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Preface to ”Computational Fluid Dynamics 2020”

Hitherto, experimental approaches have been widely considered as the main source of

information for predicting the physical behavior of fluid flow problems. However, in many

applications, due to complexities in fluid behavior related to nonlinearity, experimental methods

which are multiscale, multiphase, etc., are either extremely expensive or subjected to scaling issues,

and in some cases are impossible. Under these constraints, scrutinizing the physical phenomena

seems to be only possible through the alternative of numerical tools.

This Special Issue focuses on computational fluid dynamics (CFD) research, with an emphasis

on its recent advancements and use in many industrial and academic applications. Papers on topics

ranging from novel physical models and discoveries to the correct treatment of difficulties inherent to

numerical modeling of fluid flow systems are invited for submission. These include, but are not

limited to: (i) correct and effective modeling of the physical boundary conditions; (ii) mass and

energy conservations; (iii) realistically treating complicated physical phenomena; (iv) extendibility

to dealing with multiphysics phenomena such as those seen in magnetohydrodynamics (MHD),

electrohydrodynamics (EHD), non-Newtonian flows, phase change, nanofluidics problems, etc.;

and finally (v) the extension of the before-mentioned methodologies to three-dimensional modeling

and massively parallel computing in order to handle real life problems of particular interest.

We are especially interested in the following manuscript topics: the use of conventional

numerical methods such as finite difference (FDM), finite volume (FVM) and finite element (FEM)

methods, elaborating on their differences, similarities, advantages and drawbacks; the development

and validation of less established and novel, attractive numerical methodologies such as

smoothed-particle hydrodynamics (SPH), moving particle semi-implicit (MPS), lattice Boltzmann

(LBM) methods, etc. Manuscripts dealing with the benchmarking of new test cases, optimizing flow,

fluid, and geometrical parameters, as well as using data-driven approaches such as reduced-order

methods and machine learning (ML), are of particular interest. This Special Issue also welcomes

related novel inter- or multi-disciplinary works in the emerging areas of mechanical, chemical,

process and energy engineering.

Mostafa Safdari Shadloo

Editor
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Abstract: The current article presents the entropy formation and heat transfer of the steady Prandtl-
Eyring nanofluids (P-ENF). Heat transfer and flow of P-ENF are analyzed when nanofluid is passed
to the hot and slippery surface. The study also investigates the effects of radiative heat flux, variable
thermal conductivity, the material’s porosity, and the morphologies of nano-solid particles. Flow
equations are defined utilizing partial differential equations (PDEs). Necessary transformations are
employed to convert the formulae into ordinary differential equations. The implicit finite difference
method (I-FDM) is used to find approximate solutions to ordinary differential equations. Two types
of nano-solid particles, aluminium oxide (Al2O3) and copper (Cu), are examined using engine oil
(EO) as working fluid. Graphical plots are used to depict the crucial outcomes regarding drag force,
entropy measurement, temperature, Nusselt number, and flow. According to the study, there is a
solid and aggressive increase in the heat transfer rate of P-ENF Cu-EO than Al2O3-EO. An increment
in the size of nanoparticles resulted in enhancing the entropy of the model. The Prandtl-Eyring
parameter and modified radiative flow show the same impact on the radiative field.

Keywords: steady flow; Tiwari and Das model; Prandtl-Eyring nanofluid; entropy generation;
implicit finite difference method

1. Introduction

Nanofluids, including nanomaterial dispersed in a pure fluid, are becoming applica-
ble fluids in various systems due to their proved superior specification [1]. Augmented
thermal conductivity is a remarkable property induced from nanofluid as compared with
conventional fluids [2]. On the other hand, the viscosity of nanofluids is significantly varied
depending on the type of nanoparticles, base fluid, and their interaction [3]. Some authors
have observed Newtonian behaviour of nanofluids, while a non-Newtonian one has been
widely revealed [4]. The non-Newtonian behaviours have practical implementations in
wire and blade coating, molten plastic, dyeing of textile, some petroleum fluids, biological
fluids movement, and food and slurries processing. In this regard, various kinds of rhe-
ological behaviours can be expected, defined by models such as power law, micropolar,

Mathematics 2021, 9, 3153. https://doi.org/10.3390/math9243153 https://www.mdpi.com/journal/mathematics
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Reiner–Philippoff, viscoelastic, Casson, Carreau, Giesekus, Prandtl, Prandtl–Eyring, and
Powell–Eyring [5]. These models introduce special impendence on the momentum conser-
vation equations to be compatible with the targeted behaviour. Indeed, in mathematical
language, the relationship between shear stress and deformation rate is described by each
model. Prandtl and Prandtl–Eyring are a function of sine inverse and sine hyperbolic,
respectively [6,7]. The power law model characterizes the relation as nonlinear [8]. Sajid
et al. [9] studied a micropolar Prandtl fluid for a porous stretching sheet situation. They as-
sumed that the heat source is related to temperature and a chemical reaction occurs into the
medium. Maleki et al. [10] performed numerical research on power law nanofluid, which
flows on a porous plate. They found that using Newtonian nanofluid has no improvement
effect on heat transfer.

In contrast, the non-Newtonian one had an essential role in boosting heat transfer.
Shankar and Naduvinamani [11] worked on the transport phenomena of a Prandtl–Eyring
fluid through a sensor surface under magnetic force conditions. The observation showed
that magnetic parameter augmentation causes a velocity field increment and temperature
profile reduction. At the same time, heat transfer diminished by the Prandtl number
rose. Temperature and concentration variations on Prandtl–Eyring fluid heat transfer
were investigated by Al-Kaabi and Al-Khafajy [12] in a porous medium. Finally, Hayat
et al. [13] evaluated the efficacy of Prandtl–Eyring nanofluid on gyrotactic microorganisms
in a stretching sheet. The results indicated that higher melting parameters hike the velocity
and pull down the temperature.

Stretching surface is a well-known and habitual process in industrial situations, i.e.,
extrusion, fiberglass, cooling of the metallic plate, glass blowing, hot rolling, etc. Bound-
ary layer flow and heat transfer is the theory that helps better understand the scientific
phenomena underlying it [14]. Nonlinear equations are expected from practical problems
which are experienced in engineering applications. The Keller box method is an implicit
finite difference method used to solve these types of equations [15]. Munjam et al. [16]
proposed a new technique to solve the fluid flow of a Prandtl–Eyring fluid on a stretched
sheet and compared their results with the Keller box method. The analytical outcomes
indicated that as the fluid parameter rises, velocity enhances. In addition, they found that
the Prandtl–Eyring fluid induces a grosser velocity value as compared to the viscous one.

Jamshed et al. [17] explored the entropy generation of Casson nanofluid by considering
the Tiwari and Das model and the Keller box method to solve ODEs. Two methanol-based
nanofluids were used by introducing Cu and TiO2 nanoparticles; Cu nanofluids showed a
better performance. In [18], they also used the same models and techniques for the same
nanoparticles for engine oil base fluid. They concluded that entropy generation would
enhance by Reynolds number and Brinkman numbers. Moreover, increasing nanofluid
concentration led to shear rate enhancement. Abdelmalek et al. [19] discussed a Prandtl–
Eyring nanofluid which influences Brownian motion and thermophoretic force through a
stretched surface. It was proved that magnetic force is undesirable for the momentum. In
contrast, Brownian motion and thermophoretic force raised the thermal energy.

In the viewpoint of heat transfer, thermal conductivity is a determinant parameter
that is generally assumed to be unchanged. However, extensive studies emphasized that
the efficacy of temperature changing the thermal conductivity would vary. Particularly,
nanofluids have an intimate relation with temperature, which can considerably affect the
heat transfer due to the higher aspect ratio that nanoparticles provide within the base fluid.
It is proved that at higher temperatures, the thermal conductivity is typically more elevated.
Thus, in a range of temperatures, the thermal conductivity is variable. Maleki et al. [20]
studied the efficacy of different kinds of nanofluids on the heat transfer of a porous system.
They claimed that the results are opposite with other researchers, i.e., adding more nanopar-
ticles dwindled the heat transfer because it can alter radiation, viscous dissipation, and
heat generation. In [21], they also surveyed the non-Newtonian nanofluids by considering
the mixture of CMC and water as a base fluid. It was revealed that using non-Newtonian
nanofluid in injection mode has a higher heat transfer efficiency as compared to the Newto-
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nian one. Jamshed et al. [22] investigated Casson nanofluid in a stretching sheet system that
included variable thermal conductivity. Keller box was the technique that solved ODEs.
In this method, differential equations are solved numerically to reduce them into the 1st
order differential equations. They used TiO2 and Cu as nanoparticles in water. Cu/water
nanofluid had better heat conduction performance. Carreau–Yasuda nanofluid was re-
searched by Waqas et al. [5] by considering gyrotactic motile microorganisms. Velocity,
thermal, and temperature fields were amended by decreasing the bioconvection Rayleigh
number, increasing the thermal Biot number, and decreasing the Prandtl number. In ad-
dition, the concentration field improved by reducing Brownian motion. Xiong et al. [23]
explained that variable thermal conductivity has a determinant role in field quantities.
They scrutinized a fibre-reinforced generalized thermoelasticity system by considering
temperature-dependent thermal conductivity. Ibrahim and Negera [24] inspected an MHD
Williamson nanofluid effect within a stretching cylinder by considering chemical reaction
conditions. They asserted that the higher the parameter of variable thermal conductivity,
the higher the Sherwood number and skin friction, while the lower the Nusselt number.
Dada and Onwubuoya [25] analysed an MHD Williamson fluid over a stretchable sur-
face of variable thickness and thermal conductivity. The conclusion indicated that rising
changeable thermal conductivity improves temperature. Hasona et al. [26] described the
variable thermal conductivity of a non-Newtonian nanofluid in a special geometry channel.
They reported that rising thermal and electrical conductivities enhance the temperature
of working fluid, which in turn augments heat transfer performance within the system.
Fatunmbi and Okoya [27] presented an investigation on hydromagnetic Casson nanofluid
at the attendance of thermophoresis, ohmic heating, and a nonuniform heat source with
variable thermal conductivity for a stretching sheet system. They demonstrated that driv-
ing up the Casson fluid parameter dwindled the fluid flow velocity, albeit, it augmented
the viscous drag.

After a glance into the erstwhile studies, since most industrial fluids include non-
Newtonian fluids in a situation like stretching surface, the significant concerns of the
current project are to discuss the Prandtl–Eyring nanofluid flow over a stretching sheet
under three conditions of variable thermal conductivity, thermal radiative flow, and porous
material. In addition, their effects on the entropy formation were elaborated by considering
the Tiwari and Das model. In this way, Al2O3/EO and Cu/EO nanofluids were analysed
at volume concentrations of 3% to 20%. Furthermore, this study implemented the implicit
finite difference method to solve the boundary layer equations nicely. Therefore, it can be
said that the valuable outcomes of this research can be a guideline for practical applications
because it was conducted to select parameters close to actual industrial conditions.

2. Flow Model Formulations

A nonregular stretching velocity was used in the flow analysis to characterize hori-
zontal surface movement (for instance, Reference [28]):

Uw(x, 0) = mx, (1)

where m is a pilot spreading ratio. The temperature at the surface is �w(x, 0) = �∞ + m∗x.
For the sake of adaptability, it was fabricated as a perpetual at x = 0. m*, �w and �∞ provided
the temperature variation rate, thermal disparity rate, and ambient temperature congruently.

2.1. Prandtl–Eyring Fluid Stress Tensor

Prandtl–Eyring fluid stress tensor can be expressed as follows (Qureshi [29]),

τ =

Ap Sin−1

{
1
C

⌈(
∂G1
∂y

)2
+
(

∂G2
∂x

)2
⌉ 1

2
}

⌈(
∂G1
∂y

)2
+
(

∂G2
∂x

)2
⌉ 1

2

(
∂G1

∂y

)
. (2)
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Here, τ signify extra stress tensor and
←
G = [G1(x, y, 0), G2(x, y, 0), 0] indicates the flow

velocity vector. Aw and C are fluid parameters. The complete derivation of this specific
stress tensor and velocity field can found in Becker [30].

2.2. Model Assumptions and Restraints

The mathematical model was taken into account in the following presumptions and
requirements:

� 2D laminar flow
� Boundary layer estimation
� Tiwari and Das nanofluid model
� Non-Newtonian Prandtl–Eyring nanofluid
� Copper (Cu) and aluminium oxide (Al2O3) nanoparticles
� Base fluid is engine oil (EO)
� Variable thermal conductivity
� Thermal radiation
� Permeable stretching surface
� Convective and slippery velocity conditions.

2.3. Geometry for Single-Phase Flow Model

Following is the geometric flow model: the flow goes over the sheet. Thermal leap
was used to transfer heat from the fluid’s surface to the fluid’s inside as the velocity
at the surface underwent the flow slip event. Alumina oxide nanoparticles and copper
nanoparticles were mixed into the engine oil (see Figure 1).

Figure 1. Diagram of the single-phase flow model.

2.4. Classical Equations

The flow formulae of viscous and steady Prandtl–Eyring nanofluid (P-ENF) in combi-
nation with variant thermal conductivity, radiation, and porous material are [31–33].
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∂G1

∂x
+

∂G2

∂y
= 0, (3)

G1
∂G1

∂x
+ G2

∂G1

∂y
=

Ap

Cρn f

(
∂2G1

∂y2

)
− Ap

2C3ρn f

∂2G1

∂y2

[(
∂G1

∂y

)2
]
− μn f

ρn f k
G1, (4)

G1
∂�
∂x

+ G2
∂�
∂y

=
1(

ρCp
)
κn f

[
∂

∂y

(
κ∗hn f (�)

∂�
∂y

)]
− 1

(ρCp)n f

[
∂qr

∂y

]
, (5)

the appropriate connection conditions were as follows (Aziz et al. [34]):

G1(x, 0) = Uw + NL

(
∂G1

∂y

)
, G2(x, 0) = Vπ , −kπ

(
∂�
∂y

)
= hπ(�w −�), (6)

G1 → 0, � → �∞ as y → ∞. (7)

� is the temperature of the nanofluid.
Other crucial parameters involved fluid parameters Ap, C, slip length NL, surface

permeability Vπ , heat transfer coefficient hπ , and porosity (k), along with heat conductivity
of firm kπ . It considered physical elements such as the thermal loss from a conventionally
heated surface due to conduction and velocity at the surface as a function of the shear stress
applied to it (slip condition). Because of the thickness of non-Newtonian P-ENF, just a
short distance was covered by the radiative flow. Therefore, radiation heat flux estimation
obtained through Rosseland [35] was applied in Equation (5).

qr = −4σ∗

3k∗
∂�4

∂y
, (8)

herein, σ∗ represents the Stefan–Boltzmann constant. Table 1 summarizes the equations of
P-ENF material variables [36,37]:

Table 1. Formulae used for studied nanofluids [36,37].

Characteristics Nanofluid

Dynamical viscosity (μ) μn f = μ f (1 − φ)−2.5

Density (ρ) ρn f = (1 − φ)ρ f − φρs

Heat capacity
(
ρCp
)

(ρCp)n f = (1 − φ)(ρCp) f − φ(ρCp)s

Thermal conductivity (κ) κn f
κ f

=

[
(κs+2κ f )−2φ(κ f −κs)
(κs+2κ f )+φ(κ f −κs)

]
Variable thermal

conductivity (κ∗n f (�)) κ∗n f (�) = kn f

[
1 + υ∗ �−�∞

�w−�∞

]
φ represents the volume fraction coefficient of nanofluid. μ f , ρ f , κ f and (Cp) f show dynamic viscosity, density,
thermal conductivity, and functional heat capacity regarding the ideal fluid, respectively. The indice of “s”
represents the solid nanoparticles. (κ∗n f (�)) represents the temperature-reliant heat conductance of nanofluid.

The thermophysical properties of engine oil and studied nanoparticles are shown in
Table 2 [38,39].

Table 2. Materials thermophysical properties [38,39].

Thermophysical ρ (kg/m3) cp (J/kgK) k (W/mK)

Copper (Cu) 8933 385.0 401.00
Engine oil (EO) 884 1910 0.144

Aluminium oxide (Al2O3) 3970 765 40

5
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3. Dimensionless Formulations Model

Similarity transformations that convert the governing PDEs into ODEs, and the BVP
formulae (3)–(7) are modified. Familiarizing stream function ψ in the equation [28]

G1 =
∂ψ

∂y
, G2 = −∂ψ

∂x
. (9)

The specified similarity quantities are ([28])

γ∗(x, y) =

√
m
ν f

y, ψ(x, y) =
√

ν f mx f (γ∗), θ(γ∗) =
�−�∞

�w −�∞
. (10)

into Equations (3)–(7). We get

τ∗ f
′′′(

1 − ς∗ f
′′2
)
+ φΫ2

[
f f ′′ − f ′2

]
− 1

φΫ1

Fπ f ′ = 0, (11)

θ′′

(
1 + υ∗θ +

1
φΫ4

Pr Nπ

)
+ υ∗θ′2 + Pr

φΫ3

φΫ4

[
f θ′ − f ′θ

]
= 0. (12)

with
f (0) = S, f ′(0) = 1 + Λπ f ′′ (0), θ′(0) = −Bπ(1 − θ(0))
f ′( γ∗) → 0, θ( γ∗) → 0, as γ∗ → ∞

}
(13)

where φ′
Ϋi

is 1 ≤ i ≤ 4 in formulae (11)–(12) signify the subsequent thermophysical
structures for P-ENF [29].

φΫ1
= (1 − φ)2.5, φΫ2

=
(

1 − φ + φ
ρs
ρ f

)
, φΫ3

=

(
1 − φ + φ

(ρCp)s
(ρCp) f

)
φΫ4

=

(
(ks+2k f )−2φ(k f −ks)
(ks+2k f )+φ(k f −ks)

)
.

⎫⎪⎪⎬⎪⎪⎭ (14)

Equation (2) is clearly shown to be valid. Table 3 shows the needed derivatives.

Table 3. Entrenched Control Constraints.

Symbols Name Default Value

τ∗ Prandtl–Eyring
parameter-I τ∗ =

Ap
μ f C

1.3

ς∗ Prandtl–Eyring
parameter-II ς∗ = m3x2

2C2ν f
0.3

Pr Prandtl number Pr = ν f
α f

6450

φ
Volume fraction

coefficient - 0.18

Fπ Porosity parameter Fπ =
ν f
mk 0.6

S Suction/Injection
parameter S = −Vπ

√
1

ν f m
0.5

Nπ
Thermal radiation

parameter Nπ = 16
3

σ∗�3
∞

κ∗ν f (ρCp) f

0.3

Bπ Biot number Bπ = hπ
kπ

√
ν f
g

0.2

Λπ Velocity slip Λπ =
√

m
ν f

NL 0.3

6
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Other parameters like skin friction (Cf ), Nusselt number (Nux) and entropy genera-
tion (NG) can be expressed as [31,32]:

Cf Re
1
2
x = τ∗ f

′′
(0)− 1

3 τ∗ς∗
(

f
′′
(0)
)3

,

NuxRe−
1
2

x = − kn f
k f

(1 + Nπ)θ′(0),

NG = Rπ

[
φΫ4

(1 + Nπ)θ′2 + 1
φΫ4

BΓ
Ω

(
f
′′2 + Pξ f ′2

)]
.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(15)

4. Implicit Finite Difference Method

The implicit finite difference method (I-FDM) [40] was utilized to obtain the numerical
solution for the equation set of models. I-FDM has an advantage as it has fast convergence.
It is 2nd order convergent and inherently stable. I-FDM satisfies the Von Neumann stability
test, which has the criterion of a real numerical solution for PDEs with the help of the
stability and consistency of a numerical solution. I-FDM is employed to obtain the solution
of Equations (11) and (12) using boundary conditions (13). This is a suitable method to
obtain the approximated solution of boundary layer problems. I-FDM is widely applicable
in the flow problems of the laminar boundary layer, and the obtained results are more
effective than others.

To apply the implicit finite difference method [41], Equations (11) and (12) were
written in the form of 1st order differential equations utilizing newly employed variables.
Reduced equations are as follows [32]:

L1 = f ′, (16)

L2 = L′
1, (17)

z3 = θ′, (18)

τ∗L′
2

(
1 − ς∗L2

2
)
+ φΫ2

[
f L2 − L2

1

]
− 1

φΫ1

Fπ L1 = 0, (19)

L′
3

(
1 + υ∗θ +

1
φΫ4

Pr Nπ

)
+ υ∗L2

3 + Pr
φΫ3

φΫ4

[ f L3 − L1θ] = 0. (20)

With the presence of newly employed variables, boundary conditions eventually
changed to [31]

f (0) = S, L1(0) = 1 + Λπ L2(0), L3(0) = −Bπ(1 − θ(0)), L1(∞) → 0, θ(∞) → 0. (21)

The different formulae were calculated using central differencing, and average func-
tions were replaced. Thus, the 1st ODEs (16) and (20) order decreases to the next series of
nonlinear algebraic formulae.

(L1)j + (L1)j−1

2
=

f j − f j−1

h
, (22)

(L2)j + (L2)j−1

2
=

(L1)j − (L1)j−1

h
, (23)

(L3)j + (L3)j−1

2
=

θj − θj−1

h
, (24)

7
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τ∗
(

(L2)j−(L2)j−1
h

)(
1 − ς∗

(
(L2)j+(L2)j−1

2

)2
)

+

[
φΫ2

(( f j+ f j−1
2

)(
(L2)j+(L2)j−1

2

)
−
(

(L1)j+(L1)j−1
2

)2
)
− Fπ

1
φΫ1

(
(L1)j+(L1)j−1

2

)]
,

(25)

(
(L3)j−(L3)j−1

h

)(
1 + υ∗

(
θj+θj−1

2

)
+ 1

φΫ4
Pr Nπ

)
+ υ∗

(
(L3)j+(L3)j−1

2

)2

+Pr
φΫ3
φΫ4

[( f j+ f j−1
2

)(
(L3)j+(L3)j−1

2

)
−
(

(L1)j+(L1)j−1
2

)(
θj+θj−1

2

)]
= 0.

(26)

To linearize the resulting equations, Newton’s technique was used. As an example,
consider iteration (i + 1)th

()
(i+1)
j = ()

(i)
j + Ö()

(i)
j . (27)

under the substitutition of the linear tridiagonal equational system into Equations (22)–(26),
disregarding the elevated Öi

j components.

Ö f j − Ö f j−1 − 1
2

h(Ö(L1)j + Ö
(

L1)j−1
)
= (d1)j− 1

2
, (28)

Ö(L1)j − Ö(L1)j−1 −
1
2

h(Ö(L2)j + Ö
(

L2)j−1
)
= (d2)j− 1

2
, (29)

Öθj − Öθj−1 − 1
2

h(Ö(L3)j + Ö
(

L3)j−1
)
= (d3)j− 1

2
, (30)

(a1)jÖ f j + (a2)jÖ f j−1 + (a3)jÖL1 j + (a4)jÖLj−1 + (a5)jÖL2 j + (a6)jÖL2 j−1

+(a7)jÖθj + (a8)jÖθj−1 + (a9)jÖ(L3)j + (a10)jÖ(L3)j−1 = (d4)j− 1
2
, (31)

(b1)jÖ f j + (b2)jÖ f j−1 + (b3)jÖL1 j + (b4)jÖL1 j−1 + (b5)jÖL2 j + (b6)jÖL2 j−1

+(b7)jÖθj + (b8)jÖθj−1 + (b9)jÖ(L3)j + (b10)jÖ(L3)j−1 = (d5)j− 1
2
. (32)

where
(d1)j− 1

2
= − f j + f j−1 +

h
2
(L1)j + (

(
L1)j−1

)
, (33)

(d2)j− 1
2
= −(L1)j + (L1)j−1 +

h
2
((L2)j +

(
L2)j−1

)
, (34)

(d3)j− 1
2
= −θj + θj−1 +

h
2
((L3)j +

(
L3)j−1

)
, (35)

(d4)j− 1
2
= −h

⎡⎣τ∗
(
(L2)j − (L2)j−1

h

)⎛⎝1 − ς∗
(
(L2)j + (L2)j−1

2

)2
⎞⎠⎤⎦− h

⎡⎣⎡⎣φb

⎛⎝( f j + f j−1

2

)( (L2)j + (L2)j−1

2

)
−
(
(L1)j + (L1)j−1

2

)2
⎞⎠− Fπ

1
φa

(
(L1)j + (L1)j−1

2

)⎤⎦⎤⎦, (36)

(d5)j− 1
2
= −h

[(
(L3)j−(L3)j−1

)
h

(
1 + υ∗

(
θj+θj−1

2

)
+ 1

φΫ4
Pr Nπ

)]
− h

[
υ∗
(

(L3)j+(L3)j−1
2

)2
]

−hPr
φΫ3
φΫ4

[(
( f j+ f j−1)((L3)j+(L3)j−1)

4

)]
+ hPr

φΫ3
φΫ4

[(
(θj+θj−1)((L1)j+(L1)j−1)

4

)] (37)

The boundary conditions become

Ö f0 = 0, Ö(z1)0 = 0, Ö(z3)0 = 0, Ö(z1)J = 0, ÖθJ = 0. (38)

The following are the formulae (33)–(37) that produce the bulk tridiagonal array,

RÖ = p, (39)

8
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where

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 �1
ϕ2 �2 ε2

. . . . . . . . .
. . . . . . . . .

ϕJ−1 �J−1 ε J−1
ϕJ �J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ö =

⎡⎢⎢⎢⎢⎢⎣
Ö1
Ö2
...
Öj−1
Ö

⎤⎥⎥⎥⎥⎥⎦, p =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(d1)j− 1
2

(d2)j− 1
2

...
(dJ−1)j− 1

2
(dJ)j− 1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (40)

This matrix, H, resembles the generalized size of J × J, whereas the Ö and p indicate
the column vectors order of J × 1. Afterward, a unique LU factorization approach was
employed to get the solution for Ö.

5. Code Validity

The technique’s authenticity was assessed by comparing the thermal conveyance rate
fallouts between the recent scheme and the previous results [42–45]. Table 4 summarises
the consistency relationship found in all of the studies. Therefore, the findings of the
present study are agreeable with previously published results and verified.

Table 4. Comparison of −θ′(0) with Pr, whenever φ = 0, Nπ = 0, υ∗ = 0, Λπ = 0, S = 0, and
Bπ → ∞ .

Pr Wang [41]
Gorla and

Sidawi [42]
Khan and
Pop [43]

Makinde and
Aziz [44]

This Study

0.2 0.1691 0.1691 0.1691 0.1691 0.169
0.7 0.4539 0.4539 0.4539 0.4539 0.4537
2 0.9114 0.9114 0.9114 0.9114 0.9113
7 1.8954 1.8954 1.8954 1.8954 1.8958

6. Results and Discussion

The section discusses the numerical outcomes obtained on the model in consideration.
The parameters involved in the results are φ, Nπ , υ∗, Bπ , τ∗, ς∗, Fπ , S, Λπ , Rπ , and BΓ.
Figures 2–21 display the physical behavior of the mentioned parameters regarding energy,
entropy formation, and velocity on the nondimensional entities of the model. Results for
non-Newtonian Al2O3-EO and Cu-EO P-ENFs were obtained. Temperature differences
and coefficient of skin fraction are detailed in Table 5. The values used for the parameters
are φ = 0.18, Nπ = 0.3, υ∗ = 0.2, Bπ = 0.3, τ∗ = 1.0, ς∗ = 0.2, Fπ = 0.6, S = 0.5,
Λπ = 0.3, Rπ = 5, and BΓ = 5. The power of Al2O3-EO and Cu-EO were decided with the
fractional size of nanoparticles used in the working fluid. Flow stability of nanoparticles
decreased when nanoparticles had a higher amount of fractional range. Al2O3-EO was
favored more by fractional improvement than Cu-EO nanofluid. Figure 2 shows a lower
flow of Cu-EO nanofluid than Al2O3-EO. As Al2O3 has a high heat transfer property, its
primary purpose is to combine with EO. When the fractional volume of both fluids flows
increases, thermal distribution transported to the domain from the surface is high, as shown
in Figure 3. The increasing fractional volume also resulted in enhancing the fluctuations of
the system entropy. Figure 4 shows the leading fluctuations of Cu-EO nanofluid, which
settled down midway and increased further towards Al2O3-EO nanofluid. The thermal
radiation parameter (Nπ) models the radiation procedure used in enhancing the entropy
rate and heat regarding induced temperature, as shown in Figures 5 and 6. Radiations
had a negligible effect on the entropy variations caused by the prominent influence of
flow conditions. Cu-EO had more control than the Al2O3-EO nanofluid. Regarding heat
capability of Al2O3 and Cu-EO nanofluids, there was a dominant effect on entropy and
thermal aspects of individual variations in υ∗, i.e., thermal conductivity. Figures 7 and 8
represent these effects. When the variation parameter tries to increase the ranges of entropy

9
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and heat, the nominal impact of υ∗ is proved by close variations of entropy and thin
layers of heat. In both behaviors of parameters, Al2O3-EO underestimated the Cu-EO
nanofluid. Figures 9 and 10 clearly show the increment in convective heat on thermal as
well as entropy states from lower surfaces in the domain. Parametric values of Biot number
represent the ordinary heating procedure Bπ . An increase in Bπ resulted in enhancing the
thermal state in the flow domain, but this only had a negligible impact on the entropy
generation. The entropy profile is smaller than the thermal boundary layer, which proves
the above statement. According to the study, Al2O3-EO is better than Cu-EO nanofluid.
Figures 11–13 demonstrate the impact on the power, entropy, and velocity distributions
of Prandtl–Eyring nanofluid τ∗. Figure 11 shows the speed ( f ′) corresponding to τ∗. The
velocity of both fluids increased with amplification in τ∗. However, the velocity of Al2O3-
EO velocity was more incredible as compared to Cu-EO. Figure 12 shows the temperature
curve concerning the Prandtl–Eyring parameter τ∗. An increment in τ∗ resulted in reducing
the temperatures of both fluids. However, the temperature profile of Cu-EO nanofluid is
more critical than Al2O3-EO nanofluid. Figure 13 represents the entropy fluctuation of
P-ENF caused by τ∗. An increase of τ∗ resulted in lowering the entropy formation. The
lower value of entropy of the Al2O3-EO fluid was used to represent Cu-EO nanofluid
when both nanofluids were at the end of the graph. τ∗ is strongly related to the profile of
P-ENF. However, an increase of τ∗ resulted in decreasing the entropy and temperature.
Figures 14–16 illustrate the efficacy of the Prandtl–Eyring parameter ς∗ on the profiles
of temperature, velocity, and entropy formation. The velocity change regarding ς∗ was
displayed in Figure 16. A decrease in the velocity profile was the result of an increment in
Cu-EO while increasing Al2O3-EO and a high rate in ς∗. Figure 15 shows the fluctuations
in the profile of temperature concerning ς∗. The temperature grows as ς∗ is increased,
and Cu-EO obtains a quick temperature. Figure 16 highlights the difference in entropy
caused by the Prandtl–Eyring parameter ς∗. An increment in entropy is obtained with
increasing ς∗. Results obtained from modifying the slip conditions on the nature of the
flow, heat, and generation of entropy, respectively, are shown in Figures 17–19. Viscous
behavior was focused on the flow conditions in the combinations of the Prandtle-Eyring
fluid. Variations in velocity, entropy formation, and thermal distributions have an essential
role in slip conditions. The situation for fluidity becomes difficult when slip conditions of
Prandtl–Eyring fluid flow are increased. Fluidity was reduced for Cu-EO than Al2O3-EO
P-ENF. Such hierarchy mainly occurs in thermal distributions, i.e., Cu-EO has a higher
thermal state than Al2O3-EO nanofluid, as depicted in Figure 18. Greater values of slip
parameter Λπ resulted in decreasing the entropy generation. It was caused by slip flow,
which acted opposite to entropy generation, as shown in Figure 19. Figure 20 shows the
performed estimations for Fπ = 0.6, 1.6, and 2.6; meanwhile, parametric values of ς∗ are 0.2,
0.4, and 0.6. An increment in the material parameter resulted in enhancing the coefficient
of skin friction. Flow velocity was decreased due to an increase in skin friction as resistance
in fluid increased. In Figure 21, calculations for Nπ = 0.1, 0.3, and 0.5 were employed
while Prandtl number Pr was kept fixed on 1.0, 6.2, and 7.38. The convective heat transfer
rate rose whenever the radiation parameter Nπ , is increased. The heat transfer rate was
augmented when heat flux was increased.

10
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Figure 2. Velocity variation with φ.

Figure 3. Temperature variation with φ.

Figure 4. Entropy variation with φ.
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Figure 5. Temperature variation with Nπ .

Figure 6. Entropy variation with Nπ .

Figure 7. Temperature variation with υ*.
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Figure 8. Entropy variation with υ*.

Figure 9. Temperature variation with Bπ .

Figure 10. Entropy variation with Bπ .
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Figure 11. Velocity variation with τ*.

Figure 12. Temperature variation with τ*.

Figure 13. Entropy variation with τ*.
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Figure 14. Velocity variation with ς*.

Figure 15. Temperature variation with ς*.

Figure 16. Entropy variation with ς*.
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Figure 17. Velocity variation with Λπ .

Figure 18. Temperature variation with Λπ .

Figure 19. Entropy variation with Λπ .
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Figure 20. Skin friction Cƒ against the parameter ς*.

Figure 21. Nusselt number Nux against the parameter Pr.
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Table 5. Values of Cf Re1/2
x and NuxRe−1/2

x for Pr = 6450.

τ∗τ* ς∗ς* Fπ φ Λπ S Nπ υ* Bπ
CfRe

1
2
x

Cu-EO
CfRe

1
2
x

Al2O3-EO
NuRe

−1
2

x
Cu-EO

NuRe
−1
2

x
Al2O3-EO

1 0.2 0.6 0.18 0.3 0.5 0.3 0.2 0.3 5.5179 4.2061 3.5457 3.1859
1.3 5.5322 4.234 3.5785 3.216
1.6 5.5716 4.2695 3.6018 3.2474

0.2 5.5179 4.2061 3.5457 3.1859
0.4 5.4921 4.1875 3.5014 3.1522
0.6 5.4513 4.1645 3.4787 3.139

0.6 5.5179 4.2061 3.5457 3.1859
1.6 5.5415 4.2431 3.5251 3.1633
2.6 5.5823 4.2789 3.5075 3.141

0.09 5.4565 4.1331 3.4865 3.1236
0.15 5.484 4.1702 3.5186 3.1542
0.18 5.5179 4.2061 3.5457 3.1859

0.1 5.592 4.2609 3.5972 3.2328
0.2 5.5405 4.2337 3.5649 3.2011
0.3 5.5179 4.2061 3.5457 3.1859

0.3 5.4932 4.1722 3.5143 3.1598
0.5 5.5179 4.2061 3.5457 3.1859
0.7 5.5416 4.2334 3.5766 3.2145

0.1 5.5179 4.2061 5.5271 3.1604
0.3 5.5179 4.2061 3.5457 3.1859
0.5 5.5179 4.2061 3.5637 3.2194

0.1 5.5179 4.2061 3.5950 3.2239
0.2 5.5179 4.2061 3.5457 3.1859
0.3 5.5179 4.2061 3.5121 3.1565

0.1 5.5179 4.2061 3.5109 3.1718
0.3 5.5179 4.2061 3.5457 3.1859
0.5 5.5179 4.2061 3.5735 3.2274

7. Final Remarks

Investigations were made on HT properties and the entropy formation of P-ENF using
a stretchable sheet. The single-phase method was employed to construct a computational
model. Various physical parameters extract the results with the variations in energy,
entropy, and velocity. The impacts of the thermal conductivity parameter υ∗, the thermal
radiative parameter Nπ , Prandtl–Eyring parameters τ∗ and ς∗, the velocity slip parameter
Λπ , Biot number Bπ , BΓ, and Rπ , as well as nanomolecular size φ and porous media
parameter Fπ were examined in the study. Some of the main developments from the study
were: The increment in the size of nanoparticles resulted in amplifying the heat transfer rate
in engine oil. According to the analysis, copper nanofluid is a better heat conductor than
aluminium oxide nanofluid. Increasing the porous media parameter Fπ , thermal radiative
flow Nπ , size parameter φ, and Brinkman number BΓ, the entropy was also enhanced.
However, entropy was diminished with a rise in velocity slip parameter Λπ . An increment
in the porous media parameter resulted in increasing the velocity. At the same time, it
decreased with the nanoparticles’ size augmentation.

The results obtained from the present study can help future researchers improve the
heat effect. Heating systems can be formed using various non-Newtonian nanofluids,
including Casson, Carreau, second-grade, Maxwell, micropolar, etc. The efficacy of time-
dependent porosity and viscosity along with magneto slip flow can be represented by
expanding the study.
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Abstract: This research work presents results obtained from the simulation of natural convection
inside a concentric hexagonal annulus by using the lattice Boltzmann method (LBM). The fluid flow
(pressure and velocity fields) inside the annulus is evaluated by LBM and a finite difference method
(FDM) is used to get the temperature filed. The isothermal and no-slip boundary conditions (BC)
on the hexagonal edges are treated with a smooth profile method (SPM). At first, for validating the
present simulation technique, a standard benchmarking problem of natural convection inside a cold
square cavity with a hot circular cylinder is simulated. Later, natural convection simulations inside
the hexagonal annulus are carried out for different values of the aspect ratio, AR (ratio of the inner
and outer hexagon sizes), and the Rayleigh number, Ra. The simulation results are presented in terms
of isotherms (temperature contours), streamlines, temperature, and velocity distributions inside the
annulus. The results show that the fluid flow intensity and the size and number of vortex pairs formed
inside the annulus strongly depend on AR and Ra values. Based on the concentric isotherms and weak
fluid flow intensity at the low Ra, it is observed that the heat transfer inside the annulus is dominated
by the conduction mode. However, multiple circulation zones and distorted isotherms are observed
at the high Ra due to the strong convective flow. To further access the accuracy and robustness
of the present scheme, the present simulation results are compared with the results given by the
commercial software, ANSYS-Fluent®. For all combinations of AR and Ra values, the simulation
results of streamlines and isotherms patterns, and temperature and velocity distributions inside the
annulus are in very good agreement with those of the Fluent software.

Keywords: lattice Boltzmann method; smoothed profile method; hybrid method; natural convection
simulation; concentric hexagonal annulus

1. Introduction

Natural convection heat transfer in an annular space between two concentric cylinders (also known
as concentric annuli) is one of the most studied problems in the field of heat transfer. This fundamental
problem has attracted many researchers because of its significance in many engineering applications
such as the design of heat exchanger devices, solar energy collectors, cooling of electric power cables,
nuclear and chemical reactors, food processing devices, aircraft cabin insulation, etc. [1,2]. For early
research works of theoretical and/or experimental investigations on natural convection in an annular
space between cold outer and hot inner cylinders, one can find the literature [1–8]. Studying the
behavior of natural convection flow in an annulus with irregular geometries (other than the square or
rectangular such as circular, elliptical, triangular, and hexagonal) by using the numerical simulations
is highly challenging due to complex irregular boundaries. The irregular boundary problems are
generally treated with unstructured (body-fitted) grid methods, also known as conforming-mesh
methods, which are very complicated and are computationally intensive. In the past two decades,
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many researchers have paid attention to develop non-conforming-mesh methods, which use a fixed
Cartesian grid to simulate the fluid flow in complex geometries. Some of those numerical methods are
immersed boundary method (IBM) [9], distributed Lagrange multiplier method or fictitious domain
method [10], and smoothed profile method (SPM) [11–13].

In the past three decades, the lattice Boltzmann method (LBM) has evolved as a powerful
computational technique for solving fluid flow and heat transfer problems. In LBM, one gets the
solution for the particle density distribution functions (PDF) (by solving Boltzmann kinetic equation
on a discrete lattice mesh) instead of directly solving the pressure and velocity fields. The macroscopic
variables (such as pressure, velocity, and temperature) are obtained by calculating the hydrodynamic
moments of PDF [14]. Because of its many advantages [15] compared to the classical Navier–Stokes
equations solvers, LBM has been successfully used to simulate various Multiphysics problems such as
multiphase flows [15–17], magnetohydrodynamic (MHD) flows [18,19], micro- and nano-flows [20–22]
and fluid-solid interactions [13,23–26]. LBM has also been successfully implemented to predict
the behavior of the fluid flow due to natural convection in complex geometries [27–37]. In the
above-mentioned research works on natural convection, the following techniques have been used to
handle the no-slip and constant temperature BC on complex irregular surfaces: the bounce back (BB)
scheme [27–32], IBM [33–35], and SPM [36,37].

BB rule was first proposed by the Ladd [38,39] to impose the no-slip BC at curved surfaces of
solid particles. In this scheme, the irregular surface of a solid body is imagined as a flat edge that lies
in-between two neighboring solid and fluid grid points. The no-slip BC can then be achieved with
the help of the standard mid-plane BB scheme which bounces back the missing distribution functions
coming from the solid nodes to the fluid nodes. Later, Bouzidi et al. [40] and Yu et al. [41] developed
an improved version of the Ladd scheme, known as the interpolated bounce back (IBB) scheme to
achieve the second-order accuracy for the fluid velocity and temperature. Sheikholeslami et al. [27,28]
investigated MHD flow and heat transfer in an annular space between a heated inner circular and a cold
outer square cylinder and they reported the fluid flow and heat transfer results at various Ra and AR
values. Lin et al. [29] performed simulation of natural convection flow in an annulus between a heated
inner circular cylinder, which is located eccentrically, and a cold square enclosure. Bararnia et al. [30]
simulated the natural convection between a heated inner elliptical cylinder and a square outer cylinder.
They reported the fluid flow and heat transfer characteristics for various combinations of the vertical
positions of the inner cylinder and Ra. Sheikholeslami et al. [31] studied the effect of a magnetic field
on the fluid flow and heat transfer characteristics of a nanofluid inside a circular cylinder with an
inner triangular cylinder. Moutaouakil et al. [32] conducted lattice Boltzmann simulations of natural
convection in an annulus between an inner hexagonal cylinder and an outer square cavity. In all the
above-mentioned articles [27–32], IBB scheme was used to treat the complex boundaries of circular,
triangular, elliptical, and hexagonal geometries. Even though IBB scheme can effectively be used for
treating the complex curved boundary problems, the main drawback is that there may be fluctuations
in the velocity and temperature fields at fluid-solid interfaces especially when the solid boundary is
moving with a certain velocity.

In IBM, the complex irregular boundaries of solid bodies are represented with a set of Lagrangian
nodes while the evaluation of the fluid flow is considered on a fixed Eulerian grid. To enforce the
no-slip and constant temperature BC on the solid nodes, artificial body force and heat source terms
are added to fluid momentum and energy equations, respectively. On can refer to the review article
by Mittal and Iaccarino [42] for a clear discussion on different approaches for calculating the body
force terms. Hu et al. [33] simulated natural convection in a concentric annulus of circular cylinders
using LBM and they used IBM to treat the no-slip and isothermal BC on the curved boundaries.
Hu et al. [34] developed an immersed boundary lattice Boltzmann method (IBLBM) for simulating
fluid flow due to natural convection in a cold square cavity with a heated inner circular cylinder
covered by a porous layer. They investigated the effects of thermal conductivity ratio, Ra, and Darcy
number on the behavior of fluid flow and heat transfer. Khazaeli et al. [35] used IBLBM to simulate
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the natural convection due to a hot circular cylinder inside a square and circular enclosures (cold) for
different Ra values. IBM could resolve the problem of fluctuations in the velocity field of IBB scheme.
However, the main disadvantage of IBM is that it requires complex interpolation functions, and needs a
lot of data exchange between the fluid (Eulerian) and solid (Lagrangian) nodes. Therefore, the parallel
computational performance of the scheme based on the LBM and IBM becomes lower as the global
data communication between the neighboring grid points increases [13].

In SPM, a smoothed profile function is used to recognize the complex surfaces of a solid
body, and the same grid system is used for fluid and solid. The no-slip and isothermal BC at the
complex surfaces are implemented by adding a hydrodynamic force and heat source terms to the
fluid momentum and energy equations, respectively. The main advantage of SPM over the other
non-conforming-mesh methods is that all operations are completely local to a grid point as both fluid
and solid are represented with the same grid system; so, the implementation of this scheme to parallel
computing applications is easier [13]. Also, SPM does not need any complex interpolation function
as needed by IBM. Although SPM is computationally more efficient and easier to apply than IBB
and IBM schemes, till now, only a few researchers have used the method based on LBM and SPM to
study the fluid flow and heat transfer behavior in complex boundaries. Hu et al. [36] used the LBM
combined with SPM for simulating natural convection in complex irregular geometries. They reported
the simulation results for the velocity and temperature inside a square enclosure with a hot circular
cylinder for different values of Ra and AR. All the above-mentioned research works [27–36] considered
the double populations model (DPM) (where two sets of PDF are used: one set for solving the velocity
field and another one for the temperature field). Recently, Alapati et al. [37] developed a numerical
technique based on the combination of LBM and SPM to simulate particulate flows with heat transfer.
They used a hybrid method (HM), which solves the fluid flow by LBM with a set of PDF and the
temperature field by FDM and concluded that LBM-SPM method based on HM is computationally
more efficient than the method based on DPM.

Fluid flow and heat transfer thorough or over hexagonal-shaped geometries is a ubiquitous
problem in many engineering applications such as solar energy collectors [43,44], nuclear power
plants [45], microfluidic heat sinks [46], lamella type compact heat exchangers [47], air-conditioning
applications [48], etc. In solar energy collectors, to minimize the radiation and convection losses to the
surrounding atmosphere, an array of transparent tubes, arranged in a hexagonal honeycomb pattern,
is used in-between the absorbing surface and cover plate. Marshall et al. [43] and Buchberg et al. [44]
found that the thermal efficiencies of honeycomb solar collectors were higher compared to the collectors
without the honeycomb layer. The fuel rods of a nuclear reactor core are stacked in the form of a
hexagonal lattice and are located inside a circular or hexagonal channel to pass a coolant longitudinally
over them [45]. In a ministered heat sink used for electronic systems cooling, an array of pin-fins of
various cross-sectional shapes are attached to a microchannel wall. Aliabadia et al. [44] found that
hydrothermal (hydraulic and thermal) performance was best for the pin-fins with the circular and
hexagonal cross-sections. Hexagonal duct shape is a commonly used shape in lamella type compact
heat exchangers, which is used in many industries such as pulp and paper, alcohol, petrochemical,
and other chemical industries [47]. A desiccant disk used in air-conditioning applications consists of
an array of several ducts packed in the form of honeycomb pattern. Zhang [48] found that the heat
and mass transfer efficiencies of ducts with hexagonal cross-section were higher compared to circular
and rectangular ducts as the hexagonal duct walls are more uniformly placed in the desiccant wheel.

Even though it has great significance and applications only a few researchers have investigated
the behavior of natural convection flow in an annulus with a heated hexagonal cylinder. Boyd [3]
experimentally investigated natural convection in an annulus with a heated hexagonal inner cylinder
and cold outer circular cylinder. Raithby et al. [6] simulated the natural convection in an annulus
bounded by a circular cylinder outside and horizontal hexagonal cylinder inside by using an orthogonal
curvilinear coordinates system (a body-fitted grid system). Galkape and Asfaw [7] employed a
non-orthogonal coordinate system to study the same problem of Raithby et al. [6]. More recently,
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Moutaouakil et al. [32] studied the natural convection due to a hot hexagonal cylinder inside a square
enclosure (cold) with LBM. They presented the fluid flow and heat transfer characteristics for different
combinations of AR and Ra by considering two orientations for the hexagonal cylinder. As mentioned
earlier, they used DPM with IBB scheme to treat BC on hexagonal surfaces.

The literature review showed that the problem of natural convection in an annulus space between
two hexagonal cylinders (concentric with each other) has not been studied. The main objective of this
work is to solve the problem of two-dimensional natural convection flow caused by a hot hexagonal
cylinder placed concentrically inside a cold hexagonal cylinder. The numerical technique that combines
LBM, SPM, and FDM methods is employed because it offers many advantages over the other methods.
In the present work, an equation for smoothed profile function that identifies the hexagonal boundaries
is proposed. Assessing the accuracy and robustness of the present simulation technique by comparing
results given by the present method with ANSYS-Fluent® results is also another purpose of this work.
The remainder of this paper is arranged as follows. A brief description of the simulation technique is
given in Section 2. A discussion on numerical results is presented in Section 3. At first, the validation
results, by applying the present simulation scheme to a standard benchmarking test, are provided.
Later, the simulation results of streamlines, isotherms, and temperature and velocity distributions
inside the concentric hexagonal annulus are presented. The concluding remarks of the present study
are provided in Section 4.

2. Numerical Method

Figure 1 shows the simulation set-up, which consists of an annulus region formed by two concentric
horizontal hexagonal cylinders of different sizes, considered in the present work. Simulations are
performed inside a square enclosure and 251×251 lattice grid points are used to divide the computational
domain. The center positions of the two hexagonal cylinders are fixed at the center of the enclosure.
Lout in the figure represents the distance between two opposite sides of the outer hexagonal cylinder
(the size of the outer cylinder). Throughout the simulations, Lout is kept constant at Lout = 212 and
the size for the inner hexagonal cylinder, Lin in Figure 1, is varied based on the aspect ratio, which is
defined as: AR = Lin/Lout. g in the figure denotes the gravitational acceleration constant.
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Figure 1. Simulation set-up for investigating the natural convection in an annulus region between two
concentric hexagonal cylinders. The origin of the lattice grid is mentioned by ‘O’ in the figure.

The initial values for the fluid velocity and temperature inside the domain are set to zero.
The no-slip and constant temperature BC (To = Tc ≡ 0) are applied at the enclosure walls for the flow
field and temperature field, respectively, and the standard mid-plane BB scheme is used to treat the
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no-slip boundary condition. The temperature value for all edges/sides of the outer hexagonal cylinder
is kept constant at, Tout ≡ Tc = 0 (cold surface), and that for the inner one is fixed at Tin ≡ Th = 1
(hot surface). The constant temperature and no-slip BC on all sides of the inner and outer cylinder are
treated with SPM. In below, the formulations for LBM for solving the fluid flow field, FDM for solving
the temperature field, and SPM for treating BC on hexagonal edges are provided.

2.1. Solving Fluid Flow Using LBM

In this work, as mentioned earlier, LBM is used to obtain the flow field due to natural convection.
In LBM, the macroscopic variables such as fluid pressure and the velocity, are computed from the
fluid-PDF, fn(x, t), which are evaluated by solving the Boltzmann kinetic equation on a discrete
lattice mesh. Here, fn(x, t) is the probability of finding a fluid particle at a lattice position, x, and at
a time, t, moving with a discrete velocity, cn (the subscript n indicates the PDF number), which is
selected in such a way that after time step Δt, the particle arrives at the nth neighboring grid point [21].
The single-relaxation-time lattice Boltzmann equation (LBE) with external body force term is given
by [37]

fn(x + cnΔt, t + Δt) = fn(x, t) − 1
λ

(
fn(x, t) − f eq

n (x, t)
)
+

wnΔt
c2

s

((
fth(x, t) + ffl(x, t)

)
· cn

)
(1)

where λ is the relaxation time, f eq
n (x, t) is the equilibrium distribution functions, wn is the weighing

function, and cs is the sound speed. fth(x, t) and ffl(x, t) in Equation (1) represent the buoyancy
force and the hydrodynamic force (due to the no-slip BC on the hexagonal surfaces) source terms,
respectively. Through the Chapman–Enskog analysis, the above equation recovers the Navier–Stokes
equations in the low Mach number limit, |u|/cs � 1 [14]. The relation between the fluid kinematic
viscosity, ν, and relaxation time, λ, is given by

ν = c2
s Δt

(
λ− 1

2

)
. (2)

To model the buoyancy force, fth(x, t), the Boussinesq approximation is used as follows

fth = ρ0β(T − T0)g
^
j, (3)

where ρ0 is the initial value for fluid density, T0 is the initial fluid temperature, β is the fluid thermal

expansion coefficient at T0, T is the fluid temperature field, and
^
j is the unit vector in the vertical

direction (y − direction). The hydrodynamic force term, ffl(x, t) of Equation (1) is obtained with SPM.
After solving for fn(x, t), the fluid density and the velocity fields, ρ(x, t) and u(x, t), are obtained from

ρ(x, t) =
b∑

n=0

fn, u(x, t) =
1
ρ

b∑
n=0

fncn. (4)

2.2. Solving Temperature Distribution with FDM

The temperature distribution inside the computational domain is obtained by discretizing the
energy equation with FDM by using the standard central difference scheme in space and the forward
difference scheme in time [37]. After discretization, the equation for finding the temperature value at a
grid point in new time level is (q in the below expression represents the heat source term due to the
constant temperature BC on the hexagonal edges)

Tnew
i, j = Told

i, j + (RHSold + qold
i, j )Δt, (5)
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with
RHSold = −4αTold

i, j +
(
α− 1

2 uold
i+1, j

)
Told

i+1, j +
(
α+ 1

2 uold
i−1, j

)
Told

i−1, j

+
(
α− 1

2 vold
i, j+1

)
Told

i, j+1 +
(
α+ 1

2 vold
i, j−1

)
Told

i, j−1

(6)

In the above equation, α is the thermal diffusivity, and the subscripts i & j represent lattice grid
indices in x−& y− directions, respectively.

2.3. Evaluation of ffl(x, t) and q(x, t) with SPM

In SPM, a smoothed profile function (also termed as concentration function or indicator function),
φk(x, t), is used to identify the solid regions [13] (here, k is the index value for the hexagonal cylinders;
k = 1 for the inner hexagon and k = 2 outer one). The equation for φk(x, t) is defined in such a way
that φk = 0 in the fluid region, φk = 1 in the solid region, and φk smoothly varies from 0 to 1 at the
fluid-solid interface. Here, the following equation is used to evaluate φk(x, t) of each hexagon

φk(x, t) = f (dk(x, t)), (7a)

f (dk(x, t)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 r < −ξk/2
1
2

(
sin

(
π

dk(x,t)
ξk

)
+ 1

)
|r| < ξk/2

1 r > ξk/2

, (7b)

where dk(x, t) and ξk are the signed normal distance function to the solid surface (here, edges of two
hexagons) and the interface thickness of each hexagon, respectively. Unless otherwise mentioned,
throughout this work, the values for the interface thickness for the two hexagons are chosen as,
ξ1 = ξ2 ≡ 0.5. The following equation is used for finding dk(x, t) of each hexagon

dk(x, t) = max
{

Lx,k

2
, max

[(∣∣∣x−Xc,k
∣∣∣ sin(30◦) +

∣∣∣y−Yc,k
∣∣∣ cos(30◦)

)
,
(∣∣∣y−Yc,k

∣∣∣− Ly,k

2

)]}
(8)

Lx,k and Ly,k in the above equation are the distance between two corners and two opposite sides of each
hexagon, respectively (Ly,1 = Lin and Ly,2 = Lout are the sizes of the two hexagons), and Xc,k and Yc,k
are the center positions of hexagons, in x− and y− directions, respectively. The smoothly distributed
concentration field of two hexagons, φ(x, t), is obtained by adding the φk(x, t) values of two hexagons

φ(x, t) =
2∑

k=1

φk(x, t). (9)

The body force term for enforcing no-slip BC on hexagonal edges, ffl(x, t) in Equation (1),
is evaluated by using

ffl(x, t) =
[
up(x, t) − u(x, t)

]
φ(x, t)/Δt, (10)

up(x, t) in the above equation is the velocity field for the solid regions, which is zero as the two
hexagonal cylinders are stationary. Similarly, the heat source term for treating the constant temperature
BC, q(x, t) of Equation (5), can be obtained by

q(x, t) =
[
Tp(x, t) − T(x, t)

]
φ(x, t)/Δt, (11)

where Tp(x, t) is the hexagonal cylinders temperature field, which is evaluated by using

φ(x, t)Tp(x, t) =
2∑

k=1

φk(x, t)Tk(t), (12)
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where Tk(t) is the temperature of each hexagon; T1(t) = Tin ≡ 1 for hot inner cylinder and
T2(t) = Tout ≡ 0 the cold outer cylinder.

3. Simulation Results

3.1. Validation

The standard benchmarking problem of natural convection due to the hot circular cylinder inside
a square enclosure [36,49] is chosen to validate the numerical code developed based on the present
simulation technique (see Figure 2 for simulation set-up). The following equation is considered to fix
the kinematic viscosity, ν [37]

ν =

√
Pr
Ra

UcLc, (13)

where Pr, Uc, and Lc are the Prandtl number, the characteristic velocity, and the characteristic length,
respectively, and the definitions for Ra, Pr, and Uc are given by

Ra =
gβΔTL3

c

να
, Pr =

ν
α

, and Uc =
√

gβΔTLc, (14)

ΔT in the above equation is the temperature difference between the inner circular cylinder (hot,
Tin = Th ≡ 1) and outer square cavity (cold, Tout = Th ≡ 1). The computational domain is divided
into 201× 201 lattice grid points. The simulations are performed for, Pr = 0.71 (i.e., heat transferring
medium is air), Uc = 0.1, and Lc = Lout (size of the outer square cavity). Three different combinations
for Rayleigh number, Ra = 104, 105, and 106, and the aspect ratio, AR = Lin/Lout ≡ 0.2, 0.4, and 0.6 are
considered. Figure 3 shows the isotherms (left side) and streamlines (right side) inside the enclosure
when Ra = 106 and AR = 0.2. Two symmetrical vortices appear in the upper region of the enclosure,
as the natural convection flow intensity is predominant in the upper region of the cavity due to Ra
value is very high. The details of the surface-averaged Nusselt number, Nu, on the inner cylinder at all
combinations of Ra and AR considered in the present work are provided in Table 1. The corresponding
results obtained by the previous works [36,49] are also given in Table 1. Nu increases with Ra for all
values of AR. The streamlines and the isotherms patterns, and Nu values of all Ra and AR combinations
are in excellent agreement with the previous results [33,35]. After this validation, simulation of fluid
flow and heat transfer due to natural convection inside the hexagonal annulus is performed and the
corresponding results are discussed in the following section.
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Figure 2. Set-up, consists of an annular space between an outer square enclosure (cold) and an inner
circular cylinder (hot), considered for validating the present numerical method.
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Figure 3. Isotherms (left side) and streamlines (right side) patterns inside the square enclosure when
Rayleigh number is, Ra = 106, and aspect ratio, AR = 0.2.

Table 1. The details of the surface average Nusselt number, Nu, on the inner cylinder at different
combinations of Ra and AR.

Ra AR Present Previous [36] Previous [49]

104
0.2 2.042 2.035 2.071
0.4 3.202 3.173 3.331
0.6 5.349 5.266 5.826

105
0.2 3.714 3.751 3.825
0.4 4.843 4.893 5.080
0.6 6.182 6.175 6.212

106
0.2 5.959 6.115 6.107
0.4 8.718 8.897 9.374
0.6 11.662 11.940 11.620

3.2. Natural Convection in the Concentric Hexagonal Annulus

In this session, the results obtained by the simulation of the fluid flow and heat transfer in the
annulus bounded by two horizontal concentric hexagonal cylinders are presented (set-up is shown in
Figure 1). Simulations are performed for different values of AR and Ra, by varying AR in the range,
AR = 0.2~0.6, and Ra in the range, Ra = 103 ∼ 106. The characteristic length in Equation (14) is set as,
Lc = Lout (the size of the outer hexagon).

All the results obtained by the present simulation technique are compared with those given by
commercial software, ANSYS-Fluent®. Fluent 18.2 is used to simulate a steady laminar flow and
heat transfer inside a two-dimensional annular space bounded by two concentric hexagonal cylinders.
The size of the outer cylinder is fixed at Lout = 212 m and that of the inner cylinder is varied as per the
AR. The values for the temperatures at the walls of the inner and outer cylinder are set at Tin = 289 K
and Tout = 288 K, respectively. Constant temperature and no-slip BC are used for heat transfer and
fluid flow, respectively. The initial value for density is taken as ρ0 = 1.225 kg/m3 (air density value at
temperature 288 K) and the Boussinesq model is used to model the variation of the density as a function
of temperature. Dry air properties at temperature 288 K are used to set the values for specific heat,
viscosity, thermal conductivity, and thermal expansion coefficient. The value for the y− directional
gravitational acceleration constant is varied corresponds to Ra. SIMPLE (Semi-Implicit Method for
Pressure Linked Equation) scheme has opted for the pressure-velocity coupling. The governing
equations are discretized using the least square cell-based method and a second-order upwind scheme
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is chosen to solve momentum and energy equations. The Gauss–Seidal iterative method with default
under-relaxation factors is selected to solve the system of algebraic equations. The convergence
criterion for the residuals of all continuity, momentum, and energy equations is set as 10−9.

3.2.1. Streamlines and Isotherms Patterns Inside the Annulus

It is observed from the simulation results that irrespective of AR and Ra values, the fluid
flow patterns (streamlines) and temperature contours (isotherms) are symmetrical about the vertical
centerline of the annulus. Figure 4 shows the isotherms (left side) and streamlines (right side) pattern
inside the annulus for the two values of AR = 0.2 (Figure 4a) and AR = 0.6 (Figure 4b), when Ra = 103.
As Ra is very low, the strength of the buoyancy force (strength of the gravitational acceleration in this
case) that causes the convective flow is very low. Therefore, the heat transfer process inside the annulus
is mainly dominated by the conduction mode and the isotherms are very smooth (no distortion of
isotherms takes place due to very weak fluid flow) and are almost concentric to the inner and outer
hexagonal cylinders. Both isothermal and streamlines are symmetrical concerning the vertical as
well as horizontal centerlines of the annulus. When AR = 0.2, the isotherms are almost circular and
the spacing between them increases with the distance from the inner hexagon as the available space
between inner and outer hexagons is more than that when AR = 0.6. On the other hand, when AR = 0.6,
the isotherms in the vicinity of both inner and outer cylinders are in the form of the hexagon and
the spacing between them is less as they get squeezed due to constricted space between inner and
outer hexagons. The streamlines pattern for both AR = 0.2 and AR = 0.6 show that two symmetrical
recirculating eddies (kidney-shaped cells) are formed inside the annulus and the location of cell centers
is almost close to the horizontal centerline of the annulus as the fluid flow intensity in the upward
direction is almost negligible because of very low Ra. When we observe Figure 4b carefully, we can see
that there is slight penetration of the streamline into the solid edges, which is a slight drawback of
the present scheme. The main reason for this phenomenon is that as SPM is a non-conforming-mesh
method, the same grid system is used for the solid and fluid regions and simulations are also performed
inside the solid regions (even though it is enough to consider the boundary effects on the hexagonal
edges). However, performing the simulations inside the solid does not affect the flow field in the fluid
domain and the overall behavior of the fluid flow and heat transfer is well captured.

Figure 5 shows the isotherms (left side) and streamlines (right side) pattern inside the annulus
for the values of AR = 0.2 (Figure 5a) and AR = 0.6 (Figure 5b), and when Ra = 106. As the Ra is
very high, the effect of buoyancy-driven flow is significant and hence the heat transfer in the upper
region of the annulus is mainly dominated by the convection mode. Isotherms and streamlines are no
longer symmetrical about the horizontal median of the annulus. For AR = 0.2, it is concluded from
the isotherms and streamlines pattern that the fluid near the inner hexagonal cylinder surface gets
heated and moves upwards along the upper inclined edges of the hexagon due to the buoyancy effect.
Because of strong convection currents, a thermal plume is formed on the top of the inner cylinder and
thermal boundary layer thickness at the top flat edge of the outer cylinder is very thin (indicated by
close clustering of isothermal lines) as continuous impingement of fluid flow in the upper region of the
annulus. The thermal boundary layer thickness at the bottom of the inner hexagonal cylinder is also
found to be very low and the fluid temperature below the inner cylinder is almost uniform and is equal
to that of the outer cylinder as heat transfer in this region is dominated by conduction. The centers of
the symmetrical recirculating eddies are located well above the horizontal median as the fluid flow is
dominant in the upper half of the annulus. The streamline pattern for AR = 0.2 also reveals that two
symmetric secondary vortices are formed at the bottom wall of the outer cylinder due to the separation
of the momentum boundary layer as a result of strong upward convective flow.
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(b)  AR=0.6 

(a)  AR=0.2 

Figure 4. Isotherms (left side) and streamlines (right side) patterns inside the hexagonal annulus when
the Rayleigh number is, Ra = 103, and for AR = 0.2 (a), and AR = 0.6 (b).

(a)  AR=0.2 

(b)  AR=0.6 

Figure 5. Isotherms (left side) and streamlines (right side) patterns inside the hexagonal annulus when
the Rayleigh number is, Ra = 106, and for AR = 0.2 (a), and AR = 0.6 (b).
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A completely different phenomenon is observed when AR = 0.6. Since there is limited available
space for convection on the top of the inner cylinder, two separate thermal plumes (due to the
buoyancy-driven fluid flow along the upper inclined edges of the hexagon) are formed along each
upper corner of the hexagon. A third thermal plume is also seen on the top flat edge of the inner
cylinder in the reverse direction as the uppermost corner of the inner hexagonal cylinder separates
the fluid flow and generates two secondary vortices. The fluid flow separation phenomenon can be
confirmed by noticing the two counter-rotating cells over the top flat edge of the inner cylinder from
the streamline pattern of AR = 0.6. This type of flow separation phenomena at a high AR value was also
observed by Raithby et al. [6], Bararnia et al. [30], Moutaouakil et al. [32], and Hu et al. [36], and even
though their simulation domains were completely different from the present study.

To assess the capability of the present simulation method for predicting the behavior of natural
convection flow in the concentric hexagonal annulus, the results obtained from the present method
are compared with ANSYS-Fluent® results. Figure 6 shows the simulation results of isotherms and
streamlines patterns obtained from Fluent for the values of AR= 0.2 (Figure 6a) and AR= 0.6 (Figure 6b),
and the case when Ra = 106. By comparing the isotherms and streamlines patterns of Figures 5 and 6,
we can say that the present simulation results are successfully reproduced the Fluent results.

(b)  AR=0.6 

(a)  AR=0.2 

Figure 6. Isotherms (left side) and streamlines (right side) patterns obtained from ANSYS-Fluent®

software for the values of AR = 0.2 (a) and AR = 0.6 (b) when Ra = 106.
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3.2.2. Temperature and Velocity Profiles

Figure 7 shows the temperature distribution along the gap between the inner and outer hexagonal
cylinders at three different angular directions, θ = 0◦ (along the line passing through the vertical
median), θ = 30◦ (along the line passing through the right uppermost corners of the two hexagons),
and at θ = 90◦ (along the line passing through the horizontal median) when AR = 0.2. Ri and Ro in the
figure denote the radius of circles that pass through the edges of inner and outer hexagonal cylinders,
respectively. The temperature distribution profiles are plotted for two Rayleigh numbers: Ra = 103

and Ra = 106. The symbols in the figure indicate the corresponding results obtained from the Fluent,
which are in good agreement with the present simulation results. When Ra = 103, the temperature
profiles, along all three θ directions, show a quasi-linear pattern (in other words, the temperature
gradients along the gap are almost constant) with the gap as the conduction is the primary mode of
the heat transfer process in the annulus. The temperature profiles along θ = 30◦ and θ = 90◦ are
almost the same as the isothermal lines are almost concentric and Ri values at θ = 30◦ and θ = 90◦
are the same. When Ra = 106, as the strong convective fluid flow disturbs the uniform temperature
distribution over the inner hexagon, high-temperature gradients are observed near the inner and
outer hexagonal cylinder edges. As mentioned earlier, a thermal plume is formed in the direction
of θ = 0◦ for AR = 0.2, the temperature gradients closer to the outer cylinder wall are very steep
for the temperature profile along θ = 0◦ as the thermal boundary layer thickness is very thin due
to continuous impingement thermal plume against the top flat edge of the outer hexagonal cylinder.
The slope of the temperature profile near the outer cylinder wall is steeper for θ = 30◦ compared to
that for θ = 90◦ as the convective fluid flow intensity is weaker at θ = 90◦.

 

Figure 7. Temperature distribution along the gap between the inner and outer hexagonal cylinders
at different angular directions, θ = 0◦, θ = 30◦, and at θ = 90◦ for AR = 0.2. The symbols represent
corresponding data from Fluent software.

The curves for the temperature distributions along the gap when AR = 0.6 are provided in Figure 8
for Rayleigh numbers, Ra = 103 and Ra = 106. The temperature data obtained from Fluent software is
also provided (the symbols in the figure) for comparison purposes. The agreement between the two
results is excellent, implying the capability of the present simulation technique in the simulation of
fluid flow and heat transfer in the hexagonal annuals. In this case, also the slope of the temperature
profiles in each θ direction is almost constant when Ra = 103. For Ra = 106 case, the temperature
profile in the direction of θ = 30◦ is in a similar trend with that of θ = 0◦ of Figure 7 data (for the case
of AR = 0.2) as the formation of thermal plume for AR = 0.6 is along the direction of θ = 30◦. The slope
of the temperature profile near the inner cylinder wall is very steep for θ = 0◦ as thermal boundary
layer thickness over the flat top edge of the inner cylinder is very small due to the formation of the
thermal plume in the reverse direction.
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Figure 8. Temperature distribution along the gap between the inner and outer hexagonal cylinders at
angular directions, θ = 0◦, θ = 30◦, and at θ = 90◦ for AR = 0.6. The symbols represent corresponding
data from Fluent software.

The heat transfer between the outer and inner cylinders is enhanced by convection mode through
fluid circulation. The rotational velocity (tangential velocity), uθ, can be used as a good indication
for the intensity of the convective fluid flow. Figure 9 shows the variations of tangential velocity, uθ,
along the gap between the inner and outer hexagonal cylinders for Rayleigh numbers, Ra = 103 and
Ra = 106, and for aspect ratio, AR = 0.2. The profiles are plotted for θ = 30◦ and θ = 90◦. The reference
velocity, α/(Ro −Ri), has chosen to normalize uθ. It is noted that the magnitudes of uθ when Ra = 103

are very small (almost zero) compared to those when Ra = 106 because of a weak fluid flow intensity
at low Ra. For the velocity profile at θ = 90◦, the location of the flow reversal point is exactly at the
center of the gap (at the halfway between the corners of two hexagons). However, the flow inversion
point for the profile at θ = 30◦ is located a bit away from the gap center towards the outer cylinder.
The velocity gradients for the profile at θ = 90◦ are steeper near the inner cylinder than those at the
outer cylinder as the convective currents in the region adjacent to the inner cylinder (where fluid gets
heated) are stronger than those near the outer cylinder.

 

Figure 9. Variation of tangential velocity, uθ, along the gap between the inner and outer hexagonal
cylinders at angular directions, θ = 30◦, and θ = 90◦ for AR = 0.2. The symbols represent the
corresponding data from Fluent software.
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The profiles for the tangential velocity distributions when AR = 0.6 are provided in Figure 10
for Rayleigh numbers, Ra = 103 and Ra = 106. In this case, as well the magnitudes of uθ when
Ra = 103 are very small compared to those when Ra = 106. When AR = 0.6, as the thermal plume is
formed along the θ = 30◦ direction, the tangential velocity in that direction is very low (fluid flow
radially outwards along θ = 30◦). Therefore, the magnitude of uθ along θ = 30◦ very low compared
to that along θ = 90◦. The locations for the flow reversal points of the two velocity profiles along
θ = 30◦ and θ = 90◦ are the same and are located away from the gap center and are towards the inner
cylinder. The magnitudes of uθ obtained for AR = 0.6 case are lower compared to those obtained for
AR = 0.2 (Ra = 106 data of Figure 9) as available space for convection flow is constricted at AR = 0.6.
The tangential velocity profiles data obtained from the present simulation technique, for cases of
AR = 0.2 and AR = 0.6, and Ra = 103 and Ra = 106, are compared with those of Fluent software
(the symbols in Figures 9 and 10). The present simulation results show good agreement with the
Fluent data.

