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Preface to ”Intelligent Biosignal Processing in

Wearable and Implantable Sensors”

Wearable technology, including sensors, sensor networks, and the associated devices, have led to

the development of a variety of applications. Long-term, noninvasive, and nonintrusive monitoring

of the human body through the collection of data on as many as possible biometrics and body state

indicators as possible is the major goal of healthcare wearable technology developers. For instance,

patients suffering diabetes require a simple noninvasive tool to monitor their blood sugar levels on

an hourly basis. Those suffering from seizure require the necessary instrumentation to alert them

before any seizure onset to prevent fall injuries. Stroke patients need to have their heart rate recorded

constantly. These examples show how crucial and necessary wearable healthcare systems can be.

A remote low-cost monitoring strategy significantly promotes social and clinical wellbeing. This

can only be achieved if sufficiently reliable recorded information from the human body is available.

Such information may be metabolic, biological, physiological, behavioural, psychological, functional,

or movement-related.

On the other hand, continuous development of mobile telephones and their improvement up

to now, together with availability of large size memory and wideband communication channels,

significantly ease achieving the above objectives without hospitalisation or the need to have care

takers in hospitals and care units for a long time. This may be considered as a revolution in

human welfare. Therefore, more effective and efficient collection of biosignals and biometrics from

human body has a tremendous potential for impacting and influencing healthcare and the associated

technology.

The state of a patient during rest, walking, working, and sleeping can be well recognised if

all the biomarkers of the physiological, biological, and behavioural changes of human body can be

measured and processed. This requirement sparks the need for deployment of wearable multi-sensor

and multimodal data collection systems. Hence, wearable technology and body sensor networks are

central to a complete solution for patient monitoring and healthcare.

The measurable underlying information may not, however, always be visible to the naked eye,

and therefore, signal processing, machine learning, and artificial intelligence (AI) techniques have

been constantly under research and development for better understanding and recognition of human

body states from records of raw data. Although the objective is to have noninvasive and less intrusive

sensors, the use of implanted sensors is inevitable particularly for recording of in vivo information,

where the human bioindicators need to be monitored for longer times.

Incorporation of AI into medical care leads to the so-called third generation of pervasive health

applications. This recent branch of research area aims to combine continuous health monitoring with

other sources of medical information and knowledge. Thus, the main objective in third-generation

applications is to integrate intelligent agents that implement technologies such as stream and

real-time processing, data mining, machine learning, and genetic and multi-omics data. On the

other hand, the use of smart sensors paves the path for personalised medicine, which is one of

the objectives of future healthcare. With more intelligent systems developed through advanced

processing and learning algorithms, the number of sensors can be also reduced, which is another

objective of less-intrusive monitoring.

This Special Issue aims to address major advances in the integration and intelligent processing

of data coming from wearable, portable, or clinically approved implantable devices. Another aim

is to highlight new research opportunities in biomedical informatics and the clinical environment.
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Incorporation of on-chip machine learning and AI can lead to the realisation of smart sensors.

In this respect, this Special Issue came as a natural step and attracted the attention of a large

number of authors from all over the world enthusiastically working in the related areas. The audience

for the resulting book is considered to be numerous researchers, academics, students, and anyone

passionate about the synergy between signal processing and AI for patients’ benefit.

Hariton-Nicolae Costin and Saeid Sanei

Editors
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1. Introduction

Wearable technology including sensors, sensor networks, and the associated devices
have opened up space in a variety of applications. Long-term, noninvasive, and nonin-
trusive monitoring of the human body through collecting as many biometrics and body
state indicators as possible is the major goal of healthcare wearable technology developers.
Patients suffering diabetes need a simple noninvasive tool to monitor their blood sugar on
an hourly basis. Those suffering from seizures require the necessary instrumentation to
alarm them before any seizure onset to prevent them from a fall injury. Stroke patients need
their heart rate recorded constantly. These are only some examples to show how crucial
and necessary the wearable healthcare systems can be.

A remote low-cost monitoring strategy significantly promotes social and clinical
wellbeing. This can only be achieved if sufficiently reliable recorded information from the
human body is available. Such information may be metabolic, biological, physiological,
behavioural, psychological, functional, or movement-related.

On the other hand, the development of mobile telephones since the early 1990’s
and their improvement till now, together with the availability of large size memory and
wideband communication channels, make it significantly easier to achieve the above
objectives without hospitalising patients in hospitals and care units for a long time. This
may be considered a revolution in human welfare. Therefore, more effective and efficient
collection of biosignals and biometrics from the human body has a tremendous impact and
influence on healthcare and the technology involved.

The state of a patient during rest, walking, working, and sleeping can be well recog-
nised if all the biomarkers of the physiological, biological, and behavioural changes of
human body can be measured and processed. This requirement sparks the need for the
deployment of wearable multi-sensor and multimodal data collection systems. Hence,
wearable technology and body sensor networks are central to a complete solution for
patient monitoring and healthcare.

The measurable underlying information, however, may not be always visualized by
the naked eye, and therefore, signal processing, machine learning, and artificial intelligence
(AI) techniques have been constantly under research and development in the hope that
these techniques can achieve a better understanding and recognition of the human body
state from raw data records. Although the objective is to have noninvasive and less intrusive
sensors, the use of implanted sensors becomes inevitable for particular in-vivo recordings
where the human bioindicators need to be monitored for a longer time.

The incorporation of AI into medical care leads to the so-called third generation of per-
vasive health applications. This recent branch of research area aims to combine continuous
health monitoring with other sources of medical information and knowledge. Thus, the
main objective in third-generation applications is to integrate intelligent agents that imple-
ment technologies such as stream and real-time processing, data mining, machine learning,

Biosensors 2022, 12, 396. https://doi.org/10.3390/bios12060396 https://www.mdpi.com/journal/biosensors1
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and genetic and multi-omics data. On the other hand, the use of smart sensors paves the
path for personalized medicine, which is one of the objectives of future healthcare. With
more intelligent systems developed through advanced processing and learning algorithms,
the number of sensors can also be reduced, as less intrusive monitoring is another objective.

This Special Issue aims to address major advances in the integration and intelligent
processing of data coming from wearable, portable, or implantable clinically approved de-
vices. It is also intended to highlight new research opportunities in biomedical informatics
and the clinical environment. The incorporation of on-chip machine learning and AI can
lead to the realization of smart sensors.

Delightfully, this Special Issue attracted the attention of a large number of authors
enthusiastically working in the related areas. Among them the following submission topics
successfully achieved the goals of this issue due to their pioneering contributions in the field.

The study by Sawan et al. [1] applies EEG-based brain-machine interfaces during
medical rehabilitation, by separating various tasks during motor imagery (MI) and assimi-
lating MI into motor execution (ME). The authors implement intelligent, straightforward,
comprehensible, time-efficient, and channel-reduced methods to classify ME versus MI and
left- versus right-hand MI. Aside from time-domain information, they map EEG signals to
feature space, using extraction methods including statistics, wavelet coefficients, average
power, sample entropy, and common spatial patterns. To evaluate their practicability, a
support-vector machine as an intelligent classifier model and sparse logistic regression as
a feature-selection technique were adopted, and a rate of 79.51% accuracy was obtained.
The achieved results make the proposed approach highly suitable to be applied to the
rehabilitation of paralyzed limbs.

The paper by Lee et al. [2] analyzes the misalignments and detection errors of quasi-
synchronous alignment between echocardiography images and seismocardiogram signals,
the latter coming from accelerometer-based devices. Two diagnostic parameters—the ratio
of pre-ejection period to left ventricular ejection time (PEP/LVET) and the Tei index—were
examined with two statistical verification approaches. In this context, a dynamic time
warping (DTW) algorithm was used to align fiducial points. The proposed approach may
enable the standardization of the fiducial point detection and the signal template generation.
In this way, the program-generated annotation data may serve as the labeled training set
for the supervised machine-learning instrument.

The paper by Liu et al. [3] is dedicated to the evaluation of sympathetic nerve activity
(SNA), using a skin sympathetic nerve activity (SKNA) signal by means of a Teager-Kaiser
energy (TKE) operator, which preprocesses the SKNA signal. The SKNA energy ratio
(SKNAER) was proposed for quantifying the SKNA. SKNAER improved the detection
accuracy for the burst of SKNA, with 98.2% for detection rate and 91.9% for precision,
compared to other approaches. The authors appreciate that the proposed developed feature
may play an important role in continuously monitoring of SNA and containing potential
for further clinical tests.

COVID-19 could not be missing from this Special Issue. The study by Attallah et al. [4]
introduces a novel automated diagnostic tool based on ECG data to diagnose COVID-19,
which utilizes 10 deep learning (DL) models of various architectures. It obtains significant
features from the last fully connected layer of each DL model and then combines them.
Afterward, the tool presents a hybrid feature selection based on the chi-square test and
sequential search to select significant features. Finally, it employs several machine-learning
classifiers to perform two classification levels: a binary level to differentiate between normal
and COVID-19 cases and a multiclass to discriminate COVID-19 cases from normal and
other cardiac complications. The proposed method reached an accuracy of 98.2% and
91.6% for binary and multiclass levels, respectively. This performance indicates that the
ECG could be used as an alternative means of diagnosis of COVID-19, and perhaps for
other diseases.

The study by Rieta et al. [5] proposes a classification model to discriminate between
normotensive and hypertensive subjects, employing electrocardiographic and photoplethys-
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mographic (PPG) recordings as an alternative to traditional cuff-based methods. By using
17 discriminatory features extracted from the ECG signal, the main outcome of this research
uncovers the relevance of previous calibration to obtain accurate hypertension risk assess-
ment. The k-nearest neighbor classifier provided the best outcomes with an accuracy for
new subjects before calibration of 51.48%. The inclusion of just one calibration measurement
into the model improved classification accuracy by 30%, reaching gradually more than 96%.
Thus, the use of PPG and ECG recordings combined with previous subject calibration can
significantly improve discrimination between normotensive and hypertensive individuals.

The paper by Faragó et al. [6] proposes a wearable physiograph for qualitative and
quantitative Parkinsonians gait assessment, which performs bilateral tracking of the foot
biomechanics and unilateral tracking of arm balance. In this way, the main objective is the
monitoring and assessment of gait in Parkinson’s disease patients. The novelty is given by
the proposed AI-based decisional support procedure for gait assessment, which is validated
in a clinical environment. The authors claim that a platform empowering multidisciplinary,
AI-evidence-based decision support assessments for optimal dosing between drug and
non-drug therapy could lay the foundation for affordable precision medicine.

In [7], the authors analyze the gait signal obtained from an inertial-sensor-based
wearable gait device as a tool to manage bone loss and muscle loss in daily life and classify
them into seven gait phases. Then, they use explainable AI to analyze the contribution
and importance of descriptive statistical parameters on osteopenia and sarcopenia. They
confirm high classification accuracy and the statistical significance of gait factors used for
osteopenia and sarcopenia management

In [8], the authors propose a comparative analysis of the projection matrices and dictio-
naries used for compressive sensing (CS) of electrocardiographic (ECG) signals by making
compromises between the complexity of preprocessing and the accuracy of reconstruction.
They use several types of projection matrices and the reconstructed signals are analyzed
quantitatively and qualitatively.

Roy et al. [9] developed an auto-characterization algorithm to leverage the AI-powered
auto-signal-enhancing scheme such as denoising autoencoder and adaptive cell characteri-
zation technique based on the transfer of learning in deep neural networks. They reported
a considerable increase in accuracy and signal enhancement.

In [10], the authors use a carbon nanotube yarn (CNTY) biosensor to chronically record
from the vagus nerves of freely moving rats for over 40 continuous hours. Vagal activity
is analyzed and spike-cluster-firing rates are found to correlate with food intake. Hence,
the neural-firing rates are used to classify eating and other behaviors. This is claimed
to be the first chronic recording and decoding of activity in the vagus nerve of freely
moving animals enabled by the axon-like properties of the CNTY biosensor in both size
and flexibility. This technology is an important step forward in understanding spontaneous
vagus-nerve function.

The purpose of the exploratory study by Reuken et al. [11] is to determine whether
liver dysfunction can be generally classified with a wearable electronic nose based on
semiconductor metal oxide (MOx) gas sensors, and whether the extent of this dysfunction
can be quantified. Three sensor modules with a total of nine different MOx layers are used
to detect reducible, easily oxidizable, and highly oxidizable gases through non-invasive,
rapid, and cost-effective analysis.

Jiang et al. [12] have analyzed surface Electromyography (sEMG) and used it for
prosthesis control. They explore how the grasp classification accuracy changes during
reaching and grasping, and they identify the period during which the grasp classification
accuracy and detection are high. This period has been found suitable for early grasp
classification with reduced delay. They also explore the training strategies for better grasp
classification in real-time applications.

Chon et al. [13] present an automated arterial fibrillation (AF) prediction algorithm for
critically ill sepsis patients, using electrocardiogram (ECG) signals. They extract features
from 5-min ECG, using the traditional time, frequency, and nonlinear domain methods.
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Different classifiers are then used to classify the existing cardiology dataset. The proposed
algorithm achieved 80% accuracy for predicting AF events 10 min earlier than the AF onset.

Faupel et al. [14] use a convolutional neural network (CNN) for epileptic seizure de-
tection capable of running on an ultra-low-power microprocessor, optimised and simulated
by MATLAB and implemented on a GAP8 microprocessor with RISC-V architecture. It
is claimed that the proposed detector outperforms related approaches in terms of power
consumption by a factor of 6. The universal applicability of the proposed CNN based
detector is verified with the recording of epileptic rats.

For classification of ECG and EEG signals, Goras, et al. [15] investigate three tech-
niques for reducing dimensionality, namely Laplacian eigenmaps, locality preserving
projections, and compressed sensing. The effect of dimensionality reduction is assessed
by considering the classification rates for the processed biosignals in the new spaces with
different classifiers.

An approach to detect premature ventricular contractions (PVCs) from long-term ECG
has been proposed in [16]. The suggested method utilizes deep metric learning to extract
features, with compact intra-product variance and separated inter-product differences,
from the heartbeat. The use of k-nearest neighbor (KNN), together with the proposed
feature extraction method, can extract features by supervised deep-metric learning, which
can avoid the bias caused by manual feature engineering. The simulation events show that
it is reliable to use deep metric learning and KNN for PVC recognition.

It is our great pleasure to invite you to read this diverse range of papers, as we are
hopeful that these submitted works will constitute strong foundations for more research
and development in the areas of sensors, wearable technology, and the related signal and
data processing techniques by means of AI methods.

Author Contributions: Conceptualization, H.-N.C. and S.S.; methodology, H.-N.C. and S.S.; valida-
tion, H.-N.C. and S.S.; formal analysis, H.-N.C. and S.S.; investigation, H.-N.C. and S.S.; resources,
H.-N.C. and S.S.; writing—original draft preparation, H.-N.C. and S.S.; writing—review and editing,
H.-N.C. and S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: To apply EEG-based brain-machine interfaces during rehabilitation, separating various
tasks during motor imagery (MI) and assimilating MI into motor execution (ME) are needed. Previous
studies were focusing on classifying different MI tasks based on complex algorithms. In this paper, we
implement intelligent, straightforward, comprehensible, time-efficient, and channel-reduced methods
to classify ME versus MI and left- versus right-hand MI. EEG of 30 healthy participants undertaking
motional tasks is recorded to investigate two classification tasks. For the first task, we first propose
a “follow-up” pattern based on the beta rebound. This method achieves an average classification
accuracy of 59.77% ± 11.95% and can be up to 89.47% for finger-crossing. Aside from time-domain
information, we map EEG signals to feature space using extraction methods including statistics,
wavelet coefficients, average power, sample entropy, and common spatial patterns. To evaluate their
practicability, we adopt a support vector machine as an intelligent classifier model and sparse logistic
regression as a feature selection technique and achieve 79.51% accuracy. Similar approaches are
taken for the second classification reaching 75.22% accuracy. The classifiers we propose show high
accuracy and intelligence. The achieved results make our approach highly suitable to be applied to
the rehabilitation of paralyzed limbs.

Keywords: wearable electroencephalography; motor imagery; motor execution; beta rebound;
brain–machine interface; feature extraction; EEG classification

1. Introduction

Motor imagery (MI) is a popular method developed to help patients undergoing post-
stroke rehabilitation to learn or improve specific motor functions [1]. It is a dynamic state
in which patients experience sensations without any actual execution. Studies demonstrate
that MI may enhance functional recovery of paralyzed limbs [2], since similar activation
sequences occur in the motor cortex during both MI and actual motor execution (ME) [3]. A
brain–machine interface (BMI) allows users to interact with the external world through their
brain signals instead of their peripheral muscles [4]. Extensive research has been conducted
to exploit BMIs for post-stroke rehabilitation, as they assist in the restoration of motional
ability [5]. Cincotti et al. demonstrated that, compared with MI alone, rehabilitation training
integrated with BMI neurofeedback makes motor areas become more involved, such as
by enhancing neuroplasticity in affected regions [6]. Noninvasive electroencephalography
(EEG) is a frequently used BMI modality, and one study demonstrated that the majority of
stroke patients could use EEG-based MI BMI [7]. One possible application is for evaluating
the restoration of physical functions. Until now, the types of assessments commonly used
have been time-consuming and can be affected by subjective evaluation.

On the other hand, neurophysiology has revealed that EEG signals experience suppres-
sion or enhancement during both MI and ME in the mu and beta frequency bands, which
is known as event-related desynchronization (ERD) or event-related synchronization (ERS).

Biosensors 2022, 12, 384. https://doi.org/10.3390/bios12060384 https://www.mdpi.com/journal/biosensors7
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Various EEG-based MI BMIs have been developed to detect this phenomenon. The authors
of [8] have concluded that beta rebound (beta ERS occurs shortly after movement) is solid
and stable without training, promising fast and universal detection. Leeb et al. applied the
beta rebound generated by foot MIs as a feature to detect the user’s control intention [9].
Based on beta rebound after foot MIs, Müller-Putz et al. proposed a brain-switch with
one-channel EEG [10]. Few studies touch on beta rebound of hand MIs. To the best of
our knowledge, no ME versus MI classifications using beta rebound have been reported.
Diverse feature extraction methods were proposed to classify left versus right MI [11].
Common spatial pattern (CSP) and its derivatives are proved to result in good accuracy
in subsequent classification tasks [12–14]. Wang et al. used SampEn to extract features
in MI-EEG data and trained classifier, proving its effectiveness [15]. Other techniques,
including statistical, wavelet-based, and power-based, were popular in physiological signal
processing. Rajdeep et al. extracted 26 features based on these techniques and finished left
versus right hand movements classification [16]. These works have already achieved com-
petitive accuracies, but high-dimensional feature vectors can spoil classifier performance,
which calls for feature selection to remove redundant features and retain relevant ones [17].
Gu et al. applied sparse logistic regression (SLR) and its derivatives to select features and
to estimate their weight parameters for classification, improving the performance of foot
MI and acquiring satisfactory results [18]. However, no prior-art publications were found
applying SLR to hand MI classification. Foot MI can generate more observable signals and
is, therefore, easier to classify [19], but we cannot overlook hand MI as their deftness and
indispensable role in daily life.

To assess the restoration objectively, we investigated the difference between ME and
MI, intending to assimilate MI into ME in EEG signals with neurofeedback. It is possible to
retrain the brain toward becoming more capable of movement, which improves recovery.
While the lateral classification (left versus right hand) has achieved high accuracy in upper
and lower limbs, few studies have investigated the difference between ME and MI [20,21].
Focusing on power in different frequency bands, Miller et al. confirmed that spatial
distribution of neuronal activity during MI mimics that during ME, and its magnitude is
~25% of ME [22]. More detailed distinction should be drawn to ensure a stable detector.
Moreover, existing studies of EEG-based MI BMI share the following limitations: (1) few
studies have specified the movement or decoded different motors within the same limb [23];
(2) the multichannel EEG signals in these research activities may reduce processing accuracy
and speed, while optimal sets of channels are preferable from a practical point of view [24];
(3) little comparative analysis has been conducted to evaluate different feature extraction
methods on experimental data set in parallel to determine which ones are preferable [25];
and (4) they feed large quantities of feature vectors directly into classifiers, which will
severely limit the accuracy of classifiers [18].

We built a dataset underlining both ME and MI involving delicate motors to address
the above-described limitations. This dataset aimed to explore the feasibility of differen-
tiating between ME versus MI and left- versus right-hand MI by optimizing the feature
extraction and classification methods. We put forward a stable and straightforward detec-
tor of ME and MI based on beta rebound called “follow-up pattern”. We also proposed
corresponding methods to address the limitations mentioned before: (1) we reproduced
motions that require the engagement of both hands, investigating their application to ME
and MI classification; (2) we optimized the number and location of EEG channels to achieve
high accuracy with a few channels of EEG-based MI BMI, also proposing a stable and
straightforward detector of ME and MI based on beta rebound; (3) we adopted various
approaches for extracting features and trained classifiers to validate their utility; and (4) we
recognized useful features that improved classification performance with feature-selection
techniques. The prepared dataset and analysis methods we proposed can be combined with
noninvasive brain stimulation (NIBS) techniques to induce plasticity during post-stroke
rehabilitation [26].
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The paper is summarized as follows: details of the experiments and the methods of
feature selection are described in Section 2; Section 3 illustrates the “follow-up” pattern
based on the beta rebound and presents the outcomes of different detection methods; in
Section 4 we compare our results with related work; and the conclusions and future work
are the subjects of Section 5.

2. Materials and Methods

2.1. Experiments

In our research, 30 healthy individuals (15 males, 15 females; aged 20–35 years,
mean ± SD: 24.26 ± 3.46; 29 are right-handed) volunteered. All participants provided
written informed consent in accordance with the Declaration of Helsinki before the experi-
ment, which was approved by the ethical committee of Westlake University, Hangzhou,
China (approval ID: 20191023swan001). All participants received CNY 100 as an incon-
venience allowance. Participants were required to make movements based on auditory
stimuli, undertaking the following actions: finger tapping, holding a pen, opening a pen,
crossing fingers, and moving the arm, as shown in Figure 1. The tasks were set to examine
the feasibility (whether joints and hard tissues constrain the freedom of movement) and
coordination (all fingers should work in coordination to serve a common purpose, i.e.,
participants place their hands flat on the table in a comfortable way, while each finger start
to orchestrate the required movement after coordination stimuli) of both-hand motion.
Each task included five trials for ME and five trials for MI. Each trial was followed by a 2 s
rest time. The timing paradigm of a single trial is shown in Figure 2.

Figure 1. Tasks in the experiment. M1–M3 were to examine the feasibility, and M4–M5 were set for
coordination. M1: move specific right fingers according to the auditory code; M2: move specific left
fingers according to the auditory code; M3: make the gesture of holding a pen and ready to write;
M4: unscrew the pen; M5: fingers of both hands cross over each other.

 

Figure 2. Timing paradigm of one trial: the duration of motor execution can be 15 s (tapping each
finger for 3 s) or 4 s (other tasks); the endpoint of motor imagery depends on the participant’s
self-regarded “completion”. The overall time course is estimated and denoted at the bottom. It can
vary between subjects and tasks.
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2.2. EEG System

The EEG system examined in this study was the Brain Products actiCHamp Plus (EEG
signal amplifier) and actiCAP slim (active EEG electrodes) provided by Brain Products
GmbH, Munich, Germany, as shown in Figure 3. Thirty-two active electrodes including a
reference electrode and a ground electrode were introduced to the system. These electrodes
can be placed onto three fabric caps (54–56 cm, 56–58 cm, or 58–60 cm), catering for
participants’ head circumstances. A chin belt was attached to each cap to achieve better
fixation and maintain electrodes’ position on the scalp. In total, 32 possible electrode
positions arranged under a 10–20 international standard system were marked on each cap.

 
(a) (b) 

Figure 3. (a) The EEG system used in our study; (b) the recording scene: a participant is following
the instructions showing on the screen when the EEG signals are recorded.

Before each experiment, a disinfectant wipe was applied to the electrodes. When fin-
ished, electrodes and caps were carefully cleaned from gels. These practices can effectively
prevent crosstalk between channels induced by resting gels and enhance connectivity by
removing dust and particles within the system.

2.3. Data Recording and Preprocessing

EEG signals were recorded with Ag/AgCl electrodes in a 32-channel cap arranged
under a 10–20 international standard system (Brain Products, Inc, Gilching, Germany). The
central frontal electrode (Fz) served as a reference to a common ground, and the impedance
was controlled to be lower than 10 kΩ. The EEG data were recorded with a sampling rate
of 1000 Hz. The montage used in our experiment is shown in Figure 4.

Preprocessing included the following procedures: removal of bad channels (channels
that coupled noise or had irregular power spectra) or segments, re-referencing to a common
average (common average reference is the average electrical activity measured across all
scalp channels, re-referencing is conducted by subtracting it from each channel.), filter from
1 to 60 Hz and a 50 Hz notch filter (the interferences from mainline power are removed by
the 50 Hz notch filter and EEG signals at 1 to 60 Hz contain most useful information for
our applications.), independent component analysis (ICA), epoch extraction, and baseline
correction. In the two sets (ME and MI) of preprocessed EEG data, a total of 812 epochs
were generated. According to [27], the primary motor cortex (PMC) region, where channels
C3, C4, and Cz are located, includes more signals for higher classification performance
than other brain areas. We adopted these channels in subsequent analysis to shorten the
experiment’s preparation time and to reduce the computation load to realize a BMI that
requires less input information. We attempted to classify ME and MI with a single channel,
Cz, and EEG signals from 19 subjects (with good-quality Cz) were applied. While the
classification of left- versus right-hand MI requires more lateral information, 10 participants
(with good-quality C3, C4, and Cz) were selected for this task.
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Figure 4. The 32-channel EEG recording montage used in our experiments. Channels C3, C4, and Cz
are in the mid-central area, marked as red circles. REF denotes that Fz is the reference electrode.

2.4. Event-Related Desynchronization/Synchronization Analysis

The definition of the ratio ERD/ERS can be formulated as:

ERD/ERSi =
Ai − R

R
× 100% (1)

where Ai is the average power of ith sample over all the trials and R is the average power
in the reference interval [28]. The value is defined as ERS when Ai is greater than R.

ERD/ERS values ranging from 13 to 40 Hz were computed to observe beta rebound.
ERD/ERS values were considered significant with 95% confidence by adopting a bootstrap
t-test.

2.5. Feature Extraction

Sample entropy (SampEn) evaluates the complexity and regularity of time-series
data, measuring the unpredictability of fluctuations in physiological signals [29]. Let x(T)
denote the EEG time series, where T represents the length. To calculate SampEn, we should
determine the series of vectors length, m, beforehand:

X(i) = [x(i), x(i + m − 1)], i = 1, 2, . . . , (T − m + 1) (2)

Similar tolerance r controls the number of vector X(j) such that:

Nm(i) = card{X(j)|distm{X(i), X(j)} < r} (3)

where distm{X(i), X(j)} is defined as the most considerable absolute difference between
each scalar component.

Bm(r) =
1

(T − m + 1)2

T−m+1

∑
i=1

Nm(i) (4)

SampEn is then defined as the negative logarithm of Bm+1(r)
Bm(r) .
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Here, we computed the SampEn of the Cz, C3, and C4 channels from 10 participants,
with a series of vector lengths m = 2 based on both raw EEG data (r = 1.0 ∗ SD, where
SD denotes the standard deviation) and ERD/ERS data (r = 0.1 ∗ SD). These values were
chosen by enumeration and while examining their performance when training classifiers.

The common spatial pattern (CSP) is an advanced algorithm based on principal compo-
nent analysis (PCA), and it has been successfully applied to brain–computer interfaces [30].
CSP filters EEG signals of two classes to make a clear distinction between them. The feature
vectors fi are defined by Equation (5):

fi = log

(
var(Yi)

∑k=2
k=1 log(var(Yk))

)
, i = 1, 2 (5)

where var represents the variance of a specific sequence and Yi denotes the corresponding
column of CSP-filtered data.

Statistical feature vectors include standard deviation of raw signals and the mean of the
absolute values of both the first and second differences of the raw and standardized signal.

We applied Daubechies mother wavelets of order 4 (db4) to analyze the raw EEG data,
and the detailed coefficients at level 3 were used to extract features. The related feature
vectors were wavelet root mean square (RMS), energy (ENG), and entropy (ENT) [31].

Average power within a specific frequency band was estimated by the average power
spectrum density (PSD). The average band power is defined as the power ratio in a specific
frequency band to total power. We applied the Welch approach to estimate the PSD with a
Hamming window. We performed a PSD estimation on two rhythms, alpha (8–12 Hz) and
beta (13–40 Hz).

Details of the feature vectors applied to the classification of ME versus MI, and the
classification of laterality in MI, are listed in Tables 1 and 2, respectively.

Table 1. Feature vectors classifying motor execution (ME) versus motor imagery (MI).

Feature Vectors
Size

(No. of Trials × No. of Features)

Statistical Features 532 × 6
Wavelet-based Features 532 × 3

Power Features 532 × 4
Total 532 × 13

Table 2. Feature vectors classifying left versus right hand.

Feature Vectors
Size

(No. of Trials × No. of Features)

Statistical Features 100 × 18
Wavelet-based Features 100 × 9

Power Features 100 × 24
SampEn 100 × 6

CSP 100 × 2
Total 100 × 59

2.6. Support Vector Machine Classifier

With statistical learning, a support vector machine (SVM) can tackle problems in-
volving small training sets and nonlinear relationships in classification tasks [32]. SVM is
used to optimize a hypersurface to separate different classes and to enlarge the distances
between them. The MATLAB function fitcsvm was applied to train and cross-validates SVM
models for our classification tasks.
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2.7. Feature Selection

For neuroimaging data, where the training set is small while the feature dimensionality
is large, logistic regression is not applicable. In sparse logistic regression (SLR), every weight
parameter has its own adjustable variance referred to as relevance parameters, controlling
the possible range of the corresponding weight parameters. The weight parameters are
estimated as the marginal posterior mean, which can be estimated by variational Bayesian
approximation (SLR-VAR) or Laplace approximation (SLR-LAP). The L1-norm-SLR with a
Laplace approximation (L1-SLR-LAP) and the component-wise implementation (L1-SLR-
COMP) were also investigated in this study [18].

3. Results

3.1. “Follow-Up” Pattern

Beta rebound is a stable phenomenon that occurs several seconds after ME or MI.
As shown in Figure 5, the beta rebound is the beta ERS (refer to Formula (1)) that occurs
within 1 s after a stimulus (represented as blue lines). It can be observed in participants
with little or no training. Taking advantage of this primitive and perceptible reaction, we
proposed a method based on the beta rebound in the time-domain signals to discriminate
between ME and MI that requires a light computational load and little pre-training. This
time-domain “follow-up” pattern helps therapists gain information from the beta rebound
in real time, evaluate the performance of paralyzed patients, and then guide and rectify
their MI tasks. With proper training, the beta rebound can offer novel targets for therapeutic
interventions [33].

Figure 5 demonstrates the difference between ME and MI in both the time and spatial
domains. In the time domain, ME and MI have a distinction in amplitude, time delay,
and latency. Figure 5a (ME) and Figure 5c (MI) illustrate it as ERD/ERS time courses
during the same finger-tapping movement (motion Tap: Right Finger 1), with dashed lines
from five different individuals while bold red lines delineating the average time course
across these subjects. Beta rebounds are represented as peaks in these lines. “Stimulus”
marks the time when subjects hear the auditory instructions. Compared with ME, the beta
rebounds of MI have smaller amplitude, appear later after stimulus, and last longer. In
the spatial domain, ME and MI have different topographic distributions. Figure 5b (ME)
and Figure 5d (MI) demonstrate it with topo-plots (topographic maps of EEG fields in a
circular 2D view looking down at the top of the head) depicting ERD/ERS distribution.
These topo-plots are from subject S01 for motion Tap: Right Finger 1 at the time when
the beta rebound is the most remarkable (ME: 1.624 s; MI: 1.818 s). Black dots mark the
locations of electrodes. ERS is in red while ERD is in blue. During the MI task (Figure 5d),
the beta rebound was constrained within the mid-central areas (channel Cz). In contrast,
the rebound of ME (Figure 5b) had a more enormous scope of influence, affecting adjacent
electrodes (channels Cz, FC1, FC2, PC1, PC2, and P3). Cz and the surrounded channels
are related to sensorimotor cortex, which accounts for the peak at the mid-central areas.
The other peak at channel P3 may attribute to the touch sensation function of parietal lobe,
which only occur during ME. To conclude, in the time domain, there is a high probability
that beta rebounds of lower intensity, higher latency, and longer duration indicate MIs
instead of MEs; in the spatial domain, if beta rebounds mainly affect channel Cz, it will
most likely represent MIs.

We computed the difference in the ERD/ERS values between ME and MI by subtract-
ing the signals of each motion recorded from each subject. The results of the subtracted
signals during M4 (Figure 1), open a pen, are illustrated by a pseudo-color map in Figure 6,
with the x-axis representing post-stimuli time and the y-axis representing subjects. Each
pixel indicates the intensity by color, where red denotes the beta rebound of ME, and blue
denotes the beta rebound of MI. As marked by black frames (as an example) in Figure 6,
most participants’ data observes the “follow-up” patterns. The “follow-up” pattern implies
that the beta rebound of ME can occur faster than that of MI, following the difference
described above in Figure 5. We marked all the peaks in the ERS series and counted all the
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“follow-up” phenomena across subjects and across motional tasks. The results are shown
in Tables 3 and 4. Table 3 defines the percentage as the ratio of motions that displayed
“follow-up” patterns. Some subjects, e.g., S06 and S18, achieved high accuracy under this
criterion, which reflected the variation across subjects: some subjects are more adapted to
imaginary tasks than others. Throughout all the motions listed in Table 4, opening pens
and finger-crossing were distinctive compared to the others, and they are both motions
designated to examine coordination in movement. The motions that require both hands’
involvement and synchronization have more significant potential to be applied in the
evaluation system of a rehabilitation process. The parameters of beta rebound (amplitude
and time) of ME and MI tasks can be distinguished more obviously.

 
 

(a) (b) 

 

 

(c) (d) 

Figure 5. “Follow-up” pattern based on the beta rebound works as an indicator of ME and MI in
amplitude, latency, duration, and distribution. An example of the time courses and topo-plots of
ME (parts (a,b)) and MI (parts (c,d)) event-related desynchronization/synchronization (ERD/ERS)
during the motion Tap: Right Finger 1. The bold red lines are the average across five subjects, while
the dashed lines are the individuals’ ERD/ERS time courses at channel Cz. “Stimulus” marks the
time when subjects hear the auditory instructions. Topo-plots are from subject S01 for motion Tap:
Right Finger 1 at the time when the beta rebound is the most remarkable (ME: 1.624 s; MI: 1.818 s).
Black dots mark the locations of electrodes. ERS is in red while ERD is in blue. Note that parts
(a,c) are based on a part of our whole dataset (26.32%) to make the time courses more explicit for
demonstration.
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Figure 6. Color map of the differences between ME and MI tasks during the motion, open a pen. Red
blocks show ERS during ME, while blue blocks represent ERS during MI. In most cases, a “follow-up”
pattern—a red block followed by a blue block—can be observed, marked by the black frames.

Table 3. Percentage of “follow-up” pattern in subjects at Cz among all motions.

Subjects Percentage (%) Subjects Percentage (%)

S01 50.00 S17 57.14
S02 50.00 S18 85.71
S05 57.14 S19 42.86
S06 78.57 S20 57.14
S07 42.86 S22 57.14
S08 64.29 S23 64.29
S09 50.00 S27 64.29
S14 71.43 S29 71.43
S15 71.43 S30 50.00
S16 50.00 Mean ± SD 59.77 ± 11.95

Table 4. Percentage of “follow-up” pattern in motions at Cz among all subjects.

Motions Percentage (%) Motions Percentage (%)

Tap: Right Finger 1 57.89 Tap: Left Finger 4 57.89
Tap: Right Finger 2 36.84 Tap: Left Finger 5 42.10
Tap: Right Finger 3 57.89 Hold a Pen 63.16
Tap: Right Finger 4 63.16 Open a Pen 84.21
Tap: Right Finger 5 52.63 Finger-crossing 89.47
Tap: Left Finger 1 68.42 Arm Movement 52.63
Tap: Left Finger 2 52.63

Mean ± SD 59.77 ± 13.58Tap: Left Finger 3 57.89

Based on the findings mentioned above, we can conclude how to identify ME and MI
with beta rebound at channel Cz in the time-domain: compared with ME, beta rebounds of
MI have smaller amplitude, appear later after stimulus, and last longer.
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3.2. ME versus MI Classification

We used feature vectors in Table 1 to train SVM and adopted hyperparameter opti-
mization during training to search for kernel functions and related parameters to induce
the best performance. Such procedures achieved a classification accuracy of 78.57%. We
drew the scatter plots and found that power-related features may perform better in EEG
classification tasks. We selected those four power-based feature vectors to describe the
data set and trained the SVM again. The overall accuracy improved slightly to 79.51%,
but the dimension of features was reduced, which will mitigate the computational load.
Additionally, this indicates that excessive large feature vectors may not necessarily lead to
higher accuracy in SVM classification tasks. Feature selection methods can be applied in
training classification models, which enlightened us about resorting to SLR in left- versus
right-hand MI classification tasks, as described in the following paragraphs.

3.3. Left—Versus Right-Hand Motor Imagery Classification

We adopted features in Table 2 to train a classifier that may facilitate SVM task in
a higher dimensionality. The accuracy was only 62%, which was even lower than when
sample entropy feature vectors were applied alone. This phenomenon warned us there were
some redundant feature vectors in the SVM training data that spoiled the overall result.

We adopted different derivatives of SLR to select features and to calculate weights.
The number of features left and the corresponding accuracies are shown in Table 5. Among
all the models adopted, L1-SLR-LAP, which applied Laplacian approximation and L1-norm
in SLR learning, attained the best performance. The accuracy of L1-SLR-LAP is 75.22%, and
the corresponding confusion matrix is displayed in Figure 7. Note that the values here are
the average number of 10-fold cross-validation. Higher accuracy was achieved in left-hand
MI. Forty-two feature vectors were left after the selection procedure in L1-SLR-LAP. By
checking their weights, we found that power features and SampEn displayed distinctive
weights in the remaining vectors, which indicated that they were primary factors in the
classification task.

Table 5. Accuracy of different classifiers used on our EEG data.

Models Features Left Accuracy

SVM 59 62.00%
SLR-LAP 2 57.78%
SLR-VAR 9 50.22%

L1-SLR-LAP 42 75.22%
L1-SLR-COMP 35 58.67%

 

Figure 7. Confusion matrix of the “L1-SLR-LAP” classifier to distinguish the MI of left-
and right-hands.
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3.4. Comparison and Analyses of Classification Accuracies

Previous studies of MI classification tasks generate interesting classification accuracies,
based on different datasets, models and techniques. Table 6 compares the classification
results of left- and right-hand MI among the proposed dataset and other datasets. It is
important to note that the accuracy of our proposed method is obtained through group-
level classification, while in other works, classifiers are trained in a subject-specific manner.
Group-level classifications will reduce training sessions and be more applicable to patients,
as elucidated in Section 4. Using the same EEG channels and classifier models as the ones
we proposed, Malan et al. [34] suggested a novel feature selection algorithm, regularized
neighborhood component analysis (RNCA), which outperformed other conventional fea-
ture selection techniques. The diverse parameters of RNCA increase its computational
burden, while SLR is lighter. The dimension of features in [35] was relatively low, so the
accuracy is comparable without feature selection. We achieved a similar accuracy with
fewer EEG channels, which can lighten the workload of experiment and computation.
Accuracies in [36] seem lower than other studies, which may verify that SVM is more
preferable in such contexts.

Table 6. Comparison of classification accuracies among different datasets and methods.

Authors EEG Channels Participants Feature Extraction Classifiers Feature Selection
Average
Accuracy

This work 3 10
Statistics, Wavelet

Coefficients, Average
Power, SampEn, CSP

SVM L1-SLR-LAP 75.2%

Malan et al., 2019 [34] 3 10 DTCWT SVM

GA 78.9%
PCA 64.3%

ReliefF 75.7%
RNCA 80.7%

Tang et al., 2017 [35] 28 2 Power spectrum SVM - 77.2%

Voinas et al., 2022 [36] 16 6
WPD+HOS

RF -
71.0%

CSP 66.0%
Filter Bank CSP 69.0%

CSP: common spatial pattern; DTCWT: dual-tree complex wavelet transform; GA: genetic algorithm; L1-SLR-
LAP: L1-norm-SLR with a Laplace approximation; PCA: principal component analysis; RF: Random Forest;
RNCA: regularized neighborhood component analysis; SampEn: sample entropy; SVM: support vector machine;
WPD+HOS: wavelet packet decomposition combined with higher order statistics.

4. Discussion

We applied a single neuroimaging modality, EEG, in the present study. EEG has a
high temporal resolution and can produce good performance in BMI [18]. Other modalities
have been explored, e.g., functional magnetic resonance imaging (fMRI) [37], functional
near-infrared spectroscopy (fNIRS) [38], magnetoencephalography (MEG) [39], and elec-
trical impedance tomography (EIT) [40]. Due to portability, non-invasiveness, and cost-
effectiveness, EEG and fNIRS have an advantage in natural environment applications [41].
In terms of classification accuracy, EEG-based BMI outperforms fNIRS-based BMI [24].
Recent progress of hybrid EEG-fNIRS in BMI demonstrates great potential because data
with complementary spatiotemporal resolution can exhibit synergistic effects, bringing
about insights into crucial brain processes and structures.

Most reported EEG-based BMI systems can be categorized into one of three paradigms:
motor imagery (MI), event-related potential (ERP), and steady-state visually evoked po-
tential (SSVEP). We adopted MI, although successful cases of other paradigms have been
proposed, such as P300 ERP [42], SSVEP [43], spatial attention [44], selective attention [45],
mental arithmetic [46], action observation [47], late positive potential (LPP) [48], etc. With
no need for external stimuli, motor imagery tasks are self-paced, simple, and stable. Our
results validate its utility in EEG-based BMI.

The “follow-up” pattern we proposed is based on beta rebound. The mid-centrally
located beta rebounds reveal electrophysiological correlates of synchronized “resetting”
from overlapping brain networks. The occurrence of beta rebound depends heavily on
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the types of MI. Our study found that motors with more fingers involved can lead to
better results. It can probably be explained by the superposition effect of MI, i.e., the
neural activities triggered by hand MI can be interpreted as the summation of the activities
invoked by simple finger MIs, which is validated in [49]. The variation is not limited to
upper limbs. According to [19], most subjects displayed beta ERS during foot MI, while
tongue MI induced no beta rebound in any subject. Luckily, even if there is only a slight
laterality difference in the subject, improved BMI control accuracy can be achieved through
visual feedback [50].

It is common practice to extract features based on statistical properties, wavelet coeffi-
cients, and average power [16]. In this work, we compared the features generated by these
above-mentioned principles and SampEn and CSP. Our results show that power features
and SampEn play a dominant role in classification tasks. Other innovative methods were
proposed for extraction to solve MI classification tasks. Functional brain networks are being
widely applied to extract extra features, delineating the interactions between each pair of
electrodes [51].

Despite its popularity, SVM is not the only classifier model that can succeed in MI-EEG
classification tasks. To evaluate their performance in EEG-based MI BMI, a comparative
analysis of five classifiers, SVM, k-NN, naïve Bayes, decision tree, and logistic regres-
sion, was conducted in [52] and it concluded that SVM, logistic regression, and naïve
Bayes outperformed the others in accuracy. Recently, with automatic end-to-end learning,
deep learning (DL) is competent in this context, simplifying processing pipelines; hence,
improved performance can be achieved [53].

Instead of feeding large quantities of feature vectors directly into classifiers, a three-
feature selection method SLR was applied to lower the dimensionality of features in
this work, with the intention of improving classification accuracy. Gu et al. applied a
similar method in foot MI classification tasks, with the most remarkable accuracy of 75.33%
achieved by SLR-variational approximation (SLR-VAR) [18]. Rejer et al. compared different
methods of feature selection on the left- and right-hand MI [54]. Feature selection may
also help discover new patterns of brain behavior and invent new explanations for neural
pathways. μ-rhythm was suggested to reflect the translation of hearing an instruction into
performing the required action, which is well in line with the feature selection results [55].

It is important to note that only a small portion of channels was used in subsequent
analysis—to be specific, a single channel (Cz) in ME versus MI classification and three
channels (Cz, C3, and C4) in left- versus right-hand MI classification. These channels have
been proven to induce better classification results [24,27]. In previous EEG-based MI BMI,
a large portion used many EEG channels. Thirty-two EEG electrodes are used in [56] and
they achieve a classification accuracy of 59.65%. We successfully classified ME versus MI by
79.51% with one channel (Cz) and left- versus right-hand MI by 75.22% with three channels
(Cz, C3, and C4). In general, we achieved better performance with less data, which can
alleviate the computation load and reduce experiment preparation time.

Most classifiers in EEG-based BMI studies are trained in a subject-specific manner,
which can decode intention from a specific patient based on his own signal features [18,57].
This manner demands laborious training for subjects and repetitive signal processing to
ensure solid results. Moreover, it is also infeasible for physically disabled patients to
provide these training data. Here, we trained classifiers with population-level features
obtained from different subjects and gained competitive performance. It demonstrates
excellent potential for simplified application, since real-time EEG signals can be acquired
from patients without training and compared with the existing training sets.

Despite the group-level classification, our accuracy is still comparable. A possible
merit lies in our carefully selected features for training SVM. In classification between
ME and MI, we selected power-based features manually, which improved the accuracy
minutely but reduced the feature dimension greatly. In classification between left- and right-
hand MI, we adopted SLR to abrogate redundant feature vectors, so the corresponding
accuracy increased by 13.22%. Admittedly, we did not reach perfect accuracy, but this
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appears reasonable given that untrained subjects can be unaffected by BMI protocols. The
term “BMI illiteracy” was coined for this non-negligible portion of users, which is estimated
at 15% to 30% [58]. The BMI illiteracy rate matches our classification results.

Our research explored the feasibility of EEG for evaluating post-stroke recovery.
Previous work cross-validates the efficacy of EEG signals with other assessments, such as
motor functions and activities of daily living (ADL), Fugl–Meyer assessment (FMA) scores,
and the modified Ashworth scale (MAS). Based upon this fact and our results, we further
propose a prospective for EEG assessment, wherein therapists record EEG signals from
patients during rehabilitative MI tasks, then label them with classifiers trained by group
level training sets and provide real-time feedback to make patients aware of the similarity
between their neural activities and the correct ones.

Admittedly, the current study embodies some limitations. The experimental procedure
can be modified, allowing subjects to repeat MI within specific time slots. Such modification
will not only facilitate analysis but also induce more detectable signals. Moreover, our
analysis was based on sensor-level techniques, while the volume conduction effect calls
for source-level analysis, which would map EEG signals to cortical areas. The “follow-up”
pattern we generalized still improves classification accuracy, so more detailed characteristics
can be drawn from it.

5. Conclusions

EEG-based MI BMI has great potential in evaluating post-stroke rehabilitation. How-
ever, present assessments suffer from low efficiency and lack of objectiveness, and few
related studies underline the difference between ME and MI. In this work, we proposed a
dataset and corresponding analysis methods to classify both ME versus MI and left- versus
right-hand MI tasks, which can induce plasticity during restoration. This study put forward
a stable and straightforward detector of ME and MI based on beta rebound, investigated
extracted feature vectors, and applied SVM with SLR to classification. The conclusions are
summarized as follows:

“Follow-up” pattern based on the beta rebound is a stable indicator of ME and MI.
Compared with ME, the beta rebounds of MI have smaller amplitude, appear later after
stimulus, and last longer. The phenomenon is most significant at channel Cz. Such
characteristics defined the “follow-up” pattern. Its occurrence is 59.77% ± 11.95% among
all subjects, and motors with more fingers involved can generate better results (finger-
crossing: 89.47%).

The ME versus MI classification accuracy is 79.51% with power-based features and
SVM. We extracted 13 features with statistic, wavelet-based, and power-based methods.
SVM generated a classification accuracy of 78.57% with these feature vectors. After examin-
ing the support vectors, features fed into SVM were pruned back to four power-based ones,
while the accuracy increased.

The left- versus right-hand MI classification accuracy is 75.22% with SVM and L1-
SLR-LAP. We extracted 59 features with statistic, wavelet-based, power-based, SampEn,
and CSP methods. We compared the performance of different derivatives of SLR and
found out that L1-SLR-LAP win over others with 42 feature vectors left. We concluded that
power-based features and SampEn displayed distinctive weights in the remaining vectors.

Therefore, this work demonstrates an innovative approach that can be used for eval-
uating the rehabilitation results of MI BMI with neurofeedback. In future work, we will
focus on the back-end design of the system and explore the addition of NIBS as an adjunct
therapy. BMI+NIBS interventions could inform patients and therapists about real-time MI
performance and enhance rehabilitation with additional clinical gains.
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Abstract: Accelerometer-based devices have been employed in seismocardiography fiducial point
detection with the aid of quasi-synchronous alignment between echocardiography images and
seismocardiogram signals. However, signal misalignments have been observed, due to the heartbeat
cycle length variation. This paper not only analyzes the misalignments and detection errors but also
proposes to mitigate the issues by introducing reference signals and adynamic time warping (DTW)
algorithm. Two diagnostic parameters, the ratio of pre-ejection period to left ventricular ejection
time (PEP/LVET) and the Tei index, were examined with two statistical verification approaches:
(1) the coefficient of determination (R2) of the parameters versus the left ventricular ejection fraction
(LVEF) assessments, and (2) the receiver operating characteristic (ROC) classification to distinguish
the heart failure patients with reduced ejection fraction (HFrEF). Favorable R2 values were obtained,
R2 = 0.768 for PEP/LVET versus LVEF and R2 = 0.86 for Tei index versus LVEF. The areas under
the ROC curve indicate the parameters that are good predictors to identify HFrEF patients, with
an accuracy of more than 92%. The proof-of-concept experiments exhibited the effectiveness of
the DTW-based quasi-synchronous alignment in seismocardiography fiducial point detection. The
proposed approach may enable the standardization of the fiducial point detection and the signal
template generation. Meanwhile, the program-generated annotation data may serve as the labeled
training set for the supervised machine learning.

Keywords: cardiac time interval; dynamic time warping; fiducial point detection; heart failure;
seismocardiography

1. Introduction

The emergence of wearable solutions for health monitoring provides opportunities
for remote medical surveillance. Biosensing and cloud computing technologies enable
physiological parameters to be tracked unobtrusively, accurately, and in real time in every-
day life. In most cases, relatively simple, reproducible, and reliable generic physiological
parameters are monitored. Cardiac time intervals (CTIs), durations between specific cardiac
events, are closely related to cardiac physiology and function. CTIs play a pivotal role
in the diagnostic and prognostic assessments of patients with hemodynamic and valve
dysfunction, especially with regard to risk stratification [1,2].

In clinical practice, CTIs associated with valve opening and closure, including the
pre-ejection period (PEP), left ventricular ejection time (LVET), isovolumic contraction
time (IVCT), and isovolumic relaxation time (IVRT), are employed in the calculation of the
myocardial health index. These CTIs describe the time periods between the specific cardiac
events of mitral valve opening (MO), mitral valve closure (MC), aortic valve opening (AO),
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aortic valve closure (AC), and Q wave in electrocardiography (ECG). Four frequently used
CTIs are defined by the timing differences between cardiac events as follows:

PEP = AO − Q, (1)

LVET = AO − AC, (2)

IVCT = AO − MC, (3)

IVRT = MO − AC. (4)

Although some of the CTIs are modulated by heart rate, respiration, or even the
individual’s posture and position [3,4], the cardiac indexes derived from CTIs are consid-
ered reliable parameters for predicting and assessing myocardial contractility [2,3,5]. Two
frequently used cardiac indexes are the PEP/LVET ratio (also known as the contractility
coefficient) [6,7] and the Tei index (also known as the myocardial performance index) [5].
They are defined as follows:

Contractility Coefficient = PEP/LVET, (5)

Tei index = (IVCT + IVRT)/LVET. (6)

Both the PEP/LVET ratio and the Tei index have been clinically confirmed to be
heart rate-independent and negatively correlated with the left ventricular ejection fraction
(LVEF) on a beat-to-beat basis [2,3,5]. Carvalho observed that individuals with normal
cardiac function (higher LVEF) exhibited a short PEP and a long ejection time. By contrast,
patients (lower LVEF) with reduced stroke volume (SV) and cardiac output (CO) had a
longer PEP and shorter LVET [8]. Thus, CTIs and the two cardiac indexes mentioned
above can supplement the LVEF and serve as proxies in the assessment of myocardial
contractility [9–11].

Echocardiography is considered the gold standard for obtaining CTIs [8]. CTIs are
typically acquired using ultrasound modalities such as color Doppler flow imaging, tis-
sue Doppler imaging, or M-mode echocardiography [8,12–14]. From echocardiography
images, physicians can accurately determine the timings of the start, peak, and end of
specific hemodynamic or cardio-mechanical events (e.g., blood ejection, myocardial mo-
tion, and valve opening or closure) in various phases of the cardiac cycle. However,
acquiring echocardiograms is time consuming and requires the expertise of a well-trained
sonographer. Therefore, for long-term, home-based cardiac monitoring, the use of compar-
atively simple, noninvasive wearable devices to conduct hemodynamic assessment, such
as through impedance cardiography, phonocardiography, and seismocardiography (SCG),
is preferred [7,10,12].

SCG, a noninvasive approach for the diagnosis of cardiac conditions, is capable of
evaluating CTIs through chest wall vibration analysis. Temporal information of cardiac
events can be obtained by identifying the specific fiducial points in the SCG signals cor-
responding to the events. Single-channel and multichannel SCG monitoring systems and
SCG–echocardiography hybrid apparatuses have been proposed [7,15,16]. In 1994, Crow
examined trimodal screenshots of simultaneous ECG and SCG signals and echocardiog-
raphy images to investigate the relationship between SCG and echocardiographic images
regarding cardiac events [16]. In the trimodal measurements, the SCG signal was routed to
the auxiliary input port of the ultrasound machine and was presented synchronously on top
of the echocardiogram together with the ECG signal. This enabled the SCG fiducial point
detection and the CTI analysis with the same heartbeat cycle on the same ultrasound image.

Home-based cardiac monitoring requires special analytical methods because no sono-
graphers or ultrasound instruments are available. Heterogeneous modality cooperation
may serve as the alternative; that is, conducting the diagnostic assessment using ECG and
echocardiogram (also assisting SCG fiducial point identification) while home monitoring
using ECG and SCG. Lin et al. introduced a quasi-synchronization method for SCG fiducial
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point detection from the SCG and ECG data collected through the inertial-sensor-based
multichannel SCG systems and from several echocardiogram images acquired at different
time [7,9]. The ECG signal from SCG measurement and the ECG signal from echocardio-
gram image were aligned by the manipulation of uniform stretching (or squeezing) and
shifting in time axis to align the ECG R peaks to each other. This approach is referred to as
the quasi-synchronous alignment (or “conventional” quasi-synchronous alignment) in this
paper and is illustrated in Figure 1.

Figure 1. Example of the quasi-synchronous alignment for an echocardiogram image and an SCG
measurement: (a) M-mode echocardiogram image of the aortic valve (with an ECG signal at the
bottom of the image); (b) ECG signal simultaneously measured with SCG signal; (c) SCG signal.

The development of SCG has been limited by artifact effects, the ambiguity in spe-
cific event waveforms and the lack of detection procedures; no standards for fiducial
point detection in SCG signals have been established [17]. In this study, the problems of
quasi-synchronous alignment were revisited, and an improved SCG fiducial point detec-
tion protocol was devised by introducing a reference SCG signal and the dynamic time
warping (DTW) algorithm. The new alignment method is referred to as the “DTW-based”
quasi-synchronous alignment, so as to distinguish it from the existing quasi-synchronous
alignment method (or the “conventional” quasi-synchronous alignment). Compared to
the conventional quasi-synchronous alignment, DTW-based quasi-synchronous alignment
eliminates the fiducial point detection error due to the stretching (or squeezing) manipula-
tion. Compared to the envelope-based detection methods [14,18–20], DTW-based quasi-
synchronous alignment does not limit to any specific fiducial points, as long as the corre-
sponding cardiac events could be identified in an clinical imaging modality (not limited to
echocardiogram, that was used in this paper) or cardiac signal that is simultaneously mea-
sured with ECG. This method has the potential to untie the knot that limits the development
of SCG.

As the deterministic approach in pattern recognition technology, by which machine
learning was enabled in many applications [21,22], DTW is known for its capability to
align the morphological patterns of two given time series (signals), its flexibility in han-
dling signals of varying length, and its feasibility of implementation through computer
programs [23]. DTW has been applied to speech recognition, time series clustering, and
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protein sequence alignment [24–26]. Herein, DTW was employed to mitigate the wave-
form variations in SCG signal analysis. In Azad’s study, the DTW distance, instead of the
Euclidean distance, significantly reduced the morphological variability in clustered SCG
signals corresponding to groups of participants in various breathing stages [27]. Based
on DTW alignment, an investigation on subject-oriented template generation succeeded
to establish the procedures for signal clustering (by using the k-means algorithm) and
averaging according to SCG morphological features for the first time [28].

The remainder of this paper is organized as follows. In Section 2, the data acquisition
setup, data preprocessing procedure, and the reason for introducing the reference SCG
segment are declared. The experimental results are provided in Section 3. The discussions
and conclusions are presented in Section 4.

2. Materials and Methods

The study protocol of this work was approved by the Institutional Review Board of
Chang Gung Memorial Hospital, Taoyuan, Taiwan (approval number 202100744B0A3). The
physiological data (112 echocardiography images and SCG signal clips of 3876 heartbeats)
of 56 individuals (30 men, 26 women) collected in the previous study by Lin [9] on a
multichannel SCG spectrum system were employed in this study. The data for each
individual comprised the diagnostic history, LVEF assessment, echocardiography images,
ECG signals, and a set of four-channel SCG signals. In this study, only the first channel SCG
data was analyzed, and the signal was recorded from the location of the fifth-left intercostal
space in the midclavicular line of the mitral valve with the participant in a supine position.
The echocardiogram images captured the parasternal long axis (PLAX) in the M-mode and
the Doppler flow images of the mitral and aortic valves, providing the timings of valve
opening and closure. Participants were instructed not to exercise before the tests. The raw
SCG and ECG data underwent filtering, detrending, wavelet noise reduction, cardiac cycle
identification, ECG wave annotation, and cycle segmentation [28].

The following sections introduce concepts and problems of the conventional quasi- syn-
chronous alignment, as well as concepts and advantages of DTW-based quasi-synchronous
alignment. Furthermore, a programming flowchart is presented and performed to validate
the annotation procedures and the effectiveness of SCG fiducial point detection.

2.1. Conventional Quasi-Synchronous Alignment for Echocardiogram Image and SCG Signal

Although beat-by-beat synchronicity can be achieved in trimodal (echocardiogra-
phy/ECG/SCG) measurements, the ultrasound probe may interfere with SCG sensors on
the chest during such simultaneous measurements. Through simple shifting and rescal-
ing (stretching or squeezing) manipulations on the record signals, the “asynchronously”
measured echocardiogram images and SCG signals could be analyzed in the same graph to
establish quasi-synchronization [9]. This method, which is as effective as trimodal measure-
ment, caters to the increasing demand for the home-based monitoring for patients with
cardiovascular disease and heart failure.

An example of the conventional quasi-synchronous alignment is displayed in Figure 1.
The figure consists of an M-mode image of aortic valve motion (with synchronous ECG
signal shown overlapped in the lower part of the image) (Figure 1a), an ECG (Figure 1b)
and SCG (Figure 1c) signal pair measured at the same time. To align the echocardiogram
image and the SCG signal quasi-synchronously, R peaks from the two ECG signals were
employed as the beacon targets. The ECG signal in Figure 1b was rescaled and shifted
to align the R peaks to the ECG R peaks of the echocardiogram image (in Figure 1a) as
indicated in the orange boxes. The vertical blue lines in Figure 1 link the timing information
between the echocardiogram image and SCG signals. As the events visually identified in
the echocardiogram image, the timing positions of the fiducial points in SCG signal could
be easily obtained. Therefore, the fiducial points of the SCG signals could be detected.
This technique had also been applied to color Doppler echocardiogram and tissue Doppler
echocardiogram images to identify six new fiducial points [9].
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2.2. Misalignmenst and Detection Errors in SCG Fiducial Point Detection under Conventional
Quasi-Synchronous Alignment

Although the conventional quasi-synchronous alignment is a rapid and intuitive
approach in which ECG signals from echocardiogram and SCG measurements are used
as the intermedium, the rescaling manipulation can be problematic. Waveform distortion
due to rescaling may result in unexpected target shifting as the signals were subjected
to the conventional quasi-synchronous alignment. For easier graphic illustration and
better clarification, two ECG and SCG signal pairs with different heartbeat lengths were
used as examples in Figures 2–4, whereas the mostly concerned targets in this study are
echocardiogram image and SCG signal. The issue exists in spite of the target change as
long as the end-to-end alignment was achieved by the rescaling manipulation.

Figure 2. Conventional quasi-synchronous alignment by stretching the short-period signal: (a) Long-
period (red), short-period (blue), and stretched short-period (black dashed) ECG signals; (b) Long-
period (red), short-period (blue), and stretched short-period (black dashed) SCG signals with fiducial
points and the detection error indicators (white arrows).

Figure 2 demonstrates the conventional quasi-synchronous alignment involving the
stretching manipulation of short-period ECG and SCG signals such that they were matched
end to end with long-period signals. Figure 3 displays the same alignment approach but
performed by squeezing the long-period signals such that they were matched end to end
with the short-period signals. The principal problem of the conventional quasi-synchronous
alignment is applying a unique rescaling ratio (stretching or squeezing scale ratio) to the
entire waveform. The unique rescaling ratio manipulation is suspicious as all the fiducial
points (MO, MC, AO, and AC) of the short-period signal (blue line) in Figures 2 and 3
are very close to the corresponding fiducial points in the long-period signal (red line).
Over both the short and long period heartbeats, the heart pulsed at a comparable pace in
the beginning (before 600 ms). Overall, length and morphology differences were noted
in the heartbeat signals; this is attributed to the deviation in the signal length caused by
the unequal cardiac paces in the latter portion of the cycle (after 600 ms). The widths of
the yellow bars in Figure 2b and b represent the variations in SCG fiducial point timings
between the short- and long-period signals before the rescaling manipulation, which are
≤10 ms.
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Figure 3. Conventional quasi-synchronous alignment by squeezing the long-period signal: (a) Long-
period (red), short-period (blue), and squeezed long-period (black dashed) ECG signals; (b) Long-
period (red), short-period (blue), and squeezed long-period (black dashed) SCG signals with fiducial
points and the detection error indicators (white arrows).

Three types of lines (red solid, blue solid, and black dashed) annotated with four
types of icons (squares, triangles inverted triangles, and circles) are shown in Figures 2b
and 3b. The icons and lines presented in blue and red correspond to the pre-detected
fiducial points and SCG signals for the short- and long-period heartbeats, respectively.
Figure 2b illustrates the distorted signal (black dashed curve) and timing push off in fiducial
points (black icons) ascribable to the uniform stretching process (indicated by the sign
of blue rightwards arrow). The amounts of detection error for the four fiducial points
are indicated by the lengths of the white arrows. Similar detection errors of the fiducial
points are observable in Figure 3b, whereas the long-period signal is squeezed to match the
short-period signal. The white arrows are with the lengths (of several tens milliseconds)
considerably longer compared to the widths of the yellow bars, and with a trend that
the longer arrows appear closer to the right end. The trend reveals that the conventional
quasi-synchronous alignment led to different detection errors for different fiducial points.
This is owing to the signal morphological distortion as the left end is fixed while applying
a unique rescaling ration to the entire signal to make the right end match that of another
signal with a different length. Likewise, if the SCG fiducial points detected from the SCG-
echocardiogram alignment adopt the conventional quasi-synchronous approach, the same
signal distortion and detection errors will occur. That will degrade the CTI assessment and
the diagnostic applications of SCG.

2.3. Introduction of Reference Signal in Quasi-Synchronous Alignment

Figure 4 illustrates two ECG and SCG waveforms with the same heart cycle period
spontaneously aligning to each other, not only in the former half section but also in the
latter half section. This phenomenon (the comparable heart pace and self-alignment in
morphology over the entire heart cycle) was leveraged in the proposal of this study (a new
quasi-synchronous alignment method) to avoid the signal distortion and to mitigate the
misalignments in SCG fiducial point detection. For this reason, a reference SCG signal
was introduced as the intermediary to accommodate the fiducial points detected from
the alignment to echocardiogram images and also to project the fiducial points to other
nonreference SCG signals.
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Figure 4. Spontaneous alignment of two ECG and SCG signals with the same heart cycle period:
(a) ECG signals; (b) SCG signals with the detected fiducial points.

To avoid the waveform distortion during the signal alignment, a reference signal pair
of ECG and SCG were screened out from the SCG measurements which had the heart
cycle period closest to that of the ECG signal in the echocardiogram image. In Figure 5,
a reference signal pair example is illustrated, both the selected RR intervals of the ECG
signals in echocardiogram (Figure 5a) and the RR intervals in the reference signal pair
(Figure 5b) are the same (966 milliseconds). As the RR interval of the reference ECG signal
performing end-to-end alignment with the echocardiogram ECG, no rescaling manipulation
was needed. In addition, the entire ECG and SCG signals were considered synchronous to
the selected cycle in the echocardiogram on the premise of spontaneous alignment discussed
in Figure 4. The aortic valve closing event (annotated by “AC” in Figure 5) identified in the
echocardiogram, was mapped to the same temporal place in the reference ECG and SCG
signals. The reference SCG signal with fiducial points mapped from the echocardiogram
was then used as the intermediary template signal for fiducial point projection to other
nonreference measurements. The projection process based on the DTW algorithm, which
takes signal morphological similarity into consideration. The revised quasi-synchronous
alignment method hereinafter referred to as DTW-based quasi-synchronous alignment.

Figure 5. Illustration of aligning a reference signal pair to the selected echocardiogram section and
projecting the specific cardiac event (aortic valve closing, AC) from echocardiogram to SCG curve
as the detected fiducial point: (a) Echocardiogram image and the selected section enclosed within
vertical lines marked with R1 and R2; (b) The aligned ECG of the reference signal pair; (c) The aligned
SCG of the reference signal pair.
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2.4. DTW

DTW, a dynamic programming base algorithm, has been applied to the speech recogni-
tion analysis with the identical voice content but morphologically varied at different speech
paces [29]. The flexibility of DTW algorithm in aligning two sequences (not necessarily
equal in data length) extends its application from speech recognition to biometrics (e.g.,
fingerprints), handwriting and many other technological fields [30].

Given two morphologically similar signal sequences, X = (x1, x2,..., xM) of length M
(M ∈ N) and Y = (y1, y2, . . . , yN) of length N (N ∈ N), the goal of the DTW algorithm is
to align X and Y to optimize distance cost function requirements as well as to conform to
the warping path constraints of (1) monotonicity, (2) continuity, (3) boundary, (4) warping
window, and (5) slope constraints [31,32]. A cost matrix with size of M × N was constructed
to present all possible path points of the dynamic warping. Given a path W = (w1, w2,...,
wK) of length K, max(M,N) ≤ K ≤ M + N − 1. Any wi in W contains two index elements, wi
= (ai, bi), with the first and second indexes corresponding to the aith and bith elements from
X and from Y, respectively. Figure 6a illustrates the matrix grids of possible path steps and
the aligned warping path for two sequences. Figure 6b shows the point-to-point mapping
of the aligned signal sequences. The iterative dynamic planning process drove the warping
path W gradually close to the optimized path as the distance cost function was tuning to
the minimum scenario. Typically, the DTW distance cost function is defined as follows:

Distance Cost Function(W)
= DTW(X, Y)
= 1

K ∑K
i=1 D(wi)

= 1
K ∑K

i=1

√(
xai − ybi

)2

(7)

 

Figure 6. Illustration of the DTW alignment of two signal sequences: (a) Matrix grid view of DTW
alignment; (b) Point-to-point mapping of DTW alignment.
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Usually more than one path in the matrix grid can satisfy the requirements of the five
constraints, but only one path minimizes the distance cost. A few different types of distance
cost function variants have been developed for different application [33,34].

Some DTW applications concern only the Euclidean distance of the aligned points in
the signal sequences (as in Equation (7)), whereas in the present study, the morphological
similarity was most interested in and critical to fiducial point projection. A hybrid form of
the cost function (termed the new cost function) was proposed (as in Equation (8)) because
it not only considered the difference in signal values (item led by β) but also evaluates the
neighborhood shifting level (item led by α), the difference in signal slope (item led by γ),
and the difference in signal concavity (item led by η). The weighting factors (α, β, γ, and η)
were tunable and might change across individuals.

New Cost Function(W)

= 1
K ∑K

i=1

⎛⎝α

√
(ai − bi)

2 + β
√(

xai − ybi

)2
+ γ

√(
dxai
dt − dybi

dt

)2
γ+η

√(
d2xai
dt2 − d2ybi

dt2

)2
⎞⎠ (8)

2.5. Fiducial Point Projection with DTW-Based Quasi-Synchronous Alignment

The DTW-base quasi-synchronous alignment introduces two modifications to the
conventional quasi-synchronous alignment: (1) the intermediary reference signal pair,
and (2) DTW-based point-to-point alignment of two signal sequences. The examples and
comparison of SCG fiducial point detections in the nonreference SCG signal using the
conventional and DTW-based quasi-synchronous alignment methods are demonstrated in
Figure 7. Figure 7a–c illustrate the conventional approach, whereas Figure 7d–g display
the DTW-based approach. The echocardiogram shown in Figure 7a is a color Doppler
flow measurement at the aortic valve. In Figure 7a, the 966-ms period between R1 and R2
is selected as the synchronization target. The signals in Figure 7b,d represent the same
nonreference ECG signal, whereas Figure 7b is rescaled (squeezed to fit signal length of
1003 ms to 966 ms) and shifted such that it can be visually aligned to the ECG R1-R2 section
in Figure 7a. The signals in Figure 7c,f represent the same SCG signal (other than the
reference SCG signal). Figure 7c has been rescaled and synchronized to Figure 7b.

 

Figure 7. Illustrations and comparison of the fiducial point detection in the nonreference SCG
signal between the methods of the conventional and the DTW-based quasi-synchronous alignment:
(a) Doppler echocardiogram image with the identified ECG R peaks (R1, R2) and aortic valve closing
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(AC) event; (b) ECG alignment (to the ECG signal in the echocardiogram) under the conventional
quasi-synchronization (aligned through shifting and rescaling); (c) SCG signal (synchronous to
(b)) aligned by the conventional approach with the fiducial point AC detected by virtual line extending
from the echocardiogram; (d) Nonreference ECG signal (no need for R peaks alignment to other ECG
signal); (e) Reference ECG signal with R peaks aligned to ECG R peaks in the echocardiogram R1 and
R2 (aligned by shifting only) under DTW-based quasi-synchronous alignment; (f) Nonreference SCG
signal (synchronous to (d)) with the fiducial point AC projected by DTW-based quasi-synchronous
alignment; (g) Reference SCG signal (synchronous to (e)) aligned to echocardiogram with the fiducial
point AC detected by virtual line extending from the echocardiogram under DTW-based approach;
(h) The detection error (indicated by the width of yellow rectangle in the upper graph) of the
conventional method illustrated by comparing the AC points detected from conventional quasi-
synchronous alignment (upper trace) and DTW-based (middle trace) approach; (i) Point-to-point
mapping of the nonreference SCG signal (upper trace) with the reference SCG signal (lower trace)
under DTW alignment.

2.5.1. Common Procedures under Both Alignment Methods

An RR interval in the echocardiogram image was selected and the ends were annotated
as R1 and R2. A visually recognized AC event was marked by a blue line and labeled as
“AC” in the echocardiogram (Figure 7a). The present RR interval (966 ms) was obtained by
pixel counting from the timing ticks in the echocardiogram.

2.5.2. Conventional Quasi-Synchronous Alignment

The SCG and ECG signals were shifted and rescaled to align R peaks to R1 and R2 in
the ECG of echocardiogram (Figure 7a–c). The fiducial point was obtained by extending
the blue line from Figure 7a–c.

2.5.3. DTW-Based Quasi-Synchronous Alignment

A reference signal pair of ECG and SCG was sorted out with the RR interval closest
to the R1–R2 period. In this example, the reference signal pair had a heartbeat cycle of
966 ms. Shifting, but not rescaling, was required to align the reference signals until the
ECG R peaks matched R1 and R2, as shown in Figure 7e,g. Referring to the condition in
Figure 4, the ECG signals in Figure 7a,e, as well as the echocardiogram and SCG signal in
Figure 7g, are postulated to align to each other (within the RR interval) spontaneously. The
fiducial point AC was detected in the reference SCG signal by extending the blue line from
Figure 7a–g. The fiducial point AC was projected from the reference SCG signal (Figure 7g)
to nonreference SCG signal (Figure 7f) with the aid of a DTW-based software program, as
shown in Figure 7f–i.

As mentioned earlier, a fiducial point detection error resulted from the signal rescaling
manipulation in the conventional quasi-synchronous alignment, as indicated by the width
of the yellow rectangle in Figure 7h. Figure 7i displays the results of DTW point-to-point
alignment with the new cost function between the reference SCG signal (red) and the target
nonreference signal (blue).

2.6. Validation of DTW-Based Fiducial Point Detection Approach

An SCG fiducial point detection software tool was developed, using MATLAB R2020a,
following the programming flowchart (in Figure 8) which depicts the SCG fiducial point de-
tection procedures with DTW-based quasi-synchronous alignment. Two cardiac diagnostic
parameters (PEP/LVET ratio and Tei index) were extracted from a dataset of 56 individuals
to assess the clinical application of the proposed SCG fiducial point detection method and
to validate the effectiveness of the software. In addition, Figure 8 also reveals that the
correlation of averaged diagnostic parameters versus LVEF and ROC classification analysis
were conducted at the end of the proof-of-concept experiment.
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Figure 8. Programming flowchart of the DTW-based fiducial point detection and validation.

2.6.1. Clinical Data Acquisition and Preprocessing

At least two echocardiogram images were required to detect all the interested cardiac
events (MO, MC, AO, and AC) because an ultrasonic probe can only examine one cardiac
valve at a time. A set of simultaneously measured ECG and SCG signal pairs were clipped
from the continuous SCG measurement. As shown in Figure 7b,c, the ECG and SCG signal
clips were sectioned according to ECG T waves, from T0 to T2, to include a complete
heartbeat section of the centered RR interval and with extra intervals before and after. Prior
to the fiducial point detection, signal clips went through the data preprocessing including
signal detrending, band-pass filtering, and wavelet denoising.

2.6.2. Echocardiogram–Reference Signal Alignment

An RR interval in the echocardiogram was selected for the interested cardiac event
identification as shown in the section confined by R1 and R2 lines in Figure 7a. To minimize
the fiducial point detection error, an ECG/SCG signal pair with RR interval period the
same as or close to the duration between R1 and R2 lines were screened out from the signal
clips as the reference signal pair. The reference signal pair were aligned to the R1–R2 section
in the echocardiogram only through shifting, as presented in Figure 5 or in Figure 7e,g.

2.6.3. Identification and Mapping of Cardiac Events in Echocardiogram to
Reference Signals

After the alignment of echocardiogram images and reference signals, the valve opening
and closure events were identified and annotated in the images, as indicated by the blue line
in Figure 5a or Figure 7a. By extending the lines to reference SCG signals, the intersections
were annotated as the detected SCG fiducial points in the reference signal.

2.6.4. Projection of Fiducial Points from Reference to Nonreference Signals

The reference SCG signals with fiducial point annotations were used to project the
fiducial points to nonreference signals through DTW alignment, under the proposed new
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cost function optimization. Figure 6 illustrates the results of the point-to-point mapping of
the alignment and the aligned path with minimized cost function in the cost matrix.

2.6.5. PEP/LVET Ratio and Tei Index Calculation

To validate the clinical practicability and effectiveness of the DTW-based fiducial
point detection approach, the cardiac parameters (PEP/LVET ratio and Tei index) for each
nonreference SCG signal clip were calculated according to Equations (5) and (6) from the
projected fiducial points.

2.6.6. Index Statistics Calculation

To assess the cardiac health of an individual, the averaged PEP/LVET ratio and Tei
index were utilized instead of using the indexes from a single signal clip.

2.6.7. Correlation of the Averaged Indexes to the LVEF

The collection of the averaged indexes (PEP/LVET ratio and Tei index) for 56 indi-
viduals were correlated to the individual’s clinical LVEF assessment (in Figure 9). The
coefficient of determination (R2) was employed as the indicator of the correlation between
the averaged indexes and the clinical LVEF assessment.

 

Figure 9. Linear regression models of clinical LVEF assessment versus: (a) PEP/LVET ration; (b) Tei
index; (c) mean of PEP/LVET and Tei index. Each graph is annotated with mean (red squares) and
standard deviation (blue error bars) of the variable from subjects, the 95% confidence interval of the
regression line (shaded area), the coefficient of determination (R2) and the optimal operating point
determined in the ROC curve analysis (yellow point).

2.6.8. ROC Curve Analysis

Four predictive models in ROC curve analysis (Figure 10) were used to distinguish
the patients of heart failure with reduced ejection fraction (HFrEF), using the predictors of
(1) clinical LVEF assessment, (2) PEP/LVEF ratio, (3) Tei index, and (4) the mean PEP/LVEF
ratio and Tei index, respectively. The values of area under the ROC curve (AUC) were
determined, to evaluate the predictability of the models as well as the effectiveness of these
diagnostic parameters derived from the DTW-base quasi-synchronous alignment.
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Figure 10. The comparison of ROC model analysis for the classification of patients with HFrEF by
using four univariate predictors: (a) clinical LVEF assessment; (b) the PEP/LVET ratio; (c) Tei index;
(d) the mean of PEP/LVET ration and Tei index.

3. Results

With IRB approval, the SCG–echocardiogram data of the 56 individuals were em-
ployed for the proof-of-concept experiments and the effectiveness evaluation of DTW-based
fiducial point detection approach. The experimental data were reused from the previous
research conducted by Lin et al. on a multichannel SCG system [9].

Table 1 lists the subjects’ demographic information and SCG-derived cardiac pa-
rameters, including patient ID, sex, age, clinical LVEF assessment, hospital diagnosed
cardiovascular diseases, the number of examined SCG clips and the statistics of PEP/LVET
ration and Tei index derived by the DTW-based SCG fiducial point detection method. The
means ± standard deviations of age and LVEF are 52.1 ± 22.3 years and 50.8% ± 16.3%,
respectively. The mean and standard deviation of PEP/LVET ratio and Tei index were cal-
culated from the number of examined SCG clips. The number of data clips used for fiducial
point detection ranged from 34 to 106, with a mean ± standard deviation of 69.2 ± 16.2.
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The applicability of SCG fiducial point detection using DTW-based alignment was
validated through two experiments: (1) the linear correlation between SCG-derived indexes
(PEP/LVET ratio and Tei index) and clinical LVEF assessment and (2) the analysis of ROC
classification to distinguish patients with HFrEF or else.

3.1. Linear Correlation Models

The clinical LVEF assessment has been reported to be negatively proportional to
the PEP/LVET ratio and Tei index for the patients with cardiac symptoms of varying
severity [3,5,7,35,36]. To validate the effectiveness of the SCG fiducial points and the
associated CTIs derived using the DTW-based quasi-synchronous alignment method, three
general linear models (GLMs) were generated for the correlation analysis to prove the
negative proportionality. The trendlines of the 56-subject clinical LVEF assessments were
synthesized under three general linear regression models by using the univariate predictors
of: (1) the PEP/LVET ratio, (2) Tei index, and (3) the mean PEP/LVET ratio and Tei index
(shown in Figure 9). The three general linear regression models are formulated as Equations
(9), (10), and (11). Favorable coefficients of determination (R2) for the three univariate linear
models were obtained in this 56-subject experiment, with R2 = 0.768, 0.86, and 0.894 for
(1), (2) and (3), respectively. The negative proportionalities in the graphs of Figure 9
are obvious, whereas the standard deviation (indicated by the blue error bars) and 95%
confidence intervals (indicated by the shaded area) are larger for patients assessed as having
lower LVEF than normal people (with higher LVEF).

LVEF = −1.614 × PEP
LVET

+ 0.998 (9)

LVEF = −1.169 Tei index× + 1.043 (10)

LVEF = −1.476 × 0.5 ×
(

PEP
LVET

+ Tei index
)
+ 1.070 (11)

3.2. ROC Classification

The LVEF assessment has clinical utility for cardiovascular syndrome classification
and heart failure diagnosis [37]. According to the 2016 European Society of Cardiology
(ESC) guidelines regarding the diagnosis and treatment of acute and chronic heart failure,
the class of HFmrEF (heart failure with mid-range ejection fraction) was defined as an LVEF
assessment larger than 40% but less than 50%. The other classes of HFrEF and HFpEF
(heart failure with preserved ejection fraction) were retained [38].

The second proof-of-concept experiment for the DTW-based fiducial point detection
approach was the application of the univariate ROC models to classify the subjects with
HFrEF label listed in the disease column of Table 1. In Figure 10, four variables, including
(1) LVEF, (2) PEP/LVET ratio, (3) Tei index, and (4) the mean PEP/LVET ratio and Tei
index, were employed as the univariate predictors. To build the models, four data pairs,
comprising diagnosis disease labels and the values of the predictors, were modeled by the
GLMs as with the logit link function and binomial distribution function. The GLM-fitted
probability vectors were set as scores and the “HFrEF” tag was set to as the positive label
in the ROC curve configurations. Figure 10 exhibits the ROC classification result of four
models to predict the diagnosis of HFrEF; extra indicators including the TP and FP rates,
AUCs, and the optimal operating points of the predictors are also annotated. The optimal
operating point was estimated at the condition that the classifier gave the best trade-off
between the costs of failing to detect positives against the costs of raising false alarms.

The AUC of the LVEF model outperformed the other three models, with an AUC
of 0.995 and the optimal operating point (LVEF cutoff at 0.4) at TP = 1 and FP = 0.029
(Figure 10a). This result conformed to the lower bound of HFmrEF of 40% suggested in the
2016 ESC guidelines. The AUC of the PEP/LVET ratio model was slightly greater than that
of the Tei index model (with AUC = 0.937 > 0.928). In other words, the cardiologists had a
93.7% probability of correctly distinguish a patient with HFrEF from others with the aid of
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the PEP/LVET ratio model. Using the Tei index as the predictor, HFrEF could be expected
to correctly diagnose 92.8% of the cases. As shown in Figure 10b,c, both models has the
same TP and FP for the optimal operating points. Using the mean PEP/LVET ratio and
Tei index as predictors improved the diagnostic prediction of any original predictors, with
AUC = 0.949 (Figure 10d). In general classification evaluations, ROC model predictions
with AUC values equal to 0.5 suggest no discriminative ability. AUC values between
0.7 and 0.8, between 0.8 and 0.9, and >0.9 indicate acceptable, excellent, and outstanding
discriminative ability, respectively [39].

