
obtainable by standard electronic structure calculations. In this paper, the total ionization
cross sections for metastables of diatomic molecules estimated within the framework of the
BEB approach are discussed, comparing the results with those obtained with other more
sophisticated theoretical methods, confirming discrepancies within 10% also characterizing
the ground state calculations.
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Abstract: More than one hundred years of experimental and theoretical investigations of electron
scattering in gases delivered cross-sections in a wide energy range, from few meV to keV. An analogy
in optics, characterizing different materials, comes under the name of the dispersion relation, i.e., of
the dependence of the refraction index on the light wavelength. The dispersion relation for electron
(and positron) scattering was hypothesized in the 1970s, but without clear results. Here, we review
experimental, theoretical, and semi-empirical cross-sections for N2, CO2, CH4, and CF4 in search of
any hint for such a relation—unfortunately, without satisfactory conclusions.

Keywords: electron scattering; positron scattering; total cross-sections; dispersion relation

1. The Need for Cross Sections

Cross sections for electron scattering are the input data in modeling and diagnostics
of industrial plasma, gas discharge [1], thermonuclear plasma [2,3], biological media [4,5],
and atmospheric processes, including extra-solar planets [6]. Such modeling requires
the knowledge of the total and partial (elastic, ionization, dissociation, and electronic,
vibrational, rotational excitation) cross sections in a broad energy range. Out of the gases
considered in this paper, CF4 is used for etching SiO2, in spite of the disadvantages resulting
from the presence of hot radicals (with the energy of few eV) in Ar/O2/CF4 plasmas. CH4
acts as an intrinsic cooler in carbon-lined tokamaks like JET, thanks to its high cross sections
for the vibrational excitations in the region of a few eV, see reference [7]. Resonant processes
in electron scattering in N2 and CO2 at a few eV (2.1 and 3.9 eV, respectively), enhancing
the vibrational and rotational transitions, are the basis of high-power IR lasers [8]. For
thermonuclear plasmas, the energy range up to 1 keV is of interest [9].

Experimental determinations are relatively easy for total cross section (TCS) in the
energy range 1–100 eV, using beam methods [10]. In some gases, like N2 and CH4 [7], the
uncertainty on the TCS is as low as 5%. At very low energies, swarm measurements, espe-
cially in gas mixtures, obtain self-consistent sets of partial cross sections, also for rotational
and vibrational excitations [11]. However, as discussed for H2O (e.g., reference [12]), such
sets may not be unique. Good agreements (e.g., within few per cent) exist for ionization
cross sections [13]. Scarce data are available for electronic excitations; however, their contri-
bution to the TCS are usually only a few per cent. Measurements of vibrational excitations
are difficult; similar to electronic excitations, they require a good energy resolution of
analyzers and integrating differential cross sections (DCS) in the whole 0–180◦ angular
range (see [14]). A “missing channel” in the measurements of partial cross sections in
molecules is, frequently, the dissociation into neutral fragments (see [15]). All these partial
cross sections should sum-up to the TCS. Our question is: may we deduce some more
information from (pretty precise) measurements of total cross sections to derive partial
ones? Are there any schemes of partitioning and/or semi-empirical indications?
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The knowledge of positron-scattering cross sections is rather fragmentary. Positrons
may be considered as complementary to electron scattering [16–18]; no exchange effects
occur for positrons and the overall interaction is weaker, as the attractive polarization
potential (of the electronic cloud) subtracts from the repulsive static potential of the nuclear
core. Modeling is needed in studies of positron annihilation for the defectoscopy of
the solid state [19] and for medical applications (positron emission tomography—PET).
Experiments, theory, and semi-empirical models are the input data for further modeling,
yielding improved sets of data (see [20]).

2. Semi-Empirical Models

Semi-empirical models have been developed to estimate partial cross sections. The
models try to relate electron (and positron) scattering cross sections in different energy
ranges to some molecular features, like the “radii” [21], total atomic number Z, dipole
polarizability, electron binding energies in the target, etc. At the very low energy range, in
particular for noble gases, the modified effective range theory (MERT) [22,23] extrapolates
the elastic (integral and differential) cross section down to zero energy. The input data for
MERT are the dipole polarizability and the integral and/or differential cross sections in the
range of sub-eV, see the detailed discussion for CH4 in reference [24]. MERT has also been
applied to positron scattering, say in Ar and N2, up to the energies of a few eV [25].