 

Figure 10. Variation of tangential velocity, uθ, along the gap between the inner and outer hexagonal
cylinders at angles, θ = 30◦, and θ = 90◦ for AR = 0.6. The symbols represent the corresponding data
from Fluent software.

4. Conclusions

In this work, a FORTRAN code based on a hybrid method (which uses a combination of LBM,
SPM, and FDM) has been developed to simulate the natural convection inside an annulus between
two concentric hexagonal cylinders. After validating the numerical code by applying it to a standard
benchmarking problem, natural convection simulations inside the hexagonal annulus have been
performed by considering different combinations of Rayleigh number, Ra, and aspect ratio, AR.
When AR = 0.6, two separate thermal plumes are formed due to the separation of convective flow at the
upper corner of inner hexagon, which is in accordance with the previous studies. To verify the accuracy
and robustness of the present method for simulating natural convection flow inside the hexagonal
annulus, all the simulation results obtained from the present technique have been compared with the
Fluent results. The simulation results of isotherms and streamlines patterns, temperature, and velocity
distributions inside the annulus show good agreement with those obtained from Fluent software.
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Abstract: This article deals with the unsteady flow in rotating circular plates located at a finite
distance filled with Reiner-Rivlin nanofluid. The Reiner-Rivlin nanofluid is electrically conducting
and incompressible. Furthermore, the nanofluid also accommodates motile gyrotactic microorgan-
isms under the effect of activation energy and thermal radiation. The mathematical formulation
is performed by employing the transformation variables. The finalized formulated equations are
solved using a semi-numerical technique entitled Differential Transformation Method (DTM). Padé
approximation is also used with DTM to present the solution of nonlinear coupled ordinary dif-
ferential equations. Padé approximation helps to improve the accuracy and convergence of the
obtained results. The impact of several physical parameters is discussed and gives analysis on
velocity (axial and tangential), magnetic, temperature, concentration field, and motile gyrotactic
microorganism functions. The impact of torque on the lower and upper plates are deliberated and
presented through the tabular method. Furthermore, numerical values of Nusselt number, motile
density number, and Sherwood number are given through tabular forms. It is worth mentioning here
that the DTM-Padé is found to be a stable and accurate method. From a practical point of view, these
flows can model cases arising in geophysics, oceanography, and in many industrial applications like
turbomachinery.

Keywords: Reiner-Rivlin nanofluid; circular plates; induced magnetic effects; activation energy;
bioconvection nanofluid

1. Introduction

Nanofluids were first explained by Choi [1] in 1995. Nanofluids are a composition of
nanoparticles and a base fluid including oil, water, ethylene-glycol, kerosene, polymeric
solutions, bio-fluids, lubricants, oil, etc. The material of the nanoparticles [2] involves chem-
ically stable metals, carbon in multiple forms, oxide ceramics, metal oxides, metal carbides,
etc. The magnitude of the nanoparticles is substantially smaller (approx. less than 100 nm).
Nanofluids have multitudinous applications in engineering and industry [3,4], such as
smart fluids, nuclear reactors, industrial cooling, geothermal power extract, and distant
energy resources, nanofluid coolant, nanofluid detergents, cooling of microchips, brake
and distant vehicular nanofluids, and nano-drug delivery. In the light of these applications,
numerical researchers discussed the nanofluids in different geometrical configurations. For
instance, Gourarzi et al. [5] scrutinized the impact of thermophoretic force and Brownian
motion on hybrid nanofluid. They concluded with the excellent point that nanoparticle
formation on cold walls is more essential due to thermophoresis migration. Ghalandari
et al. [6] used CFD to model silver/water nanofluid flow towards a root canal. The effects
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of injection height, nanofluid concentration, and the rate of volumetric flow were explored
and addressed. Sheikholeslami and Vajravelu [7] studied the control volume-based finite
element approach to determine magnetite nanofluid flow into the same heat flux in the
whole cavity. The impact of Rayleigh number, Hartmann number, and volume friction
of nanofluid flow magnetite (an iron oxide) and heat transfer features were discussed.
Sheikholeslami and Ganji [8] addressed hydrothermal nanofluid in the existence of mag-
netohydrodynamics by using DTM. They discussed the impact of squeezing number and
nanofluid volume fraction on heat transfer and fluid flow. Biswal et al. [9] deliberated fluid
flow in a semi-permeable channel with the influence of a transverse magnetic field. Zhang
et al. [10] considered the outcome of thermal diffusivity and conductivity of numerous
nanofluids utilizing the transient short-hot-wire technique. Fakour et al. [11] inquired the
laminar nanofluid flow in the channel using the least square approach with porous walls.
This study shows that by enhancing Hartman and Reynolds number, the velocity of the
nanofluid flow in the channel declines and an extreme amount of temperature is enhanced.
More, enhancing the Prandtl number along with the Eckert number also increases the
temperature distribution. Zhu et al. [12] inquired the second-order slip and migration of
nanoparticles from a magnetically influenced annulus. They applied a well-known HAM
technique for solving the equations, and a h-curve was drawn to validate the exactness of
the obtained solution. Ellahi et al. [13] revealed the impact of Poiseuille nanofluid flow with
Stefan blowing and second-order slip. The accuracy of the analytical solution is obtained
by the HAM and verified by h-curve and residual error norm for each case. They claim
that the ratio of buoyancy forces in the existence of a magnetic field played a vital role in
velocity distribution.

Magnetohydrodynamic (MHD) has grabbed different researchers’ attention because
of its multitudinous applications in the agricultural, physics, medicine, engineering, and
petroleum industries, etc. For instance, applications of MHD involve bearing sand bound-
ary layer control, MHD generators, rotating machines, viscometry, electronic storing com-
ponents, turbomachines, lubrications, oceanographically processes, reactor chemical vapor
deposition, and pumps. The magnetic field plays an essential role in controlling the bound-
ary layer of momentum and heat transfer. The presence of magnetics is beneficial to control
fluid movement. It is worthwhile to mention that the magnetic essential modified the
outcomes of heat transfer in the flow by maneuvering the suspended nanoparticles and
reorganized the fluid concentration. Khan et al. [14] studied the magnetohydrodynamic
nanofluid flow between the pair of rotating plates. Zangooee et al. [15] analyzed the
hydrothermal magnetized nanofluid flow between a pair of radiative rotating disks. From
their studies, it is perceived that concentration decreases while increasing in Reynolds
number, but on the other hand, the temperature is increasing for Reynolds number. By
enhancing the value of the stretching parameter, the Reynolds number increases at the
upper disc and decreases at the lower plates. Hatami et al. [16] analytically inquired
the magnetized nanofluid flow in the porous medium. These results showed that the
magnetic field opposes fluid flow in all directions. In addition, they claimed that the
action of thermophoresis increases temperature and reduces the flow of heat from the disc.
Nanoparticles shape effect on magnetized nanofluid flow over a rotating disc embedded in
porous medium investigated by Rashid and Liang [17]. Abbas et al. [18] studied a fully
developed flow of nanofluid with activation energy and MHD. The study’s main findings
demonstrate that flow field and entropy rate are highly affected by a magnetic field. The
results indicate that both the flow and entropy rates of the magnetic field are significantly
affected. Rashidi et al. [19] inquired steady MHD nanofluid flow with entropy generation
and due to permeable rotating plates. Alsaedi et al. [20] inquired the flow of copper-water
nanofluid with MHD and partial slip due to a rotating disc. They contemplated water as
a base fluid and copper nanoparticles. They concluded with the remark that for greater
values of a nanoparticle volume fraction, the magnitude of skin friction coefficient had
been increased both for radial and azimuthal profiles. Asma et al. [21] numerically dis-
cussed the MHD nanofluid flow over a rotating disk under the impact of activation energy.
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They observed that the concentration and temperature both show a growing tendency by
increasing Hartman numbers. Aziz et al. [22] inquired the three-dimensional motion of
viscous nanoparticles over rotating plates with slip effects. They showed that concentration
profile and temperature distribution show enhancing behaviors for increasing values of
Hartmann number. Hayat et al. [23] numerically inquired the nanofluid flow because
of rotating disks with slip effects and magnetic field. These studies showed that more
significant levels of the magnetic parameter indicate reduced velocity distribution behavior,
whereas temperature and concentration distribution show opposite behavior. The hydro-
magnetic fluid flow of nanofluid due to stretchable/shrinkable disk with non-uniform heat
generation/absorption is inquired by Naqvi et al. [24]. The graphical results of the studies
showed that the higher values of the Prandtl number give an improved temperature, but
when thermophoresis and Brownian motion parameters are reduced, the temperature
distribution reduces.

Svante Arrhenius, a Swedish physicist, used the phrase energy for the first time in 1889.
Activation energy is measured in KJ/mol and denoted by Ea, which means the minimum
energy achieved by molecules/atoms to initiate the chemical process. For various chemical
processes, the amount of energy activation is varying, even sometimes zero. The activation
energy in heat transfer and mass transfer has its usages in chemical engineering, emulsions
of different suspensions, food processing, geothermal reservoirs, etc. Bestman [25] pub-
lished the first paper on activation energy with a binary chemical process. Discussion on
the inclusion of chemical reaction into nanofluids flow and Arrhenius activation energy
was determined by Khan et al. [26]. Zeeshan et al. [27] studied the Couette-Poiseuille
flow with activation energy and analyzed convective boundary conditions. Bhatti and
Michaelides [28] discussed the influence of activation energy on a Riga plate with gyrotactic
microorganisms. Khan et al. [29] reveal that the impact of activation energy on the flow of
nanofluid against stagnation point flow by considering it nonlinear with activation energy.
Their investigation revealed that activation energy decline for the mass transfer phenom-
ena. Hamid et al. [30] inquired about the effects of activation energy inflow of Williamson
nanofluid with the influence of chemical reactions. The study concluded that the heat trans-
fer rate in cylindrical surfaces declines when increasing the reaction rate parameter. Azam
et al. [31] inquired about the impact of activation energy in the axisymmetric nanofluid
flow. Waqas et al. [32] inquired the flow of Oldroyd-B bioconvection nanofluid numerically
with nonlinear radiation through a rotating disc with activation energy.

Bioconvection characterizes the hydrodynamic instabilities and the forms of sus-
pended biased swimming microorganisms. The hydrodynamics instabilities occur due to
the coupling between the cell’s swimming performance and physical features of the cell, i.e.,
fluid flows and density. For example, a combination of gravitational and viscous torques
tend to swim the cells in the direction of down welling fluid. A gyrotactic instability ensues
if the fluid is less dense than the cells. Bioconvection portrays a classical structure where a
macroscopic mechanism occurs due to the microscopic cellular ensuing in relatively dilute
structures. There is also the ecological impact for bioconvection and its mechanisms, which
is promising for industrial development. In the recent era, many scientists have discussed
the mechanism of bioconvection using nanofluid models. For instance, Makinde et al. [33]
examined the nanofluid flow due to rotating disk and thermal radiation with titanium and
aluminum nanoparticles. They showed that the base liquid thermal efficiency is remarkable
when the nanoparticles of titanium alloy are introduced in contrast to the nanoparticles of
aluminum alloy. Reddy et al. [34] studied the Maxwell thermally radiative nanofluid flow
on a double rotating disk. Waqas et al. [35] examined the effect of thermally bioconvection
Sutterby nanofluid flow between two rotating disks along with microorganisms. The
fluid speed with mixed convection parameters grew quicker but delayed the magnetic
field parameter and the Rayleigh number bioconvection. Some important studies on the
bioconvection mechanism can be found from the list of references [36–39].

For many industrial applications such as the production of glass, furnaces, space
technologies, comic aircraft, space vehicles, propulsion systems, plasma physics, and reen-
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try aerodynamics in the field of aero-structure flows, combustion processes, and other
spacecraft applications, the role of thermal radiation is significant. Raju et al. [40] examined
the flow of convective magnesium oxide nanoparticles with nonlinear thermal convective
over a rotating disk. Sheikholeslami et al. [41] presented the analysis of thermally radiative
MHD nanofluid through the porous cavity. Muhammad et al. [42] analyzed the charac-
teristics of thermal radiation for Powell-Eyring nanofluid flow with additional effects of
activation energy. Aziz et al. [43] numerically analyzed hybrid nanofluid with entropy
analysis, thermal radiation, and viscous dissipation. Mahanthesh et al. [44] investigated the
significance of radiation effects of the two-phase flow of nanoparticles over a vertical plate.
Jawad et al. [45] investigated the bio-convection nanofluid flow of Darcy law through a
channel (Horizontal) with magnetic field effects and thermal radiation. Majeed et al. [46]
thermally analyzed magnetized bioconvection flow with additional effects of activation
energy. Numerous fresh developments on this topic can be envisaged through [47–52].

After studying the preexistent literature, it is noticed that there is no addition to the
research of Reiner-Rivlin fluid flow between rotating circular plates filled with microor-
ganisms and nanoparticles. In the present study, we assume that the flow in the tangential
and axial direction. The Reiner-Rivlin nanofluid with motile gyrotactic microorganisms
is filled between the pair of rotating plates. The thermally radiative Reiner-Rivlin fluid is
electrically conducted under the existence of activation energy. The famous Differential
Transform scheme is used to obtain the solution of the ordinary differential equations. Padé
approximation is also applied to enhance the convergence rate of the solution obtained
by the Differential Transform Method. The impact of various parameters in nanoparti-
cle concentration, velocity, temperature, and motile microorganism function is analyzed
thoroughly using graphs and tabular forms.

2. Physical and Mathematical Structure of Three-Dimensional Flow

Let us anticipate incompressible three-dimensional, unsteady, axisymmetric squeezed
film flow of Reiner-Rivlin nanofluid between a circular rotating parallel plate. The height

of both plates is taken as
�
Γ (t)

[
= D(−βt + 1)1/2

]
at time t. Let (r, θ, z) be the cylindrical

polar coordinates with velocity field V = [vr, vθ , vz]. The lower circular plate is fixed while
the upper circular plate is considered as moving towards the lower plate. The moving

plate velocity is represented by
�
Γ
′
(t). Both plates are rotating at a symmetric axis, which is

characterized by Z-axis. The components of the magnetic field applied H on the moving
plate in axial and azimuthal direction are:

�
Hθ =

rN0

μ2

√
D

�
Γ (t)

,
�
Hz = − βM0D

μ1
�
Γ (t)

, (1)

Here N0, M0 in Equation (1) denotes the dimensionless quantities, which results
�
Hθ ,

�
Hz in dimensionless, and the magnetized permeability of medium inside and outside

of both plates are characterized by μ2 and μ1, respectively. In the case of liquid metals,
μ2 = μ� where μ� indicates the free space permeability. Hθ , Hz on a fixed plate is expected
to be zero. The extrinsic applied magnetic field H tends to generate an induced magnetic

field
�
B(r, θ, z) having components

�
Br,

�
Bθ ,

�
Bz between the two plates (see Figure 1). The

temperature and the concentration at the lower plate is denoted as (T0, C0) while at the
upper plate is taken as (T1, C1).
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Figure 1. A physical structure for nanofluid flow between parallel circular plates in the existence of
motile gyrotactic microorganisms and induced MHD.

2.1. Mathematical Modeling of Reiner-Rivlin Fluid

The constitutive equation of Reiner-Rivlin fluid flow is defined as [53]:

τij = −pδij + μeij + μceikekj, ejj = 0, (2)

where τij represents stress tensor, p denotes pressure, μ denotes the viscosity coefficient,
μc denotes cross-viscosity coefficient, δij denotes Kronecker symbol, and deformation rate
tensor is represented by eij =

(
∂ui/∂xj

)
+
(
∂uj/∂xi

)
. Components of deformation rate

tensor are:

err = 2D2vr, eθθ = 2 vr
r , ezz = 2D4vz, erθ = eθr = rD2

( vθ
r
)
= D2vθ − vθ

r ,
ezθ = eθz = D4vθ , erz = ezr = D4vr + D2vz

(3)

with the help of Equation (2), components of stress tensor are attained as

τrr = −p + μerr + μc

(
err

2 + erθ
2 + erz

2
)

, (4)

τrr = −p + 2μD2vr + μc

[
4(D2vr)

2 +
(

D2vθ − vθ

r

)2
+ (D4vr + D2vz)

2
]

, (5)

τrθ = τθr = 0 + μerθ + μc(errerθ + erθeθθ + erzezθ), (6)

τrθ = μ
(

D2vθ − vθ
r
)
+ μc

[
2(D2vr)

(
D2vθ − vθ

r
)

+
(

D2vθ − vθ
r
)(

2 vr
r
)
+ (D4vθ)(D4vr + D2vz)

] (7)

τrz = μerz + μc(errerz + erθeθz + erzezz), (8)
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τrz = μ(D4vr + D2vz)+ μc[2(D2vr)(D4vr + D2vz)
+
(

D2vθ − vθ
r
)
(D4vθ) + 2(D4vz)(D4vr + D2vz)

] , (9)

τθθ = −p + μeθθ + μc

(
erθ

2 + eθθ
2 + ezθ

2
)

, (10)

τθθ = −p + μ
(

2
vr

r

)
+ μc

[(
D2vθ − vθ

r

)2
+ 4
(vr

r

)2
+ (D4vθ)

2
]

, (11)

τθz = μeθz + μc(eθrerz + eθθeθz + eθzezz), (12)

τθz = τzθ = μ(D4vθ) + μc

[(
D2vθ − vθ

r

)
(D4vr + D2vz) + 2(D4vθ)

(vr

r
+ D4vz

)]
, (13)

where D1 = ∂
∂t , D2 = ∂

∂r , D3 = ∂
∂θ , D4 = ∂

∂z .

2.2. Proposed Governing Equations

Assuming the above-mentioned Reiner-Rivlin fluid model, the proposed governing
equations for continuity and momentum in the direction of r, θ, z read as

1
r

D2(rvr) +
1
r

D3(vθ) + D4(vz) = 0, (14)

ρ
(

D1(vr) + vrD2(vr) +
vθ
r D3(vr) + vzD4(vr)− vθ

r
)
= −D2 p

+μ
[

1
r D2(vr) +

1
r2 D3

2(vr) + D4
2(vr)− 2

r D3(vθ)− vr
r2

]
+ 1

r
∂
∂r (rτrr) +

1
r D3(τrθ)− τθθ

r + D4(τrz)− D4(Br)Bz − D4(Bθ)Bθ

, (15)

ρ
(

D1(vθ) + vrD2(vθ) +
vθ
r D3(vθ) + vzD4(vθ)− vrvθ

r
)
= − 1

r D3 p
+μ
[

1
r D2(rD2(vθ)) +

1
r2 D3

2(vθ) + D4
2(vθ) +

2
r2 D3(vr)− vθ

r2

]
+ 1

r D3(τθθ) +
1
r2 D2(r2τrθ) + D4(τθz)− D4(Bθ)Bz − D2(Bθ)Br

, (16)

ρ
(

D1(vz) + vrD2(vz) +
vθ
r D3(vz) + vzD4(vz)

)
= −D4 p

+μ
[

1
r D2(rD2(vz)) +

1
r2 D3

2(vz) + D4
2(vz)

]
+D4(τzz) +

1
r D2(rτrz) +

1
r D3(τθz)− D4(Bθ)Bθ + D4(Br)Br

, (17)

where p represents pressure, ρ represents fluid density, stress tensor is denoted by τ, and μ
represents fluid viscosity. The equation of the magnetic field is

1
r

D2rBr +
1
r

D3Bθ + D4Bz = 0, (18)

D1Br + vrD2Br + vθ D3Br + vzD4Br = −D4(vrBz − vzBr) +
1

δμ2

(
D4

2Br

)
, (19)

D1Bθ + vrD2Bθ + vθ D3Bθ + vzD4Bθ = D2(vrBθ − vθ Br)

−D4(vθ Bz − Bθvz) +
1

δμ2

(
D4

2Bθ

) , (20)

D1Bz + vrD2Bz + vθ D3Bz + vzD4Bz = D2(vrBz − vzBr) +
1

δμ2

(
D4

2Bz

)
, (21)

where δ is the electrical conductivity.
The energy equation reads as:

D1
�
T + vrD2

�
T + vzD4

�
T = k

(ρc) f
D4

2
�
T − 1

(ρc) f

(
∂qr
∂r

)
+

(ρc)p
(ρc) f

[
DB

(
D2

�
T · D2

�
C + D4

�
T · D4

�
C
)
+ DT

�
T u

[(
D2

�
T
)2

+

(
D4

�
T
)2
]]

, (22)

where
�
T represents temperature, k the thermal conductivity,

�
C represents concentration,

mean fluid temperature is represented by
�
T m, the specific heat capacity of nanofluid (ρc)p,
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(ρc) f the specific heat capacity of the base fluid, Brownian diffusivity is represented by DB,
thermophoretic diffusion coefficient is represented by DT . In accordance with Rosseland
approximation radiation heat flux, which is uni-directional (acting axially) takes the form,

qr = − 4σe
3βr

∂
�
T

4

∂r , in which σe represents the Stefan–Boltzmann constant and βr represents
the mean absorption coefficient, respectively. Rosseland’s model applies for optically
thick nanofluids and yields a reasonable estimate for radiative transfer effects, although it
neglects non-gray effects.

The equation of nanoparticle concentration reads as [54]

D1
�
C + vrD2

�
C + vzD4

�
C = DBD2

4

�
C +

DT
�
T u

D2
4

�
T − kr

2
(
�
C −

�
Cu

)⎛⎝ �
T
�
T u

⎞⎠n

e
− Ea

κ
�
T , (23)

where k2
r is the reaction rate, n is the rate constant, κ is the Boltzmann constant, and Ea is

the activation energy.
The microorganism conservation equation reads as

D1n + vrD2n + vθ D3n + vzD4n +
bWmo

�
Cl −

�
Cu

[
D4

(
nD4

�
C
)]

= Dmo

(
D4

2n
)

. (24)

Here bWmo is considered constant, where b are chemotaxis constant, cell swimming
maximal speed is denoted by Wmo, and Dmo denotes diffusivity of microorganism. The
corresponding boundary conditions are [54].

vr = 0, vθ = Ω1r
D2

�
Γ

2
(t)

, vz = 0, Bz = Bθ = 0, n = nl ,
�
T =

�
T l ,

�
C =

�
Cl , at z = 0, (25)

vr = 0, vθ = Ω2r D2

�
Γ

2
(t)

, Bθ = N0r D2

�
Γ

2
(t)

, Bz = − βDM0
�
Γ (t)

,

�
C =

�
Cu,

�
T =

�
T u, n = nu, vz = − βD2

2
�
Γ (t)

,

⎫⎪⎬⎪⎭ at z =
�
Γ (t), (26)

3. Similarity Transformations

Introducing the subsequent similarity variables satisfying the continuity equation, for
instance: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vr = r ∂F
∂z = βr

2
D2

�
Γ

2
(t)

f ′(λ), vθ = G(z, t)r = rΩ1
D2

�
Γ

2
(t)

g(λ),

vz = −2F(z, t) = − βD2 f (λ)
�
Γ (t)

,

Br = r ∂M
∂z = βrDM0

2
�
Γ

2
(t)

m′(λ), Bθ = rN(z, t) = rN0
D2

�
Γ

2
(t)

n(λ),

Bz = −2M(z, t) = − βDM0m(λ)
�
Γ (t)

,

φ(λ) =
�
C−

�
Cu

�
Cl−

�
Cu

, χ(λ) = n−nu
nl−nu

, θ =
�
T−�

T u
�
T l−

�
T u

, λ = z
�
Γ (t)

.

(27)

where similarity variable is λ and f (λ), g(λ), m(λ), n(λ),
�
θ (λ), φ(λ) and χ(λ) are non-

dimensional velocity in axial and tangential direction, the magnetic field in axial and
tangential direction, temperature, concentration, and motile density function, respectively.

Now substituting the above-mentioned similarity transformation in Equations (6)–(16),
following coupled, nonlinear ODE’s with independent variable (λ) obtained as,

f (iv)(η) = 4RQ

[
3 f ′′ − 2

(
RΩ
SQ

)2
gg′ + 2F2

T(mm′′′ + m′m′′ )− (2 f − λ) f ′′′ + 2F2
A

(
RΩ
SQ

)2
nn′
]

−4K
[

2RΩ
RQ

g′g′′ +
RQ
RΩ

[
2 f ′′ f ′′′ + 2

(
f ′′ f ′′′ + f ′ f iv)]] , (28)
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g′′ (η) = 2SQ
2[2g + λg′ + 2g f ′ − f g′ + 2FAFT

(
mn′ + nm′)]− 2K

[
g′(η) f ′′ (η)− f ′(η)g′′ (η)

]
, (29)

m′′ = ReM
[
m + λm′ + 2m f ′ − 2 f m′], (30)

n′′ = ReM

[
2n − f n′ + λn′ + 2

(
FA
FT

)
mg′
]

, (31)

(
1 +

4
3

Rd(1 + (Tr − 1)
�
θ )

3)�
θ′′ + 4Rd(Tr − 1)(1 + (Tr − 1)

�
θ )

2�
θ
′2
+ SQPt f

�

θ′ + Tt

�

θ′
2
+ Tb

�

θ′φ′ = 0, (32)

φ′′ +
Tt

Tb

�
θ′′ + SQSM f φ′ − SMσ(1 + δ̃

�
θ )

n
exp

(
− E

1 + δ̃
�
θ

)
φ = 0, (33)

χ′′ − SQBs

(
λ

2

)
χ′ + BsSQ f χ′ − Pl

[
χ′φ′ + (χ + Φ)φ′′ ] = 0. (34)

where SQ represents the squeezed Reynolds number, RΩ the rotational Reynolds num-
ber, FA, FT , denote the strength of the magnetic field in axial and azimuthal direction,
ReM the magnetic Reynolds number, K the material parameter of Reiner-Rivlin fluid, Tb
the Brownian motion, Pt the Prandtl number, Tt the Thermophoresis parameter, E the
non-dimensional form of Arrhenius activation energy, SM the Schmidt number, Bs the
bioconvection Schmidt number, σ the rate of chemical reaction, Pl the Peclet number, δ̃
represents the temperature ratio, Tr the temperature ratio parameter, Rd the radiation
parameter, and Φ the constant number, respectively. They can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SQ = βD2

2υ , RΩ = Ω1D2

υ , FT = M0
D
√

μ2ρ , FA = N0
Ω1

√
μ2ρ , K = μcΩ

μ ,

Tb =
τDB

(
�
Cl−

�
Cu

)
α̃ , Tt =

τDT

(
�
T l−

�
T u

)
α̃
�
T u

, Pt =
υ
α̃ , α̃ = k

(ρc)p
SM = υ

DB
,

Bs =
υ

Dn
, Pl =

bWmo
Dmo

, Φ = nu
nl−nu

, Bt = δμ2υ, ReM = RQBt, Rd = 4
�
T

3

uσe
βrk ,

E = Ea

κ
�
T u

, σ = kr
2�Γ (t)2

υ , δ̃ =
�
T l−

�
T u

�
T u

, τ =
(ρc)p
(ρc) f

, Tr =
Tl
Tu

(35)

where Bt represents Batchelor number.
The boundary conditions said in Equations (25) and (26) reduced as⎧⎨⎩ f ′(0) = 0, f (0) = 0, m(0) = 0, g(0) = 1, n(0) = 1,

�
θ (0) = 1, χ(0) = 1, φ(0) = 1,

f (1) = 1
2 , m(1) = 1, g(1) =

.
ξ, n(1) = 1,

�
θ (1) = 0, φ(1) = 0, χ(1) = 0

(36)

where f , g, n, m, θ, φ, χ denotes axial velocity and tangential velocity, magnetic field
components in the tangential and axial direction, temperature distribution, nanoparti-
cles concentration, motile gyrotactic microorganism profile,

.
ξ(= Ω2/Ω1) represents the

angular velocity, and its range is in between the rotating plates −1 ≤
.
ξ ≤ 1. It is bene-

ficial to investigate various revolving flow attributes of rotating plates in the reverse or
same direction.

On the upper (moving) plate, the dimensionless torque can be calculated as

T̂up = 2πρ

b∫
0

(
∂v
∂z

)
z=

�
Γ (t)

dr, (37)

where the plate radius is signified by b.
Using Equation (27) in Equation (37), it becomes

T̂up =
dg(1)

dλ
, (38)
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where the upper plate torque is designated by T̂up, and the tangential velocity gradient on
the upper (moving) plate is dg(1)/dλ.

In the same fashion, the lower plate torque in dimensionless form is achieved by
similar calculation and it becomes for λ = 0 as

T̂lp =
dg(0)

dλ
. (39)

4. Solution of the Problem by DTM-Padé

DTM was first introduced by Zhou [55] in an engineering analysis for electric circuit
theory for linear and nonlinear problems. It is an extremely powerful method for finding the
solutions of magnetohydrodynamics and complex material flow problem. The Differential
Transform Method (DTM) is distinct from the conventional higher-order Taylor series
scheme. It was also used in combination with Padé approximants very successfully. The
purpose of applying Padé-approximation is to improve the convergence rate of series
solutions. The reason behind this is that sometimes the DTM fails to converge. That is why
most of the researchers’ merge DTM and Padé approximation to deal with the high order
nonlinear differential equations. The Padé approximation is a rational function that can
be thought of as a generalization of a Taylor polynomial. A rational function is the ratio
of polynomials. Because these functions only use the elementary arithmetic operations,
they are very easy to evaluate numerically. The polynomial in the denominator allows
one to approximate functions that have rational singularities All the codes are developed
on Mathematica software. The dimensionless Equations (28)–(36) are attained with the
help of similar transformations stated in Equation (27), which are solved by virtue of the
Differential Transform Method. To proceed further with the DTM technique, let us define
qth derivative as:

F(λ) =
1
q!

[
dq f
dλq

]
λ=λ0

, (40)

where f (λ) are original and F(λ) represent transformed functions. Now the differential
inverse transform F(λ) can be defined as

f (λ) =
∞

∑
q=0

F(λ)(λ − λ0)
q, (41)

The objective of differential transformation has been achieved by the Taylor extension
series, and in terms of the finite series, the function f (λ) can be defined as

f (λ) ∼=
k

∑
q=0

F(λ)(λ − λ0)
q, (42)

The rate of convergence depends upon the value of k. Each BVP can be converted to
IVP with the replacement of unknown initial conditions. Taking differential transformation
of the separate term by term of Equations (28)–(36), the following transformations are
attained:

f ′′ → (1 + ň)(2 + ň) f (ň + 2),

f ′′ 3 →
⎡⎣ ň

∑
υ̃=0

⎛⎝ ω

∑
r=0

(ω + 1)(ω + 2)(−ω + υ̃ + 1)(−υ̃ + ň + 1)(−υ̃ + ň + 2)

f (−υ̃ + ň + 2) f (2 + ω) f (−ω + 2 + ň)

⎞⎠⎤⎦,

f ′ f ′′ f ′′′ →
⎡⎣ ň

∑
υ̃=0

⎛⎝ ň−ω

∑
υ̃=0

(ω + 1)(1 + ω)(2 + ω)(−ω + ň − υ̃ + 1)(−ω + 2 + ň − υ̃)

(−υ̃ + ň − ω + 3) f (1 + ω) f (2 + υ̃) f (−ω + ň − υ̃ + 3)

⎞⎠⎤⎦,

f ′′ f ′′′ 2 →
⎡⎣ ň

∑
υ̃=0

⎛⎝ ň−ω

∑
υ̃=0

(1 + ω)(ω + 2)(3 + ω)(υ̃ + 1)(2 + υ̃)(−υ̃ + ň + 1 − ω)

(−υ̃ + ň + 2 − ω)(−υ̃ + ň − ω + 3) f (3 + ω) f (2 + υ̃) f (−υ̃ + ň − ω + 3)

⎞⎠⎤⎦,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(43)
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g → g(l),

λg′ → ň
∑

ω=0
((−ω + 1 + ň)ε(ω)g(−ω + 1 + ň)),

⎫⎬⎭ (44)

f g′ → ň
∑

ω=0
(−ω + 1 + ň) f (ω)g(−ω + 1 + ň), g f ′ → ň

∑
ω=0

(−ω + 1 + ň)g(ω) f (−ω + 1 + ň),

g′ f ′g′′ → ň
∑

ω=0
(ω + 1)(−ω + 1 + ň)(−ω + 2 + ň) f (1 + ω)g(1 + ω)g(−ω + 2 + ň),

g′′ g′ f ′′′ → ň
∑

ω=0
(1 + ω)(ω + 2)(−ω + 1 + ň)(−ω + 2 + ň)(−ω + ň + 3)g(1 + ω)g(2 + ω)

g(−ω + ň + 3),

g′ f ′ f ′′ → ň
∑

m=0
(1 + ω)(−ω + ň + 1)(−ω + 2 + ň) f (1 + ω)g(1 + ω) f (−ω + 2 + ň),

f ′′′ g′ f ′′ → ň
∑

ω=0
(1 + ω)(2 + ω)(−ω + 1 + ň)(−ω + 2 + ň)(−ω + ň + 3)g(ω + 1) f (2 + ω)

f (−ω + 3 + ň),

f ′′ g′2 → ň
∑

ω=0

⎛⎝ ň
∑

υ̃=0
(1 + ω)(2 + ω)(1 − ω + υ̃)(−υ̃ + 1 + ň)g(−υ̃ + 1 + ň) f (2 + ω)

g(−ω + 1 + ň)

⎞⎠,

g′′ 2 f ′′ → ň
∑

ω=0

⎛⎝ ň−ω

∑
υ̃=0

(ω + 1)(2 + ω)(υ̃ + 1)(υ̃ + 2)(−υ̃ + 1 − ω + ň)(−ω + 2 + ň − υ̃)

g(2 + ω) f (q + 2)g(−ω + 2 + ň − υ̃)

⎞⎠,

f ′2g′′ → ň
∑

υ̃=0

⎛⎝ υ̃

∑
ω=0

(1 + ω)(2 + ω)(−ω + 1 + υ̃)(−υ̃ + 1 + ň) f (−υ̃ + 1 + ň)g(2 + ω)

f (−ω + ň + 1)

⎞⎠,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(45)

m′m′′ → ň
∑

ω=0
(ω + 1)(2 + ω)(−ω + 1 + ň)(−ω + 2 + ň)m(ω + 1)m(−ω + 2 + ň),

λm′ → ň
∑

ω=0
((−ω + 1 + ň)ε(ω)m(−ω + ň + 1)),

m f ′ → ň
∑

ω=0
((−ω + 1 + ň)m(ω) f (−ω + 1 + ň)),

f m′ → ň
∑

ω=0
((−ω + 1 + ň) f (ω)m(−ω + 1 + ň)),

mg′ → ň
∑

ω=0
((−ω + 1 + ň)m(ω)g(−ω + 1 + ň)),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(46)

nn′ → ň
∑

m=0
((−ω + 1 + ň)n(ω)n(−ω + 1 + ň)),

f n′ → ň
∑

ω=0
((−ω + 1 + ň) f (ω)n(−ω + 1 + ň)),

λn′ → ň
∑

ω=0
((−ω + 1 + ň)ε(ω)n(−ω + 1 + ň)),

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(47)

f
�

θ′ → ň
∑

ω=0

(
(−ω + 1 + ň) f (ω)

�
θ (−ω + 1 + ň)

)
,

�

θ′
2
→ ň

∑
ω=0

(
(1 + ω)(−ω + 1 + ň)

�
θ (1 + ω)

�
θ (1 − ω + ň)

)
,

⎫⎪⎪⎬⎪⎪⎭ (48)

�

θ′φ′ → ň
∑

ω=0

(
(1 + ω)(−ω + 1 + ň)

�
θ (1 + ω)φ(−ω + 1 + ň)

)
,

f φ′ → ň
∑

ω=0
((−ω + 1 + ň) f (ω)φ(−ω + 1 + ň)),

⎫⎪⎪⎬⎪⎪⎭ (49)
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λχ′ → ň
∑

ω=0
((−ω + 1 + ň)ε(ω)χ(−ω + 1 + ň)),

f χ′ → ň
∑

ω=0
((−ω + 1 + ň) f (ω)χ(−ω + 1 + ň)),

χ′φ′ → ň
∑

ω=0
((1 + ω)(−ω + 1 + ň)χ(ω + 1)φ(−ω + 1 + ň)),

χφ′′ → ň
∑

ω=0
((−ω + 1 + ň)(−ω + 2 + ň)χ(ω)φ(−ω + 2 + ň)),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(50)

where f (l), g(l), m(l), n(l),
�
θ (l), φ(l) and χ(l) are the transformed function of f (λ), g(λ),

m(λ), n(λ), θ(λ), φ(λ) and χ(λ), respectively, and are expressed as

f (λ) =
∞

∑
l=0

f (l)λl , (51)

g(λ) =
∞

∑
l=0

g(l)λl , (52)

m(λ) =
∞

∑
l=0

m(l)λl , (53)

n(λ) =
∞

∑
l=0

n(l)λl , (54)

�
θ (λ) =

∞

∑
l=0

�
θ (l)λl , (55)

φ(λ) =
∞

∑
l=0

φ(l)λl , (56)

χ(λ) =
∞

∑
l=0

χ(l)λl . (57)

By applying differential transform on corresponding boundary conditions, we obtained

f (0) = 0, f (1) = 1
2 , g(0) = 1, m(0) = 0, n(0) = 0,

�
θ (0) = 1, φ(0) = 0, χ(0) = 0, f (2) = Π1, f (3) = Π2,

g(1) = Π3, m(1) = Π4, n(1) = Π5,
�
θ (1) = Π6, φ(1) = Π6,

χ(1) = Π8

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (58)

where Πe (e = 1, . . . , 8) are the constants. Substituting transformations given in Equa-
tions (43)–(50) into Equations (30)–(36), and solved with support of associated boundary
conditions shown in Equation (58), the resulting solutions in the form of the series are:

f (λ) =
.
f 1λ2 +

.
f 2λ3 +

.
f 3λ4 +

.
f 4λ5 + . . . , (59)

g(λ) = 1 − .
g1λ +

.
g2λ2 +

.
g3λ3 +

.
g4λ4 + . . . , (60)

m(λ) =
.

m1λ +
.

m2λ3 +
.

m3λ4 +
.

m4λ5 + . . . , (61)

n(λ) =
.
n1λ +

.
n2λ3 +

.
n3λ4 +

.
n4λ5 + . . . , (62)

�
θ (λ) = 1 +

.
θ1λ +

.
θ2λ2 +

.
θ3λ3 +

.
θ4λ4 + . . . , (63)

φ(λ) = 1 +
.
φ1λ +

.
φ2λ2 +

.
φ3λ3 +

.
φ4λ4 + . . . , (64)

χ(λ) = 1 +
.
χ1λ +

.
χ2λ2 +

.
χ3λ3 +

.
χ4λ4 + . . . , (65)
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where
.
f i,

.
gi,

.
mi,

.
ni,

.
θi,

.
φi

.
χi; where i = (1, 2, 3, . . .) are constants. It is not easy to express

them here because of their complex and long numerical values. With the assistance of
Mathematica computational software, the equation as mentioned above is solved with 30
iterations. However, it failed to obtain a reasonable rate of convergence. The convergence
rate of certain sequences can be improved with certain techniques. Many researchers
used the Padé technique, which was used in the form of a rational fraction, i.e., ratio
of two polynomials. The results obtained by DTM, owing to the non-linearity on the
governing equations, do not satisfy the boundary conditions at infinity without applying
the Padé approximation. The obtained solution by DTM must then be merged with Padé-
approximation, which gives a substantial rate of convergence at infinity. According to
one’s desired exactness, a higher order of approximation is required. Here, [5 × 5] order
approximation is applied to Equations (59)–(65), the Padé approximants are as follows.

f (λ) =
1.744240λ2 − 6.384709λ3 + 7.800949λ4 − 2.873131λ5 + . . .

1 − 2.775474λ + 1.798969λ2 + 0.612641λ3 − 0.047549λ4 − 0.001808λ5 + . . .
, (66)

g(λ) =
1 − 0.461931λ − 0.480814λ2 − 0.030027λ3 − 0.036507λ4 − 0.008722λ5 + . . .
1 + 0.580516λ + 0.110708λ2 + 0.014909λ3 + 0.003980λ4 + 0.003613λ5 + . . .

, (67)

m(λ) =
0.706586λ − 0.052291λ2 − 0.0453936λ3 + 0.272736λ4 − 0.322963λ5 + . . .

1 − 0.074006λ − 0.397576λ2 + 0.119954λ3 − 0.060980λ4 − 0.027780λ5 + . . .
, (68)

n(λ) =
0.767837λ + 1.046017λ2 + 0.365143λ3 + 0.429179λ4 + 0.171075λ5 + . . .

1 + 1.362290λ + 0.039499λ2 + 0.254792λ3 + 0.340033λ4 − 0.212403λ5 + . . .
, (69)

�
θ (λ) =

1 − 0.794545λ − 0.240481λ2 + 0.053229λ3 − 0.032680λ4 + 0.014409λ5 + . . .
1.0 + 0.038878λ − 0.035237λ2 + 0.050992λ3 − 0.033598λ4 + 0.00129λ5 + . . .

, (70)

φ(λ) =
1 − 1.715367λ + 0.560355λ2 + 0.391456λ3 − 0.354482λ4 + 0.119370λ5 + . . .
1 + 0.217143λ − 0.068712λ2 + 0.047085λ3 − 0.043507λ4 − 0.008306λ5 + . . .

, (71)

χ(λ) =
1 − 0.776897λ + 0.662042λ2 − 0.785269λ3 + 0.099751λ4 − 0.193734λ5 + . . .

1 + 2.4876949λ + 2.462925λ2 + 1.100656λ3 + 0.134289λ4 − 0.0376572λ5 + . . .
, (72)

5. Graphical and Numerical Analysis

In this segment, graphical and numerical analysis is made on the solutions of resulting
nonlinear ordinary differential equations mentioned in Equations (28)–(36). The differential
transformation scheme is applied to present the solutions of the foregoing equations. Our
principal focus is to inspect the physical characteristics of numerous physical parameters
in the momentum equation, induced MHD equations, temperature distribution, motile
microorganism density function, and mass transfer equation. For instance, the influence
of squeezing and Rotational Reynolds number SQ, RΩ, Reiner-Rivlin fluid parameter K,
Brownian motion Tb, magnetic Reynolds number ReM, Prandtl number Pt, thermophoresis
parameter Tt, Schmidt number SM, Bioconvection number Bs, and Peclet number Pl are
examined.

Table 1 shows the numerical comparison with previous results [56] against the torque
values at the upper and the lower plate by taking K = 0, Rd = 0, σ = 0 in the present
results. It is found that the results obtained in the present study are not only correct but
also converge rapidly. Furthermore, we can also say that the proposed methodology, i.e.,
DTM-Padé shows promising results against the coupled nonlinear different equations.

Tables 2–4 shows the different physical parameters developed against Sherwood
number, Nusselt number, and motile density function [φ′(0), θ′(0), χ′(0)]. Moreover, the
torque values at the lower plate dg(0)/dλ, and upper plate dg(1)/dλ are also calculated
numerically in Tables 5 and 6.
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Table 1. Comparison of the torque values at the lower and upper plate with previous results [56] when the fluid behaves as
a Newtonian model (K = 0) and the remaining values are RΩ = 0.3, FT = 0.5, Bt = 0.6, K = 0, Rd = 0, σ = 0 for various
values of SQ and RΩ.

SQ
dg(0)

dλ
dg(1)

dλ

Zhang et al. [56] Present Results Zhang et al. [56] Present Results

0.1 −1.0929372214309236 −1.0929372214309236 −0.948663684660318 −0.948663684660318

0.2 −1.180889912821983 −1.180889912821983 −0.9013607839508947 −0.9013607839508947

RΩ

0.1 −1.265492575299778 −1.265492575299778 −0.8533000683642988 −0.8533000683642988

0.2 −1.2652748717875888 −1.2652748717875888 −0.8549052425970227 −0.8549052425970227

Table 2. Analysis of Nusselt number θ′(0), for multiple values Tt, Tb, Pt, SQ by DTM-Padé [5 × 5].

K = 0 K = 0.1

Tt Tb Pt SQ DTM-Padé

0.03 0.01 6.8 0.05 −0.8944762272711257 −0.8944824906474336

0.06 −0.8063777250952755 −0.806383306245722

0.09 −0.7253079370829076 −0.7253128728932438

0.05 0.2 −0.37080900827594065 −0.37081139690286175

0.3 −0.2316716738652042 −0.23167310222667004

0.4 −0.1411942252519443 −0.14119505897571566

0.01 4 −0.8998893435594736 −0.899893033465222

7 −0.8304624112857932 −0.8304683534204742

10 −0.7656313391774631 −0.7656391365026328

6.8 −0.01 −0.8068399501595973 −0.8068414709109244

0.05 −0.8334251602591399 −0.8334257278827505

0.10 −0.8553872157158188 −0.8553910187144096

Table 3. Analysis of Sherwood number φ′(0) for various values Tt, Tb, SQ, SM, E, σ by DTM-Padé [5 × 5].

K = 0 K = 0.1

Tt Tb SQ SM E σ DTM-Padé DTM-Padé

0.03 0.01 0.05 1 1 1 −1.423723583572087 −1.4237062656685955

0.06 −2.242251830648612 −2.24222066465715

0.09 −3.52021034762737 −3.5201695528198456

0.05 0.01 −1.915474205493601 −1.9154471661812198

0.02 −1.5921974868312598 −1.5921851742637334

0.03 −1.4831389820481062 −1.4831315689992728

0.01 −0.01 −2.0517295527621053 −2.0517273504948057

0.05 −1.9367842616882913 −1.9268295351904132

0.10 −1.832060050336652 −1.8320099157048728

0.05 2 −2.0146398467429014 −2.0241644922138637

4 −2.2012470588694386 −2.2102937724970664

6 −2.3744735466373146 −2.3831035839166357

1 2 −1.8531063430623982 −1.8630765987997622
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Table 3. Cont.

K = 0 K = 0.1

Tt Tb SQ SM E σ DTM-Padé DTM-Padé

3 −1.829718893888726 −1.8397573168178392

4 −1.821048746320453 −1.8311125640363681

1 2 −2.01093920918129 −2.020462840246665

4 −2.19121593549506 −2.2002581288517207

6 −2.359245916149752 −2.367866612938209

Table 4. Analysis of χ′(0) for various values of SQ, Bs, Pl by DTM-Padé [5 × 5].

K = 0 K = 0.1

SQ Bs Pl DTM-Padé DTM-Padé

−0.01 1 1 −2.5484740630681886 −2.5484721652641165

0.05 −2.4422867164206274 −2.442278141197654

0.10 −2.3326945059751685 −2.3545141881576237

0.05 5 −2.4315407355757515 −2.4315225967036653

10 −2.4300912988489185 −2.430083525231539

15 −2.4286396339889302 −2.4286422222719586

1 0.5 −1.6814808605966678 −1.6814680934795112

1.0 −2.432698678642556 −2.4326722455225793

1.5 −3.2408290233020116 −3.2407890961974375

Table 5. Numerical computations of Torque at a fix circular and upper circular plates by DTM-Padé [5 × 5] for various
values of Squeezing Reynolds Number SQ.

dg(0)
dλ

dg(1)
dλ

SQ K = 0 K = 0.1 K = 0 K = 0.1

0.1 −1.0944523632334688 −1.0885716574469078 −0.9499690408077309 −0.9876461173721226

0.2 −1.1811908734455248 −1.1746346120145237 −0.9071760445081409 −0.9777866647632717

Table 6. Numerical computations of Torque at a fix circular and upper circular plates by DTM-Padé [5 × 5] for multiple
values of Rotational Reynolds Number RΩ.

dg(0)
dλ

dg(1)
dλ

RΩ K = 0 K = 0.1 K = 0 K = 0.1

0.1 −1.0470698634685973 −1.0416647863739605 −0.9735621738611226 −0.9805868144292514

0.2 −1.047887492344034 −1.0424472521086106 −0.9736078836468506 −0.9885069828641508

Figure 2 illustrates the influence of the velocity profile in the axial direction f ′ because
of the squeezed Reynolds number SQ, rotational Reynolds number RΩ, and the material
parameter of Reiner-Rivlin fluid K. From Figure 2 one can perceive that increasing the
squeezed Reynolds number SQ axial velocity decreases, but increasing rotational Reynolds
number RΩ, the axial velocity profile increases. The physical reason behind this is that
when we increase the value of Squeezing Reynolds number SQ, the distance between the
plates increases, the fluid velocity decreases, and the fluid accelerates by rotation of the
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plate when we increase the values of rotational Reynolds number RΩ. Figure 3 depicts
that increasing the values of the material parameter of the Reiner-Rivlin fluid increases the
velocity distribution against axial direction f ′.

Figure 2. Implications of SQ and RΩ on velocity distribution (axial) f ′(λ).

Figure 3. Implications of K on velocity distribution (axial) f ′(λ).

Figure 4 depicts the influence of squeezing Reynolds number SQ and Rotational
Reynolds Number RΩ against tangential velocity distribution g′. From Figure 4, it can
be ascertained that by enhancing the values of the squeezed Reynolds number SQ, the
tangential velocity distribution decreases. Similar phenomena are observed in Figure 5, i.e.,
by increasing the values of the rotational Reynolds number, the tangential velocity profile
declines.
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Figure 4. Implications of SQ on velocity distribution (tangential) g′(λ).

Figure 5. Implications of RΩ on velocity distribution (tangential) g′(λ).

From Figure 6, it can be seen that by increasing the values of magnetic Reynolds
number ReM, the tangential and axial magnetic field decreases, as the magnetic Reynolds
number is the ratio of fluid flux to the mass diffusivity. So, by increasing the magnetic
Reynolds number, a decrease in mass diffusivity and increase in fluid flux is seen. This
decline in mass diffusivity disrupts the diffusion of the magnetic field and resulting, a
decline in axial and tangential induced magnetic fields is observed.
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Figure 6. Implications of ReM on m(λ), n(λ) in axial and tangential direction.

Figure 7 elucidates the consequences of the Brownian motion parameter and ther-

mophoresis parameter Tb, Tt on the temperature field
�
θ . The graph shows that intensifying

the values of thermophoresis, Brownian motion parameter Tt, Tb increases the temperature
profile. The physical reason is that the fluid temperature increases due to strengthening
the kinetic energy of nanoparticles. The effects of squeezing Reynolds number SQ and

Prandtl number Pt on temperature profile
�
θ is displayed in Figure 8. One can notice

that by enhancing the Prandtl number Pt and the squeezing Reynolds number SQ, the

temperature profile
�
θ diminishes. When the thermal conductivity reduces by intensifying

the values of the Prandtl number Pt then the temperature profile
�
θ declines. The effects of

radiation parameter Rd on temperature profile
�
θ are shown in Figure 9. It is observed that

by enhancing the radiation parameter Rd the temperature profile
�
θ increases. The physical

reason behind this is that an increase in radiation releases the heat energy from flow; hence
there is an increase in temperature.

Figure 7. Implications of Tt and Tb on temperature function
�
θ (λ).
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Figure 8. Implications of SQ and Pt on temperature function
�
θ (λ).

Figure 9. Implications of Rd, on temperature function
�
θ (λ).

Figure 10 shows the consequences of thermophoresis parameter Tt and Brownian
motion Tb on nanoparticle concentration φ. It is perceived that nanoparticle concentration
declines by increasing the values of Brownian motion Tb, and concentration of nanoparticle
intensifies by increasing values of thermophoresis parameter Tt. In fact, gradual growth
in Tb increases the random motion and collision among nanoparticles of the fluid, which
produces more heat and eventually it results in a decrease in the concentration field. Due
to increasing values of Tt, more nanoparticles are pulled towards the cold surface from the
hot one, which ultimately results in increasing the concentration distributions. Figure 11
shows the consequences of Schmidt number SM and squeezed Reynolds number SQ on
nanoparticle concentration. By enlarging the values of squeezed Reynolds number SQ,
nanoparticle concentration φ increases, on the other hand, converse phenomena are noticed
by enhancing the values of Schmidt number SM. Figure 12 deliberates the influence of
reaction rate σ and activation energy E on the nanoparticle concentration φ. It may be
observed that nanoparticle concentration displays a substantial rise by increasing values of
E. Since high energy activation and low temperatures impart to a constant reaction rate, the
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resulting chemical reaction is therefore slowed down. Consequently, the concentration of
the solute rises. On the other side, by increasing values of σ, the nanoparticle concentration
decreases.

Figure 10. Implications of Tt and Tb on concentration function φ(λ).

Figure 11. Implications of SQ, SM on concentration function φ(λ).
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Figure 12. Implications of SQ, SM on concentration function φ(λ).

Figure 13 portrays the consequences of Peclet number Pl and squeezed Reynolds
number SQ on motile microorganism density function χ. One can experience that enhancing
values of squeezed Reynolds number SQ tends to boost the microorganism density function,
while increasing the values of Peclet number Pl , the motile microorganism density function
diminishes. The reason behind this is that the diffusivity of the microorganism reduces,
then the speed of the microorganism also decreases. This is the physical fact and resulting
in the microorganism density function decreasing while increasing the value of Peclet
number Pl . Figure 14 is plotted to see the physical performance of the Bioconvection
Schmidt number Bs. It is apparent that by enhancing values of bioconvection Schmidt
number Bs the motile microorganism density function rises, but the consequences are
negligible.

Figure 13. Implications of SQ, Pl on motile microorganism density function χ(λ).
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Figure 14. Implications of Bs on motile microorganism density function χ(λ).

6. Conclusions

In this study, we determined incompressible three-dimensional, unsteady, axisym-
metric squeezed film flow of Reiner-Rivlin nanofluid between parallel circular plates. The
impact of an induced magnetic field, the suspension of motile gyrotactic microorganisms,
activation energy, and thermal radiation are also contemplated. DTM-Padé is applied to
present the solutions of the ordinary differential equations after employing the similarity
transformations. Padé approximant is applied because it provides a good rate of conver-
gence and gives reliable results. Comparison is made for the values of toque on the lower
and upper plates. The main findings are accomplished below:

i. The opposite behavior is experienced for the rotational Reynolds number on tan-
gential and axial velocity distribution.

ii. Enhancing the value of squeezing Reynolds number, the tangential and axial veloc-
ity distribution decreases.

iii. By enlarging the value of the magnetic Reynolds number, the magnetic field (in-
duced) in tangential and axial directions decreases.

iv. The Reiner-Rivlin opposes the fluid motion; however, the impact is negligible.
v. By increasing the Brownian motion and thermophoresis parameter, the temperature

distribution rises.
vi. Temperature distribution decays due to the effects of the Prandtl number-like

phenomenon is observed for enlarging the values of squeezed Reynolds number.
vii. The thermal radiation parameter enhances the temperature distribution.
viii. Nanoparticle concentration and motile density increase by enhancing the in value

of squeezing Reynolds number.
ix. Nanoparticle concentration shows opposed phenomena for Brownian motion pa-

rameter compared with thermophoresis parameter.
x. Increasing values of activation energy tends to intensify the nanoparticle concentra-

tion profile.
xi. The microorganism profile declines by increasing the values of Peclet number, but

the microorganism profile rises by enlarging the bioconvection number.

Future Work: The present study shows perfect accuracy of the proposed methodol-
ogy; however, attention has been given to non-Newtonian fluid with induced magnetic.
Future studies may generalize the present study to consider applied magnetics effects,
porosity effects, slip effects, entropy generation, and other non-Newtonian fluid models,
etc., which are beneficial to bioreactor configurations and lubrication regimes and will be
presented soon.
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Nomenclature

Hθ Axial components
Hz Azimuthal components
μ1 Magnetic permeability inside the plate
μ2 Magnetic permeability outside the plate
μ� Free space permeability (NA−2)
�
B(r, θ, z) Induced magnetic field
T0 Lower plates constant temperature (K)
Tl Upper plates constant temperature (K)
Cl Concentration at lower plate
C Concentration at upper plate
p Pressure (Pa)
ρ Fluid density (Kg/m3)

μ Fluid viscosity (Ns/m2)

δ Electrical conductivity (S · m−1)
�
T Temperature (K)
�
C Concentration
�
T m Mean fluid temperature (K)
cp Specific heat (Jkg−1K−1)

DB Brownian diffusivity
DT Thermophoretic diffusion coefficient
FA Magnetic force strength in the axial direction
FT Magnetic force in the tangential direction
ReM Magnetic Reynolds number
Tb Brownian motion parameter
Tt Thermophoresis parameter
Pt Prandtl number
SM Schmidt number
Bs bioconvection Schmidt number
f Axial velocity (m/s)
g Tangential velocity (m/s)
�
θ Temperature profile of nanofluids (K)
φ Concentration profile of nanofluids
χ Motile density microorganism
.
ξ Angular velocity (m/s)
b Radius of the disk
T̂up Dimensionless torque applied on the upper plate
T̂lp Dsimensionless torque applied on the lower plate
b Chemotaxis constant
Wmo Maximal speed
SQ Squeezed Reynold number
Dmo Diffusivity of micro-organisms
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Abstract: The radiation and magnetic field effects of nanofluids play a significant role in biomedical
engineering and medical treatment. This study investigated the performance of gold particles in
blood flow (Sisko fluid flow) over a porous, slippery, curved surface. The partial slip effect was
considered to examine the characteristics of nanofluid flow in depth. The foremost partial differential
equations of the Sisko model were reduced to ordinary differential equations by using suitable
variables, and the boundary value problem of the fourth-order (bvp4c) procedure was applied to
plot the results. In addition, the effects of the parameters involved on temperature and velocity were
presented in light of the parametric investigation. A comparison with published results showed
excellent agreement. The velocity distribution was enhanced due to the magnetic field, while the
temperature increased due to the effects of a magnetic field and radiation, which are effective in
therapeutic hyperthermia. In addition, the nanoparticle suspension showed increased temperature
and decelerated velocity.

Keywords: Sisko fluid flow; gold particles; magnetohydrodynamics (MHD); radiation effect;
slip effect; curved surface

1. Introduction

Nanofluids are a prominent topic of research. They have a wide range of applications
in engineering and technology fields. Nanofluids have potential benefits in cancer therapy,
drug delivery, nuclear reactors, and solar energy. Growth enrichment and convection
thermal conductivity are needed during fluid flow when an outside source is essential.
Nanofluids are synthesized by scattering nanoparticles in regular fluids. In addition to
regular fluids, such as lubricant, oils, water, and polymer solutions, biological fluids can
also be used as base fluids. A notable development in this area was investigated after the
initial research by Choi [1]. Eastman et al. [2] experimentally analyzed heat transport in the
presence of water-based CuO particles and ethylene-glycol-based Al2O3 particles. Since
then, different researchers have discussed the features of nanofluids [3–12]. However, the
use of gold nanoparticles (Au-NPs) in biomedical science is also important, and Au-NPs
can be used as therapeutic agents. They are currently used as contrast and photovoltaic
agents and as drug transporters. In addition, Au-NPs have many characteristics that make
them suitable for use in cancer treatment. Furthermore, owing to the high atomic number
of gold, Au-NPs engender heat, which can be used for photothermal therapy of tumorous
glands [13,14].

Non-Newtonian fluids play an imperative role in numerous manufacturing and
engineering processes, such as food processing, petroleum digging, and chemical and

Mathematics 2021, 9, 921. https://doi.org/10.3390/math9090921 https://www.mdpi.com/journal/mathematics

63



Mathematics 2021, 9, 921

biological treatment. Previously, blood was treated as a Newtonian fluid [15]; however,
Thurston [16] clarified that visco-elasticity is considered a basic property of rheological
blood, which indicates that human blood is non-Newtonian, depending on the visco-elastic
performance of red blood cells. Several non-Newtonian fluids are treated as blood, e.g.,
Sisko fluid. Khan and Shahzad [17] inspected Sisko fluid flow over a stretching sheet.
Munir et al. [18] extended this research by considering the bidirectional Sisko fluid flow
over a stretching surface. Khan et al. explored the effects of a magnetic field and radiation
on Sisko fluid flow over a bidirectional stretching sheet [19]. Eid et al. [20] used gold
nanoparticles to investigate the effects of radiation on Sisko biofluid flow over a nonlinear
stretching sheet. Ahmad et al. [21] numerically investigated the significance of Sisko fluid
flow over a stretching curved sheet using a nanofluid and a magnetic field. Khan et al. [22]
investigated 2D Sisko fluid flow impeding nanoparticles via a radially stretching/shrinking
sheet under zero-flux conditions.

The effect of radiation on blood flow is considered important in biomedical science
and other medical treatment techniques, especially in thermal therapeutic procedures. One
effective technique commonly used for heat treatment of different body parts is infrared
radiation. This method is favored in heat therapy because it is applied directly to blood
capillaries in the affected regions. In addition, it is used in the treatment of bursitis,
which is inflammation of the fluid-filled sacs (bursae) that lie between bone and tendon
or between skin and tendon. Inoue and Kabaya [23], Kobu [24], and Nishimoto et al. [25]
experimentally investigated the effects of infrared radiation on blood flow. He et al. [26]
used laser irradiation to analyze oxygen transport, temperature, and blood flow in breast
tumors. Prakash and Makinde [27] explored the effects of radiation on blood flow with
heat transport through an artery with stenosis. Misra and Sinha investigated the effects of
a magnetic field and radiation on time-dependent blood flows with heat transfer through
a porous capillary in a stretching motion [28]. Khan et al. [29] used gold nanoparticles to
investigate the effects of a magnetic field on radiative blood flow over a slippery surface
and obtained multiple solutions. In addition, Zaib et al. investigated the effects of a
magnetic field and radiation on the mixed convective flow of a tangent hyperbolic fluid
over a flat, non-isothermal vertical plate [30].

The present study investigated radiative blood flow with heat transport using a Sisko
fluid containing gold nanoparticles, over a porous, curved surface with a magnetic field
and partial slip. The governing partial differential equations were converted to a system
of ordinary differential equations before they were solved numerically via the boundary
value problem of the fourth-order (bvp4c) function available in MATLAB software, which
is based on the Lobatto IIIA technique. To analyze the capability of the numerical solution
process, the skin friction coefficient was compared with published results. Graphical results
were presented for the velocity profile, temperature distribution, skin friction, and heat
transfer rate for different values of the parameters involved. To the best of our knowledge,
no study has investigated flow situations with gold nanoparticles using the Sisko model
with similarity solutions. The results have implications for clinical sciences, especially in
thermal therapy.

2. Problem Definition and Modeling

2.1. Problem Definition

The steady flow of a non-Newtonian fluid containing gold nanoparticles over a porous
curved surface was examined. According to Chen [31], blood is treated as an electric
conducting fluid. Thus, blood flow in nature is magnetohydrodynamic. Blood flow is due
to the movement of the stretching surface along the s direction and suction along the r
direction. In addition, the stretching curve is coiled in a circle of radius R and center O and
contains 12–85 nm gold nanoparticles, as shown in Figure 1. A magnetic field B0 is applied
normal to the curved surface. A larger R signifies a vaguely curved surface. Moreover, the
stretching and shrinking sheet of the curved surface depends upon the arbitrary constant
(c > 0 for stretching and c < 0 for shrinking), where velocity is represented as Uw(s) = cs,
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with c > 0, which moves along the s direction, and suction velocity is represented as vo.
In addition, the characteristics of nanoparticles and the carrier-based fluid are assumed
to be constant. The temperature and ambient temperature of the surface are represented,
respectively, as Tw and T∞. The radiation and partial slip effects are also incorporated.

Figure 1. Physical diagram of the problem.

2.2. Flow Analysis

Using boundary layer approximations, the governing equations involving the mag-
netic effect on Sisko blood flow with gold nanoparticles over a porous, curved surface with
radiation and partial slip are

∂
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with the boundary conditions{
u = λUw + L

[
∂u
∂r − u

r+R

]
, v = vo, T = Tw at r = 0,

u → 0, ∂u
∂r → 0, T → T∞ as r → ∞.

(5)

Here, u and v are components of the velocity, such that the corresponding stretch-
ing velocity moves along the axial s direction and suction along the radial r direction,
respectively. In addition, n and b are material constants, L constant slip parameter, p the
pressure, R the radius of curvature, and T the nanofluid temperature. In Equation (4), the
relative heat flux is represented by q∗r and can be articulated by employing the Rosseland
approximation as

q∗r = −4(3k1)
−1σ1

∂T4

∂r
, (6)
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where σ1 is the mean proportion coefficient and k1 the Stefan–Boltzmann constant. Thus,
the term T4 at point T∞ is exercised by the Taylor series. Avoiding the highest-order terms,
we get

T4 ≈ 4TT3
∞ − 3T4

∞ (7)

The thermo-physical quantities of the gold particle nanofluid introduced in the gov-
erning equations are given by
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where k f , ρ f , μ f and σf are the thermal conductivity, density, viscosity, and electrical con-
ductivity of the carrier-based fluid, respectively; kn f , ρn f , μn f and σn f are the corresponding
quantities of the nanofluid, respectively; cp is the heat capacity; and subscripts f , n f , and s1
are quantities of the carrier-based fluid, the nanofluid, and the solid volume fraction of the
nanoparticles, respectively.

Upon applying the following similarity transformation:
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Equation (1) is satisfied identically, whereas Equations (2)–(5) become
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By removing the pressure term from Equations (10) and (11), we obtain the following
equations, along with the dimensionless form of the energy equation:
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in which:
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2.3. Outcome of the Parameterization

The physical parameters in Equations (12) and (13) are radiation Rd; the Prandtl
number Pr; the local Reynolds numbers Res and Reb; the material parameter of the Sisko
fluid, B1; the magnetic parameter M; the radius of curvature B; the thermal conductivity
α f ; the slip parameter B2; and the suction parameter S, which are obtained as follows:

Rd = 4σ1T3
∞

k1k f
, Pr = suw

α f
Reb

−2
n+1 , Res =

uws
ν f

, Reb =
u2−n

w snρ f
b , B1 = Reb

2
n+1

Res
, M =

σf B2
0

ρ f c ,

B = R
s Reb

1
n+1 , α f =

k f

(cpρ) f
, B2 = L

s Reb
1

n+1 , S = −v0
uw

(
n+1
2n

)
Reb

1
n+1 .
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The pressure term can be obtained from Equation (11), which becomes:
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2.4. Physical Parameters

Following an engineering approach, the quantities CF (local skin friction coefficient)
and Nus (Nusselt number) are expressed as follows:
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After transformation, the reduced skin friction coefficient becomes
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The heat transfer rate at the surface, Nus (Nusselt number), is
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After transformation, the reduced Nusselt number becomes

Reb
−1

n+1 Nus = −Σ4θ′(0). (21)

3. Results and Discussion

The nonlinear ordinary differential Equations (12) and (13) subject to boundary restric-
tions (Equation (14)) were solved numerically using the bvp4c function in the MATLAB
software. The effects of various physical parameters (the magnetic parameter M, curvature
parameter B, slip parameter B2, nanoparticle volume fraction φ, radiation parameter Rd,
suction S, and stretching/shrinking parameter λ) on the velocity profile, temperature
distribution, skin friction coefficient, and heat transfer rate are illustrated in Figures 2–19
for both the carrier-based fluid (φ = 0) and the gold particle nanofluid (φ = 0.035). The
parameters fixed throughout computation were B1 = 1.1, S = 3.5 ,M = 0.5, B2 = 0.2,
λ = 1.5,n = Rd = 2, and B = 1.5.

Figure 2. Effect of a magnetic field on the velocity profile.

Figure 3. Effect of a partial slip on the velocity profile.
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Figure 4. Effect of suction on the velocity profile.

Figure 5. Effect of the radius of curvature on the velocity profile.

Figure 6. Effect of the nanoparticle volume fraction on the velocity profile.
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Figure 7. Effect of the material parameter on the velocity profile.

Figure 8. Effect of stretching/shrinking on the velocity profile.

Figure 9. Effect of the magnetic field on the temperature distribution.
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Figure 10. Effect of the slip on the temperature distribution.

Figure 11. Effect of suction on the temperature distribution.

Figure 12. Effect of stretching/shrinking on the temperature distribution.
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Figure 13. Effect of curvature on the temperature distribution.

Figure 14. Effect of radiation on the temperature distribution.

Figure 15. Effect of the nanoparticle volume fraction on the temperature distribution.
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Figure 16. Effect of the slip on the skin friction coefficient against stretching/shrinking.

Figure 17. Effect of the slip on the Nusselt number against stretching/shrinking.

Figure 18. Effect of suction on the skin friction coefficient against stretching/shrinking.
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Figure 19. Effect of suction on the Nusselt number against stretching/shrinking.

3.1. Effect of Physical Parameters on the Velocity Profile

Figures 2–6 demonstrate the behavior of the velocity profile at different values of
M,B2,S,B, and nanoparticle volume fraction φ. The velocity decreases due to the magnetic
field for the carrier-based fluid and the gold particle nanofluid (Figure 2). Initially, the
velocity and thickness of the momentum boundary layer for the carrier-based fluid are
larger compared to those for the gold particle nanofluid. In addition, the velocity behavior
of the gold particle nanofluid reduces more in the presence of gold nanoparticles, because
gold nanoparticles generate friction in the fluid. Physically, increasing values of M augment
the Lorentz force, which ultimately decreases velocity. Figure 2 also shows that the velocity
of blood decreases. Figure 3 shows the effect of a partial slip on the velocity. The velocity
of the fluid decreases for both the carrier-based fluid and the gold particle nanofluid. The
velocity decreases in both fluids (φ = 0) and (φ = 0.035) with increasing B2. The velocity
reduction at the curve surface shows that the fluid flow occurs at the stretching curve
surface; thus, any increase in the velocity slip parameter of the fluid at the stretching
surface decreases the velocity field. Moreover, the higher values of B2 signify that the
friction connecting the blood and the surface is removed. The impact of suction on the
velocity is shown in Figure 4 for both the carrier-based fluid and the gold particle nanofluid.
Physically, the resistance in the blood flow occurs because of viscosity, which can be handled
by using suction. Increasing suction decreases the drag force at the sheet. Consequently,
the momentum boundary layer thickness also reduces in both cases.

Figure 5 shows the effect of the curvature on the velocity profile, which increases
the flow for both the carrier-based fluid and the gold particle nanofluid. The momentum
boundary layer thickness and the magnitude of the velocity also improve with increasing
curvature. Furthermore, the distance between the solution curves for the carrier-based
fluid is slightly similar compared to that between the outcome curves of the gold particle
nanofluid. Generally, this behavior of a fluid means that the bend of the curved stretching
surface enhances fluid flow over it. This rise in the velocity gradient is slightly more in the
carrier-based fluid compared to the gold particle nanofluid.

Figure 6 shows that the velocity of blood decreases as φ increases, which is responsible
for the reduction in the velocity of the boundary layer. Physically, a higher φ enhances
the blood viscosity, which consequently decreases the magnitude of the boundary layer
thickness. Figures 7 and 8 show that the velocity increases for both the carrier-based fluid
and the gold particle nanofluid due to the material and stretching/shrinking parameters.
In addition, the magnitude of the velocity and the momentum boundary layer thickness
increase with increasing material and stretching parameters. Both graphs are plotted for
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both fluids, where the increase in velocity is more for the carrier-based fluid compared to
the gold particle nanofluid.

3.2. Effect of Physical Parameters on the Temperature Distribution

Figures 9–15 show the effects of the magnetic, slip, suction, stretching/shrinking,
curvature, and radiation parameters on the temperature for the carrier-based fluid and the
gold particle nanofluid. Figure 9 shows that the temperature increases due to the magnetic
field for both fluids. This is because inclusion of the transverse strength of a magnetic
field in an electrically conducting fluid increases the Lorentz force. This strength bears the
potential to increase the blood temperature distribution.