Through the proof-of-concept experiments of GLM models and ROC curve predictions,
the CTIs and the cardiac indexes (PEP/LVET ration and Tei index) derived from the DTW-
based quasi-synchronous alignment herein were confirmed to be reasonable in clinical
practice. The optimal operating points corresponding to the last three ROC curves are
also annotated in Figure 9. Moreover, the corresponding optimal decision points (0.4,
0.465, 0.436 and 0.45) for HFrEF assessment in the ROC curves were in Figure 10 for the
comparison of the suggestion in 2016 ESC guidelines, LVEF = 0.4. Hopefully, these findings
will provide reference for future study.

4. Discussion and Conclusions

The present study examined the issue of misalignment in the conventional quasi-
synchronous alignment method and introduced the intermediary signals (reference signal
pair of ECG and SCG) and DTW algorithm to eliminate the timing error in SCG fiducial
point detection. The advantages and effects of the collaboration of reference signals and
DTW algorithm as well as the new distance cost function were demonstrated in the graphi-
cal illustrations. The combination of the intermediary signals and DTW alignment in SCG
fiducial point detection was proposed and realized for the first time.

It was known that SCG fiducial point delineation was hindered by artifact effects, the
ambiguity in specific event waveforms and the lack of detection procedures. The proposed
method abandoned the idea to look for the fiducial point co-occurring waveforms but seek
for fusing heterogeneous modalities to allocate the fiducial points in the personal SCG
reference signal. DTW algorithm was leveraged afterwards to project the fiducial points to
non-reference signals. A merit of aligning signal pair with DTW algorithm is that it does
not just align the prominent peaks or valleys but the entire signals. Because the extreme
points serve as the anchor points during the alignment, points in between are enforced to
be regulated. On the condition that the artifact does not override the signal waveform too
much, DTW could overcome the distortion. Therefore, in case of minor signal distortion
or featureless points are identified as the fiducial points, the projection can still function
correctly with the assist of DTW.

This proposed DTW-based quasi-synchronous alignment is not only dedicated to
SCG fiducial point detection but is also applicable to other scenarios. The non-ECG
reference signal (SCG reference signal) and the application target (seismocardiography)
could be changed to other cardiac signals, such as phonocardiography, ballistocardiography
and impedance cardiography. The echocardiogram images could also be changed to
other imaging modalities or other cardiac signal templates with the target cardiac events
annotated. The application concept of the proposal is not limited in biomedical scenarios; it
is possible to extend to the speech recognition or gesture identification and so on.

As the concept was proven clinically in the 56-individual dataset, the software program
implemented based on the proposed flowchart achieved high prediction rates (>92.8%)
in the experiment of distinguishing patients with HFrEF from others. With the verified
diagnostic utility, the proposed quasi-synchronous fiducial point detection procedures
could be further refined and standardized to expedite the development in SCG technology
and shorten the path from bench to bedside.

Recently, machine learning has been one of the major topics in biomedical engineering;
however, building a machine learning model for SCG fiducial point detection requires
plenty of labeled training data. The proposed flowchart could be used as a framework and
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guidelines of the automatic program development for fiducial point detection. Therefore,
the program-generated SCG fiducial point annotations could be used as the labeled training
data set for the supervised machine learning process in alternative fiducial point detection
approaches or other feature identification applications. In addition, by adding new routines,
the framework can extend more features to the SCG research, such as signal template
generation, signal morphology clustering and multichannel SCG applications. In the future,
the framework may be further integrated into the cloud computing services together with
the ambulatory ECG/SCG system for home-based real time health monitoring.
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Abstract: Evaluation of sympathetic nerve activity (SNA) using skin sympathetic nerve activity
(SKNA) signal has attracted interest in recent studies. However, signal noises may obstruct the
accurate location for the burst of SKNA, leading to the quantification error of the signal. In this
study, we use the Teager–Kaiser energy (TKE) operator to preprocess the SKNA signal, and then
candidates of burst areas were segmented by an envelope-based method. Since the burst of SKNA
can also be discriminated by the high-frequency component in QRS complexes of electrocardiogram
(ECG), a strategy was designed to reject their influence. Finally, a feature of the SKNA energy ratio
(SKNAER) was proposed for quantifying the SKNA. The method was verified by both sympathetic
nerve stimulation and hemodialysis experiments compared with traditional heart rate variability
(HRV) and a recently developed integral skin sympathetic nerve activity (iSKNA) method. The
results showed that SKNAER correlated well with HRV features (r = 0.60 with the standard deviation
of NN intervals, 0.67 with low frequency/high frequency, 0.47 with very low frequency) and the
average of iSKNA (r = 0.67). SKNAER improved the detection accuracy for the burst of SKNA, with
98.2% for detection rate and 91.9% for precision, inducing increases of 3.7% and 29.1% compared
with iSKNA (detection rate: 94.5% (p < 0.01), precision: 62.8% (p < 0.001)). The results from the
hemodialysis experiment showed that SKNAER had more significant differences than aSKNA in the
long-term SNA evaluation (p < 0.001 vs. p = 0.07 in the fourth period, p < 0.01 vs. p = 0.11 in the sixth
period). The newly developed feature may play an important role in continuously monitoring SNA
and keeping potential for further clinical tests.

Keywords: sympathetic activity (SNA); skin sympathetic nerve activity (SKNA); electrodes; electro-
cardiogram (ECG)

1. Introduction

Cardiovascular diseases (CVDs) are the biggest killer of people globally, accounting
for 32.1% of the death cases [1]. With the aggravation of aging [2], the prevention and treat-
ment of CVDs have become a global problem. Some CVDs are manifested as symptomatic
cardiac autonomic function neuropathy [3], with sympathetic and vagal innervation dis-
order or structural damage. Therefore, the evaluation of sympathetic function is of great
significance [4]. Microneurography is the gold standard for estimating sympathetic nerve
activity (SNA) [5], but it is invasive and rarely used in the clinical scene [6]. Heart rate
variability (HRV) is a non-invasive method of assessing SNA [7]. HRV requires proper
sinus node function [8], and it is not practicable for patients with atrial fibrillation or pre-
mature beat because their rhythm is not sinus rhythm. In addition, HRV cannot reflect the
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dynamic changes of SNA because of their indirect parameters from segments that last 5 min.
Therefore, these methods have some limitations for daily human monitoring applications.
The research on electrodermal activity (EDA) provides another possibility for non-invasive
SNA evaluation [9], but EDA affected by sweat may lead to some individualized differences
in evaluation features [10]. As a non-invasive and real-time method for assessing SNA,
skin sympathetic nerve activity (SKNA) has been applied in many clinical events [11,12]
and has great potential. It has become a research hotspot in SNA evaluation.

As shown in Figure 1, SKNA is obtained by collecting biopotential signals on the body
surface using electrode sensors at high sampling frequency (>2000 Hz) [13]. This method
does not require additional inducing conditions and is easy to implement. The amplitude
range of SKNA signals is much lower than those of electrocardiogram (ECG), ranging
from 0.5 to 80 μV, according to the experiments from our previous work [13] as well as
from [14,15]. The sympathetic nerve arises from the spinal cord. In particular, the stellate
ganglion sends post-ganglionic sympathetic fibers to the heart and skin. The electrodes
measure the subcutaneous sympathetic nerve activity to reflect the cardiac sympathetic
nerve activity. Therefore, SKNA is inevitably disturbed by other noises, such as ECG and
electromyogram (EMG), resulting in various artifacts in the signal [16]. The electrode-skin
interface impedance and skin surface conductivity also affect the signal quality [17]. In
addition, power line interference and amplifier saturation distortion have a negative impact
on SKNA signal acquisition [18]. Therefore, SKNA has some special characteristics: low
amplitude, high noise, and high randomness due to the above factors.

Figure 1. (a) The chain of SKNA signal transmission and acquisition. (b) Representative examples of
acquired signals: the above figure shows the raw signal and the following figure shows SKNA after
filtering. (c) The step signal artifact. (d) The ECG artifact.

There are still some challenges to be addressed in this approach because of the charac-
teristics of SKNA. First, SKNA is aperiodic and has high randomness because it changes
with SNA. Therefore, detecting nerve bursts is beneficial to understanding the changes
in SKNA. At this point, the nerve bursts are often discriminated with empirical thresh-
olds [19,20]. With the method based on thresholds, it is easy to cause several misjudgments
due to the low signal-to-noise ratio of SKNA. The second challenge comes from the quan-
tization of SKNA. Some researchers assess SNA by calculating the average energy of
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SKNA [21,22]. Because of noise, signal extraction is easily affected, especially in providing
sympathetic-related information. Therefore, it is necessary to further process the obtained
signals in order to extract key information from SKNA effectively.

This study aims to develop an artifact-resistant feature to quantify the SKNA sig-
nal. We expect this feature to show good performance in short-term and long-term SNA
evaluation. The main contributions of this paper can be summarized as follows:

(1) To more accurately detect the burst area, we proposed a method based on TKE
operator and envelope and integral signal to detect the burst area. In addition, we
proposed to discriminate the ECG artifacts based on QRS complexes.

(2) To accurately quantify the signal, we proposed a new feature, SKNAER, for SNA
evaluation based on the detected burst area. We compared SKNAER with aSKNA in
the hemodialysis clinical experiments. HRV features related to SNA were calculated
simultaneously based on ECG for the comprehensive comparison.

2. Materials and Methods

2.1. Experimental Design
2.1.1. Experimental Setup

PowerLab Data Acquisition Hardware Device (ADInstruments, Lexington Drive Bella
Vista New South Wales, Australia) is the signal acquisition system used in the experimental
protocol. The data acquired from the signal acquisition system were analyzed by LabChart
pro 8 software (ADInstruments, Australia). All the experimental results were imported
into MATLAB® (R2019) for further processing and illustrating. The sampling frequency
was set to 8 kHz. Two types of experiments were conducted to verify the reliability and
effectiveness of the method, including experiments in laboratory environments and clinical
experiments. In this work, the signal measurements in the laboratory were carried out in a
noise-free sound insulation room, with a temperature of 25 ◦C and humidity of 50%. The
clinical experiments were carried out in the operation room, with a temperature of 25 °C
and humidity of 50%. Seven surface electrodes (3M®) were placed on the chest, biceps,
forearm, and right abdomen. The positions of electrodes on the body are shown in Figure 2.
The sensor positions of the two experiments were the same. Considering the distribution of
muscle tissue on the body surface, we assume that ch1 is high signal quality, ch2 is medium
signal quality, and ch3 is low signal quality.

Figure 2. The electrode placement position in the experiment. In Experiment 2, the signal is only
collected from channel 1.
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2.1.2. Experimental Protocol

Table 1 summarizes the demographic information of the experiments. Ten healthy
subjects without CVDs in Experiment 1 and twenty clinical subjects in Experiment 2 from
the First Affiliated Hospital of Nanjing Medical University participated in this study. The
healthy subjects’ average age, height, and weight without CVDs were 25.1 ± 4.6 years
old, 173.2 ± 6.5 cm, and 71.0 ± 13.6 kg. The clinical subjects’ average age, height, and
weight were 58.9 ± 14.6 years old, 170.2 ± 10.3 cm, and 70.5 ± 13.9 kg. Written and
informed consent was obtained from each patient. The Ethics Committee has approved
the patient experimental protocols of the First Affiliated Hospital of Nanjing Medical
University, understudy number 2020-SRFA-183.

Table 1. Summary of demographic information of subjects that participated in experiments.

Experiment 1 Experiment 2

Mean Standard Deviation Mean Standard Deviation

Age/years 25.1 4.6 58.9 14.6

Height/cm 173.2 6.5 170.2 10.3

Weight/kg 71.0 13.6 70.5 13.9

Weight/kg (after dialysis) 67.9 13.6

Cohort size 10 20

Experiment 1: Standard SKNA signal

We enrolled ten healthy volunteers for signal recording during the cold-water pressor
test (CPT) [23] and the Valsalva maneuver (VM) [24]. The two experiments consisted
of three steps. The subjects were required to stay in a seated position for a half minute
during the first step. This step aimed to eliminate the interference of signal recording at the
beginning of the equipment and record the baseline waveform for each subject. The second
step was the VM and CPT, the standard procedures for triggering sympathetic discharges.
In VM, the subjects were directed to close the glottis after deep inspiration for 30 s. Then,
the subjects were monitored for an additional 30 s after directed exhalation. The subjects
were guided to use abdominal breathing and avoid unnecessary chest movements. The
CPT was performed by placing the subject’s left hand up to the wrist in iced water for one
minute. The hand was taken out of the iced water after a minute. These experiments were
non-invasive and non-drug experiments to change the autonomic nervous system activity.
Each subject was required to repeat each task 10 times. A two-minute control and recovery
period was recorded for both maneuvers.

Experiment 2: Clinical SKNA signals

The clinical signals were recorded in an operating room. The data of uremic patients
during hemodialysis were recorded. Changes in blood volume during hemodialysis can af-
fect the autonomic nervous system. Firstly, the subjects stayed in the supine position before
the operation and started recording data simultaneously. After the nurse punctured the
arteriovenous fistula of the patients, the patients’ blood was drawn out of the body. Then,
the blood was exchanged in the dialyzer to remove the toxin. Finally, the processed blood
was fed into the patients’ bodies. The whole hemodialysis process lasted approximately 4 h.
It is worth mentioning that the subjects were patients who needed hemodialysis for their
chronic kidney disease. The experiment was an observational data recording experiment
and had no additional impact on patients. Data recordings were stopped after hemodialysis.
The clinical signal only collected the data from channel 1. On the one hand, the interference
of data acquisition on clinical patients should be avoided as much as possible. On the
other hand, the emphasis of Experiment 2 is different from that of Experiment 1, and more
emphasis is placed on verifying the clinical application effect. The patients were asked to
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stay supine and avoid unnecessary movement during the recording. Electronic instrument
usage, which could produce signal artifacts, was avoided during recordings.

2.2. Burst Detection Method with iSKNA

The burst can be defined as a period of continuous biopotential signal with amplitude higher
than the baseline. Therefore, the signal state can be expressed using the following formula:

s ∼
{

1, i f h(x) ≥ τ
0, i f h(x) < τ

(1)

where s is the state of the signal and h(x) is the statistical feature of the signal. When the
statistical characteristic is greater than the threshold τ, it is considered that the signal state
at this time is burst. Otherwise, it is the baseline.

As shown in Figure 3a,b, the measured signal was first band-pass filtered (from 500 to
1000 Hz). Then, rectified signal was obtained by full-wave rectification [12].

Figure 3. Representative examples of signal preprocessing and segmentation processes using the QRS
information complexes and a sensitive threshold. (a) The raw signal. (b) The filtered SKNA signal.
(c) The preprocessed signal after TKE operator. (d) The segmented burst area based on envelope and
integral signal. (e) The final segmented burst area. The burst was in the blue box, the baseline was in
the yellow box, and the artifact was in the red box.

47



Biosensors 2022, 12, 355

The envelope of the rectified signal was created with a first-order resistance-capacitance
integrating the network with a time constant of 0.1 s. After this step, integral skin sympa-
thetic nerve activity (iSKNA) was obtained. At this point, the baseline and burst are often
discriminated with a threshold. The threshold is calculated using the following formula:

Threshold = μ + ρ × σ (2)

where μ is the mean of iSKNA, σ is the standard deviation of iSKNA, and ρ is an empirical
parameter. Commonly, ρ is set to 3 in previous studies [11,12]. One must decrease ρ to
increase sensitivity for SKNA burst. One must increase ρ for higher specificity.

2.3. Optimized Burst Detection Method
2.3.1. Teager–Kaiser Energy Operator

Before burst localization, the TKE operator [25] was introduced to implement the
enhancement of the effective signal to highlight the amplitude variation of the SKNA
signal. The TKE operator was initially proposed to compute the energy of sound [26]
or to detect the onset of sound in the field of non-linear speech signal processing. It can
characterize the variation degree of signal in amplitude and frequency domain as shown in
Figure 3. Therefore, the amplitude-frequency variation of SKNA can be characterized by
preprocessing the signal with the TKE operator.

For a given signal sequence f (n), the TKE operator can be written as:

ϕ(n) = f 2(n)− f (n + 1) f (n − 1) (3)

where f (n) is the filtered SKNA signal and ϕ(n) is a new discrete sequence after processing
with the TKE operator, as shown in Figure 3b,c. The baseline noise is effectively suppressed.
The difference between the baseline and the burst is clearer, which lays a good foundation
for the later burst detection algorithm.

2.3.2. Signal Segmentation

The discrete sequence was obtained through the processing of the TKE operator. First,
full-wave rectification was applied to the discrete sequence. The time window method was
used to obtain the envelope to shield the small fluctuations in the discrete sequence and
obtain the overall trend of the signal.

The time window length was set to be n, and the envelope at the time point i was
defined as the maximum sequence amplitude in the time window. Since the minimum
duration of the nerve action potential is 2 ms, the default value of n is 2 ms if the expert
does not have an extra set.

Sknae(i) = max(ϕ(j)), j ∈
[
i − n

2
, i +

n
2

]
(4)

The characteristic of burst start/end is that the signal changes from stationary white
noise signal to maximum peak value. Therefore, the start/end position of the burst can
be preliminarily detected in the light of the magnitude Sknae(i) of the envelope and the
derivative d(i) of the point, if:

d(i) = Sknae(i)− sknae(i − 1) (5)

Sknae(i) ≥ t and d(i) > 0 (6)

eth = λ × Sknamax (7)

where eth is the envelope threshold, which is defined as an empirical value based on the
maximum value of the baseline. λ is an empirical parameter, which is adjusted according
to different subjects. Commonly, λ is set to 1. That is, the maximum value of the baseline is

48



Biosensors 2022, 12, 355

used as the threshold of the envelope by default. Similarly, the end of the burst is defined
as the envelope value less than t, and the derivative is less than 0.

Through the above operation, the start/end position of the burst was detected. How-
ever, the signal rose unsteadily, so the start/end position needs to be adjusted slightly.
The significance of using the two methods is that the envelope can be used for rough
segmentation. The integral signal is used to adjust the starting point position in more
detail to segment the signal more accurately. The integral of ϕ(n) is the integral area of
the sequence in unit time. It can reflect the detailed changes of sequence better than the
envelope. Therefore, the interference of the signal jitter on the envelope start/end position
can be reduced to obtain more accurate burst detection results. The ϕIntegral (n) is defined as:

ϕIntegral (n) =
1

Δt

∫ i+ 1
2Δt

i− 1
2Δt

ϕ(j) (8)

where �t is the length of the time window. In the above process, a larger time window
of signal envelope can better reflect the overall trend of the sequence. In this operation,
selecting the time window �t as half of the envelope window n can obtain more accurate
segmented positions based on rough segmentation.

The rough segmentation envelope length L can be calculated according to the following
formula:

L = EP − SP (9)

where SP is the starting position of the burst and EP is the ending position of the burst. The
range of the moving time window is one-tenth of the envelope length L in the adjustment
step. The segmented burst area in this step is shown in Figure 3d. Therefore, the new
starting and ending position is:

SPnew = min
(

ϕIntegral (i)
)

, i ∈
[

SP − 1
10

L, SP +
1

10
L
]

(10)

EPnew = min
(

ϕIntegral (i)
)

, i ∈
[

EP − 1
10

L, EP +
1

10
L
]

(11)

2.3.3. Discrimination of Artifact Bursts

Burst in the signal was detected through the above process, including true nerve burst
and false burst. Since the characteristics of the false burst are similar to the trust burst, they
are difficult to distinguish based on the envelope.

SKNA signal was obtained from the body surface by standard lead. Therefore, the ECG
artifact was the major noise source in SKNA. Although most energies of ECG were filtered
out after a 500–1000 Hz band-pass filter, some residual energy still existed as background
noise, especially in QRS complexes. Firstly, the R-peaks detection was performed on ECG
using an open-source QRS detector [27]. Then, adaptive thresholds were applied to the
length signal to determine the onset and duration of the QRS complexes [28]. In this way,
we obtained two pieces of information: the position of the ECG artifact and the maximum
width of each ECG artifact [29]. If:

SP < IndexR < EP and Wqrs < L (12)

where IndexR is the index of the position of the R wave and Wqrs is the duration of the QRS
complexes. That is, in case the burst area contains the position of the R wave and the width
of the burst area is smaller than the width of the QRS complex, the burst area is supposed
to be a false positive.

As shown in Figure 3, false positives resulting from short bursts in SKNA are discrimi-
nated by applying time thresholds to the start/end positions. In other words, start/end
positions that had time differences shorter than Ts seconds were removed. This discriminat-
ing operation was applied after the start/end positions had been detected. This operation
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allowed the algorithm to have a sensitive threshold for the on-time [30]. Since the minimum
duration of the nerve action potential is 2 ms [31], the default value of Ts is 2 ms if the
expert does not have an extra set.

2.4. SKNA Energy Ratio

In [32,33], aSKNA was used to assess SKNA over a period. The length of the period
depends on the length of time required for clinical analysis, 30 s [11], 5 min [12], and
half an hour or more [22]. The feature can be calculated in two steps. First, iSKNA is
obtained by calculating the sum of the areas under the SKNA curve in unit time, as shown
in Formula (7). The unit time was set to 0.1 s in the previous research [12]. Then, the
amount of SKNA can be quantified by calculating the average of iSKNA, which is defined
as aSKNA.

aSKNA =
∑ iSKNA(i)

N
(13)

where N is the ratio of the time window of the calculated feature to that of iSKNA. For
example, N is 3000 if the time window of aSKNA is 5 min. Noise has a great impact on this
feature, especially the baseline noise and impulse noise. Moreover, due to the differences
in sensors and subjects, this feature is unstable in individual comparison. Therefore,
according to the concept of signal-to-noise ratio (SNR), we defined a feature to estimate
SNA by calculating the ratio of the detected burst sequence energy to the baseline energy.
The SKNA energy ratio (SKNAER) is defined as:

SKNAER = 10log10
Pburst

Pbaseline
(14)

where Pburst is the total energy of the nerve burst area detected after step 4 as show in
Figure 3. Pbaseline is the total energy of the baseline area detected after step 3. It is worth
noting that the discriminated artifact burst in step 4 is neither baseline nor nerve burst. It is
recognized as noise and is not used to calculate the feature. To avoid error calculation caused
by extreme conditions, the signal segment is discriminated as abnormal for secondary
processing when it is determined to be all baseline or burst.

2.5. Evaluation Methods

To verify the effectiveness and accuracy of the algorithm, the data were manually
labeled by an expert. The expert scrolled through the data using a custom graphical user
interface tool and manually placed onsets and offsets of SKNA burst. For the annotation of
burst, firstly, we recorded the start/end time of the activation action in the standard signal
recording experiment. Based on the start/end time of the activation action and the relative
amplitude of the signal, experts trimmed the start/end position of the burst.

The first problem is as follows: what was the detection quality of the proposed
algorithm compared with the expert? This was answered with the data of Experiment 1.

To answer the first question, we obtained detection rate and precision. These measures
were defined in terms of the following quantities and expressed as percentages. The
detection rate was obtained to quantify the difference in the number of detected pairs of
onsets/offsets and the number of pairs manually labeled by the expert. It was defined as
the percentage of the number of true onset/offset pairs detected by the algorithm to the
number of bursts labeled by the expert.

True positives (TPs): numbers of burst areas classified as the burst by both the expert
and the algorithm.

False positives (FPs): numbers of burst areas classified as the burst by the algorithm
and not by the expert.

False negatives (FNs): numbers of burst areas not classified as the burst by the algo-
rithm and classified as the burst by the expert.
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The detection rate and precision were defined as follows.

DR =
TP

TP + FN
× 100% (15)

P+ =
TP

TP + FP
× 100% (16)

In addition, we also calculated the coincidence to answer the first question. The
coincidence was defined to compare the coincidence degree of the automatic/manual
segmentation results by algorithm/expert. The coincidence was computed as the ratio of
the manual segmentation length of the overlapping part of automatic segmentation length
and manual segmentation length.

CO =
min(EPa, EPe)− max(SPa, SPe)

EPe − SPe
(17)

where SPa and EPa are the automatic segmentation of starting and ending position by algo-
rithm; SPe and EPe are the manual segmentation of starting and ending position by expert.

2.6. Reference Features

The second question is what is the clinical effect of the proposed feature, and whether
it is more effective in evaluating SNA than other features? The second question can be
answered by using the data from Experiment 1 and 2. In Experiment 1, the CPT and
the VM are the standard procedures for triggering sympathetic discharges [32,33], which
can increase blood pressure, heart rate, and SNA level. In Experiment 2, hemodialysis
is to purify the blood by dispersing and circulating all kinds of harmful and redundant
metabolic wastes and excess electrolytes out of the body to achieve the purpose of correcting
water-electrolyte and acid-base balance. As a result, pressure on the autonomic nervous
system decreases, and SNA changes with the release of toxic substances. In this study, we
used two methods to process data to verify the effectiveness of SKNA-based evaluation.
One method was to use the proposed method to calculate the SKNAER in different periods.
The other was to calculate the aSKNA of different periods without additional processing.

In order to further compare the differences in features, we calculated low frequency/
high frequency (LF/HF), the standard deviation of NN intervals (SDNN), and very low
frequency (vLF) based on HRV. These indicators can reflect the characteristics of SNA. The
increase of LF/HF and vLF represented the increase in SNA [34]. The decrease in SDNN
indicated an increase in SNA [35]. In addition, the paired t-test was performed to evaluate
the difference in features before and after time.

3. Results

Table 2 shows the statistical results of Experiment 1 in detail. The observed burst
number of the signal collected from the arm was less than that from the chest, especially in
the biceps position. In addition, the false positives and false negatives of the signal from
the arm were also more than those of the signal from the chest. This may be due to more
EMG interference on the arm. From this point of view, the signals obtained from the chest
position and the forearm may have better signal quality than that of the biceps position. The
proposed algorithm was verified on standard datasets. We calculated the burst detection
accuracy of signals from three acquisition positions, respectively. The results showed that
the detection rate and precision of the proposed algorithm on the acquired signal from
the chest were 100.0 ± 0% and 94.2 ± 5.0%, respectively. Although the detection rate and
precision of the algorithm decreased on the acquired signal from the biceps and forearm,
the detection rate and precision were still acceptable, 96.4 ± 5.5% and 87.3 ± 7.4%. In
addition, the coincidence area was also calculated in the experiment. The coincidence
of the signal from the chest was 96.4 ± 1.2%, and it was higher than that of the signal
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from the arm. Experimental results showed that the proposed algorithm had a satisfactory
performance on the acquired signal from a different position.

Table 2. The mean, standard deviation, and confidence interval (90% CI) of detection rate, coincidence,
and precision of the proposed algorithm on the acquired signal of Experiment 1. * p < 0.05, ** p < 0.01,
*** p < 0.001.

Position TP FN FP DR (%) p-Value CO (%) p-Value P+ (%) p-Value

Ch1
Chest

Proposed method 159 0 9 100.0 ± 0
[100.0 100.0]

0.18

96.4 ± 1.2
[95.6 97.2]

***

94.2 ± 5.0
[91.9 97.9]

***
With iSKNA [12] 157 2 103 98.8 ± 2.6

[97.2 100.2]
92.2 ± 1.7
[91.4 92.8]

59.9 ± 3.6
[58.2 62.4]

Ch2
Biceps

Proposed method 111 3 18 96.4 ± 5.5
[95.6 99.3]

*

92.3 ± 2.1
[91.6 92.9]

***

87.3 ± 7.4
[85.3 89.4]

***
With iSKNA [12] 100 14 47 87.1 ± 11.0

[84.5 92.5]
87.6 ± 2.4
[87.0 88.6]

67.6 ± 9.3
[63.9 70.5]

Ch3
Forearm

Proposed method 147 2 10 98.7 ± 3.2
[97.0 100.3]

0.34

94.2 ± 1.3
[93.3 94.9]

***

93.7 ± 2.6
[92.3 95.4]

***
With iSKNA [12] 146 3 94 97.8 ± 5.8

[94.2 101.0]
91.0 ± 0.9
[90.5 91.5]

60.5 ± 5.8
[57.1 63.8]

Summary
Proposed method 417 4 46 98.2 ± 3.9

[97.7 99.6]
**

94.3 ± 2.3
[93.6 95.0]

***

91.8 ± 6.2
[89.9 93.9]

***
With iSKNA [12] 403 18 244 94.5 ± 8.9

[91.7 97.2]
90.3 ± 2.6
[89.5 91.0]

62.8 ± 7.3
[60.4 65.0]

Compared to the proposed method, there were more false positives and false negatives
using the method with iSKNA. On the one hand, the increase of false negatives in the
biceps position was more than that in other positions. In the acquisition position with high
signal quality, the detection rate of the method with iSKNA was not much different from
that of the proposed method. However, the detection rate of the signal collected at the
biceps position was reduced to 87.1 ± 11.0%. On the other hand, the difference between
the method with iSKNA and the proposed method was mainly reflected in the number
of false positives, resulting in the difference in precision. Since there was no additional
processing for ECG artifacts, there were a number of false positives using the method with
iSKNA. The precision and CO of the method with iSKNA were much lower than those of
the proposed method. In general, the proposed method had better performance in burst
detection than the method with iSKNA, especially in the signal with low signal quality.

Figure 4a–d indicate the correlation between SKNAER and the other features of the
ten patients before and after sympathetic activation in Experiment 1. The results showed
that the SKNAER was positively correlated with SDNN (r = 0.60), LF/HF ratio (r = 0.67),
vLF power (r = 0.47), and aSKNA (r = 0.67). Figure 5a–e show the box diagram of the
features related to the SNA before and after sympathetic activation in Experiment 1. The
HRV features and SKNA features of sympathetic activation one minute before and one
minute after were calculated. All features showed an upward trend after sympathetic
activation. For the HRV features, SDNN increased from 48.75 to 93.19 ms (p < 0.001). From
the perspective of this feature, SNA showed a downward trend. vLF increased from 5510.96
to 12,213.52 ms2 (p < 0.05), and three outliers occurred in the experiment. LF/HF increased
from 1.94 to 4.27 (p = 0.15). For the SKNA features, aSKNA increased from 0.91 to 1.42 μV
(p < 0.001) and SKNAER increased from −13.76 to 8.29 dB (p < 0.001). The calculated values
of SKNAER before and after sympathetic activation had no overlap. That is, they were
almost unaffected by individuals.
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Figure 4. (a–d) The correlation between SKNAER and HRV features of the ten patients before and
after sympathetic activation in Experiment 1.

Figure 5. (a–e) The statistical results of the features related to the sympathetic nervous activity before
and after sympathetic activation in Experiment 1. * p < 0.05, *** p < 0.001.

The whole data process of renal dialysis for each patient lasted about 4 h. Taking
30 min as a window, data were divided into eight periods. Figure 6 shows the trend of
SKNA and HRV features during dialysis in 20 patients with renal failure in the clinical
experiment. The SKNA and HRV features of each period were calculated to assess the SNA
of renal dialysis patients. For the SKNA features, these two features decreased the second
time, aSKNA from 1.19 to 1.05 μV (p < 0.01), SKNAER from 1.99 to −3.04 dB (p < 0.001).
Then, these features increased in the fourth time period, aSKNA from 1.03 to 1.15 μV
(p = 0.07), SKNAER from −2.45 to 1.94 dB (p < 0.001), and began to decline in the sixth time
period, aSKNA from 1.24 to 1.12 μV (p = 0.11), SKNAER from 2.25 to −0.87 dB (p < 0.01),
and remained stable until the end of the operation.

For the HRV features, LF/HF maintained an upward trend in the first two hours,
especially the fourth period, from 2.13 to 2.70 (p < 0.05), and dropped from 2.19 to 1.60 in
the sixth period (p < 0.01), and then finally increased, reaching 2.01 in the eighth period.
vLF fluctuated greatly in the first two hours. It decreased from 1043.50 to 728.80 in the third
period (p < 0.05) and quickly increased to 918.3 in the fourth period (p < 0.05). The trend in
the last two hours was similar to that of LF/HF, which decreased first and then increased.
SDNN rose continuously in the first three periods and fell from 42.88 to 38.47 ms in the
fourth period. It increased in the sixth period, from 38.49 to 40.79 ms, and remained stable.
The common trend of the HRV features was that there was a significant difference in the
fourth period, indicating the activation of SNA. There was also a significant difference in the
sixth period, indicating inhibition of SNA. The variation tendencies of HRV features were
consistent with those of aSKNA and SKNAER. However, SKNAER had a more significant
difference than aSKNA in evaluating SNA at different times, especially in the fourth and
sixth periods.

53



Biosensors 2022, 12, 355

Figure 6. (a–e) The trend of the SKNA and HRV features in the twenty patients during four-hour
hemodialysis. * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

In this work, we developed a burst area detection algorithm and verified the accu-
racy of the standard sympathetic nerve activation experiments, including the Valsalva
experiment and the CPT experiment. We obtained SKNA signals by placing three groups
of electrode sensors on the human surface. The data were automatically detected by the
proposed algorithm and manually labeled by experts receptively. Experimental results
indicated that the consistency of the detected burst area between the algorithm and the
expert was high. However, the number of burst areas observed from different positions
was different, and the burst number from the biceps was smaller than that of the chest. In
other words, the proposed algorithm can effectively locate the burst area, but it cannot
further decouple the mixed noise and neural signals. Although the SKNA signal originates
from ganglion, the effective information obtained by the signal was different due to the
influence of the interference. Preprocessing multichannel signals with principal component
analysis and other methods may lay a better foundation before burst segmentation.
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The accuracy of burst segmentation was verified on the sympathetic activation dataset.
The results showed that the detection rate on the signal of the chest reached 100%. Although
the detection rate decreased on the signal of the forearm and biceps, it was also greater
than 95%. Therefore, the proposed algorithm showed good performance in different
acquisition positions. In addition, the coincidence degree greater than 95% indicated
that the sensitivity to detect the burst area was close to the manual label of the expert.
Compared with the method with iSKNA, the advantages of the proposed method were the
improvement of detection rate on low signal-to-noise ratio signals and the discrimination of
false positives. However, due to the complex neural changes and other confounding factors
in the experiment, the number of false positives was not satisfactory enough, especially
for the acquisition signal at the biceps. This may be affected by the accuracy of the QRS
complexes’ detected algorithm and EMG artifact, which led to the unrecognized false burst.
Further analysis of the difference between the true and false burst may provide a new train
of thought to reduce the misjudgment rate.

SKNA-based SNA evaluation has great potential in pathogenesis research such as
atrial fibrillation [32] and myocardial infarction [22]. The SNA evaluation is often quantified
by the estimation of mean burst amplitude [36], total burst amplitude [37], or burst area [38].
However, direct calculation of the mean burst amplitude, such as aSKNA [22,32], greatly
impacted the evaluation of SNA because of the signal noise. The outlier of aSKNA further
proved this point during hemodialysis. We discriminated and removed the non-typical
burst after detecting the burst area and calculated the burst area energy ratio to assess the
SNA. This feature had better significance in reflecting the trend of the SNA during the
Hemodialysis experiment. Observational results of the hemodialysis experiment showed
that the SNA gradually decreased in the second period, which was the patients’ process
from dynamic to static. It increased in the fourth period. This is the period when the most
malignant clinical events may occur. In the sixth period, the sympathetic nerves returned to
calm. The patients gradually completed dialysis for harmful substances in the body during
this period. In the eighth period, the SNA increased, and the patients’ activity increased
at the last moment. From the perspective of aSKNA, except for the second period, the
sympathetic nerve of the patient did not change significantly compared with the previous
time. However, we observed more time-to-time differences from SKNAER. From this point
of view, it can help us better understand the changes in the sympathetic nerves of patients
during hemodialysis.

For Experiment 1, VM and CPT are standard sympathetic stimulation procedures.
Results showed that there was no significant difference between HRV-based features and
SKNA-based features in indicating SNA. It is worth noting that although SDNN showed
significant changes before and after sympathetic stimulation procedures, the indicated
SNA was actually the opposite. Although SDNN can effectively indicate the changes in
the sympathetic nerve in most clinical studies, it is difficult to explain in some specific
clinical scenes [39], especially in short-term measurement. It may be because there are
many interference factors for RR interval in short-term analysis, such as false heartbeat [40]
and algorithm error. Therefore, SKNA-based features were better than HRV-based features
in the short-term analysis of SNA. Furthermore, the values of SKNAER before and after
sympathetic activation did not overlap, while those of other features overlapped to a
certain extent. In other words, SKNAER can better avoid individual differences compared
to the other features. This can help us compare the SNA of different individuals, not just
individuals themselves. According to the experimental results of this study, the frequency
domain index of HRV may have a better correlation and interpretation with SKNAER in
short-term analysis, such as LF/HF.

For Experiment 2, the trends of all features were not completely consistent in reflecting
changes in SNA. However, these features showed the same change trend in some specific
time periods, the fourth and sixth time periods, respectively. In other words, although the
two kinds of features were calculated based on different signals, they were consistent in
reflecting the trend of SNA at some levels. For the SNA evaluation, many features provided
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indirect explanations. However, these features sometimes did not always show the same
trend [41,42]. This may be because the signal was doped with various interference factors,
resulting in inaccurate interpretation. For example, HRV features were calculated based
on RR intervals. The RR interval is often affected by the accuracy of the R-wave-detecting
algorithm. In addition, patients with atrial fibrillation and premature beats also have a
negative impact on the calculation results because of their special heart rhythm. Similarly,
SKNAER is also affected by these factors. The wrong R-wave location result may lead to the
misjudgment of the SKNA burst, which reduces the precision of the algorithm, especially in
the signal with low signal quality. However, the positive outcome is that we discriminated
and removed some interference in the calculation to provide a more accurate evaluation
of SNA. In addition, SKNAER is calculated based on the energy of burst and baseline, so
the influence of R-wave positioning accuracy on SKNA is indirect and less than that of
the HRV index. With the advanced QRS positioning algorithm, the influence of R-wave
positioning error on the SKNA feature can be further reduced. Furthermore, we established
an evaluation method based on SKNA. Since SKNA is the real-time signal transmitted from
the sympathetic nerve to the body surface, while ECG is the change of potential cardiac
signal caused by the sympathetic nerve affecting cardiac function, thus the method based
on SKNA is more direct than that of ECG in evaluating SNA. This also provides an auxiliary
basis for the analysis of disease mechanisms.

The findings from this study should be considered in light of several factors. First,
the proposed feature assumes that there is sympathetic activation in the measured data
segment. The feature may output an error in case there is no burst area in the data segment
or the noise covers the burst. Second, the shape and frequency of the burst were not
considered for the proposed feature. This more in-depth information should be further
processed and characterized to be applied to some specific clinical scenarios. Last, although
the TKE factor is used to enhance the amplitude-frequency change of the signal, this
operation may also enhance the amplitude-frequency change of some artifacts, resulting in
false positives. Research on the conduction mode of nerve signals to the body surface and
then distinguishing between effective nerve burst and noise is conducive to further finding
effective information from SKNA. In addition, SKNA is greatly affected by motion artifacts
The impact comes from the electrodes used to collect signals and the lack of appropriate
standards to distinguish effective signals from motion artifacts. This may limit the further
application of SKNA. Therefore, SKNA can be used as an effective supplement rather than
a substitute for HRV in some specific scenarios, especially in short-term measurement.

5. Conclusions

This paper proposed an SNA evaluation method based on SKNA burst area detection.
This method exhibited good performance in terms of detection rate, concordance, and
precision on the sympathetic activation dataset manually labeled by the experts. The trend
of SNA during hemodialysis was analyzed quantitatively based on the detected burst area.
The results showed that SKNAER has a consistent trend in evaluating SNA compared
with HRV features. Moreover, it had a more significant difference in the long-term SNA
evaluation than aSKNA, consistent with the HRV features. The automatic burst detection
algorithm proposed in this work can accurately locate the position of the active SNA, which
is helpful to evaluate SNA more accurately. With further development, this new modality
could play an important role in continuous monitoring of the autonomic nervous system
status, as well as preventing correlated diseases. Future work will explore more useful
physiological features for evaluating the autonomic nervous system, such as time-frequency
analysis and non-linear dynamic evaluation.
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Abstract: Diagnosing COVID-19 accurately and rapidly is vital to control its quick spread, lessen
lockdown restrictions, and decrease the workload on healthcare structures. The present tools to detect
COVID-19 experience numerous shortcomings. Therefore, novel diagnostic tools are to be examined
to enhance diagnostic accuracy and avoid the limitations of these tools. Earlier studies indicated
multiple structures of cardiovascular alterations in COVID-19 cases which motivated the realization
of using ECG data as a tool for diagnosing the novel coronavirus. This study introduced a novel
automated diagnostic tool based on ECG data to diagnose COVID-19. The introduced tool utilizes ten
deep learning (DL) models of various architectures. It obtains significant features from the last fully
connected layer of each DL model and then combines them. Afterward, the tool presents a hybrid
feature selection based on the chi-square test and sequential search to select significant features.
Finally, it employs several machine learning classifiers to perform two classification levels. A binary
level to differentiate between normal and COVID-19 cases, and a multiclass to discriminate COVID-19
cases from normal and other cardiac complications. The proposed tool reached an accuracy of 98.2%
and 91.6% for binary and multiclass levels, respectively. This performance indicates that the ECG
could be used as an alternative means of diagnosis of COVID-19.

Keywords: deep learning; COVID-19; ECG trace image; transfer learning; Convolutional Neural
Networks (CNN); feature selection

1. Introduction

At the end of December 2019, the world faced a new type of threatening disease called
coronavirus, commonly known as COVID-19 [1]. Based on statistics announced by the
World Health Organization (WHO) [2], more than 190 million cases of COVID-19 and
more than 4 million cases of mortality have been reported worldwide on 31 July 2021. Due
to the rapid propagation and the massive increase in the number of new infections of
such a disease, the world faced new challenges [3]. These challenges involved travel con-
straints, countries’ lockdown, social distancing, and curfews. Most importantly, healthcare
associations of many countries were about to collapse due to the superfluous number of
COVID-19 infections that needed beds and deficiencies in vital medical kits and supplies.
Consequently, the rapid and precise diagnosis of COVID-19 is important to lower mortality
rates and avert the encumbrance on health organizations.

Based on the COVID-19 diagnosis provided by the Chinese government, the real-
time reverse transcription-polymerase chain reaction (RT-PCR) test is the gold standard
for the diagnosis of COVID-19 [4]. However, late sample acquisition, firm laboratory
setting restrictions, and the requirement of qualified experts to perform the RT-PCR exam
could lead to a prolonged and inaccurate diagnosis [5]. Therefore, more efficient methods
are needed to achieve a more precise and faster diagnosis. Among these approaches
are antigen tests and medical imaging, including computed tomography (CT) and X-ray
imaging techniques. Although COVID-19 antigen tests are faster and cheaper than the
RT-PCR test, they very often produce inaccurate results. The major limitation of antigen
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tests is their low sensitivity, leading to high false negative outcomes, therefore it is not
recommended by the WHO [6]. Moreover, it has been reported to have lower sensitivity
compared to RT-PCR tests [7]. On the other hand, CT and X-ray imaging modalities play an
important role in the diagnosis of lung-related abnormalities. Numerous research articles
have proven the ability of the X-ray and CT modalities to achieve more accurate results
than RT-PCR [8,9]. However, these imaging modalities require the presence of a skilled
specialized radiologist to perform the diagnosis. Furthermore, the COVID-19 diagnosis
procedure is difficult due to the symmetry among the patterns of the new coronavirus and
other sorts of similar diseases [10]. Furthermore, the manual investigation requires a long
time and thus automatic diagnostic tools are compulsory to decrease observation time and
exertion achieved by experts to perform the diagnosis and produce a precise decision.

Artificial intelligence (AI) techniques aim to create automated diagnostic tools capable
of analyzing medical data (such as images and bio-signals) simply and fast. They have
been utilized successfully to enhance prognosis and diagnosis of various disorders and
diseases [11–20]. The ability of AI techniques to facilitate the new coronavirus has been
proven in the survey article [21]. Currently, deep learning (DL) approaches are widely
used to construct automated diagnostic tools using radiograph images to support the
diagnosis of COVID-19 and avoid the challenges of manual inspection [22,23]. Regardless
of the achievements of DL methods in diagnosing COVID-19 using radiographic images,
these scanning techniques have some limitations. These shortcomings include high cost,
immobility, exposure to a large amount of radiation, and the requirement for qualified
technicians to acquire these images [24]. Hence, new diagnostic tools based on other
modalities are needed to assist in COVID-19 diagnosis whilst the epidemic persists.

It is well-known that COVID-19 primarily affects the respiratory system; however,
it also affects the cardiovascular system [25,26]. Numerous research articles have shown
various types of cardiovascular alterations in people with COVID-19. These variations
involve divergence of the ST segment of the PR interval [27], arrhythmias [28], QRST
changes, and conduction disorders [25]. These cardiac variations can be visualized on
the electrocardiogram (ECG) of patients with COVID-19. Such cardiovascular modifica-
tions [29] have promoted the study of ECG data as a new means of diagnosing the novel
coronavirus. Looking at the huge advantages of using ECG, including low cost, mobility,
simplicity of use, safe, harmless, and providing real-time monitoring, automated diagnostic
tools for COVID-19 based on ECG data could be of significant value in addition to imaging
modalities and PCR exams. Thus, further investigation is needed to verify the feasibility of
using ECG for the diagnosis

Related Studies

The conventional method to study ECG data by AI is to mine traditional handcrafted
features and employ them to train machine learning classifiers. These methods have
previously been used to identify cardiac anomalies from ECG records. Numerous re-
search articles used such methods based on 1D ECG signals to detect several cardiac
problems [30–34]. However, these methods generally require a trade-off between accuracy
and computation load and are subjective to errors [11,35]. Conversely, DL was recently
employed to examine ECG by automatically attaining valuable features, thus avoiding
the disadvantages of handcrafted methods [36,37]. Many studies have shown that ECG
1D signals converted to 2D demonstrations have better performance and benefits than
1D-based models [38,39]. Several studies analyzed and converted 1D to 2D ECG using
transform domains such as short-term frequency transform and wavelet transform [38–44]
and used them with DL techniques. Many studies used several forms of DL models to
detect abnormalities in ECG signals [45–49]. It is worth mentioning the great efforts that
were made by the PhysioNet/Computing in Cardiology Challenge in 2020 and 2021 to
stimulate the multitype arrhythmia classification over annotated databases with thousands
of 12-lead ECG recordings [50,51]. Despite the success of previous studies in detecting
cardiac complications from ECG signals, it could not be easily used in real clinical practice
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as the above methods mainly rely on ECG signals; however, in real medical practice, this is
regularly not the usual scenario. Because the ECG data taken in real clinical practice are
acquired and stored as 2D ECG trace images [52]. Unlike the digital ECG signal acquired
using wearable sensors, which contain multiple clean and well-detached leads, the ECG
trace image data acquired in real practice are ambiguous. Such a trace image has an overlay
between ECG waveforms collected from different leads and the rigid surrounding minor
axes that raise hardness in mining significant information precisely. Furthermore, in digital
ECG signals, that data is collected in hundreds of hertz as a sampling frequency; however,
in real medical practice, the ECG data are acquired in few hertz, which results in a huge
degradation in the quality of the data which correspondingly impacts the classification
performance of AI-based models. One possible solution to resolve that issue is to turn
the trace image into a digital ECG signal [53]. However, this conversion is complex, and
the converted signal is of low quality due to the extensive noise generated by the conver-
sion [54]. Even with the great capabilities of DL methods, this noise hinders DL techniques
in detecting the small variations among different cardiac anomalies, which is the major
component of cardiac complications diagnosis.

The abovementioned issues obstruct the digital ECG signals from being used in real-
world clinical practice which collects ECG records as trace images. Therefore, some research
articles used direct ECG trace images to identify several cardiac complications using AI
techniques. The authors in [55] proposed a system to detect myocardial infarctions from
ECG trace images. Their system contained multiple divisions based on shallow artificial
neural networks (ANN) that used 12-lead ECG, achieving an accuracy of 94.73%. In [56], a
discrete wavelet transform (DWT) was used to obtain significant features from the trace
images using the ‘Haar’ wavelets. An ANN was constructed to differentiate between
normal and abnormal ECG patterns, obtaining an accuracy of 99%. In [57], five hand-made
feature extraction methods along with five classifiers were used to recognize two categories
of cardiac arrhythmias. The highest accuracy of 96% was achieved using local binary
patterns and ANN. On the other hand, Du et al. [58] proposed a DL pipeline to identify
several cardiac diseases. The pipeline determined the prospective distinctive regions and
adaptively merged them. Next, a recurrent neural network was employed and attained
a sensitivity and precision of 83.59% and 90.42%, respectively. The MobileNet v2-deep
DL method was utilized in [59] to identify four cardiac complications with 98% accuracy.
In [60], DenseNet was trained with ECG trace images to predict strokes and achieved
85.82% accuracy.

The promising performance achieved using the formerly discussed methods based
on ECG trace images triggered the investigation of the possibility of employing this type
of ECG data with DL techniques to diagnose COVID-19. An acknowledgment must be
made of the recently published public data [61] which has helped to achieve the suggested
target. This data has ECG images of patients with COVID-19 and other cardiac findings. To
the best of our knowledge, up to today, four studies have utilized this dataset to examine
the potential of using ECG trace images in the new diagnosis of coronavirus. This dataset
was used in [62] to study the impact of employing various enhancement methods on the
diagnosis of COVID-19 using EfficientNet trained with ECG trace images. The paper
concluded that augmentation methods are useful to some extent; nevertheless, exceeding
this extent will lower the performance. An 81.8% maximum accuracy was achieved.
Whereas in [63], six DL approaches were utilized to identify COVID-19 from other cardiac
findings in two classification categories. Alternatively, in [64], hexaxial feature and Gray-
Level Co-occurrence Matrix (GLCM) approaches were employed to extract considerable
features and generate hexaxial mapping images. The created images were fed to DL
methods to distinguish COVID-19 from other images as a binary classification category
with a precision of 96.2%. The study [65] extracted deep features from two layers of several
CNNs to an accuracy of 97.73% and 98.8% for multiclass and binary classification problems.

These previous studies experienced numerous shortcomings. Initially, the tool imple-
mented in [64] performed only using binary classification category; however, the multiclass

61



Biosensors 2022, 12, 299

problem is more complicated and essential but was not considered. Furthermore, the hexax-
ial feature mapping utilized in it is quite sensitive to image quality, which correspondingly
influences the extraction process of the GLCM procedure. The classification results obtained
in the tool presented in [62] were considerably low and therefore cannot be reliable. The
number of samples and features used in the testing process of the tool introduced in [63]
was small, leading to a probable bias. The study [65] used a huge number of features to
build their model. On the other hand, the tools proposed in [62,63,66] were based on indi-
vidual DL models to perform the feature extraction or classification procedure. However,
the research articles [67,68] confirmed that the incorporation of features of numerous DL
approaches has the capacity to improve the classification results.

This study examined the viability of utilizing ECG information for COVID-19 diag-
nosis via presenting a novel diagnostic tool using various AI methods. The proposed tool
attempts to overcome the limitations of the previous studies by incorporating several DL
techniques and using a hybrid feature selection approach to reduce the number of features
used to train the classification models. The classification procedure of the proposed tool is
performed on two levels. The primary level aims to classify the ECG data to COVID-19 and
normal cases (binary class level). The second level is multiclass to distinguish COVID-19
cases from normal and other cardiac complications.

2. Materials and Methods

2.1. ECG Dataset

The proposed diagnostic tool uses a recent dataset that is public [61], including images
of ECG records for patients with COVID-19 and other cardiac problems. Until now, to the
best of our knowledge, this is the primary and single public dataset for ECG records of
COVID-19. ECG images available in the dataset are 1937 of distinct categories. The dataset
consists of 250 scans of cases with the novel coronavirus, 300 trace records of cases with
a present or former myocardial infarction (MI), 548 ECG records of irregular heartbeats,
and 859 normal images without any heart complications as shown in Table 1. Data were
acquired using a 12-lead system with a sampling frequency equal to 500 Hz through an
EDAN SE-3 series 3-channel electrocardiograph. Table 1 also illustrates the number of
images used for the training and validation sets of the proposed tool. The dimension of the
images varied from 952 × 1232 to 2213 × 1572. The x-scale is 25 mm/s, and the y-scale is
10 mm/volt. Six ECG electrodes were placed on the chest representing six precordial leads.
Another three electrodes were placed on the two arms and left leg representing six limb
leads, including augmented voltage right (AVR), augmented voltage left (AVL), augmented
voltage foot (AVF), Lead I, II, and III. The images of the dataset were evaluated by medical
professionals using a telehealth ECG diagnostic scheme. This evaluation was carried out
under the supervision of expert cardiologists who had long experience in ECG annotation
and exploration. These medical experts removed all uncertain, ambiguous, and misleading
images from the dataset.

In the binary classification level (normal versus COVID-19), 250 normal and 250 novel
coronavirus records were utilized. Whereas in the multiclass classification level, a total of
750 images were employed, 250 for cardiac complications, 250 for normal cases, and 250
for COVID-19 cases. To avoid the classification bias that occurs due to the class imbalance
structure of the ECG dataset (the number of images per class is not equal) that affects the
classification process, an equal number of images was selected and used for each class
to train the classification models. An ECG trace record sample for a COVID-19 patient is
shown in Figure 1.
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Table 1. Description of the ECG dataset including the number of available ECG images per class and
the number of images used in the proposed study.

Class
Number of
Available

Images

Images Used in
the Proposed

Study

Images
Used in
Training

Images
Used in

Validation

COVID-19 250 250 175 75

Normal 859 250 175 75

Cardiac Abnormalities
include: 848 250 175 75

• Irregular
Heartbeats 548 125 88 37

• Current and
Recovered MI 300 125 88 37

Figure 1. An ECG trace record sample for a COVID-19 patient.

2.2. Proposed Tool

The proposed automated tool consists of four steps: ECG trace image preprocessing,
deep feature extraction and feature incorporation, hybrid feature selection, and classifi-
cation. The proposed method used ten DL approaches. Figure 2 shows a diagram that
describes the steps of the proposed diagnostic tool.

DL is an emerging technology that has been widely employed in several fields. DL
approaches are the recent class of machine learning (ML). They consist of numerous
architectures; however, convolution neural networks (CNNs) are the architectures most
widely used for medical images [69]. Therefore, the proposed diagnostic tool utilizes
ten CNNs of various architectures. These networks include InceptionResNet, ResNet-18,
ResNet-50, ShuffleNet, Inception V3, MobileNet, Xception, DarkNet-19, DarkNet-53, and
DenseNet-201.

Inception V3 Google proposed the Inception CNN architecture in 2016 [70]. It is a
newer version of GoogleNet [71], but with some modifications. It was first introduced
to run well with reduced memory requirements and computational cost. Its principal
component is the inception unit which merges numerous filters into a novel filter structure
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which correspondingly lowers the number of parameters. To expand the information
stream into the network, the Inception module considered the depth as well as the width of
the layers during the construction of the network [72].

Figure 2. A diagram describing the steps of the proposed diagnostic tool.

ResNet is one of the time-efficient CNNs that gained popularity due to its novel
structure created by He et al. in 2015 [73]. ResNet counts on the residual block which
embeds crosscuts in the interior layers of a standard CNN to cross several convolution
layers which quickens and eases the convergence procedure of the CNN despite the huge
number of convolution layers.

Xception is a new version of the Inception network introduced in 2017 [74]. The incep-
tion layers contain depthwise convolution layers, followed by a pointwise convolution layer.
The Xception structure involves double layers of convolutional, then several depthwise
separable convolution layers, and standard layers of convolutional and fully connected.
The Xception module is more robust and powerful than the Inception module and can
perform cross-channel and spatial interaction correlations while fully dissociated [75].

Inception-ResNet-V2 presented a mixture of residual network architecture and the
inception module [76]. It has a number of filters of various dimensions that are merged with
residual joints. The main advantage of this fused architecture is enhancing the performance
of the network and pace of convergence.

DenseNet was created by Huang et al. [77] in 2017, who extended the idea of shorter
connections between layers near the input/output layers. The key building block of this
network is the ‘dense block’. The major difference between the residual block and dense
block is that the latter attaches every layer to each layer having a similar input resolution,
whereas the former generates shorter links among adjacent layers. Second, each layer of
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DenseNet accomplishes a concatenation of the earlier outputs; in contrast, ResNet performs
a summation. DenseNet-201 was utilized in this article, containing 201 layers.

ShuffleNet is an effective CNN primarily designed by Zhang et al. in 2018 [78].
ShuffleNet was initially produced to serve fields that require low computational capability.
It contains two key blocks known as pointwise group convolution and channel shuffle. The
first block utilizes convolution layers of dimension 1 × 1 to reduce training speed while
attaining adequate precision. The second block supports the data flowing across feature
channels by allowing a cluster of layers to control input data belonging to distinct groups,
where the output/input channels are connected.

DarkNet is a new DL architecture designed by the authors of [79]. It employs YOLO-
V2 as the backbone of its structure. DarkNet uses filters of dimension 3 × 3 and then doubles
the number of channels after every pooling phase. It employs a pooling stage to perform
detection and classification as well as 1 × 1 filters to reduce the feature presentation between
3 × 3 convolutions. Darknet-19 involves 19 convolutional layers, whereas DarkNet-53
contains 53 convolutional layers.

MobileNet is a fine and time-efficient DL architecture that was originally designed
in [80]. It can decrease the complexity of the training model by lowering the number of
parameters while maintaining an acceptable performance. These are convolutional layers
of dimensions 3 × 3 and 1 × 1, respectively. MobileNet has 53 deep layers.

2.2.1. ECG Image Preprocessing

Initially, the dimensions of the ECG images are changed according to the input layer
dimension of each CNN model. Then, those ECG records are augmented to increase
the amount of records available in the data set and prevent the likelihood of overfitting
that could occur in the case of small data. Those augmentation methods included in the
proposed diagnostic tool are flipping in both the x- and y-orientations, and translation in
both the x- and y-directions where the range of the translation distance is picked randomly
within the range (−30, 30). The scaling augmentation method is also applied to the image in
the x- and y-directions where the image is scaled with a scale factor chosen randomly from
the range (0.9, 1.1). Table 2 demonstrates the dimensions of the input layers of each of the
CNN models and the extracted features length. Table 2 shows that the number of features
extracted from the last fully connected layer of each CNN for the binary classification and
multiclass classification levels is 2 and 3, respectively.

Table 2. The dimensions of the input layers of each of the CNN models and the mined features dimensions.

CNN Construction Dimension of Input Length of the Extracted Deep Features

ResNet-50
ResNet-18

DenseNet-201
ShuffleNet
MobileNet

224 × 224 × 3

Binary Classification Level

2

Multiclass Classification Level

3

Inception-V3
Inception-ResNet

Xception
229 × 229 × 3

Binary Classification Level

2

Multiclass Classification Level

3

DarkNet-19
DarkNet-53

226 × 226 × 3

Binary Classification Level

2

Multiclass

3
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2.2.2. Deep Features Extraction and Feature Incorporation

Some complications may occur while CNNs are being trained, including convergence
and overfitting. These issues impose the adjustment of a few parameters in the CNNs to
guarantee that the weights of the CNN layers are updated at the same rate during the
training process. Transfer learning (TL) is a method that can solve this problem. TL re-
employs a CNN that was previously learned with a huge dataset like ImageNet for another
classification problem [81]. In other words, TL uses a pretrained CNN that has learned
feature representations from a large dataset to solve another classification problem dealing
with a small dataset (similar to the dataset used in this paper). This process can enhance
detection accuracy if used for comparable problems [81]. For that reason, this paper used
ten CNNs that were pretrained. Before retraining the ten CNNs, the number of their output
layers was changed to 3 or 2 which is equal to the number of classes in the case of the
multiclass and binary class classification categories of the proposed diagnostic tool. In
other words, the DL models were retrained for the novel classification task. Then, after the
retraining process was finished, deep features were extracted from the last fully connected
layers of the ten pretrained CNNs. The number of features extracted from each CNN was 2
in the case of the binary classification category and 3 in the multiclass classification category.
Afterward, the proposed tool incorporated the deep features extracted from the ten DL
models in a concatenation way to form one feature vector consisting of 20 and 30 features
in the case of the binary and multiclass classification categories, respectively.

2.2.3. Hybrid Feature Selection

Feature selection (FS) is an essential step to selecting the most valuable features
available in the feature space to reduce its dimension, which correspondingly boosts the
diagnostic accuracy and avoids overfitting [82,83]. FS methods can be categorized into
three categories: filter, wrapper, and hybrid [84]. Hybrid FS merges filter and wrapper
methods. This category combines the benefits of previous FS types [84]. Thus, a hybrid FS
approach was presented and employed in this study.

The hybrid FS step presented in the diagnostic tool combines the chi-squared test filter
FS approach with a wrapper FS approach based on three search strategies. The chi-squared-
test is a well-known and commonly used FS method [85]. It attempts to determine the
significant features tk that best differentiate positive and negative sets of instances of class
Ci. The chi-squared test score is calculated using Equation (1).

Chi − Squared Test =
N(AD − CB)2

(A + C)(B + D)(A + B)(C + D)
(1)

where N is the total number of ECG records (samples in a dataset); A = the number of
samples in class ci that contain the feature tk; B = the number of samples that contain the
feature tk in other classes; C = the number of samples in class ci that do not contain the
feature tk; D = the number of samples that do not contain the feature tk in other classes.

The hybrid FS method initially ranks deep features extracted from the ten CNN models
utilizing the chi-squared test filter FS. Then, it employs this ranking to guide the three
feature search strategies within the wrapper FS approach. These three search strategies are
backward, forward, and bidirectional. The first searching approach starts with all features
in the feature space and then ignores features of lower ranks iteratively. Conversely, the
forward approach begins with one feature having the greatest rank and then adds the
following features one by one. The bidirectional alternates between the forward and
backward strategies. Note that for the three strategies, only the features that improve the
classification results are kept, while others are deleted.

66



Biosensors 2022, 12, 299

2.2.4. Classification

The classification phase was performed in two schemes. The first scheme was an end-
to-end deep learning classification with ten CNNs, including InceptionResNet, ResNet-18,
ResNet-50, ShuffleNet, Inception V3, MobileNet, Xception, DarkNet-19, DarkNet-53, and
DenseNet-201. The second scheme used several machine learning classifiers trained with
deep features extracted from the last fully connected layers of the ten CNNs. These classi-
fiers involved a support vector machine (SVM), random forest (RF), K-nearest neighbor
(KNN), the linear discriminate classifier (LDA), quadratic discriminate analysis (QDA),
and decision tree (DT). The classification step included two levels: binary and multiclass.
At the former level, classifiers were used to identify COVID-19 and normal patients. The
multiclass level classified images into normal, COVID-19, and cardiac complications. The
10-fold cross-validation method was used to validate the results. The classifiers were run
10 times and the average classification performance of all these runs is displayed in the
results section. Classification was carried out in two phases. Phase I used the deep features
extracted from the ten CNN models to train the classifiers. Phase II employed the hybrid
FS approach to select features used to train the classifiers.

LDA is a popular machine learning technique used for both classification and feature
reduction. It searches for the linear combinations of features that have a high ability to
explain the data. LDA separates class labels of data using hyperplanes. These planes are
achieved by looking for the projection of data points that can minimize their variance and
maximize the distance between class labels.

K-NN is a commonly used classifier in the field of machine learning due to its simplic-
ity, straightforwardness, and effectiveness even with noisy data. Although it is simplistic,
it has the ability to reach good classification accuracy in medical applications. It allocates
a label to every instance in the test data equivalent to the label amongst the k nearest
neighbors included in the training data. This label is chosen according to the distance
measured between the instance being classified and those instances in the training data.
This distance shows that instance in the test data to those in the training data. The distance
used in our approach was the Euclidean similarity measure and the number of neighbors
(k) was equal to 1 and 5 for binary and multiclass classification levels, respectively, with
equal distance weights.

Decision Trees are well-known machine learning classifiers that are widely used in
medical applications due to several reasons. They are capable of visualizing interactions
between extracted features. This visualization process enables a doctor to easily understand
how the classifier decision is made. The DT classifier creates instances of data according to
conditions. The DT has a tree structure with a root node whose leaves demonstrate class
labels, and the branch nodes present the extracted features and reasons that result in this
class label. The nodes of a tree are connected by an arc that represents the condition of the
feature. The tree is divided into branches and leaves based on a metric such as information
gain, gain ratio, or Gini index. The maximum number of splits in this study was 100, and
the splitting criterion was the Gini diversity index.

Random Forest is an ensemble classifier that consists of multiple decision trees. RF
uses the divide-and-conquer approach (DAC) to perform classification. The DAC method
divides the input feature space into several partitions depending on a goodness metric.
Subsequently, the classification outputs of all trees are averaged to produce a final decision.
The Gain ratio metric was used in the proposed tool. There, the number of trees was 100.

SVM is a robust machine learning classifier. It transforms linear or nonlinear input
data points into a new domain that can easily separate between classes of data. A hyper-
plane is employed to separate between classes of input data to facilitate classification. A
kernel function maps the similarity between the input vector and the new higher-dimension
feature space. The linear kernel function was employed.

On the other hand, for retraining the CNNs for end-to-end classification, the learning
rate, number of epochs, and minimum batch size were adjusted to 0.0003, 10, and 4,
respectively. Whereas the validation frequency was modified to 87 and 131 for binary and
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multiclass classification levels, respectively. The ten CNNs were trained with the stochastic
gradient descent with a momentum algorithm. The other hyperparameters were kept
unchanged. The proposed diagnostic tool was implemented using the Weka Data Mining
Tool [86] and MATLAB R2020a.

2.3. Performance Evaluation

The overall performance of the proposed diagnostic tool was measured using mul-
tiple metrics involving the Mathew correlation coefficient (MCC), the F1 score, precision,
specificity, and sensitivity calculated using Equations (2)–(7). In addition to confusion, the
receiver operating characteristics curve (ROC) and the area under ROC (AUC) were also
determined.

Accuracy =
TP + TN

TN + FP + FN + TP
(2)

Sensitivity =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

F1 − Score =
2 × TP

(2 × TP) + FP + FN
(6)

Specificity =
TN

TN + FP
(7)

where FN refers to the false negative which is the amount of COVID-19 records wrongly
categorized as nonCOVID-19, TN is the true negative representing the nonCOVID-19
records correctly recognized. TP is the true positive, which is equal to the number of
COVID-19 scans properly identified. Finally, FP is the false positive equivalent to the sum
of nonCOVID-19 records improperly classified as COVID-19.

3. Results

3.1. Phase I Classification Results

Phase I represents the use of deep features extracted from the ten CNNs and fused to
train the machine learning classifiers. Table 3 illustrates the classification accuracy of phase
I for the binary class and multiclass classification levels, respectively. Table 3 shows that
the maximum accuracy of 97.78% was achieved for the binary classification level using the
RF model. All other classifiers obtained an accuracy that ranged from 97.36% to 97.6%. The
highest accuracy of 90.88% was achieved using the RF classifier for multiclass classification.
The SVM, LDA, and KNN achieved the next-highest accuracies of 90.43%, 90.35%, and
89.39%. Finally, the DT and QDA classifiers reached the lowest accuracies of 86.56% and
85.6%, respectively. The confusion matrices attained using the LDA and SVM classifiers
are shown in Figures 3 and 4 for binary and multiclass classification, respectively. The
ROC curve for the SVM and LDA classifiers are shown in Figures 5 and 6 for binary and
multiclass, respectively. Figure 7 shows that the AUC for the LDA and SVM classifiers
were 0.99 and 0.99 for the binary class classification level. For the multiclass classification
level, the AUCs for the LDA and SVM classifiers were 0.97 and 0.98, respectively.
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Table 3. Phase I classification accuracy (%) and standard deviations obtained using machine
learning classifiers.

Binary Classification Level

DT RF QDA LDA SVM KNN

97.62 (0.14) 97.78 (0.06) 97.6 (0) 97.6 (0) 97.6 (0) 97.36 (0.23)

Multiclass classification Level

DT RF QDA LDA SVM KNN

86.56 (0.8) 90.88 (0.19) 85.6 (0.06) 90.35 (0.21) 90.43 (0.28) 89.39 (0.30)

Figure 3. Confusion matrices for the binary class classification level: (left) LDA, (right) SVM classifiers.

Figure 4. Confusion matrices for the multiclass classification level: (left) LDA, (right) SVM classifiers.

The two Figures S1 and S2 have been attached to the Supplementary Materials rep-
resenting a two-dimensional scatter plot of the first two features of the feature space for
the binary and multiclass classification levels used as inputs to the classifiers. Also, the
two Figures S3 and S4 have been added to the Supplementary Materials representing a
two-dimensional scatter plot of the LDA classifier predictions using the first two features
of the feature space for the binary and multiclass classification levels. Moreover, the two
Figures S5 and S6 have been added to the Supplementary Materials representing a two-
dimensional scatter plot of the LDA classifier predictions using the first two features of the
feature space for the binary and multiclass classification levels
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Figure 5. The ROC curves for the binary class classification level: (left) LDA, (right) SVM classifiers.

Figure 6. The ROC curves for the multiclass classification level: (left) LDA, (right) SVM classifiers.

To access and confirm the statistical significance of the performance of the ML clas-
sifiers, the one-way analysis of variance (ANOVA) test was applied to the results of the
classifiers after a repeated 10-fold cross-validation process. The ANOVA test was per-
formed on the classification accuracy results achieved using the classifiers of the binary
classification level to test the statistical significance between them. The results are shown in
Table 4. ANOVA was also performed for the results of the multiclass classification problem
and the outputs of the test are shown in Table 5. It can be seen in Tables 4 and 5 that the
p-values attained from the test were lower than α, where α = 0.05. Consequently, it could
be concluded that there is a statistically significant difference in the classification accuracies
of the classifiers for both the multiclass and binary classification levels.
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Figure 7. The classification accuracy of the proposed diagnostic tool using the RF classifier of phase I
compared to the end-to-end DL classification for the binary level.

Table 4. One-way analysis of variance test details for the binary classification level.

Source of
Variation

SS df MS F p Value

Columns 0.901 5 0.180 12.54 <0.001

Error 0.776 54 0.014

Total 1.677 59

Table 5. One-way analysis of variance test details for the multiclass classification level.

Source of
Variation

SS df MS F p Value

Columns 252.148 5 50.429 298.07 <0.001

Error 9.136 54 0.1692

Total 261.284 59

Figures 7 and 8 compare the phase I performance of the RF classifier of the proposed
diagnostic tool with the end-to-end DL classification for the binary and multiclass levels.
Figure 7 proves that the deep features extracted from the last fully connected layers of
the ten CNNs had a higher classification accuracy compared to end-to-end pretrained
CNNs for the binary classification level. On the other hand, for the multiclass classification
level, the RF classifier of the proposed diagnostic tool obtained 90.88% accuracy, which
is higher than all other pretrained CNNs. As can be seen in Figure 8, the accuracy of the
RF classifier of the proposed diagnostic tool was greater than the 76.44%, 75.56%, 72.89%,
73.33%, 72.89%, 71.59%, 71.11%, 67.11%, 69.33%, and 64.44% achieved using ResNet-50,
ResNet-18, Inception-ResNet, Inception, Xception, DenseNet-201, DarkNet-53, DarkNet-19,
MobileNet, and ShuffeNet, respectively.
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Figure 8. The classification accuracy of the proposed diagnostic tool using the phase I RF classifier
compared to the end-to-end DL classification for the multiclass level.

3.2. Phase II Classification Results

Phase II of the proposed diagnostic tool presented the features selected after the hybrid
FS approach used them to train the classification models. The following section presents
the results of the hybrid feature selection approach based on the three search strategies
using three classifiers. First, it shows the rank scores of features using the chi-square test
filter FS method. Then, it shows the number of selected features as well as the classification
accuracy attained for the binary and multiclass classification levels. Tables 6 and 7 represent
the ranking score for each feature attained using the chi-square test FS method for the
binary and multiclass classification levels, respectively.

Table 6. The ranking score for each feature attained using chi-square FS along with its order in the
feature vector and the name of the feature for the binary classification level.

Rank Order Feature Name

461.538 18 Feature 2 of MobileNet

461.538 5 Feature 1 of InceptionResNet

460.68 6 Feature 2 of InceptionResNet

457.854 17 Feature 1 of MobileNet

457.854 7 Feature 1 of Xception

457.592 13 Feature 1 of DarkNet-53

456.608 14 Feature 2 of DarkNet-53

456.397 19 Feature 1 of Shuffle

454.198 3 Feature 1 of Inception

454.198 2 Feature 2 of ResNet-50

454.198 4 Feature 2 of Inception

454.198 20 Feature 2 of Shuffle

454.198 10 Feature 2 of DenseNet
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Table 6. Cont.

454.198 8 Feature 2 of Xception

454.198 15 Feature 1 of DarkNet-19

454.198 16 Feature 2 of DarkNet-19

454.198 12 Feature 2 of ResNet-18

454.198 9 Feature 1 of DenseNet

454.198 11 Feature 1 of ResNet-18

454.198 1 Feature 1 of ResNet-50

Table 7. The ranking score for each feature attained using chi-square FS along with its order in the
feature vector and the name of the feature for the multiclass classification level.

Rank Order Feature Name

1021.0997 1 Feature 1 of ResNet-50

980.0815 25 Feature 1 of MobileNet

938.3733 19 Feature 1 of DarkNet-53

932.5696 12 Feature 3 of Xception

926.9128 28 Feature 2 of Shuffle

917.393 6 Feature 3 of Inception

916.3032 18 Feature 3 of ResNet-18

906.3512 13 Feature 1 of DenseNet

898.5766 10 Feature 1 of Xception

894.4025 15 Feature 3 of DenseNet

886.2739 3 Feature 3 of ResNet-50

883.1262 7 Feature 1 of InceptionResNet

877.7686 21 Feature 3 of DarkNet-53

865.6989 22 Feature 1 of DarkNet-19

814.21 2 Feature 2 of ResNet-50

811.4717 24 Feature 3 of DarkNet-53

798.1348 16 Feature 1 of ResNet-18

797.0761 27 Feature 3 of MobileNet

781.2226 4 Feature 1 of Inception

760.9445 8 Feature 2 of InceptionResNet

755.4454 29 Feature 2 of Shuffle

723.6848 11 Feature 2 of Xception

720.4829 23 Feature 1 of DarkNet-19

703.0506 5 Feature 2 of Inception

697.2656 20 Feature 2 of DarkNet-53

697.2656 26 Feature 2 of MobileNet

697.2656 17 Feature 2 of ResNet-18

697.2656 14 Feature 2 of DenseNet

673.7605 9 Feature 3 of InceptionResNet

634.5971 30 Feature 3 of Shuffle
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Table 8 shows the binary class classification level after the hybrid FS approach of the
proposed diagnostic tool using the three search strategies (phase II) compared to phase I
(before FS) for the DT, RF, and QDA classifiers as they achieved the highest accuracies in
phase I. Table 8 shows that the hybrid FS approach of the proposed diagnostic tool improved
the classification accuracy compared to phase I. This was obvious as the accuracies attained
using the forward and bidirectional strategies were 98.2%, 98%, and 97.8%, which are better
than those attained before FS. In addition, the accuracies attained using the backward
strategy were 98.2%, 98%, 97.6% for the DT, RF, and QDA classifiers, which were higher
than those achieved before FS using the same classifier except for the QDA which is equal
to that achieved before FS. Some performance measures were calculated for the binary
classification level and are illustrated in Table 9. Table 9 reveals the results for the sensitivity
(0.968, 0.96, 0.956), specificity (0.996, 1, 1), precision (0.996, 1, 1), F1-score (0.982, 0.961,
0.978), and MCC (0.964, 0.989, 0.957) for the DT, RF, and QDA models, respectively, using
the forward search strategy.

Table 8. The accuracy of binary-level classification (%) of the DT, RF, and QDA classifiers that
obtained the highest accuracy in phase I compared to after using the three search strategies of the
hybrid FS approach (phase II of the proposed diagnostic tool).

Classifier Before FS Forward Backward Bidirectional

DT 97.62 98.2 98.2 98.2

RF 97.78 98.0 98.0 98.0

QDA 97.6 97.8 97.6 97.8

Table 9. The binary-level performance metrics (%) of the DT, RF, and QDA classifiers that achieved
the highest accuracy using the forward search strategies of the hybrid FS approach.

Classifier Sensitivity Specificity Precision F1-Score MCC

DT 96.8 99.6 99.6 98.2 96.4

RF 96.0 100 100 96.1 98.9

QDA 95.6 100 100 97.8 95.7

On the other hand, the results of the multiclass classification level of phase II of the
proposed diagnostic tool are displayed in Tables 10 and 11. Table 10 shows the multiclass
accuracy of the hybrid FS approach of the proposed diagnostic tool using the three search
strategies (phase II) compared to phase I (before FS) for the RF, LDA, and SVM classifiers
which achieved the highest accuracy in phase I. The accuracies displayed in Table 10 verify
that the hybrid FS approach based on the three search methods increased the capacity of
the classification model compared to phase I (before FS). This was clear as the forward and
bidirectional strategies achieved better accuracies of 91.6% and 90.93% for the RF classifiers,
91.07% and 91.33 for the LDA classifier, and 90.58% and 90.53% for the SVM classifier
compared to 90.88%. Using the exact classifiers before FS, 90.35% and 90.43% accuracy was
achieved. Similarly, the backward search method reached accuracies of 91.33%, 91.07%, and
90% using the RF, LDA, and SVM classifiers, which were higher than those attained before
FS except for the SVM classifier, it remained the same. Table 11 indicates the sensitivity
(0.916, 0.911, 0.905), specificity (0.958, 0.955, 0.953), precision (0.918, 0.918, 0.908), F1 score
(0.917, 0.917, 0.906), and MCC (0.875, 0.875, 0.859) for the RF, LDA and SVM classifiers,
respectively, using the forward search method.

74



Biosensors 2022, 12, 299

Table 10. The classification accuracy (%) of the RF, LDA, and SVM that obtained the highest accuracy
in phase I compared to after using the three search strategies of the hybrid FS approach (phase II of
the proposed diagnostic tool).

Classifier Before FS Forward Backward Bidirectional

RF 90.88 91.6 91.33 90.93

LDA 90.35 91.07 91.07 91.33

SVM 90.43 90.58 90 90.53

Table 11. The multiclass-level performance metrics (%) of the RF, LDA, and SVM that achieved the
highest accuracy using the forward search strategies of the hybrid FS approach.

Classifier Sensitivity Specificity Precision F1-score MCC

RF 91.6 95.8 91.8 91.7 87.5

LDA 91.1 95.5 91.8 91.7 87.5

SVM 90.5 95.3 90.8 90.6 85.9

Figure 9 shows the number of features selected for the binary and multiclass levels
using the forward search strategy that reached maximum accuracy (using the DT classifier
for binary and the RF model for multiclass). Figure 9 indicates that the number of features
after the hybrid FS for the binary classification problem is three. The three features include
Feature 2 of MobileNet, Feature 1 of InceptionResNet, and Feature 2 of ResNet-50. The
figure also shows that the number of features after FS for the multiclass classification level
is eight. These eight features are Feature 1 of MobileNet, Feature 3 of Inception, Feature
3 of ResNet-18, Feature 1 of Xception, Feature 2 of DarkNet-53, Feature 3 of DarkNet-53,
Feature 1 of DarkNet-19, and Feature 3 of InceptionResNet.

Figure 9. The number of features of phase I and phase II for the binary and multiclass classification
levels using forward search strategies (using the classifiers which attained the peak performance).
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4. Discussion

Recent relevant studies revealed various forms of cardiovascular variations in ECG
data acquired from patients infected by the novel coronavirus as ST-segment changes,
QRST irregularities, and arrhythmias. On the other hand, several research articles dis-
cussed that COVID-19 could not be the leading reason for these cardiovascular deformities;
nevertheless, it should be emphasized that it could reveal the intrinsic conditions or lower
them [87]. The entire cardiac findings indicated in the literature have been observed on all
the ECG data utilized in this study.

This paper presented a novel diagnostic tool to automatically diagnose COVID-19
by incorporating multiple DL and hybrid FS approaches. This diagnostic tool consists of
two classification levels: binary and multiclass. The first level consists of distinguishing
COVID-19 and normal cases, while the second level consists of recognizing COVID-19,
normal, and other cardiac abnormalities. The proposed tool extracted deep features from
the last fully connected layers of ten CNNs models. Next, it fused these features, used
several classifiers in the two classification levels, and compared their performance with
the end-to-end DL classification. The previous step is known as phase I of the proposed
diagnostic tool. Afterward, a hybrid FS method was presented based on three search
approaches. This process is called phase II of the proposed diagnostic tool. The results
achieved in phase I showed that the deep feature incorporation is better than end-to-end DL
classification as shown in Figures 7 and 8. Phase I of the proposed tool attained an accuracy
of 97.78% and 90.88% for the binary and multiclass classification levels, respectively. These
accuracies are greater than those obtained by the end-to-end deep learning classification,
having a range of 87.33–96.67% and 64.44–76.44% for the binary and multiclass classification
levels, respectively.

In the second phase of the proposed tool, only classifiers that attained the highest
accuracies for either the binary or the multiclass classification levels were employed in
the hybrid FS procedure. Table 8 compares the results before and after feature selection
for the three classifiers which attained the highest accuracies for the binary classification
level. Table 8 shows that the highest accuracy of 98.2% was achieved using DT trained
with only three features selected during the FS process of the binary classification level.
This accuracy is greater than the 97.62% achieved before FS using the same classifier
trained with 20 features. Similarly, Table 10 compares the results before and after FS for
the three classifiers which attained the highest accuracies for the multiclass classification
level. Table 10 indicates that the maximum accuracy of 91.6% was reached using the RF
classifier trained with only eight features chosen during the FS procedure of the multiclass
classification level. This accuracy is greater than the 90.56% accomplished before FS using
the same classifier learned with 30 features. Thus, the performance of phase II of the
proposed tool verifies that the presented hybrid FS method had a further enhancement in
classification performance. It also reduced the number of features successfully.

It is worth mentioning that ECG detection requires more physical contact between
patients and physicians than the RT-PCR test or CT imaging, which will increase the risk of
virus transmission. Therefore, ECG may be more suitable as an auxiliary inspection means
of COVID-19 than a primary screening tool.

