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Preface to ”Symmetry in Modeling and Analysis of
Dynamic Systems”

Real-world systems exhibit complex behavior, therefore novel mathematical approaches or

modifications of classical ones have to be employed to precisely predict, monitor, and control

complicated chaotic and stochastic processes. One of the most basic concepts that has to be taken

into account while conducting research in all natural sciences is symmetry, and it is usually used

to refer to an object that is invariant under some transformations including translation, reflection,

rotation or scaling.

The following Special Issue is dedicated to investigations of the concept of dynamical symmetry

in the modelling and analysis of dynamic features occurring in various branches of science like

physics, chemistry, biology, and engineering, with special emphasis on research based on the

mathematical models of nonlinear partial and ordinary differential equations. Addressed topics cover

theories developed and employed under the concept of invariance of the global/local behavior of the

points of spacetime, including temporal/spatiotemporal symmetries.

Small Solutions of the Perturbed Nonlinear Partial Discrete Dirichlet Boundary Value Problems with

(p,q)-Laplacian Operator by Feng Xiong and Zhan Zhou [1] presents results of using critical point theory

for study of perturbed partial discrete boundary value problems.

Vibration Properties of a Concrete Structure with Symmetries Used in Civil Engineering by Sorin

Vlase, Marin Marin and Ovidiu Deaconu [2] is dedicated to identification of the eigenvalue and

eigenmode properties of vibration for components of the concrete constructions’ structure allowing

for the simplification of their dynamic analysis.

Evaluating the Impact of Different Symmetrical Models of Ambient Assisted Living Systems by Wael

Alosaimi, Md Tarique Jamal Ansari, Abdullah Alharbi, Hashem Alyami, Adil Hussain Seh, Abhishek

Kumar Pandey, Alka Agrawal and Raees Ahmad Khan [3] provides results of investigation of

the potential symmetrical models of Ambient Assisted Living systems and frameworks for the

implementation of effective new installations enhancing the living standard for old-aged people.

Dynamical Simulation of Effective Stem Cell Transplantation for Modulation of Microglia Responses in

Stroke Treatment by Awatif Jahman Alqarni, Azmin Sham Rambely and Ishak Hashim [4] presents

studies of the stability of the mathematical model by using the current biological information on stem

cell therapy as a possible treatment for inflammation from microglia during stroke.

In Second-Order Non-Canonical Neutral Differential Equations with Mixed Type: Oscillatory Behavior

by Osama Moaaz, Amany Nabih, Hammad Alotaibi and Y. S. Hamed [5] new sufficient conditions for

the oscillation of solutions of a class of second-order delay differential equations with a mixed neutral

term under the non-canonical condition are discussed.

Generalized Attracting Horseshoe in the Rössler Attractor by Karthik Murthy, Ian Jordan, Parth

Sojitra, Aminur Rahman and Denis Blackmore [6] presents the generalized attracting horseshoe and

its trapping region obtained by using a chosen Poincaré map of the Rössler attractor for an electronic

circuit.

Multiple Solutions for a Class of Nonlinear Fourth-Order Boundary Value Problems by Longfei Lin,

Yansheng Liu and Daliang Zhao [7] considers multiple solutions for a class of nonlinear fourth-order

boundary value problems obtained by constructing a special cone and applying fixed point index

theory.

ix



Existence of Three Solutions for a Nonlinear Discrete Boundary Value Problem with φc-Laplacian by

Yanshan Chen and Zhan Zhou [8] is focused on the multiplicity of nontrivial solutions for a nonlinear

discrete Dirichlet boundary value problem involving the mean curvature operator.

Last but not least, On the Absolute Stable Difference Scheme for Third Order Delay Partial Differential

Equations by Allaberen Ashyralyev, Evren Hınçal and Suleiman Ibrahim [9] offers investigations of

the third order delay differential equation in a Hilbert space with an unbounded operator.
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Abstract: In this paper, we consider a perturbed partial discrete Dirichlet problem with the (p, q)-
Laplacian operator. Using critical point theory, we study the existence of infinitely many small
solutions of boundary value problems. Without imposing the symmetry at the origin on the nonlinear
term f , we obtain the sufficient conditions for the existence of infinitely many small solutions. As
far as we know, this is the study of perturbed partial discrete boundary value problems. Finally, the
results are exemplified by an example.

Keywords: boundary value problem; partial difference equation; infinitely many small solutions;
(p, q)-Laplacian; critical point theory

1. Introduction

Let Z and R denote the sets of integers and real numbers, respectively. Denote
Z(a, b) = {a, a + 1, · · · , b} when a ≤ b.

We consider the following partial discrete problem, namely (Dλ,µ)
−[∆1(φp(∆1y(s− 1, t)))+∆2(φp(∆2y(s, t− 1)))]+ l(s, t)φq(y(s, t)) = λ f ((s, t), y(s, t))

+µg((s, t), y(s, t)), (s, t) ∈ Z(1, a)× Z(1, b), with Dirichlet boundary conditions as follows:

y(s, 0) = y(s, b + 1) = 0, s ∈ Z(0, a + 1),

y(0, t) = y(a + 1, t) = 0, t ∈ Z(0, b + 1),
(1)

where a and b are the given positive integers, λ and µ are the positive real parameters,
∆1 and ∆2 are the forward difference operators defined by ∆1y(s, t) = y(s + 1, t)− y(s, t)
and ∆2y(s, t) = y(s, t + 1)− y(s, t), ∆2

1y(s, t) = ∆1(∆1y(s, t)) and ∆2
2y(s, t) = ∆2(∆2y(s, t)),

φr(y) = |y|r−2y with y ∈ R, 1 < q ≤ p < +∞, l(s, t) ≥ 0 for all (s, t) ∈ Z(1, a)× Z(1, b),
and f ((s, t), ·), g((s, t), ·) ∈ C(R, R) for each (s, t) ∈ Z(1, a)× Z(1, b).

Difference equations are widely applied in diverse domains, including natural science,
and biological neural networks, as shown in [1–4]. For the existence and multiplicity of
solutions to boundary value problems, some authors derived a number of conclusions
using nonlinear analysis methods, such as fixed point methods as well as the Brouwer
degree [5–9]. In 2003, Yu and Guo [10] used firstly the critical point theory to study a
class of difference equations. Since then, many mathematical researchers have explored
difference equations and made great achievements, which include the results of periodic
solutions [10,11], homoclinic solutions [12–18], boundary value problems [19–25] and so on.

Bonanno et al. [20] in 2016 considered the following discrete Dirichlet problem:
{

∆2yh−1 + λ f (h, yh) = 0, h ∈ Z(1, N),
y0 = yN+1 = 0,

(2)

and acquired at least two positive solutions of (2).

1
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Mawhin et al. [21] in 2017 studied the following boundary value problem:
{
−∆(φp(∆yh−1)) + qhφp(yh) = λ f (h, yh), h ∈ Z(1, N),
y0 = yN+1 = 0,

(3)

extending the results in [20] with p = 2.
Nastasi et al. [22] in 2017 studied the discrete Dirichlet problem involving the (p, q)-

Laplacian operator as follows:
{
−∆(φp(∆y(h− 1)))− ∆(φq(∆y(h− 1))) + α(h)φp(y(h)) + β(h)φq(y(h)) = λg(h, y(h)), h ∈ Z(1, N),
y(0) = y(N + 1) = 0,

(4)

and obtained at least two positive solutions of (4).
In 2019, Ling and Zhou [24] considered the Dirichlet problem involving φc-Laplacian

as follows:
{
−∆(φc(∆yh−1)) + qhφc(yh) = λ f (h, yh), h ∈ Z(1, N),
y0 = yN+1 = 0.

(5)

They studied the existence of positive solutions of (5) when qh ≡ 0 in [23].
In 2020, Wang and Zhou [25] considered discrete Dirichlet boundary value problem

as follows: {
∆(φp,c(∆yh−1)) + λ f (h, yh) = 0, h ∈ Z(1, N),
y0 = yN+1 = 0.

(6)

The difference equations studied above involve only one variable. However, the
difference equations containing two or more variables are less studied, and such difference
equations are called partial difference equations. Recently, partial difference equations
were widely used in many fields. Boundary value problems of partial difference equations
seem to be challenging problem that has attracted many mathematical researchers [26,27].

In 2015, Heidarkhani and Imbesi [26] adopted two critical points theorems to establish
multiple solutions of the partial discrete problem as shown below:

∆2
1y(s− 1, t) + ∆2

2y(s, t− 1) + λ f ((s, t), y(s, t)) = 0, (s, t) ∈ Z(1, a)× Z(1, b), (7)

with Dirichlet boundary conditions (1).
Recently, in 2020, Du and Zhou [27] studied a partial discrete Dirichlet problem

as follows:
∆1(φp(∆1y(s− 1, t))) + ∆2(φp(∆2y(s, t− 1))) + λ f ((s, t), y(s, t)) = 0, (s, t) ∈ Z(1, a)× Z(1, b), (8)

with Dirichlet boundary conditions (1).
Inspired by the above research, we found that the perturbed partial difference equa-

tions had rarely been studied, so this paper aims at studying small solutions of the per-
turbed partial discrete Dirichlet problems with the (p, q)-Laplacian operator. Here, the
perturbed partial difference equations mean that the term with the parameter µ in the right
hand of the equation for the problem (Dλ,µ) is very small. A solution y(s, t) of (Dλ,µ) is
called a small solution if the norm ‖y(s, t)‖ is small. In fact, without the symmetric assump-
tion on the origin for the nonlinear term f , we can still verify that problem (Dλ,µ) possesses
a sequence of solutions which converges to zero by using the Lemma 2. Moreover, by
Lemma 1, we can show that all of these solutions are positive. Furthermore, by truncation
techniques, we obtain two sequences of constant-sign solutions, which converge to zero
(with one being positive and the other being negative). As far as we know, our study takes
the lead in addressing small solutions of the perturbed partial discrete Dirichlet problems
with the (p, q)-Laplacian operator.

The rest of this paper is organized as follows. In Section 2, we establish the variational
framework linked to (Dλ,µ) and recall the abstract critical point theorem. In Section 3, we

2
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give the main results. In Section 4, we provide an example to demonstrate our results. We
make a conclusion in the last section.

2. Preliminaries

The current section is the first one to establish the variational framework linked to
(Dλ,µ). We consider the ab-dimensional Banach space

Y = {y : Z(0, a + 1)× Z(0, b + 1) → R : y(s, 0) = y(s, b + 1) = 0, s ∈ Z(0, a + 1) and
y(0, t) = y(a + 1, t) = 0, t ∈ Z(0, b + 1)}, endowed with the norm

‖y‖ =
(

b

∑
t=1

a+1

∑
s=1
|∆1y(s− 1, t)|p +

a

∑
s=1

b+1

∑
t=1
|∆2y(s, t− 1)|p

) 1
p

, y ∈ Y.

and ‖y‖∞ = max{|y(s, t)| : (s, t) ∈ Z(1, a)× Z(1, b)} is another norm in Y.
Let l∗ = min{l(s, t) : (s, t) ∈ Z(1, a)× Z(1, b)}.

Proposition 1. The following inequality holds:

‖y‖∞ ≤ max





(
p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1

)1/q



‖y‖p

p
+

b
∑

t=1

a
∑

s=1
l(s, t)|y(s, t)|q

q




1/q

,

(
p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1

)1/p



‖y‖p

p
+

b
∑

t=1

a
∑

s=1
l(s, t)|y(s, t)|q

q




1/p




.

Proof. According to the result of ([27], Proposition 1), we have the following:

‖y‖p
∞ ≤

(a + b + 2)p−1

4p ‖y‖p. (9)

When ‖y‖∞ > 1, according to (9), we have the following:

(1 + l∗
(a+b+2)p−1

4p )‖y‖q
∞

p
≤
‖y‖p

∞ + (a+b+2)p−1

4p

b
∑

t=1

a
∑

s=1
l(s, t)|y(s, t)|q

p

≤ (a + b + 2)p−1

p4p

(
‖y‖p +

b

∑
t=1

a

∑
s=1

l(s, t)|y(s, t)|q
)

≤ (a + b + 2)p−1

p4p ‖y‖p +
(a + b + 2)p−1

q4p

b

∑
t=1

a

∑
s=1

l(s, t)|y(s, t)|q,

(10)

that is,

‖y‖∞ ≤
(

p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1

)1/q



‖y‖p

p
+

b
∑

t=1

a
∑

s=1
l(s, t)|y(s, t)|q

q




1/q

. (11)

3
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When ‖y‖∞ ≤ 1, according to (9), we have the following:

(1 + l∗
(a+b+2)p−1

4p )‖y‖p
∞

p
≤
‖y‖p

∞ + (a+b+2)p−1

4p

b
∑

t=1

a
∑

s=1
l(s, t)|y(s, t)|q

p

≤ (a + b + 2)p−1

p4p ‖y‖p +
(a + b + 2)p−1

q4p

b

∑
t=1

a

∑
s=1

l(s, t)|y(s, t)|q,

(12)

that is,

‖y‖∞ ≤
(

p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1

)1/p



‖y‖p

p
+

b
∑

t=1

a
∑

s=1
l(s, t)|y(s, t)|q

q




1/p

. (13)

In summary, we have the following:

‖y‖∞ ≤ max





(
p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1

)1/q



‖y‖p

p
+

b
∑

t=1

a
∑

s=1
l(s, t)|y(s, t)|q

q




1/q

,

(
p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1

)1/p



‖y‖p

p
+

b
∑

t=1

a
∑

s=1
l(s, t)|y(s, t)|q

q




1/p




.

Define
Φ(y) = Φ1(y) + Φ2(y),

Ψ(y) =
b

∑
t=1

a

∑
s=1

(
F((s, t), y(s, t)) +

µ

λ
G((s, t), y(s, t))

)
,

for every y ∈ Y, where Φ1(y) =
‖y‖p

p , Φ2(y) =

b
∑

t=1

a
∑

s=1
l(s,t)|y(s,t)|q

q , F((s, t), y) =
∫ y

0 f ((s, t), τ)

dτ, G((s, t), y) =
∫ y

0 g((s, t), τ)dτ for each ((s, t), y) ∈ Z(1, a)× Z(1, b)×R.
Let

Iλ(y) = Φ(y)− λΨ(y),

for any y ∈ Y. Obviously, Φ, Ψ ∈ C1(Y, R), that is, Φ1, Φ2 and Ψ are continuously Fréchet
differentiable in Y.

Φ′1(y)(v) = lim
t→0

Φ1(y + tv)−Φ1(y)
t

=
b

∑
t=1

a+1

∑
s=1

φp(∆1y(s− 1, t))∆1v(s− 1, t) +
a

∑
s=1

b+1

∑
t=1

φp(∆2y(s, t− 1))∆2v(s, t− 1)

= −
b

∑
t=1

a

∑
s=1

∆1φp(∆1y(s− 1, t))v(s, t)−
a

∑
s=1

b

∑
t=1

∆2φp(∆2y(s, t− 1))v(s, t),

Φ
′
2(y)(v) =

b

∑
t=1

a

∑
s=1

l(s, t)φq(y(s, t))v(s, t),

4
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and

Ψ′(y)(v) = lim
t→0

Ψ(y + tv)−Ψ(y)
t

=
b

∑
t=1

a

∑
s=1

(
f ((s, t), y(s, t)) +

µ

λ
g((s, t), y(s, t))

)
v(s, t),

for y, v ∈ Y.
Thus

[Φ′(y)− λΨ′(y)](v) = −
b

∑
t=1

a

∑
s=1

{
∆1φp(∆1y(s− 1, t)) + ∆2φp(∆2y(s, t− 1))

− l(s, t)φq(y(s, t)) + λ f ((s, t), y(s, t)) + µg((s, t), y(s, t))
}

v(s, t) = 0, ∀v(s, t) ∈ Y,

(14)

is equivalent to

−
[
∆1(φp(∆1y(s− 1, t))) + ∆2(φp(∆2y(s, t− 1)))

]
+ l(s, t)φq(y(s, t)) = λ f ((s, t), y(s, t))+

µg((s, t), y(s, t)), for any (s, t) ∈ Z(1, a) × Z(1, b) with y(s, 0) = y(s, b + 1) = 0, s ∈
Z(0, a + 1), y(0, t) = y(a + 1, t) = 0, t ∈ Z(0, b + 1). Thus, we reduce the existence of the
solutions of (Dλ,µ) to the existence of the critical points of Φ− λΨ on Y.

Lemma 1. Suppose that there exists y: Z(0, a + 1)× Z(0, b + 1) → R such that the following
is true:

y(s, t) > 0 or − ∆1(φp(∆1y(s− 1, t)))− ∆2(φp(∆2y(s, t− 1))) + l(s, t)φq(y(s, t)) ≥ 0, (15)

for all (s, t) ∈ Z(1, a) × Z(1, b) and y(s, 0) = y(s, b + 1) = 0, s ∈ Z(0, a + 1), y(0, t) =
y(a + 1, t) = 0, t ∈ Z(0, b + 1).

Then, either y(s, t) > 0 for all (s, t) ∈ Z(1, a)× Z(1, b) or y ≡ 0.

Proof. Let h ∈ Z(1, a), k ∈ Z(1, b) and

y(h, k) = min{y(s, t) : s ∈ Z(1, a), t ∈ Z(1, b)}.

If y(h, k) > 0, then it is clear that y(s, t) > 0 for all s ∈ Z(1, a), t ∈ Z(1, b). If
y(h, k) ≤ 0, then y(h, k) = min{y(s, t) : s ∈ Z(0, a + 1), t ∈ Z(0, b + 1)}, since ∆1y(h −
1, k) = y(h, k)− y(h− 1, k) ≤ 0, ∆2y(h, k− 1) = y(h, k)− y(h, k− 1) ≤ 0, and ∆1y(h, k) =
y(h + 1, k)− y(h, k) ≥ 0, ∆2y(h, k) = y(h, k + 1)− y(h, k) ≥ 0, φp(s) is increasing in s, and
φp(0) = 0, we have

φp(∆1y(h, k)) ≥ 0 ≥ φp(∆1y(h− 1, k)),

and
φp(∆2y(h, k)) ≥ 0 ≥ φp(∆2y(h, k− 1)).

Owing to ∆1(φp(∆1y(h− 1, k))) = φp(∆1y(h, k))− φp(∆1y(h− 1, k)) ≥ 0, ∆2(φp(∆2y
(h, k− 1))) = φp(∆2y(h, k))− φp(∆2y(h, k− 1)) ≥ 0. Thus, we have

∆1(φp(∆1y(h− 1, k))) + ∆2(φp(∆2y(h, k− 1))) ≥ 0. (16)

By (15), we have the following:

−∆1(φp(∆1y(h− 1, k)))− ∆2(φp(∆2y(h, k− 1))) ≥ −l(h, k)φq(y(h, k)) ≥ 0,

that is
∆1(φp(∆1y(h− 1, k))) + ∆2(φp(∆2y(h, k− 1))) ≤ 0. (17)

By combining (16) with (17), we have the following:

∆1(φp(∆1y(h− 1, k))) + ∆2(φp(∆2y(h, k− 1))) = 0,
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namely, {
φp(∆1y(h, k)) = φp(∆1y(h− 1, k)) = 0,
φp(∆2y(h, k)) = φp(∆2y(h, k− 1)) = 0.

Therefore, {
y(h + 1, k) = y(h, k) = y(h− 1, k),
y(h, k + 1) = y(h, k) = y(h, k− 1).

If h + 1 = a + 1, we have y(h, k) = 0. Otherwise, (h + 1) ∈ Z(1, a). Replacing h
by h + 1, we get y(h + 2, k) = y(h + 1, k). Continuing this process (a + 1− h) times, we
have y(h, k) = y(h + 1, k) = y(h + 2, k) = · · · = y(a + 1, k) = 0. Similarly, we have
y(h, k) = y(h − 1, k) = y(h − 2, k) = · · · = y(0, k) = 0. Hence, y(s, k) = 0 for each
s ∈ Z(1, a). In the same way, we can prove that y ≡ 0, and the proof is completed.

From Lemma 1, we have the following:

Corollary 1. Suppose that there exists y: Z(0, a + 1)× Z(0, b + 1)→ R such that

y(s, t) < 0 or − ∆1(φp(∆1y(s− 1, t)))− ∆2(φp(∆2y(s, t− 1))) + l(s, t)φq(y(s, t)) ≤ 0, (18)

for all (s, t) ∈ Z(1, a) × Z(1, b) and y(s, 0) = y(s, b + 1) = 0, s ∈ Z(0, a + 1), y(0, t) =
y(a + 1, t) = 0, t ∈ Z(0, b + 1).

Then, either y(s, t) < 0 for all (s, t) ∈ Z(1, a)× Z(1, b) or y ≡ 0.
The existence of constant-sign solutions is discussed by truncation techniques. So, we introduce

the following truncations of the functions f ((s, t), ξ) and g((s, t), ξ) for every (s, t) ∈ Z(1, a)×
Z(1, b).

If f ((s, t), 0) ≥ 0 and g((s, t), 0) ≥ 0 for every (s, t) ∈ Z(1, a)× Z(1, b), let

f+((s, t), ξ) :=
{

f ((s, t), ξ), if ξ ≥ 0,
f ((s, t), 0), if ξ < 0,

g+((s, t), ξ) :=
{

g((s, t), ξ), if ξ ≥ 0,
g((s, t), 0), if ξ < 0.

Define problem (Dλ,µ+
) as follows:

−
[
∆1(φp(∆1y(s − 1, t))) + ∆2(φp(∆2y(s, t − 1)))

]
+ l(s, t)φq(y(s, t)) = λ f+((s, t),

y(s, t)) + µg+((s, t), y(s, t)), (s, t) ∈ Z(1, a)× Z(1, b), with Dirichlet boundary conditions (1).
Obviously, f+((s, t), ·) and g+((s, t), ·) are also continuous for every (s, t) ∈ Z(1, a) ×

Z(1, b). By Lemma 1, the solutions of problem (Dλ,µ+
) are also those of problem (Dλ,µ). Therefore,

when problem (Dλ,µ+
) has non-zero solutions, then problem (Dλ,µ) possesses positive solutions.

If f ((s, t), 0) ≤ 0 and g((s, t), 0) ≤ 0 for every (s, t) ∈ Z(1, a)× Z(1, b), let

f−((s, t), ξ) :=
{

f ((s, t), 0), if ξ > 0,
f ((s, t), ξ), if ξ ≤ 0,

g−((s, t), ξ) :=
{

g((s, t), 0), if ξ > 0,
g((s, t), ξ), if ξ ≤ 0.

Define problem (Dλ,µ−) as follows:

−
[
∆1(φp(∆1y(s − 1, t))) + ∆2(φp(∆2y(s, t − 1)))

]
+ l(s, t)φq(y(s, t)) = λ f−((s, t),

y(s, t)) + µg−((s, t), y(s, t)), (s, t) ∈ Z(1, a)× Z(1, b), with Dirichlet boundary conditions (1).

By Corollary 1, the solutions of problem (Dλ,µ−) are also those of problem (Dλ,µ).
Therefore, when problem (Dλ,µ−) has non-zero solutions, then problem (Dλ,µ) possesses
negative solutions.

Here, we present the main tools used in this paper.

Lemma 2 (Theorem 4.3 of [28]). Let X be a finite dimensional Banach space and let Iλ : X → R
be a function satisfying the following structure hypothesis:

6
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(H) Iλ(u) := Φ(u)− λΨ(u) for all u ∈ X, where Φ, Ψ : X → R be two continuously Gâteux
differentiable functions with Φ coercive, i.e., lim

‖u‖→+∞
Φ(u) = +∞, and such that inf

X
Φ = Φ(0) =

Ψ(0) = 0.
For all r > 0, put the following:

ϕ(r) :=

sup
v∈Φ−1[0,r]

Ψ(v)

r
, ϕ0 := lim inf

r→0+
ϕ(r).

Assume that ϕ0 < +∞ and for every λ ∈ (0, 1
ϕ0
), 0 is not a local minima of functional Iλ.

Then, there is a sequence {un} of pairwise distinct critical points (local minima) of Iλ such that
lim

n→+∞
un = 0.

3. Main Results

In this section, the existence of constant-sign solutions of problem (Dλ,µ) is discussed.
Our aim is to use Lemma 2 for the function I±λ : X → R,

I±λ (y) := Φ(y)− λΨ±(y),

where

Ψ±(y) =
b

∑
t=1

a

∑
s=1

(F±((s, t), y(s, t)) +
µ

λ
G±((s, t), y(s, t))),

F±((s, t), y) :=
∫ y

0
f±((s, t), τ)dτ, G±((s, t), y) :=

∫ y

0
g±((s, t), τ)dτ,

for each (s, t) ∈ Z(1, a) × Z(1, b). Then, we apply Lemma 1 or Corollary 1 to obtain
our results.

Let

A0∗ = lim inf
c→0+

b
∑

t=1

a
∑

s=1
max

0≤m≤c
F((s, t),±m)

cp , B0∗ = lim sup
c→0+

b
∑

t=1

a
∑

s=1
F((s, t), c)

cp .

C0∗ = lim sup
c→0+

b
∑

t=1

a
∑

s=1
max

0≤m≤c
G((s, t),±m)

cp , l̃ =
b

∑
t=1

a

∑
s=1

l(s, t).

In addition, put the following:

µ̄∗λ :=
1

C0∗

(
4p + l∗(a + b + 2)p−1

p(a + b + 2)p−1 − λA0∗

)
.

It should be pointed out that if the denominator is 0, we regard 1
0 as +∞.

Theorem 1. Let f ((s, t), y) be a continuous function of y, and f ((s, t), 0) ≥ 0, g((s, t), ·) ∈
C(R, R) for every (s, t) ∈ Z(1, a)× Z(1, b). Suppose the following:

(i1)
p(a+b+2)p−1 A0+

4p+l∗(a+b+2)p−1 < pqB0+

2bq+2aq+pl̃
,

(g1) there exsits δ > 0 such that at [0, δ], G((s, t), y) ≥ 0 and C0+ < +∞.

Then, for each λ ∈ Λ =

(
2bq+2aq+pl̃

pqB0+ , 4p+l∗(a+b+2)p−1

p(a+b+2)p−1 A0+

)
and µ ∈ [0, µ̄+

λ ), problem (Dλ,µ)

has a sequence of positive solutions, which converges to zero.

Proof. We take X = Y, Φ1, Φ2 and Ψ as in Section 2. Obviously, for each (s, t) ∈ Z(1, a)×
Z(1, b), g((s, t), 0) ≥ 0.

7
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Now, we consider the auxiliary problem (Dλ,µ+
).

Clearly Φ and Ψ+ satisfy the hypothesis required in Lemma 2.
Let

r =
4p + l∗(a + b + 2)p−1

p(a + b + 2)p−1 min{cq, cp}, for c > 0.

Assume y ∈ Y, and the following:

Φ(y) =
‖y‖p

p
+

b
∑

t=1

a
∑

s=1
l(s, t)|y(s, t)|q

q
≤ r.

If r = 4p+l∗(a+b+2)p−1

p(a+b+2)p−1 cq, it means that c ≥ 1. According to Proposition 1, we have the
following:

‖y‖∞ ≤ max
{( p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1

)1/q

r1/q,

(
p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1

)1/p

r1/p
}

= max{c, cq/p} = c.

If r = 4p+l∗(a+b+2)p−1

p(a+b+2)p−1 cp, we know 0 < c < 1, then

‖y‖∞ ≤ max
{( p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1

)1/q

r1/q,

(
p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1

)1/p

r1/p
}

= max{cp/q, c} = c,

and
cp

r
=

p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1 . (19)

Therefore, we have Φ−1[0, r] ⊆ {y ∈ Y : ‖y‖∞ ≤ c}.
By the definition of ϕ, we have the following:

ϕ(r) =

sup
v∈Φ−1[0,r]

Ψ+(v)

r

≤ 1
r

sup
‖y‖∞≤c

b

∑
t=1

a

∑
s=1

(
F+((s, t), y(s, t)) +

µ

λ
G+((s, t), y(s, t))

)

≤ cp

r




b
∑

t=1

a
∑

s=1
max

0≤m≤c
F((s, t), m)

cp +
µ

λ

b
∑

t=1

a
∑

s=1
max

0≤m≤c
G((s, t), m)

cp


.

According to condition (i1), (g1) and (19), we have the following:

ϕ0 ≤
p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1 (A0+ +
µ

λ
C0+) < +∞.

We assert that if λ ∈
(

2bq+2aq+pl̃
pqB0+ , 4p+l∗(a+b+2)p−1

p(a+b+2)p−1 A0+

)
and µ ∈ [0, µ̄+

λ ), then λ ∈ (0, 1
ϕ0
).

8
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In fact, for λ ∈ Λ, we have λ > 0.
When C0+ = 0, then

ϕ0 ≤
p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1 A0+ <
1
λ

.

When C0+ > 0, then

ϕ0 <
p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1

(
A0+ +

µ̄+
λ

λ
C0+

)

=
p(a + b + 2)p−1

4p + l∗(a + b + 2)p−1

(
A0+ +

1
λ

1
C0+

(
4p + l∗(a + b + 2)p−1

p(a + b + 2)p−1 − λA0+

)
C0+

)

=
1
λ

.

Clearly, (0, 0, · · · , 0) ∈ Y is a global minima of Φ.
Next, we need to prove that (0, 0, · · · , 0) is not a local minima of I+λ . Let us prove this

in two cases: B0+ = +∞ and B0+ < +∞.
Firstly, when B0+ = +∞, fix M such that M > 2aq+2bq+l̃ p

pq and there exists a sequence
of positive numbers {cn} such that lim

n→+∞
cn = 0, and

b

∑
t=1

a

∑
s=1

F+((s, t), cn) =
b

∑
t=1

a

∑
s=1

F((s, t), cn) ≥
Mcq

n
λ

, for n ∈ Z(1).

Define a sequence {ηn} in Y with the following:

ηn(s, t) =





cn, if (s, t) ∈ Z(1, a)× Z(1, b),
0, if s = 0, t ∈ Z(0, b + 1), or, s = a + 1, t ∈ Z(0, b + 1),
0, if t = 0, s ∈ Z(0, a + 1), or, t = b + 1, s ∈ Z(0, a + 1).

According to G+((s, t), ηn(s, t)) = G((s, t), ηn(s, t)) ≥ 0, (s, t) ∈ Z(1, a) × Z(1, b),
we acquire the following:

I+λ (ηn) ≤
(

2a + 2b
p

)
cp

n +
l̃
q

cq
n − λ

(
b

∑
t=1

a

∑
s=1

F((s, t), cn)

)

≤
(

2a + 2b
p

)
cq

n +
l̃
q

cq
n −Mcq

n

=

(
2a + 2b

p
+

l̃
q
−M

)
cq

n

< 0.

Secondly, when B0+ < +∞, let λ ∈
(

2bq+2aq+pl̃
pqB0+ , 4p+l∗(a+b+2)p−1

p(a+b+2)p−1 A0+

)
, choose ε0 > 0

such that
2a + 2b

p
+

l̃
q
− λ(B0+ − ε0) < 0.

Then, there is a positive sequence {cn} ⊂ (0, δ) such that lim
n→+∞

cn = 0 and

(B0+ − ε0)c
q
n ≤

b

∑
t=1

a

∑
s=1

F+((s, t), cn) =
b

∑
t=1

a

∑
s=1

F((s, t), cn) ≤ (B0+ + ε0)c
q
n.

9
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By the definition of the sequence {ηn} in Y being the same as the case where B0+ =
+∞, we have the following:

I+λ (ηn) ≤
(

2a + 2b
p

)
cp

n +
l̃
q

cq
n − λ

(
b

∑
t=1

a

∑
s=1

F((s, t), cn)

)

≤
(

2a + 2b
p

)
cp

n +
l̃
q

cq
n − λ(B0+ − ε0)c

q
n

≤
(

2a + 2b
p

+
l̃
q
− λ(B0+ − ε0)

)
cq

n

< 0.

According to the above discussion, we have I+λ (ηn) < 0.
Since I+λ (0, 0, · · · , 0) = 0 and lim

n→∞
ηn = (0, 0, · · · , 0). By combining the above two

cases, we obtain that (0, 0, · · · , 0) ∈ Y is a global minima of Φ but (0, 0, · · · , 0) is not a local
minima of I+λ .

Through the above discussion, I+λ satisfies every condition of Lemma 2. According to
Lemma 2, there exists a sequence {un} of pairwise distinct critical points (local minima)
of I+λ such that lim

n→+∞
un = 0. So, (s, t) ∈ Z(1, a)× Z(1, b), y(s, t) is a non-zero solution of

problem (Dλ,µ+
), by Lemma 1, y(s, t) is a positive solution of problem (Dλ,µ). Therefore,

the proof of Theorem 1 is completed.

Remark 1. When the nonlinear terms f and g are symmetric on the origin, i.e., f (·,−y) =
− f (·, y), g(·,−y) = −g(·, y), it is easy to obtain infinitely many small solutions to problem
(Dλ,µ) by using the critical point theory with symmetries. However, in this paper, we obtain
infinitely many small solutions to problem (Dλ,µ) without the symmetry on f .

When λ = 1, according to Theorem 1, we obtain the following.

Corollary 2. Let f ((s, t), y) is a continuous function of y, and f ((s, t), 0) ≥ 0, g((s, t), ·) ∈
C(R, R) for every (s, t) ∈ Z(1, a)× Z(1, b). Suppose the following:

(i2)
p(a+b+2)p−1 A0+

4p+l∗(a+b+2)p−1 < 1 < pqB0+

2bq+2aq+pl̃
,

(g1) there exsits δ > 0 such that at [0, δ], G((s, t), y) ≥ 0 and C0+ < +∞.
Then, for each µ ∈ [0, µ̄+

1 ), the following problem (Dµ)

−
[
∆1(φp(∆1y(s − 1, t))) + ∆2(φp(∆2y(s, t − 1)))

]
+ l(s, t)φq(y(s, t)) = f ((s, t),

y(s, t)) + µg((s, t), y(s, t)), (s, t) ∈ Z(1, a)× Z(1, b), with Dirichlet boundary conditions (1),
has a sequence of positive solutions which converges to zero.

Similarly, we obtain the following results.

Theorem 2. Let f ((s, t), y) is a continuous function of y, and f ((s, t), 0) ≤ 0, g((s, t), ·) ∈
C(R, R) for every (s, t) ∈ Z(1, a)× Z(1, b). Suppose the following:

(i3)
p(a+b+2)p−1 A0−
4p+l∗(a+b+2)p−1 < pqB0−

2bq+2aq+pl̃
,

(g2) there exsits δ > 0 such that at [−δ, 0], G((s, t), y) ≥ 0 and C0− < +∞.

Then, for every λ ∈
(

2bq+2aq+pl̃
pqB0− , 4p+l∗(a+b+2)p−1

p(a+b+2)p−1 A0−

)
and µ ∈ [0, µ̄−λ ), problem (Dλ,µ) has a

sequence of negative solutions which converges to zero.

When λ = 1, according to Theorem 2, we obtain the following.

Corollary 3. Let f ((s, t), y) is a continuous function of y, and f ((s, t), 0) ≤ 0, g((s, t), ·) ∈
C(R, R) for every (s, t) ∈ Z(1, a)× Z(1, b). Suppose the following:

10
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(i4)
p(a+b+2)p−1 A0−
4p+l∗(a+b+2)p−1 < 1 < pqB0−

2bq+2aq+pl̃
,

(g2) there exsits δ > 0 such that at [−δ, 0], G((s, t), y) ≥ 0 and C0− < +∞.
Then, for each µ ∈ [0, µ̄−1 ), problem (Dµ) has a sequence of negative solutions, which

converges to zero.

Combining Theorem 1 with Theorem 2, we have the following.

Theorem 3. Let f ((s, t), y) is a continuous function of y, and f ((s, t), 0) = 0, g((s, t), ·) ∈
C(R, R) for every (s, t) ∈ Z(1, a)× Z(1, b). Suppose that

(i5)
p(a+b+2)p−1 max{A0+ ,A0−}

4p+l∗(a+b+2)p−1 < pq min{B0+ ,B0−}
2bq+2aq+pl̃

,

(g3) there exists δ > 0 such that at [−δ, δ], G((s, t), y) ≥ 0 and C0∗ < +∞.

Then, for every λ ∈
(

2bq+2aq+pl̃
pq min{B0+ ,B0−} , 4p+l∗(a+b+2)p−1

p(a+b+2)p−1 max{A0+ ,A0−}

)
and µ ∈ [0, min{µ̄+

λ ,

µ̄−λ }), problem (Dλ,µ) has two sequences of constant-sign solutions, which converge to zero (with
one being positive and the other being negative).

When λ = 1, according to Theorem 3, we acquire the following.

Corollary 4. Let f ((s, t), y) is a continuous function of y, and f ((s, t), 0) = 0, g((s, t), ·) ∈
C(R, R) for every (s, t) ∈ Z(1, a)× Z(1, b). Suppose the following:

(i6)
p(a+b+2)p−1 A∗

4p+l∗(a+b+2)p−1 < 1 < pqB0∗

2bq+2aq+pl̃
,

(g3) there exsits δ > 0 such that at [−δ, δ], G((s, t), y) ≥ 0 and C0∗ < +∞.
Then, for each µ ∈ [0, min{µ̄+

1 , µ̄−1 }), problem (Dµ) has two sequences of constant-sign
solutions which converge to zero (with one being positive and the other being negative).

Remark 2. As a special case of Theorem 1, when µ = 0.
Considering the following problem, namely (Dλ)
−[∆1(φp(∆1y(s− 1, t)))+∆2(φp(∆2y(s, t− 1)))]+ l(s, t)φq(y(s, t)) = λ f ((s, t), y(s, t)),

(s, t) ∈ Z(1, a)× Z(1, b), with Dirichlet boundary conditions (1).

Theorem 4. Let f ((s, t), y) be a continuous function of y, and f ((s, t), 0) ≥ 0 for every (s, t) ∈
Z(1, a)× Z(1, b). Suppose the following:

(i7)
p(a+b+2)p−1 A0+

4p+l∗(a+b+2)p−1 < pqB0+

2bq+2aq+pl̃
.

Then, for each λ ∈
(

2bq+2aq+pl̃
pqB0+ , 4p+l∗(a+b+2)p−1

p(a+b+2)p−1 A0+

)
, problem (Dλ) has a sequence of positive

solutions, which converges to zero.

4. Example

We provide an example to illustrate our Theorem 3.

Example 1. Suppose that l(s, t) = s + t. Let a = 2, b = 2, p = 3, q = 2, and l̃ =
2
∑

t=1

2
∑

s=1
l(s, t) = 12 < 16+18l∗

3 = 52
3 , f and g are two functions defined as follows:

f ((s, t), c) = f (c) =

{
5
4 pcp−1 + pcp−1 sin( 1

5 ln cp) + 1
5 pcp−1 cos( 1

5 ln cp), c > 0,
0, c ≤ 0,

(20)

and
g((s, t), c) = g(c) = 2pcp−1. (21)

Then, for each λ1 ∈ ( 49
54 , 34

27 ) and µ1 ∈ [0, ( 34
216 − 1

8 λ1)), the following problem, namely
(Dλ1,µ1).
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−[∆1(φp(∆1y(s − 1, t))) + ∆2(φp(∆2y(s, t − 1)))] + l(s, t)φq(y(s, t)) = λ1 f ((s, t),
y(s, t)) + µ1g((s, t), y(s, t)), (s, t) ∈ Z(1, 2)× Z(1, 2), with the following Dirichlet boundary
conditions:

y(s, 0) = y(s, 2) = 0, s ∈ Z(0, 3),

y(0, t) = y(2, t) = 0, t ∈ Z(0, 3),

possesses two sequences of constant-sign solutions, which converge to zero (with one being positive
and the other being negative).

In fact,

F((s, t), c) =
∫ c

0
f ((s, t), τ)dτ =

{ 5
4 cp + cp sin( 1

5 ln cp), c > 0,
0, c ≤ 0,

(22)

G((s, t), c) =
∫ c

0
g((s, t), τ)dτ = 2cp. (23)

Since f ((s, t), c) > 0, g((s, t), c) > 0 for c > 0, we know that F((s, t), c) and G((s, t), c)
are increasing at c ∈ (0,+∞). Thus, max

0≤m≤c
F((s, t), m) = F((s, t), c) and max

0≤m≤c
G((s, t), m) =

G((s, t), c), for every c > 0. Obviously,

A0∗ = lim inf
c→0+

abF((s, t), c)
cp = lim inf

c→0+

4( 5
4 cp + cp sin( 1

5 ln cp))

cp = 1,

B0∗ = lim sup
c→0+

abF((s, t), c)
cp = lim sup

c→0+

4( 5
4 cp + cp sin( 1

5 ln cp))

cp = 9.

We can verify condition (i5) of Theorem 3 since

p(a + b + 2)p−1 max{A0+ , A0−}
4p + l∗(a + b + 2)p−1 =

27
34

<
pq min{B0+ , B0−}

2bq + 2aq + pl̃
=

54
49

.

Next, we can further verify condition (g3) of Theorem 3 since

C0∗ = lim sup
c→0+

b
∑

t=1

a
∑

s=1
G((s, t), c)

cp = lim sup
c→0+

ab2cp

cp = 8 < +∞.

In summary, every condition of Theorem 3 is met.
Therefore, for each λ1 ∈ ( 49

54 , 34
27 ) and µ1 ∈ [0, ( 34

216 − 1
8 λ1)), problem (Dλ1,µ1) possesses two

sequences of constant-sign solutions, which converge to zero (with one being positive and the other
being negative).

5. Conclusions

In this paper, we studied the existence of small solutions of perturbed partial discrete
Dirichlet problems with the (p, q)-Laplacian operator. Unlike the results in [25], we ob-
tained some sufficient conditions of the existence of infinitely many small solutions, as
shown in Theorems 1–3. Firstly, according to Theorem 4.3 of [28] and Lemma 1 of this
paper, we obtained a sequence of positive solutions, which converges to zero in Theorem 1.
Furthermore, by truncation techniques, we acquired two sequences of constant-sign so-
lutions, which converge to zero (with one being positive and the other being negative).
Secondly, the Corollaries 2–4 was acquired when λ = 1. Finally, as a special case of
Theorem 1, we obtained a sequence of positive solutions, which converges to zero in
Theorem 4. The existence of large constant-sign solutions of partial difference equations
with the (p, q)-Laplacian operator will be discussed by the method used in this paper as
our future research direction.
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Abstract: The paper aims to study a concrete structure, currently used in civil engineering, which
has certain symmetries. This type of problem is common in engineering practice, especially in civil
engineering. There are many reasons why structures with identical elements or certain symmetries
are used in industry, related to economic considerations, shortening the design time, for constructive,
simplicity, cost or logistical reasons. There are many reasons why the presence of symmetries has
benefits for designers, builders, and beneficiaries. In the end, the result of these benefits materializes
through short execution times and reduced costs. The paper studies the eigenvalue and eigenmode
properties of vibration for components of the constructions’ structure, often encountered in current
practice. The identification of such properties allows the simplification and easing of the effort
necessary for the dynamic analysis of such a structure.