Figure 10 shows that the velocity slip increases the temperature of the blood. The
temperature distribution and the thermal boundary layer thickness increase with increasing
slip for both the carrier-based fluid and the gold particle nanofluid because the slip slows
down the fluid motion and ultimately affects the temperature. It is also evident from this
figure that the increase in temperature is more for the nanofluid as compared to the regular
fluid for the larger impacts of slip constraint.

Figure 11 shows that for larger values of suction, the blood temperature at any point
of the flow is moderate for both the carrier-based fluid and the gold particle nanofluid. The
thermal boundary layer thickness and the temperature distribution decrease at higher suc-
tion for both fluids. Stretching/shrinking reduces the temperature, as shown in Figure 12,
for both fluids. A similar behavior is seen in Figure 12 for both fluids due to larger stretch-
ing compared to Figures 11 and 13, and shows that the temperature reduces due to the
curvature for both fluids. The thermal boundary layer thickness and the temperature dis-
tribution decrease for both fluids due to the higher curvature. The figure insert shows the
blood temperature distribution in terms of the significant effect of curvature, where the ther-
mal conductivity is more for the gold particle nanofluid compared with the carrier-based
fluid. From a physical point of view, this happens because the stretching curved surface
increases the fluid flow for the velocity profiles and indirectly contributes to reducing the
temperature distribution in terms of magnitude.

Radiation increases the temperature for both the carrier-based fluid and the gold
particle nanofluid (Figure 14), which consequently increases the significant boundary layer
thickness. Thus, the temperature of the boundary layer increases significantly. Moreover,
the temperature distribution is greater for the gold particle nanofluid compared with the
carrier-based fluid because the presence of gold nanoparticles produces more energy in
the form of heat and, consequently, the temperature rises. The temperature increases
due to the nanoparticle volume fraction in both fluids (Figure 15), because the inclusion
of gold nanoparticles increases the thermal conductivity of blood, which increases the
blood temperature.

3.3. Effect of Physical Parameters on the Skin Friction Coefficient and the Nusselt Number

The effects of the slip on skin friction coefficient and the Nusselt number against
stretching/shrinking (λ) for both the carrier-based fluid and the gold particle nanofluid
are shown in Figures 16 and 17, respectively. The velocity slip enhances the skin friction
coefficient but reduces the Nusselt number in both fluids. In addition, the skin friction
coefficient significantly shrinks due to stretching/shrinking, whereas heat transfer increases.
Moreover, the Nusselt number is higher in the gold particle nanofluid compared to the
carrier-based fluid, which ultimately enhances thermal conductivity. The effects of suction
on shear stress and heat transfer against λ are shown in Figures 18 and 19, respectively. The
skin friction coefficient shrinks due to suction, whereas the Nusselt number increases. The
thermophysical data of the base fluid (blood) and gold nanoparticles are listed in Table 1.
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Table 1. Thermophysical properties of blood and gold nanoparticles (Koriko et al. [32]).

Thermophysical Properties Blood Gold

ρ (kg/m3) 1050 19,300

cp (J/kgK) 3617 129

σ (S/m) 1090 4.1 × 106

k (W/mK) 0.52 318

Finally, Table 2 presents a comparison of the current outcomes of the skin friction
coefficient for B when B1 = Rd = S = M = B2 = φ = 0, λ = 1, and n = 1, which shows
favorable agreement. For more details about the current technique, Table 3 shows a compar-
ison of the current computational outcomes of the shear stress or friction factor for distinct
values of the shrinking parameter when B → ∞, B2 = M = φ = B1 = 0, n = 1, and S = 2
with the results of Roşca et al. [33]. The values show excellent agreement, proving the feasi-
bility of the present numerical scheme. In addition, the numerical computational values of
the skin friction coefficient and the heat transfer rate for the various constraints are given in
Table 4 for both the carrier-based fluid (φ = 0) and the gold particle nanofluid (φ = 0.035),
while the rest of the fixed parameters are Pr = 21, n = 2, S = 3.5, and B2 = 0.2. For the
carrier-based fluid, the skin friction coefficient increases by 18.815%, 27.626%, 6.231%, and
1.552 × 10−4% due to the impact of λ, M, B1, and Rd, respectively, while it decreases by
1.774% due to B. By contrast, for the gold particle nanofluid, the skin friction coefficient
increases by 18.311%, 15.034%, 4.541%, and 3.207 × 10−5% due to the effect of λ, M, B1,
and Rd, respectively, while it decreases by approximately 0.751% due to the curvature pa-
rameter. Moreover, due to λ and B1, the heat transport rate increases by 0.157% and 0.031%,
respectively, for the carrier-based fluid and by 0.156% and 0.027%, respectively, for the gold
particle nanofluid. Due to the effect of the magnetic, curvature, and radiation parameters,
the heat transport rate decreases by 0.078%, 6.42 × 10−3%, and 41.705%, respectively, for
the carrier-based fluid and by 0.053%, 8.39 × 10−3%, and 41.045%, respectively, for the
gold particle nanofluid. Generally, the increasing skin friction coefficient is better for both
fluids due to the magnetic and stretching parameters, while it is lower (approximately
1.552 × 10−4% and 3.207 × 10−5%, respectively) for the radiation parameter. Alternatively,
the heat transport rate is maximum for the stretching parameter for both fluids when the
parameter increases and minimum (about 6.42 × 10−3% and 8.39 × 10−3%, respectively)
for the curvature parameter. Finally, these numerically calculated values show that the skin
friction coefficient and the heat transfer rate are largely found in the carrier-based fluid
compared to the gold particle nanofluid.

Table 2. Comparison of the skin friction coefficient
(
− 1

2 Reb
1

n+1 CF

)
for different values of B with the

results of [34–36].

B
− 1

2 Reb
1

n+1 CF

Saleh et al. [34] Abbas et al. [35] Waini et al. [36] Current Outcome

5 1.15076 1.15763 1.15077 1.15756

10 1.07172 1.07349 1.07173 1.07347

20 1.03501 1.03561 1.03501 1.03566

30 1.02315 1.02353 1.02316 1.02353

40 1.01729 1.01759 1.01730 1.01704

50 1.01380 1.01405 1.01381 1.01440

100 1.00687 1.00704 1.00687 1.00703

200 1.00342 1.00356 1.00343 1.00354

1000 1.00068 1.00079 1.00068 1.00069

76



Mathematics 2021, 9, 921

Table 3. Comparison of the skin friction coefficient
(
− 1

2 Reb
1

n+1 CF

)
for different values of λ with the

results of Roşca et al. [33].

λ

− 1
2 Reb

1
n+1 CF

Roşca et al. [33]
Current Outcome

Numerical Outcome Analytical Outcome

−0.5 0.85289 0.85355 0.85365

−0.6 0.9786 0.97947 0.97966

−0.7 1.08255 1.08340 1.08382

−0.75 1.12366 1.12500 1.12563

−0.8 1.15619 1.15777 1.15879

−0.9 1.18214 1.18460 1.18796

−0.95 1.15876 1.16242 1.16340

−0.99 1.08018 1.08900 1.09448

Table 4. Skin friction coefficient
(

1
2

)
Reb

1
n+1 CF and Nusselt number Reb

−1
n+1 Nus for different parame-

ters at Pr = 21, n = 2, S = 3.5, and B2 = 0.2.

λ M B B1 Rd
(1/2)Reb

1
n+1 CF Reb

−1
n+1 Nus

φ=0 φ=0.035 φ=0 φ=0.035

1.5 0.5 1.5 0.3 2.0 5.92616 8.10476 27.00936 28.70528

1.7 - - - - 7.04118 9.58888 27.05197 28.75033

1.9 - - - - 8.23084 11.15728 27.09459 28.79556

1.5 0.5 1.5 0.3 2.0 5.92616 8.10476 27.00936 28.70528

- 5.0 - - - 7.56336 9.32326 26.98816 28.68989

- 10.0 - - - 8.74439 10.33223 26.97428 28.67789

1.5 0.5 1.5 0.3 2.0 5.92616 8.10476 27.00936 28.70528

- - 2.0 5.82099 8.04389 27.00762 28.70287

- - 2.5 5.76707 8.01154 27.00647 28.70138

1.5 0.5 1.5 0.3 2.0 5.92616 8.10476 27.00936 28.70528

- - - 0.7 - 6.29542 8.47280 27.01654 28.71433

- - - 1.1 - 6.70957 8.85348 27.02234 28.72237

1.5 0.5 1.5 0.3 2.0 5.92616 8.10476 27.00936 28.70528

- - - - 4.0 5.92617 8.10476 15.74498 16.92315

- - - - 6.0 5.92617 8.10476 11.14985 12.03202

4. Conclusions

This study discussed the effects of a magnetic field on the flow of Sisko fluid containing
gold nanoparticles over a porous, curved surface in the presence of radiation and partial
slip. The key outcomes were as follows:

• The velocity of blood containing gold nanoparticles decreases with increasing intensity
of an external magnetic field.

• The effect of thermal radiation can significantly modify the blood temperature. With increas-
ing thermal radiation, the thickness of the thermal boundary layer increases significantly.

• An increase in the erythrocyte slip at the curved wall surface increases the temperature
of the boundary layer.
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• When suction increases in the curved wall surface, both the temperature and the
velocity of blood decrease.

The current theoretical estimates will be significant for the more precise treatment of
patients with regard to better outcomes of thermal therapy for reducing pain. In addition,
this investigation will improve the understanding of thermal processes that occur during
blood flow in arterial microvessels. Clinicians involved in tumor and cancer treatment
will begin using the electromagnetic hyperthermia technique, which involves overheating
target tissues to about 42 ◦C. The results show that the flow velocity of blood can be
managed by suitably adjusting (decreasing/increasing) the magnetic field intensity. This
finding should help surgeons who generally want to maintain blood flow at a preferred
level throughout surgery.
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Abstract: The mathematical modeling of unsteady flow of micropolar Cu–Al2O3/water nanofluid
driven by a deformable sheet in stagnation region with thermal radiation effect has been explored
numerically. To achieve the system of nonlinear ordinary differential equations (ODEs), we have
employed some appropriate transformations and solved it numerically using MATLAB software
(built-in solver called bvp4c). Influences of relevant parameters on fluid flow and heat transfer
characteristic are discussed and presented in graphs. The findings expose that double solutions
appear in shrinking sheet case in which eventually contributes to the analysis of stability. The
stability analysis therefore confirms that merely the first solution is a stable solution. Addition of
nanometer-sized particle (Cu) has been found to significantly strengthen the heat transfer rate of
micropolar nanofluid. When the copper nanoparticle volume fraction increased from 0 to 0.01 (1%)
in micropolar nanofluid, the heat transfer rate increased roughly to an average of 17.725%. The result
also revealed that an upsurge in the unsteady and radiation parameters have been noticed to enhance
the local Nusselt number of micropolar hybrid nanofluid. Meanwhile, the occurrence of material
parameter conclusively decreases it.

Keywords: micropolar hybrid nanofluid; dual solution; stretching/shrinking sheet; stability analysis;
thermal radiation

1. Introduction

For a number of years, the studies of micropolar fluid flow have captivated the
attention of numerous scientists in understanding the fluid behavior especially in the study
of rheological complex fluids, as, for example, the colloidal fluids, polymeric suspension,
liquid crystals, animal blood, etc. [1]. In sight of these important applications, Eringen [2,3]
was the first who originated the microfluid theory in his papers of simple microfluids and
theory of micropolar fluids. This kind of fluids demonstrate the micro-rotational effect
and micro-rotational inertia. Afterwards, this theory was then extended by Eringen [4] by
taking into account the thermal effect and thus established the thermomicropolar fluids
theory. Implementing the idea of Eringen, the micropolar fluid flow using a boundary
layer approximation has been derived by many researchers in various problems such as
in stagnation region [5], semi-infinite plate [6], cylinder [7], and rotating surface [8]. After
some years, Nazar et al. [9] initiated the theoretical study of micropolar fluid flow when
the sheet is stretch in the stagnation region, and soon after, Ishak et al. [10] and Yacob and
Ishak [11] analyzed the same fluid induced by a shrinking sheet and observed the existence
of nonunique solutions. Afterwards, Sandeep and Sulochana [12] undertook a numerical
research of unsteady magnetohydrodynamic (MHD) micropolar fluid in both permeable
shrinking and stretching sheet. The heat transfer characteristic of micropolar fluid flow
driven by a shrinking sheet was discussed by Mishra et al. [13]. Soon after, Lund et al. [14]
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noticed the existence of triple solutions at specific values of suction parameter in micropolar
fluid when the sheet is shrunk exponentially and conducted the stability analysis. Further,
a number of attempts toward this path have been made in the investigations of [15–17].

The inclusion of nanoparticles in a conventional fluid can literally change the flow and
heat transfer capabilities, thereby can boost the thermal conductivity of the conventional
fluid. It seems that Choi and Eastman [18] was the earlier person who conceived the idea
of nanofluid, i.e., nanoparticle suspended in base fluid. Since then, nanofluids have been
widely used in industrial cooling application [19], biomedical technology [20], solar ther-
mal application [21], and many more. Numerous researchers, such as Gangadhar et al. [22],
Chaudhary and Kanika [23], Naqvi et al. [24] and Anuar et al. [25,26], have scrutinized
the concept of nanofluid flow and its heat transfer in their work. However, less stud-
ies are observed in micropolar nanofluid. The investigation of micropolar nanofluid
driven by a stretching sheet was explored numerically by Hussain et al. [27]. Afterwards,
Bourantas and Loukopoulos [28] and Noor et al. [29] scrutinized the micropolar nanofluid
flow in an inclined square and vertical plate, respectively. The numerical investigation
of micropolar nanofluid driven by a shrinking and stretching sheet have been made by
Gangadhar et al. [30] and they pointed out that double solutions exist in certain range of
parameters. Meanwhile, Dero et al. [31] point out the existence of triple solutions in their
research involving micropolar nanofluid when the sheet is stretch/shrunk exponentially.
The studies of micropolar nanofluid in an inclined stretching/shrinking have been scruti-
nized by Lund et al. [32] with consideration of convective boundary conditions. They also
observed the occurrence of nonunique solutions in their work and performed the stability
analysis. Recently, Abdal et al. [33], Amjad et al. [34], Rafique et al. [35] and many others
have explored the micropolar nanofluid flow problem in different surfaces and aspects.

Nevertheless, a new modern kind of nanofluid which can efficiently improve the heat
transfer are later being introduced in the industry are recognized as hybrid nanofluid,
i.e., mixture of two types of nanoparticle dispersed into a base fluid. This new kind of
fluid, however, shows a great advance in heat conductivity and it proved by the work of
Madhesh and Kalaiselvam [36], Tahat and Benim [37], Devi and Devi [38], etc. Following
this, mathematical investigation specifically in boundary layer flow in hybrid nanofluid has
attracted a few researchers to explore it in various surfaces such as in stretching/shrinking
sheet [39], curved surface [40], thin needle [41], Riga plate [42], etc. By opting the novel idea
of hybrid nanofluid, Subhani and Nadeem [43] scrutinized the behavior of hybrid nanofluid
(Cu-TiO2/water) in micropolar fluid in a porous medium past an exponentially stretching
sheet and point out that the heat transfer rate for micropolar hybrid nanofluid is greater
than micropolar nanofluid. Afterwards, by taking into attention the simultaneous effects
of MHD and slip, Nadeem and Abbas [44] examined the micropolar hybrid nanofluid
flow past a circular cylinder. In another study of Abbas et al. [45] and Al-Hanaya [46], a
theoretical investigation of micropolar hybrid nanofluid using carbon nanotubes (SWCNT
and MWCNT) as a nanoparticle over an exponentially stretching Riga plate and curved
stretching sheet have been investigated. Apparently, the research related to micropolar
hybrid nanofluids are limited in number. Hence, the principal goal of this investigation is to
address the behavior of micropolar hybrid nanofluid in a deformable sheet, i.e., stretching
and shrinking. It is important to note that deformable sheet is not a new crucial topic
among the researchers in the fluid field since their applications are well recognized in
processing industries especially in polymer processing, glass fiber production, cooling, and
drying of paper and many others [47].

The impact of thermal radiation is also discussed in this paper, where this effect is
crucial in solar power technology, electrical power generation, astrophysical flows, and
other industrial fields. In the scenario of high-temperature flow processes, thermal radia-
tion effects are also extremely important [48]. There is a lot of comprehensive literature
now available that concerns with the thermal radiation effect on the flow of the bound-
ary layer. For instance, Sajid and Hayat [49] have been analyzing the thermal radiation
effect on the viscous flow as the sheet is stretch exponentially and realized that the ther-
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mal boundary layer thickness thickens as the radiation parameter increase. Afterwards,
Nadeem et al. [50] extend the investigations of [49] by considering it in Jeffrey fluid. The
numerical investigation of micropolar nanofluid over the stretching sheet with the effect of
thermal radiation, MHD, and heat source/sink have been examined by Pal and Mandal [51].
Again, Gireesha et al. [52] addresses the Jeffrey nanofluids problem driven by a nonlinearly
permeable stretching sheet under the effect of radiation and magnetohydrodynamic. In
a recent study, Yashkun et al. [53] noticed the occurrence of dual solutions in their work
of MHD hybrid nanofluid past a deformable sheet with thermal radiation effect. Hence,
motivated by the aforementioned work, our aim here is to scrutinize the influence of
thermal radiation towards the heat transfer of micropolar hybrid nanofluid.

In brief, this research paper is an extended work of Nazar et al. [9] to the case of
unsteady two-dimensional hybrid nanofluid in shrinking sheet and take into attention the
effect of thermal radiation. Given the above-mentioned study, the utilization of hybrid
nanofluid (Cu and Al2O3) as the new heat transfer fluid for the micropolar flow problem
with the thermal radiation effect, has not been performed up to now. In addition, this
analysis also comprises a novel era for scientists to discover the shrinking features of
micropolar hybrid nanofluids. Furthermore, the novelty of this study can also be seen
in the discovery of non-unique solutions and the execution of stability analysis. To the
best of authors’ knowledge, the results of the present work is new and still not considered
and published by any researchers. Therefore, current studies are expected to bring good
benefits to researchers who are experimentally working on micropolar hybrid nanofluids,
and these results are also expected to reduce the cost of experimental work in the future.

2. Mathematical Framework

2.1. Basic Equations

The unsteady two-dimensional flow of micropolar Cu–Al2O3/water nanofluid past a
deformable sheet in the stagnation region with the influence of thermal radiation impact
are investigated in this work as exemplified in Figure 1. The Cartesian coordinates used
are x and y, given that x−axis is considered along the sheet while y−axis normal to it,
respectively, the sheet is located in the plane y = 0 and the fluid fill the half space at y ≥ 0.
The temperature far from the surface (inviscid flow) and at the surface are represented by
T∞ and Tw(x, t). The sheet is stretch and shrunk along the x−axis with velocity uw(x, t)
and the free stream velocity is denoted by ue(x, t).

 

Figure 1. Schematic model of shrinking sheet.
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From all of the above circumstance, the partial differential equations which govern
the flow are stated as (see Nazar et al. [9], Bhattacharyya et al. [54], Roy et al. [55]):

∂u
∂x

+
∂v
∂y

= 0 (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
∂ue
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+ ue

∂ue

∂x
+

μhn f + κ

ρhn f

∂2u
∂y2 +

κ

ρhn f

∂N
∂y

(2)
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+ u
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ς
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)
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∂T
∂t

+ u
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=
khn f(

ρCp
)

hn f

∂2T
∂y2 − 1(

ρCp
)

hn f

∂qr

∂y
(4)

Here, the velocity component in the x direction is denoted as u whereas v is the
velocity component along y axis, t and T are time and temperature, N refers to the angular
velocity (microrotation) in the xy−plane, qr signifies the radiative heat flux, κ is the vortex
viscosity and j is the micro inertial density. In addition, ς is the spin gradient viscosity
given by (Ahmadi [6])

ς =
(

μ f +
κ

2

)
j (5)

where j = ν f /ue is specified as the reference length. Further, khn f , ρhn f , μhn f and
(
ρCp
)

hn f
are the thermal conductivity, density, dynamic viscosity, and heat capacity of Cu–Al2O3/
water.

The accompanying conditions are

u = uw(x, t), v = 0, N = −n ∂u
∂y , T = Tw(x, t) as y = 0

u → ue(x, t), N → 0, T → T∞ as y → ∞
(6)

where n is the constant in the range of [0, 1]. It is worthwhile to note that for n = 0 which
implies that N = 0 near the wall, exemplifies the microelements near the wall surface
are incapable to rotate, i.e., concentrated particle flows (Jena and Mathur [56]) or also
denoted as strong concentration of microelements (Guram and Smith [57]). However, for
the case n = 0.5 which refer to a weak concentration of microelements, the disappearing of
anti-symmetric part of the stress tensor is noted (Ahmadi [6]). Further, the case n = 1 is
utilized for the modelling of turbulent boundary layer flows (Peddieson [58]). While the
velocity of deformable sheet, free stream and temperature at the surface are referred from
the work of Zainal et al. [59] which given as

uw(x, t) =
cx

1 − bt
, ue(x, t) =

ax
1 − bt

, Tw(x, t) = T∞ +
T0ax2

2ν f (1 − bt)3/2 (7)

here, a(> 0) and c(> 0) are constants, b measures the unsteadiness of the problem and
T0 > 0 is the reference temperature.

Using the Rosseland’s approximation (Brewster [60]), the qr term can be expressed
clearly as below

qr = −4 σ∗

3 k∗
∂T4

∂y
(8)

where σ∗ and k∗ signify the constant of Stefan–Boltzmann and mean absorption’s coefficient.
Implementing the Taylor series and ignored the higher-order terms, T4 is expanded about
T∞; hence, we have T4 ≈ 4T3

∞T − 3T4
∞. Subsequently, Equation (4) become

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 +

16 σ∗T3
∞

3 k∗
(
ρCp
)

hn f

∂2T
∂y2 (9)
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2.2. Thermophysical Traits of Hybrid Nanofluid

The physical traits of hybrid nanofluids are prescribed in Table 1. In Table 1, the
subscript hn f , n f , f and s signify the hybrid nanofluid, nanofluid, fluid and nanoparticle,
whereas s1 and s2 symbolize the first nanoparticle and second nanoparticle, respectively.
Furthermore, ϕ1 represents the first nanoparticle volume fraction while ϕ2 denotes the
second nanoparticle volume fraction. In this investigation, copper (Cu) is picked as the
second nanoparticle volume fraction, alumina (Al2O3) is picked as the first nanoparticle
volume fraction and water act as a base fluid. Table 2 displays the thermophysical traits of
nanoparticles and base fluid. It is important to note that Al2O3 is originally disseminated
into the water to achieve the appropriated hybrid nanofluid, i.e., Cu-Al2O3/water, and
then Cu is disseminated into the Al2O3/water nanofluid. Additionally, the volume fraction
of Al2O3 nanoparticle is set to 1% and Cu is fluctuated from 0 to 2%.

Table 1. Physical traits of hybrid nanofluids (Devi and Devi [38]).

Properties Hybrid Nanofluid

Density ρhn f = (1 − ϕ2)
[
(1 − ϕ1)ρ f + ϕ1ρs1

]
+ ϕ2ρs2

Heat capacity
(
ρCp
)

hn f = ϕ2
(
ρCp
)

s2 + (1 − ϕ2)
[
(1 − ϕ1)

(
ρCp
)

f + ϕ1
(
ρCp
)

s1

]
Dynamic viscosity μhn f =

μ f

(1−ϕ1)
2.5(1−ϕ2)

2.5

Thermal conductivity khn f
kb f

=
ks2+2kb f −2ϕ2(kb f −ks2)
ks2+2kb f +ϕ2(kb f −ks2)

where kb f
k f

=
ks1+2k f −2ϕ1(k f −ks1)
ks1+2k f +ϕ1(k f −ks1)

Table 2. Thermo physical properties (Oztop and Abu-Nada [61]).

Physical Properties

Cp

(
J kg−1K−1

)
ρ
(
kg m−3) k

(
W m−1K−1)

water 4179 997.1 0.613
Cu 385 8933 400

Al2O3 765 3970 40

2.3. Similarity Solutions

In this work, the subsequent similarity transformation is introduced (Roy et al. [55])

η =

(
a

ν f (1 − bt)

)1/2

y, ψ =

( aν f

1 − bt

)1/2
x f (η), N =

(
a

ν f (1 − bt)

)1/2
a

(1 − bt)
x h(η), θ(η) =

T − T∞

Tw − T∞
(10)

where ν f and η are the fluid kinematic viscosity and similarity variable, while f , h and θ
are the dimensionless function. Further, primes signify the differentiation with respect to η,
while the stream function ψ is specified as v = −∂ψ/∂x and u = ∂ψ/∂y.

Invoking the similarity variables (10), Equation (1) is identically fulfilled and Equations (2),
(3) and (9) are reduced into the following similarity equations

μhn f /μ f

ρhn f /ρ f
(1 + K) f ′′′ − f ′2 + f f ′′ + 1 − A

(
f ′ − 1 +

1
2

η f ′′
)
+

K
ρhn f /ρ f

h′ = 0 (11)

1
ρhn f /ρ f

(
μhn f

μ f
+

K
2

)
h′′ + f h′ − f ′h − A

2
(
3h + ηh′

)− K
ρhn f /ρ f

(
2h + f ′′

)
= 0 (12)

1
Pr
(
ρCp
)

hn f /
(
ρCp
)

f

(
khn f

k f
+

4
3

Rd

)
θ′′ + f θ′ − 2 f ′θ − A

2
(
3θ + ηθ′

)
= 0 (13)
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Here, the material parameter, unsteady parameter, Prandtl number and radiation
parameter which denoted by K, A, Pr and Rd are defined by

K =
κ

μ f
, A =

b
a

, Pr =
ν f

α f
, Rd =

4σ∗T3
∞

k f k∗ , (14)

The conditions (6) become

f ′(0) = c/a =λ, f (0) = 0, h(0) = −n f ′′(0), θ(0) = 1,
f ′(η) → 1, h(η) → 0, θ(η) → 0 as η → ∞

(15)

where the stretching/shrinking parameter is denoted by λ with λ > 0 signifies the sheet is
stretch, λ = 0 refers to static plate and λ < 0 denotes the sheet is shrunk.

In this investigation, the physical quantities of interest are specified as

Cf =
1

ρ f u2
e

[(
μhn f + κ

)(∂u
∂y

)
+ κN

]
y=0

, Nux =
x

k f (Tw − T∞)

[
−khn f

(
∂T
∂y

)
y=0

+ qr|y=0

]
(16)

here, Cf is the skin friction coefficient and Nux is the Nusselt number. Using variables
(10) and (16), the following local skin friction coefficient and local Nusselt number (heat
transfer rate) are achieved

Cf Re1/2
x =

(
μhn f

μ f
+ K

)
f ′′ (0) + Kh(0), NuxRe−1/2

x = −
(

khn f

k f
+

4
3

Rd

)
θ′(0) (17)

where Rex = uex/ν f is the local Reynolds number.

3. Stability of the Solutions

Due to the occurrence of non-uniqueness in the present research, the stability analysis
is executed by referring to the work of Merkin [62], Weidman et al. [63], and Harris et al. [64].
These analyses have been implemented by other researchers too (see for example the work
of [14–16,25,26,32,39,59]). Some important steps are implemented to identify the stability of
solutions, i.e., (i) introducing a new dimensionless time variables and similarity variables,
(ii) implement the linear eigenvalue equations, and (iii) relax the boundary conditions.

3.1. New Similarity Transformation

A new dimensionless time variable τ need to be introduced as follows (Zainal et al. [59])

τ =
a

1 − bt
t (18)

while the similarity variables (10) are replaced by

η =

(
a

ν f (1 − bt)

)1/2

y, ψ =

( aν f

1 − bt

)1/2
x f (η, τ), N =

(
a

ν f (1 − bt)

)1/2
a

(1 − bt)
x h(η, τ), θ(η, τ) =

T − T∞

Tw − T∞
(19)

By applying Equations (18) and (19) in Equations (1)–(3) and (9), the new transformed
differential equations are attained

μhn f /μ f

ρhn f /ρ f
(1 + K)

∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
+ 1 − A

(
∂ f
∂η

+
1
2

η
∂2 f
∂η2 − 1

)
+

K
ρhn f /ρ f

∂h
∂η

− (Aτ + 1)
∂2 f

∂η∂τ
= 0 (20)

1
ρhn f /ρ f

(
μhn f

μ f
+

K
2

)
∂2h
∂η2 + f

∂h
∂η

− ∂ f
∂η

h − A
2

(
3h + η

∂h
∂η

)
− K

ρhn f /ρ f

(
2h +

∂2 f
∂η2

)
− (Aτ + 1)

∂h
∂τ

= 0 (21)
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1
Pr
(
ρCp
)

hn f /
(
ρCp
)

f

(
khn f

k f
+

4
3

Rd

)
∂2θ

∂η2 + f
∂θ

∂η
− 2

∂ f
∂η

θ − A
2

(
3θ + η

∂θ

∂η

)
− (Aτ + 1)

∂θ

∂τ
= 0 (22)

and the conditions become

f (0, τ) = 0, ∂ f
∂η (0, τ) = λ, h(0, τ) = −n ∂2 f

∂η2 (0, τ), θ(0, τ) = 1,
∂ f
∂η (η, τ) → 1, h(η, τ) → 0, θ(η, τ) → 0 as η → ∞

(23)

3.2. Introducing Linear Eigenvalue Equations

The stability of the steady flow solutions can be explored by setting f (η) = f0(η),
h(η) = h0(η) and θ(η) = θ0(η), where it satisfied the boundary value problems (11)–(13)
and (15). Thus, the following equations are introduced (Weidman et al. [63]):

f (η, τ) = f0(η) + e−γτ F(η, τ), h(η, τ) = h0(η) + e−γτ H(η, τ), θ(η, τ) = θ0(η) + e−γτG(η, τ), (24)

where F(η, τ), H(η, τ), G(η, τ) and their derivatives are small then f0(η), h0(η) and θ0(η).
In addition, γ is the unknown eigenvalue which will be used to specify the stability of the
solutions. Substitute Equation (24) into (20)–(22) and let τ → 0 , in which F(η) = F0(η),
H(η) = H0(η) and G(η) = G0(η), thereby the linearized eigenvalue equations relevant to
the problem are

μhn f /μ f

ρhn f /ρ f
(1 + K)F0

′′′ +
(

f0 +
A
2

η

)
F0

′′ + F0 f0
′′ − (2 f0

′ + A − γ
)

F0
′ + K

ρhn f /ρ f
H0

′ = 0 (25)

1
ρhn f /ρ f

(
μhn f

μ f
+

K
2

)
H0

′′ +
(

f0 − A
2

η

)
H0

′ + F0h0
′ − F0

′h0 −
(

f0
′ + 3

2
A − γ

)
H0 − K

ρhn f /ρ f

(
2H0 + F0

′′) = 0 (26)

1
Pr
(
ρCp
)

hn f /
(
ρCp
)

f

(
khn f

k f
+

4
3

Rd

)
G0

′′ +
(

f0 − A
2

η

)
G0

′ + F0θ0
′ − 2F0

′θ0 −
(

2 f0
′ + 3

2
A − γ

)
G0 = 0 (27)

The conditions now take the following form

F0
′(0) = 0, F0(0) = 0, H0(0) = −n F0

′′(0), G0(0) = 0,
F0

′(η) → 0, H0(η) → 0, G0(η) → 0, as η → ∞
(28)

3.3. Relaxation of Boundary Conditions

To solve the stability model, we need to relax the boundary conditions as proposed
by Harris et al. [64]. For that reason, the conditions F0

′(η) → 0 as η → ∞ can be replaced
by new conditions F0

′′(0) = 1. It must be pointed out that the linearized boundary value
problem (25)–(28) together with new conditions F0

′′(0) = 1 will yield the unlimited set of
unknown eigenvalues (γ1 < γ2 < γ3 < . . .). If the smallest eigenvalues γ show a positive
sign, the solutions observed an initial decay of perturbation and accordingly indicates a
stable solution. On the other hand, as the smallest eigenvalues γ show a negative sign, an
early growth of disruption is noticed which consequently signifies unstable solution.

4. Numerical Solutions

To solve the boundary value problems (11)–(13) with boundary conditions given by
(15), we have adopted a built-in function called bvp4c from Matlab package. Further, to
access the precision of current algorithm, the current results of skin friction coefficient f ′′(0)
are compared with previously reported solutions of Ishak et al. [10], who used Keller-box
method in their work, Mahapatra and Nandy [65], who pursued the shooting method
for their computation and Zainal et al. [59] which employed the bvp4c solver. These
comparative solutions are revealed in Table 3 for selected values of shrinking parameter
(λ < 0). It can be point out from these tables that there is good agreement with these
methods (error is relatively small), thereby confirming the consistency of the approach used.
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Furthermore, this validates the present model and proves the accuracy of the bvp4c solver
in solving a boundary layer problem as the present results able to withstand the Keller-box
method and shooting method which have been employed by Ishak et al. [10] and Mahapatra
and Nandy [65]. In this part, the results of local skin friction Cf Re1/2

x , Nusselt number
NuxRe−1/2

x , velocity profile f ′(η), microrotation profile h(η) as well as temperature profile
θ(η) are illustrated graphically to explore the influence of some governing parameters such
as Cu nanoparticle volume fraction (ϕ2), unsteady parameter (A), material parameter (K)
and radiation parameter (Rd).

Table 3. Comparison values of f ′′(0) when A = K = n = 0 and ϕ1 = ϕ2 = 0 for different λ values.

λ
Refs. [10]

(Keller-Box Method)
Refs. [65]

(Shooting Method)
Refs. [59]

(bvp4c Solution)
Present Result

(bvp4c Solution)

−0.25 1.402241 1.402242 1.402241 1.402241
−0.5 1.495670 1.495672 1.495670 1.495670
−0.75 1.489298 1.489296 1.489298 1.489298
−1 1.328817 [0] 1.328819 [0] 1.328817 [0] 1.328817 [0]
−1.1 1.186681 [0.049229] 1.186680 [0.049229] 1.186680 [0.049229] 1.186680 [0.049229]
−1.15 1.082231 [0.116702] 1.082232 [0.116702] 1.082231 [0.116702] 1.082231 [0.116702]
−1.2 0.932474 [0.233650] 0.932470 [0.233648] 0.932473 [0.233650] 0.932473 [0.233650]
−1.246 - 0.584374 [0.554215] 0.609826 [0.529035] 0.609826 [0.529035]
−1.2465 0.584295 [0.554283] - - 0.584282 [0.554296]

‘[ ]’ Second solution.

The effect of Cu nanoparticle volume fraction ϕ2 against stretching or shrinking
parameter λ on the local skin friction Cf Re1/2

x and Nusselt number NuxRe−1/2
x as given in

Equation (17) are shown in Figure 2a,b. It is apparent from these figures that for shrinking
parameter (λ < 0), the occurrence of dual solutions is noted. However, it is remarked that
no solution exists when λ < λc, which indicates that the boundary layer is detach from the
surface and the principle of boundary layer theory are no longer valid. Moreover, λc is the
critical point that connected the first and second solutions. In addition, a unique solution
is noticed when the sheet is stretched (λ > 0). It is clear that for ϕ2 = 0, the problem
reduces to the micropolar nanofluid. From these figures, it is discovered that upsurge
in Cu nanoparticle volume fraction ϕ2 enhances the local skin friction Cf Re1/2

x and local
Nusselt number NuxRe−1/2

x for all domains of stretching and shrinking parameter λ in first
solution but a small change is noted for the second solution. This finding proves that the
increment of Cu nanoparticle volume fraction ϕ2 can improve the heat transfer efficiency.
This also implies that hybrid nanofluid provides a better heat performance than nanofluid.
Furthermore, the enhancement of Cu nanoparticle volume fraction ϕ2 on local skin friction
Cf Re1/2

x and Nusselt number NuxRe−1/2
x fasten the detachment of boundary layer flow.

Figure 3a–c exemplify the impact of Cu nanoparticle volume fraction parameter ϕ2 on the
velocity profile f ′(η), microrotation profile h(η) and temperature profile θ(η) for shrinking
sheet (λ = −1.25). It reveals that augmentation of Cu nanoparticle volume fraction ϕ2
depreciates the momentum and microrotation boundary layer thickness in first and second
solutions. Meanwhile, the thermal boundary layer thickness increases as Cu nanoparticle
volume fraction ϕ2 increases for the first solution, however a contrary observation is noted
for the second solution. Furthermore, one can see that the boundary layer thickness of
the first solution was slimmer than second solution. In addition, all the profiles published
are asymptotically satisfied the boundary conditions (15) and eventually supported the
findings obtained in Figure 2a,b.
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Figure 2. (a) Cf Re1/2
x ; (b) NuxRe−1/2

x with λ for various ϕ2.

 

(a) (b) 

Figure 3. (a) f ′(η); (b) h(η); (c) θ(η) for various ϕ2.

Figure 4a,b show the impact of unsteady parameter A = 0, 0.1, 0.2 on the local skin
friction Cf Re1/2

x and Nusselt number NuxRe−1/2
x towards stretching/shrinking parameter

λ. The occurrence of unsteady parameter A consequently elevates the local skin friction
Cf Re1/2

x and Nusselt number NuxRe−1/2
x . It must be noted that the flow corresponds to

the steady micropolar flow when A = 0 and it is numerically observed that dual solution
exists as −1.24641 < λ < −1 and a unique solution exists when λ ≥ −1. However, the
physical character of flow changes when the flow becomes unsteady. For instance, as the
unsteadiness parameter increase, i.e., A = 0.1 and A = 0.2, the range of similarity solutions
to exist also increases where dual solutions is observed in the range of −1.31162 < λ < −1
and −1.38029 < λ < −1, respectively. The unique solution however only exists as λ ≥ −1
for both case of A and concurrently no solution is noticed when λ < λc. In short, a raise in
unsteady parameter A act in postponing the boundary layer detachment. On the other side,
Figure 5a–c portray the discrepancy of velocity f ′(η), microrotation h(η) and temperature
θ(η) profiles when unsteady parameter A fluctuates from 0 to 0.15. For the first solution,
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the diminished of momentum boundary layer thickness is observed when the unsteady
parameter A increases as shown in Figure 5a, but a reverse observation is remarked for
the second solution. Furthermore, the microrotation boundary layer thickness diminishes
with an increment of unsteady parameter A values in the first solution except near the
sheet, while an opposing trend is remarked for the second solution. It is also interesting to
observe from these figures that for both solutions, the thermal boundary layer thickness
increase with an upsurge of unsteady parameter A.

 
(a) (b) 

 
(c) 

Figure 4. (a) Cf Re1/2
x ; (b) NuxRe−1/2

x with λ for various A.

Figure 6a,b and Figure 7a–c are portray to discuss the effect of material parameter
K on the local skin friction Cf Re1/2

x , local Nusselt number NuxRe−1/2
x , velocity profile

f ′(η), microrotation profile h(η) and temperature profile θ(η) for Cu-Al2O3/water. It
is obvious that existence of material parameter (K = 1, 2) give rises to the local skin
friction Cf Re1/2

x if compared to the absence of material parameter (K = 0), i.e., no vortex
viscosity. However, different results are observed for the local Nusselt number NuxRe−1/2

x
where the nonexistence of micropolar fluid (K = 0) cause an enhancement in comparison
with the existence of material parameter (K = 1, 2). This phenomenon reveals the fact
that upsurge value of material parameter gives rise on the vortex viscosity in the fluid
flow which consequently enhance the skin friction at the wall and decrease the rate of
heat transfer at the wall. Additionally, we observed that an upsurge values of material
parameter prompt the domain of similarity solutions to exist become narrow. For instance,
the similarity solutions in the nonexistence of material parameter are noted in the range of
−1.31178 ≤ λ ≤ 1, while in the existence of material parameter (K = 1, 2), the range of
solutions are observed to be −1.31164 ≤ λ ≤ −1 and −1.31162 ≤ λ ≤ −1. Furthermore,
an upsurge values of material parameter K causing the thickness of the momentum and
thermal boundary layer to increase in first and second solutions. We can see from Figure 7b
that the microrotation boundary layer thickness for first and second solutions near the
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sheet decreases when this parameter rises while the contrary trend is observed for the
large η.
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(a) (b) 

Figure 5. (a) f ′(η); (b) h(η); (c) θ(η) for various A.

 

(a) (b) 

 

(c) 

Figure 6. (a) Cf Re1/2
x ; (b) NuxRe−1/2

x with λ for various K.
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(a) (b) 

Figure 7. (a) f ′(η); (b) h(η); (c) θ(η) for various K.

The influence of radiation parameter Rd on the local Nusselt number NuxRe−1/2
x and

temperature profile θ(η) are portrayed in Figure 8a,b, respectively. We have noticed that the
radiation parameter Rd has no control on the flow field, which is evident from Equations
(11)–(13). The local Nusselt number is discovered to increase with an upsurge values
in radiation parameter Rd. Furthermore, the thermal boundary layer thickness become
thicker when this parameter raises in the first solution and it became slimmer in the second
solution. As can be seen from Figure 8b, this parameter however does not give effect on
the range of similarity solutions to occur, i.e., the critical value for stretching/shrinking
parameter λc is the same for all values of radiation parameter Rd. It is noteworthy that the
distribution of temperature in the fluid is significantly affected by the radiation parameter
Rd. Physically, this is due to the fact that the heat is produced due to the radiation process
and therefore, enhances the fluid temperature.

The boundary value problems (11)–(13) together with boundary conditions (15) ob-
serve the occurrence of non–unique solutions for some governing parameters. The phe-
nomenon of non-unique solutions namely first and second solutions are proved and
portrayed as in Figures 2–8. Accordingly, an investigation on the stability analysis has been
executed in this present work so that we can identified the most stable solutions. Therefore,
the linearized Equations (25)–(27) along with conditions (28) have been solved with the aid
of the bvp4 function in MATLAB numerically. The smallest eigenvalues γ on the selected
parameter A and λ from Figure 4a,b are listed in Table 4. This table shown that the second
solution displays the negative values of γ, whereas the first solution demonstrates the
positive values of γ. The smallest eigenvalues γ against λ have been plotted in Figure 9.
This figure eventually supported the findings obtained from Table 4 except when the
values of stretching/shrinking parameter λ approach its critical value where we observed
unstable solutions for both solutions. In reference from the previous literature, we can
deduce that the first solution is stable, on the contrary, the second solution is unstable. It
worth noting that this analysis is important in identifying the stable solution when there is
exist non-unique solutions so that the flow behavior can be predict accurately.
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Table 4. Smallest eigenvalues γ for selected A and λ when ϕ1 = ϕ2 = 0.01, Rd = 0.1, K = 1 and
n = 0.5.

A λ 1st Solution 2nd Solution

0 −1.2462 0.0174 −0.0583
−1.246 0.0323 −0.0728
−1.24 0.1893 −0.2253

0.1 −1.3112 0.0036 −0.1086
−1.311 0.0156 −0.1204
−1.31 0.0577 −0.1616

0.2 −1.3785 0.0224 −0.2193
−1.378 0.0385 −0.2348
−1.37 0.1950 −0.3832

 

(a) (b) 

Figure 9. Smallest eigenvalues γ against λ when ϕ1 = ϕ2 = 0.01, A = Rd = 0.1, K = 1, n = 0.5.

5. Conclusions

Theoretical studies of unsteady micropolar Cu–Al2O3/water flow over a deformable
sheet with thermal radiation effect has been examined numerically. The similarity solutions
were produced by utilizing the bvp4c function from MATLAB software. The impact of
emerging parameters has been examined and illustrated graphically. Thus, the conclusions
can be outlined as follows:

• The presence of double solutions is noticeable for shrinking sheet whereas a unique
solution is observed for stretching sheet.

• The stability analysis was carried out and the first solution has proven to be a stable
solution, whereas the other solution is not a stable solution.

• A raise in Cu nanoparticle volume fraction ϕ2 in micropolar nanofluid has tendency
to improve the local Nusselt number and local skin friction for all domain of stretch-
ing/shrinking parameter λ.

• The heat transfer rate increased roughly to an average of 17.725% when the copper
nanoparticle volume fraction increased from 0 to 0.01 (1%) in a micropolar nanofluid.

• The rising of unsteady parameter A and radiation parameter Rd in micropolar hybrid
nanofluid increase the local Nusselt number while the reverse trend is observed with
an increase of material parameter K.

• The local skin friction enhances as the value of unsteady parameter A and material
parameter K increase.

• The domains of the similarity solutions decrease with a raise in Cu nanoparticle
volume fraction ϕ2 and material parameter K, therefore fastens the boundary layer
separation. However, upsurge value of unsteady parameter A delays the boundary
layer separation.
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Nomenclature

a, b, c positive constants [s−1]

A unsteady parameter [-]

Cf skin friction coefficient [-]

Cp specific heat at constant pressure [Jkg−1K−1]

f dimensionless stream function [-]

h dimensionless angular velocity [-]

j microinertia density [m2]

k thermal conductivity [Wm−1K−1]

k∗ mean absorption coefficient [m−1]

K dimensionless material parameter [-]

n positive constant [s−1]

N angular velocity [ms−1]

Nux local Nusselt number [-]

Pr Prandtl number [-]

qr radiative heat flux [Wm−2]

Rd radiation parameter [-]

Rex local Reynolds number [-]

t time [s]

T temperature [K]

u, v velocities component in the x− and y− directions, respectively [ms−1]

ue velocity of inviscid flow [ms−1]

uw stretching/shrinking velocity [ms−1]

x, y cartesian coordinates along the surface and normal to it, respectively [m]

Greek Symbols

ϕ1 nanoparticle volume fractions for Al2O3 (alumina) [-]

ϕ2 nanoparticle volume fractions for Cu (copper) [-]

θ dimensionless temperature [-]

γ unknown eigenvalues [-]
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λ stretching/shrinking parameter [-]

η similarity variable [-]

μ dynamic viscosity [N s m−2]

ν kinematic viscosity [m2s−1]

ρ density [kgm−3]

τ dimensionless time variable [-]

σ∗ Stefan–Boltzmann constant [Wm−2K−4]

ψ stream function [-]

ρCp heat capacity [JK−1m−3]

ς spin gradient viscosity [kg m s−1]

κ vortex viscosity [kg m−1s−1]

Subscripts

f base fluid

hn f hybrid nanofluid

s1 solid component for Al2O3 (alumina)

s2 solid component for Cu (copper)

w condition at the surface

∞ ambient condition

Superscript
′ differentiation with respect to η
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Abstract: The flow and heat-transfer attributes of gas turbines significantly affect the output power and
overall efficiency of combined-cycle power plants. However, the high-temperature and high-pressure
environment can damage the turbine blade surface, potentially resulting in failure of the power
plant. Because of the elevated cost of replacing turbine blades, damaged blades are usually repaired
through modification of their profile around the damage location. This study compared the effects of
modifying various damage locations along the leading edge of a rotor blade on the performance of the
gas turbine. We simulated five rotor blades—an undamaged blade (reference) and blades damaged
on the pressure and suction sides at the top and middle. The Reynolds-averaged Navier–Stokes
equation was used to investigate the compressible flow in a GE-E3 gas turbine. The results showed
that the temperatures of the blade and vane surfaces with damages at the middle increased by about
0.8% and 1.2%, respectively. This causes a sudden increase in the heat transfer and thermal stress on
the blade and vane surfaces, especially around the damage location. Compared with the reference
case, modifications to the top-damaged blades produced a slight increase in efficiency about 2.6%,
while those to the middle-damaged blades reduced the efficiency by approximately 2.2%.

Keywords: gas turbine; damaged rotor blade; leading-edge modification; aerodynamic characteristics

1. Introduction

Unlike the conventional thermal power plants using coal as the power source, combined-cycle
power plants (CCPPs) utilizes natural gas to generate electricity to satisfy the industrial demand and
daily consumption, reducing the CO2 emission. Hence, for environmental concerns, CCPPs have been
widely used in replacement of the thermal power plants in recent years. In CCPPs, the gas turbine is
one of the most important components as it has a significant effect on power generation and overall
efficiency. To enhance the power and efficiency of a CCPP, the turbine inlet temperature (TIT) is usually
increased. The TIT is strongly affected by the outlet flow and temperature distribution of the combustor.
This complex phenomenon in the TIT is called a hot streak (HS). The conditions of HS operation
are similar to the actual operation conditions of gas turbines. Hence, it is important to examine the
conditions of a HS in the analysis of gas turbine performance. Several experimental and numerical
studies have been conducted to analyze the effects of a HS on the flow and heat transfer characteristics
of a gas turbine [1,2]. Therefore, it is necessary to consider the HS condition instead of uniform inlet
temperature conditions when performing simulations, for more accurate results and to reflect the
actual operation conditions of a gas turbine.

In general, the turbine blade are fabricated with metals or alloys, and the TIT is higher than the
melting temperature of metals and alloys, which usually is affected by pressure [3,4]. Hence, if the TIT
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is increased to enhance efficiency, the flow and heat transfer characteristics of the blade surface will be
significantly affected. If a suitable cooling method cannot be provided, a sudden increase in heat loads
will be produced on the blade surface, which will ultimately reduce the fatigue life of the blade or could
even damage the blade after a certain time. Primary turbine blades can suffer several types of damage,
such as dents, scores, and scratches, which can occur on the leading as well as trailing edge of the
blade and which have a significant effect on the gas turbine performance. Replacing a damaged blade
is more expensive than repairing it. Consequently, the latter is the preferred option. Kaewbumrung
et al. [5] proposed a repair method for a damaged blade in the compressor, i.e., the blend method.
The surface of the damaged blade becomes smoother after repair, which improves its aerodynamic
performance in the compressor compared with that of unmodified blades.

The reasons behind the failure of gas turbine blades have been extensively investigated. Kumari
et al. [6] examined the effects of blade surface cracks on the internal structure of the blade. They also
examined the path of crack propagation within the coating barrier layer. Witek [7] conducted
experiments and simulations on crack growth propagation due to vibration in compressor blades.
The simulation results agreed well with experimental results. Mazur et al. [8] analyzed the effects of
the failure of the first-stage nozzle of a gas turbine on the fatigue life of the blades; they concluded
that the failure of the nozzle significantly reduced the fatigue life of the blade. These studies have
provided valuable insight into the effects of several parameters, such as axial gap, HS, and inlet pressure
conditions, on the flow and heat transfer behaviors in normal blades. Moreover, cracking and crack
growth propagation in damaged blades have been successfully predicted. However, previous studies
have only investigated the effects of critical damage leading to sudden failure during operation or the
effects of inlet conditions on normal blades, which provide limited information regarding primary
damage to blades and its effect on the flow and thermal characteristics of a turbine.

Many studies have examined the heat flow characteristics of the surface of normal turbine blades
under various conditions. Choi and Ryu [9] investigated the effects of the axial gap and inlet temperature
conditions on the thermal flow characteristics of a blade surface. They claimed that the thermal load
on the surface of rotor blades increased when the axial gap decreased. Wang et al. [10] examined the
differences between the effects of uniform and non-uniform inlet pressures and temperatures on the
aerodynamic characteristics of turbine blades. Azad et al. [11] reported the effects of the tip gap
and inlet turbulence intensity on the local heat transfer at the tip surface. They found that a higher
tip gap, as well as a higher turbulence intensity, resulted in a higher heat transfer coefficient on the
tip surface. These studies focused only on normal blades without surface damage. Therefore, it is
crucial to determine the combined effects of the primary damage and inlet conditions, especially HS
conditions, on the complex heat flow in a gas turbine.

Gas turbines should be simulated with multistage conditions for predicting the flow and heat
transfer characteristics in the passage and on the blade surface more accurately. However, multistage
gas turbine simulations are expensive; hence, previous studies have considered only one stage for
the simulation [10–14]. Furthermore, the first stage of a gas turbine is significantly affected by the
HS condition. In this study, we consider minor damage to a rotor blade. Therefore, 1.5 stages are
sufficient to predict the combined effects of the HS condition and rotor blade damage on the flow and
heat transfer characteristics in the passage and on the blade surface.

It is necessary to examine the influence of rotor blade damage on the flow and heat transfer in
high-pressure gas turbines under the HS condition. This study provides a clearer understanding of the
heat flow and thermal characteristics of gas turbines with blades damaged at different locations. It is
important for engineers to identify the locations that require greater protection from damage, as this
can reduce maintenance costs, which are considered to be the highest among the operating costs of gas
turbines. Therefore, unsteady simulation was performed to analyze the combined effects of the HS
condition and modification of damaged rotor blades on the aerodynamic characteristics and heat flow
behaviors in a 1.5-stage high-pressure gas turbine.
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2. Numerical Details

2.1. Geometry and Grid

In this study, a model of the first 1.5 stages in a GE-E3 engine was used as the gas turbine model
for the unsteady simulation. The original turbine stage has 46 stator guide vanes, 76 rotor blades in
the first stage, and 48 stator guide vanes in the next half stage [15]. For accurate prediction, the pitch
angles of one stator vane and two rotor blades should be the same. This assumption can be realized
using a domain scaling method [16]. In this study, the number and other parameters of the rotor blades
were fixed. After applying the domain scaling method, the first and second stator vanes were magnified
by 46/38 times and 48/38 times, respectively. Details regarding the vanes and blades can be found in a
previous numerical study [9]. In this study, we assumed that the rotor blade initially had minor damage
to the middle and top sections—on both the pressure and suction sides—to investigate the influence
of various damage locations on the flow, heat transfer, and aerodynamic characteristics. The damage
constituted approximately 0.5% of the volume of a normal blade. The final damage used in the simulations
was the smoother post-modification damage. The computational domain consisted of two stator vanes
and two rotor blades, as shown in Figure 1. Figure 1b shows the designs of the undamaged reference
blade and the four blades with damage at different locations.

 
(a) 

 
(b) 

Figure 1. (a) Computational domain used for this study; (b) Damaged rotor blade after modification;
Top and Mid denote the top and middle regions of the blade, respectively. PS and SS denote the pressure-side
and suction-side damage, respectively.

A specialized computational fluid dynamics (CFD) tool for meshing in turbomachinery analysis,
ANSYS Turbogrid [17], was adopted for the mesh generation, as shown in Figure 2. We used the blade
and vane geometry of the GE-E3 gas turbine engine. The simulation parameters and mesh generation
process for the first stage were referred to from Choi and Ryu [9]. However, we used a different length
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for the outlet of the second stator vane (S2). Therefore, a grid-independent test had to be conducted
to find an appropriate mesh size for S2. Consequently, we simulated a total of five mesh sizes and
ultimately selected a mesh size of 2.4 million for the computation. Details of the grid-independent test
for the second stator vane are shown in Table 1. After the grid-independent test, the total mesh size of
the computational domain was approximately 8 million, with the y+ value being less than 0.5 at the
blade surface and less than 1 at the other walls. The variations in y+ at different span-wise locations on
the rotor blade are shown in Figure 3.

 

Figure 2. Detailed mesh of computational domain for the 1.5-stage GE-E3 gas turbine.

 
Figure 3. Variation in y+ at different span-wise locations in the rotor blade.
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Table 1. Grid-independent test.

Domain Node Number
of S2 (×106)

Average Heat Flux (kW/m2)
(Relative Error)

Average Pressure (kPa)
(Relative Error)

Case 1 1 274.88
(0.76%)

124.69
(1.17%)

Case 2 1.34 276.97
(1.06%)

126.15
(0.69%)

Case 3 1.8 279.91
(0.82%)

127.03
(0.58%)

Case 4 2.4 282.21
(0.43%)

127.76
(0.23%)

Case 5 3.2 283.41 128.05

2.2. Governing Equations and Turbulence Model

To analyze the three-dimensional compressible fluid flow in a gas turbine under unsteady-state
conditions, we used the continuity equation, momentum equation, and energy equation, which can be
expressed as shown below:

Continuity equation:
∂ρ

∂t
+
∂
∂xi

(ρui) = 0. (1)

Momentum equation:

∂
∂t
(ρui) +

∂
(
ρuiuj

)
∂xi
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∂xi

+
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∂xj
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∂xi
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3
δi j
∂uk
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Energy equation:
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∂
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∂xk

)]
(3)

i, j, k = 1, 2, and 3,

where ρ is the fluid density, u is the fluid velocity, P is the fluid pressure, and μ is the fluid viscosity.
In the energy equation, E is the specific internal energy, ke f f is the effective thermal conductivity,
and μe f f is the effective dynamic viscosity. A finite volume method (FVM)-based commercial CFD
software, ANSYS CFX [18], was used to solve the governing equations.

Accurate prediction of the complex heat flow in a gas turbine requires an appropriate turbulence
model for the simulation. Various methods, such as direct numerical simulation (DNS), large eddy
simulation (LES), and the Reynolds-average Navier–Stokes (RANS) method, have been introduced for
this purpose. DNS and LES can provide details of turbulence statistics but are high-cost methods [19–21].
The RANS method is usually used for CFD simulations due to its lower computational cost [22,23],
especially for turbomachinery simulation. Moreover, previous studies have confirmed that the SST
γmodel and SSTγ−θmodel are the most suitable for analysis of transitional flows [24,25]. Furthermore,
Choi and Ryu [9] concluded that results obtained using the k −ω SST γ turbulence model were in
agreement with the corresponding experimental results [26]. Therefore, to accurately predict the
complex fluid flow and heat transfer characteristics in a gas turbine, we used the k−ω SST γ turbulence
model in this study.

The k−ω SST model was combined with free stream formulations and the k−ω formulation in
the near wall using a blending function proposed by Menter [27,28]. The corresponding continuity,
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momentum, turbulence kinetic energy (k) equation, and eddy dissipation (ω) equations were formulated
to express the k−ω baseline (BSL) model:

∂
∂xi

(ρui) = 0, (4)

∂
(
ρuiuj

)
∂xi

= −∂P
∗

∂xi
+
∂
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[
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∂ui
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, (5)
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where:

P∗ = P +
2
3

(
ρk + (μ+ μt)

∂uk
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)
, (8)
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(
∂ui
∂xj

+
∂uj

∂xi

)
∂ui
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− 2

3
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∂xk

(
3μt
∂uk
∂xk

+ ρk
)
, (9)

μt(kg/ms) is the turbulence viscosity calculated using the following equation:

1
ρ
μt =

0.31k
max(0.31ω, SF2)

, (10)

The blending functions F1 and F2 are defined by the following variables:

arg1 = min

⎡⎢⎢⎢⎢⎣max
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4ρσω,2k
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√
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500ν
y2ω
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as follows:
F1 = tanh

(
arg2

1

)
, (13)

F2 = tanh
(
arg2

2

)
, (14)

where σk and σω are the turbulent Prandtl numbers for k and ω, respectively. The formulations for
these equations are expressed below:

σk =
1

F1/σk,1 + (1− F1)/σk,2
, (15)

σω =
1

F1/σω,1 + (1− F1)/σω,2
, (16)
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2ρ

1
σω,2

1
ω
∂k
∂xi

∂ω
∂xj

, 10−10
)
. (17)

Moreover, it is necessary to define the transport equation for the intermittency (γ) to obtain the
complete expression for the k−ω SST γ turbulence model. The transport equation of γ can be defined as:

∂(ργ)

∂t
+
∂
(
ρujγ

)
∂xj

= Pγ1 + Pγ2 − (Eγ1 + Eγ2) +
∂
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]
. (18)
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The transition sources are defined as follows:

Pγ1 = 2FlengthρS(γFonset)
cγ3 , (19)

Eγ1 = γPγ1. (20)

The destruction/ relaminarization sources are defined as follows:

Pγ2 = 2cγ1ρΩγFturb, (21)

Eγ2 = γPγ2cγ2. (22)

The transition onset is controlled by the following functions:

RT =
ρk
μω

, (23)

Fonset1 =
ρy2S

2.193μReθc
, (24)

Fonset2 = min
(
max

(
Fonset1, Fonset1

4
)
, 2

)
, (25)

Fonset3 = max
(

1−
(RT

2.5

)3
, 0

)
, (26)

Fonset = max(Fonset2 − Fonset3 , 0) , (27)

Fturb = e−(0.25RT)
4
, (28)

where S is the strain rate magnitude, Flength is an empirical correlation, Ω is the vorticity magnitude,
and Reθc is the critical Reynolds number, at which the intermittency first starts to increase in the
boundary layer. The other constant coefficients for the equations above are as follows [5,29]:

σk,1 = 1.176, σk,2 = 1.0, cγ1 = 0.03, cγ2 = 50,

σω,1 = 2.0, σω,2 = 1.168, cγ3 = 0.5, σγ = 1.

2.3. Boundary Conditions and Unsteady Simulation

The boundary conditions used for the simulation were obtained from a report on a GE-E3 performance
test [15], shown in Table 2. Ideal gas was used as the working fluid. Total pressure and temperature were
set for the inlet, while static pressure was specified for the outlet. The magnitude of the total pressure
used for the inlet was 344,740 Pa, with a uniform turbulence intensity of 5%. A non-uniform temperature,
which was considered as the HS condition, was applied. The maximum and average temperatures of the
HS were approximately 839 and 728 K, respectively. The detailed profile of the HS is shown in Figure 4.
The static pressure specified for the outlet was 104,470 Pa. The speed of the rotor blade was fixed at
3600 rpm. Furthermore, to investigate the effects of rotor blade damage coupled with HS conditions,
we analyzed five rotor blades cases. An undamaged rotor blade was considered as the reference case.
The other cases were damage (i) at the middle of the blade on the pressure side, (ii) at the middle of the
blade on the suction side, (iii) at the top of the blade on the pressure side, and (iv) at the top of the blade
on the suction side. Moreover, we conducted both adiabatic and isothermal condition tests for the blade
surface to calculate the heat transfer characteristics. The temperature applied to the blade surface under
isothermal conditions was set as 389.95 K.
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Table 2. Boundary conditions and simulation settings.

Boundary conditions

Inlet
Total pressure: 344,740 Pa
Total temperature: 839 K
Turbulence intensity: 5%

Outlet Static pressure: 104,470 Pa

Simulation settings

Wall conditions Adiabatic or iso-thermal
Rotor blade conditions Undamaged or damaged at PS and SS in top and middle of blade

Vane and blade interface Transient rotor-stator (unsteady simulation)
Rotor speed 3600 RPM

 
(a) (b) 

Figure 4. (a) Hot streak distribution at the inlet; (b) Radial temperature at different span-wise locations
and average temperature at the inlet.

To perform an unsteady simulation, it is necessary to conduct a steady simulation, the results of
which are used as an initial condition for the unsteady simulation. A frozen rotor was set as the interface
between the stator and rotor in the steady simulation. The unsteady simulation was performed with a
transient rotor-stator setting for the rotor–stator interface. To obtain accurate results in the unsteady
simulation, the appropriate number of time steps per pitch—the number of steps when one rotor blade
passes a pitch of the stator—needs to be considered. Previous studies have confirmed that 32 steps are
the most suitable to guarantee convergence in such unsteady simulations [9,10].

In this study, we used a total of 20 pitches for the unsteady simulation as the results started
to become periodic after 10 pitches. The first 10 pitches were considered to be the initial transient
condition, and the final 10 pitches were used to analyze the results. We set several monitoring points
near the pressure side of the blade and vane to check the convergence history. When the pressure
and temperature of monitored points started to exhibit periodicity, the unsteady simulations were
considered to have become convergent. The simulations were conducted using a 96-core workstation
(4 Intel Xeon CPU E7-8890 v4 @ 2.20 GHz, RAM 512 GB), and the time needed for an unsteady
simulation was approximately 72 h using 60 cores.

3. Results and Discussion

3.1. Flow Characteristics

Figure 5 shows the velocity streamlines and total pressure contours at different locations in the
span-wise direction of the R1 blade, to illustrate the effects of different blade damage locations on the
flow field. It can be seen that the damage mainly affected the flow field on the suction side of the
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blade. The hub +5% location had a small flow-circulation zone in the reference case. However, in the
damaged blades, this zone was not present, due to the effects of the altered the blade profile on the flow
in span-wise direction. In the mid-span, in comparison with the reference case, the middle-damage
cases exhibited more circulation, while the top-damage cases exhibited less circulation. As a result,
a noticeable difference in the total pressure contours at the mid-span can be seen among the five cases,
as shown in Figure 5b. The middle-damage cases exhibited lower total pressures than other cases
at the mid-span since they had more flow circulation at this location. Moreover, at the shroud −5%
location, a lower total pressure can be observed in the top-damage cases than in the other cases; this is
because a small flow circulation was generated in the top-damage cases. It can be concluded that the
damage location affected not only the circulation zones at the suction side of the blade but also the
total pressure near the damage, which significantly impacted the flow and heat transfer characteristics.

 
(a) (b) 

Figure 5. (a) Velocity streamlines; (b) total pressure contours at different span-wise locations of the
R1 blade.

Figure 6 shows the temperature contours on the rotor blade surface under various blade conditions.
The highest temperature on the pressure side of the blade was near the mid-span of the leading edge,
which exhibited more vorticity and was affected by the HS condition. The damage did not affect the
temperature distribution on the pressure side, but it significantly affected the temperature distribution on
the suction side. The high-temperature regions extended in the span-wise direction in the top-damage
cases, and in both the span-wise and radial directions in the middle-damage cases. As shown in Figure 6,
the suction-side surface of the damaged blades had a higher temperature than the corresponding surface
of the reference blades, due to the effects of the damage on the passage flow and flow circulation. As a
result, both the average and maximum temperatures of the blade surface increased when the blades were
damaged, as shown in Figure 7. Compared with the reference case, the middle-damage case at the suction
side exhibited a higher temperature—by approximately 5 (average) and 2 K (maximum). Considering
the effects of the HS, the maximum temperature in the middle-damage cases was higher than that in the
other cases.
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Figure 6. Temperature distribution on the R1 blade under various blade conditions.

 

Figure 7. Average and maximum temperatures on the R1 blade under various blade conditions.

It is necessary to examine the effects of damage locations on the flow characteristics downstream
of the rotor blade. Figure 8 shows the contours of static entropy and total pressure at the R1 outlet
under various blade conditions. The static entropy was directly affected by the rotor blade conditions.
Compared with the reference case, in the top-damage cases, the high-static-entropy regions extended in
the radial direction, while in the middle-damage cases, these regions extended in both the span-wise and
radial directions. These conditions strongly influenced the temperature distribution, which significantly
affected the flow and heat transfer characteristics of the S2 vane. Similarly, the total pressure at the
R1 outlet was significantly dependent on the blade conditions. Overall, the total pressure increased
when damage occurred on the blade. The increase in total pressure resulted in an increase in the
leakage flow passing through the blade tip or the main passage flow. This increment is reflected in the
contours of the total pressure, shown in Figure 8b.

The attributes of heat transfer are strongly affected by the flow vortex structure [30,31]. Touil and
Ghenaiet [32] investigated the effects of blade–vane interaction on the vortex structure in high-pressure
gas turbines. Wei et al. [33] describe the flow structure using an iso-surface with the λ2—criteria
method. Figure 9 shows the 3-D complex vortex structure of the flow passing through R1 under various
blade conditions. The structure was expressed using the λ2—criteria method, with the magnitudes
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of strength level and values of λ2 being 104 and 5.14 × 106 s−2, respectively. In comparison with the
reference case, the top-damage cases exhibited a weaker tip leakage vortex, while the middle-damage
cases exhibited a stronger tip leakage vortex. The pressure field directly affected the tip leakage flow
conditions since the tip leakage flow is driven by the pressure difference between the pressure and
suction sides of the rotor blade.

 

 
(a) (b) 

Figure 8. (a) Static entropy; (b) Total pressure at the R1 outlet under various blade conditions.

 

Figure 9. 3-D vortex structure at outlet of the R1 blade.

Figure 10 shows the pressure difference between the pressure and the suction sides of the R1 blade
and the leakage flow passing through blade tip under various blade conditions. The top-damage cases
had lower pressure differences, while the middle-damage cases had higher pressure differences than
the reference case. As a result, the tip leakage flow in the middle-damage cases was higher than that
in the reference case, whereas the opposite was true for the top-damage cases. The tip leakage flow
significantly affected the heat transfer characteristics and efficiency of the gas turbine, as discussed in
the following section.
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Figure 10. Pressure difference between pressure side and suction side of the R1 blade and tip leakage
flow through the R1 blade tip.

To provide a better understanding of the effects of changes in the upstream-to-downstream flow,
we first present the velocity contour at the S2 vane entrance, as shown in Figure 11. It can be seen
that the changes in the profile of the damaged blade had significant effects on the flow characteristics
downstream. In the top-damage cases, the flow fields arriving into S2 were similar to those in the
reference case. The flow extended from the hub—where the flow velocity was the highest—to the
casing. The flow in the middle-damage cases also extended from the hub to the casing. However,
the flow only developed to mid-span; the flow from 60%-span to the casing in the middle-damage
cases was not significantly different from the corresponding flows in the top-damage cases and the
reference case. This was due to the leakage from the various damaged rotor blade locations. In the
top-damage cases, the leakage flow passing through the damage locations was not significant, resulting
in flow velocity contours similar to those in the reference case. Conversely, the leakage flow in the
middle-damage cases was noticeable, with a higher flow velocity around the mid-span. Moreover,
the turbulence intensity of the flow increased due to changes in the blade profile resulting from the
damage. The turbulence intensity also depended on the damage location—damage on the pressure side
generated a higher turbulence intensity downstream than damage on the suction side did; in addition,
damage at the middle created more turbulence than damage at the top did. This is because we had
applied the HS for the inlet condition with the highest flow at the center, which had a more significant
effect on the middle of the blade than that at the top.

From the velocity contours at the S2 vane entrance, shown in Figure 11, the flow arriving at the
suction side of the S2 vane was more noticeable than that arriving at the pressure side. Figure 12 shows the
velocity streamlines on the S2 vane suction side, which were used for analyzing the flow characteristics.
The flow formation was less near the hub of the S2 vane in the middle-damage cases than in the
reference case and top-damage cases, due to the higher tip leakage flow, which generated secondary
flow and changed the flow structure in the passage and vane surface. Moreover, the flow trends near
the shroud of the vane—denoted by the black rectangles in Figure 12—were strongly dependent on the
damage locations. Compared with the reference case, there were fewer forming lines in the damage
cases, due to the effects of damage on the secondary flow and tip leakage flow. Moreover, the difference
in the non-uniform total pressure at the entrance of the S2 vane due to the effects of various damage
locations resulted in changes in the flow structure on the S2 vane surface. Due to the effects of damage,
compared with the reference case, the total pressure at the S2 vane entrance increased by 0.25% and
0.5% in the top-damage and middle-damage cases, respectively. The changes in the rotor blade profile
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affected not only the passage flow but also the flow on the blade and vane surfaces due to their effects
on the total pressure and consequently, on the leakage flow through the blade tip and passage.

Figure 11. Velocity contours at the entrance of the S2 vane.

 

Figure 12. Velocity streamlines at the suction side of the S2 vane surface.

The structure of the flow strongly affects its characteristics and the heat transfer properties of the
vane surface. Figure 13 shows the temperature contours on the S2 vane surface under various blade
conditions. Unlike for the R1 blade, the damage resulted in significant changes in both the pressure and
suction sides for the S2 vane. This vane received more leakage flow when the blades were damaged;
hence, more flow arrived at S2. The greater flow produced higher temperatures on both the pressure
and suction sides of the S2 vane, leading to a significant increase in both the average and maximum
temperatures, as shown in Figure 14. The increments in the average and maximum temperatures
were approximately 9 and 7 K, respectively. These changes are more noticeable than those for the R1

blade surface. This increment in the temperature of the vane surface generated a higher thermal stress,
which consequently reduced the fatigue life of the vane. It can be concluded that the damage on the
rotor blade had more significant effects downstream than at the blade surface. Overall, the damage on
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the rotor blade considerably affected the flow characteristics both in the passage and on the surface of
the blade and vane.

Figure 13. Temperature distribution on the S2 vane surface.