The relation to the dipole polarizability appears again in the intermediate (about
100 eV) energy range. Several authors [26,27] have indicated that the maxima of the
ionization cross sections rise with the rise of dipole polarizability. As the ionization at these
energies constitutes a significant part of the TCS, other works [28,29] suggested that the
TCS in its maximum also depends on the polarizability. Thus, the question arises: why are
the same molecular feature governed/reflected in the cross sections in two distant energy
ranges?

For ionization cross sections, the most widely used is the Born-Bethe binary encounter
model (BEB) [30]. It requires as input, data on the binding and kinetic energies of electrons
on given electronic orbitals. However, as far as the BEB model is successful in calculating
the total ionization cross section, i.e., the sum of ionization from single orbitals, it hardly
predicts these partial ionization cross sections, see, for example, reference [31].

A modified version of BEB is also used to predict electronic excitation cross sections [32].
The input for this model is the optical oscillator strength that can be deduced from
experimental zero-angle DCS for electronic excitations [33] at high (i.e., “Born”, see
reference [34]) energies.

Born approximation is also used for vibrational excitations in the region above the
threshold. For infrared-active modes it is quite successful both for electron and positron [35]
scattering. It is not useful in predicting the vibrational excitation in resonances. Note, in
this issue, two papers going beyond Born approximation: by Ayouz et al. [36] for electron
scattering on H2O and by Poveda, do N. Varella and Mohallem [37] for positron scattering
on H2.

The region of few eV is the domain of resonant states in electron-molecule scattering.
These states are usually classified as: (1) Feshbach resonances, resulting from the capturing
of the incoming electron to a free electronic orbital of the target, and showing up as narrow
structures in the elastic and TCS; and (2) shape resonances, due to temporary trapping of
the incoming electron inside the effective (i.e., comprising the centrifugal barrier) potential
well of the target, and showing-up as relatively broad maxima in TCS, frequently with a
vibrational-like structure superimposed, see Figure 1 for N2, and compare the highlighted
figure of reference [38] showing the two types of resonances in TCS in N2.

The contribution of Feshbach resonances to TCS is insignificant, but the shape res-
onances, say in N2 (Figure 1) and CO2 (Figure 2) give the maxima of TCS even by few
folds higher than the potential-scattering “background” [39–41]. The contribution of the
vibrational excitations in these maxima is high, roughly 1/6 of TCS in molecules like N2
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and CO and as much as 1/3 of TCS in 2Π resonances in CO2, N2O, OCS, see Figure 2
for CO2.

Figure 1. Integral (elastic, vibrational, total) cross sections for electron—N2 scattering in the low
energy range. MERT analysis [39] predicts a shape resonance: its position and width depend on the
choice of the low-energy data used as the input for the analysis. Elastic cross sections re-edited from
reference [39], vibrational excitation by Michael Allan [42], elaborated in reference [43]. TCS values
are taken from reference [10].

Figure 2. Integral (elastic and vibrational) cross sections for electron—CO2 scattering in the low
energy range. As for N2, the MERT analysis [40] predicts a shape resonance. Elastic cross sections
re-edited from reference [40], vibrational—measurements from the Kaiserslautern group [44], TCS—
recommended values from reference [45].

Advanced theories, like complex Kohn [46], Schwinger multi-channel [47], Schwinger
multi-channel with pseudo-potentials [48], close-coupling [49], and R-matrix [50] are
needed to reproduce the existence of resonances, especially shape ones. However, extend-
ing the MERT analysis [25] to energies of a few eV (as compared to ca. 1 eV in previous
works [23]) produced a rather unexpected result, namely resonant-like maxima in the
integral elastic cross sections [24,39–41], see Figures 1–4 for N2, CO2, CH4, and CF4, respec-
tively. These maxima appear from a fast change of single (s, p, d) phase shifts at energies
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of a few eV, see the insets in Figures 1 and 2. The positions, amplitudes, and widths of
maxima depend on the partial-wave channel in which the resonance appears as small
variations within the experimental uncertainties; the low-energy experimental data used
for the MERT lead to the resonances in different channels (Figures 1 and 2). In CH4 and
CF4 the resonances are broad and result from the contribution of more than one partial
wave [24,41].

Obviously, semi-empirical analyses can not substitute more rigorous theories, but the
lesson from such “MERT resonances [24,39–41]” is that the same potential may govern
elastic cross sections in the few meV and few eV energy ranges (this is not the case of some
ab-intio methods, using three different potentials in different energy ranges [51]).