Keywords: vibrations; symmetrical structures; eigenmodes; building; concrete

1. Introduction

Frequently encountered in the design and construction of structures used in civil
engineering, symmetries allow, in many cases, the simplification of calculations and dy-
namic analysis of such a structure. The direct consequence would be the shortening of
the design and execution time and, of course, the decrease of the costs generated by these
stages. The smaller information provided by a repetitive or symmetrical structure can help
ease the computational effort. In the case of a static calculation, methods of approaching
this problem are presented in the Strength of Materials courses. In the dynamic case,
considering the elastic elements and studying the vibrations, although certain properties
have long been observed [1], a systematic study of the problem has not yet been done.
A case in which the symmetries introduced by two identical motors and their effect on
vibrations were considered was studied [2]. The use of identical systems was applied to
the design of a centrifugal pendulum vibration absorber system [3]. Circular symmetry
and its induced properties have been reported previously [4,5]. Other particular cases have
been studied [6] using a finite difference method and [7] for continuous systems. In the
following, we will study the case of a mechanical system consisting of four trusses, two
of which are identical. The transverse and torsional vibrations of such a system that are
strongly coupled for the chosen case will be studied.

In the field of engineering, not only in civil engineering, but also in other fields such
as the machine or machinery manufacturing industry, the automotive industry, and the
aerospace industry, there are products, parts of products, machines, and components that
contain identical, repetitive elements, which have, in their composition, parts that show
symmetries of different types.
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Until now, symmetries in Mechanics have been studied mainly from the point of view
of the mathematics involved [8], as they have effects in writing equations of motion [9], but
their applications in practice are little studied [10]. In January 2018, a special issue of the
Symmetry review dedicated to applications in Structural Mechanics (Civil Engineering and
Symmetry-2018, ISSN 2073-8994, [11]) was launched. The course Similarity, Symmetry and
Group Theoretical Methods in Mechanics was organized at the Center for Solid Mechanics-
CISM from UDINE (see ref. [12]).

The use of substructures in the design of the aeronautical industry is a relatively
common procedure used to reduce working time. Finite element models of different parts
are condensed into substructures. Obviously a substructure contains less degree of freedom
(DOF) than the entire structure and it is easier to model it. Likewise, for identical parts that
are found in the construction and design of aeronautical panels, if the substructure has
been generated for one part, the generation of the whole assembly becomes easier to do. A
method reduces the size of the model, useful in the design stage and in the manufacture of
the entire structure. The accuracy of the finite element analysis performed is maintained.
An illustration of this method is presented in a previous work [13].

The modeling of mechanical systems with repetitive or identical parts leads, finally, to
systems of differential equations that describe the answer of such systems, which have, in
their component, strings of identical terms. This feature leads to simpler methods of solving
these systems of differential equations. Such an issue is addressed in studies [14,15].

The vast majority of buildings, works of art, halls, and in general, the constructions,
have identical parts and have symmetries. It is a situation that has existed since the begin-
ning of the first constructions made by man (antiquity) and the reasons are of several kinds
as an easier, faster design, then a cheaper realization and, less important for engineers but
important for beneficiaries, for aesthetic reasons. The structures have in their composition
repetitive elements or present different forms of symmetry. These properties can be used
successfully to facilitate static and dynamic analysis.

Group theory has been used extensively to study various phenomena in physics and
chemistry, such as quantum mechanics, crystallography, and molecular structure. However,
this theory can find a fertile field of application in engineering. This allows simplifying
the analysis of systems that have certain symmetries or identical parts. In this way, it was
efficient in the study of vibrations or the dynamic or kinematic analysis of mechanical
systems. The use of group theory in engineering was analyzed [16,17]. Different aspects
of the use of symmetry in engineering are presented in other papers. In a research [18],
the influence of the symmetry of boundary condition in the description of the models was
studied. Some theoretical basis and an attempt to classify the symmetries that occur in
structures were presented [19] and application of the symmetry in engineering structures
were presented [20,21].

In recent years, new and interesting methods of studying this type of problem have
been studied by researchers [22,23] and new ways to deal with such problems were re-
ported [24,25].

However, there are still many situations that can be studied and, therefore, the present
paper aims to complete the cases studied and to offer proposals for the application of these
properties that could help a design engineer to ease his effort.

2. Model and Free Vibration Response

We have 2 coplanar reinforced concrete beams with different properties. AD beam is a
main beam, considered double clamped at both ends, with the length L1 + L2. CB beam is a
secondary beam, considered simply supported at both ends (nodes C and B), with length
L3 + L3. The beams are made monolithically, so at point O of the intersection, a rigid knot
is created. The secondary beam is arranged symmetrically to the main beam. The 2 beams
have the Young’s moduli E1 and E2. The 2 beams have different sectional properties: for
beam AD, we have the moment of inertia Iz1 and the area of section A1, and for beam
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CB, we have the moment of inertia Iz2 and the area of section A2, with the property that
Iz1 > Iz2 and A1 > A2. The whole structure is presented in Figure 1.
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Figure 1. Structure with repetitive cells.

Thus, the model of the mechanical system considered (Figure 2) consists of two
identical trusses OB and OC rigidly fixed, perpendicular to a third bar AOD. The trusses
can have transverse vibrations in a direction perpendicular to the ABDC plane and torsional
vibrations. The trusses are clamped in the points B and C. In A and D, the AOD trusses
are clamped, so the displacement, slope, and torsion angle at these points are zero. For
point O, the transverse displacements of point O belonging to all four bars are equal. The
torsion angle of the truss AO in O is equal to the torsion angle of the truss OD in O and
with the slope of the bars OB and OC in O. The torsion angle of the trusses OB and OC in
O is equal to the slope of the trusses AO and OD in point O. The sum of the shear forces
and moments in O will be zero.
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We will study a continuous concrete truss, homogeneous, with constant section. If
there are no forces distributed or concentrated along the length of the truss, the vibrations
of this are described by the well-known Equations [26]:

∂4v
∂x4 +

ρA
EIz

∂2v
∂t2 = 0 (1)

The notations used in Equation (1) are the following: v—is the truss deflection, A—s
the cross section, ρ is the mass density, E—Young’s modulus, and Iz is the second area
moment of inertia with respect to the z axis and x is the ordinate of the point having the
deflection v.
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To solve Equation (1), we look for a solution of the form [27–29]:

v(x, t) = Φ(x) sin(pt + θ). (2)

Equation (2) must check Equation (1) at any time and, imposing this condition, we
obtain:

∂4Φ
∂x4 − p2 ρA

EIz
Φ = 0 (3)

Denote:
λ4 =

ρA
EIz

(4)

Then, Equation (1) becomes:

∂4Φ
∂x4 − p2λ4Φ = 0 (5)

In Equation (5), Φ represents the function, depending on the abscissa x, which gives
us the deformed bar (eigenmode) corresponding to its eigenpulsation p. The solution is:

Φ(x) = C1 sin(λ
√

px) + C2 cos(λ
√

px) + C3sh(λ
√

px) + C4ch(λ
√

px). (6)

The constants C1, C2, C3, C4 are determined considering the boundary conditions for
this problem.

In the following, we will use Equation (5) for the domains defined by the four trusses,
obtaining, in this way, four differential equations of the fourth order, corresponding to the
frames AO, OD, OB, OC (see Appendix A).

The study of torsional vibrations for a straight bar, unloaded over the length, leads to
the second order differential equation:

∂2 ϕ

∂x2 −
J

GIp

∂2 ϕ

∂t2 = 0 (7)

where ϕ is the angle of torsion of the cross section being at the distance x from the end of
the truss, J = ρIp is the polar moment of inertia, Ip is the polar second moment of the area,
and G is shear’s modulus.

The solution Equation (7) is sought in the form:

ϕ(x, t) = ψ(x) sin(pt + θ) (8)

Equation (8) must verify Equation (7), from which we obtain:

∂2ψ

∂x2 + p2δ2
i Φ = 0 (9)

where the notation was made:
δ2 =

J
G Ip

(10)

The solution is:
ψ(x) = D1 sin(δpx) + D2 cos(δpx) (11)

Denoted by Mb is the bending moment of a bar in section x, T the shear force that
appears in the cross section and with Mt the torque. For the studied system in the paper,
the boundary conditions are:

(a) For the AO truss, the end A is clamped, so: vAO(0, t) = 0; v′AO(0, t) = 0; ϕ(0, t) = 0;
(b) For the OD truss, the end D is supported, so: vOD(L1, t) = 0; v′OD(L1, t) = 0; ϕ(0, t) = 0;
(c) For the OB truss, the end B is supported so: vOB(L3, t) = 0; Mb

OB(L3, t) = 0;
Mt

OB(L3, t) = 0;
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(d) For the OC truss, the end C is clamped, so: vOC(L3, t) = 0; Mb
OC(L3, t) = 0;

Mt
OC(L3, t) = 0.

Imposing these conditions, for the considered four bars, 12 boundary conditions are
obtained. The two moments and the shear force are expressed by the known relationships
in the mechanics of the deformable solid [30–33]:

Mb(x) = −EIz
∂2v(x)

∂x2 ; T(x) = EIz
∂3v(x)

∂x3 ; Mt(x) = GIp
∂ϕ(x)

∂x
(12)

Using the Equation (12), the solutions presented in Appendixes, and the boundary
conditions (a), (b), (c), and (d) result in 12 linear equations involving the unknown constants
(Appendix A).

The continuity of the elastic system at point O leads to the following conditions: we
have once that the displacements in C for all trusses: vAO(L2, t) = vOD(0, t) = vOB(0, t) =
vOC(0, t), (three conditions), the slopes in O of the trusses AO and OD are equal to the tor-
sion angle of the trusses OB and OC in: v′AO(L2, t) = v′OD(0, t) = ϕOB(0, t) = −ϕOC(0, t),
(three conditions), and the torsion angles of the bars AO and OD in O are equal to the
slopes of the bar OB and OC in O: ϕAO(L2, t) = ϕOD(0, t) = v′OB(0, t) = −v′OC(0, t)) (three
conditions). These mean nine conditions presented in the Appendix B, from which nine
linear equations result.

Three more conditions are needed to obtain the constants in the written differential
equations. They are obtained by considering the equilibrium of an infinitesimal element of
the mass containing the point O.

The sum of the four shear forces in O must be zero, so:

T1 + T2 + T3− T4 = 0 (13)

A similar equilibrium relation is obtained for bending and torsional moments:

Mb1 + Mb2 + Mt3 −Mt4 = 0, (14)

Mt1 + Mt2 + Mb3 −Mb4 = 0 (15)

Writing these three conditions results in three linear equations (Appendix C). The
unknowns are:

{
BAO

}
=
[

CAO
1 CAO

2 CAO
3 CAO

4 DAO
1 DAO

2
]

(16)

{
BOD

}
=
[

COD
1 COD

2 COD
3 COD

4 DOD
1 DOD

2
]

(17)
{

BOB
}
=
[

COB
1 COB

2 COB
3 COB

4 DOB
1 DOB

2
]

(18)
{

BOC
}
=
[

COC
1 COC

2 COC
3 COC

4 DOC
1 DOC

2
]

(19)

or:

{B} =





{
BAO}
{

BOD}
{

BOB}
{

BOC}





(20)

In such way, a homogeneous linear system with 24 equations with 24 unknowns was
obtained. In order to have other solutions besides the trivial solution zero, the determinant
of the system must be zero. Putting this condition, the obtained eigenfrequencies of the
system can be determined from the obtained equation.

The continuous models used in our studies are excellent for a classical analysis of
such systems. The boundary conditions, written for these models, ultimately lead to a
linear system of homogeneous equations. For this system to have a solution other than the
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trivial solution, zero, it is necessary that the system determinant be equal to zero. Imposing
this condition leads to writing the characteristic equation that will provide, by solving, its
eigenfrequencies of vibration. Once these values are known, then, we can determine your
eigenmodes for these frequencies.

The matrix of the system can be written, in a concise form:

A24×24




A11 0 A12
0 A11 A12

A21 A21 A22


 (21)

where the matrices
[
Aij
]

are presented in Appendix C.

[A]{B} = {0} (22)

The condition:
det(A) = 0 (23)

offers the eigenvalues of the system of differential equations.

3. Properties of the Eigenvalues and Eigenmodes

Let us now consider one of the identical trusses OB and OC. The truss is clamped in O
and supported in B (or C). Equations (1) and (7) are also valid for the OB bar (OC), with
the boundary conditions:

For point O:
x = 0; v(0, t) = 0; v′(0, t) = 0; ϕ(0, t) = 0 (24)

and for the point B(C):

x = L3; v(L3, t) = 0; Mb(L3, t) = 0; Mt(L3, t) = 0 (25)

The solution is:

Φ(x) = C1 sin(λ2
√

px) + C2 cos(λ2
√

px) + C3sh(λ2
√

px) + C4ch(λ2
√

px) (26)

for transversal vibrations and:

ψ(x) = D1 sin(δ2 px) + D2 cos(δ2 px) (27)

with the imposed boundary conditions for this case:

COB
2 + COB

4 = 0; COB
1 + COB

3 = 0; DOB
2 = 0 (28)

CBO
1 sin(λ2

√
pL3) + CBO

2 cos(λ2
√

pL3) + CBO
3 sh(λ2

√
pL3) + CBO

4 ch(λ2
√

pL3) = 0 (29)

− CBO
1 sin(λ2

√
p L3)− CBO

2 cos(λ2
√

pL3) + CBO
3 sh(λ2

√
pL3) + CBO

4 ch(λ2
√

pL3) = 0 (30)

DBO
1 cos(δ2 pL3)− DBO

2 sin(δ2 pL3) = 0 (31)

Using conditions expressed by Equations (28)–(31), it is now possible to determine the
constants CBO

1 , CBO
2 , CBO

3 , CBO
4 , DBO

1 , DBO
2 from the linear homogenous system:

[A11]
{

BOB
}
= 0 (32)

where [A11] is the matrix determined by Equation (A76).
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If the condition of the existence of non-zero solutions is set:

det (A11) = 0 (33)

It is now possible to obtain the eigenvalues of the truss OB (or OC).
The following theorems will be proved in the following:

Theorem 1. The eigenvalues for the OB truss, clamped at one end and supported at the other, are
also eigenvalues for the entire mechanical system.

Proof. We must show that det (A) = 0 implies det (S) = 0. In reference [34], this property is
proved in a more general case. It turns out that the property is valid in our case. �

It follows that the eigenvalues of a single truss in Appendix D, clamped at one end
and supported at the other, are also eigenvalues of the composed system, clamped in A
and D and with the ends B and C supported.

Using the matrix done by Equation (A76), and obtaining the eigenvalues for this
matrix, the eigenmodes of deformations are obtained using Equation (A85). The following
two theorems will be proved:

Theorem 2. For eigenvalues that are common to the whole mechanical system (Figure 3) and to the
subsystem in Figure A1 (see Theorem 1), eigenvectors are of the form:

Φ =



−

Φ1
Φ1
0



 (34)

(the existence of common eigenvalues is proved by theorem T1).
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Proof. For the eigenvalues obtained from Equation (33), the following system must be
solved: 


A11 0 A12
0 A11 A12

A21 A21 A22







ΦOB
ΦOC

ΦAOD



 =





0
0
0



 (35)
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where:
detA11 = 0 (36)

Condition (36) implies that a vector ΦOB can be found, such that:

A11ΦOB = 0 (37)

Suppose that we determined this vector. Equation (35) becomes, after performing
some simple calculations:

A11ΦOB + A12ΦAOD = 0 (38)

A11ΦOC + A12ΦAOD = 0 (39)

A21(ΦOB + ΦOC) + A22ΦAOD = 0 (40)

If we take into account Equation (37), the system of Equations (38)–(40) becomes:

A12ΦAOD = 0 (41)

A11ΦOC + A12ΦAOD = 0 (42)

A21(ΦOB + ΦOC) + A22ΦAOD = 0 (43)

From Equation (41), because, in general, detA12 6= 0, it follows immediately:

ΦAOD = 0 (44)

and introducing that in Equation (43), we obtain ΦOB = −ΦOC, a relation which verifies
also Equation (42), if we take into account Equation (37). If ΦOB = Φ1 is denoted, it results
in Equation (34). �

Theorem 3. For the other eigenvalues of the system, the eigenvectors are of the form:

Φ =





Φ1
Φ1
Φ3



 (45)

Proof. For the eigenvalues calculated, the system of Equation (35) must be solved, with
detA11 6= 0 or:

A11ΦOB + A12ΦAOD = 0 (46)

A11ΦOC + A12ΦAOD = 0 (47)

A21(ΦOB + ΦOC) + A22ΦAOD = 0 (48)

Subtracting (47) from (46), we get:

A11(ΦOB −ΦOC) = 0 (49)

If det A 6= 0, it results in Φs −Φm = 0 and Φs = Φm = Φ1. �

A block diagram representing the stage of the analysis is presented in Figure 4.
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For the eigenfrequencies of the system that are the same with the eigenvalues of a
single clamped truss at one end and supported at the other, the eigenmodes are skew
symmetric, the two identical trusses vibrate in counterphase, and the third truss AOD rests.
For the other eigenfrequencies, the identical trusses have identical eigenmodes.

4. Conclusions

Buildings and constructions, in general, show different forms of symmetry or are
made up of repetitive elements. The existence of these symmetries leads to obtaining
advantages related to the calculation, design, and manufacture of the structure. One of the
advantages is related to the ease of describing the system by systematizing the information
used; then, the properties demonstrated in the paper allow to decrease the time required
to perform calculations and all this will allow savings and simplifications in the design
process. Then, the existence of identical elements or identical parts can simplify the process
of making the structure, by simplifying the labor and effort required to manufacture the
structure. In conclusions, the design is simpler, and the realization costs are lower. There
are also aesthetic reasons that justify the realization of structures with symmetries. From
the point of view of calculation and behavior in static and dynamic cases, symmetries
can bring significant advantages. In the strength of materials, symmetries are widely
used in the static analysis of structures. However, they can be used for dynamic analysis,
so that the vibrations of such structures allow simplification of the calculation and time
savings in the design process. The paper has presented several vibration properties of
a symmetrical structure made of concrete, used in civil engineering. Such structures are
frequently encountered in the construction of buildings and in civil engineering and the
knowledge of vibration properties can prove to be an advantage that allows to reduce the
time and costs related to the design. We mention that symmetries appearing in all aspects
of current life and in engineering applications are common. In consequence, the results
obtained can be extended to other situations that may be encountered in practice. Future
research could reveal other types of symmetries that will allow the systematization of the
results and the proposal of a strategy to approach the design and execution of systems with
identical parts or symmetries.
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Appendix A

For the truss AO:
∂4ΦAO

∂x4 − ρ1 A1

E1 Iz1
p2ΦAO = 0 (A1)

For the truss OD:
∂4ΦBC

∂x4 − ρ1 A1

E1 Iz1
p2ΦOD = 0 (A2)

For the truss OB:
∂4ΦOB

∂x4 − ρ2 A2

E2 Iz2
p2ΦOB = 0 (A3)

For the truss OC:
∂4ΦOC

∂x4 − ρ2 A2

E2 Iz2
p2ΦOC = 0 (A4)

The following notations are made:

ρ1 A1

E1 Iz1
= λ4

1;
ρ2 A2

E2 Iz2
= λ4

2 (A5)

Using (A5), the four solutions for the four differential equations of order four (A1)–(A4)
are:

ΦAO(x) = CAO
1 sin(λ1

√
px) + CAO

2 cos(λ1
√

px) + CAO
3 sh(λ1

√
px) + CAO

4 ch(λ1
√

px) (A6)

ΦOD(x) = COD
1 sin(λ1

√
px) + COD

2 cos(λ1
√

px) + COD
3 sh(λ1

√
px) + COD

4 ch(λ1
√

px) (A7)

ΦOB(x) = COB
1 sin(λ2

√
px) + COB

2 cos(λ2
√

px) + COB
3 sh(λ2

√
px) + COB

4 ch(λ2
√

px) (A8)

ΦOC(x) = COC
1 sin(λ2

√
px) + COC

2 cos(λ2
√

px) + COC
3 sh(λ2

√
px) + COC

4 ch(λ2
√

px) (A9)

For torsion, the notation was made:

δ2
i =

Ji
Gi Ipi

i = 1, 2 (A10)

Index 1 corresponds to trusses AO and OD and index 2 to trusses OB and OC. Apply-
ing Equation (8) for the four trusses studied, leads us to:

For torsional vibrations of the bar AO:

∂2ψAO
∂x2 + p2δ2

1ψAO = 0 (A11)
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for torsional vibrations of the bar OD:

∂2ψOD
∂x2 + p2δ2

1ψOD = 0 (A12)

for torsional vibrations of the bar OB:

∂2ψOB
∂x2 + p2δ2

2ψOB = 0 (A13)

for torsional vibrations of the bar OC:

∂2ψOC

∂x2 + p2δ2
2ψOC = 0 (A14)

The solutions of the four equations (A11)–(A14) are:

ψAO(x) = DAO
1 sin(δ1 px) + DAO

2 cos(δ1 px) (A15)

ψOD(x) = DOD
1 sin(δ1 px) + DOD

2 cos(δ1 px) (A16)

ψOB(x) = DOB
1 sin(δ2 px) + DOB

2 cos(δ2 px) (A17)

ψOC(x) = DOC
1 sin(δ2 px) + DOC

2 cos(δ2 px) (A18)

The solutions contain 24 integration constants that will be determined considering the
boundary conditions.

The two moments and the shear force are expressed by the known relationships in the
mechanics of the deformable solid [26,27]:

Mb(x) = −EIz
∂2v(x)

∂x2 ; T(x) = EIz
∂3v(x)

∂x3 ; Mt(x) = GIp
∂ϕ(x)

∂x

However:
Truss AO:

∂v(x)
∂x

= uoΦ′AO(x) sin(pt + θ) =

λ1
√

p
[
CAO

1 cos(λ1
√

px)− CAO
2 sin(λ1

√
px) + CAO

3 ch(λ1
√

px) + CAO
4 (shλ1

√
px)
]

sin(pt + θ)
(A19)

∂2v(x)
∂x2 = uoΦ′′AO(x) sin(pt + θ) =

(λ1
√

p)2
[
−CAO

1 sin(λ1
√

px)− CAO
2 cos(λ1

√
px) + CAO

3 sh(λ1
√

px) + CAO
4 ch(λ1

√
px)
]

sin(pt + θ);
(A20)

∂3v(x)
∂x3 = Φ′′′AO(x) sin(pt + θ) =

(λ1
√

p)3
[
−CAO

1 cos(λ1
√

px) + CAO
2 sin(λ1

√
px) + CAO

3 ch(λ1
√

px) + CAO
4 sh(λ1

√
px)
]

sin(pt + θ)

(A21)

∂ϕ(x)
∂x

= ψ′AO sin(pt + θ) = δ1 p
[

DAO
1 cos(δ1 px)− DAO

2 sin(δ1 px)
]

sin(pt + θ) (A22)

Truss OD:

∂v(x)
∂x

= λ1
√

p
[
COD

1 cos(λ1
√

px)− COD
2 sin(λ1

√
px) + COD

3 ch(λ1
√

px) + COD
4 sh(λ1

√
px)
]

sin(pt + θ) (A23)

∂2v(x)
∂x2 = (λ1

√
p)2
[
−COD

1 sin(λ1
√

px)− COD
2 cos(λ1

√
px) + COD

3 sh(λ1
√

px) + COD
4 ch(λ1

√
px)
]

sin(pt + θ) (A24)

∂3v(x)
∂x3 = (λ1

√
p)3
[
−COD

1 cos(λ1
√

px) + COD
2 sin(λ1

√
px) + COD

3 ch(λ1
√

px) + COD
4 sh(λ1

√
px)
]

sin(pt + θ) (A25)
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∂ϕ(x)
∂x

= ϕoψ′AO sin(pt + θ) = ϕoδ1 p
[

DOD
1 cos(δ1 px)− DOD

2 sin(δ1 px)
]

sin(pt + θ) (A26)

Truss OB:
∂v(x)

∂x
= λ2

√
p
[
COB

1 cos(λ2
√

px)− COB
2 sin(λ2

√
px) + COB

3 ch(λ2
√

px) + COB
4 sh(λ2

√
px)
]

sin(pt + θ) (A27)

∂2v(x)
∂x2 = (λ2

√
p)2
[
−COB

1 sin(λ2
√

px)− COB
2 cos(λ2

√
px) + COB

3 sh(λ2
√

px) + COB
4 ch(λ2

√
px)
]

(A28)

∂3v(x)
∂x3 = (λ2

√
p)3
[
−COB

1 cos(λ2
√

px) + COB
2 sin(λ2

√
px) + COB

3 ch(λ2
√

px) + COB
4 sh(λ2

√
px)
]

sin(pt + θ) (A29)

∂ϕ(x)
∂x

= ϕoδ2 p
[

DOB
1 cos(δ2 px)− DOB

2 sin(δ2 px)
]

sin(pt + θ) (A30)

Truss OC:
∂v(x)

∂x
= λ2

√
p
[
COC

1 cos(λ2
√

px)− COC
2 sin(λ2

√
px) + COC

3 ch(λ2
√

px) + COC
4 sh(λ2

√
px)
]

sin(pt + θ) (A31)

∂2v(x)
∂x2 = (λ2

√
p)2
[
−COC

1 sin(λ2
√

px)− COC
2 cos(λ2

√
px) + COC

3 sh(λ2
√

px) + COC
4 ch(λ2

√
px)
]

sin(pt + θ) (A32)

∂3v(x)
∂x3 = (λ2

√
p)3
[
−COC

1 cos(λ2
√

px) + COC
2 sin(λ2

√
px) + COC

3 ch(λ2
√

px) + COC
4 sh(λ2

√
px)
]

sin(pt + θ) (A33)

∂ϕ(x)
∂x

= ϕoδ2 p
[

DAO
1 cos(δ2 px)− DAO

2 sin(δ2 px)
]

sin(pt + θ) (A34)

The following relations will be obtained:

CAO
2 + CAO

4 = 0 (A35)

CAO
1 + CAO

3 = 0 (A36)

DAO
2 = 0 (A37)

COD
1 sin(λ1

√
pL1) + COD

2 cos
(
λ1
√

pL1
)
+ COD

3 sh
(
λ1
√

pL1
)
+ COD

4 ch
(
λ1
√

pL1
)
= 0 (A38)

COD
1 cos(λ1

√
pL1)− COD

2 sin(λ1
√

pL1) + COD
3 ch(λ1

√
pL1) + COD

4 sh
(
λ1
√

pL1
)
= 0 (A39)

DOD
1 sin(δ1 pL1) + DOD

2 cos(δ1 pL1) = 0 (A40)

COB
1 sin(λ2

√
pL3) + COB

2 cos
(
λ2
√

pL3
)
+ COB

3 sh
(
λ2
√

pL3
)
+ COB

4 ch
(
λ2
√

pL3
)
= 0 (A41)

−COB
1 sin

(
λ2
√

pL3
)
− COB

2 cos(λ2
√

pL3) + COB
3 sh

(
λ2
√

pL3
)
+ COB

4 ch
(
λ2
√

pL3
)
= 0 (A42)

DOB
1 cos(δ2 pL3)− DOB

2 sin(δ2 pL3) = 0 (A43)

COC
1 sin(λ2

√
pL3) + COC

2 cos
(
λ2
√

pL3
)
+ COC

3 sh(λ2
√

pL3) + COC
4 ch(λ2

√
pL3) = 0 (A44)

−COC
1 sin

(
λ2
√

pL3
)
− COC

2 cos(λ2
√

pL3) + COC
3 sh(λ2

√
pL3) + COC

4 ch(λ2
√

pL3) = 0 (A45)

DOC
1 cos(δ2 pL3)− DOC

2 sin(δ2 pL3) = 0 (A46)

which represent a system of 12 equations.

Appendix B

These nine conditions lead to nine relationships:

CAO
1 sin(λ1

√
pL2) + CAO

2 cos(λ1
√

pL2) + CAO
3 sh(λ1

√
pL2) + CAO

4 ch(λ1
√

pL2) =

COD
2 + COD

4 = COB
2 + COB

4 = COC
2 + COC

4

(A47)

λ1
√

p
[
CAO

1 cos(λ1
√

pL2)− CAO
2 sin(λ1

√
pL2) + CAO

3 ch(λ1
√

pL2) + CAO
4 sh(λ1

√
pL2)

]
=

λ1
√

p
[
COD

1 + COD
3

]
= DOB

2 = −DOC
2

(A48)
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DAO
2 = DOD

2 = λ2
√

p
[
COB

1 + COB
3

]
= λ2

√
p
[
COC

1 + COC
3

]
(A49)

or :
1

λ2
√

p
DAO

2 =
1

λ2
√

p
DOD

2 = COB
1 + COB

3 = COC
1 + COC

3 (A50)

in which, together, (A35)–(A46) represent a system of 21 equations.
From (A47), we can obtain the equations:

COB
2 + COB

4 − COD
2 − COD

4 = 0 (A51)

COC
2 + COC

4 − COD
2 − COD

4 = 0 (A52)

CAO
1 sin(λ1

√
pL2) + CAO

2 cos(λ1
√

pL2) + CAO
3 sh(λ1

√
pL2) + CAO

4 ch(λ1
√

pL2) − COD
2 + COD

4 = 0. (A53)

From (A48), we can obtain the equations:

2: COB
1 + COB

3 − 1
λ2
√

p
DAO

2 = 0 (A54)

COC
1 + COC

3 − 1
λ2
√

p
DAO

2 = 0 (A55)

DAO
2 − DOD

2 = 0 (A56)

From (A49), we obtain:

DOB
2 − λ1

√
p
[
COD

1 + COD
3

]
= 0 (A57)

DOC
2 − λ1

√
p
[
COD

1 + COD
3

]
= 0; (A58)

λ1
√

p
[
CAO

1 cos(λ1
√

pL2)− CAO
2 sin(λ1

√
pL2) + CAO

3 ch(λ1
√

pL2) + CAO
4 sh(λ1

√
pL2)

]
−λ1
√

p
[
COD

1 + COD
3
]
= 0 (A59)

Appendix C

Three more conditions are needed to obtain the constants in the written differential
equations.

They are obtained by considering the equilibrium of an infinitesimal element of the
mass containing the point O.

The sum of the four shear forces in O must be zero, so:

T1 + T2 + T3− T4 = 0

Replacing the expressions of the shear force determined for the four bars in O,
we obtain:

λ3
1 E1 Iz1

(
−CAO

1 cos
(
λ1
√

p L2
)
+ CAO

2 sin
(
λ1
√

p L2
)
+ CAO

3 ch
(
λ1
√

p L2
)

+ CAO
4 sh(λ1

√
p L2)

)
+ λ3

1E1 Iz1
(
−COD

1 + COD
3
)
+ λ3

2 E2 Iz2
(
−COB

1 + COB
3
)

− λ3
2 E2 Iz2

(
−COC

1 + COC
3
)
= 0

(A60)

With the notation:

a1 =
E2 Ip2

E1 Iz1

(
λ2

λ1

)3
(A61)

we can write:

(−CAO
1 cos(λ1

√
p L2) + CAO

2 sin(λ1
√

p L2) + CAO
3 ch(λ1

√
p L2)

+ CAO
4 sh(λ1

√
p L2))+ (−COD

1 + COD
3 ) + a1(−COB

1 + COB
3 )− a1(−COC

1 + COC
3 ) = 0

(A62)
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A similar equilibrium relation is obtained for bending and torsional moments.

Mb1 + Mb2 + Mt3 −Mt4 = 0

Mt1 + Mt2 + Mb3 −Mb4 = 0

Taking into account relations (27)–(43), we obtain:

− E1 Iz1
∂2ΦAO(L2)

∂x2 − E1 Iz1
∂2ΦOD(0)

∂x2 + G2 Ip2
∂ϕOB(0)

∂x
− G2 Ip2

∂ϕOC(0)
∂x

= 0 (A63)

G1 Ip1
∂ϕAO(L2)

∂x
+ G1 Ip1

∂ϕOD(0)
∂x

− E2 Iz2
∂2ΦOB(L2)

∂x2 + E2 Iz2
∂2ΦOC(0)

∂x2 = 0 (A64)

Using (11)–(14) and (23)–(26), the results are:

CAO
1 sin(λ1

√
p L2) + CAO

2 cos(λ1
√

p L2)− CAO
3 sh(λ1

√
p L2)− CAO

4 ch(λ1
√

p)−

(−COD
2 + COD

4 ) +
G2 Ip2

E1 Iz1

δ2

λ2
1
(DOB

1 − DOC
1 ) = 0

(A65)

G1 Ip1

E2 Iz2

δ1

λ2
2
(DAO

1 cos(δ1 pL2)− DAO
2 sin(δ1 pL2)) +

G1 Ip1

E2 Iz2

δ1

λ2
2

DOD
1 −

(−COB
2 + COB

4 ) + (−COC
2 + COC

4 ) = 0
(A66)

This denoted:

a2 =
G2 Ip2

E1 Iz1

δ2

λ2
1

, a3 =
G1 Ip1

E2 Iz2

δ1

λ2
2

(A67)

CAO
1 sin(λ1

√
p L2) + CAO

2 cos(λ1
√

p L2)− CAO
3 sh(λ1

√
p L2)− CAO

4 ch(λ1
√

p L2)−(
−COD

2 + COD
4

)
+ a2

(
DOB

1 − DOC
1

)
= 0

(A68)

a3

(
DAO

1 cos(δ1 pL2)− DAO
2 sin(δ1 pL2

)
) + a3DOD

1 −
(
−COB

2 + COB
4

)
+
(
−COC

2 + COC
4

)
= 0 (A69)

This represents a system with 24 equations with 24 unknowns. From the system
formed, we must determine the constants CAO

1 , CAO
2 , CAO

3 , CAO
4 , COD

1 , COD
2 , COD

3 , COD
4 ,

COB
1 , COB

2 , COB
3 , COB

4 , COC
1 , COC

2 , COC
3 , COC

4 , DAO
1 , DAO

2 , DOD
1 , DOD

2 , DOB
1 , DOB

2 , DOC
1 , DOC

2 .
They will be denoted, in the following:

{B} =





{
BAO}
{

BOD}
{

BOB}
{

BOC}





(A70)

with: {
BAO

}
=
[

CAO
1 CAO

2 CAO
3 CAO

4 DAO
1 DAO

2
]

(A71)
{

BOD
}
=
[

COD
1 COD

2 COD
3 COD

4 DOD
1 DOD

2
]

(A72)
{

BOB
}
=
[

COB
1 COB

2 COB
3 COB

4 DOB
1 DOB

2
]

(A73)
{

BOC
}
=
[

COC
1 COC

2 COC
3 COC

4 DOC
1 DOC

2
]

(A74)

A homogeneous linear system was obtained. In order to have other solutions besides
the trivial solution zero, the determinant of the system must be zero. Putting this condition,
the obtained eigenfrequencies of the system can be determined from the obtained equation.

Denote:
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[A11] =




0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 0 0 1

sin(λ2
√

pL3) cos(λ2
√

pL3) sh(λ2
√

pL3) ch(λ2
√

pL3) 0 0
− sin(λ2

√
pL3) − cos(λ2

√
pL3) sh(λ2

√
pL3) ch(λ2

√
pL3) 0 0

0 0 0 0 cos(δ2 pL3) − sin(δ2 pL3)




(A75)

[A12] =




0 0 0 0 0 0 0 −1 0 −1 0 0
0 0 0 0 0 − 1

λ1
√

p 0 0 0 0 0 0
0 0 0 0 0 0 −λ1

√
p 0 −λ1

√
p 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0




(A76)

[A21] =




0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−a1 0 −a1 0 0 0 a1 0 −a1 0 0 0

0 0 0 0 a2 0 0 0 0 0 −a2 0
0 1 0 −1 0 0 0 −1 0 1 0 0




(A77)

In the following, we denote:

[A22] =

[
A22a A22b
A22c A22d

]
(A78)

where:

[A22a] =




0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(A79)

[A12b] =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

sin(λ1
√

pL1) cos(λ1
√

pL1) sh(λ1
√

pL1) ch(λ1
√

pL1) 0 0
cos(λ1

√
pL1) − sin(λ1

√
pL1) ch(λ1

√
pL1) sh(λ1

√
pL1) 0 0

0 0 0 0 sin(δ1 pL1) cos(δ1 pL1)




(A80)

[A12d] =




0 −1 0 1 0 0
0 0 0 0 0 −1
−1 0 −1 0 0 0
−1 0 1 0 0 0
0 1 0 −1 0 0
0 0 0 0 a3 0




(A81)
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[A12c] =




sin(λ1
√

pL2) cos(λ1
√

pL2) sh(λ1
√

pL2) ch(λ1
√

pL2) 0 0
0 0 0 0 0 1

cos(λ1
√

pL2) − sin(λ1
√

pL2) ch(λ1
√

pL2) sh(λ1
√

pL2) 0 0
− cos(λ1

√
pL2 sin(λ1

√
pL2) ch(λ1

√
pL2) sh(λ1

√
pL2) 0 0

sin(λ1
√

pL2 cos(λ1
√

pL2) −sh(λ1
√

pL2) −ch(λ1
√

pL2) 0 0
0 0 0 0 a3cos(δ1 pL2) −a3sin(δ1 pL2)




(A82)

In this case, the matrix of the system can be written, in a concise form:

A24×24 =




A11 0 A12
0 A11 A12

A21 A21 A22


 (A83)

and the system becomes:
[A]{B} = {0} (A84)

The condition:
det(A) = 0 (A85)

offers the eigenvalues of the system of differential Equations (6)–(9) and (19)–(22).

Appendix D

Let us now consider one of the identical trusses OB and OC. The truss is clamped in O
and supported in B (or C). Equation (1) is also valid for the OB bar (OC), with the boundary
conditions:
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For point O:
x = 0; v(0, t) = 0; v′(0, t) = 0; ϕ(0, t) = 0 (A86)

and for the point B(C):

x = L3; v(L3, t) = 0; Mb(L3, t) = 0; Mt(L3, t) = 0 (A87)

The solution:
v(x, t) = Φ(x) sin(pt + θ) (A88)

offers the new equation:
∂4Φ
∂x4 − p2 ρ2 A2

E2 Iz2
Φ = 0 (A89)

If noted:
λ4

2 =
ρ2 A2

E2 Iz2
(A90)

the solution is:

Φ(x) = C1 sin(λ2
√

px) + C2 cos(λ2
√

px) + C3sh(λ2
√

px) + C4ch(λ2
√

px) (A91)
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Torsional vibrations are described by Equation (15). By choosing ϕ as:

ϕ(x, t) = ψ(x) sin(pt + θ) (A92)

and introducing in Equation (15), we obtain:

∂2ψ

∂x2 + p2δ2
2ψ = 0 (A93)

The solution of the differential Equation (A93) will be:

ψ(x) = D1 sin(δ2 px) + D2 cos(δ2 px) (A94)
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Abstract: In recent years, numerous attempts have been made to enhance the living standard
for old-aged people. Ambient Assisted Living (AAL) is an evolving interdisciplinary field aimed
at the exploitation of knowledge and communication technology in health and tele-monitoring
systems to combat the impact of the growing aging population. AAL systems are designed for
customized, responsive, and predictive requirements, requiring high performance of functionality
to ensure interoperability, accessibility, security, and consistency. Standardization, continuity, and
assistance of system development have become an urgent necessity to meet the increasing needs for
sustainable systems. In this article, we examine and address the methods of the different AAL systems.
In addition, we analyzed the acceptance criteria of the AAL framework intending to define and
evaluate different AAL-based symmetrical models, leveraging performance characteristics under the
integrated fuzzy environment. The main goal is to provide an understanding of the current situation
of the AAL-oriented setups. Our vision is to investigate and evaluate the potential symmetrical
models of AAL systems and frameworks for the implementation of effective new installations.

Keywords: ambient assisted living; AAL; ambient intelligence; assisted living; user-interfaces;
fuzzy logic

1. Introduction

The current digital environment, comprising smart home products, mobile devices,
smart watches, and software applications, has had a significant impact on human lifestyles.
These systems have provided a great deal of power to individuals, thereby significantly low-
ering dependence on others. These advanced devices have not only transformed lifestyles,
but have also revolutionized almost every area of human existence. The idea of Ambient
Assisted Living (AAL) resulted from these smart technologies, and represents the response
to the task of maintaining the standard of living of elderly people. Ambient Assisted Living
(AAL) offers a system consisting of smart phones, medical sensors, cellular networks,
computers, and health tracking apps [1]. AAL can also be used for different reasons, such
as preventing, treating, and enhancing the well-being and health of elderly people.

AAL strives to promote the protection and wellbeing of elderly people and to increase
the number of years that elderly people can live comfortably in an area of their own
convenience [2–5]. It also reduces the amount of anticipated costs by empowering patients
to monitor their serious medical symptoms. AAL is a sub-part of Ambient Intelligence
that includes the utilization of ambient intelligent strategies, processes, and technology
to allow aged people to survive comfortably for as long as humanly possible despite
behavioral problems.
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In addition, modern developments in mobile and portable sensors have contributed
to realizing the vision of AAL [6,7]. Recent popular electronic applications are fitted with
smart configurations, such as accelerometers, navigation systems, GPS, and many other
systems that can be used to monitor user mobility. Furthermore, recent developments in
digital and sensor technology are promising a new age in health sensors [8]. Scientists and
researchers have created discreet sensors in the form of covers, small holter-type gadgets,
mobile systems, and smart clothing for tracking health indicators. For instance, blood sugar,
blood pressure and heart performance can be evaluated by means of smart technologies
such as infrared or photographic sensors. Many measures, such as electroencephalography
(EEG), also involve invasive devices, including electrodes. The following Figure 1 shows
the graphical representation of an Ambient Assisted Living (AAL) system.
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This study evaluates different Ambient Assisted Living system’s symmetrical models
based on the taxonomy adopted from Amina et al. [9]. The study uses integrated fuzzy An-
alytic Hierarchy Process-Technique for Order Performance by Similarity to Ideal Solution
(AHP-TOPSIS), which is a popular multiple-criteria decision-making (MCDM) approach.
To handle the complexity of evaluating the efficiency of various Ambient Assisted Living
System Symmetrical Models on one parameter, or on the value of another high-precision
parameter, the Analytic Hierarchy Process (AHP) method has been extensively used by
numerous authors and practitioners. Ghodsypour and O’Brien [10] claim that AHP is
much more reliable than other symmetrical models of scoring for analysis procedures.
Conceivably, the technique is suitable because the decision-making process has a one-way
hierarchical relationship between decision-making stages. Interestingly, Carney and Wall-
nau [11] noted that the selection parameters for alternatives are not necessarily independent
of each other, but rather interconnect. In such a complicated setting, an incorrect result may
be obtained. TOPSIS (Technique for Order Performance by Similarity to Idea Solution) [12]
is also an appropriate approach for solving MCDM problems. TOPSIS is initiated on the
principle that the optimum alternative should also have the smallest distance from the
positive idea solution (PIS), and the greatest distance from the negative idea solution. The
principle of TOPSIS is logical and comprehensible, and the related calculation is straightfor-
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ward. Consequently, it is important to note the inherent complexity of specifying accurate
subjective opinions to the parameters.