 

Figure 14. Average and maximum temperature of the S2 vane surface under various blade conditions.

3.2. Heat Transfer Characteristics

The change in flow characteristics due to the effects of various damage locations on the rotor
blade strongly affected the heat transfer on the blade and vane surface. Figure 15 shows the contour
distribution of heat flux on the R1 blade surface under various blade conditions. As with the temperature
distribution, the heat flux on the suction side was significantly affected, while the effects on the pressure
side were negligible. This occurred because of the effects of the blade profile on the flow at the leading
edge of the blade. Although the profile became smoother after modification, it considerably altered the
flow field, especially at the suction side of the blade. When the profile changed, it generated a stronger
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vortex and created a larger circulation-flow region on the suction side, as shown in Figure 5a. Therefore,
the heat flux on the suction side of the blade increased noticeably when the blade was damaged.
Moreover, the heat flux increased significantly at the edges of the damage locations. This caused a
sudden increase in thermal stress around the damage locations, which caused the damage to become
more critical and reduced the fatigue life of the blade. Another reason for the sudden increase in heat
flux around the mid-span was the HS applied to the inlet flow. With the HS, the highest temperature
was at the center of the flow. Coupled with the altered blade profile, it caused a significant increase
in heat flux at the suction side around the mid-span location. Overall, when the rotor blade was
damaged, the heat flux increased suddenly at the suction side of the blade and around the damaged
region. Hence, it is necessary to provide a suitable cooling method to prevent excessive thermal stress
at these locations.

 

Figure 15. Heat flux distribution on the R1 blade under various blade conditions.

Figure 16 presents the contours of heat flux distribution on the S2 vane surface under various
blade conditions. The characteristics of the flow after passing through R1 changed significantly.
This considerably affected the heat transfer behaviors on the S2 vane surface on both the pressure
and suction sides. On the pressure side, the heat flux increased noticeably when the blades were
damaged. The high-heat-flux region extended in the span-wise direction in both the top-damage and
middle-damage cases. This phenomenon occurred due to the increased turbulence intensity of the
flow and the increased vane surface temperature in the damaged blades. The combined effects of the
turbulence intensity and temperature tended to increase the heat flux on the pressure side of the S2 vane.
Similarly, the heat flux on the suction side increased due to these coupled effects. The high-heat-flux
regions on the pressure side of the vane surface were located around the mid-span, while those on the
suction side were located near the hub and tip. Overall, the damaged rotor blade surfaces significantly
increased the heat flux on the S2 vane surface. Hence, to protect the vane surface from sudden changes
in thermal stress, efficient cooling methods need to be provided at these locations.

113



Mathematics 2020, 8, 2191

 
Figure 16. Heat flux distribution on the S2 vanes surface under various blade conditions.

The tip leakage flow created by the difference in pressure between the pressure and suction sides
significantly affected the heat transfer characteristics at the tip surface. To analyze the heat transfer at
the blade tip under various blade conditions, contours of the Stanton number distribution on the blade
tip were plotted and are shown in Figure 17. The Stanton number can be expressed as follows:

St =
q

(Tw − T0)ρ0V0Cp
, (29)

where q is the heat flux, Tw is the temperature of the wall surface, T0 is the average total temperature of
the inlet flow, Cp is the specific heat of ideal air, and ρ0 and V0 are the average density and average
velocity of the inlet flow, respectively.

 

Figure 17. Stanton number distribution on blade tip under various blade conditions.

Compared with the reference case, the top-damage cases exhibited lower heat transfer, while the
middle-damage cases exhibited higher heat transfer. This result is consistent with the pressure difference
and tip leakage flow shown in Figure 10—where the middle-damage cases exhibit more tip leakage
flow—as well as with the results of a previous study by Yang and Feng [34]. In addition, the high-
heat-transfer regions were located on the pressure side of the blade, while the low-heat-transfer regions
were located on the suction side. This occurred because the heat transfer at the blade tip was directly
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affected by the leakage flow from the pressure side to the suction side of the blade. The tip leakage
flow in the top-damage cases was lower than that in the reference case, the high-heat-transfer region
near the pressure side narrowed, and the low heat transfer region near the suction side widened.
Conversely, the tip leakage flow in the middle-damage cases was higher than that in the reference case,
the low-heat-transfer region near the suction side narrowed, and the high-heat-transfer region near
the pressure side expanded. Overall, the heat transfer on the blade tip was strongly dependent on
the rotor blade conditions. Especially, damage at the middle causes an increase of the heat transfer
characteristics, which increased the local thermal stress at the blade tip region.

3.3. Aerodynamic and Total-to-Total Efficiencies

Herein, we calculate the aerodynamic and total-to-total efficiencies to evaluate the performance of the
gas turbine under various blade conditions. These efficiencies are calculated using Equations (30) and (31):

ηa =
FL

FD
(30)

ηtot =
Tω

.
mCpT0

{
1− (P/P0)

κ−1
κ

} , (31)

where ηa is the aerodynamic efficiency, FL is the lift force, FD is the drag force, ηtot is the total-to-total
efficiency, T is the torque, ω is the angular velocity,

.
m is the mass flow rate, Cp is the specific heat of

ideal air, κ is the ratio of specific heat, P is the outlet mass-averaged total pressure, and T0 and P0 are
the average temperature and total pressure of the turbine inlet, respectively.

Figure 18 presents the aerodynamic and total-to-total efficiencies under various blade conditions.
Both the efficiencies are strongly dependent on the damage locations and exhibit the same trends.
Compared with the reference case, the top-damage cases exhibited a slight increase in efficiency.
Conversely, the middle-damage cases exhibited a significant efficiency reduction. The aerodynamic
efficiency is strongly affected by lift and drag forces, while the total-to-total efficiency is significantly
affected by torque and outlet pressure. Figure 19 shows the drag force, lift force, torque, and outlet
pressure under various blade conditions. Compared with the reference case, the middle-damage
cases exhibited a significant increase in drag force, while the top-damage cases exhibited a reduction.
In contrast, the middle-damage cases exhibited a decrease in lift force, while the top-damage cases
exhibited a slight increase. The changes in the drag and lift forces can be explained by the velocity
contour shown in Figure 5a. In the middle-damage cases, the circulation zone on the suction side was
closer to the leading edge at the mid-span than in the other cases. This means that the flow separation
point in the middle-damage cases was closer to the leading edge than in the other cases. According
to flight theory, the closer the separation point moves to the leading edge, the higher the drag and
the lower the lift that are generated. In the top-damage cases, the separation point was farther away
from the leading edge than in the reference case. Therefore, these cases exhibited higher lift and lower
drag forces than the reference case. As a result, the aerodynamic efficiency increased slightly in the
top-damage cases but was significantly reduced in the middle-damage cases.

The torque values directly affected the total-to-total efficiency. Similar to the lift force, the torque in
the top-damage cases was slightly higher than in the other cases—including the reference case—under
normal blade conditions. The outlet pressure also increased in the damaged blades due to the pressure
loss at the damage location. The increase in torque and outlet pressure resulted in an improvement in the
total-to-total efficiency in the top-damage cases. However, in the middle-damage cases, the decrease
in torque was greater than the increase in outlet pressure; for example, in comparison with the
reference case, the torque decreased by approximately 2.8% while the outlet pressure only increased by
approximately 1.2% in the middle-damage at the pressure side case. Hence, compared with that in
the reference case, the total-to-total efficiency in the middle-damage cases were noticeably reduced.
Overall, it can be concluded that the efficiency of gas turbines is strongly dependent on the blade
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conditions—either normal or damaged. Moreover, if the blades are damaged, the damage locations
significantly affect the turbine efficiency. Specifically, if the top part of the blade is damaged, the turbine
efficiency can be slightly increased after modification.

 

Figure 18. Total-to-total and aerodynamic efficiencies under various blade conditions.

 

Figure 19. Drag force, lift force, torque, and outlet pressure under various blade conditions.

4. Conclusions

This paper presented a numerical investigation of the effects of modifications along the leading
edge of a damaged rotor blade on the flow field and heat transfer characteristics in a 1.5-stage GE-E3

gas turbine. This is the first study in which the effects of different damage locations of a turbine blade
are examined. We analyzed five cases of rotor blades—an undamaged blade as reference and blades
damaged at the top and middle on the pressure and suction sides.

The results confirmed that:

− The average and maximum temperatures on the R1 blade and S2 vane surfaces of the damaged
blades were higher than those in the reference case. This was due to the effects of the altered flow
field profiles on the damaged blades.

− The tip leakage flow increased in the middle-damage cases but decreased in the top-damage
cases, compared to the reference case.

− The heat transfer on the blade tip in the middle-damage cases was remarkably higher than the
one in the other cases.

− The location of the damage had significant effects on the heat transfer characteristics on the
blade and vane surfaces. On the R1 blade, the heat flux around the damage location exhibited a
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sudden increase. The heat flux on the S2 vane surface considerably increased around the mid-span
on the pressure side and around the hub and tip on the suction side. This led to an increase in the
local thermal stress, showing a potential reduction in the fatigue life of the blade and the vane
which would increase the maintenance costs.

− Moreover, the modifications to the top-damaged blades enhanced the aerodynamic and
total-to-total efficiencies, while the same for the middle-damaged blades caused reductions
in the efficiencies.

This study investigated the effects of modification at various locations along the leading edge of
the rotor blades. Hence, additional studies should be conducted on damage at other locations, such as
the center and trailing edge of the blade, to provide a comprehensive overview of the effects of damage
on the flow field, heat transfer, and aerodynamic performance of a gas turbine. This could provide
more insight for design engineers to develop better cooling methods to enhance the fatigue life of the
blades and vanes of gas turbines. Moreover, the findings of this study can facilitate damage or failure
detection in gas turbines through monitoring of sudden changes in pressure and temperature fields.
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Nomenclature

ρ Fluid density (kg/m3) Ω Vorticity magnitude
u Fluid velocity (m/s) Reθc Critical Reynolds number
P Fluid pressure (Pa) St Stanton number
μ Fluid viscosity (Pa.s) q Heat flux (W/m2)

E Specific internal energy (J) Tw Temperature of the wall surface (K)
ke f f Effective thermal conductivity [(W/m.K) T0 Average total temperature of the inlet flow (K)
μe f f Effective dynamic viscosity (Pa.s) Cp Specific heat of ideal air (J/kg.K)
μt Turbulence viscosity (Pa.s) ρ0 Average density of the inlet flow (kg/m3)

F1, F2 Blending functions V0 Average velocity of the inlet flow (m/s)
k Turbulence kinetic energy (J/kg) P0 Average total pressure of inlet flow (Pa)
ω Eddy dissipation/ Angular velocity (rad/s) T Torque (N.m)/Temperature (K)
σk Turbulent Prandtl number for k

.
m Mass flow rate (kg/s)

σω Turbulent Prandtl number for ω κ Ratio of specific heat
γ Intermittency FL Lift force (N)
S Strain rate magnitude (s−1) FD Drag force (N)
Flength Empirical correlation ηa Aerodynamic efficiency

ηtot Total-to-total efficiency
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Abstract: The main aim of the current study is to analyze the physical phenomenon of free convection
nanofluids heat transfer along a sphere and fluid eruption through boundary layer into a plume
region above the surface of the sphere. In the current study, the effect of heat generation with the
inclusion of an applied magnetic field by considering nanofluids is incorporated. The dimensioned
form of formulated equations of the said phenomenon is transformed into the non-dimensional
form, and then solved numerically. The developed finite difference method along with the Thomas
algorithm has been utilized to approximate the given equations. The numerical simulation is carried
out for the different physical parameters involved, such as magnetic field parameter, Prandtl number,
thermophoresis parameter, heat generation parameter, Schmidt number, and Brownian motion
parameter. Later, the quantities, such as velocity, temperature, and mass distribution, are plotted
under the impacts of different values of different controlling parameters to ascertain how these
quantities are affected by these pertinent parameters. Moreover, the obtained results are displayed
graphically as well in tabular form. The novelty of present work is that we first secure results around
different points of a sphere and then the effects of all parameters are captured above the sphere in
the plume.

Keywords: nanofluids; MHD; heat generation; sphere; plume; finite difference method

1. Introduction

The conventional fluids, such as mixtures of ethylene glycol, oil, and water, have been used for the
purpose of heat transportation by the research community. The heat transfer process was made very
slow by the use of these fluids due to their poor thermal conductivity. The utilization of nanofluids
as a cooling source increases operating and manufacturing costs. So, nanofluids are being used to
speed up the heat transfer performances because of their excellent thermal conductivity. Nanofluids
result from the suspension of submicron solid particles (nanoparticles) in the base fluids, such as
water or any organic solvent. Nanoparticles are of growing interest as they play an effective role to
strengthen the thermal conductivity of the base fluid. The inclusion of a magnetic field in the analysis
of nanofluids has attracted much attention of researchers because of its growing applications in the
fields of engineering, physics, and chemistry. The nanofluids which contain magnetic particles act
as super-paramagnetic fluids which absorb the energy control of the flow and act as an alternating
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electromagnetic field. Nanofluids are employed as coolants in computer microchips and many
other electronic devices which utilize micro-fluidic applications. With motivation from the above
applications of magnetohydrodynamic flow, Sparrow and Cess [1] comprehensively analyzed the
study of magnetohydrodynamic natural convection flow through the vertical plate by encountering
both upward and downward flows with the effect of buoyancy forces. Potter and Riley [2] focused
their attention on natural convection flow due to a heated sphere placed in static fluid by considering
large values of the Grashof number. They discussed the characteristics of boundary layer flow into the
plume numerically. Riley [3] considered the phenomenon of free convection flow along the surface of a
sphere by maintaining higher temperature than the surroundings. He evaluated the model numerically
for finite values of Grashof and Parndtl numbers. Andersson [4] studied the model of visco-elastic
fluid over the stretching surface considering the effect of a transverse magnetic field analytically.
Stephen and Eastman [5] proposed a novel type of fluid whose thermal conductivity is higher than
conventional fluids and termed them as nanofluids. They concluded that such types of fluid enhance
the thermal performances during the process of heat transfer. Samuel and Falade [6] investigated the
stability of hydromagnetic fluid in porous media by incorporating the outcomes of variable viscosity.
Their prediction for theoretical analysis was that an increase in the viscosity variation parameter creates
a stability of the fluid flow. The transient form of the convective flow along the surface of a moving plate
in a porous medium with uniform heat flux with the inclusion of a magnetic field has been studied by
Al-Kabeir et al. [7]. Chamkha and Aly [8] presented nanofluids flow by means of free convection heat
transfer over the permeable plate observing a magnetic field, transpiration parameter, heat absorption,
and generation influences for main physical properties. The phenomenon of double diffusive free
convection nanofluids flow over the vertical plate was examined in [9]. Rosmilaet al. [10] studied
the problem of free convection magnetohydrodynamic flow of nanofluids over a linearly stretching
surface by the opting shooting technique along with the Runge–Kutta method of the fourth order.
Mohammad et al. [11] analyzed the flow problem of a magnetohydrodynamic boundary layer over a
vertical surface for nanofluids taking into account Newtonian heating effects. Gandhar and Reddy [12]
predicted heat and mass transfer mechanism for moving plate held vertically embedded in porous
media due to the insertion of magnetic field. The analysis on the influences of buoyancy force, magnetic
field, and a stretching and shrinking sheet on the stagnation point flow of nanofluids was performed
by Makinde et al. [13]. Olanrewaju and Makinde [14] discussed the problem of natural convection
flow of nanofluids over a porous surface with a stagnation point in the presence of Newtonian heating
effects. Chamkha et al. [15] reviewed the available material properties of nanofluids and focused on
several geometries and applications. Stagnation point flow on a vertical stretching surface by imposing
the slip condition was discussed by Khairy and Ishak [16]. The analysis of the nanofluids in the
presence of a chemical reaction and magnetic field has been carried by Ltu and Ochsnor [17]. Another
study was conducted to assess the free convection flow of nanofluids about different circumferential
points of a sphere and the fluid erupting from the boundary layer flow into the plume made above
the sphere [18]. The characteristics of heat and fluid flow in the presence of nanofluids have been
investigated by [19–25] along different simple and complex geometries.

With inspiration from aforesaid research attempts, we intended to elaborate the problem of natural
convective flow of magnetohydrodynamic nanofluids flow at the different circumferential positions
along the surface of a sphere and into the plume made above the sphere by encountering the effects of
heat generation and absorption. It is necessary to highlight that no one has paid any attention towards
such a problem before this attempt. In the subsequent sections, the mathematical formulation is
performed and after suitable transformation of the modeled equations, a very accurate approximating
technique known as the finite difference method is directly employed to get the approximate solutions
of the partial differential equations. By using FORTRAN as a computing tool, asymptotic and valid
solutions of the governing model satisfying the given boundary conditions are calculated. Further,
in this study, the different trends/behaviors depending on various combinations of many influential
parameters have been displayed graphically as well as in tabular form.
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2. Statement of the Problem and Mathematical Formulation

Consider a steady, two-dimensional, viscous, incompressible, and electrically conducting boundary
layer flow of nanofluid. In this analysis, water is taken as the base fluid and heat generation effects are
encountered. The physical sketch and geometry of the problem are shown in Figure 1. The sphere
surface is kept at constant temperature T̂w and the nanoparticles volume fraction at the surface
is Ĉw. The coordinate along the surface of a sphere is x̂ and ŷ is taken as normal to the surface.
The corresponding velocity components û and v̂ is considered along and normal to the surface of the
sphere respectively. There are three regions, namely sphere, fluid erupting from the boundary layer,
and plume made above the sphere. The universal conservation equations for the current mechanism
following Potter and Riley [2] take the forms given as below:

∂(r̂û)
∂x̂

+
∂(r̂v̂)
∂ŷ

= 0 (1)

û
∂û
∂x̂

+ v̂
∂û
∂ŷ

= ν
∂2 û
∂2 ŷ

+ gβ
(
T̂ − T̂∞

)
Sin

x̂
a
+ gβc

(
Ĉ− Ĉ∞

)
Sin

x̂
a
− σ0β2

0

ρ
û (2)

û
∂T̂
∂x̂

+ v̂
∂T̂
∂ŷ

= α
∂2 T̂
∂2 ŷ

+ τ

⎧⎪⎪⎨⎪⎪⎩DB
∂Ĉ
∂ŷ
∂T̂
∂ŷ

+
DT

T̂∞

(
∂T̂
∂ŷ

)2
⎫⎪⎪⎬⎪⎪⎭+

Q0

ρCp

(
T̂ − T̂∞

)
(3)

û
∂Ĉ
∂x̂

+ v̂
∂Ĉ
∂ŷ

= DB
∂2 Ĉ
∂2 ŷ

+
DT

T∞
∂2 T̂
∂2 ŷ

(4)

Figure 1. Coordinate System and Flow Geometry.

Subjected to the corresponding boundary conditions:

û = 0 = v̂ , T̂ = T̂w , Ĉ = Ĉw at ŷ = 0

û→ 0 = v̂ , T̂→ T̂∞ , Ĉ→ Ĉ∞ as ŷ→∞ (5)

The symbols appeared in the above governing equations such as g, β, α, τ and βc, are termed
as gravitational acceleration, thermal expansion of temperature, thermal diffusivity, nanoparticles
heat capacity to base fluid ratio and solutal thermal expansion. The Brownian diffusion coefficient,
heat generation coefficient, thermophoretic diffusion coefficient, and magnetic field strength are
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denoted by DB, Qo, DT, and Bo, respectively. To make the above proposed model dimensionless, here,
non-dimensionless variables are defined as below:

x =
x̂
a

, r(x̂) = asinx̂, y = Gr
1
4

ŷ
y

, u = Gr
− 1

2
a
ν

û, v = Gr
− 1

4
a
ν

v̂

Gr =
gβΔT̂a3

ν2 , Grc =
gβcΔT̂a3

ν2 , r =
r̂
a

(6)

where a is the sphere radius. By inserting Equation (6) into Equations (1)–(5), we obtain the following
non-dimensional forms of the governing equations as given below:

∂(ru)
∂x

+
∂(rv)
∂y

= 0 (7)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2 u
∂2y

+ θSinx + ϕSinx− Mu (8)

u
∂θ
∂x

+ v
∂θ
∂y

=
1
Pr
∂2 θ

∂2y
+ Nb

∂ϕ

∂y
∂θ
∂y

+ Nt
(
∂θ
∂y

)2

+ Qθ (9)

u
∂ϕ

∂x
+ v
∂ϕ

∂y
=

1
Sc

(
∂2 ϕ

∂2y
+

Nt
Nb
∂2 θ

∂2y

)
(10)

With boundary conditions:

u = 0 = v θ = 1, ϕ = 1 at y = 0

u→ 0 , ϕ→ 0, θ→ 0 as y→∞ (11)

where

Pr =
ν
α

, Sc =
ν

Db
, Nb =

(ρc)pDB(t5ϕw −ϕ∞)
(ρc) f ν

, Nt =
(ρc)pDT(Tw − T∞)

(ρc) f T∞ν
,

The parameters appearing above are the thermophoresis parameter, Schmidt number, Prandtl

number, and Brownian motion parameter, which are designated Nt, Sc, Pr, and Nb. Here, M =
σ0β

2
0

ρν
a2

G1/2
r

,

and Q = Q0
μCp

a2

G1/2
r

represent the magnetic field parameter and heat generation parameter, respectively.

3. Method of Solution

To adopt an ease in making the algorithm, the following primitive variables are used to make the
primitive form of the above Equations (7)–(10) along with boundary conditions:

u = x
1
2 U(X, Y), v = x− 1

4 V(X, Y), Y = x−1/4y, θ = θ(X, Y), ϕ = ϕ(X, Y),

x = X , θ = θ(X, Y) , ϕ = ϕ(X, Y) , r(x) = asinX
(12)

After substitution of the variables defined in Equation (12) into Equations (7)–(11), we get the
following primitive system of partial differential equations:

XcosXU +

{
X
∂U
∂X
− 1

4
Y
∂U
∂Y

+
1
2

U +
∂V
∂Y

}
sinX = 0 (13)

XU
∂U
∂X

+
1
2

U2 +
(
V − 1

4
YU

)
∂U
∂Y

=
∂2U
∂Y2 − θsinX −ϕsinX −X1/2MU (14)
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XU
∂θ
∂X

+
(
V − 1

4
YU

)
∂θ
∂Y

=
1
pr
∂2θ

∂Y2 + Nb
∂ϕ

∂Y
∂θ
∂Y

+ Nt
(
∂θ
∂Y

)2

+ Qθ (15)

XU
∂ϕ

∂X
+

(
V − 1

4
YU

)∂ϕ
∂Y

=
1
Sc

(
∂2 ϕ

∂2Y
+

Nt
Nb
∂2 θ

∂2Y

)
(16)

The corresponding boundary conditions are:

U = 0 = V, θ = 1 ϕ = 1 at Y = 0,

U→ 0 , ϕ→ 0, θ→ 0 as Y→∞ (17)

4. Computational Scheme

The formulated model is complex and its analytical solution cannot be found. So, we move towards
the approximate solutions of the present problem with the use of very accurate approximating technique
known as finite difference method. This method is directly applied to partial differential Equations
(13)–(17) to convert into algebraic system of equations which is solved by coding on computing tool
FORTRAN package. The backward difference is used along x-axis and central difference along y-axis.
The discretization procedure is given below:

∂U
∂X

=
Ui, j −Ui, j−1

ΔX
. (18)

∂U
∂Y

=
Ui+1, j −Ui−1, j

2ΔY
. (19)
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The insertion of Equations (18)–(20) into Equations (13)–(17) implies:
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With boundary conditions:

Ui, j = 0 = Vi, j, θi, j = 1, ϕi, j = 1 at Y = 0

Ui, j → 0 , ϕi, j → 0, θi, j → 0 as Y→∞ (25)
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5. Governing Equations for Plume Region

Considering the diagram of the geometry, we can see that nanofluid enters from the region-II
to region-III. For this region, the aforesaid model is altered and a new model for the plume region is
formulated by following [2]:

∂(ẑû)
∂x̂

+
∂(ẑŵ)

∂ẑ
= 0 (26)
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∂ẑ

)
− gβ

(
T̂ − T̂∞

)
− gβc

(
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ẑ
∂Ĉ
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With boundary conditions:

ŵ =
∂û
∂ẑ

=
∂T̂
∂ẑ

= 0 at ẑ = 0,

û→ 0 = ŵ , T̂→ T̂∞ , Ĉ→ Ĉ∞ as ẑ→∞.
(30)

Dimensionless variables:
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ν2 , Grc =
gβcΔTa3

ν2 , τ =
(ρc)p

(ρc) f

(31)

Dimensionless form of system of equations:

∂(zu)
∂x

+
∂(zw)

∂z
= 0 (32)

u
∂u
∂x

+ w
∂u
∂z

=
1
z
∂
∂z

(
z
∂u
∂z

)
− θ−ϕ− M (33)

u
∂θ
∂x

+ w
∂θ
∂z

=
1
Pr

1
z
∂
∂z

(
z
∂θ
∂z

)
+ Nb

∂ϕ

∂z
∂θ
∂z

+ Nt
(
∂θ
∂z

)2

+ Qθ (34)

u
∂ϕ

∂x
+ w
∂ϕ

∂z
=

1
Sc

(
1
z
∂
∂z

(
z
∂ϕ

∂z

)
+

Nt
Nb

1
z
∂
∂z

(
z
∂θ
∂z

))
(35)

With boundary conditions:

w =
∂u
∂z

=
∂θ
∂z

= 0 at z = 0

u→ 0 , ϕ→ 0, θ→ 0 as z→∞
(36)

For the convenient form of the integration, we use the following variables for the required form:

u = x
1
2 U(X, Z) , W = x− 1

4 W(X, Z) , Z = x− 1
4 Z,

θ = θ(X, Z) , ϕ = ϕ(X, Z), x = X.
(37)
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Using the above primitive variable formulation, we have the following system of equations:

Z
∂U
∂X
− Z2

4X
∂U
∂Z

+
3
4

ZU + W + Z
∂W
∂Z

= 0 (38)

XU
∂U
∂X

+
1
2

U2 +
(
W − 1

4
ZU

)
∂U
∂Z

=
1
Z
∂
∂Z

(
Z
∂U
∂Z

)
− θ−ϕ−X1/2MU. (39)

XU
∂θ
∂X

+
(
W − 1

4
ZU

)
∂θ
∂Z

=
1
Pr

1
Z
∂
∂Z

(
Z
∂θ
∂Z

)
+ Nb

∂ϕ

∂Z
∂θ
∂Z

+ Nt
(
∂θ
∂Z

)2

+ Qθ. (40)

XU
∂ϕ

∂X
+

(
W − 1

4
ZU

)∂ϕ
∂Z

=
1
Sc

(
1
Z
∂
∂Z

(
Z
∂ϕ

∂Z

)
+

Nt
Nb

1
Z
∂
∂Z

(
Z
∂θ
∂Z

))
. (41)

With boundary conditions:

W =
∂U
∂Z

=
∂ϑ
∂Z

= 0 , ϕ = 1, θ = 1 at Z = 0,

U→ 0 , ϕ→ 0, θ→ 0 as Z→∞.
(42)

Solution Methodology

For the numerical evaluation of the flow equations in the plume region, the finite difference
scheme is implemented. The constitutive equations in discretized forms are given as below:

Wi, j =
1(

ΔZ + Zj
)⎧⎪⎪⎨⎪⎪⎩ZjWi−1, j −Zj

(
Ui, j −Ui, j−1

)ΔZ
ΔX

+
Zj

2

8Xi

(
Ui+1, j −Ui−1, j

)
− 3

4
ΔZZjUi, j

⎫⎪⎪⎬⎪⎪⎭ (43)

{[
1
2 ΔZ

(
Wi, j − 1

4 ZjUi, j − 1
2Zj

)
+ 1

]}
Ui−1,j

+
{[

ΔZ2
(
−XiUi, j

1
ΔX − 1

2 Ui, j −Xi
1/2M

)
− 2

]}
Ui1,j

+
{[
− 1

2 ΔZ
(
Wi, j − 1

4 ZjUi, j − 1
2Zj

)
+ 1

]}
Ui+1,j

= ΔZ2
(
θi, j + ϕi, j −XiUi, jUi, j−1

(
1

ΔX

)) (44)

[
1
2 ΔZ

(
Wi, j − 1

4 ZjUi, j − 1
2PrZj

)
+ Nb 1

4

(
ϕi+1, j −ϕi−1, j

)
+ Nt 1

4

(
θi+1, j − θi−1, j

)]
.

+ 1
Pr

}
θi−1,j +

{
−ΔZ2

[ Xi
ΔX Ui, j −Q

]
− 2

Pr

}
θi,j

+
{
−
[

1
2 ΔZ

(
Wi, j − 1

4 ZjUi, j − 1
2PrZj

)
+ Nb 1

4

(
ϕi+1, j −ϕi−1, j

)
+Nt 1

4

(
θi+1, j − θi−1, j

)]
+ 1

Pr

}
θi+1,j = −XiUi, j

ΔZ2

ΔX θi, j−1

(45)

{
1
2 ΔZ

(
Wi, j − 1

4 ZjUi, j
)
+ 1

Sc

(
1− ΔZ

2Zj

)}
ϕi−1,j +

{
−XiUi, j

ΔZ2

ΔX − 2
Sc

}
ϕi,j

+
{
− 1

2 ΔZ
(
Wi, j − 1

4 ZjUi, j
)
− 1

Sc

(
1 + ΔZ

2Zj

)}
ϕi+1,j

= −XiUi, j
ΔZ2

ΔX ϕi, j−1

+ 1
Sc

{
Nt
Nb

{
θi+1, j + θi−1 − 2θi, j +

(
θi+1, j − θi−1, j

)
ΔZ
2Zj

}} (46)

With boundary conditions:

Wi, j = 0, Ui+1, j = Ui−1, j , θi+1, j = θi−1, j, ϕi+1, j = ϕi−1, j ,

ϕi, j = 1, θi, j = 1 at Zj = 0,

Ui, j → 0 , ϕi, j → 0, θi, j → 0 as Zj →∞.

(47)
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6. Analysis of the Results

This section covers the discussion and conclusion on the behaviors of velocity field U, temperature
field θ, and mass field ϕ, along with heat transfer rate ∂θ∂Y , mass transfer rate ∂ϕ∂Y , and skin friction
∂U
∂Y , with the variations of different flow parameters. The effects of parameters which are taken
into observation are named as magnetic field parameter, M, heat generation parameter, Q, Schmidt
number, Sc, Prandtl numbers, Pr, thermophoresis parameter, Nt, and Brownian motion parameter,
Nb. The obtained numerical solutions for considered governing properties are displayed in graphical
form and tabulated as well. The solution detail has been split into two parts, i.e., the several locations
around a sphere and in the plume region above the sphere.

6.1. Fluxes and Boundary Layers on the Sphere

In this subsection, we are going to present and discuss the obtained solutions at different
circumferential stations around the surface of a sphere. The result demonstrated in Figure 2a–c are for
velocity, temperature, and mass profiles with the variations of Schmidt number keeping the remaining
parameters constant at different circumferential positions of a sphere. It can be viewed that, as the
Schmidt number is increased at the considered positions of a sphere, that is X = 0.1, 1.0, 2.0, and 3.0,
velocity and mass profiles go down, but the opposite behavior is observed in the temperature field.
In addition, it is necessary to mention that maximum magnitude for velocity distribution is achieved
at position X = 1.0, but for temperature and mass concentration, it is obtained at X = 3.0. In these
graphs, the simultaneous momentum and mass diffusion convection processes have been highlighted
very clearly. Figure 3a,b depicts the results for velocity, temperature field, and mass concentration
corresponding to increasing values of heat generation parameter Q and the remaining parameters
treated as fixed at several stations of a sphere. We can see that the temperature and mass distributions
have decreasing behavior, but the opposite phenomenon is observed in the velocity distribution.
One aspect which is necessary to highlight is that very minor variations are observed for temperature
and velocity fields, but a reasonable change is found in mass distribution at the taken circumferential
positions of a sphere. From these graphs, it is evident that the heat generation parameter balances the
heat transfer mechanism in the fluid flow domain. Figure 4a–c represents the behavior of the aforesaid
physical properties for different values of the Prandtl number Pr. The outcomes shown in Figure 4a–c
imply that, owing to the enhancement of Prandtl number at different circumferential locations of a
sphere, a decrease in mass and velocity distributions, but an increase in temperature distribution,
are noted. It is necessary to mention that the highest magnitude for velocity is gained at circumferential
points X = 1.0, while on the other hand, mass and temperature distribution secure the peak value at
position X = 3.1. As the Prandtl number controls the relative thickness of the momentum and thermal
boundary layer, when Pr is small, the heat diffuses quickly as compared to the velocity. The effects of
Brownian motion parameters on the physical properties mentioned earlier are presented in Figure 5a–c.
It is noteworthy to point out that the augmentation in the Brownian motion parameter gives birth to a
rise in mass distribution, but no remarkable variations are noted in the temperature and velocity fields.
Figure 6a–c highlight the outcomes of profiles of velocity, temperature, and mass concentration under
the action of diverse values of magnetic field parameter. It can be noticed that fluid velocity slows
down as magnetic field parameter M is increased from 0.2 to 0.8 at each contemplated point around
our proposed geometry and the temperature profile and mass concentration get smaller magnitudes
for the same values of the parameters and positions. It is a point of interest that top values for flow
velocity are maintained at X = 1.0 and for temperature and mass distribution, the highest values are
gained at position X = 3.0. Variations in fluid velocity, temperature field, and mass concentration for
increasing values of the thermophoresis parameter are demonstrated in Figure 7a–c. Very profound
results are determined for all proposed properties. It is worthy to mention that the velocity of the fluid
and temperature are reduced for increasing values of thermophoresis parameter Nt at the proposed
positions about the surface of a sphere. On the other hand, for the same parametric conditions,
mass concentration is enhanced. In Figure 8a–c, heat and mass transfer rates with skin friction are
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plotted. Interestingly, it can be seen that the heat transfer rate grows well, but mass transfer and skin
friction become weaker at every contemplated circumferential point of a sphere. Similar properties
as discussed earlier are taken under discussion and displayed in Figure 9a–c. Benchmark results for
velocity, temperature, and solutal gradients for different values of Prandtl number have been studied
at various stations of a sphere. There is a reduction in skin friction and mass transfer, but an increment
in heat transfer rate is noted. The results tabulated in Table 1 represents skin friction, heat transfer
rate and mass transfer for varying values of Brownian motion parameter Nb. The outcomes in Table 1
imply that skin friction get reduced whereas heat and mass transfer rates go up as Nb is augmented
at the proposed stations of a sphere. Table 2 is reflecting the influences of magnetic field parameter
on aforementioned material properties. By making larger the values of magnetic field parameter all
contemplated material properties get declined. Further, it is concluded that greatest magnitudes for
skin friction, rate of heat transfer and mass transfer rate are assured at positions X = 2.0, X = 1.0,
and X = 1.0, respectively. Heat generation effects on velocity gradient, heat transfer rate and mass
transfer rate are illustrated in Table 3. We can claim from the displayed results that skin friction and
mass transfer enhance, but the converse phenomenon occurred for the case of heat transfer. In Table 4,
the impact of Schmidt number is shown. Tabulated results show that skin friction falls down, but the
mass transfer rate and heat transfer rate are augmented.

Figure 2. Physical effects on quantities (a) U, (b) θ, and (c) ϕ versus Sc when Nt = 0.02, Nb = 0.2,
Pr = 0.72, M = 0.2, Q = 1.0.

Figure 3. Physical effects on quantities (a) U, (b) θ, and (c) ϕ versus Q, when Nt = 0.02, Nb = 0.4,
Pr = 0.72, M = 0.2, Sc = 1.0.
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Figure 4. Physical effects on quantities (a) U, (b) θ, and (c) ϕ versus Pr, when Nt = 0.02, Nb = 0.4,
SC = 1.0, M = 0.2, Q = 1.0.

Figure 5. Physical effects on quantities (a) U, (b) θ, and (c) ϕ versus Nb, when Nt = 0.02, Sc = 1.0,
Pr = 7.0, M = 0.2, Q = 1.0.

Figure 6. Physical effects on quantities (a) U, (b) θ, and (c) ϕ versus M, when Nt = 0.02, Nb = 0.4,
Pr = 7.0, Sc = 10, Q = 1.0.
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Figure 7. Physical effects on quantities (a) U, (b) θ, and (c) ϕ versus Nt, when Sc = 1, Nb = 0.4,
pr = 7.0, M = 0.2, Q = 1.0.

Figure 8. Physical effects on quantities (a) ∂U∂Y , (b) ∂θ∂Y , and (c)
∂φ
∂Y versus, Nt when Sc = 1.0, Nb = 0.4,

Pr = 7.0, M = 0.2, Q = 1.0.

Figure 9. Physical effects on quantities (a) ∂U∂Y , (b) ∂θ∂Y , and (c)
∂φ
∂Y versus, Pr when Sc = 1.0, Nb = 0.4,

Pr = 0.2, M = 0.2, Q = 1.0.
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Table 1. Physical effects on quantities ∂U∂Y , ∂θ∂Y , and ∂φ∂Y versus Nb, when remaining emerging parameters
are constant. (

∂U
∂Y

) (
∂θ
∂Y

) (
∂ϕ
∂Y

)
X Nb = 0.1 Nb = 1.0 Nb = 0.1 Nb = 1.0 Nb = 0.1 Nb = 1.0

0.1 0.28019 0.27897 0.65136 0.66346 0.39999 0.40399
1.0 1.34747 1.34216 0.70666 0.72635 0.67801 0.68116
2.0 1.16031 1.15575 0.68683 0.70445 0.61784 0.62109
3.0 0.16315 0.16272 0.63540 0.64245 0.23270 0.23778

Table 2. Physical effects on quantities ∂U∂Y , ∂θ∂Y , and ∂φ∂Y versus M, when remaining emerging parameters
are constant. (

∂U
∂Y

) (
∂θ
∂Y

) (
∂ϕ
∂Y

)
X M = 0.2 M = 0.8 M = 0.2 M = 0.8 M = 0.2 M = 0.8

0.1 0.27951 0.27693 0.65533 0.65499 0.40432 0.40164
1.0 1.34503 1.08100 0.71309 0.68896 0.68082 0.60477
2.0 1.15823 0.57759 0.69259 0.66098 0.62072 0.45414
3.0 0.16290 0.09249 0.63772 0.63199 0.23703 0.15057

Table 3. Physical effects on quantities ∂U∂Y , ∂θ∂Y , and ∂φ∂Y versus Q, when remaining emerging parameters
are constant. (

∂U
∂Y

) (
∂θ
∂Y

) (
∂ϕ
∂Y

)
X Q = 0.1 Q = 0.5 Q = 0.1 Q = 0.5 Q = 0.1 Q = 0.5

0.1 0.27647 0.27777 0.69830 0.67952 0.40154 0.40235
1.0 1.33468 1.33918 0.75128 0.73451 0.67824 0.67935
2.0 1.14874 1.15285 0.73271 0.71513 0.61789 0.61911
3.0 0.16161 0.16216 0.68246 0.66294 0.23523 0.23600

Table 4. Physical effects on quantities ∂U∂Y , ∂θ∂Y , and ∂φ∂Y versus Sc, when remaining emerging parameters
are constant. (

∂U
∂Y

) (
∂θ
∂Y

) (
∂ϕ
∂Y

)
X Sc = 0.3 Sc = 0.7 Sc = 0.3 Sc = 0.7 Sc = 0.3 Sc = 0.7

0.1 0.29190 0.28399 0.65416 0.65502 0.24685 0.34990
1.0 1.42701 1.37282 0.71728 0.71439 0.42843 0.59370
2.0 1.23893 1.18350 0.69594 0.69366 0.37666 0.53863
3.0 0.16793 0.16482 0.63709 0.63748 0.14962 0.20333

6.2. Fluxes and Boundary Layers in the Plume Region

The present subsection deals with the analysis and demonstration of the numerical solutions of
the flow model developed for the case of the plume region which occurs above the sphere. Figure 10a–c
illustrate the temperature profile and nanoparticles volume fraction profile for various values of Schmidt
number in the plume region. All the other parametric values are fixed. We can deduce from the figures
that, as Sc is augmented from 0.3 to 0.9, velocity is lowered whereas temperature and nanoparticles
volume fraction profiles curves go up. It was expected that the nanoparticles volume fraction will rise
corresponding to an increase in Schmidt number Sc. The influences of thermophoresis parameter Nt,
on the material properties are highlighted in Figure 11a–c. Computed results are reflecting that velocity
of the flow field gets enhanced but temperature and nanoparticles volume fraction decline as Nt is
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increased. Graphical representations in Figure 12a–c are for the same substantial properties under the
influence of several values of Brownian motion parameter Nb. It can be inferred from the displayed
results that the velocity of the flow field goes down, nanoparticles volume fraction distribution goes
up, but no variations are seen in the temperature field. Heat generation impacts by taking its several
values on the conduct of matter properties, such as velocity, temperature, and nanoparticles volume
fraction profiles, are examined in Figure 13a,b. From the sketched graphs, it is inferred that velocity
and temperature field get larger magnitudes with the reduction in nanoparticles volume fraction by
the augmentation of heat generation parameter Q. The results according to expectation satisfy the
given boundary conditions and approach to the targets asymptotically. The graphs in Figure 14a–c
are sketched for many values of magnetic field parameter M. It can be deduced from these plots that
flow velocity and nanoparticles volume fraction rise, but no difference is found in the temperature
field. The effects of various values of Prandtl number Pr on the already mentioned material properties
are elaborated graphically in Figure 15a–c. We can see that velocity and temperature distributions
decrease but nanoparticles volume fraction increases owing to increasing values of Pr. It was obvious
that there is a reduction in field velocity and temperature profile.

Figure 10. Physical effects on quantities (a) u, (b) θ, and (c) ϕ versus, Sc, when Nt = 0.5, Nb = 0.4,
Pr = 0.71, M = 0.5, Q = 0.4.

Figure 11. Physical effects on quantities (a) u, (b) θ, and (c) ϕ versus Nt, when Sc = 0.8, Nb = 0.4,
Pr = 0.71, M = 0.4, Q = 0.2.
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Figure 12. Physical effects on quantities (a) u, (b) θ, and (c) ϕ versus Nb, when Nt = 0.5, Sc = 0.3, Pr
= 0.71, M = 0.4, Q = 0.4.

Figure 13. Physical effects on quantities (a) u, (b) θ, and (c) ϕ versus Q, when Nt = 0.1, Nb = 0.4,
Pr = 0.71, M = 0.2, Sc = 0.2.

Figure 14. Physical effects on quantities (a) u, (b) θ, and (c) φ versus, when Nt = 0.1, Nb = 0.4,
Pr = 0.71, Q = 0.2, Sc = 0.2.
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Figure 15. Physical effects on quantities (a) u, (b) θ, and (c) φ versus Pr, when Nt = 0.1, Nb = 0.4,
Q = 0.2, M = 0.2, Sc = 0.2.

7. Conclusions

The phenomena of steady laminar natural convection nanofluid flow around the surface of a
sphere and in the plume region are numerically examined under the impact of heat generation and an
applied magnetic field. We summarize the obtained results in the following lines.

• The Schmidt number exerted a noticeable influence on the heat and fluid flow mechanism around
the surface of the sphere and in the plume region in terms of velocity profile, temperature profile,
and mass concentration.

• It was found that, under the action of diverse values of magnetic field parameter, the velocity of
fluid slows down as the magnetic field parameter increased from 0.2 to 0.8, while on the other
hand, the temperature profile and mass concentration became smaller in magnitude for the same
values of the parameters and positions.

• The effect of thermophoresis parameter Nt cannot be neglected, as due to an increase in the
magnitude of this parameter, the velocity profile is maximum at position X = 1.0, while the heat
and mass transfer are reduced at the same position.

• The variation in the Brownian motion parameter Nb results in distinct changes in the thermal and
flow field, depending on different positions around the surface of the sphere and in the plume
region. The Brownian motion demonstrated its increasing effect for velocity at position X = 1.0,
and dominated at the same position for temperature distribution and mass concentration.

• The graphs sketched in the plume region for many values of magnetic field parameter M show
that the flow velocity and nanoparticles volume fraction rise, but no difference is found in the
temperature field. The numerical solution obtained around the sphere reflects the influence of the
magnetic field parameter on the aforementioned material properties, i.e., increasing the values of
the magnetic field parameter.

• The Prandtl number Pr largely effects the fluid and thermal characteristics in the prescribed
domain of study.

• From the obtained results of velocity profile, temperature distribution, and mass concentration
around the sphere and within the plume region, it is observed that all the results are satisfied by
the subjected boundary conditions.
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Abbreviations

û Dimensioned velocity component in x̂ direction
v̂ Dimensioned velocity component in ŷ direction
Ŵ Dimensioned velocity component in Ẑ direction
x̂, ŷ Dimensioned axes along and normal to the surface of a sphere
Ẑ Measured radially from the plume axis
U Primitive variable for velocity component in X direction
V Primitive variable for velocity component in Y direction
g
(
ms−2

)
Gravitational acceleration

T (K) Fluid temperature in boundary layer
C
(
kgm−3

)
Mass concentration in boundary layer

CP
(
Jkg−1.K−1

)
Specific heat at constant pressure

a(m) The radius of a sphere

r(m)
Dimensioned radial distance from the symmetric axis to the surface
of a sphere

Dm
(
m2s−1

)
Mass diffusion cefficient

Greek Symbols

βt
(
K−1

)
Volumetric coefficient thermal expansion

τ Thermophoretic diffusion coefficient
βc

(
K−1

)
Volumetric coefficient concentration expansion

α
(
ms−1

)
Thermal diffusivity

θ Dimensionless temperature
φ Dimensionless mass concentration
μ(Pa.s) Dynamic viscosity
ρp Density of the particle
ν
(
m2s−1

)
Kinematic viscosity

ρ
(
kgm−3

)
Fluid density

κ
(
Wm−1.K−1

)
Thermal conductivity

Subscripts

∞ Ambient conditions
w Wall conditions
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Abstract: Hyperloop is a new, alternative, very high-speed mode of transport wherein Hyperloop
pods (or capsules) transport cargo and passengers at very high speeds in a near-vacuum tube.
Such high-speed operations, however, cause a large aerodynamic drag. This study investigates
the effects of pod speed, blockage ratio (BR), tube pressure, and pod length on the drag and drag
coefficient of a Hyperloop. To study the compressibility of air when the pod is operating in a tube,
the effect of pressure waves in terms of propagation speed and magnitude are investigated based
on normal shockwave theories. To represent the pod motion and propagation of pressure waves,
unsteady simulation using the moving-mesh method was applied under the sheer stress transport
k −ω turbulence model. Numerical simulations were performed for different pod speeds from 100
to 350 m/s. The results indicate that the drag coefficient increases with increase in BR, pod speed,
and pod length. In the Hyperloop system, the compression wave propagation speed is much higher
than the speed of sound and the expansion wave propagation speed that experiences values around
the speed of sound.

Keywords: Hyperloop system; transonic speed; aerodynamic drag; drag coefficient; pressure
wave; shockwave

1. Introduction

Hyperloop is an innovative transportation system first outlined in a 2013 white paper by a joint
team from Tesla Inc. and SpaceX Corp. As described in the Hyperloop Alpha document, it is a new,
alternative, very high-speed mode of transport with benefits in terms of comfort, convenience, time,
and cost [1,2]. The Hyperloop system consists of Hyperloop pods (or capsules) transporting cargo and
passengers at very high speeds in a near-vacuum tube. The basic concept of the Hyperloop is similar
to the evacuated tube transportation system proposed by Oster [3] in 1977. Estimates suggest that
the trip between Los Angeles and San Francisco of roughly 350 miles, which usually takes 2.5 h by a
high-speed train, would take only 35 min by the Hyperloop system (estimated time at average speeds
of approximately 1000 km/h and 240 km/h for Hyperloop pod and high-speed train, respectively) [1,4].
This high-speed pod–tube configuration could be faster and more energy-efficient than trains or cars,
as well as cheaper and less polluting than aircraft. SpaceX founder Elon Musk and his team called it
the fifth form of public transportation after planes, trains, cars, and boats [1].

There are two big differences between Hyperloop and traditional rail. First, the pods are designed
to float on air bearings or by magnetic levitation to reduce friction, unlike trains or cars. Second,
the pods (or capsules) transport passengers through tubes in which most of the air is evacuated to reduce
air resistance. This should allow the pods to travel at approximately 1250 km/h (or nearly 350 m/s),
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which is 3–4 times higher than the fastest high-speed train at present (350–380 km/h). Such high-speed
operation, however, would cause a larger aerodynamic drag. Addressing this challenge, the closed
partial-vacuum tube could drastically lower the aerodynamic drag. Hence, the Hyperloop white paper
proposed maintaining a constant pressure of 1/1000 atm (101.325 Pa) inside the tube. In addition,
when the pod is operating at transonic speeds, the restricted air owing to air compressibility could
lead to large variations in pressure at the front and rear of the pod. Hence, variation of pressure wave
propagation should also be considered.

Oh et al. [5] conducted a large parametric study in steady state by applying a two-dimensional
axisymmetric model to a compressible flow to investigate the effects of blockage ratio (BR),
pod speed/length, and tube pressure/temperature on the aerodynamic drag in a Hyperloop system.
The study suggested that these parameters strongly affected drag, except the pod length and tube
temperature, which have negligible influences. However, the simulation in their study could not
analyze pressure wave propagation. In steady-state simulation, the pressure waves produced by
the nose and tail of the pod affect the inlet and outlet boundaries. This limitation can influence the
accuracy of the results. Yang et al. [6] concluded that aerodynamic drag increased proportionally with
the internal tube pressure and the square of the operating speed. Gillani et al. [7], Singh et al. (2019) [8],
and Choi et al. [9] studied the relationship between the pod shape and the aerodynamic drag of
the pod. They proposed that the elliptical train shape efficiently reduced the aerodynamic drag at
the tube pressure of 1013.25 Pa. Zhang [10] carried out steady computational fluid dynamic (CFD)
simulations and indicated that the increase of BR increased the aerodynamic drag. Similar conclusions
were presented by Kang et al. [11], who performed parametric simulations of transonic vehicles in
an evacuated tube. The authors implied that the BR and internal tube pressure strongly affected
aerodynamic drag of transonic trains; the maximized drag coefficient was obtained at Mach 0.7.
Kim et al. [12] concluded that the occurrence of shockwaves greatly increased the aerodynamic drag in
the tube–train system.

The compressibility of air should be considered in cases where a pod travels through a tube at
high speed. The motion of the pod generates a series of compression waves in the front. These pressure
waves propagate forward and backward with the direction of the operating pod. Meanwhile, expansion
waves propagate behind the pod. The propagation of compression waves intensifies the pressure
ahead of the pod, whereas the expansion waves reduce the pressure behind the pod. The difference
between the pressures at the nose and the rear of the pod increases as the pod speed increases, causing
a sharp rise in pressure drag. A study by Oh et al. [5] observed choked flow in the Hyperloop system
at a pod speed of 180 m/s and a BR of 0.36, which significantly increased the drag. The normal
shockwave is similar to a step-change of the compression wave. The presence of shockwaves produces
discontinuous changes in the flow parameters. The normal and oblique shockwaves in the rear of the
pod strongly interfere with the aerodynamic characteristics of the pod–tube system. Hence, in this
study, the pressure wave propagation speed is also evaluated.

The analysis of pressure wave propagation requires time-dependent CFD simulation. In addition,
a moving overset mesh method was employed to represent the pod motion and determine the influence
of a moving pod on the compression waves and expansion waves inside the tube. The overset mesh is
a renowned method for moving-mesh simulations and has high accuracy and computational speed by
reducing the re-meshing effects during the simulation.

Oh et al. showed that symmetric models of a semicircular nose and tail make the difference
between three- and two-dimensional models insignificant (just 4%) [5]. Therefore, the two-dimensional
axisymmetric model is sufficient for simulating the Hyperloop with an idealized geometrical shape.
Therefore, in this study, a two-dimensional axisymmetric model was constructed. Moreover, the main
objective of this study is to analyze the aerodynamic drag and pressure wave propagation, which can be
fully described by two-dimensional simulations. The low computational cost of the two-dimensional
model allowed us to consider a long tube and carry out a comprehensive parametric study.
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2. Numerical Method

The simulation was conducted on ANSYS Fluent 18.1 (Ansys Inc., Canonsburg, PA, USA) with the
shear stress transport (SST) k−ω viscous model. The compressible ideal gas condition was applied by
using the density-based implicit solver. The viscosity was assumed as the Sutherland model, in which
the viscosity varies only with temperature.

2.1. Computational Domain

The pressure waves propagate in both forward and backward directions through the tube. If an
exceedingly short tube was used in the numerical simulations, the pressure waves would reflect off
the boundaries and cause unpredictable pressure variations [9,13]. Hence, a sufficiently long tube
was chosen to fully analyze the pressure wave propagation. The simulation was conducted in a
two-dimensional axisymmetric model. The nose and tail of the Hyperloop pod were assumed to have
idealized semicircular geometries.

The BR is determined by the following equation:

BR =
Cross− sectional area of pod
Cross− sectional area of tube

=
d2

pod

d2
tube

(1)

where dpod is the diameter of the pod and dtube is the diameter of the tube.
The pod’s dimensions were ø 3 m × 43 m. The BR of 0.36 gave a tube diameter of 5 m and the BR of

0.25 gave a tube diameter of 6 m. The length of the tube was 1200 m. The computational geometry and
boundary conditions used in the simulation are shown in Figure 1. Figure A1 (Appendix A) informs
that the designed domain used in this simulation is long enough for the pressure wave to fully develop
without losses (reflections).

Figure 1. Geometry and boundary conditions of the simulation. dtube = 5 m for BR = 0.36 and
dtube = 6 m for BR = 0.25.

2.2. Overset Meshing and Computational Grid

For conducting the moving-mesh simulation, the overset and dynamic mesh options were applied
simultaneously. The overset mesh method allows multiple disconnected meshes to sufficiently overlap
each other. Using the overset mesh method to perform a moving mesh helps achieve more efficient
computation time and prevents re-meshing that otherwise reduces the accuracy by causing the
generation of poor cells. Generally, the mesh used for the overset method consists of two parts:
a background zone and a separate component zone. Background zones are the mesh of the off-body
or fluid space. The component zones are meshes that contain the objects of analysis; they require
overset boundaries. These meshes must be of high quality and should cover the solution domain [14].
The component zones overlay the background zones near the overset boundaries; near these regions,
the background and other component zones unify into one zone. An advantage of overset meshing is
that individual parts of the overset mesh are created independently, and hence any zone can be easily
replaced without having to recreate the whole geometry [15].
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In this study, two mesh zones were independently generated. The background zone is the tube
mesh and the component zone is the pod mesh. Figure 2 presents the mesh and the generation of the
overset mesh used in this study. The grids were generated on ANSYS ICEM 18.1. Both zones were
treated with a hexahedral mesh. A finer mesh is created near the pod and the wall to ensure that the
maximum y+ is maintained around 0.5, except at the nose of the pod, where the highest y+ values
reach 1.5. Figure 3 shows the variation of the y+ values around the pod surface and the tube wall for
the highest pod speed case, in other words, 350 m/s. In this study, the maximum and minimum y+

values were observed at the nose and tail of the pod, respectively.

Figure 2. Schematic of the overset mesh generation. The number of meshes in this figure is only 1/10 of
the number of final meshes. Yellow lines represent the overset boundaries where the pod mesh (a) and
tube mesh connect (b). When two meshes overlap, the redundant mesh of the tube mesh vanishes as
shown in (c).

Figure 3. Variation of y+ around the pod surface and tube wall at a pod speed of 350 m/s. The maximum
y+ was obtained at the nose of the pod.

The number of elements in the tube mesh was fixed at 979,951 cells. For the grid independence
test, only the pod mesh was demonstrated by comparing the results of two main objectives of this
study, in other words, drag force and pressure obtained with several different grids. The pod speed
of 350 m/s and tube pressure of 101.325 Pa (1/1000 atm) were used to evaluate the mesh. Table 1 lists
the independence test results of the grid computed from three meshes, in other words, coarse mesh
(mesh 1), medium mesh (mesh 2), and fine mesh (mesh 3). The difference between the medium mesh
and the fine mesh is 0.02% in total drag and 0.004% in pressure; hence, a fine mesh was unnecessary
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and mesh 2 was chosen. All simulations in this study were conducted with a mesh composed of
1,684,782 cells.

Table 1. Grid independent test: Only the pod zone is demonstrated. Drag force and maximum
pressure are used to estimate the grid. Dp—pressure drag, D f —friction drag, Dt—total drag,
and Pmax—maximum pressure. Mesh 2 is applied in all simulations. Total number of elements
in this simulation is 1,684,782.

Case Total Number of Cells (Pod Zone) Dp (N) Df (N) Dt (N) Pmax (Pa)

Mesh 1 638,067 1108.33
(0.13%)

134.62
(0.72%)

1242.95
(0.19%)

238.09
(1.34%)

Mesh 2 704,331 1106.89
(0.005%)

133.60
(0.26%)

1240.49
(0.02%)

241.28
(0.004%)

Mesh 3 792,607 1106.83 133.31 1240.20 241.27

2.3. Boundary Conditions

Figure 1 describes the boundary conditions of the simulation. For the tube, the pressure-outlet
boundary condition was applied at the two tube exits with a constant value of 101.325 Pa (1/1000 atm).
The pod and the tube walls are stationary walls with no-slip and adiabatic conditions. The pod was
placed at a fixed position and instantly starts to move from right to left at a specified speed. Eight pod
speeds were considered, from 100 to 350 m/s. Meanwhile, the pod-mesh zone also moved with the
same speed and in the same direction as the pod.

The Reynolds number (Re) was calculated using the formula Re = ρvPdh/μ, where ρ, vP, dh, and μ
are the reference air density, pod speed, hydraulic diameter, and viscosity, respectively. The hydraulic
diameter dh = dtube − dpod was determined as 2 m for BR = 0.36 and 3 m for BR = 0.25. Hence, for the
range of pod speed considered in this study, the Reynolds number Re ranged from 13× 103 to 45× 103

for BR = 0.36, which indicates turbulent flow. Table 2 shows the variation of the Reynolds number Re
with respect to the increase in pod speed. As the pod speed increases, the Reynolds number Re also
increases. As BR increases, the Reynolds number Re decreases.

Table 2. Variation of Reynolds number (Re) with respect to pod speed and BR.

Pod Speed (m/s) 100 150 200 225 250 275 300 350

Re
BR = 0.36 12,752 9128 25,504 28,692 31,880 35,068 38,256 44,632
BR = 0.25 19,128 28,692 38,256 43,037 47,820 52,602 57,383 66,947

The simulations in this study were carried out under unsteady conditions. The variation of drag
and the propagation of compression waves in Figure 4 show that the drag and compression waves tend
to stabilize after 0.2 s. Owing to this stationary condition, one second of simulation time was enough
to fully develop the flow field and investigate the behavior of the pressure waves. Therefore, in this
study, we took a total simulation time of 1 s. The values of drag were estimated at 1 s, and results
of pressure waves were exported after initial transients. In the steady-state condition, the pressure
wave propagation cannot be examined. Furthermore, the pressure waves that arrive at the boundaries
may alter the specified boundary conditions and affect drag evaluation. Hence, the unsteady-state
simulation was used to explain the pressure wave phenomenon, as well as estimate the drag variation
more accurately.
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(a) Drag–time variation 

 
(b) Compression wave propagation (  = 350 m/s) 

Figure 4. Variation of (a) drag and (b) compression wave propagation with respect to time in unsteady
conditions. All results after the initial transients are analyzed.

2.4. Mathematical Model

The governing equations are the conservation of mass, momentum (Navier–Stokes), and energy
equations, which are described as follows in that order:

∂ρ

∂t
+
∂
∂xi

(ρui) = 0 (2)

∂
∂t
(ρui) +

∂
∂xi

(
ρuiuj

)
= − ∂P
∂xi

+
∂
∂xj

[
μ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δi j
∂uk
∂xk

)]
+
∂
∂xj

(
−ρ

{
u′i u
′
j

})
(3)

∂
∂t
(ρE) +

∂
∂xj

(
uj(ρE + P)

)
=
∂
∂xj

[(
ke f f

) ∂T
∂xj

]
+
∂
∂xj

[
uiμe f f

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δi j
∂uk
∂xk

)]
(4)

i, j, k = 1, 2, 3
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Here, ρ is the fluid density, u is the fluid velocity, P is the fluid pressure, and μ is the fluid viscosity;
E is the specific internal energy, ke f f is the effective thermal conductivity, and μe f f is the effective
dynamic viscosity.

To solve the governing equations, a density-based solver built using the finite volume method
was employed. The implicit Roe’s flux difference scheme was used as the spatial discretization scheme.
The least-squares cell-based method was selected for gradient calculation. Furthermore, the flow
was discretized using the second-order upwind scheme. The turbulent kinetic energy and specific
dissipation rate were set according to the first-order upwind scheme. Although the first-order upwind
scheme may not yield results of greater accuracy compared with the second-order upwind scheme,
the first-order upwind scheme easily converges and minimizes the computational cost.

For the time integration, the first-order implicit scheme was used to process the unsteady
simulation. The unsteady constant-time stepping with a time step size of 8 × 10−5 was adopted, and the
maximum number of iterations per time step was selected as 20 to reach a residual convergence of
10−4. Additionally, the Courant number was set at 2 in all the simulations.

A suitable turbulence model can enhance the precision and reliability of the CFD simulation.
Direct numerical simulation (DNS) and large eddy simulation (LES) can effectively analyze the complex
fluid-flow model, especially for the turbulence structure [16–20]. However, these turbulence models
require a high computational cost. The Reynolds-averaged Navier–Stokes (RANS) model can balance
the computational cost and performance efficiency of the numerical analysis. A few RANS models
such as k− ε, k−ω, SST γ, transition SST, et cetera. are widely used for compressible flow simulations.
In this study, the pod operates in the transonic to supersonic speed regimes. Therefore, to specify the
turbulent flow, the SST k −ω model was applied. This is a hybrid model combining the advantages
of the Wilcox (standard) k −ω and the k − ε models. The two variables, the turbulence kinetic energy
k
(
m2/s2

)
and the specific dissipation rate ω

(
s−1

)
, were respectively determined by the following two

equations [15,21,22]:

∂(ρk)
∂t

+
∂
(
ρujk

)
∂xj

= PK − β∗ρωk +
∂
∂xj

[(
μ+
μt

σk

)
∂k
∂xj

]
(5)

∂(ρω)

∂t
+
∂
(
ρujω

)
∂xj

=
γ

νt
PK − βρω2 +

∂
∂xj

[(
μ+

μt

σω

)
∂k
∂xj

]
+ 2ρ(1− F1)

1
σω,2

1
ω
∂k
∂xj

∂ω
∂xj

(6)

where

PK = τi j
∂ui
∂xj

, (7)

τi j = 2μtSij − 2
3
ρkδi j. (8)

where τi j denotes the Reynolds stresses (kgm−1s−2), Sij denotes the mean rate of deformation component
(s−1), and δi j denotes the Kronecker delta function.

F1 = tanh
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β∗ωy

,
500ν
y2ω
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4ρσω,2k
CDkωy2
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2ρ

1
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. (12)
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σk and σω are the turbulent Prandtl numbers for k and ω, respectively. μt (kg/ms) is the turbulence
viscosity, which is calculated by the following equations:

1
ρ
μt =

a1k
max(a1ω, SF2)

, (13)

F2 = tanh

⎛⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎝2

√
k

β∗ωy
,

500ν
y2ω

⎞⎟⎟⎟⎟⎠2⎞⎟⎟⎟⎟⎟⎠. (14)

In Equation (13), the term S =
(
2SijSij

)1/2
is the invariant measure of the strain rate, and a1 is a

constant equal to 0.31. The other constant values in the above equations are given as follows [15]:

β∗ = 0.09,

σk,1 = 2.0, σk,2 = 1.0,

σω,1 = 2.0, σω,2 = 1.168.

This turbulence model has been widely used to simulate the aerodynamic characteristics of
high-speed trains [6,8,10,23–25]; it has improved the accuracy and reliability of free shear flows and
transonic shockwaves predictions [15]. For more details of this model, readers are directed to [6,21,22].

2.5. Validation

To ensure the stability of the numerical solution, the sphere tests of Charters and Thomas [26]
were chosen for validation. Figure 5 shows a comparison of the drag coefficient obtained from our
simulations and the work of Charters and Thomas, in which experiments were conducted with small
spheres at various velocities. A 2D axisymmetric sphere was simulated with an unsteady moving mesh.
The numerical method used for the validation was the same as those mentioned in Section 2.4. Figure 5
shows a similar trend in the drag coefficient between the two studies, indicating a good agreement.
Therefore, our selected numerical method is appropriate to simulate the moving pod–tube configuration.

Figure 5. Comparison of drag coefficients between the 2D axisymmetric simulation and the experimental
data for a 14.28-mm sphere reported by Charters and Thomas [26].

146



Mathematics 2020, 8, 1973

3. Results

Any object moving through a fluid will experience an aerodynamic drag that is produced by both
pressure and shear forces acting on its surface.

Dt = Dp + D f , (15)

where Dt is the total drag, Dp is the pressure drag, and D f is the friction drag. Pressure drag is strongly
dependent on the shape or form of the object; friction drag is a function of the wall shear stress, which is
affected by surface roughness and the Reynolds number [27]. The drag coefficient is defined by the
following equations:

CD =
Dt

1
2ρv2

PA
for calculating total drag coefficient (16)

CDp =
Dp

1
2ρv2

PA
for calculating pressure drag coefficient (17)

CD f =
D f

1
2ρv2

PA
for calculating friction drag coefficient (18)

where A is the frontal area, which is the cross-sectional area of the pod calculated by πd2
pod/4. Thus,

in this study, the reference area in Equations (16)–(18) is approximately 7.065 m2. ρ is the reference
density of air in the tube pressure and temperature of 300 K. vP is the pod speed.

This study mainly focuses on the influence of various parameters on the aerodynamic drag.
The amplitude and speed of pressure waves are also presented. The main variables considered
here include BR, operating pod speed, internal tube pressure, and pod length. Owing to a fixed
cross-sectional area of the pod, the variation in BR is obtained by changing the tube diameter to 6 m for
BR = 0.25 (5 m for BR = 0.36). The pod speed was varied from 100 to 350 m/s in intervals of 50 m/s,
in other words, 100, 150, 200, 250, 300, 350 m/s. For investigating the flows near the critical Mach
number, two more pod speeds were chosen, namely, 225 and 275 m/s. With changing tube pressure,
the pod speed of 300 m/s was selected to evaluate four different tube pressures, namely, 101.325, 500,
750, and 1013.25 Pa under a BR of 0.36 and a pod length of 43 m. The Hyperloop Alpha documents
used a pod length of 43 m to carry 28 passengers per trip. To investigate the effect of pod length on
drag coefficient, the case of Lre f = 43 m and two reference cases Lre f /2 and 2Lre f were selected.

3.1. Effect of Blockage Ratio and Pod Speed

As indicated in Figure 6, the changes of friction and pressure drag coefficient vary by two values
of BR from vP of 100 to 350 m/s. The variation of friction and pressure drag is given in insets. Besides,
Figures A2 and A3 (Appendix B) also show the variation of friction and pressure drag coefficients on
Re and Mach number. In Figure 6, at the same vP, the friction drag coefficient CD f and the pressure
drag coefficient CDp increase as the BR increases. When the BR is higher, the area where the flow passes
through decreases. Thus, the flow becomes harder to bypass, increasing the friction drag generated
along the pod surface and resulting in CD f increases as BR increases (Figure 6a). It should be noted
that from the vP of 200 m/s, the effect of BR on CD f reduces due to severe choking.
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(a) Friction drag coefficient 

(b) Pressure drag coefficient 

Figure 6. Variations of (a) friction and (b) pressure drag coefficients with pod speed and blockage ratio.
Insets illustrate the variation of drag.

The change in pressure drag depends on the pressure difference between the nose and tail of the
pod. With increasing BR, the air becomes more compressible, which increases the pressure magnitude
along the pod surface as well as the pressure difference between the nose and the tail, resulting in
an increase in pressure drag; hence CDp increases. With increasing vP, pressure and friction drag
increase continuously and significantly. Unlike drag, the drag coefficients witness different tendencies.
As shown in Figure 6b, at BR = 0.36, CDp increases and reaches the maximum at a vP of 225 m/s.
Subsequently, it exhibits a continuous drop. By contrast, CD f presents an incessant decrease with the
increment of vP. The results show tendencies similar with those in previous literature [5,11,23,28].
Note that, at lower values of BR, the maximum value of CDp changes. In this study, at BR = 0.25,
CDp reaches a maximum at a vP of 250 m/s, which will be compared later with BR = 0.36.

Generally, aerodynamic drag is composed of pressure and friction drags. Unlike in the open air,
the Hyperloop pod moves in a tunnel, experiencing more aerodynamic drag owing to the increase in
pressure generated by its interaction with the tunnel walls [29]. At higher speed, there will be higher
pressure. When the pod passes through the tube at a high speed, a high-pressure region is formed in
the front of the pod nose. Meanwhile, the pod tail experiences an increase in the velocity of flow and
reduces the pressure behind the pod. This phenomenon is similar to the behavior of flow through a
convergent–divergent nozzle and results in a greater pressure difference between the nose and the
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tail of the pod; this leads to an increase in the pressure drag. Besides, the low pressure in the tube
reduces the friction drag in the Hyperloop system. Hence, in the pod–tube system, pressure drag is
more dominant than friction drag.

To evaluate the portions of pressure and friction drag in the total drag, the ratios of the two drag
components to the total drag are shown in Figure 7. At BR = 0.36 and vP = 100 m/s, pressure drag
dominates the total drag by 70%; the remaining percentage belongs to friction drag. However, pressure
drag becomes more dominant as vP increases owing to the increase of the difference in pressure at
the nose and tail; the friction drag does not change much. This results in the pressure drag becoming
more dominant at vP of 350 m/s, making up 89.2% of the total drag, whereas friction drag only makes
up 10.8%. The portion of Dp/Dt decreases with reducing BR, whereas the portion of D f /Dt increases.
This is because the effect of BR on the pressure drag is much higher than on friction drag. As BR
reduces from 0.36 to 0.25, and at vP = 100 m/s, pressure drag decreases by more than 50%, whereas the
friction decreases by approximately 25%. This gap is greater at vP = 350 m/s, where the margins of
decrease for pressure drag and friction drag are 22.4% and 6.9%, respectively. Note that the ratios of
the pressure and friction drags to the total drag begin to converge from a vP of 250 m/s.

Figure 7. Ratios of the pressure and friction drags to the total drag. The results are similar to those of
Oh et al. (2019) [5], who conducted steady-state simulations.

The pressure contours in Figure 8 show that the pressure in front of the pod increases with increase
of BR. Figure 8d,e,j,k reveals shockwaves at the rear end of the pod; these shockwaves are made of
normal and oblique shockwaves generated by the interaction and reflection of pressure waves between
the tube walls and pod surface. When the local flow velocity exceeds the speed of sound, the interaction
and connection of the airflow and pod surface create oblique shockwaves [28]. With increasing vP,
the shockwaves become more distinct, expand backward, are reflected by the upper and lower walls of
the tube [16], and are then weakened downstream owing to the friction of the airflow. This oblique
shockwave intensifies the airflow pressure at the rear end of the pod, resulting in an abrupt pressure
increase at the tail (Figure 9a). Note that at lower BR, the formation of oblique shockwaves is delayed.
The existence of shockwaves affects the variation of CDp . In this study, shockwaves are noticed before
the vP where CDp is maximized. At BR = 0.25, the shockwave structure can be observed from a vP

of 225 m/s (Figure 8c), and from 200 m/s at BR = 0.36 (Figure 8h). The previous study conducted by
Kim et al. (2011) [12] also indicated that the impact of shockwaves was reduced when BR was reduced.
Hence, to limit the effect of shockwaves, we considered the influence of BR [8,12].