Figure 3. Integral (elastic, vibrational, total) cross sections for electron—CH4 scattering in the low
energy range. For references see reference [24].

Figure 4. Integral (elastic, vibrational, total, dissociative electron attachment) cross sections for
electron—CF4 scattering in the low energy range. For references see reference [41].

3. Is Total Cross Section Merely a Sum of Partials?

Conceptually, TCS is considered as a sum of partial cross sections, that are usually re-
garded as independent quantities: this is a hidden hypothesis in many of the semi-empirical
approaches. Furthermore, theories usually treat the elastic and inelastic channels inde-
pendently. The approaches most successful recently, like the R-matrix [50] and Schwinger
multi-channels [48] stop before the thresholds for electronic excitations and/or ionization.
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In the intermediate energy range, a so-called optical potential [52] is commonly used
in calculations of the summed inelastic cross sections (i.e., all electronic excitations and
the ionization, also called "absorption" cross section), see, for example, [53]. Then, via
some assuptions on the partitioning scheme, the ionization cross sections were derived [5].
However, relations between these schemes and the parameters used in BEB models for
ionizations are not clear.

These approaches would suggest that scattering channels are independent. However,
other theories indicate that including additional channels influences results. This is well
seen in calculations of electronic excitations, say in H2O [54] and also in calculations that
go beyond the Born approximation of the near-threshold vibrational excitation for the same
molecule, see reference [36] in this volume.

Generally, experimental hints for channel coupling are faint. Figure 4 for CF4 would
suggest that the vibrational excitation in CF4 in the threshold region is simply summed
to the elastic (MERT) part. However, in the resonant regions, the two channels are clearly
coupled. The maximum in the vibrational channels anticipates the one in the elastic
scattering; moreover, in the elastic channel, a kind of shoulder is seen, instead. A similar
picture holds for NF3 [31]. Does this phenomenon reflect a high value of the transition
dipole moment (0.122a0e in CF4 as compared to 0.021 a0e in CH4 [55]) for the asymmetric
stretching vibrational modes?

In some molecules, like N2 and CO (see Figure 19 in reference [43]), a progression
of high (up to ν = 11) vibrational overtones in shape resonances was observed, but
excitations of these modes are shifted in energy, see Figure 1 for N2. This behavior has
been recently reproduced in N2 (and NO) shape resonances by the local optical potential
model [56,57] that assumes coupling between the discrete and continuum states of the
colliding system. The superposition of the elastic scattering and vibrational modes makes
the whole resonance peak much broader (but lower), resulting from the MERT model.

For positron scattering, it seems rather clear that inelastic channels, like positronium-
formation, sum-up with elastic channels, see Figure 5 for N2. In the case of Ar, the theory
that included absorption [58] indicated a step of the integral elastic cross section at the
opening of the absorption channels, but the effect is too small to be proved experimentally
at present. Another application of the optical potential for positron scattering at 100–300 eV
in argon [59] showed that “absorption” effects reduce the DCS at intermediate (30–120◦)
angles but raise it by a factor of a few folds in the zero-angle limit.

Figure 5. Total cross section for positron scattering on N2. All experiments (in spite of their method-
ological uncertainties) indicate the rise of TCS towards zero energy (MERT domain), a flat, hard
sphere-like region up to the threshold for the positronium formation (Ps—indicated by vertical
arrow), and the rapid (a Wannier-like) rise of TCS above this threshold. For references see [60].
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Figure 5 shows another interesting feature of the low-energy positron-scattering cross
sections: a constant value of TCS in range up to the threshold for positronium formation.
This feature is present in many targets, including H2, CO2, SF6. Taking a geometrical cross
section, one derives hard-sphere “dimensions” of the molecules, see reference [16]. Detailed
models [21,61] explain that this feature comes from an inter-play between the short-range
repulsive (i.e., of the nuclear core) and long-range attractive (due to the polarization)
interactions. Note also that a hard-sphere model applied successfully by Borghesani [62] to
electron-helium scattering (this issue).

Apart from He, TCS for electron scattering hardly relates to any “hard-sphere” radii. In
N2, the TCS at 5 eV (i.e., outside the resonance and still below the thresholds for electronic
excitations) is lower by a factor of three for positrons than for electrons. Does it reflect a
mere difference in the interaction potential or exchange effects? As the exchange effects
should be less significant at high energies, it is worth exploiting the TCS in a broad energy
range. This will be done via the dispersion relation that considers the high and very low
energy ranges together.