In the subsequent sections of this article, we classify the discussion into five sections.
Section 2 presents the different related works. Section 3 discusses the materials and methods
used in this paper. Section 4 presents the statistical results and evaluates their quality
characteristics according to different metrics. Finally, Section 5 concludes the paper.

2. Related Works

Fuzzy multiple-criteria decision-making (MCDM) provides successful outcomes in
the resolution of selection-based problems [13]. The approach has been chosen by several
researchers because it can effectively handle the knowledge that is analyzed using a
multi-resourced linguistic and quantitative decision-making challenge, and evidence that
is diverse.

Lin et al. [14] suggested a fuzzy-based strategy for the selection of an effective smart
technology framework for fall detection. To address this problem, a fuzzy collective
intelligence methodology was used. Alpha-cut procedures were used in a fuzzy collective
intelligence method to determine the fuzzy weights of the parameters with each decision-
maker. Then, the fuzzy combination was used to sum the fuzzy weights generated by
each decision-maker. Consequently, a fuzzy order preference strategy comparable to the
ideal solution was used to assess the appropriateness of a smart technology system for
fall detection.

Samanlioglu et al. [15] proposed an approach to choosing the best employee appli-
cant for an IT organization by combining the fuzzy analytic hierarchical process method
(fuzzy AHP), including Chang’s scale analysis, in addition to fuzzy TOPSIS. The decision-
makers’ (DMs) verbal assessments were included in the analysis using intuitive fuzzy
numbers. They first calculated the value of thirty sub-criteria weights using fuzzy AHP
and then, using fuzzy TOPSIS, five IT employees’ alternatives were evaluated based on
fuzzy AHP weights.

Anand and Vinodh [16] presented research to evaluate Additive Manufacturing (AM)
procedures for micro-manufacturing using combined fuzzy AHP-TOPSIS. Parameters weights
were derived using fuzzy AHP, whereas rankings were obtained using fuzzy TOPSIS.

Nazam et al. [17] suggested hybrid fuzzy AHP analysis to measure the weight of
threat parameters and sub-criteria, in addition to the order efficiency technique using
the ideal solution (TOPSIS) procedure to rank and evaluate the risks resulting from the
adoption of green supply chain management (GSCM) practices in a fuzzy setting. Their
proposed fuzzy risk-oriented assessment theory was implemented for the realistic case
of the textile automotive industry. Ultimately, the conceptual model allows academics
and professionals to consider the value of performing effective risk assessments while
introducing green supply chain interventions.

Ansari et al. [18] addressed the viewpoint of security professionals on the relative
value of parameters for the selection of an appropriate Security Requirements Engineering
(SRE) system using the multi-criteria decision-making approach. The research was de-
signed and conducted to determine the most suitable SRE approach for quality and stable
application development based on the expertise and experience of the security specialist.
The hierarchical analysis was performed using a fuzzy TOPSIS method. The efficient SRE
selection process was evaluated in pairs.

Kumar et al. [19] used an approach that involves the combination of fuzzy AHP with
fuzzy TOPSIS processes to determine the effect of various malware detection techniques
in the context of web applications. This research used different variants of a university’s
software system to test the effect of a variety of current malware detection techniques.

Alenezi et al. [20] used the combined approach of fuzzy AHP-TOPSIS to test security
architecture strategies and their attributes. The efficacy of this method was also evaluated
on the real-time software system of BBAU, Lucknow, India. In addition, various university
web apps were also used to support the findings produced.
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The uncertainty associated with Alzheimer’s disease complicates the development of
patient monitoring software. To address this problem, Coronato described a systematic
approach to modelling and developing intelligent Ambient Assisted Living Systems to
monitor the behavior of people with cognitive impairments. The major aspect was an
automated method to detect irrational behavior, in addition to a technique for the design
of secure AAL systems specifically aimed at individuals with cognitive or mental illnesses.
The author also implemented their approach for modelling a monitoring system that can
demonstrate feasibility through the identification of abnormal circumstances [21].

Koleva et al. highlighted the main obstacles in formulating and executing an efficient
AAL system based on their expertise in the eWALL project. They also provided suggestions
for solutions to these obstacles [22].

Many surveys and reviews have been conducted that address the functionality of
different models of Ambient Assisted Living systems. However, the fuzzy AHP-TOPSIS
approach has not been used to evaluate the impact of different symmetrical models of
Ambient Assisted Living systems.

3. Materials and Methods

Recent developments in a variety of technical fields have helped to realize the potential
of AAL. These innovations involve smart homes, help robots, e-textiles, and portable and
implantable sensors. In the following sections, the proposed research methodology is
discussed in more detail. Figure 2 shows a functional diagram of the research methodology.Symmetry 2021, 13, x FOR PEER REVIEW  5  of  20 
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3.1. Step 1: Identification of Different AAL System’s Models

A variety of ventures have adopted the AAL scope as a field of research. Various refer-
ences, symmetrical models, systems, and interfaces have been proposed for an acceptable
AAL scheme, but few of these have been generally accepted. In this section, we analyze the
most comprehensive Ambient Assisted Living system’s symmetrical models. A graphical
representation of the hierarchy can be seen in Figure 3.
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A. Ambient Intelligence Reference Architecture (AmIRA)

AmIRA includes an emphasis on processes, structures, and components [23]. It
assimilates multi-layer application architecture. According to the given specifications of
ambient intelligent systems, the intention of AmIRA is to encourage the re-use of Ambient
Intelligence (AmI) processes throughout various AmI systems [24]. The advantage of this
design is that each layer is autonomous; however, there is a demand for resources from
other layers. AmIRA is uncertain because there are no restrictions mentioned, however,
the framework components do not adequately define the business processes.

B. Continua

Continua is an attempt to provide compatibility in the area of personal telemedicine.
The design identifies different steps and reference system classes [25]. Continua made
an explicit option to build a framework that incorporates several domains. It is known
to be the only approach that provides a uniform security system. Continua reflects the
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reference architecture mostly as a symmetrical layered model. Each link is composed to its
counterparts by a platform that has been identified. Reference system classes and platforms
are the maximum representation level in the Continua design. Conversely, it depends on
the execution of the design and lacks any applications.

C. FeelGood

FeelGood is an initiative that introduces new architectural elements to complement
existing practices by specifying the ecosystem level of service components [26]. The
primary objective was to enhance the quality of life in Finland. The suggested RA does
not describe comprehensive interfaces, but offers interface specifications and refers to the
applicable requirements that could be implemented. The purpose of this RA was to direct
the development of the product. Stakeholders and comprehensive services were identified.

D. RAFAALS

RAFAALS relates to the reference design for AAL systems [27,28] as a SOA-based
symmetrical model of AAL. The key architecture is based on the principle of separating
the functionality and the configuration of the data flow among the layers of the process. It
facilitates the transfer of events between flexible software applications wherein its modules
allow use of little to no awareness of other elements. This structure distinguishes the
activities within each evolved producer. The layers are analytically isolated from each
other and clearly specified. This is a traditional structural platform that enables the design,
formulation, and deployment of any AAL setting. It defines modules and connections in
an abstract way, making them a comprehensive, functional, and systematic architecture.

E. UniversAAL

The UniversAAL system is an open platform designed to promote the development,
delivery, and implementation of technology solutions towards assisted living environ-
ments. This system is utilized to encourage end-users (i.e., supported individuals, their
parents, and communities), AAL-responsible authorities, and organizations involved in the
creation and implementation of AAL services. It comprises of a wide variety of tools (some
are applications and others are models/architectures) targeted at these various classes.
Services are divided into three major groups: runtime assistance, production assistance,
and community assistance. UniversAAL is regarded to be one of the most comprehensive
RMs to date [29,30]. It represents an interpretation of AAL structures at the maximum
level of abstraction [31], utilizing as few terms as possible. It also reflects the AAL do-
main description, the AAL space review, the types of technology included, and several
other principles.

F. PERSONA

PERSONA is a service platform for AAL environments; it is designed to promote
the incremental creation of AAL areas focused on a compact foundation. AAL spaces
are modelled as accessible distributed systems in PERSONA. The system depends on the
administrative re-configuration of the platform elements, including the Situation Reasoner,
the Dialog Manager, and the Service Orchestra, to provide aggregated benefits [32].

G. SOPRANO

SOPRANO is a highly configurable, open AAL framework for senior citizens focused
on semantic agreements. This serves as a facilitating artifact among the different modules
of the process by establishing a uniform integrated terminology for various layers of
abstraction. The architecture of SOPRANO offers exclusively predetermined contract-
based interfaces for various stakeholders centered on structured ontology [33]. Ontology
serves as a facilitating artifact between the modules of the different structure by providing a
shared interconnected language for different levels of abstraction. The SOPRANO initiative
has been an important guide for several other initiatives, such as OpenAAL [34], which
acts as a comprehensive ontology for AAL symmetrical models.
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H. OpenAAL

OpenAAL is a collaborative open-source program of the FZI Research Center for
Information Technologies, Friedrich-Schiller-University of Jena, and CAS Software AG. It
provides a scalable and efficient interface for AAL situations and is focused on the research
findings of many German and foreign initiatives, such as the SOPRANO2 Combined
Project. The OpenAAL framework allows for easy deployment, configuration, and scenario-
dependent provision of versatile, context-aware, and customized IT-based functions [29].

I. MPOWER

MPOWER is an AAL initiative with the goal of creating and maintaining AAL frame-
works based on trends, service-oriented frameworks, online services, and Extensible
Stylesheet Language (XSDL) transformations [35]. It emphasizes compatibility among
services, extensively in the areas of AAL.

3.2. Step 2: Fuzzy AHP

Saaty suggested the Analytic Hierarchy Process (AHP) method in 1990. All numerical
and contextual considerations are integrated into AHP in the decision-making procedure.
Because the highly classified scale of 1 to 9 is often used in the AHP process, this method is
commonly criticized for not integrating uncertainty into the decision-making procedure.
The fuzzy AHP approach has also been used in many fields to overcome multi-criteria
challenges. Haq and Kannan [36] used this approach to pick the best supplier in the supply
chain. This was also used by Huang et al. [37] for the evaluation of R&D projects. Fuzzy
set theory is essentially a type of classical set theory. It is based on an adjacency matrix,
and assigns a rank between one and ten. If the symbol is a fuzzy package, a tilde (i.e., ∼) is
placed over it. A fuzzy activity is defined by (l, m, u) whereby ‘l’ is the lowest number, ‘m’
is the most probable value, and ‘u’ is the maximum priority [19].

3.3. Step 3: Ranking with TOPSIS

On the basis of the results, alternatives are rated using TOPSIS. In this process, the
following types of parameters or characteristics are regarded:

• Domain and context
• Goals
• Design and infrastructure
• Quality attributes
• Critical attributes

In this analysis, different kinds of alternatives are evaluated as follows:

• Negative ideal solution
• Positive ideal solution

TOPSIS is focused on the choice of the most appropriate alternative or initiative that is
the furthest from the negative ideal solution and the nearest to the positive ideal solution.
The positive and negative ideal solutions are those with the maximum and minimum
benefits, respectively.

4. Results

This section addresses the various quantitative measurements of the integrated fuzzy
deployment of the AHP-TOPSIS symmetrical method. To achieve this goal, in our re-
search study, we used the combined fuzzy AHP-TOPSIS approach, a well-established and
verified decision-making technique. This methodology is designed to evaluate different
Ambient Assisted Living system’s symmetrical models based on their impact assessment
in the current information technology era. To create a more compelling result, we took
recommendations from 79 experts with diverse technologies and academic abilities.

To evaluate the different Ambient Assisted Living system’s symmetrical models from
a user perspective, five Level-1 parameters, namely domain and context, goals, design and
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infrastructure, quality attributes, and critical attributes, were defined respectively as LC1,
LC2, LC3, LC4 and LC5. Further sub-parameters for domain and context were usability,
independency, and purpose, defined respectively as LC11, LC12 and LC13, LC14 and LC5.
Goals sub-parameters were standardization and facilitation, defined respectively as LC21
and LC22. Sub-parameters for design and infrastructure were components and connections,
interfaces, policies and guidelines, details, concretization, formality, data flows, and cost,
defined respectively as LC31, LC32, LC33, LC34, LC35, LC36, LC37 and LC38. Quality
attributes sub-parameters were interoperability, scalability, confidentiality, maintainability,
privacy, trustability, and security, defined respectively as LC41, LC42, LC43, LC44, LC45,
LC46 and LC47. Critical attributes sub-parameters were reliability, integrity, performance,
availability, and safety, defined respectively as LC51, LC52, LC53, LC54 and LC55. Different
alternatives to the Ambient Assisted Living system’s symmetrical model were AmIRA,
Continua, FeelGood, RAFAALS, UniversAAL, PERSONA, SOPRANO, OpenAAL, and
MPOWER denoted by AT1, AT2, AT3, AT4, AT5, AT6, AT7, AT8 and AT9 respectively. The
local criteria and sub-criteria weights were calculated using pair-wise comparison matrices.

The pair-wise comparative matrix for the level 1 factor was created, as shown in
Table 1. The compound pair-wise relative matrixes for the hierarchical diagram of level 2
are also specified in Tables 2–6. Table 7 shows the defuzzification matrix with alpha cut
method and local weights. Tables 8–12 show aggregated pair-wise comparison matrixes
at level 2 for domain and context, goals, design and infrastructure, quality attributes, and
critical attributes, respectively. To be more specific, integration was executed to quantify the
element weights of each point. In addition, with the support of the hierarchical structure,
Table 13 and Figure 4 represent the overall weights and ranking of methods.

Table 1. Fuzzy pair-wise comparison matrix at level 1.

Level 1 LC1 LC2 LC3 LC4 LC5

LC1
1.00000,
1.00000,
1.00000

1.87222,
2.52710,
3.20315

1.46140,
1.68142,
1.97431

1.44161,
2.43185,
3.38615

0.46177,
0.57214,
0.78451

LC2 -
1.00000,
1.00000,
1.00000

0.60183,
0.77154,
1.02165

0.77108,
0.9504,
1.21361

0.16130,
0.19513,
0.24917

LC3 - -
1.00000,
1.00000,
1.00000

0.71694,
1.01502,
1.35153

0.20186,
0.24162,
0.31117

LC4 - - -
1.00000,
1.00000,
1.00000

0.19516,
0.22813,
0.21903

LC5 - - - -
1.00000,
1.00000,
1.00000

Table 2. Fuzzy aggregated pair-wise comparison matrix at level 2 for domain and context.

Level 2 for 1 LC11 LC12 LC13

LC11 1.00000, 1.00000, 1.00000 0.68918, 0.88160, 1.10012 0.22515, 0.27612, 0.35714
LC12 - 1.00000, 1.00000, 1.00000 0.30151, 0.38912, 0.56091
LC13 - - 1.00000, 1.00000, 1.00000

Table 3. Fuzzy aggregated pair-wise comparison matrix at level 2 for goals.

Level 2 for 2 LC21 LC22

LC21 1.00000, 1.00000, 1.00000 0.65751, 1.16531, 1.68831
LC22 - 1.00000, 1.00000, 1.00000
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Table 4. Fuzzy aggregated pair-wise comparison matrix at level 2 for design and infrastructure.

LC31 LC32 LC33 LC34 LC35 LC36 LC37 LC38

LC31
1.00000,
1.00000,
1.00000

1.00100,
1.51157,
1.93311

0.48916,
0.63712,
1.00010

0.41152,
0.57413,
1.00001

0.22115,
0.28171,
0.41152

0.31146,
0.46110,
0.87015

0.65175,
1.16513,
1.68813

0.24144,
0.32318,
0.48011

LC32 -
1.00000,
1.00000,
1.00000

0.57413,
0.66517,
0.80221

0.30319,
0.39316,
0.56611

0.26719,
0.35211,
0.51716

0.16613,
0.19619,
0.25311

0.39310,
0.57413,
1.05614

0.16912,
0.20716,
0.27519

LC33 - -
1.00000,
1.00000,
1.00000

1.0000,
1.3195,
1.5518

0.3009,
0.4352,
0.8027

0.80127,
0.87015,
1.00010

1.26119,
1.82510,
2.43314

0.17218,
0.20911,
0.26481

LC34 - - -
1.00000,
1.00000,
1.00000

0.53186,
0.91143,
1.58316

0.60813,
1.05192,
1.68219

0.75103,
1.34165,
1.96111

0.67910,
0.74819,
0.87105

LC35 - - - -
1.00000,
1.00000,
1.00000

0.41152,
0.63712,
1.17191

0.94165,
1.10195,
1.24157

0.25100,
0.33100,
0.50100

LC36 - - - - -
1.00000,
1.00000,
1.00000

1.88181,
2.55108,
3.16197

0.80127,
1.03152,
1.31160

LC37 - - - - - -
1.00000,
1.00000,
1.00000

0.21136,
0.21575,
0.31195

LC38 - - - - - - -
1.00000,
1.00000,
1.00000

Table 5. Fuzzy aggregated pair-wise comparison matrix at level 2 for quality attributes.

LC41 LC42 LC43 LC44 LC45 LC46 LC47

LC41
1.00000,
1.00000,
1.00000

0.31127,
0.43195,
0.62152

0.87313,
0.90112,
0.94165

0.22161,
0.29128,
0.41166

0.16163,
0.19169,
0.21531

0.22161,
0.29128,
0.41166

0.16163,
0.19169,
0.25311

LC42 -
1.00000,
1.00000,
1.00000

0.5743,
0.6657,
0.8022

0.3039,
0.3936,
0.5661

0.8027,
0.8705,
1.0000

0.9465,
1.1095,
1.2457

1.26119,
1.82510,
2.43314

LC43 - -
1.00000,
1.00000,
1.00000

1.00010,
1.31915,
1.55118

0.60813,
1.05912,
1.68219

1.88811,
2.55018,
3.16917

0.75103,
1.34165,
1.96111

LC44 - - -
1.00000,
1.00000,
1.00000

0.53816,
0.91413,
1.58316

0.60813,
1.05912,
1.68219

0.75013,
1.34615,
1.96111

LC45 - - - -
1.00000,
1.00000,
1.00000

0.41152,
0.63172,
1.17191

0.94615,
1.10915,
1.24517

LC46 - - - - -
1.00000,
1.00000,
1.00000

1.88181,
2.55108,
3.16197

LC47 - - - - - -
1.00000,
1.00000,
1.00000
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Table 6. Fuzzy aggregated pair-wise comparison matrix at level 2 for critical attributes.

LC51 LC52 LC53 LC54 LC55

LC51
1.00000,
1.00000,
1.00000

0.97110,
1.24175,
1.60194

1.05912,
1.58419,
2.22016

0.77313,
1.01118,
1.28181

0.761112,
0.912110,
1.096115

LC52 -
1.00000,
1.00000,
1.00000

0.63512,
0.91143,
1.34310

0.42713,
0.63315,
0.96610

0.34716,
0.49010,
0.87314

LC53 - -
1.00000,
1.00000,
1.00000

0.51416,
0.65715,
0.78146

0.52113,
0.65917,
0.91191

LC54 - - -
1.00000,
1.00000,
1.00000

0.55612,
0.64148,
0.81122

LC55 - - - -
1.00000,
1.00000,
1.00000

Table 7. Defuzzification matrix with alpha cut method and local weights.

Level 1 LC1 LC2 LC3 LC4 LC5 Weights

LC1 1.00000 2.55144 1.71017 2.42174 0.59193 0.240000

LC2 0.39115 1.00000 0.79164 0.97169 0.20173 0.095200

LC3 0.58176 1.25516 1.00000 1.05163 0.25132 0.120000

LC4 0.41120 1.02136 0.94167 1.00000 0.23157 0.103200

LC5 1.66186 4.82139 3.94195 4.21427 1.00000 0.441600

CR = 0.00250254

Table 8. Aggregated pair-wise comparison matrix at level 2 for domain and context.

Level 2 for 1 LC11 LC12 LC13 Weights

LC11 1.00000 0.81905 0.28139 0.183200

LC12 1.12130 1.00000 0.41111 0.223900

LC13 3.52124 2.43125 1.00000 0.592900

CR = 0.0062

Table 9. Aggregated pair-wise comparison matrix at level 2 for goals.

Level 2 for 2 LC21 LC22 Weights

LC21 1.00000 1.16911 0.5391000

LC22 0.85154 1.00000 0.4611000

C.R. = 0.001
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Table 10. Aggregated pair-wise comparison matrix at level 2 for design and infrastructure.

LC31 LC32 LC33 LC34 LC35 LC36 LC37 LC38 Weights

LC31 1.00000 1.409012 0.69001 0.60410 0.30002 0.52060 1.10069 0.34300 0.073300

LC32 0.67006 1.00000 0.67700 0.40143 0.37204 0.20033 0.64095 0.21051 0.049700

LC33 1.44070 1.47071 1.00000 1.29077 0.49305 0.85200 1.83064 0.21040 0.103100

LC34 1.56000 2.41307 0.77006 1.00000 0.96036 1.10024 1.35011 0.73190 0.127100

LC35 3.30306 2.68503 2.02603 1.03078 1.00000 0.71072 1.10028 0.43500 0.141400

LC36 1.89802 4.91808 1.17307 0.90071 1.39043 1.00000 2.38052 1.00473 0.172900

LC37 0.85540 1.53907 0.54405 0.74001 0.90679 0.41902 1.00000 0.26021 0.076000

LC38 2.91054 4.64900 4.67029 1.36631 2.29089 0.95048 3.81053 1.00000 0.256500

C.R. = 0.0333

Table 11. Aggregated pair-wise comparison matrix at level 2 for quality attributes.

LC41 LC42 LC43 LC44 LC45 LC46 LC47 Weights

LC41 1.00000 1.4912 0.69010 0.64010 0.30207 0.52608 1.16901 0.098700

LC42 0.67006 1.00000 0.6770 0.41403 0.37024 0.20033 0.64905 0.120700

LC43 1.44700 1.47701 1.00000 1.29077 0.49305 0.85200 1.83064 0.119600

LC44 1.56000 2.41370 0.77006 1.00000 0.96306 1.10204 1.35101 0.166500

LC45 3.30360 2.68503 2.02063 1.03708 1.00000 0.71702 1.10028 0.178500

LC46 1.89082 4.91088 1.17037 0.90071 1.39043 1.00000 2.38052 0.116000

LC47 0.85054 1.53907 0.54045 0.74001 0.90679 0.41925 1.00000 0.200000

C.R. = 0.03548

Table 12. Aggregated pair-wise comparison matrix at level 2 for critical attributes.

LC51 LC52 LC53 LC54 LC55 Weights

LC51 1.00000 1.26890 1.61240 1.02103 0.92004 0.221600

LC52 0.78081 1.00000 1.26903 0.66501 0.55003 0.159600

LC53 0.62002 0.78708 1.00000 0.65306 0.69000 0.144600

LC54 0.97901 1.50305 1.53000 1.00000 0.66405 0.211500

LC55 1.08605 1.81702 1.44903 1.50409 1.00000 0.262700

C.R. = 0.0069

Table 13. Overall weights and ranking of methods.

Level 1 Local Weights Level 2 Local Weights Global Weights Normalized Weights

LC1 0.240000

LC11 0.183200 0.043968 0.045086

LC12 0.223900 0.053736 0.055103

LC13 0.592900 0.142296 0.145915

LC2 0.095200
LC21 0.539000 0.051313 0.052618

LC22 0.461000 0.043887 0.045003
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Table 13. Cont.

Level 1 Local Weights Level 2 Local Weights Global Weights Normalized Weights

LC3 0.120000

LC31 0.073300 0.006978 0.007155

LC32 0.049700 0.004732 0.004852

LC33 0.103100 0.009815 0.010065

LC34 0.127100 0.012099 0.012407

LC35 0.141400 0.013461 0.013803

LC36 0.172900 0.016460 0.016879

LC37 0.076000 0.007235 0.007419

LC38 0.256500 0.024419 0.02504

LC4 0.103200

LC41 0.098700 0.010186 0.010445

LC42 0.120700 0.012456 0.012773

LC43 0.119600 0.012343 0.012657

LC44 0.166500 0.017183 0.01762

LC45 0.178500 0.018421 0.018889

LC46 0.116000 0.011971 0.012275

LC47 0.200000 0.020640 0.021165

LC5 0.441600

LC51 0.221600 0.097859 0.100348

LC52 0.159600 0.070479 0.072271

LC53 0.144600 0.063855 0.065479

LC54 0.211500 0.093398 0.095773

LC55 0.262700 0.116008 0.118958Symmetry 2021, 13, x FOR PEER REVIEW  13  of  20 
 

 

 

Figure 4. Graphical representation of overall weights. 

Table 14. Subjective cognition results of evaluators in linguistic terms. 

  AT1  AT2  AT3  AT4  AT5  AT6  AT7  AT8  AT9 

LC11 

5.120, 

7.140, 

8.720 

3.150, 

5.150, 

6.910 

2.820, 

4.640, 

6.640 

1.550, 

3.180, 

5.180 

5.120, 

7.140, 

8.720 

3.150, 

5.150, 

6.910 

2.820, 

4.640, 

6.640 

1.550, 

3.180, 

5.180 

1.450, 

3.180, 

5.180 

LC12 

4.280, 

6.370, 

8.370 

2.820, 

4.640, 

6.640 

1.550, 

3.180, 

5.180 

5.120, 

7.140, 

8.720 

3.150, 

5.150, 

6.910 

2.450, 

4.450, 

6.450 

2.910, 

4.640, 

6.550 

1.450, 

3.000, 

4.910 

1.180, 

2.820, 

4.820 

LC13 

4.270, 

6.270, 

8.140 

2.910, 

4.640, 

6.550 

1.450, 

3.000, 

4.910 

4.280, 

6.370, 

8.370 

2.820, 

4.640, 

6.640 

1.550, 

3.180, 

5.180 

5.120, 

7.140, 

8.720 

3.150, 

5.150, 

6.910 

2.450, 

4.450, 

6.450 

LC21 

5.360, 

7.360, 

9.120 

5.120, 

7.140, 

8.720 

3.150, 

5.150, 

6.910 

2.820, 

4.640, 

6.640 

2.910, 

4.640, 

6.550 

1.450, 

3.000, 

4.910 

4.280, 

6.370, 

8.370 

2.450, 

4.450, 

6.450 

2.820, 

4.640, 

6.640 

LC22 

4.640, 

6.640, 

8.550 

2.820, 

4.640, 

6.640 

1.550, 

3.180, 

5.180 

5.120, 

7.140, 

8.720 

3.150, 

5.150, 

6.910 

3.150, 

5.150, 

6.910 

2.820, 

4.640, 

6.640 

5.360, 

7.360, 

9.120 

2.450, 

4.450, 

6.450 

LC31 

3.120, 

5.000, 

7.140 

2.910, 

4.640, 

6.550 

1.450, 

3.000, 

4.910 

4.280, 

6.370, 

8.370 

2.450, 

4.450, 

6.450 

2.450, 

4.450, 

6.450 

2.910, 

4.640, 

6.550 

4.640, 

6.640, 

8.550 

2.450, 

4.450, 

6.450 

LC32 

4.280, 

6.370, 

8.370 

5.120, 

7.140, 

8.720 

3.150, 

5.150, 

6.910 

2.820, 

4.640, 

6.640 

5.360, 

7.360, 

9.120 

2.820, 

4.640, 

6.640 

2.820, 

4.640, 

6.640 

5.360, 

7.360, 

9.120 

1.180, 

2.820, 

4.820 

LC33 

4.280, 

6.370, 

8.370 

4.280, 

6.370, 

8.370 

2.450, 

4.450, 

6.450 

2.910, 

4.640, 

6.550 

4.640, 

6.640, 

8.550 

1.820, 

3.730, 

5.730 

2.820, 

4.640, 

6.640 

5.360, 

7.360, 

9.120 

1.180, 

2.820, 

4.820 

LC34 

4.270, 

6.270, 

8.140 

2.180, 

4.090, 

6.140 

2.820, 

4.640, 

6.640 

2.820, 

4.640, 

6.640 

5.360, 

7.360, 

9.120 

1.450, 

3.000, 

4.910 

4.280, 

6.370, 

8.370 

2.450, 

4.450, 

6.450 

2.450, 

4.450, 

6.450 

LC35 

4.280, 

6.370, 

8.370 

3.550, 

5.550, 

7.450 

1.820, 

3.730, 

5.730 

2.820, 

4.640, 

6.640 

5.360, 

7.360, 

9.120 

1.450, 

3.000, 

4.910 

4.280, 

6.370, 

8.370 

2.450, 

4.450, 

6.450 

1.180, 

2.820, 

4.820 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Normalized Weights

Normalized Weights

Figure 4. Graphical representation of overall weights.

Table 14 shows the subjective cognition results of evaluators in linguistic terms. Table 15
presents the normalized fuzzy decision matrix. Table 16 presents the weighted normalized
fuzzy decision matrix. Finally, Table 17 and Figure 5 shows the closeness coefficients to the
aspired level among the different alternatives.
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Table 14. Subjective cognition results of evaluators in linguistic terms.

AT1 AT2 AT3 AT4 AT5 AT6 AT7 AT8 AT9

LC11
5.120,
7.140,
8.720

3.150,
5.150,
6.910

2.820,
4.640,
6.640

1.550,
3.180,
5.180

5.120,
7.140,
8.720

3.150,
5.150,
6.910

2.820,
4.640,
6.640

1.550,
3.180,
5.180

1.450,
3.180,
5.180

LC12
4.280,
6.370,
8.370

2.820,
4.640,
6.640

1.550,
3.180,
5.180

5.120,
7.140,
8.720

3.150,
5.150,
6.910

2.450,
4.450,
6.450

2.910,
4.640,
6.550

1.450,
3.000,
4.910

1.180,
2.820,
4.820

LC13
4.270,
6.270,
8.140

2.910,
4.640,
6.550

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.820,
4.640,
6.640

1.550,
3.180,
5.180

5.120,
7.140,
8.720

3.150,
5.150,
6.910

2.450,
4.450,
6.450

LC21
5.360,
7.360,
9.120

5.120,
7.140,
8.720

3.150,
5.150,
6.910

2.820,
4.640,
6.640

2.910,
4.640,
6.550

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.820,
4.640,
6.640

LC22
4.640,
6.640,
8.550

2.820,
4.640,
6.640

1.550,
3.180,
5.180

5.120,
7.140,
8.720

3.150,
5.150,
6.910

3.150,
5.150,
6.910

2.820,
4.640,
6.640

5.360,
7.360,
9.120

2.450,
4.450,
6.450

LC31
3.120,
5.000,
7.140

2.910,
4.640,
6.550

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.450,
4.450,
6.450

2.910,
4.640,
6.550

4.640,
6.640,
8.550

2.450,
4.450,
6.450

LC32
4.280,
6.370,
8.370

5.120,
7.140,
8.720

3.150,
5.150,
6.910

2.820,
4.640,
6.640

5.360,
7.360,
9.120

2.820,
4.640,
6.640

2.820,
4.640,
6.640

5.360,
7.360,
9.120

1.180,
2.820,
4.820

LC33
4.280,
6.370,
8.370

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.910,
4.640,
6.550

4.640,
6.640,
8.550

1.820,
3.730,
5.730

2.820,
4.640,
6.640

5.360,
7.360,
9.120

1.180,
2.820,
4.820

LC34
4.270,
6.270,
8.140

2.180,
4.090,
6.140

2.820,
4.640,
6.640

2.820,
4.640,
6.640

5.360,
7.360,
9.120

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.450,
4.450,
6.450

LC35
4.280,
6.370,
8.370

3.550,
5.550,
7.450

1.820,
3.730,
5.730

2.820,
4.640,
6.640

5.360,
7.360,
9.120

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

1.180,
2.820,
4.820

LC36
4.270,
6.270,
8.140

2.910,
4.640,
6.550

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

3.150,
5.150,
6.910

2.820,
4.640,
6.640

5.360,
7.360,
9.120

2.450,
4.450,
6.450

LC37
5.360,
7.360,
9.120

2.910,
4.640,
6.550

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.820,
4.640,
6.640

LC38
4.280,
6.370,
8.370

5.120,
7.140,
8.720

3.150,
5.150,
6.910

2.820,
4.640,
6.640

5.360,
7.360,
9.120

3.150,
5.150,
6.910

2.820,
4.640,
6.640

5.360,
7.360,
9.120

1.180,
2.820,
4.820

LC41
4.270,
6.270,
8.140

2.910,
4.640,
6.550

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.450,
4.450,
6.450

2.910,
4.640,
6.550

4.640,
6.640,
8.550

2.450,
4.450,
6.450

LC42
5.360,
7.360,
9.120

5.120,
7.140,
8.720

3.150,
5.150,
6.910

2.820,
4.640,
6.640

5.360,
7.360,
9.120

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.820,
4.640,
6.640

LC43
4.280,
6.370,
8.370

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.910,
4.640,
6.550

4.640,
6.640,
8.550

3.150,
5.150,
6.910

2.820,
4.640,
6.640

5.360,
7.360,
9.120

1.180,
2.820,
4.820

LC44
4.270,
6.270,
8.140

2.910,
4.640,
6.550

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.450,
4.450,
6.450

2.910,
4.640,
6.550

4.640,
6.640,
8.550

2.450,
4.450,
6.450
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Table 14. Cont.

AT1 AT2 AT3 AT4 AT5 AT6 AT7 AT8 AT9

LC45
5.360,
7.360,
9.120

5.120,
7.140,
8.720

3.150,
5.150,
6.910

2.820,
4.640,
6.640

5.360,
7.360,
9.120

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.820,
4.640,
6.640

LC46
4.280,
6.370,
8.370

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.910,
4.640,
6.550

4.640,
6.640,
8.550

3.150,
5.150,
6.910

2.820,
4.640,
6.640

5.360,
7.360,
9.120

1.180,
2.820,
4.820

LC47
4.270,
6.270,
8.140

2.910,
4.640,
6.550

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.450,
4.450,
6.450

2.910,
4.640,
6.550

4.640,
6.640,
8.550

2.450,
4.450,
6.450

LC51
5.360,
7.360,
9.120

5.120,
7.140,
8.720

3.150,
5.150,
6.910

2.820,
4.640,
6.640

5.360,
7.360,
9.120

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.820,
4.640,
6.640

LC52
4.640,
6.640,
8.550

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.910,
4.640,
6.550

4.640,
6.640,
8.550

3.150,
5.150,
6.910

2.820,
4.640,
6.640

5.360,
7.360,
9.120

2.450,
4.450,
6.450

LC53
3.120,
5.000,
7.140

2.910,
4.640,
6.550

1.450,
3.000,
4.910

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.450,
4.450,
6.450

2.910,
4.640,
6.550

4.640,
6.640,
8.550

2.450,
4.450,
6.450

LC54
5.360,
7.360,
9.120

5.120,
7.140,
8.720

3.150,
5.150,
6.910

2.820,
4.640,
6.640

5.360,
7.360,
9.120

2.820,
4.640,
6.640

2.820,
4.640,
6.640

5.360,
7.360,
9.120

2.820,
4.640,
6.640

LC55
4.640,
6.640,
8.550

4.280,
6.370,
8.370

2.450,
4.450,
6.450

2.910,
4.640,
6.550

4.640,
6.640,
8.550

5.360,
7.360,
9.120

3.730,
5.730,
7.550

4.280,
6.370,
8.370

2.450,
4.450,
6.450

Table 15. The normalized fuzzy decision matrix.

AT1 AT2 AT3 AT4 AT5 AT6 AT7 AT8 AT9

LC11
0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.180,
0.430,
0.74 0

0.210,
0.450,
0.730

LC12
0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

0.120,
0.350,
0.660

0.300,
0.530,
0.790

LC13
0.560,
0.780,
0.950

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.560,
0.780,
0.950

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.230,
0.470,
0.780

0.220,
0.490,
0.800

0.260,
0.470,
0.720

LC21
0.460,
0.690,
0.910

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.180,
0.430,
0.74 0

LC22
0.460,
0.680,
0.890

0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

0.120,
0.350,
0.660

LC31
0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.180,
0.430,
0.74 0

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.230,
0.470,
0.780

0.220,
0.490,
0.800

LC32
0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.180,
0.430,
0.740
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Table 15. Cont.

AT1 AT2 AT3 AT4 AT5 AT6 AT7 AT8 AT9

LC33
0.560,
0.780,
0.950

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.230,
0.470,
0.780

0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

0.120,
0.350,
0.660

LC34
0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.560,
0.780,
0.950

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.230,
0.470,
0.780

0.220,
0.490,
0.800

LC35
0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.180,
0.430,
0.74 0

LC36
0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.180,
0.430,
0.74 0

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

LC37
0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

0.120,
0.350,
0.660

0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

LC38
0.560,
0.780,
0.950

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.230,
0.470,
0.780

0.220,
0.490,
0.800

0.560,
0.780,
0.950

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.230,
0.470,
0.780

LC41
0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.180,
0.430,
0.74 0

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

LC42
0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

0.120,
0.350,
0.660

0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

LC43
0.230,
0.470,
0.780

0.220,
0.490,
0.800

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.230,
0.470,
0.780

0.220,
0.490,
0.800

0.460,
0.690,
0.910

0.320,
0.580,
0.850

LC44
0.560,
0.780,
0.950

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.230,
0.470,
0.780

0.220,
0.490,
0.800

0.560,
0.780,
0.950

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.230,
0.470,
0.780

LC45
0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.180,
0.430,
0.74 0

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

LC46
0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.180,
0.430,
0.74 0

LC47
0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

0.120,
0.350,
0.660

LC51
0.560,
0.780,
0.950

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.230,
0.470,
0.780

0.560,
0.780,
0.950

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.230,
0.470,
0.780

0.220,
0.490,
0.800

LC52
0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

0.210,
0.450,
0.730

0.180,
0.430,
0.740

LC53
0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

0.460,
0.680,
0.890

0.370,
0.630,
0.900

0.420,
0.690,
0.950

0.210,
0.460,
0.730

0.120,
0.350,
0.660
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Table 15. Cont.

AT1 AT2 AT3 AT4 AT5 AT6 AT7 AT8 AT9

LC54
0.230,
0.470,
0.780

0.220,
0.490,
0.800

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.230,
0.470,
0.780

0.220,
0.490,
0.800

0.460,
0.690,
0.910

0.320,
0.580,
0.850

0.390,
0.620,
0.870

LC55
0.560,
0.780,
0.950

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.230,
0.470,
0.780

0.560,
0.780,
0.950

0.410,
0.680,
0.910

0.370,
0.620,
0.890

0.230,
0.470,
0.780

0.220,
0.490,
0.800

Table 16. The weighted normalized fuzzy decision matrix.

AT1 AT2 AT3 AT4 AT5 AT6 AT7 AT8 AT9

LC11
0.054,
0.120,
0.260

0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.041,
0.100,
0.260

0.045,
0.098,
0.239

0.041,
0.095,
0.242

0.041,
0.100,
0.260

0.045,
0.098,
0.239

LC12
0.043,
0.096,
0.196

0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.041,
0.100,
0.260

0.045,
0.098,
0.239

0.041,
0.095,
0.242

LC13
0.041,
0.095,
0.242

0.102,
0.137,
0.299

0.114,
0.144,
0.306

0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

LC21
0.061,
0.121,
0.233

0.027,
0.080,
0.197

0.051,
0.104,
0.168

0.102,
0.137,
0.299

0.114,
0.144,
0.306

0.044,
0.088,
0.182

0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.034,
0.091,
0.200

LC22
0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.041,
0.100,
0.260

0.045,
0.098,
0.239

0.041,
0.095,
0.242

0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

LC31
0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.041,
0.100,
0.260

0.045,
0.098,
0.239

LC32
0.102,
0.137,
0.299

0.114,
0.144,
0.306

0.044,
0.088,
0.182

0.041,
0.095,
0.198

0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.041,
0.095,
0.242

LC33
0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.041,
0.100,
0.260

0.045,
0.098,
0.239

0.041,
0.095,
0.242

0.044,
0.088,
0.182

0.041,
0.095,
0.198

0.061,
0.121,
0.233

LC34
0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.041,
0.095,
0.242

LC35
0.102,
0.137,
0.299

0.114,
0.144,
0.306

0.044,
0.088,
0.182

0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.041,
0.100,
0.260

0.045,
0.098,
0.239

0.041,
0.095,
0.242

LC36
0.027,
0.080,
0.197

0.051,
0.104,
0.168

0.114,
0.144,
0.306

0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

LC37
0.054,
0.120,
0.260

0.027,
0.080,
0.197

0.051,
0.104,
0.168

0.102,
0.137,
0.299

0.114,
0.144,
0.306

0.044,
0.088,
0.182

0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.034,
0.091,
0.200

LC38
0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.041,
0.100,
0.260

0.045,
0.098,
0.239

0.041,
0.095,
0.242

0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296
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Table 16. Cont.