With increasing BR, the percentage of pressure drag to total drag increases. To explain this
phenomenon, Figure 9a illustrates the pressure difference between the nose and the tail of the pod,
which is one of the factors affecting pressure drag. As the vP increases, the pressure at the nose increases
significantly, which is in contrast with the slight decrease in pressure at the tail. This difference causes
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a substantial increase in the pressure difference between the nose and the tail, resulting in a sharp
increase in the pressure drag. This pressure difference in turn increases with the increase of vP and BR.
At the same vP, the pressure at the nose with BR = 0.36 is higher than in the case when BR = 0.25 because
of the generation of stronger compression waves. Otherwise, the tail pressure experiences a smaller
pressure drop when the BR is smaller, because the air in the larger tube expands easily [11,12,30].

Figure 9b illustrates the pressure variation across the pod surface. There is a sudden increase in
the pressure at the tail from a vP of 250 m/s owing to the formation of strong oblique shockwaves.
A noticeable increase in the surface pressure occurs from 200 to 250 m/s, where the choking flow
becomes severe. Note that, although an increment in the surface pressure was observed from 100 to
250 m/s, the pressure magnitude at the tail exhibited a considerable drop owing to the stronger flow
expansion with increasing vP. As oblique shockwaves appear at the tail from a vP of 250 m/s, the tail
pressure slightly increases.

Figure 8. Pressure contours for selected pod speeds with Ptube = 101.325 Pa, Lpod = 43 m, and (a–e) for
BR = 0.25, (f–j) for BR = 0.36. Contour levels are fixed for each pod speed.
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(a) Pressure difference 

(b) Pressure distribution on pod surface 

Figure 9. (a) Pressure difference between the nose and the tail. (b) Pressure distribution across the pod
surface

(
BR = 0.36, Ptube = 101.325 Pa, Lpod = 43 m

)
. Inset shows the magnified view of the tail.

3.2. Effect of Tube Pressure

The Hyperloop Alpha documents recommended an ideal tube pressure of 1/1000 atm for operating
the Hyperloop systems. In this section, to verify this factor, different tube pressures were applied
for the pod speed of 300 m/s with a BR of 0.36 and a pod length of 43 m. Figure 10a illustrates the
changes in drag and drag coefficient with the tube pressure. As shown in the sub-figure, aerodynamic
drag linearly increases with tube pressure. With increasing tube pressure, pressure drag becomes
more dominant, whereas the variation of friction drag is minor. The tenfold increase of tube pressure
has increased the total drag by more than nine times. Therefore, it is better to maintain a lower tube
pressure to have a smaller drag. The variation of drag coefficient is inversely proportional to the flow
density, reference area, and the square of operating speed. As mentioned earlier, the cross-sectional
area and operating speed were fixed to investigate the effect of tube pressure. Hence, in this study,
the change of drag coefficient with respect to tube pressure is mostly affected by the density of air,
which is calculated by ρ = Pt/RT, where Pt is the tube pressure, R is the gas constant, and T is the
temperature. The higher tube pressure causes higher density, resulting in a larger Re and a marginal
decrease in the drag coefficient. Figure 10b shows the proportion of pressure and friction drag in the
total drag. Note that tube pressure has only a small influence on the proportion of the drag components
to the total drag.
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(a) Drag 

(b) Ratio of component drag to total drag 

Figure 10. Effect of tube pressure: (a) Variation of drag and drag coefficient with respect to the tube
pressure. (b) Ratios of the pressure and friction drags to the total drag.

3.3. Effect of Pod Length

This section investigates the effect of pod length on the drag coefficient. Three cases were examined
based on the reference pod length from the Hyperloop Alpha documents. The pod length of Lre f = 43 m
was used as a reference case to analyze the two cases of Lre f /2 and 2Lre f . Figure 11 examines the effect
of pod length on the drag coefficient and the ratios of pressure and friction drags to the total drag.

As indicated in Figure 11a, the pod length does not have a significant effect on CDp , whereas it
leads to a considerable increase in CD f . The variation of drag coefficient with respect to pod length
follows a similar trend as the variation of drag force. The variation of drag force with pod length
is presented in the sub-figure. Friction drag is generally generated along the pod surface; hence,
when increasing the pod length, friction drag increases nearly proportionally. The drag acting on a
shorter pod mostly depends on the pressure drag. The increase of pressure drag is mostly affected by
the pressure distribution in the front and rear of the pod; hence, the extension of pod length has little
effect on the pressure drag. Nevertheless, friction drag is significantly altered because it is strongly
dependent on the surface area. CD f is nearly doubled when doubling the pod length, whereas the
increase of CDp is negligible. Consequently, with the increase of pod length, the increase of total drag
is mostly because of the increase in friction drag. To further explain the statement, the ratios of the
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pressure and friction drags to the total drag are presented in Figure 11b. With L = Lre f /2, the ratio of
pressure drag to friction drag is approximately 12:1. However, with L = 2Lre f , this ratio reduces to 5:1.

(a) Drag coefficient 

(b) Ratio of component drag to total drag 

Figure 11. Effect of pod length: (a) Variation of drag and drag coefficient with respect to pod length.
The results are similar to those of the steady state study by Oh et al. (2019) [5] (the difference is below
17%). (b) Ratio of pressure and friction drag to total drag.

3.4. Pressure Wave Propagation

The speed of sound in gases is dependent on the temperature. Under the assumption of isentropic
flow, the speed of sound is estimated by c =

√
γRT. γ and R are the ratios of specific heats and

the individual gas constant with the assigned values of 1.4 and 287.058 J/kg.K, respectively; at an
air temperature of 300 K, c = 347.1 m/s. Under atmosphere pressure and linear wave assumption,
the pressure waves propagate at the speed of sound [31]. However, in the Hyperloop system,
the reference pressure is reduced to 1/1000 atm and the pressure waves have high amplitude, causing
the nonlinear wave phenomenon. Therefore, the pressure wave propagation speeds are greater than
the speed of sound. Figure 12 compares the pressure wave propagation speeds induced at the front and
rear end of the pod with the speed of sound. A higher BR creates higher pressure wave propagation
speed at the front end of the pod

(
vs, f ront

)
, but it barely affects the pressure wave propagation speed at

the end of the pod (vs, rear).
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(a) Absolute coordinate 

(b) Pod-relative coordinate 

Figure 12. Forward and backward pressure wave propagation speeds observed in (a) absolute
coordinates (the reference frame is fixed) and (b) pod-relative coordinates (the reference frame moves
with the pod). The red dashed line represents the speed of sound (347.1 m/s).

Figure 12a shows the values of pressure wave propagation speed (vs) in absolute coordinates.
The range of vs, f ront is from 355 to 473 m/s, which is much higher than the normal speed of sound of
347.1 m/s. As vP increases, vs, f ront increases steeply. In the rear end of the pod, vs, rear did not change
much and maintained a speed around the speed of sound. At vP of 350 m/s, the differences between
speed of sound and vs for forward and backward flows are 26.6% and 0.6%, respectively. Note that in
this study, the analysis of vs is conducted under ideal operating conditions, where the tube walls are
smooth and straight and without the application of a vacuum pump.

As shown in Figure 12b, the pod-relative coordinates and the absolute coordinates are vastly
different. vs,rear is much higher than vs, f ront. This is because the directions of vP and vs, f ront are the
same, in contrast to the direction of vs, rear, which is the opposite of vP. That means as vP increases,
the difference between vP and the compression wave speed decreases, whereas the difference between
vP and the expansion wave speed increases.

Figure 13 illustrates the pressure variation along the tube axis and the pod surface. As vP increases,
the pressure magnitude at the front of the pod significantly increases, whereas the pressure behind
the pod slightly decreases. Compression waves are generated in front of the pod and propagate
mainly in the forward direction faster than the speed of sound. These compression waves cause
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the pressure variation in front of the pod to fluctuate abruptly and generate a high-pressure region.
Meanwhile, expansion waves are generated behind the pod, and propagate both in the forward and
backward directions of the pod at around the speed of sound. The forward expansion waves pass
the pod surface and merge with the incident compression waves, decreasing the pressure of the
front waves. This phenomenon is probably observed at lower speeds, namely, 100 m/s and 150 m/s.
This pressure wave distribution is similar to the variation in the high-speed train–tunnel system
presented by Zonglin et al. [13]. When vP increases, the compressibility of air and the compression
wave propagation speed increase, and consequently alter the forms of the high-pressure region in front
of the pod. Figure A4 (Appendix C) describes this high-pressure region in more detail. By contrast,
the position of the low-pressure region shows only a minor change. The oblique shockwaves caused
by the reflection of waves between the tube walls and the pod tail are illustrated in Figure 13 for
vP ≥ 250 m/s.

Figure 13. Pressure wave distribution along the centerline of the tube and pod surface at t = 1.0 s.
Four cases of selected pod speeds under Ptube = 101.325 Pa, L = 43 m, and BR = 0.36 are presented.
Pod moves from right to left.

Figure 14 shows the pressure variation along the tube axis in the front and rear of the pod (depicted
in Figure 15) for t = 0.2–1.0 s. Compression waves are generated ahead of the pod and propagate
in the same direction, whereas expansion waves propagate in the opposite direction. The following
equation presents the pressure ratio for flows across a normal shock [27,31]:

p2

p1
=

2γM2
s − (γ− 1)
γ+ 1

(19)

with
Ms =

vs√
γRT1

(20)
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(a) Pressure profile of line 1 

(b) Pressure profile of line 2 

Figure 14. Pressure distributions of line 1 (the axis line in front of the pod) and line 2 (the axis line at the
rear of the pod) for t = 0.2–1.0 (vP = 300 m/s, BR = 0.36, Ptube = 101.325 Pa, Lpod = 43 m). Pod moves
from right to left. Red triangles represent the tube pressure of 101.325 Pa.

Figure 15. Descriptions of line 1 and line 2 from Figure 12.

The term p2 in Equation (19) is the pressure term of the front shockwave shown in Figure 16a.
Figure 16a compares the pressure magnitude of the front shockwave between BRs of 0.25 and 0.36.
The results indicate that a higher BR produces a higher front shockwave pressure. In Figures 12–14,
stronger compression waves form in front of the pod with increase of vP. This behavior of front
waves is similar to the phenomenon in the normal shockwave theory. Hence, Figure 16b compares
the compression wave propagation speed generated in front of the pod from the simulation with
the ones calculated by Equations (19) and (20). There is a good agreement between the two results.
Therefore, the compression wave generated in front of the pod in this study conforms to the normal
shockwave theory.

156



Mathematics 2020, 8, 1973

(a) Pressure magnitude of front shockwave 

(b) Speed of front shockwave 

Figure 16. Pressure magnitude and speed of front shockwave. The compression wave is well-matched
with the normal shockwave theory. (a) Pressure magnitude of compression wave traveling in the
forward direction of the pod. (b) Comparison of compression wave propagation speeds calculated
using the simulation and normal shockwave equations.

4. Conclusions

This study simulated the unsteady conditions of a Hyperloop system using the overset moving
mesh to investigate the influences of pod speed, BR, tube pressure, and pod length on the aerodynamic
drag and pressure waves induced in the system.

The results provide a clear picture of the variation of the drag coefficient. The drag coefficient is
maximized at lower pod speeds with a higher BR, in other words, 225 m/s for BR = 0.36 and 250 m/s
for BR = 0.25. The drag coefficient increases with the increase of pod speed, BR, and pod length. In the
Hyperloop system, pressure drag is regarded as a considerable component of total drag, whereas the
influence of friction drag is minor. In addition, the pressure difference between the nose and the
tail significantly impacts the pressure drag, and consequently the total drag. The drag increases
proportionally with the tube pressure, whereas the drag coefficient decreases slightly. The increase of
total drag with the increase of pod length is mostly dependent on the increment of the friction drag.

The presence of compression waves and expansion waves generates the opposite tendency of
pressure in the front and rear of the pod. Once the local flow speed exceeds the supersonic speed,
oblique shockwaves occur, vastly influencing the tail pressure of the pod. In the smaller tube (higher BR),
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the compressed air pushes the pod nose and significantly increases the pressure at the front while
decreasing the pressure behind the pod.

The compression waves and expansion waves, along with their speeds were investigated. In the
Hyperloop system, these waves become faster than the local speed of sound at lower internal
tube pressures and higher operating speeds. As BR increases, the speed of compression wave
propagation is largely affected, while the expansion waves propagate at a similar speed. The study
also suggested that the normal shockwave theory can be used to predict the variation of compression
wave propagation speed.

Author Contributions: Conceptualization, methodology, and investigation: T.T.G.L. and J.R.; validation and
writing—original draft preparation: T.T.G.L.; formal analysis, data curation, and visualization: T.T.G.L. and
K.S.J.; writing—review and editing, supervision, project administration, and funding acquisition: K.-S.L. and J.R.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-2020-2020-0-01655) supervised by the IITP
(Institute of Information and Communications Technology Planning and Evaluation), and by the National
Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2019R1A2C1087763).
This research was supported by “Core Technology Development of Subsonic Capsule Train” of the Korea Railroad
Research Institute under Grant PK2001A1A, Korea.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Pressure Wave Propagation with Respect to Simulation Time

In this study, 1 s was sufficient for the flow to fully develop. Therefore, the tube was created
long enough and the pod was placed at the given position to prevent the pressure waves from being
reflected by the boundaries in 1 s. The following figures show that at t = 1 s, the compression waves
and expansion waves do not reflect off the boundaries. Therefore, the designed geometry is reasonable.

Figure A1. Pressure line plot along the centerline in the front and rear of the pod varied with simulation
time (vP = 350 m/s). The simulation was terminated before the expansion wave could reflect off from
the outlet boundary.
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Appendix B

 
(a) (b) 

Figure A2. Variation of friction drag coefficients on blockage ratio and (a) Re, (b) Mach number.
Insets represent the variation of drag.

 
(a) (b) 

Figure A3. Variation of pressure drag coefficients on blockage ratio and (a) Re, (b) Mach number.
Insets represent the variation of drag.

Appendix C. High-Pressure Region

The pressure contours at the front and rear of the pod are shown in Figure A4 to describe the
high-pressure region and the form of oblique shockwaves coexist with normal shockwaves. Figure A4
indicates that because the front wave propagation speed is much higher than the operating pod
speed (150 m/s), a high-pressure region is created in places far from the nose. This is contrary to the
phenomenon that occurs at a vP of 350 m/s, in which the high-pressure region occurs right in front
of the nose. This means that when the local flow exceeds supersonic speed, the compression wave
gets increasingly closer. This high-pressure region separates the pressure in front of the pod into two
distinct regions: a disturbed region (orange-red color) and an undisturbed region (green color) that
is at the initial tube pressure. A severe shock phenomenon occurs at a vP of 350 m/s, which did not
appear at a vP of 150 m/s. The low-pressure region is not significant compared to other pressure regions
behind the pod. Hence, it was not observed in the pressure contour.
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Figure A4. Pressure contour of pressure waves generated at the front and rear of the pod. The largest
red regime describes the high-pressure regime.
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Abstract: Unsteady stagnation point flow in hybrid nanofluid (Al2O3-Cu/H2O) past a convectively
heated stretching/shrinking sheet is examined. Apart from the conventional surface of the no-slip
condition, the velocity slip condition is considered in this study. By incorporating verified similarity
transformations, the differential equations together with their partial derivatives are changed
into ordinary differential equations. Throughout the MATLAB operating system, the simplified
mathematical model is clarified by employing the bvp4c procedure. The above-proposed approach is
capable of producing non-uniqueness solutions when adequate initial assumptions are provided.
The findings revealed that the skin friction coefficient intensifies in conjunction with the local Nusselt
number by adding up the nanoparticles volume fraction. The occurrence of velocity slip at the
boundary reduces the coefficient of skin friction; however, an upward trend is exemplified in the rate of
heat transfer. The results also signified that, unlike the parameter of velocity slip, the increment in the
unsteady parameter conclusively increases the coefficient of skin friction, and an upsurge attribution
in the heat transfer rate is observed resulting from the increment of Biot number. The findings are
evidenced to have dual solutions, which inevitably contribute to stability analysis, hence validating
the feasibility of the first solution.

Keywords: hybrid nanofluid; unsteady stagnation point; velocity slip; convective boundary condition;
stability analysis

1. Introduction

The most common problem in boundary layer flow that had been treated so far is much focused
on those for steady flows. Even though it is the steady flows that seem to have the utmost significance
in real-world demands, some cases of time-varying in the boundary layer which is unsteady indicate an
important role in several engineering problems. Some of the examples are start-up processes where the
motions in rest are transits from a steady flow to another, and periodic motions of the working fluid [1].
The behavior of unsteady boundary layer flow describes an unusual pattern compared to the steady
flow owing to the additional time-dependent terms in the governing equations, which exaggerated the
separation of boundary layer and the fluid motion arrangement [2,3]. The thermal and mechanical
properties of such an unsteady mechanism in the boundary layer approximation have been studied
both analytically and numerically. Elbashbeshy and Bazid [4] presented the numerical investigation
towards the unsteady stretching surface with heat transfer analysis. At the same time, Bhattacharya [5]
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managed to prove the existence of dual solutions in unsteady stagnation point flow towards a shrinking
sheet by employing the shooting method approach coupled with a Runge–Kutta integration scheme.
Bachok et al. [6] concluded that inclusion of the unsteadiness parameter offers a significant impact
towards the boundary layer flow in nanofluid and Fan et al. [7] presented analytical solutions using the
homotopy analysis method (HAM) and managed to advertise a highly precise analytical estimation
which is in excellent agreement with the numerical results offered by the Keller box scheme. It is worth
mentioning that a considerable amount of reviews on the unsteady stagnation point flow due to a
stretching/shrinking surface have been accomplished by numerous researchers, including [8–11].

The stagnation point flow is one of the important topics in mechanics of fluid, in the way that
stagnation point generally occurs in both engineering and science flow fields. The stagnation point
flow could be identified in the extrusion process, polymer industry, and plane counter jet [12,13].
The ground-breaking research in this topic was first initiated by Hiemenz [14] who exposed an analytical
explanation of two-dimensional stagnation point flow, and soon after, Homann [15] conducted a
classical study of stagnation point in three-dimensional flow with regard to an axisymmetric case;
whereas Howarth [16] tackled the problem of non-axisymmetric flow close to the stagnation area in
three-dimensional analysis. Recently, Khashi’ie et al. [17,18], Fang and Wang [19], Waini et al. [20],
and Zainal et al. [21] have scrutinized the stagnation point flow problems in diverse aspects with
no-slip boundary conditions. Nevertheless, in numerous engineering occasions, the slip effect should
be comprised, such as flow over lubricated or coated surfaces, rough or striated surfaces [22] and
internal rare field gas flow [23]. Examples of industrial applications involving the slip boundary
conditions are fluid flow on multiple interfaces, rare field fluid problems, and also the reacting flow in
reactors [24,25]. Navier [26] and Maxwell [27] were the primary researchers who pioneered the study
of linear slip boundary conditions, while Wang [28] has well reflected a comprehensive theoretical
analysis considering the no-slip boundaries concentrating on the stagnation point flow. Rao and
Rajagopal [29] have conducted an extensive evaluation and argument between the slip and no-slip
condition, and Jusoh et al. [30] deliberated a modified nanofluid model towards a stretching/shrinking
surface by considering a velocity slip parameter in three-dimensional flow. The study revealed that an
increase in the velocity slip magnitude contributed to the intensification of skin friction coefficients.

In certain cases, the velocity slip or the non-adherence of the fluid to a solid boundary phenomenon
was witnessed, for instance, in the micro-scale devices [31]. Fluids promoting slip are critical in technical
applications such as polishing artificial heart valves and internal cavities [32]. The flow behavior and
the shear stress in the fluid are rather distinctive with a slip at the wall boundary compared to those
with no-slip condition. Besides that, the velocity slip effect does influence the heat transfer rate and
was confirmed by Mukhopadhyay [33], who had investigated the slip impact of the unsteady mixed
convective flow towards a porous stretching surface with heat transfer. The analysis found that the
heat transfer rate declines with the velocity slip parameter, while it upsurges with the unsteadiness
parameter. Mahapatra and Nandy [34] conducted a numerical study of the unsteady stagnation
point flow past a shrinking sheet and heat transfer with the presence of slip effects in a viscous fluid.
The results conveyed that with the increase of the velocity slip and unsteady parameter, the heat
transfer rate is reported to escalate. Meanwhile, in nanofluid flow, Majumder et al. [35] specified that
exertion of the partial velocity slip against the sheet surface is common. By relying on the finding in [35],
Noghrehabadi et al. [36] then examined the impact of partial velocity slip on the nanofluid boundary
layer flow and heat transfer past a stretching sheet. The work in [36] reported that an increment in
the velocity slip effect decreases the momentum boundary layer thickness. Van Gorder et al. [37],
who examined the nanofluid boundary layer flow over a stretching surface, also conveyed a similar
result as [36] and further explained that no-slip condition is not applicable for fluid flows at nanoscales.
Besides that, Dinarvand and Rostami [38] studied the rotating nanofluid flow and heat transfer with
the presence of internal heating, velocity slip, and different shapes of nanoparticles. They showed that
an increment in the velocity slip effect reduces the skin friction coefficient significantly. Researchers
also tend to analyze the effect of velocity slip in the unsteady nanofluid flow as unsteady flow problems
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are more relatable to real-world applications. For instance, Seth et al. [39] studied the unsteady
hydromagnetic nanofluid flow and heat transfer past a non-linearly stretching surface with Navier’s
velocity slip and presented the analysis of entropy generation. Other valuable references regarding
unsteady nanofluid flow with the velocity slip effect can be found in [40–42].

Ever since the outstanding inventions achieved by Choi and Eastman [43], who originated
the brilliant idea of demonstrating the nanoparticle suspension in a base fluid and came out with
the nanofluid term, a better type of working fluid is still being pursued. Acknowledging the
sufficient improvement in the thermal conductivity of the conventional fluid is crucial, an advanced
nanofluid form known as hybrid nanofluid is introduced, which intends to have highly developed
heat conductivity. This modern type of fluid agent has fascinated numerous researchers owing to
its reputation in the emergence and improvement of thermal characteristics in realistic applications,
including micro-channel, heat pipes, heat exchangers, air conditioning systems, and mini-channel
heat sink [44,45]. Gupta et al. [46] and Xian et al. [47] have reviewed the preparation method of
hybrid nanoparticles along with the stabilization and its significance in industrial sectors. One of the
critical elements in establishing a sustainable hybrid nanofluid suspension is selecting an appropriate
combination of nanoparticles. The most widely used nanoparticles for the formation of hybrid
nanofluid suspension are carbon materials (graphite, MWCNTs, CNTs), metals (Cu, Ag), metal oxides
(Al2O3, CuO, Fe2O3), metal carbide, and a metal nitride. Madhesh and Kalaiselvam [48] conducted
an experimental study to examine the features of hybrid nanofluid as a coolant agent, Tahat and
Benim [49] examined the efficiency of hybrid nanofluid on flat plate solar collector, and they verified
that the viscosity, thermal conductivity, and density of the working fluid had increased together with
the concentration of Al2O3/CuO concentration, thus enhancing the solar collector proficiency. Some
early research on hybrid nanofluid that employed the numerical method was done by Labib et al. [50],
who investigated the impact of base fluids and hybrid nanofluid using a two-phase mixture model in
forced convective heat transfer. Moghadassi et al. [51] revealed that the heat transfer performance is
enhanced by adding the nanoparticles of Al2O3-Cu hybrid nanofluid while creating a small pressure
drop in the system regime, Devi and Devi [52] focused on the mathematical inspection towards a
stretching sheet. In contrast, the evaluation of heat transfers in the natural convection of Al2O3/water
nanofluid and Al2O3-Cu/water hybrid nanofluid with a discrete heat source was explored by Takabi
and Salehi [53]. Additional details on this topic are well described in the literatures [54–56].

To the best of the authors’ knowledge, the existing literature does not consider the unsteady
stagnation point flow of hybrid nanofluids with the presence of velocity slip parameter and stability
analysis in their models. Thus, the addressed issues above have inspired the authors to perform a
numerical study in unsteady stagnation point flow towards a convectively heated stretching/shrinking
sheet in alumina–copper/water (Al2O3-Cu/H2O) with the impact of velocity slip on heat transfer.
The hybrid nanofluid is recognized by dispersing Al2O3 nanoparticles into H2O, followed by Cu with
different volume fractions and the thermophysical properties of the hybrid nanofluid are adopted from
Ghalambaz et al. [57] and Takabi and Salehi [53], which were based on the feasible physical assumptions
and are in agreement with the conservation of mass and energy. The present work also utilized the
bvp4c approach, which can be accessed in the MATLAB programming system towards solving the
formulated problem. The existence of more than one solution is predictable; thus, an analysis of
solution stability is completed to confirm the steadiness of the solutions which has an actual physical
interpretation. The explanation of the results and the convergence of the obtained solutions are
deliberated on in detail. Particular cases of current findings are evaluated in accordance with those of
Mahapatra and Nandy [34] and Wang [58]. Furthermore, the consensus between previous and current
findings is outstanding, and the agreement is excellent.

2. Mathematical Model

The unsteady two-dimensional stagnation-point flow of a hybrid Al2O3-Cu/H2O nanofluid over a
convectively heated stretching/shrinking sheet with the influence of velocity slip is considered in this
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research work, as illustrated in Figure 1 (see Dzulkifli et al. [59]). The stretching/shrinking velocity is
denoted by uw(x, t) = bx/(1− ct), where b denotes a constant corresponds to stretching (b > 0) and
shrinking (b < 0) cases while c signifies the unsteadiness problem and ue(x, t) = ax/(1− ct) is the
velocity of the free stream where a > 0 represents the strength of the stagnation flow. The ambient
temperature and the reference temperature are T∞ and T0, respectively. Now, we let the bottom of the
sheet be heated by convection from a hot fluid at a specific temperature T f (x, t) = T∞+T0

ax2

2ν (1− ct)−3/2

which supplies a coefficient of heat transfer, expressed by h f . From all of the assumptions above;
the governing boundary layer equations can be acknowledged as [34].

∂u
∂x

+
∂v
∂y

= 0, (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
∂ue

∂t
+ ue

∂ue

∂x
+
μhn f

ρhn f

∂2u
∂y2 , (2)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khn f(
ρCp

)
hn f

∂2T
∂y2 , (3)

where u denotes the component of velocity in x− axis, v is the velocity component in y− axis, μhn f is
the Al2O3-Cu/H2O dynamic viscosity, ρhn f the density of Al2O3-Cu/H2O, T is the Al2O3-Cu/H2O

temperature, khn f is the thermal/heat conductivity of Al2O3-Cu/H2O and
(
ρCp

)
hn f

is the Al2O3-Cu/H2O

heat capacity. The boundary conditions, together with the partial slip for velocity, are set to

u = uw(x, t) + H1ν
∂u
∂y , v = 0, − khn f

∂T
∂y = h f +

(
T f − T

)
at y = 0,

u→ ue(x, t), T→ T∞ as y→∞,
(4)

where H1 = H(1− ct)1/2 is the velocity slip factor, in which H refers to the initial value of the velocity
slip factor. The copper (Cu) thermophysical properties, along with aluminum oxide (Al2O3) and water
(H2O) nanoparticles, are provided in Table 1, as demonstrated by [60]. In the meantime, Table 2 issued
the thermophysical properties hybrid nanofluid as established by [53,57]. The nanoparticles solid
volume fraction is represented by φ, ρ f indicates the H2O density, and ρs is the density of the hybrid
nanoparticle, Cp is the constant pressure of heat capacity, while k f denotes the thermal conductivity of
H2O and ks is the hybrid nanoparticles thermal conductivity.

Figure 1. The schematic of problem flow (Dzulkifli et al. [59]).
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Table 1. Cu thermophysical properties along with Al2O3 and H2O (Oztop and Abu Nada [60]).

Properties k( W/mK) ρ (kg/m3) Cp(J/kgK) β × 10−5(mK)

Cu 400 8933 385 1.67
Al2O3 40 3970 765 0.85
H2O 0.613 997.1 4179 21

Table 2. Hybrid Al2O3-Cu/H2O nanofluids thermophysical properties (Takabi and Salehi [53],
Ghalambaz et al. [57]).

Properties Hybrid Nanofluid

Dynamic viscosity μhn f =
1

(1−φhn f )
2.5

Density ρhn f =
(
1−φhn f

)
ρ f + φ1ρs1 + φ2ρs2

Thermal capacity
(
ρCp

)
hn f

=
(
1−φhn f

)(
ρCp

)
f
+ φ1

(
ρCp

)
s1
+ φ2

(
ρCp

)
s2

Thermal conductivity khn f

k f
=

⎡⎢⎢⎢⎢⎢⎢⎣
(
φ1ks1+φ2ks2
φhn f

)
+2k f +2(φ1ks1+φ2ks2)−2φhn f k f(

φ1ks1+φ2ks2
φhn f

)
+2k f−(φ1ks1+φ2ks2)+φhn f k f

⎤⎥⎥⎥⎥⎥⎥⎦
In order to express the governing Equations (1)–(3) concerning the boundary conditions (4) in a

much simpler form, the subsequent similarity transformations are presented [34]

ψ =
( aν

1− ct

)1/2
x f (η),θ(η) =

T − T∞
T f − T∞

, η =
(

a
ν(1− ct)

)1/2

y, (5)

where ψ is the stream function that can be specified as u = ∂ψ/∂y, v = −∂ψ/∂y and η is the similarity
variable. Thus, we attain

u =
ax

(1− ct)
f ′(η), v = −

( aν
1− ct

)1/2
f (η). (6)

In view of the above relations, by employing the similarity variables (5) and (6), Equations (2) and
(3) reduce to the following set of nonlinear similarity differential equations

μhn f /μ f

ρhn f /ρ f
f ′′′ + f f ′′ − f ′2 + 1− ε

(
f ′ + 1

2
η f ′′ − 1

)
= 0, (7)

1
Pr

khn f /k f(
ρCp

)
hn f

/
(
ρCp

)
f

θ′′ + fθ′ − 2 f ′θ+ ε
2
(ηθ′ + 3θ) = 0. (8)

Here, ε measures the unsteadiness parameter with ε = c/a, Pr represents the Prandtl number
where Pr = ν f /α f . Next, the initial and boundary conditions (4) now transform into

f (0) = 0, f ′(0) = λ+ γ f ′′ (0), − khn f
k f
θ′(0) = Bi[1− θ(0)],

f ′(η)→ 1,θ(η)→ 0, while η→∞.
(9)

From Equation (9), λ symbolises as the ratio of velocity parameter, γ and Bi are the dimensionless
velocity slip parameter and Biot number, respectively, which are described as

λ =
b
a

,γ = H(aν)1/2, Bi =
h f

k f

√
ν(1− ct)

a
. (10)
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Next, we define the skin friction coefficient
(
C f

)
and the local Nusselt number (Nux) as

C f =
τw

ρ f ue2 , Nux =
xqw

k f
(
T f − T∞

) . (11)

The shear stress along the x− direction is represented by τw, while qw signifies the surface heat
flux that accentuated by

τw = μhn f

(
∂u
∂y

)
y=0

, qw = −khn f

(
∂T
∂y

)
y=0

. (12)

By applying (5) and (12) into (11), we acquire

√
RexC f =

μhn f

μ f
f ′′ (0),

1√
Rex

Nux = −khn f

k f
θ′(0), (13)

provided that Rex = uex
ν f

is the local Reynolds number in x- axis.

3. Analysis of Solution Stability

By obeying the efforts of Merkin [61] and Merill et al. [62] from their outstanding discoveries of
stability analysis scheme, the unsteady equations need to be deliberated in order to ultimately identify
the reliable and stable solution since we notice the appearance of non-uniqueness solutions in the
boundary value problem (7)–(9). Now, in accordance with the unsteady-state problem, a new similarity
conversion is proposed

u = ax
1−ct

∂ f
∂η (η, τ), v = −

(
aν

1−ct

)1/2
f (η, τ),θ(η, τ) = T−T∞

T f−T∞ ,

η =
√

a
ν(1−ct) y, τ = a

1−ct t.
(14)

Employing the similarity variables of Equation (14) to Equations (7) and (8), we now obtain the
following converted differential equations

μhn f /μ f

ρhn f /ρ f

∂3 f
∂η3 +

(
f +
ε
2
η
)∂2 f
∂η2 −

(
∂ f
∂η

)2

− ε∂ f
∂η
− (1 + ετ) ∂

2 f
∂η∂τ

+ ε+ 1 = 0, (15)

1
Pr

khn f /k f(
ρCp

)
hn f

/
(
ρCp

)
f

∂2θ

∂η2 + f
∂θ
∂η
− 2θ

∂ f
∂η
− ε

2
η
∂θ
∂η
− ε

2
3θ− (1 + ετ)∂θ

∂τ
= 0, (16)

with respect to

f (0, τ) = 0, ∂ f
∂η (0, τ) = λ+ γ∂

2 f
∂η2 (0, τ), − khn f

k f

∂θ
∂η (0, τ) = Bi[1− θ(0, τ)],

∂ f
∂η (η, τ)→ 1,θ(η, τ)→ 0, as η→∞.

(17)

In accordance with Weidman et al. [63], to test the stability of the steady flow f (η) = f0(η) and
θ(η) = θ0(η) which fulfil the boundary value problem and boundary conditions (refer to (7)–(9)),
we write

f (η, τ) = f0(η) + e−ωτF(η), θ(η, τ) = θ0(η) + e−ωτG(η), (18)

by which ω is the eigenvalue of unidentified variables, while functions F(η) and G(η) are relatively
small to f0(η) andθ0(η). The eigenvalue problems (15) and (16) result in an infinite group of eigenvalues
ω1 < ω2 < ω3...... that detect an early decay when ω1 is positive, while an early growth of disruptions
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is observed when ω1 is negative, which exposes the unstable flow. Substituting (18) into (15)–(17),
we develop

μhn f /μ f

ρhn f /ρ f

∂3F
∂η3 +

(
f0 +

ε
2
η
)
∂2F
∂η2 + F

∂2 f0
∂η2 − 2

∂ f0
∂η
∂F
∂η

+ (ω− ε)∂F
∂η

= 0, (19)

1
Pr

khn f /k f(
ρCp

)
hn f

/
(
ρCp

)
f

∂2G
∂η2 +

(
f0 − ε2η

)
∂G
∂η
− 2

(
θ0
∂F
∂η

+ G
∂ f0
∂η

)
+ F
∂θ0

∂η
+

(
ω− 3

2
ε
)
G = 0, (20)

and the boundary conditions are

F(0, τ) = 0, ∂F∂η (0, τ) − γ∂2F
∂η2 (0, τ) = 0, − khn f

k f

∂G
∂η (0, τ) − BiG(0, τ) = 0,

∂F
∂η (η, τ)→ 0, G(η, τ)→ 0, as η→∞.

(21)

The heat transfer stability and steady-state flow solutions f0(η) and θ0(η) was implemented
via τ→ 0 , therefore F = F0(η) and G = G0(η) in (19)–(21). As a consequence, an early growth of
Equation (18) is detected, and the subsequent generalized eigenvalue problem is recognized

μhn f /μ f

ρhn f /ρ f
F′′′0 +

(
f0 +

ε
2
η
)
F′′0 + F0 f ′′0 −

(
2 f ′0 −ω+ ε

)
F′0 = 0, (22)

1
Pr

khn f /k f(
ρCp

)
hn f

/
(
ρCp

)
f

G′′0 +
(

f0 − ε2η
)
G′0 + F0θ

′
0 − 2

(
θ0F′0 + G0 f ′0

)
+

(
ω− 3

2
ε
)
G0 = 0, (23)

subject to

F0(0) = 0, F′0(0) − γF′′0 (0) = 0, − khn f
k f

G′0(0) − BiG0(0) = 0,

F′0(η)→ 0, G0(η)→ 0, as η→∞.
(24)

The range of possible eigenvalues can be calculated by resting a boundary condition [64] of the
present problem. In this study, we choose to repose F′0(η)→ 0 , and the linear eigenvalue problems
(22)–(24) are disclosed as F′′ 0(0) = 1 for a fixed value of ω1. It is worth mentioning that the values of
ω1 are proficient in measuring the stability of the corresponding solutions f0(η) and θ0(η).

4. Results and Discussion

The mathematical computations of this research work were achieved by employing the bvp4c
function in the MATLAB programming system subject to the governing ordinary differential
Equations (7) and (8) together with the boundary conditions (9). A bvp4c method is a notable tool
for solving the boundary value problem that has been extensively established by various researchers
to clarify the boundary value concern. In order to ensure the obtainment of desired solutions, early
estimation of the primary mesh point and variations step size is crucial. Also, a reasonable assumption
of the thickness of the boundary layer along with effective preliminary approximation is essential for
defining the non-uniqueness solutions. The consistency of the results generated in the present study is
evaluated with those in [34,58], as accessible in Table 3, which is in excellent agreement.

In this study, we recognized the hybrid Al2O3-Cu/H2O nanofluid by dispersing the first
nanoparticle φ1 (alumina) into the base fluid (water) followed by the second nanoparticle φ2 (copper)
with various amounts of volume fractions. It is important to declare that the dispersion of discrete
nanoparticle Al2O3/Cu is capable of developing Al2O3-Cu/H2O and Cu-H2O nanofluids. Apart from
that, the Prandtl (Pr) number is set to be fixed at Pr = 6.2 corresponds to water as the reference-based
fluid, while as for the hybrid Al2O3-Cu/H2O nanofluid, the size of the nanoparticles is assumed to
be standardized, and the thermophysical properties effect of nanoparticles agglomeration is ignored.
The main purpose of the present study is to examine the influence of the control parameter such as the
nanoparticles volume fraction (φ1,φ2), the unsteadiness parameter (ε), the velocity slip parameter
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(γ), and the Biot number (Bi) towards the coefficients of skin friction variations ( f ′′ (0)) and the heat
transfer rate (θ′(0)). The alumina and copper nanoparticles volume fraction in the present work is
chosen within the range of 0.00 ≤ φ2 ≤ 0.04 which motivated by the experimental work done by Suresh
et al. [65] who conducted the synthesis, characterization of Al2O3 −Cu/H2O nanocomposite powder
for different volume concentrations 0.1%, 0.33%, 0.75%, 1%, and 2%. In their valuable study, the stability
of the prepared nanofluids was determined by measuring the pH of nanofluids, and the nanofluid
stability was found to diminish with increasing volume concentration. On another note, various values
of the controlling parameter that has been used, are set within the following extent; 0.1 ≤ ε ≤ 0.2,
0.1 ≤ γ ≤ 0.4, and 0.2 ≤ Bi ≤ 0.7 to ensure the certainty of the obtained solutions. The present study
also interested in witnessing the non-uniqueness solutions that appear in the ordinary governing
differential of the ensuing problem, hence confirm the real and valid solutions through the stability
analysis by utilizing the bvp4c approach in MATLAB operating system (MATLAB R2019b, MathWorks,
Natick, MA, USA).

Table 3. Evaluation values of f ′′ (0) when ε = γ = Bi = 0, by certain values of λ.

λ

Present Result Mahapatra and Nandy [34] Wang [58]

First
Solution

Second
Solution

First
Solution

Second
Solution

First
Solution

Second
Solution

−0.25 1.402241 - 1.402242 - 1.4022404 -
−0.50 1.495670 - 1.495672 - 1.4956704 -
−0.75 1.489298 - 1.489296 - 1.4893004 -
−1.00 1.328817 0.000000 1.328819 0.000000 1.3288204 0.000000
−1.10 1.186680 0.049229 1.186680 0.049229 - -
−1.15 1.082231 0.116702 1.082232 0.116702 1.082230 0.116702
−1.20 0.932473 0.233650 0.932470 0.233648 - -
−1.246 0.609826 0.529035 0.584374 0.554215 0.5543004 -

The generated results of Equations (7) and (8) perceive the non-uniqueness (dual) solutions together
with the boundary conditions (9) to a specific scope of λc where λc manifests the non-uniqueness
solutions meeting point, and this too is regarded as a critical point. There is a single solution at a
critical point, and that is the distinct line. The flow separation happens to occur after the critical
point, and the flow is no longer laminar and does not obey the principle of boundary layer theory.
According to the numerical results attained in this research work, it is proven that a non-uniqueness
solutions appear, namely first and second solutions, as depicted in Figures 2–15. The existence
of the non-uniqueness solutions contributes to the analysis of solution stability so that one may
be able to verify the theoretically relevant solution. The first solution, however, is predicted to
be reliable and fundamentally exist in practice. The smallest eigenvalues ω1 for some values of λ
when ε = 0.1,φ1 = φ2 = 0.02, Bi = 0.2, and Pr = 6.2 with γ = 0.1, 0.2, 0.4, are tabulated in Table 4.
The values of ω1 is noted approaching zero in the first and second solutions for λ→ λc in selected
cases of γ. Hence, the authors may assure that the stability formulation and practices of the current
problem are accurate and reliable. The flow is measured unstable if ω1 is negative because it implies
an early development of disruptions that leads to flow separation. The smallest eigenvalue ω1 with
positive value implies the flow is practically attainable and sustainable, which elucidates the solution
stabilizing property to overwhelm the allowing disruptions. Also, it denotes an initial deterioration
of disruptions that appear. The positive value of ω1 describes the stable mode of the flow as in the
first solution. The significance of dual solutions that contribute to stability analysis is in revealing the
other possibilities of flow behavior, which may be useful for future references in the extrusion process.
For example, in the present study, we have presented that the second solutions are unstable solutions
with negative eigenvalues. These unstable solutions with the negative eigenvalues infer the growth
of the disturbance in the solutions, especially at some range of the stretching/shrinking parameter
(λ < −1.0). When the shrinking rate increases, it limits other external forces’ effect at the sheet and
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eventually showed the opposite behavior of the transport phenomena than the first solutions in the
same range of λ < −1.0, as the respective parameter varies. Moreover, any boundary value problem
can generate more than one solution because of the nonlinearity in the boundary value problem;
for example, see the mathematical model (7)–(9). Also, changes in the governing parameter values
cause bifurcations in solutions that yield the existence of dual solutions [1]. Therefore, the mathematical
model (7)–(9), which obeyed the boundary layer assumptions, managed to exhibit the variety in the
fluid flow and heat transfer behavior through the uniqueness and existence of the solutions.

Figure 2. Variants of f ′′ (0) towards λwith γ = 0.1, 0.2, 0.4.

Figure 3. Variants of −θ′(0) towards λwith γ = 0.1, 0.2, 0.4.
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Figure 4. Velocity profiles of f ′(η) with λ = −1.3 (shrinking case).

Figure 5. Temperature profiles of θ(η) with λ = −1.3 (shrinking case).
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Figure 6. Variants of f ′′ (0) towards λwith φ2 = 0.00, 0.02, 0.04.

Figure 7. Variants of −θ′(0) towards λwith φ2 = 0.00, 0.02, 0.04.
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Figure 8. Velocity profiles of f ′(η) with λ = −1.4 (shrinking case).

 

Figure 9. Temperature profiles of θ(η) with λ = −1.4 (shrinking case).
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Figure 10. Variants of f ′′ (0) towards λwith ε = 0.10, 0.15, 0.20.

Figure 11. Variants of −θ′(0) towards λwith ε = 0.10, 0.15, 0.20.

175



Mathematics 2020, 8, 1649

 

Figure 12. Velocity profiles of f ′(η) with ε = 0.10, 0.15, 0.20.

 

Figure 13. Temperature profiles of θ(η) with ε = 0.10, 0.15, 0.20.
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Figure 14. Variants of −θ′(0) towards λwith Bi = 0.2, 0.5, 0.7.

 

Figure 15. Temperature profiles of θ(η) with Bi = 0.2, 0.5, 0.7.
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Table 4. Smallest eigenvalues ω1 for some values of λwhen γ = 0.1, 0.2, 0.4.

γ λ
ω1

First Solution
ω1

Second Solution

0.1
−1.30 0.7646 −0.7093
−1.380 0.1015 −0.1398
−1.3820 0.0095 −0.0500

0.2
−1.40 0.6870 −0.6316
−1.460 0.2387 −0.2435
−1.4690 0.0088 −0.0225

0.4
−1.68 0.1822 −0.1576
−1.684 0.0912 −0.0696
−1.6851 0.0276 −0.0067

The influence of velocity slip on the skin friction coefficient and the local Nusselt number
past a convectively heated stretching/shrinking sheet of hybrid Al2O3-Cu/H2O nanofluid are
displayed in Figures 2–5. Figure 2 presents the coefficient of skin friction ( f ′′ (0)) towards the
stretching/shrinking parameter λ, which revealed a decline of f ′′ (0) with the occurrence of velocity
slip effect (γ = 0.1, 0.2, 0.4) at the boundary. The same results are obtained in the previous literature,
as reported by Dzulkifli et al. [59]. Based on a physical perspective, an improvement in the slip
parameter reflects the fact that the vorticity produced by the stretching/shrinking velocity is gradually
decreased, thus the vorticity stays restricted within the boundary layer for greater stretching/shrinking
velocity with the same straining velocity of the stagnation flow, and subsequently, the steady solution
is achievable for some broad values of λ, as stated by Mahapatra and Nandy [34]. Figure 2 emphasizes
that the solution for a certain value of γ persist prior to a critical value λ = (λc < 0) at which the
boundary layer splits from the convectively heated stretching/shrinking sheet and the solution on the
basis of the boundary layer approximations is not feasible. In short, no solution exists for λc < −1.6851.
Moreover, the expansion of γ results in the increment of |λc| suggesting that the velocity slip parameter
is efficiently influenced by raising the range of dual solutions. Thus, it is proven that the existence of
a slip velocity impact may prolong the separation of the boundary layer. Figure 2 also highlights as
the sheet is stretching at the rate of λ = 1, the value of f ′′ (0) = 0 which describes no frictional drag
exerted at the convectively heated stretching/shrinking sheet.

Figure 3 exposes an upward trend in −θ′(0) when the velocity slip parameter arises on the
convectively heated stretching/shrinking sheet, which is proportionate to the heat transfer rate. Those
findings are in line with the remarkable work reviewed by Mahapatra and Nandy [34] and Khashi’ie
et al. [66]. Evidently, in the case of the first solution, the rate of heat transfer presents an ascendant
trend with an increase of γ while the second solution permits a top-down direction when the velocity
slip γ enlarges. From the existing and current findings, the authors can conclude that the velocity slip
contributes to the improvement of the heat transfer rate significantly, prior to this case study. However,
the authors would also like to declare that such results may vary if different control parameters are
taken into consideration. The distribution of velocity ( f ′(η)) and temperature (θ(η)) profiles over
several values of γ in the case of a convectively heated shrinking sheet is certified in Figures 4 and 5.
As demonstrated in Figure 4, it is confirmed that as γ increases, f ′(η) is subsequently decreased in
the first solution and revealed an upward trend in the velocity profile in the second solution with the
presence of velocity slip condition. As the slip occurs, the velocity flow near the sheet in no longer
equal to stretching velocity. This is due to the slip condition where the pulling force of the stretching
sheet is partly shifted to the fluid, resulting in the decrement of the velocity profiles in the first solution.
In short, the slip condition reduces the momentum transfer from the sheet to the fluid. A contradict
results are obtained in θ(η) as the velocity slip effect is exaggerated, as shown in Figure 5. The first
solution in the temperature profile distribution increases as γ intensifies, while it diminishes in the
second solution. This may occur due to the appearance of slip boundary conditions on the wall,
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which triggers the hybrid nanofluid to retain the velocity on the walls, and such slip may prevent from
total heat exchange of the hybrid nanofluid. It is therefore noticed when the slip coefficient is applied,
the difference in temperature rate is increased. Additionally, the effect of convective heating progress
that has been reflected in the present study, which controls the temperature of the stretching/shrinking
surface also might contribute to this phenomenon. As a matter of fact, greater convection leads to
increased surface temperatures, which permit the thermal impact to penetrate deeper within the hybrid
Al2O3-Cu/H2O nanofluid.

Figures 6 and 7 expose the coefficient of skin friction ( f ′′ (0)) and the rate of heat transfer (−θ′(0))
of a conventional nanofluid (φ1 = 0.02,φ2 = 0) and hybrid nanofluid (φ1 = 0.02,φ2 = 0.02, 0.04)
past a convectively heated stretching/shrinking sheet when φ2 varies from 0.00 to 0.02 where
ε = 0.1,γ = 0.2, Bi = 0.2, and Pr = 6.2. Figure 6 manifests that addition in φ2 which indicates the
transformation of the conventional Al2O3-H2O fluid to the hybrid Al2O3-Cu/H2O nanofluid, upsurges
the values of f ′′ (0) once the sheet is shrinking. The viscosity of hybrid Al2O3-Cu/H2O nanofluid rises
when φ2 increases, which eventually improves the fluid velocity over the convectively heated shrinking
sheet, as proven in Figure 8. The velocity profile in Figure 8 clarifies that the momentum boundary
layer thickness was diminished in response to the rise of φ2, thereby raising the velocity of the fluid and
boosting the gradient of velocity. In fact, the thinner momentum boundary layer continues to evolve the
wall shear stress as well as the convectively heated shrinking sheet, leading to an enhancement of f ′′ (0).
As f ′′ (0) increases, the result implies the increase of the frictional drag exerted on the convectively
heated shrinking surface, which may delay the boundary layer flow separation. Besides, Figure 6 also
highlights when the sheet is stretching at the rate of λ = 1, the value of f ′′ (0) = 0 which explains no
frictional drag exerted at the sheet surface. Meanwhile, Figure 7 illustrates an increasing trend of the
heat transfer characteristic or −θ′(0) when the values of φ2 past a convectively heated shrinking sheet,
and this trend holds true to the first solution but is in dispute with the results in the second solution.
In essence, as the conventional Al2O3-H2O nanofluid becomes the hybrid Al2O3-Cu/H2O nanofluid,
the heat transfer efficiency improves. This finding upholds the assumption of the convective heat
transfer system can be improved by optimizing the nanoparticle concentration when φ2 increased.
The results obtained in Figures 6 and 7 are consistent with Waini et al. [20] and Zainal et al. [21],
whereby adding the concentrations of hybrid nanoparticles may contribute to the improvement of
the heat transfer rate, accordingly. The temperature profile in Figure 9 describes the temperature
variations when the conventional Al2O3-H2O nanofluid becomes the hybrid Al2O3-Cu/H2O nanofluid
in both first and second solutions. The incline in the temperature of hybrid nanofluid proliferates the
thermal conductivity, which may be triggered by the extra energy dispersed through the increment of
the nanoparticles volume fraction over the state of convectively heated stretching/shrinking sheet.

Figures 10–13 show the impact of the unsteadiness parameter (ε) towards a convectively heated
stretching/shrinking sheet when ε shifts from 0.1 to 0.2. The hybrid Al2O3-Cu/H2O nanofluid
characteristic with regard to the coefficient of skin friction ( f ′′ (0)) is depicted as in Figure 10. Figure 10
captures that when the sheet shrinks, the increment in ε conclusively increases the trend of f ′′ (0)
in the first solution. An increment in the unsteadiness parameter results in the reduction of the
boundary layer thickness, as depicted in Figure 12 and consequently upsurge the velocity gradient on
the convectively heated stretching/shrinking sheet, thus f ′′ (0) improves. Furthermore, the existence of
nanoparticle volume fraction in the working fluid (Al2O3-Cu/H2O) might also trigger the increment
of f ′′ (0) owing to an uplift of the hybrid nanofluid viscosity. This result is aligned with the study
done by Ismail et al. [67]. Figure 11 presents the unsteadiness parameter effect towards the rate
of heat transfer −θ′(0). According to the generated results, the heat transfer rate increases when ε
increases when the convectively heated sheet is shrinking. The forced convective heat transfer is
indeed proportional to the effectiveness of nanofluid heat conductivity, hence raising the reduced
local Nusselt number notably. The dimensionless velocity profiles f ′(η) with a different value of ε
are depicted in Figure 12, where the presence of dual velocity profiles is also observed. As illustrated
in Figure 12, the first solution increases proportionally to the increment of ε values while the second

179



Mathematics 2020, 8, 1649

solution displayed contradict results of the first solution, possibly because of the enhancement in the
unsteadiness of the flow. Meanwhile, the same trend of the solution in Figure 12 also reflected the
graph of temperature distribution θ(η) in the convectively heated stretching/shrinking sheet with the
existence of unsteadiness parameter, as portrayed in Figure 13. Apart from that, it is proven that the
second solution in both profiles, i.e., velocity and temperature distribution showed larger boundary
layer thickness in each solution of the unsteady cases than those of the first solution.

Figures 14 and 15 depict the variants of heat transfer rate −θ′(0) and temperature distribution
profile θ(η) with a different value of the Biot number (Bi = 0.2, 0.5, 0.7) towards the convectively
heated stretching/shrinking sheet. In Figure 14, the heat transfer rate shows an upsurge trend in the
dual solutions along with the augmentation of Bi values. The Biot number signifies the conduction
resistance ratio within the sheet to convection resistance at the sheet. The critical values of the different
usage of Biot numbers suggest no substantial impact on the magnitude of −θ′(0), as highlighted
by Jusoh et al. [68]. An increment in the Biot number related to the improvement of convective
heating is observed to decrease the fluid temperature proficiently in the first and second solutions,
as displayed in Figure 15. This result is in contrast with the idea of a large Biot number representing
larger internal thermal resistance of the sheet compare to the boundary layer thermal resistance since
the temperature distribution profile spike as the value of Bi increases. However, note that the Biot
number is specifically correlated to the coefficient of heat transfer h f ; therefore, it is conversely related
to the thermal resistance of the current problem. Consequently, the heat resistance decreases as the
Biot number increases, thereby increasing the heat transfer rate at the stretching/shrinking sheet and
decreasing the temperature distribution (see Figure 15).

5. Conclusions

An analysis of the unsteady stagnation point flow of hybrid nanofluid over a convectively heated
stretching/shrinking sheet incorporating the velocity slip impact on heat transfer was verified in this
study. The results were generated by employing the bvp4c features in the MATLAB programming
platform. The effect of diverse controlling parameters—namely, the nanoparticle volume fraction,
the velocity slip, the Biot number, and the unsteadiness parameter—were reviewed. Our discoveries
happen to determine that the presence of non-uniqueness solutions (first and second solutions) is
verifiable within the hybrid Al2O3-Cu/H2O nanofluid for a specific range of control parameters, and the
stability analysis authorizes the reliability of our first solution. The nanoparticle volume fraction
increment improved both the skin friction coefficient and local Nusselt number in the hybrid nanofluid
(Al2O3-Cu/H2O). From this, it is proven that the heat transfer rate improves when the ordinary
Al2O3-H2O nanofluid becomes the hybrid nanofluid (Al2O3-Cu/H2O) by expanding the nanoparticles
concentration. The recent addition of the velocity slip parameter at the boundary had encouraged a
reduction in the skin friction coefficient and velocity profile. However, it increased the rate of heat
transfer significantly. The temperature profiles escalate as the magnitude of velocity slip upsurge
because of such slip may prevent from exchange of total heat in the hybrid nanofluid. An increase
in the unsteadiness parameter consequently raises the velocity gradient on the convectively heated
stretching/shrinking sheet, thus improving the skin friction coefficient. Besides, an upsurge in the Biot
number intensity boosts the heat transfer rate since the Biot number is directly associated with the heat
transfer rate coefficient. Thus, it is conversely interrelated to the thermal resistance of the designated
problem. Apart from that, the critical values of the different practices of the Biot number imply no
significant outcome towards the magnitude of the heat transfer coefficient.
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Nomenclature

Roman letters
a, b, c constant (−)
Bi Biot number (−)
C f skin friction coefficient (−)
Cp specific heat at constant pressure

(
Jkg−1K−1

)
H1 velocity slip factor (−)
h f heat transfer coefficient

(
Wm−2K−2

)
f (η) dimensionless stream function (−)
k thermal conductivity of the fluid

(
Wm−1K−1

)
Nux local Nusselt number (−)(
pCp

)
heat capacitance of the fluid

(
JK−1m−3

)
Pr Prandtl number (−)
Rex local Reynolds number in x− axis (−)
t time (s)
T fluid temperature (K)

T0 reference temperature (K)

T∞ ambient temperature (K)

u, v
velocities component in the x− and y− directions,
respectively

(
ms−1

)
ue velocities of the free stream in

(
ms−1

)
uw velocities of the stretching/shrinking surface

(
ms−1

)
x, y rtesian coordinates (m)

Greek symbols
ψ stream function (−)
η similarity variable (−)
θ dimensionless temperature (−)
ε unsteadiness parameter (−)
λ ratio of the velocity parameter (−)
γ velocity slip parameter (−)
μ dynamic viscosity of the fluid

(
kgm−1s−1

)
ν kinematic viscosity of the fluid (m2s−1)
ρ density of the fluid

(
kgm−3

)
τ dimensionless time variable (−)
τw wall shear stress

(
kgm−1s−2

)
φ1

nanoparticle volume fractions for Al2O3 (alumina)
(−)

φ2 nanoparticle volume fractions for Cu (copper) (−)
ω eigenvalue (−)
ω1 smallest eigenvalue (−)
Subscripts
f base fluid (−)
n f nanofluid (−)
hn f hybrid nanofluid (−)
s1 solid component for Al2O3 (alumina) (−)
s2 solid component for Cu (copper) (−)
Superscript
′ differentiation with respect to η (−)
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Abstract: A numeric investigation is executed to understand the impact of moving-wall direction,
thermal radiation, entropy generation and nanofluid volume fraction on combined convection and
energy transfer of nanoliquids in a differential heated box. The top wall of the enclosed box is assumed
to move either to the left or the right direction which affects the stream inside the box. The horizontal
barriers are engaged to be adiabatic. The derived mathematical model is solved by the control volume
technique. The results are presented graphically to know the impact of the dissimilar ways of moving
wall, Richardson number, Bejan number, thermal radiation, cup mixing and average temperatures.
It is concluded that the stream and the thermal distribution are intensely affected by the moving-wall
direction. It is established that the thermal radiation enhances the convection energy transport inside
the enclosure.

Keywords: mixed convection; thermal radiation; entropy; nanoliquid; moving wall

1. Introduction

The combined convective movement and thermal energy transfer have been examined in a huge
number of studies for decades because of its applications in numerous fields of technological sciences.
Since the communal interaction among the viscous, buoyancy, and inertia forces on the stream has
been a vital matter for joint convection in a lid-driven enclosed box, the moving wall’s direction of
the cavity becomes significant in these studies [1–4]. Therefore, the current work keenly involves the
influence of moving-wall direction on convective stream in lid-driven cavities. Combined convection
together with heat transfer have been examined under several conditions in enormous studies [5–9].
Sivasankaran et al. [10] numerically explored the mixed convective stream and the energy transport in
an inclined enclosed space with discrete heating. Sivasankaran and Pan [11] discovered the influence of
discrete heaters and coolers on convection in a closed box. Mekroussi et al. [12] explored the combined
convection in a top-driven inclined wavy walled box. Combined convection flow due to nonuniform
heating in an enclosed box is discovered in some studies [13–15].

Nanofluids are pioneering fluids in the field of thermal science and it has been used actively
to analyze the energy transport in thermal systems [16–22]. Sheremet et al. [21] discovered the
buoyant flow and entropy generation of nanoliquid in a closed box with variable border temperature.
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Alsabery et al. [22] numerically explored the entropy generation and convection of nanoliquid in a
wavy walled box. Santra et al. [23] deliberated the energy transfer augmentation of a water–copper
nanoliquid in a differentially heated box. Abu-Nada and Oztop [24] discovered the outcome of
inclination of the box on convection of a Cu–water nanofluid. Ghasemi and Aminossadati [25] explored
the buoyant convection of a CuO nanoliquid in an inclined box numerically. Bhuvaneswari et al. [26]
completed a numeric work to get the impact of variable liquid properties on convective stream
of a nanoliquid in a square box. Sivasankaran et al. [27] inspected the partial slip influence on
magneto-convection in a 2-sided wall-driven porous enclosed space filled with a Cu–water nanoliquid.
Rashad et al. [28] discovered the magneto-convection of heat generating nanoliquids in a trapezoidal
box with discrete heating.

The interaction connecting natural/mixed convection and thermal radiation has gained significant
consideration due to its uses in various arenas. Very few studies on the interaction of thermal radiation
and convective stream have been reported in the literature [29–34]. Mansour et al. [29] discovered the
outcome of radiation on buoyant convection in a porous wavy enclosed space using the non-equilibrium
thermal model. They found that average heat transport decreased by increasing the surface waviness
of the wall. The doubly diffusive convection with radiation in an enclosed box was explored by
Moufekkir et al. [30]. Mahapatra et al. [31] explored the influence of heat generation and thermal
radiation on magneto-convective stream in an inclined enclosed space with one hot side and chilled
from the adjacent side. They concluded that the direction of the magnetic field influenced much on the
stream pattern. Saleem et al. [32] scrutinized the impact of radiation on buoyant convection in an open
box. They demonstrated that radiative heat transport increased as the optical thickness of the liquid
increased. Zhang et al. [33] explored the effects of thermal radiation on magneto-convection in a cavity.

Since no study on combined convection of a nanoliquid in a wall-driven box with thermal radiation
and entropy generation is reported in the literature, the current investigation is interested to investigate
numerically the effect of entropy, thermal radiation and the direction of wall movement of an enclosed
box on the convective stream and energy transfer of a nanoliquid.

2. Mathematical Modeling

The physical model displayed in Figure 1 is a 2-dimensional square enclosed box of size L packed
with a water-based Al2O3-nanofluid. The stream is unsteady, incompressible and laminar. The velocity
components (u, v) in Cartesian coordinates (x, y) are pointed to in Figure 1. The vertical walls of
the enclosed domain have uniform temperature distributions. The horizontal barriers are thermally
insulated. The gravity performances in the opposite of y-direction. The nanoliquid in the enclosed
box is considered as a dilute liquid–solid mixture with a constant volume fraction of nanosized
particles (Al2O3) distributed within the water. The nanoparticles and water are in thermal-equilibrium.
The nanoliquid properties are presumed to be constant, except the density. The linear variation of
density (with temperature) is given as ρ = ρ0[1− β(θ− θ0)], where β being the quantity of thermal
expansion (Boussinesq approximation), θ is temperature and ρ0 is density at reference. The viscous
dissipation is discounted here. The mathematical model for conservation of quantities is:

∂u
∂x

+
∂v
∂y

= 0 (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= − 1
ρn f

∂p
∂x

+
μn f

ρn f

(
∂2u
∂x2 +

∂2u
∂y2

)
(2)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= − 1
ρn f

∂p
∂y

+
μn f

ρn f

(
∂2v
∂x2 +

∂2v
∂y2

)
+

(ρβ)n f

ρn f
g(θ− θ0) (3)

∂θ
∂t

+ u
∂θ
∂x

+ v
∂θ
∂y

= αn f

(
∂2θ

∂x2 +
∂2θ

∂y2

)
+

1(
ρcp

)
n f

(
∂qr

∂x
+
∂qr

∂y

)
(4)
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Figure 1. Physical model.

The subscript “nf” and “0” denote the nanofluid and reference state, respectively. The parameters
cp, g, p, t,α,μ are specific heat, acceleration due to gravity, pressure, time, thermal diffusivity and
the dynamic viscosity, respectively. The heat flux due to radiation along the x and y directions are
set by qrx = −4σ∗

3K′
∂θ4

∂x and qry = −4σ∗
3K′

∂θ4

∂y , where σ* is Stefan-Boltzmann constant and K′ is mean
absorption coefficient. By Rosseland estimate for radiation (medium is optically thick), the thermal
variances within the stream are reflected to be too small. Expanding θ4 about θ0 through Taylor series
and neglecting the higher order terms obtained from Taylor series, θ4 is expressed as a function of
temperature θ. That is,

θ4 = θ0
4 + 4θ0

3(θ− θ0) + . . .

Then, by approximating we get,
θ4 � 4θ0

3θ− 3θ0
4

Therefore, the radiative heat flux reduces to

qrx =
−16σ∗θ3

0

3K′
∂θ
∂x

and qry =
−16σ∗θ3

0

3K′
∂θ
∂y

(5)

Substituting Equation (5) into Equation (4), we get

∂θ
∂t

+ u
∂θ
∂x

+ v
∂θ
∂y

= αn f

(
∂2θ

∂x2 +
∂2θ

∂y2

)
+

1(
ρcp

)
n f

−16σ∗θ3
0

3K′

(
∂2θ

∂x2 +
∂2θ

∂y2

)
(6)

Initially, the velocity and temperature are zero. When t > 0, u = v = 0 except at top wall and
u = +U0 (Case -1), u = −U0 (Case-2), v = 0 on the top wall. For temperature, ∂θ∂y = 0 on the top
and the bottom portions. The right and left walls are lower (θ = θc) and higher (θ = θh) temperature.

The properties of the nanoliquid in the current model are defined below.
Density:

ρn f = ρ f (1−φ) + φρp (7)

Thermal expansion coefficient:

(ρβ)n f = (ρβ) f (1−φ) + φ(ρβ)p (8)

Specific heat:
(ρcp)n f = (ρcp) f (1−φ) + φ(ρcp)p (9)
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The Maxwell formula is used for thermal conductivity:

kn f = k f

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2 + k∗p f + 2φ

(
k∗p f − 1

)
2 + k∗p f −φ

(
k∗p f − 1

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, k∗p f =

kp

k f
(10)

The dynamic viscosity of nanoliquid (Ho et al. [35]) is calculated as:

μn f = μ f (1−φ)−2.5 (11)

where the subscript “f ” and “p” denote base–fluid and nanoparticle, respectively. The physical
constants of the water and nanoparticles (Al2O3) are available in Ref [35].

The leading equations are nondimensionalized by using the subsequent variables:

(U, V) =
(u, v)

U0
, T =

θ− θ0

Δθ
, (X, Y) =

(x, y)
L

, τ =
tU0

L
, · · · and P =

p

ρn f U2
0

(12)

The consequent nondimensional model equations are

∂U
∂X

+
∂V
∂Y

= 0 (13)
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)( 1
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∂2V
∂Y2

)
+

(ρβ)n f
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Ri T (15)

∂T
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+ U
∂T
∂X

+ V
∂T
∂Y

=

(
αn f

α f

1
RePr

)(
1 +

4k f

3kn f
Rd

)(
∂2T
∂X2 +

∂2T
∂Y2

)
(16)

The nondimensional quantities appearing above are the Grashof number Gr = (gβ f ΔθL3)/(ν2
f ),

Radiation parameter Rd = (4σ∗θ0
3)/(k f K′), Richardson number Ri = Gr/Re2, Reynolds number

Re = (U0L)/(ν f ) and the Prandtl number Pr = ν f /α f . The boundary settings are

U = V = 0, X = 0, 1 & Y = 0

U = +1 (Case 1), & U = −1 (Case 2), V = 0, Y = 1

∂T
∂Y

= 0 Y = 0 & 1 (17)

T = 1 X = 0 & T = 0 X = 1

when U = +1 indicates that the wall moves to the right-side and U = −1 implies that the wall moves
to the left-side in its axis, respectively.

The drag coefficient estimates the total frictional drag exerted on the wall. The drag coefficient
along the moving top wall is calculated as C fx =

(
∂U
∂Y

)
Y = 1

, respectively. The averaged drag coefficient
is calculated as

C fx =

1∫
0

C fx dX, respectively. (18)

The energy transport rate across the enclosed box is a vital parameter in thermal industrial
applications. The local Nusselt number alongside the hot barrier of the enclosed box is defined as
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Nu =
(
− kn f

k f

(
1 +

4k f
3kn f

Rd
)
∂T
∂X

)
X = 0

. The averaged Nusselt number alongside the heated barrier is

expressed as follows:

Nu =

1∫
0

Nu dY (19)

3. Cup Mixing Temperature and RMSD

The temperature of cup mixing is defined to discover the thermal mixing inside the chamber.
The velocity weighted average temperature is most appropriate for convection flow than space averaged
temperature. The temperature of cup mixing, and averaged temperature based on area are given as [34]

TCup =

�
V̂(X, Y) T(X, Y)dXdY�

V̂(X, Y)dXdY
(20)

where V̂(X, Y) =
√

U2 + V2 and

Tavg =

�
T(X, Y)dXdY�

dXdY
(21)

The root-mean square deviation (RMSD) is deduced to calculate the degree of temperature
uniformity in all considered cases. They are deduced based on temperature of cup mixing and average
temperature based on area as follows:

RMSDTcup =

√∑N
i = 1

(
Ti − TCup

)2

N
(22)

RMSDTavg =

√∑N
i = 1

(
Ti − Tavg

)2

N
(23)

The greater values of RMSD point out poorer temperature regularity in the chamber and vice
versa. Moreover, RMSD cannot exceed one because the dimensionless temperature differs between
zero and one. These parameters are estimated by the gained values of flow and thermal fields in the
same computational code.

4. Entropy Generation

The buoyance induced convection in a closed chamber discovers significant awareness in thermal
engineering applications. However, the practice of entropy generation supports to spot the ideal
conditions for many applications. Since the generation of entropy is as a result of the irreversible
procedure of transfer of heat and viscosity, generation of entropy can be estimated from the well-known
thermal and velocity fields.

The entropy generation is expressed by two quantities, i.e., heat transfer (first term in below
equation) and liquid friction (last term in below equation) [18,21,22,34].
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(24)

The dimensionless entropy generation is acquired by using (10)

Stotal = S∗heat + S∗f luid

S∗heat =

(kn f

k f

)(
1 +

4Rd
3

)⎡⎢⎢⎢⎢⎣( ∂T∂X
)2

+

(
∂T
∂Y

)2⎤⎥⎥⎥⎥⎦ (25)
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S∗f luid = φ2

(
μn f

μ f
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⎡⎢⎢⎢⎢⎣(∂U∂X
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where φ2 = U0
θ0L2 . The global entropy generation attains by integrating the local entropy production

inside the chamber.

SGtotal =

∫
V

Stotal(X, Y)dA (27)

The local Bejan number states the strength of generation of entropy owing to thermal transference
irreversibility. It is derived as

Beloc =
S∗heat
Stotal

(28)

For any point in the chamber, when Beloc >
1
2 , the heat transfer irreversibility is dominating.

When Beloc <
1
2 , the liquid friction irreversibility dominates. If Beloc = 1

2 , the thermal and viscous
irreversibilities are equal. The average value of Bejan number demonstrates the relative importance of
the thermal energy transfer irreversibility for the entire chamber.

Be =

∫
A Beloc(X, Y)dA∫

A dA
(29)

5. Numeric Technique

The nondimensional Equations (12)–(15) with boundary conditions (16) are solved by the control
volume technique with the “SIMPLE algorithm”. A nonuniform grid of 122 × 122 is taken to investigate
the problem. The justification of the numeric code is very essential in the simulation. An internal code
is tested against the available results for free convection of nanoliquid in a box [35] and it is shown in
Table 1. Second, the problem of combined convection stream in a lid-driven box [36,37] is employed
to compare the results of the current code (See Table 2). A good agreement among these results is
obtained. Hence, the results offer a guarantee in the accuracy of the current computational code to
inspect the problem.

Table 1. Comparison of Nu results for free convection of nanoliquids in a square box.

Ra (Rayleigh Number) Volume Fraction
Nu

Ho et al. [35] Present

103 0.01 1.129 1.137
0.04 1.199 1.205

104 0.01 2.264 2.229
0.04 2.305 2.335

105 0.01 4.699 4.683
0.04 4.810 4.791

106 0.01 9.165 9.170
0.04 9.428 9.513

Table 2. Comparison of average Nusselt numbers for mixed convection in a lid-driven box.