4.1. Comparison with Related Studies

The performance of phase II of the proposed diagnostic tool versus other relevant
tools that are directly copied from published papers is demonstrated in Table 12. The ECG
records used to construct the proposed diagnostic tool are added to Appendix A. The results
illustrated in Table 12 show that the proposed tool could be used to distinguish between
normal and COVID-19 cases. It can also differentiate between normal, COVID-19, and other
cardiac abnormalities. The table also indicates that the proposed tool has a performance
comparable to those of other related studies. It is worth mentioning that, for the binary
classification level, the specificity and precision of the proposed tool are higher than in the
other studies [63,64]. However, it has lower sensitivity than other studies. However, for
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the multiclass classification level, the proposed tool achieved higher sensitivity, specificity,
and precision than the studies [62,63]. These results indicate that the proposed tool based
on ECG data could be used to diagnose COVID-19. It could be considered a possible
novel solution that might be utilized in actual medical scenarios. It can be considered an
alternative to current diagnostic tools.

Table 12. The results of phase II of the proposed diagnostic tool versus other related studies that are
directly copied from published papers.

Binary Classification Level

Article Technique
Sensitivity

(%)
Precision (%)

Specificity
(%)

Accuracy (%)

[64] hexaxial feature mapping + GLCM +
CNN 98.4 94.3 94 96.2

[63] ResNet-18 98.6 98.5 96 98.62

Presented
diagnostic tool

Fully connected deep features +
hybrid FS (forward search with DT

classifier)
96.8 99.6 99.6 98.2%

Multiclass Classification Level

Sensitivity
(%)

Precision (%)
Specificity

(%)
Accuracy (%)

[62] EfficientNet 75.8 80.8 - 81.8

[63] MobileNet 90.8 91.3 92.8 90.79

Presented
diagnostic tool

Fully connected deep features +
hybrid FS (forward search with RF

classifier)
91.6 91.8 95.8 91.6

4.2. Limitations

This study has several limitations. The first limitation is the small database for train-
ing/validation, which is quite insufficient for deep learning of thousands of hyperparame-
ters. In addition, the lack of an independent test dataset is considered another limitation.
Furthermore, this study did not consider methods that handle the class imbalance problem.
Furthermore, the baseline rhythm of each patient is not available, and the effect of the base-
line rhythm is not explored. Additionally, this study did not take into account optimization
techniques for the selection of deep learning hyperparameters. In addition, the dataset
used in the study is from confirmed COVID-19 patients. The detection of asymptomatic
infections may not achieve the same level of sensitivity. Thus, the extension of the scope of
the results is to some extent limited. Finally, this study did not consider the uncertainty of
the input data.

5. Conclusions

The current study explored the prospect of employing ECG trace images for diagnosing
the novel coronavirus. It proposed a novel automated ECG-based diagnostic tool that
incorporates deep features from ten DL models. The proposed diagnostic tool used several
well-known ML classifiers for classification. The classification procedure was performed on
two levels. The primary level aimed to distinguish patients with COVID-19 from normal
cases (binary class level). Whereas the second level was multiclass to distinguish cases of
COVID-19 from normal and other cardiac complications. The major contributions of the
diagnostic tool were, first, the construction of a novel automatic, inexpensive, harmless,
susceptible, and quick diagnostic tool as a replacement to the present diagnostic tools to
support the automatic detection of COVID-19. In addition, the novel tool relied on 2D ECG
trace images to diagnose COVID-19, which is a new approach to achieving a diagnosis.
Moreover, in view of the disparities in the performances between DL models, the proposed
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tool utilized ten DL models of distinctive structures to merge their benefits, not a single
architecture. Additionally, it extracted features from the last fully connected layers of
the ten DL models instead of end-to-end DL classification (as in previous studies). The
proposed tool merged these features to investigate the impact of merging on diagnostic
accuracy. Furthermore, it presented a hybrid FS approach based on three search strategies
to select the most significant deep features and the lower dimensions of the feature space.
Finally, it explored whether the hybrid FS approach boosts the performance of the proposed
diagnostic tool. The results achieved using the proposed tool could be evidence that ECG
records can be used in diagnosing the new coronavirus. The presented tool may prevent the
shortcomings of chest imaging techniques, antigen, and PCR exams. It could be considered
an easy, inexpensive, quick, portable, and sensible approach. Therefore, it might help
clinicians in diagnosing COVID-19 accurately and automatically. Upcoming experiments
will test the efficiency of the proposed tool in actual clinical procedures. Further work will
consider using resampling techniques that handle the class imbalance problem. Future
work will explore more deep learning techniques as well as hyperparameter optimization
approaches. In addition, the uncertainty of the input data will be taken into consideration
in future work.
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Abbreviations

AI Artificial intelligence
ANOVA Analysis of variance
ANN Artificial neural networks
AVF Augmented voltage foot
AVL Augmented voltage left
AVR Augmented voltage right
CNN Convolutional Neural Network
CT Computed Temography
DL Deep learning
DT Decision Tree
DWT Discrete wavelet transform
ECG Electrocardiogram
FN False negative
FP False positive
FS Feature Selection
GLCM Gray-Level Co-Occurrence Matrix
KNN K-nearest neighbor
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LDA Linear discriminate analysis
MI Myocardial infarction
ML Machine learning
QDA Quadratic discriminate analysis
RF Random Forest
RT-PCR Real-time reverse transcription-polymerase chain reaction
SVM Support vector machine
TL Transfer learning
TN True negative
TR True positive
TML Traditional machine learning techniques
WHO World Health Organization

Appendix A

The patients’ records that have been used are as follows:
For the normal class: records utilized are normal (1) to normal (250).
For the COVID-19 class: all records available in the dataset are utilized
For cardiac abnormalities class: abnormal heartbeats(HB) records utilized are HB(1) to

HB (88), myocardial infarction (MI) records used are MB (1) to MB (77), previous myocardial
infarction (PMI) records used are PMI (1) to PMI (88).
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Abstract: The detection of hypertension (HT) is of great importance for the early diagnosis of
cardiovascular diseases (CVDs), as subjects with high blood pressure (BP) are asymptomatic until
advanced stages of the disease. The present study proposes a classification model to discriminate
between normotensive (NTS) and hypertensive (HTS) subjects employing electrocardiographic
(ECG) and photoplethysmographic (PPG) recordings as an alternative to traditional cuff-based
methods. A total of 913 ECG, PPG and BP recordings from 69 subjects were analyzed. Then,
signal preprocessing, fiducial points extraction and feature selection were performed, providing
17 discriminatory features, such as pulse arrival and transit times, that fed machine-learning-based
classifiers. The main innovation proposed in this research uncovers the relevance of previous
calibration to obtain accurate HT risk assessment. This aspect has been assessed using both close
and distant time test measurements with respect to calibration. The k-nearest neighbors-classifier
provided the best outcomes with an accuracy for new subjects before calibration of 51.48%. The
inclusion of just one calibration measurement into the model improved classification accuracy by
30%, reaching gradually more than 96% with more than six calibration measurements. Accuracy
decreased with distance to calibration, but remained outstanding even days after calibration. Thus,
the use of PPG and ECG recordings combined with previous subject calibration can significantly
improve discrimination between NTS and HTS individuals. This strategy could be implemented in
wearable devices for HT risk assessment as well as to prevent CVDs.

Keywords: high blood pressure; hypertension; photoplethysmography; electrocardiography; calibra-
tion; classification models; machine learning

1. Introduction

High blood pressure or hypertension (HT) is the most significant risk factor for many
cardiovascular diseases (CVDs) including cardiac arrhythmias, coronary disease, renal
failure and stroke [1]. To this, it must be added that most patients with HT are undiagnosed,
as in the early stages and even in the elevated blood pressure stage, HT rarely causes
symptoms. For these reasons, regular blood pressure monitoring and the assessment of
blood pressure levels is crucial for the prevention and early diagnosis of asymptomatic HT
and the study of its evolution over time for diagnosed subjects [2].

Arterial blood pressure (BP) values have two components: systolic blood pressure
(SBP), determined by the impulse generated by the contractions of the left ventricle, which
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indicates how much pressure the blood is exerting against the arterial walls when the
heart contracts, and the diastolic blood pressure (DBP), which depends on the resistance
of the arteries to the passage of blood and indicates the pressure exerted against the walls
when the heart relaxes [3]. BP depends mainly on two variables: the volume propelled
by the heart in a unit of time and the resistances offered by the arteries to the passage of
blood [4]. In turn, these variables depend on the activity of the autonomic nervous system
(ANS), which governs heart rate and the resistance of the arterioles, and, on the other hand,
the balance of water and salt filtered through the kidneys, which modulates blood volume.

Traditionally, BP has been measured through invasive as well as non-invasive strate-
gies. Invasive BP measurement has been usually reserved for patient hospitalization, espe-
cially in Intensive Care Units (ICUs), where the availability of precise and time-continuous
BP measurements is relevant [5]. For non-invasive BP estimation, conventional cuff-based
measurement devices, which use oscillometric and auscultation methods, are known to be
able to offer adequate accuracy. However, they are not designed to be wearable and only
offer a one-off measure. Therefore, they are not compatible with continuous measurement
throughout the day due to mobility limitations caused by the device, they are uncomfort-
able, and their measurement procedure, with the repeated inflation and deflation of the
cuff, is somewhat tedious, cumbersome and requires patient attention [6].

Machine Learning classifiers provide many advantages to clinical medicine in general
and to biosignal-based HT risk assessment in particular over non-invasive traditional
measures, as they can be embedded in wearable devices such as smartwatches, facilitating
uninterrupted monitoring throughout the day. This allows both the detection of asymp-
tomatic hypertensive patients and the monitoring of diagnosed patients in their daily lives
outside the clinical setting by screening changes in blood pressure.

As a consequence of the above factors, work in this field is focused on the development
of cuff-less systems that can provide the user with information about the BP condition in
near real time [7]. New wearable devices, such as wristbands or smartwatches capable of
monitoring physiological signals that change according to BP level, as the electrocardio-
gram (ECG) and photoplethysmogram (PPG) do, may facilitate the development of these
BP measurement systems [8,9]. The most promising signal is the PPG, an optical measure-
ment technique that can be used to detect changes in blood volume in the micro vascular
bed of tissues as a result of cardiac pumping. This technique is based on illumination of the
skin measuring changes in light absorption [10]. It is typically implemented with a light-
emitting diode (LED) to illuminate the skin and a photodetector to measure the amount
of light transmitted or reflected through the skin. The change in tissue light absorption is
governed by the amount of protein and hemoglobin in blood and the hemodynamic and
physiological condition caused by the change in the properties of the artery [11].

In recent years, many studies have investigated methods to estimate BP using PPG
signals. The first work that studied the correlation between the PPG and BP was conducted
by Teng and Zhang [12], where a linear regression model was used to evaluate the relation-
ship between four PPG features an BP. Once this relationship was known and established,
later studies focused on the use of propagation theory, which extracted key features from
ECG and PPG signals, simultaneously collected, for BP estimation.

Propagation features, as pulse transit time (PTT) and pulse arrival time (PAT), have
been extensively used in previous works [13,14]. PTT was defined as the time taken for the
pressure wave to travel between two arterial sites. Thus, it could be estimated as the time
delay between a PPG wavefront measured by two separate sensors located in two distal
sites of the body. For its part, PAT was defined as the delay between the electrical activation
of the heart (R peak of ECG) and the PPG wavefront at the foot, maximum slope point
and peak of the PPG signal, which represents the arrival of the pulse at the measurement
location. Cavalcante et al. [15] applied this methodology for the first time using the start
and end pulse points of these signals as well as PTT, PAT and pulse wave velocity (PWV)
to determine the cardiovascular condition. Furthermore, Chen et al. [16] used ear and toe
sensors to determinate PTT and its strong relationship with BP.
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Other methodologies used the changes in PPG morphology to estimate BP. In this
way, Kurylyak et al. [17] extracted 21 features from the PPG waveform, and demonstrated
that PPG features could significantly decrease BP estimation error. Li et al. [18] and
Kachuee et al. [19] also combined PAT and morphological parameters of the PPG, improving
the accuracy of estimation of BP in comparison to only PAT-based features. After analyzing
the different proposed methods to estimate BP, this work introduces a combination of both
approaches, propagation theory features and morphological PPG features for enhanced HT
risk assessment.

In the studies providing a BP value from PPG recordings, this value was just an
estimation, so these methods need medical supervision. Thus, the present work introduces
an alternative way to solve the problem of BP classification models with reliability, so
that they can automatically provide in a continuous and non-invasive way the subject’s
blood pressure condition and can trigger alarms in case of an asymptomatic hypertensive
condition. In this same way, Visvanathan et al. [20] used a support vector machine (SVM) to
classify BP and Liang et al. [21] used PAT and PPG features and four distinctive classifiers,
these being logistic regression, AdaBoost tree, Bagged tree and K-nearest neighbors, for the
classification of subjects as a function of BP estimated values.

However, it has been demonstrated that the relationship between the aforementioned
PPG-based propagation parameters and BP depends on many physiological factors, such
as arterial walls’ thickness and elasticity, age and gender, posture and risk factors of CVDs.
Thus, calibration is needed when BP levels from a new subject are going to be evaluated
by an automated classification method [22]. Moreover, calibration before measurement is
essential to adapt the algorithms to the variations on PPG waveforms, as they are easily
corrupted by fluctuations in blood circulation state, affecting the connection between BP
and peripheral pulses [23].

The aim of the present study is to develop a classification system for discriminating
between normotensive (NTS) and hypertensive (HTS) subjects and to evaluate the need
and relevance of per-subject calibration. For this purpose, PPG and ECG simultaneous
recordings have been analyzed and processed and propagation features, such as PTT and
PAT, combined with other PPG morphological features have been extracted and used to
train advanced classification models. The manuscript is organized as follows. Section 2
presents the database, the Machine Learning (ML) method procedure and preprocessing,
the analysis techniques and the methods to evaluate the need for calibration. Section 3
presents the results, which will be analyzed in Section 4. Finally, in Section 5, the main
scientific contributions of this study are remarked upon.

2. Materials And Methods

2.1. Materials

In this study, the recordings used were obtained from the MIMIC database, which
contains information from ICU patients admitted to Beth Israel Deaconess Medical Center
in Boston, USA [24]. This database was chosen as it contains ECG, PPG and invasive BP
signals recorded simultaneously in ICU. BP signals in which the systolic or diastolic waves
were indistinguishable, ECG signals where QRS morphology was distorted or PPG signals
in which the systolic and diastolic waves were indistinguishable and the morphology was
distorted were dismissed due to the presence of artifacts.

The BP values were labelled according to the report of the Joint National Committee
on the prevention, detection, evaluation and treatment of high blood pressure [25]: as
normotensive (NTS) for SBP lower than 120 mmHg, prehypertensive (PHT) for SBP between
120 and 140 mmHg and hypertensive (HTS) for SBP higher than 140 mmHg.

After labelling MIMIC recordings according to SBP values, it was observed that
several subjects had stable stretches with different labels. One reason that explained these
alterations in SBP values was that all patients were in an ICU, so they may have received
treatment or medication that significantly altered SBP levels. Moreover, there were subjects
with distant stretches, at different time points, whose SBP values were on the borderline
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between two labels, so that they had a different label across time even though the changes
in SBP were only a few mmHg.

Because of the aforementioned reasons, those subjects with huge alterations of their
SBP values (labels including NTS and HTS across time) were dismissed, as they were
not suitable to train a classification model aimed at assessing the risk of HT. As a result,
subjects maintaining the same label across the recording time were selected. A total of
913 recordings from 69 subjects, 45 being NTS and 24 being HTS, with acceptable signal
quality conditions were selected from the MIMIC database. The signals were all recorded
simultaneously with a duration of 120 s, a common sampling frequency of 125 Hz and a
resolution of 8–10 bits [26].

2.2. Signal Preprocessing

The PPG signals were processed by a fourth-order Chebyshev II bandpass filter with
cutoff frequencies between 0.5 and 10 Hz [27] to remove minor noises and artifacts caused
by sensors’ bad contacts, patient movements or any other interfering physiological activity,
such as the respiratory activity, that did not provoke signal dismissing in the previous
selection stage of minimum signal quality. Furthermore, the mean value of the filtered PPG
was removed to prevent drifts and to allow a better comparison between different signals.

Since the waveform of the PPG signal itself is rather simple and not very informative,
the derivatives of the signal were also used to better assess the changes in the signals
caused by BP. They represent the velocity plethysmogram (VPG) and the acceleration
plethysmogram (APG) and were obtained by applying the first and the second order
derivatives, respectively, to the processed PPG signal [28].

The ABP signals which reflected the change in BP over the cardiac cycle were clear
and did not require any processing to be applied. For its part, standard preprocessing
was applied to each ECG [29]. Thus, they were high-pass filtered with cutoff frequency of
0.5 Hz to remove the baseline, and then low-pass filtered with a cutoff frequency of 50 Hz
to reduce high-frequency muscle noise and power line interference, in this case, 60 Hz [29].

2.3. Fiducial Points Identification

After signal preprocessing, fiducial points from PPG, VPG and APG were extracted as
illustrated in Figure 1. The systolic peaks of the three signals (S, W, a), the onset point of
the PPG signal (O), and two local maxima and minimum of the APG signal (b, c, d, e) were
extracted [28,30]. Fiducial points in the precessed signals were obtained based on searching
local minima and maxima, calculated by establishing threshold and slope criteria in each of
the pulses composing every signal.

S: PPG systolik peak
O: PPG onset 

W: VPG maximum slope point 

O

W

S

PPG

VPG

a

b

c

d

e
APG

a: APG a wave
b: APG b wave 
c: APG c wave
d: APG d wave 
e: APG e wave

Figure 1. Graphical definition of fiducial points detected from photoplethysmogram (PPG), velocity
plethysmogram (VPG) and acceleration plethysmogram (APG) signals.

The maximum systolic blood pressure (SBP) was extracted as the maximum point
of each ABP pulse. SBP was used to label every subject as NTS or HTS. Subjects whose
selected segments had SBP < 130 mmHg were labeled as NTS, and subjects whose selected
segments had SBP > 130 mmHg as HTS. Finally, for each ECG recording, an R-peak
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detector based on the phasor transform was applied to the processed ECG signal to obtain
the position of each beat [30].

2.4. Definition of Discriminatory Features

After the detection of R-peaks in ECG recordings and the fiducial points for each
PPG, VPG and APG signals, discriminatory features were defined based on the pulse wave
propagation models, such as pulse arrival times (PAT) or pulse transit time (PTT), and other
morphological features from the signals that are listed below [28,31,32]. Figure 2 illustrates
the definition of the features.

• PAT: time interval between R peak and: the O-notch (PATf oot), the maximum slope of
PPG signal or W peak of VPG signal (PATderivate) and S-peak (PATpeak).

• PTT: time interval between SBP peak in BP signal to S-peak.
• Sistolic peak amplitude in PPG: amplitude from the baseline to S-peaks.
• Sistolic peak amplitude in VPG: amplitude from the baseline to W-peaks.
• TPP: time interval between two consecutive S-peaks.
• Time pulse interval (TPI): time interval between two consecutive O-notches.
• Rising time: time interval between O-notch and systolic peak in PPG signal.
• Width: pulse width at half the height of systolic peak height.
• Pulse area: integral of the signal between two consecutive O-notches.
• Area 1: trapezoidal integration of PPG signal from O-notch to S-peak.
• Area 2: trapezoidal integration of PPG signal from S-peak to O-notch.
• Inflection Point Area (IPA): ratio of both areas (A2/A1)
• a-a: time interval between two consecutive a-peaks in APG signal.
• Ratios between APG waves with the a-wave: b/a, c/a, d/a, e/a.
• Complex APG ratios: (b − c − d − e)/a, (b − e)/a, (b − c − d)/a, (c + d − b)/a.

PATfoot

PATpeak
PATderiv

S peak amplitude

Rise Time

Width

TPI

TPP

A2A1

ECG

PPG

Figure 2. Representation of PATf oot, PATderivate and PATpeak features obtained by the time interval
between ECG R-peak and fiducial points of PPG signals as well as PPG morphological parameters:
Systolic peak amplitude, TPP, rise time, areas under the pulse, width and TPI.

2.5. Feature Selection

The aim of the feature-selection stage was to select only those features, from the
original 23 discriminating parameters, that presented relevant information for solving the
classification problem optimally.

Firstly, since all the features were continuous quantitative variables, it was necessary
to carry out a normalization, since each one could take on a different range of values and
more weight would be given to the variables with higher values, not necessarily being more
important. The normalization was carried out using “zscore” centering the variables so that
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they had zero mean and scaling so that they had unit standard deviation, as represented in
the following equation

z =
x − X

S
, (1)

where x is a concrete value of a given feature, X is the mean of all values of that feature
and S the standard deviation.

Once the variables were normalized, ReliefF algorithm was applied to rank predictors
by importance, determining which ones had the best discriminatory power. The key idea of
this method is to estimate the quality of predictors according to how well instances near to
each other are distinguished, rewarding predictors that give different values to neighbors
of a different class [33]. Furthermore, by means of positive and negative correlation,
the independence between pairs of variables was analyzed in order to discard those that
did not provide new information for the classification task. Figure 3 illustrates the matrix
whose entries are the correlation coefficients obtained by matching pairs of variables, so
that highly correlated features can be discarded.
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Figure 3. Correlation matrix of the 23 initial discriminatory features used in the study. Dark red values
represent higher correlation coefficients and dark blue values represent lower correlation coefficients.

After analyzing the correlation matrix and ReliefF results, it was decided to remove
three complex APG ratios (b − c − d − e)/a, (b − e)/a and (c + d − b)/a as they had
high correlation coefficients with other features, as well as the last three ReliefF ranked
features (TPP, TPI and pulse area), as the deletion of more features worsened classification
performance. Finally, after the feature selection, a matrix of 17 normalized features was
obtained, which will be used as inputs to train the classification models with ML techniques.

2.6. Implementation Details

The experiment was executed under MATLAB (MathWorks, Natick, MA, USA), a sci-
entific and engineering computing software, running on a computer equipped with an Intel
i7-8700 CPU @ 3.2 GHz, 16 GB of memory. The implementation for HT risk assessment
combining PPG and ECG signals has been based on testing ML classification strategies such
as logistic regression, Naive Bayes, discriminant analysis, support vector machines (SVM),
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k-nearest neighbors (KNN), ensemble classifiers and various types of decision trees [34].
Finally, SVM, Bagging Ensemble classifier and KNN were selected as they provided the
highest percentages of classificatory accuracy.

SVM aims at finding the optimal separating hyper-plane between classes by focusing
on the training cases that lie at the edge of the class distributions, the support vectors,
so only training samples that lie on class boundaries are needed for discrimination [35].
The Bagging technique builds multiple classifiers based on a number of bootstrap samples.
The outputs are decided by majority voting [36]. Finally, the KNN classifier obtains the
k-nearest neighbors of the data to be classified and, as the Bagging technique, majority
voting among the neighborhood is used to decide the output classification [37].

As stated before, the main objective of this study was testing whether HT risk assess-
ment of new subjects could be improved with previous calibration. However, before ad-
dressing this goal, the classification of subjects as NTS or HTS, based on discriminant
features extracted from PPG and ECG signals, was tested. In so doing, comparison with
previous studies without subject-based calibration could be made. The experiment em-
ployed a leave-one-out cross-validation strategy. The classification algorithm was applied
as many times as segments in the database, using each segment of 2 min in length as a
single validation set and all other segments from the same subject, together with the other
subjects, as a training set.

Classification performance was assessed with statistical tests for accuracy (Acc), sensi-
tivity (Se), specificity (Sp) and F1-Score. Acc represented the percentage of correctly assessed
PPG segments. Se was defined as the ability to detect as positive HTS subjects, whereas Sp
was defined as the ability to detect as NTS healthy subjects. Finally, F1-Score was consid-
ered to be the harmonic mean of Se and Acc. These statistical tests were mathematically
computed as

Acc =
TP + TN

TP + TN + FP + FN
(2)

Se =
TP

TP + FN
(3)

Sp =
TN

TN + FP
(4)

F1-Score =
2 · Se · Acc
Se + Acc

=
2 · TP

2 · TP + FP + FN
(5)

where TN was the number of correctly classified NTS segments, TP the number of correctly
classified HTS segments, FN the number of segments that the model predicted as NTS and
were actually HTS and FP the number of patients that the model predicted as HTS and
were actually NTS.

2.7. Need for Calibration of New Subjects

Calibration was defined here as the inclusion of at least one previous measurement of
the subject under study in the training set. Aimed at studying the importance of calibration
in the classification of new subjects as NTS or HTS, three approaches were taken:

1. Classification performance of new subjects without prior subject-based calibration
was studied employing those models providing the best classification results with
leave-one-out cross-validation strategy. For this purpose, the analyzed segments
of the new subject were only used for validation and the remaining segments from
subjects other than the one under study were used to train the model.

2. As a second approach, the effectiveness of calibration to improve classification of
new measurements performed later and close in time was studied following the
sequel procedure:

a. Signal segments with a duration of 2 min were divided into 12 sub-segments of
10 s in length.
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b. The sub-segments of all subjects except the one to be analyzed and the first
sub-segment of the analyzed subject, acting as the calibration measurement,
were used as training dataset and the next sub-segment of the same subject was
used for validation.

c. After its classification, this second sub-segment was introduced in the training
dataset, using the next sub-segment for validation. This step was repeated until
the 12 consecutive sub-segments of the subject were processed.

d. This procedure was repeated for all 2 min segments of all subjects in the database.

This way, a sequential calibration and validation was performed with the idea being
to analyze the improvement in classification as the model was gradually calibrated by
introducing previous measurements of the same subject very close in time.

3. Finally, the effectiveness of calibration for the classification of distant measurements
was studied. To control the distance between measurements, groups of segments
of the same patient that were less than 1 h, between 1 h and 6 h, between 6 h and
24 h and more than one day apart were selected. A sequential validation similar to
the described for consecutive sub-segments was also followed in this approach in
order to study whether classification results improved as the model was calibrated by
introducing previous measurements of the same patient far away in time.

The aforesaid three approaches were developed employing the ML classification model
that provided the best classification result in a leave-one-out cross-validation strategy.

3. Results

Statistical results of classification from the cross-validation strategy to discriminate
between NTS and HTS segments are shown in Table 1. As can be seen, all three models
provided outstanding classification results, with KNN being the model that obtained
the best classification performance with a total accuracy of 93.54%, sensitivity of 92.31%,
specificity of 94.35% and F1 score of 91.93%.

Table 1. Classification performance to distinguish between NTS and HTS individuals for the best
models analyzed with the selected features.

Model Accuracy Sensitivity Specificity F1-Score

KNN 93.54% 92.31% 94.35% 91.93%

SVM 91.35% 90.93% 91.62% 89.34%

Ensemble 90.69% 82.97% 95.81% 87.66%

Regarding results about the need to calibrate each model to provide the best clas-
sification outcome with new subjects, the KNN model was chosen as provided the best
classification results with leave-one-out cross-validation. First of all, following the first
approach detailed back in Section 2.7, the segments were classified without any previous
calibration, in other words, with the training dataset only consisting of segments from other
subjects, with each analyzed segment from the subject under study being tested for vali-
dation. In this case, classification accuracy with no previous calibration was 51.48%. This
proved that hypertension risk assessment of subjects without a prior calibration provided
low accuracy results, as has been also reported by previous studies [22,23].

Next, applying the second approach of Section 2.7, aimed at demonstrating whether
poor classification results could be improved with calibration, Figure 4 shows the clas-
sification accuracy between NTS and HTS individuals, in the form of box-and-whisker
plots, employing sequential validation of consecutive sub-segments. Moreover, the Figure
indicates in each square the mean accuracy for all selected subjects according to the number
of consecutive sub-segments in the training dataset acting as subject calibration. It can be
seen that, with the sole incorporation of one prior close in time sub-segment in the training
dataset for calibration, the classification performance increased by 30% with respect to
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the case without calibration. Furthermore, accuracy improved progressively until it was
stabilized above 96%, when more than six prior and close in time sub-segments from the
same subject were present in the training dataset.

Figure 4. Classification performance provided by the KNN classifier in the discrimination between
NTS and HTS individuals. Results obtained for sequential validation of consecutive sub-segments
for each of the selected subject segments. In each box, the red line indicates the median, and the
bottom and top edges indicate the 15th and 85th percentiles, respectively. The whiskers cover the
most extreme data points not considered outliers, and the red symbol (+) stands for outliers. Black
squares inside each box indicate mean accuracies.

Finally, for the third option defined in Section 2.7, performing calibration distant
from measurements, Figure 5 shows classification outcomes of sequential validation with
different distances between segments. It was demonstrated that calibration improved the
classification task discriminating between NTS and HTS subjects because, as the number of
measurements of the same subject in the model increased, so did the accuracy rate. Figure 5
also shows that with calibration and measurement separated by less than 1 h, the model
was able to classify with an accuracy beyond 94% from the sixth calibration measurement
onwards. As expected, these outcomes decreased as the distance between calibrations
and test measurement increased, thus requiring up to five calibration measurements with
distances between 6 h and 24 h to obtain classification accuracies above 75%. In any case,
the need to perform several calibration measurements to achieve very good classification
accuracy with test measurements, which could be many hours or even days away from
calibration, does not seem to be a serious limitation. On the other hand, it is worth
mentioning that only five subjects had recording lengths longer than five days, so that
less stable results in Figure 5d can be considered as normal, because any misclassification
would significantly affect the final accuracy. Although the number of subjects was not quite
elevated in this last case, the obtained results demonstrate that classification performance
was very good even with distances between calibration and test measurement of several
days, which is very promising for real-world applications based on embedding these
methodologies into wearable devices.
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Figure 5. Classification accuracy to distinguish between NTS and HTS individuals using KNN
sequential validation of segments with calibration distant from test measurements. (a) Distance below
1 h. (b) Distance between 1 and 6 h. (c) Distance between 6 and 24 h. (d) Distance above 24 h. In each
box, the red line indicates the median, and the bottom and top edges indicate the 15th and 85th
percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers,
and the red symbol (+) stands for outliers. Black squares inside each box indicate mean accuracies.

4. Discussion

The continuous measurement of BP is of great importance as it facilitates the early
detection and prevention of hypertension, being the main risk factor for many CVDs. With
the eruption in recent years of the Internet of Things [38] and cuff-less devices that are able
to continuously measure and process physiological signals applying artificial intelligence
techniques, such as ML and Deep Learning (DL), alternatives to traditional cuff-based
single-time BP measurement methods have been proposed. The main signal used in related
studies has been the PPG, as its morphological variations are related to the heart’s activity
and vascular walls condition, being similar to BP morphology both in frequency and time
domains [39]. Furthermore, PPG signal can be acquired by non-invasive low-cost devices
as smart watches, obtaining a continuous and real time measurement.

The monitoring of BP through PPG has mainly been studied by two different ap-
proaches: (i) addressing the problem of monitoring BP as a regression task estimating
systolic and diastolic values; and (ii) addressing the problem of detecting hypertensive
subjects as a classification task. In this study, the second approach has been developed, as
estimations from the first approach still have serious limitations, so that it is more clinically
beneficial to alert hypertensive subjects, acting as a support for clinical decision making.

Tjahjadi et al. [23] proposed the use of KNN technique and PPG signal without ECG,
requiring the extraction of 2100 PPG feature points from 2.1 s of data. Their classification
results achieved an F1-score of 100% for NTS and PHT patients and 90.80% for HTS
patients. Although the authors affirm that this method achieved higher classification
performance than other ML and DL methods, obtaining 2100 PPG feature points in such a
short period of time required a sampling frequency of 1 kHz, which is a serious drawback
for embedding this method in wearable devices, as it significantly increases the amount of
data sampled, saved and transmitted which, unavoidably, will involve a considerably high
power consumption.

Most studies for HT risk classification use both PPG and ECG signals, as PAT value
is directly related to BP value. Although previous works have studied the efficiency of
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employing PAT as the only parameter to estimate BP [14,40], Liang et al. [21] reported a
higher correlation with BP levels by combining PAT with additional PPG features. Dividing
the dataset into 70% for training and 30% for validation, the KNN classification model
obtained the best performance compared to bagged tree, logistic regression and AdaBoost
tree. The F1 scores comparing NTS vs. PHT, NTS vs. HTS and NTS + PHT vs. HTS were
84.34%, 94.84% and 88.49%, respectively. As a consequence, the HT risk-discrimination
performance between NTS and HTS was similar to the one achieved in the present study,
where F1 score with the KNN classification model was 91.93%, employing leave-one-out
cross-validation strategy. Therefore, both in previous studies and in the present work,
the KNN classifier has been the best model to assess HT risk, combining PPG recordings
and Machine Learning techniques. However, until now, there is no agreement about the
discriminant features to be used, since it depends considerably on patient selection and
database, mode of acquisition and signal quality.

In recent years, DL approaches have obtained outstanding performance extracting
information from images [41,42]. Liang et al. [43] used the continuous wavelet transform of
PPG signals and convolutional neural networks to classify BP. The dataset was divided in
80% for training and 20% for testing. The F1 scores for the binary classification comparing
NTS vs. PHT were 80.52%, NTS vs. HTS were 92.55% and (NT + PHT) vs. HT trials
were 82.95%. The main disadvantages of DL approaches are the requirement of a high
computational cost, the extra duration of the training stage and the need for a large number
of recordings.

One important consideration introduced by this work, that was not specified in related
studies, has been the study of subjects with stable labels of BP. Usually, BP levels vary
slightly throughout the day depending on the activities carried out by each person and
many other factors, however, each subject would have to be labelled with a single and
stable label. For example, any subject cannot be diagnosed as HTS at certain moments
of the day, PHT at others and NTS at others. This is a problem when using databases
such as the MIMIC, as it consists of recordings from ICU patients that, as a consequence
of their unstable condition or the administration of drugs, may have altered and variable
SBP levels.

Furthermore, any previous study about hypertension risk assessment has taken into
account the relevance of calibration as a factor improving significantly classification re-
sults. In this respect, calibration has been only considered in other studies addressing
BP estimation in combination with other patient data such as age [44], distance and area
of arteries between measure sites or other factors that increase BP as exercise or postural
changes [40]. Recently, Schlesinger et al. [45] used convolutional neural networks and PPG
signals for BP estimation, achieving a reduction in mean absolute difference of 2.54 mmHg
after calibration, using a single 30 s window of PPG signal and the associated BP reading.

The present study has proposed two calibration approaches, trying to improve the
poor initial classification accuracy of 51.48% when a new subject entered the method
without any previous calibration. The first approach investigated if the method improved
classification accuracy when consecutive sub-segments of each subject were used both for
calibration and classification, employing sequential validation. The assumption here was
the supposed high similarity between calibration measurements and test measurement.
Figure 4 showed that the presence of just one calibration sample was enough to increase
classification performance more than 30%, which was enhanced even more as the number
of calibration measurements raised.

The second approach studied the benefit of calibration for distances between calibra-
tion time and measurement time varying from less than 1 h to more than 24 h. This way,
it was considered if PPG signal properties from the same patient were kept across time
or changed along the day or week. For distances to calibration below 1 h, classification
accuracy improved by 30% with just one calibration, keeping these results until more
than 6 segments from the same patient were in the training dataset. The improvement of
hypertension risk classification decreased slightly as the distance between calibration and
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measurement increased, although the use of calibration always improved classification
results compared to classifying a new uncalibrated subject. Thus, after the fifth calibration,
all the experiments provided high accuracy.

These approaches have demonstrated that the properties of each patient’s PPG features
were variable over time, as worse results were obtained with measurements distant from
calibration than with those very close in time to calibration. Therefore, in order to ensure
high classification accuracy, several recalibrations performed at distant recording times and,
if possible, in different situations are recommended to accurately asses the risk of HT with
PPG and ECG recordings, which can be obtained in a simple way through wearable devices.

Finally, this study has certain limitations that are worth considering. Even though
more than 900 recordings were analyzed, the total number of patients was not too large
and there was no information available on factors that may imply a higher risk of HT
such as age, sex or physical condition. In this respect, Mukkamala et al. [46] studied the
age factor in calibration predicting a maximum calibration interval of 1 year for subjects
of 30 years of age, that declined linearly to 6 months for subjects at the age of 70, using
the PTT as discriminatory feature. In addition, this study has only applied the artificial
intelligence technique of ML. Future works will address the application of DL classifiers in
order to discern whether they are able to improve hypertension risk assessment of current
ML classifiers employing calibrated PPG recordings.

5. Conclusions

The combined extraction of discriminant features from PPG and ECG recordings,
together with the use of machine learning classification models such as KNN, has been
able to perform outstanding hypertension risk assessment in the discrimination between
NTS or HTS subjects. The application of per-subject calibration, both in close and distant
measurements, has proved its relevance for accurate classification. The implementation
of these artificial intelligence techniques in wearable devices would improve the early
diagnosis and prevention of cardiovascular diseases associated to hypertension.
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Abstract: Parkinson’s disease (PD) is the second most common progressive neurodegenerative
disorder, affecting 6.2 million patients and causing disability and decreased quality of life. The
research is oriented nowadays toward artificial intelligence (AI)-based wearables for early diagnosis
and long-term PD monitoring. Our primary objective is the monitoring and assessment of gait in
PD patients. We propose a wearable physiograph for qualitative and quantitative gait assessment,
which performs bilateral tracking of the foot biomechanics and unilateral tracking of arm balance.
Gait patterns are assessed by means of correlation. The surface plot of a correlation coefficient
matrix, generated from the recorded signals, is classified using convolutional neural networks into
physiological or PD-specific gait. The novelty is given by the proposed AI-based decisional support
procedure for gait assessment. A proof of concept of the proposed physiograph is validated in a
clinical environment on five patients and five healthy controls, proving to be a feasible solution for
ubiquitous gait monitoring and assessment in PD. PD management demonstrates the complexity of
the human body. A platform empowering multidisciplinary, AI-evidence-based decision support
assessments for optimal dosing between drug and non-drug therapy could lay the foundation for
affordable precision medicine.

Keywords: artificial intelligence; sensors; convolutional neural networks; Parkinson’s disease;
biomedical monitoring; accelerometer; pressure sensor; disease management; electromyography;
correlation

1. Introduction

More than 200 years ago, in 1817, Dr. James Parkinson published a scientific work
entitled “The Essay on Shaking Palsy” [1] and with it the foundation of the disease that bears
his name. After two centuries, we still struggle to understand and treat neurodegenerative
diseases, such as Parkinson’s disease (PD), which are growing exponentially, especially in
industrialized regions, and given that no one is immune to them, specialists are concerned
about “the Parkinson pandemic” [2].

In 2017, we started the PDxOne project, intending to optimize the management of PD
by offering sustainable automated or semiautomated solutions.
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1.1. Considerations on Parkinson’s Disease

Parkinson’s disease (PD) is a common progressive neurodegenerative disorder that can
cause significant disability and decreased quality of life [3]. PD is today more present than
ever, being the second most common neurodegenerative disease after Alzheimer’s disease
and affecting 0.3% of the population [4]. It is estimated that there are 6.2 million people
diagnosed with PD disease worldwide, and the disease caused the death of 117,000 people
in 2015 alone [5]. The American Parkinson Disease Association estimates that there are
already 1 million people with PD living in the U.S. alone and over ten million worldwide,
giving some researchers the evidence of a Parkinson pandemic [2]. While studies are
divided on the prevalence by gender, the affinity of the pathology for the aging tissue,
particularly neural tissue, is much clearer. Statistically, PD occurs in people over 60 years
old, affecting 1% of this age group and increasing to 4% for people over 80 [4]. Unfortunately,
PD can also occur in younger people under 50, known as Young Onset Parkinson’s disease
(YOPD). Studies show that 5–10% of patients diagnosed with PD are between 20 and
50 years old [6]. It is becoming even more complex with the literature showing cases of
patients diagnosed with PD who were younger than 20—even some rare cases with patients
under ten years of age, and the first symptoms appeared as early as two years of age [7].
This form is known as the juvenile form of PD and was first described in 1875. It has a
substantial genetic component that can be diagnosed today with genetic testing [7].

In 2014, Mary Ann Thenganalt et al. performed a systematic review of articles cited in
PubMed between 1980 and 2013. They concluded that PD could be divided into several
subtypes, the most representative being tremor-dominant and postural instability gait
difficulty form (PIGD) [8]. The clinical presentation of PD can take the form of many
symptoms, from which the easiest to notice are the motor impairments [9]. These symptoms
are caused by the degeneration of the dopaminergic neurons located in the substantia nigra
from the ventral midbrain [10]. According to the Movement Disorder Society (MDS), the
clinical diagnosis of PD is based on the presence of bradykinesia, along with either rest
tremor or rigidity [11].

Motor impairment in PD has long been the focus of researchers, with significant ad-
vances being made in diagnostic accuracy, implementation, improvement of more accurate
assessment scales, and better management of therapeutic strategies [12]. Unfortunately, at
the moment of the diagnosis, a significant number of neurons that produce dopamine are
already dysfunctional [6]. During the 15–20 years before the onset of motor symptoms, the
patients experience a phase called “prodromal PD”, during which the neurodegeneration
starts and progresses [13]. It has been proved that olfaction impairment, constipation,
depression, rapid eye movement (REM) and sleep behavior disorder (RBD) can be present
in the prodromal period of PD [14].

Although the focus of research has been on motor symptoms, clinical studies have
shown that non-motor symptoms in PD, such as depression, pain, psychosis and sleep
disturbances, should be regarded as equally important when analyzed using quality-of-life
questionnaires as well as economic and health indicators [12]. Therefore, we are dealing
with a pathology that is increasingly present in our lives, that will double its number
globally by 2030 [15], and that will have a significant socio-economic impact. Socially, PD
patients become isolated, stigmatized [16], and even discriminated, with severe implications
for the course of the disease and the clinical picture. To diagnose PD in a patient means to
put a verdict that irreversibly alters their lifestyle and that of their families. Once diagnosed,
the patient will also undergo a lifelong treatment, which aims not to cure but to improve or
stagnate the symptoms’ evolution. Studies, therefore, show a mortality rate double that of
the healthy population, which increases and presents a more aggressive clinical picture in
patients with YOPD or juvenile PD [17]. Therefore, the aspect of early onset raises many
questions about our current ability to understand the pathophysiology of PD and treatment
errors that may result in individual and global socio-economic consequences.

Indeed, medical assistance for patients with PD is a major drain on the healthcare
budget. This financial amount is given by the complexity of PD, which affects the patient
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on several levels at once. To understand the real-life implications that affect every one of
us and why we should spend the necessary resources, a quantification of socio-economic
indicators is necessary. One figure we could start with is the financial effort that countries in
Europe make to treat patients with PD, i.e., almost EUR 14 billion per year [18]. Interestingly,
this figure also represents the amount the USA is spending per year treating PD patients,
namely USD 14.4 billion [19]. The average annual cost per patient for PD in Germany is
EUR 20,095 [20]. On average, direct costs represent 65.5% and indirect costs 34.5% [21].
Of the total direct costs (EUR 13,158), EUR 3526 is spent on medication, which is also the
largest expenditure, and EUR 3789 is spent annually on hospitalization and home care
costs [21]. Costs for home care by the family amount to 20% of the direct costs [21]. The
same study shows a directly proportional relation between costs and disease progression,
i.e., EUR 18,660 annual costs for stage 1–2, increase to EUR 31,660 annual costs for stage 2–5
(according to Hoehn and Yahr) [21]. Annual costs for PD differ quite a lot between European
countries. While in Russia, EUR 5240 is spent per patient per year [21], in England, the
annual costs for a patient with advanced stage PD (3–5 according to Hoehn and Yahr) can
reach EUR 72,277 [22]. Attention is required, especially regarding the increase in treatment
costs if patients are taken out of their environment, out of their home, and moved to a
nursing home. In this case, studies show a 500% increase in costs for PD treatment [23].
All these costs are strictly related to PD, but a patient may also have other associated
pathologies aggravated by PD and vice versa. Moreover, the financial impact on society is
difficult to quantify because it should be taken on a patient-by-patient basis.

A staggering EUR 798 billion is spent annually at the European level to treat brain
diseases, according to a study carried out in 2010 [19]. This amount is almost four times
higher than Romania’s GDP. It shows the importance of continuous research to provide a
sustainable medical system for Europe and beyond in a growing and aging population that
wants to maintain its standard of living in old age.

These figures motivate the ongoing research on wearables for the early detection of
PD-specific symptomatology and prediagnosis of PD in incipient stages, as well as long-
term monitoring of the disease in a ubiquitous healthcare environment which provides
intelligent decision support algorithms for assessment and patient-specific treatment plans
in PD.

1.2. Related Work—Wearables in PD Monitoring

For exemplification, Boroojerdi et al. report on the employment of the NIMBLE
wearable biosensor patches, composed of an accelerometer and an electromyography
(EMG) sensor, for motor evaluation in PD [24]. As for another example, Jauhiainen et al.
report on the employment of a Movesense sensor and a Forciot insole to observe walking
patterns in PD [25]. Phan et al. report on the use of BioKin devices to assess daily tasks:
pointing, pouring, walking, and walking around a chair [26]. Lonini et al. report on
employing BioStamplRC flexible wearable sensors, consisting of a tri-axial accelerometer
and gyroscope, to record motion data [27].

Continuous long-term monitoring of motor symptoms in PD using inertial sensors is
described by Borzì et al., aiming for the identification of bradykinesia and FOG [28], or by
Powers et al., aiming for the identification of tremors and dyskinesia [29]. The employment
of built-in smartphone sensors, with dedicated smartphone applications, is described by
Heijmans et al. in [30] or by Motolese et al. in [31], for the remote monitoring of the PD
patients during daily activities.

1.3. Related Work—AI-Based Decisional Support in PD Assessment

Some noteworthy examples regarding AI-based decisional support are presented as
follows: Lonini et al. report on the employment of Random Forest classifiers to identify
bradykinesia and tremor [27]. Random Forest for classification in PD was also studied
by Aich et al. in [32], along with support vector machine, K-Nearest Neighbor, and
Naïve Bayes. PD-specific symptomatology detection and classification using convolutional
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neural networks (CNN) was reported by Taewoong et al., who assessed daily activities
based on 3D acceleration and angular velocity data measured with a Microsoft Band
2 [33]. Further employment of CNN was reported by Lonini et al. for the identification of
bradykinesia and tremor [27], and by Steinmetzer et al. for the arm oscillation monitored
with Mbientlab portable Motion Rectangle sensor bracelets under a Timed Up and Go
(TUG) test scenario [34].

1.4. This Work

The PDxOne research project desires to develop and use the latest technologies to
collect and, above all, interpret medical data. With a world population reaching 8 billion
people and with today’s medical requirements and demands, these tasks simply cannot
be hand-operated anymore. Given the sheer medical data volume that must be collected
every day, the request for economical and sustainable solutions forces healthcare systems
to embrace a worldwide digitalized implementation.

Thus, our work is placed in the context of today’s demand for ubiquitous monitor-
ing and intelligent decisional support in healthcare. We target to develop, at the end of
our project, a small-size wearable and portable monitoring system for patients diagnosed
with PD, aiming for long-term quantitative and qualitative assessment of the PD symp-
tomatology in a continuous fashion, and intended for AI-based decisional support in the
discrimination of the pathology and formulation of dedicated treatment plans, which
constitutes a novelty in the field.

This article targets the monitoring and assessment of gait in patients diagnosed with
PD. Gait disorders are a hallmark of the condition and are associated with a loss of indepen-
dence and an increased risk of falls. Disturbances of the gait, even if hardly noticeable, are
described from the earliest stages of the disease [35] and include shuffling gate, shortened
stride length, reduced overall velocity, and increased stance phase (up to doubling), along
with reduced or absent arm swing, reduced trunk rotation, and decreased amplitude of
motion in the hips, knees, and ankles [3]. In advanced stages, gait disorders often become
increasingly complex, including motor blocks, festination, and imbalance [36].

Multiple studies have also been conducted for the early detection of motor deficient
behaviors to apply proper therapeutic interventions, which are proved to slow down the
motor dysfunction and maintain functional independency (in patients with preserved
cognitive function) [3,37–39]. Symptoms such as dyskinesia, which is induced by therapy
and manifests as involuntary movement of any body parts, appear in advanced stages of
PD [9]. The symptomatic therapy for the classic motor features is usually satisfactory, but
antiparkinsonian therapy that does not induce motor complications is still needed [40].

The solution proposed for ubiquitous gait monitoring and AI-based decisional support
in gait assessment is envisioned in the shape of a wearable physiograph. The proposed
physiograph performs bilateral tracking of the foot biomechanics assessed by means of
plantar pressure distribution and lower-limb EMG, in correlation to upper limb balance,
which is evaluated by means of arm balance magnitude of acceleration (MA) and variation
of acceleration (VA). The recorded signals are transmitted over a Bluetooth radio link to
a mobile device, e.g., smartphone or tablet. They are uploaded and stored into an online
database and made available for future access, either in real-time or offline, for processing
and interpretation.

The proposed physiograph enables both qualitative and quantitative assessment of
gait. As such, we perform gait evaluation based on biomechanical parameters, expressed
in terms of arm balance, heel strike, and lift-off, and temporal parameters, expressed in
terms of cadence, single support, double support, single support to double support ratio,
and stride time variability. Next, we evaluate the physiological interdependencies involved
during the gait cycle by applying the cross-correlation function to each recorded signal pair.
We illustrate that PD-specific gait is identifiable based on the evaluated gait assessment
parameters following the evaluation results. Consequently, the biomechanical and temporal
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parameters and the cross-correlation results are applicable as inputs to an expert system for
identifying and discriminating PD-specific gait pathology.

The novelty of the proposed physiograph consists of the underlying AI-based deci-
sional support procedure for gait assessment. We generate a correlation coefficient matrix
from the gait monitoring signals to visually represent the gait pattern. Gait assessment
using the biomechanical and temporal parameters and the cross-correlation function is con-
tained in the correlation coefficient matrix. Then, we apply the surface plot of the correlation
coefficient matrix to a convolutional neural network (CNN) for gait classification.

A proof of concept of the proposed physiograph with AI-based decisional support is
validated in the clinical environment on a group of ten subjects consisting of five PD patients
and five healthy controls. As such, the proposed solution provides a feasible method for AI-
based support for gait monitoring and assessment in a ubiquitous healthcare environment.

2. Materials and Methods

This paper proposes a wearable miniature physiograph with AI-based decisional
support for gait monitoring and assessment in PD. Gait evaluation is performed in accor-
dance with the Unified Parkinson’s Disease Rating Scale (UPDRS)—motor subscale, and
the Movement Disorder Society UPDRS (MDS-UPDRS) [41,42].

The proof of concept of the proposed wearable gait monitoring physiograph was
tested extensively in the laboratory and validated indoors in the clinical environment, with
a study group consisting of five patients diagnosed with PD and five healthy controls.
The PD group includes three males and two females. The healthy control group includes
four males and one female. The healthy controls do not have any previously diagnosed
neurodegenerative disorder or podiatric condition.

All procedures performed in this study involving human participants were following
the ethical standards of the institutional and/or national research committee. Informed
consent was obtained from all individual participants involved in the study.

2.1. The Proposed Physiograph for Gait Monitroing in PD

The proposed gait monitoring physiograph is presented in the block diagram from
Figure 1a and the practical realization from Figure 1b.

(a) 

Figure 1. Cont.
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(b) 

Figure 1. The proposed wearable physiograph for gait monitoring in PD: (a) block diagram and
(b) practical realization.

The proposed wearable physiograph is developed around an ATmega2560 microcon-
troller (μC), which reads six Aidong IMS C20B thin-film resistive pressure sensors and
four EMG channels over the analog ports and a LSM9DS0 module over the I2C interface.
Signal acquisition is performed with synchronized sampling, with an fs = 100 Hz sam-
pling frequency and an on-chip 10-bit analog-to-digital converter (ADC). Under this setup,
the proposed physiograph performs bilateral tracking of the foot biomechanics through
the plantar pressure progression pattern, lower-limb muscular activation, and unilateral
monitoring of the arm balance.

The μC development board is attached to a Velcro strip and is worn around the user’s
waist, as illustrated in Figure 2.

Foot biomechanics is assessed using three pressure sensors and two EMG channels,
clustered into a foot biomechanics assessment module [43]. Two such modules are consid-
ered for bilateral monitoring.

Operation of the foot biomechanics assessment module is described as follows: bilat-
eral tracking of the plantar pressure progression pattern during the gait cycle is performed
using three pressure sensors, attached onto an insole below the toe (FSR0), metatarsal
arch (FSR1), and heel area (FSR2), respectively, following the center of pressure (COP)
progression line, as illustrated in Figure 3.

102



Biosensors 2022, 12, 189

  

Figure 2. Illustration of the waist-worn ATmega2560 microcontroller development board, attached to
a Velcro strip, which reads the peripherals involved in the bilateral monitoring of foot biomechanics
and unilateral tracking of the arm balance.

 

Figure 3. Illustration of the resistive pressure sensor placement onto the shoe insoles, under the toe,
metatarsal arch, and heel area, respectively, for bilateral tracking of the plantar pressure progression
pattern along the center of pressure progression line.

The sensors are deployed into a resistive divider topology with a R = 1 MΩ resistance,
as illustrated in Figure 4a, and operate as force sense resistors (FSR) with the sensor
resistance value derived as

FSR =
VFSR

VDD − VFSR
·R, (1)

where VDD = 5 V is the supply voltage and VFSR is the FSR voltage drop. The sensor resis-
tance (kΩ) can be converted to mass (kg) according to the mass vs. resistance characteristics
provided in the sensor datasheet and plotted in blue in Figure 4b. Mass can further be
converted to pressure (kg/cm2) by dividing the mass to the sensor area.

In this work, we target gait pattern assessment rather than podiatric assessment. As
such, the FSR resistance derived with (1) is sufficient to indicate the application of plantar
pressure. In addition to (1), we have changed the polarity of the FSR signal,

FSR = max(FSR)− FSR, (2)

to have the “HIGH” signal level indicating pressure, and the “LOW” signal level indicating
absence of pressure. This also changes the mass vs. resistance characteristics as plotted in
red in Figure 4b.
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(a) (b) 

Figure 4. Deployment of the resistive pressure sensors for operation as force sense resistors:
(a) schematics, (b) mass vs. resistance conversion characteristics.

Tracking of the lower-limb muscular activation pattern during the gait cycle is per-
formed with two EMG channels which acquire the EMG of the Tibialis anterior (TA) and
Gastrocnemius medialis (GM) muscles. Off-the-shelf MikroElektronika EMG Click boards
were used for each EMG channel analog front end (AFE), respectively. Wet Ag/AgCl elec-
trodes were employed for EMG acquisition. Electrode placement is illustrated in Figure 5,
with the active electrodes (white and red) placed onto the TA and GM muscles and the
reference electrodes (black) placed onto the lateral and medial malleolus, respectively.

  

Figure 5. Illustration of the electrode placement for EMG acquisition of the Tibialis anterior
and Gastrocnemius medialis, with the reference electrodes placed onto the lateral and medial
malleolus, respectively.

A 10× AFE gain is set from the on-board potentiometer to accommodate the pre-
scribed 1 μV–10 mV EMG amplitude range, accounting for 2 mV motor unit action po-
tential (MUAP) amplitude of the healthy muscle, 0.5 mV MUAP amplitude for primary
muscular disease, as well as 10 mV MUAP amplitude of intramuscular sprouting and
chronic partial denervation [43–46]. On-board filtering is performed with three analog
filter stages: two high-pass filters with the cutoff frequencies set to 1.6 Hz and 0.16 Hz,
respectively, and a low-pass filter with the cutoff frequency set to 60 Hz.
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After acquisition, EMG signal processing accounts for averaging with an 8-sample
rectangular window with 50% overlap, a 4th order Butterworth approximation high-pass
filter with fcL = 0.5 Hz to suppress the DC component, and then a 4th order Butterworth
approximation low-pass filter with fcH = 10 Hz. To be noted is that the low-pass frequency
of 10 Hz was considered as we were interested in the identification rather than evaluation
of muscular activity [47].

The accelerometer from a LSM9DS0 module is employed to perform arm balance
monitoring. The sensor is attached to the patient’s right-hand wrist using a Velcro strip
and, if necessary, tightened with an adhesive band, as illustrated in Figure 6.

 

Figure 6. Illustration of the attachment of the LSM9DS0 accelerometer to the user’s right wrist, for
arm balance tracking during the gait cycle.

The accelerometer was configured for a 2G acceleration range, and the sensor data
were read using the Adafruit LSM9DS0 library. Accelerometer signal processing assumes
averaging with an 8-sample rectangular window with 50% overlap, a 4th order Butterworth
approximation high-pass filter with fcL = 0.5 Hz to suppress the DC component standing
for the accelerometer initial position [48], and then a 4th order Butterworth approximation
low-pass filter with fcH = 30 Hz. These filter specifications cover the targeted 1 Hz–10 Hz
frequency range of gait-related informational content (most relevant information is available
up to 4 Hz) [49], as well as the 4 Hz–6Hz frequency range of tremor [50]. Additionally, the
low-pass filter suppresses higher frequency components due to, for example, vibrations
as well as noise. The raw signals on the three axes are then converted to acceleration and
expressed in m/s2.

Two metrics are employed for arm motion tracking based on the dynamic accelera-
tion, defined as follows: the magnitude of acceleration (MA) is determined by applying
the Pythagorean theorem to the readings on the three axes, respectively [51], according
to equation:

MA =
√

x2 + y2 + z2, (3)

and defines the absolute acceleration value. The variation of acceleration (VA) has the aver-
age of the past readings subtracted from each axis, respectively [47], as defined by equation:

VA(k) =
√(

x(k)− xavg(k)
)2

+
(
y(k)− yavg(k)

)2
+
(
z(k)− zavg(k)

)2, (4)

where k is the current index and

xavg(k) =
1

k − 1
·∑k−1

i=1 xi, (5)

105



Biosensors 2022, 12, 189

yavg(k) =
1

k − 1
·∑k−1

i=1 yi, (6)

zavg(k) =
1

k − 1
·∑k−1

i=1 zi, (7)

are the average of the past readings, i.e., up to index k − 1 on each axis, respectively.
The proposed physiograph is aimed at long-term monitoring in a ubiquitous healthcare

environment. Wireless connectivity is achieved by deploying the proposed physiograph
with a HC-05 Bluetooth module. After acquisition, the raw data are sent over UART to
the HC-05 module and transferred to an Android mobile terminal, e.g., a smartphone or
tablet. The mobile terminal collects the user data from the physiograph over Bluetooth and
assembles it into JavaScript Object Notation (JSON) files. The JSON files are sent one by
one over the Internet to the server via REST API and stored in an online database. From
this database, the signals are available for later retrieval to a desktop computer. A diagram
of the application is presented in Figure 7.

Figure 7. Diagram of the implemented solution to have the signals recorded from the users wearing
the gait monitoring physiograph transmitted to a mobile terminal over a Bluetooth radio link and
stored into an online database for future retrieval.

An example of a message sent to the API via the mobile phone is provided in Figure 8.
The data will be stored in an online database. An example of the database content in Figure 9
illustrates that the data dictionary holds all the data acquired with the gait monitoring
physiograph and is made available for later retrieval onto a laptop or personal computer
for processing and interpretation.

 
Figure 8. Example of a message sent to the API via the mobile phone.
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Figure 9. The online database content, resembling the data acquired with gait monitoring
physiograph.

2.2. Gait Assessment—Correlation

The study group was instructed to undertake steady-state walking, at a pace of their
own choice, and walk around the room. One or two walking trials were performed to make
sure that the users were comfortable with the wearable devices and that they understood
the requirements of the exercise. The subsequent steady-state walking activity was then
recorded for the proposed gait monitoring and assessment procedure. Photographs taken
during the trials of gait assessment are illustrated in Figure 10.

 

Figure 10. Photographs taken during the trials of gait assessment.

A physiological gait cycle is considered from one heel strike to the next heel strike of
the same foot and consists of a stance and a swing phase, respectively [52,53]. The stance
phase is further split into:

1. Heel strike—with pressure applied onto the heel area;
2. Support (or foot flat);
3. Midstance;
4. Heel off—with pressure applied onto the metatarsal arch and hallux;
5. Toe off—with pressure applied only onto the hallux before lift-off [43].

The physiological gait cycle is associated with arm balance, which describes a forward
sway during the stance phase (from heel strike to lift-off) and a backwards sway during the
swing phase (from lift-off to the next heel strike) [43]. This is visible on the arm balance MA
waveform which describes a U-shaped pattern. The MA maxima account for the arm sway
direction changes, constituting a good indicator for the stance phase initiation and ending.

The gait pattern in PD differs from the physiological gait. The literature describes a
flat-foot strike for the PD gait pattern, or toe-to-heel plantar pressure progression in more
advanced stages [54], associated with reduced lifting of the foot after lift-off [55] and limited
or no arm balance along the gait cycle [56]. As such, the MA waveform exhibits a larger
number of peaks, corresponding to the oscillations of the body’s center of mass and tremor.
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In this case, the VA waveform exhibits a larger variability corresponding to the increased
number of MA peaks.

Due to the large number of peaks, the MA waveform cannot be employed to provide
indication regarding stance initiation and ending in PD. In this work, we have rather
employed the plantar pressures for stance identification. Plantar pressure detection was
performed by comparing the FSR value to an empirical threshold level FSRth computed
as a fraction of the FSR signals. Accordingly, one stance phase ranges from the first to the
last occurrence of plantar pressure, regardless of which pressure point, as illustrated in
Figure 11. The stance phases identified in this manner account for the signal frames applied
for cross-correlation in the gait assessment procedure described further on.

Figure 11. Illustration of the procedure for stance identification: the stance phase lasts from the
first to the last occurrence of plantar pressure, identified by having the FSR signals compared to an
empirical threshold level.

Physiological gait assumes a precisely defined interdependency between arm balance,
plantar pressure, and lower-limb muscular activation. We evaluate signal interdependency
in the time domain using the cross-correlation function given by

Rsig1,sig2(m) =

{
∑N−m+1

n=0 sig1(n + m)·sig2(n), m ≥ 0
Rsig1,sig2(−m), m < 0

, (8)

where sig1 and sig2 are the signal frames being correlated, m is the cross-correlation index,
and N is the frame length [57]. The cross-correlation function defined in (8) provides
a measure of the similarity between the two signals sig1 and sig2 as a function of m.
As such, cross-correlation maxima in the origin account for the identification of signal
interdependencies. Provided the cross-correlation maxima are situated outside the origin,
the index of cross-correlation peaks accounts for the displacement between the signals.

First, we assess whether the arm balance MA peaks, corresponding to arm balance
initiation and ending, are synchronous with the stance initiation and ending determined
from the plantar pressure progression pattern. This should be the case for physiological
gait. Next, we evaluate the cross-correlation functions for:

1. arm balance MA vs. lower-limb muscular activation signals, i.e., TA and GM
respectively,

2. lower limb muscular activation signals vs. FSR signals respectively.

As we move forward, we employ the correlation coefficient matrix to quantify the
interdependency between either signal pair. A generic correlation coefficient matrix for M
signals is expressed as:

R =

⎛⎜⎜⎝
1 ρ(sig1, sig2) · · · ρ(sig1, sigM)

ρ(sig2, sig1) 1 · · · ρ(sig2, sigM)
· · · · · · · · · · · ·

ρ(sigM, sig1) ρ(sigM, sig2) · · · 1

⎞⎟⎟⎠, (9)
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where

ρ
(
sigi, sigj

)
=

1
N − 1 ∑N

n=1

(
sigi(n)− μsigi

σsigi

)(
sigj(n)− μsigj

σsigj

)
, i, j = 1, M, (10)

is the Pearson correlation coefficient of two signals sigi and sigj; μ and σ are the mean and
standard deviation of the signals indicated in the signal subscripts, respectively; and N
is the signal length [58,59]. We aim to generate the correlation coefficient matrix for the
signal space

SIG = [MA, VA, TAle f t, GMle f t, FSR0,le f t, FSR1,le f tFSR2,le f t,
TAright, GMright, FSR0,right, FSR1,rightFSR2,right], (11)

consisting of the arm balance MA and VA (determined from the accelerometer signals),
lower-limb EMG and plantar pressures. To be noted is that the main diagonal of the cross-
correlation matrix consists of unity elements and accounts for the fact that the signals are
correlated to themselves.

In contrast to (8), the definition of the correlation coefficients given in (10) does not
account for the displacement between the signals, but only provides a quantification
for signal similarity. Physiological delays originating from the biomechanical processes
involved during gait, e.g., arm balance initiated before or after heel strike, arm balance
terminated before or after heel strike, etc., which are determined using (8) as shifting of the
cross-correlation peak form the origin, are missed using the correlation coefficients in (10).

To address the displacement of the signals in between one another and visualize them
on the correlation coefficient plot, we have generated 10 shifted versions of the signal
frame. Consequently, we extended the signal space to 120 signals which are to be correlated,
resulting in a 120 × 120 correlation coefficient matrix. A 10 × 10 section from this matrix
illustrates the interdependency between either shifted versions of the signals, rather than
the signals themselves. Then, the largest coefficient value, accounting for the best similarity,
determines the lag between the signals.

2.3. Gait Assessment—AI-Based Decisional Support

AI-based decisional support for the identification of PD gait pattern is implemented
in this work using convolutional neural networks (CNN). The CNN is a deep learning
algorithm that takes an image as input, assigns importance to the features in the image, and
can differentiate them from each other. Thus, this type of network has the ability to extract
local features based on the convolution operation between the original bidimensional data
and certain series of the convolution kernels. The preprocessing required in a CNN is
much lower compared to other classification algorithms, and such networks are used in
applications for image recognition.

One of the benefits of deep learning is the ability to generalize and to learn massive
amounts of data. Good network generalization capacities are obtained by accounting
for the relationship between the size of the learning database and the complexity of the
network architecture. The higher this ratio, the better the network performance on the test
dataset. Furthermore, a big advantage of CNN networks is the weight sharing feature,
which reduces the number of trainable network parameters and in turn helps the network
to enhance generalization and avoid overfitting.

In this study, we used several architectures such as MobileNet, EfficientNetB0, and
Xception. MobileNet is a CNN architecture model used for image classification and mobile
vision. The advantage of this network is the very low computing power to apply transfer
learning, because the model is based on depthwise separable convolution that has the effect
of reducing the calculations and the size of the model. MobileNet uses 3 × 3 depthwise
separable convolutions, using 8 to 9 times fewer calculations than standard convolutions
with only a small reduction in accuracy. Counting the deep convolutions as separate layers,
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MobileNet has 28 layers [60]. The EfficientNet model is based on the uniform scaling
of the network width, depth, and resolution to improve performance. This network has
been extended to a family of deep learning architectures with very good accuracy and
efficiency [61]. Xception is built on two main points: depthwise separable convolution,
i.e., a depthwise convolution followed by a pointwise convolution, and shortcuts between
convolution blocks.

The surface plot of the correlation coefficient matrix is saved as a jpeg image and is
applied to the CNN for classification into physiological and pathological gait. The flowchart
of the proposed solution is shown in Figure 12.

Figure 12. Flowchart of the CNN employed for the classification of the gait pattern into physiological
and PD classes.

The parameters used to train the models are listed in Table 1. A very important
parameter is the learning rate, which was chosen to be 0.05 for all models and has the role
of controlling the model in response to the estimated error each time the model weights
are updated. To reduce the nonlinearity of the output, the Softmax output layer activation
function is used for all models. This function determines the type of predictions that the
model can make. At the same time, the loss is the prediction error of the network, and the
loss function has the role of determining the error. In the proposed binary classification
system, the binary cross-entropy compares the predicted probability of the model with the
actual result, which can be 0 or 1.

Table 1. CNN training parameters.

CNN Parameters MobileNet EfficientNetB0 Xception

Image dimension 160 × 160 × 3 160 × 160 × 3 160 × 160 × 3
Learning rate 0.05 0.05 0.05
Epochs 150 150 150
Batch size 32 64 128
Optimizer Adam Adam Adam
Loss function Binary Cross Entropy Binary Cross Entropy Binary Cross Entropy
Output layer activation function Softmax Softmax Softmax

Models were trained on the graphic processing unit (GPU) in Google Colab using
Keras. The motivation for Keras is ease of use and extension as neural layers, cost functions,
optimizers, initialization schemes, and activation functions. As such, the activation func-
tions are standalone modules that can be combined to create new models defined in Python.
Keras offers scalability because it can run on tensor processing units (TPU) or large groups
of GPUs, and the model can be exported to run in the browser or on a mobile device.

We have generated a total number of 236 images of correlation coefficient matrix plots,
corresponding to the 10-subject database. This constitutes the data set for the CNN which
aims to discriminate the walking pattern between physiological gait and PD. Since the data
set is small, an augmentation was performed. The Adam optimizer was used to optimize the
neural network. The RMSProp optimizer was used in the optimization of the EfficientNetB0
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convolutional neural network. Model training was performed with 150 epochs for the
MobileNet, EfficientNetB0, and Xception models. The batch size for MobileNet is 32, for
EfficientNet it is 64, and for Xception it is 128. To evaluate the performance of each model,
the data set was divided as follows: 70% for the training set, 10% for the validation set, and
20% for the test set.

3. Results

3.1. Gait Assessment—Time Domain

A section consisting of three gait cycles acquired during the walking trials is illustrated
in Figure 13 for one healthy control and three PD patients. The arm balance MA and bilateral
EMG of the TA and GM as well as the FSR resistance values, respectively, are plotted. Red
markers are placed to indicate the MA maxima.

  
(a) (b) 

 
(c) (d) 

Figure 13. Three-cycle gait section plot of the arm balance MA, bilateral EMG of the TA and GM,
and FSR signals, with the red triangles indicating the MA maxima, acquired with the proposed
physiograph during walking trials on (a) healthy control, (b) PD Patient 5, (c) PD Patient 1, and
(d) PD Patient 3.

Figure 13a exhibits the physiological gait pattern (Healthy control 1). Indeed, the peaks
of the arm balance MA correspond to the initiation and ending of the stance phases, and
the plantar pressures follow the physiological heel→metatarsal arch→hallux progression
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pattern. Moreover, TA activity can be observed simultaneously with pressure under the
heel area and GM activity simultaneously with pressure under the hallux.

In contrast to Figure 13a, the three-cycle gait section plotted in Figure 13b illustrates
the gait pattern of a patient with PD (i.e., Patient 5). The walking pattern exhibits bilateral
flat-foot strike, which is typical in incipient and mid-stage PD. Muscular activation is
present in a direct link to the plantar pressure points. The magnitude of acceleration also
exhibits the U-shaped variation due to arm balance, although it is more pronounced during
the stance than the swing phase of the gait cycle. However, a series of small-amplitude
local peaks originated by tremor are also visible.

The three-cycle gait section recorded on two other patients with PD (i.e., Patient 1
and 3) is plotted in Figure 13c,d. Both patients exhibited flat-foot strike. What stands out,
however, on the MA waveform is the absence of arm balance, in which case the peaks are
originated by the tremor.

One thing that stands out in Figure 13d for Patient 3 is an asymmetry between the left
and right foot during gait. The left foot exhibits a flat-foot strike, typical for PD, although
with reduced plantar pressure on the metatarsal arch. The right foot on the other hand
exhibits a plantar progression pattern which has toe pressure exerted until the next heel
strike with a slight overlap. This accounts for the fact that the patient does not lift the right
foot during the sway phase, but rather pulls the right foot with continuous contact between
the toe and the ground. According to the FSR plots, the stance phase is terminated when
pressure is reduced under the metatarsal arch and tow, i.e., the spike on FSR0, and the
forefoot is only lifted after heel contact.

Tremor on the accelerometer signals can be also assessed on the VA waveform. Re-
garding arm balance, the gait cycle in PD exhibits limited to no arm balance whatsoever.
This is clearly visible on the signals acquired from the accelerometers. The arm balance
MA of a healthy control, plotted in Figure 14a, exhibits signal peaks (indicated with a red
triangle) which correspond to the stance phase initiation and termination, respectively, and
a U-shaped waveform corresponding to arm sway. Consequently, the arm balance VA,
plotted in Figure 14a, exhibits peaks during the sway.

 
(a) (b) 

Figure 14. The arm balance MA and VA waveforms during the walking trials, with the red triangles
indicating the MA maxima. (a) Healthy control—the MA exhibits a U-shaped variation and the VA
accounts for smaller variation, and (b) PD patient—the MA exhibits a larger number of local peaks
with reduced amplitude and the VA accounts for larger variation.

In contrast, the arm balance MA of a patient with PD exhibits a larger number of
peaks, as illustrated in Figure 14b. Although some MA peaks with larger amplitudes,
originated by the oscillation of the body center of mass during gait, can be identified as
stance initiation and termination (see Figure 13 for a clear identification), most peaks are
rather tremor-induced local peaks. As such, the VA waveform reveals a larger variation.
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The time-domain plots further enable the assessment of the biomechanical and tempo-
ral parameters, used for motor evaluation in accordance with the UPDRS and MDS-UPDRS
rating scales for Parkinson’s Disease.

Heel strike accounts for initial contact with the ground at the stance initiation phase
under a physiological gait pattern. Heel strike identification is performed by following the
plantar pressure progression pattern. The identification of a heel strike is provided by a
heel→metatarsal arch→toe pressure progression detection. For illustration, the FSR signals
during gait initiation, with heel strike and flat-foot strike, are plotted in Figure 15.

 
(a) (b) 

Figure 15. The FSR waveforms (FSR2—heel, FSR1—metatarsal arch, FSR0—toe) during the walking
trials for (a) healthy control—exhibits the physiological heel→metatarsal arch→toe pressure progres-
sion pattern, and (b) Patient 5—exhibits flat-foot strike as pressure is applied simultaneously on all
three FSRs.

Lift-off accounts for the fact that the foot is lifted from the ground during the swing
phase, and consequently stance phase with the opposite foot. Accordingly, no plantar
pressure should be recorded during the swing phase, provided the foot is fully lifted from
the ground, accounting for the identification of lift-off. For illustration, the FSR signals
during sway, with lift-off and without lift-off, are plotted in Figure 16.

 
(a) (b) 

Figure 16. The FSR waveforms (FSR2—heel, FSR1—metatarsal arch, FSR0—toe) during the walking
trials for (a) healthy control—exhibits a section when no pressure is applied, thus indicating lift-off,
and (b) Patient 3—exhibits no section when no pressure is applied, indicating that the patient does
not lift the foot from the ground but rather pulls the foot during swing.
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The biomechanical parameters of the test group are listed in Table 2.

Table 2. Biomechanical parameters of the test group.

Test Group Arm Balance Tremor Heel Strike Lift-Off

Healthy control 1 Present Absent
Left: present Left: present

Right: present Right: present

Healthy control 2 Present Absent
Left: absent (flat-foot strike) Left: present

Right: absent (flat-foot strike) Right: present

Healthy control 3 Present Absent
Left: present Left: present

Right: present Right: present

Healthy control 4 Present Absent
Left: present Left: present

Right: present Right: present

Healthy control 5 Present Absent
Left: present Left: present

Right: present Right: present

Patient 1 Present Large tremor Left: absent (flat-foot strike) Left: present
Right: absent (flat-foot strike) Right: present

Patient 2 Absent Large tremor Left: absent (flat-foot strike) Left: present
Right: present Right: present

Patient 3 Absent Large tremor Left: absent (flat-foot strike) Left: present
Right: absent Right: absent

Patient 4 Present Small tremor
Left: present Left: present

Right: present Right: present

Patient 5 Present Small tremor
Left: absent (flat-foot strike) Left: present

Right: present Right: present

The biomechanical parameters of gait, assessed based on the signals recorded with the
proposed physiograph, point out the asymmetry between the stance phases with the left
and right foot, respectively. The patients exhibit flat-foot strike, which is typical for PD in
incipient and middle stages. Only one instance of absent lift-off was observed for Patient 3.
Arm balance was identifiable for Patients 1, 4, and 5 who exhibit a small-magnitude tremor.

The healthy control group was not previously diagnosed with any podiatric condition.
As illustrated in Table 2, the healthy control group exhibits a physiological gait pattern,
except for Healthy Control 2 who exhibits flat-foot strike.

The temporal gait analysis parameters are determined from the time-domain plots of
the gait monitoring signals as follows [38,62]:

• Cadence, i.e., the number of steps per minute, is determined as the number of gait
cycles in a 10 s segment’s gait signals and extrapolated to one minute.

• Single support, i.e., pressure is exerted by only one foot and not the other, determined
from a 10 s segment of the gait signals, and expressed in percentages.

• Double support, i.e., pressure is exerted by both feet during double limb support,
determined from a 10 s segment of the gait signals, and expressed in percentages.

• Ratio of the single support to double support (s/d) is the ratio for single support and
double support.

• Stride time variability is expressed as a coefficient of variation (CoV) computed from
the mean (μstride) and standard deviation (σstride) of the strides over a 10 s segment of
the gait signals [62–64], as given in the following equation

CoV =
σstride
μstride

·100, (12)

and is expressed in percentages.
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To be noted is that a 10 s interval is sufficient for the assessment considering that the
walking trials assume steady-state walking. The temporal parameters of the test group are
listed in Table 3.

Table 3. Temporal parameters of the test group.

Cadence (Steps/min) Single Support (%) Double Support (%) S/D Stride Time Variability (%)

Healthy Control 1 62
Left: 41.8

14.9
Left: 2.8

3.8Right: 43.3 Right: 2.9

Healthy Control 2 27
Left: 36.2

29.8
Left: 1.2

9.8Right: 34 Right: 1.1

Healthy Control 3 24
Left: 35.9

23.4
Left: 1.5

4.8Right: 40.8 Right: 1.7

Healthy Control 4 56
Left: 38.5

17.1
Left: 2.2

3.1Right: 44.3 Right: 2.6

Healthy Control 5 55
Left: 39

19.7
Left: 2

5.7Right: 41 Right: 2.1

Statistics for healthy control group 44.8 ± 17.9
Left: 38.3 ± 2.4

21 ± 5.9
Left: 1.9 ± 0.6

5.4 ± 2.6Right: 40.7 ± 4 Right: 2.1 ± 0.7

Patient 1 39
Left: 38.4

25.6
Left: 1.5

6.3Right: 36 Right: 1.4

Patient 2 44
Left: 29.1

31.6
Left: 0.9

3.4Right: 39.2 Right: 1.2

Patient 3 48
Left: 47

20.6
Left: 2.3

9Right: 32.3 Right: 1.6

Patient 4 32
Left: 48.5

8.9
Left: 5.4

13.1Right: 42.5 Right: 4.8

Patient 5 24
Left: 35

37.5
Left: 0.9

8.2Right: 27.4 Right: 0.7

Statistics for PD group 37.4 ± 9.6
Left: 39.6 ± 8.1

24.9 ± 10.9
Left: 2.2 ± 1.9

8 ± 3.6Right: 35.5 ± 5.9 Right: 1.9 ± 1.6

What stands out in both Healthy control group and PD group is that the cadence is
considerably smaller than the nominal 60 steps/min [52,53]. Both healthy controls and PD
patients expressed that their pace was reduced because of physiograph wiring.

The PD group exhibits reduced percentage of single support and S/D in comparison
to the healthy control group, while the percentage of double support is not significantly
different. On the other hand, stride time variability is increased for the PD group in contrast
to the healthy control group.

What stands out for the PD group is that Patient 4 exhibits a very small percentage of
single support with the left leg. This is because Patient 4 has a very small right leg lift-off
during the swing phase of the gait cycle.

3.2. Gait Assessment—Cross-Correlation

As discussed in Section 2, a physiological gait pattern assumes some specifically
defined interdependencies between the plantar pressure, lower-limb muscular activation,
and arm balance, assessed using the cross-correlation function. Illustration of the cross-
correlation between the signals acquired with the proposed physiograph is presented next.

The arm balance magnitude of acceleration, the TA and GM activation, and the FSR sig-
nals for a stance-phase, acquired on a healthy control for both the left foot and the right foot,
are plotted in Figure 17. Red markers indicate stance initiation and termination, respectively.

The cross-correlation of the arm balance MA to the lower-limb muscular activation is
plotted in Figure 18. As illustrated for the left foot, RMA,EMG-TA exhibits a peak to the left of
the origin, indicating a delay of 70 ms of the TA activation vs. the MA stance initiation peak.
Similarly, RMA,EMG-GM exhibits a peak to the left of the origin, indicating an advancement
of 70 ms of the GM activation vs. the MA stance termination peak. Nevertheless, both
delays are accounted for as physiological. A similar reasoning can be formulated for the
right foot, indicating a delay of 20 ms of the TA vs. the MA stance initiation peak and an
advancement of 110 ms of the GM activation vs. the MA stance termination peak.
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(a) (b) 

Figure 17. One-stance gait section plot of the arm balance MA, EMG of the TA and GM, and FSR
signals for a healthy control, with the red triangles indicating the MA maxima: (a) left foot and
(b) right foot.

 
(a) (b) 

Figure 18. Cross-correlation of the MA and EMG signals plotted in Figure 17 for the (a) left foot and
(b) right foot.

Next, the cross-correlation of the TA activation signal to the FSR signals is plotted
in Figure 19. As illustrated, REMG-TA,FSR2 exhibits a cross-correlation peak in the origin,
indicating a direct interdependency between TA contraction and plantar pressure under
the heel area. In contrast, the peaks of REMG-TA,FSR1 and REMG-TA,FSR0 are shifted from the
origin, indicating that plantar pressure under the metatarsal arch and the hallux are not
directly linked to the TA. The lag indicates the displacement, i.e., delay, between heel strike
(TA contraction), heel off (FSR1 and FSR0), and toe off (only FSR0). This reasoning holds
for both feet.

 
(a) (b) 

Figure 19. Cross-correlation of the TA and FSR signals plotted in Figure 17 for the (a) left foot and
(b) right foot.
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A similar reasoning is formulated regarding the cross-correlation of the GM activation
signal to the FSR signals plotted in Figure 20. As illustrated, REMG-TA,FSR0 exhibits a
cross-correlation peak in the origin, indicating a direct interdependency between GM
contraction and plantar pressure under the hallux. In contrast, the peaks of REMG-TA,FSR2
and REMG-TA,FSR1 are shifted from the origin indicating that plantar pressure under the
heel area and metatarsal arch are not directly linked to the TA. The lag indicates the
displacement, i.e., delay, between heel strike (FSR2), heel off (FSR1 and FSR0), and toe off
(GM activation). This reasoning holds for both feet.

 
(a) (b) 

Figure 20. Cross-correlation of the GM and FSR signals plotted in Figure 17 for the (a) left foot and
(b) right foot.

In contrast, the arm balance MA, the TA and GM activation, and the plantar pressures
for a stance-phase acquired under a bilateral monitoring scenario from a PD patient are
plotted in Figure 21.

 
(a) (b) 

Figure 21. One-stance gait section plot of the arm balance MA, EMG of the TA and GM, and
FSR signals for a PD patient, with the red triangles indicating the MA maxima: (a) left foot and
(b) right foot.

Two aspects stand out in Figure 21. On one hand, the MA peaks are not in a direct
correspondence with the onset and termination of stance. With this consideration, the
cross-correlation of the MA to either one of the lower-limb muscles becomes irrelevant,
as the cross-correlation peaks indicate correspondence of the muscular activation to MA
maxima originating from tremor rather than arm balance. On the other hand, the gait
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pattern exhibits flat foot strike for the left leg, identified by having pressure exerted simulta-
neously by the heel, metatarsal arch, and hallux, respectively, rather than the physiological
heel→metatarsal arch→toe progression. This latter remark results in cross-correlation max-
ima in the origin, or close to the origin, for all signal pairs, as plotted in Figures 22 and 23.