AT1 AT2 AT3 AT4 AT5 AT6 AT7 AT8 AT9

LC41
0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.041,
0.100,
0.260

0.045,
0.098,
0.239

LC42
0.102,
0.137,
0.299

0.114,
0.144,
0.306

0.044,
0.088,
0.182

0.041,
0.095,
0.198

0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.041,
0.095,
0.242

LC43
0.027,
0.080,
0.197

0.051,
0.104,
0.168

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.102,
0.137,
0.299

0.114,
0.144,
0.306

0.044,
0.088,
0.182

0.041,
0.095,
0.198

0.061,
0.121,
0.233

LC44
0.043,
0.096,
0.196

0.017,
0.059,
0.152

0.036,
0.072,
0.162

0.044,
0.088,
0.182

0.027,
0.080,
0.197

0.051,
0.104,
0.168

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.041,
0.095,
0.242

LC45
0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.041,
0.100,
0.260

0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.041,
0.100,
0.260

0.045,
0.098,
0.239

LC46
0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.041,
0.095,
0.242

LC47
0.102,
0.137,
0.299

0.114,
0.144,
0.306

0.044,
0.088,
0.182

0.041,
0.095,
0.198

0.102,
0.137,
0.299

0.114,
0.144,
0.306

0.044,
0.088,
0.182

0.041,
0.095,
0.198

0.061,
0.121,
0.233

LC51
0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.041,
0.100,
0.260

0.125,
0.155,
0.344

0.041,
0.095,
0.242

0.059,
0.121,
0.296

0.041,
0.100,
0.260

0.045,
0.098,
0.239

LC52
0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.041,
0.095,
0.242

LC53
0.102,
0.137,
0.299

0.114,
0.144,
0.306

0.044,
0.088,
0.182

0.041,
0.095,
0.198

0.102,
0.137,
0.299

0.114,
0.144,
0.306

0.044,
0.088,
0.182

0.041,
0.095,
0.198

0.061,
0.121,
0.233

LC54
0.027,
0.080,
0.197

0.051,
0.104,
0.168

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.027,
0.080,
0.197

0.051,
0.104,
0.168

0.114,
0.144,
0.306

0.125,
0.155,
0.344

0.041,
0.095,
0.242

LC55
0.043,
0.096,
0.196

0.017,
0.059,
0.152

0.036,
0.072,
0.162

0.044,
0.088,
0.182

0.041,
0.095,
0.198

0.061,
0.121,
0.233

0.034,
0.091,
0.200

0.032,
0.089,
0.200

0.063,
0.120,
0.233

Table 17. Closeness coefficients to the aspired level among the different alternatives.

Alternatives d+i d−i Gap Degree of CC+i Satisfaction Degree of CC−i

AT1 1.249124 1.333548 0.5164578 0.4832657
AT2 0.699528 0.840586 0.5476598 0.4532564
AT3 0.787654 1.484745 0.6535644 0.3452657
AT4 2.168547 1.484856 0.4125471 0.5923547
AT5 2.005654 1.536954 0.4332654 0.5652547
AT6 0.445476 0.392356 0.4645687 0.5345854
AT7 0.788574 1.484657 0.4125475 0.4522564
AT8 2.160256 1.536235 0.4332654 0.3452544
AT9 2.035657 0.397596 0.4645288 0.5912556
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Figure 5. Graphical representation of closeness coefficients to the aspired level among the differ-
ent alternatives.

Consequently, RAFAALS (denoted by AT4) was found to be best among nine compara-
tive alternatives because it offers the best functionality with an efficiency score of 0.5923547
among the different Ambient Assisted Living system’s symmetrical models. Alternative
AT4 was followed by AT9, AT5, AT6, AT1, AT2, AT7, AT3, and AT8 with performance
scores of 0.5912556, 0.5652547, 0.5345854, 0.4832657, 0.4532564, 0.4522564, 0.3452657 and
0.3452544, respectively.

5. Conclusions

AAL symmetrical models have progressed as an outcome of the emergence of global
population ageing and the change of direction of technological advances. It lies at the
intersection of technological innovation and age advancement. This multidisciplinary area
of scientific research sees technology as a way of enhancing the lives of older people and
promoting their involvement as involved members of society. This paper explores the
principles of the Ambient Assisted Living area. We tested predefined categories to illustrate
the key areas that need to change due to the advancement of AAL systems. We suggest
that there is a lack of standardization in several of the available frameworks. This is the key
deterrent in achieving the desired efficacy of the models. Maintenance and interoperability
occur in all of the models. In some systems, there is a need for facility, interoperability,
and independence. For a specific design model, the practitioners need to focus on a solid
standard and develop a robust infrastructure. One of the crucial aspects of AAL systems
is coping with data flow, which remains a largely unexplored domain and needs more
dedicated research.
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Abstract: Stem cell transplantation therapy may inhibit inflammation during stroke and increase the
presence of healthy cells in the brain. The novelty of this work, is to introduce a new mathematical
model of stem cells transplanted to treat stroke. This manuscript studies the stability of the
mathematical model by using the current biological information on stem cell therapy as a possible
treatment for inflammation from microglia during stroke. The model is proposed to represent
the dynamics of various immune brain cells (resting microglia, pro-inflammation microglia, and
anti-inflammation microglia), brain tissue damage and stem cells transplanted. This model is based
on a set of five ordinary differential equations and explores the beneficial effects of stem cells
transplanted at early stages of inflammation during stroke. The Runge–Kutta method is used to
discuss the model analytically and solve it numerically. The results of our simulations are qualitatively
consistent with those observed in experiments in vivo, suggesting that the transplanted stem cells
could contribute to the increase in the rate of ant-inflammatory microglia and decrease the damage
from pro-inflammatory microglia. It is found from the analysis and simulation results that stem cell
transplantation can help stroke patients by modulation of the immune response during a stroke and
decrease the damage on the brain. In conclusion, this approach may increase the contributions of
stem cells transplanted during inflammation therapy in stroke and help to study various therapeutic
strategies for stem cells to reduce stroke damage at the early stages.

Keywords: cell transplantation; cytokines; ischemic stroke; numerical simulation; runge-kutta
method; stability analysis

1. Introduction

The numbers of stroke-related deaths are increasing, and globally, stroke is now one of
the topmost causes of disability and death [1–3]. During an ischemic stroke, the process by
which neurons and glial cells die is known as apoptosis or necrosis [4,5]. Resident microglia
are triggered by these dead cells and cause the death of other cells based on environmental
toxic substances [5–8]. The components of the brain that prevent the invasion of several
diseases are the microglial cells, and these cells can also help prevent stroke [7,9]. Dead
cells are phagocytized by activated microglia, which also produce toxic cytokines that
impact healthy cells [4,9]. The pathophysiology of ischemic stroke is evident through the
inflammatory response [5,10]. Directly after arterial occlusion, inflammation begins in the
vasculature and then continues throughout the brain, and systemically throughout the
disease stages [10,11]. The body generates tightly regulated immune responses that confer
detrimental as well as beneficial properties after stroke [12]. Some of the effects of microglia
activation include inhibition of brain repair and/or considerable brain damage, including
neurogenesis [11,12]. Due to variability effects on inflammatory processes, the immune
response following a stroke serves as a strong determinant of brain restoration or increase
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the damage in brain [9,11,13]. Thus, inducing stroke recovery-directed modulation of the
immune response can offer a potential therapeutic approach [11].

Recently, neurorestorative stem cell-based treatment has been the focus of many stroke
studies [1,7]. The extraordinary sophistication of the pathophysiology of ischemic strokes
reveals pleiotropic effects on neural stem cells (NSCs), which are potentially therapeutic for
both the early (subacute) and chronic phases of stroke [4,7,14]. In addition, after an ischemic
stroke for newborn neurons, various obstacles are produced by the generated pathological
condition, which makes the use of endogenous repair mechanisms challenging [7,10,15].
Newly formed neurons tend to die, with just ∼ 0.2% survival rate for the remaining cells,
while others live up to 5 weeks after ischemia [10].

Microglia can be polarized toward the anti-inflammatory and angiogenic phenotype
(Ma) with stem cell transplantation [11]. In one study of ischemic rats, the dependent
suppression of inflammation emerged as a classical factor secreted by Ma microglia
after the demonstration of intracerebral NSC transplantation and was associated with
enhanced angiogenesis and functional recovery in terms of microglia polarization [11].
Currently, it is believed that pro-inflammatory microglia (Mp) can exacerbate brain injury,
while anti-inflammatory Ma microglia are neuroprotective [4,12,16,17]. Thus, these dual
attributes render them appropriate for use in enhancing post-stroke brain recovery, which
can be achieved by shifting their balance from the detrimental Mp to the beneficial Ma
phenotype [18]. Evidence also shows that the polarization status of microglia can be altered
by stem cells (SCs) and, as such, the observed beneficial actions of SCs can be attributed
to skewing microglia toward a neuroprotective and neuroregenerative phenotype [11,14].
Thus, it becomes imperative to elucidate the mechanisms of how SCs respond to tissue
damage to understand the crosstalk between inflammation and SCs [10,11]. Additionally,
a possible intervention point for regenerative therapies can be met through tweaking the
effects of inflammation on stem cell behavior [19].

Studies have shown that stroke SCs can offer a viable solution in the future [11,14,15] and
correspondingly, scholars have proposed several models of inflammatory processes [5,20,21].
For example, Di Russo et al. [5] modeled the dynamics of inflammation from a stroke:
using (i) necrosis and apoptosis, (ii) the activation and inactivation of resident microglia,
and (iii) the ratio of neutrophils and macrophages in the tissue, the dynamics of dead cell
densities were investigated. Many scholars have also suggested quantitative methods,
such as the use of statistical and computational methods, to study adult neurogenesis
[22–24]. Along the same lines, systems of a hierarchical cell-constructing model were
studied by Nakata et al. [25], where the structure system was controlled by the adult cells. Ziebell
et al. [23] introduced a mathematical model that portrayed the various stages of the adult
hippocampus and the evolving dynamics of SCs.

The basic framework for our study is a mathematical model of the interplay between
microglia and endogenous NSCs during a stroke. Alqarni et al. [4] evaluated potential
mechanisms to regulate and stabilize the treatment of microglia inflammation associated
with an exogenous stem cell transplantation stroke. Alharbi and Rambely used ordinary
differential equations in the formulation of mathematical models to describe the effect of
vitamins on strengthening the immune system and its function in delaying the development
of tumour cells [26–28]. In addition, Ordinary differential equations (ODEs) have been used
to explain disease behavior over time, which has improved therapeutic strategies [4,28,29].

We aim to enhance understanding of the symmetry and antisymmetry of the
relationship between the functions of pro-inflammatory and anti-inflammatory microglia
with the effect of transplanted stem cells on the immunomodulation of microglia functions
during a stroke. We modified a mathematical model for the therapy of the inflammation
process in stroke using ODEs. In this paper, we study the roles of stem cell transplantation
dynamics via inhibition of inflammation from microglia and stimulate the beneficial
function of microglia during a stroke. We investigate the possible mechanisms involved in
the dynamics of the transplanted stem cell functions through immune activities.
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This paper is organized as follows: In Section 2, a mathematical model called
SCs–damage–resting microglia–pro-inflammation microglia– anti-inflammation microglia
(SDRPA) is presented. In Section 3, we study the model’s equilibrium points. In Section 4,
we investigate the model’s stability. In Section 5, numerical experiments are discussed.
Finally, the study’s conclusions are presented in Section 6.

2. Mathematical Representation of the SDRPA Model

In this section, we give a dynamic model for the explanation of the use of transplanted
SCs to treat the inflammation produced by microglia during a stroke. The suggested model
of therapy stem cell dynamics transplanted in onset stroke shows the interplay between
the transplanted SCs and microglia in stroke. The mathematical model is a structure of
five differential equations, which are analyzed to find the equilibrium points and to study
their stability. Several previous studies have shown the possible therapeutic benefits of
transplanted SCs, where the transplantation of pluripotent stem cells in stroke patients
has many functions. One of the potential therapeutic of this type of treatment is the
immunomodulation of microglia functions during a stroke [11,30].

There are three options for differentiating SCs [31] : (1) symmetrical self-renewal
with the possibility σS of two SCs, (2) asymmetric self-renewal with the probability of
σA, where one of the cells denotes the daughter residue a stem cell, whereas another cell
does not make this discrimination, and (3) symmetric involvement differentiation with
probability of σD, where a stem cell has the ability to divide to be two involvement cells.
Here we suppose that σS + σA + σD = 1 [31]. In this manuscript, we assumed that SCs S
reproduce at the rate σ and die at the rate γs. Thus, transplanted SCs have considerable
influence on the neuroinflammation caused by a stroke because they secrete relevant
cytokines to support the anti-inflammation of microglial activation to transform the Ma
to Mp phenotype [32]. Therefore, the terms α4, α5 and α6 were designated to describe the
direct interactions between SCs and the microglia Ma and Mp. The following equation
describes transplanted SCs’ behavior during a stroke:

dS
dt

= [σ− α5Ma − α6Mp − γs]S.

where σ indicates the reproduction rate of SCs, α5 signifies the stimulating and supporting
rate of SCs for Ma, while α6 indicates the rate of elimination of SCs due to the Mp and γs
indicates the rate of death of SCs.

During an ischemic stroke, microglia are reactivated and polarized to either a classical
type, Mp, by pro-inflammatory cytokines that cause an immune response and lead to
secondary damage in the brain; or to a substitutional type, Ma, an anti-inflammatory state
caused through anti-inflammatory cytokines, that reduces inflammation and boosts cell
repair [33–36]. For mathematical modeling purposes, we supposed that resting immune
cells of microglia Mr were produced at a constant rate of α0, indicating the source rate of
the resting microglia cells, which are dying at a constant ratio of γ0.

The given differential equation describes resting microglia cells’ behavior:

dMr

dt
= α0 − (α1 + α2 + γ0)Mr.

Microglia that are activated by cytokines are caused through dead cells: the Mp
phenotype is activated through signals of pro-inflammation cytokine α1 and the Ma
phenotype is activated by signals of anti-inflammation cytokine α2. Moreover, a shift
from Mp to Ma occurs at the rate of parameter α3, where α3 is the beginning of transference
from pro-inflammatory microglia to anti-inflammatory microglia. The modulation of the
immune response is considered an important function of a possible therapeutic approach
to improve brain recovery post-stroke [11,19]. Exogenous stem cell transplantation has
been demonstrated to modulate the inflammatory immune microenvironment across the
ischemic regions of the brain by modulating the functions of the immune cells during the
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stroke [11,19,33]. Direct transplant of SCs into the brain after ischemia decreased many
inflammatory and immune responses and switched the balance from a pro-inflammatory
to anti-inflammatory response of microglia [37]. We present these functions by the rate of
parameters α4 and α5. The following equations representing microglia Ma and Mp thus
take the form:

dMp

dt
= α1Mr − (α4S + δ1D + α3 + γ1)Mp,

dMa

dt
= α2Mr + (α5S− γ2)Ma + (α3 + α4S)Mp.

where, δ1 signifies the rate of damage from microglia related to the production of cytokines,
α4 denotes the rate of amendment of SCs for the function of Mp, and γ1 and γ2 are the
natural death rate of Mp and Ma, respectively.

Ischemic stroke injury is regarded as a major factor contributing to tissue damage. We
assume that the SDRPA model shows that activated microglial cells play complex functions
displaying both harmful and beneficial effects, which could include from elimination of cell
debris by phagocytosis process and the release of inflammatory cytokines that lead to tissue
destruction and increase cell death beyond the primary ischemic region [12,34]. Therefore,
the dynamics of dead brain cells after stroke can be explained via the differential equation:

dD
dt

= [(δ2 − r1)Mp − r2Ma]D.

where δ2 indicates the death rate of brain cells due to Mp; and r1 and r2 refers to the
elimination rates of the damaged cells by Mp and Ma, respectively. Thus, the SDRPA model
can be written in the following form:

dS
dt

= [σ− α5Ma − α6Mp − γs]S, (1)

dD
dt

= [(δ2 − r1)Mp − r2Ma]D, (2)

dMr

dt
= α0 − (α1 + α2 + γ0)Mr, (3)

dMp

dt
= α1Mr − (α4S + δ1D + α3 + γ1)Mp, (4)

dMa

dt
= α2Mr + (α5S− γ2)Ma + (α3 + α4S)Mp. (5)

The initial conditions in this model are: S(0) = S∗, D(0) = D∗, Mr(0) = M∗r , Mp(0) = M∗p,
and Ma(0) = M∗a , 0 ≤ t < ∞ where S(t), D(t), Mr(t), Mp(t), and Ma(t) represent the
stem cell concentration, dead cells, resting microglia, pro-inflammation microglia, and the
anti-inflammation microglia, respectively.

The proposed dynamic model of SDRPA demonstrated by (1)–(5), represents the
population behavior of the transplanted SCs, immune cells, and damaged cells in a stroke.
Thus, the variables S(t), D(t), Mr(t), Mp(t), and Ma(t) and all parameters are non-negative
real, real, and equal to or less than one. The invariant area of SDRPA becomes:

Ψ = (S, D, Mr, Mp, Ma) ∈ <5
+ (6)

3. The SDRPA Model’s Equilibrium Points

We determine the fixed points of the SDRPA system (1)–(5) from the following:

• dS
dt = 0⇔

[σ− α5Ma − α6Mp − γs]S = 0, (7)

• dD
dt = 0⇔
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[(δ2 − r1)Mp − r2Ma]D = 0, (8)

• dMr
dt = 0⇔

α0 − (α1 + α2 + γ0)Mr = 0, (9)

• dMp
dt = 0⇔

α1Mr − (α4S + δ1D + α3 + γ1)Mp = 0, (10)

• dMa
dt = 0⇔

α2Mr + (α5S− γ2)Ma + (α3 + α4S)Mp = 0. (11)

The equilibrium points of SDRPA (1)–(5) calculate by solving Equations (7)–(11), we
obtain three positive real points of equilibrium by using MATHEMATICA, while the other
solutions will be negative. Thus, the first positive equilibrium point is given by:

Q1(S, D, Mr, Mp, Ma) =

(
0, 0,

α0

z
,

α0α1

z(α3 + γ1)
,

α0(α1α3 + α2(α3 + γ1))

z(α3 + γ1)γ2

)
.

where

z = α1 + α2 + γ0. (12)

Next, we represent the second positive equilibrium point as follows:

Q2(S, D, Mr, Mp, Ma) =

(
0,

q
r2 α2 δ1

,
α0

z
,− r2α0α2

z p
, α0

α2(r1 − δ2)

z p

)
,

where

p = (r2α3 + γ2(r1 − δ2)) < 0,

q = −r2(α1α3 + α2(α3 + γ1)) + α1γ2(−r1 + δ2).

The third positive equilibrium point is obtained as follows:

Q3(S, D, Mr, Mp, Ma) =

(
β3

β1
, β2,

α0

z
, r2β0, (δ2 − r1)β0

)
,

where

β0 =
ω

α5(−r1 + δ2) + r2α6
> 0, β1 = (r2α4 + α5(−r1 + δ2)) > 0,

β2 =
1

r2zδ1β1ω
[(r2

1 + δ2
2)α0α1α2

5 + r2
2α4(α0(α1 + α2)α6 − zγ1ω)

+r2(−r1 + δ2)(α0α5(α2α4 + α1(α4 + α6)))− r1(2α0α1α2
5δ2)

−(−r1 + δ2)r2z(α5(α3 + γ1) + α4γ2)ω] < 0,

β3 = −p− α0α2(r2α6 + α5(δ2 − r1))

zω
> 0, ω = −γs + σ > 0.

Proposition 1. We assume that the equilibrium points for the SDRPA system,
S; D; Mr; Mp; Ma > 0 are satisfied under the conditions:

• r1 < δ2
• γs < σ
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• α0α2(r2α6+α5(δ2−r1))
zω < γ2(−r1 + δ2)− r2α3

• r2α3 < γ2(δ2 − r1))
• r2(α1α3 + α2(α3 + γ1)) < γ2α1(δ2 − r1)

Non-negative real, steady states will then, and only then, exist.

We can study the stability of equilibrium points if they continue to exist constantly
over time or constantly change in equilibrium in one direction. We defined three steady
states as follows:

Definition 1. We define the resting microglia activation in a normal brain as the absence of a high
activation for these cells when stroke occurs into pro-inflammation microglia and anti-inflammation
microglia, the steady-state Mr; Mp; Ma > 0 and D, S = 0 implies the functions of the microglia in
the onset of a stroke is normal and the microglia do not cause any damage in the brain.

Definition 2. We define the starting of the damage by the increased rate of pro-inflammation
cytokines where the existence of high activation of microglia will cause damage in brain, the
steady-states D; Mr; Mp; Ma > 0, and S = 0 imply the damage of the brain cells from the
pro-inflammation of microglia by the damaged brain cells from inflammation by microglia due to a
stroke without stem cells transplantation.

Definition 3. We define the functions of transplanted stem cells on modulation of microglia
responses in the brain after stroke, the steady-state of the forms S; D; Mr; Mp; Ma > 0 is defined by
the role of stem cell transplantation in inflammation.

4. The Equilibrium Points’ Stability of the SDRPA Model

A stability study of the SDRPA model for the equilibrium points is performed. By
applying the Hartman–Grobman theorem concept [38], the system’s 5× 5 Jacobian matrix
for the eigenvalues associated with transplanted SCs equilibrium in the brain after a stroke
(1)–(5) is given by:

J[τ] =




FS[ϕ] FD[ϕ] FMr [ϕ] FMp [ϕ] FMa [ϕ]

GS[ϕ] GD[ϕ] GMr [ϕ] GMp [ϕ] GMa [ϕ]

HS[ϕ] HD[ϕ] HMr [ϕ] HMp [ϕ] HMa [ϕ]

KS[ϕ] KD[ϕ] KMr [ϕ] KMp [ϕ] KMa [ϕ]

LS[ϕ] LD[ϕ] LMr [ϕ] LMp [ϕ] LMa [ϕ]




.

where ϕ = [S, D, Mr, Mp, Ma], F[ϕ] = dS
dt , G[ϕ] = dD

dt , H[ϕ] = dMr
dt , K[ϕ] =

dMp
dt , and

L[ϕ] = dMa
dt .

Theorem 1. Given that the function g : Ψ→ <5
+ where Ψ is a domain in <5

+, and assuming that
Q1 ∈ Ψ is an equilibrium point, where one eigenvalue of the Jacobian matrix has a non-negative
real part at minimum. Therefore, Q1 indicates an unstable equilibrium point of g.
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Proof. The Jacobian matrix J calculated at the first equilibrium point Q1 yields: J[Q1] =


a11 0 0 0 0
0 a22 0 0 0
0 0 −z 0 0

− α0α1α4
z(α3+γ1)

− α0α1δ1
z(α3+γ1)

α1 −α3 − γ1 0
a15 0 α2 α3 −γ2




where

a11 = −α0(α2α5(α3 + γ1) + α1(α3α5 + α6γ2))

z(α3 + γ1)γ2
− γs + σ,

a22 = − r2α0(α1α3 + α2(α3 + γ1))

z(α3 + γ1)γ2
+

α0α1(−r1 + δ2)

z(α3 + γ1)
,

a15 =
α0α1α4

z(α3 + γ1)
+

α0α5(α1α3 + α2(α3 + γ1))

z(α3 + γ1)γ2
,

z = (α1 + α2 + γ0).

We determine the eigenvalues of the matrix J[Q1] as follows:

λ1 = −z < 0,

λ2 = −α0(r2(α1 + α2)α3 + r2α2γ1 + α1γ2(r1 − δ2))

z(α3 + γ1)γ2
> 0,

λ3 = −α0(α2α5(α3 + γ1) + α1(α3α5 + α6γ2))

z(α3 + γ1)γ2
− γs + σ < 0,

λ4 = −γ2 < 0, λ5 = −(α3 + γ1) < 0.

From Proposition 1, the equilibrium points, it is obvious that λ2 > 0. Thus, J(Q1)
has at least one positive root, which denotes that the second equilibrium point Q1
is unstable.

Theorem 2. Given the function g : Ψ → <5
+, where Ψ is a domain in <5

+, and assuming that
Q2 ∈ Ψ is an equilibrium point, then one eigenvalue of the Jacobian matrix has a non-negative real
part at minimum. Therefore, Q2 indicates an unstable equilibrium point of g.

Proof. The Jacobian matrix J calculated at the second equilibrium point Q2 yields: J[Q2] =


b11 0 0 0 0
0 0 0 b24 − q

α2δ1
0 0 −z 0 0

υα4 υδ1 α1
α1 p
r2α2

0

− α0α2β1
Zp 0 α2 α3 −γ2




where

b11 = ω +
α0α2(−r1α5 + r2α6 + α5δ2)

zp
, υ =

r2α0α2

zp
, b24 =

(−r1 + δ2)q
r2α2δ1

.

The corresponding characteristic equation of the Jacobian J[Q2], is specified by:

(b11 − λ)(−z− λ)(κ0 + κ1λ + κ2λ2 + λ3) = 0.

where

κ2 = − p α1

r2 α2
+ γ2, κ1 =

−p α1 γ2 + q υ (r1 − δ2)

r2 α2
, κ0 =

q v p
r2 α2

.

Thus, we can obtain the first two eigenvalues:

λ1 = ω +
α0α2(−r1α5 + r2α6 + α5δ2)

zp
> 0, λ2 = −z < 0.
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From Proposition 1, the equilibrium points, it is obvious that λ1 > 0. Thus, J(Q2) has at
least one positive root, which denotes that the second equilibrium point Q2 is unstable.

Theorem 3. Given the function g : Ψ → <5
+, where Ψ denotes a domain in <5

+, and assuming
that Q3 ∈ Ψ indicates an equilibrium point, all the Jacobian matrix’s eigenvalues have negative real
parts at the equilibrium point Q3. Therefore, Q3 is assumed as a stable equilibrium point of g.

Proof. The Jacobian matrix J calculation at the third equilibrium point Q3 yields: J[Q3] =


0 0 0 c14 c15
0 0 0 c24 c25
0 0 −z 0 0

c41 c42 α1 c44 0
c51 0 α2 c54 c55




where

c14 = − β3

β1
α6 < 0, c24 = β2(−r1 + δ2) > 0

c15 = − β3

β1
α5 < 0, c25 = −β2r2 < 0, c41 = −β0r2α4 < 0,

c42 = −β0r2δ1 < 0, c44 = −α3 −
β3

β1
α4 − γ1 − β2δ1 < 0,

c51 = β0β1 > 0, c54 = α3 +
β3

β1
α4 > 0,

c55 =
β3

β1
α5 − γ2 < 0.

The characteristic equation can be written as:

(z + λ)(λ4 + η3λ3 + η2λ2 + η1λ + η0) = 0, (13)

Here,

η0 = c42c51M0 > 0, η1 = c44M6 + c41M4 − c42M5 > 0,

η2 = M1 + M2 > 0, η3 = −M3 > 0.

where,

M0 = c15c24 − c14c25 < 0, M1 = c14c41 − c24c42 > 0,

M2 = −c15c51 + c44c55 > 0, M3 = c44 + c55 < 0,

M4 = c15c54 − c14c55 < 0, M5 = c25c54 − c24c55 > 0,

M6 = c15c51 < 0.

Thus, we can determine the first eigenvalue:

λ1 = −z < 0.

Thus, we can use the Routh–Hurwitz theorem for λ4 + η3λ3 + η2λ2 + η1λ + η0 =
0 [39], giving

∣∣∣∣∣∣∣∣∣∣

λ4 1 η2 η0
λ3 η3 η1 0
λ2 ξ1 η0 0
λ1 ξ2 0 0
λ0 η0 0 0

∣∣∣∣∣∣∣∣∣∣

.
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Thus, the essential and adequate conditions of all roots contain negative real parts
ηi (i = 1; 3; 4) > 0 and ∆ > 0. Then,

∆ = c42c51M0(−c42c51M0M2
3 − (M1 + M2)M3(c41M4 − c42M5

+ c44M6)− (c41M4 − c42M5 + c44M6)
2) > 0

From Proposition 1,

ξ1 =
η3η2 − η1

η3
> 0, ξ2 =

ξ1η1 − η0η3

ξ1
> 0

where

ξ1 =
(M1 + M2)M3 + c41M4 − c42M5 + c44M6

M3
> 0

ξ2 = c41M4 − c42M5 + c44M6 +
c42c51M0M2

3
(M1 + M2)M3 + c41M4 − c42M5 + c44M6

> 0

Equation (13) has no roots with positive real parts, and only one of its eigenvalues
is negative in view of the positive signs of all the coefficients in the first column. The
equilibrium point Q3 is therefore stable.

Remark 1. The impact of using SCs transplant on the functions of microglia in stroke onset,
represented by the dynamic SDRPA model, can be summarized as follows:

• Theorem 1 indicates that the damage, D, can penetrate the SDRPA model, if λ2 > 0.
• Theorem 2 indicates that the damage, D > 0, penetrated the brain.
• Theorem 3 indicates that stem cell transplantation, S > 0, modulates the inflammatory

environment in a stroke, D > 0.
• The SDRPA model is considered stable when the immunomodulation from transplanted stem

cells can be one of the mechanisms of post-stroke recovery.

5. Numerical Results and Analysis

This section discusses the utilization of computational models to assess which ones
affect the model’s behavior and thus explore the numerical solutions of the system ((1)–(5)).

5.1. Determination of Parameters

The SDRPA model involves 18 parameters, including five parameters for the initial
conditions of each compartment. Herein, the researchers list several parameters which can
be assessed using the experimental studies. Furthermore, for solving the system of ordinary
differential equations ((1)–(5)), other parameter values were obtained by simulations
through the Software MATHEMATICA with the command NDSolve. The purpose was
to assess the SCs’ ability to control the functions of immune cells during a stroke. From
the simulation of SDRPA model, it can be concluded that there are three parameters that
directly affect the behavior of microglia and SCs after transplant, parameter α4, which
represents the rate of amendment of SCs for the function of Mp, parameter α5, which shows
the rate of stimulating and supporting SCs of anti-inflammatory immune cells and, the
suppression rate of SCs as a result of damage by pro-inflammatory microglia denoted by
the parameter α6, and the simulation results showed that the effectiveness of stem cell
transplantation to modulate pro-inflammation microglia function where the highest rate
of SCs will switch the balance from a pro-inflammatory to anti-inflammatory response
of microglia as follows: the rate involving SCs was simulated by α4 = 50%, α5 = 35%
and α6 = 14%. Furthermore, it was obvious that the modulation of microglia responses
occurred if the following conditions were satisfied: The rate of stem cell amendment for
the function of Mp >; and the suppression rate of SCs by Mp, α4 > α6. Table 1 displays
the reference series of values of the parameters. From Figure 1, we can observe various
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behaviors depending on the transplant process. In addition, damage continually decreased,
while pro-inflammation microglia had a little increase, asides from shifting to a steep curve
after approximately 20 h. Furthermore, that anti-inflammation microglia had a high level
after stroke onset and transplantation SCs, aside from shifting to a steep and a stable
curve at approximately after 20 h to the end of simulation of the recovery stage. It can be
seen that after SCs transplanted in the brain the anti-inflammation microglia had a higher
level than the pro-inflammation microglia comparing with numerical results evaluating
microglia effect on the brain dynamics without SCs transplantation during 72 h of strok as
presented in [4]. Additionally, for the concentration of transplanted SCs, there was initial
growth and subsequently a reduction over time due to the effects of the treatment on the
elimination rate of pro-inflammation microglia. The system was solved numerically, and
time concatenation of the solutions were plotted on the system ((1)–(5)) for the parameters
to obtain the dynamics of the system. For this, the fourth-order Runge–Kutta method (RK4)
was used in all simulations to obtain extra stable and approximate solutions. The time 72 h
was chosen for 10−4 as the step size for carrying out the simulations of the model [40,41].
Figures 2 and 3 depict the precision of the suggested numerical method presented through
the residual error.

Table 1. Parameters values for transplanted stem cells–damaged brain cells–resting microglia–
pro-inflammation microglia–anti-inflammation microglia (SDRPA) model.

Parameters Values Descriptions Sources

S∗ 1 SCs initial concentration [31]
D∗ 0.4 damage initial concentration [4]
M∗r 1 resting microglia initial concentration [4]
M∗p 0.1415 pro-inflammation initial concentration [4]
M∗a 0.02 anti-inflammation initial concentration [4]
σ 0.69 the reproduction rate of stem cells [42]
α0 0.38 the resting microglia source [4]
α1 0.12 activation rate of Mr into Mp [4]
α2 0.017 activation rate of Mr into Ma [4]
α3 0.11 the rate transference from Mp to Ma [4]
δ1 0.2854 the cytotoxic effects due to Mp [5]
δ2 0.1 the death rate of brain cells due to Mp [5]
γs 0.1 the natural death rate of S [42]
γ0 0.003 the natural death rate of Mr [4]
γ1 0.06 the natural death rate of Mp [4]
γ2 0.05 the natural death rate of Ma [4]
r1 0.05 the decay rate of concentration of the D by Mp [4]
r2 0.0125 the decay rate of concentration of the D by Ma [4]
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Figure 1. Effectiveness of stem cell transplantation on immune cells’ phenotype behavior and dead
brain cells within 72 h. Where α4 = 0.5314, α5 = 0.3468 and α6 = 0.1419.
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Figure 2. The residual error at several steps for SDRPA model.
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Figure 3. The residual error at time t for SDRPA model.

5.2. Comparison of Experimental Results

Parameter values of resting microglia rates, activation microglia rates, decay rates
of concentration of the damage by microglia, reproduction rate of SCs, death rates, and
initial conditions, were assumed on the basis of the literature. We assumed that the
SCs transplantation influenced transference between the states of microglia activation
and could support the anti-inflammation function of microglia, which led to faster
recovery. These assumptions were in accordance with the biological understanding of
SC functions. In contrast to the findings of our study regarding immune cell functions
and the damage during the time of stroke with the SCs effects transplanted with the work
in [16,34], we established that the studies agreed in that microglial activation had the
contribution of both beneficial and harmful functions in the brain. Furthermore, stem cell
transplantation is considered to attenuate ischemia-induced brain injury within hours of
transplantation [1,33,40]. The simulation’s findings of the model corresponded with the
experimental findings for determining the effect of exogenous SCs in the brain during
a stroke. We compared the simulation results of the SDRPA model with the numerical
results of the effects of dynamic SCs on brain therapy after stroke by endogenous SCs and
exogenous SCs. Additionally, we compared the findings in our research to those of [4], and
found that stem cell transplantation has the ability to modify the cytokine environment in
the brain, especially for early cell transplantation after stroke. For example, transplantation
within 1 week caused a reduction in the levels of pro-inflammatory cytokines and growth
in the levels of anti-inflammatory cytokines. The results of the SDRPA simulation implied
that when neural endogenous SCs failed to grow and assist brain recovery, exogenous SCs
were considered the best solution for brain repair processes.

6. Conclusions

Mathematics and computer science fields have worked interactively to better
understand biological processes. We modified the model—SDRPA ((1)–(5)) based on the
model of Alqarni et al. [4] to study the effectiveness of the role of transplanted exogenous
SCs in the brain on the microglia during a stroke. The multifaceted SCs affect the tissue by
inhibiting of the pro-inflammation and stimulating the function of the anti-inflammation
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microglia. We discussed the results of the dynamical system and the effects of SCs
transplanted and microglia during the stroke analytically and numerically. The analysis
and simulation results of the system show the ability of transplanted SCs to help the brain
by reducing the inflammation on the onset of stroke. Following that, the rate of damage
reduced after transplantation. An evident linkage between the mathematical and biological
mechanisms was observed. From the analytical results, we can deduce that the stability of
the SDRPA model illustrated capacity in the exogenous stem cell implantation, which is
significant for immunomodulation. In conclusion, our model may assist in conception of
the effectiveness of using SCs transplanted in the brain repair processes. In the outlook,
we will extend this study to model strategies that improve, stimulate, and generate the
NSCs in the early stage, and where that information could contribute to understanding the
effects of therapeutic strategies. We hope to conduct more experimental studies to clinically
investigate the results of our mathematical model and to show more precise results. In
future studies, it could be interesting to incorporate the dynamics of anti-inflammatory
and pro-inflammatory cytokines from microglia and cytokines of endogenous NSCs into
the SDRPA model to describe the interaction processes of the different cytokine types in
ischemic stroke. Furthermore, we will develop this model by studying the effect of SCs
in stimulating endogenous neural cells in a stroke and dynamically validate the ability
to support the endogenous stem cells by using pharmacological drugs to improve stroke
therapy. In summary, symmetry and antisymmetry are fundamental to understand the
role of microglia in ischemic stroke pathobiology constituting a major challenge for the
development of efficient immunomodulatory therapies by SCs.
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Abstract: In this paper, we establish new sufficient conditions for the oscillation of solutions of a
class of second-order delay differential equations with a mixed neutral term, which are under the
non-canonical condition. The results obtained complement and simplify some known results in the
relevant literature. Example illustrating the results is included.

Keywords: non-canonical differential equations; second-order; neutral delay; mixed type;
oscillation criteria

1. Introduction

This paper discusses the oscillatory behavior of solutions of second-order functional
differential equation with a mixed neutral term of the form

(
r(l)

[
(y(l) + p1(l)y(ρ1(l)) + p2(l)y(ρ2(l)))

′
]γ)′

+ q(l)yγ(σ(l)) = 0, (1)

where l ≥ l0. Throughout this paper, we assume the following:

(C1) γ ∈ Q+
odd := {a/b : a, b ∈ Z+ are odd} and r ∈ C([l0, ∞), (0, ∞));

(C2) ρ1, ρ2, σ ∈ C([l0, ∞),R), ρ1(l) ≤ l ≤ ρ2(l), σ(l) ≤ l and ρ1, ρ2, σ→ ∞ as l → ∞;
(C3) p1, p2, q ∈ C([l0, ∞), [0, ∞)) and q(l) is not identically zero for large l.

Let y be a real-valued function defined for all l in a real interval [ly, ∞), ly ≥ l0, and
having a second derivative for all l ∈ [ly, ∞). The function y is called a solution of the
differential Equation (1) on [ly, ∞) if y satisfies (1) on [ly, ∞). A nontrivial solution y of any
differential equation is said to be oscillatory if it has arbitrary large zeros; otherwise, it is
said to be nonoscillatory. We will consider only those solutions of (1) which exist on some
half-line [lb, ∞) for lb ≥ l0 and satisfy the condition sup{|y(l)| : lc ≤ l < ∞} > 0 for any
lc ≥ lb.

A delay differential equation of neutral type is an equation in which the highest order
derivative of the unknown function appears both with and without delay. During the
last decades, there is a great interest in studying the oscillation of solutions of neutral
differential equations. This is due to the fact that such equations arise from a variety
of applications including population dynamics, automatic control, mixing liquids, and
vibrating masses attached to an elastic bar, biology in explaining self-balancing of the
human body, and in robotics in constructing biped robots, it is easy to notice the emergence
of models of the neutral delay differential equations, see [1,2].

In the following, we review some of the related works that dealt with the oscillation
of the neutral differential equations of mixed-type.
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Grammatikopouls et al. [3] established oscillation criteria for the equation

(
r(l)ψ′(l)

)′
+ q(l)y(σ(l)) = 0, (2)

where
z(l) = y(l) + p1(l)y(l − σ1) + p2(l)y(l + σ2),

r(l) = 1, p2(l) = 0, 0 ≤ p1 ≤ 1, and q(l) ≥ 0. Ruan [4] obtained some oscillation criteria
for the Equation (2) by employing Riccati technique and averaging function method, when
p2(l) = 0 and σ(l) = l− σ. Arul and Shobha [5] studied the oscillatory behavior of solution
of (2), when 0 ≤ p1(l) ≤ p1 < ∞ and 0 ≤ p2(l) ≤ p2 < ∞.

Dzurina et al. [6] presented some sufficient conditions for the oscillation of the second-
order equation (

1
r(l)

y′(l)
)′

+ p(l)y(τ(l)) + q(l)y(σ(l)) = 0.

Li [7] and Li et al. [8] studied the oscillation of solutions of the second-order equation
with constant mixed arguments:

(
r(l)z′(l)

)′
+ q1(l)y(l − σ3) + q2(l)y(l + σ4) = 0. (3)

Arul and Shobha [5] established some sufficient conditions for the oscillation of all
solutions of Equation (3) in the canonical case, that is,

∫ ∞

l0
r−1(ϑ)dϑ = ∞,

Thandapani et al. [9] studied the oscillation criteria for the differential equation of the
form

(zα(l))′′ + q(l)yβ(l − τ1) + p(l)yγ(l + τ1) = 0.

Grace et al. [10] studied the oscillatory behavior of solutions of the equation

(
r(l)

((
y(l) + p1(l)yβ1(σ1(l)) + p2(l)yβ2(σ2(l))

)′)γ)′
+ q(l)yγ(τ(l)) = 0,

and considered the two cases
∫ ∞

l0
r−1/γ(ϑ)dϑ = ∞, (4)

and ∫ ∞

l0
r−1/γ(ϑ)dϑ < ∞. (5)

In [11], Tunc et al. studied the oscillatory behavior of the differential Equation (1)
under the condition (4). Moreover, they considered the two following cases: p1(l) ≥ 0,
p2(l) ≥ 1, and p2(l) 6= 1 eventually; p2(l) ≥ 0, p1(l) ≥ 1, and p2(l) 6= 1 eventually.

For the third-order equations, Han et al. [12] studied the oscillation and asymptotic
properties of the third-order equation

(
a(l)z′′(l)

)′
+ q1(l)y(l − τ3) + q2(l)y(l + τ4) = 0,

and established two theorems which guarantee that the above equation oscillates or tends
to zero. Moaaz et al. [13] discussed the oscillation and asymptotic behavior of solutions of
the third-order equation

(
r(l)

(
x′′(l)

)α
)′

+ q1(l) f1(y(σ1(l))) + q2(l) f2(y(σ2(l))) = 0,
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where x(l) = y(l) + p1(l)y(τ1(l)) + p2(l)y(τ2(l)). For further results, techniques, and
approaches in studying oscillation of the delay differential equations, see in [14–24].

In this paper, we study the oscillatory behavior of solutions of the second-order
differential equation with a mixed neutral term (1) under condition (5). We follow a new ap-
proach based on deducing a new relationship between the solution and the corresponding
function. Using this new relationship, we first obtain one condition that ensures oscillation
of (1). Moreover, by introducing a generalized Riccati substitution, we get a new criterion
for oscillation of (1). Often these types of equations (such as (1), (2), and (3)) are studied
under condition (4). On the other hand, the works that studied these equations under the
condition (5) obtained two conditions to ensure the oscillation. Therefore, our results are
an extension and simplification as well as improvement of previous results in [3–5,8,11].

2. Main Results

We adopt the following notation for a compact presentation of our results:

ψ(l) := y(l) + p1(l)y(ρ1(l)) + p2(l)y(ρ2(l)),

κ(u, v) :=
∫ v

u
r−1/γ(δ)dδ,

B1(l) := 1− p1(l)
κ(ρ1(l), ∞)

κ(l, ∞)
− p2(l)

and

B2(l) := 1− p1(l)− p2(l)
κ(l1, ρ2(l))

κ(l1, l)
.

Lemma 1. Assume that Θ(ϑ) := Aϑ− B(ϑ− C)(γ+1)/γ, where A, B and C are real constants;
B > 0; and γ ∈ Q+

odd. Then,

Θ(ϑ∗) ≤ max
u∈R

Θ(ϑ) = AC +
γγ

(γ + 1)γ+1 Aγ+1B−γ.