Gr
Re = 400 Re = 1000

Present Work Iwatsu et al. [37] Sharif [36] Present Work Iwatsu et al. [37] Sharif [36]

102 4.09 3.84 4.05 6.48 6.33 6.55
104 3.85 3.62 3.82 6.47 6.29 6.50
106 1.10 1.22 1.17 1.66 1.77 1.81
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6. Results and Discussion

Numeric simulations are executed to examine the mixed convective stream and energy transfer of
nanoliquids in a wall-driven enclosed box with thermal radiation and entropy generation. The average
and cup mixing temperature and its RMSD values are also calculated. The calculations are carried out
for a Richardson number (Ri) ranging from 0.01 to 102, a volume fraction (φ) of nanoparticles from 0–4
and a radiation parameter from 0 to 10. The Grashof number is used as 104 and the Reynolds number
varies from 10 to 103. The Prandtl number is taken as Pr = 6.7. The influence of convective stream and
energy transport are assessed for several values of the volume fraction of nanoparticles, Richardson
number, radiation parameter and the moving-wall directions. The results are depicted graphically for
various combinations of parameters and the discussions are given below.

Figure 2 depicts the stream arrangement for several values of the pertinent parameters Rd and
Ri for Case 1 (U0 = +1) with Φ = 0.02. In Case 1, wall is moving towards the right side, whereas
the lid moves from the right-side to left-side in Case 2. The moving-wall direction is very important
and produces the shear force with the adjoining fluid along the upper portion of the box. Since the
convective flow is driven by both the buoyant force and the shear stress due to the moving lid,
the Richardson number clearly demonstrates the three regimes of convection (free, mixed and forced).
The single clockwise rotating eddy appears in the forced convective regime (Ri < 1) for all given values
of the radiation parameter. Due to the strong shear force, the core area of the eddy travels towards
the right–top corner of the enclosed box. When Ri = 1, that is, in the combined convective regime,
the magnitude of both forces (shear and buoyancy) are comparable, the core region moving the center
part of the portion of the enclosed box. In the buoyant convective regime, that is, Ri = 100, the variation
on the flow pattern is clearly visible here. There is no change on the stream pattern in the forced
convection regime when changing the radiation parameter. However, the evidence on the effect of the
radiation parameter is clearly seen in the buoyancy convection regime upon raising the values of the
radiation parameter for Case 1.

Figure 3 exhibits the convective stream for several values of Ri and Rd for Case 2, with Φ = 0.02.
The flow pattern is completely different from Case 1. The dual cell gets for all values of Ri and Rd as it
occupies the entire box. Since the shear force is dominant at Ri = 0.01, the core section of the eddy
moves towards the left–top corner of the enclosed box. The counter acting eddy could not occupy the
whole space as in Case 1, where the movement of liquid particles is aiding with the buoyant force.
The buoyant force by the hot liquid along the hot wall produces the clockwise-rotating eddy along the
hot wall. However, the shear force dominates here, the eddy by the moving-lid occupies most the
box. When rising the Richardson number values to Ri = 1, the mixed convection exists, where both the
shear and buoyancy forces are comparable, and the eddy produced by these forces occupies about half
of the enclosure in the situation. The natural convection mode at Ri = 100 depicts different phenomena
on the stream pattern compared to the other two modes. The eddy by the buoyancy force dominates
and occupies most the enclosed box. It is also detected that the eddy by the shear force is weakened on
raising the values of the radiation parameter.

191



Mathematics 2020, 8, 1471

Figure 2. Streamlines for different Rd and Ri values with U0 = +1 (Case 1), and Φ = 0.02. (a) Rd = 0;
(b) Rd = 1; (c) Rd = 5; (d) Rd = 10.
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Figure 3. Streamlines for different Rd and Ri values with U0 = −1 (Case 2) and Φ = 0.02. (a) Rd = 0;
(b) Rd = 1; (c) Rd = 5; (d) Rd = 10.
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Figure 4 depicts the thermal distribution for several values of the radiation parameter and the
Richardson number for Case 1 with Φ = 0.02. The thermal boundary layers are shaped along the hot
wall for all assumed values of the radiation parameter in the forced convection regime. The temperature
boundary layers is weakened for higher values of the radiation (Rd = 10) in the combined convection
regime. The horizontal thermal stratification appears in the central region of the enclosed box in the
absence of radiation or lower values of the radiation parameter for the natural convection regime.
The temperature gradients near wall(s) disappear on rising the value of the radiation parameter.
Figure 5 exhibits the isotherms for an opposite moving lid (Case 2) with the same parameters in
Figure 4. The thermal layers at the boundary do not appear along the hot wall in forced convection
regime as in Case 1. Due to the dual cell structure in the flow field, the thermal layers at the boundary
are collapsed along the hot wall in Case 2.

Figure 6 depicts the drag coefficient for several values of Rd and Ri for both cases of the moving
lid directions. In Case 1, the skin friction declines upon raising the values of Ri. However, in Case 2,
the skin friction behaves nonlinearly, that is, the skin friction grows up to Ri = 1 and then it declines
upon raising the values of Ri. It is detected that there is no change on the averaged skin friction
for numerous values of Rd when Ri = 0.01 and Ri = 0.1, that is, in the forced convective regime.
The skin friction declines upon rising the values of the radiation parameter in the combined and natural
convective regimes.

Since the energy transport rate is a key factor in the thermal systems, the (average) energy transfer
rate is depicted via the Nusselt number to explore the effect on various pertinent parameters. The local
energy transport along the heated wall is computed by the local Nusselt number and it is depicted in
Figure 7 for both cases of moving-wall directions. It is clearly exhibited from Figure 7a,c,e that the
energy transport is diminished upon raising the values of the Richardson number for Case 1. That is,
the local energy transport along the hot wall is enhanced in the forced convective regime. It is almost
thrice the value of local Nusselt number for free-convection regime. Case 2 also provides a similar
trend on the energy transport upon raising the values of Ri number. It is detected that the local heat
transport rises upon raising the radiation parameter for all convection regimes. The highest local
energy transfer is observed at the bottom of the heated wall for Case 1 and then it decreases along the
wall height. However, the highest local energy transfer is detected at the top of the heated wall for
Ri = 0.01 and Ri = 1 in Case 2. However, the opposite trend is found for the free-convection regime
in Case 2. The moving lid direction supports the fluid motion with the aiding of the buoyancy force.
However, in Case 2, the moving lid direction suppresses the buoyancy force at the top section of the
heated wall, and it results the dual cellular motion inside the enclosure. In the dual cell structure,
the two cells hit at the top–left corner and provides the highest local heat energy transfer at this point,
which is clearly seen from Figure 7b. The high amount of shear force has driven the heated fluid
particles vigorously at this situation. Hence, the local heat energy transfer gives a similar trend in both
cases for the natural convection regime.
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Figure 4. Isotherms for diverse Rd and Ri values with U0 = +1 (Case 1) and Φ = 0.02. (a) Rd = 0;
(b) Rd = 1; (c) Rd = 5; (d) Rd = 10.
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Figure 5. Isotherms for different Rd and Ri values with U0 = −1 (Case 2) and Φ = 0.02. (a) Rd = 0;
(b) Rd = 1; (c) Rd = 5; (d) Rd = 10.
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Figure 6. Drag coefficient versus Ri for different Rd. (a) Case 1; (b) Case 2.

Figure 7. Local Nusselt number for diverse Ri and Rd. (a,c,e) Case 1; (b,d,f) Case 2.
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Figure 8 demonstrates the averaged Nusselt number for several values of Rd and Ri for Case 1
(U0 = +1) and Case 2 (U0 = −1). The averaged heat transport rate is enhanced upon raising the values
of the radiation parameter for both cases of the moving-wall directions. It is detected that the averaged
heat transfer declines upon raising the values of Ri. Further, scrutinizing these figures, it is found that
the moving-wall direction affects the thermal energy transfer rate evidently. When the wall moves
from the right-side to left-side (Case 2), the heat energy transfer rate is less due to the dual-eddy
structure. The effect of nanometer sized particle volume fraction on the averaged energy transport is
examined and it is portrayed in Figure 9a,b for several values of the Richardson number and two cases
of moving-wall directions in the presence of radiation with Rd = 5. The averaged heat transport rate
decreases upon raising the values of the nanoparticle volume fraction from 0%~4% in mixed and free
convective regimes for both moving-wall cases. But, the averaged heat transport rate rises with the
nanoparticles volume fraction in Case 1 at Ri = 0.01. In Case 2 at Ri = 0.01, the averaged heat transfer
increases first up to Φ = 2% and then it decreases upon raising the value of Φ. Comparing these
two cases in Figure 9a,b, it is detected that the averaged Nusselt number is always high for Case 1 than
that of Case 2. This is because of the dual eddy structure in Case 2. The energy transfer from the hotter
region to the colder region taken by a single cell is faster than the energy transport by the two cells
inside the enclosed box. Since the energy exchange between the two cells takes some time which slows
down the overall energy transport within the enclosed box.

Figure 8. Averaged Nusselt number versus Ri for different Rd. (a) Case 1; (b) Case 2.

Figure 9. Averaged Nusselt number versus Φ for different Ri with Rd = 5. (a) Case 1; (b) Case 2.

Figure 10 shows the increment level of the averaged energy transport for different radiation values
compared with the absence of radiation parameter. The data clearly show the increasing level of
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averaged energy transport while raising the values of Rd in both cases of moving wall. The increment
level is very high in the natural convection regime in both cases. Figure 11 demonstrates the cup-mixing
temperature for various values of Ri and Rd parameters. The behavior of cup-mixing temperature
is nonlinear fashion for Case 1, however, Case 2 shows almost a linear fashion. The deviation in
cup-mixing temperature with Rd is high at forced convection regime for Case 2. However, it is almost
same in free-convection case. The Tcup values are almost constant when changing the values of Rd in
free-convection flow for Case 2. Figure 12 demonstrates the average temperature for different Ri and Rd
values. The higher Tcup values indicates the well mixing of fluid with higher temperature. It is obviously
seen from Figure 12 that the Tavg is almost constant for all values of Rd in free-convection regime.
The maxima of Tavg attains at Ri = 100 for all Rd values in Case 1, see Figure 12a. From Figure 12b,
we observe that the deviation of Tavg is high at Ri = 0.01 in Case 2.

Figure 10. Increment of averaged Nusselt number. (a) Case 1; (b) Case 2.

Figure 11. Cup-mixing temperature for different Ri and Rd values. (a) Case 1; (b) Case 2.

Figures 13 and 14 portray the RMSDTcup and RMSDTavg for both cases with different Ri and Rd
values. Since the nondimensional temperature varies between 0 and 1, the RMSD values are below 1 in
the present examination. It is noticed from Figure 13a that the RMSDTcup increases first and decreases
on raising the Ri values for Case 1. The opposite trend is observed for Case 2 in the absence of thermal
radiation. However, RMSDTcup increases linearly with Ri for Rd ≥ 5 for Case 2. It is observed from
Figure 14, RMSDTavg rises linearly with Richardson number in Case 1 for all values of Rd. It is also
detected from Figure 14 that the RMSDTavg rises when growing the Rd values. However, in Case 2,
it behaves nonlinearly for either absence of Rd or low values of Rd. However, it acts as same as Case 1
for higher values of Rd (≥5). RMSDTavg attains its maxima at strong free-convection region in the
presence of thermal radiation. Since the RMSD values are lower in all cases, we get higher temperature
uniformity inside the box.
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Figure 12. Averaged temperature for different Ri and Rd values. (a) Case 1; (b) Case 2.

Figure 13. RMSDTcup for different Ri and Rd values. (a) Case 1; (b) Case 2.

Figure 14. RMSDTavg for different Ri and Rd values. (a) Case 1; (b) Case 2.

Figure 15 portrays the influence of Bejan number for both cases with different Ri and Rd values.
The values of Be are almost constant on raising the Ri values until Ri = 10, but, after this, it suddenly
fall down at Ri = 100 for both direction of moving-wall. When raising the Rd values, the Bejan number
is increased. It results that the radiation parameter boosted up the entropy generation inside the box.
It is clear that Be lies between 0 and 1. If Be tends to 0 then the irreversibility due to fluid friction
controls. If Be tends to 1, the irreversibility due to thermal transfer is leading. In all cases, the values of
Be is tends to 1, it results that the irreversibility due to thermal transfer is dominant here.
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Figure 15. Bejan number for different Ri and Rd values. (a) Case 1; (b) Case 2.

7. Conclusions

The impacts of the direction of a moving wall, thermal radiation and entropy on combined
convective stream and energy transfer of nanoliquids in a lid-driven enclosed box is numerically
explored. The leading mathematical model is solved by the control volume technique. The following
remarkable discoveries are detected from the study:

� The moving-wall direction drastically affects the stream field inside the enclosure. Single and
dual cell structures are formed in Case 1 and Case 2, respectively for all values of Ri, radiation
parameter and all nanoliquids;

� The skin friction declines upon raising the values of the Richardson number for Case 1. It increases
up to Ri = 1 and then decreases upon raising the Richardson number in Case 2;

� The higher local energy transport is attained at bottom of the heat wall for Case 1 and at top of
the hot wall for Case 2 in the forced and mixed convective flow regimes. The free-convection
mode provides a similar trend on both cases, that is, the highest heat transfer attains near the
bottom of the barrier;

� The thermal radiation parameter enhances the energy transport across the enclosure for all given
values of Ri and φ in both directions of the moving wall;

� The moving-wall direction greatly influences the energy transfer rate. The Case 1 (moving-wall
from left to right) provides a higher heat transfer rate than that of Case 2 for all values of Ri and
the radiation parameter;

� The averaged heat transport declines upon rising the volume fraction of nanoparticle in free
and mixed convection regimes for both moving-wall directions. The averaged heat transport
increases with the nanoparticles volume fraction in Case 1. It rises first and then declines upon
raising the values of nanoparticles volume fraction in Case 2;

� The Bejan number enhances on raising the Rd values. Entropy generation dominates by
thermal transfer;

� The lower values of RMSD in all cases illustrates the higher temperature uniformity inside the box;
� The Tcup and Tavg values are almost constant when changing the values of Rd in free-convection

flow for Case 2. The cup-mixing temperature behaves non-linear fashion for Case 1 and almost a
linear fashion for Case 2.
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Abstract: The present theoretical work endeavors to solve the Sutterby nanofluid flow and heat
transfer problem over a permeable moving sheet, together with the presence of thermal radiation and
magnetohydrodynamics (MHD). The fluid flow and heat transfer features near the stagnation region
are considered. A new form of similarity transformations is introduced through scaling group analysis
to simplify the governing boundary layer equations, which then eases the computational process
in the MATLAB bvp4c function. The variation in the values of the governing parameters yields
two different numerical solutions. One of the solutions is stable and physically reliable, while the
other solution is unstable and is associated with flow separation. An increased effect of the thermal
radiation improves the rate of convective heat transfer past the permeable shrinking sheet.

Keywords: scaling group analysis; Sutterby fluid; nanofluid; magnetohydrodynamics (MHD);
stability analysis

1. Introduction

The viscoelastic fluid is a type of non-Newtonian fluid that manifests the viscous and elasticity
features under deformation. Sutterby fluid is an example of the viscoelastic fluid, and it well portrays
the dilute polymer solutions [1,2]. Specifically, the Sutterby model fluid resembles the shear thinning
and shear thickening aspects in high polymer aqueous solutions such as carboxymethyl cellulose
(CMC), hydroxyethyl cellulose (HEC) and methyl cellulose (MC) [3]. The dilute polymer solutions
have a wide range of functions in industrial practice, for instance, spray applications of agricultural
chemicals [4], drag reducers in pipe flows [5], and production of domestic cleaning products [6].
The work of Fujii et al. [7] is one of the earliest studies to address the natural convection boundary
layer flow in a Sutterby fluid past a vertical motionless isothermal plane and achieved an excellent
comparison with the experimental results. Fujii et al. [8] revisited their work in [7] to investigate the
impact of uniform heat flux under the same settings. However, the Sutterby model fluid received
less attention from the boundary layer researchers at that time. Later, a new type of heat conductive
fluid was introduced by Choi [9] named nanofluid. Nanofluid was also claimed to be a brilliant
fluid due to its excellent heat transfer performance in engineering applications such as cooling
of electronic appliances, and systems of solar water heating [10]. Nanofluid has now attracted
significant interest from researchers, and boundary layer models have been studied under various
settings [11–13]. After a long discontinuity in the theoretical works of the Sutterby boundary layer fluid
flow, some numerical investigations of the Sutterby fluid under the Cattaneo–Christov heat flux [14,15],
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Soret and Dufour effect [16], peristaltic flow [17–19], squeezed flow [20], Joule heating effect [21],
homogeneous–heterogeneous reactions [22], and hybrid nanoparticles [23] have been reported recently.

Magnetohydrodynamics (MHD) is another technological conception that is widespread in engineering
practice. Electromagnetic casting [24], plasma confinement, and MHD power generation [25] are examples
of notable applications. Thermal radiation is a type of energy that works in conjunction with the
MHD effect. Thermal radiation emits and absorbs energy in the form of waves or molecules
through a non-scattering medium. The successful combination of thermal radiation and MHD in
an electrically conducting fluid has significant applications in solar power technology and electrical
power generation [26]. Acknowledging these applications, researchers began to examine thermal
radiation and MHD effects in the boundary layer flow past a stretching/shrinking surface, and many
theoretical works have been reported. Recently, Sabir et al. [27] explored the stagnation-point flow of a
Sutterby fluid with the effects of an inclined magnetic field and thermal radiation past a stretching
surface, and observed the declining trend of the convective heat transfer with the stronger influence of
thermal radiation. Bilal et al. [28] examined the ohmically dissipated Darcy–Forchheimer slip flow of
an MHD Sutterby fluid past a radiating stretching sheet and found a decrement in the convective heat
transfer with increasing slip effects.

By comparison, the boundary layer equations, which were proposed by Prandtl [29], disclosed
many invariant closed-form solutions. Prandtl’s boundary layer equations can be reduced to a less
complicated form that is in a system of ordinary differential equations. These boundary layer equations
also allow many different types of symmetry groups, of which the Lie group analysis is prominent.
Lie group analysis helps to identify the transformation point that represents the given boundary
layer equations [30]. In Lie group analysis, the group-invariant solutions are the similarity solutions,
and these similarity solutions are used to reduce the independent variables in a fluid flow problem [31].
A special form of the Lie group analysis exists, namely, the scaling group of transformation, and this
has been employed by researchers in valuable contributions, for instance, see [32,33].

Regarding studies of stagnation-point flow in a Sutterby fluid, Azhar et al. [34] investigated the
effect of entropy generation on the stagnation-point flow of a Sutterby nanofluid past a stretching sheet.
Azhar et al. [35] reconsidered the work of [34] by incorporating the Cattaneo–Christov heat flux model
and omitting the nanoparticles. Both of the studies of [34,35] solved the flow problem numerically and
presented unique solutions. A number of considerable research gaps were found in the theoretical
works available in the stagnation-point flow and heat transfer in a Sutterby nanofluid, for instance:
inspecting fluid flow behavior and heat transfer characteristics past a shrinking sheet together with
the suction effect; conducting scaling group analysis; obtaining dual solutions; and performing
stability analysis. Thus, the present work is devoted to numerically solving the problem of boundary
layer Sutterby nanofluid flow and heat transfer near the stagnation region over a permeable moving
(stretching/shrinking) sheet. The fluid flow and heat transfer characteristics under the magnetic and
thermal radiation effects are observed. Scaling group analysis is employed to obtain the apt similarity
transformations so that the complex governing boundary layer equations can be brought to a soluble
form. The simplified form of the mathematical model is then solved numerically in the boundary
value problem solver or bvp4c function in MATLAB. Two different numerical solutions are identified
with the governing parameters’ variation. Further, stability analysis is undertaken in the present work
to justify the presence of dual solutions. These contributions are essentially original, and all numerical
results are presented and discussed in detail.

2. Problem Formulation

Contemplate an incompressible two-dimensional stagnation-point flow of a Sutterby nanofluid
across a stretching/shrinking sheet as shown in Figure 1, where x and y are the Cartesian coordinates
with the x-axis positioned in the horizontal direction, and the y-coordinate is normal to the x-coordinate.
The free stream velocity is denoted by ue, and uw signifies the velocity of the moving sheet, where uw > 0
infers the state of the stretching sheet, uw < 0 the embodies shrinking sheet, and uw = 0 typifies the
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stationary sheet. The moving (stretching or shrinking) sheet is penetrable and there is a uniform
surface mass flux, of velocity vw, with vw > 0 to imply the injection situation and vw < 0 for the suction
state. The free stream temperature and the wall temperature are denoted by T∞ and Tw, respectively.

 
Figure 1. Schematic diagram of the present problem: (a) shrinking sheet (uw < 0); (b) stretching sheet
(uw > 0).

Sutterby [1,2] introduced the constitutive law for the Sutterby fluid by expressing the Cauchy
stress tensor (T) as:

T = −pI + S, (1)

where p is the pressure, I is the identity vector, and S is the extra stress tensor which can be defined as
follows [21]:

S = μ0

⎡⎢⎢⎢⎢⎢⎢⎣sinh−1
(
E

.
γ
)

(
E

.
γ
) ⎤⎥⎥⎥⎥⎥⎥⎦

m

A1. (2)

Here, μ0 is the viscosity at low shear rates, E is the material time constant,
.
γ =

√
tr(A1)

2/2
is the second invariant strain tensor, A1 is the first order Rivlin–Erickson tensor or deformation
rate tensor which is defined as A1 = (∇V) + (∇V)T, and m is the power-law index. The Sutterby
model in Equation (2) is a versatile model when the value of m changes. For instance, when m = 0,
the Sutterby model imitates the Newtonian fluid behavior, when m = 1, the model is reduced to the
Eyring model, and this model also predicts specifically the pseudo-plastic (shear thinning) and dilatant
(shear thickening) fluid properties when m > 0 and m < 0, respectively. By taking the velocity field
as V = [u(x, y), v(x, y)], and under the assumptions mentioned earlier, the governing boundary layer
equations in the dimensional form can be formed as follows [36]:

∂u
∂x

+
∂v
∂y

= 0, (3)
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∂2T
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along with the respective boundary conditions:

u = uw, v = vw, T = Tw(x) at y = 0.
u = ue, ∂u

∂y → 0, T→ T∞ as y→∞, (6)

where u and v denote velocity components in the x and y directions, respectively, μn f is the dynamic
viscosity of the nanofluid, σ is the electrical conductivity, B0 is the magnetic field strength, ρn f is the
density of the nanofluid, σ1 is the Stefan Boltzmann constant, k1 is the Rosseland mean absorption
coefficient, kn f is the thermal conductivity of the nanofluid, and

(
Cp

)
n f

is the specific heat capacity

of the nanofluid. The detailed definitions of the nanofluid parameters are given by the following
expressions, which are valid when the nanoparticles are of spherical shape or similar to a spherical
shape [37]:

μn f =
μb f

(1−φ)2.5 , αn f =
kn f

(ρCp)n f
,

(
ρCp

)
n f

= (1−φ)
(
ρCp

)
b f
+ φ

(
ρCp

)
s
,

ρn f = (1−φ) ρb f + φρs,
kn f
kb f

=
(ks+2 kb f )−2φ (kb f−ks)
(ks+2 kb f )+φ(kb f−ks)

,
(7)

where φ denotes the nanoparticle volume fraction, μb f denotes the dynamic viscosity of the base fluid,
αn f denotes the thermal diffusivity of the nanofluid, kb f is the thermal conductivity of the base fluid,
ks is the thermal conductivity of the solid fractions, Cp is the specific heat capacity, and ρb f and ρs are
the densities of the base fluid and solid fractions, respectively. The Sutterby model reflects the dilute
polymer solution where the polymer is diluted in the appropriate solvent. Hence, for the present study,
n-Hexane is chosen as the base fluid (solvent). Table 1 displays the specific values for the respective
thermophysical features of n-Hexane and magnetite nanofluid [38].

Table 1. The thermo physical characteristics of the essential fluid and nanoparticles.

Physical Properties
Fluid Phase

(n-Hexane /CH3(CH2)4CH3)
Solid Phase

Magnetite (Fe3O4)

Cp(kJ/kg ·K) 2.78 670
ρ
(
kg/m3

)
551 5180

k(W/mK) 82 9.7
Pr 4.36 −

3. Non-Dimensionalization of the Governing Equations

Considering the following the non-dimensional variables:

x = ax
u0

, y =
√

a
νb f

y, u = u
u0

, uw = uw
u0

, v = v√
aνb f

,

vw = vw√
aνb f

, ue =
ue
u0

, θ = T−T∞
T0

,
(8)

where u0 is the characteristic velocity and introducing the stream function ψ, which can be defined by
u =

∂ψ
∂y and v = −∂ψ∂x , Equations (4) and (5) become:

∂ψ

∂y
∂2ψ

∂x∂y
− ∂ψ
∂x
∂2ψ

∂y2 =
A1

A2

∂3ψ

∂y3 +
A1

A2

mDe
2

(
∂2ψ

∂y2

)2
∂3ψ

∂y3 + ue
due

dx
− σB

2
o

ρb f a
1

A2

(
ue − ∂ψ∂y

)
, (9)

∂ψ

∂y
∂θ
∂x
− ∂ψ
∂x
∂θ
∂y

=
A4

A3

1
Pr
∂2θ

∂y2 +
1

A3

4
3

Rd
Pr
∂2θ

∂y2 , (10)
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with the corresponding boundary conditions:

∂ψ
∂y = uw, ∂ψ

∂x = −vw, θT0 = Tw(x) at y = 0,
∂ψ
∂y → ue,

∂2ψ
∂y2 → 0, θ→ 0 as y→∞,

(11)

while satisfying the continuity equation of Equation (3). In Equations (9) and (11), M =
σB2

0
ρb f a is the

magnetic parameter, Rd =
4σ1T3∞
k1kb f

is the radiation parameter, Pr =
μb f (cp)b f

kb f
is the Prandtl number,

De =
u2

0aE2

νb f
is the Deborah number, φ is the nanoparticle volume fraction, and terms A1, A2, A3, and A4

are expressed as:

A1 = 1
(1−φ)2.5 , A2 = 1−φ+ φ ρs

ρb f
, A3 = 1−φ+ φ (ρcp)s

(ρcp)b f
,

A4 =
kn f
k f

=
ks+2kb f−2φ(kb f−ks)
kb f +2kb f +φ(kb f−ks)

.
(12)

The functions uw, vw and Tw(x) are assumed to be in the following form to ensure that similarity
solution exists:

uw =
u1

u0
x

2
5 , vw =

v1√a νb f
x− 2

5 , Tw(x) = T0 x
2
5 , (13)

where u1 is the reference velocity, v1 is the normal reference velocity, and T0 is the reference temperature.

4. Scaling Group Analysis

The governing boundary layer flow and heat transfer problem in the form of partial differential
equations (PDEs) is complex and hard to solve by means of mathematical software. Therefore, it needs
to be reduced to a simpler form so that it can be solved. Suitable similarity variables can facilitate the
transformation and, at this point, scaling group analysis is required to form the specified similarity
transformations for the present problem. The newly formed similarity variable will then transform the
PDEs to a system of ordinary differential equations (ODEs), and the model can be solved by the desired
mathematical software. Therefore, the following scaling group of transformations G is introduced:

G : x∗ = xGω1 , y∗ = yGω2 , ψ∗ = ψGω3 , σ∗ = σGω4 ,
θ∗ = θGω5 , u∗e = ueGω6 , u∗1 = u1Gω7 , m∗ = mGω8 ,

(14)

where ωi are constants to be determined in which i = 1, . . . 8. The transformation G is the
transformation point which transforms the (x, y,ψ, σ, θ, ue, u1, m,) coordinates to the new coordinates(
x∗, y∗,ψ∗, σ∗,θ∗, u∗e, u∗1, m∗

)
.

Next, the substitution of (14) into Equations (9)–(11) yields the following expressions:

A1
A2

G[2ω3−2ω2−ω1]
(
∂ψ∗
∂y∗

∂2ψ∗
∂x∗∂y∗ −

∂ψ∗
∂x∗
∂2ψ∗
∂y∗2

)
= G[ω3−3ω2]

(
∂3ψ∗
∂y∗3

)
+ A1

A2
De
2 G[ω8+3ω3−7ω2]

[
m∗

(
∂2ψ∗
∂y∗2

)2
∂3ψ∗
∂y∗3

]
+ G[2ω6−ω1] u∗e

du∗e
dx∗

− B2
0

ρb f a
1

A2

[
G[ω3+ω4−ω2]

(
σ∗ ∂ψ

∗
∂y∗

)
−G[ω4+ω6](σ∗u∗e)

]
,

(15)

G[ω3+ω5−ω1−ω2]

(
∂ψ∗
∂y∗
∂θ∗
∂x∗ −

∂ψ∗
∂x∗
∂θ∗
∂y∗

)
=

1
Pr

G[ω5−2ω2]

(
∂2θ∗
∂y∗2

)
+

4
3

Rd
Pr

G[ω5−2ω2]

(
∂2θ∗
∂y∗2

)
, (16)
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along with the boundary conditions:

G[ω3−ω2]
(
∂ψ∗
∂y∗

)
= G[ω7+

2
5ω1]

(
u∗1
u0

x∗ 2
5

)
,

G[ω3−ω1]
(
∂ψ∗
∂x∗

)
= − v1√

aνb f
G[− 2

5ω1]x∗− 2
5 , G[ω5]θ∗ = G[ 2

5ω1]
(
x∗ 2

5
)

at y = 0

G[ω3−ω2]
(
∂ψ∗
∂y∗

)
→ G[ω6](u∗e) as y→∞.

(17)

To retain the invariance of the system under G, the parameters defined in Equation (14),
the following relations must hold:

2ω3 − 2ω2 −ω1 = ω3 − 3ω2 = 3ω3 − 7ω2 +ω8 = 2ω6 −ω1 = ω3 −ω2 +ω4 = ω4 +ω6

= ω3 +ω5 −ω1 −ω2 = ω5 − 2ω2.
(18)

From the boundary conditions of Equations (17), we also obtain the following relations among
the parameters:

ω3 −ω2 = ω7 +
2
5
ω1, ω3 −ω1 = −2

5
ω1, ω5 =

2
5
ω1, ω3 −ω2 = ω6. (19)

The absolute invariant can be determined by eliminating the parameter G of the group and hence
Equations (18) and (19) provide the following expressions:

ω2 = 2
5ω1, ω3 = 3

5ω1, ω4 = − 4
5ω1, ω5 = 2

5ω1,
ω6 = 1

5ω1, ω7 = − 1
5ω1, ω8 = 2

5ω1.
(20)

From Equations (13), (14), and (20), we achieve the absolute invariants under the group G similarity
transformations as follows:

η =
y

x
2
5

, ψ = x
3
5 f (η), σ = σ0 x− 4

5 , θ = θ0(η) x
2
5 ,

ue = (ue)0x
1
5 , u1 = (u1)0 x− 1

5 , m = m0 x
2
5 .

(21)

The similarity transformations in Equation (21) are new and, by employing them in the governing
boundary layer equations of Equations (9) and (11), the reduced version of the model in the form of
ordinary differential equations can be attained as follows while satisfying Equation (9):

A1

A2
f ′′′

[
1 +

m0De
2

( f ′′ )2
]
− 1

5
( f ′)2 +

3
5

f f ′′ +
1
5
− M

A2
(1− f ′) = 0, (22)

(
A4 +

4
3

Rd
)
θ′′ − 2

5
A3Pr f ′ θ+ 3

5
A3Pr f θ′ = 0, (23)

with the associated boundary conditions:

f (0) =
5
3

fw, f ′(0) = ε, θ(0) = 1, f ′(∞) = 1, θ(∞) = 0. (24)

Here ε = (u1)0/u0 is the stretching/shrinking parameter, where ε > 0 indicates the stretching sheet,
ε = 0 specifies the stationary sheet, and ε < 0 represents the state of shrinking sheet. Furthermore,
fw = −v1/√νb f a is the constant mass transfer parameter, and fw > 0 typifies the suction effect at
the surface of the moving sheet and fw < 0 epitomizes the injection state. For simplicity, we choose
(ue)0 = 1. The power-law index is denoted by m0; when m0 = 0, the reduced model imitates the
Newtonian fluid behavior. Moreover, when m0 = 1, the model is reduced to the Eyring model, whereas
the present model in Equations (22)–(24) also predicts specifically the pseudo-plastic (shear thinning)
and dilatant (shear thickening) fluid properties when m0 < 0 and m0 > 0, respectively.
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The physical quantities of interest in the present work are the local skin friction coefficient
(
C f x

)
and the local Nusselt number (Nux) which are defined as follows:

C f x =
τw

ρb f u2
e

, Nux =
xqw

kb f (Tw − T∞)
, (25)

where τw is the wall shear stress and qw is the heat flux at the surface of the sheet, and can be further
defined as [34]:

τw = μn f

⎧⎪⎪⎨⎪⎪⎩1 +
mE2

6

⎡⎢⎢⎢⎢⎣2(∂u∂x
)2

y=0
+

(
∂u
∂y

)
y=0

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭
(
∂u
∂y

)
y=0

, qw = −kn f

(
∂T
∂y

)
y=0

. (26)

The reduced skin friction coefficient Re1/2
x C f xx1/5 and the local Nusselt number Re−1/2

x Nux x−1/5

can be obtained using the similarity transformations of Equation (21) and the expressions in Equations
(25) and (26) as follows:

C f xRe1/2
x

=
√

A1A2 f ′′ (0) + m0
6
√

A1A2
De[ f ′′ (0)]3,

Re−1/2
x

Nux x−2/5 = − 1√
A1A2

(
1 + 1

A4
4
3 Rd

)
θ′(0)
θ(0) ,

(27)

where Rex = uex/νb f denotes the local Reynolds number.

5. Stability Analysis

Merkin [39,40] established an improved version of the stability analysis, which is prominent
among researchers for the examination of the stability of numerical solutions. Because we observed
dual solutions in the present work, we assess the solution’s stability to determine the flow behavior.
To initiate the linear stability analysis, the model equations in Equations (3)–(5) need to be considered
in the unsteady form as follows:

∂u
∂x

+
∂v
∂y

= 0, (28)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
μn f

ρn f

∂2u

∂y2 +
μn f

ρn f

mE2

2

(
∂u
∂y

)2
∂2u

∂y2 + ue
due

dx
− σB

2
0(ue − u)

ρn f
, (29)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
kn f(
ρCp

)
n f

∂2T

∂y2 +
16 σ1T3∞

3
(
ρCp

)
n f

k1

∂2T

∂y2 , (30)

with the boundary conditions of Equation (6). Then, we introduce the dimensional time variable,
t with a new similarity variable

(
τ = τ0/x4/5

)
through scaling group analysis. The new similarity

transformation is given as:

η =
y

x
2
5

, ψ = x
3
5 f (η, τ), σ = σ0 x− 4

5 , θ = θ0(η, τ) x
2
5 ,

ue = (ue)0x
1
5 , u1 = (u1)0 x− 1

5 , m = m0 x
2
5 , τ = τ0

x
4
5

.
(31)

Employing (31) in the dimensionless form of Equations (28)–(30) and (6) gives the following
system of equations:

A1

A2

∂3 f
∂η3

⎡⎢⎢⎢⎢⎢⎣1 + m0De
2

(
∂2 f
∂η2

)2⎤⎥⎥⎥⎥⎥⎦− 1
5

(
∂ f
∂η

)2

+
3
5

f (η, τ)
∂2 f
∂η2 +

1
5
− M

A2

(
1− ∂ f
∂η

)
− ∂

2 f
∂η∂τ

= 0, (32)

(
A4 +

4
3

Rd
)
∂2θ

∂η2 −
2
5

A3Pr
∂ f
∂η
θ(η, τ) +

3
5

A3Pr f (η, τ)
∂θ
∂η
− ∂θ
∂τ

= 0, (33)
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with the boundary conditions:

f (0, τ) =
5
3

fw,
∂ f
∂η

(0, τ) = ε, θ(0, τ) = 1,
∂ f
∂η

(∞, τ) = 1, θ(∞, τ) = 0. (34)

It is assumed that the solutions of (32)–(34) are expressed by the formulas of Equation (35):

f (η, τ) = f0(η) + e−γτF(η, τ), θ(η, τ) = θ0(η) + e−γτG(η, τ), (35)

where f (η) = f0(η) and θ(η) = θ0(η) are the solutions found in the previous section, in which the
disturbance is superimposed to determine their stability. Here, the unknown eigenvalue parameter is
denoted by γ, and F(η, τ) and G(η, τ) are relatively small compared to the steady state solutions ( f0(η)
and θ0(η)). The substitution of Equation (35) into Equations (32)–(34) gives the following system:

∂3F
∂η3

(
1 +

A1

A2

m0De
2

f ′′0
2
)
+
∂2F
∂η2

(3
5

f0 − 2
5

f ′0
)
+

3
5

f ′′0 F +
( M

A2
+ γ

)
∂F
∂η
− ∂

2F
∂η∂τ

= 0, (36)

(
A4 +

4
3

Rd
)
∂2G
∂η2 +

3
5

A3Pr f0
∂G
∂η

+
3
5

A3PrFθ0 − 2
5

A3Pr f ′0G− 2
5

A3Prθ0
∂F
∂η

+ γG− ∂G
∂τ

= 0, (37)

subject to the boundary conditions:

F(0, τ) = 0,
∂F
∂η

(0, τ) = 0, G(0, τ) = 0,
∂F
∂η

(∞, τ) = 0, G(∞, τ) = 0. (38)

Referring to Merkin [39,40], τ→ 0 is fixed to examine the stability of the steady state boundary
layer flow. Thus, F = F0(η) and G = G0(η) in Equations (37)–(39), yielding the following linearized
eigenvalue problem:

F′′′0

(
1 +

A1

A2

m0De
2

(
f ′′0

)2
)
+ F′′0

(3
5

f0 − 2
5

f ′0
)
+

3
5

f ′′0 F0 +
( M

A2
+ γ

)
F′0 = 0, (39)

(
A4 +

4
3

Rd
)
G′′0 +

3
5

A3Pr f0G′0 +
3
5

A3PrF0θ0 − 2
5

A3Pr f ′0G0 − 2
5

A3Prθ0F′0 + γG0 = 0, (40)

with the boundary conditions:

F0(η) = 0, F′0(η) = 0, G0(η) = 0, at η = 0,
F′0(η) = 0, G0(η) = 0 as η→∞.

(41)

It is necessary to replace one of the outer boundary conditions with a normalizing boundary
condition to obtain the eigenvalues. Therefore, the boundary condition F′0(∞) = 0 is substituted
with F′′0 (0) = 1. The system of equations in Equations (38)–(40) with the new boundary condition
is solved by the MATLAB boundary value problem solver (bvp4c) to obtain the lowest eigenvalues
as the governing parameter varies. These lowest eigenvalues are classified according to their sign.
If the lowest eigenvalue falls in the positive range of values, then the respective numerical solution
is accepted as a stable solution. Meanwhile, the negative lowest eigenvalue suggests the numerical
solution is unstable. Further explanation about the stable and unstable solutions is provided in the
next section.

6. Results and Discussion

The mathematical model in Equations (23)–(25) was solved numerically by means of the boundary
value problem solver function bvp4c in the MATLAB software. The numerical results were derived
while limiting the relative tolerance to 1× 10−10. Some of the governing parameter values were fixed
throughout the computation process to align with the motivation of this study. For example, the Prandtl
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number (Pr) value was fixed at 4.36 because it represents the base fluid, n-hexane. The power-law
index (m0) was fixed at 1.5 to investigate the dilatant features of the Sutterby fluid. The obtained
non-uniqueness solutions were classified based on how early the solution converged asymptotically.
For example, the numerical solution that converged earlier asymptotically in the velocity/temperature
profiles was labelled the first solution. The other solution that converged later, asymptotically,
was labelled as the second solution. Before presenting the numerical results, we provide validation
of our numerical method by solving the model presented in [41] and compare the numerical results
with the results reported by [41]. Table 2 shows the comparison results, and there is a good agreement.
Bhattacharyya et al. [41] employed the shooting method to solve the model, and Table 2 confirms that
the bvp4c function is capable of precisely solving the boundary value problem.

Table 2. Numerical validation of f ′′ (0) when S = 0 in [41].

*c/a.
Present Result Bhattacharyya et al. [41]

First Solution Second Solution First Solution Second Solution

−0.250 1.40224078 − 1.40224051 −
−0.500 1.49566974 − 1.49566972 −
−0.625 1.50715589 − 1.50715673 −
−0.750 1.48929822 − 1.48929811 −
−1.000 1.32881685 0 1.32881689 0
−1.150 1.08223113 0.11670214 1.08223164 0.11670230
−1.200 0.93247330 0.23364972 0.93247277 0.23364910
−1.2465 0.58429940 0.55429554 0.58429146 0.55428565

*c/a is the stretching/shrinking parameter in [41].

Figure 2 shows the influence of the suction parameter (s) on the reduced skin friction coefficient(
C f xRe1/2

x

)
and velocity profiles ( f ′(η)). Based on the first solution in Figure 2a, an increment in s

increases the values of C f xRe1/2
x

past a shrinking sheet. Primarily, an increment in s from 6 to 9
strengthens the impact of suction at the surface of the shrinking sheet. The act of suction encourages the
laminar flow by trapping the low speed fluid molecules in the boundary layer region. This then leads to
increasing of the fluid velocity past the shrinking sheet and is illuminated in Figure 2b. The increment
of the fluid velocity reduces the momentum boundary layer thickness and increases the wall shear
stress over the shrinking sheet. The high wall shear stress eventually increases the values of C f xRe1/2

x
as s increases. Interestingly, the second solution in Figure 2a shows the opposite trend to the first
solution, where an increment in s decreases the values of C f xRe1/2

x
. The state of suction, which was

interpreted as enhancing the fluid velocity, is now seen to decrease the fluid velocity and increase the
momentum boundary layer thickness (see Figure 2). The saturated state of the shrinking sheet may be
the cause of these consequences. Later, the reducing fluid velocity lowers the wall shear stress and
then decreases the values of C f xRe1/2

x
as s increases.

Figure 3 demonstrates the impact of the Deborah number (De) on C f xRe1/2
x

and velocity profiles.

Both solutions in Figure 3a convey that an increment in De augments the values of C f xRe1/2
x

as the
sheet is shrinking. The Deborah number is used to enlighten the viscoelastic feature of a material.
Here, an increment in De results in the increment of the shear thickening Sutterby fluid velocity.
The valuable work of Azhar et al. [34] also reported a similar trend. The increment of the fluid velocity
then enhances the wall shear stress past the shrinking sheet and increases the values of C f xRe1/2

x
.

The increment in s and De assist in delaying the flow separation significantly.
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(a) (b) 

Figure 2. Impact of the suction parameter (s) on: (a) the reduced skin friction coefficient; (b) velocity
profiles as s varies when Rd = 1.2, m0 = 1.5, Pr = 4.36, De = 1.5, M = 0.5, and φ = 0.02.

 
 

(a) b  

Figure 3. Impact of the Deborah number (De) on: (a) the reduced skin friction coefficient; (b) velocity
profiles as De varies when Rd = 1.2, m0 = 1.5, Pr = 4.36, s = 7, M = 0.5, and φ = 0.02.

The first and second solutions in Figure 4a lead to a decrement in C f xRe1/2
x

when M increases from
0.5 to 1.0. The magnetic field presents in an electrically conducting fluid as an electromagnetic force in
the fluid flow region, which slows the fluid moving past the shrinking sheet. This is reflected by the
velocity profiles in Figure 4b, where the fluid velocity decreases when M increases. The decrement in
the fluid velocity then leads to an increase of the momentum boundary layer thickness and decreases
the wall shear stress past the permeable shrinking sheet. Thus, the values of C f xRe1/2

x
decrease with

the rising value of M. Unlike the shrinking case, different fluid flow behavior is perceived in the first
solution when the Sutterby nanofluid flows towards a permeable stretching sheet. When the magnetic
effect increases past a stretching sheet, the fluid velocity increases, although the increment is not
significant. This is agreeable because the fluid flow is in the same direction as the stretching sheet and
the action of the stretching sheet speeds up the fluid flow. The increment in fluid velocity reduces
the momentum boundary layer thickness, increases the wall shear stress, and enhances the value of
C f xRe1/2

x
. The negative values of C f xRe1/2

x
indicate that the stretching sheet imposes a drag force on

the fluid. Moreover, the reverse flow is observed through the second solution’s presence when the
permeable sheet is stretching in Figure 4a. The velocity profiles in Figure 4c support this by displaying
the velocity overshoot (see the second solution profiles) when M varies. Thus, it is clear that reverse
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flow does exist in the stretching sheet case, and this may be due to the state of the sheet where the
suction intensity is weak when the effect of M increases.

 
(a) b  

 
(c) 

Figure 4. Impact of the magnetic parameter (M) on: (a) the reduced skin friction coefficient; (b) velocity
profiles as M varies past a shrinking sheet (ε = −4); (c) velocity profiles as M varies past a stretching
sheet (ε = 7) when Rd = 1.2, m0 = 1.5, Pr = 4.36, De = 1.5, s = 7, and φ = 0.02.

Figure 5 portrays the effect of the nanoparticle volume fraction or φ on C f xRe1/2
x

and velocity

profiles. The increment in φ increases the values of C f xRe1/2
x

over a permeable shrinking sheet.
An increased ratio of φ in the base fluid increases fluid viscosity, which then enhances the fluid velocity
past the permeable shrinking sheet (see Figure 5b). These then affect the wall shear stress to increase
and, consequently, raise the values of C f xRe1/2

x
. Velocity overshoots in the boundary layer are apparent

in Figures 2b, 3b, 4b and 5b. These velocity overshoots near the permeable shrinking sheet indicate
that the fluid velocity is higher than the shrinking sheet’s velocity [42].

Table 3 exhibits the effect of the radiation parameter (Rd) on the reduced local Nusselt number(
Re−1/2

x
Nux x−2/5

)
over the permeable shrinking surface. Both solutions allude to the enhancement of

Re−1/2
x

Nux x−2/5 when the impact of radiation grows in the fluid flow region. An increment in Rd hints
at the release of energy in the form of heat from the fluid flow and decreases the fluid temperature profile.
Thus, the thermal boundary layer becomes thinner and the wall heat flux increases. The depreciation
in the thermal conductivity induces an increase in the rate of heat transfer or

(
Re−1/2

x
Nux x−2/5

)
.
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Furthermore, the magnetic parameter and the nanoparticle volume fraction have minimal effect in
delaying flow separation. This is evident by the critical values (ε0), as shown in Figures 4a and 5a.

 
(a) (b) 

Figure 5. Impact of the nanoparticle volume fraction (φ) on: (a) the reduced skin friction coefficient;
(b) velocity profiles as φ varies when Rd = 1.2, m0 = 1.5, Pr = 4.36, De = 1.5, s = 7, M = 0.5,
and φ = 0.02.

Table 3. The effect of the radiation parameter (Rd) on the reduced local Nusselt number when
M = 0.5, m0 = 1.5, Pr = 4.36,φ = 0.02, s = 7, and De = 1.5 as ε varies.

ε Radiation Parameter (Rd)
Re
−1/2
x Nuxx−1/5

First Solution Second Solution

−1.5 0.5 −1846.311663 −1846.31001
−3.5 −1845.804534 −1845.803095
−5.5 −1845.296838 −1845.296378
−6.5 −1845.042742 −1845.042486
−1.5 1.2 −1846.051576 −1846.046864
−3.5 −1845.195172 −1845.191067
−5.5 −1844.337149 −1844.335834
−6.5 −1843.907426 −1843.906694
−1.5 3.5 −1845.128211 −1845.099751
−3.5 −1844.064298 −1844.051593
−5.5 −1842.553219 −1842.549137
−6.5 −1841.795465 −1841.793188

The results of the stability analysis are presented in Table 4. The first solution achieves the
positive eigenvalues while the second solution attains the negative eigenvalues. Based on the signs of
eigenvalues, one can say that the positive eigenvalues specify the first solution as a stable solution;
the stable solution can be understood as feasible and able to overcome the growth of an initially
given disturbance. Furthermore, the negative eigenvalues reveal the second solution as an unstable
solution associated with flow separation. The second solution promotes the growth of an initially
given disturbance and hence achieves the negative eigenvalue. However, it is vital to identify and
verify the stability of non-unique solutions so that the variety of possibilities of fluid flow behavior can
be predicted.

Figure 6 depicts the streamlines of the Sutterby fluid under a number of settings. In particular,
Figure 6a shows the streamlines when the sheet is impermeable and stretching at the rate of 1.4,
while Figure 6b illustrates the streamlines when the sheet is impermeable and shrinking. The reverse
flow in Figure 6b is noticeable and proves that the shrinking sheet’s state instigates the reverse flow.
Next, the streamlines for the fluid flow under the suction influence can be examined (see Figure 6c,d).
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The reverse flow is now absent past the permeable shrinking sheet (Figure 6d). Thus, it is proved
that mass suction succeeds in sustaining the laminar boundary layer flow over a shrinking surface.
Figure 6e,f shows the behavior of fluid flow when the rate of stretching or shrinking increases; the fluid
pattern being pulled at the surface of the sheet is clear, and again the reverse flow is absent.

Table 4. Lowest eigenvalues (γ1) when Rd = 1.2, m0 = 1.5, Pr = 4.36, De = 1.5, s = 7, M = 0.5,
and φ = 0.02 as ε varies.

ε
γ1

First Solution Second Solution

−6.8 0.5844 −0.4163
−6.82 0.2842 −0.1794
−6.822 0.2339 −0.1354
−6.8250 0.1128 −0.0237
−6.82520 0.0961 −0.0077
−6.825250 0.0911 −0.0028

  
  

  
  

 
  

Figure 6. Streamlines when Rd = 1.2, m0 = 1.5, Pr = 4.36, De = 1.5,φ = 0.02, M = 0.5; (a) s = 0, ε = 1.4;
(b) s = 0, ε = −1.4; (c) s = 7, ε = 1.4; (d) s = 7, ε = −1.4; (e) s = 7, ε = 4; (f) s = 7, ε = −4.
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7. Conclusions

The present numerical investigation aimed to reveal the Sutterby nanofluid fluid flow and heat
transfer over a permeable stretching/shrinking surface together with the effects of thermal radiation
and magnetohydrodynamics (MHD). The appropriate form of the similarity transformations for the
present flow problem was derived using scaling group analysis. The newly derived similarity variables
then transformed the mathematical model into a more straightforward form to solve the boundary
value problem utilizing the solver function bvp4c in the MATLAB software. The significant results are
summarized as follows:

• An increment in the suction parameter, the Deborah number, and the nanoparticle volume fraction
delay flow separation.

• The dominance of the magnetic parameter in the fluid flow regime accelerates flow separation.
• Non-unique solutions are observed when governing parameters, such as the suction parameter,

the Deborah number, the magnetic number, the radiation parameter, and the nanoparticle volume
fraction, vary.

• The increment in the radiation parameter slightly enhances the convective heat transfer rate past
a permeable shrinking sheet.

• Stability analysis elucidates the first solution as a stable solution, and the second solution as an
unstable solution.
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Nomenclature

Roman letters
a dimensional positive constant
A1 first order Rivlin–Erickson tensor
B0 magnetic field strength
Cp specific heat capacity
CH3(CH2)4CH3 n-Hexane
De Deborah number
E material time constant
Fe3O4 magnetite
fw constant mass transfer parameter
I identity tensor
k thermal conductivity
k1 Rosseland mean absorption coefficient
M magnetic parameter
m power-law index
p pressure
Rd radiation parameter
S extra stress tensor
Pr Prandtl number
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Roman letters
T Cauchy stress tensor
t dimensional time variable
Tw wall temperature
T∞ free stream temperature
T0 reference temperature
u dimensionless velocity
u dimensional velocity
u1 reference velocity
V velocity field
v1 normal reference velocity
vw dimensionless surface mass flux velocity
vw dimensional surface mass flux velocity
x, y dimensionless Cartesian coordinates
x, y dimensional Cartesian coordinates
Greek letters
α thermal diffusivity
.
γ second invariant strain tensor
γ1 smallest eigenvalue
ε stretching/shrinking parameter
ε0 critical value
η similarity variable
θ dimensionless temperature
μ0 viscosity at low shear rates
μ dynamic viscosity
ν kinematic viscosity
ρ density
σ electrical conductivity
σ1 Stefan Boltzmann constant
τ dimensionless time variable
φ nanoparticle volume fraction
ψ stream function
Subscripts
b f base fluid
e condition at the free stream
n f nanofluid
s solid fractions
w condition at the wall
Superscript
′ differentiation with respect to η
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Abstract: The heat transfer of a carboxymethyl cellulose aqueous solution (CMC-water) based Casson
nanofluid, flowing under the impact of a variable-strength magnetic field in mixed convection
around a solid sphere, has been examined in this work. Aluminum (Al), copper (Cu), and silver
(Ag) nanoparticles were employed to support the heat transfer characteristics of the host fluid.
A numerical approach called the Keller-box method (KBM) was used to solve the governing system
for the present problem, and also to examine and analyze the numerical and graphic results obtained
by the MATLAB program, verifying their accuracy through comparing them with the prior literature.
The results demonstrate that a Al–CMC-water nanoliquid is superior in terms of heat transfer
rate and skin friction. The velocity of CMC-water is higher with Ag compared to Al–CMC-water,
and Ag–CMC-water possesses the lowest temperature. Growing mixed parameter values result in a
rising skin friction, velocity and Nusselt number or decline in temperature.

Keywords: MHD; CMC-water; Casson fluid; mixed convection; solid sphere

1. Introduction

Carboxymethyl cellulose (CMC), also known as cellulose gum [1], has many features: a high
solubility, clarity of its solutions, the ability to hold water, controlled crystal growth, and it can modify
viscosity, in addition to its capacity to fit the required smooth texture or body. These multifunctional
aspects of a non-toxic cellulose derivative are why it is utilized in many industries and technical
applications. It is employed to enhance moisturizing impact due to its polymeric structure that works
as a film-forming factor [2,3]. CMC is utilized in paper industries and pharmaceuticals and is also used
to stabilize clay particles [2,4] and others [5–10]. In view of the massive uses of CMC, many researchers
have devoted their time to studying it. Saqib et al. [11,12] employed a Caputo–Fabrizio fractional
derivative (CFFD) approach and an Atangana–Baleanu fractional derivative (ABFD) approach alongside
the Laplace technique to investigate the convection flow of CMC-water nanofluid. They confirmed
that multiple wall carbon nanotubes are more effective in terms of improved heat transfer, and that the
velocity of CMC-water is higher with multiple wall carbon nanotubes. Rahmati et al. [13] examined
the laminar flow of a CMC-aqueous solution in a horizontal 2D microtube. Their findings revealed that
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the slip velocity coefficient contributed notably to the growth of the heat transfer rate, and significantly
reduced the friction factor of the horizontal microtube wall.

The real reason for using nanotechnology is its capacity to work at the molecular level,
atom-by-atom, to make large structures via essentially novel molecular organization. The actual
birth of nanotechnology was at the end of 1959 when it was introduced by physicist Richard P
Feynman [14]. He concluded that the physical properties of materials change depending on the scale of
its molecules, and also posed two challenges: writing “Encyclopedia Britannica” on the head of a pin
and making the nanometer. Two decades later, IBM Zurich scientists were able to invent the scanning
tunneling microscope, which enabled scientists for the first time to observe materials at the atomic scale,
a paradigm shift that had significantly contributed to the spread of nanotechnology in all industrialized
countries by the 1990s. In the heat transfer field, Choi and Eastman [15] incorporated nanotechnology
unprecedentedly through immersed metallic nanoparticles in a base fluid. These ultrafine particles
possessed extraordinary properties that made them notably improve the thermal conductivity of the
ordinary fluid. Buongiorno [16] developed a mathematical model that shows that the heat transfer
rate is affected by several factors other than the thermal conductivity impact. Tiwari and Das [17] also
developed a mathematical model to consider the solid volume fraction. Recently, many researchers
have used the Tiwari and Das model to examine the nanofluid flow behavior of nanoparticles.
Swalmeh et al. [18] used the Tiwari and Das model to investigate the behavior of micropolar nanofluid
from a sphere. Selimefendigil et al. [19] analyzed the magnetohydrodynamic (MHD) combined
convection flow of a nanofluid in a lid-driven triangular cavity by the use of the Tiwari and Das model.
Alwawi et al. [20] employed the Tiwari and Das model to simulate the flow behavior of a sodium
alginate based Casson nanofluid from a sphere. Metal nanoparticles are distinguished by excellent
electrical and thermal conductivity, chemical stability, optical and magnetic distinct properties and
also, they have a high surface-to-volume ratio. However, in this study aluminum (Al), copper (Cu),
and silver (Ag) metal nanoparticles were used because of their similar thermo-physical properties and
their common uses and many applications in polymers and pharmaceuticals [21–23], which may be
due to their presence accompanied with the presence of CMC-water in these applications.

In real life, mixed convection plays a pivotal role in many engineering and industrial applications.
It appears clearly in the cooling of electronic devices and nuclear reactors, food processing, and solar
collectors. In addition, Lorentz forces, generated by the passage of a magnetic field via a flowing
conducting fluid, has occupied a prominent place in several modern processes of metallurgy and
metalworking. Makinde and Aziz [24] analyzed mixed convection on a vertical plate in a porous
medium considering the MHD impact and convective boundary condition. Tham et al. [25] studied
the boundary layer flow of nanofluid with the MHD effect. Chamkha et al. [26] investigated the
magneto-mixed convection flow of ferrofluids in the presence of a partial slip. Here are some of the
most important recently conducted studies related to MHD mixed convection [27–32].

Casson’s model [33] was developed in 1959 to be able to predict the behavior of non-Newtonian
fluids efficiently, and since then it has demonstrated its competence by foretelling the behavior of
shear-thinning fluids, such as human blood, honey, concentrated fruit juice, ketchup, and others.
Later a considerable number of articles employed this model. Malik et al. [34] employed the
Runge–Kutta–Fehlberg technique to examine the flow of a Casson nanoliquid about a vertical cylinder.
Mukhopadhyay et al. [35] emphasized that the flow separation could be curbed by raising the Casson
parameter. Mustafa et al. [36] investigated the convection of Casson fluid from a stretching sheet taking
into account viscous dissipation. See also these recent and efficient studies [37–41].

To the best of our knowledge, and judging by the prior literature, no study has been conducted on
the heat transfer of a CMC-based Casson nanoliquid induced by combined convection past a solid
sphere with a MHD influence via the KBM that has been investigated in this work. It is also an
extension and development of these studies [20,25,42–44] which may be useful in academic studies,
polymer processes, pharmaceutical and food industries, and others.
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2. Basic Governing Equations

A MHD mixed convection flow of three types of metals (Al, Ag, Cu) in a host Casson fluid over an
isothermal sphere of radius a with a prescribed wall l temperature Tw and ambient l temperature T∞
were taken into account. Additionally, a heated and cooled sphere (Tw > T∞ & Tw < T∞, respectively)
was considered.

Figure 1 depicts the schematic configuration and geometrical coordinates, where U∞, and g are
the free stream velocity, and the gravity vector, respectively. The (ξ̃, η̃) coordinates were measured
along the circumference of the sphere at the stagnation point (ξ̃ ≈ 0), and the distance normal to the
surface of the sphere, respectively.

 

Figure 1. Schematic configuration of the problem.

Based on the previous assumption, the governing PDEs. for the Casson nanofluid are:

∂

∂ξ̃
(rũ) +

∂

∂η̃
(rṽ) = 0, (1)

ũ
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∂ξ̃
+ ṽ
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= αn f
∂2T
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When they are associated with the boundary conditions:

ũ = ṽ = 0, T = Tw, as η̃ = 0, ũ→ ũe(ξ̃), T→ T∞, as η̃→∞. (4)

where r̃(ξ̃) and ũe(ξ̃) are given by:

r̃(ξ̃) = a sin(ξ̃/a), and ũe(ξ̃) =
3
2

U∞ sin(ξ̃/a), (5)

The properties of the nanofluid (defined by [45]) are:
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The following non-dimensional variables that are expressed by Rashad et al. [46] were used:

x =
ξ̃
a

, y = Re1/2
(
η̃

a

)
, r(ξ̃) =

r̃(ξ̃)
a

, u =
ũ

U∞
,

v = Re1/2
(

ṽ
U∞

)
, ue(ξ) =

ue(ξ̃)

U∞
, θ =

T − T∞
Tw − T∞

, (7)

where Re = U∞ a
v f

is the Reynolds number.
By substituting Equation (7) into Equations (1)–(4) we get the following non-dimensional equations:

∂
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here M =
(
σ f β

2
0a

ρ f v f

)
, Pr =

v f
α f

, λ = Gr/Re2, and Gr = gβ f (Tw − T∞) a3

ν2
f

and the dimensionless boundary

conditions are:
u = v = 0, θ = 1, at η = 0,

u→ 3
2

sin ξ̃, θ→ 0, as η→∞. (11)

To solve the non-dimensional Equations (8)–(10), associated with the boundary conditions in
Equation (11), defined the non-dimensional stream function ψ is defined as the following (defined by
Nazar et al. [43]):

ψ = ξ̃r(ξ̃)F(ξ̃, η̃), θ = θ(ξ̃, η̃),

u =
1
r
∂ψ

∂η̃
and v = −1

r
∂ψ

∂ξ̃
(12)

By using Equation (12), the non-dimensional Equations (8)–(10) are reduced to:

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
∂3F
∂η3 + (1 + ξ cot ξ)F∂

2F
∂η2 −

(
∂F
∂η

)2
− ρ f σn f
ρn f σ f

M∂F
∂η

+
(
χρsβs/β f +(1−χ)ρ f

ρn f

)
λθ sin ξ

ξ + 9
4

sin ξ cos ξ
ξ = ξ

(
∂F
∂η
∂2F
∂ξ∂η − ∂F∂ξ ∂

2F
∂η2

)
,

(13)

1
Pr

⎛⎜⎜⎜⎜⎜⎜⎜⎝ kn f /k f

(1− χ) + χ
(
ρcp

)
s
/
(
ρcp

)
f

⎞⎟⎟⎟⎟⎟⎟⎟⎠∂2θ

∂η2 + (1 + ξ cot ξ)F
∂θ
∂η

= ξ

(
∂F
∂η
∂θ
∂ξ
− ∂F
∂ξ
∂θ
∂η

)
, (14)

and the boundary conditions become:

∂F
∂η

= F = 0, θ = 1 at η = 0,

∂F
∂η
→ 3

2
sin ξ
ξ

, θ→ 0, as η→∞. (15)
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At the stagnation point of the sphere when (ξ ≈ 0), Equations (13)–(15) reduce to:

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
F′′′ + 2FF′′ − (F′)2 − ρ f σn f

ρn f σ f
MF′

+
(
χρsβs/β f +(1−χ)ρ f

ρn f

)
λθ+ 9

4 = 0,
(16)

1
Pr

⎛⎜⎜⎜⎜⎜⎜⎜⎝ kn f /k f

(1− χ) + χ
(
ρcp

)
s
/
(
ρcp

)
f

⎞⎟⎟⎟⎟⎟⎟⎟⎠θ′′ + 2Fθ′ = 0, (17)

The subject to
F′ = F = 0, θ = 1 at η = 0,

F′ → 3
2

, θ→ 0, as η→∞. (18)

In this work two physical quantities were taken into consideration, specifically the local skin
friction coefficient C f and the local Nusselt number Nu, which are given by Molla et al. [47]:

C f =

(
τw

ρU2∞

)
, Nu =

(
aqw

k f (Tw − T∞)

)
, (19)

where

τw = μn f

(
∂ũ
∂η̃

)
η̃=0

, qw = −kn f

(
∂T
∂η̃

)
η̃=0

. (20)

Using Equations (7) and (11), C f and Nu are turned into:

Re1/2C f =
1

(1− χ)2.5

(
1 +

1
β

)
ξ
∂2F
∂η2 (ξ, 0), Re−1/2Nu =

−kn f

k f

(
∂θ
∂η

)
η=0

. (21)

3. Numerical Approach

In 1970 Keller [48] was first proposed the Keller-box method. About a decade later, this method
became more popular when Jones [49] found a solution for boundary layer problems. Cebeci and
Bradshaw [50] provided a detailed explanation of the Keller-box procedure, which we employed it in
the current paper to construct the solution for the problem.

3.1. The Finite-Difference Method

In order to transform Equations (13) and (14) to first order equations, new independent unknowns
will be defined as follows:

w(ξ, η), z(ξ, η), p(ξ, η), and g(ξ, η), where the temperature variable θ(ξ, η) is replaced by
g(ξ, η), and

F = w,
w′ = z,
g′ = p,

(22)

Thus, the Equations (13)–(15) are converted to:

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
z′ + (1 + ξ cot ξ)Fz−w2 − ρ f σn f

ρn f σ f
Mw

+
(
χρsβs/β f +(1−χ)ρ f

ρn f

)
λg sin ξ

ξ + 9
4

sin ξ cos ξ
ξ = ξ

(
w∂w∂ξ − z∂F∂ξ

)
,

(23)

1
Pr

⎛⎜⎜⎜⎜⎜⎜⎜⎝ kn f /k f

(1− χ) + χ
(
ρcp

)
s
/
(
ρcp

)
f

⎞⎟⎟⎟⎟⎟⎟⎟⎠p′ + (1 + ξ cot ξ)Fp = ξ

(
w
∂g
∂ξ
− p
∂F
∂ξ

)
, (24)
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Subject to:
w(ξ, 0) = F(ξ, 0) = 0, g(ξ, 0) = 1,

w(ξ,∞) =
3
2

sin ξ
ξ

, g(ξ,∞) = 0, (25)

where the prime notation denotes the 1st derivative with respect to η,
Next the finite-difference form of Equation (22) for the midpoint (ξn, η j−1/2) of the segment,

and find the finite difference form of Equations (23) and (24) about the midpoint (ξn−1/2, η j−1/2) of the
rectangle have been obtained as:

Fn
j − Fn

j−1 −
hj

2

(
wn

j + wn
j−1

)
= 0. (26)

wn
j −wn

j−1 −
hj

2

(
zn

j + zn
j−1

)
= 0. (27)

gn
j − gn

j−1 −
hj

2

(
pn

j + pn
j−1

)
= 0. (28)

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)(
zn

j − zn
j−1

)
+

(
A+α

4

)
hj(Fn

j + Fn
j−1)(z

n
j + zn

j−1) −
(

1+α
4

)
hj(wn

j + wn
j−1)

2

+
(
α
2

)
hjzn−1

j−1/2(F
n
j + Fn

j−1) +
1
2

(
χρs(βs/β f )+(1−χ)ρ f

ρn f

)
sin xn−1l2

xn−1l2 λhj(gn
j
+ gn

j−1
)

− 1
2
ρ f δn f
ρn f δ f

Mhj(wn
j + wn

j−1) −
(
α
2

)
hjFn−1

j−1/2(z
n
j + zn

j−1) +
9
4

sin xn−1l2 cos xn−1l2

xn−1l2 hj = (R1)
n−1
j−1/2

(29)

1
Pr

kn f /k f(
(1−χ)(ρCp) f +χ(ρcp)s/(ρcp) f

) (pn
j − pn

j−1

)
− α4 hj(wn

j + wn
j−1)(gn

j + gn
j−1)

+A+α
4 hj(Fn

j + Fn
j−1)(p

n
j + pn

j−1) +
α
2 hj(wn

j + wn
j−1)gn−1

j−1/2 − α2 hjwn−1
j−1/2(gn

j + gn
j−1)

−α2 hj(pn
j − pn

j−1)F
n−1
j−1/2 +

α
2 hjpn−1

j−1/2(F
n
j + Fn

j−1) = (R2)
n−1
j−1/2

(30)

where

α =
xn−1l2

kn
, A =

(
1 + xn−1l2 cot xn−1l2

)
, kn is Δξ, and hj is Δη

(R1)
n−1
j−1/2 = −hj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

) (zn
j −zn

j−1

)
hj

+ (A− α)Fn
j−1/2zn

j−1/2

+(α− 1)
(
wn

j−1/2

)2
− ρ f σn f
ρn f σ f

Mwn
j−1/2 +

9
4

sin xn−1l2 cos xn−1l2

xn−1l2

+

(
χρs(βs/β f )+(1−χ)ρ f

ρn f

)
sin xn−1l2

xn−1l2 λgn
j−1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n−1

(R2)
n−1
j−1/2 = −hj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
Pr

kn f /k f(
(1−χ)(ρCp) f +χ(ρcp)s/(ρcp) f

)
(
pn

j −pn
j−1

)
hj

+(A− α)Fn
j−1/2pn

j−1/2 + αwn
j−1/2gn

j−1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n−1

(31)

when ξ = ξn the boundary conditions become:

Fn
0 = wn

0 = 0, gn
0 = 1,

wn
J =

3
2

sin ξ
ξ

, gn
J = 0, (32)
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3.2. Newton’s Method

Applying Newton’s method on the system shown in Equations (26)–(30) to obtains:

δFj − δFj−1 −
1
2

hj
(
δwj + δwj−1

)
= (r1) j−1/2 (33)

δwj − δwj−1 −
1
2

hj
(
δzj + δzj−1

)
= (r2) j−1/2 (34)

δgj − δgj−1 −
1
2

hj
(
δpj + δpj−1

)
= (r3) j−1/2 (35)

(a1) jδzj + (a2) jδzj−1 + (a3) jδFj + (a4) jδFj−1 + (a5) jδwj

+(a6) jδwj−1 + (a7) jδgj + (a8) jδgj−1 = (r4) j−1/2
(36)

(
b1

)
j
δpj +

(
b2

)
j
δpj−1 +

(
b3

)
j
δFj +

(
b4

)
j
δFj−1 +

(
b5

)
j
δwj

+
(
b6

)
j
δwj−1 +

(
b7

)
j
δgj +

(
b8

)
j
δgj−1 =

(
r5

)
j−1/2

(37)

where

(a1) j =

⎡⎢⎢⎢⎢⎣ ρ f

ρn f

1

(1− χ)2.5

(
1 +

1
β

)
+ hj

(
(A + α)

2
Fj−1/2 − α2 Fn−1

j−1/2

)⎤⎥⎥⎥⎥⎦
(a2) j =

⎡⎢⎢⎢⎢⎣(a1) j − 2
ρ f

ρn f

1

(1− χ)2.5

(
1 +

1
β

)⎤⎥⎥⎥⎥⎦
(a3) j = hj

[
(A + α)

2
zj−1/2 +

α
2

zn−1
j−1/2

]
(a4) j = (a3) j

(a5) j = hj

[
−(1 + α)wj−1/2 − 1

2

ρ fσn f

ρn fσ f
M

]
(a6) j = (a5) j

(a7) j = hj

⎡⎢⎢⎢⎢⎢⎢⎣λ2
⎛⎜⎜⎜⎜⎜⎜⎝χρs

(
βs/β f

)
+ (1− χ)ρ f

(1− χ)ρ f + χρs

⎞⎟⎟⎟⎟⎟⎟⎠sin xn−1l2

xn−1l2

⎤⎥⎥⎥⎥⎥⎥⎦
(a8) j = (a7) j (38)

(
b1

)
j
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1
Pr

kn f /k f(
(1− χ)(ρCp) f + χ

(
ρcp

)
s
/
(
ρcp

)
f

) + hj

(
(A + α)

2
Fj−1/2 −

α
2

Fn−1
j−1/2

)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(
b2

)
j
=

[ 2
Pr
−

(
b1

)
j

]
(
b3

)
j
= hj

[
(A + α)

2
pj−1/2 +

α
2

pn−1
j−1/2

]
(
b4

)
j
=

(
b3

)
j(

b5

)
j
= hj

[
−α

2
gj−1/2 +

α
2

gn−1
j−1/2

]
hj(

b6

)
j
=

(
b5

)
j(

b7

)
j
= hj

[
−α

2
wj−1/2 −

α
2

hjwn−1
j−1/2

]
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(
b8

)
j
=

(
b7

)
j

(39)

(r1) j−1/2 = Fj−1 − Fj + hjwj−1/2

(r2) j−1/2 = wj−1 −wj + hjzj−1/2

(r3) j−1/2 = gj−1 − gj + hjpj−1/2

(r4) j−1/2 =
ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

) (
zj−1 − zj

)
− (A + α)hj Fj−1/2zj−1/2

+hj

(
αzj−1/2Fn−1

j−1/2 − αzn−1
j−1/2Fj−1/2 − 9

4
sin xn−1l2 cos xn−1l2

xn−1l2

)
− hj

(
χρs(βs/β f )+(1−χ)ρ f

(1−χ)ρ f +χρs

)
λ
2

sin xn−1l2

xn−1l2 gj−1/2

+ hj

(
(1 + α)w2

j−1/2
+
ρ f σn f
ρn f σ f

Mwj−1/2

)
+ (R1)

n−1
j−1/2

(r5) j−1/2 = 1
Pr

kn f /k f(
(1−χ)(ρCp) f +χ(ρcp)s/(ρcp) f

) (pj−1 − pj

)
−(A + α)hjFj−1/2pj−1/2 − αhjpn−1

j−1/2Fj−1/2 + αhjpj−1/2Fn−1
j−1/2

+αhjwj−1/2gj−1/2 − αhjwj−1/2gn−1
j−1/2 + αhjwn−1

j−1/2gj−1/2 + (R2)
n−1
j−1/2

(40)

3.3. The Block Tridiagonal Matrix

The matrix form of a linearized tridiagonal system is:

Aδ= r, (41)

where

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[A1] [C1]

[B2] [A2] [C2]
. . .
. . .
. . .