4. Dispersion Relation

In optics, the dispersion relation, i.e., the dependence of the complex refraction index
on the wavelength (Kronig-Kramers relations [52]) gives complete information on the
optical properties of the material. The dispersion relation for electron (and positron)
scattering has been formulated by Gerjuoy and Krall [63]. It relates the real part of the
scattering amplitude f (E,0) at a given energy E and zero scattering angle with the Born
amplitude for direct (fB) and exchange (gB) scattering [64].

Re f (E, 0) = fB(E, 0)− gB(E, 0) +
P

4π2

∫ ∞

0

k′σ(E′)
E′ − E

dE′ (1)

Kauppila et al. [65], already in the 1980s, performed measurements of TCS up to 700
eV and checked the validity of the dispersion relation for electron and positron scattering
on He, Ne, Ar. Their conclusion for electron scattering was negative (the relation does not
hold) and the relation seemed valid for positron scattering on these three atoms, within the
experimental uncertainties. Note, however, that in that time positron measurements at low
energies were subject to big uncertainties, see Figure 5; similarly, in the high energy part,
no Born region was reached, see Figure 6 (and compare with a similar Figure 7 for CO2).

An extra term for electrons, as compared to positron scattering, comes from the ex-
change part of the scattering amplitude (gB), that is non-analytic for negative energies [52].
However, the very idea of a dispersion relation led to the method of optical poten-
tial [6,59,66] widely used in calculations of absorption (i.e., electronic excitation and ioniza-
tion) cross sections adding the elastic part and TCS.

The dispersion relation should hold for any arbitrarily chosen lower limit of inte-
gration, i.e., for any energy, like it was checked by de Heer and collaborators for H and
He [67]. Choosing the low limit of integration at E = 0 simplifies the analysis: for non-polar
molecules (like the four considered here) the scattering at zero energy is isotropic and
the scattering amplitude f (0, 0) equals the minus scattering length. Consequently, the
dispersion relation simplifies to:

− A0 = fB − gB +
1

2π2

∫ ∞

0
σ(k′)dk′ (2)

The Born amplitude fB is the Fourier transform of the scattering potential U(r) corre-
sponding to the wave vector transferred K = ki − k f (ki and k f being the initial and final
scattering vector).

fB = − 1
4π

∫
exp(iKr)U(r)dr (3)

In principle, for an energy-independent potential (as should be the case of the static
interaction), the Born amplitude for the zero-momentum transferred (i.e., for scattering into
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the forward direction) should also be energy independent. Further, DCS is the square of the
scattering amplitude—in the Born approximation, it remains unchanged when the sign of
the interaction potential changes. This should be the case of electron and positron scattering
at “sufficiently” high energies, where the polarization potential may be disregarded. A
series of works [68–70] started in the 1970s to verify the Born conditions in elastic scattering
on molecules, see Figure 8 for CO2.

For positron scattering, we are not aware of similar DCSs extending to zero angles as
those shown in Figure 8. Kauppila et al. [71] measured DCS in Ar for electron and positron
scattering at 300 eV; the experimental points at 30–90◦ coincide within experimental uncer-
tainties, but the ab inito optical model [72] predicts the DCS at the zero angle by a factor of
two lower for positrons than for electrons.

One could expect that the information on the opposite-sign of the short-range scatter-
ing potentials for positrons and electrons is “hidden” in the MERT parameters, in particular
the “effective range”. However, as one of us shows (KF) in this issue [73] it is not so
straightforward. Nevertheless, in the next section we resume experimental data that can be
useful in evaluation of the dispersion relation.

Figure 6. High-energy total cross sections for electron and positron scattering on N2. The lines are the
Bethe-Born fit, Equation (4). For references for electron scattering see the review [43]; for positrons
Detroit [74] and Trento data [75] are used.

Figure 7. High-energy total cross sections for electron—CO2 and CF4 scattering. The line is the
Bethe-Born fit, Equation (4). Experimental data are from Madrid laboratory [76], Trento [77,78],
Detroit [79] and Gdańsk [80].
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Figure 8. In search of the forward Born amplitude. Do DCSs at high energies tend to a constant
value? Data for CO2 are by Bromberg [69]; a single point for 10◦ at 400 eV by Iga et al. [81] coincides
with Bromberg’s data.