Lemma 2. Assume that y is a positive solution of (1) on [l0, ∞). If ψ is a decreasing positive
function for l ≥ l1 large enough, then

(
ψ(l)

κ(l, ∞)

)′
≥ 0, for l ≥ l1. (6)

While if ψ is a increasing positive function for l ≥ l1, then

(
ψ(l)

κ(l1, l)

)′
≤ 0, for l ≥ l1. (7)

Proof. Assume that (1) has a positive solution y on [l0, ∞). Therefore, there exists a l1 ≥ l0
such that, for all l ≥ l1, ψ(l) ≥ y(l) > 0 and

(
r(l)(ψ′(l))γ) ≤ 0. From (1), we see that

(
r(l)

(
ψ′(l)

)γ
)′

= −q(l)yγ(σ(l)) ≤ 0.

Obviously, ψ is either eventually decreasing or eventually increasing.
Let ψ be a decreasing function on [l1, ∞). Then, liml→∞ ψ(l) < ∞, and so

ψ(l) ≥ −
∫ ∞

l
r−1/γ(ϑ)r1/γ(ϑ)ψ′(ϑ)dϑ ≥ −κ(l, ∞)r1/γ(l)ψ′(l). (8)
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Thus, (
ψ(l)

κ(l, ∞)

)′
=

κ(l, ∞)ψ′(l) + r−1/γ(l)ψ(l)

(κ(l, ∞))2 ≥ 0.

Let ψ be a increasing function on [l1, ∞). Then, we obtain

ψ(l) ≥
∫ l

l1
r−1/γ(ϑ)r1/γ(ϑ)ψ′(ϑ)dϑ ≥ κ(l1, l)r1/γ(l)ψ′(l),

and so (
ψ(l)

κ(l1, l)

)′
=

κ(l1, l)ψ′(l)− r−1/γ(l)ψ(l)
κ2(l1, l)

≤ 0.

Thus, the proof is complete.

Theorem 1. Assume that B2(l) ≥ B1(l) > 0. If

lim sup
l→∞

∫ l

l1

1
r1/γ(β)

(∫ β

l1
q(δ)Bγ

1 (σ(δ))κ
γ(σ(δ), ∞)dδ

)1/γ

dβ = ∞, (9)

then, all solutions of (1) are oscillatory.

Proof. Assume the contrary that Equation (1) has a positive solution y on [l0, ∞). Then,
y(ρ1(l)), y(ρ2(l)) and y(σ(l)) are positive for all l ≥ l1, where l1 is large enough. Thus,
from (1) and the definition of ψ, we note that ψ(l) ≥ y(l) > 0 and r(l)(ψ′(l))γ is nonin-
creasing. Therefore, ψ′ is either eventually negative or eventually positive.
Let ψ′(l) < 0 on [l1, ∞). By using Lemma 2, we have

ψ(ρ1(l)) ≤
κ(ρ1(l), ∞)

κ(l, ∞)
ψ(l),

based on the fact that ρ1(l) ≤ l. Therefore,

y(l) = ψ(l)− p1(l)y(ρ1(l))− p2(l)y(ρ2(l))
≥ ψ(l)− p1(l)ψ(ρ1(l))− p2(l)ψ(ρ2(l))

≥
(

1− p1(l)
κ(ρ1(l), ∞)

κ(l, ∞)
− p2(l)

)
ψ(l)

= B1(l)ψ(l).

Therefore, (1) becomes

(
r(l)

(
ψ′(l)

)γ
)′
≤ −q(l)Bγ

1 (σ(l))ψ
γ(σ(l)). (10)

As
(
r(l)(ψ′(l))γ)′ ≤ 0, we have

r(l)
(
ψ′(l)

)γ ≤ r(l1)
(
ψ′(l1)

)γ := −L < 0, (11)

for all l ≥ l1, from (8) and (11), we have

ψγ(l) ≥ Lκγ(l, ∞) for all l ≥ l1. (12)

Combining (10) with (12) yields

(
r(l)

(
ψ′(l)

)γ
)′
≤ −Lq(l)Bγ

1 (σ(l))κ
γ(σ(l), ∞), (13)
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for all l ≥ l1. Integrating (13) from l1 to l, we obtain

r(l)
(
ψ′(l)

)γ ≤ r(l1)
(
ψ′(l1)

)γ − L
∫ l

l1
q(δ)Bγ

1 (σ(δ))κ
γ(σ(δ), ∞)dδ

≤ −L
∫ l

l1
q(δ)Bγ

1 (σ(δ))κ
γ(σ(δ), ∞)dδ.

Integrating the last inequality from l1 to l, we get

ψ(l) ≤ ψ(l1)− L1/γ
∫ l

l1

1
r1/γ(β)

(∫ β

l1
q(δ)Bγ

1 (σ(δ))κ
γ(σ(δ), ∞)dδ

)1/γ

dβ.

At l → ∞, we get a contradiction with (9).
Let ψ′(l) > 0 on [l1, ∞). From Lemma 2, we arrive at

ψ(ρ2(l)) ≤
κ(l1, ρ2(l))

κ(l1, l)
ψ(l). (14)

From the definition of ψ, we obtain

y(l) = ψ(l)− p1(l)y(ρ1(l))− p2(l)y(ρ2(l))
≥ ψ(l)− p1(l)ψ(ρ1(l))− p2(l)ψ(ρ2(l)). (15)

Using that (14) and ψ(ρ1(l)) ≤ ψ(l) where ρ1(l) < l in (15), we obtain

y(l) ≥ ψ(l)
(

1− p1(l)− p2(l)
κ(l1, ρ2(l))

κ(l1, l)

)

≥ B2(l)ψ(l). (16)

Thus, (1) becomes

(
r(l)

(
ψ′(l)

)γ
)′
≤ −q(l)Bγ

2 (σ(l))ψ
γ(σ(l)). (17)

Now, from (9) and (C2), we have that
∫ l

l1
q(ϑ)Bγ

1 (σ(ϑ))κ
γ(σ(ϑ), ∞)dϑ is unbounded.

Therefore, as κ′(l, ∞) < 0, we obtain that

∫ l

l1
q(ϑ)Bγ

1 (σ(ϑ))dϑ→ ∞ as l → ∞. (18)

Integrating (17) from l2 to l, we get

r(l)
(
ψ′(l)

)γ ≤ r(l2)
(
ψ′(l2)

)γ −
∫ l

l2
q(ϑ)Bγ

2 (σ(ϑ))ψ
γ(σ(ϑ))dϑ

≤ r(l2)
(
ψ′(l2)

)γ − ψγ(σ(l2))
∫ l

l2
q(ϑ)Bγ

2 (σ(ϑ))dϑ.

As B2(l) > B1(l), we get

r(l)
(
ψ′(l)

)γ ≤ r(l2)
(
ψ′(l2)

)γ − ψγ(σ(l2))
∫ l

l2
q(ϑ)Bγ

1 (σ(ϑ))dϑ. (19)

From (18) and (19), we get a contradiction with the positivity of ψ′(l). Therefore, the
proof is complete.
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Theorem 2. Assume that B2(l) ≥ B1(l) > 0. If

lim sup
l→∞

κγ(l, ∞)
∫ l

l1
q(ϑ)Bγ

1 (ϑ)dϑ > 1, (20)

then, all solutions of (1) are oscillatory.

Proof. Assume the contrary that Equation (1) has a positive solution y on [l0, ∞). Then,
y(ρ1(l)), y(ρ2(l)) and y(σ(l)) are positive for all l ≥ l1, where l1 is large enough. Thus,
from (1) and the definition of ψ, we note that ψ(l) ≥ y(l) > 0 and r(l)(ψ′(l))γ is nonin-
creasing. Therefore, ψ′ is either eventually negative or eventually positive.
Let ψ′(l) < 0 on [l1, ∞). Integrating (10) from l1 to l, we get

r(l)
(
ψ′(l)

)γ ≤ r(l1)
(
ψ′(l1)

)γ −
∫ l

l1
q(ϑ)Bγ

1 (σ(ϑ))ψ
γ(σ(ϑ))dϑ

≤ −ψγ(σ(l))
∫ l

l1
q(ϑ)Bγ

1 (ϑ)dϑ. (21)

Using ψ(σ(l)) ≥ ψ(l) and (8) in (21), we obtain

− r(l)
(
ψ′(l)

)γ ≥ −r(l)
(
ψ′(l)

)γ
κγ(l, ∞)

∫ l

l1
q(ϑ)Bγ

1 (ϑ)dϑ. (22)

Divide both sides of inequality (22) by −r(l)(ψ′(l))γ and taking the limsup, we get

lim sup
l→∞

κγ(l, ∞)
∫ l

l1
q(ϑ)Bγ

1 (ϑ)dϑ ≤ 1.

Thus, we get a contradiction with (20).
Let ψ′ > 0 on [l1, ∞). From (20) and the fact that κ(l, ∞) < ∞, we have that (18) holds.

Then, this part of proof is similar to that of Theorem 1. Therefore, the proof is complete.

Theorem 3. Assume that B2(l) > 0, B1(l) > 0 and r′ > 0. If there exist positive functions
µ, δ ∈ C1([l0, ∞)) and l1 ∈ [l0, ∞) such that

lim sup
l→∞

{
κγ(l, ∞)

δ(l)

∫ l

l1

(
δ(ϑ)q(ϑ)Bγ

1 (σ(ϑ))−
r(ϑ)

(γ + 1)γ+1
(δ′(ϑ))γ+1

(δ(ϑ))γ

)
dϑ

}
> 1 (23)

and

lim sup
l→∞

∫ l

l1

(
µ(ϑ)q(ϑ)Bγ

2 (σ(ϑ))−
1

(γ + 1)γ+1
r(ϑ)(µ′(ϑ))γ+1

µγ(ϑ)(σ′(ϑ))γ

)
dϑ = ∞, (24)

then, all solutions of (1) are oscillatory.

Proof. Assume the contrary that Equation (1) has a positive solution y on [l0, ∞). Then,
y(ρ1(l)), y(ρ2(l)) and y(σ(l)) are positive for all l ≥ l1, where l1 is large enough. Thus,
from (1) and the definition of ψ, we note that ψ(l) ≥ y(l) > 0 and r(l)(ψ′(l))γ is nonin-
creasing. Therefore, ψ′ is either eventually negative or eventually positive.
Let ψ′ < 0 on [l1, ∞). As in proof of Theorem 1, we arrive at (10). Now, we define the
function

ω(l) = δ(l)
(

r(l)(ψ′(l))γ

ψγ(l)
+

1
κγ(l, ∞)

)
on [l1, ∞). (25)
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From (8), we have that ω ≥ 0 on [l1, ∞). Differentiating (25), we get

ω′(l) =
δ′(l)
δ(l)

ω(l) + δ(l)

(
r(l)(ψ′(l))γ)′

ψγ(l)
− γδ(l)r(l)

(
ψ′(l)
ψ(l)

)γ+1

+
γδ(l)

r1/γ(l)κγ+1(l, ∞)

≤ δ′(l)
δ(l)

ω(l) + δ(l)

(
r(l)(ψ′(l))γ)′

ψγ(l)
− γ

(δ(l)r(l))1/γ

(
ω(l)− δ(l)

κγ(l, ∞)

)(γ+1)/γ

+
γδ(l)

r1/γ(l)κγ+1(l, ∞)
. (26)

Combining (10) and (26), we have

ω′(l) ≤ − γ

(δ(l)r(l))1/γ

(
ω(l)− δ(l)

κγ(l, ∞)

)(γ+1)/γ

− δ(l)q(l)Bγ
1 (σ(l))

ψγ(σ(l))
ψγ(l)

+
γδ(l)

r1/γ(l)κγ+1(l, ∞)
+

δ′(l)
δ(l)

ω(l). (27)

Using Lemma 1 with A := δ′(l)/δ(l), B := γ(δ(l)r(l))−1/γ, C := δ(l)/κγ(l, ∞) and
ϑ := ω, we get

δ′(l)
δ(l)

ω(l)− γ

(δ(l)r(l))1/γ

(
ω(l)− δ(l)

κγ(l, ∞)

)(γ+1)/γ

≤ 1

(γ + 1)γ+1 r(l)
(δ′(l))γ+1

(δ(l))γ

+
δ′(l)

κγ(l, ∞)
.

As l ≥ σ(l), we arrive at
ψ(σ(l)) ≥ ψ(l), (28)

which, in view of (27) and (28), gives

ω′(l) ≤ δ′(l)
κγ(l, ∞)

+
1

(γ + 1)γ+1 r(l)
(δ′(l))γ+1

(δ(l))γ − δ(l)q(l)Bγ
1 (σ(l))

ψγ(σ(l))
ψγ(l)

+
γδ(l)

r1/γ(l)κγ+1(l, ∞)

≤ −δ(l)q(l)Bγ
1 (σ(l)) +

(
δ(l)

κγ(l, ∞)

)′
+

r(l)

(γ + 1)γ+1
(δ′(l))γ+1

(δ(l))γ . (29)

Integrating (29) from l2 to l, we arrive at

∫ l

l2

(
δ(ϑ)q(ϑ)Bγ

1 (σ(ϑ))−
r(ϑ)

(γ + 1)γ+1
(δ′(ϑ))γ+1

(δ(ϑ))γ

)
dϑ ≤

(
δ(l)

κγ(l, ∞)
−ω(l)

)l

l2

≤ −
(

δ(l)
r(l)(ψ′(l))γ

ψγ(l)

)l

l2
. (30)

From (8), we have

− r1/γ(l)ψ′(l)
ψ(l)

≤ 1
κ(l, ∞)

,

which, in view of (30), implies

κγ(l, ∞)

δ(l)

∫ l

l2

(
δ(ϑ)q(ϑ)Bγ

1 (σ(ϑ))−
r(ϑ)

(γ + 1)γ+1
(δ′(ϑ))γ+1

(δ(ϑ))γ

)
dϑ ≤ 1.
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Thus, we get a contradiction with (23).
Let ψ′(l) > 0 on [l1, ∞). As in proof of Theorem 1, we arrive at (17). Now, we define

the function

ϕ(l) = µ(l)
r(l)(ψ′(l))γ

ψγ(σ(l))
. (31)

Therefore, we have that ω ≥ 0 on [l1, ∞). Differentiating (31), we find

ϕ′(l) =
µ′(l)
µ(l)

ϕ(l) + µ(l)

(
r(l)(ψ′(l))γ)′

ψγ(σ(l))
− γµ(l)r(l)

(ψ′(l))γ
ψ′(σ(l))σ′(l)

ψγ+1(σ(l))
. (32)

Combining (17) and (32), we have

ϕ′(l) ≤ µ′(l)
µ(l)

ϕ(l)− µ(l)q(l)Bγ
2 (σ(l))− γµ(l)r(l)

(ψ′(l))γ
ψ′(σ(l))σ′(l)

ψγ+1(σ(l))
.

As
(
r(l)(ψ′(l))γ)′ < 0 and σ(l) ≤ l, we arrive at

ϕ′(l) ≤ µ′(l)
µ(l)

ϕ(l)− µ(l)q(l)Bγ
2 (σ(l))− γµ(l)r(l)σ′(l)

(ψ′(l))γ+1

ψγ+1(σ(l))
.

From (31), we have

ϕ′(l) ≤ µ′(l)
µ(l)

ϕ(l)− µ(l)q(l)Bγ
2 (σ(l))−

γσ′(l)
µ1/γ(l)r1/γ(l)

φ(γ+1)/γ(l).

Using the inequality

Kv− Lv
(γ+1)/γ ≤ γγ

(γ + 1)γ+1
Kγ+1

Lγ
, L > 0, (33)

with K = µ′(l)/µ(l), L = γσ′(l)/µ1/γ(l)r1/γ(l) and v = ϕ, we have

ϕ′(l) ≤ −µ(l)q(l)Bγ
2 (σ(l)) +

1

(γ + 1)γ+1
r(l)(µ′(l))γ+1

µγ(l)(σ′(l))γ . (34)

Integrating (34) from l2 to l, we arrive at

∫ l

l2

(
µ(ϑ)q(ϑ)Bγ

2 (σ(ϑ))−
1

(γ + 1)γ+1
r(ϑ)(µ′(ϑ))γ+1

µγ(ϑ)(σ′(ϑ))γ

)
dϑ ≤ ϕ(l2).

Taking the lim sup on both sides of this inequality, we have a contradiction with (24).
The proof of the theorem is complete.

Example 1. Consider the second-order neutral differential equation

(
l2

((
y(l) + p0y

(
l
λ

)
+ p∗y(λl)

)′))′
+ q0ly(σ0l) = 0, (35)

where λ > 1, σ0 ∈ (0, 1) and (λp0 + p∗) ∈ (0, 1). We note that r(l) = l2, p1(l) = p0,
p2(l) = p∗, ρ1(l) = l/λ, ρ2(l) = λl, q(l) = q0l and σ(l) = σ0l. It is easy to verify that

B1(l) = 1− λp0 − p∗,
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and

B2(l) = 1− p0 − p∗

(
l − 1

λ

l − 1

)
,

and so B2 > B1 > 0. Now, we see that

lim sup
l→∞

∫ l

l1

1
r1/γ(β)

(∫ β

l1
q(δ)Bγ

1 (σ(δ))κ
γ(σ(δ), ∞)dδ

)1/γ

dβ

= lim sup
l→∞

∫ l

l1

1
β2

(∫ β

l1
q0δ(1− λp0 − p∗)

1
σ0δ

dδ

)
dβ = ∞.

Then, by Theorem 1, we have that (35) is oscillatory.

3. Conclusions

In this work, new criteria to test the oscillation of the solutions of second-order non-
canonical neutral differential equations with mixed type were presented. These criteria are
to further complement and simplify relevant results in the literature.

Author Contributions: Conceptualization, O.M. and Y.S.H.; methodology, H.A.; investigation, O.M.
and A.N.; writing—original draft preparation, O.M., A.N. and Y.S.H.; writing—review and editing,
A.N. and H.A. All authors have read and agreed to the published version of the manuscript.

Funding: There is no external funding for this article.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by Taif University Researchers Supporting Project
Number (TURSP-2020/155), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hale, J.K. Partial neutral functional differential equations. Rev. Roum. Math. Pures Appl. 1994, 39, 339–344.
2. MacDonald, N. Biological Delay Systems: Linear Stability Theory; Cambridge University Press: Cambridge, UK, 1989.
3. Grammatikopouls, M.K.; Ladas, G.; Meimaridou, A. Oscillation of second order neutral delay differential equations. Rad. Math.

1985, 1, 267–274.
4. Ruan, S.G. Oscillations of second order neutral differential equations. Can. Math. Bull. 1993, 36, 485–496. [CrossRef]
5. Arul, R.; Shobha, V.S. Oscillation of second order neutral differential equations with mixed neutral term. Int. J. Pure Appl. Math.

2015, 104, 181–191. [CrossRef]
6. Dzurina, J.; Busha, J.; Airyan, E.A. Oscillation criteria for second-order differential equations of neutral type with mixed

arguments. Differ. Equ. 2002, 38, 137–140. [CrossRef]
7. Li, T. Comparison theorems for second-order neutral differential equations of mixed type. Electron. J. Differ. Equ. 2020, 2010, 1–7.
8. Li, T.; Baculíková, B.; Džurina, J. Oscillation results for second-order neutral differential equations of mixed type. Tatra Mt. Math.

Publ. 2011, 48, 101–116. [CrossRef]
9. Thandapani, E.; Selvarangam, S.; Vijaya, M.; Rama, R. Oscillation results for second order nonlinear differential equation with

delay and advanced arguments. Kyungpook Math. J. 2016, 56, 137–146. [CrossRef]
10. Grace, S.R.; Graef, J.R.; Jadlovská, I. Oscillation criteria for second-order half-linear delay differential equations with mixed

neutral terms. Math. Slovaca 2019, 69, 1117–1126. [CrossRef]
11. Tunc, E.; Ozdemir, O. On the oscillation of second-order half-linear functional differential equations with mixed neutral term. J.

Taibah Univ. Sci. 2019, 13, 481–489. [CrossRef]
12. Han, Z.; Li, T.; Zhang, C.; Sun, S. Oscillatory behavior of solutions of certain third-order mixed neutral functional differential

equations. Bull. Malays. Math. Sci. Soc. 2012, 35, 611–620.
13. Moaaz, O.; Chalishajar, D.; Bazighifan, O. Asymptotic behavior of solutions of the third order nonlinear mixed type neutral

differential equations. Mathematics 2020, 8, 485. [CrossRef]
14. Agarwal, R.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second order retard differential equations. Math. Comput. Model. 1997,

26, 1–11. [CrossRef]

75



Symmetry 2021, 13, 318

15. Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Compt.
2016, 274, 178–181. [CrossRef]

16. Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl.
2011, 62, 4472–4478.

17. Bohner, M.; Grace, S.R.; Jadlovska, I. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual.
Theory Differ. Equ. 2017, 2017, 1–12. [CrossRef]

18. Chatzarakis, G.E.; Dzurina, J.; Jadlovska, I. New oscillation criteria for second-order half-linear advanced differential equations.
Appl. Math. Comput. 2019, 347, 404–416. [CrossRef]

19. Moaaz, O.; Elabbasy, E.M.; Qaraad, B. An improved approach for studying oscillation of generalized Emden—Fowler neutral
differential equation. J. Inequal. Appl. 2020, 2020, 69. [CrossRef]

20. Moaaz, O.; Muhib, A. New oscillation criteria for nonlinear delay differential equations of fourth-order. Appl. Math. Comput.
2020, 377, 125192. [CrossRef]

21. Sun, Y.G.; Meng, F.W. Note on the paper of Dzurina and Stavroulakis: “Oscillation criteria for second-order delay differential
equations” [Appl. Math. Comput. 2003, 140, 445–453]. Appl. Math. Comput. 2006, 174, 1634–1641.

22. Xu, R.; Meng, F. Some new oscillation criteria for second order quasi-linear neutral delay differential equations. Appl. Math.
Comput. 2006, 182, 797–803. [CrossRef]

23. Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential
equations. Appl. Math. Lett. 2013, 26, 179–183. [CrossRef]

24. Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math.
Lett. 2011, 24, 1618–1621. [CrossRef]

76



symmetryS S

Article

Generalized Attracting Horseshoe in the Rössler Attractor

Karthik Murthy 1, Ian Jordan 2, Parth Sojitra 3, Aminur Rahman 4,* and Denis Blackmore 5

����������
�������

Citation: Murthy, K.; Jordan, I.;

Sojitra, P.; Rahman, A.; Blackmore, D.

Generalized Attracting Horseshoe in

the Rössler Attracto. Symmetry 2021,

13, 30. https://dx.doi.org/10.3390/sym

13010030

Received: 8 December 2020

Accepted: 21 December 2020

Published: 27 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA;
kmurthy3@illinois.edu

2 Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA;
ian.jordan@stonybrook.edu

3 Department of Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ 07102, USA; pbs26@njit.edu

4 Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
5 Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA;

denis.l.blackmore@njit.edu
* Correspondence: arahman2@uw.edu

Abstract: We show that there is a mildly nonlinear three-dimensional system of ordinary differential
equations—realizable by a rather simple electronic circuit—capable of producing a generalized
attracting horseshoe map. A system specifically designed to have a Poincaré section yielding the
desired map is described, but not pursued due to its complexity, which makes the construction of a
circuit realization exceedingly difficult. Instead, the generalized attracting horseshoe and its trapping
region is obtained by using a carefully chosen Poincaré map of the Rössler attractor. Novel numerical
techniques are employed to iterate the map of the trapping region to approximate the chaotic strange
attractor contained in the generalized attracting horseshoe, and an electronic circuit is constructed to
produce the map. Several potential applications of the idea of a generalized attracting horseshoe and
a physical electronic circuit realization are proposed.

Keywords: generalized attracting horseshoe; strange attractors; poincaré map; electronic circuits

1. Introduction

The seminal work of Smale [1] showed that the existence of a horseshoe structure
in the iterate space of a diffeomorphism is enough to prove it is chaotic. Often these
diffeomorphisms arise from certain Poincaré maps of continuous-time chaotic strange
attractors (CSA), which in turn are discrete-time CSAs. Some examples of such attractors are
the Lorenz strange attractor [2], the Rössler attractor [3], and the double scroll attractor [4].
An example of a Poincaré map of the Lorenz equations is the Hénon map [5], which can be
further simplified to the Lozi map [6]. Unsurprisingly, symmetry (and symmetry breaking)
plays an important role in the analysis of these models.

In more recent years Joshi and Blackmore [7] developed an attracting horseshoe (AH)
model for CSAs, which has two saddles and a sink. This, however, negates the possibility
of the Hénon and Lozi maps, which have two saddles. Fortunately, the attracting horseshoe
can be modified into a generalized attracting horseshoe (GAH), which can have either one
or two saddles while still being an attracting horseshoe [8]. This results in a quadrilateral
trapping region. While extensive analysis was done in Joshi et al. [8], a simple concrete
example seemed to be illusive.

In this investigation, we implement novel numerical techniques to find the necessary
Poincaré map of the Rössler attractor that would admit a quadrilateral trapping region.
This trapping region represents a region of rotational symmetry as every iterate originating
in the trapping region will return after a 2π rotation. The trapping region would also
filter out any flow that does not obey this symmetry. An electronic circuit could use these
properties to isolate signals of interest. Similar to the experiments of Rahman et al. [9],
we design a physical realization of the dynamical system in the form of an electronic circuit.
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The remainder of the paper is organized as follows. In Section 2, we give an overview
of the algorithm with the MATLAB codes included in the Supplementary Materials.
Once we have the tools for our numerical experiments, we first propose a carefully con-
structed GAH model in Section 3. Then, we give numerical examples of Poincaré maps
of the Rössler attractor and the map of interest in Section 4 and real-world examples in
Section 5. Finally, we end discussions in Section 6 with some concluding remarks.

2. Poincaré Map Algorithm

To produce a general Poincaré section of a flow, we break up the program into four
parts: solving the ODE; computing a Poincaré section perpendicular to either x “ 0, y “ 0,
or z “ 0; rotating the Poincaré section; and iterating the Poincaré map. Solving the ODE is
standard through ODE45 on MATLAB, which executes a modified Runge–Kutta scheme.
Once we have our solution matrix, we need to approximate the values of first return maps
from the discretized flow. By restricting the first return onto a Poincaré section, the iterate
space of the Poincaré map can be visualized. This is easily done for a section perpendicular
to the axes, but in order to locate a highly specialized object, such as the GAH, we need
to be able to rotate the section. Once the desired section is found we can experiment on
iterating the points of trapping region candidates.

The initial major task is approximating the first return map on a Poincaré section of a
flow. Much of the ideas of our initial first return map code came from that of Gonze [10].
Once the discretized flow is found numerically a planar section for a certain value of x,
y, or z can be defined, which in general will lie between pairs of simultaneous points.
Then we may draw a line between the pair through the planar section and identify the
intersecting point, which approximates a point of the first return map. This can also be
done with more simultaneous points in order to get higher order approximations.

Once we can approximate a map for a section perpendicular to the axes we need to
have the ability to rotate and move the map to any position. This is where our program
completely diverges from that in [10]. While the first instinct might be to try to rotate the
section, it is equivalent to rotate the flow in the opposite direction to the desired rotation of
the section. Once the flow is rotated, the code for the first return map can be readily used.
This gives us the ability to analyze the first return map of a general Poincaré section.

Finally, we would like to not only compute a first return map, but also compute the
iterates of a Poincaré map of any system; that is, given an initial condition on an arbitrary
Poincaré section can we find the subsequent iterates. To accomplish this, we solve the ODE
for a given initial condition on the planar section to find the first return. Once we have the
first return, we record its location and use that as the new initial condition. This iterates
the map for as many returns as desired, thereby filling in a Poincaré map. Now we have
the tools needed to run numerical experiments on GAHs.

3. A Constructed GAH System

In this section, we give a brief description of the generalized attracting horseshoe
(GAH) map and devise a three-dimensional nonlinear ordinary differential equation with
a Poincaré section that produces it.

3.1. The GAH Map

The GAH is a modification of the AH that can be represented as a geometric paradigm
with either just one or two fixed points, both of which are saddles. Figure 1 shows a
rendering of a C1 GAH with two saddle points, which can be constructed as follows.
The rectangle is first contracted vertically by a factor 0 ă λv ă 1{2, then expanded
horizontally by a factor 1 ă λh ă 2, and finally folded back into the usual horseshoe shape
in such a manner that the total height and width of the horseshoe do not exceed the height
and width, respectively, of the trapping rectangle Q. Then, the horseshoe is translated
horizontally so that it is completely contained in Q. Obviously, the map f defined by
this construction is a smooth diffeomorphism. Clearly, there are also many other ways
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to obtain this geometrical configuration. For example, the map f as described above is
orientation-preserving, and an orientation-reversing variant can be obtained by composing
it with a reflection in the horizontal axis of symmetry of the rectangle, or by composing it
with a reflection in the vertical axis of symmetry followed by a composition with a half-turn.
Another construction method is to use the standard Smale horseshoe that starts with a
rectangle, followed by a horizontal composition with just the right scale factor or factors
to move the image of Q into Q, while preserving the expansion and contraction of the
horseshoe along its length and width, respectively.

It is important to note that subrectangle S with its left vertical edge through p, which
contains the arch of the horseshoe and the keystone region K, plays a key role in the
dynamics of the iterates of f . In particular, we require that the map satisfy the following
additional property, which is illustrated in Figure 2:

(‹) f maps the keystone region K pcontaining a portion of the arch of the horseshoeq to the left of
the fixed point p and the portion of its corresponding stable manifold Wsppq containing p and
contained in f pQq.
The definition above and (‹) can be shown to lead to the conclusion that

A “ Wuppq “
č8

n“1
f npQq,

where Wuppq is the unstable manifold of p, a global chaotic strange attractor (CSA).

Figure 1. A planar GAH with two saddle points.

The map above can be considered to be the paradigm for a GAH, but there are
many analogs. In fact, let F : Q̃ Ñ Q̃ be any smooth diffeomorphism of a quadrilateral
trapping region Q̃ possessing a horseshoe-like image with a keystone region K̃ containing
a portion of the arch of FpQ̃q analogous to that shown in Figure 1. Suppose that the
map is expanding by a scale factor uniformly greater than one along the length of the
horseshoe and contracting transverse to it by a scale factor uniformly less than one-half in
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the complement of a subset of Q̃ containing K̃. Then, if F satisfies an additional property
analogous to (‹), it maps K̃ into an open subset of Q̃ to the left of the saddle point p̃, and

A “ Wupp̃q “
č8

n“1
FnpQ̃q

is a global CSA.

Figure 2. Local (transverse) horseshoe structure of f 2 near p.

3.2. A GAH Producing System

We now construct an ODE in R3 with a Poincaré section that is a GAH. The transversal
we use is the following square in the xz-plane defined in Cartesian and polar coordinates

Q0 “ tpx, y, zq : 0.05 ď x ď 1.05, y “ 0,´0.5 ď z ď 0.5u
“ tpr, θ, zq : 0.05 ď r ď 1.05, θ “ 0,´0.5 ď z ď 0.5u. (1)

The trick is to find a relatively simple (necessarily nonlinear) C1 ODE having Q0 as a
transversal with an induced Poincaré first-return map P : Q0 Ñ Q0 Ą Q2π “ PpQ0q such
that PpQ0q Ă intQ0 is a GAH. We chose the ODE based upon a rotation about the z-axis
so that the square evolves into the GAH as Q0 makes a full rotation. The first half of the
metamorphosis takes care of the vertical squeezing and horizontal stretching, while the
second half produces the folding. It is not difficult to show that the system (in cylindrical
coordinates)

9r “ 2 logp1.2q sin2 θ

π
r, 9θ “ 1, 9z “ 2 logp0.2q sin2 θ

π
pz` 0.2q (2)

flows Q0 to

Qπ “ tpx, y, zq : ´1.26 ď x ď ´0.06, y “ 0,´0.26 ď z ď ´0.06u (3)
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which is the original square in the radial half-plane corresponding to θ “ 0 stretched by a
factor of 1.2 along the x-axis and squeezed by a factor of 1/5 with respect to z “ ´0.2 along
the z-axis in the radial half plane corresponding to θ “ π. Consequently, (2) produces the
first half of the desired result comprising the stretching and squeezing for 0 ď θ ď π.

Note that (2) can be integrated directly to obtain the following for 0 ď θ ď π and
initial condition prp0q, θp0q, zp0qq “ pr0, θ0, z0q :

rptq “ rpθq “ r0 exp
„

logp1.2q
2π

p2θ ´ sin 2θq


,

θptq “ t, (4)

zptq “ zpθq “ ´0.2` pz0 ` 0.2q exp
„

logp0.2q
2π

p2θ ´ sin 2θq


.

Now, we have to attend to the folding for π ď θ ď 2π. For this we use a rotation in
planes orthogonal to a fixed circle in the xy-plane. In these planes corresponding to a circle
of radius c, given as c “ 0.66, we define Euclidean coordinates with origin r “ 0.66, z “ 0
and corresponding polar coordinates pρ, φq as

ρ “
b
pr´ 0.66q2 ` z2 “

a
r̃2 ` z2, (5)

where r̃ “ r´ 0.66 “ ρ cos φ and z “ ρ sin φ. Then, when π ď θ ď 2π, we take the folding
part for φ ě ´π{2 to be

9̃r “ 9r “ ´2 sin2 θ ρ sin φ, 9θ “ 1, 9z “ 2 sin2 θ ρ cos φ, (6)

or equivalently
9̃r “ 9r “ ´2 sin2 θ z, 9θ “ 1, 9z “ 2 sin2 θ r̃. (7)

It is easy to verify from the above that ρ is constant (call it ρ0) for the solutions of (6)
or (7) and that the solution initially (at t “ θ “ π) satisfying pρ, φq “ pρ0, φ0q is

r̃ “ r̃ptq “ ρ0 cospφptq ` φ0q, θ “ θptq “ t, z “ zptq “ ρ0 sinpφptq ` φ0q, (8)

where
φptq “ pt´ πq ´ sin t cos t. (9)

The above ((6) or (7)) describes the folding field for π ď θ ď 2π and ´π{2 ď φ.
In order to smoothly fill in the rest of the field, we shall use the function

ψpr̃q “
"

0, r̃ ď ´0.6
sin2“ π

1.2 pr̃` 0.6q‰, ´0.6 ď r̃ ď 0
, (10)

which can be recast as

ξprq “
"

0, r ď 0.06
sin2“ π

1.2 pr´ 0.06q‰, 0.06 ď r ď 0.66
. (11)

We have now assembled all the elements for defining an ODE that generates a GAH
Poincaré section. This ODE, which incorporates (2) and (7) and is π-periodic in θ, has the
following form:

9r “ Rpr, θ, zq, 9θ “ 1, 9z “ Zpr, θ, zq, (12)

subject to the initial condition

prp0q, θp0q, zp0qq “ pr0, 0, z0q P Q0, (13)

81



Symmetry 2021, 13, 30

where

R “

$
’’&
’’%

logp1.2qσpθqr
π , 0 ď θ ď π

´σpθqz, pπ ď θ ď 2πq and pppr ě 0.66q or pz ě 0qq “ p´π{2 ď φ ď πqq
´ξprqσpθqz, pπ ď θ ď 2πq and ppr ă 0.66q and pz P r´0.26,´0.06sqq

0, pπ ď θ ď 2πq and ppr ă 0.66q and pz ă 0q and pz R r´0.26,´0.06sqq
,

Z “

$
’&
’%

plogp.2qσpθqpz`0.2q
π , 0 ď θ ď π

σpθqr̃, pπ ď θ ď 2πq and pppr ě 0.66q or pz ě 0qq “ p´π{2 ď φ ď πqq
0, pπ ď θ ď 2πq and pppr ă 0.66q and pz ă 0qq “ p´π ď φ ď ´π{2qq

,

and
σpθq “ 2 sin2 θ “ 1´ cos 2θ.

Finally, it is not difficult to show that the Poincaré section of the transversal (and
trapping region) Q0 under the system (12) is a GAH with an image that is simply a
symmetric reflection about the vertical axis of the horseshoe in Figure 1. However, it
appears that the construction of an electronic circuit simulating (12) would be a rather
formidable undertaking, so we selected a simpler system, namely, the Rössler attractor
model, which is a mildly nonlinear three-dimensional ODE that has a straightforward
circuit realization.

4. Poincaré Maps and Circuit Realization of the Rössler Attractor

We consider the Rössler attractor

9x “ y´ z
9y “ x` ay
9z “ b` zpx´ cq;

(14)

where we use the parameters a “ 0.2, b “ 0.1, and c “ 10. This produces the chaotic strange
attractor in Figure 3, and it can also be realized by a rather simple electronic circuit.

Figure 3. The Rössler attractor with parameters a “ 0.2, b “ 0.1, and c “ 10, and a rotation
(represented by x̂ and ŷ) of θ “ 2π{5 in spherical coordinates.
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4.1. The Poincaré Map

One can use the algorithm in Section 2 to compute any Poincaré section of the attractor;
however, what we are particularly interested in is identifying a trapping region for a
generalized attracting horseshoe. Assuming the system contains a GAH, we first look for a
Poincaré section with a horseshoe-like structure as shown in Figure 4.

Figure 4. Poincaré section (r “ 5, θ “ 2π{5) of the Rössler attractor containing a horseshoe-like
structure. Plot is shown in the rotated frame.

Now, if we can find a rotationally symmetric trapping region around this horseshoe,
we shall have shown evidence for the existence of a GAH. First, we identify vertices of a
quadrilateral that fully encompasses the horseshoe-like structure. Then, using a recursive
algorithm (described in Section 2) we compute the first return map of those vertices on
that particular Poincaré section, i.e., the first iteration of the Poincaré map of those points.
If the iterates are contained within that quadrilateral, the points on the quadrilateral itself
can be tested. In Figure 5, four-thousand points on the quadrilateral are iterated, and it is
illustrated that this first return is completely contained in the quadrilateral. While this is
not a proof, the grid spacing on the quadrilateral provides compelling evidence that this is
a trapping region for the GAH.

In order to provide more compelling evidence, we compute higher-order iterations of
the Poincaré map in Figure 6.
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Figure 5. The first return (blue markers) of the quadrilateral trapping region (red markers) with
vertices located at px̂, ŷq “ p´3.55,´27q, p11.91,´6.6q, p12, 0q, p´8.5, 3.5q. While the quadrilateral
edges look “continuous”, it should be noted that it is in fact discretized using four thousand points,
which are then mapped back to the Poincaré section (r “ 5, θ “ 2π{5). Plot is shown in the rotated
frame with x̂ and ŷ denoting rotated axes.

Figure 6. First five iterations of the Poincaré map (blue markers) of the quadrilateral trapping region
(red markers) with vertices located at px̂, ŷq “ p´3.55,´27q, p11.91,´6.6q, p12, 0q, p´8.5, 3.5q. While
the quadrilateral edges look “continuous”, it should be noted that it is in fact discretized using four
thousand points, which are then mapped back to the Poincaré section (r “ 5, θ “ 2π{5). Plot is
shown in the rotated frame with x̂ and ŷ denoting rotated axes.

4.2. Circuit Realization of the Rössler System

It happens that there are several known examples of electronic circuits realizing the
Rössler attractor system. We chose the one, obtained from [11], shown in Figure 7 with a
list of components in Table 1.
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Figure 7. Multisim circuit diagram for Röossler attractor.

The physical realization of the Rössler attractor circuit was constructed using summing
amplifiers, integrators, and a multiplier. Due to the nature of this system, the operational
amplifier must operate within ˘15 volts in order to avoid clipping of the Rössler Attractor
output waveform. In this circuit, resistors were used to represent constant values for
parameters a and b in (14). A potentiometer was used to vary the parameter value of b in
order to observe the bifurcations of the physical system. We first test the circuit on Multisim
and observe the aforementioned bifurcations in Figure 8.

4lzscyco.bmp

Figure 8. Multisim outputs of the Rössler attractor showing a period doubling Hopf bifurcation
leading to chaos.

Table 1. List of components for the Röossler attractor circuit.

Type Quantity Code

10 kΩ Resistor 11
100 kΩ Resistor 3
390 kΩ Resistor 1
56 kΩ Resistor 1
560 kΩ Resistor 1
5.1 kΩ Resistor 1

100 kΩ Potentiometer 1

100 nF Capacitor 6
2.2 nF Capacitor 3

Op-Amp 2 AD633JN
Multiplier 1 TL074CN

Next, we built the circuit and observed oscilloscope outputs as shown in Figure 9.
The Poincaré section that we chose was a particular vertical plane through the top arch of
the output shown (see also Figure 3). The acceptable planes were obtained by trial and
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error via varying the system parameters and rotation of the plane about a vertical axis
through the apex of the arc.

Figure 9. Oscilloscope output from Rössler attractor circuit.

5. Potential Applications

One can imagine several practical applications of devices containing electronic circuit
realizations of a GAH. Two, which are related to communications and intelligence gathering,
immediately come to mind: First, the circuit could be embedded in a communication
receiving device, and tuned to certain “static” frequencies different from those in the
expected incoming messages. The strong global attracting characteristics of the circuit
would separate the static from the incoming messages, thereby enhancing the receiving
capabilities of system. In effect, the GAH circuit would filter out the static.

Second, a stationary or compact mobile device incorporating the GAH circuit could
be used to penetrate and analyze various communication systems. Either by connecting
remotely in the case of a stationary device or directly for a mobile version, the global
attracting properties could be employed to extract crucial characteristics of the system to
which it is connected. Moreover, the same attracting features of the GAH circuit device
could be used to absorb various parts of sent messages that would render them useless,
false, or simply misleading.

The two rather basic applications mentioned provide just a glimpse of the possible
applications of GAH circuits, most of which would probably be related to information
systems, data collection, and filtering. Moreover, there are more applications that could
exploit the chaotic strange attractor associated with a GAH circuit. For, example a GAH
circuit device could be used either to control chaos, introduce chaos or adjust the fractal
dimension of outputs of a variety of applicable processes based on dynamical systems.

Such mechanisms may aid in a variety of fields including cryptography and cyber
security. While encryption techniques reliant on the iterate by iterate behavior of chaotic
maps have had their short comings due to irreversibly in analog form and a lack of
proper security when implemented in software, the global properties of a GAH circuit
may provide a useful intermediate stage during various forms of symmetric encryption
by allowing a signal of importance to pass both through and around such a subsystem in
parallel. Long-term global properties from the signal sent through a GAH circuit can be
extracted and used to manipulate the unaltered signal before reaching the recipient, thereby
substantially increasing the difficulty of decryption. As the global properties of such a
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system (i.e., factors taken from its geometry and macro-scale structure) are less influenced
by minor imperfections in the circuit, reversing the process becomes far more tangible.