[BJ−1] [AJ−1] [CJ−1]

[BJ] [AJ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, δ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[δ1]

[δ2]
...

[δJ−1]

[δJ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[r1]

[r2]
...

[rJ−1]

[rJ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The boundary conditions in Equation (32) are satisfied precisely with no iteration. Due to these
suitable values being maintained in every iterate, we assume δF0 = 0, δw0 = 0, δp0 = 0, δwJ = 0,
δgJ = 0, and let dJ = − 1

2 hJ.
The entries of the matrices are

[A1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1 0 0
d1 0 0 d1 0
0 −1 0 0 d1

(a2)1 (a8)1 (a3)1 (a1)1 0
0 (b8)1 (b3)1 0 (b1)1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(42)

[
Aj

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dj 0 0 0 0
−1 0 0 0 0
0 −1 0 0 0

(a6) j (a8) j (a3) j (a1) j 0
(b6) j (b8) j (b3) j 0 (b1) j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 2 ≤ j ≤ J, (43)
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[
Bj

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0
0 0 0 dj 0
0 0 0 0 dj
0 0 (a4) j (a2) j 0
0 0 (b4) j 0 (b2) j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 2 ≤ j ≤ J, (44)

[
Cj

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dj 0 0 0 0
1 0 0 0 0
0 1 0 0 0

(a5) j (a7) j 0 0 0
(b5) j (b7) j 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 1 ≤ j ≤ J − 1, (45)

[δ1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
δz0

δg0

δF1

δz1

δp1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
[
δ j
]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
δwj−1

δgj−1

δFj−1

δzj−1

δpj−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 2 ≤ j ≤ J,

[
rj
]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(r1) j−(1/2)
(r2) j−(1/2)
(r3) j−(1/2)
(r4) j−(1/2)
(r5) j−(1/2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 1 ≤ j ≤ J (46)

The final step is to solve the system in Equation (41) by the LU (lower–upper) factorization method,
then implement numerical operations using MATLAB software (version 7, MathWorks, Natick, MA,
USA). In this work the wall shear stress parameter z(x, 0) is considered as the convergence criterion (as
it is usually considered, see Cebeci and Bradshaw [50]), so the calculations were repeated until the

convergence criterion was satisfied, and stopped when
∣∣∣∣δz(i)0

∣∣∣∣ < ε1, where ε1 is chosen to be 10−5 which
give precise values up to four decimal places.

4. Results and Discussion

This section aims to predict and analyze graphically the behavior of a CMC-based Casson nanofluid
under the impact of meaningfully related parameters with regard to the velocity, temperature,
skin friction coefficient, and local Nusselt number. The ranges of parameters that are taken into
consideration are the mixed parameter (λ > 0 & λ < 0), Casson parameter (β > 0), magnetic parameter
(M > 0) and nanoparticles volume fraction (0.1 ≤ χ ≤ 0.2).

Table 1 shows the thermo-physical properties of CMC-water and the nanoparticles. The numerical
results obtained were in a close agreement with the literature and can be seen in comparative
Tables 2 and 3.

Table 1. Thermo-physical properties of CMC-water (0.0–0.4%) and metals nanoparticles [51].

Thermo-Physical Property CMC-Water Al Ag Cu

ρ (kg/m3) 997.1 2701 10,500 8933
Cp (J/kgk) 4179 902 235 385
K (w/mK) 0.613 237 429 401
β× 10−5 (K−1) 21 2.31 1.89 1.67
σ (s/m) 5.5× 10−6 35× 106 63× 106 95.6× 106

Pr 6.2 - - -
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Table 2. Comparison of Re1/2C f with published findings by Nazar et al. [43] for several values of λ
(β→∞, M = 0, χ = 0, Pr = 0.7).

λ −4 −1 0 0.74 1

x [43] Present [43] Present [43] Present [43] Present [43] Present

0
◦

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10
◦

0.0801 0.0780 0.3438 0.3443 0.4160 0.4167 0.4669 0.4545 0.4843 0.4851
20
◦

0.1149 0.1153 0.6564 0.6500 0.8014 0.8035 0.9031 0.8935 0.9380 0.9279
30
◦

0.9098 0.9076 1.1284 1.1244 1.2813 1.2759 1.3335 1.3277
40
◦

1.0790 1.0824 1.3733 1.3748 1.5775 1.5778 1.6471 1.6470
50
◦

1.1434 1.1537 1.5172 1.5253 1.7737 1.7806 1.8607 1.8672
60
◦

1.0866 1.1047 1.5477 1.5630 1.8580 1.8720 1.9627 1.9762
70
◦

0.8929 0.9202 1.4583 1.4811 1.8260 1.8470 1.9486 1.9691
80
◦

0.5280 0.5680 1.2480 1.2780 1.6800 1.7079 1.8216 1.8489
90
◦

0.9154 0.9530 1.4289 1.4656 1.5915 1.6284
100

◦
0.4308 0.4812 1.0847 1.1351 1.2732 1.3160

110
◦

0.6543 0.7241 0.8831 0.9559
120

◦
0.4220 0.5094

Table 3. Heat transfer coefficient Qw(ξ) = −(∂θ/∂η)η= 0 with published findings by Nazar et al. [43]
for several values of λ (β→∞, M = 0, χ = 0, Pr = 0.7).

λ −4 −1 0 0.74 1

x [43] Present [43] Present [43] Present [43] Present [43] Present

0
◦

0.6534 0.6519 0.7870 0.7858 0.8162 0.8150 0.8354 0.8342 0.8463 0.8406
10
◦

0.6440 0.6435 0.7818 0.7812 0.8112 0.8104 0.8307 0.8301 0.8371 0.8362
20
◦

0.6150 0.6158 0.7669 0.7670 0.7974 0.7974 0.8173 0.8174 0.8239 0.8239
30
◦

0.7422 0.7433 0.7746 0.7747 0.7955 0.7963 0.8024 0.8031
40
◦

0.7076 0.7097 0.7429 0.7447 0.7652 0.7669 0.7725 0.7741
50
◦

0.6624 0.6658 0.7022 0.7039 0.7267 0.7293 0.7345 0.7371
60
◦

0.6055 0.6103 0.6525 0.6565 0.6800 0.6837 0.6887 0.6922
70
◦

0.5224 0.5403 0.5934 0.5986 0.6253 0.6300 0.6352 0.6397
80
◦

0.4342 0.4432 0.5236 0.5287 0.5672 0.5671 0.5742 0.5784
90
◦

0.4398 0.4382 0.4920 0.4887 0.5060 0.5025
100

◦
0.3263 0.3197 0.4120 0.3978 0.4304 0.4152

110
◦

0.3179 0.3004 0.3458 0.3246
120

◦
0.2442 0.2314

Figures 2 and 3 display the influence of the mixed parameter in opposing and assisting flow cases
(λ > 0 & λ < 0) on the skin friction coefficient and Nusselt number, respectively. From these figures,
we found that the Al–CMC-water has the highest skin friction coefficient values in the case of assisting
flow and the lowest in the case of the opposing flow. For the Nusselt number, Al–CMC-water has the
highest value in both cases (λ > 0 & λ < 0) and this is due to the thermo-physical properties that the
aluminum possesses. It can also be observed that, in both the cases of opposing and assisting flow,
when λ increases, Re1/2C f and Re−1/2Nu increase due to increase in the buoyancy force.
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Figure 2. Mixed parameter versus the local skin friction.
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Figure 3. Mixed parameter versus the local Nusselt number.

In Figures 4 and 5 it can be seen that the increment in the value of nanoparticles volume fraction
χ resulted in a noteworthy improvement in both the skin friction coefficient and Nusselt number.
The improvement in the Nusselt number is caused by the enhancement of the density and thermal
conductivity of CMC-water.
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Figure 4. Nanoparticles volume fraction versus the local skin friction coefficient.
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Figure 5. Nanoparticles volume fraction versus the local Nusselt number.

Figures 6 and 7 show the relationship between β and both the skin friction coefficient, and Nusselt
number respectively. It’s noticed that the Casson parameter β is inversely proportional to the skin
friction coefficient, but it is directly proportional to the Nusselt number. Physically, when the values of
β rise, the yield stress decreases and therefore the skin friction coefficient decreases.
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Figure 6. Casson parameter versus the local skin friction coefficient.
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Figure 7. Casson parameter versus the local Nusselt number.
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Figures 8 and 9 illustrate the graphical findings of Re1/2C f and Re−1/2Nu respectively, with
various values of the magnetic parameter (M). It is clear that as the values of M grow, both the skin
friction coefficient and Nusselt number decline. In fact, this decline is a result of the restraining that
occurred in the fluid flow, caused by the increase in intensity of the magnetic current which curbs
convection and thereby reduces the skin fraction coefficient and Nusselt number. Furthermore, these
figures demonstrate that, whatever the values of parameters λ, χ, β or M, Al–CMC-water has the
highest Re1/2C f and Re−1/2Nu.

ξ in degree

Re
1/

2 C
f

M = 1, 2, 3

χ = 0.1, λ = 10, & β = 4

Figure 8. Magnetic parameter versus the local skin friction coefficient.
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Figure 9. Magnetic parameter versus the local Nusselt number.

Figures 10 and 11 demonstrate the impact of the mixed parameterλ on the velocity and temperature
in both cases opposing and assisting flow (λ > 0 & λ < 0). Both the cases of flow indicate that an
increment in λ is accompanied by an improvement in the velocity or a decay in the temperature profiles.
In fact, the growth in the mixed parameter enhances the thermal buoyancy force—and, hence the
velocity increases.
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Figure 10. Mixed parameter versus velocity.
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Figure 11. Mixed parameter versus temperature.

Figures 12 and 13 confirmed that the effect of the nanoparticles volume fraction (χ), on both
velocity and temperature, is a positive effect. A rise in χ leads to a quicker transfer of heat from the
outside of the sphere to the fluid and thus aids in the augmentation of the thickness of the thermal
layer due to the increase in the temperature of the fluid. In addition, the increase in χ enhances energy
transmission, which increases the fluid velocity. According to Figures 14 and 15, higher values of the
Casson parameter (β) cause a curb in the velocity and temperature, which is verifiable because the
augmentation in β creates a resistance force that restricts the flow of the fluid, which restrains the
nanofluid velocity.
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Figure 12. Nanoparticles volume fraction versus velocity.
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Figure 13. Nanoparticles volume fraction versus temperature.
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Figure 14. Casson parameter versus velocity.
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Figure 15. Casson parameter versus temperature.
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Figures 16 and 17 depict the graphical findings of temperature and velocity versus the magnetic
parameter (M), respectively. It is evident in these figures that as the value of M grows, the temperature
increases but the velocity decreases. This phenomenon occurs when a magnetic current passes through
a flowing nanofluid, which produces a kind of force known as the Lorentz force and, consequently,
resists the nanofluid movement. It is worth noting that, whatever the values of parameters λ, χ, β or
M, Silver–CMC-water is superior in terms of velocity, and we found that the Copper–CMC-water
temperature was the highest.
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Figure 16. Magnetic parameter versus velocity.
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Figure 17. Magnetic parameter versus temperature.

5. Conclusions

In this research, we have explored the behavior of a CMC-water based Casson nanofluid from
a solid sphere produced by mixed convection under a MHD influence. The following meaningful
observations are worth mentioning:

1. The temperature profile increases when the values of each ofχor M parameters grow, and decreases
as the values of β or λ increase.

2. The nanoparticles volume fraction has a positive relationship with all the physical quantities
examined in this research.
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3. The skin friction, velocity, and Nusselt number are decreasing functions of the magnetic field
intensity, whereas temperature is an increasing function of it.

Regardless of the values of examined parameters, the values of temperature for Cu–CMC-water
were the highest and had the lowest velocity.
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Nomenclature

a Radius of Cylinder α Thermal diffusivity
B0 Magnetic field strength β Casson parameter
C f . Skin friction coefficient β f Thermal expansion of base fluid
r(ξ) Radial Distance βs Thermal expansion of nanoparticles
Gr Grashof number θ Temperature of nanofluid
g Gravity vector μβ Plastic Dynamic viscosity of base fluid
k Thermal conductivity μ f Dynamic viscosity of base fluid
M Magnetic parameter ρ Density
Nu Nusselt Number

(
ρcp

)
Heat capacity

Pr Prandtl number τw Wall shear stress
py Yield stress χ Nanoparticle volume fraction
T Temperature of the fluid ψ Stream function
Tw Wall temperature σ Electrical conductivity
T∞ Ambient temperature λ Mixed parameter
u ξ- component of velocity Subscript
v η- component of velocity s nanoparticles
v f Kinematic viscosity n f Nanofluid
ue Free stream velocity f Base fluid
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Abstract: In this work, we identified the characteristics of unsteady magnetohydrodynamic (MHD)
flow of ferrofluid past a radiated stretching surface. Cobalt–kerosene ferrofluid is considered and the
impacts of Navier slip and convective heating are additionally considered. The mathematical model
which describes the problem was built from some partial differential equations and then converted to
self-similar equations with the assistance of the Lie group method; after that, the mathematical model
was solved numerically with the aid of Runge–Kutta–Fehlberg method. Graphical representations
were used to exemplify the impact of influential parameters on dimensionless velocity and temperature
profiles; the obtained results for the skin friction coefficient and Nusselt number were also examined
graphically. It was demonstrated that the magnetic field, Navier slip, and solid volume fraction of
ferroparticles tended to reduce the dimensionless velocity, while the radiation parameter and Biot
number had no effects on the dimensionless velocity. Moreover, the magnetic field and solid volume
fraction increase skin friction whereas Navier slip reduces the skin friction. Furthermore, the Navier
slip and magnetic field reduce the Nusselt number, whereas solid volume fraction of ferroparticles,
convective heating, and radiation parameters help in increasing the Nusselt number.

Keywords: MHD; ferrofluid; Lie group framework; unsteady slip flow; stretching surface;
thermal radiation

1. Introduction

Flow and convective heat transfer through a stretching surface play an essential role in research
due to their presence in many engineering and industrial applications. Many authors have emphasized
this and the details are found in [1–3]. To overcome the poor thermal conductivity and increase the
other thermophysical properties of the conventional fluids, nanoparticles were suspended in a base
fluid. These nanoparticles are called nanofluids and can be generated from diverse operations or
chemical deposition mechanisms. Enchantment in the surface area and the rate of heat transfer occurred
and many improvements have recently been performed for this issue [4]. This scheme of nanofluid
is processed by integrating the pure fluid and classical equations of mass. Many investigations
ofnanofluid flow can be found in [5,6].
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Heat transfer has been improved by adding nano-sized particles to a base fluid, as has been
extensively enacted in heating and cooling methods in engineering and industries. The nano-scaled
particles and the host fluid molecules are almost the same size and are identified as stable suspensions
for an extended period. Convective thermal transport characteristics of nanofluids depend on the
flow model, the volume fraction of nanofluid and shape of the particles [7–14]. Electronic gadgets,
design of turbomachines, biomedicine, transportation, lubrication, enhanced oil recovery, lasers,
petroleum drilling operations, and manufacturing process are some of the applications. The study
of the combination of the fluid flow dynamic traits and the trait of electromagnetism is called
magneto-hydrodynamics (MHD). It is a technique where the activities can be arrested electrically,
associated with fluid flow in the presence of a magnetic flux field. The particles suspended in the fluid
are controlled by the applied magnetic field and restructure their concentration; thus, the irregular
heat transfer of the flow will be changed. A few situations with MHD issues are like the prediction of
room climate, magneto-optical wavelength filters, estimations of stream rates of refreshments in the
nourishment industry, optical switches and optical modulators. Magneto-nanoparticles are highly
used in cancer therapy, MRI, magnetic drug targeting, hyperthermia, magnetic cell separation and
drug delivery. They likewise have uses in geophysics; this is connected to thinking about stellar and
solar structures, design of MHD pumps, etc. Several other significant investigations in this concern are
due to [15–21].

Finally, Lie-group methods and their invariants offer a powerful, sophisticated, and methodical
technique to obtain group-invariant solutions which are called self-similarity transformations.
Self-similarity transformations achieved reduction of the independent variable numbers of a set
of PDEs, leading to conversion of the non-linear governing PDEs into ODEs. Analysis using Lie groups
has been executed by many scientists and applied mathematicians in many investigations [22–28].

In the current work, we analyze the unsteady MHD flow of ferrofluid and convective heat
transfer confined by a radiate stretched sheet with the influence of Navier slip and convective heating.
The mathematical model was solved numerically with the aid of Runge–Kutta–Fehlberg method.
The aspects of various parameters such as velocity, temperature, shear stress fields and skin friction
coefficient parameters associated with the current analysis are graphically examined. The recent
advancements in modern technology have stimulated research interest in the analysis of boundary layer
ferrofluid flow overstretching surfaces for its use in various engineering and industrial applications,
such as paper production, fiberglass production, several engineering processes like solar power
technology, etc.

2. Problem Formulation

In the current research, it is assumed that a 2D unsteady magneto-forced convective flow of
ferrofluid past a radiate stretchable surface with impacts on Navier slip and convective heating are
additionally considered. In this work, Cobalt is considered and is treated as a base nanoparticle,
with kerosene as a base ferrofluid. The stretchable surface switches on from a fine slot, which is
positioned at the starting point of a 2D coordinate system (x, y). At this point, the x-axis is considered
all along the stretching direction of the sheet, having stretched velocity Uw = ax, which is applied
vertically to the sheet externally. A constant magnetic strength B0 is applied normal to the sheet.
The mathematical model describing the system is (see Chamkha [29])

∂u
∂x

+
∂v
∂y

= 0 (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
μ f f

ρ f f

∂2u
∂y2 −

σ f f B2
0

ρ f f
u (2)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= α f f

(
∂2T
∂y2 −

1
k f f

∂qr

∂y

)
(3)
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Subjected to the corresponding boundary conditions (see [30–34]):

u(t, x, 0) = Uw + Lμ f f
∂u
∂y , v(t, x, 0) = 0,−k f f

∂T
∂y (t, x, 0) = h f (T f − T)

u(t, x,∞) = 0, T(t, x,∞) = T∞.
(4)

where t, u and v are the time and velocity components along the x and y axes and T is the temperature
in the fluid phase. ρ f f stands for the density. μ f f stands for viscosity. β f f Stands for the ferrofluid
volumetric thermal expansion coefficient. σff stands for electrical conductivity. α f f = k f f /(ρCp) f f
stands for the thermal diffusivity of the ferrofluid. L stands for the slip coefficient, which represents
Navier slip, and hf stands for the heat transfer coefficient. Tf stands for the uniform temperature of the
stretchable surface. kff stands for the thermal conductivity of ferrofluid. (ρCp) f f stands for the specific
heat of the ferrofluid at a constant pressure. The radiative heat flux qr is approached according to the
Rosseland approximation (see [35,36]):

∂qr

∂y
= − 4σ1

3βR

∂T4

∂y
(5)

where βR and σ1 stand for the mean absorption coefficient and the Stefan–Boltzmann constant. As
carried out by Raptis [35], the fluid-phase temperature variations within the flow are approached to
be adequately tiny so that T4 may be obvious as a linear function of temperature. This is created by
extending T4 in a Taylor series on the free-stream temperature T∞ and removing higher-order terms
to yield

T4 = 4T4∞T − 3T4∞ (6)

By applying Equations (5) and (6) in the last term of Equation (3), we obtain

∂qr

∂y
= −16σ1T3∞

3βR

∂2T
∂y2 (7)

In the current investigation, the following thermophysical relations are applied [37];

ρ f f = (1− χ)ρ f + χρs, μ f f =
μ f

(1−χ)2.5 , α f f =
k f f

(ρCp) f f
,(

ρCp
)

f f
= (1− χ)

(
ρCp

)
f
+ χ

(
ρCp

)
s
, (ρβ) f f = (1− χ)(ρβ) f + χ(ρβ)s,

k f f
k f

=
(ks+2k f )−2χ(k f−ks)
(ks+2k f )+χ(k f−ks)

,
σ f f
σ f

= 1 + 3(γ−1)χ
(γ+2)−(γ−1)χwhere γ =

σp
σ f

(8)

Here, χ is nanoparticle volume fraction. Table 1 represents the thermophysical properties
of ferrofluid.

Table 1. Thermophysical properties of kerosene, water and cobalt [37].

Property Kerosene Water Cobalt

ρ (kg m−3) 780 997.1 8900
Cp (Jkg−1 K−1) 2090 4179 420
k (W m−1 K−1) 0.149 0.613 100
β (K−1) 9.9 × 10−4 21 × 10−5 1.3 × 10−5

σ (Simens/m) 6 × 10−10 0.05 1.602 × 107

μ (kg−1 m−1 s−1) 164 × 10−5 625 × 10−6 -

In this stage, the expressions for u, v, and θwill be defined as:

u =
∂Ψ
∂y

, v = −∂Ψ
∂x

,θ =
(T − T∞)
(T f − T∞)

, (9)
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Substituting Equations (7)–(9) into Equations (1)–(4), we obtain

∂2Ψ
∂t∂y

+
∂Ψ
∂y
∂2Ψ
∂x∂y

− ∂Ψ
∂x
∂2Ψ
∂y2 = υ f Ξ1

∂3Ψ
∂y3 −

σ f f

σ f

B2
0σ f

ρ f

1
1−φ+ φ(ρs/ρ f )

∂Ψ
∂y

(10)

∂θ
∂t

+
∂Ψ
∂y
∂θ
∂x
− ∂Ψ
∂x
∂θ
∂y

=
υ f

Pr
Ξ2

(k f f

k f
+

4
3

Rd
)
∂2θ

∂y2 (11)

∂Ψ
∂y = ax + Lμ f f

∂2Ψ
∂y2 , ∂Ψ∂x = 0,

k f f
k f

∂θ
∂y = − h f

k f
(1− θ) at y = 0,

∂Ψ
∂y = 0,θ = 0, at y→∞.

(12)

where Ξ1 =
1

(1− χ)2.5
[
1− χ+ χ(ρs/ρ f )

] , Ξ2 =
1[

1− χ+ χ
(
ρCp

)
s
/
(
ρCp

)
f

]
3. Lie Group Framework

Obtaining the solutions of the PDEs (partial differential equations) (10)–(12) governing the
investigation understudy is equivalent to satisfying the constant solutions of these equations under
a special continuous one-parameter group. The proposed technique is to search for a transformation
group from the primary collection of one parameter scaling transformation. The facilitated form of Lie
group framework, namely, the scaling group of transformations Δ (see [38–46]), will be presented here:

Δ :
�
x
∗
= x�εκ1 ,

�
y
∗
= y�εκ2 ,

�
t = t�εκ3 ,

�
Ψ = Ψ�εκ4 ,θ = θ�εκ5 (13)

where κ1, κ2, κ3, κ4, and κ5 are transformation parameters and ε is a small parameter whose
interrelationship will be determined by our investigation. Equation (13) may be scrutinized as a point

transformation, which transfers the coordinates (x, y, t, Ψ, θ) to (
�
x ,
�
y ,
�
t ,
�
Ψ,

�
θ). Substituting

transformations Equation (13) in Equations (10)–(12), we obtain;

�ε(κ2+κ3−κ4) ∂
2
�
Ψ

∂
�
t ∂
�
y
+ �ε(κ1+2κ2−2κ4)

(
∂
�
Ψ
∂
�
y
∂2
�
Ψ

∂
�
x∂
�
y
− ∂

�
Ψ
∂
�
x
∂2
�
Ψ

∂
�
y

2

)
= υ f Ξ1�ε(3κ2−κ4) ∂

3
�
Ψ

∂
�
y

3

−σ f f
σ f

B2
0σ f
ρ f

1
1−φ+φ(ρs/ρ f )

�ε(κ2−κ4) ∂
�
Ψ
∂
�
y

(14)

�ε(κ3−κ5)
∂
�
θ

∂
�
t
+ �ε(κ1+κ2−κ4−κ5)

⎛⎜⎜⎜⎜⎜⎜⎝∂
�
Ψ

∂
�
y

∂
�
θ

∂
�
x
− ∂

�
Ψ

∂
�
x

∂
�
θ

∂
�
y

⎞⎟⎟⎟⎟⎟⎟⎠ =
υ f

Pr
Ξ2

(k f f

k f
+

4
3

Rd
)
�ε(2κ2−κ5)

∂2
�
θ

∂
�
y

2 (15)

The following relations should be determined to reserve the system to be constant:

κ2 + κ3 − κ4 = κ1 + 2κ3 − 2κ4 = 3κ2 − κ4 = κ2 − κ4

κ3 + κ5 = κ1 + κ2 − κ4 − κ5 = 2κ2 − κ5
(16)

These relations give
κ4 = κ1,κ2 = κ3 = κ5 = 0 (17)

and the one-parameter group of transformations can be obtained as

�
x = x�εκ1 ,

�
y = y,

�
t = t,

�
Ψ = Ψ�εκ1 ,

�
θ = θ (18)
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Developing by Taylor’s technique in powers of ε, we obtain:

�
x − x = xεκ1,

�
y − y = 0,

�
t − t = 0,

�
Ψ −Ψ = Ψεκ1,

�
θ − θ = 0

which yields
dx

xκ1
=

dy
0

=
dt
0

=
dΨ
Ψκ1

=
dθ
0

(19)

η = Γ1(x, t)y, τ = Γ2(x, y)t, Ψ = Γ3(y, t)x,θ = θ(τ, η), (20)

where Γ1, Γ2, and Γ3 are arbitrary functions which should be determined by its equations. η and τ are
the similarity variable and dimensionless time.

To avert the fluid properties manifesting explicitly in the coefficients of the above equations,
determining mass balance in Equation (1), with keeping generality, we have dropped three different
convenient arbitrary constants based on the transformations performed previously by Nabwey [25]
and Chamkha [29] as follows:

Γ1(x, t) =
(
1/2a

√
υ f t

)
, Γ2(y, t) = a, Γ3(y, t) = 2a

√
υ f t (21)

As a consequence, we find

t =
τ
a

, y = 2
√
υ f tη, Ψ = 2ax

√
υ f t f (τ, η) (22)

with the assistance of these formulations in Equation (22). Equations (10)–(12) are characterized as

Ξ1 f ′′′ + 2η f ′′ − 4τ
(

f ′2 − f f ′′ +
σ f f

σ f

Ha2

1−φ+ φ(ρs/ρ f )
f ′
)
− 4τ

∂ f ′
∂τ

= 0 (23)

Ξ2

Pr

(k f f

k f
+

4
3

R
)
θ′′ + 2ηθ′ + 4τ( fθ′ − f ′θ) − 4τ

∂θ
∂τ

= 0 (24)

subject to the following boundary conditions:

f (τ, 0) = 0, f ′(τ, 0) = 1 + δ/
√
τ

(1−χ)2.5 f ′′ (τ, 0),
k f f
k f
θ′(τ, 0) = −Bi

√
τ(1− θ(τ, 0))

f ′(τ,∞) = 0,θ(τ,∞) = 0
(25)

where Ha = B0

√
σ f
aρ f

stands for the Hartmann number. Bi =
2h f
k f

√
ν f
a stands for Biot number.

Rd = 4σ1T3∞/k fβR stands for the radiation parameter. δ = Lμ f /2
√
υ f /a stands for the velocity slip

parameter.
The local skin-drag coefficient and local Nusselt number can be written respectively, as

C f = −μ f f
∂u
∂y

∣∣∣∣∣
y = 0

/
(
μ f ax/2

√
υ f t

)
= − 1

(1− χ)2.5 f ′′ (τ, 0) (26)

Nu = −
[(

k f f +
16σ1T3∞

3βR

)
∂T
∂y

]
y = 0

/
(
k f (T f − T∞)/2

√
υ f t

)
= −

(
k f f
k f

+ 4Rd
3

)
θ′(τ, 0)

(27)
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4. Numerical Method

Following [47,48], Equations (23) and (24), subject to (25), will be solved using the local similarity
method, where the first derivatives with respect to τ are neglected and the Equations (23) and (24) with
boundary conditions (25) can be re-written as

Ξ1 f ′′′ + 2η f ′′ − 4τ
(

f ′2 − f f ′′ +
σ f f

σ f

Ha2

1−φ+ φ(ρs/ρ f )
f ′
)
= 0 (28)

Ξ2

Pr

(k f f

k f
+

4
3

Rd
)
θ′′ + 2ηθ′ + 4τ( fθ′ − f ′θ) = 0 (29)

The boundary conditions (25) remain the same. These ordinary differential equations with the
boundary conditions (25) can be solved numerically by applying the Runge–Kutta–Fehlberg method
(RKF7 45). Following [47,48], for the local non-similarity solution, now we hold all the terms by
assuming the new auxiliary functions F(τ, η), and Θ(τ, η), which are defined by

F =
∂ f
∂τ

, Θ =
∂θ
∂τ

(30)

Thus, Equations (23) and (24) can be expressed as

Ξ1 f ′′′ + 2η f ′′ − 4τ
(

f ′2 − f f ′′ +
σ f f

σ f

Ha2

1−φ+ φ(ρs/ρ f )
f ′
)
− 4τF′ = 0 (31)

Ξ2

Pr

(k f f

k f
+

4
3

Rd
)
θ′′ + 2ηθ′ + 4τ( fθ′ − f ′θ) − 4τ Θ = 0 (32)

subject to the same condition in (25). The new ODEs (31)–(32), subject to (25) represent a local
non-similarity model for the problem under consideration. Equations (31) and (32) and the boundary
conditions (25) are now differentiated w.r.t. τ, simplified and the derivatives w.r.t. τ are neglected
again. These equations represent a local similarity model and can be expressed as;

Ξ1F′′′ + 2ηF′′ + 4 f f ′′ − f ′2 + 4τF f ′′ − f ′2 + 4τ f F′′ − 2 f ′F′ −
(
σ f f
σ f

Ha2

1−φ+φ(ρs/ρ f )
F′

)
−4F′ = 0
Ξ2
Pr

(
k f f
k f

+ 4
3 Rd

)
Θ′′ + 2η Θ′ + 4( fθ′ − f ′θ) + 4τFθ′ + f Θ′ −Θ f ′ − θF′ − 4 Θ = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ (33)

F(τ, 0) = 0, F′(τ, 0) = − δ
2τ3/2(1−χ)2.5 F′′ (τ, 0) + δ/

√
τ

(1−χ)2.5 F′′ (τ, 0), F′(τ,∞) = 0,
k f f
k f

Θ′(τ, 0) = −Bi
[
[1−θ(τ,0)]

2
√
τ
− √τΘ(τ, 0)

]
, Θ(τ,∞) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (34)

The ODEs (31)–(33) subject to (25) and (34) were solved numerically by employing the
Runge–Kutta–Fehlberg technique (RKF45) using MAPLE-19 software (MAPLE 2019.0, Maplesoft,
Waterloo, ON, Canada). This method is generally known as one of the most excellent methods available
for obtaining the solutions of nonlinear differential equations and provides more accurate results.
The step size was selected. For the similarity variable ηmax, Equations (25) and (34), were replaced as

f ′(5) = 0,θ(5) = 0, F′(5) = 0, Θ(5) = 0 (35)

The selection of ηmax = 5 guarantees that all numerical solutions approached the asymptotic
values properly.
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5. Results and Discussions

In this study, we investigated the unsteady magento-flow and heat transfer of Cobalt–kerosene
ferrofluid past a stretchable surface. The influences of several key parameters on the dimensionless
velocity f ′(τ, η), temperature θ(τ, η), skin friction C f (τ, 0), and Nusselt number Nu(τ, 0) are examined.
The Lie group method is employed to reduce partial differential equations and local similar and
non-similar models are solved employing the RK-45 technique.

The effects of the magnetic field Ha and dimensionless time τ on the velocity are symbolized
in Figure 1a and on the dimensionless temperature in Figure 1b, respectively. As the time increases,
the velocity at the surface rises. The magnetic field generates Lorentz strength on the fluid particles,
which resist the fluid and reduce the fluid velocity, as shown in Figure 1a. Consequently, the velocity
boundary layer thickness decreases. Due to the decline in velocity, the temperature increases. In the
thermal boundary layer, the temperature declines to the ambient temperature. The thermal boundary
layer thickness reduces with an enlargement of the dimensionless time, as exhibited in Figure 1b.
The influence of the solid volume fraction of nanoparticles χ and Navierslip δ on the velocity and
temperature is depicted in Figure 2a,b when τ = 0.5. In the absence of slip, the velocity is found
to be higher for the pure regular fluid. At the surface, the velocity decreases with the increase in
the slip and solid volume fraction, as shown in Figure 2a. No appreciable impact of χ could be
observed at the surface as well as within the velocity boundary layer. The velocity boundary layer
thickness enlarges with δ, which enlarges the thermal resistance and reduces the heat transfer rate;
see Figure 2b. The variation of the dimensionless temperature with the solid volume fraction χ is
depicted in Figure 2b. In the absence of slip, the temperature is lower at the wall and intensifies with δ.
As expected, the temperature at the wall is higher for the regular fluid and dwindles with an intensify
in the solid volume fraction χ. This is due to the higher thermal conductivity of Cobalt nanoparticles.
With the addition of nanoparticles, the thermal conductivity of the ferrofluid increases and the heat
transfer rate is enhanced.

Figure 1. Effects of magnetic field Ha and dimensionless time τ on (a) dimensionless velocity,
and (b) dimensionless temperature.
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Figure 2. Effects of solid volume fraction of nanoparticles χ and Navier slip δ on (a) dimensionless
velocity and (b) dimensionless temperature.

Figure 3a,b presents the effects of radiation parameter Rd and Biot number Bi on the velocity and
temperature curves. It is important to note that equations of momentum and energy are independent
of each other. The momentum equation and the velocity boundary conditions are independent of the
radiation parameter Rd and convective heating parameter Bi. Therefore, there is no influence of these
parameters on the velocity, which is obvious from Figure 3a. On the other side, the surface temperature
increases significantly with a strengthen in both Rd and Bi. As a result, the thermal boundary layer
thickness is boosted, with an increase in both parameters, as depicted in Figure 3b. The radiation
parameter Rd reveals an enhancement in radiative heat, which improves the thermal state of fluid,
causing its surface temperature to increase. Similarly, as the convective heating parameter increases
and tends to infinity, the convective boundary condition changes to an isothermal boundary condition.

Figure 3. Effects of Biot number Bi and radiation parameter Rd on (a) dimensionless velocity and (b)
dimensionless temperature.

The variations in skin friction and Nusselt number with the magnetic field Ha are depicted in
Figures 4 and 5 for different values of the velocity slip δ and the solid volume fraction χ at τ = 1 and
τ = 2, respectively. In the presence of magnetic strength, a Lorentz force is generated which resists the
fluid and reduces the velocity curve. Therefore, the skin friction enhances with Ha, as shown in Figures
4 and 5a at different dimensionless times. As expected, the skin friction increases with dimensionless
time τ. In the absence of velocity slip δ, the velocity curves are higher at the surface and decline
with an increment in slip parameter δ. Consequently, the skin friction declines with the boosting of
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slip parameter δ. For the pure regular fluid, the skin friction is lower and increases with a rise in
the solid volume fraction χ. This is due to an evolution in the ferrofluid density with the increased
volume fraction of cobalt nanoparticles. Figures 4 and 5b illustrate the variation of Nusselt number
with the magnetic field Ha and the volume fraction of ferroparticles χ at different dimensionless times.
Like skin friction, Nusselt number also increases with dimensionless time. Due to Lorentz force,
the dimensionless velocity decreases and, as a result, the Nusselt number is reduced with an increasing
magnetic field. Similarly, the velocity decreases due to an intension in the slip and the Nusselt number
reduces. The thermal conductivity of ferroparticles increases with an increase in the volume fraction of
ferroparticles. Consequently, the Nusselt number increases with increasing χ.

Figure 4. Effects of solid volume fraction of nanoparticles χ, magnetic Ha, and Navier slip δ parameters
on (a) skin friction, and (b) Nusselt number when τ = 1.

Figure 5. Effects of solid volume fractions of nanoparticles χ, magnetic Ha and Navierslip δ parameters
on (a) skin friction, and (b) Nusselt number when τ = 2.

Figure 6a, b presents the comparison of Nusselt numbers for kerosene oil and water for the same
parameters. Due to the smaller Prandtl number Pr for water, the Nusselt numbers are found to be
lower than kerosene. The Prandtl number Pr compares the rate of thermal diffusion in comparison to
the rate of momentum diffusion. The higher the Prandtl number Pr, the higher the Nusselt number
will be. It is also noticed that an increase in the Biot number Bi and radiation parameter Rd leads
to an increase in the Nusselt number. These Nusselt numbers also become greater with increasing
dimensionless time.
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Figure 6. Effects of Biot number Bi, dimensionless time τ, and radiation parameter Rd on Nusselt
number for (a) water and (b) kerosene oil as base fluid.

6. Conclusions

In this study, application of the scaling group of transformations to the unsteady magneto-flow of
ferrofluid past a stretching surface was employed. The impacts of Navier slip, radiation and solid
volume fraction of ferroparticles, as well as convective heating, were also investigated. From this study,
it was concluded that:

• Employing the Lie group framework, the symmetries of the partial differential equations are
presented exclusively in this investigation, these equations are reduced to self-similar equations
utilizing translational and scaling symmetries. Numerical solutions for scaling symmetry are
obtained applying the Runge–Kutta–Fehlberg method.

• The magnetic field, Navier slip, and solid volume fraction of ferroparticles tend to reduce the
dimensionless velocity.

• The radiation parameter and Biot number have no effects on the dimensionless velocity.
• Magnetic field, radiation, Biot number, and Navier slip increase the surface temperature, whereas

the solid volume fraction of ferroparticles reduces the surface temperature.
• The magnetic field, dimensionless time and solid volume fraction increase skin friction, whereas

Navier slip reduces the skin friction.
• The magnetic field and Navier slip reduce the Nusselt number, whereas solid volume fraction of

ferroparticles, convective heating, and radiation parameters help in increasing the Nusselt number.
• The Nusselt number for kerosene oil is higher than for water.
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Abstract: The hybrid nanofluid under the influence of magnetohydrodynamics (MHD) is a new
interest in the industrial sector due to its applications, such as in solar water heating and scraped surface
heat exchangers. Thus, the present study accentuates the analysis of an unsteady three-dimensional
MHD non-axisymmetric Homann stagnation point flow of a hybrid Al2O3-Cu/H2O nanofluid with
stability analysis. By employing suitable similarity transformations, the governing mathematical
model in the form of the partial differential equations are simplified into a system of ordinary
differential equations. The simplified mathematical model is then solved numerically by the Matlab
solver bvp4c function. This solving approach was proficient in generating more than one solution
when good initial guesses were provided. The numerical results presented significant influences on the
rate of heat transfer and fluid flow characteristics of a hybrid nanofluid. The rate of heat transfer and
the trend of the skin friction coefficient improve with the increment of the nanoparticles’ concentration
and the magnetic parameter; however, they deteriorate when the unsteadiness parameter increases.
In contrast, the ratio of the escalation of the ambient fluid strain rate to the plate was able to adjourn
the boundary layer separation. The dual solutions (first and second solutions) are obtainable when
the surface of the sheet shrunk. A stability analysis is carried out to justify the stability of the dual
solutions, and hence the first solution is seen as physically reliable and stable, while the second
solution is unstable.

Keywords: unsteady flow; non-axisymmetric flow; MHD; hybrid nanofluid; stagnation-point flow

1. Introduction

The stagnation point flow has attracted vast attention from many researchers because of its
broad applications in both industrial and scientific applications. Some of the real-world applications
of the stagnation point flow lie in the polymer industry, extrusion processes, plane counter-jets,
and numerous forms of hydrodynamic modelling in engineering uses ([1–3]). An exact solution of
the steady two-dimensional stagnation-point flow towards a solid surface in moving fluid was first
discovered by Hiemenz [4] in 1911. In his particular study, the Navier–Stokes equations are reduced to
non-linear ordinary differential equations by using a similarity transformation. The remarkable work
done by Hiemenz [4] was extended by Homann [5], who started the classical work of three-dimensional
stagnation point flow for the axisymmetric case. Meanwhile, the flow in the neighbourhood of a
particular stagnation point on a surface was explored by Howarth [6], focusing on the non-axisymmetric
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three-dimensional flow near the stagnation region. Fast forward to 1961, the work of Howarth [6] was
criticized by Davey [7], who indicated a mistake in Howarth’s paper exposing that the results in the
region −1 ≤ c ≤ 0 are unable to be achieved from those discovered for 0 ≤ c ≤ 1 as reported in the study.
In conjunction with these findings, Davey and Schofield [8] initiated the study of these saddle point
solutions and justified the existence of the non-uniqueness solution. In another study, Weidman [9]
modified the Homann’s axisymmetric outer potential stagnation-point flow for non-axisymmetric
stagnation flow of the strain rate. The study revealed a new clan of asymmetric viscous stagnation
point flows liable on the shear rate ratio, γ = b/a where −∞ ≤ γ ≤ ∞, a is the strain rate and b is the
shear rate. An analysis of unsteady heat transmission in non-axisymmetric Homann stagnation-point
flows of a viscous fluid over a rigid plate was investigated by Mahapatra and Sidui [10], and recently,
an investigation on the non-axisymmetric Homann stagnation-point flows of a viscoelastic fluid
towards a fixed plate was conducted by Mahapatra and Sidui [11].

Ever since the evolution study of the stagnation point flow with the presence of dual solutions
by Davey [7], various works concerning the stagnation point flow towards a shrinking sheet were
introduced. Wang [12] considered two-dimensional stagnation point flow on a two-dimensional
shrinking sheet and axisymmetric stagnation point flow on an axisymmetric shrinking sheet,
while Mahapatra and Sidui [13] assessed unsteady heat transfer in non-axisymmetric Homann
stagnation-point flow towards a stretching/shrinking sheet with stability analysis. The continuous
effort was carried out by Khashi’ie et al. [14] who examined the three-dimensional non-axisymmetric
Homann stagnation point flow and heat transfer past a stretching/shrinking sheet using hybrid
nanofluid. Meanwhile, Zaimi and Ishak [15] scrutinized the slip effects on the stagnation point flow
towards a stretching vertical sheet. Nevertheless, explorations on the stagnation point flow keep
evolving in various ways and have been working still because of its importance in massive engineering
applications and also in the magnetohydrodynamics (MHD) flow field. A comprehensive study of the
literature on the related works was reviewed by [16–19].

A fluid that is heated by electric energy in the occurrence of a vigorous magnetic field, such as
crystal growth in melting, is essential in the industrial sector. The interaction of electrical currents and
magnetic fields generates the divergence of Lorentz forces during the movement of fluid. In accordance
with this phenomenon, MHD describes the hydrodynamics of a conducting fluid in the presence of a
magnetic field. The examinations of MHD flow are very significant due to its massive number of uses
implicating the magnetic effect in industrial and engineering areas, such as MHD electricity generators,
sterilization tools, magnetic resonance graphs, MHD flow meters, and also in granular insulation
(see [20,21]). The goods of the end product depend immensely on the rate of cooling involved in
these processes, managed by the application of the magnetic field and electrically conducting fluids.
The study of MHD flow in the Newtonian fluid was first carried out by Pavlov [22], who investigated
the magnetohydrodynamic flow of an impressible viscous fluid caused by deformation of a surface.
Chakrabarti and Gupta [23] broadened the study of hydromagnetic flow and heat transfer over a
stretching sheet, followed by Vajravelu [24] who widened the hydromagnetic flow study over a
continuous, moving, porous flat surface. Andersson, in 1995, introduced an exact solution of the
Navier-Stokes equations for magnetohydrodynamic flow [25], and Lok et al. [26] analyzed the MHD
stagnation-point flow towards a shrinking sheet using the Keller-box method and proved the existence
of multiple (dual) solutions for small values of the magnetic field parameter for the shrinking case.
Recently, Almutairi et al. [27] studied the influence of second-order velocity slip on the MHD flow of
a nanofluid in a porous medium by considering the homogeneous-heterogeneous reactions. On the
other hand, the impact of nonlinear and temperature jump on non-Newtonian MHD nanofluid flow
and heat transfer past a stretched thin sheet was examined by Zhu et al. [28]

Over the last few decades, the researcher has experienced tremendous scholarly devotion to
the study of heat transfer fluid. Recent demand for a high-efficiency refrigeration system and the
ineffectiveness of traditional thermal conduction fluids encouraged analysts to discover another heat
transfer fluid. Choi and Eastman [29] launched the exploration of nanofluids and illustrated the
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presence of suspended nanoparticles in a carrier fluid. This pioneering study led to the verdict of
the colloidal suspension of intensely small-sized particles, for instance, carbon nanotubes, metals,
oxides, and carbides, into the based fluid, which may ensure access to an advanced course of
nanotechnology-based heat transfer media (see [30,31]). The eccentric features of nanofluids have
gained great acknowledgement in various engineering, medical, and industrial applications like
engine cooling, diesel generator efficiency, micro-manufacturing, solar water heating, cancer treatment,
nuclear reactors, and diverse types of heat exchangers ([32–34]). Due to the massive potential
for the applications of nanofluids, Choi and Eastmen [29] developed a mathematical model of
nanofluids, which allowed Buongiorno [31] to contribute to heat transfer analysis in nanofluids by
introducing the non-homogeneous model for transport and heat transfer phenomena in nanofluids
with turbulence applications.

Recently, an expansion of new engineered nanofluids was achieved by dispersing composite
nanopowder or dissimilar nanoparticles with sizes between 1 and 10nm in the base fluid [29]; it is known
as a hybrid nanofluid. The hybrid nanofluid is a modern technology fluid that may offer better heat
transfer performance and thermal physical properties. The progress related to the preparation methods
of hybrid nanofluids, thermo-physical properties of hybrid nanofluids, and current applications of
hybrid nanofluids was published by Sarkar et al. [35] and Sidik et al. [36]. In another study, Huminic
and Huminic [37] highlighted the essential applications of hybrid nanofluids, such as in heat pipes,
mini-channel heat sinks, plate heat exchangers, air conditioning systems, tubular heat exchangers, shell
and tube heat exchangers, tube in a tube heat exchangers, and coiled heat exchangers. Turcu et al. [38],
for the first time testified the hybrid nanocomposite particle synthesis, which consisted of two different
hybrids, polypyrrole-carbon nanotube (PPY-CNT) nanocomposite and multi-walled carbon nanotube
(MWCNT) on magnetic Fe3O4 nanoparticles. In the following year, Yen et al. [39] inspected the
effect of hybrid nanofluids in channel flow numerically. Devi and Devi [40] analysed the problem
of hydromagnetic hybrid nanofluid (Cu-Al2O3/water) flow on a permeable stretching sheet subject
to Newtonian heating, and they continued the investigation to improve the heat transfer in hybrid
nanofluid flow past a stretching sheet [41]. Subsequently, Yousefi et al. [42] reviewed on the stagnation
point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder. At the same time,
Khashi’ie et al. [43] performed a numerical study on the heat transfer and boundary layer flow of
axisymmetric hybrid nanofluids driven by a stretching/shrinking disc. A detailed documentary on the
numerical study of hybrid nanofluid flow and heat transfer is reviewed by [44–48].

Many practical situations, such as a sudden stretching of the plate or temperature change of the
plate, involved unsteady conditions of the heat transfer flow. Cai et al. [49] explained that the flow
in the viscous boundary layer near the plate would slowly be enlarged if the surface was extended
unexpectedly, and hence converted into a steady flow after a certain interval. Technically, we believe
that the consideration of physical quantities related to time is crucial in mathematical modeling and
analysis, which is acknowledged in the formulation of this research problem.

Motivated by the work by Mahapatra and Sidui [13], this study aims to inspect the unsteady
MHD non-axisymmetric Homann stagnation point of a hybrid nanofluid in three-dimensional flow.
The proposed hybrid nanofluid model is adapted from Devi and Devi [40] and Hayat and Nadeem [50],
recognized by suspending varied nanoparticles, namely alumina (Al2O3) and copper (Cu), in the base
fluid (water). To the best of the authors’ knowledge, no attempt has been made to examine the heat
transfer and fluid flow of the hybrid nanofluid (Al2O3-Cu/H2O) considering the unsteady parameter in
non-axisymmetric Homann stagnation point flow. This possibly will benefit future works on choosing
a significant parameter to enhance the heat transfer performance in the modern industry. The novelty
of this study can also be seen in the discovery of dual solutions and the execution of stability analysis.
Ultimately, this research is highly claimed to be authentic and original.
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2. Mathematical Model

Consider the unsteady three-dimensional MHD non-axisymmetric Homann stagnation point
flow of a hybrid Al2O3-Cu/water nanofluid with a stretching/shrinking sheet on the x, y− plane where
x, y and z are Cartesian coordinates with the z− axis measured in the horizontal direction and the axes x
and y are in the plane z = 0 as illustrated in Figure 1, respectively. We assume that the constant surface
temperature Tw is stretched and shrunk in the x and y directions by the velocities uw = εcx

1+αt and
vw =

εcy
1+αt The uniform temperature is given by T∞ and B0 is introduced to the stretching/shrinking

sheet in an orthogonal direction as a transverse uniform magnetic field. Meanwhile, the modified
non-asymmetrically free streamflow along the x, y and z axes is described by ([9]):

ue(x) = (a + b)x, ve(y) = (a− b)y, we(z) = −2az. (1)

Figure 1. Flow model and coordinate systems of the physical model.

Here, a is the strain rate and b is the shear rate of stagnation point flow, correspondingly.
By adapting the Tiwari and Das [30] nanofluid model, the continuity, momentum, and the energy
equations of the hybrid nanofluid can be written as follows:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (2)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

=
∂ue

∂t
+ ue

∂ue

dx
+
μhn f

ρhn f

∂2u
∂z2 −

σhn f

ρhn f
B2(u− ue), (3)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

=
∂ve

∂t
+ ve
∂ve

dx
+
μhn f

ρhn f

∂2v
∂z2 −

σhn f

ρhn f
B2(v− ve), (4)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

=
khn f

(ρCp)hn f

∂2T
∂z2 . (5)

The velocity component in x− direction is given by u, while v is in y− direction. Next, the boundary
conditions are:

t < 0 : u = v = w = 0 for any x, y, z,
t ≥ 0 : u = uw, v = vw, w = 0, T = Tw at z = 0,

u→ ue =
(a+b)x
1+αt , v→ ve =

(a−b)x
1+αt , we → −2az

1+αt , T→ T∞ as z→∞.
(6)

Note that T is the hybrid nanofluid temperature, μhn f is the dynamic viscosity of the hybrid
nanofluid, ρhn f is the density of the hybrid nanofluid, khn f is the thermal conductivity of the hybrid
nanofluid, (ρCp)hn f is the heat capacity of the hybrid nanofluid, σhn f is the electrical conductivity of the

hybrid nanofluid, and the time-dependent of a transverse magnetic field is given by B2 = B2
0/(1 + αt)

in detail.
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The hybrid nanofluids thermophysical properties are specified in Table 1, as demonstrated by
Devi and Devi [41,51]. At this point, φ is the volume fraction of nanoparticles, ρ f and ρs are the base
fluid density and hybrid nanoparticles, Cp is the heat capacity, (ρCp) f and (ρCp)s represent capacitance
heating of the base fluid and hybrid nanoparticles, and finally k f and ks are the thermal conductivities
of the base fluid and hybrid nanoparticles, respectively. Meanwhile, the thermophysical properties of
the fluid and nanoparticles for aluminum oxide, copper, and the base fluid (water) are given in Table 2.

Table 1. Thermophysical properties of hybrid nanofluids (Devi and Devi [41,51]).

Properties Hybrid Nanofluid

Density ρhn f = (1−φ2)[(1−φ1)ρ f + φ1ρs1] + φ2ρs2

Heat capacity

(
ρCp

)
hn f

=

(1−φ2)
[
(1−φ1)

(
ρCp

)
f
+ φ1

(
ρCp

)
s1

]
+ φ2

(
ρCp

)
s2

Dynamic viscosity μhn f =
μ f

(1−φ1)
2.5(1−φ2)

2.5

Thermal conductivity

khn f

kn f
=

ks2+2kn f−2φ2(kn f−ks2)

ks2+2kn f +φ2(kn f−ks2)
,

where,
kn f

k f
=

ks1+2k f−2φ1(k f−ks1)

ks1+2k f +φ1(k f−ks1)

Table 2. Thermophysical properties of nanoparticles and base fluid (Oztop and Abu-Nada [52]).

Properties Al2O3 Cu H2O

ρ (kg/m3) 3970 8933 997.1
Cp (J/kgK) 765 385 4179
k (W/mK) 40 400 0.613
β× 10−5(mK) 0.85 1.67 21

Now, pursuing Mahapatra and Sidui [10], the resulting similarity transformation is proposed to
achieve the similarity solutions:

u =
cx f ′(η)
1+αt , v =

cyg′(η)
1+αt , w = −

√
νc

1+αt ( f + g),θ(η) = (T−T∞)
(Tw−T∞) ,

η =
√

c
ν(1+αt)z,

(7)

where the prime denotes differentiation with respect to η. By substituting (7) into the steady-state
Equations (2)–(5), the following ordinary differential equations are obtained:

μhn f /μ f
ρhn f /ρ f

f ′′′ + A
(

1
2η+ f + g

)
f ′′ + A f ′ − f ′2 −A(λ+ γ) + (λ+ γ)2

−M( f ′ − λ− γ) = 0,
(8)

μhn f /μ f
ρhn f /ρ f

g′′′ + A
(

1
2η+ f + g

)
g′′ + Ag′ − g′2 −A(λ− γ) + (λ− γ)2

−M(g′ − λ+ γ) = 0,
(9)

1
Pr

khn f /k f

ρCphn f /ρCp f
θ′′ +

(
A

1
2
η+ f + g

)
θ′ = 0, (10)

with the boundary conditions (6) which are converted to:

f (0) = g(0) = 0, f ′(0) = g′(0) = ε, θ(0) = 1,
f ′(η)→ λ+ γ, g′(η)→ λ− γ,θ(η)→ 0, as η→∞.

(11)
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In the equations mentioned above, A = α/c represents the unsteadiness parameter, λ = a/c is a
ratio of the surrounding fluid strain rate to the surface strain rate, γ = b/c is the surrounding fluid

shear rate ratio to the strain rate of the sheet, M =
σhn f /σ f
ρhn f /ρ f

B2
0

c denotes the magnetic parameter and

Pr = ν f /α f indicates the Prandtl number. The parameter of stretching/shrinking is meant by ε where
ε > 0 determines the stretching sheet, while ε < 0 reflects the shrinking sheet. The related quantities of
interest in this study are the skin friction coefficient, C f x and C f y along the x− and y− directions and
the local Nusselt number Nux, which is specified as

C f x =
τwx

ρ f ue2 , C f y =
τwy

ρ f ve2 , Nux =
xqw

k f (Tw − T∞)
, (12)

where τwx, τwy are the shear stresses along the x−, y− axes and qw represents the heat flux,
correspondingly. Such terms can be defined by

τwx = μhn f

(
∂u
∂z

)
z=0

, τwy = μhn f

(
∂v
∂z

)
z=0

, qw = −khn f

(
∂T
∂z

)
z=0

. (13)

By prompting Equations (7), (12) and (13), we get:

(λ+ γ)3/2Re1/2
x C fx =

μhn f
μ f

f ′′ (0), (λ− γ)3/2Re1/2
y C fy =

μhn f
μ f

g′′ (0),

(λ+ γ)1/2Rex
−1/2Nux = − khn f

k f
θ′(0),

(14)

where Rex =
(a+b)x2

(1+αt)ν f
and Rey =

(a+b)y2

(1+αt)ν f
are the local Reynolds number along the x− and y−

directions, respectively.

3. Stability Analysis

The system of Equations (8)–(10) along with the boundary conditions (11), is capable of generating
more than one solution and ultimately permits the requirement analysis of the flow to identify
the reliable and feasible solution. Going through the outstanding work done by Merkin [53] and
Merrill et al. [54] in the stability analysis, the application of an unstable form of the boundary layer
problem is analyzed by using the time variable and a dimensionless time variable denoted by τ [55].
Next, we consider the following new similarity variables:

u = cx
1+αt

∂ f
∂η (η, τ), v =

cy
1+αt

∂g
∂η (η, τ), w = −

√
νc

1+αt [ f (η, τ) + g(η, τ)],

θ(η) =
(T−T∞)
(Tw−T∞) , η =

√
c

ν(1+αt)z, τ = ct
1+αt .

(15)

Using the similarity variables of Equation (15) into Equations (8)–(10), the altered differential
equations and the boundary conditions are as follows:

μhn f /μ f
ρhn f /ρ f

∂3 f
∂η3 +

(
A 1

2η+ f + g
)∂2 f
∂η2 + A∂ f

∂η −
(
∂ f
∂η

)2
−A(λ+ γ) + (λ+ γ)2

−M
(
∂ f
∂η − λ− γ

)
− (1−Aτ) ∂

2 f
∂η∂τ = 0,

(16)

μhn f /μ f
ρhn f /ρ f

∂3 g
∂η3 +

(
A 1

2η+ f + g
)∂2 g
∂η2 + A∂g

∂η −
(
∂g
∂η

)2
−A(λ− γ) + (λ− γ)2

−M
(
∂g
∂η − λ+ γ

)
− (1−Aτ) ∂

2 g
∂η∂τ = 0,

(17)

1
Pr

khn f /k f

ρCphn f /ρCp f

∂2θ

∂η2 +
(
A
(1

2
η− τ

)
+ f + g + 1

)
∂θ
∂η
− (1−Aτ)

∂θ
∂τ

= 0, (18)
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f (0, τ) = g(0, τ) = 0, ∂ f
∂η (0, τ) = ∂g

∂η (0, τ) = ε, θ(0, τ) = 1,
∂ f
∂η (η, τ)→ λ+ γ, ∂g

∂η (η, τ)→ λ− γ,θ(η, τ)→ 0, as η→∞.
(19)

Weidman et al. [55] highlighted that the stability of solutions is introduced by determining the
system’s decay or initial growth. This can be achieved via considering the following perturbation
expressions of the primary flow f = f0(η), g = g0(η) and θ = θ0(η) with the resulting equation:

f (η, τ) = f0(η) + e−ωτF(η), g(η, τ) = g0(η) + e−ωτG(η),
θ(η, τ) = θ0(η) + e−ωτH(η),

(20)

where ω is an unknown parameter of the eigenvalue, F(η), G(η) and H(η) are comparatively slight to
f0(η), g0(η) and θ0(η). Substituting (20) into Equations (16)–(18) we attained the following system
of equations:

μhn f /μ f
ρhn f /ρ f

∂3F
∂η3 +

(
A 1

2η+ f0 + g0
)
∂2F
∂η2 +

(
A−M + (1−Aτ)ω− 2∂ f0

∂η

)
∂F
∂η

+(F + G)
∂2 f0
∂η2 = 0,

(21)

μhn f /μ f
ρhn f /ρ f

∂3G
∂η3 +

(
A 1

2η+ f0 + g0
)
∂2G
∂η2 +

(
A−M + (1−Aτ)ω− 2∂g0

∂η

)
∂G
∂η

+(F + G)
∂2 g0
∂η2 = 0,

(22)

1
Pr

khn f /k f

(ρCp)hn f /(ρCp) f

∂2H
∂η2 + (F + G)

∂θ0

∂η
+

(
A

1
2
η+ f0 + g0

)
∂H
∂η

+ωH = 0, (23)

subject to the boundary conditions:

F(0) = G(0) = 0, ∂F∂η (0) =
∂G
∂η (0) = 0, H(0) = 0,

∂F
∂η (∞)→ 0, ∂G∂η (∞)→ 0, H(∞)→ 0.

(24)

The stability of the steady-state flow and heat transfer solutions f0(η), g0(η) and θ0(η) was
implemented by setting τ = 0 with F = f0(η), G = g0(η) and H = θ0(η) in (21)–(24). Finally, the initial
development or the solution decay of the solution (20) is identified. The value of ω is obtained by
solving the following eigenvalue problem:

μhn f /μ f

ρhn f /ρ f
F′′′0 +

(
A

1
2
η+ f0 + g0

)
F′′0 +

(
A−M +ω− 2 f ′0

)
F′ + (F + G) f ′′0 = 0, (25)

μhn f /μ f

ρhn f /ρ f
G′′′0 +

(
A

1
2
η+ f0 + g0

)
G′′0 +

(
A−M +ω− 2g′0

)
G′ + (F + G)g′′0 = 0, (26)

1
Pr

khn f /k f

(ρCp)hn f /(ρCp) f
H′′ + (F + G)θ0

′ +
(
A

1
2
η+ f0 + g0

)
H′ +ωH = 0, (27)

along with the conditions:

F0(0) = G0(0) = 0, F′0(0) = G′0(0) = 0, H0(0) = 0,
F′0(∞)→ 0, G′0(∞)→ 0, H0(∞)→ 0.

(28)
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The range of possible eigenvalues can be determined by relaxing a boundary condition on F′0(η)
according to the previous research by Harris et al. [56]. In this study, the condition F′0(∞)→ 0
is relaxed, and the linear eigenvalue problem (25)–(28) is solved together with the new boundary
condition F′′0 (0) = 1 for a fixed value of ω1. The flow is considered unstable if the smallest eigenvalue
ω1. is negative, which indicates an initial growth of disturbances occurred, while a positive value of
the smallest eigenvalue signifies that the flow is physically achievable and stable.

4. Results and Discussion

The bvp4c function in Matlab is adopted to produce the results of the nonlinear system of ordinary
differential Equations (8)–(10) together with the boundary conditions (11). The relative error tolerance
is set as 10−10 to gain the results of the numerical outcomes and stability analysis. Table 3 presents
that the average central processing unit (CPU) time required for computing each result in Table 4
is approximately 1.4 s, and the dual solutions were obtained by indicating different initial guesses
which must satisfy the far-field boundary conditions (11) asymptotically. The numerical results are
validated with the numerical results produced by Mahapatra and Sidui [10] and Nawaz and Hayat [57]
by collating the values of the shear stress f ′′ (0) of an axisymmetric (γ = 0) stagnation point flow of
a viscous fluid with the exclusion of magnetic field and the unsteady parameter, which is depicted
in Table 4. It demonstrates excellent agreement with the previous literature; hence, the practicality
and effectiveness of the bvp4c method are verified. The estimated relative error, εr is also measured,
and it shows that the calculated values of εr are relatively small between the present and previous
results. Figure 2 exhibits the variation of the wall shear stress parameter f ′′ (0) and g′′ (0) towards
the difference value of γ when φ1 = φ2 = M = A = 0,λ = 0.1, ε = 1.0 and Pr = 1.0 where the dotted
lines correspond to the asymptotic behaviour of f ′′ (0) and g′′ (0) which is in excellent agreement with
Mahapatra and Sidui [10] who pursued a standard fourth-order Runge-Kutta integration technique in
their study. This justifies the role of the bvp4c numerical technique as a dependable practice, and the
present results are valid and correct.

Table 3. Computational time to generate the values of f ′′ (0) as λ varies when φ1 = φ2 = 0,
γ= 0, ε= 1, M = 0, A = 0, and Pr = 6.2.

λ f”(0) Time, t (s)

0.1 −1.12460540 0.851
0.2 −1.05562203 0.960
0.5 −0.75344581 0.877
1.0 0 1.474
2.0 2.20708771 1.419

The dimensionless velocity profiles f ′(η) and g′(η) for different values of λ are illustrated in
Figures 3 and 4. The figures prove that the profiles of the velocity comply with the far-field boundary
conditions of Equation (11) asymptotically. The maximum value of the velocity gradient with the
lowest thickness of the momentum boundary layer is preserved for the largest value of λ. Notably,
the distance of two adjacent profiles increases remarkably with the increased amount of λ in both the
first and second solutions. Figures 5 and 6 portray the variations of f ′′ (0) and g′′ (0) towards ε for
different values of λ in hybrid nanofluids with the existence of the magnetic field and the influences
of the unsteadiness parameter. An enrichment in the amounts of λ embarking on the augmentation
of both λ+ γ and λ − γ provide a significant effect to the surface shear stresses. The variations of
f ′′ (0) are expected to be higher by the increasing value of λ+ γ yet decrease when λ+ γ is decreased,
and the same trend is expected in g′′ (0) with λ− γ. On the other hand, the effect of the nanoparticles
volume fraction is observed in Figures 7–9, respectively. Surprisingly, the critical values of the various
usage of the nanoparticles’ volume fraction give no significant effect to the trend of the nanofluid
(φ1 = 0.02,φ2 = 0.00) and hybrid nanofluid flow (φ1 = 0.02,φ2 = 0.002, 0.04). It is observed that the
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reduced skin friction coefficient in x and y directions, as presented in Figures 7 and 8, and the reduced
local Nusselt number in Figure 9 upsurges with the rising in the nanoparticles’ volume fraction. This is
due to the fact that more kinetic energy is produced with a higher concentration of nanoparticles
and thus, enhances the heat transfer of the fluid particles. This finding also corresponds with several
present particle-laden direct numerical studies (DNS), which reveal that the roughness components
appear to redistribute the energy and, therefore, decrease the overall large-scale near-wall anisotropy
of the flow pattern (see Yuan and Piomelli [58] and Ghodke and Apte [59]).

Table 4. Results of f ′′ (0) for specific values of λ when φ1 = 0.0, φ2 = 0.0, γ= 0, ε= 1, M = 0, A = 0,
and Pr = 6.2.

λ Present Result
Mahapatra

and Sidui [10]
εr=| r−s

s |×100% Nawaz and
Hayat [57]

εr=| r−s
s |×100%

0.1 −1.12460540 −1.124000 0.053832% −1.124600 0.000480%
0.2 −1.05562203 −1.054400 0.115764% −1.055610 0.001139%
0.5 −0.75344581 −0.753400 0.006080% −0.753100 0.045897%
1.0 0.00000000 0.000000 0.000000% 0.000000 0.000000%
2.0 2.20708771 2.190200 0.765158% − −

∗εr is the estimate percentage relative error between the present result, r and previous result, s.

Figure 2. Variations of f ′′ (0) and g′′ (0) for different values of γ.
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Figure 3. Velocity profiles of f ′(η) for different values of λ.

Figure 4. Velocity profiles of g′(η) for different values of λ.
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Figure 5. Variations of f ′′ (0) for different values of λ.

Figure 6. Variations of g′′ (0) for different values of λ.
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Figure 7. Variations of f ′′ (0) for different values of φ2.

Figure 8. Variations of g′′ (0) for different values of φ2.

Figures 10–12 exhibit the influence of the magnetic parameter on f ′′ (0), g′′ (0) and −θ′(0) which
shows a prominent effect on the fluid flow of the shrinking sheet. The reduced skin friction coefficient
in both the x− and y− directions rise and eventually increase the value of −θ′(0) with the escalation
of M due to the occurrence of the Lorentz force, which acts to retard the fluid flow. The Lorentz
force creates resistance to the motion of the fluid particles and then consequently reduces the fluid
velocity. The synchronism of the magnetic and electric field that occurred from the formation of the
Lorentz force tends to slow down the fluid movement. The boundary layer becomes thinner in both
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directions as proven in Figures 13 and 14 as M increases due to the delayed flow, hence contributing
to the increment of f ′′ (0) and g′′ (0). On the other hand, Figure 15 advertises the variations of the
non-dimensional temperature profiles for different values of M which tend to decrease in the first
solution but show a reverse trend in the second solution. The figures clearly reveal that the thicknesses
of the thermal boundary layers decrease with the increase of M Practically, by restricting the magnetic
field intensity, the progression of the thermal boundary layers’ thicknesses can be managed and, thus,
be able to reduce the temperature profile distributions.

Figure 9. Variations of −θ′(0) for different values of φ2.

Figure 10. Variations of f ′′ (0) for different values of M.
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Figure 11. Variations of g′′ (0) for different values of M.

Figure 12. Variations of −θ′(0) for different values of M.
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Figure 13. Velocity profiles of f ′(η) for different values of M.

Figure 14. Velocity profiles of g′(η) for different values of M.

The effect of the unsteadiness parameter A on f ′′ (0), g′′ (0) and −θ′(0) is depicted in Figures 16–18,
respectively. Increasing the values of A results in a reduction of the skin friction coefficients in both
directions, as illustrated in Figures 16 and 17, which consequently decreases the reduced local Nusselt
number. The fact that the unsteadiness parameter affects the velocity and temperature profile is
proven in Figures 19–21. The velocity of the fluid is in decline along the surface of the sheet due to
the increasing value of the shear stress and subsequently shrinks the thickness of the momentum
boundary layer nearby the wall, as displayed in Figures 19 and 20, accordingly. The increasing value
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of A decreases in the temperature profile of the hybrid nanofluid, as shown in Figure 21, which
is understandable because the spaces between the molecules become higher in unsteady flow and
proportionately decrease the temperature profile and improve the cooling rates of the fluid. Therefore,
the unsteadiness parameter should be highlighted and well considered for practical purposes.

Figure 15. Temperature profiles of θ(η) for different values of M.

Figure 16. Variations of f ′′ (0) for different values of A.
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Figure 17. Variations of g′′ (0) for different values of A.

Figure 18. Variations of −θ′(0) for different values of A.
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Figure 19. Velocity profiles of f ′(η) for different values of A.

Figure 20. Velocity profiles of g′(η) for different values of A.
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Figure 21. Temperature profiles of θ(η) for different values of A.

Since the dual solutions noticeably exist, as illustrated in Figures 3–21, a stability analysis is
performed to discover a significant solution between the first and second solutions. This process is
achievable by clarifying the eigenvalue problems in Equations (25)–(27) using bvp4c in Matlab, which
produce an infinite set of ω1 < ω2 < ω3 . . . . . .. The stability of the flow is reliant on the smallest positive
eigenvalue ω1 since there exists an initial decay of disturbances. In contrast, there is an initial growth
of perturbations if the smallest eigenvalue ω1 is negative, which signifies that the solution is unstable.
As depicted in Table 5, the lowest eigenvalues for the first solution are positive, while the second
solution is negative. In conclusion, the first solution is stable and physically reliable, while the second
solution is unstable and unreal.