 
(a) (b) 

Figure 22. Cross-correlation of the TA and FSR signals plotted in Figure 21 for the (a) left foot and
(b) right foot.

 
(a) (b) 

Figure 23. Cross-correlation of the GM and FSR signals plotted in Figure 21 for the (a) left foot and
(b) right foot.

The surface plot of the correlation coefficient matrix defined in (9) was employed
in this work to visualize the biomechanical and temporal parameters of gait. Consider,
for exemplification, the surface plot of the correlation coefficient matrix illustrated in
Figure 24. Each 10 × 10 matrix section, delimited by the squares, displays 100 correlation
coefficients for the shifted versions of the signal pairs indicated in the matrix header. Yellow
corresponds to large coefficient values, i.e., good similarity between the signals, whereas
blue corresponds to small coefficient values. As such, the largest correlation coefficient
values, i.e., the brightest colors in the correlation coefficient matrix surface plot, yield the
displacement between the signals given in the matrix header. As shown, the displacement
determined from the correlation coefficient matrix is equal to the one determined using the
cross-correlation function in Figure 19.

For illustration, the surface plot of the correlation coefficient matrix computed for
the healthy control and the three PD patients from Figure 13 is illustrated in Figure 25.
Interpretation of the correlation coefficient matrices follows in Section 4—Discussion.
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Figure 24. The surface plot of a correlation coefficient matrix split in 12 × 12 sections corresponding
to the monitored signal pairs, with a 10 × 10 section providing the quantification of interdependency
on shifted versions of the corresponding signals.

  
(a) (b) 

  
(c) (d) 

Figure 25. The correlation coefficient matrix surface plots, generated from the signals acquired with
the proposed physiograph during the walking trials, for (a) healthy control, (b) Patient 5, (c) Patient 1,
and (d) Patient 3.

3.3. Gait Assessment—AI-Based Decisional Support

AI-based decisional support for the discrimination of the PD-specific gait pattern was
implemented using CNNs. The CNN takes the jpeg of the correlation coefficient matrix
surface plot to classify the gait into physiological or PD pattern.
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The CNN model performances were evaluated based on accuracy (Acc), sensitivity
(Se), specificity (Sp), and precision, i.e., positive predicted values (PPV). These are defined
using the true positive (TP), false positive (FP), true negative (TN), and false negative (FN)
counts, respectively, as indicated in Equations (13)–(16). TP and TN count the number of
correct classifications of Parkinsonian and physiological walking, respectively, whereas FP
and FN count the number of incorrect classifications. According to Equations (13)–(16), Acc
shows the probability of correct classification, Se evaluates the model’s ability to identify
the true positive samples, Sp evaluates the model’s ability to identify the true negative
samples, and PPV indicates the probability of the model to correctly classify a sample as
positive. Finally, the error is then computed as the difference between the model training
result and the desired result.

Acc =
TN + TP

TP + TN + FP + FN
, (13)

Se =
TP

TP + FN
, (14)

Sp =
TN

TN + FP
, (15)

PPV =
TP

TP + FP
(16)

At the end of the training and data validation process, the performance metrics
were calculated and listed in Table 4, suggesting that this algorithm for training a CNN
network achieves efficient identification. As indicated, the best results were obtained on the
MobileNet model with 95% accuracy, 90% sensitivity, and 95% precision. The best results
were obtained on the MobileNet model.

The best performance metrics which we achieved in this work are listed in Table 5
for further comparison with the classification performances achieved by some classifiers
reported in the literature, including Random Forest and Support Vector Machines (SVM).

Table 4. Performance metrics of the neural network for gait pattern discrimination.

Performance Metrics
CNN Model

MobilNet EfficientNetB0 Xception

Accuracy 0.95 0.85 0.85
Error 0.19 0.39 0.25

Sensitivity 0.90 0.85 0.9
Specificity 0.96 0.80 0.73
Precision 0.95 0.85 0.74

Table 5. Classification performances of the proposed work in comparison to other solutions reported
in the literature.

Performance Metrics
Classifier

This Work [32] [33] [34] [65]

Classifier CNN
MobilNet

Random
Forest CNN CNN SVM

Accuracy 0.95 0.96 0.63 0.856 0.917
Error 0.19 - - - -

Sensitivity 0.90 0.982 - 0.88 0.752
Specificity 0.96 0.96 - 0.84 0.99
Precision 0.95 0.972 - 0.86 -
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4. Discussion

The work described in this article is developed in the context of the PDxOne research
project, which aims to implement AI-based support for the collection and interpretation of
medical data in PD, in the framework of ubiquitous healthcare.

The application described in this paper targets gait monitoring and assessment, based
on the foot biomechanics, i.e., plantar pressure and lower-limb EMG, in correlation to
upper-limb balance. To evaluate the gait problems that characterize PD, clinicians use
semiquantitative rating scales such as the unified Parkinson’s disease rating scale (UP-
DRS) [66] or the movement disorders society unified Parkinson’s disease rating scale
(MDS-UPDRS) [42]. Objective gait evaluation was performed in this work accordingly. For
qualitative gait assessment, we have evaluated biomechanical parameters expressed in
terms of arm balance, heel strike, and foot lift-off, with the results listed in Table 2. For
quantitative gait assessment, we have evaluated temporal parameters expressed in terms
of cadence, single support, double support, single support to double support ratio, and
stride time variability, with the results listed in Table 3.

Gait impairment is evolving throughout the progression of the disease, and the pat-
terns of gait disturbances that are detected can differ from early to mild/moderate and
advanced stages of PD [67], but the relationship between gait features and disease progres-
sion is not completely explained [68].

In PD, non-motor symptoms such as anxiety, depression, and cognitive impairment
develop along with the motor symptoms, influencing the subjects’ ability to perform
motor tasks [9]. In the presence of such non-motor symptoms, motor tasks performed
under trial conditions with a device attached to the body become a real challenge to the
patient. Indeed, having the physiograph modules attached to the body produces an unusual
sensorial stimulation to the patient. On the other hand, the presentation to the doctor’s
office or the medical laboratory is a stress factor itself for many patients, which strikes the
emotional component. Consequently, we expected the gait analysis results of the study
group to be influenced: smaller stride length, slower gait velocity, and smaller activity
motor unit recruitment, although gait is an activity of daily living. Indeed, the results
reported in Table 3 illustrate that both PD patients and healthy controls exhibit a smaller
cadence compared to the nominal 60 steps/min [43,52,53]. As a natural consequence of the
reduced cadence, Table 3 also shows longer single-support and shorter double-support
durations compared to the nominal 30% of the gait cycle [43,52,53].

Gait physiology was further presented in a visual manner using the correlation coef-
ficient matrix defined in Section 2.2. Identification of the gait pattern on the correlation
coefficient matrix is discussed as follows: physiological gait, as monitored with the pro-
posed physiograph and illustrated in the correlation coefficient matrix surface plot from
Figure 25a, accounts for a heel→metatarsal arch→hallux plantar pressure progression
pattern in direct correlation to the lower-limb muscular activation. The plantar pressure
progression pattern is visualized in the plantar pressure correlation sections by the shift
of the in-section yellow diagonal toward the matrix main diagonal. Shifting of the in-
section diagonal away from the matrix main diagonal would account for an inverse plantar
pressure progression pattern, namely hallux→metatarsal arch→heel.

Activation of the TA accounts for eccentric contraction during heel strike and initial
double limb support [43,52,69], which is visualized by the yellow diagonal in the TA-FSR
correlation sections, for both left and right feet, respectively. Next, activation of the TA
accounts for concentric contraction during the swing phase [43,52,69], which is visualized
by the yellow areas in the top left and bottom right, i.e., dark blue diagonal, in the TA-FSR
correlation sections for opposing feet.

Activation of the GM describes eccentric contraction during midstance and concentric
contraction during heel off and toe off [43,52,69], which is visualized in the GM-FSR
correlation sections for both left and right foot, respectively. The GM is inactive during the
swing phase, which is visualized in the GM-FSR correlation sections for opposing feet.
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Physiological gait assumes a complete arm balance during the gait cycle, with the
forward swing accounting for right foot stance and the backward swing accounting for left
foot stance. As such, the arm balance is fully correlated to the lower-limb EMG and plantar
pressure signals, as visualized in the MA-EMG and MA-FSR correlation sections. To be
noted is that only the right arm was considered for assessment in the present work, which
explains the yellow diagonal in the correlation sections of the MA with the opposite, i.e.,
left foot, and the yellow corner areas (dark blue diagonal) in the correlation sections of the
MA with the same side, i.e., right foot. Indeed, the forward swing of the right arm−left foot
stance produces a larger magnitude of the U-shaped MA signal, in contrast to the backward
arm swing−right foot stance, which produces a smaller magnitude (see Figure 14). The VA
signal on the other hand exhibits peaks during midstance, thus being correlated to the MA,
which explains the yellow diagonal on the MA-VA correlation section. Furthermore, the
VA is correlated to shifted versions of the EMG and FSR signals, which explains the yellow
areas in the VA-EMG and VA-FSR correlation sections.

Parkinsonian gait is clearly distinguishable from the physiological gait. One of
the most representative but non-specific early features of Parkinsonian gait is reduced
speed [67]. It has been demonstrated that early PD subjects exhibit a reduced amplitude of
arm swing and smoothness of locomotion, as well as increased interlimb asymmetry, all of
these being more specific to PD and often the first motor symptoms [70].

Such features of the Parkinsonian gait pattern are identifiable on the correlation
coefficient matrix. Some gait features attributable to PD, which we were able to identify and
assess during the clinical test of the proposed physiograph, are presented as follows: the
correlation coefficient matrix surface plot from Figure 25b corresponds to Patient 5, whose
walking pattern described in Table 2 consists of flat-foot strike, bilateral lift-off, presence
of arm balance, and small tremor. In contrast to the healthy control, the flat-foot strike is
visualized in the left-foot FSR−FSR correlation sections as a yellow main diagonal. Plantar
pressure is applied simultaneously to all sensors during flat foot strike, and consequently
the FSR signals are correlated to one another (see Figure 13b). The patient keeps a regular
lower-limb muscular response during the stance phases, visualized by the TA-FSR and
GM-FSR correlation sections. The arm balance is also present, visualized by the MA-EMG
and MA-FSR correlation sections. Tremor, although existent, is small in magnitude and
consequently allows for the visualization of the yellow diagonals in the VA-EMG and
VA-FSR correlation sections.

The correlation coefficient matrix surface plot from Figure 25c corresponds to Patient
1, whose walking pattern described in Table 2 exhibits bilateral flat-foot strike, bilateral
lift-off, presence of arm balance, and large tremor. The correlation coefficient matrix follows
the same pattern regarding foot biomechanics as for Patient 5. Regarding tremor, however,
Figure 13c shows that the tremor and balance magnitudes in the MA and VA signals are
comparable. Consequently, both MA and VA signals are uncorrelated to the EMG and FSR
signals, respectively. This is visualized by the correlation sections of both MA and VA to
the other monitoring sections, which exhibit a rather uniform coloring.

A different walking pattern was identified for Patient 3, with the correlation coefficient
matrix surface plot from Figure 25d, who according to Table 2 exhibits absent heel strike
and absent lift-off for the right foot. In this regard, the patient pulls the right foot during
the swing phase of the gait cycle. This is visualized on the correlation coefficient plot by the
right-foot FSR−FSR correlation sections and the left FSR−right FSR correlation sections,
which deviate from the yellow diagonal pattern.

As the disease progresses bilaterally, the asymmetry might decrease, and movement
becomes more bradykinetic [68,71]. At the same time, along with the neurodegeneration,
the movement of the limbs becomes more impaired, and the patients develop shuffling
steps with the increased need of double-limb support [72,73]. The further decline in gait is
also caused by the postural changes, which are altering the kinematics of the gait, as is the
case of the stooped posture [74].
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The changes in gait worsen and motor fluctuations, dyskinesias, and freezing of gait
become frequent and are accompanied by reduced balance and postural control, all of these
exposing the patient to a severe risk of falling. More than that, the decline in the motor
capacity can lead, in advanced stages, to the need of wheelchair use [75–77]. We expect to
see these changes in the correlation coefficient matrix to facilitate gait pattern interpretation.
This could be a game changer for stage-related personalized medicine therapy options.

The proposed physiograph is also envisioned as a portable monitoring solution. For
this purpose, the recorded signals are transmitted over a Bluetooth radio link to a mobile
device, e.g., smartphone or tablet, and stored in an online database for future retrieval. As
such, the proposed solution is applicable for gait monitoring in PD outside the hospital
environment. In this scenario, the monitoring protocol can be extended to include the
assessment and quantification of influences exercised by daily activities—both domestic
and in the community [36], environmental demands [78], environmental manipulation [37],
and dual/multiple tasking [36,37].

The proposed physiograph is in a proof-of-concept phase, which was validated in
clinical environment. As such, it was to be expected that the performance of both patients
and healthy controls was influenced as reported, due to their subjective perception on the
worn-in discomfort. There are two reasons for this. Firstly, the proposed physiograph
is still in proof-of-concept phase. In accordance with this, the subjects complained of
worn-in discomfort and discomfort from wires interfering with their mobility. Secondly, the
gait measurements were conducted in a relatively small room, which likely inhibited the
automaticity of walking at a normal pace [79]. The clinical environment created conditions
for directed attention during the walking trial. As such, the subjects are aware of the motor
task and concentrate on performing the task, which may have led to the abovementioned
deviations from standard.

The solution to overcome such issues is the repetition of the motor task for a prolonged
period (several days) as well as removing the patient from the clinical environment and
placing them into their usual living environment, both inside and outside the home. This is
enabled by the wearability and portability features of the proposed physiograph.

In continuation of our research, we aim to optimize the system design toward minia-
turization, targeting a wireless body area network topology. One step further, the external
environment brings multiple sensory information that can divert the patient’s attention
from the motor task. Thus, monitoring in an external environment provides multiple
functional pieces of information with high value in the selection of the therapeutic and
recovery interventions.

The solution proposed in this article was validated in a clinical environment for specific
applicability in PD. Nevertheless, we envision that it can be easily extrapolated to further
neurodegenerative conditions with gait affection.

On the other hand, PD does not exclude the presence of age-specific concurrent
diseases such as (degenerative) osteoarthritis and/or cardiovascular diseases and their
sequelae; comorbidities are common among patients with PD [80]. For example, one of
the study group patients (Patient 3) also presents post-AVC hemiplegia with mild upper
arm sequelae. In addition, inherent age-induced changes which affect joint function,
e.g., sarcopenia, loss of proprioception and balance, and increased joint laxity, cannot be
neglected [80]. All are associated with loss of independence and an increased incidence
of falls.

Along with the clinical, biological, and imaging exam, the functional exam is also
very important (including the functional exam performed with our device) for diagnostic
purposes, as well as for monitoring the pharmacological disease management and rehabili-
tation outcome. It can be also used to guide kinetic trainings, to impose gait rhythms and
velocities, and even to aid in dual tasks.

Along with the paraclinical examinations, the clinical testing, including functional
performance, is key for diagnostic purposes. Part of this examination could be performed
with our device and could be useful to provide guidance in kinetic trainings, to impose
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gait rhythms and velocities, and to aid in dual tasks. With further improvements, the phar-
macological monitoring, disease management, and rehabilitation outcomes are in reach.

5. Conclusions

PD clearly demonstrates the complexity of the human body and the difficulty in
choosing the appropriate treatment. In this paper, we focused on one of the main motor
symptoms in PD, the gait. To develop a foundation for sustainable decision-support
medical devices, we aim to include other important motor symptoms, as well as the
non-motor ones, in future studies. Non-motor symptoms (e.g., cognitive impairment,
depression, anxiety, sleep disorders, pain, and other autonomic disturbances) correlate
with advanced age and disease severity [81], so they can be considered suggestive for
the prognosis of disease progression. Some of these non-motor symptoms may appear
much earlier in the course of disease progression [12]. AI-based assessment of these data
could raise the importance of new technologies in prediagnosis and digital monitoring
of patients. By pre-diagnostic technologies, we refer to those technologies that have the
probabilistic ability to provide data interpretation at a high level of certitude for a given
diagnosis, often before it is identified by a specialist without computational aid. In our
experience, an additional interesting feature of AI systems is that they can identify non-
specific symptoms, provided enough data and solid input are available. Regardless of the
future development and promising results, the final diagnosis should be reserved, in our
opinion, exclusively for the human medical practitioner, following established ethical/legal
rules and evidence-based practice.

Back in 2017 when the PDxOne started, the main background idea was to find so-
lutions for PD management optimization by bridging the gap between medicine and
computational engineering. We used this approach in our study. Taking into consideration
everything mentioned above, we see the necessity for an increased commitment in mul-
tidisciplinary treatment by interdisciplinary teams. In our opinion, this interdisciplinary
team should include, at least, the following specialists in addition to the neurologist: gen-
eral practitioner and dentist, geriatrician, trained medical caregiver for patients with PD,
speech therapist, occupational therapist, nutritionist, psychologist/psychotherapist ideally
specialized in patients with PD, and pharmacologists. To the abovementioned list, we
would add new kinds of professionals that have medical degrees such as in a biomedical
field (e.g., bioengineer, bioprinting expert, etc.) combined with knowledge of AI and
augmented intelligence, as well as lifestyle strategists (advise patients with their health
data), telemedicine, and/or health data analyst/biostatistician. Considering that by 2030
we will lack over 18 million healthcare workers worldwide [82], these future professions
will be an asset in bridging interdisciplinary activities, they will provide sustainability
in healthcare, and they could serve as good choice for internationally trained medical
professionals toward alternative career pathways [83] because of labor migration in the era
of globalization. We see today this new professional category in its early phase, with clinics
having incorporated bioengineers, deep learning developers, bioprinting experts, and so on
on their teams. New research projects are already hard to imagine without the congregation
of such a team. As with most advancements, this one will also be led by necessity. In the
time of Big Data, such an interdisciplinary team could provide personalized treatment
for hospitalized patients and those at home. Perhaps the most important aspect of this
interdisciplinary team is the medical data, and how interdisciplinary teams could correlate
assessments to identify common patterns for optimizing patient-specific treatments. A
good line of action would be the development of an international research platform, with
standardized parameters, for automated or semiautomated data input. The assessment
algorithms for this platform would benefit from the interdisciplinary approach and the fact
that coding and treatment could be performed “at the patient’s bed”. A possible output
would be an evidence-based decision support software for optimal dosing between drug
and non-drug treatments. With such an effort, adequate treatment could be provided for
this complex and multi-faceted disease, as PD is scripted [18]. Such an approach, once

124



Biosensors 2022, 12, 189

established, could offer individualized treatment plans and monitoring programs that
would further improve PD management, and with it, socio-economic implications. The
ultimate goal of our research community should be to offer affordable precision medicine
for everyone.
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Abstract: Osteopenia and sarcopenia can cause various senile diseases and are key factors related to
the quality of life in old age. There is need for portable tools and methods that can analyze osteopenia
and sarcopenia risks during daily life, rather than requiring a specialized hospital setting. Gait is a
suitable indicator of musculoskeletal diseases; therefore, we analyzed the gait signal obtained from
an inertial-sensor-based wearable gait device as a tool to manage bone loss and muscle loss in daily
life. To analyze the inertial-sensor-based gait, the inertial signal was classified into seven gait phases,
and descriptive statistical parameters were obtained for each gait phase. Subsequently, explainable
artificial intelligence was utilized to analyze the contribution and importance of descriptive statistical
parameters on osteopenia and sarcopenia. It was found that XGBoost yielded a high accuracy of
88.69% for osteopenia, whereas the random forest approach showed a high accuracy of 93.75% for
sarcopenia. Transfer learning with a ResNet backbone exhibited appropriate performance but showed
lower accuracy than the descriptive statistical parameter-based identification result. The proposed
gait analysis method confirmed high classification accuracy and the statistical significance of gait
factors that can be used for osteopenia and sarcopenia management.

Keywords: osteopenia; sarcopenia; XAI; SHAP; IMU; gait analysis

1. Introduction

Osteopenia and sarcopenia can cause various senile disorders and are key factors
related to the quality of life in old age [1–3]. Gait is a suitable indicator of musculo-skeletal
diseases [4]. With the miniaturization of sensors and the development of intelligent moni-
toring technology, interest in wearable-sensor-based daily health management solutions is
increasing [4,5]. Therefore, portable tools and methods that can analyze osteopenia and
sarcopenia risks in our daily lives, rather than requiring a specialized hospital setting, can
be considered.

Musculoskeletal disorders are increasingly being recognized as conditions that are
associated with significant morbidity, mortality, and healthcare costs [1,2]. Osteopenia is
a cause of fracture and increases the risk of complications, in addition to pain caused by
fractures. Osteoporotic fractures generate costs that reach USD 25 billion, and sarcopenia
generates costs of approximately USD 18 billion [2,6]. Patients with sarcopenia have a
slow gait, reduced muscular endurance, face difficulty in daily living, and frequently need
help from others. Osteoporosis, falls, and fractures can occur easily, whereas the blood
and hormonal buffering action of the muscle are moderated, reducing the basal metabolic
rate, making chronic diseases unmanageable, and increasing the likelihood of aggravating
diabetes and cardiovascular disease [3].
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Osteoporosis is defined by the World Health Organization (WHO) as a medical condi-
tion in which the bone mineral density (BMD) is less than −2.5 standard deviation (SD)
below the mean level for young adults, and for osteopenia it is between −2.5 and −1.0 [7].
Sarcopenia is defined by the European Working Group on Sarcopenia in Older People
(EWGSOP) as the presence of low muscle mass, reduced muscle strength, and physical per-
formance [8]. BMD and muscle mass are diagnosed via dual-energy X-ray absorptiometry
(DEXA) [1], although cannot be measured without expert assistance. Therefore, a system
that can easily manage musculoskeletal diseases in daily life is required.

Human gait involves interactions between the musculoskeletal system and the nervous
system. Thus, gait analysis is effective in identifying neuromusculoskeletal disorders such
as Parkinson’s diseases (PD) [9,10], fall risk [11,12], total hip arthroplasty (THA) [5,13],
and sarcopenia [4]. Traditionally, cameras and force plates have been used as clinical gait
assessment tools; however, these tools are used only in large institutions such as university
hospitals and are difficult to apply in daily life or complex environments because of their
high cost and large space requirements [14]. Given the recent miniaturization and increased
accuracy of sensor technology, inertial measurement units (IMU) are increasingly being
used for gait analysis [4].

Gait analysis methods include statistical comparisons of gait parameters obtained from
control and target groups and a method of analysis of the classification results of the groups
using machine learning. In the analysis of gait for osteopenia, osteoporosis, sarcopenia,
and osteosarcopenia conducted by Intriago [2], the slowest walking speed was observed
in osteosarcopenia: 0.9 m/s in osteopenia–osteoporosis, 0.893 in sarcopenia, and 0.7 in
osteosarcopenia. Choi [15] investigated the correlation between kinetic gait parameters and
femoral BMD of the femoral neck, trochanter, shaft, and total proximal femur. The highest
correlation (r = 0.153, p = 0.014) was observed between the walking speed and femoral
neck BMD among the older female participants. ElDeeb [16] aimed to investigate the gait
characteristics of postmenopausal women with low BMD (n = 17) and to determine the
predictive parameters of BMD. When the normal BMD group and women with low BMD
were compared, the ankle joint showed less push-off (p = 0.000), which seemed to be used
to obtain gait stability. Sung [17] divided 77 older participants (n = 48 female + 29 male)
into normal BMD and low BMD groups using DEXA. The spatial–temporal gait parameters
(speed, stride length, and support times) of both groups were subsequently investigated.
The support times included those of the initial double support, single support, and terminal
double support in the stance phase. The support time was confirmed to have a high ratio of
the main foot (the foot mainly used), the stride length was found to be longer on the main
foot side than on the other side, and the stride length was positively associated with the
single support time on the dominant limb.

Although there are many studies on gait speed for osteopenia and sarcopenia, only
a few studies have analyzed gait parameters such as PD, fall risk, and THA. Recently,
explainable artificial intelligence (XAI) has received considerable attention as a method to
analyze the importance and contribution of parameters. XAI presents predictive results for
machine learning in a human-understandable form [18]. It is primarily used to enhance
the reliability of machine learning results. Low machine learning accuracy results in the
misinterpretation of XAI. The XAI technique detects feature importance and explains the
influence of features on model decisions [19]. Therefore, for the management of osteopenia
and sarcopenia in daily life, this study proposes an algorithm for detecting gait parameters
and identifying patients based on inertia signals and interpreting the results using XAI.

2. Related Studies

This section describes research related to gait parameter detection techniques, wearable-
sensor-based patient identification, and XAI. This information should help with the un-
derstanding of the proposed wearable-based gait analysis method for the management of
osteopenia and sarcopenia in daily life. This study proposes an algorithm for detecting gait
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parameters based on inertial signals, identifying patients, and interpreting the results using
XAI for gait analysis.

2.1. Gait Parameter

IMU-based gait analysis is used to identify PD, fall risk, THA, and sarcopenia. Gait
parameters for analysis based on IMU include spatial–temporal parameters (e.g., step
length, stance phase, swing phase, single support, double support, step time, cadence, and
speed), kinematic parameters (the rotational angles of the sagittal, coronal, and transverse
plane of the pelvis, hip, knee, and ankle), and descriptive statistical parameters (such as
the maximum, mean, and standard deviation) of inertial signals for each gait phase. The
results of gait analysis using spatial–temporal parameters can be compared with the results
of other gait analysis tools such as cameras and force plates. However, the disadvantage is
that the motion information acquired by the inertial sensor is reduced, resulting in a low
classification result [4].

Gait events and phases are detected to extract the gait parameters. Taborri [20]
classified gait into two to eight phases. Whittle [21] classified gait into seven phases, and
this is the most widely used classification method. One stride is from a heel strike to the
next heel strike. Gait is broadly classified into a stance phase from heel strike (HS) to
toe off (TO) and a swing phase from TO to the next HS. The stance phase is classified
into the loading response, mid stance, terminal stance, and pre swing phases, and the
swing phase is classified into the initial swing, mid swing, and terminal swing phases.
The spatial–temporal parameters can be obtained by extracting the HS, TO, opposite HS,
opposite TO, and walking distance. HS and TO are detected by the time and frequency
signal processing of the inertial signal. Kim [22] obtained HS and TO with high accuracy
within 0.03 s through time–frequency analysis.

The inertial-sensor-based distance measurement algorithm is widely used as the basis
for the distance measurement algorithm in indoor navigation research, and it is difficult to
accurately measure the distance using only the inertial sensor [23,24]. Kinematic parameters
are obtained by attaching inertial sensors to locations such as the pelvis, hip, knee, and
ankle, but they are difficult to use in daily life due to the number of sensors required.
Descriptive statistics and frequency analysis have been employed to analyze the signal
obtained from the inertial sensor.

2.2. Identifying Patients Based on Inertial Signals

IMU-based gait analysis is used to identify PD, fall risk, THA, and sarcopenia. With
gait-parameter-based disease identification, Caramia [9] classified PD using linear discrimi-
nant analysis (LDA), naïve Bayes (NB), k-nearest neighbor (k-NN), support vector machine
(SVM), SVM radial basis function (RBF), decision tree (DT), and the majority of votes. The
performance of the machine learning technique—SVM with a nonlinear kernel—was the
best. Eskofier [10] analyzed the gait of PD using descriptive statistical parameters such
as the energy maximum, minimum, mean, variance, skewness, and kurtosis of the signal
measured by the inertial sensor and the fast Fourier transform, a frequency analysis method.
Howcroft [11] predicted the risk of falls using accelerometer data and used temporal (ca-
dence and stride time) and descriptive statistics (maximum, mean, and SD of acceleration).
NB, SVM, and neural network (NN) were used as classification methods, and the best
single-sensor model was NN. An advantage of deep learning is that it can detect features
within the algorithm from a raw signal, although Tunca [12] achieved higher accuracy in
long short-term memory (LSTM) when certain parameters (e.g., speed, stride length, cycle
time, stance time, swing time, clearance, stance ratio, and cadence) were used as the inputs,
compared with raw signals.

Teufl [5] classified THA patients using stride length, stride time, cadence, speed, hip,
and pelvis range of motion (ROM) as features of the SVM, and obtained an accuracy of 97%.
Dindorf [13] used local interpretable model-agnostic explanations (LIME) to understand
the features for identifying THA, and found that the sagittal movement of the hip, knee,
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and pelvis, as well as transversal movement of the ankle, were particularly important for
this specific classification task. Kim [4] obtained feature importance using the Shapley
additive explanations (SHAP) approach for spatial–temporal parameters and descriptive
statistical parameters detected from signals measured by inertial sensors on both feet of
ten sarcopenia and control participants. Twenty descriptive statistical parameters of high
importance were used as inputs to classification models such as SVM, RF, and multi –layer
perceptron (MLP); the highest accuracy (95%) was achieved using the SVM model, as
shown in Table 1.

Table 1. Existing studies on disease identification using gait parameters. Abbreviations are as shown
in Table A1.

Reference Parameter Disease Position Classification Accuracy

Caramia 2018 [9]
Step length, step time, stride
time, speed, hip, knee, and

ankle ROM
PD R and L ankle,

knee, hip, chest

LDA, NB, k-NN, SVM,
SVM RBF, DT, majority

of votes
96.88%

Eskofier 2016 [10]

Energy maximum, minimum,
mean, variance, skewness,

kurtosis, fast
Fourier transform

PD Upper limbs AdaBoost, PART,
k-NN, SVM, CNN 90.9%

Howcroft 2017 [11]
Cadence, stride time

maximum, mean, and SD
of acceleration

Faller Head, pelvis, R
and L shank NB, SVM, NN 57%

Tunca 2019 [12]

Stride length, cycle time,
stance time, swing time,
clearance, stance ratio,

cadence, speed

Faller Both feet SVM, RF, MLP,
HMM, LSTM 94.30%

Teufl 2019 [5]
Stride length, stride time,
cadence, speed, hip and

pelvis ROM
THA Hip, thigh,

shank, foot SVM 97%

Dindorf 2020 [13] Various parameters THA Hip, knee,
pelvis, ankle

RF, SVM, SVM
RBF, MLP 100%

Kim 2021 [4] Various parameters Sarcopenia Both feet RF, SVM, MLP,
CNN, BiLSTM 95%

Ours Various parameters Osteopenia
Sarcopenia Both feet RF, SVM, XGBoost,

CNN, BiLSTM, ResNet
88.69%
93.75%

2.3. Explainable Artificial Intelligence

XAI is a method that allows humans to understand the basis of decisions made by
artificial intelligence models [25]. It is primarily used to enhance the reliability of machine
learning results. Low machine learning accuracy results in a misinterpretation of XAI. The
XAI technique detects feature importance and explains the influence of features on model
decisions [19]. LIME and SHAP are often used to explain existing handcraft feature-based
classification algorithms, and layer-wise relevance propagation (LRP) and class activation
mapping (CAM) are used as algorithms to interpret deep learning.

LIME is effective for tabular data, text, and images. However, it is difficult to set the
kernel width in tabular data, and different results are obtained during repeated execution
because the sampling process is performed randomly. SHAP was proposed to consider the
dependency between features. When the dependence between features is high, the SHAP
feature importance is judged to be better than the permutation importance [19]. SHAP is
based on Shaply values from game theory. The main advantages of the SHAP method are
local explanations and consistency in the global model structure. SHAP is used in many
machine learning models as a model-agnostic method.

LRP outputs a heatmap to the input image by tracing back the results of the deep
learning model. Unlike LIME and SHAP, which interpret the model using the sensitivity
analysis technique, LRP [25] is a mixture of relevance propagation and decomposition.
Relevance propagation is a method for calculating the relevance of the contribution of
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the hidden layer to the output after the decomposition process. CAM visualizes model
decisions by computing a weighted linear summation of the last convolutional feature map.
CAM is limited to model architectures where the model must consist of one fully connected
(FC) layer with global average pooling (GAP) [26]. Grad-CAM describes models without
constraints on the model architecture. Gradient-based CAM methods share the problem of
shattered gradients, causing noise saliency maps in the intermediate layer. An LRP-based
Relevance-CAM has been proposed to solve the gradient problem [27].

3. Methods

To analyze the gait of the osteopenia and sarcopenia groups, the patients were iden-
tified using machine learning, and the machine learning model was interpreted using
XAI. The inertial sensor signals and spatial–temporal and descriptive statistical parameters
detected in the proposed algorithm were used as machine learning inputs. By analyzing
the model that obtained high-accuracy identification results, the inertial signal and gait
parameters of the osteopenia and sarcopenia groups were analyzed. The flowchart of
patient identification and gait analysis for osteopenia and sarcopenia is shown in Figure 1.

Figure 1. Gait analysis flowchart.

3.1. Patient Data Collection

Gait signals of 42 women over 65 years of age were obtained to analyze the gait
characteristics for osteopenia and sarcopenia. Among the 42 subjects, there were 21 patients
with osteopenia and 21 patients without osteopenia. The BMD obtained by measuring
DEXA was compared with that of a healthy young person: when the T-score was −1 SD or
higher, the data were assigned to the control group; when it was lower than −1, the data
were assigned to the osteopenia group. Additionally, 10 sarcopenia and 10 non-sarcopenia
patients were selected among the 42 subjects. Sarcopenia was diagnosed using the skeletal
muscle mass index (SMI, appendicular skeletal muscle mass in kg/height in m2) that was
less than 5.4 kg/m2 (as obtained through DEXA), whereas the grasp strength was less than
18 kg. The group without sarcopenia included participants with SMI of 5.5 or more and
a grasp strength of 19 kg or more. Relevant statistics, including age, height, weight, foot
size, Mini-Mental State Examination (MMSE) [28], the Mores Fall Scale (MFS) [29], SARC-F
questionnaire [30], Berg Balance Scale (BBS) [31] and Timed Up and Go (TUG) scores [32],
grasp power, T-score for DEXA, and SMI, are shown in Table 2.
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Table 2. Group population statistics for osteopenia and sarcopenia groups.

Parameter Osteopenia
Non-

Osteopenia
Osteopenia

p-Value
Sarcopenia

Non-
Sarcopenia

Sarcopenia
p-Value

Age (years) 70.48 ± 2.36 70.33 ± 2.56 0.852 71.10 ± 2.13 69.50 ± 3.14 0.199
Height (cm) 153.65 ± 4.83 152.80 ± 5.93 0.614 150.87 ± 4.66 153.10 ± 4.36 0.283
Weight (kg) 57.75 ± 6.12 59.57 ± 7.12 0.379 53.55 ± 5.62 61.20 ± 5.07 0.005

Feet_size (mm) 236.91 ± 7.66 238.57 ± 6.55 0.453 232.00 ± 5.87 239.50 ± 6.43 0.014
MMSE 27.62 ± 1.77 28.19 ± 1.78 0.303 27.80 ± 1.40 27.30 ± 2.16 0.547

SARC-F 3.19 ± 2.40 3.86 ± 2.15 0.349 2.90 ± 1.52 2.90 ± 2.85 1.000
MFS 23.10±17.92 26.43 ± 16.59 0.535 13.50 ± 12.92 23.50 ± 12.70 0.098
BBS 42.38 ± 8.48 42.19 ± 6.85 0.937 43.10 ± 6.26 41.90 ± 9.47 0.742

3m TUG 10.96 ± 1.64 11.50 ± 2.87 0.464 11.71 ± 1.62 9.85 ± 1.92 0.031
Grasp_right (kg) 17.29 ± 5.42 18.77 ± 4.71 0.351 14.42 ± 3.65 22.57 ± 2.73 0.000
Grasp_left (kg) 17.61 ± 4.67 18.04 ± 4.40 0.761 14.15 ± 3.97 22.17 ± 3.02 0.000
T_score (DEXA) −1.85 ± 0.74 0.69 ± 1.49 0.000 −0.49 ± 2.08 −0.64 ± 2.03 0.872

SMI(ASM/height) 5.37 ± 0.55 5.38 ± 0.65 0.961 4.58 ± 0.32 5.93 ± 0.35 0.000

The limitations of this study were that the physiological and psychological variables
of the participants could not be controlled, the age range of the participants could not be
expanded, the study was conducted on women only, and the treadmill gait experiment
with fall risk factors for older adults was excluded, and only the preferred speed through
walking on flat ground was measured.

All participants wore the same sneaker model and walked the 27 m corridor four
times in a straight line. The gait data were acquired from the right and left insoles using
IMU, as shown in Figure 2. The IMU settings included an acceleration sensitivity of 8G, a
gyro sensitivity of 1000◦/s, and a sampling frequency of 100 Hz [4].

 

Figure 2. Sensor attachments to the insoles.

Additionally, 20 participants measured 9 m gait simultaneously with the clinical
standard system and the proposed inertial system to verify the proposed device and
algorithm. The clinical system consisted of ten cameras (Vicon, Oxford Metrics, Oxford,
UK) and four force plates (Advanced Mechanical Technology, MA, USA). Data analysis
was performed using the Vicon Polygon 3.5.2. Ethics approval was obtained from the
Chungnam National University Hospital Institutional Review Board before conducting
this study (File No: CNUH 2019-06-042).

3.2. Gait Signals and Parameters

Gait is a motion in which both feet alternately repeat the stance and swing phases, and
the event points of gait that separate the stance and swing phases are called HS and TO. HS
is at the start of the stance phase, and TO is at the start of the swing phase. The gait data
obtained from the IMU sensor were 6-axis signals that included the xyz-axis acceleration
and angular velocity signal. When the measured sensor data were separated based on
HS and normalized to 100 samples, they exhibited periodic characteristics, as shown in
Figure 3. The characteristics of the gait signal differ from person to person, and for IMU
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gait analysis, the spatial–temporal parameter was detected from the gait signal, and the gait
signals were expressed as descriptive statistical parameters and analyzed. Additionally,
patients were classified using raw data as inputs for deep learning without detecting the
parameters; then, the gait signals were analyzed by interpreting the deep learning results.

Figure 3. Acceleration and angular velocity signals.

The spatial–temporal parameters were extracted from the inertial signals using the
proposed algorithm [4]. Twenty-four spatial–temporal parameters were detected: stance
phase time right, stance phase time left, swing phase time right, swing phase time left,
stance phase percent right, stance phase percent left, double support first phase time right,
double support first phase time left, double support second phase time right, double
support second phase time left, single support phase time right, single support phase
time left, double support first phase percent right, double support first phase percent left,
double support second phase percent right, double support second phase percent left,
single support phase percent right, single support phase percent left, stride length right,
stride length left, stance phase time SI, swing phase time SI, stance phase percent SI, and
cadence. The definitions are summarized in Table 3.

After detecting HS and TO, the opposite HS, opposite TO, cadence, stance phase (time),
swing phase (time), single support phase (time), and double support phase (time) could be
obtained by arithmetic calculations. Secondary parameters, such as balance of difference
between the right and left foot, were also collected through comparative analysis of both
feet. Stride was detected through a distance estimation algorithm based on zero-velocity
detection (zero-velocity update) using an extended Kalman filter [23,24].

To obtain descriptive statistical parameters, the six-axis gait signal was classified into
seven phases, as proposed by Whittle. The detection of HS, TO, heel rise (HR), feet adjacent
(FA), and tibia vertical (TV) is required to classify seven phases; it was detected using
the method proposed in a previous study [4]. Ten descriptive statistical parameters were
obtained from signals classified into seven phases, and the descriptive statistical parameters
were max., min., SD, AbSum, root-mean-square (RMS), kurtosis, skewness, MMgr, DMM,
and Mdif. A total of 840 descriptive statistical parameters (both feet (2) × sensor signal (6)
× gait phase (7) × (10 parameters)) were detected.
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Table 3. Definition of gait parameters.

Gait Parameters Definition

Spatial–temporal parameters
Cadence Number of steps acquired per minute

Stance phase (time) Percent (time) starting with HS and ending with TO of the same foot
Swing phase (time) Percent (time) starting with TO and ending with HS of the same foot

Single support phase (time) Percent (time) when only one foot is on the ground
Double support phase (time) Percent (time) when both feet are on the ground

Stride length Distance starting with HS and ending with next HS of the same foot
Symmetry indices (SI) Absolute values of (right—left)/(0.5 × ( right + left )

Descriptive statistical parameters
Max Greatest values
Min Least or smallest values
SD Standard deviation of values

AbSum Absolute sum of values
Root-mean-square (RMS) Arithmetic mean of the squares of a set of values

Kurtosis Assesses whether the tails of a given distribution contain extreme values

Skewness A measure of the asymmetry of the probability distribution of a real-valued random variable
about its mean

MMgr Gradient from maximum value to minimum value
DMM Difference between maximum value and minimum value
Mdif Maximum for the difference between two successive values

3.3. Patient Identification

To identify patients using the inertial gait signal and the proposed gait parameters,
osteopenia and sarcopenia groups were classified through various models such as RF,
XGBoost (Extreme Gradient Boosting), SVM, and deep learning models.

RF is a decision tree ensemble classifier that combines multiple single classifiers to
obtain the result of each classification model either through majority vote or weighted
average [33]. RF lowers the risk of overfitting by using some data and features from the
training data. XGBoost is a decision tree ensemble model and improves the performance of
the gradient boosting machine in terms of speed. Boosting models increase accuracy by
iteratively updating the parameters of the previous classifier to reduce the slope of the loss
function, thereby generating a robust classifier [33]. SVM is a binary classifier that aims
to determine the optimal separation hyperplane that maximizes the margin between two
classes. Kernel functions are used to map data to a higher-dimensional space; thus, an SVM
can compute nonlinear decision boundaries [4].

The representative deep-learning-based models were convolutional neural network
(CNN) and LSTM. A CNN is composed of one or more convolutional, pooling, FC, and
dense layers. CNNs exhibit high performance in detecting and classifying features in
images. Unlike LSTM, which only has forward hidden layers, BiLSTM has both forward
and backward hidden layers. Therefore, it learns both before and after information and
demonstrates high performance in time-series data. As a CNN backbone, ResNet exhibits
excellent classification accuracy [34]. ResNet uses skip connections (or short connections)
to pass the input from the previous layer to the next layer. This skip connection solves the
gradient loss/burst problem, enabling deep neural networks. ResNet uses 18, 34, 50, 101,
and 152 layers depending on the depth, and there are structural differences in approximately
50 layers. In particular, ResNet is a popular architecture despite the existence of other
models that have improved performance in various fields. Moreover, it is a representative
CNN architecture for which many supporting materials are available [34,35].

Transfer learning is applied as a solution to address the difficulty of training a model
based on small datasets. In transfer learning, data similar to the target data are learned
in advance and a specific layer is frozen, such that only the layer which is not frozen
when learning the target data is learned [36]. Specific data characteristics can be overfitted,
because patient identification is a binary classification. Therefore, person identification is

136



Biosensors 2022, 12, 167

pre-trained because high-resolution features can be detected by comparing and analyzing
the gaits of multiple people.

3.4. Gait Analysis

The gait signals and parameters were analyzed using statistical methods and XAI
techniques that interpret machine learning results. The independent t-test was used as a
statistical method to compare the spatial–temporal parameters and descriptive statistical
parameters. To improve the reliability of the machine-learning-based analysis method, a
higher accuracy should first be obtained. Therefore, the osteopenia and sarcopenia groups
were classified through various models, such as RF, XGBoost, SVM, and deep learning
models. The CNN and LSTM models were used as the deep learning models.

Spatial–temporal parameters and 100 descriptive statistical parameters with low
p-values of the t-test were used as inputs for RF, XGBoost, and SVM. The following
RF parameters were used: number of trees = 50, max_depth = 30, and number of fea-
tures = square root of the gait parameters. The XGBoost parameters were booster = gbtree,
objective = binary:logistic, eta = 0.018, max_depth = 15, gamma = 0.009, subsample = 0.98,
and colsample_bytree = 0.86. SVM explored the linear and RBF kernels, and the parameters
were gamma = 1.0 and C = 5.0.

The 12 axes of acceleration and angular velocity signals obtained from both feet were
applied to the deep learning models. We proposed a low-layer-based CNN and BiLSTM
model and applied ResNet50. As the input of the deep learning model, a stride based on HS
was detected and normalized to 100 samples using spline interpolation because the signal
was collected at 100 Hz [4]. ResNet50 is reduced in size by pooling as the layers progress.
The ResNet50 backbone cannot be used with an input of shape 12, and removing pooling
lowers the accuracy. Therefore, the input shape (36,100) was generated by amplifying the
signal of 12 axes threefold because the input size of ResNet50 must be 12 or more, and the
kernel size was 3. The layers of each model are shown in Table 4. The parameters of the
deep learning model were as follows: learning rate = 0.0005, training epoch = 100, batch
size = 16, loss = CrossEntropyLoss, optimizer = Adam, and activation function = Rectified
Linear Unit.

Table 4. Instantiation of deep learning model.

CNN BiLSTM ResNet50

Input None, 100, 36, 1 Input None, 100, 36, 1 Input None, 100, 36, 1

Conv1 3 × 3, 5
2 × 1 max pooling, BiLSTM1 5 Conv1

7 × 7, 64
stride 2

3 × 3 max pooling, stride 2

Conv2 3 × 3, 5
2 × 1 max pooling, BiLSTM2 10 Conv2

⎡⎣ 1 × 1, 64
3 × 3, 64

1 × 1, 256

⎤⎦× 3

Conv3 3×3, 20 Dropout 0.5 Conv3
⎡⎣ 1 × 1, 128

3 × 3, 128
1 × 1, 512

⎤⎦× 4

Dropout 0.5 FC, Dense Conv4
⎡⎣ 1 × 1, 256

3 × 3, 256
1 × 1, 1024

⎤⎦× 6

FC, Dense Conv5
⎡⎣ 1 × 1, 512

3 × 3, 512
1 × 1, 2048

⎤⎦× 3

GAP, FC

XGBoost can calculate the built-in importance (Gini importance) and permutation
importance using the learned model. Permutation importance measures the increase or
decrease in prediction error compared with the original data when the feature data are
transformed [19]. Permutation importance does not consider the correlation between
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features; therefore, SHAP was proposed as a method to consider the dependency between
features. In particular, the SHAP feature importance is considered to be better than the
permutation importance because gait parameters have a high dependence on the features.
The Gini, permutation, and SHAP importance of the spatial–temporal and descriptive
statistical parameters were calculated to obtain important parameters of osteopenia and
sarcopenia, and the results of deep learning were analyzed using LRP, Grad-CAM, and
Relevance-CAM.

4. Results

4.1. Patient Identification

The identification results of 21 osteopenia and 21 non-osteopenia subjects showed the
highest accuracy in SVM when 24 spatial–temporal parameters were used as inputs, but
showed an accuracy of less than 65%. The descriptive statistics parameter obtained the
highest accuracy of 68.45% in XGBoost by using 100 parameters with a low p-value as an
input, as a result of an independent t-test. For training and testing, 21 cross-validations
were performed on 21 subjects, and the average was obtained. Using an inertial sensor as
an input for deep learning, ResNet showed the highest accuracy among CNN, BiLSTM,
and ResNet. The results of applying transfer learning to the ResNet model showed lower
accuracy than when no transfer learning was applied. However, when performing transfer
learning, it was shown that the accuracy increased when features were extracted, including
the test subject. This implies that ResNet was pre-trained for human identification using the
data of 42 patients, and the patient identification was cross-validated for 21 patients. The
osteopenia group obtained the highest recognition result in the transfer learning ResNet.

The identification results of 10 sarcopenia and 10 non-sarcopenia cases were over 70%
accurate in terms of the spatial–temporal parameters, and the accuracy in case of sarcopenia
was better than that in osteopenia. When the descriptive statistics parameter was used
as the RF input, the highest accuracy was obtained, and the deep learning method of the
inertial sensor input did not yield satisfactory identification results. Therefore, analysis of
the results of XAI based on parameters is more reliable than the analysis of results based
on deep learning. The patient identification results of machine learning are presented in
Tables 5 and 6.

Table 5. Identification result of RF, XGBoost, and SVM (accuracy, precision, recall and F1-score).

Groups Parameters Models Accuracy Precision Recall F1-Score

Osteopenia

Spatial–temporal (24)
RF 0.494 0.476 0.370 0.393

XGBoost 0.476 0.476 0.376 0.406
SVM 0.637 0.619 0.511 0.544

Descriptive statistical (100)
RF 0.649 0.655 0.612 0.607

XGBoost 0.684 0.690 0.680 0.650
SVM 0.607 0.678 0.590 0.604

Sarcopenia

Spatial–temporal (24)
RF 0.802 0.825 0.775 0.775

XGBoost 0.752 0.725 0.667 0.677
SVM 0.775 0.603 0.775 0.658

Descriptive statistical (100)
RF 0.675 0.675 0.632 0.631

XGBoost 0.603 0.675 0.557 0.591
SVM 0.637 0.704 0.657 0.644
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Table 6. Identification result of CNN, BiLSTM, and ResNet (accuracy, precision, recall and F1-score).

Groups Models Accuracy Precision Recall F1-Score

Osteopenia

CNN 0.696 0.690 0.735 0.670
BiLSTM 0.619 0.570 0.610 0.571
ResNet 0.767 0.672 0.726 0.676

ResNet(transfer) 0.786 0.869 0.747 0.787

Sarcopenia

CNN 0.600 0.437 0.525 0.447
BiLSTM 0.425 0.300 0.350 0.299
ResNet 0.612 0.337 0.500 0.394

ResNet(transfer) 0.700 0.612 0.636 0.606

4.2. Importance of Descriptive Statistical Parameter

The order of Gini, permutation, and SHAP importance was obtained for the descrip-
tive statistical parameters of osteopenia and sarcopenia. When using highly important
parameters such as RF, XGBoost, and SVM inputs, SHAP obtained the highest identification
rate; however, when using the inner 20 important parameters as inputs, more identification
results than the 100 descriptive statistical parameters were obtained. Tables 7 and 8 showed
the classification results as the number of parameters increased, and the average accuracy
was obtained by performing 21 cross-validations for osteopenia and 10 cross-validations
for sarcopenia. According to the result of each cross-validation, SHAP-based feature
importance has different values. For example, osteopenia was trained with 40 datasets
(20 osteopenia datasets and 20 non-osteopenia datasets) and tested with two datasets
(1 osteopenia dataset and 1 non-osteopenia dataset) during 21 cross-validations. As a result
of the training, the Shapley values were obtained based on the training data of 40 people,
and the Shapley values were obtained in different orders. Table 9 shows the average results
for 20 high-order Shapley values generated during 21 cross-validations. In osteopenia, the
Shapley value is relatively high in the upper parameter and less than 0.1 from the 10th
parameter. In sarcopenia, the difference in the Shapley value between the parameters is
small. The parameter numbers of descriptive statistical parameters are shown in Table 10.
The results of learning RF, XGBoost, and SVM with 20 parameters with high importance
in Table 9 are shown in Table 11. Osteopenia obtained an accuracy of 88.69% in XGBoost
using the top 4 parameters as inputs, and sarcopenia obtained an accuracy of 93.75% in RF
using the top 18 parameters as inputs.

Table 7. Osteopenia identification results according to the number of important parameters (accu-
racy, %).

Class ML
Number of Parameters

2 3 4 5 6 7 8 9 10 20 100

Gini
RF 70.83 70.23 64.88 72.02 68.45 63.69 61.30 60.11 60.71 61.30 64.88

XGBoost 66.66 67.85 64.88 71.42 68.45 64.28 65.47 61.30 65.47 67.26 68.45
SVM 64.28 64.88 64.88 64.28 61.30 61.30 59.52 55.35 57.73 58.33 60.71

Permutation
RF 73.21 70.83 69.64 67.26 64.28 68.45 70.23 69.04 67.26 67.26 64.88

XGBoost 69.64 70.83 70.23 68.42 64.88 65.47 67.26 66.70 67.26 70.23 68.45
SVM 65.47 68.45 66.07 64.28 66.66 66.66 64.28 64.88 64.88 60.71 60.71

SHAP
RF 73.80 76.19 70.23 63.69 63.09 63.69 63.09 63.69 57.73 60.11 64.88

XGBoost 70.23 75 74.40 73.21 66.66 67.85 63.69 59.52 56.54 68.45 68.45
SVM 71.42 71.42 67.26 61.30 58.33 58.33 57.14 55.95 57.14 62.5 60.71
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Table 8. Sarcopenia identification results according to the number of important parameters (accu-
racy, %).

Class ML
Number of Parameters

2 3 4 5 10 15 16 17 18 20 100

Gini
RF 50 58.75 62.5 65 68.75 67.5 68.75 71.25 71.25 62.5 67.5

XGBoost 52.5 57.5 65 66.25 62.5 58.75 58.75 58.75 58.75 58.75 60
SVM 52.5 58.75 66.25 65 72.5 57.5 56.25 56.25 58.75 60 63.75

Permutation
RF 62.5 60 56.25 53.75 57.5 67.5 55 60 70 62.5 67.5

XGBoost 60 60 55 58.75 65 63.75 68.75 65 66.25 67.5 60
SVM 61.25 60 60 55 65 66.25 66.25 68.75 63.75 60 63.75

SHAP
RF 56.25 60 57.5 65 67.5 62.5 72.5 73.75 68.75 67.5 67.5

XGBoost 46.25 63.75 62.5 65 65 63.75 63.75 65 66.25 63.75 60
SVM 58.75 67.5 60 61.25 675 66.25 68.75 62.5 60 58.75 63.75

Table 9. Feature importance and Shapley values of descriptive statistical parameters.

Class Important Parameter 1 2 3 4 5 6 7 8 9 10

Osteopenia Parameters 247 114 87 218 816 206 291 21 169 667
Shapley value 0.97 0.28 0.27 0.2 0.18 0.17 0.16 0.13 0.1 0.09

Sarcopenia Parameters 430 524 51 9 270 457 231 387 3 97
Shapley value 0.66 0.28 0.25 0.22 0.17 0.16 0.15 0.13 0.13 0.13

Class Important Parameter 11 12 13 14 15 16 17 18 19 20

Osteopenia Parameters 774 117 45 802 312 23 542 242 554 422
Shapley value 0.09 0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.06 0.06

Sarcopenia Parameters 5 67 521 690 607 704 380 469 8 257
Shapley value 0.13 0.12 0.11 0.09 0.09 0.08 0.08 0.08 0.08 0.07

Table 10. Seven-phase descriptive statistical parameters.

Right Left

Parameter Max Min SD AbSum RMS Ku Ske MMgr DMM Mdif Max Min SD AbSum RMS Ku Ske MMgr DMM Mdif

Loading
response

AccX 1 2 3 4 5 6 7 8 9 10 421 422 423 424 425 426 427 428 429 430
AccY 11 12 13 14 15 16 17 18 19 20 431 432 433 434 435 436 437 438 439 440
AccZ 21 22 23 24 25 26 27 28 29 30 441 442 443 444 445 446 447 448 449 450

GyroX 31 32 33 34 35 36 37 38 39 40 451 452 453 454 455 456 457 458 459 460
GyroY 41 42 43 44 45 46 47 48 49 50 461 462 463 464 465 466 467 468 469 470
GyroZ 51 52 53 54 55 56 57 58 59 60 471 472 473 474 475 476 477 478 479 480

Mid
stance

AccX 61 62 63 64 65 66 67 68 69 70 481 482 483 484 485 486 487 488 489 490
AccY 71 72 73 74 75 76 77 78 79 80 491 492 493 494 495 496 497 498 499 500
AccZ 81 82 83 84 85 86 87 88 89 90 501 502 503 504 505 506 507 508 509 510

GyroX 91 92 93 94 95 96 97 98 99 100 511 512 513 514 515 516 517 518 519 520
GyroY 101 102 103 104 105 106 107 108 109 110 521 522 523 524 525 526 527 528 529 530
GyroZ 111 112 113 114 115 116 117 118 119 120 531 532 533 534 535 536 537 538 539 540

Terminal
stance

AccX 121 122 123 124 125 126 127 128 129 130 541 542 543 544 545 546 547 548 549 550
AccY 131 132 133 134 135 136 137 138 139 140 551 552 553 554 555 556 557 558 559 560
AccZ 141 142 143 144 145 146 147 148 149 150 561 562 563 564 565 566 567 568 569 570

GyroX 151 152 153 154 155 156 157 158 159 160 571 572 573 574 575 576 577 578 579 580
GyroY 161 162 163 164 165 166 167 168 169 170 581 582 583 584 585 586 587 588 589 590
GyroZ 171 172 173 174 175 176 177 178 179 180 591 592 593 594 595 596 597 598 599 600

Pre
swing

AccX 181 182 183 184 185 186 187 188 189 190 601 602 603 604 605 606 607 608 609 610
AccY 191 192 193 194 195 196 197 198 199 200 611 612 613 614 615 616 617 618 619 620
AccZ 201 202 203 204 205 206 207 208 209 210 621 622 623 624 625 626 627 628 629 630

GyroX 211 212 213 214 215 216 217 218 219 220 631 632 633 634 635 636 637 638 639 640
GyroY 221 222 223 224 225 226 227 228 229 230 641 642 643 644 645 646 647 648 649 650
GyroZ 231 232 233 234 235 236 237 238 239 240 651 652 653 654 655 656 657 658 659 660

Initial
swing

AccX 241 242 243 244 245 246 247 248 249 250 661 662 663 664 665 666 667 668 669 670
AccY 251 252 253 254 255 256 257 258 259 260 671 672 673 674 675 676 677 678 679 680
AccZ 261 262 263 264 265 266 267 268 269 270 681 682 683 684 685 686 687 688 689 690

GyroX 271 272 273 274 275 276 277 278 279 280 691 692 693 694 695 696 697 698 699 700
GyroY 281 282 283 284 285 286 287 288 289 290 701 702 703 704 705 706 707 708 709 710
GyroZ 291 292 293 294 295 296 297 298 299 300 711 712 713 714 715 716 717 718 719 720
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Table 10. Cont.

Right Left

Parameter Max Min SD AbSum RMS Ku Ske MMgr DMM Mdif Max Min SD AbSum RMS Ku Ske MMgr DMM Mdif

Mid
swing

AccX 301 30 303 304 305 306 307 308 309 310 721 722 723 724 725 726 727 728 729 730
AccY 311 312 313 314 315 316 317 318 319 320 731 732 733 734 735 736 737 738 739 740
AccZ 321 322 323 324 325 326 327 328 329 330 741 742 743 744 745 746 747 748 749 750

GyroX 331 332 333 334 335 336 337 338 339 340 751 752 753 754 755 756 757 758 759 760
GyroY 341 342 343 344 345 346 347 348 349 350 761 762 763 764 765 766 767 768 769 770
GyroZ 351 352 353 354 355 356 357 358 359 360 771 772 773 774 775 776 777 778 779 780

Terminal
swing

AccX 361 362 363 364 365 366 367 368 369 370 781 782 783 784 785 786 787 788 789 790
AccY 371 372 373 374 375 376 377 378 379 380 791 792 793 794 795 796 797 798 799 800
AccZ 381 382 383 384 385 386 387 388 389 390 801 802 803 804 805 806 807 808 809 810

GyroX 391 392 393 394 395 396 397 398 399 400 811 812 813 814 815 816 817 818 819 820
GyroY 401 402 403 404 405 406 407 408 409 410 821 822 823 824 825 826 827 828 829 830
GyroZ 411 412 413 414 415 416 417 418 419 420 831 832 833 834 835 836 837 838 839 840

Table 11. Osteopenia and sarcopenia identification results with the 20 parameters from Table 9
(accuracy, %).

Class Important Parameter 1 2 3 4 5 6 7 8 9 10

Osteopenia
RF x 75 85.11 85.71 78.57 82.14 80.95 81.54 77.97 76.78

XGBoost x 72.02 80.95 88.69 87.69 87.5 85.11 82.73 81.54 83.33
SVM x 74.40 75 75.59 83.92 82.73 80.95 81.54 80.35 78.57

Sarcopenia
RF x 85 82.5 83.75 85 85 86.25 82.5 8 82.5

XGBoost x 80 72.5 78.75 76.25 73.75 75 71.25 73.75 71.25
SVM x 81.25 80 82.5 81.25 82.5 86.25 86.25 87.5 81.25

Class Important Parameter 11 12 13 14 15 16 17 18 19 20

Osteopenia
RF 77.38 72.61 78.57 74.40 79.16 82.14 79.76 73.80 82.14 82.73

XGBoost 76.78 76.78 76.19 77.97 80.95 81.54 77.38 74.40 73.80 74.40
SVM 76.19 77.97 74.40 72.61 75.59 76.78 76.19 77.97 79.16 74.40

Sarcopenia
RF 81.25 83.75 86.25 88.75 86.25 87.5 91.25 93.75 86.25 92.5

XGBoost 71.52 75 71.25 70 71.25 75. 72.5 72.5 71.25 72.5
SVM 80 83.75 86.25 83.75 86.25 81.25 83.75 78.75 78.75 78.75

4.3. Gait Analysis

In the spatial–temporal parameters of the osteopenia group, the stance phase percent-
age decreased, double support percentage (time) decreased, and single support percentage
increased. The sarcopenia group showed an increase in the value of the SI parameter
compared with the non-sarcopenia group, implying that the difference between both feet
was large. Except for the SI parameter, the p-value did not have a statistical significance
of less than 0.001. Table 12 shows the mean and Shapley values of the spatial–temporal
parameters; * indicates that the p-value is less than 0.025, and ** indicates that the p-value is
less than 0.001.

From the result of the SHAP plot of osteopenia, as the value of the single support
phase percent left (parameter 18) increased, the risk of osteopenia increased, as indicated by
the positive SHAP value. As the value decreased, the risk also decreased, with the SHAP
value being negative. When the single support phase percent left value increased, the risk
increased linearly, and the osteopenia risk was low, at 39 or lower, and the risk increased
at 42 or higher. A low double support first phase percent (parameter 13 and 14) increased
the risk of osteopenia, with a decreased risk above 9 and an increased risk below 9. A low
value of double support first phase time left (parameter 8) increased the risk, a high value
decreased the risk of osteopenia, and a double support first phase time left lower than
0.075 led to an increase in risk. A low value of the stance phase percent right (parameter 5)
increased the risk.

As a result of the SHAP plot of sarcopenia, the risk of sarcopenia increased when the
double support first phase time left (parameter 8) had a very low value (less than 0.07).
Stance phase percent left (parameter 6) increased the risk above 60 and decreased below 60,
but did not show linearity. The risk increased when the value of the stance phase time SI
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(parameter 21) increased, and the risk was high at 0.35 or higher, although it was low at less
than 0.35. SHAP plots of the spatial–temporal parameters of osteopenia and sarcopenia are
shown in Figure 4.

Table 12. Spatial–temporal parameters of osteopenia and sarcopenia.

Parameter Osteopenia
Non-

Osteopenia
Shapley

Value
Sarcopenia

Non-
Sarcopenia

Shapley
Value

1 Stance phase time right (s) 0.61 0.645 0.034 ** 0.614 0.608 0.014
2 Stance phase time left (s) 0.612 0.641 0.084 * 0.617 0.604 0.18
3 Swing phase time right (s) 0.427 0.419 0.156 0.416 0.414 0.143
4 Swing phase time left (s) 0.424 0.422 0.04 0.412 0.417 0.039
5 Stance phase percent right (%) 58.77 60.442 0.196 ** 59.468 59.445 0.235
6 Stance phase percent left (%) 59.05 60.124 0.035 ** 59.853 59.114 0.345

7 Double support first phase time
right (s) 0.1 0.115 0.074 ** 0.112 0.099 0.005

8 Double support first phase time
left (s) 0.085 0.106 0.197 ** 0.09 0.090 0.551

9 Double support second phase time
right (s) 0.085 0.106 0.031 ** 0.09 0.090 0.097

10 Double support second phase time
left (s) 0.1 0.115 0.072 ** 0.111 0.099 0.007

11 Single support phase time right (s) 0.424 0.422 0.078 0.412 0.418 0.007
12 Single support phase time left (s) 0.427 0.419 0.017 0.416 0.414 0.018

13 Double support first phase percent
right (%) 9.66 10.711 0.224 10.802 9.692 0

14 Double support first phase percent
left (%) 8.18 9.857 0.311 ** 8.563 8.858 0.248

15 Double support second phase
percent right (%) 8.17 9.846 0.046 ** 8.556 8.855 0.072

16 Double support second phase
percent left (%) 9.606 10.686 0.017 ** 10.727 9.677 0.001

17 Single support phase percent
right (%) 40.939 39.884 0.077 ** 40.11 40.897 0.035

18 Single support phase percent
left (%) 41.262 39.58 0.416 ** 40.562 40.578 0.02

19 Stride length right (m) 0.95 0.93 0.065 0.94 0.979 0.022
20 Stride length left (m) 0.918 0.892 0.015 0.896 0.942 0.011
21 Stance phase time SI 0.031 0.032 0.018 0.036 0.025 0.250 **
22 Swing phase time SI 0.041 0.046 0.073 0.053 0.034 0.049 **
23 Stance phase percent SI 0.026 0.028 0.013 0.0325 0.021 0.007 **
24 Cadence (steps/min) 115.781 113.859 0.047 116.21 117.469 0

(a) Osteopenia. 

Figure 4. Cont.
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(b) Sarcopenia. 

Figure 4. SHAP plots of the spatial–temporal parameters of osteopenia (a) and sarcopenia (b).

The parameter with the highest SHAP value within the descriptive statistical param-
eters of osteopenia is the skewness of the x-axis of the accelerometer in the initial swing
phase (parameter number 247). Initial swing refers to the FA after TO. When the skewness
is negative, the probability density function has a long tail on the left side, and the data,
including the median, are more distributed on the right side. When the skewness is positive,
there is a long tail on the right side of the probability density function, indicating that the
data are more distributed on the left side. Skewness has a positive value when the mean
is smaller than the median, negative when the mean is larger, and has a larger value as
the difference between the median and the mean becomes larger. When there is a negative
value, the right part of Figure 5a has a long tail, but the average decreases and the skewness
value becomes small or negative.

(a)  (b)  

  
(c)  (d)  

Figure 5. Inertial signals and SHAP dependence plots of descriptive statistical parameters 247 and
114 of osteopenia. (a) Inertial signal 247. (b) Inertial signal 114. (c) SHAP dependence plot 247.
(d) SHAP dependence plot 114.
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The inertial signals and SHAP dependence plots of the descriptive statistical param-
eters 247 and 114 of osteopenia cases are shown in Figure 5. The blue signal represents
osteopenia, and the red signal represents non-osteopenia. A skewness of 0.5 or higher
shows a low risk of osteopenia, whereas a negative value shows an increased risk. The
absolute sum of gyro z values in the mid stance (parameter number 114) decreased in
osteopenia. This implies that there is no rotation of the z-axis in the mid stance. When the
absolute sum of values was 2.6 or higher, the risk decreased, and when the absolute sum of
values was 1.89 or lower, the risk increased, as shown in Table 13.

Table 13. Descriptive statistical parameters of osteopenia and sarcopenia. * indicates that the p-value
is less than 0.025, and ** indicates that the p-value is less than 0.001.

Osteopenia Sarcopenia

Parameter Osteopenia
Non-

Osteopenia
Shapley

Value
Parameter Sarcopenia

Non-
Sarcopenia

Shapley
Value

1 247 0.126 0.548 1.033 ** 430 2.748 3.797 0.921 **
2 114 1.892 2.613 0.312 ** 524 4.925 2.403 0.113 **
3 87 0.357 1.201 0.247 ** 51 0.813 0.463 0.189 **
4 218 5.671 7.065 0.200 ** 9 8.121 11.813 0.142 **
5 816 3.091 2.502 0.055 ** 270 16.417 13.079 0.304 **
6 206 1.926 2.089 0.119 * 457 −0.352 0.047 0.003 **
7 291 3.774 3.129 0.020 ** 231 1.532 0.891 0.002 **
8 21 35.175 29.313 0.023 ** 387 −0.17 0.042 0.002 **
9 169 3.563 2.823 0.032 ** 3 2.267 3.44 0.129 **

10 667 0.135 0.481 0.153 ** 97 −0.425 0.274 0.021 **

The inertial signals and SHAP dependence plots of the descriptive statistical param-
eters 430 and 524 of sarcopenia are shown in Figure 6. Here, the blue signal represents
sarcopenia, whereas the red signal represents non-sarcopenia. The maximum difference
between two successive values of accelerometer x in the loading response (parameter
number 430) was lower in the sarcopenia group than in the non-sarcopenia group. When
the maximum value was less than 2.74, the risk of sarcopenia increased; however, when
the maximum value was 3.79 or more, the risk of sarcopenia decreased. In the sarcopenia
group, the change in the acceleration was smooth. The absolute sum of gyro y values in
the mid stance (parameter number 524) increased in the sarcopenia group. As the absolute
sum value increased, the risk of sarcopenia increased.

The output for layer2, when the deep-learning-based XAI technique, LRP, Grad-CAM,
and Relevance-CAM were applied to ResNet50, is shown in Figure 7. In ResNet50, the
CAM technique shows low resolution in small-sized images because the feature map is
reduced in layer2. It is difficult to interpret the CAM results for ResNet50 with input sizes
of 100 horizontal and 36 vertical. Therefore, it is desirable to interpret ResNet results as LRP.
Figure 8 shows the analysis results of LRP for the ResNet of osteopenia and sarcopenia.
The LRP attention map of the osteopenia group had high values in 64~67 samples of the
acceleration x-axis of the right foot. Its position is the section where the acceleration value
rises after TO, and it is the same as the position in Figure 5a, the parameter-based SHAP
result. Osteopenia pays attention to changes in acceleration after TO in SHAP and LRP. The
LRP attention map of sarcopenia group has a high value at 99~100 positions of the right
acceleration x. The position is the section where HS occurs, and it is the same section as
Figure 6a. The result of paying attention to the various sections of the acceleration left is
similar to having a high identification result when used as various parameter inputs in
SHAP. The sarcopenia group pays attention to the HS section and the various sections of
the signal.
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(a)  (b)  

  

(c) (d)  

Figure 6. Inertial signals and SHAP dependence plots of descriptive statistical parameters 430 and
524 of sarcopenia. (a) Inertial signal 430. (b) Inertial signal 524. (c) SHAP dependence plot 430.
(d) SHAP dependence plot 524.

Figure 7. Layer2 result of applying LRP, Grad-CAM, and Relevance-CAM to ResNet50.
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(a)  

 
(b)  

Figure 8. Osteopenia and sarcopenia result of applying LRP to ResNet50. (a) LRP result of osteopenia.
(b) LRP result of sarcopenia.

5. Discussion

The objective of this study was to propose and evaluate a method that can utilize
the gait parameters obtained from a wearable device with an inertial sensor in the health
management of patients suffering from sarcopenia and osteopenia in daily life.

In the proposed method, the patient was identified using gait phase description-based
descriptive statistical parameters as the handcrafted feature-based machine learning input
and the original signal of the inertial sensor as the input for the deep learning algorithm.
For gait analysis, the identification results were analyzed using XAI tools, such as SHAP
and LRP. To verify the proposed gait analysis method, the results of functional tests and
questionnaires obtained at the hospital for participants, the results using the existing gait
parameters, and the results of the proposed method are discussed.

To identify osteopenia and sarcopenia, a decrease in walking speed and poor body
balance has been reported in previous studies. It has been reported that patients with
sarcopenia have a slower walking speed than those with osteopenia. The result of the 3 m
TUG was 11.71 s in the sarcopenia group and 10.96 s in the osteopenia group, indicating that
the walking speed was slower in the patients with sarcopenia. Except for TUG, statistical
significance was not obtained for the MMSE, MFS, SARC-F questionnaire, or BBS.

In gait analysis using inertial sensors, spatial–temporal parameters have traditionally
been used as tools to conveniently identify diseases such as Faller, PD, and THA in everyday
life. In this study, to identify patients with osteopenia and sarcopenia, 24 spatial–temporal
parameters used for conventional disease identification were detected, and descriptive
statistical parameters were detected to analyze the inertial sensor signals according to the
gait phase. Statistical significance was obtained for the stance phase, double support phase,
and single support phase percent in osteopenia, and SI in the stance and swing phase
in sarcopenia.
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With gait analysis using XAI, SHAP demonstrates the importance of parameters and
the positive/negative contribution of parameters to the classification results of machine
learning. To apply SHAP to machine learning classifiers, it is necessary to obtain a high
machine learning accuracy. Good classification results were obtained for osteopenia in
XGBoost and sarcopenia in RF. It has been reported that XGBoost has the advantage of
being the most accurate among tree-based classifiers, and RF has a strong advantage in
terms of overfitting. Comparing various machine learning results, osteopenia showed an
accuracy of lower than 70% and sarcopenia showed overfitting. Overfitting in sarcopenia
was inferred from the results of the deep learning model.

From the SHAP results of spatial–temporal parameters, single support phase percent
left, double support first phase percent left, double support first phase percent right, double
support first phase time left, and stance phase percent right were highly important for the
osteopenia group. In the sarcopenia group, double support first phase time left, stance
phase percent left, stance phase time SI, double support first phase percent left, and stance
phase percent right were found to be of high importance. The important parameters
obtained similar results to the statistical analysis; in osteopenia, the phase had a high
contribution, whereas in sarcopenia, SI had a high contribution. Double support first phase
time left and stance phase percent right showed a high contribution in both groups. The
double support first phase time decreased in the osteopenia group compared with that
in the sarcopenia group, and the stance phase percentage decreased. An increase in the
double support first phase time and an increase in the stance phase percentage indicate a
decrease in the walking speed. The time-related parameters were lower in the osteopenia
group than in the non-osteopenia group; therefore, it is difficult to identify the osteopenia
group based on walking speed. Sarcopenia significantly contributed to the reductions in
walking speed and balance parameters, as in the previous study results [1–3].

The accuracy of identification of osteopenia patients with spatial–temporal parameters,
which is the existing gait analysis parameter, was lower than 70%; thus, it was difficult to
analyze the results in SHAP. The inertial sensor had a high temporal resolution; therefore,
it was possible to obtain differences between groups by segmenting and analyzing the gait.
As a result of SHAP for 840 descriptive statistical parameters, a high contribution from
the skewness of the x-axis of the accelerometer in the initial swing phase (247) and the
absolute sum of values of gyro z in the mid stance (114) were observed for osteopenia. For
sarcopenia, the maximum difference between two successive values of accelerometer x in
loading response (430) and the absolute sum of values of gyro y in the mid stance (524)
showed a high contribution.

The descriptive statistical parameter 247 for osteopenia was smaller than that for
sarcopenia, and the low skewness of osteopenia is due to the rapid occurrence of the
maximum value of the acceleration x-axis after TO and a large negative value. This result
is related to the increase in the swing phase time. The descriptive statistical parameter
430 represents the change in acceleration, and its value of osteopenia is larger than that of
the sarcopenia group, implying that the gait speed of the sarcopenia group is slow because
the acceleration x is the walking direction. Parameters 114 and 524 are the absolute sum of
the gyro values in the mid stance. The absolute sum decreases in osteopenia indicating less
foot movement in the mid stance, as shown in Table 14.

The interpretation of results for LRP-based deep learning was similar to the results
of descriptive statistical parameter analysis based on SHAP. However, the reliability was
low due to the change in the attention map of the inertial sensor according to the learning
results of deep learning as a result of repeated experiments and low identification accuracy.
If high-accuracy identification results are obtained, it is expected that the inertial signal
characteristics of osteopenia and sarcopenia can be obtained using deep learning.

Functional tests and questionnaires conducted in the hospital were not statistically sig-
nificant, except for TUG in the sarcopenia group. Spatial–temporal parameters, which have
previously been used as gait parameters, showed statistical significance in the sarcopenia
group and the osteopenia group, but showed a low identification accuracy of 63% in the
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osteopenia group. The proposed descriptive statistical parameters obtained an accuracy of
76% or more, and the descriptive statistical parameters attributed similar meanings to the
results of the spatial–temporal parameters, had high statistical significance, and can be used
as a new clinical tool because the difference in parameter values between the osteopenia
and sarcopenia groups is remarkable. Descriptive statistical parameters can be used as
useful tools for patient identification and risk detection.

Table 14. Top 2 descriptive statistical parameters of osteopenia and sarcopenia.

Parameter Osteopenia Non-Osteopenia Sarcopenia Non-Sarcopenia

247 0.126 + 0.425 0.548 + 0.382 0.364 + 0.483 0.327 + 0.534
114 1.892 + 0.86 2.613 + 0.938 2.078 + 1.088 2.217 + 0.591
430 3.292 + 1.05 3.285 + 0.818 2.748 + 0.833 3.797 + 0.813
524 3.317 + 2.098 4.297 + 4.873 4.925 + 3.479 2.403 + 0.473

6. Conclusions

The inertial-sensor-based gait signal was acquired and analyzed for patients with
osteopenia and sarcopenia. Spatial–temporal parameters used in conventional clinical
evaluation and diagnosis are effective tools for understanding gait. However, they have
poor temporal resolution and do not include the function of kinematic signals during the
gait cycle. Therefore, the inertial sensor data can obtain descriptive statistical parameters
for each gait phase.

For analyzing the patients and control groups, parameters can be statistically analyzed
or analyzed through machine-learning-based XAI. To apply XAI, high-accuracy machine
learning is required; thus, useful parameters obtained from parameter analysis are used to
increase the accuracy of machine learning. Therefore, parameter interpretation is important
for patient identification and risk estimation. As a machine learning algorithm, XGBoost
for osteopenia and RF for sarcopenia showed high performance, whereas for deep learning,
ResNet50, which transfer-learned a human identification model, achieved high accuracy.
For the analysis of gait parameters, SHAP was applied to the machine learning model to
detect the importance and contribution of the parameters. Unlike Gini and permutation
importance, SHAP has advantages of lowering the importance of a parameter when there
are similar characteristics between the high-importance parameters. When deep learning
identifies patient, the attention map of the inertial sensor signal was analyzed using LRP.

Analyzing the signal of the inertial sensor through XAI, we can diagnose and manage
osteopenia and sarcopenia in daily life using a smart insole rather than an expensive clinical
tool because the inertial sensor signal contains abundant information on gait. Although the
number of participants in this study was extremely small to enable fully understanding
the gait characteristics of osteopenia and sarcopenia, the proposed method is effective
in analyzing osteopenia and sarcopenia. Therefore, in future studies, additional clinical
evaluations will be performed to obtain and analyze many patients and segment data
according to sex, age, and dominant leg.
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Appendix A

Table A1. Abbreviations.

Abbreviations Raw Abbreviations Raw

XAI eXplainable Artificial
Intelligence LDA Linear Discriminant Analysis

BMD Bone Mineral Density NB Naïve Bayes
SD Standard Deviation k-NN k-Nearest Neighbor

DEXA Dual-Energy X-ray
Absorptiometry SVM Support Vector Machines

PD Parkinson’s Diseases RBF Radial Basis Function
THA Total Hip Arthroplasty DT Decision Tree
IMU Inertial Measurement Unit XGBoost Extreme Gradient Boosting
HS Heel Strike HMM Hidden Markov Model
TO Toe Off RF Random Forest

LIME Local Interpretable
Model-agnostic Explanations ANN Artificial Neural Network

SHAP SHapley Additive
exPlanations CNN Convolutional Neural

Network
SMI Skeletal Muscle mass Index LSTM Long Short-Term Memory

MMSE Mini-Mental State
Examination ResNet Residual neural Network

MFS Mores Fall Scale GAP Global Average Pooling
TUG Timed Up and Go FC Fully Connected

BBS Berg Balance Scale LRP Layer-wise Relevance
Propagation

ROM Range of Motion CAM Class Activation Mapping
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Abstract: The paper proposes a comparative analysis of the projection matrices and dictionaries used
for compressive sensing (CS) of electrocardiographic signals (ECG), highlighting the compromises
between the complexity of preprocessing and the accuracy of reconstruction. Starting from the
basic notions of CS theory, this paper proposes the construction of dictionaries (constructed directly
by cardiac patterns with R-waves, centered or not-centered) specific to the application and the
results of their testing. Several types of projection matrices are also analyzed and discussed. The
reconstructed signals are analyzed quantitatively and qualitatively by standard distortion measures
and by the classification of the reconstructed signals. We used a k-nearest neighbors (KNN) classifier
to evaluate the reconstructed models. The KNN module was trained with the models from the
mega-dictionary used in the classification block and tested with the models reconstructed with
class-specific dictionaries. In addition to the KNN classifier, a neural network was used to test the
reconstructed signals. The neural network was a multilayer perceptron (MLP). Moreover, the results
are compared with those obtained with other compression methods, and ours proved to be superior.

Keywords: compressed sensing; ECG signal; reconstruction dictionaries; projection matrices; sig-
nal classifications

1. Introduction

Compressed sensing (CS) is a method of signals acquisition and processing based on
the fact that sparse or rare signals can be reconstructed from a relatively small number
of projections on a set of random signals [1]. This technique is relatively new compared
to classical techniques, so in recent years, a large number of papers on implementation,
applicability, advantages and the pertinence to dedicated types of signals have been pub-
lished [2–12].

Many of the papers that address CS focus on how to build specific dictionaries for
signal reconstruction [13–26]. In the case of the ECG signal, due to its particularities, namely,
the quasi-periodicity of the P, Q, R and S waves and the preservation of their shapes, many
of the methods proposed in the literature focus on the advantages offered by these features
specific to the ECG signal [27–37]. Thus, a large part of the methods proposed regarding CS
of ECG signals aim at building dictionaries specific to these signals. In many cases, building
these dictionaries involves a preprocessing step with or without signal segmentation, with
or without QRS wave alignment. Another aspect regarding CS applied to ECG signals is
the optimization of the compression matrix.

In the following lines, we will briefly present some specific ECG methods proposed
in the literature over the past years, which contain results similar to the methods we
presented in this paper, except for the fact of using patient-specific dictionaries or involving
updating the dictionary when there are changes in the ECG signal. In general, there is a
big inconvenience in the situation of using such a system in practice, because it involves
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resubmitting the dictionary and necessary calculations in real time to see if the dictionary
is good or needs to be updated. All these calculations imply additional hardware needs,
which can make the method less practical in real-time acquisition situations. On the other
hand, our approach is based on the use of non-modified patient-specific dictionaries or
pathology-specific dictionaries; these are established once and updating can be done less
frequently than in other techniques and does not require real-time decisions.

In one paper [33], the presented method uses an over complete wavelet dictionary, a
dictionary that is later reduced due to a training phase. In addition, it is proposed to align
the beats according to the position of the R-peak. This alignment aims to exploit the different
scaling characteristics of ECG waves in the wavelet dictionary optimization process. Three
different methods are tested for dictionary optimization. It should be mentioned that this
optimized dictionary is specific to the patient and for its construction, the first 5 minutes
of registration are taken. For acquisition, the authors use a matrix optimized for the ECG
signal to be acquired through CS. The use of an optimized compression matrix leads to
improved results, but has the disadvantage that once this matrix is changed it must be sent
together with the compressed ECG signal. That means both the compressed ECG signal
and the compression matrix must be sent to restore the ECG signal.