5. Experimental Input

Lack of experimental data was one of the obstacles in verifying the dispersion relation
and its modifications in the past [64]. Here, we propose an “experimental” dispersion
relation that requires, apart from total cross sections in a wide energy range (asymptotically
from 0 to ∞), scattering length, i.e., the integral cross sections at zero energy and the
elastic DCS at zero momentum transferred (i.e., asymptotically at zero angle) and high
(“Born” [34]) energy.

In the zero-energy limit, the already mentioned new approach to MERT [24,39] con-
sisted of fitting the phase shifts and cross sections directly, to increase the fidelity in the
zero-energy limit and extend its applicability above 1 eV.

At high energies, two groups—from Trento [82–84] and Madrid University [76,85]—
extended TCS measurements on molecules up to 3–5 keV. Trento measurements [83]
above 1 keV were subject to the angular resolution error (mainly in the inelastic channel)
underestimating the TCS at their highest energies by some 20–30% [7]. The Madrid
group [76] used the energy analyzer at the exit of the scattering channel (therefore excluding
electron scattered inelastically into forward angles), so their TCS are reliable up to their
highest energies. They also promptly applied the Bethe-Born formula, extrapolating TCS
into very high (up to relativistic) energies. This formula contains a logarithmic term that
reflects the infinite range of the Coulomb interaction between target electrons and the
incoming electron/positron [86].

σ(E) = A/E + B log(E)/E. (4)

The scattering length A0 was adopted from the MERT-free fit in reference [39,40]
for N2 and CO2, respectively, and from MERT fits in references[24,41] for CH4 and CF4,
respectively.

Born forward scattering amplitude has been deduced from low-angle elastic dif-
ferential cross sections at high energies. For N2, numerous elastic DCS measurements
were completed [68,70,87]; Zhang et al. [70] extrapolated them to the zero-angle, obtaining
the value of 17.4 × 10−16 cm2/sr (and declaring 1% error bar). For CO2, the DCS mea-
sured [69] down to 2◦ already at 300–500 eV indicates a constant zero-angle value, of about
67 × 10−16 cm2 (with an uncertainty of ±10%), see Figure 8.

For CH4 and CF4 we used the data of Sakae et al. [88], extending up to 700 eV, but the
uncertainty of these values is high (some 20%). The lowest angle measured was 5◦, the
extrapolation was done via a polynomial fit (no details given), and the experimental data
agree in shape with the model of Jain [51] but are a factor of three lower at the zero angle,
agreeing with much earlier theory of Szabo and Ostlund [89].
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Parameters A and B of the Born-Bethe fit to the electron TCS (Equation (4),
Figures 6 and 7) are: −60, 310; −100, 510; 52, 232; and 317, 923, for N2, CO2, CH4 (see
ref. [7]), and CF4, respectively. Note that the parameter B scales with the total number n of
electrons in the target (the ratio B/n amounting to about 22 in units) — a similar conclusion
in the high energy limit was drawn by García and Manero [90]. On the other hand, the TCS
in its maximum (but outside resonance) correlates well [29] with the polarizability, see TCS
values at 30 eV (around the maximum) in Table 1.

Table 1. In search for dispersion relation in electron-molecule scattering.

Molecule A0 (a0) fB(∞, 0) † (−A0 − fB)(a0)
∫

TCS (a0) ‡ α(a3
0)

§ TCS@30 eV ¶ B ||

N2
+0.404 [39]

7.89 [70]
−8.29

16.5 11.5 12.8 [91] 310+0.75 * [38] −8.64

CO2 −6.65[40] 15.4 [69] −8.75 23.9 16.9 16.2 [77] 510

CH4 −2.00 [24] 6.5 * [88] −4.50 16.1 16.5 16.5 [92] 232

CF4 −2.80[41] 19 * [88] −16.20 35.7 19.1 20.4 [80] 923

* data read from the figure. † The Born direct scattering amplitude fB(E = ∞, θ = 0) is taken as the square root of the differential cross
sections at zero angle and at sufficiently high energies (see Figure 8). ‡ The integral over TCS in the dispersion relation, Equation (2), is
taken within limits 10−6 eV to 106 eV (this range assures the independence of the result from the limits of the integration); the uncertainty
of the integral is some 10%. § For dipole polarizabilities we give experimental values (see NIST database [93]). ¶ TCS in column 7 are in
10−16 cm2 units. || B stays for the high-energy term in Bethe-Born TCS approximation, Equation (4) (in a0R units, R being the Rydberg
constant); the uncertainty is about 10%, see Figures 6 and 7.