Furthermore, adding to our second practical application claim, a GAH device could
prove to have various applications in machine learning, specifically regarding the creation
and prevention of adversarial attacks on deep neural networks. By altering carefully chosen
properties of the data meant to be received by the network intelligible yet incorrect results
can be forced. In the same light, the proper extraction of dominant incoming signals may
help prevent the same sort of issue in special cases.

6. Conclusions

We constructed a rather complicated nonlinear three-dimensional ordinary differential
equation (ODE) having a Poincaré section that is a GAH map, but it is not particularly
amenable to electronic circuit realization, which was a goal of the investigation. Therefore,
instead of the initial ODE, we selected the Rössler attractor; a mildly nonlinear three-
dimensional ODE that has a reasonably simple circuit realization and can actually produce
GAH maps for carefully chosen Poincaré sections. We constructed the corresponding GAH
circuit and used a novel iteration procedure to generate good approximations of the chaotic
strange attractors associated to the GAH maps. Finally, in addition to the experimental
and analytic aspects of our investigation, we discussed a number of potential practical
applications of the GAH circuit. Most of the envisioned applications were in the realms of
communication and information gathering.
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Abstract: This paper is concerned with multiple solutions for a class of nonlinear fourth-order
boundary value problems with parameters. By constructing a special cone and applying fixed point
index theory, the multiple solutions for the considered systems are obtained under some suitable
assumptions. The main feature of obtained solutions (u(t), v(t)) is that the solution u(t) is positive,
and the other solution v(t) may change sign. Finally, two examples with continuous function f1 being
positive and f2 being semipositone are worked out to illustrate the main results.

Keywords: multiple solutions; fixed point theory; boundary value problems

1. Introduction

It is well known that the subject of the existence of solutions to numerous boundary value
problems (BVP) for differential equations such as second-order [1–3], fourth-order [4–6], even fractional
order BVP [7–11] has gained considerable attention and popularity. A growing number of outstanding
progress has been made in the theory of such BVP in the last decades due mainly to their extensive
applications in the fields of hydrodynamics, nuclear physics, biomathematics, chemistry, and control
theory. For further details, please see References [12–29] and references therein.

It is noted that fourth-order boundary value problems have an important application in practical
problems, that is, they can be used to describe the deformation of elastic beam, see References [30–33]
and references therein. For example, in Reference [32], by means of the theory of fixed point
index on cone, Y. Li investigated the following boundary value problems of fourth-order ordinary
differential equation

{
u(4)(t) + βu′′(t)− αu(t) = f (t, u), 0 < t < 1;
u(0) = u(1) = u′′(0) = u′′(1) = 0,

where f ∈ C([0, 1] × R+,R+), α, β ∈ R and satisfy β < 2π2, α ≥ −β4/4, α/π4 + β/π2 < 1.
By constructing a special cone, the existence of at least one positive solution was obtained under
some suitable assumptions.

Recently, in Reference [33], Q. Wang and L. Yang studied the following boundary value problems




u(4)(t) + β1u′′(t)− α1u(t) = f1(t, u(t), v(t)), 0 < t < 1;
v(4)(t) + β2v′′(t)− α2v(t) = f2(t, u(t), v(t)), 0 < t < 1;
u(0) = u(1) = u′′(0) = u′′(1) = 0;
v(0) = v(1) = v′′(0) = v′′(1) = 0,

(1)
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where f1, f2 ∈ C([0, 1]×R+ ×R+,R+), and βi, αi ∈ R(i = 1, 2) satisfy the following conditions:

βi < 2π2, − βi/4 ≤ αi, αi/π4 + βi/π2 < 1. (2)

These conditions involve a two-parameter non-resonance condition. By constructing two classes
of cones and using the fixed point theory, the existence of at least one positive solution was obtained.
It is remarkable that the premise of this establishment of the result in Reference [33] is that the nonlinear
term f2 must be positive.

We point out that there are some limitations in those existing results of fourth-order boundary
value problems. All solutions obtained in the above references are positive, and moreover, the
corresponding conclusions in them are not valid when the nonlinear term is allowed to be non-positive.
Considering that two variables u and v in the nonlinear term usually have some connections in many
practical problems, there is no description of the relationship between them in the aforementioned
papers. It is an interesting problem to seek such solutions for BVP (1) that one variable is positive
and the other may be non-positive under the assumptions that nonlinearity may be semipositoned,
and some connection will be added between these two variables. As far as we know, there is no paper
considering such problem for BVP (1). The purpose of the present paper is to fill this gap.

This paper, motivated by all the above mentioned discussions, investigates the multiple solutions
for BVP (1) under the more different conditions compared with Reference [33]. By constructing a very
special cone and using the fixed point index theory, the existence and multiplicity results of solutions
to (1) are obtained when βi, αi ∈ R (i = 1, 2) satisfy the conditions (2), f1 ∈ C([0, 1]×R+ ×R,R+),
and f2 ∈ C([0, 1]×R+ ×R,R).

The nonlinear term f2 is allowed to change sign by contrast, f2 ∈ C([0, 1] × R+ × R,R).
A relationship is imposed between two variables u, v in nonlinear terms, which is that the variable
v is controlled by u. In obtained solution (u, v), the component u is positive, but the component v is
allowed to be negative in comparison with Reference [33].

The rest of this paper is organized as follows—Section 2 contains some background materials
and preliminaries. The main results will be given and proved in Section 3. Finally, in Section 4, two
examples are given to support our results.

2. Background Materials and Preliminaries

The basic space used in this paper is E := C[0, 1]× C[0, 1]. It is a Banach space endowed with the
norm ‖(u, v)‖ = max{‖u‖, ‖v‖} for (u, v) ∈ E, where ‖u‖ = max

t∈[0,1]
|u(t)|, ‖v‖ = max

t∈[0,1]
|v(t)|. Under

the condition (2), as in Reference [32], let

ξi,1 =
−βi +

√
β2

i + 4αi

2
, ξi,2 =

−βi −
√

β2
i + 4αi

2
, (i = 1, 2),

and let Gi,j(t, s)(i, j = 1, 2) be the Green’s function of the linear boundary value problem

{
−u′′i (t) + ξi,jui(t) = 0, 0 < t < 1;
ui(0) = ui(1) = 0, i, j = 1, 2.

Then for hi ∈ C[0, 1], the solution of the following nonlinear boundary value problem

{
u(4)

i (t) + βiu′′i (t)− αiui = hi(t), 0 < t < 1;
ui(0) = ui(1) = u′′i (0) = u′′i (1) = 0, i, j = 1, 2
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can be expressed as

ui(t) =
∫ 1

0

∫ 1

0
Gi,1(t, τ)Gi,2(τ, s)hi(s)dsdτ, t ∈ [0, 1].

Lemma 1. The function Gi,j(t, s)(i = 1, 2) has the following properties:
(1) Gi,j(t, s) > 0 for t, s ∈ (0, 1);
(2) Gi,j(t, s) ≤ Ci,jGi,j(s, s) for t, s ∈ [0, 1], where Ci,j > 0 is a constant;
(3) Gi,j(t, s) ≥ δi,jGi,j(t, t)Gi,j(s, s) for t, s ∈ [0, 1], where δi,j > 0 is a constant;
(4) G2,j(t, s) ≤ NjG1,j(t, s) for t, s ∈ [0, 1], where Nj > 0 is a constant.

Proof of Lemma 1. (1)–(3) can be seen from Reference [32]. In addition, by careful calculation and

Lemma 2.1 in Reference [32], it is not difficult to prove that Nj := sup
0<t,s<1

G2,j(t,s)
G1,j(t,s)

< +∞. Immediately,

(4) is derived.

The main tool used here is the following fixed-point index theory.

Lemma 2 ([34]). Let E1 be a Banach space and P be a cone in E1. Denote Pr = {u ∈ P : ‖u‖ < r} and
∂Pr = {u ∈ P : ‖u‖ = r} (∀r > 0). Let T : P → P be a complete continuous mapping, then the following
conclusions are valid.

(1) If µTu 6= u for u ∈ ∂Pr and µ ∈ (0, 1], then i(T, Pr, P) = 1;
(2) If inf

u∈∂Pr
‖Tu‖ > 0 and µTu 6= u for u ∈ ∂Pr and µ ≥ 1, then i(T, Pr, P) = 0.

3. Main Results

In this section, we shall establish the existence and multiplicity results, which is based on the fixed
point index theory. For this matter, first we define the mappings T1, T2 : E→ C[0, 1], and T : E→ E by

T1(u, v)(t) =
∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s) f1(s, u(s), v(s))dsdτ,

T2(u, v)(t) =
∫ 1

0

∫ 1

0
G2,1(t, τ)G2,2(τ, s) f2(s, u(s), v(s))dsdτ,

T(u, v)(t) = (T1(u, v)(t), T2(u, v)(t)), ∀(u, v) ∈ E.

Then, BVP (1) in operator forms becomes

(u, v) = T(u, v). (3)

By (3), one can easily see that the existence of solutions for BVP (1) is equivalent to the existence
of nontrivial fixed point of T. Therefore, we need to find only the nontrivial fixed point of T in the
following work.

Subsequently, for simplicity and convenience, set

Mi,j = max
t∈[0,1]

Gi,j(t, t), Ci =
∫ 1

0
Gi,1(τ, τ)Gi,2(τ, τ)dτ, and λi = π4 − βiπ

2 − αi.

Then, Mi,j, Ci, and λi(i, j = 1, 2) are positive numbers.
Now let us list the following assumptions satisfied throughout the paper.
(H1) f1 ∈ C([0, 1]×R+ ×R,R+), f2 ∈ C([0, 1]×R+ ×R,R), and there exists N3 > 0 such that

| f2(t, u, v)| ≤ N3 f1(t, u, v) for (t, u, v) ∈ [0, 1]×R+ ×R.
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(H2) lim
|v|≤Nu
u→0+

sup max
t∈[0,1]

f1(t,u,v)
u < λ1 < lim

|v|≤Nu
u→+∞

inf min
t∈[0,1]

f1(t,u,v)
u .

(H3) lim
|v|≤Nu
u→0+

inf min
t∈[0,1]

f1(t,u,v)
u > λ1 > lim

|v|≤Nu
u→+∞

sup max
t∈[0,1]

f1(t,u,v)
u .

In addition, for the sake of obtaining the nontrivial fixed point of operator T, let

P = {(u, v) ∈ E : u(t) ≥ σ(t)‖u‖ and |v(t)| ≤ Nu(t), ∀t ∈ [0, 1]},

where σ(t) =
δ1,1δ1,2C1

C1,1C1,2M1,1
G1,1(t, t) and N = N1N2N3. N1, N2, and N3 are defined in Lemma 1 and

(H1), respectively.
Obviously, P is a nonempty, convex, and closed subset of E. Furthermore, one can prove that P is

a cone of Banach space E.
For convenience, set

ΛΥ = {(u, v) ∈ R+ ×R : u ∈ Υ ⊂ R+, |v| ≤ Nu},

Pr = {(u, v) ∈ P : ‖u‖ < r},

∂Pr = {(u, v) ∈ P : ‖u‖ = r},

P̄r = {(u, v) ∈ P : ‖u‖ ≤ r}.

It is not difficult to see that Pr is a relatively open and bounded set of P for each r > 0.

Lemma 3. To calculate the fixed point index of T in Pr, we first need to prove the following result. Assume that
(H1) hold. Then T : P→ P is completely continuous, and T(P) ⊂ P.

Proof of Lemma 3. For (u, v) ∈ P, by virtue of Lemma 1, one can easily obtain that

T1(u, v)(t) =
∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s) f1(s, u(s), v(s))dsdτ

≥ δ1,1δ1,2C1

C1,1C1,2M1,1
G1,1(t, t)‖T1(u, v)‖ = σ(t)‖T1(u, v)‖, ∀t ∈ [0, 1].

Moreover, (H1) together with Lemma 1 guarantees that

|T2(u, v)(t)| = |
∫ 1

0

∫ 1

0
G2,1(t, τ)G2,2(τ, s) f2(s, u(s), v(s))dsdτ|

≤ N3

∫ 1

0

∫ 1

0
G2,1(t, τ)G2,2(τ, s) f1(s, u(s), v(s))dsdτ

≤ N1N2N3

∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s) f1(s, u(s), v(s))dsdτ

= N|T1(u, v)(t)|.

Therefore, T(u, v) ∈ P, namely, T(P) ⊂ P. In addition, since f1, f2, and Gi,j are continuous,
one can deduce that T is completely continuous by using normal methods such as Arscoli-Arzela
theorem, and so forth.

Now we are in a position to prove our main results in the following.

Theorem 1. Under the assumptions (H1) and (H2), the BVP (1) admits at least one nontrivial solution.
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Proof of Theorem 1. To obtain the nontrivial solution for BVP (1), we will choose a bounded open set
PR1 \ P̄r1 in cone P and calculate the fixed point index i(T, PR1 \ Pr1 , P). For this, the proof of Theorem 1
will be carried out in three steps.

First, notice that by (H2), there exist ε ∈ (0, 1) and r1 > 0 such that

f1(t, u, v) ≤ (1− ε)λ1u ∀t ∈ [0, 1], (u, v) ∈ Λ[0,r1]
. (4)

We claim that
µT(u, v) 6= (u, v), ∀µ ∈ (0, 1], (u, v) ∈ ∂Pr1 . (5)

To this end, suppose on the contrary that there exist µ0 ∈ (0, 1] and (u0, v0) ∈ ∂Pr1 such that

µ0T(u0, v0) = (u0, v0).

Therefore, (u0, v0) satisfies the following differential equation

{
u(4)

0 (t) + β1u′′0 (t)− α1u0(t) = f1(t, u(t), v(t)), 0 < t < 1;
u0(0) = u0(1) = u′′0 (0) = u′′0 (1) = 0;

(6)

It follows from (4) and (6) that

u(4)
0 (t) + β1u′′0 (t)− α1u0(t) ≤ f1(t, u0(t), v0(t)) ≤ (1− ε)λ1u0(t).

Multiplying the above inequality by sin(πt) and then integrating from 0 to 1, one can easily get

∫ 1

0
λ1u0(t) sin(πt)dt ≤ (1− ε)

∫ 1

0
λ1u0(t) sin(πt)dt.

Noticing that
∫ 1

0
λ1u0(t) sin(πt)dt > 0, we obtain a contradiction.

Second, from (H2), there exist ε > 0 and m > 0 such that

f1(t, u, v) ≥ (1 + ε)λ1u ∀t ∈ [0, 1], (u, v) ∈ Λ[m,+∞). (7)

Set C := max
t∈[0,1]

(u,v)∈Λ[0,m]

| f1(t, u, v)− (1 + ε)λ1u|+ 1. Then one can easily find that

f1(t, u, v) ≥ (1 + ε)λ1u− C, ∀t ∈ [0, 1], (u, v) ∈ ΛR+ . (8)

Now, we will show that there exists R1 > r1 such that

inf
(u,v)∈∂PR1

‖T(u, v)‖ > 0 and µT(u, v) 6= (u, v), ∀µ ≥ 1, (u, v) ∈ ∂PR1 . (9)

Suppose, on the contrary, that there exist µ0 ≥ 1 and (u0, v0) ∈ ∂PR1 such that µ0T(u0, v0) =

(u0, v0). Combining (6) with (8), we immediately get

u(4)
0 (t) + β1u′′0 (t)− α1u0(t) ≥ f1(t, u0(t), v0(t)) ≥ (1 + ε)λ1u0(t)− C.

Hence, ∫ 1

0
λ1u0(t) sin(πt)dt ≥ (1 + ε)

∫ 1

0
λ1u0(t) sin(πt)dt− 2C

π
,

which yields ∫ 1

0
λ1u0(t) sin(πt)dt ≤ 2C

πελ1
.
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On the other hand, in view of the definition of cone P, one can easily obtain that

‖u0‖
∫ 1

0
σ(t) sin(πt)dt ≤

∫ 1

0
u0(t) sin(πt)dt ≤ 2C

πελ1
,

which means
‖u0‖ ≤

2C

πελ1
∫ 1

0 σ(t) sin(πt)dt
:= R∗1 . (10)

Therefore, if R1 > R∗1 , immediately, one can get µT(u, v) 6= (u, v) for µ ≥ 1 and (u, v) ∈ ∂PR1 .

In addition, if R1 >
m

min
t∈[ 1

4 , 3
4 ]

σ(t)
:=

m
σ∗

, then by the definition of cone P, one can get that for any

t ∈ [ 1
4 , 3

4 ] and (u, v) ∈ ∂PR1 ,
u(t) ≥ min

t∈[ 1
4 , 3

4 ]
u(t) ≥ σ∗R1 > m. (11)

So, by (7), (11), and Lemma 1, one can get that for all (u, v) ∈ ∂PR1 ,

‖T(u, v)‖ ≥ T1(u, v)(
1
2
)

=
∫ 1

0

∫ 1

0
G1,1(

1
2

, τ)G1,2(τ, s) f1(s, u(s), v(s))dsdτ

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1

∫ 1

0
G1,2(s, s) f1(s, u(s), v(s))ds

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1(1 + ε)λ1

∫ 3
4

1
4

G1,2(s, s)u(s)ds

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1(1 + ε)λ1R1σ∗

∫ 3
4

1
4

G1,2(s, s)ds

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1(1 + ε)λ1m

∫ 3
4

1
4

G1,2(s, s)ds > 0.

That is, inf
(u,v)∈∂PR1

‖T(u, v)‖ > 0. So, we can ultimately choose R1 > max{R∗1 , r1, m
σ∗ } such that

(9) holds.
Based on (5), (9), Lemma 2, and Lemma 3, we have

i(T, PR1 \ P̄r1 , P) = i(T, PR1 , P)− i(T, Pr1 , P) = 0− 1 = −1.

As a result, the conclusion of this theorem follows.

Theorem 2. Assume that (H1) and (H3) hold. Then the BVP (1) has at least one nontrivial solution.

Proof of Theorem 2. In the following, we divide the proof of Theorem 2 into three steps.
Step 1. From condition (H3), there exist ε > 0 and r2 > 0 such that

f1(t, u, v) ≥ (1 + ε)λ1u, ∀t ∈ [0, 1], (u, v) ∈ Λ[0,r2]
. (12)

Subsequently, we claim that

inf
(u,v)∈∂Pr2

‖T(u, v)‖ > 0 and µT(u, v) 6= (u, v), ∀µ ≥ 1, (u, v) ∈ ∂Pr2 . (13)
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In fact, if there exist µ0 ≥ 1 and (u0, v0) ∈ ∂Pr2 such that µ0T(u0, v0) = (u0, v0), then by (6) and
(12), one can obtain immediately

u(4)
0 (t) + β1u′′0 (t)− α1u0(t) ≥ f1(t, u0(t), v0(t)) ≥ (1 + ε)λ1u0(t).

Hence, ∫ 1

0
λ1u0(t) sin(πt)dt ≥ (1 + ε)

∫ 1

0
λ1u0(t) sin(πt)dt.

Noticing that
∫ 1

0
λ1u0(t) sin(πt)dt > 0, we get a contradiction.

In addition, it follows from Lemma 1 and (12) that for (u, v) ∈ ∂Pr2 ,

‖T(u, v)‖ ≥ T1(u, v)(
1
2
)

=
∫ 1

0

∫ 1

0
G1,1(

1
2

, τ)G1,2(τ, s) f1(s, u(s), v(s))dsdτ

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1

∫ 1

0
G1,2(s, s) f1(s, u(s), v(s))ds

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1(1 + ε)λ1

∫ 1

0
G1,2(s, s)u(s)ds

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1(1 + ε)λ1r2

∫ 1

0
G1,2(s, s)σ(s)ds > 0,

which yields inf
(u,v)∈∂Pr2

‖T(u, v)‖ > 0.

Step 2. The assumption (H3) implies that there exist ε ∈ (0, 1) and m > 0 such that

f1(t, u, v) ≤ (1− ε)λ1u, ∀t ∈ [0, 1], (u, v) ∈ Λ[m,+∞). (14)

Moreover, by the continuity of f1 and f2, there exists C∗ > 0 such that

f1(t, u, v) ≤ (1− ε)λ1u + C∗, ∀t ∈ [0, 1], (u, v) ∈ ΛR+ . (15)

We claim that there exists a large enough R2 > r2 such that

µT(u, v) 6= (u, v), ∀µ ∈ (0, 1], (u, v) ∈ ∂PR2 . (16)

Suppose, on the contrary, there exist µ0 ∈ (0, 1] and (u0, v0) ∈ ∂PR2 such that µ0T(u0, v0) =

(u0, v0). Then (6) together with (15) guarantees

u(4)
0 (t) + β1u′′0 (t)− α1u0(t) ≤ f1(t, u0(t), v0(t)) ≤ (1− ε)λ1u0(t) + C∗.

Consequently,

∫ 1

0
λ1u0(t) sin(πt)dt ≤ (1− ε)

∫ 1

0
λ1u0(t) sin(πt)dt +

2C∗

π
,

namely, ∫ 1

0
u0(t) sin(πt)dt ≤ 2C∗

πελ1
.

Moreover, based on the definition of cone P, we can immediately get

‖u0‖
∫ 1

0
σ(t) sin(πt)dt ≤

∫ 1

0
u0(t) sin(πt)dt ≤ 2C∗

πελ1
,
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which means
‖u0‖ ≤

2C∗

πελ1
∫ 1

0 σ(t) sin(πt)dt
:= R∗2 . (17)

So, one can choose R2 > max{R∗2 , r2} such that (16) holds.
Step 3. From (13), (16), Lemma 2, and Lemma 3, we deduce that

i(T, PR2 \ P̄r2 , P) = i(T, PR2 , P)− i(T, Pr2 , P) = 1− 0 = 1.

As a result, BVP(1) has at least one nontrivial solution.

Up to now, some existence results of BVP(1) have been obtained by applying the fixed point index
theory. In the following, the multiple solutions will be considered for BVP (1).

Theorem 3. Assume that (H1) holds. In addition, suppose that
(1) lim

|v|≤Nu
u→0+

sup max
t∈[0,1]

f1(t,u,v)
u < λ1, lim

|v|≤Nu
u→+∞

sup max
t∈[0,1]

f1(t,u,v)
u < λ1;

(2) There exists r > 0 and a continuous nonnegative function Φr such that

f1(t, u, v) ≥ Φr(t), ∀(t, u, v) ∈ [0, 1]× (σ(t)r, r)× [−Nr, Nr]

and

max
t∈[0,1]

∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s)Φr(s)dsdτ > r.

Then the BVP (1) has at least two nontrivial solutions.

Proof of Theorem 3. In order to obtain this conclusion, we firstly claim that

inf
(u,v)∈∂Pr

‖T(u, v)‖ > 0 and µT(u, v) 6= (u, v), ∀ µ ≥ 1, (u, v) ∈ ∂Pr. (18)

Suppose, on the contrary, there exist µ0 ≥ 1 and (u0, v0) ∈ ∂Pr such that µ0T(u0, v0) = (u0, v0).
Then,

‖u0‖ ≥ ‖T(u0, v0)‖ ≥ T1(u0, v0)(t)

=
∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s) f1(s, u(s), v(s))dsdτ

≥
∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s)Φr(s)dsdτ.

(19)

Taking the maximum for both sides of the above inequality in t ∈ [0, 1], we get that

‖u0‖ ≥ max
t∈[0,1]

∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s)Φr(s)dsdτ > r. (20)

This means (u0, v0)∈ ∂Pr, which is a contradiction. Moreover, one can easily see that
inf

(u,v)∈∂Pr
‖T(u, v)‖ > 0 holds from (19) and (20).

Next, similar to the process of proving (5) and (16), there exist r1 ∈ (0, r) and R2 ≥ max{R∗2 , r2, r}
such that

µT(u, v) 6= (u, v), ∀µ ∈ (0, 1], ∀(u, v) ∈ ∂Pr1 , (21)

µT(u, v) 6= (u, v), ∀µ ∈ (0, 1], ∀(u, v) ∈ ∂PR2 . (22)

Thus, by (18), (21), (22), Lemma 2, and Lemma 3, one can immediately obtain that

i(T, PR2 \ P̄r, P) = i(T, PR2 , P)− i(T, Pr, P) = 1− 0 = 1,
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i(T, Pr \ P̄r1 , P) = i(T, Pr, P)− i(T, Pr1 , P) = 0− 1 = −1.

Namely, there exist (u1, v1) ∈ Pr \ P̄r1 and (u2, v2) ∈ PR2 \ P̄r satisfying T(ui, vi) = (ui, vi)(i =
1, 2), that is, (ui, vi)(i = 1, 2) is the solution of BVP(1).

Finally, we show (u1, v1) 6= (u2, v2). To see this we need only to prove BVP(1) has no solution on
∂Pr. Suppose on the contrary, there exists (u∗, v∗) ∈ ∂Pr being a solution of BVP(1). Then T(u∗, v∗) =
(u∗, v∗). By a similar process of obtaining (20), one can get ‖u∗‖ = ‖T1(u∗, v∗)‖ > r, which is a
contradiction. To sum up, Theorem 3 is proved.

From a process similar to the above, the following conclusion can be obtained.

Theorem 4. Suppose that (H1) holds. In addition, suppose that
(1) lim

|v|≤Nu
u→0+

inf min
t∈[0,1]

f1(t,u,v)
u > λ1, lim

|v|≤Nu
u→+∞

inf min
t∈[0,1]

f1(t,u,v)
λ1u > λ1;

(2) There exists R > 0, and a continuous nonnegative function ΨR such that

f1(t, u, v) ≤ ΨR(t), ∀(t, u, v) ∈ [0, 1]× [σ(t)R, R]× [−NR, NR]

and

max
t∈[0,1]

∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s)ΨR(s)dsdτ < R.

Then the BVP (1) has at least two nontrivial solutions.

Proof of Theorem 4. We firstly prove that

µT(u, v) 6= (u, v), ∀µ ∈ (0, 1], (u, v) ∈ ∂PR. (23)

To this end, suppose on the contrary that there exist µ0 ∈ (0, 1] and (u0, v0) ∈ ∂PR such that
µ0T(u0, v0) = (u0, v0). Hence, we get u0 = µ0T1(u0, v0), that is

u0(t) ≤ T1(u0, v0)(t) ≤
∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s)ΨR(s)dsdτ < R. (24)

Noticing that (u0, v0) ∈ ∂PR, this is a contradiction.
Next, from a process similar to (9) and (13), there exist R1 > max{R, R∗1 , r1, m

σ∗ } and r2 ∈ (0, R)
such that

inf
(u,v)∈∂PR1

‖T(u, v)‖ > 0 and µT(u, v) 6= (u, v), ∀µ ≥ 1, (u, v) ∈ ∂PR1 , (25)

inf
(u,v)∈∂Pr2

‖T(u, v)‖ > 0 and µT(u, v) 6= (u, v), ∀µ ≥ 1, (u, v) ∈ ∂Pr2 . (26)

So, by (23)–(26), Lemma 2, and Lemma 3, one can get

i(T, PR1 \ P̄R, P) = i(T, PR1 , P)− i(T, PR, P) = 0− 1 = −1,

i(T, PR \ P̄r2 , P) = i(T, PR, P)− i(T, Pr2 , P) = 1− 0 = 1.

Finally, from a process similar to the end of proof of Theorem 3, BVP(1) has at least two nontrivial
solutions. As a result, the conclusion of this theorem follows.

4. Examples

In this section, two illustrative examples are worked out to show the effectiveness of the
obtained results.
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Example 1. Consider the following BVP of fourth-order ordinary differential systems





u(4)(t) + u′′(t)− π2u(t) = f1(t, u, v), 0 < t < 1;

v(4)(t) +
1
2

v′′(t)− π2

2
v(t) = f2(t, u, v), 0 < t < 1;

u(0) = u(1) = u′′(0) = u′′(1) = 0;

v(0) = v(1) = v′′(0) = v′′(1) = 0,

(27)

where

f1(t, u, v) =





(π4 − 2π2)(1 + sin(πt))uv
1
4 if 0 < u < 1, |v| < u;

(π4 − 2π2)(1 + sin(πt))v
1
4 if u = 1, |v| < u;

(π4 − 2π2)(1 + sin(πt))u
1
4 v

1
4 if u > 1, |v| < u,

f2(t, u, v) =





(π4 − 2π2)(1 + cos(πt))uv
1
4 if 0 < u < 1, |v| < u;

(π4 − 2π2)(1 + cos(πt))v
1
4 if u = 1, |v| < u;

(π4 − 2π2)(1 + cos(πt))u
1
4 v

1
4 if u > 1, |v| < u,

Then, BVP (27) has at least two nontrivial solutions.

Proof of Example 1 . BVP (27) can be regarded as a BVP of the form (1). Choosing α1 = π2, β1 = 1,
and λ1 = π4 − 2π2 > 0, then we have

ξ1,1 =
−β1 +

√
β2

1 + 4α1

2
=
−1 +

√
1 + 4π2

2
, ξ1,2 =

−β1 −
√

β2
1 + 4α1

2
=
−1−

√
1 + 4π2

2
.

Clearly, α1 and β1 satisfy the condition (2). Moreover, by careful calculation and Lemma 2.1 in
Reference [32], one can obtain that

G1,1(t, s) =





sinh w1,1t sinh w1,1(1− s)
w1,1 sinh w1,1

0 ≤ t ≤ s ≤ 1;

sinh w1,1s sinh w1,1(1− t)
w1,1 sinh w1,1

0 ≤ s ≤ t ≤ 1,

G1,2(t, s) =





sin w1,2t sin w1,2(1− s)
w1,2 sin w1,2

0 ≤ t ≤ s ≤ 1;

sin w1,2s sin w1,2(1− t)
w1,2 sin w1,2

0 ≤ s ≤ t ≤ 1,

where w1,i =
√
|ξ1,i|(i = 1, 2).

Now, |v| ≤ 2u, | f2(t, u, v)| ≤ 2| f1(t, u, v)|, and N = N1N2N3. Thus, one can easily get that (H1)

holds by choosing N3 ≥ max{2,
2

N1N2
}, where Nj = sup

0<t,s<1

G2,j(t,s)
G1,j(t,s)

, j = 1, 2.

In addition, by calculation, we get that

lim
|v|≤Nu
u→0+

sup max
t∈[0,1]

f1(t, u, v)
u

= lim
|v|≤Nu
u→0+

sup max
t∈[0,1]

(π4 − 2π2)(1 + sin(πt))uv
1
4

u
= 0 < λ1,

lim
|v|≤Nu

u→+∞

sup max
t∈[0,1]

f1(t, u, v)
u

= lim
|v|≤Nu

u→+∞

sup max
t∈[0,1]

(π4 − 2π2)(1 + sin(πt))u
1
4 v

1
4

u
= 0 < λ1.
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Choose

r = min{1, [δ1,1δ1,2

∫ 1

0

√
σ(t) sin(πt)dt min

t∈[ 1
4 , 3

4 ]
(G1,1(t, t)G1,2(t, t))2]2} > 0

and
Φr(t) =

√
rσ(t) sin(πt).

Then, it is not difficult to obtain that the condition (2) in Theorem 3 holds. Hence, our conclusion
follows from Theorem 3.

Example 2. Consider the following BVP of fourth-order ordinary differential systems





u(4)(t) + u′′(t)− π2u(t) = f1(t, u, v), 0 < t < 1;

v(4)(t) +
1
2

v′′(t)− π2

2
v(t) = f2(t, u, v), 0 < t < 1;

u(0) = u(1) = u′′(0) = u′′(1) = 0;

v(0) = v(1) = v′′(0) = v′′(1) = 0.

(28)

where

f1(t, u, v) =





(π4 − 2π2)(2 + t)u
1
2 v

1
3 if 0 < u < 1, 0 < v < 1;

(π4 − 2π2)(2 + t)v
1
3 if u = 1, 0 < v < 1;

(π4 − 2π2)(2 + t)u2v
1
3 if u > 1, 0 < v < 1,

f2(t, u, v) =





(π4 − 2π2)(1 + cos(πt))u
1
2 v

1
3 if 0 < u < 1, 0 < v < 1;

(π4 − 2π2)(1 + cos(πt))v
1
3 if u = 1, 0 < v < 1;

(π4 − 2π2)(1 + cos(πt))u2v
1
3 if u > 1, 0 < v < 1,

Then, BVP (28) has at least two nontrivial solutions.

Proof of Example 2 . BVP (28) can be regarded as a BVP of the form (1). Using a similar process of the
proof of Example 1, one can easily obtain that

lim
|v|≤Nu
u→0+

inf min
t∈[0,1]

f1(t, u, v)
u

= lim
|v|≤Nu
u→0+

inf min
t∈[0,1]

(π4 − 2π2)(2 + t)u
1
2 v

1
3

u
= +∞ > π4 − 2π2 = λ1,

lim
|v|≤Nu

u→+∞

inf min
t∈[0,1]

f1(t, u, v)
u

= lim
|v|≤Nu

u→+∞

inf min
t∈[0,1]

(π4 − 2π2)(2 + t)u2v
1
3

u
+ ∞ > π4 − 2π2 = λ1.

In addition, it is obvious that (H1) holds by choosing N3 = 2. In the following, set

R = max{1,
2

5π2C1,1C1,2 max
t∈[0,1]

[G1,1(t, t)G1,2(t, t)]
} > 0

and
ΨR(t) = π4R2(2 + t).

Then, it is trivial to verify that assumption (2) of Theorem 3 is true.
As a result, by Theorem 4, system (28) has at least two nontrivial solutions.
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5. Conclusions

In this paper, we have obtained some appropriate results corresponding to multiple solutions for
a class of nonlinear fourth-order boundary value problems with parameters. The multiple solutions
for the considered systems are obtained under some suitable assumptions via fixed point index
theory. The whole theoretical results has been demonstrated by providing two interesting examples.
Hence, we claim that fixed point index theory can be used as a strong technique to study nonlinear
fourth-order boundary value problems with parameters.
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Abstract: In this paper, based on critical point theory, we mainly focus on the multiplicity of nontrivial
solutions for a nonlinear discrete Dirichlet boundary value problem involving the mean curvature
operator. Without imposing the symmetry or oscillating behavior at infinity on the nonlinear term f ,
we respectively obtain the sufficient conditions for the existence of at least three non-trivial solutions
and the existence of at least two non-trivial solutions under different assumptions on f . In addition,
by using the maximum principle, we also deduce the existence of at least three positive solutions
from our conclusion. As far as we know, our results are supplements to some well-known ones.

Keywords: φc-Laplacian; boundary value problem; critical point theory; three solutions

1. Introduction

Let Z and R denote all integers and real numbers, respectively. Let N be a fixed positive integer.
Define Z(a, b) = {a, a + 1, · · · , b} with a ≤ b for any a, b ∈ Z.

Difference equations are widely used in various research fields, such as computer science,
discrete optimization, economics and biological neural networks [1–4]. On the existence and
multiplicity of solutions for the boundary value problems of difference equations, many authors
have come to important conclusions by exploiting various methods, including the method of upper
and lower solutions, Brouwer degree and invariant sets of descending flow [5–7]. Critical point theory
was used largely to explore differential equations much earlier on in history. In 2003, Guo and Yu
in [8] used critical point theory for the first time to obtain sufficient conditions for the existence of
periodic solutions and subharmonic solutions of difference equations. This crucial breakthrough
inspired many scholars to use critical point theory to study the dynamics of difference equations and
many meaningful and interesting results have been obtained, especially in periodic solutions [9–11],
homoclinic solutions [12–16] and boundary value problems [17–23].

In [24], Agarwal, Perera and O’Regan employed the critical point theory to establish the existence
of at least two positive solutions of the following second order discrete boundary value problem

{
−∆2x(k− 1) = f (k, x(k)), k ∈ Z(1, N),

x(0) = x(N + 1) = 0,

where ∆x(k) = x(k + 1)− x(k), ∆2x(k) = ∆(∆x(k)) and f : Z(1, N)×R→ R is a continuous function.
In [18], by using the three critical point theorems proposed by Bonanno [25], Jiang and Zhou obtained
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sufficient conditions for the existence of at least three solutions of the following Dirichlet boundary
value problem with φp-Laplacian

{
−∆(φp(∆u(k− 1))) = λ f (k, u(k)), k ∈ Z(1, N),

u(0) = u(N + 1) = 0,

where φp is the p-Laplacian defined by φp(u) = |u|p−2u (p > 1) with u ∈ R and λ > 0 is a
positive parameter. Different from the conclusion of [18], Bonanno in [26] obtained the existence
of three positive solutions without the asymptotic condition of the nonlinear function f . In particular,
Bonanno obtained the sufficient conditions for the existence of at least four nontrivial solutions when
f satisfies the growth condition at zero and infinity [26], which improved the result in [18].

In [27], by using critical point theory, Nastasi and Vetro obtained the existence of at least two
positive solutions to the following Dirichlet boundary value problem with (p, q)-Laplacian

{
−∆(φp(∆u(z− 1)))− ∆(φq(∆u(z− 1))) + α(z)φp(u(z)) + β(z)φq(u(z)) = λg(z, u(z)), z ∈ Z(1, N),

u(0) = u(N + 1) = 0,

where 1 < q < p < +∞, α, β : Z(1, N) → R and g : [1, N + 1]×R → R are a continuous function
with g(N + 1, t) = 0 for all t ∈ R.

It is well known that the differential equation with φc-Laplacian (φc is the mean curvature operator
defined by φc(s) = s/

√
1 + s2 for s ∈ R) was studied by many scholars in the past decades [28–31].

It is usually regarded as a variant of the Liouville–Bratu–Gelfand problem, which is used to study
the dynamic model of combustible gases. As mentioned above, we find that the research on the
difference equation largely focuses on the case with φp-Laplacian. However, there are only a few
results on the boundary value problems involving φc-Laplacian [32]. Recently, Zhou and Ling in [33]
considered the existence of multiple solutions of the following discrete Dirichlet boundary value
problem with φc-Laplacian.

Problem 1 


−∆

(
∆u(k−1)√

1+(∆u(k−1))2

)
= λ f (k, u(k)), k ∈ Z(1, N),

u(0) = u(N + 1) = 0.

The authors in [33] found that the properties of the nonlinear term F(k, u) =
∫ u

0 f (k, t)dt plays an
important role on the existence of multiple solutions. When F(k, u) has oscillating behavior at infinity,
there are infinite solutions to the boundary value (Problem 1) [33]. Naturally, we would like to ask:
What will happen if F(k, u) does not oscillate at infinity?

To address this problem, in this paper, we will study the existence of solutions for the boundary
value (Problem 1) without oscillating nonlinear terms. In fact, based on the theorems of G. Bonanno
(Theorem 4.1 in [22] and Theorem 2.1 in [23]), we will give the conditions of the existence of at least
three nontrivial solutions for (Problem 1), when F(k, u) does not have oscillation property at infinity.
In addition, when f (k, 0) > 0, we obtain the sufficient conditions for the existence of at least three
positive solutions of (Problem 1). Moveover, we give two examples to illustrate our main results.

For convenience, we end this section by recalling some classical definitions and two well-known
lemmas, which are the main tools of this paper.

Let (X, ‖ · ‖) be a real Banach space. We say that I : X → R is coercive on X if
lim‖u‖→+∞ I(u) = +∞. If I is a continuously Gâteaux differentiable functional, we say that I satisfies
the Palais–Smale condition ((PS)-condition in short), if any sequence un ⊂ X such that {I(un)} is
bounded and {I′(un)} is convergent to 0 in X∗, has a convergent subsequence in X.
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(H) Let (X, ‖ · ‖) be a real finite dimensional Banach space and let Φ, Ψ : X → R be two continuously
Gâteaux differentiable functionals with Φ coercive and such that

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Lemma 1 ([22]). Assume that (H) holds and there exist r > 0 and x ∈ X, with 0 < r < Φ(x), such that:

(a1)
sup

Φ(x)≤r
Ψ(x)

r < Ψ(x)
Φ(x) ;

(a2) for each λ ∈ Λr :=


Φ(x)

Ψ(x) , r
sup

Φ(x)≤r
Ψ(x)


 , the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr, the functional Iλ = Φ− λΨ has at least three distinct critical points in X.

Lemma 2 ([23]). Let X be a real Banach space and let Φ, Ψ : X → R be two continuously Gâteaux differentiable
functionals such that inf

X
Φ = Φ(0) = Ψ(0) = 0. Assume that there are r > 0 and ũ ∈ X, with 0 < Φ(ũ) < r,

such that
sup

Φ(u)≤r
Ψ(u)

r
<

Ψ(ũ)
Φ(ũ)

(1)

for each λ ∈

Φ(ũ)

Ψ(ũ) , r
sup

Φ(u)≤r
Ψ(u)


, and the functional Iλ = Φ− λΨ satisfies (PS)-condition and it is unbounded

from below. Then, for each λ ∈

Φ(ũ)

Ψ(ũ) , r
sup

Φ(u)≤r
Ψ(u)


, the functional Iλ admits at least two non-zero critical

points uλ,1, uλ,2 such that Iλ(uλ,1) < 0 < Iλ(uλ,2).

2. Preliminaries

In this section, we recall some definitions, notations and properties. Consider the N-dimensional
Banach space

S = {u : [0, N + 1]→ R : u(0) = u(N + 1) = 0}

endowed with the norm

‖u‖ =
(

N+1

∑
k=1
|∆u(k− 1)|2

) 1
2

.

We define the functional Φ, Ψ : S→ R in the following way

Φ(u) =
N+1

∑
k=1

(√
1 + (∆u(k− 1))2 − 1

)
, Ψ(u) =

N

∑
k=1

F(k, u(k)) (2)

for each u ∈ S, where

F(k, ξ) :=
∫ ξ

0
f (k, t)dt, ξ ∈ R.

It is easy to check that Φ, Ψ ∈ C1(S, R) and we have

Φ′(u)(v) = −
N

∑
k=1

∆(φc (∆u(k− 1)))v(k)

and

Ψ′(u)(v) = −
N

∑
k=1

f (k, u(k))v(k).
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By a standard argument, it can be shown that the critical points of the functional

Iλ = Φ− λΨ

are the solutions of (Problem 1).
Let

‖u‖∞ = max {|u(k)| : k ∈ Z(1, N)} .

We see that ‖ · ‖∞ is another norm in S. From Lemma 2.2 of [18], we have

Lemma 3 ([18]). For any u ∈ S, the following relation holds

‖u‖∞ ≤
√

N + 1
2

‖u‖.

From (2.1) and (2.3) in [22], we have

Lemma 4 ([22]). For any u ∈ S, one has

1√
NλN

‖u‖ ≤ ‖u‖∞ ≤
1√
λ1
‖u‖,

where λ1 = 4 sin2 π
2(N+1) and λN = 4 sin2 Nπ

2(N+1) .