Another approach is presented in [34], where the quasi-periodic character of the ECG
signal is used to detect similarities between ECG pulses and to transmit segments that
show dissimilarities normally, without compression. This approach is proposed because
abnormal frames, which could be signs of heart disease, are not similar to normal frames.
Thus, only the ECG segments considered normal are transmitted by CS, the rest being
transmitted normally. Once it is determined, whether the heartbeat is acquired normally or
by CS, a quantization step follows and then a Huffman compression. These two steps lead
to improved compression results. A critical point in the method is the correct detection of
normal vs. abnormal beats, because this automated detection is debatable in the light of
the fact that normality or abnormality is determined by a cardiologist and the accuracy of
the acquisition should not be influenced by this decision.

In paper [35], the authors also used CS associated to dictionaries built specifically for
the ECG signal, thus using the dictionary learning technique to construct a better sparsifying
basis to improve the compression ratio. Moreover, the authors consider the change of ECG
signal characteristics and propose a physiological variation detection technique and a
low-complexity dictionary refreshing algorithm to update the dictionary from time to time
when the current dictionary is no longer suitable for the patient.

Many papers in the CS field focus on optimizing the measurement matrix, i.e., the
matrix is used in the acquisition stage or on optimizing the necessary calculations in this
stage by arranging this matrix in a way that allows easy hardware implementation of the
necessary calculations. In practical implementations, the simple random or Bernoulli matrix
may have the inconvenience of the required number of operations. Thus, in paper [36], the
authors propose an optimized algorithm for collecting the compressed ECG signal, based
on the proposed optimization of a deterministic binary block diagonal matrix. The blocks,
which make up the diagonal of the matrix, are identical and contain m = N/M elements
each, where M and N, respectively, represent the number of rows and columns.

In paper [37], a new method of compressive sampling of ECG signals is presented,
which is based on the idea of building the compression matrix adapted to the frame of
the ECG signal to be compressed. Thus, a circulating matrix is proposed, containing
zeros and ones, obtained by quantizing (with 1-bit resolution) the size of the ECG signal.
The detection matrix adapted in this way guarantees that the significant portions of the
waveform of the compressed ECG signal are in fact contained in the compressed version.
In this way, a more precise reconstruction is guaranteed in relation to the methods already
available in the literature. For the reconstruction stage, the acquisition matrix is then used
in combination with a modified wavelet dictionary, which also allows the reconstruction of
the signal deviation for each processed frame. The big disadvantage of the method is that
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whenever the acquisition matrix has to be updated, it has to be sent to the receivers and for
reconstruction we have to know each frame with which matrix was collected.

In this paper, we propose a detailed comparative study of two different approaches
regarding the possibility of compressed sensing specific ECG signals. This study considers
several acquisition techniques/projection matrices used in the acquisition stage and several
dictionaries used in the ECG signal reconstruction stage. We will also analyze the effect of
preprocessing on the results.

Broadly speaking, we analyze and discuss two CS approaches dedicated to ECG
signals, namely:

1. An approach that is based on the direct CS obtaining of the signal, without prepro-
cessing it prior acquiring the projections. This “genuine” CS we call patient-specific
classical compressed sensing (PSCCS), since the dictionary is constructed from a
patient’s initial signals.

2. A variant that involves a module of pre-processing and segmentation of the ECG
signal. This stage aims at improving the scatter and recoverability of the ECG signal.
In this additional stage of preprocessing, the ECG signal results in the rhythmiciza-
tion of the ECG signal and divides it into cardiac cycles—hereinafter referred to as
cardiac patterns compressed sensing (CPCS). Now the acquired signals and atoms
of dictionary are segmented heartbeats pre-processed without or with the R-waves
centered.

For both approaches from above, we will analyze several projection matrices, namely,
matrices with random independent and identically distributed (i.i.d.) elements taken from
the Gaussian or Bernoulli distribution and project matrices optimized for the particular
dictionary used in the reconstruction. To optimize the projection matrix, the method
presented in [7] will be used.

Furthermore, we will pay special attention to the way the dictionary is built. We will
also present the advantages and disadvantages of each and the choice of the method that
depends on the available hardware and software resources.

The paper is organized as follows: Section 2 is dedicated to the types of sampling
vectors, projection matrices and dictionary construction methods. Section 3 presents the CS
methods dedicated to ECG signals. Section 4 shows the results obtained. In Section 5 the
results from the previous section are compared and in Section 6 conclusions are drawn.

2. Compressed Sensed Overview

Traditionally, signals are acquired according to the sampling theorem [8] that states
that an f0-bandlimited signal can be recovered from its samples if the sampling frequency
is at least 2 f0, i.e., twice the highest frequency of the signal spectrum. Thus, in a time
window W, an f0-bandlimited analog signal can be represented by N = 2 f0 W samples
equally spaced at T = 1/2 f0, i.e., as a vector belonging to the space RN. Such a signal can
be alternatively defined by using any complete set of orthogonal functions in RN. In fact,
sampling is nothing else than taking projections (scalar products) on the elements of the
canonical basis. In the general case the signal can be reconstructed from its projections on N
orthogonal (or only linear independent) elements in RN the canonical basis being the most
frequently used. However, in practice, there are cases in which a signal can be reconstructed
from fewer samples or projections on an appropriate set of signals, compared to the number
prescribed by the sampling theorem. This is possible since the samples contain unnecessary
information, and thus, these signals can be compressed and recovered using projections and
previous known information. An example would be the class of sparse or rare signals [9–11]
that allow a representation based on a small number of elements/atoms in RN. In signal
processing literature, the name “k-sparse” denotes signals that can be reconstructed by
means of k of elements of RN, the most significant situation being that in which k<<N. A
discrete signal or vector x ∈ RN is k-sparse if there exists a base Ψ = {Ψi, i = 1, . . . , N} in
RN so that most of the elements α = {αi, i = 1, . . . , N} of its representation in that basis,
x = Ψα, are zero. Alternatively, they can be approximately zero, so that the signal can be
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represented accurate enough with the k’s largest terms αi from its expansion with respect to
that basis. The CS concept is based on theory that a k-sparse signal, i.e., a signal that can be
compressed into a base (or, more general, dictionary) Ψ can be recuperated with very good
quality from a number m of the order of scale m = O(k log(N/k)) of non-adaptive linear
projections on a set of vectors Φ, which are not comprehensible with the first, i.e., their
elements cannot be used for a compressed representation of any Ψi, i = 1, . . . , N. Therefore,
for obtaining the measurement signal instead of measuring the N components of the signal
in the canonic base, a number of m (k < m << N) linear projections on the elements of the
matrix ΦN∗m are acquired:

y = Φx = ΦΨα = Θα (1)

where the measurement noise was not taken into account. If we use as a projection matrix
(noted with Φ) a matrix with dimensions mxN, with m < N, then it means that we will make
a number of m measurements, each measurement of size N. That is, the vectors on which x
is projected represent the rows of the projection matrix.

The main idea regarding (1) is that, because m < N, the rebuilding of the original
signal cannot be realized, but only under the compressibility hypothesis. It has been shown
that if Φ and Ψ satisfy certain conditions, the original vector α can be obtained as the unique
result to the optimization problem:

α̂ = argmin‖α‖l0 subject to y = ΦΨα, (2)

where l0 is the (pseudo)norm consisting of the number of nonzero entries of α.
The reconstructed signal has the form:

x̂ = Ψα̂ (3)

corresponding to the sparsest representation of y in terms of the dictionary ΦΨ. To circum-
vent the problems of combinatorial nature and noise effect in the case of almost sparse
signals, two directions evolved:

(i) seeking for a suboptimal solution of problem (2) and
(ii) using the Basis Pursuit (BP) procedure [1] that consists of replacing l0 with l1 mini-

mization, by resolving problem (4) instead of the initial one:

α̂ = argαmin‖α‖l1 subject to y = ΦΨα (4)

Let us stress the fact that although pure sparse signals (built of exactly k<<N atoms
from a specified dictionary) are difficult to find, conventional results are valid for signals
that are “almost sparse” (which can be built of k<<N non-negligible atoms) with respect to
dictionaries that can be overcomplete (contain more atoms than their intrinsic dimension),
as in the case of some classes of biomedical signals. Taking into consideration this fact, it
has been found useful to adapt the theory of CS to the field of processing ECG and elec-
troencephalographic (EEG) signals [2–4] as well as for applications [5] such as compression,
transmission, reconstruction of ECG signals, ECG filtering and monitoring [6,27,30–32].

For a better understanding of the algorithm, in the following we present a pseudocode
summary.
INPUTS: ORIGINAL SIGNAL = x

Acquisition Stage:
Step 1: Compute random measurements
y = Φx, where Φ is a MxN matrix of random independent and identically distributed

(i.i.d.) entries.
Reconstruction Stage:
Step 2: Compute α coefficients using L1 minimization
α̂ = argαmin‖α‖l1 subject to y = ΦΨα
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Step 3: Reconstruct original signal x′
x′ = αΨ

OUTPUTS: RECONSTRUCTED SIGNAL = x′

3. Sample Vectors, Projection Matrices and Dictionaries

Here, we briefly show several ways of segmentation, a couple of projection matrices,
as well as some several ways of building various types of dictionaries specific to the ECG
signal. Depending on the chosen CS method, the way of building the dictionary which is
used to reconstruct the ECG signal is different.

3.1. Sample Vectors

First of all, let us mention that we will refer to ECG signals with a sampling frequency
according to the Nyquist–Shannon sampling theorem of 360 Hz and 300 (or 301 for case
with R-wave centered) samples/vector, respectively. Each vector is projected on a number
of random vectors with identic size and the obtained values are utilized for recovering
through a dictionary.

In the simplest way, the first 300 samples of the ECG signal set up the first vector; then,
the succeeding 300 samples form the second vector, etc. The place of the R-wave can be
anywhere in a vector or it may be missing sometimes, which is, obviously, not desirable.

In order to take advantage of the cyclicity of the ECG signal and of the changes pro-
duced on the ECG signal in case of some diseases, we proposed some modified acquisition
techniques that requires preprocessing [13–16]. Thus, samples of the ECG signal are stored
in a buffer zone and a series of preprocessing can be performed on these stored signals.
The R-waves can be detected, and based on them, the ECG signal can be segmented into
cardiac patterns. A cardiac pattern is delimited by the halves of the RR intervals of two
adjacent intervals and re-sampled by interpolation so that the pattern has a fixed number
of 301 samples. The above segmentation and preprocessing technique contain simple
calculations and, as will be presented, notably increases results for the compression and
reconstruction processes.

Starting from the method described above, an improvement of the cardiac model
can be obtained by centering the R-wave on sample 151. Thus, a resampling to the left
of the R-wave will be performed and another resampling to the right of the R-wave and
the final cardiac model will have 301 samples with the R-wave centered. This alignment
of the R-wave can be a reversible process, provided that the reduction/stretch ratio from
left to right is known. To make a much clearer picture of the re-sampling and alignment
effect, we provide in the following examples of unfocused (misaligned) heartbeats and the
same cycles prepared to be aligned. These segments constitute atoms in the dictionary or
preprocessed sample vectors.

Figure 1 shows examples of cardiac models with and without a centered R-wave.
In conclusion, the sampling vectors and the atoms of the dictionary can be: (i) un-

processed or pre-processed through segmentation and resampling or (ii) segmented and
resampled with a centered R-wave.

3.2. Projection Matrices

A key element in the CS method is the projection matrix for the acquisition of the ECG
signal. The reconstruction quality of the ECG signal is considerably decided by the kind of
the matrix used in the compression stage [7,9,10,13].

Moreover, the number of random vectors (and respectively the number of calculated
scalar products) considered is based on the tolerated tradeoff between the compression
ratio and the reconstruction error: thus, the compression ratio is directly related to the
reconstruction error.

In Section 3, we will analyze and determine which is a stop ratio and we will determine
in the case of our ECG signals how many projections we need for a good ECG compression.
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(a) (b) 

Figure 1. Examples of cardiac patterns obtained by centered or non-centered R-wave: (a) Cardiac
patterns with a centered R-wave; (b) Cardiac patterns without a centered R-wave.

In the following, we use and discuss three types of projection matrices.

• As so far shown in Introduction and CS theory, projecting on a matrix Φ results in a
system. A simple approach is to use as Φ a random matrix with i.i.d. normal elements.
Nevertheless, this matrix has a higher Restricted Isometry Property (RIP) constant
and, thus, it is inappropriate for reconstruction [7].

• Another possibility is to build a projection matrix specific to the dictionary used in the
reconstruction phase. Thus, we can define such a matrix as a product of the random
matrix and the transposition of a square matrix containing an arbitrary selection of
N dictionary atoms [7]. In this way, the reconstruction errors will be smaller. In the
tables with results, we denote this matrix with “Random * Dict †”.

• A third possibility of projection matrix analyzed in this paper is the Bernoulli type
matrix built only of elements of 0s and 1s, with symmetric distribution (half of the
inputs of a row are created with the Bernoulli distribution and the other half reversing
the first half) [14]. The advantage of this matrix is the low computational complexity,
and thus, saving of IT resources.

In this paper, we examine the consequence of these three types of projection matrices
on various dictionaries.

3.3. Dictionaries

Using standard Discrete Cosinus/Sinus Transform (DCT/DST), Wavelet or other typi-
cal dictionaries is not always the best choice if we are referring to ECG signal reconstruction
errors [15]. Thus, we will analyze the use of dictionaries dedicated to ECG signals, dictio-
naries that can be specific to the patient, specific to the pathology or universal. The way
dictionaries are built is closely related to the segmentation methods of the ECG signals
presented above. Thus, concerning the preprocessing stage, we used dictionaries with
three types of atoms: (1) Unprocessed (patient-specific only) and processed atoms; (2) Seg-
mented atoms; (3) Segmented plus R-wave centered. The last two types contain either
patient-specific beats, or normal beats and/or seven types of pathological beats.

3.3.1. Patient-Specific Dictionaries

In order to build patient-specific dictionaries, we used the first minutes of each pa-
tient’s record and then the rest of the ECG signal was used for testing. Thus, the atoms
represent ECG segments of size 300, successive segments of vectors, without any processing.
In our studies, such dictionaries were constructed (only) from the first few minutes of the
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patient’s records (patient-specific dictionary), the atoms being further used for CS with
various projection matrices.

In order to maintain uniformity in the size of the dictionaries, we chose to build
patient-specific dictionaries of 700 atoms, each atom having a size of 300. A size of 300 for
atoms was determined considering the sampling frequency (360 Hz) and the average beat
frequency heart rate (~70 beats/min for normal patients). In this way, the dictionary is
actually a matrix with a size of 300 × 700. We highlight that the atoms of the dictionary were
aleatory sequences of the ECG recording, and therefore, the R-wave can appear anywhere
in the 300 samples or even be missing (not a happy case).

We note that besides the simplicity of the ECG signal segmentation method, another
advantage is the capture of the specificity of the patient’s ECG particularities in the moment
the recording has started.

An improved version of the method is to preprocess the ECG segments to build the
dictionary. Thus, segmentation can be performed by detecting heartbeats (i.e., R-waves)
and then the R-wave centers. Therefore, patient-specific dictionaries can be constructed
without or with preprocessing for R-wave alignment. However, in all cases, the first portion
of an ECG recording is used to construct the dictionary, while the rest of the signal (the
unused part in the dictionary) was used in the testing techniques.

The next two types of dictionaries contain only atoms obtained through segmentation,
normalized to 301 elements with or without a centered R-wave.

3.3.2. Universal Mega-Dictionaries

The mega-dictionary used consists of 1472 atoms (i.e., 184 beats from each of the
8 classes discussed, 7 pathological and the normal beat class). Depending on the prepro-
cessing tested, the atoms of the dictionary may or may not have a centered R-wave.

3.3.3. Pathology-Specific Dictionaries

When the reconstruction stage considers the pathologic class that the cardiac beat
belongs to, a particular or specific dictionary has been constructed for each pathological
class. Because the ECG recordings include heartbeats from several pathological classes, we
tested the variant in which, for each pathological class, we made a specific dictionary. Thus,
analyzing 7 pathological classes and the normal class, we built 8 dictionaries, each with
700 atoms specific to each class. Atoms may or may not have a centered R-wave. Thus,
we note that the number of atoms in each of the dictionaries is higher than the number of
atoms related to a certain pathology contained in the mega-dictionary.

4. Proposed Methods for Dictionary-Based ECG Compression

In the Introduction, we talked about the presentation of two totally different methods
of CS specific to ECG signals, but both have in common the need of building specific
dictionaries. However, the use of ECG signal characteristics and how to build dictionaries
differ remarkably.

Thus, the PSCCS method is based on ECG signal specific features of each patient,
while CPCS on the cyclical patterns of the heartbeat.

In the next subsection, we present two methods for CS of ECG signals with some
dissimilarity associated to the projection matrices.

4.1. Patient-Specific Classical Compressed Sensing—PSCCS

A first variant of compressed acquisition of the ECG signal is presented in Figure 2. It
can be implemented even on hardware system and involves the compressed collection of
the ECG signal using the CS technique and a patient-specific dictionary together with the
Basis Pursuit technique [14].
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Figure 2. Principle of the PSCCS method.

In this method, the compression of the ECG signal involves the classic use of the CS
technique, without any additional signal processing. The advantage of the method is that
it speculates on the specific features of the patient. Another advantage is the reduced
complexity equal to that of the traditional CS algorithm. The particularity of this procedure
is the need for a classic 6-minute ECG acquisition to build the dictionary. In order to obtain
improved results, the dictionary can be upgraded in case of long recordings or in case the
patient has undergone changes on the ECG signal from one recording to another.

4.2. Cardiac Patterns Compressed Sensing—CPCS

Below, we present a different approach from the classic CS, which involves a prepro-
cessing stage used both for segmentation of the ECG signal for compressed acquisition and
for building useful dictionaries in the signal reconstruction stage.

Figure 3 shows the block diagram of the method. As we can see, at the level of the
reconstruction stage there are two approaches, namely, a way of reconstruction using a
mega-dictionary or another variant in which dictionaries specific to pathologies are used.
The first two operations are common to both approaches and are colored in yellow in the
block diagram.
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Figure 3. Block diagram of the CSCP method, using the mega-dictionary and/or a pathology-
specific dictionary.

The upper branch of the block scheme, colored in green, is for the version with the
universal mega-dictionary and the lower part of the figure, colored in blue, is for the version
with dictionaries specific to pathologies.
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In the case of reconstruction with dictionaries specific to pathologies, it is necessary
to know the pathological class to which each cardiac pattern belongs. Therefore, it is
necessary to classify the heartbeats. One option is to use a KNN classifier or any other
classifier trained with various compressed beats [15,17]. Another option for classifying
the heartbeats is a first reconstruction with the mega-dictionary on the upper branch of
Figure 3 and the analysis of alpha coefficients corresponding to the mega-dictionary, i.e.,
the pathological class associated with the heartbeats is the same as the class in which the
atom in the mega-dictionary with the highest coefficient belongs at reconstruction with the
BP algorithm. Once the pathological class is established, the final reconstruction will be
performed with the dictionary specific to that pathology [16].

For the classification of the ECG pattern and the establishment of the dictionary with
which the signal will be reconstructed, the KNN classifier trained with the compressed
version of the heartbeat from the universal mega-dictionary can be used.

Thus, a first step is to establish the class of the pattern. For this, we will use the KNN
classifier based on the highest coefficient corresponding to the mega-dictionary, shown in
light blue in Figure 3. Once the membership class is established, the Basis Pursuit algorithm
together with the calculation of α coefficients necessary for the reconstruction of the ECG
pattern are used. In addition, the almost insignificant distortions due to the centering of
the R-wave can be improved by means of the knowledge about the original location of the
R-wave.

4.3. Acceptance of the Compression Methods

To evaluate the compression and reconstruction performances, we assess the distortion
between the original and the reconstructed signals by standard PRD and PRDN measures.
Most ECG compression algorithms in the literature evaluate the errors using the percentage
root-mean-square difference (PRD) measure and its normalized version, PRDN, defined as:

PRD% = 100

√√√√√√√√
N
∑

n=1
(x(n)− x̃(n))2

N
∑

n=1
x2(n)

and:

PRDN% = 100

√√√√√√√√
N
∑

n=1
(x(n)− x̃(n))2

N
∑

n=1
(x(n)− x)2

where x(n) and x̃(n) are the samples of the original and the reconstructed signals, respec-
tively, x is the mean value of the original signal and N is the length of the window over
which the PRD is calculated.

For the evaluation of the compression, we used the compression rate (CR) defined
as the ratio between the number of bits needed to represent the original and the com-
pressed signal:

CR =
borig

bcomp

where borig and bcomp represent the number of the bits required for the original and com-
pressed signals, respectively.

We also used an alternative measure defined in [19], the Quality Score (QS), which is
the ratio between the CR and the PRD:

QS =
CR

PRD
.
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In addition to the quantitative measure related to the reconstruction of ECG signals,
we also used a qualitative evaluation of the signals by classifying them. For classification,
we used the KNN classifier. Thus, in the CPCS method version with a pathology-specific
dictionary, in order to estimate the signal classification ratio in one of the eight possible
classes, we used a KNN classifier to evaluate the reconstructed models. We mention that
the KNN was trained with the models from the mega-dictionary used in the classification
block (models that were not subjected to compression with the known class for each atom)
and tested with the models reconstructed with class-specific dictionaries.

In addition to the KNN classifier, a neural network was used to test the reconstructed
signals. The neural network was a multilayer perceptron (MLP) with 10 neurons in the
hidden layer with backpropagation gradient descent for training.

However, the final verdict on the fidelity and clinical acceptability of the reconstructed
signal should be validated by visual inspection by the cardiologist.

5. Experimental Results

In this study, we used 24 ECG recordings from the MIT-BIH Arrhythmia database
acquired at a sampling frequency of 360 Hz, with 11 bits/sample [18]. Besides the ECG
signals, the database also includes annotation files containing the index of the R-wave and
the class to which each ECG pattern belongs.

In the CPCS method, we used the annotation databases in the preprocessing step
(segmentation of cardiac cycles and forming of dictionaries) and in the reconstructed signal
validation phase (KNN classifier-training stage).

The PSCCS technique used only the ECG signals from the MIT-BIH database, without
requiring additional knowledge (ECG annotated files).

5.1. Results for the Patient-Specific Classical Compressed Sensing (PSCCS) Method

To test the PSCCS procedure, we used several compression ratios, namely, 4:1, 10:1 and
15:1. We also used several types of projection matrices (Bernoulli, Gaussian distribution
random and dictionary specifics). The data used are 24 records from the MIT-BIH Database.
In Table 1, we present the average results for 24 ECG records.

Table 1. Average results for 24 ECG records processed with the PSCCS method.

Projection Matrix and Its Size CR AVG. PRD AVG. PRDN QS

Gaussian distribution Random * Dict † 4:1 0.31 6.47 12.9
Bernoulli with 0 and 1 (75 × 300) 4:1 0.41 7.96 9.75

Gaussian distribution Random (75 × 300) 4:1 0.43 8.56 9.30

Gaussian distribution Random * Dict † 10:1 0.67 13.42 14.92
Bernoulli with 0 and 1 (30 × 300) 10:1 0.81 15.49 12.34

Gaussian distribution Random (30 × 300) 10:1 0.82 16.48 12.19

Gaussian distribution Random * Dict † 15:1 0.97 21.31 15.46
Bernoulli with 0 and 1 (20 × 300) 15:1 1.31 23.28 11.45

Gaussian distribution Random (20 × 300) 15:1 1.13 25.37 13.27

In addition to the average results reported for the MIT-BIH database, a number of
authors reported the results for record no. 117 (in Table 2), which is why we will report
these results as well.
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Table 2. Results for the 117 records processed with the PSCCS method.

Projection Matrix and Its Size CR AVG. PRD AVG. PRDN QS

Gaussian distribution Random * Dict † 4:1 0.19 4.69 21.05
Bernoulli with 0 and 1 (75 × 300) 4:1 0.40 7.20 10

Gaussian distribution Random (75 × 300) 4:1 0.45 8.12 8.88

Gaussian distribution Random * Dict † 10:1 0.45 11.19 22.22
Bernoulli with 0 and 1 (30 × 300) 10:1 0.70 12.67 14.28

Gaussian distribution Random (30 × 300) 10:1 0.73 13.21 13.69

Gaussian distribution Random * Dict † 15:1 0.63 15.61 23.80
Bernoulli with 0 and 1 (20 × 300) 15:1 0.96 17.28 15.62

Gaussian distribution Random (20 × 300) 15:1 1.01 18.24 14.85

In Figure 4a, we present a part of the registration no. 117 in the initial version and its
version reconstructed following the compression of 4:1, 10:1 and 15:1 for the application of
a Bernoulli type projection matrix. It is observed that for CR = 15:1, especially in the noisy
region (sample from 2000 to 2200), there are some visible reconstruction differences due to
this noise. There are no significant differences in the rest of the signal.

 
 

(a) (b) 

Figure 4. Original (blue) and reconstruct (red) ECG signal with PSCCS method (registration no. 117):
(a) for CR 4:1, 10:1 and 15:1 with a Bernoulli projection matrix; (b) for CR 10:1 with random projection
(Gaussian distribution).

In Figure 4b, we also present from the recording 117 an original ECG signal segment
and its variant reconstructed subject to a CR = 10:1 (for random projection matrix with
Gaussian distribution). The segment shown is the segment with the highest noise in the
entire recording. In this way, we wanted to highlight the robustness of the method to noise
and artifacts due to the patient’s movement and breathing.

The results obtained on 14 ECG signals, for a compression ratio of 15:1, for centered
and non-centered R-wave are shown in Table 3. We used the KNN and MLP algorithm for
the evaluation by classification.
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Table 3. Average results for 14 ECG records with the PSCCS method.

Projection Matrix and Its Size CR AVG. PRD AVG. PRDN
Classif. Rate
with KNN

Classif. Rate
with MLP

Patient-specific dictionary with a non-centered R-wave

Gaussian distribution Random * Dict † (20 × 301) 15:1 0.78 11.98 92.24% 93.7%
Bernoulli with 0 and 1 (20 × 301) 15:1 0.94 16.06 84.71% 86.2%

Gaussian distribution Random (20 × 301) 15:1 0.82 13.82 91.14% 93.4%
Patient-specific dictionary with a centered R-wave

Gaussian distribution Random * Dict † (20 × 301) 15:1 0.51 9 93.41% 95.2%
Bernoulli with 0 and 1 (20 × 301) 15:1 0.71 12.4 88.06% 90.3%

Gaussian distribution Random (20 × 301) 15:1 0.72 12.51 89.70% 91.6%

The KNN and MLP classifiers were trained with normal and abnormal heart beats
evenly distributed on both classes. The beats used to train the classifier were extracted from
the dictionary constructed for the compressed acquisition. In this case, the classification
was on two classes, normal or abnormal, and it did not follow the seven pathological
classes.

The advantage of the KNN classifier is the simplicity of the calculations, this classifier
assuming only the calculation of some Euclidean distances. In the case of MLP networks,
the calculations are more complex, but the results are better compared to the KNN classifier.

5.2. Results for the Cardiac Patterns Compressed Sensing (CPCS) Method
5.2.1. Universal Mega-Dictionary

For the construction of a mega-dictionary, from all the 24 ECG recordings, we randomly
chose 184 patterns from the 8 cardiac classes, thus obtaining a dictionary with 1472 patterns
with the size 1472 × 301.

The testing was performed on 200 patterns from each class, chosen at random from
the 24 records, with the mention that special attention was paid to random choice, namely,
the models used to build the dictionary could no longer be used for testing.

Table 4 shows the average results obtained on all 24 records, with R-wave alignment
and centering and without R-wave centering, for all the projection matrices presented.

Table 4. Average results for 24 ECG records processed with the CSCP method with the mega dictionary.

Projection matrix and Its Size CR AVG. PRD AVG. PRDN QS

Mega-dictionary with a non-centered R-waves

Gaussian distribution Random * Dict † 15:1 0.88 13.67 17.04
Bernoulli with 0 and 1 (20 × 301) 15:1 1.44 21.43 10.41

Gaussian distribution Random (20 × 301) 15:1 1.62 24.33 9.25

Mega-dictionary with a centered R-waves

Gaussian distribution Random * Dict † 15:1 0.67 9.99 22.38
Bernoulli with 0 and 1 (20 × 301) 15:1 1.08 15.47 13.88

Gaussian distribution Random (20 × 301) 15:1 1.19 17.18 12.60

5.2.2. Pathology-Specific Dictionaries

Each of the eight pathology-specific dictionaries is made up of 700 atoms that actually
represent patterns with or without a centered R-waves. Dictionaries are matrices of size
700 × 301.

For testing, we used a number of 2000 cardiac patterns chosen at random from the
24 records with the mention that the patterns used for testing are different from those used
for training (see Table 5).
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Table 5. Average results for 24 ECG records for CSCP method with a specific dictionary and classifi-
cation based on the largest coefficient of the sparsest decomposition for the mega-dictionary.

Projection Matrix and Its Size CR AVG. PRD AVG. PRDN QS

Pathological specific dictionaries with a non-centered R-wave

Gaussian distribution Random * Dict † 15:1 0.77 11.76 19.48
Bernoulli with 0 and 1 (20 × 301) 15:1 1.23 17.90 12.19

Gaussian distribution Random (20 × 301) 15:1 1.37 20.25 10.94

Pathological specific dictionaries with a centered R-wave

Gaussian distribution Random * Dict † 15:1 0.62 6.14 24.19
Bernoulli with 0 and 1 (20 × 301) 15:1 0.97 13.93 15.46

Gaussian distribution Random (20 × 301) 15:1 1.04 14.80 14.42

In this variant, with dictionaries specific to the pathological class, in the reconstruction
stage, it is necessary to identify the class to which the pattern belongs. The reconstruction
results are strongly influenced by the correctness of establishing the pathological class to
which the model belongs. Thus, for patterns classification, a KNN type classifier will be
used or it will be made based on the highest alpha coefficient. Once the pathological class
is established, the Basis Pursuit algorithm, the dictionary specific to that pathology and the
projection matrix will be used for reconstruction.

Thus, using the classification of patterns based on the highest alpha coefficient in the
mega-dictionary version, a pattern classification rate of 88.75% is obtained [16]. Using the
KNN classifier with training on 1472 compressed cardiac patterns (uniformly distributed
in the eight classes), a classification rate of 93.77% is obtained [15].

In Figure 5, we present examples of reconstructed cardiac beats for every pathol-
ogy class.

Qualitative estimation of reconstructed signals based on classification. In addition to
the quantitative measures of the distortions between the original and reconstructed ECG
signals, for a further verification of the quality of the proposed compression scheme, we
performed a classification of reconstituted models with the KNN algorithm. The classifier
was trained with the atoms from the mega-dictionary. A first check of the method is to
test the performance of the KNN classifier, and for this, we initially tested the original
models (i.e., the uncompressed models that we used to test the compression scheme). For
these patterns, we obtained a classification rate of 93.75%. The results presented below are
obtained on the reconstructed patterns [28].

• Classifying the patterns reconstructed with the mega-dictionary (with patterns out of
all classes) yielded an accuracy of 92.5%.

• Classifying the patterns reconstructed with the class-specific dictionaries provided an
accuracy of 95.5%.

In addition to KNN, an MLP classifier was also tested. This second classification
aims to strengthen the correctness of the idea of testing the reconstructed patterns from
a qualitative point of view. This test is based on a classifier and is needed to compare
the results obtained with these two different classifiers. Thus, there is a slight and almost
insignificant improvement of the classification rate in the case of MLP compared to KNN.
However, in practical implementations, the MLP classifier should be chosen according to
the available hardware resources. Table 6 shows obtained results for dictionaries with a
centered R-wave.

163



Biosensors 2022, 12, 146

 

 

 

 

Figure 5. Original and reconstructed signals with pathology-specific dictionaries.

Table 6. Results summary for dictionaries with a centered R-wave.

Dictionary with a Centered R-Wave
Compression

Rate
AVG. PRD AVG. PRDN

KNN Classif.
Rate

MLP
Classif. Rate

mega-dictionary 10:1 0.47 6.24 93.2% 93.8%
mega-dictionary 15:1 0.67 9.99 92.5% 93.1%

specific dictionaries 10:1 0.43 6.02 95.2% 96%
specific dictionaries 15:1 0.62 6.14 95.5% 96.2%

KNN classification results with original patterns 95.5% 96%

PRDN and KNN classification rate for the case with correct
identification (100%) of the specific dictionary 0.55 8.53 93% 93.7%

It is known that in a classification process, especially when it applies to several classes,
special attention must be assigned to the confusion matrix, to see if the classification is
uniform on all classes or only certain classes are detected. For this we have exemplified in
Table 7 a confusion matrix for the classification variant with a mega-dictionary. It can be
seen that the classification rate is evenly distributed over all eight classes.
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Table 7. Confusion matrix for KNN classification of the reconstructed patterns with a mega-dictionary.

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8

class1 90 10 0 0 0 0 0 0
class2 20 70 0 0 0 10 0 0
class3 0 0 100 0 0 0 0 0
class4 0 0 0 100 0 0 0 0
class5 0 0 0 0 100 0 0 0
class6 0 0 0 0 0 100 0 0
class7 0 0 0 0 0 0 100 0
class8 0 10 0 0 0 0 10 80

5.2.3. Patient-Specific Dictionaries

The patient-specific dictionaries were constructed from the patient’s first 700 heart-
beats, and preprocessed as previously described (i.e., with or without R-wave alignment).
Thus, the dictionary is made up of 700 atoms, each of size 300, i.e., it is actually a matrix of
size 301 × 700. This method has the advantage of speculating quasi-periodicity and the
particular characteristics of the ECG signal of a particular patient. Table 8 shows average
results for 24 ECG recordings for the CSCP method and it can be seen that the best results
are obtained if we refer to QS.

Table 8. Average results for 24 ECG Records for the CSCP method with a patient-specific dictionary
built from the first 700 cardiac cycles.

Projection Matrix and Its Size CR AVG. PRD AVG. PRDN QS

Patient-specific dictionary with a non-centered R-wave

Gaussian distribution Random * Dict † 15:1 0.78 11.98 19.23
Bernoulli with 0 and 1 (20 × 301) 15:1 0.94 16.06 15.87

Gaussian distribution Random (20 × 301) 15:1 0.82 13.82 18.29

Patient-specific dictionary with a centered R-wave

Gaussian distribution Random * Dict † 15:1 0.51 9 29.13
Bernoulli with 0 and 1 (20 × 301) 15:1 0.71 12.4 20.98

Gaussian distribution Random (20 × 301) 15:1 0.72 12.51 20.59

Because our results are generally obtained by mediating the results obtained by
processing 24 records from MIT-BIH Arrhythmia database, we present in Figure 6 the
histograms of PRD and PRDN, respectively, for the method of CS with patient-specific
dictionaries with a centered R-wave and projection matrix by type Gaussian distribution
Random * Dict †. For this case, PRD_average = 0.51 and PRDN_average = 9 (see Table 8).

Figure 6. Histogram of PRD and PRDN for 24 ECG records for the CSCP method with a patient-
specific dictionary with projection matrix by type of Gaussian distribution Random * Dict †.

165



Biosensors 2022, 12, 146

6. Discussions

In Table 9, we resume the results previously presented for the two analyzed methods,
for a CR = 15:1 with all investigated projection matrices and with all discussed reconstruc-
tion and preprocessing dictionaries. We marked in bold the best results obtained on QS
(Quality Score) for each method.

Table 9. Results summary for CR = 15:1.

Projection Matrix and Its Size CR AVG. PRD AVG. PRDN QS

PSCCS METHOD

Gaussian distribution Random * Dict † 15:1 0.97 21.31 15.46

Bernoulli with 0 and 1 (20 × 300) 15:1 1.31 23.28 11.45
Gaussian distribution Random (20 × 300) 15:1 1.13 25.37 13.27

CPCS METHOD

Universal mega-dictionary without a centered R-wave

Gaussian distribution Random * Dict † 15:1 0.88 13.67 17.04

Bernoulli with 0 and 1 (20 × 301) 15:1 1.44 21.43 10.41
Gaussian distribution Random (20 × 301) 15:1 1.62 24.33 9.25

Universal mega-dictionary with a centered R-wave

Gaussian distribution Random * Dict † 15:1 0.67 9.99 22.38

Bernoulli with 0 and 1 (20 × 301) 15:1 1.08 15.47 13.88
Gaussian distribution Random (20 × 301) 15:1 1.19 17.18 12.60

Pathological specific dictionaries without a centered R-wave

Gaussian distribution Random * Dict † 15:1 0.77 11.76 19.48

Bernoulli with 0 and 1 (20 × 301) 15:1 1.23 17.90 12.19
Gaussian distribution Random (20 × 301) 15:1 1.37 20.25 10.94

Pathological specific dictionaries with a centered R-wave

Gaussian distribution Random * Dict † 15:1 0.62 6.14 24.19

Bernoulli with 0 and 1 (20 × 301) 15:1 0.97 13.93 15.46
Gaussian distribution Random (20 × 301) 15:1 1.04 14.80 14.42

Patient-specific dictionaries without a centered R-wave

Gaussian distribution Random * Dict † 15:1 0.78 11.98 19.23

Bernoulli with 0 and 1 (20 × 301) 15:1 0.94 16.06 15.87
Gaussian distribution Random (20 × 301) 15:1 0.82 13.82 18.29

Patient-specific dictionaries with a centered R-wave

Gaussian distribution Random * Dict † 15:1 0.51 9 29.13

Bernoulli with 0 and 1 (20 × 301) 15:1 0.71 12.4 20.98
Gaussian distribution Random (20 × 301) 15:1 0.72 12.51 20.59

It can be seen that the best QS result is obtained for dictionary specific to the patient
in which the R-wave is centered and a projection matrix is optimized to the dictionary.
In addition, it has been also found that in all cases optimization of dictionaries improves
the results. Moreover, it has also been observed that preprocessing improves the results,
namely, for PSCCS (i.e., without preprocessing) for CR = 15:1 the best QS equals 15.46,
i.e., almost half of the value obtained with CPCS with a patient-specific centered R-wave
dictionary when QS = 29.13.

It should be noted that any preprocessing means hardware resources and choosing
a method with preprocessing means additional hardware resources. However, we must
mention that the detection of the QRS complex and the R-wave is a problem that can be
implemented in real time in the Matlab® environment, an example of implementation
being even available in Help Matlab® [29].

Table 10 shows the average results on the 24 records and for the 117 records obtained
by other authors.
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Table 10. Average values for 24 records and 117 record for other compression algorithms.

Record/Ave. CR AVG. PRD AVG. PRDN

Other Compression Algorithms

Polania [20,21] 117 8:1 2.18 Notspec.

Polania [20,21] 117 10:1 2.5 Notspec.

Mamaghanian [22] for
before and after inter-packet

redundancy removal and
Huffman coding

Ave. for
24 records

4:1 (75)
Before Huffman 35
After Huffman 15

10:1 (90)
Before Huffman >45
After Huffman >45

15:1 (93)
Before Huffman >45
After Huffman >45

We note that Mamaghanian in [22] presents a classical CS compression method fol-
lowed by Huffman coding, the final CR being higher due to the additional Huffman
compression. For a more accurate comparison, we must compare our results with those
obtained by Mamaghanian before Huffman compression. Additionally, the same author
uses in [22] the compression ratio defined as:

CR =
borig − bcomp

borig
∗ 100,

which is not the same as ours and gives a very different gamut of values compared
with ours.

The results we obtained with the proposed method are compared in Table 11 with the
results of other compression methods in the literature.

Table 11. Quality score for compression algorithms for average values for 24 records.

Algorithm
Average of Errors

(PRD or RMS)
Average of CR QS

Wavelet [23] 18.2 RMS 21.4:1

SPHIT [24]
3.57 PRD 12:1 3.39
4.85 PRD 16:1 3.29
6.49 PRD 20:1 3.08

JPEG2000 [25]
2.19 PRD 12:1 5.47
2.74 PRD 16:1 5.8
3.26 PRD 20:1 6.1

QLV–Skeleton–Huffman * [26] 0.641 PRD * 16.9:1 * 29.36 *

Skeleton [10] 1.17 PRD
11.35 RMS 18.27:1 15.61

PSCCS method 0.97 PRD 15:1 15.46

CS with patient-specific
dictionaries with a centered

R-wave
0.51 PRD 15:1 29.13

NOTE: The results reported in [26] marked with * in Table 11 were obtained using a combined ECG compression
method consisting of a preprocessing stage with quad level vector (QLV) for the extraction of the ECG skeleton
achieving an 8.4:1 compression and a coding block (consisting of delta and Huffman Coding). The results
referenced in Table 3 are the final one, improved by the Huffman coding stage.

7. Conclusions

The results presented in this paper reveal several interesting aspects, as follows.
It has been revealed that the first stage of the CS method, i.e., the signal acquisition part,

based on the projection matrices, has only a relatively small influence on the decompression
or classification results.
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On the other hand, for the second stage, namely signal reconstruction, the dictionary
used for reconstruction of the compressed sensed ECG signals has an essential role in
obtaining good results. Therefore, depending on the application targeted with the used CS
technique, namely, Holter monitoring or recorded ECG signal classification, a dictionary
that leads to optimal final results can be selected.

Thus, in a Holter monitoring application, where the ECG signal is recorded for 24 h
from the same patient, one can choose the Patient-Specific Classical Compressed Sensing
(PSCCS) method. By analyzing the first minutes of the recording, a dictionary specific to
the patient will be built, and then it will be used to reconstruct the ECG segments of interest
to the specialist.

Otherwise, if the CS-based application aims at classifying heartbeats for ECG monitor-
ing or abnormality identification applications, the Cardiac Patterns Compressed Sensing
(CPCS) method will be chosen, where each pathological heart beat class will be associated
to a specific dictionary.

The above discussed methods are primarily based on waveform segmentation (cardiac
beats) with no preprocessing. Yet, depending on the available hardware resources and the
time constraints in which the application should run, the results can be significantly im-
proved by centering the R-wave using ECG preprocessing i.e., segmented cardiac patterns
with a centered R-wave.

This choice is related to the idea that any ECG signal preprocessing leads to higher
hardware requirements and slowdowns in the acquisition and reconstruction processes over
time. However, these aspects can be easily dealt with, aiming at better results. However,
we must mention that the detection of the QRS complex and the R-wave is a problem
that can be implemented in real time in the Matlab® environment, with an example of
implementation even being available in Help Matlab®.
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Abstract: The lens-free shadow imaging technique (LSIT) is a well-established technique for the
characterization of microparticles and biological cells. Due to its simplicity and cost-effectiveness,
various low-cost solutions have been developed, such as automatic analysis of complete blood count
(CBC), cell viability, 2D cell morphology, 3D cell tomography, etc. The developed auto characterization
algorithm so far for this custom-developed LSIT cytometer was based on the handcrafted features
of the cell diffraction patterns from the LSIT cytometer, that were determined from our empirical
findings on thousands of samples of individual cell types, which limit the system in terms of induction
of a new cell type for auto classification or characterization. Further, its performance suffers from
poor image (cell diffraction pattern) signatures due to their small signal or background noise. In this
work, we address these issues by leveraging the artificial intelligence-powered auto signal enhancing
scheme such as denoising autoencoder and adaptive cell characterization technique based on the
transfer of learning in deep neural networks. The performance of our proposed method shows an
increase in accuracy >98% along with the signal enhancement of >5 dB for most of the cell types,
such as red blood cell (RBC) and white blood cell (WBC). Furthermore, the model is adaptive to
learn new type of samples within a few learning iterations and able to successfully classify the newly
introduced sample along with the existing other sample types.

Keywords: artificial intelligence; lens-free shadow imaging technique; cell-line analysis; cell signal
enhancement; deep learning

1. Introduction

The lens-free shadow imaging technique (LSIT) is a well-established technique for
the characterization of microparticles and biological cells [1]. This technique is widely
popular for its simple imaging structure and cost-effectiveness. It comprises a lens-less
detector, such as a complementary metal-oxide semiconductor (CMOS) image sensor, a
semi-coherent light source, such as light-emitting diode (LED), and a disposable cell chip
(C-Chip). The absence of a lens or other optical arrangements allows it to fit into a very
small space, thereby reducing the size of the overall system (as described in Figure 1a in
the LSIT platform (Cellytics) built within a dimension of 100 × 120 × 80 mm3). Since this
arrangement consists of a few components, most of which are easily available at a low
price, it therefore reduces the overall cost of the system [2]. This simple and cost-effective
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nature facilitates the feasibility of the LSIT for the applications in the fields of point-of-care
systems or telemedicine systems [3–5].

Figure 1. Schematics of the LIST setup and the proposed neural network architecture for the auto
characterization of LSIT micrographs. (a) LSIT platform (Cellytics) (b) schematic of the principle
of diffraction, i.e., shadow, pattern generation of a micro-object, (c) schematic of the LSIT imaging
setup showing the simplicity of the setup, (d) schematic of the dataset creation process by automatic
cropping individual cell diffraction pattern from the whole LSIT micrograph, and (e) the schematic of
the proposed denoising and classification architecture. Here, the denoising autoencoder enhances the
signal of the individual cells which is then fed to the CNN module for classification.

Recent advancements in machine learning, especially deep learning, have facilitated
many applications concerning medical diagnostics [6–12], and have been widely adopted in
the field of microscopy [13–15]. In particular, deep learning has been incorporated with the
LSIT [14], where it is has been used to enhance the resolution of the LSIT micrographs [16]
and enabled polarization-based holographic microscopy [17].

In our previous work, we have successfully developed the LSIT imaging system for
the complete blood count using an analytical model based on handcrafted features [3] that
can automatically segment out the individual cells from a whole frame LSIT micrograph
and subsequently analyze them based on the handcrafted parameters. However, the per-
formance of the system is dependent on the uniform illumination as well as the strong
signatures of the microparticle samples. Since the diffraction signature of a microparti-
cle depends on the size as well as the signal-to-noise ratio of the particle, therefore any
background noise can affect the overall performance of the auto characterization system.
Further, the handcrafted approach of finding the features for every additional cell line is
time-consuming and prone to subjective errors. To address these limitations, in this work,
we have developed an artificial intelligence (AI) powered signal enhancement scheme for
the LSIT micrographs that can enhance the signal quality (signal to noise ratio (SNR)) for
various cell lines in a heterogeneous cell sample. For this, we employed the autoencoder-
based denoising scheme [18]. Further, we have developed an auto characterization method
based on a convolutional neural network [19,20] (CNN) architecture to classify the various
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cell lines from the LSIT micrograph. Here, we have first introduced the transfer of learning
scheme in a neural network, which can leverage the feasibility to introduce new cell types
to the algorithm and thus learn their characteristics within a few iterations. Thus, the LSIT
platform saves time and computation resources required to learn to classify the additional
cell types along with the existing ones.

In this article, we have described the detailed methods adopted for the designing
as well as optimization of various parameters to design a suitable model with better
accuracy. These optimized models are simple and light-weight, and require a smaller
number of samples for effectively learning the cell signatures. The details are as given in
the following sections.

2. Methods

2.1. LSIT Imaging Setup

The schematic of our proposed setup (Figure 1a) is as shown in Figure 1. When
light from the coherent or semi-coherent source passes through a micro-object, it produces
characteristic diffraction, i.e., shadow, pattern of the object [21,22] as shown in Figure 1b.
These diffraction patterns are prominent just beneath the sample, typically a few hundred
micrometers away from the sample plane, from where they are captured using a high-
density image sensor such as CCD or CMOS [21] (Figure 1c). As these signatures are
significant enough to be captured by the bared image sensor, it does not require any kind
of lens arrangement [23]. In our proposed setup, we used a pinhole conjugated semi-
coherent LED light source with a peak wavelength of 470 ± 5 nm (HT-P318FCHU-ZZZZ,
Harvatek, Hsinchu, Taiwan). The diffraction patterns were captured using a 5-megapixel
CMOS image sensor (EO-5012M, Edmund Optics, Barrington, NJ, USA), and a custom-
developed C-Chip (Infino, Seoul, Korea) was used to hold the cell samples [2,5]. All of
these components can fit in a compact dimension of 100 mm × 120 mm × 80 mm. Due to
the absence of a lens-based setup, the field-of-view of this system is about 20 times that of a
conventional optical microscope at 100×. This high-throughput nature provides an extra
advantage to characterize several thousand cells within a single digital frame.

2.2. Preparation of Various Cell Lines

In this work we used various cell lines, starting from red blood cell (RBC), white blood
cell (WBC), cancer cell lines HepG2 (human liver cell-line) and MCF7 (human breast cancer
cell-line), and polystyrene microbeads of 10 μm and 20 μm. The preparations of these cell
lines are as follows [2,3]. The use of human whole blood in the experiment was approved
by the Institutional Review Board (Approval No. # 2021AN0040 of Korea University Anam
Hospital (Seoul, Korea).

RBC: The RBC samples were prepared from the whole blood samples that were collected
from the Korea University Anam Hospital under IRB approval. The samples were diluted
about 16,000 times by using RPMI solution (Thermo Scientific, Waltham, MA, USA) [2,3].

WBC: First, Ficoll solution (Ficoll-Paque™ Plus, GE Healthcare, Chicago, IL, USA) was
used to isolate mononuclear cells from the whole blood. The samples of peripheral blood
mononuclear cells (PBMCs) obtained using the Ficoll solution are mixtures of lymphocytes
and monocytes. To separate these two cell types, the MACS (Magnetic-activated cell sorting)
device and antibodies (Miltenyi Biotec, Bergisch Gladbach, Germany) were utilized. The
helper-T cells in the lymphocytes were separated using the CD4 antibody (#130-090-877),
and the cytotoxic-T cells with the CD8 antibody (# 130-090-878). Finally, 10 μL of this
solution was then loaded into the unruled C-Chip cell counting chamber [2,3].

HepG2: The HepG2 cell lines were prepared from the American Type Culture Col-
lection (ATCC HB-8065) and incubated in a high-glucose medium (DMEM, Merck, Darm-
stadt, Germany) with 10% heat-inactivated fetal bovine serum, 0.1% gentamycin, and a
1 penicillin/streptomycin solution under 95% relative humidity and 5% CO2 at 370 ◦C. The
developed cells were then trypsinized and separated from 24 well pate and incubated from
2–5 min at 370 ◦C. These cells were then diluted with DMEM solution [2,3].
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MCF7: The MCF7 cell samples were prepared from the American Type Culture Col-
lection (ATCC HTB-22). The cells were preserved in a solution of DMEM containing 1%
penicillin/streptomycin solution, 0.1% gentamycin, and 10% calf serum at 95% relative humid-
ity and 5% CO2 at 370 ◦C. These cells were then trypsinized and separated from the 24 well
pate. These separated cells were then incubated for 2–5 min at 370 ◦C. The cells were then
washed with DMEM solution. 10 μL of this solution was then loaded in the C-Chip [2,3].

Polystyrene microbead: The 10 μm and 20 μm bead samples were prepared by dilut-
ing the respective polystyrene microbeads (Thermo Scientific, Waltham, MA, USA) with
de-ionized water [2,3].

2.3. Dataset Creation

A whole frame LSIT image (of cell diffraction patterns) contains an average of
~500 diffraction patterns of microparticles. Deep learning-based architectures utilize the
features of each class, and typically require a minimum of a few hundred diffraction pat-
terns of each cell type for optimal learning. Therefore, we cropped individual diffraction
patterns of each cell type (that were verified using a traditional microscope) with a window
of 66 × 66 pixels as shown in Figure 1d. This window size included the complete sample
signature along with a minimal background that would provide complete cell-line information
during the auto-feature selection process in learning algorithms. We further augment this
base sample set by rotating the individual diffraction patterns with an increasing angle of
10 degrees clockwise. Finally, a dataset of 1980 samples for each of the six cell lines and
microparticles was created, totaling 11,880 samples for all of the classes under study. The
typical architecture of a CNN is illustrated in Figure 1e. As many learning algorithms are
black-box models, it is difficult to ascertain the optimal cell-signal size that covers the majority
of the information and minimal background. Naturally, a smaller cell-size would need lesser
computation and have lesser noise. Hence, we created the dataset for 60× 60, 56× 56, 50× 50,
46× 46, 40× 40, and 36× 36 cell sizes as input sets, with each set further divided into training
and test folds. As the data augmentation used sample rotation, the splitting of the dataset
into the train, validation, and test folds needs to be carried out while keeping a check on data
leakage. Augmented samples distributed across the train and test sets may bias the model
and may give a wrong estimate of its performance as the test data may not be of entirely
“unseen” samples. Accounting for this, the 1980 samples of each class were carefully split into
1490 training samples, 166 validation samples, and 324 testing samples.

Though the cell-lines may seem visually similar, there are significant differences in
the statistical distributions of the pixel illumination intensity in the cell diffraction pattern
as revealed in our exploratory data analysis. The 2D contour plots (in Figure 2) show the
observed variances. Hence, it is possible for intelligent algorithms to automatically identify
and utilize the descriptive features in signal enhancement as well as classification.

2.4. Denoising Modality

For denoising of the LSIT micrographs, we adopted the concept of autoencoder [24].
An autoencoder is an unsupervised scheme that scuffles to recreate the input at its output.
It consists of an input layer (x), an output layer (r), and a hidden layer (h). The hidden layer
h termed as a code layer stands for the input in a revised dimension. The whole network
structure can be labelled into two parts. The first part is an encoder, which tries to code the
input as h = f(x), and the second part is a decoder which tries to recreate the input from
the reduced code layer as r = g(h), where r is the recreated assortment of input x. Basically,
it tries to attain r = g(f(x)). However, this is not a linear transformation since the model is
enforced to learn the significant features of the input to encode it into the code layer.

In this work, we specifically used the denoising version of the autoencoder. Tradi-
tionally, the autoencoders try to reduce the loss as L(x, g(f(x))). However, the denoising
autoencoder attempts to reduce the cost as L(x, g(f(x’))) where x’ is the noisy form of the
input x. We tried two different methods to design the denoising architectures, namely,
extreme learning machine (ELM) and convolutional neural network (CNN).
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2.4.1. ELM

This is a single hidden layer fully connected architecture [25]. In this method, the
input weights are initiated randomly and kept intact. Only the output weights take part in
the learning process through a straightforward learning method [25–27]. For N arbitrary
input samples xi ∈ Rn and their counterpart targets ti ∈ Rm, the ELM achieves this mapping
using the following relation as shown in Equation (1).

Hβ = T (1)

Here, H is the hidden layer output matrix, β is the output weight matrix (i.e., between
the hidden layer and the output layer) and T is the target matrix or matrix of desired out-
put [26]. From Equation (1), we can obtain the β using Moore–Penrose pseudoinverse [25]
as shown in Equation (2).

β =
(

HT H
)−1

HTT (2)

In the extended sequential learning form of ELM, the β can update sequentially.
This provides an added advantage of updating the learning whenever a new type of
sample is available, thus providing the flexibility of transfer of learning. The β update
mechanism [28,29] is as shown in Equation (3).

βn = βn−1 + P−1
n ( Tn − Hnβn−1)HT

n (3)

Here
Pn = Pn−1 + Hn HT

n (4)

For n = 1,

Pn−1 = P0 =

(
1
C
+ H0HT

0

)
(5)

Here H0 is the hidden layer output with the first sample or first batch of samples [30].

2.4.2. CNN

Convolutional neural networks (CNN) [6,19,20] are a type of neural network widely
used in the analysis of spatial data such as image classification and object segmentation.
In this network, two-dimensional kernels are used to extract the spatial features from the
input patterns, using a convolution operation between the kernel and the input. The typical
architecture of a CNN is as shown in Figure 1e. Here, the kernel is shared spatially by the
input or by the feature map. The feature at the location (i, j) in the kth feature map of the
lth layer can be evaluated as shown in Equation (6).

Zl
i,j,k =

(
Wl

K

)T
Xl

i,j + bl
k (6)

Here, Wl
K and bl

k are the weights and the bias vector of the kth filter in the lth layer.
Here the weight layer is shared spatially which reduces the complexity. Xl

i,j is the value of
the input at location (i, j) of the lth layer. The nonlinearity in this network can be obtained
by introducing the activation function, denoted here as g(.). The activated output can be
represented as shown in Equation (7).

al
i,j,k = g

(
Zl

i,j,k

)
(7)

Additionally, there are pooling layers that introduce shift-invariance by reducing the
resolution of the activated feature maps. Each pooling layer connects the feature map to
the preceding convolutional layer. The expression for pooling is as shown in Equation (8).

yl
i,j,k = P

(
al

n,m,k

)
, ∀(m, n)εRij (8)
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Here P(.) is a pooling operation for the local neighborhood Rij around the location
(i, j). In this work, we used CNN for both denoising as well as classification. The details of
their architectures and their impacts are discussed in the Section 3.

3. Results and Discussion

3.1. Performance of Denoising Algorithms

For efficient and adaptive denoising, we analyzed various autoencoder schemes,
starting with the fully-connected autoencoder. In our first iteration, we experimented with
the fully connected network having three hidden layers with 512, 256, and 512 neurons,
respectively. The input layer is the 1D vectorized array of the input cell diffraction pattern,
e.g., of 66 × 66 pixels. The input to the model is the noisy version of the input cell diffraction
pattern and the expected target output is the original cell diffraction pattern. The noisy
cell diffraction patterns were created using a Gaussian distribution with variance ranging
from 100 to 600 with zero mean (refer to the supplementary section for detail). Further,
we experimented with an increased network size having five hidden layers with 256, 128,
64, 128, and 256 neurons, respectively. In all of these networks, rectified linear unit (ReLU)
was used as the activation function while mean squared error (MSE) [31–34] was used to
calculate the loss. The Adam optimizer [35,36] was found to deliver better convergence and
hence used to perfect the weight and biases. The denoising performance was quantified in
terms of the improvement in SNR, measured in dB, denoted here by SNRimp, as given by
Equation (9) [37].

SNRimp = SNRout − SNRin (9)

where SNRout = 10log10

(
∑N

n=1 x2
i

∑N
n=1(x̂ι−xi )

2

)
, and SNRin = 10log10

(
∑N

n=1 x2
i

∑N
n=1(x̃ι−xi )

2

)
. Here xi is

the value of sampling point i in the original LSIT signal, x̃ι is the value of sampling point
i in the noisy LSIT, and x̂ι is the value of sampling point i in the denoised version of the
same cell diffraction pattern. N is the total number of sample points in that LSIT image
(cell diffraction patterns).

The fully connected network for both the above configuration shows no significant
improvement in SNRimp after reaching saturation at around −10.08 dB. For further improve-
ment, we experimented with CNN architecture using various models with a different number
of convolution layers and distinct kernel sizes. The configuration of the model which accom-
plished the best outcomes is 3 × 3, 3 × 3, 5 × 5, 5 × 5, 7 × 7, 7 × 7, 1 × 1 with 32 filters in each
layer except the last layer. The last layer consists of a single pixel filter (1 × 1 filter) that is
used to condense the output across all the 32 filters. Here, the input and output size are the
same. Padding was used to maintain the original size after the output of each convolutional
layer. The Adam optimizer was used to optimize the network to reduce the mean squared
error loss. The CNN results show a better reconstruction as shown in Figure 2.

The CNN network has been optimized for various parameters. First, the optimization
of the network for various design parameters, such as varying the convolution layers and
the kernel sizes, was carried out. The results in Figure 3a show that the architecture with
kernel sizes 3 × 3, 3 × 3, 5 × 5, 5 × 5, 7 × 7, 7 × 7, 1 × 1 has a better performance in terms
of SNRimp. The performance of the optimized network for various noise parameters, as
shown in Figure 3b, indicates the network performs better reconstruction with increasing
noise variance in the image (cell diffraction pattern). An increase in the variance results
in a noisier image (cell diffraction pattern), which warrants a detailed reconstruction to
reverse it to the original form, and hence larger the value of SNRimp. Therefore, a higher
improvement in SNRimp implies the network has learned the optimal representational
features for the cell types which enables it to perform a better qualitative reconstruction.
Figure 3c compares the reconstruction performance of the model on different sizes of
the input image (cell diffraction pattern). Due to the black-box nature of deep learning
methods, we had to create datasets with multiple cell-signature dimensions, such that the
smallest size just covered the central signature of the cell and increased the window size
till it covered a significant background portion as well. The models were evaluated across
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varying cell sizes to determine the optimal signal to background ratio, the spatial extent up
to which the models covered the features, and to study its effects on the model performance.
This analysis is critical in understanding the model explainability and interpretability since
having a size larger than the optimum increases the inclusion of background artifacts that
affect denoising as well as overpower the cell signal while having a smaller one could
exclude the important deterministic features of the cell signature. The convergence in the
training phase of the network is as shown in Figure 3d. The results depict that the loss
across the first epoch, with a high variation in the initial phase, gets smoother towards the
end of the first iteration. The advantage of this system is that it generalizes well for all of
the types of cell lines using the same model.

Figure 2. Reconstructed results from the optimized CNN. The top row is the original LSIT image (cell
diffraction pattern) of a single RBC, WBC, MCF7, HepG2, 10 μm beam, and 20 μm bead. The second row
is the noisy version (with variance 100) of the corresponding original images (cell diffraction pattern).
The third row is the denoised version of the corresponding original images (cell diffraction pattern) from
the noisy image (cell diffraction pattern). The fourth row is the 2D intensity contour plot of the original
image (cell diffraction pattern) to show the unique signature of each of these cell lines.

Further, we tried the ELM architecture which is well known for its fast conver-
gence [25]. The results in Figure 3e–h show the performance of the ELM architecture
with varying number of neurons in the hidden layer. As it can be concluded from Figure 3e,
the model with 2000 neurons provides better performance in terms of SNRimp. Further,
the optimized model has been used to test the performance across various noise levels as
shown in Figure 3f. It is observed that the model maintains the SNRimp value on increasing
the noise in the input image (cell diffraction pattern), i.e., the image (cell diffraction pattern)
quality of the output relative to the input remains the same. The results of the model
performance across different sizes of the input image (cell diffraction pattern), as shown in
Figure 3g, indicate that the 40 × 40 is having a higher value of SNR. However, the variation
is of 2 as compared to the variation for the size 50 × 50, which is of 1.5, representing the
lowest compared to all of the other sizes. Since CNN shows a substantial performance
with lower variance for the 50 × 50 input size, therefore we fixed it as optimal for all of
the further studies and comparisons. Figure 3h shows the loss across the first epoch for
ELM which is remarkably high initially but converges faster, as compared to CNN, after
training with only a few thousand samples. This faster convergence may help save time
and resources during incremental training phases for newer cell types. The performances
of these optimized models have been compared with the traditional denoising methods
as shown in Table 1 (The comparative visual reconstructions are provided in the supple-
mentary document). It is concluded from the data that CNN shows better performance
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compared to the other modalities (The details of the traditional methods are provided in
the supplementary document). Therefore, we prefer to use CNN for denoising.

Figure 3. Results from the CNN and ELM autoencoder. (a) The performance of the CNN autoencoder for
improved SNR (average of all of the classes) across various layers and kernel sizes. (b) The performance
of the CNN autoencoder across varying noise levels. Here, the variance of the Gaussian noise ranges from
100 to 600, and is evaluated on the optimal network architecture, i.e., 3,3,5,5,7,7,1. (c) The performance of
the CNN autoencoder across various input sizes (cropping size). Here, the sizes vary from 66 × 66 to
36 × 36. (d) The convergence of the optimal CNN network with the number of samples for the first epoch.
(e) The number of hidden layer neurons in ELM autoencoder vs. improvement in SNR, (f) variance
vs. improved SNR for ELM autoencoder, (g) Input size vs. improved SNR for ELM autoencoder, and
(h) The convergence of ELM autoencoder within the first epoch.
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Table 1. Comparison of improved SNR with respect to the variance for various denoising modalities
(here we keep input and output size as 50 × 50).

Variance Gaussian Average Median Bilateral BM3D CNN ELM

100 4.525580 4.237872 3.199475 −0.02635 5.684597 6.06905 5.79161
200 4.613044 4.198564 3.068866 −0.00640 5.713797 7.38544 6.31896
300 4.476552 4.259405 3.078091 −0.10943 5.119646 7.26487 6.57256
400 4.674922 4.703331 3.405470 −0.05448 3.792226 7.71265 6.36135
500 4.128021 4.201562 3.198964 −0.14542 2.206876 7.72364 6.09254
600 4.023621 4.183404 2.908946 −0.16924 1.683290 7.97877 6.19359

3.2. Performance of Classification Algorithm

Since the diffraction patterns of cells and microparticles in a LSIT micrograph depend
upon their physical and optical properties, therefore, the diffraction patterns carry the
unique signatures of each of the cell types as shown in the 2D contour plot in Figure 2.
These unique signatures can be utilized for the classification of these cell types. Since
our previous inference concludes that CNN works better for denoising, therefore we
experimented with the same modality for the classification as well. In this work, in order
to determine the optimal architecture of CNN for cell-line recognition, we first proceeded
to find the optimal depth of the network by studying the classification performance of the
model on increasing the depth, by adding convolutional and pooling layers, as well as by
varying number of kernels and kernel size, till we reached performance saturation. We
have experimented with and evaluated various shallow and deep CNN models to classify
cell lines. The details of the model architecture are as described in Figure 4.

 

Figure 4. The CNN Architectures with varying depth. The models in the solid box are for the
optimization of the model with varying depth. The models inside the dotted box are for the optimiza-
tion of the parameters. Here, the orange line is the input layer and the rectangle represents the 2D
convolution layer. The kernel size and number of kernels are indicated inside the round brackets,
the dropout rate in square brackets, and the number of neurons in fully connected layers are placed
directly within the rectangle. The aqua blue, green, and purple lines are the max-pool layers. The red
line is the output layer and uses a SoftMax activation function. The final optimized architecture is as
represented by the last 3D figure.

179



Biosensors 2022, 12, 144

The Deep Model starts with a convolutional (Conv2D) layer having 512 kernels of size
3 × 3, followed by a max-pooling layer of the same kernel size. The output from this is
further convoluted with 128 kernels of 3 × 3 size with a dropout rate of 0.5, and then a max
pool with 2 × 2 kernel. This output goes to a Conv2D layer with 64 of 3 × 3 sized kernels
and a dropout rate of 0.2. We further reduce the dimension using a 2 × 2 max pool kernel.
The output of this layer further convolves with 32 of 3 × 3 kernels, then a dropout of 0.2.
The output dimension from this convoluted layer is further reduced by using the max pool
with a 3 × 3 kernel. This again convolves with 16 of 3 × 3 kernels, and a max pool layer
with 3× 3 kernel. The output of which is again convoluted with 8 of 3× 3 kernels, followed
by a 3× 3 max pool. This output is then vectorized and input to a fully connected (FC) layer
having 256 nodes, and then to another FC with 128 nodes and having a dropout of 0.2. The
final layer is a SoftMax function, with six output nodes. The model architectures used for
studying the impact of the network depth and breadth on performance are well described
in Figure 4. Once the approximate optimal depth and breadth had been determined, we
proceeded to fine-tune the hyper-parameters such as the number of kernels, kernel size,
and dropouts, to reach the best performance of the models across varying cell sizes (i.e.,
input dimension of cells). In all of the models, Adam [38] provided better convergence as
compared to other optimizers and has been used as the model optimizer, with categorical
cross-entropy [39,40] as a loss estimator. The result for depth and breadth optimization
indicates that the average accuracy of the intermediate model is >0.85 (including all of the
classes), whereas it is <0.85 for shallow and deep networks. Therefore, we proceed with this
intermediate model as an optimum model for further study. Considering the intermediate
model has the optimum breadth and depth, the further optimization of the parameters and
the results are as shown in Figure 5a.

 

Figure 5. Results for the optimization of the CNN model. (a) Performance of the fine-tuned interme-
diate architecture. (b) The confusion matrix showing classification accuracy on the test dataset across
all cell lines using the fine-tuned and optimized model. (c) The receiver operating characteristic
(ROC) curve for each of the cell lines for the optimized model.

From Figure 5a, it is inferred that Model 3 shows better classification performance,
on the validation fold, of all of the models. The results depict that there is consistency
in performance for the input sizes 40 × 40 to 66 × 66, with a very small variance in the
accuracy. The performance of this optimized model is further evaluated over the test
dataset containing 324 samples of each cell type. The per-class performance of this model is
shown in the confusion matrix of Figure 5b. The results depict that the model can classify
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RBC, WBC, 10 μm, and 20 μm bead with over 99% accuracy. However, the comparatively
poor performance of about 90% for the cancer cells, HepG2 and MCF7, can be attributed
to the non-homogeneity in their signature characteristics as well as the lack of sufficient
original samples which further complicates the issue. This is well depicted in our previous
work [4] (see Figure 2 of the reference). From the receiver operating characteristic (ROC)
curve for all of the cell lines shown in Figure 5c, the area under the curve (AUC) for all of
the cell lines is >0.99, except MCF7 (~0.95) and HepG2 (~0.96). From these results, it can
be inferred that the classifier is working well, especially for RBC, WBC, 10 μm, and 20 μm
beads. The visualization of the internal activation maps, as shown in the Supplementary
Information, implies that the network is learning core descriptive features in the diffraction
signatures rather than using some random features.

The performance evaluation of the proposed Al model with various matrices such as
true positive (TP), true negative (TN), false positive (FP), false negative (FN), accuracy, recall,
specificity, sensitivity, F1 score, positive predictive value (PPV) and negative predictive
value (NPV) is summarized in Table 2.

Table 2. Performance evaluation scores of the proposed AI model using various metrics for different
cell types.

Sample
Type

TP TN FP FN Accuracy Precision Recall Specificity Sensitivity F1 PPV NPV

10 μm bead 322 1614 2 6 0.9959 0.9938 0.9817 0.9988 0.9817 0.9877 0.9938 0.9963
20 μm bead 324 1611 0 9 0.9954 1.0000 0.9730 1.0000 0.9730 0.9863 1.0000 0.9944

MCF7 184 1571 140 49 0.9028 0.5679 0.7897 0.9182 0.7897 0.6607 0.5679 0.9698
HepG2 276 1494 48 126 0.9105 0.8519 0.6866 0.9689 0.6866 0.7603 0.8519 0.9222

RBC 324 1620 0 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
WBC 324 1620 0 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Additionally, we also investigate the transfer of learning to gauge the ability of the
trained network to adapt to newer cell types (Figure 6). For this scenario, the CNN was
initially trained with all of the cell lines except RBC. From the epoch vs. accuracy graph in
Figure 6a, the transfer training achieved higher accuracy with the same number of epochs
compared to the initial training. This is also validated by the epoch vs. loss graph in
Figure 6b. From these results, it can be inferred that the network can be effectively used to
adapt to newer cell lines with very less amount of training. From the per-class test accuracy
shown in Figure 6c, it is observed that the model misclassified all of the RBC samples as
WBC. In the transfer of the learning phase, the initially trained network is frozen except for
the last layer, which is modified to accommodate the newer class and kept trainable. The
network is then re-trained with a mix of RBC samples. The per-class test accuracy of the
re-trained model is shown in the confusion matrix of Figure 6d, where it is inferred that the
re-trained network can classify RBC correctly with substantial accuracy.

The comparison between the proposed AI method and the manual method for count-
ing various cell types from a heterogeneous sample is shown in Figure 7. This comparison
shows the robustness of the model.
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Figure 6. The results from the transfer of learning study. (a) Epoch vs. accuracy graph for the initial
epochs in the initial training phase without RBC and then the transfer of training with RBC. The
blue and saffron colors represent the initial training accuracy and validation curves. The green and
red lines represent the transfer learning accuracy and validation curves, (b) epoch vs. loss, (c) the
confusion matrix from the pre-trained model, and (d) the confusion matrix with the re-trained model.

 

Figure 7. Comparison between the proposed AI method and the manual method for counting.
(a) A whole frame LSIT micrograph, (b) magnified region-of-interest (ROI) of the whole frame LSIT
micrograph, (c) automatically classified cell diffraction patterns of the ROI, and (d) comparison of the
cell counts between those two different modalities.
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4. Conclusions

In conclusion, we have explored the advantages of using neural networks in the
characterization of LSIT micrographs. Here, we have perfected neural networks that can
automatically improve the signal quality and classify the cell types. We find that this neural
network can classify the RBC and WBC with great accuracy (i.e., over 98%), and the cancer
cell with an accuracy of about 90%. This network is also flexible for adapting to newer
cell lines by retraining the trained network with very few samples. Together with this
algorithm, the lightweight and cost-effective LSIT setup can be utilized as a point of care
system for the diagnosis of pathological disorders in the resource-limited setup of our
world. In our future work, we aim to combine the denoising and classification modalities
due to the significant overlap in their operation. This will remove the dual training times as
well as minimize computation costs. Also, we aim to work on improving their performance
and deploying it in real scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12030144/s1, 1. Convolutional Neural Network workflow;
2. Gaussian Noise; 3. Traditional denoising methods; 4. Comparison of the denoised outputs from
various modalities; 5. SNR of individual samples of various cell types; 6. Grad-CAM and Saliency
maps of the individual cell-lines.
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Abstract: The vagus nerve is the largest autonomic nerve and a major target of stimulation therapies
for a wide variety of chronic diseases. However, chronic recording from the vagus nerve has been
limited, leading to significant gaps in our understanding of vagus nerve function and therapeutic
mechanisms. In this study, we use a carbon nanotube yarn (CNTY) biosensor to chronically record
from the vagus nerves of freely moving rats for over 40 continuous hours. Vagal activity was analyzed
using a variety of techniques, such as spike sorting, spike-firing rates, and interspike intervals. Many
spike-cluster-firing rates were found to correlate with food intake, and the neural-firing rates were
used to classify eating and other behaviors. To our knowledge, this is the first chronic recording and
decoding of activity in the vagus nerve of freely moving animals enabled by the axon-like properties
of the CNTY biosensor in both size and flexibility and provides an important step forward in our
ability to understand spontaneous vagus-nerve function.

Keywords: vagus nerve; intraneural; decoding; intrafascicular; recording; carbon nanotube

1. Introduction

The vagus nerve innervates nearly every internal organ, providing sensory input to the
brain and parasympathetic-control inputs to the viscera. Therefore, abnormal vagus-nerve
activity has been linked to many chronic diseases, such as epilepsy, diabetes, hyperten-
sion, and cancer [1–5]. Vagus-nerve stimulation has been used to treat a wide variety of
diseases [6], most successfully implemented for the treatment of epilepsy [7], even while
the mechanisms are not well understood and direct recordings of vagal activity associated
with disease are not available [8]. The majority of vagal afferent fibers come from the
gut [9,10], and abnormal vagal activity has been clearly implicated in eating and metabolic
disorders [11–15]. In this study, we analyze the first chronic recordings of vagal spikes and
the correlation of signals to several behaviors in healthy rats.

The chronic recording of vagal signals has been limited, partially due to the difficulty
in chronically recording high-quality signals in small autonomic nerves. Extraneural
cuff electrodes have proven to be very effective peripheral nerve interfaces, allowing for
selective stimulation [16] and some selectivity in recording [17–20]. However, the insulating
perineurium layer between the active nerve fibers and the recording electrodes results in a
low signal-to-noise ratio (SNR) or requires desheathing of the nerve. Thus, intraneural or
intrafascicular electrodes placed much closer to active fibers may be necessary for certain
recording applications, providing a higher SNR and higher selectivity for multifascicular
nerves. However, intraneural electrodes are more invasive and thus, have issues related to
long-term stability [21–25]. In particular, small autonomic nerves necessitate smaller and
more flexible neural sensors. We have previously shown that carbon nanotube yarn (CNTY)
electrodes have favorable properties for nerve interfacing: specifically, their small size,
high flexibility, and low impedance. Thus, they provide a stable, high-SNR interface for
chronic recording in small autonomic nerves in rats, with high-quality signals continuing
up to four months after implantation [26]. Furthermore, we have developed techniques
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for recording activity in the cervical vagus nerves of rats without anesthesia, allowing
for the first chronic recordings of truly spontaneous vagal activity. This technology has
been successfully applied to make the first direct measurements of vagal tone in freely
moving animals [27].

Due to the prevalence of gastric afferents in the vagus nerve, we expect signaling
from the gut to be the dominant activity present in vagal recordings. Previous studies
have shown that vagal afferents are sensitive to mechanical stimulation of the gut [28]
and to gastric hormones which regulate food intake and gastric motility [29–31]. There
are also reflex pathways which modulate efferent vagal activity in response to gastric
distention and contractions [32]. However, such signals have not been reported from
chronic, unanesthetized animals, and this CNTY-electrode biosensor demonstrates the
ability to decode vagal activity related to various animal behaviors, such as eating.

In this study, we continuously record spontaneous vagal-spiking activity from awake,
freely moving rats for >48 h up to two weeks after implantation. To our knowledge, this
is the first time this has been successfully demonstrated. The neural-recording data was
synchronized with continuous video recording of the subjects. Spike sorting is used to
separate semi-distinct spike clusters, which are then correlated to animal behavior identified
from the video recordings. Interspike interval distributions are also found to change in
response to food intake, presenting another neural feature that can be used to decode
spontaneous vagal activity. We report several spike clusters that show tuning to animal
eating, and the firing dynamics of multiple decoded spike clusters can be used to classify
eating compared to drinking, grooming, and resting behaviors.

2. Materials and Methods

2.1. CNTY Electrode Manufacture

CNT yarns were manufactured at Case Western Reserve University, as described
previously [26]. CNTYs were then connected to 35NLT®-DFT® wire (Fort Wayne Metals,
Fort Wayne, IN, USA) with silver conductive epoxy (H20E, EPO-TEK), creating a CNTY-
DFT® junction. Dacron mesh and silicone elastomer (MED-4211/MED-4011, NuSil Silicone
Technology, Carpinteria, CA, USA) were added to seal the junction, confirmed by measuring
the impedance of the junction at 1kHz in a saline bath. The free end of the CNTY was
tied to the end of an 11-0 nylon suture (S&T 5V33) using a fisherman’s knot, as shown in
Figure 1A. The entire CNTY was coated with parylene-C (5 μm thick vapor deposition
coating, SMART Microsystems, Elyria, OH, USA) on a custom rack which masks the suture
needle from coating. Then, a small section (~200 μm long) of parylene-C was removed
approximately 500 μm behind the CNTY-suture knot using a laser spot welder (KelanC
Laser, set to 1A current, 0.3 ms pulse width, and 300 μm diameter), as shown in Figure 1B.
Figure 1C shows the CNTY-suture knot outside of the nerve after implantation. Electrode
viability was confirmed by measuring the impedance of the recording site before and after
using the laser.
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Figure 1. Electrode implantation, histology, and recording methods. (A) Diagram of CNTY electrode
mated with an 11-0 nylon suture with a fisherman’s knot. (B) Section of CNTY electrode deinsulated
by laser. (C) Vagus nerve with two implanted CNTY electrodes. CNTY-suture knots are shown with
arrows. (D/E) Diagram showing the setup for continuous recording of vagal activity and video for
behavior identification. Signals travel from the implants to the headcap connector mounted on the
animal’s skull, where they are digitized and amplified by the custom amplifier board shown. These
signals are then routed through a commutator, which can rotate and allows the animal to move freely
without twisting or pulling on the cable. From the commutator, the signals are sent to an Intan USB
interface board, which is powered by an external DC-power source and finally sends the signals to a
computer, where they are saved and can be viewed in real time. A video camera is manually synced
to the vagal recordings. (F) Fluorescent images showing collagen + cellular encapsulation of CNTY
electrodes implanted in the vagus nerve for seven days. (G) Toluidine blue-stained nerve section
showing encapsulation of a CNTY electrode implanted for two weeks.

2.2. Surgery

All surgical and experimental procedures were done with the approval and oversight
of the Case Western Reserve University Institutional Animal Care and Use Committee to
ensure compliance with all federal, state, and local animal welfare laws and regulations.
Electrodes were implanted in male Sprague Dawley rats between 7–12 weeks of age.
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To expose the left cervical vagus nerve, a midline incision was made along the neck.
The muscles and salivary glands were separated and held in place, revealing the carotid
sheath which contains the carotid artery and vagus nerve. The vagus nerve was carefully
separated from the carotid artery using blunt dissection and held in slight tension using
a glass hook. CNTY electrodes were implanted by sewing the suture through the nerve
for ~2 mm, then pulling the suture until the CNTY-suture knot was pulled through. Then,
the electrode was pulled back so that the knot sat against the epineurium, ensuring the
recording site remained inside the nerve, as shown in Figure 1C. Two electrodes were
implanted with ~2 mm separation; the extra suture and needles were cut off after implan-
tation, and the nerve, electrodes, and junctions were covered with ~1 mL of fibrin glue
(Tisseel, Baxter International Inc., Deerfield, IL, USA) to help secure the area for recovery.
Next, the DFT wires were tunneled from the neck to the back of the skull and soldered to
a 5-pin Omnectics connector (Omnetics Connector Corporation MCP-5-SS). The skin on
top of the skull was opened, and the connector was fixed on top of the skull with dental
cement. The amplifier ground was connected to a screw placed in the skull, which also
helps keep the headcap in place. Electrodes were implanted for chronic recording in two
animals, and animals were given one week for recovery before recording.

2.3. Recording

Recordings were carried out continuously in awake, behaving animals for 56 and 40 h
(Rat 1 and 2, respectively). A custom-built PCB with an Intan RHD2216 recording chip
was attached to the headcap connector, which was secured to the animal with a 3D-printed
locking mechanism and attached to a PlasticsOne® (Roanoke, VA, USA) commutator,
allowing the rat to move around the cage without tangling or pulling on the connector
cable [27]. Input signals were routed to eight amplifier channels, using 8-channel hardware
averaging to decrease amplifier noise. Output from the amplifier board was run through
the commutator into an Intan RHD USB Interface board (Intan part #C3100), which is
powered by an external battery supplying 5V DC power. Signals are then routed to a
computer where they are saved for offline analysis and can be viewed in real time.

Neural recordings were sampled at 20 kHz with a 5 kHz low-pass filter. Recordings
were started around 10 AM (approximately four hours after the start of the light cy-
cle). During ENG recording, a video camera was used for simultaneous video recording.
The camera was equipped with an infrared light and infrared sensor, allowing for film-
ing even during the dark cycle. The camera was connected to the recording computer
and manually synced to the recording. A diagram of the recording setup can be seen
in Figure 1D,E.