The integral over the TCS in Formula (2) was completed in the energy range from
10−6 eV to 106 eV: such a choice assures that the value of the integral does not depend
significantly (less than 1%) on the integration limits. The integral was performed in three
sub-sets: (i) MERT region from 10−6 eV to 1 eV, see the discussion in Figures 1–4, (ii) the low
and intermediate energy range 1–1000 eV, using the recommended TCS from reference [45],
(iii) high energy range—using the extrapolations via Bethe-Born fit, see Figures 6 and 7.
Results for electrons are given in Table 1.

The check of the dispersion relation for positrons is given in Table 2. The scattering
length A0 for N2, CO2, and CH4 were taken from our previous papers [25,94]. We are not
aware of the experimental TCS for CF4 positron-scattering in the very low energy range.
In the high energy limit it was noted [75] that TCS (for N2, Ar, Kr) merge in the range of
a few keV. As shown in Figure 6, for N2, the coefficient B of the high-energy Bethe-Born
fit is, within experimental uncertainties, equal for positrons and electrons. This result is
also supported by the optical-model calculations by Khander et al. [95] (this issue) for
electron and positron scattering on such a heavy atoms as radon. Parameters A and B of
the Born-Bethe fit to positron TCS, Equation (4), are: −130, 310, −240, 510, 0, 232, 317, and
923, for N2, CO2, CH4, and CF4, respectively.

Table 2. In search for dispersion relation in positron-molecule scattering.

Molecule A0(a0) fB(∞, 0) † (−A0 − fB)(a0)
∫

TCS (a0) α(a3
0) TCS@30 eV ‡

N2 −9.27 [25] −7.89 [70] 17.16 13.8 11.5 8.2 [74]

CO2 −4.61 [40] −15.4 [69] 20.01 18.7 16.9 10.2 [74]

CH4
−5.60 to −6.5 [88]

12.10
13.8 16.5

10.6 [96]
−8.50 * [24] 15.00 11.1 [97]

* depending on low-energy experimental data used for MERT fit. † The absolute values of the Born direct scattering amplitude
fB(E = ∞, θ = 0) for positrons are taken as equal to those for electrons even if we do not have “exact” theoretical either experimental
evidence; the optical model by Jochain and Potvliege [59] for Ar predicts at 100–300 eV and zero-angle the DCSs lower by a factor of two
for positrons than for electrons; the sign of the Born amplitude is negative as the (static) interaction is repulsive. ‡ TCS in column 7 are in
10−16 cm2 units.
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Let us review the main points from the present comparisons (see columns 4 and 5 in
Tables 1 and 2). The dispersion relation, as proposed originally, seems to be quite reasonable
in the case of positron scattering. The optical model [72] tells us that the Born amplitude
for the real (static + polarization + absorption) potential may be lower for positrons than
for electrons. In fact, for CH4, where the DCS for electrons are probably underestimated
(we are not aware of the data similar to these in Figure 8), the values in column four (the
difference of terms) and column five (the integral) in Table 2 are equal within uncertainties.
This would confirm the conclusion of Kauppila et al. that the dispersion relation holds for
positron scattering on noble gases, and also on noble-like CH4. To resolve the answer for
N2 and CO2, the ab initio (i.e., not semi-empirical) Born amplitude for positrons is needed.

For electrons, the situation is more unclear; the very sign of the terms disagree. More-
over, the results suggest that the contribution of the Born exchange scattering amplitude
(gB) should be significantly greater than the Born direct scattering amplitude ( fB) to hold
the dispersion relation. What remains is the question of resonances, does the dispersion
relation holds when the projectile and the target molecule do not form bound states [98]?
Out of the four discussed molecules none showed stable negative ions, only temporary
negative states [99] decaying into radicals/atoms are formed via resonances (see example
for CF4 on Figure 4). In turn, detailed searches for resonances in positron scattering gave a
negative result [100].

We are not able to draw clear conclusions from the present comparisons. Still, many of
the experiment-deduced components of the dispersion relation lay within high uncertainty
limits. For sure, different quantities in the dispersion relation are interlinked. The input
from the theory is necessary.
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