Finally, in order to obtain the positive solutions of (Problem 1), we need the following strong
maximum principle, which can be found in Theorem 2.1 of [33].

Lemma 5 ([33]). Assume u ∈ S such that either

u(k) > 0 or ∆(φc(∆u(k− 1))) ≤ 0,

for all k ∈ Z(1, N). Then, either u > 0 in Z(1, N) or u ≡ 0.

3. Main Results

For convenience, set

Ft :=
N

∑
k=1

F(k, t), for all t > 0.

Our first result is the following theorem.

Theorem 1. Assume that there exist two positive constants c and d with

2
√

1 + d2 > 1 +

√
1 +

4c2

N + 1
(3)

such that

(i) f (k, ξ) > 0 for each k ∈ Z(1, N) and ξ ∈ [−c, c];

(ii) Fd
2(
√

1+d2−1)
> Fc

−1+
√

1+ 4c2
N+1

;

(iii) lim sup
|ξ|→+∞

F(k,ξ)
|ξ| < 2Fc

N(
√

4c2+N+1−
√

N+1)
.

Then, for every λ ∈ Λ :=

(
2(
√

1+d2−1)
Fd

,
−1+

√
1+ 4c2

N+1
Fc

)
, (Problem 1) has at least three nontrivial solutions.

106



Symmetry 2020, 12, 1839

Proof. We take X = S, Φ and Ψ as in (2). Clearly, Φ and Ψ are two continuously Gâteaux differentiable
functionals. Now, we prove the coercivity of Φ. In fact, one has

Φ(u) =
N+1

∑
k=1

(√
1 + (∆u(k− 1))2 − 1

)

≥
(

N+1

∑
k=1

[
1 + (∆u(k− 1))2]

) 1
2

−
N+1

∑
k=1

1

≥ ‖u‖ − N − 1.

This means lim
‖u‖→+∞

Φ(u) = +∞ and verifies the coercivity of Φ. Moreover, by the definition of Φ

and Ψ, we can obtain
inf
X

Φ = Φ(0) = Ψ(0) = 0.

To summarize, condition (H) in Lemma 1 holds.
According to Lemma 1, it is clear that Theorem 1 holds if we can verify (a1) and (a2) of Lemma 1.
Put

r = −1 +

√
1 +

4c2

N + 1
.

If Φ(u) ≤ r, let

v(k) =
√

1 + (∆u(k))2 − 1 for k ∈ Z(0, N).

Then, we have
N
∑

k=0
v(k) ≤ r and

N

∑
k=0

(∆u(k))2 =
N

∑
k=0

(
v(k)2 + 2v(k)

)
≤
(

N

∑
k=0

v(k)

)2

+ 2
N

∑
k=0

v(k) ≤ r2 + 2r =
4c2

N + 1
.

Thus, ‖u‖∞ ≤
√

N+1
2 ‖u‖ ≤ c by Lemma 3.

By (i), we see that F(k, ξ) is increasing in ξ ∈ [−c, c]. Thus

sup
Φ(u)≤r

Ψ(u)

r
≤

sup
‖u‖∞≤c

N
∑

k=1
F(k, u(k))

−1 +
√

1 + 4c2

N+1

≤

N
∑

k=1
max
|ξ|≤c

F(k, ξ)

−1 +
√

1 + 4c2

N+1

=
Fc

−1 +
√

1 + 4c2

N+1

. (4)

Then, it is easy to get
sup

Φ(u)≤r
Ψ(u)

r
<

1
λ

. (5)

Now, let u ∈ S be defined by

u(k) =

{
d, if k ∈ Z(1, N),

0, if k = 0 or k = N + 1.

Then, we see from (3) that

Φ(u) = 2(
√

1 + d2 − 1) >

√
1 +

4c2

N + 1
− 1 = r.
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Moreover, it holds that

Ψ(u)
Φ(u)

=

N
∑

k=1
F(k, u(k))

2(
√

1 + d2 − 1)
=

Fd

2(
√

1 + d2 − 1)
. (6)

Therefore, we have
Ψ(u)
Φ(u)

>
1
λ

. (7)

Hence, condition (a1) of Lemma 1 follows by combining (5) with (7).
Next, we prove the coercivity of the functional Iλ. From (iii), there is an ε > 0 such that

lim sup
|ξ|→+∞

F(k, ξ)

|ξ| < ε <
2Fc

N(
√

4c2 + N + 1−
√

N + 1)
.

Then, there is a positive constant h such that

F(k, ξ) ≤ ε|ξ|+ h

for each ξ ∈ R and k ∈ Z(1, N). By Lemma 3 and λ <
−1+

√
1+ 4c2

N+1
Fc

, one has

λ
N

∑
k=1

F(k, u(k)) ≤ λ
N

∑
k=1

[ε|u(k)|+ h]

≤ λ
εN
√

N + 1
2

‖u‖+ λNh

≤
εN
(√

N + 1 + 4c2 −
√

N + 1
)

2Fc
‖u‖+

(
−1 +

√
1 + 4c2

N+1

)
Nh

Fc
,

for each u ∈ S. Therefore, it is true that

Iλ(u) = Φ(u)− λΨ(u)

=
N+1

∑
k=1

[√
1 + (∆u(k− 1))2 − 1

]
− λ

N

∑
k=1

F(k, u(k))

≥
[

N+1

∑
k=1

[
1 + (∆u(k− 1))2]

] 1
2

− N − 1− λ
N

∑
k=1

F(k, u(k))

≥

1−

εN
(√

N + 1 + 4c2 −
√

N + 1
)

2Fc


 ‖u‖ − N − 1−

(
−1 +

√
1 + 4c2

N+1

)
Nh

Fc
.

Thus, we get that Iλ is coercive, and condition (a2) of Lemma 1 is verified. In summary,
all assumptions of Lemma 1 are proved, and so the functional Iλ has at least three distinct critical
points in X for each λ ∈ Λ. Since u ≡ 0 is not a solution to the (Problem 1), the proof is completed.

Remark 1. It is obvious that the mean curvature operator φc is odd symmetric (φc(−s) = −φc(s), s ∈ R).
When the nonlinear term f is also odd symmetric ( f (·,−s) = − f (·, s)), the variational functional Iλ is even
symmetric (Iλ(−u) = Iλ(u), u ∈ S). In this case, it is easy to obtain multiple solutions to (Problem 1) by using
the critical point theory with symmetries. However, in this paper, we obtain multiple solutions to (Problem 1)
without the symmetry on f .
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Now, let

F+(k, ξ) =
∫ ξ

0
f (k, t+)dt, (k, ξ) ∈ Z(1, N)×R,

where t+ = max{0, t} and define I+λ = Φ− λΨ+, with Φ defined in (2) and

Ψ+(u) :=
N

∑
k=1

F+(k, u(k)).

It is well known that I+λ ∈ C1(S,R) and the critical points of I+λ are precisely the solutions of the
following problem.

Problem 2 {
−∆(φc (∆u(k− 1))) = λ f (k, u+(k)), k ∈ Z(1, N),

u(0) = u(N + 1) = 0.

We have the following corollary.

Corollary 1. Assume that there exist two positive constants c and d with

2
√

1 + d2 > 1 +

√
1 +

4c2

N + 1

such that

(i) f (k, ξ) > 0 for each k ∈ Z(1, N) and ξ ∈ [0, c];

(ii) Fd
2(
√

1+d2−1)
> Fc

−1+
√

1+ 4c2
N+1

;

(iii) lim sup
ξ→+∞

F(k,ξ)
ξ < 2Fc

N(
√

4c2+N+1−
√

N+1)
.

Then, for every λ ∈ Λ, (Problem 1) has at least three positive solutions.

Proof. For each k ∈ Z(1, N), consider (Problem 2) with

f+(k, ξ) =

{
f (k, ξ), if ξ > 0,

f (k, 0), if ξ ≤ 0.

One has that condition (i) of Theorem 1 holds. Besides, we have

lim sup
ξ→−∞

F+(k, ξ)

|ξ| = lim sup
ξ→−∞

ξ f (k, 0)
|ξ| = − f (k, 0) <

2Fc

N(
√

4c2 + N + 1−
√

N + 1)
.

So, all conditions of Theorem 1 are true. Moreover, since u ≡ 0 is not a solution of problem (P+
λ, f ),

we can get that (Problem 2) has at least three nontrivial solutions. Assume u = {u(k)} is one of the
nontrivial solution, for any k ∈ Z(1, N), one has either u(k) > 0 or

−∆(φc (∆u(k− 1))) = λ f (k, u+(k)) = λ f (k, 0) > 0.

Then, we have u > 0 for all k ∈ Z(1, N) by Lemma 5, i.e., u is a positive solution. In addition,
if u is a positive solution of (Problem 2), then u is a positive solution of (Problem 1) obviously and
Corollary 1 is proved.

Next, we will use Lemma 2 to obtain another conclusion of this paper.
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Theorem 2. Assume that there exist two positive constants c and d with

2
√

1 + d2 < 1 +

√
1 +

4c2

N + 1
(8)

such that

(T1) f (k, ξ) > 0 for each k ∈ Z(1, N) and ξ ∈ [−c, c];

(T2) max

{
2(
√

1+d2−1)
Fd

,
2
√

N(N+1) sin Nπ
2(N+1)

β

}
<
−1+

√
1+ 4c2

N+1
Fc

;

(T3) there exist a positive constant β such that

lim inf
|t|→+∞

F(k, t)
|t| > β

for each k ∈ Z(1, N).

Then, for every λ ∈
(

max

{
2(
√

1+d2−1)
Fd

,
2
√

N(N+1) sin Nπ
2(N+1)

β

}
,
−1+

√
1+ 4c2

N+1
Fc

)
, (Problem 1) has at

least two non-zero critical points uλ,1, uλ,2 such that Iλ(uλ,1) < 0 < Iλ(uλ,2).

Proof. Clearly, Φ, Ψ are two continuously Gâteaux differentiable functionals and

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Let u and r be the same as the ones defined in the proof of Theorem 1. Then we have

sup
Φ(u)≤r

Ψ(u)

r
≤ Fc

−1 +
√

1 + 4c2

N+1

<
1
λ

and
Ψ(u)
Φ(u)

=
Fd

2(
√

1 + d2 − 1)
>

1
λ

.

So inequality (1) in Lemma 2 holds. Besides, form (T3) and Lemma 4, there is a constant h
such that, for any u ∈ S and k ∈ Z(1, N),

λ
N

∑
k=1

F(k, u(k)) ≥ λ
N

∑
k=1

(β|u(k)| − h)

≥ λβ‖u‖∞ − λNh

≥ λβ√
NλN

‖u‖ − λNh.
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Therefore, we have

Iλ(u) = Φ(u)−Ψ(u)

=
N+1

∑
k=1

[√
1 + (∆u(k− 1))2 − 1

]
− λ

N

∑
k=1

F(k, u(k))

≤
N+1

∑
k=1

[
1 +

√
(∆u(k− 1))2 − 1

]
− λβ√

NλN
‖u‖+ λNh

≤
(

N+1

∑
k=1

12

) 1
2
(

N+1

∑
k=1

(∆u(k− 1))2

) 1
2

− λβ√
NλN

‖u‖+ λNh

≤
(√

N + 1− λβ√
NλN

)
‖u‖+ λNh

=


√N + 1− λβ

2
√

N sin Nπ
2(N+1)


 ‖u‖+ λNh.

Thus, we see that lim
‖u‖→+∞

Iλ(u) = −∞, which means that the functional Iλ is unbounded

from below. Moreover, we can get that −Iλ is coercive. Therefore, Iλ satisfies the (PS)-condition
and the proof is completed.

4. Examples

Example 1. Fix N ∈ Z(1, 20) and consider the boundary value (Problem 1) with

f (k, u) = f (u) =

{
3u2 + 1

4 cos u, if u ≤ 3π
2 ,

27π2

4 cos(u + π
2 ), if u > 3π

2 ,

for k ∈ Z(1, N). Then, we have

F(k, ξ) = F(ξ) =

{
ξ3 + 1

4 sin ξ, if ξ ≤ 3π
2 ,

27π3

8 − 1
4 + 27π2

4 sin(ξ + π
2 ), if ξ > 3π

2 .

Let c = 1
2 and d = 4. Then one has

2
√

1 + d2 = 2
√

17 > 1 +

√
1 +

1
N + 1

= 1 +

√
1 +

4c2

N + 1
.

In addition, as shown in Figure 1, f (k, ξ) > 0 for each ξ ∈ [0, 1
2 ]. Thus condition (i) of Corollary 1 follows.

Moreover, we have

Fc

−1 +
√

1 + 4c2

N+1

=
N(1 + 2 sin 1

2 )

8
(
−1 +

√
1 + 1

N+1

) ≤ N(1 + 2 sin 1
2 )

8
(
−1 +

√
21
20

) ≈ 9.915N (9)

and
Fd

2(
√

1 + d2 − 1)
=

N(256 + sin 4)
8(
√

17− 1)
≈ 10.216N. (10)

Since
256 + sin 4
8(
√

17− 1)
− 1 + 2 sin 1

2

8
(
−1 +

√
21
20

) > 0,
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by combining (9) and (10), condition (ii) of Corollary 1 holds.

0 1 2 3 4 5 6

u

0

50

100

150

 

f(u)

F(u)

Figure 1. The images of f (u) and F(u) in Example 1.

We can further verify condition (iii) of Corollary 1, since

lim sup
ξ→+∞

F(k, ξ)

ξ
= lim sup

ξ→+∞

27π3

8 − 1
4 + 27π2

4 sin(ξ + π
2 )

ξ
= 0 <

2Fc

N(
√

4c2 + N + 1−
√

N + 1)
.

To sum up, all the conditions of Corollary 1 are satisfied. Hence, for

λ ∈ Λ =


 8(

√
17− 1)

N(256 + sin 4)
,

8
(
−1 +

√
1 + 1

N+1

)

N(1 + 2 sin 1
2 )


 ,

the boundary value problem admits at least three positive solutions.

Example 2. Let N = 3 and β = 10, consider the boundary value (Problem 1) with

f (k, u) = f (u) =

{
1
6
[
(3− 2u) cos u

2 + eu−2] , if u ≤ 2π,
1
6
(
4π − 3 + e2π−2) , if u > 2π,

for each k ∈ Z(1, N). Then, we have

F(k, ξ) = F(ξ) =





1
3

[
(3− 2ξ) sin ξ

2 + 4
(

1− cos ξ
2

)]
+ e−2

6
(
eξ − 1

)
, if ξ ≤ 2π,

1
6
(
4π − 3 + e2π−2) ξ − π

3 (4π − 3 + e2π−2) + e−2

6 (e2π−1) + 8
3 , if ξ > 2π.

Moreover, the images of f (u) and F(u) are shown in Figure 2.
Letting c =

√
N + 1 = 2 and d = 1

2 , we have

2
√

1 + d2 =
√

5 < 1 +
√

5 = 1 +

√
1 +

4c2

N + 1
.

Now, we prove f (u) > 0 for each u ∈ [−2, 2]. Let

f1(u) = (3− 2u) cos
u
2

and f2(u) = eu−2.
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Figure 2. The images of f (u) and F(u) in Example 2.

Then f (u) = 1
6 ( f1(u) + f2(u)) for u ≤ 2π. Besides, it is obvious that f2(u) > 0 on [−2, 2] and

f1(u) ≥ 0 on
[
−2, 3

2
]
. When u ∈

[ 3
2 , 2
]
, we have

f ′1(u) =
1
2

[
(2u− 3) sin

u
2
− 4 cos

u
2

]
≤ 1

2
(sin 1− 4 cos 1) < 0.

Thus f1(u) is decreasing on [ 3
2 , 2]. Since f2(u) is an increasing function and f1(2) + f2(

3
2 ) = − cos 1 +

e−
1
2 > 0, we can get f (u) > 0 on [−2, 2].

In addition, we have

Fd =
N

∑
k=1

F(k, d) = N
∫ d

0

1
6

[
(3− 2u) cos

u
2
+ eu−2

]
du ≈ 0.663

and

Fc =
N

∑
k=1

F(k, c) = N
∫ c

0

1
6

[
(3− 2u) cos

u
2
+ eu−2

]
du ≈ 1.430.

It follows that
2(
√

1 + d2 − 1)
Fd

=

√
5− 2
Fd

≈ 0.356,

and
−1 +

√
1 + 4c2

N+1

Fc
=

√
5− 1
Fc

≈ 0.865.

The above together with

2
√

N(N + 1) sin Nπ
2(N+1)

β
=

4
√

3 sin 3π
8

10
≈ 0.640

confirms condition (T2) of Theorem 2.
Besides,

lim inf
|ξ|→+∞

F(k, ξ)

ξ
= lim inf

ξ→+∞

1
6
(
4π − 3 + e2π−2) ξ − π

3 (4π − 3 + e2π−2) + e−2

6 (e2π−1) + 8
3

ξ

=
1
6

(
4π − 3 + e2π−2

)

≈ 13.673 > β
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for each k ∈ Z(1, N). We can see from Theorem 2 that the boundary value problem has at least two non-zero

solutions for each λ ∈
(

4
√

3 sin 3π
8

10 ,
√

5−1
3
∫ 2

0
1
6 [(3−2u) cos u

2 +eu−2]du

)
≈ (0.640, 0.865).

5. Conclusions

A discrete Dirichlet boundary value problem involving the mean curvature operator is studied
in this paper. Unlike the existing result in [33], we obtained different sufficient conditions of the
existence of multiple solutions without assuming that the nonlinear term oscillates at infinity, as shown
in Theorems 1 and 2. First, according to the research results of Bonanno in [22], we obtain at least
three non-trivial solutions in Theorem 1. In addition, as a supplement to Theorem 1, we prove the
existence of at least three positive solutions through the maximum principle. Note that inequality (3)
plays an important role in the proof of Theorem 1. For the situation that inequality (3) is not satisfied,
under another suitable assumption on the nonlinear term, we still can obtain the existence of at least
two non-trivial solutions based on Theorem 2.1 in [23]. It seems that the method used in this paper
can be adapted to discuss the existence of homoclinic solutions or periodic solutions of difference
equations with φc-Laplacian. This will be left as our future work.
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21. Bonanno, G.; Jebelean, P.; Şerban, C. Superlinear discrete problems. Appl. Mathe. Lett. 2016, 52, 162–168.
[CrossRef]

22. Bonanno, G.; Candito, P.; D’Aguí, G. Variational methods on finite dimensional Banach spaces and
discrete problems. Adv. Nonlinear Stud. 2014, 14, 915–939. [CrossRef]

23. Bonanno, G.; D’Agui, G. Two non-zero solutions for elliptic Dirichlet problems. Z. Anal. Anwend.
2016, 35, 449–465. [CrossRef]

24. Agarwal, R.P.; Perera, K.; O’Regan, D. Multiple positive solutions of singular and nonsingular discrete
problems via variational methods. Nonlinear Anal. Theory Methods Appl. 2004, 58, 69–73. [CrossRef]

25. Bonanno, G. A critical points theorem and nonlinear differential problems. J. Glob. Optim. 2004, 28, 249–258.
[CrossRef]

26. Bonanno, G.; Candito, P. Nonlinear difference equations investigated via critical point methods.
Nonlinear Anal. 2009, 70, 3180–3186. [CrossRef]

27. Nastasi, A.; Vetro, C.; Vetro, F. Positive solutions of discrete boundary value problems with the
(p, q)-Laplacian operator. Electron. J. Differ. Equ. 2017, 2017, 1–12.

28. Bonanno, G.; Livrea, R.; Mawhin, J. Existence results for parametric boundary value problems involving the
mean curvature operator. Nonlinear Differ. Equ. Appl. NoDEA 2015, 22, 411–426. [CrossRef]

29. Bonheure, D.; Habets, P.; Obersnel, F.; Omari, P. Classical and non-classical solutions of a prescribed
curvature equation. J. Differ. Equ. 2007, 243, 208–237. [CrossRef]

30. Corsato, C.; Obersnel, F.; Omari, P.; Rivetti, S. Positive solutions of the Dirichlet problem for the prescribed
mean curvature equation in Minkowski space. J. Math. Anal. Appl. 2013, 405, 227–239. [CrossRef]

31. Dai, G. Global bifurcation for problem with mean curvature operator on general domain. Nonlinear Differ.
Equ. Appl. NoDEA 2017, 3, 1–10. [CrossRef]

32. Mawhin, J. Periodic solutions of second order nonlinear difference systems with φ-Laplacian:
A variational approach. Nonlinear Anal. 2012, 75, 4672–4687. [CrossRef]

33. Zhou, Z.; Ling, J. Infinitely many positive solutions for a discrete two point nonlinear boundary value
problem with φc-Laplacian. Appl. Math. Lett. 2019, 91, 28–34. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

115





symmetryS S

Article

On the Absolute Stable Difference Scheme for Third
Order Delay Partial Differential Equations

Allaberen Ashyralyev 1,2,3,∗ , Evren Hincal 1 and Suleiman Ibrahim 1

1 Department of Mathematics, Near East University, Lefkosa, Mersin 10, 99138 Turkey;
evren.hincal@neu.edu.tr (E.H.); ibrahim.suleiman@neu.edu.tr (S.I.)

2 Department of Mathematics,Peoples’ Friendship University of Russia (RUDN University), Moscow 117198,
Russia

3 Institute of Mathematics and Mathematical Modeling, Almaty 050010, Kazakhstan
* Correspondence: allaberen.ashyralyev@neu.edu.tr(A.A)

Received: 16 April 2020; Accepted: 15 June 2020; Published: 19 June 2020
����������
�������

Abstract: The initial value problem for the third order delay differential equation in a Hilbert space
with an unbounded operator is investigated. The absolute stable three-step difference scheme of a
first order of accuracy is constructed and analyzed. This difference scheme is built on the Taylor’s
decomposition method on three and two points. The theorem on the stability of the presented
difference scheme is proven. In practice, stability estimates for the solutions of three-step difference
schemes for different types of delay partial differential equations are obtained. Finally, in order to
ensure the coincidence between experimental and theoretical results and to clarify how efficient the
proposed scheme is, some numerical experiments are tested.

Keywords: time delay; third order differential equations; difference scheme; stability

1. Introduction

Various problems in elasticity theory such as the problems of the longitudinal oscillations of a
non-uniform viscoelastic rod, the problem of the longitudinal impact of a perfectly rigid body on a
non-uniform finite-length viscoelastic rod with a variable cross-section, problems of wave propagation
in a visco-elastic body, etc., lead to third order differential equations without the time delay term
([1–3]). Over the years, nonlocal and local boundary value problems have been of great interest due
to their importance in the fields of engineering and science, especially in applied mathematics. Such
problems have formed various research fields. Several nonlocal and local boundary value problems
for differential equations have been investigated extensively in various works (for example, see [4–12]
and the references given therein).

Differential equations having a delay term are used to model sociological, biological, as well
as physical processes. They are used to model naturally occurring oscillation systems. A typical
example of the occurrence of time delay can be seen in a sampled data control in control theory (see,
for example, [13–17]). The presence of delay term in differential equations usually leads to difficulties
in analyzing the differential equation. The boundedness and stability and the oscillation property of
solutions for a third order delay ordinary differential and difference problems were widely studied
(for example, see [18–25] and the references given therein).

Delay partial differential equations (DPDEs) arise in many applications such as control theory,
climate models, medicine, biology, and much more (for example, see [26] and the references therein).
The independent variables of partial differential equations having delay terms are time t together
with one or more dimensional variable x, representing the position in space. It can also stand for
the size of cells, relative DNA content, their level of mutation, as well as other parameters. The
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solutions of partial differential equations having delay terms may stand for voltage, temperature,
or densities or concentrations of various particles, for instance chemicals, cells, animals, bacteria,
and so on. Numerical methods for partial differential equations with delay terms usually lead to
specific difficulties, which are usually not present in equations without delay terms. The theory and
applications of parabolic and hyperbolic partial differential equations having a time delay term were
studied by numerous authors (for example, see [13,27–34] and the references given therein). Recent
publications on third order DPDEs are not many.

Several physical models lead to initial-boundary value problems for third order DPDEs (see, e.g.,
[1,3,8]). It is known that such types of problems can be replaced with the initial value problem for a
third order delay differential equation:

{
uttt(t) + Aut(t) = bAu(t− w) + f (t), 0 < t < ∞,
u(t) = g(t),−w ≤ t ≤ 0

(1)

in a Hilbert space H with unbounded operator A. Here, b ∈ R1. Assume that f (t) is a continuous
function on [0, ∞) and f (t) ∈ D(A1/2), g(t) is a twice continuously differentiable function on [−w, 0]
and g(k)(t) ∈ D(A(3−k)/2) for k = 0, 1, 2.

Let us give the main theorem of paper [35].

Theorem 1. The solution of Problem (1) satisfies the stability estimates:

a1 ≤ da0 +
∫ w

0
‖ f (s)‖

D(A
1
2 )

ds, d = 2 + |b|w, (2)

an+1 ≤ dan +
n+1

∑
j=1

∫ jw

(j−1)ω
‖ f (s)‖

D(A
1
2 )

ds, n = 1, 2, · · · , (3)

a0 = max
{

max
−w≤t≤0

‖gtt(t)‖
D(A

1
2 )

, max
−w≤t≤0

‖gt(t)‖D(A) , max
−w≤t≤0

‖g(t)‖
D(A

3
2 )

}
,

an = max
{

max
(n−1)w≤t≤nw

‖utt(t)‖
D(A

1
2 )

, max
(n−1)w≤t≤nw

‖ut(t)‖D(A) , max
(n−1)w≤t≤nw

‖u(t)‖
D(A

3
2 )

}
.

In practice, stability estimates for the solution of several problems for third order DPDEs were
obtained.

Moreover, publications on the theory and applications of difference schemes (DSs) for third order
DPDEs are not available. Thus, the construction and investigation of stable DSs for the approximate
solutions of third order DPDEs is of great importance. Our aim in this paper is to construct the absolute
stable three-step DS of the first order of accuracy of the third order DPDE for the approximate solution
of the problem (1). We consider the uniform set of grid points:

[−w, ∞)τ = {tk : tk = kτ,−N ≤ k < ∞, Nτ = ω}

with step τ > 0. Applying Taylor’s decomposition method on three and two points (see [36,37]),
we present the DS of the first order of accuracy:





uk+2−3uk+1+3uk−uk−1
τ3 + A uk+2−uk+1

τ = bAuk−N + f (tk), k ≥ 1,
uk = g(tk), −N + 1 ≤ k ≤ 0,
(I + τ2 A) u1−u0

τ = g′(0), (I + τ2 A) u2−2u1+u0
τ2 = g′′(0),

(I + τ2 A) umN+1−umN
τ = umN−umN−1

τ ,
(I + τ2 A) umN+2−2umN+1+umN

τ2 = umN−2umN−1+umN−2
τ2 , m = 1, 2, ...

(4)

for the approximate solution of Problem (1).
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The organization of this paper is as follows. In Section 2, the main theorem on the stability of DS
(4) is established. In Section 3, stability estimates of DSs for the approximate solution of three problems
for third order DPDEs are obtained. Numerical results are provided for one= and two=dimensional
third order DPDEs in Section 4. Finally, Section 5 gives the conclusion and our future plans.

2. Stability of DS

All over the present paper, assume that H is a Hilbert space and A is a self-adjoint positive definite
operator A ≥ δI in H and R = (I − iτA

1
2 )−1, R̃ = (I + iτA

1
2 )−1.

Note that three-step DS (4) can obviously be rewritten as the system of single-step and two-step
delay DS: 




uk+1−uk
τ = vk, k ≥ 0,

vk+1−2vk+vk−1
τ2 + Avk+1 = pk, pk = buk−N + f (tk), k ≥ 1,

uk = g(tk), −N ≤ k ≤ 0,

(I + τ2 A)v0 = g′(0), (I + τ2 A) v1−v0
τ = g′′(0),

(I + τ2 A)vmN = umN−umN−1
τ ,

(I + τ2 A) vmN+1−vmN
τ = umN−2umN−1+umN−2

τ2 , m = 1, 2, ...

(5)

for the solution of DS (4). Applying DC(5), we can obtain the formula for the solution of DS (4). For
this, we will consider two cases 1 ≤ k ≤ N and mN + 1 ≤ k ≤ (m + 1)N, m = 1, 2, · · · , separately.

Let 1 ≤ k ≤ N. Applying (5), we get the following DS:





uk−uk−1
τ = vk−1, 1 ≤ k ≤ N,

vk+1−2vk+vk−1
τ2 + Avk+1 = pk, pk = buk−N + f (tk), 1 ≤ k ≤ N − 1,

uk = g(tk), −N ≤ k ≤ 0,
(I + τ2 A)v0 = g′(0), (I + τ2 A) v1−v0

τ = g′′(0).

(6)

Therefore, we have that (see [38]):

u0 = g(0), uk = g(0) +
k−1

∑
j=0

τvj, 1 ≤ k ≤ N, (7)

v0 = RR̃g′(0), v1 = RR̃g′(0) + τRR̃g′′(0),

vk =
1
2 [R

k−1 + R̃k−1]RR̃g′(0) + 1
2i A−

1
2 R(Rk − R̃k)g′′(0)

−
k−1
∑

s=1

τ
2i A−

1
2 [Rk−s − R̃k−s]ps

= 1
2 [R

k−1 + R̃k−1]RR̃g′(0) + 1
2i A−

1
2 R(Rk − R̃k)g′′(0)

+A−1
{

1
2

k−1
∑

s=2
[Rk−s + R̃k−s](ps−1 − ps) + 2pk−1 − [Rk−1 + R̃k−1]p1

}
, 2 ≤ k ≤ N,

(8)

pk = bAg(tk−N) + f (tk), 1 ≤ k ≤ N − 1.
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Applying Formulas (6)–(8), we obtain:

uk =





g(0) + τRR̃g′(0), k = 0,
g(0) + τRR̃g′(0), k = 1,
g(0) + 2τRR̃g′(0) + τ2RR̃g′′(0), k = 2,

g(0) + 1
2i A−

1
2

(
Rk−2 − R̃k−2

)
RR̃g′(0)− 1

2 A−1R
(

2RR̃−
(

Rk−1 + R̃k−1
))

g′′(0)

+
k−1
∑

j=2
τ

j−1
∑

s=1

τ
2i A−

1
2 [Rj−s − R̃j−s]ps, 3 ≤ k ≤ N.

By an interchange of the order of summation, we get:

uk =





g(0) + τRR̃g′(0), k = 0,
g(0) + τRR̃g′(0), k = 1,
g(0) + 2τRR̃g′(0) + τ2RR̃g′′(0), k = 2,

g(0) + 1
2i A−

1
2

(
Rk−2 − R̃k−2

)
RR̃g′(0)− 1

2 A−1R
(

2RR̃−
(

Rk−1 + R̃k−1
))

g′′(0)

+A−1
k−2
∑

s=1

τ
2 [2I −

(
Rk−1−s + R̃k−1−s

)
]ps, 3 ≤ k ≤ N

(9)

for the solution of DS (4).
Let 1 + mN ≤ k ≤ (m + 1)N, m = 1, 2, · · · . Applying (5), we can get the DS:





uk−uk−1
τ = vk−1, mN + 1 ≤ k ≤ (m + 1)N,

vk+1−2vk+vk−1
τ2 + Avk+1 = pk, pk = buk−N + f (tk),

mN + 1 ≤ k ≤ (m + 1)N − 1,
umN is given, (I + τ2 A)vmN = umN−umN−1

τ ,
(I + τ2 A) vmN+1−vmN

τ = umN−2umN−1+umN−2
τ2 .

(10)

Therefore, we have that (see [38]):

uk = umN +
k−1

∑
j=mN+2

τvj, mN + 1 ≤ k ≤ (m + 1)N, (11)

vmN = RR̃
umN − umN−1

τ
, vmN+1 = RR̃

umN − umN−1

τ
+ τRR̃

umN − 2umN−1 + umN−2

τ2 ,

vk =
1
2 [R

k−mN−1 + R̃k−mN−1]RR̃ umN−umN−1
τ

+ 1
2i A−

1
2 R(Rk−mN − R̃k−mN) umN−2umN−1+umN−2

τ2

−
k−1
∑

s=mN+1

τ
2i A−

1
2 [Rk−s − R̃k−s]ps

= 1
2 [R

k−1 + R̃k−1]RR̃ umN−umN−1
τ + 1

2i A−
1
2 R(Rk − R̃k)g′′(0)

+A−1
{

1
2

k−1
∑

s=mN+2
[Rk−s + R̃k−s](ps−1 − ps)

+2pk−mN−1 − [Rk−mN−1 + R̃k−mN−1]pmN+1

}
, mN + 2 ≤ k ≤ (m + 1)N.

(12)
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Applying Formulas (10)–(12), we can obtain:

uk =





umN + τRR̃ umN−umN−1
τ , k = mN + 1,

umN + 2τRR̃ umN−umN−1
τ + τ2RR̃ umN−2umN−1+umN−2

τ2 , k = mN + 2,

umN + 1
2i A−

1
2

(
Rk−mN−2 − R̃k−mN−2

)
RR̃ umN−umN−1

τ

− 1
2 A−1R

(
2RR̃−

(
Rk−mN−1 + R̃k−mN−1

))
umN−2umN−1+umN−2

τ2

+
k−1
∑

j=mN+2
τ

j−1
∑

s=mN+1

τ
2i A−

1
2 [Rj−s − R̃j−s]ps, mN + 3 ≤ k ≤ (m + 1)N.

By an interchange of the order of summation, we get the solution of DS (4):

uk =





umN + τRR̃ umN−umN−1
τ , k = mN + 1,

umN + 2τRR̃ umN−umN−1
τ + τ2RR̃ umN−2umN−1+umN−2

τ2 , k = mN + 2,

umN + 1
2i A−

1
2

(
Rk−mN−2 − R̃k−mN−2

)
RR̃ umN−umN−1

τ

− 1
2 A−1R

(
2RR̃−

(
Rk−mN−1 + R̃k−mN−1

))
umN−2umN−1+umN−2

τ2

+A−1
k−2
∑

s=mN+1

τ
2 [2I −

(
Rk−1−s + R̃k−1−s

)
]ps, mN + 3 ≤ k ≤ (m + 1)N.

(13)

The following lemma will be needed in the sequel.

Lemma 1. The following estimates are fulfilled:

‖R‖H→H , ‖R̃‖H→H ≤ 1, (14)

‖RR̃−1‖H→H , ‖R̃R−1‖H→H ≤ 1, (15)

‖τA
1
2 R‖H→H , ‖τA

1
2 R̃‖H→H ≤ 1. (16)

The proof of the estimates (14)–(16) is based on the spectral theory of a self-adjoint operator in a
Hilbert space [39].

Now, let us study the stability of DS (4).

Theorem 2. The solution of DS (4) satisfies the following stability estimates:

b1 ≤ (2 + τ|b|(N − 2))b0 + τ
N−2

∑
s=1
‖A

1
2 f (ts)‖H , (17)

bm+1 ≤ (2 + τ|b|(N − 2))bm + τ
(m+1)N

∑
s=mN+1

‖A
1
2 f (ts)‖H , (18)

b0 = max
{

max
−N≤k≤0

‖A
1
2 gtt(tk)‖H , max

−N≤k≤0
‖Agt(tk)‖H , max

−N≤k≤0
‖A

3
2 g(tk)‖H

}
,

bm = max
{

max
(m−1)N≤k≤mN−2

‖A
1
2

uk+2 − 2uk+1 + uk
τ2 ‖H ,

max
(m−1)N+1≤k≤mN

‖A
uk − uk−1

τ
‖H ,

1
2

max
(m−1)N≤k≤mN

‖A
3
2 uk‖H

}
, m = 1, 2, · · · .

Proof. Let us estimate b1. Using Formula (9) and the estimates (14)–(16), we get that:

‖A
3
2 u1‖H ≤ ‖A

3
2 g(0)‖H + ‖τA

1
2 R‖H→H‖R̃‖H→H‖Agt(0)‖H ≤ 2b0,
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‖A
3
2 u2‖H ≤ ‖A

3
2 g(0)‖H + 2‖τA

1
2 R‖H→H‖R̃‖H→H‖Agt(0)‖H

+‖τA
1
2 R‖H→H‖τA

1
2 R̃‖H→H‖A

1
2 gtt(0)‖H ≤ 4b0,

‖A
3
2 uk‖H ≤ ‖A

3
2 g(0)‖H +

1
2
[‖R‖k−2

H→H + ‖R̃‖k−2
H→H ]‖RR̃‖H→H‖Agt(0)‖H

+
1
2
‖R‖H→H [2‖RR̃‖H→H + ‖R‖k−1

H→H + ‖R̃‖k−1
H→H ]‖A

1
2 gtt(0)‖H

+
τ

2
|b|

k−2

∑
s=1

[2 + ‖R‖k−1−s
H→H + ‖R̃‖k−1−s

H→H ]‖A
3
2 g(ts−N)‖H

+
τ

2

k−2

∑
s=1

[2 + ‖R‖k−1−s
H→H + ‖R̃‖k−1−s

H→H ]‖A
1
2 f (ts)‖H ≤ ‖A

3
2 g(0)‖H + ‖Agt(0)‖H

+2‖A
1
2 gtt(0)‖H + 2τ|b|(N − 2) max

−N≤k≤0
‖A

3
2 g(tk)‖H + 2τ

k−2

∑
s=1
‖A

1
2 f (ts)‖H

≤ 2
(

2 + τ|b|(N − 2)
)

b0 + 2τ
N−2

∑
s=1
‖A

1
2 f (ts)‖H , 3 ≤ k ≤ N.

From that and u0 = g(0), it follows that:

1
2

max
0≤k≤N

‖A
3
2 uk‖H

≤ (2 + τ|b|(N − 2))b0 + τ
N−2

∑
s=1
‖A

1
2 f (ts)‖H (19)

for the solution of DS (4). Applying Formulas (6)–(8), we can write:

u1 − u0

τ
= v0 = RR̃gt(0),

u2 − u1

τ
= v1 = RR̃gt(0) + τRR̃gtt(0),

uk − uk−1
τ

= vk−1 =
1
2
[Rk−2 + R̃k−2]RR̃gt(0) +

1
2i

R(Rk−1 − R̃k−1)A−
1
2 gtt(0)

− τ

2i

k−2

∑
s=1

[Rk−1−s − R̃k−1−s]bA
1
2 g(ts−N)−

τ

2i

k−2

∑
s=1

[Rk−1−s − R̃k−1−s]A−
1
2 f (ts), 3 ≤ k ≤ N.

Using this formula and the estimates (14)–(16), we obtain:

‖A
u1 − u0

τ
‖H ≤ ‖RR̃‖H→H‖gt(0)‖H ≤ b0,

‖A
u2 − u1

τ
‖H ≤ ‖RR̃‖H→H‖Agt(0)‖H + ‖τA

1
2 R‖H→H‖R̃‖H→H‖A

1
2 gtt(0)‖H ≤ 2b0,

‖A
uk − uk−1

τ
‖H ≤

1
2
[‖R‖k−2

H→H + ‖R̃‖k−2
H→H ]‖RR̃‖H→H‖gt(0)‖H

+
1
2
[‖R‖k−1

H→H + ‖R̃‖k−1
H→H ]‖R‖H→H‖A

1
2 gtt(0)‖H +

τ

2
|b|

N−2

∑
s=1

[‖R‖k−1−s
H→H + ‖R̃‖k−1−s

H→H ]‖A
3
2 g(ts−N)‖H

+
τ

2

N−2

∑
s=1

[‖R‖k−1−s
H→H + ‖R̃‖k−1−s

H→H ]‖A
1
2 f (ts)‖H
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≤ (2 + τ|b|(N − 2))b0 + τ
N−2

∑
s=1
‖A

1
2 f (ts)‖H , 3 ≤ k ≤ N.

Combining these estimates, we obtain:

max
1≤k≤N

∥∥∥∥A
uk − uk−1

τ

∥∥∥∥
H
≤ (2 + τ|b|(N − 2))b0 + τ

N−2

∑
s=1
‖A

1
2 f (ts)‖H (20)

for the solution of DS (4). Applying Formulas (6)–(8), we can write:

u2 − 2u1 + u0

τ2 = τ−1 (v1 − v0) = R̃Rgtt(0),

u3 − 2u2 + u1

τ2 = τ−1 (v2 − v1)

= −τA(RR̃)2gt(0) +
(

I − τ2 A
) (

R̃R
)2

gtt(0) + τRR̃p1

= −τA(RR̃)2gt(0) +
(

I − τ2 A
) (

R̃R
)2

gtt(0) + τRR̃[bAg(t1−N) + f (t1)],

uk+2 − 2uk+1 + uk
τ2 = τ−1 (vk+1 − vk)

= τ−1
{

1
2
[Rk + R̃k]RR̃gt(0) +

1
2i

A−
1
2 [Rk+1 − R̃k+1]Rgtt(0)

−
k

∑
s=1

τ

2i
A−

1
2 [Rk+1−s − R̃k+1−s]ps −

1
2
[Rk−1 + R̃k−1]RR̃gt(0)

− 1
2i

A−
1
2 [Rk − R̃k]Rgtt(0) +

k

∑
s=1

τ

2i
A−

1
2 [Rk−s − R̃k−s]ps

}

= τ−1
{

1
2
[Rk + R̃k − Rk−1 − R̃k−1]RR̃gt(0) +

1
2i

A−1[Rk+1 − R̃k+1 − Rk + R̃k]Rgtt(0)

− τ

2i
A−

1
2 [R− R̃]pk +

k−1

∑
s=1

τ

2i
A−

1
2 [Rk−s − R̃k−s − Rk+1−s + R̃k+1−s]ps

}

= − i
2
[Rk − R̃k]RR̃A

1
2 gt(0) +

1
2

R[Rk+1 + R̃k+1]gtt(0)− τRR̃Abg(tk−N)− τRR̃ f (tk)

−τ

2

k−1

∑
s=1

[Rk−s+1 + R̃k−s+1]Abg(ts−N)−
τ

2

k−1

∑
s=1

[Rk−s+1 + R̃k−s+1] f (ts), 2 ≤ k ≤ N − 2.