2.4. Signal Processing

ENG data were imported into MATLAB, where they were further processed. ENG was
band-pass filtered from 500–5000 Hz to minimize interference from EMG, ECG, or other
possible sources. The filter bandwidth was kept relatively wide to minimize distortion
of spike waveforms. Spikes were detected and sorted into clusters using the UltraMega-
Sort2000 software in MATLAB, using a threshold of eight times the RMS of baseline. Spike
waveforms (3 ms long) were transformed into the principal component space, and principal
components accounting for 95% of the total waveform variance were used for spike clus-
tering. Spike clustering was done using k-means clustering of spike waveform principal
components, with a maximum of k = 256 clusters. Using the UMS2000 software, clusters
were further analyzed for better separation and exclusion of artifacts. First, outliers were
removed if they had a z-score greater than 500 on the χ2 distribution of distance to the
cluster center. Clusters were removed from analysis if the spike waveform contained
a second, larger threshold crossing (i.e., removing of spikes which were detected twice
due to threshold-crossing of the spike tail). Clusters were also removed if spike width
was less than 0.3 ms and amplitude was greater than 1mV (presumed recording artifacts)
or if spike width was greater than 2 ms. Spike waveform values were used to calculate
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spike amplitudes (difference between the maximum and minimum voltage values) and the
spike RMS. Spike-cluster-firing timings were also used to calculate cluster-firing rates and
interspike intervals (ISI). Average spike amplitudes over time are shown in Supplementary
Figure S1, and spike RMS was used to calculate average SNR, shown in Supplementary
Figure S2. Animal behaviors (eating, drinking, grooming, and resting) were identified
via video recording. The overall data processing and analysis workflow is diagrammed
in Figure 2.

 

Figure 2. Diagram of data processing and analysis workflow. Vagal ENG and video are recorded
simultaneously from freely moving rats. Spike sorting is used to decode spike metrics, which are
analyzed with respect to animal behaviors identified from the video.

2.5. Histology

Toluidine blue staining: the image shown in Figure 1G was obtained from an implanted
nerve which was fixed, sectioned, and stained with toluidine blue. Two weeks after
implantation, animals were perfused with 1.25% glutaraldehyde, 1% formalin, and 0.1 M
phosphate buffer. This fixative solution is approximately 640 mOsM/kg. Animals were
injected with 0.2–0.5 mL of 1% procaine at 37 ◦C through the left ventricle. Followed
by 200 mL of the fixative solution perfused at 37 ◦C using a variable speed peristaltic
pump. After completing the perfusion process, the vagus nerve was dissected at the
implant location. The complete nerve section was transferred into a postfixative solution
(1% osmium tetroxide in 100-mM phosphate buffer) for two hours at room temperature
before being transferred to 4 ◦C. Following postfixation, the nerve tissue was dissected in
1-mm-long pieces and embedded in an epoxy resin. Sections (0.7 m) were cut from the
epoxy blocks using a diamond knife (DiATOM) microtome. Toluidine blue (1% toluidine
blue and 2% borate) was used to stain the nerve axons.

Fluorescent staining: the image shown in Figure 1F was obtained from an implanted
nerve which was optically cleared using the CLARITY protocol [33,34]. Seven days af-
ter implantation, the vagus nerve was extracted and immediately placed into hydrogel
monomer solution. The sample was passively cleared and stained with a collagen antibody,
as described by our group previously [26]. DAPI staining was done by placing the sample
in VectaShield with DAPI (Vector Laboratories) on a glass-bottom petri dish (Ted Pella,
Inc., Redding, CA, USA). Samples were imaged on a Leica SP8 gSTED Super-Resolution
Confocal microscope (Leica Microsystems, Wetzlar, Germany).

2.6. Statistical Methods

Where relevant, results are reported as mean ± standard deviation. Average spike
waveforms in Figure 2 are shown with shaded areas representing the 95% confidence
interval. Overall spike-firing rate, median spike amplitudes, and average spike SNR over
time were fitted with a linear regression to determine if the slope was different from
zero, with slopes and p-values shown in Figure 2 and Supplemental Figures S1 and S2.
Spike clusters were grouped based on their response to eating, and firing rate changes
before, during, or after eating for each group were compared to baseline group firing rates
using a one-sample t-test, with a significance level of 0.01 and a Bonferroni correction
(α = 5.6 × 10−4), as shown in Table 1. ISI distributions of the before, during, and after
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eating periods were compared to noneating periods using a two-sample Kolmogorov–
Smirnov test, with a significance level of 0.01 and a Bonferroni correction for the number of
tested distributions (α = 2.2 × 10−5, Supplementary Table S1). All tests performed were
two tailed.

Table 1. Firing rates of cluster groups relative to eating. Sorted clusters are separated into five
cluster groups based on their response to eating. Table shows the number of clusters of each group
recorded in both animals and the behavior of those cluster groups before, during, and after eating:
up arrow/green color means an increased firing rate, dash/yellow color means no change in firing
rate, and down arrow/red color means a decreased firing rate for the cluster group.

Cluster
Group

Rat 1 Rat 2
Before
Eating

During
Eating

After
Eating

Group I 19 0 ↑ p << 0.0001 ↑ p << 0.0001 ↑ p << 0.0001
Group II 13 13 ↑ p << 0.0001 – p = 0.024 ↑ p << 0.0001
Group III 24 0 ↑ p << 0.0001 ↓ p ≤ 0.001 ↑ p << 0.0001
Group IV 0 59 ↑ p << 0.0001 ↑ p = << 0.0001 – p = 0.95
Group V 0 1 ↑ p << 0.0001 – p = 0.0093 ↓ p = << 0.0001

3. Results

3.1. CNTY Electrodes Record Stable Spikes from Freely Moving Animals

We have previously shown that CNTY electrodes can record spikes from the glossopha-
ryngeal and vagus nerves in anesthetized rats and can be used to measure vagal tone in
freely moving animals [26,27]. Here, we demonstrate a novel continuous chronic-recording
setup (shown in Figure 1D,E) to record unanesthetized spiking activity which can be sorted
into semi-distinct clusters. A total of four electrodes were implanted, two each in the left
cervical vagus nerves of two rats, with an average impedance of 11.7 ± 6.5 kΩ at the time of
implantation (measured at 1 kHz). Further measurements of CNTY electrode impedances
for long-term implants have been published previously [26,27]. Figure 3A shows an exam-
ple of filtered ENG with several recorded spikes, and Figure 3B–E show several example
spike clusters from two animals. A total of 132 spike clusters were identified (56 in Rat
1, and 76 in Rat 2). Clusters are referred to as RatNumber.ClusterNumber (e.g., Cluster
1.21 is Cluster 21 from Rat 1). Average peak-to-peak amplitude of recorded spikes was
152 ± 97 μV for Rat 1 and 180 ± 162 μV for Rat 2. Spike SNR, defined as the average RMS
of the spike waveforms compared to the RMS of the baseline, was 7.0 ± 4.9 for Rat 1,
and 9.1 ± 5.3 for Rat 2. This is significantly larger than published SNR for acute recording
with either the TIME or the LIFE electrodes [33,34]. Furthermore, median spike amplitude
for all recorded spikes was stable over the recording time for Rat 2 and slightly increased
over time for Rat 1, as shown in Supplementary Figure S1. Overall spike-firing rates were
also consistent over the recording periods for both animals: Figure 3F,G show the average
firing rates for each hour of recording, with least-squares regression lines showing no
significant change in firing rate over time. Similarly, average spike SNR was stable over the
recording time for both animals, as shown in Supplemental Figure S2. Thus, we are able
to continuously record vagal spikes which have stable amplitude, SNR, and firing rates
over time.
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Figure 3. Spontaneous spikes recorded in freely moving animals. (A) Filtered ENG showing example
recording spikes. (B–E) Example clusters sorted from recorded spikes in two animals. (F,G) Spike
firing rate over recording time for two animals. Neither animal had a significant change in firing rate
over time.

3.2. Spike Clusters’ Activity Is Correlated with Eating

Identifying the function of spontaneous spikes in freely moving animals is important
to understanding how vagal fibers modulate their activity during normal animal behavior.
Given the high ratio of gastric afferents in the vagus, most vagal spiking is involved with
gastric signaling.

After animal-eating times were identified from video recordings, they were compared
to the firing rates of individual spike clusters. In both animals, several clusters show a
significant increase in firing rate that occurs <25 min before eating. Some clusters also had
increased or decreased firing that occurred during eating, while others had increased firing
that occurred <10 min after eating. Figure 4A,B show raster plots for one such spike cluster
from each animal, with each row representing one eating event (shown by the shaded
grey area). Figure 4C,D show the average firing rate of these clusters relative to the eating
events, along with the overall average firing rate for each cluster. Cluster 1.36 (Figure 4A,C)
had higher-than-average activity in the 25 min before eating, and higher-than-average
activity in the 10 min following eating, with no change occurring during food consumption.
Similarly, the firing rate of Cluster 2.1 is increased before and during eating, and unchanged
after eating.
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Figure 4. Example spiking activity related to eating. (A) Raster plot for Cluster 1.36. Grey-shaded
boxes represent eating events, with dots representing spikes. (B) Raster plot for Cluster 2.1. (C) Firing
rate of Cluster 1.36 relative to eating, averaged for all eating events. Red line represents the overall
average firing rate of Cluster 1.36. (D) Firing rate of Cluster 2.1 relative to eating.

Many clusters exhibited a mix of behaviors, showing firing rates before, during, or after
eating that were significantly different from baseline activity (p < 0.01 with Bonferroni
correction). To analyze cluster behavior related to eating, clusters were sorted into groups
based on their firing rate response before eating (from 25 min before, until the start of
eating), during eating, and after eating (end of the eating event, until 10 min after eating).
These data are summarized in Table 1 for both rats, which show how the cluster-firing rates
changed for each group and the number of clusters from each animal which make up each
group. The table shows the direction of change and associated p-value for the changes in
firing rate of each group in the different eating-related periods (sum of the spiking activity
in all clusters within a group compared to the baseline firing activity for the clusters in
that group). Only 3 of the 132 recorded clusters did not showing any significant tuning to
eating behavior. While specific spiking correlations are unique to each subject, they are
consistent within each animal, and Figure 3 and Table 1 show that we can identify spike
clusters that exhibit firing rate changes before, during, and after eating in both subjects.

3.3. Spike Cluster Interspike Intervals Show Changes in Bursting Related to Eating

Spikes are often observed exhibiting bursting behavior, where fibers tend to fire at
specific frequencies. Bursting behavior can be seen in Figure 4A,B, where spikes appear
in clumps. To quantify bursting, spike cluster interspike intervals (ISIs) were calculated
for noneating, pre-eating, during eating, and posteating time windows. Eating-related
distributions were compared to noneating distributions using a two-sample Kolmogorov–
Smirnov test and were plotted in a histogram. Figure 5 shows ISI distributions for noneating,
pre-eating, during eating, and posteating periods for one example cluster (Cluster 1.8, which
is part of Group II and has increased activity before and after eating). In Figure 5A, we can
see that the peak ISI of this cluster during noneating times is around 21 ms or a 48 Hz
firing rate. However, in the 25 min before eating, this distribution shifts to the left, peaking
instead at 7 ms or 143 Hz, signifying an increase in the bursting firing rate before eating.
In the 10 min following eating, the bursting rate returns to the noneating value, though the
ISI peak is more pronounced, meaning that bursting is a more prevalent spike behavior
after eating. After eating, we also observe a secondary peak around 47 ms (21 Hz). During
eating, the ISI distribution is not significantly different from noneating; thus, the bursting
activity of Cluster 1.8 is changed before and after, but not during, eating behavior. In total,

194



Biosensors 2022, 12, 114

10 clusters in Rat 1 and 18 clusters in Rat 2 demonstrated changes in ISI distribution related
to eating.

 
Figure 5. Interspike interval histograms for Cluster 1.8. (A) ISI histogram for noneating periods,
which has a peak around 21 ms. (B) ISI histogram for pre-eating periods, which has a peak around
7ms, and a significantly different ISI distribution compared to noneating periods. (C) ISI histogram
for eating periods, which has a peak around 23 ms and is not significantly different from noneating
periods. (D) ISI histogram for post-eating periods, which has a peak around 21 ms and a secondary
peak around 47 ms, and a significantly different ISI distribution compared to noneating periods.

These data are summarized in Supplemental Table S1, which shows p-values compar-
ing noneating and eating-related ISI distributions for any cluster which showed a significant
change. The 18 clusters in Rat 2 only showed a change in ISI distribution during eating,
with no changes either before or after. The 10 clusters in Rat 1 each showed changes before
eating, while some also had a significantly different ISI distribution during or after eating
as well. Figure 5 and Supplementary Table S1 show that some of the spike clusters which
are tuned to eating are observed to change bursting activity related to eating, though not
all the clusters which show changes in overall activity have altered ISI/bursting behavior.

3.4. Spike-Cluster-Firing Rates Can Be Used to Classify Eating Compared to Other Behavior

In addition to showing that individual spike clusters are correlated with food intake,
we also examined whether spike-firing rates are sufficient to classify the times during
which the animal is eating, compared to other behaviors, such as drinking, grooming,
and resting. A multinomial logistic regression model was constructed, with behaviors and
spike-cluster-firing rates averaged over 30 s. The model uses firing rates from each of the
recorded clusters, as well as firing rates during peak delayed or preceding correlations
with eating. The models were trained on the first 2/3 of recording data and tested on the
final 1/3 of recording data. Figure 6 shows the confusion matrices for both animals, which
show the performance of the model for classifying behavior with a probability threshold of
π = 0.5 for classification. Percentages on the y-axis show the amount of time spent doing
each behavior as a percentage of total recording time. In Rat 1, the model was able to
classify eating most accurately, with a 73.1% accuracy. In Rat 2, the model performed best at
classifying resting, with a 93.8% accuracy. Additionally, we can see by plotting the receiver
operating characteristic (ROC) curves and the associated areas under the curve (AUC)
in Supplementary Figure S3 that both models performed better than random chance for
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almost all behaviors (the only exception being classifying other activity in Rat 1). Overall,
these results show that the firing rates of spontaneous vagal spikes sorted into clusters are
sufficient to classify eating behavior in freely moving animals.

 

Figure 6. Confusion matrix for classifying animal behavior based on spike firing rates. Blue-colored
cells show rates of correct classification, and orange-colored cells show rates of incorrect classification,
such that each row sums to 100%. Y-axis labels show the percentage of recording time spent doing
each behavior. (A) Confusion matrix for the classification of behavior in Rat 1. (B) Confusion matrix
for the classification of behavior in Rat 2.

4. Discussion

CNTY electrodes are a promising neural interface: a small, low-impedance, and highly
flexible biosensor ideal for interfacing with small peripheral nerves. Flexural rigidity,
measured with an atomic-force microscope, shows that the CNTY electrodes are >10 times
more flexible than PtIr electrodes of the same diameter (3.3 ± 1.5 × 10−12 N× m2 for the
CNTY compared to 2.0 ± 0.57 × 10−10 N× m2 for the PtIr) [35]. Partly due to its small
size (10 μm diameter) and flexibility, this axon-like biosensor has demonstrated stable, low
impedance with chronic implantation, stable high SNR, and minimal evidence of chronic
inflammation or nerve damage [26]. Furthermore, we have shown that CNTYs can be used
for chronic recording in small autonomic nerves, such as the vagus and glossopharyngeal
nerves, and for stimulation in larger somatic nerves and fascicles, such as the rat sciatic
nerve [26]. Compared to previous intrafascicular interfaces, CNTYs provide higher SNR
and improved stability and should be further investigated as a component of neural
sensor devices.

Vagus-nerve-stimulation therapy is a rapidly growing field, with a wide variety of
companies and studies investigating its use for treatment of a wide variety of diseases,
including epilepsy, obesity, and heart failure [7,36–38]. However, many VNS studies have
reported ambiguous results, pointing to the need for an improved understanding of natural
vagal function, VNS mechanisms, and closed loop control of stimulation. Neural interfaces
which allow for stable, high-SNR recordings are necessary for high-fidelity closed-loop
control, and chronic recording in animal models may be used to better understand vagal
function and response to therapy. In this study, we utilize the CNTY neural interface to show
that eating-related spikes can be decoded from continuous chronic recordings in the vagus
nerve, providing the first demonstration that spontaneous, physiologically specific signals
can be recorded. We also show that spike-firing rate and interspike interval distributions
show differing responses to physiological changes, which may be used as neural features
for long-term recording and closed-loop systems, though further histological analysis may
also be necessary to show the impact of chronic implantation on nerve health.

The vagus nerve contains afferent and efferent fibers that sense and control nearly
every internal organ, playing a vital role in homeostasis, reflex pathways, and responses
to physiological changes. While individual vagal-spiking activity has been recorded from
isolated fibers and from acute intraneural recordings, to our knowledge, this is the first
time spikes have been recorded in the vagus nerve in a chronic model. Combined with
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previous studies on recording average vagal RMS [27], we have demonstrated that various
spontaneous and physiologically relevant signals can be recorded from the rat vagus nerve
from freely moving animals using CNTY electrodes. Spike-firing rates stayed consistent
for up to 56 recording hours (7–10 days after implantation), suggesting that the electrode
interface is relatively stable during that time. Though spike clusters detected in the periph-
eral nervous system likely represent multiunit activity, Figure 2 shows that CNTY-recorded
spikes can be sorted into clusters, allowing for more specialized decoding of relevant
signals. Individual spike clusters recorded in freely moving rats show changes in firing rate
before, during, and after eating; clusters were further sorted into different groups based on
their firing behavior, as shown in Figure 3 and Table 1. Almost all recorded spike clusters
showed increased activity up to 25 min before the start of eating. Firing rate also increased
during and after eating for several cluster groups. Additionally, Figure 4 and Supplemental
Table S1 show that some spike clusters exhibit changes in their ISI distribution during
different eating phases. ISI distribution and peak ISI values are an important metric for
describing spike-bursting behavior, and bursting frequencies may change independently of
overall spiking activity in the cluster (due to clusters containing recordings from multiple
individual axons). Thus, analysis of overall cluster activity and cluster ISI distributions are
important metrics of vagal activity. Finally, Figure 5 and Supplementary Figure S3 shows
that spike-cluster-firing rates can be used to accurately classify eating, drinking, grooming,
and resting behavior, an important proof of concept for a closed-loop VNS system. Future
studies could analyze how overall vagal-spiking activity and bursting rates respond to
models of chronic disease, physiological stimuli (such as fasting), or to VNS treatment.

There are several important questions regarding the behavior of these fibers and how
they might respond to physiological changes. One possibility is that these fibers may be
related to the secretion or sensing of ghrelin and cholecystokinin (CCK) in the gut, peptide
hormones that are known to regulate hunger and satiety via the vagus nerve and can even
be found in small concentrations in the brain [30,39]. Ghrelin increases food intake and
weight gain in rats and suppresses vagal activity of some gastric afferent fibers [30]. CCK,
on the other hand, suppresses appetite while stimulating gastric afferent discharge [40,41].
However, the full picture relating the secretion of these hormones and their effects to
vagus-nerve activity is not known. Future studies could investigate how administration
of these peptides alters vagal activity in freely moving animals or how changes in vagal-
spiking behavior correlate with changes in the concentration of gastric hormones in the
gastrointestinal tract, in the blood, or in the CNS. Furthermore, changes in diet, such
as high-fat or high-carbohydrate models of diet-induced obesity, have been shown to
alter vagal satiety signaling and may have an effect on hunger signaling as well [14,42].
Utilizing the CNTY chronic-recording model described here would allow for insights into
the effects of diet on vagal gastric signaling, and a more detailed measurement of food
intake would allow for analysis of how differences in vagal spiking relate to differences in
dietary behavior.

One important application for chronic recording of vagal activity is measuring the acute
and chronic response of vagal signaling to various therapy approaches. High frequency VNS
(vBLoc®) is thought to suppress afferent hunger signaling to reduce overeating in obese pa-
tients [43]. vBLoc® stimulation is performed with a fixed on/off cycle; when stimulation is on,
vagal activity is suppressed, which would decrease hunger signaling (e.g., the activity observed
in cluster groups 1–5), and satiety signaling (e.g., cluster groups 1–3). However, studies have
shown that vBLoc® reduces hunger and increases satiety, though it is not clear how signifi-
cant this effect is compared to a placebo [44]. More thorough investigation of the effects of
vBLoc® on hunger, satiety, and vagal activity are necessary to better understand therapy
performance. The abiliti® gastric stimulation system, on the other hand, is closed-loop,
producing satiety during preprogrammed periods and in response to eating, thus reducing
food intake and helping create a more stable meal schedule [45]. Patients with this system
report improved self-control while eating, decreased binge eating, and reduced sensitivity
to hunger [46], likely as a result of increased afferent activity during and after eating.
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Combining animal models of these stimulation systems with chronic spike recording using
CNTY electrodes would allow for direct investigation of the mechanisms of these thera-
pies [43]. Furthermore, chronic recording could be paired with other VNS paradigms, such
as VNS for epilepsy or depression, to investigate possible off-target side effects.

Overall, our results show that it is possible to record chronic signals in the rat va-
gus nerve continuously, opening the door for studies that were previously not possible.
Furthermore, the ability to detect and decode spontaneous spiking activity from chronic va-
gal recordings could allow for a more detailed analysis of vagus-nerve response to changes
in diet, therapy, and behavior. This technology could be used to develop closed-loop VNS
for metabolic disorders, which adapt stimulation based on recorded vagal activity. Chronic
recording in animal models can also be used to further study the vagal pathways that
control food intake and how they respond to VNS and other treatments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12020114/s1, Supplementary Figure S1. Median spike ampli-
tude over time. (A). Median spike amplitude for spikes recorded in Rat 1 slightly increase over the
recording time, with a statistically significant slope of 0.39μV per hour. (B). Median spike amplitude
of spikes recorded in Rat 2 did not change over the recording time. Supplementary Figure S2. Average
spike SNR (spike RMS divided by noise RMS) over time. (A). SNR of spikes recorded in Rat 1 did
not change over the recording time. (B). SNR of spikes recorded in Rat 2 did not change over the
recording time. Supplementary Table S1. Differences in ISI distributions for before, during, and after
eating periods, compared to non-eating periods, for all clusters which had at least one group with
a significant change. Cluster groups are shown for each cluster (see Table 1), and non-significant
p-values are not shown. Supplementary Figure S3. Receiver operating characteristic (ROC) curves
and area-under-the-curve (AUC) values to assess performance of a multinomial logistic regression
model to classify animal behaviors based on spike cluster firing rates. Dotted lines show the expected
ROC curve for a random classifier. (A). ROC curve for classifying drinking in Rat 1, with AUC = 0.86.
(B). ROC curve for classifying drinking in Rat 2, with AUC = 0.62. (C). ROC curve for classifying
eating in Rat 1, with AUC = 0.94. (D). ROC curve for classifying eating in Rat 2, with AUC = 0.82.
(E). ROC curve for classifying grooming in Rat 1, with AUC = 0.88. (F). ROC curve for classifying
grooming in Rat 2, with AUC = 0.90. (G). ROC curve for classifying resting in Rat 1, with AUC = 0.82.
(H). ROC curve for classifying resting in Rat 2, with AUC = 0.86. I: ROC curve for classifying other
activity in Rat 1, with AUC = 0.47. (J). ROC curve for classifying other activity in Rat 2.
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Abstract: The purpose of this exploratory study was to determine whether liver dysfunction can
be generally classified using a wearable electronic nose based on semiconductor metal oxide (MOx)
gas sensors, and whether the extent of this dysfunction can be quantified. MOx gas sensors are
attractive because of their simplicity, high sensitivity, low cost, and stability. A total of 30 participants
were enrolled, 10 of them being healthy controls, 10 with compensated cirrhosis, and 10 with
decompensated cirrhosis. We used three sensor modules with a total of nine different MOx layers to
detect reducible, easily oxidizable, and highly oxidizable gases. The complex data analysis in the
time and non-linear dynamics domains is based on the extraction of 10 features from the sensor time
series of the extracted breathing gas measurement cycles. The sensitivity, specificity, and accuracy for
distinguishing compensated and decompensated cirrhosis patients from healthy controls was 1.00.
Patients with compensated and decompensated cirrhosis could be separated with a sensitivity of 0.90
(correctly classified decompensated cirrhosis), a specificity of 1.00 (correctly classified compensated
cirrhosis), and an accuracy of 0.95. Our wearable, non-invasive system provides a promising tool
to detect liver dysfunctions on a functional basis. Therefore, it could provide valuable support in
preoperative examinations or for initial diagnosis by the general practitioner, as it provides non-
invasive, rapid, and cost-effective analysis results.

Keywords: electronic nose; liver dysfunction; cirrhosis; semiconductor metal oxide gas sensor

1. Introduction

Metabolic disorders are sometimes connected with typical odors which can be mea-
sured on breath, sweat, or other excreta from humans. Examples are ammonia odor, which
is related to renal diseases, and acetone odor, which is related to diabetes.

The beginnings of the use of electronic noses (e-noses) date back to pioneering work
by a few research groups, such as Hartman, Wilkens, Dodd, and Moncrieff [1–4]. Here,
the foundation was laid for specific odors to be detectable and, thus, evaluable with
suitable electronics and analysis technology. The concept of sampling breath for health
monitoring was initially conceived in the 20th century. In 1952, Henderson [5] reported
on the increased acetone content of breath samples from young diabetics, promoting an
interest in the content of breath [6].

In recent decades, improvements in materials, sensors, electronics, and signal pro-
cessing technologies have led to a rapid increase in the development and application of
e-noses [7–9]. E-noses are used, among other things, to analyze, detect, discriminate, clas-
sify, and monitor gas components or odors in many fields of science and industry, and are
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of interest for numerous applications. For example, e-noses are used in the food and bever-
age industry to monitor processing and determine the quality of the final product [10,11],
in pharmaceutical science for formulation development and quality assurance [8], and
for air quality monitoring [12]. In addition, e-noses are also used in agriculture, water
management, medicine, security systems, and many other fields [13].

In the following, we will only deal with the e-noses that meet Gardner’s definition [14].
He stated that an e-nose is an instrument, which comprises an array of electronic chemical
sensors with partial specificity and an appropriate pattern-recognition system, capable
of recognizing simple or complex odors. However, unlike other analytical methods, an
e-nose does not detect directly specific volatile organic components (VOCs); rather, it builds
chemical patterns to form an identity. The sensor array produces output patterns that
represent VOCs in the breath (or different substances), and the data processing extracts
a set of mathematical descriptors that represent the signature of the breath sample as a
pattern [15]. The detection of the input signal occurs depending on the operating principle
implemented in the sensor arrays. There are a variety of sensor types used in e-nose
technology. These include the following in particular [13,16]:

• Metal oxide,
• Conducting polymer,
• Quartz crystal microbalance,
• Acoustic wave,
• Electro-chemical,
• Catalytic bead,
• Optical.

Among these available gas sensing methods, semiconducting metal oxide gas (MOx)
sensor devices have several unique advantages, such as low cost, small size, easy measure-
ment, durability, ease of fabrication, and low detection limits (low ppm level). In addition,
most MOx-based sensors are relatively resistant to poisoning. For these reasons, they have
quickly gained popularity and have become the most widely used gas sensors today [13].

E-noses have also been developed for medical applications. Here, e-noses can dis-
tinguish between different types of diseases and their severity by analyzing body odor.
This includes disease-related metabolic changes especially [17], but any kind of drug
consumption [18] can also be detected on the skin surface and/or exhaled breath.

One can show that such e-noses can be successfully used to improve the diagnosis of
various diseases, ranging from kidney disease [19] and diabetes [20], to various types of
respiratory diseases [21] and carcinoma [22,23], up to heart diseases [24]. These and other
studies provide evidence that, after a necessary validation, a cost-effective, portable, and
fast working e-nose system could be useful for improved diagnostics and health protection.

The diagnosis of chronic liver disease is usually based on a combination of clinical
signs, laboratory parameters, and imaging results [25]. However, this approach has several
important weaknesses. First, the prognosis of cirrhosis depends on the structure and
function of the liver, but even more important is the occurrence of complications, such as
variceal bleeding or infections [26,27]. Second, laboratory values can be influenced by other
conditions that present in the same way as cirrhosis, which may lead to misinterpretation.
Third, some imaging techniques, such as transient elastography, are influenced by “non-
liver” factors, such as central venous pressure [28]. Fourth, there is a great need for an
exact measurement of the current patient’s situation to choose the optimal treatment, e.g., if
transplantation is needed or a non-hepatic or hepatic surgery must be performed. In current
scoring systems, such as the Model for End-stage Liver Disease (MELD) [29], patients with
portal hypertension as a decompensating event (ascites, variceal bleeding) are poorly
represented due to the nature of the score.

Based on a proof-of-concept study, De Vicentis et al. [30] showed that an e-nose based
on piezoelectric gas sensors could be a valid non-invasive instrument for characterizing
chronic liver disease and monitoring hepatic function over time.
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The advantages of piezoelectric gas sensors are high sensitivity, small size, fast re-
sponse time, low power consumption, and robustness [31]. However, these piezoelectric
sensors have a poor signal-to-noise ratio, as they operate at very high frequencies and
require complex electronic circuits to delineate the signal response, making it difficult for
them to act as a supportive element for an efficient e-nose system.

Therefore, the objective of this study was to determine, within the framework of an
explorative study, whether liver dysfunction is generally recognizable and whether the
level of this dysfunction can be classified utilizing a wearable semiconducting MOx gas
sensor-based e-nose.

2. Materials and Methods

2.1. Electronic Nose and Signal Processing

In this study, a system called “LiverTracer” was developed. It is based on an e-nose
system that detects changes in the VOCs from exhaled breath caused by liver dysfunctions
and their severity. This system consists of a measuring head, which contains the sensor
array, and a base unit for measurement control and data analysis (Figure 1).

Figure 1. Setup of the electronic nose system “LiverTracer”.

The sensor head contains three active MOx semiconductor gas sensor modules (TripleSensor®,
UST Umweltsensortechnik GmbH, Geschwenda, Germany). Each sensor module consists
of three different gas-sensitive MOx layers that can detect reducible, easily oxidizable, and
highly oxidizable gases. The selectivity and sensitivity of the sensor layers for different
gas molecules depend mainly on the MOx semiconductor materials and specific catalyst
additives used, and can additionally be varied by temperature changes. The latter are
controlled by a platinum (PD) heater integrated into each sensor module. Depending on
the type of gas, the gas molecules interact specifically with the surface of the different
sensor layers, resulting in changes to their electrical conductivity. This conductivity (here
measured as resistance) is registered and evaluated. According to the type of gas and sensor
layer, concentration ranges from a few ppb up to the percentage range can be detected.

The used gas sensor elements (Triplesensor®) S1, S2, and S3 are realized through
hybrid technology: they include a ceramic carrier substrate (aluminum oxide (Al2O3)) with
a micro-structured PD thin-film layer, covered with a passivation layer, specific layers for
contacts, as well as a gas-sensitive metal-oxide semiconductor layer (or layers) [32–34].

S1 is a ceramic MOx semiconductor gas sensor element with PD multi-electrodes, with
a length × width × height (L × W × H) of 2.1 mm × 2.3 mm × 0.63 mm, respectively,
with one sensitive MOx layer 2000C2+ (tin oxide (SnO2) thick film layer with a specific
catalyst, for the detection of easily oxidizable gases, mainly carbon monoxide (CO), as well
as hydrogen (H2) and ethanol (C2H5OH)). The processing of multi-electrode structure
signals will be used for the detection of non-desorbing components/contaminations.
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S2 is a ceramic MOx semiconductor gas sensor element UST Triplesensor® (type
3A4P10), with an L × W × H of 2.1 mm × 2.3 mm × 0.63 mm, with three sensitive MOx
layers: 2000C2+ (specific SnO2 compound with a specific catalyst and a thick film, for the
detection of easily oxidizable gases, mainly CO, as well as H2 and C2H5OH), 3000C2+ (a
specific SnO2 compound with a specific Pd catalyst and a thick film, for the detection of
heavily oxidizable gases, mainly hydrocarbons (CxHy), and which is optimal especially
for a number of carbon atoms (C1 to C8)), and 5000C2+ (a specific tungsten trioxide
(WO3) compound with a thick film, for the detection of reducible gases, e.g., nitrogen
dioxide (NO2)).

S3 is a ceramic MOx semiconductor gas sensor element UST Triplesensor® (type
3A4P10), with a L × W × H of 2.1 mm × 2.4 mm × 0.63 mm, with three sensitive metal-
oxide layers: 1000C2+ (a specific SnO2 compound with a catalyst and a thick film), 2000C2+
(a specific SnO2 compound with a specific catalyst and a thick film, for the detection of easily
oxidizable gases, mainly CO, as well as H2 and C2H5OH), and 9000C2+ (a specific SnO2
compound with a catalyst and a thick-film, for the detection of long chain hydrocarbons).

The electronic microcontroller modules installed in the measuring head, with an
analog-to-digital converter for each sensor element, control the heating temperature, the
preprocessing of the sensor signals, the storage of the calibration data and the communica-
tion with the basic unit.

A spirometer “SPIROSTIK COMPLETE” (Geratherm Respiratory GmbH, Bad Kis-
singen, Germany) was used as the basic unit. It contains a Windows 10 computer system.
This device was modified according to our requirements. In particular, the sensor control,
data storage, operator guidance (semi-automatic patient measurement), and data analysis
were developed and integrated on the software side, as were the pump system for flushing
and calibrating the measuring head on the hardware side. The principle of the measurement
regime is shown in Figure 2.

After starting the system, it is checked whether a scheduled calibration of the e-
nose is necessary to verify the correctness of the reference resistance values of the sensor
layers to avoid measurement errors. For this purpose, a commercially available test gas
(consisting of the components carbon monoxide, oxygen, and nitrogen) is used. Strong
deviations of the measurement results from the resistance pattern typical for the applied
calibration gas indicate the contamination or aging of the sensor layers. In this case, suitable
countermeasures (cleaning, sensor replacement . . . ) must be carried out.

If calibration is not required, or after successful calibration, preparation for the actual
patient measurement begins. For this purpose, the operator selects an existing patient from
the patient database (in case of repetition) or enters the required data for a new patient into
the patient database and starts the patient data acquisition.

The processing of the patient measurement protocol (based on a predefined temper-
ature control of the sensor heater optimized in preliminary studies [35]; see Figure 3a)
is started with a cyclic thermal cleaning of the sensors until the sensor layers reach their
original reference resistances (time-variable process). This is followed by the recording
of the room air composition and the actual two patient measurements. By controlling the
sensor heating temperature, it is possible to influence the sensitivity of the sensors for
different VOCs (extension of the detection range). Burn-off cleaning phases serve to burn or
evaporate impurities that may have adhered to the sensor surface. The measurement proto-
col has a duration of about 16 min. The temperature profile and the associated resistance
data curves of all sensor layers are stored for subsequent analysis.

Data analyses were performed using MATLAB R2019a (The MathWorks, Inc., Natick,
MA, USA). The 9 raw resistance waveforms were evaluated for outliers, technical problems,
artifacts, and measurement errors. No measurement had to be discarded. For the analysis
of the respective breathing air segments, the relevant 30 s segments were extracted from
the measurement (Figure 3b, marked by vertical dashed lines). This was performed
automatically based on the specified temperature measurement protocol, which clearly
defines where the breath measurement starts and ends (Figure 3a, “bc1” and “bc2”).
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The data analysis is based on the extraction of 10 features (time domain and non-
linear dynamics domain) from the resistance time series of the extracted breathing gas
measurement cycles for each sensor layer.

Figure 2. Flow chart of the LiverTracer measurement regime.
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Figure 3. (a) Schematic representation of the measurement protocol based on a predefined tempera-
ture control of the sensor heater. It contains time-variable cyclic thermal cleaning cycles “tc”, burn-off
cleaning phases “bf” (rectangle functions), subsequent flushing phases “fp” (horizontal lines), one
ambient air measurement cycle “ac”, and two breathing gas measurement cycles “bc1” and “bc2”.
The arrows mark the exhalation cycles (patient breathing: PB); (b) example of a recording of 9 sensor
layer resistance curves. Vertical dashed lines mark the two breathing gas measurements.

In the time domain, the following features (Figure 4) were calculated:

• slope_startmax (Ω/s): slope from cycle start (Start) to absolute maximum (Max);
• s_slope_startmax (Ω/s): steepest slope of 1s duration from cycle start to Max;
• s_slope_startmax_pos (s): corresponding position of s_slope_startmax;
• s_slope_maxmin (Ω/s): steepest slope of 1s duration from Max to minimum (Min);
• area1 (Ω·s): area under the curve from cycle start to Max;
• area2 (Ω·s): area under the curve from cycle Max to midpoint;
• area3 (Ω·s): area under the curve from cycle midpoint to Min;
• area4 (Ω·s): area under the curve from cycle Min to cycle end;
• area3sec_9 (Ω·s): ninth subarea (24 s to 27 s); area under the curve is evaluated

incrementally in 3 s subareas beginning from cycle start.

From the nonlinear dynamics domain, a feature of classical symbolic dynamics and
one entropy measure were used. By employing symbolic dynamics [36,37], the original
time series is transformed into a symbolic sequence and, thus, presented in a coarser form.
Detailed information is lost, which allows the quantification of the dynamics contained in
the time series. In the present study, for the quantification of symbolic dynamics of the
resistance time series R of the breathing gas measuring cycles, the symbols 0 and 1 were
assigned according to the following transformation rules:

0 : Rn+1 − Rn ≤ 0,
1 : Rn+1 − Rn > 0.

(1)

Here, Rn and Rn+1 are the resistance values at the time points n and n + 1. While
symbol 0 indicates decreasing resistance values, symbol 1 reflects increasing resistance
values. Based on the transformed symbol string, words were formed consisting of two
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successive symbols. The frequency distribution of the word type 00 was determined (this
was less dependent on minor fluctuations):

• p00—probability for the occurrence of the word type 00 within the resistance value
time series.

The entropy measure, Renyi entropy, was calculated [37]. The density distribution
(histogram) of resistance values in the resistance time series required for entropy calcula-
tions was determined using six classes. The optimal number of classes k was calculated
using Sturges’ criterion [38]:

k = 1 + 3.32 ∗ log(N), N . . . number o f resistance values. (2)

Based on the density distributions, the individual class probabilities pi were calculated
(with i = 1 to k), followed by the estimation of the following Renyi entropy measures:

Renyi−α [bit] =
1

1 − α
∗ log2

k

∑
i=1

pi
α (3)

Renyi entropy was estimated considering the coefficient value α = 4, which influences the
weighting of the probabilities pi (weights larger fluctuations stronger than smaller ones).

Figure 4. Time domain features extracted from the resistance curve of an exhalation cycle.

2.2. Patients

A total of 30 participants were enrolled, 10 of them being healthy controls, 10 with
compensated cirrhosis, and 10 with decompensated cirrhosis, between October 2019 and
March 2020. Participating patients were randomly recruited consecutively according to
availability in the normal care unit. Patients with ongoing acute-on-chronic liver failure,
mechanical cholestasis, acute renal failure, malignant disease, severe cardiopulmonary
disease (New York Heart Association classification severity level of heart failure NYHA
III/IV (severe heart failure) [39] and/or chronic obstructive pulmonary disease (according
to Global Initiative for Chronic Obstructive Lung Disease (GOLD) categories C (high
risk/less symptoms) and D (high risk/more symptoms)) [40], and uncontrolled diabetes
mellitus were excluded from the study. Control patients were either admitted to the hospital
for elective hospitalization for non-liver disease (n = 8) or healthy medical staff (n = 2).
Controls were matched for age, sex, and bodyweight. Decompensation was classified
according to the Child–Pugh classification score (CPS) [41]. Patients that were classified as
CPS B (significant functional compromise) or C (decompensated disease) were allocated to
the decompensated group. In addition, patients with variceal hemorrhage were classified
as decompensated.
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The patients with compensated cirrhosis were male in 7 cases, had a median body
weight of 94 kg and a median age of 57 years. Four of them were smokers. The etiology of
cirrhosis was ethanol in 6 of these patients and four had other reasons for cirrhosis (2 viral
hepatitis, 2 cholestatic liver disease). Patients with decompensated cirrhosis were male in
8 cases, had a median bodyweight of 80 kg and a median age of 62 years. Three of them
were smokers and, again, the main etiology of cirrhosis was ethanol consumption in 8 of
the patients (the others were 1 autoimmune hepatitis and 1 nonalcoholic steatohepatitis).

Control participants were male in 5 cases and had a median bodyweight of 81 kg.
They had a median age of 58 years and one of them was a smoker. They had no history of
known liver disease. None of the demographic parameters showed significant differences
between the three groups. Vital parameters at inclusion between these groups did not differ
as well (Table 1).

Table 1. Patient data (values in parentheses represent the respective minimum and maximum values
or describe percentages).

Control (n = 10)
Compensated

Cirrhosis (n = 10)
Decompensated
Cirrhosis (n = 10)

p-Value

Sex (f/m) 5/5 3/7 2/8 0.500
Age (years) 58 (51; 65) 57 (52; 64) 62 (56; 67) 0.543

Bodyweight (kg) 81 (68; 96) 94 (79; 101) 80 (68; 97) 0.136
Height (cm) 175 (167; 178) 176 (167; 178) 176 (169; 181) 0.712

Smoker (n,%) 1 (10%) 4 (40%) 3 (30%) 0.450

Vital signs
RR systolic (mmHg) 135 (118; 161) 126 (107; 155) 122 (103; 136) 0.266
RR diastolic (mmHg) 81 (76; 104) 76 (61; 92) 72 (63; 79) 0.146

Heart rate (pbm) 78 (67; 102) 85 (71; 88) 92 (81; 104) 0.212
Temperature (◦C) 36.8 (3.4; 37.0) 36.6 (36.1; 37.0) 36.7 (36.4; 37.1) 0.523

Etiology of cirrhosis (n,%)
Ethanol N/A 6 (60%) 8 (80%) 0.628
Other N/A 4 (40%) 2 (20%)

Co-medication (n,%)
Lactulose 1 (10%) 3 (30%) 8 (80%) 0.009

Proton pump inhibitors 5 (50%) 7 (70%) 9 (90%) 0.262
B-Blocker 5 (50%) 4 (40%) 5 (50%) 0.897

Antibiotics 1 (10%) 3 (30%) 7 (70%) 0.016
Rifaximin 0 1 (10%) 6 (60%)

other 1 (10%) 2 (20%) 1 (10%)

f—females; m—males; n—number of patients; p—significance.

Relevant co-medication with known influence on intestinal flora and, therefore, on the
results of the LiverTracer was analyzed. Lactulose was taken by 1 control patient, 3 patients
with compensated cirrhosis, and 8 patients with decompensated cirrhosis (p = 0.009).
Antibiotics were taken by 1 control patient, 3 patients with compensated cirrhosis, and 8
patients with decompensated cirrhosis (p = 0.016); however, the difference in antibiotics
were caused by rifaxmin, which was taken by 1 patient with compensated and 6 with
decompensated cirrhosis. Protone pump inhibitors (p = 0.262) and betablockers (p = 0.897)
did not show differences between both groups (Table 1).

All procedures performed in the study involving human participants were approved
by the Institutional Ethics Commission of the University Hospital Jena (5359-11/17), and
were performed in accordance with the 1964 Helsinki declaration and its later amendments.
Written informed consent was obtained from all individual participants prior to inclusion
in the study.
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2.3. Statistics

Statistical analyses were performed using IBM SPSS 21.0 (IBM Corp. Released 2012.
IBM SPSS Statistics for Windows, version 21.0. Armonk, NY, USA: IBM Corp). Descriptive
statistics were used to calculate means, standard deviations, medians, and interquartile
ranges for all features calculated from the resistance time series separately for all nine
sensor layers for respiratory gas measurement. The Kolmogorov–Smirnov test was applied
to check the normal distribution of the features. The presence of statistical differences
between the respiratory gas analysis characteristics of the control group (CON) and the
two groups of patients with compensated (COMP) and decompensated (DECOMP) cir-
rhosis was tested with Welch’s t-test for normally distributed characteristics and with
the nonparametric exact two-sided Mann–Whitney U test for non-normally distributed
characteristics. A significance level of p < 0.05 was considered to be the criterion for sta-
tistical differences. Consistent with most of the published work on this topic, this paper
presents only means and standard deviations for the identified features, regardless of
the distribution or significance test applied, which improves the comparability of study
results. Forward stepwise linear discriminant analyses combined with the leave-one-out
cross-validation procedure were performed, and receiver operator characteristic (ROC)
curves were calculated to assess the classification strength of the feature sets. Sensitivity
(SENS), specificity (SPEC), area under the ROC curve (AUC), and accuracy (ACC) were
determined for significant features and feature sets, each consisting of 2 or 3 uncorrelated
(Pearson correlation coefficient) significant features. The resulting discriminant function
analysis was then determined to be the classifier for automatic classification.

3. Results

We report below only the results of the first breathing gas cycle, as we did not find
significant differences between the first and second breathing gas cycles. Let us first
consider the classification results of the LiverTracer e-nose (Tables 2 and 3). The separation
of the patient groups (Table 2) from the controls was 100% successful in each case. Between
the patient groups, a correct classification of 95% was achieved, where 90% of the patients
from the DECOMP group and 100% of patients from the COMP group were correctly
classified. Interestingly, these remarkable classification results were reached using only
the features of sensors 1 and 3. Sensor 3 mainly contributed to the result. Sensor 2 did
not make any significant contribution. Table 3 shows the descriptive statistics of those
features that were automatically selected by the discriminant analysis to obtain the optimal
separation results.

Table 2. Percentage classification rate of e-nose features. The optimal parameter set (consisting of
either double or triple sets) is shown for each group comparison.

Group Features SENS SPEC ACC AUC

CON—COMP
RS11_s_slope_maxmin (Ohm/s)

RS32_area3sec_9 (Ohm·s)
RS32_p00

1.00 1.00 1.00 1.00

CON—DECOMP
RS31_slope_startmax (Ohm/s)
RS32_s_slope_startmax_pos (s)

RS33_p00
1.00 1.00 1.00 1.00

COMP—DECOMP RS32_Renyi4_entropy (bit)
RS33_area2 (Ohm·s) 0.90 1.00 0.95 0.97

CON—control group; COMP—patients with compensated cirrhosis; DECOMP—patients with decompensated
cirrhosis; RSxy—R denotes resistance measurement values of sensor layer y of sensor Sx (e.g., RS12 describes
the resistance readings of sensor layer 2 of sensor S1); SENS—sensitivity; SPEC—specificity; ACC—Accuracy;
AUC—area under the receiver operator characteristic curve.
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Table 3. Classification results of features automatically selected by discriminant analysis (mv—mean
value, sd—standard deviation).

Group CON COMP DECOMP

Test Features p mv ± sd mv ± sd mv ± sd

CON vs. COMP
RS11_s_slope_maxmin (Ohm/s) 0.046 −86,258 ± 5225 −81,023 ± 5676

RS32_area3sec_9 (Ohm·s) 0.038 1,807,616 ± 207,540 2,071,884 ± 309,151
RS32_p00 0.017 0.336 ± 0.050 0.276 ± 0.045

CON vs. DECOMP
RS31_slope_startmax (Ohm/s) 0.029 8901 ± 3207 6956 ± 1845
RS32_s_slope_startmax_pos (s) 0.019 6.250 ± 1.161 6.900 ± 0.211

RS33_p00 0.041 0.369 ± 0.045 0.319 ± 0.056

COMP vs. DECOMP
RS32_Renyi4_entropy (bit) 0.028 1.843 ± 0.386 2.179 ± 0.185

RS33_area2 (Ohm·s) 0.131 48,252 ± 23,296 34,507 ± 14,547

CON—control group; COMP—patients with compensated cirrhosis; DECOMP—patients with decompensated
cirrhosis; RSxy—R denotes the resistance measurement values of sensor layer y of sensor Sx (e.g., RS12 de-
scribes the resistance readings of sensor layer 2 of sensor S1); p—significance value; mv ± sd—mean value ±
standard deviation.

In Table 4, we included four clinical parameters for the stratification, which are
based on the Child–Pugh score and represent different aspects of liver disease, including
two laboratory values and two clinical aspects. Bilirubin, the end product of hemoglobin
degradation, is cleared from circulation via hepatic elimination and, therefore, elevated
in patients with cirrhosis and disturbed liver function. The international normalized
ratio (INR), a marker of coagulation, includes proteins synthetized in the liver, which are
therefore lowered in cirrhosis. Ascites is frequently present in advanced cirrhosis and is a
consequence of cirrhosis-associated portal hypertension, while the occurrence of a hepatic
encephalopathy is a typical complication of disturbed detoxification. We decided to skip
the fifth parameter, albumin, as this also represents liver synthesis. Except for hepatic
encephalopathy, no parameter was convincingly successful. While the controls could still
be separated successfully, the detection of liver dysfunction severity was not convincing.
The successful classification by hepatic encephalopathy is not surprising, since it was a
component of clinical diagnostics.

Table 4. Classification rate (in %) of the clinical parameters that achieved an overall accuracy for
discriminating the groups greater than 50%.

Categorized Bilirubin Categorized INR Ascites Hepatic Encephalopathy

CON 100 86 100 100
COMP 10 40 70 100

DECOMP 90 60 50 50
ACC 63 59 73 83

CON—control group; COMP—patients with compensated cirrhosis; DECOMP—patients with decompensated
cirrhosis; INR—international normalized ratio of blood clotting test; ACC—Accuracy.

4. Discussion

This exploratory pilot study extracted and analyzed unique VOC fingerprints in the
breath of patients and provides initial evidence that breath VOC analysis using MOx
sensors is a potential diagnostic tool for detecting liver dysfunction of different severities.

The sensitivity, specificity, and accuracy for distinguishing compensated and decom-
pensated cirrhosis from healthy controls was 1.00 in all cases. Compensated and decompen-
sated cirrhosis patients could be distinguished with a sensitivity of 0.90, a specificity of 1.00,
and an accuracy of 0.95. Sensor 3 (with its three layers) showed the highest discriminatory
power, and sensor 1, layer 1 could improve the result of sensor 3 by up to 5%. It was quite
sufficient to evaluate only the first exhalation cycle of the patient. The inclusion of the
second exhalation cycle did not bring any improvement.
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In this study, we included patients with different stages of liver cirrhosis. Differen-
tiation between patients with and without early stages of cirrhosis is challenging, but of
great clinical importance. It is usually based on a combination of clinical, imaging, and
laboratory parameters, but all of these can be influenced by non-liver related factors as well.
Despite these weaknesses, the differentiation between cirrhosis and non-cirrhosis is of great
clinical relevance, as the rate of postoperative complications and the mortality are higher
in patients with cirrhosis [42]. However, the main predictor of these complications is the
hepatic portal venous pressure gradient [43], which is not routinely measured. Using single
laboratory parameters or clinical features does not result in the satisfying identification of
patients with especially compensated cirrhosis in our study.

A study by Germanese et al. [44] that attempted to discriminate the severity of liver
disease, particularly based on detected breath ammonia with MOx sensors, showed that
the accuracy of discriminating between non-cirrhotic patients with chronic liver disease
and cirrhotic ones was only 0.63, while that of discriminating between liver diseases and
healthy controls was 0.81.

The generation of specific VOCs within the body can be the result of metabolic derange-
ment, toxin or teratogen exposure, and finally microbiological processes [45]. Breath tests,
which provide an indirect, non-invasive, and relatively low-input evaluation of various
diseases, are used as diagnostic tools for quantifying the presence of one or more metabo-
lites of a particular substrate in exhaled breath. Qin et al. [46] analyzed breath samples in
hepatocellular carcinoma patients and controls by means of gas chromatography–mass
spectrometry (GC/MS) combined with solid phase microextraction. Three potential VOCs,
3-hydroxy-2-butanone, styrene, and decane, were selected as promising biomarkers. A
survey of other potential biomarkers in various liver diseases can be found in the publica-
tion by De Vincentis et al. [47]. Interestingly, alkanes (decanes) are precisely the group of
markers that are particularly favorably detected by the sensors used in our study.

Even though these preliminary results are very promising, several limitations of this
explorative pilot study are worth noting. First, it must be noted that the number of patients
included is relatively small. However, it should be noted that this is a proof-of-concept
study with a new sensor technology compared to previous studies [48]. It should also
be noted that, in general, e-noses allow only indirect gas compound detection. In future
studies, we intend to combine them with classical laboratory methods (e.g., GC/MS)
to enable a direct assignment of biomarkers to the sensors. This would also have the
advantage whereby the sensors could be optimally adapted to the pathology via the
appropriate doping of the sensor layers. Another limitation of this study is that only a
single measurement was performed per patient. Therefore, the system should be validated
in a long-term and repeatability study. Additionally, we must mention that the influence
of acute events, such as infections, was not studied in detail. This should be addressed
in a subsequent study. Finally, MOx sensors also have drawbacks that are mainly related
to the lack of sensor stability and the production of sensors with nearly identical sensor
characteristics [13,49,50]. Among other factors, contamination and aging of the sensors
may lead to short- and long-term drift of the sensors, causing differences in the measured
sensor values compared to the originally measured values of new sensors, and reducing the
accuracy of pattern recognition based on a trained pattern. Time-consuming recalibrations
are often required to compensate for the drift [51]. Replacing a nearly identical sensor is
usually difficult. Our approach to significantly reduce the drift and aging problems of the
MOx sensors we use is to automatically assess the quality of the sensors before each breath
measurement based on the resistance values of the individual sensor layers. In doing so,
we compare these with stored threshold values of the original resistances (values of the
sensor when it was newly installed). If there are deviations from the original resistance
thresholds beyond a certain threshold, cyclic thermal cleaning is automatically performed
until the sensor reaches the stored thresholds. If the thresholds are not reached within a
specified cycle frequency, the sensor is recalibrated with a test gas. If all these measures fail,
the sensor should be replaced with an adequate sensor with as close to identical resistance
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values as possible, and the e-nose may need to be recalibrated. However, throughout the
study period, the values of our applied sensor array remained within the approved quality
level. We therefore assume that the drift problem can be largely compensated for by sensor
monitoring and calibration, but there remains some residual risk (especially in the case of
sensor failure), the impact of which is currently being investigated in a validation study.

The results from this pilot study are very promising and suggest the principal suitabil-
ity (especially by using the complex feature extraction method) of the MOx multisensory
signals for the analysis of breath changes and, thus, for the identification of liver dysfunc-
tions. Among the sensors used in e-noses for medical diagnostics, MOx semiconductor
sensors are by far the most popular. They have high sensitivity, are durable, and, probably
most importantly, are relatively inexpensive. Price is an important factor when considering
large-scale commercial deployment, especially in developing countries. In addition, be-
cause they can operate in a wide range of relative humidity, they are particularly suitable
for outdoor use [13,31].

In medicine and biology, e-noses are intelligent biosensor-based systems for the rapid
detection, analysis, and classification of complex gaseous odors (usually as VOC mixtures
of compound metabolite profiles). These instruments are innovative diagnostic tools with
great potential for the non-invasive early detection of many types of diseases based on
the analysis of VOC metabolites in the form of gaseous clinical samples [52]. They are
inexpensive, have low operating and maintenance costs, and provide real-time analysis.
Due to the growing demand for improved healthcare devices and procedures, the need
for simpler and wearable e-nose systems that can provide fast and accurate diagnostic
results and replace traditional, complex, often expensive and time-consuming clinical and
laboratory methods has permanently increased. Such systems should non-invasively detect
VOCs and accelerate on-site testing, allowing earlier diagnosis, faster treatment of disease,
better prognosis, shorter hospital stays, faster recovery, and ultimately lower healthcare
costs. Further development and point-of-care testing of new e-nose technologies and the
development of standardized diagnostic methods will help bring these e-noses into routine
clinical practice.

In summary, the multisensory analyses performed in this study based on a wearable
MOx sensor array showed high separation accuracies of 95% to 100% between the studied
groups. It was not only possible to distinguish liver dysfunctions of different severity
from controls at 100%, but also to discriminate between the severities of liver dysfunction
at 95% with a correct identification of 100% of all COMP cirrhosis and of 90% of all
DECOMP cirrhosis).

Based on a semiconductor MOx sensor array, the wearable e-nose system for detecting
disease—in this case liver dysfunction—offers significant advantages over conventional
laboratory analysis and the use of other sensor systems when combined with the nonlinear
processing of sensor signals. Our system thus represents a promising tool for distinguishing
between patients with compensated and decompensated cirrhosis on a functional basis, and
can thus make an important contribution, e.g., in preoperative workup or at the level of the
general practitioner for the initial diagnosis and, thus, early detection of liver dysfunction.
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Abstract: Pattern recognition using surface Electromyography (sEMG) applied on prosthesis control
has attracted much attention in these years. In most of the existing methods, the sEMG signal
during the firmly grasped period is used for grasp classification because good performance can be
achieved due to its relatively stable signal. However, using the only the firmly grasped period may
cause a delay to control the prosthetic hand gestures. Regarding this issue, we explored how grasp
classification accuracy changes during the reaching and grasping process, and identified the period
that can leverage the grasp classification accuracy and the earlier grasp detection. We found that
the grasp classification accuracy increased along the hand gradually grasping the object till firmly
grasped, and there is a sweet period before firmly grasped period, which could be suitable for early
grasp classification with reduced delay. On top of this, we also explored corresponding training
strategies for better grasp classification in real-time applications.

Keywords: myoelectric prosthesis; sEMG; grasp phases analysis; grasp classification; machine learning

1. Introduction

Losing a hand is a tremendously physical trauma to any individual. Amputated
individuals face a huge difficulty in performing daily activities independently [1], which
can also lead to unemployment and social isolation [2]. According to statistics, only 66% of
them can resume work after that [3].

To restore the functionality of hands in daily life and in work place, wearing prostheses
is one of the necessary options for amputees. There are three types of prosthetic hands:
cosmetic hand, body-power hand and Myoelectric hand [4,5]. Among them, Myoelectric
prosthesis hand is the most promising one, which allows an amputee to controls the robotic
hand by reading his/her muscle actives using Surface Electromyography (sEMG) sensors
on the residual forearm. The computer chip will read in muscle signals and convert signals
into executable commands.

Interpretation on muscle signals is essential for the control of electric powered pros-
thetic hands, which requires machine learning algorithms to classify muscular electric
signals into corresponding hand movement patterns. In most of the published papers,
scientists use myoelectric signals recorded during firmly grasped periods for grasp classifi-
cation, which yielded satisfactory classification outcomes [6–11]. For instance, the research
done by Jiang et al. [7] using 3 s firm grasp sEMG signals achieved approximately 85%
accuracy for classifying 16 grasp gestures. However, the firmly grasped periods occur at
the end of reaching and grasping, giving no time to control arm movement in a real-life
environment [12].
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When including muscle activities recorded from entire grasp period, the classification
accuracy decreased. In Cognolato et al.’s report [13], the accuracy of the classification for
10 grasp gestures was approximately 63% to 82% by using the sEMG signals during the
whole grasp period.

To solve this problem, developing a method to classify grasp pattern using sEMG
data recorded in the earlier grasp period with a high accuracy is necessary. In this study,
we investigate how grasp classification accuracy changes over the entire reaching and
grasping process, and identify a period in early grasp phase that can achieve the best
grasp classification outcome. We call this period as sweet period. Once the sweet period
is identified, we can develop a better classification strategy that can be used in the real-
time environment.

Specifically, we first apply and compare several processing methods for the feature
extraction of the sEMG signals. Then, we conduct an experiment to find the sweet period
that is suitable for early grasp classification with the best classification outcome. Finally, we
will conduct another experiment to compare several common training and testing strategies
to identify an effective strategy for better real-time grasp classification. We hypothesize that
the muscle activities recorded in the early period of hand grasping can provide sufficient
information to achieve the same or higher accuracy of grasp classification than other time
periods with a reduced delay for prosthetic hand control.

2. Materials and Methods

2.1. Data Collection

The data used in this study were from an open-source dataset collected by Cognolato
et al. [13], where the sEMG data were recorded from 30 healthy subjects (27 male and
3 female), with an average age of 46.63 ± 15.11 years.

Twelve sEMG sensors were placed on the forearm of each subject, producing twelve
columns of sEMG data, respectively. Due to the hardware problem, no myoelectric data
were received from electrode number eight during the acquisition of subject S024. Therefore,
the sEMG data for this subject were recorded from eleven electrodes instead of twelve [13].

Ten grasp gestures were performed in this data collection which were selected based
on the hand taxonomies [14–17] and grasp frequency in Activities of Daily Living [18]. The
participant performed each gesture for four repetitions, and in each repetition, the same
gesture was performed three times using three different objects, respectively. A designated
experimenter vocally guided the participant to perform which gestures and grasp which
objects. The data were labelled according to the vocal instruction. The list of gestures and
objects are shown in Table 1.

In the data post-processing part, the abnormal samples were replaced with the prece-
dent valid samples when filtering outliers [13]. As there might be a delay between the
participants’ response to the vocal instructions [13], the sEMG activation time might not be
matched perfectly with the stimulus time. Therefore, relabeling was performed to calibrate
this difference using the method described by Kuzborskij et al. [19].

2.2. Electromyography Feature Extraction and Selection

In the feature extraction process, we first determined the suitable window size for
deriving features [20]. As shown in Table 2, several sizes of the overlapped window were
tested, which are 50 ms, 100 ms, 200 ms, 500 ms, and 1000 ms. As the increase of the
window size, the accuracy keeps increasing, which means that the more data we used to
derive features, the better performance we could get. However, considering the capability
of Myoelectric prosthesis in the real-life condition, a large window would delay the grasp
action from the prosthetic hand. On the other hand, it can be seen that, when increasing the
window size over 200 ms, the increase of the accuracy is less than 1%, which is a very small
increase. Therefore, to keep the balance between accuracy and implementation speed, we
chose 200 ms as the window length with the step of 50 ms, which is a 75% overlap between
successive windows.
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Table 1. The columns indicate the ID and name of the grasp gestures, the name of the object, and the
name of the part of the object involved in the grasping. Adapted from ref. [13].

ID Grasp Gesture Object Grasp Location

bottle bottle body
1 medium wrap can can body

door handle door handle stick

mug mug handle
2 lateral key key body

pencil case case zip

plate plate edge
3 parallel extension book book body

drawer drawer edge

bottle bottle cap
4 tripod grasp mug mug body

drawer drawer knob

ball ball body
5 power sphere bulb bulb body

key key chain

jar jar lid
6 precision disk bulb bulb body

ball ball body

clothespin clothespin body
7 prismatic pinch key key ring

can can pull tab

remote remote button
8 index finger extension knife knife body

fork fork body

screwdriver screwdriver body
9 adducted thumb remote remote body

wrench wrench body

knife knife handle
10 prismatic four finger fork fork handle

wrench wrench handle

Table 2. Window Length Analysis. Both training and test data used the whole grasp period. The
classifier used was lightGBM. The features used were STD, RMS, IEMG, MAV, WL, SSI, AAC, and
DASDV mentioned in Figure 1. The cross-validation method used was leave-one-repetition-out
cross-validation which used one repetition data for testing and the rest three repetitions for training
the model, and repeated this process four times to cover all repetitions for testing.

Window Length Accuracy

50 ms 77.02%
100 ms 78.79%
200 ms 79.98%
500 ms 80.04%

1000 ms 80.33%

To assure the recognition accuracy by using proper features, we tested eleven com-
monly used features, which were Standard Deviation (STD), Root Mean Square (RMS),
Integrated EMG (IEMG), Mean Absolute Value (MAV), Waveform Length (WL), Log De-
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tector (LOG), Simple Square Integral (SSI), Skewness (SKW), Kurtosis (KURT), Average
Amplitude Change (AAC) and Difference Absolute Standard Deviation Value (DASDV) [21].
We dropped three lowest performance features, whichwere LOG, SKW and KURT and
chose the rest eight with the highest accuracy as the final features for the following research.
The performance of these features are shown in Figure 1. After applying the eight features
to the sEMG signals, the data set was converted from 12 columns to 96 columns. Due to
the sensor hardware issue mentioned in the first subsection, the sEMG data of subject S024
was changed from 11 columns to 88 columns.

Figure 1. Single feature performance with window size 200 ms. The eleven features are Standard
Deviation (STD), Root Mean Square (RMS), Integrated EMG (IEMG), Mean Absolute Value (MAV),
Waveform Length (WL), Log Detector (LOG), Simple Square Integral (SSI), Skewness (SKW), Kurtosis
(KURT), Average Amplitude Change (AAC) and Difference Absolute Standard Deviation Value
(DASDV). The classifier used was lightGBM. The cross-validation method used was leave-one-
repetition-out cross-validation which used one repetition data for testing and the rest three repetitions
for training the model, and repeated this process four times to cover all repetitions for testing.

2.3. Classification Models

Gradient boosting decision tree, such as XGBoost [22] and Light Gradient Boosting
Machine (LightGBM) [23], is a popular machine learning algorithm used by a large amount
of data scientists recently, which can achieve a high performance by using decision trees as
weak learners and assembling them to come up with one strong learner. Considering the
high feature dimensions and large data size, we chose LightGBM as the classifier which runs
faster while maintaining a high level of accuracy by utilizing two novel techniques called
Gradient-Based One-Side Sampling (GOSS) and Exclusive Feature Bunding (EFB) [23]. In
the experiment of Ke et al. (2017), LightGBM can accelerate the training process up to
twenty times than XGBoost.

We tuned the hyperparameters by using the training set of all the subjects and obtained
the best results as follows: the learning rate is 0.1; no limit was set for the maximum depth;
the number of estimators is 100; the number of leaves is 31; the remaining parameters are
set to the default values.

2.4. Phase-Based Grasp Analysis

Normally, a typical reaching and grasping process can be divided into three phases [24,25]:

1. The Reaching Phase: starts from the hand lifting off, and ends by touching the object.
During this phase, the hand is accelerated to a peak velocity and then is decelerated
and brought to touch the target object. The hand usually opens to be configured to
the target grasp gesture (pre-shape) [26].
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2. The Early Grasping Phase: begins at the moment when the hand initially contacts the
object, and gradually closes the fingers until the hand starts to firmly grasp the object.

3. The Firm Grasping Phase: the target object is firmly grasped and hand shape is
maintained relatively steady.

We segmented the Reaching, Early grasping, and Firm Grasping phases of each grasp
gesture from each subject by observing corresponding videos frame by frame and calculated
the average duration of each phase from all the observations. The judgment criteria for
entering an Early Grasping Phase was the moment that the hand started to touch the target
object, the judgement criteria for entering a Firm Grasping Phase was the moment that the
target grasp gesture was completely formed and the hand started to keep relatively steady.
According to the segmentation, Early Grasping Phase and Firm Grasping Phase started
averagely 1020 ms and 1604 ms from the beginning of Reaching Phase, respectively. An
example of grasp phases overlaid with sEMG signals during a full grasp trail is shown
in Figure 2.

Figure 2. An example of grasp phases overlaid with sEMG signals during a full grasp trial. The start
and end positions of these three phases were determined by observing corresponding videos frame
by frame.

3. Experiments and Results

We conducted two experiments, the first one aimed to analyse the grasp classification
accuracy during the three grasping phases and find out the best position and length of
sweet period, another was to find out the best training strategy.

3.1. Data Processing

The grasp trials performed by the participants lasted approximately 4.5–5 s [13]. We
removed the data after 4.5 s to align all the trials the same length. Because the overlapped
window step is 50 ms and the grasp period length is 4.5 s, 90 pieces of data were reminded
for each trial.

In this study, each participant performed one grasp gesture four times (repetitions)
which allowed us to split the sEMG data by repetitions to validate testing results. For all
the cases in this study, we used three repetitions (75%) for training and one repetition (25%)
for testing with leave-one-repetition-out cross-validation, which used one repetition data
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for testing and the rest three repetitions for training the model, and repeated this process
four times to cover all repetitions for testing. To increase the reliability of the sEMG data
set, there were three objects being grasped in each repetition with the same gesture as
mentioned in the data collection section. In other words, there were 324,000 data samples
(90 samples/grasp × 10 grasp gestures × 4 repetitions × 3 objects × 30 subjects) in the
data set.

3.2. Phases and Sweet Period Analysis

Figure 3 shows the mean changes of testing accuracy of grasp classification during all
the three phases. Each data point is averaged across all 900 trials from 30 participants.

From Figure 3 we can see that the accuracy increases from 42% to 84% during the
Reaching phase and then becomes stable at the start of Early Grasping phase at around the
time of 1000 ms, fluctuating between 84% and 87% during the rest of the grasp period. The
mean accuracy further increases to relatively stable at around the time of 1250 ms, where
we then define the location of the sweet period.

To find the optimal length of the sweet period, we designed different sliding windows
with sizes of 300 ms, 400 ms, 500 ms, 600 ms, 700 ms, 800 ms, 900 ms and 1000 ms. The
sliding window moved along with the time with step 50 ms, and in each move, it calculated
and recorded the mean accuracy. We analyzed the records from the sliding window, and
the results are given in Figure 4.

From Figure 4, we can see that the mean accuracy increases with the increase of win-
dow length significantly during the Reaching phase and beginning of the Early Grasping
phase (at about 1100 ms) but not significantly afterward. For instance, although the window
length of 1000 ms can reach the highest accuracy of 86.3%, it takes a much longer time than
the length of 300 ms with an accuracy of 85.5%. Therefore, the length of the sweet period
is set as 300 ms, and the position is set from 1100 ms to 1400 ms, which makes it entirely
located in the Early Grasping phase as the blue region shown in Figure 3.

Figure 3. Mean accuracy at each time point during the entire grasp period. This result is from the
model which was trained using all three phases data using leave-one-repetition-out cross-validation,
and the mean accuracy represents the average accuracy of 30 subjects. The blue region, starts from
1100 ms and ends from 1400 ms, is the sweet period which was confirmed from the first experiment.
The vertical dashed lines are averaged starting times of Early Grasping and Firm Grasping phases,
which locates at 1020 ms and 1604 ms, respectively. The red dots are outliers.
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Figure 4. Mean accuracy with different sweet period lengths at different start time.

3.3. Comparison Experiment

In the comparison experiment, we tested six strategies using different training and
testing data, as shown in Table 3.

Table 3. Analysis Results for Six Cases. All Three Phases include signal from the time of 0 ms to
4500 ms, Firm Grasping Phase is from the time of 2000 ms to 4500 ms, sweet period is from the time
of 1100 ms to 1400 ms. Leave-one-repetition-out cross-validation was employed for all cases, such
that all testing data was excluded from training the model.

Case Number Training Data Testing Data Accuracy

1 All Three Phases All Three Phases 79.98%

2 All Three Phases Firm Grasping Phase 81.68%

3 All Three Phases Sweet Period 85.50%

4 Firm Grasping Phase Firm Grasping Phase 80.39%

5 Firm Grasping Phase Sweet Period 60.80%

6 Reaching Phase Sweet Period 81.01%
and Early Grasping Phase

7 Early and Firm Grasping Phase Sweet Period 82.51%

8 Sweet Period Sweet Period 74.99%

In cases 1–3, we used all the three grasp phases as training data and reduced the testing
data size, from all three phases to only the firm grasping phase, then to the sweet period.
The purpose of performing these three comparisons was to study which phase/period was
the better choice for testing data when using all grasp phases as training data. Besides, to
figure out which phase played a better role model training, we studied another five cases.
For cases 4–5, we used Firm Grasping Phase for training and reduced the testing data size.
In cases 6–7, we used a combined Phases for training and sweet period for testing. In case 8,
we used the data in the sweet period for both training and testing. It is worth mentioning
again, the cross-validation method used for all the cases was leave-one-repetition-out
cross-validation which used one repetition data for testing and the rest three repetitions
for training the model, and repeated this process four times to cover all repetitions for
testing, such that all testing data was excluded from training the model. For example, in
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one testing repetition of case 8, the data from the sweet period of three repetitions were
used for training the model and the rest one for testing. The results are presented in Table 3.

As shown in the Table 3, we get the highest accuracy of 85.50% when we train with the
all grasp phases and test with the only sweet period. Besides, from case 1 to 3, we find that
if we keep the training data unchanged, the accuracy increases as the decrease of testing
data size.

4. Discussion

Our hypothesis is supported by the results that there is a sweet period located in the
Early Grasping Phase where sEMG signals can be used to achieve a similar or higher accu-
racy and lower delay of grasp classification than other time windows, which would help to
improve the performance of robotic hand implementation in the real-life applications. This
is important as the classifier can get the data much faster instead of waiting the muscle
getting into the Firm Grasping Phase.

We found that during the Reaching Phase, the mean accuracy of this phase is only
about 63%. This is because, in this period, the subjects moved their hands to reach the object
and start to perform the grasp gesture, keeping the muscle status changing. Therefore, the
sEMG signals in this period fluctuate very much, making it difficult in decoding the sEMG
signals, see Figure 2.

When getting into the Early Grasping phase, the accuracy reaches approximately 85%,
which is as high as that in the Firm Grasping phase. The possible reason for this is the hand
has already fully formed into the target gesture during the Early Grasping phase. Although
this formed gesture is slightly different to the final target gesture, it can provide sufficient
information for the classification. Therefore, the accuracy reaches to a high level at the start
of the Early Grasping phase. After the subject firmly grasps the object (getting into the
Firm Grasping phase), the accuracy keeps stable at around 85% because the sEMG signals
started to be stable, which also make the classification performance stable.

Notice that the sEMG signal is more active in the Reaching and Early Grasping phases
with high amplitude of the sEMG waveform as shown in Figure 2. This is because the
hand starts to perform the corresponding grasping gestures related activities such as
hand aperture, where the sEMG signals from the forearm are usually active with higher
amplitude than other phases [26], although the hand has not grasped to the object during
the Reaching Phase. In contrast, starting from the mid-Early Grasping phase to the whole
Firm Grasping Phase, the muscle status keeps relatively unchanged, which makes the
amplitude sEMG signal slightly lower than that in the reaching and grasping phase; this is
also why better grasp classification performance was achieved during the Early Grasping
phase and the Firm Grasping Phase where the sEMG signal patterns are relatively similar.

Using all three grasp phases for training the model and only using sweet period for
controlling is found to be the best strategy for Myoelectric prosthetic hand application
in real-life condition, not only because the sweet period during Early Grasping phase is
suitable for prosthesis control as discussed before, but also this strategy can also increase the
recognition accuracy compared to other strategies. The possible reason of higher accuracy
achieved by this strategy could be more variation data was included in the model training.
From case 3 and 6 in the Table 3, we can see that if we remove the Firm Grasping Phase
from training set, the accuracy decreases from 85.5% to 81.01%. This means that the Firm
Grasping Phase is essential for training data because it may contain the information about
the final target gesture. From case 3 and 7, we find that if we remove Reaching Phase from
training set, the accuracy decreases from 85.5% to 82.51%. This means that Reaching Phase
is also important for training data because it is the progress in which the gesture is formed.

For case 5, the accuracy is only 60.80% when only using the Firm Grasping Phase for
training because this period lost much information about gesture formation in Reaching
and Early Grasping Phases. For case 8, the accuracy reaches 74.99% only using sweet period
for training because this training data also lost the part of information about the gesture
in the Reaching Phase and the Firm Grasping Phase. However, using all phases data for
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training and the sweet period data for testing achieved the best accuracy, which can be the
common practice in real-life situations where training a model is not time-sensitive.

5. Conclusions

In order to reduce the delay of myoprosthetic hand control in the real-life situation
while maintaining a high recognition accuracy, we investigated the grasp classification
performance during three grasping phases to identify the sweet period. We found that the
sweet period located between 1.1 s and 1.4 s from the start of the hand grasping which
happens in the Early Grasping phase before the hand is firmly grasped.

Furthermore, we found using sEMG from all three grasping phases (Reaching, Early
Grasping, and Firm Grasping phases) for grasp classification model training achieved
the best accuracy. Together with the identified sweet period for controlling, the grasp
classification accuracy and the response speed of prosthetic hand can be balanced to
achieve high performance.
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Abstract: Sepsis is defined by life-threatening organ dysfunction during infection and is the leading
cause of death in hospitals. During sepsis, there is a high risk that new onset of atrial fibrillation
(AF) can occur, which is associated with significant morbidity and mortality. Consequently, early
prediction of AF during sepsis would allow testing of interventions in the intensive care unit (ICU) to
prevent AF and its severe complications. In this paper, we present a novel automated AF prediction
algorithm for critically ill sepsis patients using electrocardiogram (ECG) signals. From the heart rate
signal collected from 5-min ECG, feature extraction is performed using the traditional time, frequency,
and nonlinear domain methods. Moreover, variable frequency complex demodulation and tunable
Q-factor wavelet-transform-based time–frequency methods are applied to extract novel features
from the heart rate signal. Using a selected feature subset, several machine learning classifiers,
including support vector machine (SVM) and random forest (RF), were trained using only the 2001
Computers in Cardiology data set. For testing the proposed method, 50 critically ill ICU subjects
from the Medical Information Mart for Intensive Care (MIMIC) III database were used in this study.
Using distinct and independent testing data from MIMIC III, the SVM achieved 80% sensitivity,
100% specificity, 90% accuracy, 100% positive predictive value, and 83.33% negative predictive value
for predicting AF immediately prior to the onset of AF, while the RF achieved 88% AF prediction
accuracy. When we analyzed how much in advance we can predict AF events in critically ill sepsis
patients, the algorithm achieved 80% accuracy for predicting AF events 10 min early. Our algorithm
outperformed a state-of-the-art method for predicting AF in ICU patients, further demonstrating
the efficacy of our proposed method. The annotations of patients’ AF transition information will be
made publicly available for other investigators. Our algorithm to predict AF onset is applicable for
any ECG modality including patch electrodes and wearables, including Holter, loop recorder, and
implantable devices.

Keywords: sepsis; atrial fibrillation; prediction; heart rate variability; feature extraction; random
forest; annotations

1. Introduction

Sepsis is a life-threatening, dysregulated response to infection and is the leading
cause of death in the hospitals of the United States. Sepsis affects more than 1.5 million
Americans yearly at an annual cost of over $20 billion [1]. Atrial fibrillation (AF) is a
common and deadly complication of sepsis; it is associated with poor outcomes during
hospitalization and confers risk for significant adverse events long thereafter [2]. The
mechanisms of AF during sepsis are unclear and may involve rapid remodeling from
infection as well as triggers from autonomic nervous system activation, fluid shifts, and
electrolyte disturbances [3]. Patients with sepsis have sixfold higher risk of new-onset
AF as compared with hospitalized patients without sepsis and similar cardiovascular risk
factors. New-onset AF during sepsis is a common and deadly dysrhythmia during sepsis,
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affecting nearly 1 in 5 septic patients [4,5] and is associated with significant morbidity and
mortality [6]. As a result, early prediction of AF during sepsis could potentially lead to AF
intervention strategies, thereby minimizing poor hospital outcomes during sepsis.

For the past two decades, there have been many studies of AF prediction using
electrocardiogram (ECG) signals outside of the ICU setting. In [7], the frequent occurrence
of atrial premature beats prior to the onset of premature atrial contraction (PAC) was
reported to be predictive. PAC is characterized by analyzing the quantities of atrial and
ventricular ectopic beats from the RR intervals; an increase in atrial ectopic beats is reported
in subjects prior to AF episodes [8]. In [9], correlation coefficients, time domain, frequency
domain, power spectral densities, and P waves were used to predict paroxysmal AF (PAF).
Spectral, bispectral, and nonlinear measurements from 30-min heart rate variability data
were used in [10] to predict PAF events. Time domain, frequency domain, nonlinear, and
bispectrum features were calculated from 15-min heart rate data; genetic-algorithm-based
optimization and a support vector machine classifier were used to predict PAF in [11].
In [12], time, frequency, and nonlinear domain heart rate variability (HRV) features were
extracted first, which were then fed into an SVM classifier; feature subset and classifier
tuning were performed using nondominated sorting genetic algorithm III. A predictor
based on the number of premature atrial complexes not followed by a regular RR interval,
runs of atrial bigeminy and trigeminy, and the length of any short run of paroxysmal atrial
tachycardia was presented in [13]. In [14], short-term heart rate variability-based features
were extracted first; then, genetic-algorithm-based feature selection and k-nearest neighbor
classifier were applied to predict PAF. An AF prediction algorithm based on nonlinear
features calculated from the return map and difference map of HRV signals was reported
in [15]. A symbolic dynamic approach known as footprint analysis was presented in [16]
to investigate heart rate dynamics before PAF episodes. In [17], a combination of linear,
time–frequency, and nonlinear analysis were performed on heart rate variability and a
mixture of experts classification was used for PAF prediction.

However, the common factor for most of the above-mentioned methods is that they
were developed and validated using the 2001 Computing in Cardiology (CinC) Challenge
data set, as this is the only publicly available data set so far for AF prediction. Thus, the AF
prediction studies are limited by the available data sets. In the CinC data set, PAF prediction
is performed within the PAF subjects using the two ECG records (pre-AF and distant from
AF data segments) from the same subject. Moreover, none of these methods examined
AF prediction in critically ill ICU patients. The mechanisms of AF during sepsis may
differ from other clinical scenarios; therefore, AF prediction algorithms may differ during
sepsis [3,5]. As a result, the above-mentioned methods lack a prospective head-to-head
evaluation with clinically derived real life data [17].

In order to address the novel challenges of AF prediction during sepsis, in this study,
we present a machine learning approach for AF prediction for ICU patients with sepsis.
We used traditional HRV parameters as well as novel time–frequency-based features to
identify pre-AF ECG recordings from critically ill sepsis patients.

The major contributions of this study are threefold. First, this is one of the first studies
to propose an AF prediction method for critically ill sepsis patients. For this purpose, we
use the CinC data for training and only the MIMIC III ICU data for testing; the previous
methods used only the CinC data for both training and testing. Second, we not only
predict AF immediately before its onset, but also analyze how much in advance we can
predict the AF by using the prior 5 min of ECG data, thus allowing adequate time for
potential clinical interventions prior to AF onset in real-world scenarios. Third, we provide
valuable annotations for the normal sinus rhythm (NSR)-to-AF transition subjects (pre-AF
recordings) collected from the MIMIC III ICU data, which will benefit other researchers
and advance AF prediction research.
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2. Description of the Database

Two different data sets were used in this study:

2.1. Mimic III Database (Used Only as Testing Data)

In this study, a subset of the Medical Information Mart for Intensive Care (MIMIC)
III data set was used. MIMIC III is a large open source medical record database publicly
available in PhysioNet [18] which contains deidentified health-related data from patients
who stayed in critical care units of the Beth Israel Deaconess Medical Center between
2001 and 2012 [19]. It includes a variety of information such as patient demographics,
laboratory test results, vital sign measurements, medications, nurse and physician notes,
imaging reports, and out-of-hospital mortality, which are some of the notable parameters
among many others that are available. In many patients, MIMIC III links continuous ECG
waveforms to a wealth of time-varying clinical and hemodynamic data. The sampling
frequency of the ECG recordings was 125 Hz and the measurement unit was millivolts (mV).

We have used a total of 50 critically ill ICU patients from the MIMIC III database.
Twenty-five of these subjects had non-AF to AF transition, who are henceforth referred as
“AF transition subjects.” Additionally, these AF transition subjects had at least 1 h of non-
AF rhythms before the AF onset. It is to be noted that the first onset of AF was adjudicated
by two physicians (AW and DDM). The physicians at the University of Massachusetts
Medical School and Boston University’s Medical School were involved in finding AF
transition subjects.