Using this formula and the estimates (14)–(16), we obtain:
∥∥∥∥A

1
2

u2 − 2u1 + u0

τ2

∥∥∥∥
H
≤ ‖RR̃‖H→H‖A

1
2 gtt(0)‖H ≤ b0,

∥∥∥∥A
1
2

u3 − 2u2 + u1

τ2

∥∥∥∥
H
≤ ‖τA

1
2 R‖H→H‖R‖H→H‖R̃‖2

H→H‖Agt(0)‖H + ‖RR̃‖H→H‖A
1
2 gtt(0)‖H

+τ|b|‖RR̃‖H→H‖A
3
2 g(t1−N)‖H + τ‖RR̃‖H→H‖A

3
2 f (t1)‖H

≤ (2 + τ|b|)b0 + τ‖A
1
2 f (t1)‖H ,

∥∥∥∥A
1
2

uk+2 − 2uk+1 + uk
τ2

∥∥∥∥
H
≤ 1

2
[‖R‖k

H→H + ‖R̃‖k
H→H ]‖RR̃‖H→H‖Agt(0)‖H
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+
1
2
‖R‖H→H [‖R‖k+1

H→H + ‖R̃‖k+1
H→H ]‖A

1
2 gtt(0)‖H +

τ

2
|b|

k−1

∑
s=1

[‖R‖k−s+1
H→H + ‖R̃‖k−s+1

H→H ]‖A
3
2 g(ts−N)‖H

+
τ

2

k−1

∑
s=1

[‖R‖k−s+1
H→H + ‖R̃‖k−s+1

H→H ]‖A
1
2 f (ts)‖H + τ|b|‖RR̃‖H→H‖A

3
2 g(tk−N)‖H

+τ‖RR̃‖H→H‖A
1
2 f (tk)‖H

≤ (2 + τ|b|(N − 2))b0 + τ
N−2

∑
s=1
‖A

1
2 f (ts)‖H , 2 ≤ k ≤ N − 2.

Combining these estimates, we can get:

max
0≤k≤N−2

∥∥∥∥A
1
2

uk+2 − 2uk+1 + uk
τ2

∥∥∥∥
H

≤ (2 + τ|b|(N − 2))b0 + τ
N−2

∑
s=1
‖A

1
2 f (ts)‖H (21)

for the solution of DS (4). Estimate (17) follows from (19)–(21).
Now, let us estimate bm+1. Using Formula (13) and the estimates (14)–(16), we can obtain:

‖A
3
2 umN+1‖H ≤ ‖A

3
2 umN‖H + ‖τA

1
2 R‖H→H‖R̃‖H→H‖A

umN − umN−1

τ
‖H ≤ 2bm,

‖A
3
2 umN+2‖H ≤ ‖A

3
2 umN‖H + 2‖τA

1
2 R‖H→H‖R̃‖H→H‖A

umN − umN−1

τ
‖H

+‖τA
1
2 R‖H→H‖τA

1
2 R̃‖H→H‖A

1
2

umN − 2umN−1 + umN−2

τ2 ‖H ≤ 4bm,

‖A
3
2 uk‖H ≤ ‖A

3
2 umN‖H +

1
2
[‖R‖k−mN−2

H→H + ‖R̃‖k−mN−2
H→H ]‖RR̃‖H→H‖A

umN − umN−1

τ
‖H

+
1
2
‖R‖H→H [2‖RR̃‖H→H + ‖R‖k−mN−1

H→H + ‖R̃‖k−mN−1
H→H ]‖A

1
2

umN − 2umN−1 + umN−2

τ2 ‖H

+
τ

2
|b|

k−2

∑
s=mN+1

[2 + ‖R‖k−1−s
H→H + ‖R̃‖k−1−s

H→H ]‖A
3
2 u(ts−N)‖H

+
τ

2

k−2

∑
s=mN+1

[2 + ‖R‖k−1−s
H→H + ‖R̃‖k−1−s

H→H ]‖A
1
2 f (ts)‖H

≤ 2
(

2 + τ|b|(N − 2)
)

bm + 2τ
(m+1)N−2

∑
s=mN+1

‖A
1
2 f (ts)‖H , mN + 3 ≤ k ≤ (m + 1)N.

Combining these estimates, we obtain:

1
2

max
mN+1≤k≤(m+1)N

‖A
3
2 uk‖H

≤ (2 + τ|b|(N − 2))bm + τ
(m+1)N−2

∑
s=mN+1

‖A
1
2 f (ts)‖H (22)

for the solution of DS (4). Applying Formulas (10)–(12), we can write:

umN+1 − umN
τ

= vmN = RR̃
umN − umN−1

τ
,
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umN+2 − umN+1

τ
= vmN+1 = RR̃

umN − umN−1

τ
+ τRR̃

umN − 2umN−1 + umN−2

τ2 ,

uk − uk−1
τ

= vk−1 =
1
2
[Rk−mN−2 + R̃k−mN−2]RR̃

umN − umN−1

τ

+
1
2i

R(Rk−mN−1 − R̃k−mN−1)A−
1
2

umN − 2umN−1 + umN−2

τ2

− τ

2i

k−2

∑
s=mN+1

[Rk−1−s − R̃k−1−s]bA
1
2 u(ts−N)

− τ

2i

k−2

∑
s=mN+1

[Rk−1−s − R̃k−1−s]A−
1
2 f (ts), mN + 3 ≤ k ≤ (m + 1)N.

Using this formula and the estimates (14)–(16), we can obtain:

‖A
umN+1 − umN

τ
‖H ≤ ‖RR̃‖H→H‖A

umN − umN−1

τ
‖H ≤ bm,

‖A
umN+2 − umN+1

τ
‖H ≤ ‖RR̃‖H→H‖A

umN − umN−1

τ
‖H

+‖τA
1
2 R‖H→H‖R̃‖H→H‖A

1
2

umN − 2umN−1 + umN−2

τ2 ‖H ≤ 2bm,

‖A
uk − uk−1

τ
‖H ≤

1
2
[‖R‖k−mN−2

H→H + ‖R̃‖k−mN−2
H→H ]‖RR̃‖H→H‖A

umN − umN−1

τ
‖H

+
1
2
[‖R‖k−1

H→H + ‖R̃‖k−1
H→H ]‖R‖H→H‖A

1
2

umN − 2umN−1 + umN−2

τ2 ‖H

+
τ

2
|b|

(m+1)N−2

∑
s=mN+1

[‖R‖k−1−s
H→H + ‖R̃‖k−1−s

H→H ]‖A
3
2 u(ts−N)‖H

+
τ

2

(m+1)N−2

∑
s=mN+1

[‖R‖k−1−s
H→H + ‖R̃‖k−1−s

H→H ]‖A
1
2 f (ts)‖H

≤ (2 + τ|b|(N − 2))bm + τ
(m+1)N−2

∑
s=mN+1

‖A
1
2 f (ts)‖H , mN + 3 ≤ k ≤ (m + 1)N.

Combining these estimates, we obtain:

max
mN+1≤k≤(m+1)N

∥∥∥∥A
uk − uk−1

τ

∥∥∥∥
H
≤ (2 + τ|b|(N − 2))bm + τ

(m+1)N−2

∑
s=mN+1

‖A
1
2 f (ts)‖H (23)

for the solution of DS (4). Applying Formulas (10)–(12), we can write:

umN+2 − 2umN+1 + umN

τ2 = τ−1 (vmN+1 − vmN) = R̃R
umN − 2umN−1 + umN−2

τ2 ,

umN+3 − 2umN+2 + umN+1

τ2 = τ−1 (vmN+2 − vmN+1)

= −τA(RR̃)2 umN − umN−1

τ
+
(

I − τ2 A
) (

R̃R
)2 umN − 2umN−1 + umN−2

τ2 + τRR̃pmN+1

= −τA(RR̃)2 umN − umN−1

τ
+
(

I − τ2 A
) (

R̃R
)2 umN − 2umN−1 + umN−2

τ2

uk+2 − 2uk+1 + uk
τ2 = τ−1 (vk+1 − vk)
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+τRR̃[bAu(t1−N) + f (tmN+1)],

= τ−1
{

1
2
[Rk−mN + R̃k−mN ]RR̃

umN − umN−1

τ

+
1
2i

A−
1
2 [Rk−Mn+1 − R̃k−Mn+1]R

umN − 2umN−1 + umN−2

τ2

−
k

∑
s=Mn+1

τ

2i
A−

1
2 [Rk+1−s − R̃k+1−s]ps −

1
2
[Rk−Mn−1 + R̃k−Mn−1]RR̃

umN − umN−1

τ

− 1
2i

A−
1
2 [Rk−mN − R̃k−mN ]R

umN − 2umN−1 + umN−2

τ2

+
k

∑
s=mN+1

τ

2i
A−

1
2 [Rk−s − R̃k−s]ps

}

= τ−1
{

1
2
[Rk−mN + R̃k−mN − Rk−mN−1 − R̃k−mN−1]RR̃

umN − umN−1

τ

+
1
2i

A−1[Rk+1 − R̃k+1 − Rk + R̃k]R
umN − 2umN−1 + umN−2

τ2

− τ

2i
A−

1
2 [R− R̃]pk−mN +

k−1

∑
s=mN+1

τ

2i
A−

1
2 [Rk−s − R̃k−s − Rk+1−s + R̃k+1−s]ps

}

= − i
2
[Rk−mN − R̃k−mN ]RR̃A

1
2

umN − umN−1

τ

+
1
2

R[Rk+1 + R̃k+1]
umN − 2umN−1 + umN−2

τ2

−τRR̃Abu(tk−N)− τRR̃ f (tk−mN)−
τ

2

k−1

∑
s=mN+1

[Rk−s+1 + R̃k−s+1]Abu(ts−N)

−τ

2

k−1

∑
s=mN+1

[Rk−s+1 + R̃k−s+1] f (ts), mN + 2 ≤ k ≤ (m + 1)N − 2.

Using this formula and the estimates (14)–(16), we obtain that:
∥∥∥∥A

1
2

umN+2 − 2umN+1 + umN

τ2

∥∥∥∥
H
≤ ‖RR̃‖H→H‖A

1
2

umN − 2umN−1 + umN−2

τ2 ‖H ≤ bm,

∥∥∥∥A
1
2

umN+3 − 2umN+2 + umN+1

τ2

∥∥∥∥
H

≤ ‖τA
1
2 R‖H→H‖R‖H→H‖R̃‖2

H→H‖A
umN − umN−1

τ
‖H

+‖RR̃‖H→H‖A
1
2

umN − 2umN−1 + umN−2

τ2 ‖H

+τ|b|‖RR̃‖H→H‖A
3
2 u(t1−N)‖H + τ‖RR̃‖H→H‖A

3
2 f (tmN+1)‖H

≤ (2 + τ|b|)bm + τ‖A
1
2 f (tmN+1)‖H ,

∥∥∥∥A
1
2

uk+2 − 2uk+1 + uk
τ2

∥∥∥∥
H

≤ 1
2
[‖R‖k−mN

H→H + ‖R̃‖k−mN
H→H ]‖RR̃‖H→H‖A

umN − umN−1

τ
‖H
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+
1
2
‖R‖H→H [‖R‖k+1

H→H + ‖R̃‖k+1
H→H ]‖A

1
2

umN − 2umN−1 + umN−2

τ2 ‖H

+
τ

2
|b|

k−1

∑
s=mN+1

[‖R‖k−s+1
H→H + ‖R̃‖k−s+1

H→H ]‖A
3
2 u(ts−N)‖H

+
τ

2

k−1

∑
s=mN+1

[‖R‖k−s+1
H→H + ‖R̃‖k−s+1

H→H ]‖A
1
2 f (ts)‖H

+τ|b|‖RR̃‖H→H‖A
3
2 u(tk−(m+1)N)‖H + τ‖RR̃‖H→H‖A

1
2 f (tk−mN)‖H

≤ (2 + τ|b|(N − 2))bm + τ
(m+1)N−2

∑
s=mN+1

‖A
1
2 f (ts)‖H , mN + 2 ≤ k ≤ (m + 1)N − 2.

Combining these estimates, we obtain:

max
mN≤k≤(m+1)N−2

∥∥∥∥A
1
2

uk+2 − 2uk+1 + uk
τ2

∥∥∥∥
H

≤ (2 + τ|b|(N − 2))bm + τ
(m+1)N−2

∑
s=mN+1

‖A
1
2 f (ts)‖H (24)

for the solution of DS (4). Estimate (18) follows from (22)–(24). Theorem 2 is proven.
Note that applying Theorem 2, we can obtain the stability estimate:

max
mN≤k≤(m+1)N−2

∥∥∥∥A
1
2

uk+2 − 2uk+1 + uk
τ2

∥∥∥∥
H
+ max

mN+1≤k≤(m+1)N

∥∥∥∥A
uk − uk−1

τ

∥∥∥∥
H

(25)

+
1
2

max
mN+1≤k≤(m+1)N

‖A
3
2 uk‖H ≤ (2 + τ|b|(N − 2))mb0

+
m

∑
j=1

(2 + τ|b|(N − 2))m−jτ
jN

∑
s=(j−1)N+1

‖A
1
2 f (ts)‖H , m = 0, 1, ...

for the solution of DS (4).

3. Applications

Note that the generality of this approach permits studying of a general class of DPDEs.
We consider the applications of Theorem 2 for three types of problems. First, the mixed problem for
the one-dimensional DPDE with nonlocal conditions:





∂3u(t,x)
∂t3 − (a(x)utx(t, x))x + δut(t, x)

= b (− (a(x)ux(t− w, x))x + δu(t− w, x)) + f (t, x),

0 < t < ∞, 0 < x < l,

u(t, 0) = u(t, l), ux(t, 0) = ux(t, l), 0 ≤ t < ∞,

u(t, x) = g(t, x),−w ≤ t ≤ 0, 0 ≤ x ≤ l

(26)

is studied. Under compatibility conditions, Problem (26) has a unique solution u(t, x) for the given
smooth functions a(x) ≥ a > 0, x ∈ (0, l), δ > 0, a(l) = a(0), g(t, x), −w ≤ t ≤ 0, 0 ≤ x ≤
l, f (t, x), 0 < t < ∞, 0 < x < l, and b ∈ R1.

The construction of full discretization to Problem (26) is completed in two stages. In the first stage,
we consider the uniform grid space:

[0, l]h = {x = xn : xn = nh, 0 ≤ n ≤ M, Mh = l}
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with step h > 0. Let L2h = L2([0, l]h) be a Hilbert space of the grid functions ϕh(x) = {ϕn}M
0 defined

on [0, l]h, equipped with the norm:

‖ϕh‖L2h =


 ∑

x∈[0,l]h

|ϕ(x)|2h




1/2

.

Let Ax
h be the second order difference operator defined by:

Ax
h ϕh(x) = {−(a(x)ϕx)x,n + δϕn}M−1

1 (27)

acting in the space of grid functions ϕh(x) = {ϕn}M
0 satisfying the conditions ϕ0 = ϕM, ϕ1 − ϕ0 =

ϕM − ϕM−1. It is well known that Ax
h is a self-adjoint positive definite operator in L2h. Applying Ax

h
in (26), we can obtain the initial value problem for an infinite system of third order differential
equations: 




uh
ttt(t, x) + Ax

huh
t (t, x) = bAx

hu(t− w, x) + f h(t, x),
0 < t < ∞, x ∈ [0, l]h,
uh(t, x) = gh(t, x),−w ≤ t ≤ 0, x ∈ [0, l]h.

(28)

In the second stage, we use DS (4) for (28):





uh
k+2(x)−3uh

k+1(x)+3uh
k (x)−uh

k−1(x)
τ3 + Ax

h
uh

k+2(x)−uh
k+1(x)

τ

= bAx
huh

k−N(x) + f h
k (x), f h

k (x) = f h(tk, x), k ≥ 1, x ∈ [0, l]h,
uh

k(x) = gh(tk, x),−N ≤ k ≤ 0,

(Ih + τ2 Ax
h)

uh
1(x)−uh

0(x)
τ = gh

t (0, x),

(Ih + τ2 Ax
h)

uh
2(x)−2uh

1(x)+uh
0(x)

τ2 = gh
tt(0, x), x ∈ [0, l]h,

(Ih + τ2 Ax
h)

uh
mN+1(x)−uh

mN(x)
τ =

uh
mN(x)−uh

mN−1(x)
τ ,

(Ih + τ2 Ax
h)

uh
mN+2(x)−2uh

mN+1(x)+uh
mN(x)

τ2

=
uh

mN(x)−2uh
mN−1(x)+uh

mN−2(x)
τ2 , m = 1, 2, ...

(29)

Theorem 3. The solutions of DS (29) obey the stability estimates:

max
mN≤k≤(m+1)N−2

∥∥∥∥∥
uh

k+2 − 2uh
k+1 + uh

k
τ2

∥∥∥∥∥
W1

2h

+ max
mN+1≤k≤(m+1)N

∥∥∥∥∥
uh

k − uh
k−1

τ

∥∥∥∥∥
W2

2h

+
1
2

max
mN+1≤k≤(m+1)N

‖uh
k‖W3

2h
≤ C1

[
(2 + τ|b|(N − 2))mbh

0

+
m

∑
j=1

(2 + τ|b|(N − 2))m−jτ
jN

∑
s=(j−1)N+1

‖A
1
2 f (ts)‖W1

2h


 , m = 0, 1, ...,

bh
0 = max

{
max
−N≤k≤0

‖A
1
2 gh

tt(tk)‖W1
2h

, max
−N≤k≤0

‖gh
t (tk)‖W2

2h
, max
−N≤k≤0

‖gh(tk)‖W3
2h

}
.

hold, where C1 does not depend on τ, h, gh(tk), and f h
k (x).
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Proof. DS (29) can be written in abstract form:




uh
k+2−3uh

k+1+3uh
k−uh

k−1
τ3 + Ah

uh
k+2−uh

k+1
τ = bAhuh

k−N + f h
k , k ≥ 1,

uh
k = gh

k ,−N ≤ k ≤ 0,

(Ih + τ2 Ah)
uh

1−uh
0

τ = gh
t (0), (Ih + τ2 Ah)

uh
2−2uh

1+uh
0

τ2 = gh
tt(0),

(Ih + τ2 Ah)
uh

mN+1−uh
mN

τ =
uh

mN−uh
mN−1

τ ,

(Ih + τ2 Ah)
uh

mN+2−2uh
mN+1+uh

mN
τ2 =

uh
mN−2uh

mN−1+uh
mN−2

τ2 , m = 1, 2, ...

(30)

in a Hilbert space L2h with a self-adjoint positive definite operator Ah = Ax
h. Here, gh

k = gh
k (x),

f h
k = f h

k (x), and uh
k = uh

k(x) are known and unknown abstract mesh functions defined on [0, l]h.
Therefore, the estimate of Theorem 3 follows from the estimate (25). Theorem 3 is proven.

Second, let Ω be the unit open cube in the m-dimensional Euclidean space.
Rn(x = (x1, · · · , xm) : 0 < xk < 1, k = 1, · · · , n) with boundary S, Ω = Ω ∪ S. In [0, ∞)×Ω,

the mixed problem for the DPDE with the Dirichlet condition:





uttt(t, x)−
n
∑

r=1
(ar(x)utxr (t, x))xr

= −b
n
∑

r=1
(ar(x)uxr (t− w, x))xr

,

0 < t < ∞, x ∈ Ω,

u(t, x) = 0, x ∈ S, 0 ≤ t < ∞,

u(t, x) = g(t, x),−w ≤ t ≤ 0, x ∈ Ω

(31)

is investigated. Under compatibility conditions, Problem (31) has a unique solution u(t, x) for the given
smooth functions ar(x) ≥ a > 0, (x ∈ Ω), g(t, x), −w ≤ t ≤ 0, x ∈ Ω, f (t, x), 0 < t < ∞, x ∈ Ω, and
b ∈ R1.

The construction of full discretization to Problem (31) is completed in two stages. In the first stage,
we consider the uniform grid space:

Ωh = {x = xr = (h1 j1, · · · , hn jn) , j = (j1, · · · , jn) , 0 ≤ jr ≤ Nr,

Nrhr = 1, r = 1, · · · , n} , Ωh = Ωh ∩Ω, Sh = Ωh ∩ S

and introduce the Hilbert space L2h = L2(Ωh) of the grid functions ϕh (x) = {ϕ (h1 j1, · · · , hn jn)}
defined on Ωh equipped with the norm:

∥∥∥ϕh
∥∥∥

L2h
=

(
∑

x∈Ωh

∣∣∣ϕh (x)
∣∣∣
2

h1 · · · hn

) 1
2

.

We consider the difference operator Ax
h defined by the formula:

Ax
huh = −

n

∑
r=1

(
αr(x)uh

xr

)
xr ,jr

, (32)
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acting in the space of grid functions uh (x), which satisfy the conditions uh (x) = 0 for all x ∈ Sh. It is
well known that Ax

h is a self-adjoint positive definite operator in L2h. Applying Ax
h in (31), we can

obtain that: 



uh
ttt(t, x) + Ax

huh
t (t, x) = bAx

hu(t− w, x) + f h(t, x),
0 < t < ∞, x ∈ Ωh,
uh(t, x) = gh(t, x),−w ≤ t ≤ 0, x ∈ Ωh.

(33)

In the second stage, we also get the difference scheme as the one-dimensional problem case:





uh
k+2(x)−3uh

k+1(x)+3uh
k (x)−uh

k−1(x)
τ3 + Ax

h
uh

k+2(x)−uh
k+1(x)

τ

= bAx
huh

k−N(x) + f h
k (x), f h

k (x) = f h(tk, x), k ≥ 1, x ∈ Ωh,
uh

k(x) = gh(tk, x),−N ≤ k ≤ 0,

(Ih + τ2 Ax
h)

uh
1(x)−uh

0(x)
τ = gh

t (0, x),

(Ih + τ2 Ax
h)

uh
2(x)−2uh

1(x)+uh
0(x)

τ2 = gh
tt(0, x), x ∈ Ωh,

(Ih + τ2 Ax
h)

uh
mN+1(x)−uh

mN(x)
τ =

uh
mN(x)−uh

mN−1(x)
τ , x ∈ Ωh

(Ih + τ2 Ax
h)

uh
mN+2(x)−2uh

mN+1(x)+uh
mN(x)

τ2

=
uh

mN(x)−2uh
mN−1(x)+uh

mN−2(x)
τ2 , x ∈ Ωh, m = 1, 2, ...

(34)

Theorem 4. The solution of DS (34) obeys the following stability estimates:

max
mN≤k≤(m+1)N−2

∥∥∥∥∥
uh

k+2 − 2uh
k+1 + uh

k
τ2

∥∥∥∥∥
W1

2h

+ max
mN+1≤k≤(m+1)N

∥∥∥∥∥
uh

k − uh
k−1

τ

∥∥∥∥∥
W2

2h

+
1
2

max
mN+1≤k≤(m+1)N

‖uh
k‖W3

2h
≤ C2

[
(2 + τ|b|(N − 2))mbh

0

+
m

∑
j=1

(2 + τ|b|(N − 2))m−jτ
jN

∑
s=(j−1)N+1

‖A
1
2 f (ts)‖W1

2h


 , m = 0, 1, ...,

bh
0 = max

{
max
−N≤k≤0

‖A
1
2 gh

tt(tk)‖W1
2h

, max
−N≤k≤0

‖gh
t (tk)‖W2

2h
, max
−N≤k≤0

‖gh(tk)‖W3
2h

}
.

where C2 does not depend on τ, h, gh(tk), and f h
k (x).

Proof. DS (34) can be written in abstract form:




uh
k+2−3uh

k+1+3uh
k−uh

k−1
τ3 + Ah

uh
k+2−uh

k+1
τ = bAhuh

k−N + f h
k , k ≥ 1,

uh
k = gh

k ,−N ≤ k ≤ 0,

(Ih + τ2 Ah)
uh

1−uh
0

τ = gh
t (0), (Ih + τ2 Ah)

uh
2−2uh

1+uh
0

τ2 = gh
tt(0),

(Ih + τ2 Ah)
uh

mN+1−uh
mN

τ =
uh

mN−uh
mN−1

τ ,

(Ih + τ2 Ah)
uh

mN+2−2uh
mN+1+uh

mN
τ2 =

uh
mN−2uh

mN−1+uh
mN−2

τ2 , m = 1, 2, ...

in a Hilbert space L2h = L2(Ωh) with self-adjoint positive definite operator Ah = Ax
h by Formula (32).

Here, gh
k = gh

k (x), f h
k = f h

k (x), and uh
k = uh

k(x) are known and unknown abstract mesh functions
defined on Ωh with the values in L2h. Then, the estimate of Theorem 4 follows from Estimate (25) and
the following theorem.

Theorem 5. The solution of the difference elliptic problem: [40]

Ax
huh(x) = ωh(x), x ∈ Ωh; uh(x) = 0, x ∈ Sh
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obeys the estimate:
n

∑
r=1

∥∥∥uh
xr xr

∥∥∥
L2h
≤ C3||ωh||L2h ,

where C3 does not depend on h and ωh.

Third, in [0, ∞)×Ω, the mixed problem for DPDE with the Neumann boundary condition:





uttt(t, x)−
n
∑

r=1
(ar(x)utxr (t, x))xr

+ δut(t, x)

= b
(
−

n
∑

r=1
(ar(x)uxr (t− w, x))xr

+ δu(t− w, x)
)

,

0 < t < ∞, x ∈ Ω,
∂u(t,x)

∂p = 0, x ∈ S, 0 ≤ t < ∞

u(t, x) = g(t, x),−w ≤ t ≤ 0, x ∈ Ω

(35)

is investigated. Here, −→p is the normal vector to S. Under compatibility conditions, Problem (31) has
a unique solution u(t, x) for the given smooth functions ar(x) ≥ a > 0, (x ∈ Ω), g(t, x), −w ≤ t ≤
0, x ∈ Ω, f (t, x), 0 < t < ∞, x ∈ Ω and b ∈ R1.

The construction of full discretization to Problem (35) is completed in two stages. In the first stage,
we introduce the second order difference operator Ax

h defined by:

Ax
huh = −

n

∑
r=1

(
αr(x)uh

xr

)
xr ,jr

+ δuh, (36)

acting in the space of grid functions uh (x) that satisfy the conditions Dhuh (x) = 0 for all x ∈ Sh.

Here, Dh is the approximation of operator
∂

∂−→p . It is known that Ax
h is the self-adjoint positive definite

operator in L2h. Using the difference operator Ax
h, we get the initial value problem (33). Therefore,

in the second stage, we use DS (4) for Problem (33):





uh
k+2(x)−3uh

k+1(x)+3uh
k (x)−uh

k−1(x)
τ3 + Ax

h
uh

k+2(x)−uh
k+1(x)

τ

= bAx
huh

k−N(x) + f h
k (x), f h

k (x) = f h(tk, x), k ≥ 1, x ∈ Ωh,
uh

k(x) = gh(tk, x),−N ≤ k ≤ 0,

(Ih + τ2 Ax
h)

uh
1(x)−uh

0(x)
τ = gh

t (0, x),

(Ih + τ2 Ax
h)

uh
2(x)−2uh

1(x)+uh
0(x)

τ2 = gh
tt(0, x), x ∈ Ωh,

(Ih + τ2 Ax
h)

uh
mN+1(x)−uh

mN(x)
τ =

uh
mN(x)−uh

mN−1(x)
τ , x ∈ Ωh

(Ih + τ2 Ax
h)

uh
mN+2(x)−2uh

mN+1(x)+uh
mN(x)

τ2

=
uh

mN(x)−2uh
mN−1(x)+uh

mN−2(x)
τ2 , x ∈ Ωh, m = 1, 2, ...

(37)

Theorem 6. The solution of the difference scheme (37) obeys the stability estimates in Theorem 4.

Proof. DS (37) can be written in abstract form:




uh
k+2−3uh

k+1+3uh
k−uh

k−1
τ3 + Ah

uh
k+2−uh

k+1
τ = bAhuh

k−N + f h
k , k ≥ 1,

uh
k = gh

k ,−N ≤ k ≤ 0,

(Ih + τ2 Ah)
uh

1−uh
0

τ = gh
t (0), (Ih + τ2 Ah)

uh
2−2uh

1+uh
0

τ2 = gh
tt(0),

(Ih + τ2 Ah)
uh

mN+1−uh
mN

τ =
uh

mN−uh
mN−1

τ ,

(Ih + τ2 Ah)
uh

mN+2−2uh
mN+1+uh

mN
τ2 =

uh
mN−2uh

mN−1+uh
mN−2

τ2 , m = 1, 2, ...
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in a Hilbert space L2h = L2(Ωh) with self-adjoint positive definite operator Ah = Ax
h by Formula (36).

Here, gh
k = gh

k (x), f h
k = f h

k (x), and uh
k = uh

k(x) are known and unknown abstract mesh functions
defined on Ωh with the values in L2h . Therefore, the estimate of Theorem 6 follows from the estimate
(25) and the following theorem.

Theorem 7. The solution of the elliptic difference problem: [40]

Ax
huh(x) = ωh(x), x ∈ Ωh; Dhuh(x) = 0, x ∈ Sh

satisfies the estimate:
n

∑
r=1

∥∥∥uh
xr xr

∥∥∥
L2h
≤ C4||ωh||L2h ,

where C4 is independent of h and ωh.

4. Numerical Results

It is well known that when the analytical methods fail to work properly, the numerical methods for
getting partial differential equations’ approximate solutions play a vital role in applied mathematics. In
the operator approach, constants in theorems can be large; therefore, in this case a nice stability result
must be supported numerically. For this reason, it is important to see that for such a type of theoretical
result, we need numerical applications when one cannot know concrete values of constants in stability
estimates. Therefore, the first order of accuracy DSs for the solution of one- and two-dimensional
DPDEs are presented. To solve this problem, a procedure of modified Gauss elimination is applied. The
result of the numerical experiment supports the theoretical statements for the solution of these DSs.

4.1. One-Dimensional Problem

First, we consider the mixed problem, with the exact solution u (t, x) = e−t cos x,




uttt(t, x)− utxx(t, x) = −0.1uxx(t− 1, x)
−2e−t cos x− 0.1e−(t−1) cos x, t > 0, 0 < x < π,
ux(t, 0) = ux(t, π) = 0, 0 ≤ t < ∞,
u(t, x) = e−t cos x, −1 ≤ t ≤ 0, 0 ≤ x ≤ π

(38)

for the one-dimensional DPDE.
Applying DS (4), we get the following DS:





uk+2
n − 3uk+1

n + 3uk
n − uk−1

n
τ3

−
uk+2

n+1 − uk+1
n+1 − 2

(
uk+2

n − uk+1
n

)
+ uk+2

n−1 − uk+1
n−1

τh2

= −0.1
uk−N

n+1 − 2uk−N
n − uk−N

n−1
h2 − 2e−tk cos xn − 0.1e−(tk−N) cos xn,

tk = kτ, lN + 1 ≤ k ≤ (l + 1)N − 2, l = 0, 1, ..., 1 ≤ k ≤ N − 1 ,
Nτ = 1, xn = nh, 1 ≤ n ≤ M− 1, Mh = π,
uk

n = e−tk cos xn, − N ≤ k ≤ 0, 0 ≤ n ≤ M,
uk+1

n − uk
n

τ
= −e−tk cos xn,−N ≤ k ≤ 0, 0 ≤ n ≤ M,

uk+2
n − 2uk+1

n + uk
n

τ2 = e−tk cos xn, −N ≤ k ≤ 0, 0 ≤ n ≤ M,

uk
1 − uk

0 = uk
M − uk

M−1 = 0, 0 ≤ k ≤ N.

(39)
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It can be written as the second order difference problem with matrix coefficients:

A un+1 + Bun + Cun−1 = Dϕn, 1 ≤ n ≤ M− 1; u0 = u1, uM = uM−1. (40)

Here and in the future, we put:

us =




ulN
s
...

u(l+1)N
s



(N+1)×1

, s = n, n± 1.

Here,

A = C =




0 0 0 0 · 0 0 0
0 0 a −a · 0 0 0
0 0 0 a · 0 0 0
· · · · · · · ·
0 0 0 0 · 0 a −a
0 0 0 0 · 0 0 0
0 0 0 0 · 0 0 0




(N+1)×(N+1)

,

B =




1 0 0 0 0 · 0 0 0 0
b −3b 3b− c b− c 0 · 0 0 0 0
0 b −3b 3b− c c− b · 0 0 0 0
0 0 b −3b 3b− c · 0 0 0 0
· · · · · · · · · ·
0 0 0 0 0 · 3b− c c− b 0 0
0 0 0 0 0 · −3b 3b− c c− b 0
0 0 0 0 0 · b −3b 3b− c c− b
− 1

τ
1
τ 0 0 0 · 0 0 0 0

1
τ2 − 2

τ2
1

τ2 0 0 · 0 0 0 0




(N+1)×(N+1)

,

where:
a =

1
τh2 , b = − 1

τ3 , c =
2

τh2 ,

ϕn =




ϕlN
n
...

ϕ
(l+1)N
n



(N+1)×1

,





ϕlN
n = cos xn, −M ≤ k ≤ 0, 0 ≤ n ≤ M,

ϕk
n = f (tk, xn) = −0.1

uk−N
n+1 − 2uk−N

n − uk−N
n−1

h2

−2e−tk cos xn − 0.1e−(tk−N) cos xn,

tk = kτ, lN + 1 ≤ k ≤ (l + 1)N − 2,
l = 0, 1, · · · , 1 ≤ n ≤ M− 1,

ϕ
(l+1)N−1
n = − cos xn −M ≤ k ≤ 0, 0 ≤ n ≤ M,

ϕ
(l+1)N
n = cos xn, −M ≤ k ≤ 0, 0 ≤ n ≤ M,





and D = IN+1 is the identity matrix.
To solve this second order difference problem, we use the following formula:

un = αn+1un+1 + βn+1, n = M− 1, ..., 1, 0, (41)
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where uM = (I − αM)−1 βM, αj (j = 1, ..., M− 1) are (N + 1)× (N + 1) square matrices, β j (j =
1, ..., M− 1) are (N + 1)× 1 column matrices, α1 is the identity, and β1 is zero matrices, and:

αn+1 = − (B + Cαn)
−1 A, (42)

βn+1 = (B + Cαn)
−1 (Dϕn − Cβn) , n = 1, ..., M− 1.

The errors are computed by:

EN
M = max

lN+1≤k≤(l+1)N−1,1≤n≤M−1

∣∣∣u(tk, xn)− uk
n

∣∣∣ (43)

of the numerical solutions, where u(tk, xn) represents the exact solution and uk
n represents the numerical

solution at (tk, xn), and the results are given in Table 1.

Table 1. Errors of difference scheme (DS) (39).

l/N,M 20,20 40,40 80,80

0, t ∈ [0, 1] 0.0141 0.0068 0.0040
1, t ∈ [1, 2] 0.0559 0.0322 0.0172
2, t ∈ [2, 3] 0.1346 0.0746 0.0392
3, t ∈ [3, 4] 0.2011 0.1011 0.0561

4.2. Two-Dimensional Problem

Second, the mixed problem with the Dirichlet condition:





uttt(t, x, y)− utxx(t, x, y)− utyy(t, x, y) = −0.1uxx(t− 1, x)− 0.1uyy(t− 1, x, y)
−3e−t sin x sin y− 0.2e−(t−1) sin x sin y, t > 0, 0 < x, y < π,
u(t, 0, y) = u(t, π, y) = 0, 0 ≤ t < ∞, 0 ≤ y ≤ π,
u(t, x, 0) = u(t, x, π) = 0, 0 ≤ t < ∞, 0 ≤ x ≤ π

u(t, x, y) = e−t sin x sin y, −1 ≤ t ≤ 0, 0 ≤ x, y ≤ π

(44)

for the two-dimensional DPDE is considered. The exact solution of Problem (44) is
u (t, x, y) = e−t sin x sin y.
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Applying DS (4) to the problem (44), we get the following DS of the first order of accuracy in t:





uk+2
n,m − 3uk+1

n,m + 3uk
n,m − uk−1

n,m

τ3

−
uk+2

n+1,m − uk+1
n+1,m − 2

(
uk+2

n,m − uk+1
n,m

)
+ uk+2

n−1,m − uk+1
n−1,m

τh2

−
uk+2

n,m+1 − uk+1
n,m+1 − 2

(
uk+2

n,m − uk+1
n,m

)
+ uk+2

n,m−1 − uk+1
n,m−1

τh2

= −0.1
uk−N

n+1,m − 2uk−N
n,m − uk−N

n−1,m

h2 −
uk−N

n,m+1 − 2uk−N
n,m − uk−N

n,m−1

h2

−3e−tk sin xn sin ym − 0.2e−tk−N sin xn sin ym,
tk = kτ, lN + 1 ≤ k ≤ (l + 1)N − 2,
l = 0, 1, ..., 1 ≤ k ≤ N − 1 ,
Nτ = 1, xn = nh, ym = mh 1 ≤ n, m ≤ M− 1, Mh = π,
uk

n,m = sin xn sin ym, −N ≤ k ≤ 0, 0 ≤ n, m ≤ M,
uk+1

n,m − uk
n,m

τ
= sin xn sin ym,

−N ≤ k ≤ 0, 0 ≤ n, m ≤ M,
uk+2

n,m − 2uk+1
n,m + uk

n,m

τ2 = sin xn sin ym,

−N ≤ k ≤ 0, 0 ≤ n, m ≤ M,
uk

0,m = uk
M,m = 0, 0 ≤ k ≤ N, 0 ≤ m ≤ M,

uk
n,0 = uk

n,M = 0, 0 ≤ k ≤ N, 0 ≤ n ≤ M.

(45)

It can be written as the second order difference problem with the matrix coefficients’ form:

A un+1 + Bun + Cun−1, = Dϕn, 1 ≤ n ≤ M− 1; u0 = 0, uM = 0. (46)

Here and in the future, we put:

us =
[
ulN

0,s , · · ·, u(l+1)N
0,s , ulN

1,s , · · ·, u(l+1)N
1,s , · · · , ulN

M,s, · · ·, u(l+1)N
M,s

]T

(N+1)(M+1)×1
, s = n, n± 1.

A, B, C, I are (N + 1)(M + 1)× (N + 1)(M + 1) square matrices, and I, R are identity matrices.

Here,

a =
1

τh2 , b = − 1
τ3 , c =

2
τh2 ,

A = C =




0 0 . 0 0
0 E . 0 0
. . . . .
0 0 . E 0
0 0 . 0 0




,

B =




Q O O O . O O O O
E D E O . O O O O
O E D E . O O O O
. . . . . . . . .

O O O O . 0 E D E
O O O O O O O O Q




,
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where:

E =




0 0 0 0 · · · 0 0 0
0 0 a −a · · · 0 0 0
0 0 0 a · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 a −a
0 0 0 0 · · · 0 0 0
0 0 0 0 · · · 0 0 0




,

D =




1 0 0 0 · · · 0 0 0
b −3b 3b− c b− c · · · 0 0 0
0 b −3b 3b− c · · · 0 0 0
0 0 b −3b · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · c− b 0 0
0 0 0 0 · · · 3b− c c− b 0
0 0 0 0 · · · −3b 3b− c c− b
− 1

τ
1
τ 0 0 · · · 0 0 0

1
τ2 − 2

τ2
1

τ2 0 · · · 0 0 0




,

Q = I(N+1)×(N+1), O = O(N+1)×(N+1),

ϕn =




ϕlN
0,n
...

ϕ
(l+1)N
0,n
ϕlN

1,n
...

ϕ
(l+1)N
1,n

...
ϕlN

M,n
...

ϕ
(l+1)N
M,n




(M+1)(N+1)×1

,





ϕlN
m,n = sin xn sin ym,
−M ≤ k ≤ 0, 0 ≤ n, m ≤ M,

ϕk
m,n = −0.1

uk−N
n+1,m − 2uk−N

n,m − uk−N
n−1,m

h2

−
uk−N

n,m+1 − 2uk−N
n,m − uk−N

n,m−1

h2

−3e−tk sin xn sin ym

−0.2e−tk−N sin xn sin ym,

tk = kτ, lN + 1 ≤ k ≤ (l + 1)N − 2,

l = 0, 1, · · · , 1 ≤ n, m ≤ M− 1,

ϕ
(l+1)N−1
m,n = − sin xn sin ym,
−M ≤ k ≤ 0, 0 ≤ n, m ≤ M,

ϕ
(l+1)N
m,n = sin xn sin ym,
−M ≤ k ≤ 0, 0 ≤ n, m ≤ M,





To solve this second order difference problem, we use the following formula:

un = αn+1un+1 + βn+1, n = M− 1, ..., 1, uM = 0, (47)

where αj (j = 1, ..., M− 1) are (N + 1)(M+ 1)× (N + 1)(M+ 1) square matrices, β j (j = 1, ..., M− 1)
are (N + 1)(M + 1)× 1 column matrices, and α1 and β1 are zero matrices and:
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αn+1 = − (B + Cαn)
−1 An, (48)

βn+1 = (B + Cαn)
−1 (Dϕn − Cβn) , n = 1, ..., M− 1.

The errors are computed by:

lEN
M = max

lN+1≤k≤(l+1)N−1,1≤n,m≤M−1

∣∣∣u(tk, xn, ym)− uk
n,m

∣∣∣ (49)

of the numerical solutions, where u(tk, xn, ym) represents the exact solution and uk
n,m represents the

numerical solution at (tk, xn, ym), and the results are given in Table 2.

Table 2. Errors of the difference scheme (45).

l/N,M 10,10 20,20 40,40

0, t ∈ [0, 1] 0.0370 0.0162 0.0083
1, t ∈ [1, 2] 0.0840 0.0456 0.0236
2, t ∈ [2, 3] 0.1028 0.0543 0.0276
3, t ∈ [3, 4] 0.1008 0.0521 0.0261

As seen in Tables 1 and 2, we obtained some numerical results. If M and N are doubled, the
values of the errors decrease by a factor of approximately 1/2 for DS (39) and (45), respectively.

5. Conclusions

1. In this paper, the absolutely stable DS of a first order of accuracy for the approximate solution of
the DPDE in a Hilbert space was presented. The theorem on the stability of this difference scheme
was proven. In practice, stability estimates for the solutions of three-step difference schemes
for different types of delay partial differential equations were obtained. Numerical results were
given.

2. The mixed problem for the one-dimensional DPDE with the Dirichlet condition was studied
in [41]. The first and second order of accuracy DSs for the numerical solution of this problem
were presented. The illustrative numerical results were provided. We are interested in studying
absolutely stable DSs of a high order of accuracy of the approximate solution of the initial value
problem (1) for the DPDE in a Hilbert space.

3. Applying this approach and the method [30], we could study the existence and uniqueness of a
bounded solution of the initial value problem for the semilinear DPDE:

{
uttt(t) + Aut(t) = f (t, u(t− w)) , 0 < t < ∞,
u(t) = g(t),−w ≤ t ≤ 0

(50)

in a Hilbert space H with an unbounded operator A. Moreover, applying the method of [28], we
can investigate the convergence of DSs for the numerical solution of Problem (50).
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