Finding AF subjects with the above-described requirements was a manually demand-
ing task since it required searching through thousands of patients’ ECG data records.
Consequently, due to the above requirement, we found a limited number of patients for
examining our algorithm’s predictive capability. From the “MIMIC III waveform database
matched subset” [20], 18 subjects were identified with non-AF to AF transition. ECG signals
were annotated by board-certified physicians specializing in AF management (AW and
DDM). These AF transition subjects had sepsis according to the International Classification
of Diseases, Ninth Revision (ICD-9) codes.

Moreover, the physicians identified seven additional subjects with non-AF to AF
transition who were not included in the MIMIC III matched subset, rather only from the
MIMIC III database. These seven subjects were from the critically ill group; however, since
these seven subjects were not from the MIMIC III matched subset, no clinical information
about sepsis was available. Overall, a total of 25 (=18 + 7) subjects with non-AF to AF
transition (i.e., pre-AF) were identified.

Similarly, in order to form the control group, 25 NSR subjects were chosen to match
the number of non-AF to AF transition subjects. These control subjects were randomly
chosen using the previous AF and NSR annotations provided by our group, and were
adjudicated to not be in AF for the entire duration of the waveform recording [21]. These
25 NSR control subjects were from a critically ill group with sepsis. As a result, the total
number of subjects in this study was 50, and they were used only as the test data set. The
annotated data will be made publicly available at https://biosignal.uconn.edu/resources/
to facilitate further research.

2.2. AFPDB Database (Used Only as Training Data)

The AFPDB data set is a publicly available paroxysmal atrial fibrillation prediction
database, which originated from the PAF prediction challenge administered by Computers
in Cardiology in 2001 [18,22]. The training database contains 25 pairs of ECG recordings
obtained from patients with paroxysmal AF where each pair is recorded from different
PAF patients. Each pair of data contains one 30-min ECG segment that ends just prior to
the onset of a PAF event and another 30-min ECG segment at least 45 min distant from the
onset of PAF. Moreover, recordings from 25 normal subjects were provided; each recording
is 30 min long and has two channels.

229



Biosensors 2021, 11, 269

For this study, we used 25 control ECGs and 25 ECG segments which are just prior to
the onset of PAF (referred to as pre-AF). As a result, the 50 recordings are from different
subjects. Each ECG segment contained two-channel traces from Holter recordings with a
sampling rate of 128 Hz and 12-bit resolution.

3. Proposed Method

The AF prediction scheme is illustrated in Figure 1. AF onset refers to the time point
when AF started and the ECG recording prior to this onset is referred to as “pre-AF.”
The goal of our proposed method is to be able to predict the AF onset using this “pre-
AF” data. For the control group, since there is no AF event, a random ECG portion is
identified as the control. The aim is to discriminate these pre-AF segments from the NSR
or normal segments.

Figure 1. AF prediction schematic. (a) Normal recordings followed by normal recordings (control
group). (b) Pre-AF (i.e., normal) recordings followed by AF onset.

Our method consisted of first preprocessing the ECG recordings, followed by fea-
ture extraction using several standard heart rate variability (HRV) analysis methods as
well as time–frequency-based analysis of the heart rate signal. Finally, the pre-AF seg-
ments/ECG data are identified from the control group using the extracted features and
machine learning classifiers.

3.1. Preprocessing

The first step of the preprocessing is the extraction of the heart rate data from ECG
recordings. For short-term heart rate analysis, a 5-min ECG segment is recommended [14,23].
For the non-AF to AF transition subjects, a 5-min segment was taken from the ECG record-
ings immediately prior to the AF onset. Next, the R-peaks of the ECG segment were
determined by a newly developed R-peak detection method which can reconstruct the
ECG from the time-frequency-based sub-band decomposition [24]. After the R–R interval
series was obtained, several preprocessing steps were performed depending on the feature
extraction approaches. For calculating the frequency domain heart rate features, ectopic
beats were first removed using the impulse rejection method described in [25] to obtain the
corrected heart rates. Next, the corrected heart rate was resampled at 4 Hz by cubic spline,
which was followed by trend removal.

For the time–frequency-domain-based analysis methods (variable frequency complex
demodulation (VFCDM) and tunable Q-factor wavelet transform (TQWT)), the original R–
R interval series was resampled at 4 Hz by cubic spline to make the samples evenly spaced;
ectopic beat removal was not performed. For the time domain and nonlinear feature
extraction methods, the original R–R interval was used without any further preprocessing.

3.2. Feature Extraction from RR Intervals

Figure 2A shows a representative 5-min heart rate signal, which is immediately prior
to AF onset (from the CinC data set), whereas Figure 2B shows the same for a sample
segment from the MIMIC data. Figure 2C,D show sample HRV segments from the CinC
and MIMIC data, respectively, for the control group. From the pre-AF segments, it can be
seen that there are several occurrences of PAC beats.
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Figure 2. Representative 5-min heart rate signal, which is immediately prior to the AF onset: (A) from
the CinC data set and (B) from the MIMIC III data set. Representative 5-min heart rate signal for
control group: (C) from the CinC data set and (D) from the MIMIC III data set.

In order to predict AF, the following HR signal-based feature extraction methods were
used in this study:

3.2.1. Time Domain Features

From the 5-min original heart rate signal, several standard time domain HRV features
were calculated. The features include: standard deviation of the heart rate data (SDNN);
total number of consecutive heart rate data differences greater than 50 ms (NN50); sum
of NN50 divided by the total number of RR intervals (pNN50); skewness and kurtosis
of the heart rate data; and root mean square of successive differences (RMSSD) of heart
rate, which is divided by the mean heart rate of the corresponding segment to counter
the variability among different subjects and segments. Finally, triangular index was also
calculated as a geometric HRV feature, defined as the total number of RR intervals divided
by the number of RR intervals that fall into a modal bin [11,23].

3.2.2. Nonlinear Features

In order to calculate the nonlinear features, the original heart rate signal was used.
The extracted nonlinear HRV features include:

Poincaré Features

The Poincaré plot is a geometrical method that can be used to assess the dynamics
of HRV. For HRV analysis, it is generated by plotting every RR interval against the prior
interval, which creates a scatter plot [26]. For the Poincaré plot feature, an ellipse is fitted to
the scattered points and the two following parameters are calculated for the quantification
of the geometry.

SD1 is the standard deviation of the projection of the Poincaré plot on the line per-
pendicular to the line of identity, which reflects the level of short-term variability. SD2 is
the standard deviation of the projection of the Poincaré plot on the line of identity, which
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is thought to indicate the level of long-term variability [27]. They are defined as follows,
where SD is the standard deviation and RRi is the ith RR interval [28]:

SD1 =
1√
2

SD(RRi+1 − RRi)

SD2 =
√

2 × SD(RRi)2 − 0.5 × SD(RRi+1 − RRi)2

(1)

Moreover, the SD1/SD2 ratio was used as another Poincaré plot feature.

Sample Entropy

Sample entropy (SampEn) measures the randomness of the HRV signal. SampEn is
defined as the negative logarithm of the conditional probability that two sequences similar
for m points remain similar at the next point, where self-matches are excluded [29,30].
SampEn has two main parameters: template length ‘m’ and tolerance ‘r’. A lower value of
SampEn indicates more self-similarity in the heart rate time series [30].

Multiscale Entropy

Multiscale entropy (MSE) analyzes the dynamic complexity of a system by quantifying
its entropy over a range of temporal scales [31]. MSE is a two-step procedure: the first
step consists of generating a coarse-grained time series by averaging the data points of the
original HRV series while the second step consists of computing the sample entropy of
each coarse-grained time series [32].

Approximate Entropy

Approximate entropy (ApEn) is the conditional probability of two segments of a time
series of length N matching at a length m + 1 if they match at a length m [33]. ApEn is a
function of three parameters—N, m, and r—where N is the length of the HRV signal, m
is the embedding dimension, and r is the tolerance/distance threshold, which is fixed to
match segments when they are compared with each other [34].

Autoregressive (AR) Model

The RR interval time series can be described as the output of an AR model. By fitting
an AR model, the fluctuations of the HRV series can be separated into those of the regulated
component and the random component, which is the residual of the AR model [35].

RR(t) =
p

∑
k=1

A(k)RR(t − k) + n(t) (2)

Here, A(k) is the AR model coefficient, n(t) is the model error or residual component,
and p is the model order. The variance of this residual component n(t) is an estimate of
the residual noise power (σ2

AR), which is used as a feature in our work. For the pre-AF
segments, this σ2

AR is expected to have high value due to the frequent occurrence of ectopic
beats. In this study, the 12th order AR model was empirically selected.

3.2.3. Frequency Domain Features

Frequency domain parameters can provide useful information about the sympathetic
and parasympathetic nervous activity and are shown to be effective for predicting PAF
onset [12,14]. In order to calculate the frequency domain HRV features, ectopic beat removal
was performed using the McNames impulse removal filter [25]. This corrected HRV was
then resampled at 4 Hz by cubic spline and trend removal.

The power spectra of HRV data were calculated using Welch’s periodogram method
with 50% overlap. First, a Blackman window (length of 256) was applied to each segment,
and then the fast Fourier transform was calculated for each windowed segment. Finally,
the power spectra of the segments were averaged [36]. Figure 3a,b show a sample pre-
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processed heart rate signal obtained from a control subject and the corresponding PSD,
respectively. Figure 3c,d show similar examples for a pre-AF segment. From the PSD,
the very-low-frequency power (VLF) in the range 0–0.04 Hz, low-frequency power (LF)
in the range 0–0.15 Hz, high-frequency power (HF) in the range 0.15–0.40 Hz, and total
power were computed first [23]. Next, LF/HF, normalized LF (LFn = LF/total power),
and normalized HF (HFn = HF/total power) were calculated and analyzed for pre-AF vs.
NSR discrimination.

Figure 3. (a) Preprocessed heart rate signal from a control subject and (b) the corresponding PSD.
(c) Preprocessed heart rate signal from a pre-AF segment and (d) the corresponding PSD.

3.2.4. VFCDM-Based Features

Variable frequency complex demodulation (VFCDM) is a high-resolution time–frequency
domain method, which is widely used for various biosignal processing, including ECG [24,37],
EDA [36], PPG [38,39] and other signals. First, the heart rate signal was resampled at 4 Hz
to make the samples evenly spaced, which was followed by high-pass filtering (0.01 Hz) to
remove any trends.

Using the VFCDM, the preprocessed heart rate signal was decomposed into K number
of components or sub-bands [37]:

hrv(t) =
K

∑
i=1

Vi(t) (3)

where hrv is the input heart rate signal, Vi(t) is the ith component or sub-band, and K is the
number of sub-bands. In this study, by applying the VFCDM, the input hrv(t) was divided
into K = 12 sub-bands. These sub-bands were evenly spaced in the frequency range and
their frequencies depend on the sampling rate. Since the heart rate data were resampled at
4 Hz, the spectral components (i.e., Vi(t)) were centered at 0.08, 0.24, 0.40, 0.56, 0.72, 0.88,
1.04, 1.20, 1.36, 1.52, 1.68, and 1.84 Hz.

Figure 4 shows a sample of preprocessed heart rate signal (the input) and the time–
frequency representation obtained using the VFCDM.
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Figure 4. (a) Sample 5-min heart rate signal from a pre-AF ECG segment. (b) Time–frequency
representation obtained using VFCDM.

From the 12 VFCDM components (3), only the third and fourth components were
added to make a reconstructed heart rate time series, hrvrec(t) = V3(t) + V4(t)).

This reconstructed heart rate time series (hrvrec) contained the high-frequency com-
ponents and was found to be highly useful for analyzing the heart rate variation due to
frequent ectopic beats and subsequently, for AF prediction when compared to the control
group. Figure 5a–d shows the third and fourth components obtained from the VFCDM
decomposition of a sample heart rate signal (pre-AF group) and their respective power
spectral density (PSD). The PSDs shows that third component is centered at 0.40 Hz,
whereas the fourth component is centered at 0.56 Hz, which surrounds the HF part of HRV
and represents the variation due to ectopic beats. Figure 5e shows the reconstructed heart
rate signal (hrvrec) and Figure 5f shows the PSD of the reconstructed HRV.

Using this reconstructed heart rate signal, we performed the Hilbert transform to
obtain the signal envelope as follows [36]:

H(t) =
1
π

P
∫ ∞

−∞

hrvrec(τ)

t − τ
dτ (4)

where P indicates the Cauchy principal value. hrvrec(t) and H(t) form the complex conju-
gate pair, which can be used to define the analytic signal A(t):

A(t) = hrvrec(t) + iH(t) = a(t)ejθ(t) (5)

where

a(t) = [hrv2
rec(t) + H2(t)]1/2

θ(t) = arctan [H(t)/hrvrec(t)]
(6)

The a(t) is considered the instantaneous amplitude or envelope of A(t). Figure 5e
shows the reconstructed HRV (hrvrec) and the Hilbert transform envelope or instantaneous
amplitude (a(t)). From this instantaneous amplitude, mean, variance, and energy were
calculated as features.
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Figure 5. For a sample 5-min pre-AF heart rate signal: (a) third component of the VFCDM decomposi-
tion; (b) PSD of the third component; (c) fourth component of the VFCDM decomposition; (d) PSD of
the fourth component; (e) reconstructed heart rate signal along with the Hilbert transform envelope;
and (f) PSD of the reconstructed heart rate.

235



Biosensors 2021, 11, 269

3.2.5. TQWT-Based Features

The tunable Q-factor wavelet transform (TQWT) is a flexible full-discrete wavelet
transform, which is suitable for analyzing oscillatory signals [40]. TQWT facilitates analysis
of oscillatory signals using three adjustable parameters: Q-factor (Q), redundancy or total
oversampling rate (r), and the number of decomposition levels (J). Q controls the number
of oscillations of the wavelet and affects the extent to which the oscillations of the wavelet
are sustained [41]. r helps to localize the wavelet in the time domain without affecting
its shape.

For a certain decomposition level J, TQWT decomposes an input signal into J + 1
sub-bands. It is performed by iteratively applying the two-channel filter bank on its low-
pass channel. TQWT consists of a sequence of two-channel filter banks, with the low-pass
output of each filter bank being used as the input to the successive filter bank [42].

For a low oscillatory signal, Q will be lower, whereas a higher Q value is required for
high oscillatory signals. As a result, the wavelets will be more oscillatory with narrower
frequency response. Unwanted excessive ringing of wavelets needs to be prevented while
performing TQWT by appropriately choosing the value of r, which is recommended to be
greater than or equal to 3. Details about TQWT can be found in [40,41]. In order to extract
AF predicting features from the HRV signal using TQWT, J = 17, Q = 3, and r = 4 have
been selected empirically in this study.

Figure 6A,B shows the input heart rate signal (from a pre-AF segment) and the TQWT
coefficients, respectively, obtained from levels J = 8 to J = 13 where the resampled
heart rate signal was used as the input. Figure 6C shows the frequency response of the
TQWT transform for the selected parameters where the gain is normalized to have unity
amplitude. Since J = 17 was used, the center frequencies of the TQWT sub-bands were (in
descending order): 2 Hz, 1.31 Hz, 1.15, 1 Hz, 0.88 Hz, 0.77 Hz, 0.67 Hz, 0.59 Hz, 0.52 Hz,
0.45 Hz, 0.39 Hz, 0.35 Hz, 0.30 Hz, 0.26 Hz, 0.23 Hz, 0.20 Hz, and 0.18 Hz. The frequencies
corresponding to J = 8 to J = 13 are marked in black in Figure 6C.

We analyzed the mean, variance, energy, entropy, and spectral entropy calculated
from the coefficients of different sub-bands and found that energy as well as spectral
entropy were the most useful ones as the discriminating features to be used for pre-AF and
control segments.

Spectral entropy is a generalization of information entropy and it measures the distri-
bution of frequencies. Spectral entropy treats the signal’s normalized power distribution in
the frequency domain as a probability distribution and calculates Shannon entropy from
it [43,44]. For a given time–frequency spectrogram S(t, f ), the probability distribution at
time t is given by:

P(t, m) =
S(t, m)

∑ f S(t, f ) (7)

The instantaneous spectral entropy at time t is calculated as [44]:

H(t) = −
N

∑
k=1

P(t, k) log2 P(t, k) (8)

In order to obtain a scalar feature value, L2 norm of this instantaneous spectral entropy
was used as the feature (referred to as “ENT”).
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Figure 6. (A) Sample 5-min heart rate signal. (B) TQWT coefficients obtained from levels 8 to 13.
(C) Frequency response of the TQWT transform with the selected parameters (normalized to have
unity gain).

3.3. AF Prediction Framework

After several features were extracted from the five different domains, suitable features
were selected by visual analysis (scatter plots and box plots) as well as cross-validation on
the training data.

Based on the analysis performed using the training data, 14 features were selected.
The selected features for the machine learning model include RMSSD; SD1; AR residual
noise; variance from VFCDM; LF/HF; LFn; TQWT spectral entropy from bands 8, 11, 12,
and 13; and TQWT energy from sub-bands 9, 10, 11, and 12.

Several machine learning classifiers were analyzed using the selected feature subset
and the performance of those classifiers is described in the Results section. Finally, support
vector machine (SVM) and random forest (RF) were chosen for our AF prediction. SVM is a
popular and well-established method for binary classification problems where a maximum
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margin between the training and test data is constructed [45]. RF classifier is formed by
combining multiple randomly constructed tree models [46]. In the bagging (bootstrap
aggregation) learning concept, many weak learners are trained over subsets drawn with
replacements from the training set and their outputs are voted to determine a predictive
estimate. This is shown to decrease the variance of the model without increasing the bias,
thus resulting in diverse ensembles [47].

Figure 7A shows the scatter plot for the variance of VFCDM, whereas Figure 7B shows
the 3D scatter plot for TQWT energy and spectral entropy. The scatter plots show that
control and pre-AF samples have some visible separation for most of the cases. Figure 7C,D
show the box plots for RMSSD and AR residual noise. The box plots have nonoverlapping
medians, indicating the discriminatory property of the features. Figure 8 shows the
complete flowchart of the proposed AF prediction method.

Figure 7. (A) VFCDM feature. (B) 3D scatter plot of spectral entropy (level 8, 11) and energy of level
12. (C) Box plots of RMSSD. (D) Box plots of AR residual noise.

Figure 8. Overview of the proposed AF prediction method.
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4. Results

In order to evaluate the prediction performance of our proposed method, commonly
used binary classification accuracy measures were used. An ECG segment prior to the AF
onset was denoted as a positive class, whereas an ECG segment from the control group
was referred to as a negative class.

Sensitivity (SEN) = TP/(TP + FN)

Speci f icity (SPE) = TN/(TN + FP)

Accuracy (ACC) = (TP + TN)/(TP + FN + TN + FP)

Positive predictive value (PPV) = TP/(TP + FP)

Negative predictive value (NPV) = TN/(TN + FN)

(9)

where TP denotes the number of true positives, TN is the number of true negatives, FP is
a false positive, and FN is a false negative.

4.1. Results on Training Data (CinC Data)

From the CinC data set, we have 25 control and 25 pre-AF ECG segments. With
these 50 segments, the well-established k-fold cross-validation was performed to select
the classifier model and tune the hyperparameters. The training data were split into K
disjoint partitions (K = 5) and each time (K − 1) folds were used for training while the
last fold was treated as test data; the entire process was repeated k times [44]. For this
study, we have explored several machine learning classifiers including support vector
machine (SVM), discriminant analysis (DA), k-nearest neighbor (kNN) and random forest
(RF). For the discriminant analysis, both linear and quadratic boundaries along with
Mahalanobis distance were analyzed. Moreover, diagonal linear and diagonal quadratic
discriminant functions were also used (referred to as “diaglinear” and “diagquadratic”),
which are similar to linear and quadratic discriminant functions except the estimate of the
covariance matrix is diagonal [48]. For SVM, both the linear and radial basis function (RBF)
kernels were used. In kNN, both Euclidean and Cityblock (Manhattan) distance were used
with the variation of “K” values, which denotes the number of the nearest neighbors to be
used. For the RF, the hyperparameters were varied during the fivefold cross-validation and
it was found that with the selected feature subset, 50 trees resulted in the best prediction
performance. Table 1 shows the performance of several machine learning classifiers using
the training data (CinC) for the fivefold cross-validation.

Table 1. Performance comparison of different classifiers.

Classifier Type/ Sensitivity Specificity Accuracy
Name Hyperparameter (%) (%) (%)

DA

Linear 64 72 68
Diaglinear 60 76 68
Quadratic 88 60 74

Diagquadratic 52 80 66
Mahalanobis 92 52 72

SVM Linear 64 72 68
RBF 76 76 76

KNN K = 5, 60 60 60Euclidean
K = 5, 64 60 62Cityblock

RF 50 trees 80 76 78

It can be seen from Table 1 that the SVM and RF models resulted in better performance
than the rest. The confusion matrices for both SVM and RF are shown in Table 2. With the
fivefold cross-validation, the RF classifier achieved 80% sensitivity, 76% specificity, and
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78% accuracy on the training data, whereas the SVM obtained 76% accuracy, sensitivity,
and specificity.

Table 2. Confusion matrix on the training data.

SVM RF

Predicted Label Predicted Label

True Label

Pre-AF Control

True Label

Pre-AF Control
Pre-AF 19 6 Pre-AF 20 5
Control 6 19 Control 6 19

4.2. Results on Test Data (MIMIC III ICU)

Next, the trained model was tested using the critically ill ICU data from MIMIC III.
It is to be noted that the feature subset and model parameters were fixed by doing the
cross-validation on the training data (CinC); the trained model was blindly tested on the
ICU data. The test data set contained 25 ECG recordings from the subjects with no-AF to
AF transition (pre-AF segments) and 25 control ECG recordings.

4.2.1. Test Results on the Data Prior to AF Onset

First, the model was tested using the ECG data, which are immediately prior to the
AF onset. These immediately prior data are expected to exhibit the most AF-predicting
properties. Table 3 shows the confusion matrices for these test data using both the RF
and SVM classifiers. The RF classifier identified 20 pre-AF segments correctly, resulting
in sensitivity of 80%. Moreover, for the control group, RF detected 24 segments correctly,
resulting in 96% specificity and an overall 88% accuracy. The radial basis SVM achieved
80% sensitivity, 100% specificity, and 90% accuracy.

Table 3. Confusion matrix on the test data (immediately before onset).

SVM RF

Predicted Label Predicted Label

True Label

Pre-AF Control

True Label

Pre-AF Control
Pre-AF 20 5 Pre-AF 20 5
Control 0 25 Control 1 24

In order to demonstrate the efficacy of our proposed method, we compared its per-
formance with the Narin et al. method [14]. Narin et al. reported two different models:
one is for PAF as well as the control subjects (model 1), whereas the other is only for the
PAF subjects (model 2). Model 1 consisted of RMSSD, NN20, pNN20, FFTVLF, and FFTHF
features; the kNN classifier is reported in Narin et al. [14]. The second model used RMSSD,
FFTVLF, FFTLF, and total power of FFT along with the kNN classifier [14]. In order to
compare the performance, both of these models were trained and tested using the same
data that we used (CinC and MIMIC, respectively) and the resulting confusion matrices
are presented in Table 4. From the table, it can be seen that both of the reported models
of [14] have low sensitivity compared to ours (Table 3).

Table 4. Test results of the compared methods.

Model 1 [14] Model 2 [14]

Predicted Label Predicted Label

True Label

Pre-AF Control

True Label

Pre-AF Control
Pre-AF 15 10 Pre-AF 16 9
Control 4 21 Control 3 22
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4.2.2. Test Results for Moving Backward from AF Onset

In the next step, we analyzed how much in advance in time we can predict the AF
onset. We analyzed how the prediction performs if we started far before AF onset. In order
to study this, we took 5-min ECG segments and moved backward in a 50% overlap all the
way up to 15 min prior to AF onset. As a result, the algorithm was tested using the ECG
data from 2.5 min, 5 min, 7.5 min, and 10 min prior to AF onset. Figure 9 illustrates this
testing scenario; for example, Figure 9E shows that one prediction was performed using
the ECG data that was from 15 to 10 min prior to the AF onset.

Figure 9. Illustration of AF prediction for moving backward in time from the onset.

For each of the testing scenarios demonstrated in Figure 9, we tested the already
trained classifiers as mentioned in the previous subsection. Tables 5–8 show the confusion
matrices from testing the critically ill ICU ECG data for the four different scenarios illus-
trated in Figure 9B–E. For each scenario, the results are presented using both RF and SVM
classifiers.

Table 5. Confusion matrix on the test data (2.5 min before onset).

SVM RF

Predicted Label Predicted Label

True Label

Pre-AF Control

True Label

Pre-AF Control
Pre-AF 16 9 Pre-AF 18 7
Control 0 25 Control 1 24

Table 6. Confusion matrix on the test data (5 min before onset).

SVM RF

Predicted Label Predicted Label

True Label

Pre-AF Control

True Label

Pre-AF Control
Pre-AF 15 10 Pre-AF 18 7
Control 1 24 Control 3 22
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Table 7. Confusion matrix on the test data (7.5 min before onset).

SVM RF

Predicted Label Predicted Label

True Label

Pre-AF Control

True Label

Pre-AF Control
Pre-AF 13 12 Pre-AF 18 7
Control 2 23 Control 4 21

Table 8. Confusion matrix on the test data (10 min before onset).

SVM RF

Predicted Label Predicted Label

True Label

Pre-AF Control

True Label

Pre-AF Control
Pre-AF 16 9 Pre-AF 18 7
Control 2 23 Control 3 22

It can be seen from Table 5 that when 2.5 min prior to AF onset ECG data were used
for AF prediction, the RF model predicted 18 pre-AF segments correctly; the prediction
was correct for 24 segments for the control class, resulting in 84% accuracy. However, the
prediction performance slightly degraded as we moved farther from the AF onset. When
we used the ECG data from 10 min before the AF onset, the AF prediction sensitivity,
specificity, and accuracy were 72%, 88%, and 80%, respectively.

Finally, in Table 9 the sensitivity, specificity, accuracy, PPV, and NPV for different time
durations are reported for both of SVM and RF classifiers. Although for the immediately
prior to AF data SVM had slightly higher accuracy than did RF, for all other durations RF
had better performance than did the SVM. Moreover, we compared the performance of our
presented method with Narin et al. [14] for different time durations. For the comparison,
we extracted the reported features described in [14], trained the kNN classifier on the CinC
data, and tested the model using the MIMIC III ICU data. From the table, it is evident
that our proposed method achieved better performance than the compared method for
all cases.

Table 9. Confusion matrix on the test data (7.5 min before onset).

Prior
Method

SEN SPE ACC PPV NPV
Duration (%) (%) (%) (%) (%)

0 min SVM 80 100 90 100 83.33
RF 80 96 88 95.24 82.76

Method in [14] 60 84 72 78.95 67.74
2.5 min SVM 64 100 82 100 73.53

RF 72 96 84 94.74 77.42
Method in [14] 56 84 70 77.78 65.63

5 min SVM 60 96 78 93.75 70.59
RF 72 88 80 85.71 75.86

Method in [14] 52 88 70 81.25 64.71
7.5 min SVM 52 92 72 86.67 65.71

RF 72 84 78 81.82 75
Method in [14] 36 84 60 69.23 56.76

10 min SVM 64 92 78 88.89 71.88
RF 72 88 80 85.71 75.86

Method in [14] 68 80 74 77.27 71.43

5. Discussion

We presented a novel approach to predict AF during sepsis from critically ill ICU
patients using the RR interval variability of ECG. Since the frequent occurrence of premature
ectopic beats is shown to be a predictor of AF, the HRV-derived features were well suited
for describing the variability.
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In order to use this variability due to frequent occurrence of ectopic beats, ectopic
beat removal was not used for preprocessing the HRV signal for the time domain, time–
frequency domain, or nonlinear methods. Ectopic removal was used only for the frequency
domain feature extraction, as this is the standard procedure for calculating frequency
domain HRV features [17,23].

In this work, we extracted several features from 5-min heart rate signals using five
different methods: time domain, VFCDM, TQWT, nonlinear, and frequency domain. With
the extracted features, we trained machine learning models using the CinC data and
performed cross-validation to select suitable features as well as the model parameters. Once
we obtained the highest accuracy using the training data, we directly applied the trained
model to the ICU data. For different combinations of the extracted features, we performed
cross-validation using the training data and measured the prediction accuracy. Next, we
chose the combination of classifier model and associated features which provided the best
training performance. When other features were selected, the prediction accuracy on the
training data was lower. Finally, our proposed method achieved reasonable performance
on this blind test data, which shows the efficacy of our method.

For the performance comparison, the Narin et al. [14] method was chosen for a few
reasons. First, unlike most other methods, the authors of [14] used normal subjects along
with the PAF subjects. They performed the cross-validation performance using both the
normal and PAF subjects, and not only the PAF subjects. Second, they analyzed how early
they could predict AF by going backward in time. Finally, their method studied 5-min HRV
signals to predict PAF. However, similar to most other reported AF prediction methods,
no evaluation using an external test data set was performed. The fact that our method
achieved higher performance than [14] for all the different time durations clearly shows
the efficacy of the presented method. Moreover, this reflects that overfitting can be an issue
when only the cross-validation results are reported using a small data set without doing an
external test set.

There are three main contributions of our study: we tested AF prediction using a new
and different data set, which consists of critically ill sepsis patients. After obtaining good
prediction accuracy for the ECG data immediately prior to the AF onset, we analyzed how
much in advance we could predict the AF. We achieved 80% overall accuracy for predicting
AF 10 min prior to its onset. Currently, we do not have interventions to effectively prevent
AF. Hence, the ability to predict AF will enable enrichment of trials of interventions to
prevent AF. While 10 min of notice ahead of AF occurrence would be tight to institute an
AF preventive strategy in practice, it may be enough time to give an intervention in an
experimental setting. This work is foundational for predicting AF with longer duration.
Most importantly, our work would help minimize the amount of time a patient spends in
AF, as reducing the time burden of a patient’s AF to only a few minutes may mitigate their
risk for ischemic stroke.

Additionally, though the accuracy expectedly trends downward further away from
AF onset, this decrease is largely a function of the algorithm’s sensitivity, and the specificity
actually remains high in all time windows examined. Therefore, this suggests that our
approach can be especially useful for confirming true positive cases given a positive result.
Finally, we provided new annotations for other researchers, which can be used as a valuable
resource for future work in AF prediction.

Our study is different than the CinC 2001 data-based works [7–17]. In CinC-based
works, AF prediction was analyzed using only the PAF subjects. In other words, within
the PAF subjects, the AF prediction analysis was performed where each subject had two
recordings: pre-AF and distant from AF. However, in this study, we performed AF predic-
tion using the control subjects and the critically ill ICU sepsis subjects who had a transition
from non-AF to AF. As a result, the pre-AF and control segments are from different subjects,
which is distinct from the CinC data set.

Finally, our findings should be considered in light of study limitations. The main
limitation is that we had a relatively small sample size from the MIMIC III ICU data.
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Moreover, for the few MIMIC III transition subjects (which were not in the matched
subset), we were unable to determine the sepsis status due to the lack of available clinical
information. However, given the scarcity of the AF prediction data, it is understandable that
getting this kind of rare data can be difficult. As a result, we provide our data annotations
for other researchers so that people can use this data for advancing AF prediction research.
Our work can be viewed as a preliminary study wherein we showed that by using the RR
interval variation characteristics, we can achieve satisfactory AF prediction accuracy for
critically ill ICU patients. Future works can focus on validation using a larger database
when it becomes available and analyze whether the AF prediction performance differs
between sepsis and nonsepsis ICU patients. Moreover, we aim to extend the prediction
timeframe to further in advance in order to give an even more comfortable margin for
taking action. Although our algorithm was validated on ECG data collected in the ICU
with the standard ECG electrodes and leads, it is equally effective for any ECG modality
including patch electrodes and wearables, including Holter, loop recorder, and implantable
devices. Our algorithm uses the variability and morphology of the ECG to predict AF,
hence, any ECG modality will suffice.

6. Conclusions

In this study, we have presented a novel approach to predict AF from critically ill
sepsis patients using the MIMIC III ECG data. We have extracted various features from
5-min heart rate signals using time domain, frequency domain, nonlinear, VFCDM, and
TQWT methods. With a subset of selected features, we have trained RF and SVM models
using the CinC data; next, the trained models were directly applied to the MIMIC III ICU
data without any further tuning. The proposed algorithm achieved good AF prediction
performance on the test data and when compared with a state-of-the-art method, our
method achieved better accuracy, thus showing the effectiveness of the presented method
for real-life ICU data. Moreover, we analyzed how much in advance we can predict AF
using the heart rate data. Since this is the first work to predict new onset AF in critically
ill sepsis patients, we provide our annotations of the MIMIC III data to facilitate further
AF prediction research. Future studies can explore how the AF prediction differs between
sepsis and nonsepsis patients as well as validating the method using a larger number of
AF subjects.
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Abstract: The treatment of refractory epilepsy via closed-loop implantable devices that act on seizures
either by drug release or electrostimulation is a highly attractive option. For such implantable medical
devices, efficient and low energy consumption, small size, and efficient processing architectures are
essential. To meet these requirements, epileptic seizure detection by analysis and classification of brain
signals with a convolutional neural network (CNN) is an attractive approach. This work presents
a CNN for epileptic seizure detection capable of running on an ultra-low-power microprocessor.
The CNN is implemented and optimized in MATLAB. In addition, the CNN is also implemented
on a GAP8 microprocessor with RISC-V architecture. The training, optimization, and evaluation of
the proposed CNN are based on the CHB-MIT dataset. The CNN reaches a median sensitivity of
90% and a very high specificity over 99% corresponding to a median false positive rate of 6.8 s per
hour. After implementation of the CNN on the microcontroller, a sensitivity of 85% is reached. The
classification of 1 s of EEG data takes t = 35 ms and consumes an average power of P ≈ 140 μW.
The proposed detector outperforms related approaches in terms of power consumption by a factor
of 6. The universal applicability of the proposed CNN based detector is verified with recording of
epileptic rats. This results enable the design of future medical devices for epilepsy treatment.

Keywords: convolutional neural network; EEG; epileptic seizure detection; RISC-V; ultra-low-power

1. Introduction

With about 1% of the population affected, epilepsy is one of the most common neuro-
logical diseases globally [1]. Epilepsy requires ongoing medical attention and is associated
with a decrease in the patients’ quality of life and higher mortality rates [2,3]. Every year in
the USA alone, the direct medical expenses including lost or reduced earnings associated
with epilepsy are estimated to be $15.5 billion [4]. Despite ongoing research and develop-
ment of new AEDs [5,6], the most common treatment in form of systemic administration of
anti-epileptic drugs (AEDs) does not achieve sufficient long-term seizure suppression in
~30% of the patients. Therefore, alternative treatment methods to refractory epilepsy such
as intracranial drug delivery [7] or neurostimulation [8] have been suggested. The pinnacle
of development would be an implantable closed-loop system for on-demand intervention
during ictal periods, which have to be identified sufficiently fast through an automated
seizure classification system.

Since the beginning of research on automated classification of epileptic seizures in
the 1970s, several algorithms to detect seizures have been developed [9,10]. The challenge
in classical approaches of seizure detection is developing a model that is capable of deal-
ing with the changing characteristics of seizures within the same subject. The different
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approaches rely on feature extraction coupled with a classification strategy. These features
are for example wavelet-based filters, frequency band and spectral analysis, the slope,
height, and duration characteristics of a seizure or cross-channel correlations [10]. Recently,
with a view at hardware efficiency in order to enable implantable systems, convolutional
neural networks have been analyzed for seizure detection algorithms. Lawhern et al. [11]
showed with EEGNet that state-of-the-art seizure classification and interpretation is possi-
ble with a compact convolutional neural network. A CNN optimized for ultra-low power
requirements was introduced in [12]. The detector, called SeizureNet, reaches a median
sensitivity of 0.96 long-term for invasive intracranial EEG recordings. The efficiency of
epileptic seizure prediction based on deep learning is analyzed and compared in [13,14].

Biomedical implantable and wearable devices are usually limited by size and energy
restrictions. To meet the devices’ high energy efficiency requirements and form factor
budget, many functions are incorporated into the device by application-specific integrated
circuits (ASICs) [15,16]. Applying this concept, several applications have been developed
successfully, going far beyond standard applications like pacemakers and hearing aids.
A very small and lightweight bioelectric recording system for flying insects has been
shown in [17]. An implantable cortical microstimulator for Brain–Computer Interfaces was
realized in [18]. Benabi et al. [19] demonstrated that a tetraplegic patient can control an
exoskeleton by an implanted epidural wireless brain–machine interface. In [15,16], it has
been shown that an electronic system can be miniaturized to such an extent that even neural
recording from neonatal mice to monitor growing processes of the brain can be feasible.
The integration of digital logic into systems with low-power microcontrollers based on
RISC-V architecture is promising to further advance this field of research. The RISC-V
architecture is based on the reduced instruction set computer principles introduced by the
University of Berkeley, California. It is available under an open source license and thus,
unlike most other microcontrollers, free to use.

In this paper, an epileptic seizure detector suitable for ultra-low-power RISC-V em-
bedded processors and based on a CNN is presented. The implementation, training, and
verification of the CNN is performed in MATLAB using the open source CHB-MIT dataset.
The main requirement for the detection algorithm is the feasibility for an ultra-low-power
hardware implementation. At the same time the detection algorithm has to achieve state-
of-the-art detection performance. Low-power and low-complexity architectures call for
dimensionality reduction and small memory usage. A multi-channel EEG is a high dimen-
sional dataset and memory usage is thus a challenge. In this work, a CNN fulfilling the
low-power and low-complexity requirements is presented. It consists of only a few layers
and a manageable number of weights, thus fulfilling low memory requirements.

The paper is structured as follows. Section 2 presents the dataset and Section 3
the microcontroller hardware. In Section 4, the CNN architecture and its training and
implementation in Matlab are presented. The implementation of the classifier on a RISC-
V-based embedded microcontroller is presented in Section 4.4. The transferability of
the proposed detector and its functionality is cross-validated and proven with EEG data
from a rodent absence epilepsy model (Genetic Absence Epilepsy Rats from Strasbourg
(GAERS)) in Section 4.5. In Section 4.6, the capability of the developed classifier to predict
epileptic seizures is demonstrated. Section 5 presents the measurements and results of
the performane of the detector for each of the presented chapters. The performance of the
classifier is compared with similar state-of-the-art approaches in Section 6.

2. Dataset

In this work the open source CHB-MIT dataset, collected at the Children’s Hospital
Boston, is used [20,21]. It contains continuous scalp EEG recordings from 24 children
with intractable seizures, which have been labeled by medical professionals. The type
of epilepsy is not specified in [20,21]. However, this does not limit the performance of
classification, as our network is independent of specific epilepsy types, but instead is
trained patient specifically. The EEG sampling frequency for all patients was 256 Hz.
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Most recordings contain 23 channels with EEG signals. For electrode positioning the
international 10–20 system of EEG electrode positions and nomenclature is used. Overall,
this dataset contains approximately 865 h of EEG signals with 198 seizures that usually last
several seconds.

In addition, the presented algorithm and epilepsy detection method is verified with
data from EEG recordings in a rodent model. We have used the Genetic Absence Epilepsy
Rat from Strasbourg (GAERS), which represent one of the best established rodent models
for generalized epilepsy. The rats show seizures with characteristic “spike and wave
discharge” EEG patterns. For this study, male rats between 6 and 9 months were implanted
with epidural electrodes. In total recordings with a length of more than 150 h are available.
The data set has been made available via open access on the portal IEEE Dataport [22].
Experiments were performed in accordance with the German law on animal protection
and were approved by the Animal Care and Ethics Committee of the University of Kiel.

3. Hardware Description

State-of-the-art ultra-low-power microcontrollers allow the execution of complex
CNNs complying with real-time, power and size requirements of implantable systems.
The microcontroller board chosen for implementing the CNN on hardware is the GAPuino
Board developed by GreenWaves Technology [23]. The main processing unit is a GAP8,
which is a multi-core RISC-V processor derived from the PULP platform. It is optimized
through different approaches to run IoT applications on an ultra-low power base, espe-
cially CNNs. These approaches include a powerful programmable parallel processing
unit, a hardware convolutional engine and an on-chip power management to reduce the
component count while maximizing battery power down-conversion efficiency. The board
is an Arduino Uno form factor board including several peripheral interfaces necessary for
prototyping [24]. The open source RISC-V-based processor is chosen to enable complete
customization and free use of the processor for implantable systems. In future, it is planed
to adapt and optimize the RISC-V hardware, especially the hardware convolutional engine,
to the specific needs of biosignal processing. In addition, the RISC-V processor architecture
is forecasted to be an important processor architecture in industry and research within the
next 5 years with over 60 billion processor cores fabricated [25].

4. Implementation

4.1. Dataset Preparation

Seizure detection can be modeled as a time-series classification problem that classifies
the input data into ictal and inter-ictal parts. The CHB-MIT dataset is used as the input for
a convolutional neural network. The EEG files of the dataset are preprocessed as described
in detail in the Appendix A. The dataset contains a labeling of epileptic activity into ictal
and inter-ictal. This labeled EEG data is used for further analysis. The CNN is trained for
each patient individually. The datasets of each patients are processed separately and data
from individual patients is not shared between the patients, neither in training or test nor
in validation phase.

The holdout-method is used to split the dataset into training, validation, and test set.
The ratio between these three parts is 60-20-20. The training set is used to train the neural
network. On the basis of the validation set, the model optimizes its weights. The final
model will be the model which maximizes the classification performance for the validation
set. Consequently, the performance on the validation set is not a good estimation for the
performance of unseen data. This problem is solved by using the third split: the data set.
The data set is only used the test of the final model. It is therefore a good database to
evaluate the performance of the model on unseen, new data. The 60-20-20 split is done in
the same manner for the ictal data as well as for the inter-ictal data.

For most patients the files contain recordings of 23 channels. However, for almost
every patient adjustments have to be conducted to provide a homogeneous input. Empty
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channel recordings or strongly alternating amplitudes for single channels have been ex-
cluded from the analysis.

4.2. Data Structuring

The CNN of the epileptic seizure detector processes time signals with a dedicated and
fixed length. The dataset is split into parts with a length of 1 s. These blocks of data are
the input for the neural network. The length of 1 s is selected to keep the time period of
the runtime of a forward pass low while not losing valuable time-dependent information,
which is necessary for real-time sensor and actuator systems [12]. The forward pass is the
calculation process of traversing through all neurons from first to last layer. The procedure
to get these short signal windows is to slide a window with the dimension W = E × (T · fs)
over the data, where E are the number of channels, T is the time length of the window and
fs is the sampling frequency. A sampling frequency of fs = 256 Hz and E = 23 channels
leads to an input matrix of the size 23 × 256 for T = 1 s.

For the inter-ictal data, the window is sliding with no overlap. As already stated, there
is an imbalanced number of ictal and inter-ictal data, which is generally challenging for
classifiers [26]. Truong et al. [27] propose an approach to solve this problem by generating
additional ictal data for training. Similar to the windowing process for the inter-ictal data a
window of the dimension 23 × 256 is shifted over the ictal recordings. The difference here
is that the window is only shifted by one sample per iteration, compared to 256 samples
for non-ictal data. This corresponds to an overlapping of 99.6 %, illustrated in Figure 1.
To exemplify this, a epileptic seizure with a length of 10 s is considered. Without the
overlapping techniques, this seizure would be cut into chunks of 1 s length generating
10 seizure events. Using the overlapping technique, 2304 seizures events with a respective
length of 1 s (256 samples) are generated. This massive overlapping technique is only
used for seizure data in the validation and training set. The test set is cut into samples
without overlapping.

Figure 1. Sliding window technique [27]: A window with a length of 256 samples/1 s is sliding over
seizure data with a step size of S = 1 sample to generate extra seizures for a balanced training set.

An EEG signal recorded at the head of a patient is easily corrupted by physiological
and non-physiological artifacts such as action potentials from scalp muscle or motion of
EEG cables, respectively [20,21]. The CHB-MIT dataset is partially corrupted by such
artifacts. The recordings, e.g., contain 60 Hz noise, caused by the power supply. This 60 Hz
noise differs between channels as well as between patients. To reduce the data processing
and thus the hardware requirements, a signal preprocessing is not implemented in this
work. It is not known to the authors, and not stated in the description of the dataset,
if the dataset contains preprocessed data or if the recording equipment of the dataset
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performs data preprocessing of any kind. For future implantable systems it is assumed
that the amount of distortions is reduced due to internal intracranial recordings compared
to external recordings.

4.3. CNN Architecture

The architecture of the CNN used in this work is illustrated in Figure 2 and based
on the SeizureNet CNN [12]. In [12], various architecture elements and functions are
analyzed in order to evaluate the runtime and memory requirements for an energy-efficient
seizure detecting classifier. This includes layer types like convolutions, dense layers (fully
connected layer), pooling layers, and different activation functions. While the network
in [12] was evaluated using the “Epilepsiae” dataset, especially the intracranial EEG dataset
recorded at the University of Freiburg, our work is based on the CHB-MIT [21] dataset.
The CNN in our work is optimized for ultra-low-power and energy consumption for future
implantable systems. Training, verification and optimization of the CNN developed and
presented in our work is performed in MATLAB using the MATLAB deep learning toolbox.
The source code has been made available online under open access license [28] to enable
rapid adoption in future research projects.

The implemented model architecture for this work is illustrated in Figure 2. The input
is a 23 × 256 matrix. The first layer is a convolutional layer using a kernel with the
dimensions 23 × 17. In the first layer, a convolution over all electrodes is chosen. The data
from a multi-channel EEG recording are not spatially uncorrelated and with the selected
size the kernel size can be reduced effectively. This approach is similar to spatial pattern
recognition approaches and was also recommended in [11]. By adding a filtering over time,
the first layer can efficiently learn spatial-time features. For the first layer, the number
of kernels is given by 20 × to provide a sufficient quantity of learnable patterns while
keeping the amount of weights to be trained on a low level. By implementing a kernel over
all electrodes, the output of the first layer is significantly smaller than the input. This is
important when taking the needed memory into account. For all convolutional layers the
kernel is sliding over the input with a stride of S = 1.

Figure 2. Schematic depiction of the CNN architecture showing the convolutional layers with their respective input matrix
(blue rectangles) and kernels (red rectangles). Input is a 23 × 256 matrix. Between each convolutional layer, a dropout layer
and max pooling layer is placed. Output are the two classes ictal and inter-ictal.

The next three convolutional layers extract key features and reduce the dimensionality
of the network. The kernel size for the second layer is 10 × 1 × 5 × 20. For the third and
fourth layer it is 10 × 1 × 5 × 10. A rectified linear activation function (ReLu) is used for
each layer. The output layer is a 10 × 2 fully connected layer using a sigmoid activation
function for each of the ten hidden neurons. As the classification task is to decide between
ictal and inter-ictal recordings, each output neuron stands for a class. With a softmax
function right at the end of the neural network the probability for the two output classes
is calculated.
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To reduce the output size for layer 1–2 even further, each convolutional layer is
followed by a 1 × 4 max pooling layer with a stride of S = 4. The third convolutional layer
is followed by a 1 × 2 max pooling layer with a stride of S = 2. To avoid overfitting, each
layer except the output layer also contains a dropout layer with a dropout rate of 20%.
The dropout layers are only used during the training phase.

4.4. CNN Hardware Implementation

The trained network is implemented on a RISC-V based GAP8 ultra-low-power
microprocessor. To make use of its efficiency-increasing hardware convolutional engine
and to implement the MATLAB trained CNN on the GAP8, processor optimizations and
adjustments have to be made. This includes an adaptation of the network architecture,
a transmission of the network architecture from MATLAB to C-Code and a quantization of
all parameters including the input matrix. This is necessary, as GAP8 comes, for energy
efficiency purposes, without a floating point unit. The quantization performed is an 16-bit
Q1.14 fixed point quantization. The quantized parameters on the GAPuino Board are
stored in integer form.

In total the CNN has a number of 10.162 trainable parameters and a memory require-
ment of 62.7 kB for 32-bit floats. The detailed structure, the number of trainable parameters
and the required memory size per layer are presented in the Appendix A, Table A2.

To implement the CNN trained in MATLAB on the GAPuino Board the TensorFlow
SDK used. The Greenwaves GAP8 SDK only supports quadratic convolutions. As the
architecture developed in Matlab includes only non-quadratic kernels (23 × 17, 1 × 5 etc.)
the number of layers and the filter dimensions have to be changed. The new architecture
is given in Table A2. The network only contains two convolutional layers with a kernel
size of 5 × 5 with a stride S = 1 and a fully connected layer of the size 2440 × 2. The Max
Pooling layers are reduced to a 2 × 2 pooling with a stride S = 2.

4.5. Transferability of the CNN Based Classifier

The transferability of the presented algorithm and epilepsy detection method to
classification tasks of the same structure is verified with data from EEG recordings in a
rodent model. From the data set, random sample data sets are selected for further analysis.
To meet the requirements of rat recordings, the CNN was adopted in such a way that
only single channel recordings were used for training. The kernel matrix was adjusted
to 1600 instead of 256 to meet the sampling frequency requirement of fs = 1.6 kHz of
the rats model recording. This ensures that a time frame with a length of 1 s is analyzed
and equivalence to the CHB-MIT dataset is maintained. Measurements and results are
presented in Section 5.5.

4.6. Seizure Prediction Based on Pre-Ictal Data

From a patient’s perspective it would be highly desirable to detect an epileptic seizure
before it occurs, instead of a detection during its occurrence. This would allow to issue
warnings and take precautionary measures [29]. The ability to predict seizures with the
developed CNN-based classification model is analyzed. While no clear unified definition
of the length of the pre-ictal phase exists, various works define a period of up to 1 h before
a seizure onset as pre-ictal [30–32]. In this section, only EEG data from non-seizure files
are used for training, validation, and testing, and the models are trained in MATLAB.
The seizure recordings are analyzed for different time periods defined as pre-ictal phases
for 19 out of the 20 patients. It is assumed that the prediction quality depends on the length
of the pre-ictal phase. If information about the upcoming seizure is available in the pre-ictal
phase it can be expected that the prediction quality increases when longer time periods of
the pre-ictal phase are taken into consideration by the classifier. The length of the pre-ictal
phases are selected as 5, 10, 20, and 30 min. The performance of the prediction and the
influence of the length of the pre-ictal phase is analyzed.
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5. Measurements and Results

5.1. Evaluation Metrics

The performance of the CNN is evaluated with three metrics quantifying the quality
of the binary classification task:

• Sensitivity, also called true positive rate (TPR): A measure for the proportion of ictal
sequences (positives) that are correctly classified by the model as a seizure.

TPR =
TP
P

; (1)

with TP: true positives, i.e., ictal sequences correctly classified as a seizure; P: positives,
i.e., the total number of ictal sequences (positive cases) in the dataset.

• Specificity, also called true negative rate (TNR): Ratio of inter-ictal sequences correctly
classified by the model as a non-seizure.

TNR =
TN
N

; (2)

with TN: true negatives, i.e., inter-ictal sequences correctly classified as a non-seizure;
N: negatives, i.e., the total number of inter-ictal sequences (negative cases) in the dataset.
As the specificity of the classifier is very high with values of of 0.998 and higher,
the specificity is measured in units of false positive rate for better comparability with
other works.

• False positive rate (FPR) per hour (fp/h): Number of inter-ictal sequences (with a
length of 1 s) wrongly classified by the model as a seizure per hour. The relation
between these measures is given by:

TNR = 1 − FPR. (3)

• AUC-score: Area under receiver operating characteristic (ROC) Curve—Measure of
the model’s ability to distinguish between the seizure and non-seizure classes.

These metrics ensure a comparability between different patients and results from
related work.

5.2. MATLAB Classification Results

For each patient, an individual CNN is trained based on a personal dataset. The train-
ing phase of the neural network is limited to a length of 25 epochs. This makes the results
comparable and provides equal conditions for all patients. All together the training is
performed for 20 patients. All evaluation metrics are calculated for each patient separately.

Figures 3 and 4 illustrate the results of the classification in the time domain. The figures
show the amplitude of a single channel EEG data in gray and the classification result as a
probability in blue. A classified seizure event with a length of 101 s (marked in red) with a
high detection probability throughout the event and low probability outside of the event
is depicted in Figure 3. Figure 4 shows a classified seizure event with a length of 264 s
(marked in red) and a highly fluctuating detection probability (blue). A possible reason for
the poor detection probability in the event of Figure 4 could be the high background and
low SNR in the signal (grey).

The detection sensitivity of all analyzed patients is shown in Figure 5 for a classification
threshold of 0.5. The median sensitivity is 90% with a minimum outlier of 62.5% and a
maximum of 100%. In this and the subsequent analysis, the median value instead of the
average value is calculated in order to take into account possible outliers due to bad signal
quality or corrupted (non-physiological) data in single patient’s data sets.
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Figure 3. Single channel EEG data (gray) from a seizure record file of patient 1 showing 101 s of
diagnosed seizure (red) with the output probability of the classification (blue).

Figure 4. Single channel EEG data (gray) from a seizure record file of patient 8 showing 264 s of
diagnosed seizure (red) and the output probability of the classification (blue).

The AUC-score is illustrated in Figure 5 showing a high median of 98% with the
high quartile reaching 90% and the low quartile 95%. Overall, the sensitivity is the most
important metric to evaluate the detection algorithm. Its importance is related to the
fact that not detecting a seizure is worse than having a false positive alarm. The AUC is
mainly an additional score to compare different neural network architectures since it is
independent of the classifier threshold.

The distribution of the false positives per hour, which is according to Equation (3)
a measure for the specificity, is shown in Figure 6. The median fp/h rate is 6.8 fp/h.
Seventy-five percent of the results show less than 20 false positives per hour. For three
patients, the fp/h rate is significantly higher (101, 95, and 65) than it is for the other patients.
It is hypothesized and verified with a random sample test that this is due to a lower signal
quality and higher noise level for these three patients. The best 5 patients stand out with a
maximum of 1.7 fp/h. The minimum is 0.5 fp/h for patient 2.
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Figure 5. Boxplot (median value (red), lower and upper quartile (blue), min. and max. value (black),
outlier (red cross)) of the evaluation measures sensitivity and AUC score for 20 patients. The median
sensitivity is 0.90, 75 percentile: 0.94, 25 percentile: 0.81. The median AUC score is 0.98, 75 percentile:
0.99, 25 percentile: 0.98.
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Figure 6. Illustration of the specificity of the classification showing a boxplot (median value (red),
lower and upper quartile (blue), min. and max. value (black), outlier (red cross)) of the fp/h for
20 patients. The median fp/h is 6.8, 75 percentile: 19.8, 25 percentile: 1.75. The analysis is done on
time signals with a length of 1 s. A false positive rate of 6.8 fp/h corresponds to a specificity of 0.998,
this means that 99.8% of inter-ictal time frames of 1 s are classified correctly.

5.3. Classification Results for Hardware-Optimized CNN

The sensitivity and specificity for 10 EEG recordings classified in Python using the
hardware optimized CNN structure are presented in Figure 7. The median sensitivity is
88.8%, the median specificity is 97.7%.
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Figure 7. Sensitivity and Specificity boxplot (median value (red), lower and upper quartile (blue),
min. and max. value (black), outlier (red cross)) for 10 EEG recordings classified in Python with a
median sensitivity and specificity of 88.8% and 97.7%, respectively.

For comparison Figure 8 shows the boxplot of the sensitivity and specificity of the
EEG recordings classified in MATLAB. For the 21 analyzed recordings the median values
are 83.3% and 99.8% respectively.

Figure 8. Sensitivity and Specificity boxplot (median value (red), lower and upper quartile (blue),
min. and max. value (black), outlier (red cross)) for 21 EEG recordings classified in MATLAB with a
median of 83.3% and 99.8%, respectively.

5.4. Power Consumption

The power consumption of the classification task is measured using a shunt resistor
(R = 1Ω) connected in series with the power supply of the processor of the GAPuino Board.
While the processor performs the classification task, the voltage drop at the shunt resistor
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is measured. Based on the voltage and the value of the resistor, the power consumption is
calculated. The measurement setup is depicted in Figure A1.

In order to have a trigger for the energy measurement, a digital I/O port is set to high
before the GAP8 kernels are launched and set to low after the classification task is done.
The voltage curve while classifying 1 s of EEG data is shown in Figure 9. The time period
between on- and offset of the 8 processor kernels is marked by the trigger. The classification
task of 1 s of EEG data takes a length of 33.5 ms. The maximum voltage reached is 15.44 mV.
The trigger is scaled by a factor of 100 to simplify the representation. The maximum power
consumption is 238.4 μW. The average consumption over the classification period is
140 μW. The energy required for one classification task is E = 4.9 μJ. The declared energy
consumption is for classifying 1 s of EEG data and only for the GAP8 processor itself.
The consumption of the whole board is not measured.

Figure 9. Measured voltage between TP5 and TP6 to measure the power consumption of GAP8 while
classifying 1 s of EEG data (blue), trigger signal indicating the start and the end of the processing of
1 s of EEG data.

5.5. Verification with EEG Recordings in a Rodent Model

The presented algorithm and epilepsy detection method are verified with data from
EEG recordings in a rodent model. Figure 10 shows one channel of the time signal of a
recording of an epileptic rat with seizures and the classification result of the algorithm.
The gray signal shows the recorded EEG signal in μV. The dashed red line shows the
classification target indicating a seizure event with target value one and a non-seizure
event with target value low, classified by neurological experts. The blue solid line shows
the output probability of the classifier. As shown in the example in Figure 10, the four
seizure events are detected by the classifier and the classification results of the CNN match
very well with the classification of experts.

Figure 10. Single-channel recordings from a GAERS rat (gray) with a duration of 470 s showing a seizure event (red),
as diagnosed by an expert, and the output probability of the classification (blue).
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This exemplified result illustrates, that the developed CNN based seizure detection
model is generally applicable and transferable to similarly structured classifications task.
The performance of the adoption of the CNN is not evaluated in this work.

5.6. Seizure Prediction

For 19 out of the 20 patients, the seizure recordings are analyzed for different time
periods defined as pre-ictal phases prior to seizure onset. Figure 11 shows the result of
the analysis in the boxplot of fp/h for pre-ictal time periods. For this work the analysis
is conducted for the time periods of 30, 20, 10, and 5 min. The classification results show
a median false positive rate of 2.15 fp/h for a pre-ictal time period of 30 min, of 1.8 fp/h
for 20 min, 3.0 fp/h for 10 min, and 3.9 fp/h for 5 min. While the shortest phase of 5 min
shows the worst prediction, a clear trend for an increase in prediction quality for longer
periods of pre-ictal phases can be seen. This strengthens the assumption that information
about the upcoming seizure is available in the pre-ictal phase and that the prediction
quality increases when more information is available or longer time periods are taken into
consideration, respectively.
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Figure 11. Seizure prediction based on pre-ictal data. Boxplot (median value (red), lower and upper
quartile (blue), min. and max. value (black), outlier (red cross)) of the classification results in fp/h for
19 patients. The time period defined as “pre-ictal” varies from 30, 20, 10 to 5 min. The classification
results show a median false positive rate of 2.15 fp/h for a pre-ictal time period of 30 min, of 1.8 fp/h
for 20 min, 3.0 fp/h for 10 min and 3.9 fp/h for 5 min.

6. Comparison with State-of-the-Art

A comparison of the overall classification performance of the developed approach
with recently published work is shown in Table 1. This comparison contains recent works
that focus on future implantable systems. Thus, the approaches focus on low hardware
complexity and low power requirement. Although it has to be admitted that it is difficult
to compare the performance of classifiers based on classification results from different
databases, it can be stated that all three classifiers show compatible performance.
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Table 1. Comparison of the overall classification performance of the developed approach with
published work.

SeizureNet [12] IntegerNet [27] This Work

Database iEEG dataset CHB-MIT CHB-MIT

Median sensitivity 96% unspecified 90%

Median False positives
per hour

10 fp/h unspecified 6.8 fp/h

AUC-score 93% 94% 98%

A comparison of the power consumption with measurement results from state-of-the-
art solutions is shown in Table 2. The average power consumption for a classification is
more than 80% smaller than in [12]. With respect to energy consumption the presented
work achieves a reduction by a factor of 6.9 and higher compared to that in [27], which
consumes 34–90 μJ for each classification.

Table 2. Comparison of the energy consumption of a classification task for different chips and
classifiers while running a seizure classification.

SeizureNet [12] IntegerNet [27] This Work

Chip unspecified Microcontroller in
45 nm, 0.9 V CMOS process

GAP8
(8 core, RISC-V)

Power 850 μW unspecified 140 μW

Energy unspecified 34–90 μJ/classification 4.9 μJ/classification

The performance of different algorithms to detect epileptic seizures is compared in
Table 3, based on the work in [33]. In this comparison, hardware requirements are not
considered. The analysis are based on different data sets, thus the performance parameters
cannot be compared directly. Nevertheless, it can be stated that it is possible to achieve
comparable sensitivity and specificity with a variety of algorithms.

Table 3. Comparison of the performance of different algorithms for seizure detection independent of
the hardware requirements, based on those in [33].

Gabor [34] Kelly [35] Hopfengärtner [36] This Work

Algorithm Neural
networks,
CNET

Pattern-
match
regularity
statistics,
local max.
frequency,
amplitude
variation

Power spectral
analytical
techniques,
Short time Fourier
transform

Convolutional
Neural
Network

EEG Sample [h] 528 1200 3248 865

Patients 22 55 19 20

Seizures 62 146 148 198

Sensitivity 90.3 79.5 90.9 90

Specificity [fp/h] 0.71 0.08 0.29 6.8

7. Conclusions

In this work, an epileptic seizure detection algorithm using a convolutional neural
network has been presented, analyzed in MATLAB and implemented on an ultra-low-
power RISC-V processor. In an implementation of the CNN on a RISC-V-based GAPuino
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microcontroller, a sensitivity of 85% is reached. The classification of 1 s of EEG data
requires E = 4.9 μJ, which is suitable for low-power implantable systems. The specificity
is higher than 99%. The classification of 1 s of input data takes 35 ms. Thus the low
latency required for real-time applications is achieved. The proposed detector reduces the
power consumption by the factor of 6 compared to related approaches. This is reached
by the adoption of the CNN and by exploiting the hardware convolution engine of the of
GAP8 microprocessor, which allows an energy efficient computation of the convolution
operator. The CNN presented here is trained individually for each patient. Accordingly,
this approach is not limited to a specific type of epilepsy. Instead it is generally applicable
for epilepsy with recurring and comparable seizure events. This was confirmed with
recordings from a rat model.

The classifiers, codes, and the data from recordings in the rodent model are made
available to the public under open access license. This enables easy reuse and rapid
adoption of the presented approach for future developments and applications.
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Appendix A

The Appendix A gives detailed information on the dataset, implementation, and the
code in Matlab and TensorFlow.

Appendix A.1. Dataset

In the majority of cases the dataset is segmented in one-hour files, where files with
a seizure occurring are called ’seizure records’ and files without a seizure ’non-seizure
records’. The recordings are formatted in the European Data Format (.edf). The information
about used channels as well as starting and ending of a seizure period is stored in a separate
text document.

Appendix A.2. Hardware Implementation

Appendix A.2.1. Dataset Preparation

The recordings of patients 11, 14, 19, 20, 21, and 22 contain empty channels. As these
do not represent physiological data, they are not considered in the model. For patients 12,
13, and 18, the assigned scalp electrodes for each channel change massively throughout
the recorded files. For this reason, the EEG data of these three patients is discarded
from the analysis. The recordings of patient 17 contains only 22 channels, this patient is
neglected too.
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Appendix A.2.2. CNN Architecture

The Matlab code created for implementing the CNN in this work has been made
available at Github [28]. The folder CHB_MIT includes all used functions, for data import
of EEG data data preprocessing (e.g., removal of empty channels). The main function for
constructing the CNN is located in the file CHB_MIT\seizure_detection_cnn\seizure_nn.m
The folder Basis includes basic Matlab functionalities and auxiliary functions, e.g., functions
for reading of data format EDF or storage of Matlab matrices in numpy arrays.

Appendix A.2.3. CNN Hardware Implementation

The architecture of the CNN, its dimensions and the number of filters is summarized
in Table A1.

Table A1. Structure of the CNN, dimensions, and number of filters.

Layer Name Dimension Number of Filters

Input 23 × 256 × 1 -

1 Conv2D 23 × 17 20

MaxPool2D (1 × 4)
Dropout (0.2)

2 Conv2D 1 × 5 10

MaxPool2D (1 × 4)
Dropout (0.2)

3 Conv2D 1 × 5 10

MaxPool2D (1 × 2)
Dropout (0.2)

4 Conv2D 1 × 5 10

Dropout (0.2)

5 Conv2D 1 × 1 1

6 Sigmoid - -

Appendix A.2.4. CNN Implementation in Tensorflow

The structure of the CNN is adopted and optimized to meet the requirements of the
GAPuino board using the GAP8 software development kit. The detailed structure and the
required memory size per layer is presented in Table A2.

Table A2. Structural adaptation of the CNN for implementation on GAPuino Board using the GAP8
SDK and memory size per layer. In total the CNN has a number of 10.162 trainable parameters and a
memory requirement of 62.7 kB for 32-bit floats.

n-Layer Operation Output Size

1 Input
(23 × 256)

23 × 256 5888

2 10 × Convolution
(5 × 5)

19 × 252 × 10 260

3 MaxPooling
(2 × 2)

9 × 126 × 20 -

4 Dropout (0.2) - -

5 20 × Convolution
(5 × 5)

5 × 122 × 20 5020
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Table A2. Cont.

n-Layer Operation Output Size

6 MaxPooling
(2 × 2)

2 × 61 × 20 -

7 Dropout (0.2) - -

8 FullyConnected
(2440 × 2)

2 4880

9 Softmax (2) 2 2

Total Number of trainable parameters = 10,162

Input (23 × 256) = 5888

Needed memory for 32-bit floats = ≈62.7 kB

Appendix A.3. Measurements and Results

Power Consumption

The measurement setup for the power consumption during classification is depicted
in Figure A1. The shunt resistor and the test points TP5 and TP6 are depicted at the bottom
of the board.

Figure A1. Measurement setup for power consumption showing a R = 1Ω shunt resistor at the
bottom of the of the GAPuino evaluation [23] board with two measurement points (TP5 and TP6).
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Abstract: Classification performances for some classes of electrocardiographic (ECG) and electroen-
cephalographic (EEG) signals processed to dimensionality reduction with different degrees are
investigated. Results got with various classification methods are given and discussed. So far we
investigated three techniques for reducing dimensionality: Laplacian eigenmaps (LE), locality pre-
serving projections (LPP) and compressed sensing (CS). The first two methods are related to manifold
learning while the third addresses signal acquisition and reconstruction from random projections
under the supposition of signal sparsity. Our aim is to evaluate the benefits and drawbacks of various
methods and to find to what extent they can be considered remarkable. The assessment of the effect of
dimensionality decrease was made by considering the classification rates for the processed biosignals
in the new spaces. Besides, the classification accuracies of the initial input data were evaluated with
respect to the corresponding accuracies in the new spaces using different classifiers.

Keywords: dimensionality reduction; classifications; Laplacian eigenmaps; locality preserving pro-
jections; compressed sensing

1. Introduction

Manifold learning [1] is a method for reducing dimensionality using the fact that
essential information for many classes of high dimensional signals lies in much smaller
dimensional spaces/manifolds. This is as the process of generating the data happens to
have fewer degrees of independence thus permitting to the transformed data to belong to a
low-dimensional subspace. Thus, even though data can’t be represented in the initial space,
when embedded in two or three dimensions, they can be easily represented and show,
when possible some inherent structure. Therefore, to be able to visualize data dimension
has to be decreased to one, two or three [2].

One possibility to get dimensionality reduction as well as compression is by taking
projections of the data on a reduced number of random signals. However, using random
projections, it is expected that some significant structure of the data might be lost since the
signals are only approximately sparse and thus cannot be recovered with good accuracy [3].

Concerning geometry preserving, the techniques of manifold learning can be catego-
rized into two classes:

(a) Techniques that preserve the local arrangement: locally linear embedding (LLE),
Laplacian eigenmaps (LE), manifold charting (MC), Hessian locally linear embedding
(HLLE), and

(b) Techniques that conserve global structure: isometric mapping (ISOMAP), diffusion
map.
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Several linear methods in manifold learning are principal component analysis (PCA),
locality preserving projections (LPP) and multidimensional scaling (MDS), while among
nonlinear ones are Isomap, Hessian eigenmaps, Laplacian eigenmaps, local linear embed-
ding, and diffusion maps. From another point of view linear dimensionality reduction
algorithms such as PCA, independent component analysis (ICA), linear discriminant anal-
ysis (LDA), and many others exhibit certain aspects to define an “interesting” way of linear
data projection [4,5] at the price of possibly missing nonlinear structure of data. This is why
non-linear methods are often stronger. The three steps of such algorithms are generally the
following [6]:

• a nearest-neighbor search,
• defining of distances or affinities between elements,
• resolving a generalized eigenproblem to obtain the embedding of the initial space into

a lower dimensional one.

The two main ingredients for dimensionality reduction are feature selection and
feature extraction.

As mentioned above, we will discuss three methods for dimensionality reduction,
two “standard” ones and the third, CS, which is not necessarily specific but interesting and
useful as it will be shown.

In order to compare the methods we count on the fact that good dimensionality
reduction will permit classification rates (usually smaller but) close to the initial ones.

We made use for testing, electrocardiographic (ECG) and electroencephalographic
(EEG) signals downloaded from Internet databases and we compared the outcomes got
with LE, LPP and CS using several standard classifiers aiming at getting an image about
the compromise between dimensionality reduction and classification results.

In this paper we analyze the way the classifiers give good results for signals with
various rates of dimensionality reduction. Thus, we present relevant information regard-
ing the chosen method according to (a) the adopted rates of dimensionality reduction;
(b) requirements such as reduced complexity (up to 2 or 3 dimensions), and (c) need for
reconstruction. The advantages of each method are presented in the Section 4.

2. Materials and Methods

2.1. Laplacian Eigenmaps—LE

In the literature there are reported two similar techniques, in the sense that they consist
each of three stages, the first two being common. The difference between the two is in
the final stage, one of the algorithms keeping the local data arrangement, compared to
the other that finds the optimal directions to project the data in a small space, so as to
keep the data neighborhoods. These two techniques are Laplacian eigenmaps (LE) and
locality preserving projections (LPP). Besides, for training data, Kernel LPP has the same
significance as LE.

The basic assumption of the two methods is that data belong to a nonlinear subspace
or nearly to it and in this way aim at discovering a low-dimensional modeling by retaining
local characteristics. In LE the local properties are built on the keeping even distances
between close neighbors.

The initial step in the LE algorithm [7] is to construct an adjacency graph G so that
each data point xi is linked to its k nearest neighbors. In this way two things are important,
namely, the number of neighbors as well as the weights of the graph branches which
convey information about the distances between points.

The graph G will be constructed so that the weight wij is high if the points are close
and wij is small if the nodes are far away. These weights are computed for all pairs of
points xi and xj of the initial space; however, for points exterior the neighborhood k of a
certain xm, the weights will have null value. In addition to the simplest weight assignment
rule—one for neighboring points and null for outer points—a more exquisite rule is to use
the Gaussian kernel [7–9]. After the calculation of the weights, follows the stage in which
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the calculation of the small dimensional representations is performed and on the manifold
involves minimizing the cost function.

∅(Y) = ∑ij ‖ yi − yj ‖ 2wij,

where great weights wij strongly penalize distant points, thus nearly items in the initial
space will be represented as near as possible in the new low-dimensional space.

Briefly, the LE algorithm [9] can be sketched in three main steps, namely:

(i.) Nearest-neighbor search and adjacency graph construction

Choose a number between K or a distance ε > 0 such that the vicinities of each data
point are established: for a k-neighborhood nodes i and j are linked by a branch if i is
through the k nearest neighbors of j or j is through the k nearest neighbors of i. On the
other hand, nodes i and j are linked by a branch if ‖ xi − xj ‖ 2 < ε, in which the Euclidean
norm appears.

(ii.) Weighted adjacency matrix (Choosing the weights)

The weights wij of the symmetric (n × n) vicinity matrix are computed as:

wij = w
(
xi − xj

)
=

⎧⎨⎩ exp
{
−‖xi−xij‖2

2σ2

}
, i f x ∈ Ni;

0, otherwise,

according to the graph G that is assumed to be connected.

(iii.) Eigenmaps

In this stage, the eigenvalues and eigenvectors are calculated for the general eigenvec-
tor problem,

Lf = λDf, (1)

where D = (dij) is an (n × n) diagonal matrix with

dii = ∑j∈Ni
wij,

and L = D − W is a Laplacian matrix which may be considered as an operator on functions
applied on the nodes of G.

Ultimately, the eigenvector f 0 suitable to the 0 eigenvalue is discarded. The next
m eigenvectors related to the next m eigenvalues in increasing gamut are utilized for
embedding in a m-dimensional Euclidean space:

xi → (f1(i), . . . , fm(i)), (2)

where f 0, . . . , fk−1 are the solutions of (1).

2.2. Locality Preserving Projections—LPP

The locality preserving projections (LPP) method is established on the similarly vari-
ation rule as for the LE method. It has alike locality conserving attributes: the training
data are utilized to learn a projection and the testing samples are embedded into the
low-dimensional space [10].

Therefore, the first two stages of the LPP algorithm are alike as those of the LE while
the final stage assumes calculating the eigenvectors and eigenvalues for the generalized
eigenvector problem:

XLXTa = λXDXTa, (3)

in which X is the training data matrix and L, D have the same meaning as before.
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Designating with a0, . . . , al−1 the column vectors related to the solutions of (2),
ordering increasingly λ0 < . . . < λl-1, the mapping is defined as:

Xi → yi = ATxI, A = (A0, A1, . . . , Al−1), (4)

in which yi is l-dimensional, and A is a (nxl) matrix.

2.3. Compressed Sensing—CS

Compressed sensing is an acquisition technique that requires fewer samples than the
Nyquist rate in the hypothesis of sparsity of signals [11]. Thus a signal x can be expressed
by the projections:

y = ∅ x, (5)

where x ∈ RN, y ∈ RM is the projection vector and ∅ ∈ RM, N is the compressed sensing
matrix whose entries are random i.i.d. (independent and identically distributed) signals. In
this paper we will use the low dimensional projection vector y for signal classifications [12]
and not for restoration signals.

2.4. Classifier Types

Since there are many methods of classification presented in the literature, it is difficult
to decide which algorithm is superior to the others. The choice of one or the other depends
on the type of application in which the classifier is incorporated but also on the specifics of
the type of data used in the application. For example, for the classes linear separable, if
the classes are linearly separable, the linear classifiers as logistic regression, Fisher’s linear
discriminant can surpass complex models as support vector machine (SVM) and artificial
neural networks (ANN) and vice versa [13–15].

For the classification of ECG and EEG segments in the original space and in decreased
dimensions, several classes of classifiers were used, namely: Decision Trees; Discriminant
Analysis; Naive Bayes; SVM; Nearest Neighbor; Ensembles. Most of these classes have
subclasses that have been used. In what follows several short descriptions of the main
classifiers are given.

2.4.1. Decision Trees

Given data of attributes annotated with classes, a decision tree provides a series of
rules that can be applied to classify new data. It utilizes an if-then command set which is re-
ciprocally exclusive and exhaustive for classification. The commands are read sequentially
utilizing the training data one at a time. Each time a rule is learned, the tuples incorporated
by the rules are eliminated. This process is sustained on the training set until fulfilling a
finish condition.

Advantages: Decision Tree is easy to comprehend and to view, the data does not
require much preparation and the method can manage both numerical and qualitative data.

Drawback: This method can yield trees that do not generalize well and can be unstable
i.e., small fluctuations in data could lead to the generation of a completely different tree.

2.4.2. Discriminant Analysis

This is a common primary classification method to test since it is quick, precise and
simple to comprehend. Discriminant analysis is appropriate for voluminous datasets.

This technique presumes that particular categories provides data to whom they are
assigned certain Gaussian distributions. In the training stage, the fitting function assesses
the variables of a Gaussian law for every class.

2.4.3. Naive Bayes

Bayes’ theorem is the source of this technique and it is based on the hypothesis of
independence between every couple of attributes. Naive Bayes decision making behaves
appropriately well in many real environments circumstances and applications, such as
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spam removal, document classification and person recognition. Naive Bayes is a simple
method to apply and favorable outcomes have been acquired in the vast majority of
situations. Additionally, it can be quickly used for voluminous datasets because it implies
a linear function in time rather than by very time consuming iterative algorithms as in the
case of a lot of other types of classifiers.

Advantages: Usually it needs a small number of training data to assess the necessary pa-
rameters. Naive Bayes decision making is very fast in contrast with more complex techniques.

Drawbacks: The big problem with this classifier is that it can manifest the so called
“the zero probability problem”. Thus, in the situation where the conditioned probability is
zero for a certain attribute, the classifier is not able to offer a correct decision. This problem
is usually solved by means of a Laplacian estimator.

2.4.4. Support Vector Machine—SVM

The support vector machine classifications consider the training data set as points
divided into classes by an interval which is, ideally, as large as possible. The new data
points are then embedded and estimated to belong to a certain class on one side or the
other of the gap between the initial points.

In this way a SVM finds the most appropriate hyperplane that divides data points
into two classes, in the sense that this hyperplane has the largest margin between the two
classes. In other words, the SVM finds the maximal thickness of the area that is parallel to
the hyperplane that has no inner data points [14].

Advantages: This classifier is efficient in high dimensional spaces and utilizes a subset
of training data in the decision function that makes its memory very efficient.

Drawback: The SVM method does not directly give probability approximations. They
are determined by applying usually an inefficient five-fold cross-validation.

2.4.5. Nearest Neighbor

The neighbors based classification is a type of slow training as it does not attempt to
build a universal internal pattern, but simply stores cases of the training data. Classification
is estimated from a simple majority vote of the k nearest neighbors of each point. Upper
bound of the error rate approaches twice that of the ideal Bayes classifier.

Benefits: This method is easy to apply, powerful for noisy training sets, and efficient if
the training set is huge.

Drawback: The main problem is the necessity to calculate k and the computation effort
is great as it needs to compute the distance of each input point to all the training data.

2.4.6. Ensembles of Classifiers

The ensemble classifier combines a collection of classifiers that might perform superior
classification performance compared to every single classifier. The principal rule behind
the ensemble model is that a collection of poor learners join together to build a powerful
learner. Qualities depend on the choice of the algorithm. Some techniques to perform
ensemble decision trees are bagging and boosting.

Bagging (Bootstrap Aggregation) is applied when the object is to decrease the variance
of a decision tree. The main idea is to create different data subsets from the training sample
chosen randomly with replacement. Now, each group of subset data is utilized to train their
decision trees. As a consequence, we end up with an ensemble of distinct models. Average
of all the predictions from different trees are applied which is a more strong solution than a
singular decision tree.

Boosting ensemble is another method to build a combination of classifiers. In this
method, learners are determined sequentially with early learners applying uncomplicated
models to the data and then evaluating data for errors. Hence, it fits consecutive trees
(random sample) and, at all step, the object is to solve for net error from the previous tree.
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Another type of ensemble of classifiers is the ensemble of nearest neighbor classifiers
where each individual of the ensemble uses a random feature subset only and the decisions
of these multiple classifiers are amalgamated for the ultimate decision.

Starting from the boosted trees ensemble, boosting being the most popular deci-
sion tree ensemble, Random under-sampling boosting (RUSBoost) has been introduced.
Random under-sampling boosting (RUSBoost) is exceptionally successful at classifying
irregular data. That means some classes with the training data have many more members
than others. The method uses N, the number of members in the class with the fewest
members in the training data, as the basic structure for sampling. In this way, by taking
only N data points, classes with more members are under-sampled. If we have K classes,
during the training stage, RUSBoost uses a smaller set of the data with N data points
from each of those K classes. Then the method achieves the re-weighting and building the
ensemble in Adaptive Boosting for Multiclass Classification [15].

3. Experimental Results and Discussions

3.1. ECG Signals

To analyze the feasibilities of dimension reduction utilizing LE, LPP and CS methods,
we used for testing methods 44 ECG records from the MIT-BIH Arrhythmia database,
including Holter data (so from wearable acquisition devices), collected at a sampling
frequency of 360 Hz and on precision by 11 bits/sample [16]. Taking into account the
annotations in the database, 7 pathological classes and the normal beating class were
identified. The pathological classes included in this study are atrial premature beat (A), left
bundle branch block beat (L), right bundle branch block beat (R), premature ventricular
contraction (V), fusion of ventricular and normal beat (F), paced beat (/), fusion of paced
and normal beat (f) and a class of normal beats (N).

For segmentation ECG signals we applied the segmentation method presented in
a previous paper, namely, segmentation with centered R wave [17]. Our segmentation
method begins with the precise determination of the R-wave, which has the maximum
amplitude of ECG. Thus, the ECG signals are split in heartbeats cycles. An ECG cycle starts
in the midst of a certain RR interval and finishes in the midst of the following RR interval.
The R wave is placed in the center of the ECG cycle by resampling the signals on both parts
of R. Thus cycles with the centered R waveform have been computed. Thereby, all ECG
cycles are defined by 301 samples with the R wave being situated on the 150-th sample.
Figure 1 shows an example of segmentation of the ECG signals belonging to each of the
eight pattern categories.

 

Figure 1. ECG patterns of the eight pattern classes used.

The database constructed is a data collection including 5608 ECG patterns, with
701 patterns for each of the eight considered types (seven pathological groups and a
normal one).

270



Biosensors 2021, 11, 161

A comparison of ECG behavior in the initial and reduced spaces implies first the
classification of the ECG signals with the centered R-wave in the original space. The work
was done in MATLAB® medium (MathWorks, Natick, MA, USA) and we used the next
classifiers, each with different versions for tuning their key settings: Decision Trees (with
fine, medium and coarse type classifier), Linear Discriminant and Quadratic Discrimi-
nant, Naive and Kernel Naive Bayes, Support Vector Machine (Linear, Quadratic, Cubic
and Gaussian), k-nearest neighbors (fine, medium, coarse, Cosine, Cubic and Weighted
KNN), besides different kinds of the ensemble of classifiers (Boosted and Bagged trees,
discriminant and KNN Subspace and RUSBoosted Trees).

Figure 2 and Table 1 (its first column) show the classification accuracies for ECG
signals with R-wave centered, in the initial space (raw data only). One can observe that
good outcomes (over 90% classification accuracies) with SVM classifiers (Cubic, Quadratic
and Medium Gaussian SVM), Fine KNN, and Ensemble Subspace KNN are got.
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Figure 2. Classification rate in the original ECG space (centered 301 samples segments).

Table 1. Classification accuracies with CS, LE, LPP algorithms for 2, 3 and 25 dimensions respectively.

ECG Original
Centered

Compressed Sensed (CS) Laplacian Eigenmaps (LE)
Locality Preserving
Projections (LPP)

ECG
Original

CS 2 CS 3 CS 25 LE 2 LE 3 LE 25 LPP 2 LPP 3 LPP 25

Fine Trees 83.44 49.41 55.34 79.81 76.25 77.32 86.73 54.00 66.65 81.15
Medium Trees 71.32 45.35 48.00 69.23 71.53 68.85 79.62 52.34 60.43 67.91
Coarse Trees 42.83 32.21 34.41 40.32 45.64 45.64 50.67 40.85 41.54 49.75

Linear Discriminant 76.32 24.23 33.72 73.94 34.77 38.81 77.44 30.42 35.41 73.64
Quadratic Discriminant 70.00 34.00 47.53 89.77 47.34 54.54 84.22 44.41 56.24 91.51

Naive Bayes 47.63 33.43 38.93 52.22 37.64 38.34 74.36 42.51 49.37 77.21
Kernel Naive Bayes 62.53 45.94 48.8 71.85 70.34 69.95 81.74 52.54 62.26 82.64

Linear SVM 87.34 29.52 38.9 85.14 49.08 61.37 85.62 37.52 47.72 85.92
Quadratic SVM 95.11 44.54 54.3 94.54 43.95 59.92 90.54 44.52 64.64 94.24

Cubic SVM 95.24 42.72 53.00 94.50 26.10 33.00 91.20 27.10 47.92 94.24
Fine Gaussian SVM 87.47 51.80 62.90 87.91 75.36 78.75 90.69 54.40 70.10 61.14

Medium Gaussian SVM 92.91 49.84 58.74 93.00 67.92 69.88 87.12 53.44 67.84 94.14
Coarse Gaussian SVM 79.47 32.85 43.65 80.97 54.36 55.41 80.92 44.45 57.82 83.82

Fine KNN 93.42 39.14 55.14 93.71 79.92 83.36 89.84 45.11 63.90 93.74
Medium KNN 90.27 48.72 60.82 90.82 80.76 83.92 89.65 52.42 68.00 91.32
Coarse KNN 77.62 50.47 57.71 77.44 74.00 75.35 80.12 53.63 65.74 78.34
Cosine KNN 90.54 29.64 47.15 90.74 61.25 81.42 89.55 32.80 54.62 92.76
Cubic KNN 90.22 48.81 60.81 90.81 80.88 83.95 89.72 52.38 68.34 90.77

Weighted KNN 91.47 43.60 59.44 92.34 81.52 84.82 90.32 48.51 67.42 92.35
Ensemble Boosted Trees 78.34 45.97 49.45 76.81 72.65 70.19 82.49 53.55 61.36 77.67
Ensemble Bagged Trees 91.81 43.94 59.45 90.4 80.00 83.91 90.91 48.86 68.31 91.84

Ensemble Subspace Discriminant 76.24 24.31 29.14 70.3 35 38.95 76.93 30.22 34.32 73.05
Ensemble Subspace KNN 94.71 23.34 44.00 94.04 51.24 80.82 89.98 24.14 56.10 95.34

Ensemble RUS Boosted Trees 71.54 45.34 47.94 69.31 71.54 68.84 79.64 52.84 60.67 67.97
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The decision borders obtained with the KNN classifier are much more complex than
for all Decision Trees, so getting an excellent classification for Fine KNN. The bad outcomes
got with Bayes as opposed to KNN may have the following explanation: the fundamental
distinction between KNN and Naive Bayes methods is that KNN is a discriminative
classifier, and the Naive Bayes is a generative classifier. The Fine KNN classifier behaves
better because it has the characteristic to be optimized locally. The great results achieved
with Fine KNN were expected to be so. With an ensemble subspace KNN even better
outcomes may be acquired.

In our approach the best accuracy is achieved with Cubic SVM, i.e., 95.2%. This
parameter is valuable because the 8 classes studied are not easily distinguishable, and they
are even intertwining.

In Table 1 and Figure 3 there are the classification outcomes: (a) in the original
space with 301 samples; (b) results for ECG signals with dimensionality reduction by
LE, LPP and CS methods for 2, 3 and 25 dimensions, respectively. We computed the
classification accuracies for 2- and 3-dimensional cases because the signals with these
dimensionalities can be easily illustrated graphically, which is very helpful and significant
for comprehension the data spatial grouping. The graphic representation is very useful
when we have many classes to handle and know nothing concerning their volumetric
disposing. We also calculated the classification rate for dimensionality decrease to 25-space
as we considered that a reduction from 301 to 25 dimensions is plausible both from the
point of view of dimensionality reduction as well as in terms of classification accuracy.
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ECG original centrat ECG CS CS 25 ECG LE 25 ECG LPP 25 CS 2 LE 2 LPP 2

Figure 3. Classification results with CS, LE, LPP methods for 2, 3 and 25 dimensions, respectively.

Figure 4 and Table 2 show the results for various spatial dimensions for the Com-
pressed Sensing (CS) method. It is observed that utilising Coarse Decision Tree very bad
outcomes are got in the original space as well as in all other reduced spaces. Outcomes
similar to those of the original space are achieved beginning with more than 10 dimensions
in the projected space. Additionally, it can be observed the best outcomes hold with the
SVM classifier. Depending on the degree of the dimensionality decrease they can be with
cubic SVM or with fine Gaussian SVM. These classifiers achieve excellent classification
rates, near to the medium Gaussian SVM. As a finding, for the dimensionality decrease
with CS method, the SVM algorithm is best suited for that.
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Figure 4. Classification results with CS method for dimensionality reduction.

Table 2. Classification results with CS method for dimensionality reduction.

ECG Original
Centered

CS 2 CS 3 CS 4 CS 5 CS 7 CS 9 CS 10 CS 15 CS 20 CS 25

Fine Tree 83.4 49.4 55.3 58.1 68.6 72.3 71.5 72.4 75.7 77.3 79.8
Medium Tree 71.3 45.3 48.0 49.3 54 52.8 51.6 52.3 52.7 60.6 69.2
Coarse Tree 42.8 32.2 34.4 34.2 36.5 35.2 36.2 36.7 35.9 38.0 40.3

Linear Discriminant 76.3 24.2 33.7 35.2 41.4 47.3 55.3 60.0 69.2 71.6 73.9
Quadratic Discriminant 70.0 34.0 47.5 50.3 63.2 74.1 77.8 82.0 87.6 89.1 89.7

Naive Bayes 47.6 33.4 38.9 40.8 47.2 48.6 47.8 49.1 50.3 50.9 52.2
Kernel Naive Bayes 62.5 45.9 48.8 51.7 62.4 66.1 68.0 68.1 70.5 70.5 71.8

Linear SVM 87.3 29.5 38.9 41.6 54.2 63.2 71.3 75.9 82.8 84.4 85.1
Quadratic SVM 95.1 44.5 54.3 61.7 74.7 85.2 88.9 90.8 93.3 94.2 94.5

Cubic SVM 95.2 42.7 53.0 62.2 75.9 86.6 90.1 91.7 93.4 94.7 94.5
Fine Gaussian SVM 87.4 51.8 62.9 69.5 82.0 86.4 87.8 88.5 88.0 87.6 87.9

Medium Gaussian SVM 92.9 49.8 58.7 65.4 78.0 85.4 87.3 88.6 91.2 92.0 93.0
Coarse Gaussian SVM 79.4 32.8 43.6 45.2 62.1 67.2 69.5 71.8 77.5 79.5 80.9

Fine KNN 93.4 39.1 55.1 64.4 80.7 87.6 89.4 91.0 92.4 93.5 93.7
Medium KNN 90.2 48.7 60.8 67.5 80.6 86.5 87.8 88.4 89.6 90.3 90.8
Coarse KNN 77.6 50.4 57.7 61.5 69.2 73.8 74.9 75.5 76.3 76.6 77.4
Cosine KNN 90.5 29.6 47.1 58.2 73.8 83.2 85.9 86.7 88.3 89.7 90.7
Cubic KNN 90.2 48.8 60.8 67.7 80.3 86.4 87.7 88.5 89.8 90.5 90.8

Weighted KNN 91.4 43.6 59.4 68.2 81.9 88.1 89.3 90.1 91.5 92.1 92.3
Ensemble Boosted Trees 78.3 45.9 49.4 52.2 61.8 66.1 67.5 70.6 69.5 73.8 76.8
Ensemble Bagged Trees 91.8 43.9 59.4 65.6 80.3 85.2 87.1 88.2 89.7 90.2 90.4

Ensemble Subspace Discriminant 76.2 24.3 29.1 31.5 40.0 43.9 45.6 47.0 61.1 64.4 70.3
Ensemble Subspace KNN 94.7 23.3 44.0 49.5 74.2 86.0 89.0 90.3 92.4 93.6 94.0

Ensemble RUSBoosted Trees 71.5 45.3 47.9 49.4 53.9 53.8 52.0 52.5 52.8 60.6 69.3

In the original 301-dimensional space the classification accuracy is 95.2%. In the case
of decreasing to 10 and 25 dimensions, an accuracy of 91.7% and 93.4% were obtained,
respectively. An interesting aspect that can be remarked in Table 2 (underlined numbers) is
that for dimensionality reduction to 20 or 25 slightly improved results compared to those
in the initial space have been obtained with some classifiers. A possible explanation is that
through dimensionality reduction the classification problem complexity diminishes and
thus the classification rate increases.

Figure 5 and Table 3 show the results obtained with LE, both for the initial and reduced
ECG signals. In the original space the best outcomes are attained with cubic SVM classifier.
On the contrary, in the case of very small dimensions (between 2 and 5) of the projected
space with the LE algorithm very weak outcomes are achieved. For very small manifolds,
the best outcomes are accomplished with the Weighted KNN classifier. This statement can
be justified by maintaining the vicinities at the local level. Likewise, excellent outcomes for
very small spaces are obtained by using the Fine Gaussian SVM classifier. Thus, for these
small spaces, the classification of the test data is strongly dependant on the quality of the
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classifier. In other words, the classifier has to be able to draw very precise decision limits
for very close data. It is the case of the Fine Gaussian SVM kernel range, that is establish to
(1/4) sqrt(no. of features).
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Figure 5. Classification results with LE method for dimensionality reduction.

Table 3. Classification results with LE method for dimensionality reduction.

ECG Original
Centred

LE 2 LE 3 LE 4 LE 5 LE 7 LE 9 LE 10 LE 15 LE 20 LE 25

Fine Tree 83.4 76.2 77.3 80.4 80.4 82.9 83.7 82.8 85.8 86.5 86.7
Medium Tree 71.3 71.5 68.8 72.7 72.4 74.9 75 75.1 78.9 80.1 79.6
Coarse Tree 42.8 45.6 45.6 52.5 52.5 50.9 51.2 51.3 51.8 51.6 50.6

Linear Discriminant 76.3 34.7 38.8 34.7 40.3 57.8 61.1 60.3 72.1 76.2 77.4
Quadratic Discriminant 70 47.3 54.5 58.3 60.1 69 72.2 73 78.1 82.1 84.2

Naive Bayes 47.6 37.6 38.3 39.8 39.5 57 57.1 60.9 71.4 73.7 74.3
Kernel Naive Bayes 62.5 70.3 69.9 70.8 71.5 74.9 73.6 74 77.3 79.5 81.7

Linear SVM 87.3 49 61.3 67.3 70.2 75.3 76.9 77.5 79.1 83.7 85.6
Quadratic SVM 95.1 43.9 59.9 76.2 79 86.1 87.6 87.3 87.7 89 90.5

Cubic SVM 95.2 26.1 33 52.5 64.2 87.9 90.1 89.7 89.6 90.4 91.2
Fine Gaussian SVM 87.4 75.3 78.7 81.1 82 85.2 85.9 86.5 88.6 90.4 90.6

Medium Gaussian SVM 92.9 67.9 69.8 73.4 75.4 78.3 78.6 79.5 82.8 86.6 87.1
Coarse Gaussian SVM 79.4 54.3 55.4 61.2 66.2 69.2 72.1 72.5 76.6 80.1 80.9

Fine KNN 93.4 79.9 83.3 85.7 86.2 86.2 87.2 87.1 88.1 88.9 89.8
Medium KNN 90.2 80.7 83.9 85 85.5 86.8 87 86.3 87.4 88.9 89.6
Coarse KNN 77.6 74 75.3 75.3 77.1 79 78.6 78.5 78.3 80.6 80.1
Cosine KNN 90.5 61.2 81.4 83.8 85.9 86.9 86.7 86.9 87.6 88.9 89.5
Cubic KNN 90.2 80.8 83.9 84.7 85.5 86.8 86.8 86.1 87.4 89 89.7

Weighted KNN 91.4 81.5 84.8 86.6 86.9 87.4 88.1 87.8 89.1 89.9 90.3
Ensemble Boosted Trees 78.3 72.6 70.1 75.5 76 78.3 79.2 79.9 81.4 82.2 82.4
Ensemble Bagged Trees 91.8 80 83.9 86.2 86.6 88.2 88.6 88.7 89.9 90.9 90.9

Ensemble Subspace Discriminant 76.2 35 38.9 34.7 40.2 59.2 61.9 60.5 72.2 75.9 76.9
Ensemble Subspace KNN 94.7 51.2 80.8 83.2 86.1 86.9 87.6 87.8 88.7 89.6 89.9

Ensemble RUSBoosted Trees 71.5 71.5 68.8 72.7 72.4 74.9 75 75.1 79 80.1 79.6

However, the Laplacian Eigenmaps technique for very small spaces, such as 2 and
3 dimensions, leads to very good classification results (81.5% and 84.5% classification
accuracy, respectively) with Weighted KNN classifier. It is to remember here that the
current classification problem is a difficult one, as there are 8 categories of ECG signals.
We may state that a classification rate with only almost 10% under the original space
versus a decrease in size from 301 to 2 is a remarkable result. The exceptional benefit
of shrinking to 2 or 3 dimensions is the input data may be easily visualized graphically,
allowing certain comprehension of the spatial arrangement. For a dimensionality reduction
over 10, it can be observed that for some classifiers (results underlined in Table 3) higher
classification accuracy than in the initial space has been obtained reminding of a kind of
feature selection algorithm.
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Figure 6 and Table 4 show the results of dimensionality reduction when using the
LPP algorithm. As seen, the results are very similar to those achieved with the Lapla-
cian Eigenmaps technique besides for very low dimensions (of 2, 3, and 4), when the
classification measures achieved are much inferior (54%, 70.1%, and 77.3%, respectively).
In the case of dimensions superior to 5, the classification measures are similar to those
attained with the Laplacian Eigenmaps technique. For dimensions upper 20, classification
measures very near to those in the original space are reached. As an example, for 20- and
25-dimensional spaces classification accuracies of above 95% are achieved by means of the
Ensemble Subspace KNN classifier.
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Figure 6. Classification results with LPP method for dimensionality reduction.

Table 4. Classification results with LPP method for dimensionality reduction.

ECG Original
Centered

LPP 2 LPP 3 LPP 4 LPP 5 LPP 7 LPP 9
LPP
10

LPP
15

LPP
20

LPP
25

Fine Tree 83.4 54 66.6 73 75.6 77.2 77.8 77.5 81.5 81.3 81.1
Medium Tree 71.3 52.3 60.4 65.9 66.5 66.8 66.9 67 68 68.1 67.9
Coarse Tree 42.8 40.8 41.5 46.7 46.6 46.9 49.7 49.9 49.7 49.7 49.7

Linear Discriminant 76.3 30.4 35.4 35.5 37.8 47.5 63.2 65.3 71.2 72.6 73.6
Quadratic Discriminant 70 44.4 56.2 65.1 67.6 76.2 82.3 83.4 89.1 90.5 91.5

Naive Bayes 47.6 42.5 49.3 58.3 58.1 63.5 71.5 72.5 76.5 77.5 77.2
Kernel Naive Bayes 62.5 52.5 62.2 65.6 70.6 73.6 77 77.7 81.3 82.6 82.6

Linear SVM 87.3 37.5 47.7 53.6 58.9 70.4 76.9 78.1 83.5 84.8 85.9
Quadratic SVM 95.1 44.5 64.6 73.5 77.6 86.4 90.2 90.9 93.7 94.1 94.2

Cubic SVM 95.2 27.1 47.9 74.3 81.2 88.1 91.2 91.8 94.3 94.5 94.2
Fine Gaussian SVM 87.4 54.4 70.1 77.3 81.2 84.8 84.4 82.9 75.8 65.2 61.1

Medium Gaussian SVM 92.9 53.4 67.8 75.4 79.2 86.7 90.2 90.4 93.5 93.8 94.1
Coarse Gaussian SVM 79.4 44.4 57.8 65.8 68.9 73.4 77.4 78 82.1 83 83.8

Fine KNN 93.4 45.1 63.9 73.9 80 87.3 91.4 91.5 93.3 93.8 93.7
Medium KNN 90.2 52.4 68 77 80.8 87 89.9 89.9 91.9 92.1 91.3
Coarse KNN 77.6 53.6 65.7 70.6 72.2 77.3 80 80.3 81 79.3 78.3
Cosine KNN 90.5 32.8 54.6 70.7 76.4 84.1 88.4 88.9 92.2 92.7 92.7
Cubic KNN 90.2 52.3 68.3 76.8 80.6 86.8 89.2 89.3 91.6 91.1 90.7

Weighted KNN 91.4 48.5 67.4 77.3 82.3 87.9 91 91.1 93 92.9 92.3
Ensemble Boosted Trees 78.3 53.5 61.3 68.1 70 72 75.8 76.5 77.6 77.3 77.6
Ensemble Bagged Trees 91.8 48.8 68.3 77.2 81.9 87.3 89.1 89.9 91.2 90.8 91.8

Ensemble Subspace Discriminant 76.2 30.2 34.3 37 37.7 46.3 62 63.2 70.3 70.9 73
Ensemble Subspace KNN 94.7 24.1 56.1 62.6 76.3 86.4 91.2 91.6 94.5 95.4 95.3

Ensemble RUSBoosted Trees 71.5 52.8 60.6 66 66.5 66.8 66.8 67.1 68 68.1 67.9

It has been observed again (underlined numbers in Table 4) that for dimensionality
reduction over 10, in some cases improved results have been obtained.

In Figure 7 ECG signals with reduced dimensionality to 3D obtained with the 3 tech-
niques are presented (each color corresponds to a different class) [18]; the great advantage
of the possibility of data graphical visualization is obvious.
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Figure 7. ECG data mapped into a 3-dimensional space with LE, LPP and CS techniques.

It can be observed that LE leads to a better data clustering/spatial separation than the
other two methods for which, even though data are clustered, overlapping occurs. This is
the reason why, when choosing dimensionality reduction to 3D, the classification ratio is
better for LE compared to LPP and CS.

3.2. EEG Signals

For testing the dimensionality reduction methods, the EEG signals collected by Hoff-
mann and collaborators in their laboratory were used; a small database is free on the
internet at [19]. This database includes EEG signals collected on the configuration with
32 channels, arranged in 942 vectors to be classified, lasting 1 sec. each [20,21]. The classifi-
cation task is to detect the P300 waveform from a single EEG trial which has been used to
build a P300 based spelling device for Brain-Computer Interface—BCI. We used configura-
tions with 23, 8 and 4 channels for original EEGs for preprocessing and classifications tasks.
The paradigm with P300 spelling device [22] that has been used is as follows.

One of the first examples for BCI is the algorithm proposed by Farwell and Donchin [22]
that relies on the unconscious decision-making processes expressed via P300 in order to
lead a computer. Another example, described in [23], refers to a real-time training of voted
perceptron for classification of EEG data, also for a BCI application.

Now returning to the experiments proposed in [22], a (6 × 6) matrix containing (as in
Figure 8) the letters of the alphabet and the numbers 1–9 were shown to the subjects on a
computer display. The horizontal and vertical lines of the table were run at random for
100 ms with a 100 ms pause between sparkles i.e., after 12 sparkles every horizontal and
vertical line was glowing once. Two datasets were acquired from every subject. During the
first meeting subjects were requested to write the French words “lac”, “nuage”, “montagne”,
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and “soleil”, while for the second recording the subjects had to write the words “fromage”,
“chocolat”, “pain”, and “vin” [21].

 
Figure 8. Classical P300 spelling paradigm described by Farwell–Donchin (1988).

As reported in [20] the EEG signals were registered from channels FP1, FP2, AF3, AF4,
F7, F3, FZ, F4, F8, FC1, FC5, FC6, FC2, T7, C3, CZ, C4, T8, CP1, CP5, CP6, CP2, P7, P3, PZ,
P4, P8, PO3, PO4, O1, OZ, O2 with a Biosemi Active 2 system (NEUROSPEC AG, Stans,
Switzerland) at 2048 Hz. The signals were then referred to the average of channels O1,
OZ, O2, low pass filtered (0 . . . 9) Hz with a 7th order Butterworth filter, and re-sampled
with 128 Hz. The channels used as reference and channels T7, T8 were not used for EEG
processing as they did not bring significant information for the P300s waveform detection.
A more detailed explanation of the experimental work, i.e., EEG acquisition, preprocessing
and artifact rejection is presented in [21].

In Figure 9 the electrodes configurations with 4, 8 and 23 channels are shown.

Figure 9. The electrodes configurations with 4, 8 and 23 channels.

Figure 10 shows the classification results for different channel configurations cases.
It is observed that in general for the 8-channel version the best classification results of
the original EEG signals are obtained. In general, good results are obtained for linear,
quadratic and cubic SVM, but the best results are obtained with medium Gaussian SVM in
the 8-channel configuration.

Because, in general, the configuration with 8 electrodes offers the best results, in the
following we will present the results of this configuration for dimensionality reduction
through the three analyzed methods. It should be mentioned that the initial EEG signals
are segmented according to the stimulus applied to segments of 128 samples, i.e., we will
consider that the space of the initial EEG signals is 128-dimensional.
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Figure 10. Classification results with original EEG signals for configurations with 4, 8 and 23 channels.

Figure 11 and Table 5 show the results for the dimensionality reduction with CS
algorithm. It is found that there are classifiers with which better results are obtained in
a space reduced to 15 dimensions compared to the initial space. This is the case of the
discriminant linear classifier for which in the original space the classification rate is 77.2%
and in a space reduced to 15 dimensions it classifies with a rate of 84.6%. Additionally,
Quadratic Discriminant and Logistic Regression offers improved results for all spaces
compared to the initial space. Additionally, in the case of Discriminant Subspace Ensembles
the results in the reduced spaces are generally superior to the initial space. These results
for which in spaces of reduced dimensionality improved results are obtained, compared to
the initial spaces, are an example that the initial signals are in reality in a space of a much
smaller dimensionality. It is much easier to classify data with a small dimension compared
to the same data that is represented in a false large space.
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Figure 11. Results for the dimensionality reduction with CS algorithm for configurations with 8 channels.
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Table 5. Classification results with CS method for configurations with 8 channels.

ECG Orig. EEG 8 Channels CS

8 Channels CS 3 CS 5 CS 10 CS 15

Fine Tree 73.8 55.1 61.4 64.8 69.5
Medium Tree 75.5 59.8 60.8 68.4 73.1
Coarse Tree 75.8 59.6 59.4 65.7 70.5

Linear Discriminant 77.2 68.3 74 79.9 84.6
Quadratic Discriminant 63.4 66.5 68 72.6 71.2

Logistic Regression 50.5 67.8 73.2 80.6 83.7
Naive Bayes 81.7 66.3 68.5 72.4 75.8

Kernel Naive Bayes 79.8 64.1 68.5 72 74.9
Linear SVM 84.1 68.3 73.4 80.9 84

Quadratic SVM 84.4 69 72.4 81.1 85.1
Cubic SVM 83.7 64.4 70.8 80.6 83.8

Fine Gaussian SVM 50.5 50.7 50.5 50.5 50.5
Medium Gaussian SVM 85.4 69.3 73.6 80.8 83.9
Coarse Gaussian SVM 82.1 68.7 72.1 76.9 79.6

Fine KNN 69.2 56.4 59.9 63.8 65.2
Medium KNN 77.8 61.8 65.4 69 74.7
Coarse KNN 78.7 66.8 69.9 73.9 78
Cosine KNN 78.5 63.3 67.4 70 74.1
Cubic KNN 75.9 60.8 66.3 69.9 74.3

Weighted KNN 77.9 62.6 66.8 69.4 74.2
Ensemble Boosted Trees 82.3 64.5 68.9 74.9 80
Ensemble Bagged Trees 77.5 65.6 67.7 70 72.8

Ensemble Subspace Discriminant 71.8 68.3 73.4 81 85
Ensemble Subspace KNN 71.1 62.3 64 69.1 69.7

Ensemble RUSBoosted Trees 77 59.1 64.1 69 74.4

Figure 12 shows the results obtained with the LE algorithm to reduce the dimensional-
ity of the space for EEG signals in the 8-channel configuration. It can be seen in Table 6
that in the case of the CS algorithm, the Linear and Quadratic Discriminant and Logistic
Regression classifiers offer improved classification rates. Additionally, Discriminant Sub-
space Ensembles and KNN Subspace Ensembles classify better in reduced spaces with LE
algorithm. The major difference from the CS method is that for very small spaces of dimen-
sionality 3 and 5 the results are much better for the LE method compared to CS method.
Hence the utility of the LE algorithm for data representation in 2 and 3 dimensional spaces
for better visualization and understanding of spatial and geometric data arrangement.

Figure 13 shows the results obtained with the LPP algorithm to reduce the dimen-
sionality of space for EEG signals in the 8-channel configuration. It is observed in Table 7
that the best results are obtained with all the classifiers for the initial space. These poor
results are obtained both when applying LPP on each channel and then concatenating the
signals with small spaces, or concatenating the initial EEG signals for the 8 channels and
then applying the LPP method for dimensionality reduction.

In Figure 14 EEG signals with dimensionality reduced to 3D with all three techniques
are represented. Signals containing the P300 wave have been plotted in blue and the others
in red. It can be observed that for CS and LPP the two classes overlap, thus explaining the
modest classification results for the 3D case. When using LE we get a better clustering of
the two classes on the left laying non-P300 waves marked in red and on the right the P300
ones marked in blue. This is why LE leads to better results for 3D compared to LPP and CS.
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Figure 12. Results for the dimensionality reduction with LE algorithm for configurations with 8 channels.

Table 6. Classification results with LE algorithm for configurations with 8 channels.

ECG Originals EEG 8 Channels LE

8 Channels LE 3 LE 5 LE 10 LE 15

Fine Tree 73.8 71.1 72 70.3 69.6
Medium Tree 75.5 75.1 75.3 71.8 72.3
Coarse Tree 75.8 75.1 74.3 74.1 75.2

Linear Discriminant 77.2 79.1 81.6 83.2 81.1
Quadratic Discriminant 63.4 77.8 76.9 77.9 77.2

Logistic Regression 50.5 78.7 81.4 81.6 78.8
Naive Bayes 81.7 76.5 76.6 77 77.1

Kernel Naive Bayes 79.8 75.5 77.1 76.1 76.3
Linear SVM 84.1 79.2 80.8 82.8 80.8

Quadratic SVM 84.4 78.2 79.1 81.7 81.1
Cubic SVM 83.7 72.9 77.7 79.5 80.4

Fine Gaussian SVM 50.5 50.7 50.5 50.5 50.5
Medium Gaussian SVM 85.4 79.2 80.3 81.1 81
Coarse Gaussian SVM 82.1 79.2 80 81.4 79

Fine KNN 69.2 66.1 69.1 67.6 68.2
Medium KNN 77.8 73.1 74.4 75.6 76.1
Coarse KNN 78.7 77.7 77.8 79.1 78.8
Cosine KNN 78.5 74.4 74.8 75.5 76.4
Cubic KNN 75.9 72.7 73.5 74.5 73.8

Weighted KNN 77.9 73.5 74.3 76.5 76.8
Ensemble Boosted Trees 82.3 77.7 78.3 78.3 78
Ensemble Bagged Trees 77.5 76.8 74.4 72.9 76

Ensemble Subspace Discriminant 71.8 79 80 82.5 81.7
Ensemble Subspace KNN 71.1 73 75.2 74.8 73

Ensemble RUSBoosted Trees 77 75.4 74.9 72.6 73.6
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Figure 13. Results for dimensionality reduction with LPP algorithm for configurations with 8 channels.

Table 7. Classification results with LPP algorithm for configurations with 8 channels.

EEG Orig. EEG 8 Channels

8 Channels LPP 3 LPP 5 LPP 10 LPP 15

Fine Tree 73.8 53.2 50.8 50.7 49.8
Medium Tree 75.5 53.8 49.8 51.2 52.2
Coarse Tree 75.8 50.4 48.6 50.3 55.6

Linear Discriminant 77.2 56.3 51.9 54.9 56.6
Quadratic Discriminant 63.4 55 50.7 53.1 52.1

Logistic Regression 50.5 56.3 52 54.8 57.5
Naïve Bayes 81.7 53.2 54.2 51.3 57

Kernel Naïve Bayes 79.8 53.8 51.2 50.2 55.6
Linear SVM 84.1 55.7 49.5 54 59.4

Quadratic SVM 84.4 56.2 52.5 52.7 58.8
Cubic SVM 83.7 52 54 52.1 54.9

Fine Gaussian SVM 50.5 51.8 50.5 53.5 54.5
Medium Gaussian SVM 85.4 52.5 50 51 55.1
Coarce Gaussian SVM 82.1 52.9 49.2 52.9 58.8

Fine KNN 69.2 49.8 48.9 52.1 53.1
Medium KNN 77.8 51.3 50.3 49.7 54.2
Coarse KNN 78.7 51.7 48.9 50.8 53.7
Cosine KNN 78.5 49.6 48.5 52.7 56.4
Cubic KNN 75.9 49.4 49.7 50.6 52.7

Weighted KNN 77.9 51.3 49.9 51.8 57.3
Ensemble Boosted Trees 82.3 51 48.3 51.7 54.9
Ensemble Bagged Trees 77.5 51.3 47.9 50.8 52.8

Ensemble Subspace Discriminant 71.8 55 51 53.5 58.4
Ensemble Subspace KNN 71.1 53 48.5 51.3 53.2

Ensemble RUSBoosted Trees 77 54 48.8 51.9 52.1

281



Biosensors 2021, 11, 161

 

Figure 14. EEG data mapped into a 3-dimensional space with LE, LPP and CS techniques.

4. Conclusions

The aim of the paper was to offer a general view of the way the classifiers give good
results for signals with various rates of dimensionality reduction.

Regarding ECG signals we stress the fact that they were preprocessed by aligning the
R-wave. Our best results were obtained with SVM and KNN while for low dimensions (2
or 3), the best outcomes have been achieved with LE with the drawback that computations
should be repeated for any new signal. Additionally, it has been found that in the case of
CS for more than 10 dimensions the classification rate is near that obtained in the original
space. Similar classification rates results have been achieved for dimensionality reduction
larger than 10 with LPP for which the advantage for new testing signal is that no new
calculations are necessary. Regarding CS, it is the most computationally advantageous
compared to LE and LPP, which are much more computationally expensive.

For EEG signals, the CS and LE algorithms led to results similar to those obtained for
ECG signals. The major difference that occurs in the case of EEG signals is for the LPP
algorithm. This leads to much weaker results in reducing the dimensionality of the signals.
To explain these results, we propose two hypotheses. A first one is that the LPP algorithm
cannot find universal optimal projections for all 8 channels. The second hypothesis is that
in the case of EEG signals the data are located on a manifold and the LPP algorithm fails
to capture the local and at the same time general structure of the manifold, a situation
encountered, for example, in the Swiss Roll manifold case.

The main conclusions of this work envisage the way dimensionality reduction and
classification algorithms can be combined in order to obtain reasonable classification results
even for (very) low dimensions both for ECG and a class of EEG signals. Choosing the
rate of reduction of dimensionality is dependent on the motivation of the analysis. Thus,
if we intend to reconstruct the initial signal, we will adopt CS, if we want intuition for 2
or 3 D we will choose LE while if we want to reduce dimensionality by about ten–twelve
times and make classification in the reduced space without re-computation for new signals,
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we will use LPP. However, it seems LPP does not fit too well the global structure for EEG
signals so that between LPP and LE the second one is better.

We assume these methods and outcomes might be extended in specific limits for more
types of signals too, yet this concept should be attentively applied.
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Abstract: Premature ventricular contractions (PVCs), common in the general and patient population,
are irregular heartbeats that indicate potential heart diseases. Clinically, long-term electrocardiograms
(ECG) collected from the wearable device is a non-invasive and inexpensive tool widely used to
diagnose PVCs by physicians. However, analyzing these long-term ECG is time-consuming and
labor-intensive for cardiologists. Therefore, this paper proposed a simplistic but powerful approach
to detect PVC from long-term ECG. The suggested method utilized deep metric learning to extract
features, with compact intra-product variance and separated inter-product differences, from the
heartbeat. Subsequently, the k-nearest neighbors (KNN) classifier calculated the distance between
samples based on these features to detect PVC. Unlike previous systems used to detect PVC, the
proposed process can intelligently and automatically extract features by supervised deep metric
learning, which can avoid the bias caused by manual feature engineering. As a generally available set
of standard test material, the MIT-BIH (Massachusetts Institute of Technology-Beth Israel Hospital)
Arrhythmia Database is used to evaluate the proposed method, and the experiment takes 99.7%
accuracy, 97.45% sensitivity, and 99.87% specificity. The simulation events show that it is reliable to
use deep metric learning and KNN for PVC recognition. More importantly, the overall way does not
rely on complicated and cumbersome preprocessing.

Keywords: electrocardiogram; deep metric learning; k-nearest neighbors classifier; premature ven-
tricular contraction

1. Introduction

The heart is a vital part of the muscular system, which keeps blood circulating. Heart
rhythm and heart rate are two fundamental indicators to assess whether the heart is
working orderly [1]. Heart rhythm is usually rhythmic, and its clinical significance is more
important than the heart rate. However, suppose the heart’s four chambers, including
the right atrium (RA), right ventricle (RV), left atrium (LA), and left ventricle (LV), cannot
alternately contract and relax to pump blood through the heart. In that case, the heartbeat
will be abnormal in speed and rhythm. The irregular heartbeat typifies arrhythmia and
harms the body’s organs and tissues, such as the lungs and brain [2]. Table 1 lists the most
common types of arrhythmia.

Arrhythmias are closely related to electrical irregulars of the pumping heart [3]. Pre-
cisely, the heart’s electrical system controls the heartbeat by the electrical signal. However,
when these electrical signals that should have traveled on a fixed path change or the heart
tissue changes, arrhythmias occur. For most arrhythmias, the electrocardiogram (ECG) is a
handy and visual tool and has the advantages of being simple, fast, and accurate [4]. ECG
can record the heart’s electrical signals and is non-invasive and affordable for ordinary
people. Moreover, a normal heartbeat in ECG has four main entities: A P wave, a QRS
complex (a combination of the Q wave, R wave and S wave), a T wave, and a U wave, as
shown in Figure 1. Table 2 shows the cause of generating these waves.
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Table 1. The most common types of arrhythmia.

Type Characteristic

Tachycardia Heart rate over 100 beats per minute
Bradycardia Heart rate below 60 beats per minute

Supraventricular arrhythmias Arrhythmias that begin in the heart’s upper chambers (atrium)
Ventricular arrhythmias Arrhythmias that begin in the heart’s lower chambers (ventricles)

Bradyarrhythmias Arrhythmias that caused by a dysfunction in the cardiac conduction system

Figure 1. A normal heartbeat in an electrocardiogram (ECG).

Table 2. The cause of generating each wave in ECG.

Wave Cause

P wave Depolarization of the atrium
QRS complex Depolarization of the ventricles

T wave Repolarization of the ventricles
U wave Repolarization of the Purkinje fibers

However, ECG is powerless for some particular arrhythmias, such as premature
ventricular contraction (PVC), because the patient has a limited time for testing on the ECG
machine during a standard ECG recording. PVC is a common arrhythmia initiated in the
ventricles and often occurs in repeating patterns, as stated in Table 3. Specifically, PVC is
ubiquitous in healthy individuals and patients and is associated with many diseases. There
is a study evaluating the prevalence of frequent PVCs in Guangzhou, China [5]. Above
1.5% of the residents who received 12-lead ECG had PVCs, and nearly 1/6 of subjects who
received 24-h Holter ECG were diagnosed with PVCs. According to the report provided
by the American College of Cardiology Electrophysiology Council, PVC is related to left
ventricular dysfunction and cardiomyopathy [6].

Table 3. The patterns of premature ventricular contraction (PVC) occurrence.

Patterns Description

Bigeminy Every other beat is a PVC
Trigeminy Every third beat is a PVC

Quadrigeminy Every fourth beat is a PVC
Couplet Two consecutive PVCs
NSVT Three-thirty consecutive PVCs

Furthermore, PVC is also associated with some disorders, such as ventricular tachy-
cardia (VT), ventricular fibrillation (VF), underlying coronary artery disease, hypertension,
and myocardial infarction (MI) [7–9]. Because PVC usually causes few or no symptoms,
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self-diagnosis is not accessible. Most people go to the hospital for help only after they
notice severe symptoms.

Since the Holter monitor is a small wearable device and can record the heart’s behavior
in the patient’s everyday life, cardiologists usually use the Holter monitor as a medium to
obtain long-term ECG and diagnose PVC in clinical practice. However, analyzing so many
long-term ECGs takes a lot of time and energy for cardiologists. Therefore, it is crucial to
improve the efficiency of cardiologists regarding reliable and automatic searching for PVC
from the long-term ECG.

With the continuous advancement of technology for collecting and processing physi-
ological signals in recent years, many researchers have developed various algorithms to
detect PVC from the long-term ECG automatically, as summarized in Table 4. In general,
these algorithms are mainly of two types: Morphology-based methods and deep learning-
based methods. In these morphology-based methods, extracting features relies on strong
expertise, and most researchers have to manually design each feature to ensure that the
features are practical. In the deep learning-based methods, extracting features is automatic,
which is the most significant difference between the two methods.

Specifically, the morphology-based method’s core is designing a series of trustworthy
features manually with professional knowledge and experience. Compared with the
normal heartbeat, PVC’s waveform usually has three main characteristics, as shown in
Figure 2: The QRS complex is broad and has an abnormal morphology (QRS-N and
QRS-V); it occurs earlier than expected for the next sinus impulse (T1 < T3 < T2); full
compensatory pause (T1 + T2 = T3 + T4). Therefore, in the morphology-based methods,
some classic features mostly come from the time-domain or frequency-domain of the ECG.
Due to the continuous development of machine learning algorithms and the advancement
of professional knowledge related to signal processing and ECG, most researchers have
favored the morphology-based methods. Moreover, these approaches have occupied an
unshakable status for a long time.

 

Figure 2. The waveforms of PVC and normal heartbeat. The two ECGs in this picture are from the
same person. Each symbol is defined as follows. N (normal heartbeat); V (premature ventricular
contraction); T0 (0.20 s); T1 (R-R interval); T2 (R-R interval); T3 (R-R interval); T4 (R-R interval);
QRS-N (QRS complex of normal heartbeat); QRS-V (QRS complex of PVC). The important thing is
that T3 and T4 are usually equal, and the sum of them is generally similar to the sum of T1 and T2.
The blue dotted line indicates the location of the R wave peak in each heartbeat.
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The signals, collected directly from wearable devices, are always noisy. These noises
mainly include baseline wander, 60 Hz power-line noise, electromagnetic interference,
100 Hz interference from fluorescence lights, and motion artifacts. Therefore, many
morphology-based methods usually denoise the long-term ECG to extract features more
accurately. These popular denoising algorithms are usually based on filters [10–12] or
wavelet transforms [13,14].

Secondly, the morphology-based methods design and extract a series of features
according to the expertise related to ECG and signal processing. Adnane et al. proposed
a vital feature based on the Haar wavelet transform coefficients [15]. Du et al. also
recommended an essential feature obtained by the chaotic analysis and Lyapunov exponent,
named the chaotic feature [16]. Lek-uthai et al. extracted the four features based on cardiac
electrophysiology: R-R interval, pattern of QRS complex, width of QRS complex, and
ST-segment (the end of the QRS complex to the beginning of the T wave) level [17]. Jenny
et al. suggested using the independent component analysis (ICA) algorithm to extract
features and applying t-test analysis to evaluate these features [18]. Nuryani et al. redefine
the width and the gradient of the QRS wave and regarded them as features [19].

Another factor determining the PVC detection method’s performance is the classifier,
which classifies samples with these extracted features. The essence of the classifier is a hy-
pothesis or discrete-valued function. There are some popular classifiers used to distinguish
regular and PVC beats: Artificial neural networks (ANN) [20–22], learning vector quantiza-
tion neural network (LVQNN) [23], k-nearest neighbours (k-NN) algorithm [24,25], discrete
hidden Markov model (DHMM) [26], support vector machine (SVM) [27,28], Bayesian
classification algorithms [29], and random forest (RF) [30].

In summary, the morphology-based methods include three essential components:
Denoising, designed features, and classifiers. Noise reduction is a prerequisite for ac-
curately extracting features. Feature extraction is the core. The classifier directly plays
a decisive role in the performance of these methods. Although the morphology-based
methods have achieved significant success on this project after many researchers’ efforts,
these methods still have some limitations. First, the process of feature extraction relies
heavily on preprocessing, such as wavelet transform and QRS detection. Preprocessing
undoubtedly increases computational overhead. Further, extracting features is a complex
and professional process. In this process, features are not imagined out of thin air but
based on knowledge and experience. The features in each literature are often different from
person to person, which makes it biased. Therefore, some scholars have proposed deep
learning-based methods, which can detect PVC without manually designing features.

Deep learning-based methods are also inseparable from denoising, designed features,
and classifiers. Compared with the morphology-based methods, the deep learning-based
methods usually do not require professional knowledge and experience related to ECG or
signal processing to design features automatically. Although these features are challenging
to understand intuitively, these features are useful. That is to say, in most cases, we do not
know the meaning of these features, but these features can be used to distinguish between
a normal heartbeat and PVC.

Conway et al. used an ANN to detect PVC without manually extracting features [31].
The ANN’s input corresponds to the 30 points of the QRS complex. Yang et al. proposed
an innovative algorithm based on sparse auto-encoder (SAE) to extract features [32]. SAE
is an unsupervised learning algorithm, including two processes of encoding and decoding.
The encoding process performs the features’ extraction, and the decoding process ensures
the effectiveness of the features. Zhou et al. suggested an approach based on the lead
convolutional neural network (LCNN) and long short-term memory (LSTM) network to
extract features [33]. Liu et al. proposed a PVC detection method, which can directly
analyze and process the ECG waveform images [34]. The finetuned Inception V3 model,
developed by Google, is the core component of the method [35].

It is worth noting that feature extraction and classification are closely connected and
inseparable. Liu et al. also recommend using a one-dimensional convolutional neural
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network (1D CNN) to classify the ECG time-series data obtained from ECG waveform
images. Zhou et al. reported a PVC detection method based on the recurrent neural
network (RNN) [36], which has natural and inherent advantages in processing time-series
signals because of its internal memory. Hoang et al. proposed a PVC detection model
deployed in wearable devices [37]. The model is based on a CNN and can be scalable from
3-lead to 16-lead ECG systems.

The deep learning-based methods alleviate the limitations of morphology-based
methods and have the following three advantages. (1) The deep learning-based methods
can use specific network structures to extract features, such as the convolutional kernel. This
process does not require human intervention. (2) In extracting features, the deep learning-
based methods can continuously optimize features to ensure that the features are practical
and non-redundant, such as pooling operation. (3) The deep learning-based methods are
less affected by preprocessing, such as detecting and locating the QRS waveform.

However, these existing deep learning-based methods are not without flaws. Most of
the features extracted by deep learning algorithms are difficult to understand intuitively.
The performance of the deep learning-based methods is slightly inferior to the morphology-
based methods, as shown in Table 4. Some deep learning-based methods need to preprocess
the ECG. In the literature [36], much preprocessing is required before the model training,
such as resampling, signature detection, and normalization. In addition, the research [37]
takes 2D time-frequency images obtained by wavelet transform on the ECG as the proposed
network’s input. No doubt preprocessing increases the computational overhead.

Table 4. Some algorithms for detecting PVC.

Reference Features Classifier Accuracy Sensitivity Specificity

[10] Eight features based on RQA KNN and PNN 92.25% 73.33% 94.74%
[11] Template-matching procedures Threshold method 98.2% 93.1% 81.4%
[12] 12 features based on FT ANN 98.54% 99.93% 98.3%
[13] 8 generalized wavelets transformed coefficients FNN 99.8% 99.21% 99.93%

[14] 10 ECG morphological features and one
interval feature MLP 95.4% - -

[15] Wavelet detail coefficients Threshold method 98.48% 97.21% 98.67%
[16] Chaotic feature Threshold method 99.1% 93.6% -

[17] R-R interval, pattern of QRS complex, width of
QRS complex, and ST-segment level Main parameters algorithm - 97.75% 98.8%

[18] Using the ICA algorithm to extracts features K-means and fuzzy C-means 80.94% 81.1% 80.1%
[19] The width and gradient of the QRS wave SSVM 99.46% 98.94% 99.99%
[20] R-R interval and QRS width ANN 96.29% 94.58% 96.59%
[21] R-peak, R-R, QRS, VAT, Q-peak, and S-peak ANN 99.41% 96.08% -

[22] R-R interval, QS interval, QR amplitude, and
RS amplitude ANN 97.34% - -

[23] Feature extraction of Lyapunov exponent curve LVQNN 98.9% 90.26% 92.31%

[24] Using the PCA, SOM, ICA algorithm to
extracts features KNN 99.63% 99.29% 99.89%

[25] Four morphological characteristics DHMM 96.59% 97.57% 96.85%
[26] Feature selection with GA KNN 99.69% 99.46% 99.91%
[27] Form factor and R-R interval SVM 95% - -
[28] A set of geometrical features SVM 99% 98.5% 99.5%
[29] 80 features based on DFT BCM 98.3% 100%
[30] R-R interval, R amplitude, and QRS area RF 96.38% 97.88% 97.56%
[31] Resampled QRS waveform ANN 95% - -

[32] 20-dimensional feature vector obtained by
using SAE ANN 99.4% 97.9% 91.8%

[33] Learned features automatically LCNN, LSTM, and rules inference 99.41% 97.59% 99.54%
[34] Learned features automatically 1D CNN and 2D CNN 88.5% - -
[36] Learned features automatically RNN 96–99% 99–100% 94–96%
[37] Learned features automatically 2D CNN 90.84% 78.6% 99.86%

Abbreviations: Recurrence quantification analysis (RQA), Fourier transform (FT), independent component analysis (ICA), principal
component analysis (PCA), self-organizing maps (SOM), genetic algorithm (GA), discrete Fourier transform (DFT), sparse autoencoder
SAEK-nearest neighbor (KNN), probabilistic neural network (PNN), artificial neural networks (ANN), fuzzy neural network (FNN),
multilayer perceptron (MLP), support vector machine (SVM), swarm-based support vector machine (SSVM), learning vector quantization
neural network (LVQNN), discrete hidden Markov model (DHMM), Bayesian classification models (BCM), random forest (RF), lead
convolutional neural network (LCNN), long short-term memory network (LSTM), one-dimensional convolutional neural network (1D
CNN), two-dimensional convolutional neural network (2D CNN), recurrent neural network (RNN). Further, “-” means that relevant
information is not mentioned in the literature.
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In summary, we can quickly draw the following conclusions according to the above
discussion and Table 4. (1) Most of the methods mentioned in the literature are based
on morphology. Table 4 lists 27 references, of which 22 belong to the morphology-based
method, and only five belong to the deep learning-based method. (2) Most researchers
prefer to use ANN, KNN, and SVM to identify PVC after completing the feature extraction.
Six pieces of literature in Table 4 use ANN as a classifier. (3) The R-R interval is an excellent
feature, which has been recognized by the majority of researchers. Nearly one-third of
morphology-based methods have used this feature. (4) In terms of accuracy, sensitivity,
and specificity, these three classifiers, FNN, BCM, and SSVM, achieved the best results,
respectively. Overall, the morphology-based method’s performances were slightly better
than deep learning, due to the expert’s knowledge and experience.

Consider the following: On the one hand, it is easy to understand the features ex-
tracted by the morphology-based methods, but feature engineering is the most significant
limitation of this method; on the other hand, it is very difficult or even impossible to
understand intuitively the features extracted by the deep learning-based methods, but
deep learning algorithms can automatically extract and optimize features. This research
proposed a novel approach based on deep metric learning and KNN to ensure that the
features used to detect PVC can be extracted automatically and understood intuitively.

Specifically, the proposed method introduced deep metric learning into PVC inspec-
tion projects for the first time. It is worth mentioning that deep metric learning can
automatically extract features, and these features are usually in the high-dimensional em-
bedding space. In this case, the KNN classifier is undoubtedly an optimal choice. Second,
the proposed method did not rely on expert knowledge and experience related to ECG,
significantly reducing the threshold for studying physiological signals. In theory, the
proposed method is suitable for the most physiological signals. Third, to improve the effi-
ciency of detecting PVC from long-term ECG, this method can directly classify heartbeats.
Preprocessing, such as denoising, is unnecessary. Finally, clinical ECG from the MIT-BIH
(Massachusetts Institute of Technology-Beth Israel Hospital) Arrhythmia Database [38,39]
evaluated and verified the proposed method’s performance and effectiveness. The follow-
ing is the remainder’s arrangement: Section 2 describes the dataset, proposed framework,
and evaluation measures; Section 3 presents and discusses the results; Section 4 gives the
conclusion and directions.

2. Materials and Methods

2.1. Materials

In this paper, all ECG came from the MIT-BIH Arrhythmia Database, which plays
an essential role as a referee in verifying arrhythmia detectors. The MIT-BIH Arrhythmia
Database was first publicly released in 1980 and has been updated three times in 1988,
1992, and 1997. Its public release is a landmark event. Nearly one hundred research groups
worldwide have used the MIT-BIH Arrhythmia Database in the eight years from the first
release. Today, many academic and industrial researchers have affirmed the effectiveness of
this database. Specifically, the MIT-BIH Arrhythmia Database contains 48 long-term Holter
recordings obtained from 47 subjects: 25 men and 22 women. Every record is numbered
from 100 to 234, with some numbers missing. Only records 201 and 202 are from the
same male subject, and the remaining records corresponded to the other subjects one by
one. Furthermore, each record contains two signals with a sampling rate of 360 Hz and a
sampling duration of slightly over half an hour.

In most records, the first signal is a modified limb lead II (MLII), and the second signal
is usually a modified lead V1 (occasionally V2, V5, and V4). It is worth noting that at least
two cardiologists independently annotate all signals in this database. Undoubtedly, free
access to a large number of ECGs and beat-by-beat annotations through the internet at
any time and anywhere has improved the efficiency of the development of arrhythmia
detectors, which has been beneficial to numerous researchers. The ECGs used in this study
were from the MLII, which appeared in almost all records. Considering the suggestion
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proposed by the Association for the Advancement of Medical Instrumentation (AAMI),
this study discarded records 102, 104, 107, and 217 because of the paced beats. Furthermore,
this research divided ECGs in the MIT-BIH Arrhythmia Database into the training set and
test set, as shown in Table 5.

Table 5. Dividing ECG into a training set and test set.

Dataset Records Normal Heartbeat PVC

Training set 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122,
124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230 35,640 2851

Test set 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210,
212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234 33,868 2548

In this table, “Records” represents ECG recordings in the training set or test set. The “Normal heartbeat” and
“PVC” represent the numbers of regular heartbeats and PVC in the training set or test set.

Notably, many datasets have adopted cross-validation to divide the training set and
test set. However, applying cross-validation is unreasonable and may cause label leakage
in this experiment. The reason is that the heartbeat of the subjects in the resting state
hardly changes during a period of time. A reasonable division method should ensure that
the same person’s ECG can not appear in both the training and test sets. Therefore, like
most other studies, this study adopted the division method shown in Table 5, ensuring a
reasonable comparison.

2.2. Methodology

Figure 3 shows the proposed method’s flow, namely, ECG collection, signal prepro-
cessing, feature extraction, and classification. First, collecting long-term ECG is inseparable
from wearable devices, such as Holter. Secondly, the proposed method extracted the single
heartbeat from the MLII using a fixed time window and the R-peak detection algorithm.
Then, the deep metric learning model could extract features of the heartbeat automatically.
Finally, the KNN classifier predicted the category of the heartbeats based on the distance
between the heartbeats. Since this research focused more on signal processing and analysis,
the long-term ECGs and annotations came from the MIT-BIH Arrhythmia Database.

Figure 3. Block diagram of the proposed study.

2.2.1. Signal Preprocessing

Since the long-term ECG collected from the wearable device contained some noise,
most existing research literature would use software algorithms to remove noise and
baseline wander, such as the bandpass filter and wavelet transform. Considering that
denoising increases the system’s computational load, the deep metric learning model can
automatically extract features indicating the difference between the normal heartbeats and
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PVC heartbeats. Therefore, this study did not perform any operations related to denoising
the signal but only segmenting the ECG.

The segmentation of ECG involves R-peak detection and a fixed time window. Specifi-
cally, the proposed method first applies the R-peak detection algorithm to locate the R-peak
on the ECG. Because the existing R-peak detection algorithm [40–43] performs very well in
accuracy and real-time, for example, Pan et al. designed an algorithm that can correctly
detect 99.3% of the R-peak for the MIT-BIH Arrhythmia Database. This study directly used
the MIT-BIH Arrhythmia Database’s R-peak position.

Moreover, sliding a fixed time window on the ECG is a simple and straightforward
way to obtain the same size’s heartbeats. In this research, the window’s length was 433.
Each sliding should make the window’s vertical centerline coincide with each heartbeat’s
R-peak. After these two steps, we could extract the normal heartbeats and PVCs from the
ECG in each record.

2.2.2. Feature Extraction

Feature extraction is an essential step for the development of PVC detectors. It is
no exaggeration to say that the feature extraction defines the upper limit of the PVC
detector. The classifier bounds how close the PVC detector is to its upper limit. For existing
morphology-based methods, feature extraction is a complicated process. It relies heavily on
feature designers’ knowledge and experience and reduces the efficiency of developing PVC
detectors, because a set of excellent and efficient features often requires many researchers’
concerted efforts and a large number of experiments.

Although deep learning-based methods can automatically extract features and avoid
these limitations, the features, extracted through the classic network structures and opti-
mization algorithms, are difficult to understand intuitively in these deep learning-based
methods. Moreover, according to the existing literature, the deep learning-based methods’
overall performance is not significantly better than the morphology-based methods. It is
particularly noteworthy that most of the methods suggested in the current literature have
inadvertently ignored a severe issue that the number of normal heartbeats is much greater
than PVC heartbeats in the MIT-BIH Arrhythmia Database.

Fortunately, the metric learning model can entirely solve the above problems. Metric
learning is a type of mechanism to combine features to compare observations effectively.
There are many types of metric learning models, such as stochastic neighbor embed-
ding (SNE) [44], locally linear embeddings (LLE) [45], mahalanobis metric for clustering
(MMC) [46], and neighborhood component analysis (NCA) [47]. The first two are unsuper-
vised, and the latter two are supervised. Specifically, the metric learning model predicts
the samples’ categories by measuring the similarity among samples [48]. Moreover, the
model’s core is to establish a mapping function to represent the optimal distance metric.

Distinguishing features makes the classifier perform better. Metric learning is very
good at extracting distinguishing features. Metric learning aims to make objects with
the same label behave closer in the feature while increasing the distance between objects
with different labels. To deal with various classification or clustering problems, we can
select appropriate features through prior knowledge and experience on specific tasks.
However, this method is very time-consuming, labor-intensive, and may also be unrobust
to data changes. As an ideal alternative, metric learning can independently learn the metric
distance function for a specific task according to different studies.

Due to deep learning technology and activation functions, deep metric learning, as
a combination of deep learning and metric learning, has provided excellent solutions in
many classification tasks and attracted researchers’ attention in academia and industry. In
the Humpback Whale Identification competition held on the Kaggle platform, which is
the world’s largest data science community [49], the top five participating teams’ solutions
all applied deep metric learning models: Triplet neural network [50] and siamese neural
network [51]. The most conspicuous characteristic of these networks is the sharing weights,
which makes the samples related because the triplet neural network can simultaneously
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learn both positive and negative distances and the number of training data combinations
increases significantly to avoid overfitting. This study intended to use the triplet neural
network as the deep metric learning model’s basic architecture, as shown in Figure 4.

Figure 4. The proposed deep metric learning model’s basic architecture. Take “Group_1 32@33” as an example to
comprehend the convolution group. “Group _1” is the convolution group’s name; “32@33” represents the number and
size of the one-dimensional convolutional layer’s convolution kernels in the convolution group. Each convolutional group
contains two 1D convolutional layers, two batch normalization layers, two activation functions, and one max-pooling layer.

Considering that the R wave peak is much larger than other points in the whole
heartbeat, normalizing the heartbeat was beneficial to the deep metric learning model’s
training. The Tanh function can normalize the input data between –1 and 1. Further,
the Tanh function has little effect on real numbers close to 0 and has a more significant
impact on real numbers far away from 0, especially these real numbers greater than one
or less than −1. Equations (1) and (2) are the definitions of the Tanh function and its
derivatives, respectively.

Tanh(x) =
Sinh(x)
Cosh(x)

=
ex − e−x

ex + e−x (1)

dTanh(x)
dx

= sech2x = 1 − Tanh2x (2)

Secondly, the proposed deep metric learning model had eight convolutional groups
that resulted in a feature vector representing a detected feature’s positions and intensity
in the input data, as shown in Figure 4. Each convolutional group contained two 1D
convolutional layers, two batch normalization layers, two activation functions, and one
max-pooling layer.

The 1D convolutional layer was the necessary component of automatic feature ex-
traction. The purpose of the convolution operation was to extract different features of the
input of this layer. In the entire network, the first few convolutional layers can usually
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only extract some low-level features. In contrast, the last layers can iteratively extract
more complex features from the low-level features. The calculation of convolution was
not complicated. The generated sequence could be obtained by repeating the following
process: Move the convolution kernel in fixed steps along the input vector and calculate
the dot product of the horizontally flipped convolution kernel and the input vector. The
convolution definition is expressed as Equation (3), where x, h, y, respectively, represent
the input vector, convolution kernel, and generated sequence.

yj =
∞

∑
i=−∞

xi × hj−i (3)

Adding the batch normalization layer to the proposed deep metric learning model
could improve the training efficiency by normalizing the convolutional layer’s feature map.
When training the model, the batch normalization layer would sequentially perform the
following operations [52]:

1. Calculate the mean and variance of the input vector;

Batch mean μB =
1
m

m

∑
i=1

xi (4)

Batch variance σ2
B =

1
m

m

∑
i=1

(xi − μB)
2 (5)

2. Normalize the input using the mean and variance;

xi =
xi − μB√

σ2
B + ε

(6)

3. Attain the output with scaling and shifting;

yi = γxi + β (7)

In the Equations (4) and (7), m and ε, respectively, represent the number of samples per
batch and a small constant for numerical stability. Further, γ and β are learnable parameters.

The rectified linear unit (ReLU) dramatically promoted the development of deep
learning. Its use provided a better solution than that of the sigmoid function. The para-
metric rectified linear unit (PReLU) has improved ReLU and become the default activation
function in many classification tasks [53]. Although PReLU introduces slope parameters,
PReLU can better adapt to the other parameters like weights, and the increase in train-
ing costs is negligible. The mathematical definition of PReLU is Equation (8), where yi
and ai, respectively, represent the input on channel i and the negative slope which is a
learnable parameter.

f (yi) = max(0, yi) + ai × min(0, yi) (8)

Adding the pooling layer to the proposed deep metric learning model could reduce
the computational cost and effectively cope with the over-fitting by down-sampling and
summarizing in the feature map. In addition, the pooling layer made the feature position
change more robust, referred to by the “local translation invariance.” Three types of pooling
operations have been widely used: Max-pooling, min-pooling, and average-pooling, as
described in Table 6. However, the simultaneous use of min-pooling and PReLU would
make each layer’s output results in the model almost all 0. Considering that the R wave
waveform is sharp and high in a complete heartbeat, the max-pooling operation was
applied in this study’s pooling layer.
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Table 6. Three types of pooling operations.

Type Operation

Max-pooling The maximum pixel value of the batch is selected
Min-pooling The minimum pixel value of the batch is selected

Average-pooling The average value of all the pixels in the batch is selected
Here, the “batch” means a group of features that are the overlapping parts of these two vectors: The pooling
layer’s kernel and the input vector.

Thirdly, training neural networks are inseparable from the loss function. The loss
function can evaluate neural networks’ performance and play an essential part during
training. The triplet margin loss [54] is used for measuring a relative similarity between
samples. In this study, the triplet margin loss based on the cosine similarity calculated the
model error required in an optimization process used to train the proposed deep metric
learning model. Furthermore, the loss function for each sample in the mini-batch is:

L(a, p, n) = max{d(ai, pi)− d(ai, ni) + margin, 0} (9)

where
d
(→

x ,
→
y
)
=

→
x ·→y =

∣∣∣→x ∣∣∣∣∣∣→y ∣∣∣ cos θ (10)

The anchor, positive example, and negative example were three feature vectors and
composed a triplet. Further, to make the model’s training process faster and more stable,
applying the miner based on multi-similarity [55] could generate more valuable triplets.
The multi-similarity contained three similarities in the general pair weighting (GPW)
framework: Self-similarity, negative relative similarity, and positive relative similarity. In
this study, the miner based on multi-similarity implemented the following process: Select a
negative pair for the anchor if its similarity satisfies Equation (11); select a positive pair
for the same anchor if its similarity satisfies Equation (12). Repeat the above steps with
the feature vector obtained from each heartbeat as an anchor to obtain the index sets of its
selected positive and negative pairs. These index sets are the basis of triples.

S−ij > min
yk=yj

Sik − ε (11)

S+ij < max
yk �=yj

Sik + ε (12)

Sij = f (xi; θ)· f
(

xj; θ
)

(13)

In Equations (11)–(13), assume xi is an anchor, yi is the corresponding label, f is
a neural network parameterized by θ, and · denotes the dot product, where Sij and ε,
respectively, represent the similarity of two samples and a given margin.

2.2.3. Classification

The classifier is the last link of the method proposed in this article and directly
determines the classification system’s performance. In other research projects, the choice of
classifier often depends on the results of multiple experiments. In other words, choosing a
classifier requires many repeated experiments and costs much time. Many researchers often
do experiments on several commonly used classifiers, such as SVM and ANN. Further,
there is no reliable theoretical basis or clear direction to determine which type of classifier
to use in most cases. Even if the researcher has determined which specific classifier to use,
it is a huge challenge to adjust this classifier’s parameters.

However, in this article, since the features extracted by the deep metric model contain
distance information, the KNN classification algorithm was the most suitable classifier.
KNN classification algorithm is a type of non-generalizing learning. Unlike other classifiers
that try to train a general model, the KNN classifier focuses on the distance. Moreover,
the classification basis of the KNN is intuitive. The KNN classifier has only one parameter
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to control the number of votes, called K. The KNN classification algorithm first calculates
the distance between the test data and each training data. If K is 1, the training data label
with the closest distance is regarded as the predicted label. If K is greater than 1, the
KNN classification algorithm votes according to the the top K training data labels with the
smallest distance and finally determines the predicted label.

2.3. Evaluation Measures

The confusion matrix is a standard format for evaluating classification performance,
and it usually appears in the form of a matrix. In most classification tasks, the confusion
matrix summarizes the number of correctly and incorrectly predicted samples and those
broken down by each class, providing researchers with a global perspective to compre-
hensively and efficiently evaluate the classifier’s performance, especially in imbalanced
datasets.

This study used the confusion matrix to measure the recognition performance of the
proposed method. Further, this study used five evaluation indicators: Accuracy (ACC),
sensitivity (Se), specificity (Sp), positive prediction (P+), and negative prediction (P−),
based on the confusion matrix to compare more conveniently with experimental results in
other literature. The confusion matrix and other five indicators, which also have been used
in the literature [28], can be expressed as Equations (14)–(19). TN, FN, TP, and FP represent
true negatives, false negatives, true positives, and false positives.

Confusion Matrix =

[
TN FP
FN TP

]
(14)

Accuracy Acc =
TP + TN

TP + TN + FN + FP
(15)

Sensitivity Se =
TP

TP + FN
(16)

Specificity Sp =
TN

TN + FP
(17)

Positive prediction P+ =
TP

TP + FP
(18)

Negative prediction P− =
TN

TN + FN
(19)

3. Results and Discussion

In this study, the main factors affecting the proposed system’s performance were as
follows: The denoising method, the number of features, type of pooling layer, the loss
function configuration, and type of classifier. First, denoising is a double-edged sword
in the signal preprocessing stage. Denoising can improve the signal’s quality, reducing
the difficulty of training a deep metric learning model. However, the signal may also lose
some valuable information because of denoising.

Second, as a bridge between the deep metric learning model and classifier, the number
of features is an essential hyper-parameter. This value cannot be too large or too small. The
greater the number of features, the easier the features become redundant. Conversely, if
there are too few features, the less information the features contain cause the classifier’s
performance to deteriorate. Third, the type of pooling layer determines how features
are summarized and retained and has the effect of de-redundancy. A proper pooling
layer can select the most practical features to speed up the deep metric learning model’s
training speed.

Fourth, the loss function configuration is the top priority of training the deep metric
learning model. The loss function and the miner based on multi-similarity cooperated
in the proposed system. In the loss function, the margin should be within a reasonable
range. The larger the margin, the more valuable the feature, but the harder it is to train the
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deep metric learning model. Conversely, the smaller the margin, the easier it is to train the
model, but the less practical the features. Finally, the KNN classifier is hugely suitable for
processing the deep metric learning model’s features. However, the choice of K value is
highly dependent on the distribution of features.

In this section, this study strictly divided the training set and the test set according
to Table 5 and used them in each experiment. Before anything else, we evaluated the
necessity of signal denoising. Secondly, we assessed the impact of the number of features
on the proposed model. Immediately afterward, we tested pooling layers’ influence on
the feature extraction of deep metric learning models. To improve the proposed system’s
performance, we have adjusted the loss function and the miner parameters many times.
Subsequently, we checked the performance of the KNN classifier and further optimized
the classifier. Finally, we compared the proposed method with other research literature on
multiple evaluation indicators, such as accuracy, sensitivity, and specificity. We carried out
the simulation process on a Linux server with an Nvidia GeForce RTX 2070 GPU.

3.1. Experiment 1: Evaluation of the Necessity for Signal Denoising

In collecting ECG, wearable devices also collect noises. These noises can affect the
quality of the signal and even distort the signal. The analog-to-digital conversion chip
is a critical hardware component in wearable devices, directly determining the signal
quality. Therefore, in the signal acquisition phase, researchers usually improve the sensor’s
hardware equipment to suppress noise as much as possible. On the other hand, most
scholars use software algorithms in the signal preprocessing stage to remove noise further.
However, it is worth mentioning that the noise reduction algorithm inevitably changes
the signal more or less. For the metric learning model used in this paper, the convolu-
tional layer can automatically extract useful features and ignore useless information, such
as noise. Therefore, the necessity of denoising the signal in the preprocessing stage is
worth exploring.

Considering that the data used in this article were all from the MIT-BIH Arrhythmia
Database and the method proposed in this paper focused on signal analysis, the denoising
methods only involve software algorithms in the signal preprocessing. Expressly, we
set up a set of comparative experiments to evaluate the necessity of signal denoising.
This comparative experiment first processes and classifies the ECG directly according to
the method proposed in this article, without applying any denoising means. Secondly,
based on the first experiment, we only added some denoising algorithms in the signal
preprocessing stage.

These denoising algorithms include two finite impulse response (FIR) filters with
a sampling rate of 1000 Hz and two median filters. Figure 5 shows the denoising effect
of the ECG. The former can filter 60 Hz power-line noise and 100 Hz interference from
fluorescence lights, and the latter can remove the baseline of the signal and some noise. It is
worth noting that the sizes of these two median filters window are 71 and 215, respectively,
which is the same as the setting in literature [56]. Tables 7 and 8 record the parameters and
results of the comparative experiment in detail. In Table 7, the LR, WD, and K refer to the
learning rate, weight decay, and the KNN classifier’s parameter.

Table 7. The parameters related to the experiment.

Batch Size Number of Features Margin Distance Epsilon Optimizer LR WD K

32 32 0.2 Cosine Similarity 0 Adam 0.0001 0 1
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(a) (b) 

  
(c) (d) 

Figure 5. The result of applying different denoising algorithms on the ECG. (a) shows a 3-s ECG without denoising; (b) and
(c) illustrate the effect of using finite impulse response (FIR) filters and median filters on the ECG, respectively; (d) shows
the impact of using FIR filters and median filters on the ECG.

Table 8. The performance of applying different noise reduction algorithms on the proposed method.

Noise Reduction Algorithms Acc (%) Se (%) Sp (%) P+ (%) P− (%) Time

None 99.63 96.74 99.85 97.97 99.76 0.00
FIR filters 99.56 96.66 99.78 97.04 99.75 0.23

Median filters 99.53 96.9 99.73 96.37 99.77 6.58
FIR filters and median filters 99.46 96.15 99.71 96.12 99.71 7.04

Here, the “Time” means the time it takes to denoise a half-hour ECG.

It is not difficult to find from Table 8 that both the FIR filter and the median filter
interfered with the model’s judgment to a certain extent, especially when applying both
filters at the same time. Adding FIR filters and median filters in the signal preprocessing
stage reduces each evaluation index of the model. The median filter can maximize the
model’s sensitivity, but the model’s accuracy would drop slightly. According to the model’s
overall performance, the most appropriate choice was not to use FIR filters or median
filters. Figure 5 directly confirms this conclusion.

By observing the four sub-pictures in Figure 5, we can quickly and intuitively discover
two phenomena. First of all, the FIR filters could filter out specific frequency components
but make the ECG show more obvious glitches simultaneously, which would be counter-
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productive. Second, the median filters could effectively remove the baseline but slightly
change the ECG’s contour, which would be hidden danger for the model’s judgment.

According to Table 8 another thing worth noting is that the time required to process a
half-hour-long ECG using the FIR filter and the median filter was 0.23 and 6.58 s, respec-
tively, in this experiment. If this experiment used the computer hardware equipment with
a lower frequency, the time spent on noise removal would become longer.

Considering the actual situation and experimental results, the method proposed in
this paper had a particular anti-noise ability. Therefore, denoising was an option in this
experiment’s signal preprocessing stage, though not a necessary option. Since this article
focused on the classification of electrocardiograms, no more detailed research was done on
noise reduction methods.

3.2. Experiment 2: The Choice of the Number of Features

There is no doubt that features are essential and directly determine the performance
of the classifier. In theory, practical features should be informative, differentiated, and
independent. The deep metric learning model can automatically extract features. In the
process of producing high-quality features, the number of features is a critical parameter.

Suppose the number of features is too small. In that case, the deep metric learning
model’s training process would be challenging. The acquired features are indistinguishable,
and the information contained in the features is not enough to smoothly train the classifier.

On the contrary, too many features are redundant and increase the deep metric learn-
ing model’s training time. Further, the excessive features have the following shortcomings
for the classifier: Expanding the classifier’s complexity, causing the dimensional disaster,
and resulting in ill-posed problems and sparse features problems. These disadvantages
eventually lead to a decline in the performance of the classifier.

Considering the above points, we conducted a series of experiments to find the
appropriate number of features. We set different values for the number of kernels in the last
convolutional layer to adjust the features. Table 9 provides the detailed results. Moreover,
this experiment also adopted the basic configuration in Table 7.

Table 9. The results of the varying number of features.

The Number of Features TN FP FN TP Acc (%) Se (%) Sp (%) P+ (%) P− (%)

2 33,808 60 91 2457 99.59 96.43 99.82 97.62 99.73
8 33,800 68 89 2459 99.57 96.51 99.8 97.31 99.74
32 33,817 51 83 2465 99.63 96.74 99.85 97.97 99.76
64 33,802 66 84 2464 99.59 96.7 99.81 97.39 99.75

According to the experimental results in Table 9, we found that the features extracted
by the deep metric learning model could make the KNN classifier perform best when
the number of features was 32. Further, the number of features and sensitivity were
positively correlated. In other words, the more features, the more confident the proposed
system was in PVC predictions. To better analyze these results, we used t-distributed
stochastic neighbor embedding (t-SNE) [57] to reduce the features’ dimension and then
visualize the features in Figure 6. The t-SNE is a machine learning algorithm for dimension
reduction, which is very suitable for reducing high-dimensional data to 2 or 3 dimensions
for visualization.
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(a) 2 features without t-SNE (b) 8 features with t-SNE 

  
(c) 32 features with t-SNE (d) 64 features with t-SNE 

Figure 6. Visualizing the features of training data.

Suppose we used the deep metric learning model to extract only two features. In
that case, we could directly draw the features in a two-dimensional coordinate system
without dimension reduction by t-SNE. When the number of features was greater than 2,
we would use the t-SNE algorithm to reduce the features’ dimensions and display them on
a two-dimensional plane. The four sub-images in Figure 6 show the distribution of different
quantity features, extracted from all training data through the deep metric learning model,
on a two-dimensional plane.

First, as shown in subfigure (a), the normal heartbeats and PVC were distributed
on two parallel straight lines. However, when the first feature was around 2.1 and the
second feature was around 0.26, the boundary between the normal heartbeat and PVC was
not stark. Secondly, the other three subfigures showed that these features had obvious
boundaries on the two-dimensional plane, distinguishing between the normal heartbeats
and PVC. Finally, although the results in Table 9 are not much different, it is better to use
the deep metric learning model to extract 32 features after comparing evaluation indicators
such as accuracy and sensitivity.
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3.3. Experiment 3: Assess the Impact of Pooling Type

In the CNN architecture, most researchers tend to insert a pooling layer in-between
consecutive convolutional layers periodically. On the one hand, the pooling layer reduces
the number of parameters to learn, avoiding over-fitting, and accelerating the deep metric
learning model’s training speed. On the other hand, unlike the convolutional layer that
extracts features with precise positioning, the pooling layer summarizes the features
generated by a convolution layer, making the deep metric learning model more robust to
variations in the position of the features in the input ECG. In other words, the pooling layer
has a natural advantage in analyzing heartbeats of different cycles, even if these heartbeats
come from different people.

Generally speaking, the core of the pooling layer is a fixed-shaped window. According
to a set stride, this window slid overall feature regions and computed a single output for
each location. It is worth noting that the way the pooling layer computes the output has
no kernel and is deterministic, typically based on the maximum or average value of the
features in the pooling window.

Specifically, the output after the max-pooling layer would contain the previous feature
map’s most prominent features, which guarantees that each feature used to transmit to
the next layer is practical. The average-pooling gives the average of features, taking into
account global features in the pooling window. Therefore, in this experiment, we tested
these two pooling layers’ performances in feature extraction with the configuration in
Table 7. Figure 7 shows the results of this experiment in the form of a confusion matrix.
Table 10 illustrates the detailed results in each evaluation index.

  
(a) Average-pooling (b) Max-pooling 

Figure 7. The confusion matrix about testing the pooling layer.

Table 10. The detailed results of testing the pooling layer.

Pooling Type Acc (%) Se (%) Sp (%) P+ (%) P− (%)

Max-pooling 99.63 96.74 99.85 97.97 99.76
Average-pooling 99.59 97.49 99.74 96.62 99.81

According to Figure 7, it can be found intuitively that the deep metric learning model
with the max-pooling layer misjudged 134 test data, 17 fewer than the model with the
average-pooling layer. Although the two models’ performances were similar, the max-
pooling layer model was better at predicting normal heartbeats. The model with the
average-pooling layer was more confident in predicting PVC, as shown in Table 10.
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In the proposed method, feature extraction’s error mainly came from two aspects: The
pooling window size and the feature shift caused by convolutional layer parameters. Gen-
erally speaking, the average-pooling operation could reduce the former error to preserve
more information in the pooling window. The max-pooling operation can reduce the latter
error to focus on the highest intensity information.

Since the loss function was based on cosine similarity, the desired model used to
extract features should make the cosine similarity between samples of different classes as
small as possible. Suppose the number of features was 2. The PVC and normal heartbeat
features should be as close as possible to the two coordinate axes, respectively, in a two-
dimensional coordinate system. Under careful consideration, the max-pooling layer was
better than the average-pooling layer.

3.4. Experiment 4: Configure the Parameters of the Loss Function and Miner

In the triplet margin loss, the margin is an indispensable parameter that directly affects
training the deep metric learning model. The definition of margin is the desired difference
between the anchor-positive distance and the anchor-negative distance. Generally speaking,
the larger the margin, the higher the quality of the extracted features. However, a large
margin makes the model’s training process very unstable, and the loss makes it challenging
to approach zero.

Secondly, in this paper, when we trained the model using the triples format’s training
data, there were countless triples. However, since some triples met the margin requirements
in the loss function, these triples did not contribute to the training model. There is no doubt
that blindly and directly using all triples is time-consuming and inefficient for training
models.

Fortunately, the miner based on multi-similarity can solve this problem. In this miner,
epsilon is an important parameter that controls which triples are selected to train the model.
Generally speaking, the larger the epsilon, the more triples are involved in training the
model. To maximize the deep metric learning model’s performance, we conducted a series
of experiments on margin and epsilon values with the configuration in Table 7. Table 11
lists the results for different values of margin and epsilon.

Table 11. The experiment results about the margin and epsilon.

Margin Epsilon TN FP FN TP Acc (%) Se (%) Sp (%) P+ (%) P− (%)

0.1 0.0 33,824 44 65 2483 99.70 97.45 99.87 98.26 99.81
0.2 0.0 33,817 51 83 2465 99.63 96.74 99.85 97.97 99.76
0.4 0.0 33,812 56 69 2479 99.66 97.29 99.83 97.79 99.80
0.8 0.0 33,786 82 49 2499 99.64 98.08 99.76 96.82 99.86
0.1 0.1 33,808 60 78 2470 99.62 96.94 99.82 97.63 99.77
0.1 0.2 33,787 81 64 2484 99.60 97.49 99.76 96.84 99.81
0.1 0.3 33,795 73 70 2478 99.61 97.25 99.78 97.14 99.79

First of all, Table 11 shows that specificity and margin are negatively correlated,
provide epsilon is 0. When the margins were 0.2, 0.4, 0.8, the proposed PVC detection
system reached an accuracy of about 99.64% in these three experiments. However, when
the margin was 0.1, the proposed PVC detection system performed best in the following
indicators: Accuracy, specificity, and positive prediction. Secondly, increasing epsilon made
the system’s overall performance worse, especially accuracy and positive prediction.

For the same batch of training data, the greater the margin, the greater the loss. In
the case of a fixed learning rate, an enormous loss makes it difficult for the optimizer to
find the best point, which leads to a decline in the quality of the extracted features. On
the other hand, epsilon determines the number of triples involved in training. The larger
the epsilon, the greater the number of triples in the same batch of training data, which
undoubtedly increases the computational load. Furthermore, although the larger epsilon
increases the number of triples, most of the triples can only produce a minimal loss, which
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leads to a reduction in the batch loss. A small loss may cause the optimizer to fall into a
local optimum. Therefore, according to the experimental results, it is suitable to set the
margin and epsilon to 0.1 and 0, respectively.

3.5. Experiment 5: Optimization of KNN Classifier and Comparison with Other Literature

In this article, the KNN classifier is suitable thanks to the spatiality of the features
extracted by the deep metric learning model. Nevertheless, the performance of the KNN
classifier is very dependent on the K value. A small K value is likely to cause overfitting,
while an immense K value is likely to overlook some useful information in the training
data. Therefore, it is necessary to test the K value. Table 12 lists the performance of the
KNN classifier under different K values.

Table 12. The performance of the KNN classifier with different K values.

K TN FP FN TP Acc (%) Se (%) Sp (%) P+ (%) P− (%)

1 33,824 44 65 2483 99.7007 97.449 99.8701 98.2588 99.8082
3 33,824 44 66 2482 99.6979 97.4097 99.8701 98.2581 99.8053
5 33,825 43 68 2480 99.6952 97.3312 99.873 98.2957 99.7994
9 33,822 46 69 2479 99.6842 97.292 99.8642 98.1782 99.7964

11 33,822 46 70 2478 99.6815 97.2527 99.8642 98.1775 99.7935

Overall, the best value of K was 1, which made the classifier obtain the highest accuracy.
Secondly, as the K value continued to increase, the number of misjudgments by the KNN
classifier for PVC was rising since the number of normal heartbeats was much larger than
that of PVC. Finally, all the experimental results in Table 12 confirmed the effectiveness
of the PVC detection method proposed in this article. Finally, we compared the proposed
method with other literature, as shown in Figure 8.

 

Figure 8. Comparison with other literature.

As a whole, the proposed method was not superior in terms of accuracy, specificity, or
sensitivity compared to the references [13,19,22,26]. However, they used long-term ECGs
with no more than ten records from the MIT-BIH Arrhythmia Database to experiment. For
example, references [19,22] used only six and five patient ECGs, respectively. In addition
to this, randomly dividing the training set and test set should attract our attention and
vigilance. For example, reference [26] randomly divided the training set and the test set
at a ratio of 2:1. References [19,22] are no exception to this problem. It is particularly
noteworthy that the training set and the test set were the same in reference [13], making
their results unconvincing.

Second, the proposed method was only 0.1% lower than the reference [13] in accuracy
and outperformed the others. In terms of specificity, the proposed method was also only
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inferior to reference [13,19,22,26]. However, this paper’s proposed PVC detection system
did not perform exceptionally well in terms of sensitivity.

It is worth mentioning that the results of reference [28] were based on five-fold
cross-validation. Suppose the division scheme of the training and test sets mentioned
in this paper were used in reference [28]. In that case, the accuracy, sensitivity, and
specificity of reference [28] would be 97.6%, 72.1%, and 99.9%, respectively. Therefore,
our proposed method was superior to reference [28,29] used ten-fold cross-validation to
select the classifier. Cross-validation is not suitable in the PVC detection task because
it lays a hidden danger for label leakage. Further, our method did not rely on complex
preprocessing and was superior to reference [37] in all metrics. Finally, the proposed
system’s sensitivity was similar to that of reference [30,32,33]. Our method was superior to
the methods presented in these three literature pieces in terms of accuracy and specificity.

In summary, our method outperformed other studies. Further, applying deep metric
learning can automatically extract features and ensure that the features are spatially infor-
mative. Finally, the PVC detection system proposed in this paper was highly portable. The
system could be directly applied to analyze many other physiological signals.

4. Conclusions

This study successfully applied a deep metric learning model to extract spatial features
from heartbeats. These features were useful and practical. Moreover, the KNN classifier
could directly classify heartbeats based on the distance between features. This paper’s series
of experimental results showed that the proposed method achieved significantly better
classification results than the existing morphology-based and deep learning-based methods.
It was also practical and easy to migrate the proposed method to other physiological signals,
such as heart sounds and pulses. Third, in this paper, we developed cosine similarity-based
features. There were many other types of distance features to be developed. We plan to
develop deep metric learning models based on different types of distances in future work
to extract features. Combining multiple features helped to improve the performance of the
proposed system. Finally, deploying the proposed method on cloud servers is in our plan,
which will be of great help to patients and physicians in remote areas.
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