Table 5. Smallest eigenvalues ω1 when φ1 = φ2 = 0.02,λ = 1.5,γ = 0.5,M = 0.5, A = 0.5 and Pr = 6.2.

ε First Solution, ω1 Second Solution, ω1

−1.4 0.9181 −0.3952
−1.452 0.1712 −0.1469
−1.4532 0.1158 −0.0979
−1.4534 0.1040 −0.0869
−1.4536 0.0902 −0.0744
−1.4538 0.0741 −0.0593
−1.45388 0.0665 −0.0521

5. Conclusions

The current analysis is devoted to examining the unsteady three-dimensional non-axisymmetric
Homann stagnation point flow of alumina (Al2O3) and copper (Cu) hybrid nanofluids in the presence of
MHD. The governing partial differential equations are transformed into a system of ordinary differential
equations by using a similarity transformation and appropriately solved by a bvp4c function in Matlab.
An increment in λmay upsurge the velocity gradient and thus decline the momentum boundary layer
thickness. A high concentration of the nanoparticle volume fraction speeds up the molecules’ kinetic
energy and then enhances the heat transfer process of the fluid particles. The increment in the intensity
of the magnetic parameter M increases the local Nusselt number and the skin friction coefficient.
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Further, the increasing value of A decreases the hybrid nanofluid temperature and eventually improves
the cooling rates of the fluid. Dual solutions were disclosed in this study, and the analysis of solution
stability confirmed that the first solutions are stable and physically reliable.
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Nomenclature

Roman letters
a, b, c positive constants

(
s−1

)
A unsteadiness parameter (−)
B0 transverse magnetic field

(
kgA−1s−2

)
C f x skin friction coefficient along the x− direction (−)
C f y skin friction coefficient along the y− direction (−)
Cp specific heat at constant pressure

(
Jkg−1K−1

)(
ρCp

)
heat capacitance of the fluid

(
JK−1m−3

)
f (η) dimensionless stream function in the x− direction
g(η) dimensionless stream function in the y− direction
k thermal conductivity of the fluid

(
Wm−1K−1

)
M magnetic parameter (−)
Nux local Nusselt number (−)
Pr Prandtl number (−)
Rex, Rey local Reynolds number in the x− and y− directions, respectively (−)
t time (s)
T fluid temperature (K)

Tw surface temperature (K)

T∞ ambient temperature (K)

u, v, w
velocities component in the x−, y− and z− directions, respectively(
ms−1

)
ue, ve velocities of the free stream in the y− and y− directions

(
ms−1

)
uw, vw

velocities of the stretching/shrinking surface in the y− and y− directions(
ms−1

)
x, y, w Cartesian coordinates (m)

Greek symbols
α positive constant

(
s−1

)
α f fluid thermal diffusivity

(
m2s−1

)
β thermal expansion coefficient

(
K−1

)
γ ratio of the ambient fluid shear rate to the plate strain rate (−)
ε stretching/shrinking parameter (−)
εr estimated relative error (−)
η similarity variable (−)
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θ dimensionless temperature (−)
λ ratio of the ambient fluid strain rate to the plate strain rate (−)
μ dynamic viscosity

(
N s m−2

)
ν kinematic viscosity

(
m2s−1

)
ρ density

(
kgm−3

)
σ electrical conductivity

(
Sm−1

)
τ dimensionless time variable (−)
τwx, τwy wall shear stress along the x− and y− directions

(
kgm−1s−2

)
φ1 nanoparticle volume fractions for Al2O3 (alumina) (−)
φ2 nanoparticle volume fractions for Cu (copper) (−)
ω eigenvalue (−)
ω1 smallest eigenvalue (−)
Subscripts
f base fluid
n f nanofluid
hn f hybrid nanofluid
s1 solid component for Al2O3 (alumina)
s2 solid component for Cu (copper)
Superscript
′ differentiation with respect to η
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Abstract: In this article, the effects of swimming gyrotactic microorganisms for
magnetohydrodynamics nanofluid using Darcy law are investigated. The numerical results of
nonlinear coupled mathematical model are obtained by means of Successive Local Linearization
Method. This technique is based on a simple notion of the decoupling systems of equations utilizing
the linearization of the unknown functions sequentially according to the order of classifying the
system of governing equations. The linearized equations, that developed a sequence of linear
differential equations along with variable coefficients, were solved by employing the Chebyshev
spectral collocation method. The convergence speed of the SLLM technique can be willingly upgraded
by successive applying over relaxation method. The comparison of current study with available
published literature has been made for the validation of obtained results. It is found that the reported
numerical method is in perfect accord with the said similar methods. The results are displayed
through tables and graphs.

Keywords: successive local linearization method; swimming gyrotactic microorganisms;
Darcy law; nanofluid

1. Introduction

The problems associated with the boundary layer mechanism and heat transfer flow through
stretched subsurface have been eminently accepted through analysts as long as the presence in structures
of enormous industrial and technologically significance. Few of the advanced spreading applications
encompass the designing of plastic layers and copper cables, glass-fiber fabricating, food and polymer
refining, geothermal power extraction, liquefying-spinning productions, polymer melting, hot roll
glass blasting, in the formation of the final product, in the textile industry, and other abundant utilities.
Sakiadis [1] performed the developing effort in the area of boundary layer flow on a continued stable
subsurface flowing with steady velocities. Later, Crane [2] was the earliest who extended the conception
for boundary layer flow through stretchable surfaces. He examined a closed mode result for the
Newtonian fluid flow past a flat stretched subsurface. Banks [3] investigated the similarity solutions
for the boundary layer flow through a stretched wall with non-Newtonian fluid. Gupta and Gupta [4]
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broadened the investigated idea by Crane with the heat and mass transfer past a stretchable surface,
along with the influence of suction/blowing. Bujurke et al. [5] discussed the heat transfer phenomenon
past a boundary layer, along with interval heat generation. Cortell [6] analyzed the viscous fluid flow
numerically with heat transfer on a nonlinearly stretchable subsurface. Shahzad et al. [7] developed
the exact solutions of the axisymmetric flow with heat transfer for MHD viscous fluid on a nonlinearly
radial pervious stretched surface. Hayat et al. [8] explored the MHD axisymmetric flow for third-grade
fluid with heat transfer over stretchable sheets. Shateyi and Makinde [9] recorded the heat transfer
analysis for a viscous, electrically conducting fluid flow through a radial stretched and convectively
heated disk. Khan et al. [10] discussed the mix convection heat transfer to Sisko fluid past radial
stretchable surface together with the influence of convection boundary conditions, thermal radiation,
and viscous dissipative terms. Since it is known that the standard of the final product relies on the
rate of heat transfer as acknowledged, hence the nanofluids have a higher thermal conductivity of the
nanoparticles utilized to enhance the rate for heat transfer [11,12]. For this purpose, distinct techniques
are adopted to raise the thermal conductivity of the fluids by providing suspension of nano/micro or
large-sized particles into liquids. An inventive approach to enhance the heat transfer rate is performed
by utilizing nano-scale particles into the governing fluid by Choi et al. [13]. They recorded that by
adding a tiny extent (less than 1% by volume) of the nanoparticles to regular heat transfer fluids
enhanced the thermal conductivity for the fluids up to almost 4-times and higher. Kuznetsov and
Nield [14] discussed the natural convection into a nanofluid through a vertical surface, along with the
impact of thermophoresis and the Brownian-motion. Noghrehabadadi et al. [15] explored the heat
transfer of nanofluids past a stretched subsurface with supposing of thermal convectively boundary
conditions and partial slip. Zaraki et al. [16] analyzed the influence of the various shapes, sizes,
and types of nanoparticles, and base-fluid flowing and heat transferring properties for a naturally
convective boundary layer.

The investigations for magnetohydrodynamics have significant utilities, and also uses in cooling
of nuclear reactors by the induction flow meter and liquid, depending on the capability variation into
the fluid in order normal to the flow and the magnetic field. Ferdows et al. [17] explored the problem for
magnetized nanofluid mixed convective flow past an exponential stretched plate. Bidin and Nazar [18]
discussed the numerical investigation for boundary layer flow through an exponential stretchable
surface, along with thermal emission. Khan et al. [19] studied the unsteady boundary layer flow for
a nanofluid on a horizontal stretched plate together with the impact of MHD and thermal radiation.
Mabood et al. [20] studied the MHD boundary layer nanofluid flowing with the influence of heat
transfer and viscous dissipation through a nonlinear stretched surface. Freidoonimehr et al. [21] studied
the magnetized stagnation point flow through a stretched/shrinkable surface alongside the impact
of chemical reactions and heat absorption/generation. It is conclusive to mention here that Makinde
and Animasaun [22] investigated an admirable work related to magnetized nanofluid flow alongside
bioconvection with quartic autocatalysis chemical reaction. The results show that for a fixed numeric
of a magnetic parameter, the local skin friction further develops at larger thickened parametric value,
whereas the rate for local heat transfer turns lesser at a high-temperature parametric value past an
uppermost subsurface of a paraboloid of an uprising. The possible developments and/or applications
of the presented analysis to the same topic and to other related topics can be seen in [23–38].

The terminology bioconvection was first acknowledged in an article belonging to James Henry
Platt to bring about other researchers to this consideration side towards the physics of streaming forms
noticed in impenetrable fashions of free-floating microorganisms. In light of Platt [39], the movement
of polygonal forms in impenetrable fashions of Tetrahymena (i.e., ciliate and flagellate), such as Benard
cells, though not by thermo-convection. Since, it is well-known that the presence of microorganisms
(bacteria) are everywhere, and it is illustrious evidence that a large number of bacteria may be
accidentally suffered and sometimes can be shot down when periodically bared to a higher temperature,
conflicting that thermophile is an organism that usually can be seen in different heated territories on the
earth. The self-impelled motile microorganisms brought enhancement in the density of the base fluid in
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a peculiar way to produce a bioconvection kind of stream. Basing on the cause of propulsion, the motile
microorganisms perhaps categorized into various types of microorganisms, counting oxytactic or
chemotaxis, gyrotactic microorganisms, and negate gravitaxis. Contrasting the motile microorganisms,
the nanoparticles are not self-propelled, and their migration is through the Brownian-motion and
thermophoresis impact inward nanofluid. Ghorai and Hill [40] farther elucidated that bioconvection is
a known terminology to indicate the phenomena for impromptu arrangement in the suspension of
microorganisms, such as algae and bacteria. Bioconvection also can be explained as the macroscopic
convective movement of fluid as a result of the density gradient, and is brought about by the jointly
floating of motile microorganisms. Alike naturally convective process, bioconvection is induced by
versatile stratification density. Kuznetsov and Avramenko [41] interpreted that when bioconvection
takes place, it boosts mingling and diminishes the establishing of the particles that are decisive in
medicine utilities. Khan and Makinde [42] examined nanofluid bioconvection caused by gyrotactic
microorganisms and noticed that the self-propelled motile microorganisms enhance the density of
the base-fluid as floating/swimming in a specific manner. Recently, Raees et al. [43] interpreted that
bioconvection into nanofluids has enormous contributions in Colibri micro-volumes spectrometer and
benefits the stability in nanofluids. Natural convection with double-diffusive effects over a boundary
layer nanofluid flow has been examined by Kuznetsov and Nield [44]. Nonetheless, if the stimulators
past the subsurface are more imperative and associate to the bulk-fluid, comprising 36 nm nanoparticles
and gyrotactic microorganism, alike chemical backlash could be examined by applying the conception
of homogeneous–heterogeneous quartic strategy. Sivaraj et al. [45] have discussed the gyrotactic
microorganisms on the mechanism of 29 nm copper water nanofluids propagated through a horizontal
surface of paraboloid. Amirsom et al. [46] have considered the movement of microorganisms on a
magnetized nanofluid in the presence of second order slip conditions via bvp4c computational scheme.
Waqas et al. [47,48] used a shooting method to discuss the propagation of nanoparticles and gyrotactic
microorganisms through a stretching surface with magnetic and porous effects using non-Newtonian
fluid models. A few other inquiries on gyrotactic microorganisms can be read here [49–51].

The impulsion of the current investigation is to explore the impact of a non-uniform magnetic field
on the conduct of water suspension comprising nanoparticles and motile gyrotactic microorganisms
flowing through a stretchable permeable sheet by employing Successive Local Linearization Method
(SLLM) with the combination of Chebyshev spectral linearization method [52] not yet available in the
existing literature. The governing flow equations and the boundary conditions were brought towards
nonlinear ordinary differential equations by utilizing the similarity variable transformations, and are
than solved numerically by spectral approach.

2. Mathematical Modeling

A two-dimensional, steady, incompressible viscous and electrically conducting nanofluid flow,
comprising gyrotactic microorganisms through a stretched porous sheet by Darcy-Forchheimer relation
is considered. It is also assumed that the flow field is under the effect of a varying magnetic field
of strength B(x) = B0(x̂). The sheet is stretched vertically with velocity Ũw = ax̂, with positive
constant a. The induced magnetic field is ignored because it is minimal in comparison to the extraneous
magnetic field, as can be seen in Figure 1. The concentration C̃w, temperature T̃w, and densities for
motile microorganisms are Ñw and Ñ∞ past the stretched subsurface are considered constant and
bigger than the ambient concentration C̃∞, temperature T̃∞, respectively. It is further presumed that
nanoparticles are not affecting the direction and velocity of microorganisms, and both the nanoparticles
and the base fluid are in local thermal stability state; and the nanoparticles, motile microorganisms,
and the base-fluid are having the equivalent velocities. Hence, for a suchlike problem, the governing
equations for continuity, momentum, nanoparticle concentration, thermal energy, and microorganisms
can be written as

∂ṽ
∂ŷ

+
∂ũ
∂x̂

= 0, (1)
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ũ∂T̃∂x̂ + ṽ∂T̃∂ŷ = α
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∂ŷ
∂T̃
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∂ŷ

)2

+ σαB0
2

kt
ũ2

(4)

ũ
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Figure 1. Flow structure through a stretch elastic plate.

Their respective boundary conditions can be read as

ũ = ax̂, ṽ = 0, T̃ = T̃w, C̃ = C̃w, Ñ = Ñw at ŷ = 0 (7)

ũ→ 0, C̃→ C̃∞, ṽ→ 0, T̃→ T̃∞, Ñ→ Ñ∞ as ŷ→∞ (8)

By cancelling Equation (3) from the momentum equations by cross-differentiation, only Equation (2)
survives. In Equations (1)–(8), ũ and ṽ are the velocity components for x̂ and ŷ directions
correspondingly. Where T̃ is the temperature, C̃ is the concentration for nanoparticle, Ñ is the
density for motile microorganism, p̃ is the pressure, ρ f , ρm, ρp are the densities of nanofluid,
microorganisms, and nanoparticles, Db, Dm, DT denote the Brownian-diffusion coefficient, diffusivity of
microorganisms and thermophoresis-diffusion coefficient, k the porosity parameter, σ, kt are the
electrical and thermal conductivity for the fluid, γ indicates the average volume for a microorganism,
respectively. α = kt/

(
ρcp

)
is the thermal diffusivity, bWC are the constants, and the proportion of the
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effected heat capacitance of the nanoparticle to the base-fluid τ̃ =
(ρC)p

(ρC) f
, respectively, are the other

parametric quantities.
Invoking the following transformation

ũ = ax̂g′(η), ṽ = −√aν g(η), η =
√

a
ν ŷ,φ(η) = C̃−C̃∞

C̃w−C̃∞
,

θ(η) = T̃−T̃∞
T̃w−T̃∞

, φ(η) = Ñ−Ñ∞
Ñw−Ñ∞

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (9)

In Equations (1)–(8), the non-dimensional form of resulting equations, along with associated
boundary conditions, can be written as

g′′′ + gg′′ − g′2 −Mg′ − βDg′ + Gr

R2
e
(θ−Nrφ−Rbφ) = 0 (10)

1
Pr
θ′′ + θ′[g + Nbφ

′] + Ntθ′2 + Ec
{
g′′2 + Mg′2

}
= 0 (11)

φ′′ + Le φ
′g + Nt

Nb
θ′′ = 0 (12)

φ′′ + Lbgφ′ − Pe([φ+ Ωd]φ
′′ + φ′φ′) = 0 (13)

g(η) = 0, g′(η) = 1,θ(η) = φ(η) = φ(η) = 1, when η = 0 (14)

g′(η) = 0, θ(η) = φ(η) = φ(η) = 0, when η→∞ (15)

In which

βD = ν
aρ f k , M = σB0

2

aρ f
, Gr

R2
e
=

gβ(1−C̃∞)(T̃−T̃∞)
aŨw

, Nr =
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, Pr = ν
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βρ f (T̃w−T̃∞)(1−C̃∞)

, NT =
τ̃DT(T̃w−T̃∞)

νT̃∞
, Nb =

τ̃DB(C̃w−C̃∞)
ν , Ec =

Ũ2
w

cp(T̃w−T̃∞)
, Le = ν

DB
, Lb =

ν
DM

, Ωd = Ñ∞
(Ñw−Ñ∞)

, Pe =
bWC
DM

,

(16)

These parametric quantities are permeability parameter βD, Hartmann number M, the local
Richardson number Gr/R2

e , the buoyancy proportion parameter Nr, Prandtl number Pr,
the bioconvection Rayleigh number Rb, the thermophoresis parameter Nt, the Brownian motion
parameter Nb, Eckert number Ec, the conventional Lewis number and the bioconvection Lewis number
Le and Lb, the bioconvection Peclet number Pe, and Ωd is the concentration of the microorganisms
variance parametric quantity, respectively.

The motile density number, Sherwood, and Nusselt number for the present flow in dimensionless
form are:

Nux

Re1/2
x

= −θ′(0), Shx

Re
1
2
x

= −φ′(0), Nnx

Re
1
2
x

= −φ′(0), (17)

where Rex = U0x̂
ν , the local Reynolds number.

3. Numerical Solutions

3.1. Spectral Local Linearization Scheme

Let us having a system of differential equations G =
[
g1(ξ), g1(ξ), . . . , gp(ξ)

]
satisfying the system:

L j + Ñ j = H j, j = 1, 2, . . . , p, (18)
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where p describes the number of differential equations, eachH j is a function of ξε[A, B] and L j, Ñ j are
the linear and nonlinear components in the system, respectively.

Usually, the SLLM is an iterative approach to solve the differential equations, starts from an initial
approximation g0, and then implements the SLLM successively, yielding the new approximations
g1, g2, . . ., where Gt =

[
g1,t, g2,t, . . . , gp,t

]
for each t = 0, 1, 2. When once linearized, the nonlinear

components are Ñ j.
For this intention, the j-th differential Equation (18) after the first t + 1 iterations can be express as

L j
∣∣∣
t+1 + Ñ j

∣∣∣∣
t+1

= H j, (19)

The nonlinear components can be linearized by using Taylor series

Ñ j

∣∣∣∣
t+1

= Ñ j

∣∣∣∣
t
+ ∇Ñ j

∣∣∣∣
t
[Vt+1 −Vt], (20)

where Vt is an n-tuple of Gj,t and its differentials. Now using Equations (19) and (20) in Equation (18),
it becomes

L j
∣∣∣
t+1 + ∇Ñ j

∣∣∣∣
t
Vt+1 = H j + ∇Ñ j

∣∣∣∣
t
Vt − Ñ j

∣∣∣∣
t
. (21)

3.2. Successive Local Linearization Method

For the implementation of Successive Local Linearization Method, first we have to reduce the
order of Equation (24). To serve the purpose, a new transformation g′ = h, leads Equation (10) to
Equation (13) into the following form:

h′′ + gh′ − h2 −Mh− βDh +
Gr

R2
e
(θ−Nrφ−Rbφ) = 0, (22)

1
Pr
θ′′ + θ′[g + Nbφ

′] + Ntθ′2 + Ec
{
h′2 + Mh2

}
= 0, (23)

φ′′ + Leφ
′g + Nt

Nb
θ′′ = 0, (24)

φ′′ + Lbgφ′ − Pe
{
[φ+ Ωd]φ

′′ + φ′φ′
}
= 0. (25)

Linearizing the non-linear term h2 by applying Taylor series expansion can be written as

h2
t+1 = h2

t + 2ht[ht+1 − ht] = 2htht+1 − h2
t (26)

where the component having subscripts t and t+ 1 stand for current previous and current approximated
values. When Equation (26) is placed in Equation (22), then the non-linear system by means of
Gauss-Seidel relaxation method can be decoupled as:

g′t+1 = ht (27)

h′′ t+1 + gth′t+1 −Mht+1 − βDht+1 − 2htht+1 = −h2
t − Gr

R2
e
(θt −Nrφt −Rbφt) (28)

1
Pr
θ′′ t+1 + θ

′
t+1[gt + Nbφ

′
t] + Ntθ′2t+1 = −Ec

{
h′2t+1 + Mh2

t+1
}

(29)

φ′′ t+1 + Legtφ
′
t+1 +

Nt

Nb
θ′′ t+1 = 0 (30)

φ′′ t+1 + Lbgtφ
′
t+1 − Pe([φt+1 + Ωd]φ

′′
t+1 + φ

′
t+1φ

′
t+1) = 0 (31)
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The corresponding boundary conditions become

gt+1(0) = 0, ht+1(0) = 1 = θt+1(0) = φt+1(0) = φt+1(0), (32)

ht+1(∞) = 0 = θt+1(∞) = φt+1(∞) = φt+1(∞), (33)

Writing a compact expression of Equations (27)–(31) as follows

g′t+1 = d00 (34)

h′′ t+1 + d11h′t+1 − d13ht+1 − 2htht+1 = d1,t (35)

1
Pr
θ′′ t+1 + d11θ

′
t+1 + Nb φ

′
tθ
′
t+1 + Ntθ′2t+1 = d2,t (36)

φ′′ t+1 + d32φ
′
t+1 +

Nt

Nb
θ′′ t+1 = d3,t (37)

φ′′ t+1 + d42φ
′
t+1 − Pe

{
[φt+1 + Ωd]φ

′′
t+1 + φ

′
t+1φ

′
t+1

}
= d4,t (38)

where
d00 = ht, d11 = gt, d12 = 2ht, d13 = [M + βD], d1,t

= −h2
t − Gr

R2
e
(θt −Nrφt −Rbφt)

(39)

d2,t = −Ec
(
h′2t+1 + Mh2

t+1
)
, d32 = Legt, d42 = Lbgt, d3,t = d4,t = 0 (40)

Now, employing the Chebyshev spectral collocation method at the system of Equations (34)–(38),
where the differentiation matrix D = 2

l D utilized to perform approximation for the derivatives of
unknown variables in the above equations and our new system become

Dgt+1 = ht (41){
D2 + diag[d11]D− diag[d12]I− d13I

}
Ht+1 = d1,t (42){ 1

Pr
D2 + diag[d11]D + Nbdiag

[
φ′t

]
D + NtD2

}
θt+1 = d2, t (43){

D2 + diag[d32]D +
Nt

Nb
diag[θ′′ t+1]I

}
φt+1 = d3,t (44)⎧⎪⎪⎨⎪⎪⎩ D2 + diag[d42]D− PeΩddiag

[
φ′′ t+1

]
I− Pediag

[
φ′′ t+1

]
I

−diag
[
φ′t+1

]
D

⎫⎪⎪⎬⎪⎪⎭φt+1 = d4,t (45)

With their respective boundary conditions

gt+1(ηN) = 0, ht+1(ηN) = 1 = θt+1(ηN) = φt+1(ηN) = φt+1(ηN) (46)

ht+1(η0) = 0 = θt+1(η0) = φt+1(η0) = φt+1(η0), (47)

The system can be expressed in a more simplified way as

B1gt+1 = E1 (48)

B2ht+1 = E2 (49)

B3θt+1 = E3 (50)

B4φt+1 = E4 (51)

B5φt+1 = E5 (52)
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where
B1 = D, E1 = ht, (53)

B2 = D2 + diag[d11]D− diag[d12]I− d13I, E2 = d1,t, (54)

B3 =
1

Pr
D2 + diag[d11]D + Nbdiag

[
φ′t

]
D + NtD2, E3 = d2,t, (55)

B4 = D2 + diag[d32]D +
Nt

Nb
diag[θ′′ t+1]I, E4 = d3,t, (56)

B5 = D2 + diag[d42]D−PeΩddiag
[
φ′′ t+1

]
I−Pediag

[
φ′′ t+1

]
I

−diag
[
φ′t+1

]
D, E5 = d4,t,

, (57)

diag[d11] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d11(η0) · · ·

...
. . .

...
· · · d11(ηN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, diag[d12] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d12(η0) · · ·

...
. . .

...
· · · d12(ηN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (58)

diag[d1,t] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d1,t(η0)

...
d1,t(ηN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, diag[d2,t] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d2,t(η0)

...
d2,t(ηN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (59)

diag[d32] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d32(η0) · · ·

...
. . .

...
· · · d32(ηN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, diag[d42] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d42(η0) · · ·

...
. . .

...
· · · d42(ηN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (60)

d3,t = d4,t = 0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (61)

gt+1 = [g(η0), g(η1), . . . , g(ηN)]
T, ht+1 = [h(η0), h(η1), . . . , h(ηN)]

T, (62)

θt+1 = [θ(η0),θ(η1), . . . ,θ(ηN)]
T,φt+1 = [φ(η0),φ(η1), . . . ,φ(ηN)]

T (63)

φt+1 = [φ(η0),φ(η1), . . . ,φ(ηN)]
T are vectors of sizes (N + 1) × 1 whereas 0 is a vector of order

(N + 1) × 1 and I is an identity matrix of order (N + 1) × (N + 1).
In view of boundary conditions, the Equations (48)–(63) take the following form:

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
B1

0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, gt+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gt+1(η0)

gt+1(η1)

...

gt+1(ηN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, E1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0

B2

0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ht+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ht+1(η0)

ht+1(η1)

...

ht+1(ηN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(64)

E2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

E2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, B3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 . . . 0

B3

0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, θt+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
θt+1(η0)

θt+1(η1)
...

θt+1(ηN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, E3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

E3

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (65)
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0

B4

0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,φt+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φt+1(η0)

φt+1(η1)

.

.

.

φt+1(ηN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, E4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

E4

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0

B5

0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,φt+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φt+1(η0)

φt+1(η1)

.

.

.

φt+1(ηN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, E5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

E5

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(66)

The initial guesses are:

g0(η) = (1− e−η), h0(η) = e−η, θ0(η) = φ0(η) = φ0(η) = e−η (67)

These initial assumptions approximation satisfying the boundary conditions (46)–(47) achieve
subsequent approximations of gt, ht,θt,φt,φt for each t = 1, 2, . . . . . . by employing the successive
local linearization method.

4. Numerical Results and Discussion

4.1. Convergence Analysis

As the Gauss-Seidel method with the SOR parameter is utilized to enhance the convergence
of the linear system of equations in the field of numerical linear algebra, therefore as matter of fact,
an identical approach is applied to enhance the rate of convergence for successive local linearization
method. If, for resolving function Z, the SLLM technique at the (t + 1)th iteration is

B1Zt+1 = E1, (68)

Then by revising, the new mode of the SLLM technique is indicated as

B1Zt+1 = (1−ω)B1Zt +ωE1, (69)

Here ω represents the convergence improving the parametric quantity, and B1, E1 are the matrices.
This revised SLLM technique enlarges in improving the accuracy and efficiency of current results.

4.2. Graphical Illustrations

This section is dedicated to the numerical results, their validation, and the discussion. To examine
the inclusion of all the leading parameters numerically, computational software MATLAB is used for
the numerical simulations. Table 1 is drawn for the computed convergent outcomes of Nux/Re1/2

x ,
Shx/Re1/2

x , and Nnx/Re1/2
x across the number of collocation points N, Nt, and Nb by fixing other

parameters, whereas, Table 2 depicts the comparability of−θ′(0)with previously published data [53–55]
across Pr with the preceding investigations by fixing other parameters of the governing equations.
Table 3 is calculated to compare our computational results with the shooting method, and it can be
observe that the results matched perfectly with the shooting method results. Figures 1–11 have been
plotted against all the leading parameters for microorganism distribution, nanoparticle concentration,
temperature, and velocity distribution, respectively.
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Table 1. Numerical convergent values of Nusselt number, Sherwood Number, and the local density
number of the motile microorganisms across N, Nt, and Nb by fixing M = 1, βD = Ec = 0, Nr = 0.5, Rb =

0.5, Gr
R2

e
= 0.5, Pr = 10, Le = 10, Lb = 2, Pe = 0.5, Ωd = 1.0.

N Nt Nb
Nux

Re1/2
x

Shx

Re1/2
x

Nnx

Re1/2
x

50 0.1 0.1 1.9320 7.2348 8.8760
60 0.1 0.1 1.9330 7.2357 8.8772
70 0.1 0.1 1.9334 7.2364 8.8778
80 0.1 0.1 1.9334 7.2364 8.8778
100 0.1 0.1 1.9334 7.2364 8.8778
50 0.5 0.5 1.1430 7.7175 9.3273
60 0.5 0.5 1.1446 7.7189 9.3290
70 0.5 0.5 1.1452 7.7198 9.3294
80 0.5 0.5 1.1452 7.7198 9.3294
100 0.5 0.5 1.1452 7.7198 9.3294

Table 2. Comparison of the current outcomes for Nusselt number with the previous investigations.

Current Results Akbar and Khan [53] Khan et al. [54] Wang [55]

M = 1,βD = 0, Ec = 0 M = βD = Ec = 0 M = βD, Gr

R2
e
= Nt = Nb = Ec = 0

1.6045 1.6045
0.3211 0.3211

0.454072 0.4539

Table 3. Comparison of the present method with shooting technique.

N Nux

Re1/2
x

Shx

Re1/2
x

Nnx

Re1/2
x

50 1.9320 7.2348 8.8760
60 1.9330 7.2357 8.8772
70 1.9334 7.2364 8.8778
80 1.9334 7.2364 8.8778

Shooting method 1.9334 7.2364 8.8778

Figure 2. Variation of βD and M on velocity distribution. Black line: M = 0, Red line: M = 3.
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Figure 3. Variation of Nr and Gr
R2

e
on velocity distribution. Black line: Gr

R2
e
= 5.5, Red line: Gr

R2
e
= 10.5.

Figure 4. Variation of Rb and Gr
R2

e
on velocity distribution. Black line: Gr

R2
e
= 5.5, Red line: Gr

R2
e

= 10.5.

Figure 5. Variation of Pr and M on temperature profile. Black line: M = 0, Red line: M = 3.

Figure 6. Variation of Nb and Nt on temperature profile. Black line: Nb = 0.2, Red line: Nb = 0.5.
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Figure 7. Variation of Nb and Ec on temperature profile. Black line: Nb = 0.2, Red line: Nb = 0.5.

Figure 8. Variation of Nt and Le on concentration profile. Solid line: Nt = 5, Dotted line: Nt = 10.

Figure 9. Variation of Nb and Le on concentration profile. Solid line: Le = 1.5, Dotted line: Le = 2.0.

Figure 10. Variation of Pe and Lb on microorganism profile. Solid line: Pe = 0.5, Dotted line: Pe = 2.0.
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Figure 11. Variation of Pe and Ωd on microorganism profile. Solid line: Ωd = 0.1, Dotted line:
Ωd = 0.3.

Figure 2 shows that the velocity distribution decelerates by enhancing the permeability parameter
βD. It can be seen as a deceleration in momentum by taking increment in M, due to the existing
body-force brought through the magnetic field. A well-known Lorentz force, causing a decrement for
the velocity overshooting and momentum boundary-layer thickness. In Figure 3, it is recorded that by
taking the increment in Nr, the velocity distribution decreases as a result of an increase in the negate
buoyancy generated through the existence of nanoparticles, while for the Richardson number Gr/R2

e ,
it is also found to be decreased by enhancing the values of the Richardson number. Figure 4 portrays
that, by taking an increment in Rb, the velocity distribution falls because the power of convection due
to bioconvection boosted against the convection of buoyancy force. In contrast, for the Richardson
number Gr/R2

e , it is found to be decreased by enlarging the values of the Richardson number.
The influence of Prandtl number Pr, Hartmann number M, the Brownian-motion parameter Nb,

the thermophoresis parameter Nt, local Eckert number Ec, for various numeric values are drawn
through Figures 5–7. From Figure 5, it is determined that by taking an increment in Prandtl number
Pr, the temperature distribution slows down, although by enhancing the Hartmann number M,
it accelerates the temperature distribution. Figure 6 is adorned for the effect of thermophoresis
parameter Nt and the Brownian-motion parameter Nb of the temperature distribution, and also notice
that the temperature distribution boosts for both parameters by enhancing the numeric value of
these parameters. The influence of Eckert number Ec and the Brownian-motion parameter Nb of the
temperature distribution is sketched in Figure 7, and it is noticed that the temperature distribution
boosts for both parameters by enhancing the numeric value of these parameters. The further heating
due to the interacting of the fluid to nanoparticles because of the Brownian-motion, thermophoresis
impact, and viscous dissipation enhance the temperature. Therefore, the thickness of the thermal
boundary layer turns into high-thicker across the larger numeric of Nt, Nb, and Ec, and temperature
overshoots into the neighborhood of the stretched permeable sheet.

The impact of bioconvection Lewis number Le, the Brownian-motion parameter Nb,
the thermophoresis parameter Nt, the bioconvection Lb, Peclet number Pe, and the microorganisms
concentration difference parameter Ωd for concentration distribution and the density of motile
microorganisms successively are shown through Figures 8–11. Figure 8 is adorned for the effect of
bioconvection Lewis number Le and thermophoresis parameter Nt of the concentration distribution,
and also observed that the concentration distribution decelerates by enhancing the numeric value of
Lewis number Le because the convection of nanoparticles enhances by adding more immense value in
Lewis number Le, and also found decremented by taking increment in thermophoresis parameter Nt.
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Therefore, the nanoparticles’ boundary layer thickening has been developed to grow thicker with Nt.
From Figure 9, it observed that by enlarging the Brownian-motion parameter Nb and the bioconvection
Lewis number Le, the concentration profile slows down for both the parameters. The graphical
behavior of various values of the bioconvection Lb and Peclet number Pe in Figure 10 portrays that a
decrement in the density for motile microorganisms quickly occurs by enhancing the bioconvection Lb
and Peclet number Pe. That is, the density of motile microorganisms sharply slow downed, and indeed,
by strengthening the bioconvection Lewis number Lb and Peclet number Pe, interprets the decrement
of microorganisms diffusion, hence the density and boundary layer thickness together downturns for
motile microorganisms by rising value in Lb and Pe. The influence of the Peclet number Pe and the
concentration of the microorganisms varying parametric quantity Ωd is sketched in Figure 11, and it is
found that the density of motile microorganisms slowed down by enhancing both the parameters, i.e.,
the Peclet number Pe and the concentration of the microorganisms varying parametric quantity Ωd.

5. Conclusions

The present analysis deals with the behavior of the swimming of the gyrotactic microorganisms
in nanofluid propagating past a stretching permeable surface. The effects of porosity and magnetic
field are also examined. The Successive Local Linearization Method is found very efficient in solving
the nonlinear coupled equations. The SLLM is used across the shooting method, which utilizes the
initial guesses for the missing slopes (a Newton-Raphson based iteration method for solving boundary
value problem). To see the limitations and validations of this proposed computational methodology,
the results are compared with previously published data and shooting method, and it is noticed that
the obtained numerical results are in perfect accord with the other similar method. The significant
findings of key parameters along with the performance of SLLM are:

1. It is observed that the permeability parameter and the magnetic field retard the velocity distribution
while Richardson parameter boosts the velocity distribution.

2. Bioconvection Rayleigh number and Buoyancy proportion parametric quantity diminish the
velocity distribution.

3. Prandtl number elevates the temperature distribution while it has been demoted by enlarging the
values of the magnetic field.

4. The thermophoresis parameter and Eckert number significantly uplift the temperature distribution.
5. Brownian-motion parameter and Lewis number suppress the concentration distribution, whereas

an enhancement in the thermophoresis parameter actively elevates the concentration profile.
6. Bioconvection Lewis number and Peclet number significantly demote the motile

microorganism profile.
7. The SLLM algorithm is smooth to establish and employ because the scheme based on a simple

univariate linearization of nonlinear functions.
8. The convergence speed of the SLLM technique can be willingly upgraded by applying successive

over relaxation (SOR) method, the convergence was improved through relaxation parameter in
the study.
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Nomenclature

a, b Constants
B0 Magnetic field
Cgx Skin friction coefficient(
cp

)
f

Heat capacity of fluid (J/K)(
cp

)
p

Heat capacity of nanoparticles (J/K)(
cp

)
s

Heat capacity of solid fraction (J/K)

DB Brownian-diffusion coefficient (m2/s)
DM Diffusivity of microorganisms (m2/s)
DT Thermophoresis diffusion coefficient (m2/s)
Ec Eckert number
g Dimensionless stream function
k Porosity parameter (H/m)
kt Thermal conductivity (W/m.K)

Lb Bioconvection Lewis number
Le Lewis number
Ñ Density for motile microorganism
Nb Brownian motion parameter
Nr Buoyancy proportion parameter
Nt Thermophoresis parameter
Nux Nusselt number
p̃ Pressure (Pa)
Pe Bioconvection Peclet number
Pr Prandtl number

(
m2/s

)
qm Local mass flux past the surface (kg/m2s)
qw Local heat flux past the surface (W/m2)
Rb Bioconvection Rayleigh number
Rex Local Reynolds number
Shx̆ Sherwood number
T̃w Temperature of the wall (K)
T̃∞ Ambient temperature (K)

Ũw Stretching sheet velocity (m/s)
ũ, ṽ Components of velocity (m/s)
WC Heat capacitance of the nanoparticle (J/K)

x̂,ŷ Cartesian coordinates
Greek symbols

α Thermal diffusivity (m2/s)
βD Permeability parameter (m2)
γ Average volume for a microorganism (m3)
θ Temperature profile (K)

μn f Dynamic viscosity
(
m2/s

)
νn f Kinematic viscosity of nanofluid

(
m2/s

)
κn f Thermal conductivity of nanofluid (W/mK)

ρ f Density of fluid (kg/m3)

ρp Density of nanoparticles
ρm Density of microorganisms
σ Electrical conductivity (S/m)

σ Stefan-Boltzmann constant (J/K)

σ̃ Dimensionless constant
τw Shear stress (Pa)
Φ Motile microorganism profile
φ Nanoparticle volume fraction (m3/mol)
Ωd Microorganisms concentration variance parameter
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Abstract: This paper reflects the effects of velocity and thermal slip conditions on the stagnation-point
mixed convective flow of Cross liquid moving over a vertical plate entrenched in a Darcy–Forchheimer
porous medium. A Cross liquid is a type of non-Newtonian liquid whose viscosity depends on
the shear rate. The leading partial differential equations (PDEs) are altered to nonlinear ordinary
differential equations (ODEs) via feasible similarity transformations. These transmuted equations
are computed numerically through the bvp4c solver. The authority of sundry parameters on the
temperature and velocity distributions is examined graphically. In addition, the characteristics of
heat transfer are analyzed in the presence of the impact of drag forces. The outcomes reveal that
the permeability parameter decelerates the drag forces and declines the rate of heat transfer in both
forms of solutions. Moreover, it is found that the drag forces decline with the growing value of the
Weissenberg parameter in the upper branch solutions, while a reverse trend is revealed in the lower
branch solutions. However, the rate of heat transfer shows a diminishing behavior with an increasing
value of the Weissenberg parameter.

Keywords: slip effects; mixed convection flow; cross fluid; Darcy–Forchheimer model

1. Introduction

Many liquids such as detergents, printer ink, animal blood, foodstuff, paints, polymer fluids, etc.,
transform their properties of flow subjected to operating shear stress, and thus diverge from viscous
fluids. These fluids are identified as non-Newtonian substances. Numerous researchers have reported
different non-Newtonian fluid models and a few of them are micropolar, Casson, Burgers, Sisko,
Maxwell, Oldroyd-B, generalized Burgers, and Cross models, etc. In this paper, we report the Cross
liquid [1] model, which states features of stress. In addition, this model sufficiently distinguishes the
flow in the region of the power law and high, as well as low, regions of shear rates. In this study, unlike
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the fluid of power law, first, we achieve a finite viscosity as the rate of shear disappears which also
involves a time constant owing to the importance of this model in numerous industrial and engineering
computations. Utilization of Cross fluid in industries comprises the polymer latex of the aqueous
solution and blood, as well as solutions of synthesis polymeric. Khan et al. [2] inspected the flow of
Cross liquid through heat transfer from a planar stretched sheet and found the numerical solution
through the shooting technique. The impact of electric field with the characteristic of heat transfer
involving Cross liquid from a stretched sheet was scrutinized by Hayat et al. [3] who found that the
liquid velocity grew with a rising Weissenberg parameter while temperature distribution decayed
due to the Pr. Khan et al. [4] scrutinized the axisymmetric flow and the characteristic of heat transfer
containing Cross liquid using a radial stretched sheet and observed that the power-law index raised
the structure of the velocity boundary layer. Ijaz Khan et al. [5] scanned the activation energy impact
on the magnetic flow of Cross liquid from a stretched surface. Another study, by Ijaz Khan et al. [6],
surveyed the magnetic influence on mixed convective flow involving Cross nanofluid with activation
energy. Recently, Azam et al. [7] applied the concept of solar energy on time-dependent flow in the
presence of Cross nanofluid from a stretched sheet with nonlinear radiation.

The impact of non-Newtonian liquids in the porous media is significant in the fields of engineering
and industries due to its numerous applications such as mud injections, cement or slurry grouts to
strengthen soils, blood circulation through the kidney, insulation of fibrous, electrochemistry, and
drilling liquid injection in rocks for ornamental oil recovery, or for the fortification of the well, etc.
Bejan et al. [8], Vafai [9], and Vadasz [10] discussed further applications in their books. Darcy’s
law has been utilized generally to inspect the behavior of flow in a porous medium. However,
the connection between the velocity of flow and pressure gradient at rates of high flow cannot be
modeled through Darcy’s law (Spivey et al. [11]). There is further indication that at a high rate
of flow, the non-Darcy involve several subsurface systems of biological porous and engineering
porous flow [12–14]. Forchheimer [15] included a term of velocity squared in the Darcy to analyze
the boundary and inertia aspects. This term is constantly applied to larger Reynolds numbers.
Rashidi et al. [16] discovered the influence of electric field on fluid flow with the characteristic of heat
transfer in a Darcy–Brinkman–Forchheimer medium. The impact of variable thermal conductivity
of Darcy–Forchheimer flow in the presence of Cattaneo–Christov heat-flux was considered by
Hayat et al. [17]. In another paper, Hayat et al. [18] examined the non-Newtonian viscoelastic
fluid involving nanoliquid through nonlinear stretched surface engrossed in the Darcy–Forchheimer
porous medium. Kang et al. [19] employed finite difference technique to discuss the Neumann condition
for the general Darcy–Forchheimer problem. Hayat et al. [20] explored the homogenous-heterogeneous
reaction of viscous liquid in a Darcy–Forchheimer porous medium through a curved stretched surface.
They scrutinized that the porosity and inertia parameters produce larger temperature. Recently,
Rasool [21] considered the Darcy–Forchheimer flow to investigate electric field containing nanoparticle
through a nonlinear stretched surface. They observed that the mass and heat flux decline due to
porosity while drag force is enhanced. A few other similar studies are given in [22–24].

As mentioned above, the present literature is packed with works comprising the heat transfer
characteristics of boundary-layer flow involving Newtonian and non-Newtonian liquids. In addition,
the research regarding the Darcy–Forchheimer flow through heat transport comprising Cross liquid has
disclosed a vital pledge in industrial and environmental systems, such as the process of fermentation,
petroleum resources, usage of geothermal energy, production of crude oil, grain storage, etc. However,
the review of literature revealed that no one has considered the impact of slip effects on mixed
convection flow of Cross liquid in the porous media. Therefore, in this research, we focus our attention
to the Darcy–Forchheimer flows involving non-Newtonian Cross liquids from a vertical plate with
mixed convection and slip effects. Similarity variables are employed to metamorphose the PDEs into
nonlinear ODE’s. The metamorphosed system is then exercised through bvp4c solver. The dual nature
of solutions is acquired in opposing flow. The vital constraints in the flow field are discussed via
graphical portraits.
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2. Formulation of the Problem

Consider a steady incompressible flow of Cross liquid past a vertical plate in a porous medium
with slip impacts. The x-axis is taking along the plate and the y-axis perpendicular to it, as illustrated
in Figure 1.

Figure 1. Physical diagram of the problem.

It is presumed that the free stream velocity ue(x) = bx and the wall temperature Tw(x) = T∞ + cx
vary linearly, where b and c are two constants and T∞ is the temperature away from the plate. We
utilize the Darcy–Forchheimer model in which the square of the velocity factor is included. In addition,
the rheology equations of Cross liquid in term of viscosity are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τ = −�p I + A1
�
μ
( .
γ
)
,

�
μ −�μ∞ =

�
μ0−

�
μ∞

1+
(�

Γ
.
γ
)n , (1)

Here, n the power-law index,
�
Γ the time constant, A1 the first tensor of Rivlin–Ericksen and

defined as A1 = (grad V) + (grad V)T,
�
p the pressure, I the identity vector,

.
γ the rate of shear for the

current model is taken as
.
γ =

⎡⎢⎢⎢⎢⎣4(∂u∂x
)2

+

(
∂u
∂y

+
∂v
∂x

)⎤⎥⎥⎥⎥⎦1/2

, (2)

whereas
�
μ0 and

�
μ∞ represent the zero and infinite shear rates, respectively. In the present study,

�
μ∞ is

considered to be zero. Therefore, Equation (1) can be written as

�
μ =

�
μ0

1 +
(�
Γ

.
γ
)n . (3)

Keeping in mind that the temperature and velocity of the two-dimensional (2D) fluid flow are
considered in the forms T = T(x, t) and V = [u(x, y), v(x, y), 0], then the governing equations become

∂v
∂y

+
∂u
∂x

= 0 (4)
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1
ε2

(
u
∂u
∂x
− ue

due

dx
+ v
∂u
∂y

)
= νe f f

∂
∂y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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1 +
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ν(u− ue)

K1
−

CF
(
u2 − u2

e

)
K1/2

+ gβT(T − T∞) (5)

αm
∂2T
∂y2 − u

∂T
∂x
− v
∂T
∂y

= 0 (6)

The physical boundary conditions are

u = L1
∂u
∂y , v = 0, T = Tw(x) + S1

∂T
∂y at y = 0,

u→ ue(x), T→ T∞ as y→∞.
(7)

Here, (v, u) signify, respectively, the velocity components in x- and y-directions, μe f f the effective
(or “apparent”) viscosity, νe f f = μe f f /ρ the effective kinematic viscosity, ρ the density, ε the porosity
parameter, K1 the porous medium permeability, k the thermal conductivity of fluid, CF drag coefficient,
αm the thermal diffusivity, T the temperature, L1 length of slip, and S1 proportionality constant.

Following Rosali et al. [22], we set up the similarity transformation

η = y

√
b
αm

, ψ =
√

bαmx f (η), θ(η) =
T − T∞

Tw − T∞
. (8)

Using the similarity transformation in the above PDEs we obtain

ε1 f ′′′
(
1 + n(We f ′′)1−n

)
+

⎛⎜⎜⎜⎜⎝ 1 + f f ′′ − ( f ′)2 + K(1− f ′)+
B
(
1− ( f ′)2

)
+ λKθ

⎞⎟⎟⎟⎟⎠(1 + (We f ′′)1−n
)2

= 0, (9)

θ′′ + θ′ f − θ f ′ = 0. (10)

The physical boundary conditions are

f ′(0) = γ1 f ′′(0), f (0) = 0, θ(0)= 1+γ2θ′(0) at η = 0,

f ′(η)→ 1, θ(η)→ 0 as η→∞.
(11)

Here, the parameters are used in the above ODE’s are modified porosity, dimensionless
permeability, mixed convection, inertia coefficient, velocity slip, and thermal slip. These are defined as

ε1 =
ε2νe f f
αm

= ε2Pr, K = ε2ν
K1b , λ =

ε2 gβTc
b2 = Rax

Pe2
x

Pr, B = ε2ueCF

b
√

K
, γ1 = L1

√
b
αm

, γ2 =
√

b
αm

S1.

Here, Rax =
ε2 gβT(Tw−T∞)x3

νe f fαm
is the Rayleigh number and Pex = xue

αm
is the Peclet number.

3. Skin Friction and Nusselt Number

The coefficients of skin friction C f and Nusselt number Nux are identified as

C f =
2τw

ρue2 and Nux =
xqw

k(Tw − T∞)
, (12)

where qw and τw are identified as the heat flux and the shear stress, respectively, which are specified as

qw = −k
∂T
∂y

∣∣∣∣∣
y=0

and τw =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
μ∂u∂y(

1 +
(
Γ ∂u∂y

)1−n
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y=0

. (13)
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Utilizing Equation (8), we have

1
2

√
Rex

Pr
C f =

f ′′(0)(
1 + (We f ′′(0))1−n

) and − θ′(0) = Nux√
Pex

. (14)

4. Numerical Procedure

The nonlinear coupled ODEs (9) and (10) with boundary constraint (11) through the bvp4c by
converting the leading ODEs to an initial value problem (IVP). In this method, it is further helpful to
provide a fixed value to η→∞ , say η∞. The above-mentioned higher order equations are converted
into a first-order system as follows:

f ′ = p, (15)

p′ = q, (16)

q′ =

(
1 + (We f ′′)1−n

)2

ε1
(
1 + n(We f ′′)1−n

) [p2 − f q− 1 + K(1− p) − B
(
1− p2

)
− λθ

]
, (17)

θ
′
= z, (18)

z′ = pθ− f z, (19)

with
f (0) = 0, p(0) = γ1q(0), θ(0) = 1 + γ2z(0). (20)

Numerically grip the system of Equations (15)–(20) as an IVP, we require that the values for q(0)
and θ(0) are needed, however these values are not mentioned. The initial estimated values for q(0)
and θ(0) are conjectured and bvp4c is pertained on MATLAB software to achieve accurate results.
It is also noted that the multiple solutions are attained by setting different guesses. After that, the
considered values of θ(η) and f ′(η) at (η∞ = 8) are evaluated with the boundary conditions θ(η∞) = 0
and f ′(η∞) = 1, in which the predictable values of q(0) and θ(0) are prescribed by the Secant method
to achieve a better guess for the solutions. The step size is considered as Δη = 0.01. The procedure is
iteratively repeated until required solutions with an acceptable level of accuracy (i.e., up to 10−5) to
fulfill the criterion of convergence.

5. Physical Explanation

In this study, the dimensionless parameters that were appearing in the momentum and the energy
equations and the value of these parameters were taken to be fixed for the computational purpose are
given as λ = −3.5, n = 0.5, We = 0.5, γ1 = γ2 = 0.5, ε1 = 0.5, B = 0.1. The graphical features of the
embedded flow of fluids were captured in Figures 2–21 on the velocity, temperature profiles, the skin
friction, and the local Nusselt number against the enormous distinct parameters. The numerical results
with accessible conclusions are referenced in Table 1, which shows the authenticity of our problem
by comparing the results with the available results in the literature. Additionally, the green lines
throughout the study demonstrate the first solution, which is also called the upper branch solution
while the red lines exhibit the second solution called the lower branch in all the invoked figures.
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Table 1. Comparison of the values of f ′′(0) for distinct values of ε1 and λ when K = 1 and rest of
variables are absent.

ε1 λ Rosali et al. [22] Present Results

0.1
−0.5 4.1508 4.1389

1 6.4874 6.4864
2 7.7611 7.7614

0.5
−0.5 1.8821 1.8838

1 2.8597 2.8453
2 3.3944 3.3944

0.7
−0.5 1.5967 1.6008

1 2.4074 2.4124
2 2.8514 2.8499

1
−0.5 1.3418 1.3438

1 2.0050 2.0050
2 2.3690 2.3620

6. Deviation of the Skin Coefficient and the Local Nusselt Number

The graphical behavior of our solutions for the skin friction coefficient 0.5(Rex)
1
2 (Pr)

−1
2 C f and the

local Nusselt number Nux(Pex)
−1
2 by exercising the different parameters against the mixed convection

parameter λ are shown in all invoked Figures 2–7. The existing of dual solutions is marked in all the
aforementioned figures in the case of mixed convection opposing flow (λ < 0) while the outcome is
unique for the phenomenon of mixed convection assisting flow (λ > 0). The influence of the modified
porosity parameter ε1 on the skin friction and the local Nusselt number versus λ is depicted in Figures 2
and 3, respectively. Figure 2 shows that the values of the skin friction decelerate in the first solution
with enhancing ε1 in the range of (−4 ≤ λ), while the reverse trend is seen in the range of (λ < −4).
Figure 3 scrutinizes that the values of the Nusselt number accelerate due to ε1. It is also observed
from these sketches that the physical realizable solution is represented by the green solid lines and the
decline of the unstable solution is displayed by the red dotted lines. The critical values |λ| enhance as
ε1 augments, suggesting that the modified porosity parameter delays the boundary-layer separation.
In addition, it can be clearly observed from these figures that the skin friction as well as the Nusselt
number augments as λ increases in the assisting flow, while the contrary behavior is observed in the
opposing flow. Physically, in the assisting flow case, the favorable pressure gradient produces which
augments the motion of liquid, which consequently raises the shear stress and heat transfer rate. In
contrast, opposing flow guides to an adverse pressure gradient that delays the motion of liquid. The

impacts of the Weissenberg number We and the inertia parameter B against λ on
(
0.5(Rex)

1
2 (Pr)

−1
2 C f

)
and

(
Nux(Pex)

−1
2

)
are depicted in Figures 4–7. For the upper branch solution, both the momentum

boundary layer and the thermal boundary layer become lower by changing the value of We, while the
opposite behavior is marked for the lower branch solution as shown in Figures 4 and 5. Figures 6 and 7
suggest that the fall trend with augmenting B in the lower branch solution, while the upper branch
solution is enhanced for the similar choice of B.
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Figure 2. Influence of ε1 on 0.5Re1/2
x Pr−1/2C f .

Figure 3. Influence of ε1 on NuxPe−1/2
x .

305



Mathematics 2020, 8, 31

Figure 4. Influence of We on 0.5Re1/2
x Pr−1/2C f .

Figure 5. Influence of We on NuxPe−1/2
x .
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Figure 6. Influence of B on 0.5Re1/2
x Pr−1/2C f .

Figure 7. Influence of B on NuxPe−1/2
x .

7. Deviation of the Velocity and Temperature Fields

The analyses and the behavior are captured in Figures 8 and 9, respectively, showing the tasters
of the f ′(η) and θ(η) profiles for the distinct values of the slip parameter γ1 for both branches of the
solutions, while the effects of the thermal slip parameter γ2 on the velocity and temperature for various
selected values are portrayed in Figures 10 and 11, respectively. Physically, when augmenting the
values of γ1, the wall shear stress insignificant and as a result, the momentum boundary layer (Figure 8)
becomes larger and larger for both the upper branch and lower branch solutions, while the reverse
trend is scrutinized for the temperature profile (Figure 9) due to escalating the γ1. Figure 10 shows that
the velocity of fluid rises with γ2 in the first solution and declines in the second solution, while the
opposite behavior is observed in the sketch of temperature, as shown in Figure 11. This is due to fact
that the extra flow penetrates through the thermal boundary layer which consequently transmitted the
additional heat and this guides in the decline of temperature distribution. Thus, for the authenticity of
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our solutions, it is clearly visible from behavior of momentum and temperature profiles in Figures 8–11
that these solutions satisfied the boundary conditions asymptotically. As shown in Figures 12–15,
the behavior of the fluid flow is explored by exercising the dimensionless parameters We and n on
f ′(η) and θ(η), respectively. The increment in the local Weissenberg number We and power-law
index n, both the green solid lines, as well as the red dotted lines (first and second solution) are rising
in Figures 12 and 13, while the contrary flow of fluid motion is noticeable corresponding to these
parameters in Figures 13 and 15, respectively. From the physical view, the additional relaxation time
is needed when the values of We increases and as a result, the velocity boundary layer and the fluid
temperature was shrunk and declined in Figures 12 and 13, respectively. Figure 14 exhibits that the
velocity profile increases due to the augmenting values of n in case of shear thinning and vice versa for
the temperature profile which is invoked in Figure 15. Figure 16 shows the behavior of the permeability
parameter K on f ′(η) as we enhance the parameter K, the upper solution is decelerated while the lower
solution shows increasing behavior, whereas for the same parameter, the reverse behavior is noted in
the temperature profile, as presented in Figure 17. Figure 18 illustrates that the liquid velocity enhances
in both upper and lower solutions by changing the values of the modified porosity parameter ε1, while
the temperature profile behavior is shown in Figure 19, which decelerates in both branches of solutions
as we boost up the value of ε1. In Figure 20, we plotted the velocity profile for various values of inertia
coefficient B, which shows that the first solution is enhanced and the second solution is declined. The
temperature profile declines in the upper branch solution and rises in the second branch solution as
the value of B augments and this behavior is captured in Figure 21. The cause for this trend is that the
inertia of the porous medium offers an extra confrontation to the mechanism of the liquid flow, which
grounds the liquid to progress at a retarded rate with reduced temperature.

Figure 8. Influence of γ1 on f ′(η).
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Figure 9. Influence of γ1 on θ(η).

Figure 10. Influence of γ2 on f ′(η).
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Figure 11. Influence of γ2 on θ(η).

Figure 12. Influence of We on f ′(η).
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Figure 13. Influence of We on θ(η).

Figure 14. Influence of n on f ′(η).
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Figure 15. Influence of n on θ(η).

Figure 16. Influence of K on f ′(η).
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Figure 17. Influence of K on θ(η).

Figure 18. Influence of ε1 on f ′(η).
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Figure 19. Influence of ε1 on θ(η).

Figure 20. Influence of B on f ′(η).
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Figure 21. Influence of B on θ(η).

8. Closing Remarks

The impact of slip factors on the mixed convective flow of Cross liquid has been examined from a
vertical plate immersed in Darcy–Forchheimer porous medium. The similarity variables are adopted
to convert the PDEs to nonlinear ODEs. The transmuted system is numerically deciphered through the
bvp4c solver. Core verdicts of the current research are stated as follows:

• Permeability parameter decelerates the drag force, as well as the rate of heat transfer in both forms
of solutions;

• Due to the porosity parameter, the drag force slows down in upper and lower branch solutions,
while the rate of heat transfer accelerates;

• The drag forces decline with the growing values of the Weissenberg parameter in the upper branch
solutions, while a reverse trend is observed in the lower branch solutions. However, the rate of
heat transfer is diminished with the Weissenberg parameter;

• The drag forces are declined initially and then enhance due to the inertia coefficient, while the rate
of heat transfer increases in both solutions;

• Liquid velocity increases due to γ1 in both solutions, while the temperature distribution behaves
in a contrary direction;

• The temperature of the liquid is decreased due to γ2 in the upper branch solutions and augmented
in the lower branch solutions. The repeal tendency is scrutinized for the velocity;

• The velocity of the liquid has an enhancing behavior with the increasing values of We in both
solutions, while the temperature is a declining function of We;

• The power-law index accelerates the velocity and reduces the temperature of the liquid in
both solutions.

It is expected that the current numerical results provide significant knowledge for computer
routines for further complex problems involving mixed convection of non-Newtonian fluids in porous
media and stimulate curiosity for experimental work. In addition, the influence of slip effects in
Darcy–Forchheimer flow with mixed convection has been of great interest especially in the utilization
of geothermal energy and petroleum reservoir, etc.

315



Mathematics 2020, 8, 31

Author Contributions: Conceptualization, A.Z. and K.S.N.; formal analysis, A.Z. and D.B.; funding acquisition,
U.K. and A.Z., and D.B.; investigation, U.K.; methodology, U.K. and I.K.; software, I.K.; supervision, I.K. and
K.S.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A1 the first tensor of Rivlin–Ericksen
(b, c) positive constants
B inertia coefficient
CF drag coefficient
C f x skin friction coefficient
g gravity acceleration
Grx Grashof number
I the identity vector
k thermal conductivity of fluid
K1 porous medium permeability
K dimensionless permeability
L1 length of slip
n power-law index
Nux Nusselt number
�
p the pressure
Pex the Peclet number
qw the heat flux
Rax the Rayleigh number
Rex local Reynolds number
S1 proportionality constant
T temperature (K)
T∞ free-stream temperature (K)
Tw wall temperature (K)
ue free-stream velocity (m s−1)
(u, v) velocity components (m s−1)
We Weissenberg number
(x, y) Cartesian coordinates (m)

Greek Symbols

αm thermal diffusivity
β thermal expansion
ε1 modified porosity
.
γ the rate of shear
γ1 velocity slip
γ2 thermal slip
Γ time constant
λ mixed convective parameter
�
μ0 zero shear rate
�
μ∞ infinite shear rate
μe f f the effective (or “apparent”) viscosity
θ dimensionless temperature
νe f f effective kinematic viscosity
ρ density
ψ stream function
τw the shear stress
η similarity variable
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Subscripts

w wall boundary condition
∞ free-stream condition

Superscripts

’ derivative w.r.t. η
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Abstract: The present article is devoted to examine the significance of double stratification in third
grade stagnation point flow towards a radiative stretching cylinder. The stagnation point is discussed
categorically. Analysis is scrutinized in the presence of Thermophoresis, Brownian diffusion, double
stratification and heat source/sink. Suitable typical transformations are used to drive the system
of ordinary differential equation. The governing system is subjected to optimal homotopy analysis
method (OHAM) for convergent series solutions. The impact of pertinent fluid parameters on the
velocity field, temperature distribution and concentration of the nanoparticles is shown graphically.
Numerical data is compiled in tabulare form for skin friction, Nusselt and Sherwood numbers to
analyze the variation caused by the present model and to see the impact for industrial and engineering
point of view.

Keywords: third-grade liquid; heat generation/absorption; stretched cylinder; series solution

1. Introduction

The study of stratification analyzes the variations and effects in thermal stratified object (medium)
for the so-called common fluids. In industrial as well as natural processes, stratification plays an
important role. Reason behind the existence of this phenomena is variation in temperature, variation of
densities in different fluids and the concentration differences. Transfer of heat and mass simultaneously,
doubles the stratification that belongs to the context of thermal stratification. Thermal stratification can
be seen very often in the reservoirs and oceans. Another type of stratification is salinity stratification
that is witnessed in rivers, estuaries, reservoirs storing the ground water, atmospheric heterogeneous
mixtures, food industries and various manufacturing processes etc. A very few researchers in the
past have made a significant contribution in investigating the effect of mass and thermal stratification
over heat as well as mass transfer by a naturally convective flow. Keeping in view the above
mentioned facts, double stratification gained a significant importance in the eyes of some researchers
like Srinivasacharya and RamReddy [1,2] who investigated the double stratification’s effect numerically.
The medium was first considered non-porous and afterwards Darcian (porous) as well. Mixing process
of oxygen with water in the bottom of reservoirs through biological processes can be controlled by using
the tool of thermal stratification (see [3]). Stratification has also major contribution in environmental
sciences. It can be very helpful in balancing the temperature differences and concentrations of
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oxygen and hydrogen to control the growth rates of various species in naturally unbalanced and less
productive environments, Ibrahim and Makinde [4]. Various engineering processes occurring at a
very high temperature direly depend upon a deep understanding and knowledge of thermal radiation.
Combustion energy processes happening in fossil fuel, flows in astrophysics, harnessing the energy
of sun in solar technology, turbines, devices for converting mechanical energy into propulsive force
in aircraft, missiles and space-ships etc. are best examples of the importance and usage of the study
of thermal radiations (see [5]). In some objects, fluid flow encounters a certain point where fluid
motion becomes zero. In Geop physical setups, physical models and fluid mechanics, the point is
called stagnation point. This stagnation point can be anywhere on the surface of object. However,
the fluid continues flowing in neighborhood of this point, called stagnation point flow. Such an object
is termed as impermeable object (see [6]). Stagnation point is sub-divided into two main categories
(i) orthogonal and (ii) slanted stagnation point. In first case, the fluid particles act orthogonal to a
rigid/solid surface and consequently, the resulting velocity is zero. The orthogonality of fluid particles
at certain point makes it a perpendicular or orthogonal stagnation point. In second case, the fluid
particles act on the rigid body through some random arbitrary angle of incidence. One can say that this
point is a dual of orthogonal and shear stagnation point flow flowing parallel to the object. Numerous
researches has been carried out on stagnation point flow. Describing the fluid motion near stagnation
regions of a solid surface, the stagnation point flow was first studied by Hiemenz [7] using a similarity
transformation for reducing the Navier-Stokes equations to Non-linear ODEs. Accordingly, stagnation
flow can be categorized in various types depending upon the behavior of flow. Analyzing the density
one can characterize it as inviscid or viscous flow, steady or unsteady flow, geometrically it can be
two or three dimensional flow. The stagnation point flow can also be characterized according to the
symmetry. Therefore, it can be symmetric or asymmetric, normal or slanted. Analyzing the flow
behavior, it can be treated as homogeneous or immiscible fluid and forward or reverse fluid (see [8,9]).
Importance of stagnation point flow can be witnessed in natural and industrial phenomena. Fluid
striking the tips of submarines, oil-ships and air-crafts are best examples of stagnation point flow.
The blood flowing through a junction in an artery is another biological example of stagnation point
flow. Mabood et al. [10] investigated the radiation effects on stagnation point flow with melting heat
transfer. Meanwhile, stagnation point flow of Tangent-hyperbolic liquid visualized by Shafiq et al. [11]
witnesses its importance and significance in different aspects.

Process of natural convection can be witnessed in various physical phenomenon especially
fire and heat engineering, nuclear science, reservoirs used for petroleum etc. The presence of heat
(source/sink) and thermal radiation is a key factor in natural convection process. Such processes has
been studied extensively because of naturally frequent existence. Ghoshdastidar [12] has explained
various areas witnessing the applications of free convection. For example, the transfer of heat from
heater to the neighborhood or heat dissipation through coil of refrigerator unit to the neighborhood etc.
The encounter of such phenomena is common in wide range of thermal applications. Cheng [13,14]
studied the boundary layer flow as natural convection. The medium was a vertical surface with
Newtonian heating. The chemical reaction and thermal radiation are important aspects in engineering
setups involving Riga patterns (see [15]). Boundary layer flow and the study of heat transfer in fluid
mechanics and engineering is a contemporary research area (see [16]). Furthermore, Rasool et al. [17]
reported MHD nanofluid flow over stretching surface with simple temperature attributes whereas,
Rasool et al. [18] reported a study in the same representation using Cattaneo Christov heat and mass
flux model over a stretching surface. Many researchers in the past have remained focused on this area
and their work have been published. For example Kuznetsov and Nield [19] studied this phenomena
of boundary layer flow analytically using the Brownian motion model. The effects of thermophoresis
were taken into account. The results proved that Nusselt number is a decreasing function of the
parameters of Brownian motion. Presence of gravity is a key element for density differences which
plays a vital role in the mixing of heterogeneous fluids and their dynamics. A similar kind of boundary
layer flow through a porous medium was investigated by Lesnic et al. [20]. Recently, Shafiq et al. [21]
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investigated a boundary-Layer flow of Walters’ B fluid in Newtonian heating depicted the heat transfer
phenomena. The study highlights usefulness of boundary layer flow. The Newtonian heating, its effects
and applications has been discussed in this research in detail. The study of two-dimensional boundary
layer flow using an unsteady and permeable stretching surface is yet another recent improvement
linking the effects of thermal radiations in boundary layer flows (see [22]). In this study Shafiq et al.
investigated the effects of electric and magnetic fields. In present study the analysis is carried out by
finding the optimal convergence. For details one can read the optimal control convergence procedure
adopted in solving linearized Navier-Stokes equations in netlike domain [23] and pipeline flow [24].

In the literature mentioned above, the studies have been mainly reported on stretching surfaces
with various assumptions including the porosity factor, Brownian diffusion and thermophoresis using
HAM [25–31]. However, no research is found emphasizing the role of stagnation point in third grade
fluid towards stretching surface (cylinder) which affirms the novelty of the present problem. Here the
objective is to discuss the stagnation point and boundary layer flow, to analyze the corresponding
results in the presence of sink/source and to graphically interpret various physical parameters involved
in model using Optimal Homotopy approach.

2. Formulation

We consider a third grade stagnation point flow towards a radiative stretching cylinder in
the context of double stratification. The stagnation point is discussed categorically. Analysis is
scrutinized in the presence of Thermophoresis, Brownian diffusion, double stratification and heat
source/sink. Suitable typical transformations are used to drive the system of ordinary differential
equation. The governing system is subjected to optimal homotopy analysis method (OHAM) for
convergent series solutions.. The effect of double stratification and thermal radiation is accounted.
We assume that z-axis is directed along the given stretching cylinder whereas the radial r-axis goes
perpendicular to it. Thus,
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with

w (r, z) = Ww (z) = W0z
l , u (r, z) = 0, T (r, z) = T0 + b

( z
l
)
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l
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at r = R,
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l
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l
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at r −→ ∞.
(5)

where r represents radial distance while z is assigned to axial distance. u, v, correspond to r and z
component of fluid velocity, T, T∞ represent surface & ambient temperature while C and C∞ represent
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surface & ambient concentration, respectively. Here ρ, ν correspond to fluid density and kinematic
viscosity while cp and k are the specific heat at constant pressure and thermal conductivity, respectively.
The constants b, d, e and c are dimensionless. k∗ is designated as coefficient of mean absorption,
σ is Stephen Boltzman constant, reference length is represented by l , Ww is stretching velocity while
We is the free stream velocity. Q0 is used to represent the coefficient of heat generation as well as
absorption. It is pertinent to mention that Q+

0 (the positive values) behaves as source (heat generation)
while Q−

0 (the negative values) behaves as sink (heat absorption). Using suitable transformations

w (r, z) = W0 z
l f ′ (η) , u (r, z) = −

√
νW0

l
R
r f (η) , η =

√
W0
νl

(
r2−R2

2R

)
,

θ(η) = T−T∞
TW−T0

, φ(η) = C−C∞
Cw−C0

.
(6)

It can easily be verified that the balance of mass given by Equation (1) is identically satisfied.
On substituting Equation (6) into Equations (2)–(5) and then rearranging we have:
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φ(0) = 1 − St, φ(∞) −→ 0, (12)
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which respectively indicate the dimensionless third-grade parameters (α1, α2, β), the Reynolds number
(Re), thermal radiation parameter (Rd), the Prandtl number (Pr) , the curvature parameter (γ) , heat
generation/absorption parameter (Q), thermal stratification parameter (St) and solute stratification
parameter (Sc). Expression of physical quantities are,
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Such that
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z Cf = [1 + 3α1 + 3βRe( f ′′(0))2] f ′′(0), (18)
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z = −(1 − St)φ′ (0) , (19)
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where Rez = Wwl/ν is the local Reynolds number.

3. Optimal Homotopic Solutions

The initial guesses and linear operators for the construction of series solutions are

f (η) = Aη + (1 − A)(1 − Exp(−η), θ0(η) = (1 − S)Exp(−η), φ0(η) = (1 − St)Exp(−η), (20)

L f ( f ) =
d3 f
dη3 − d f

dη
, Lθ (θ) =

d2θ

dη2 − θ, Lφ (θ) =
d2θ

dη2 − θ, (21)

with
L f [A1 + A2 exp(η) + A3 exp(−η)] = 0, (22)

Lθ [A4 exp(η) + A5 exp(−η)] = 0, (23)

Lφ [A6 exp(η) + A7 exp(−η)] = 0, (24)

where Ai (i = 1, 2, . . . , 7) are the arbitrary constants.

4. Optimal Convergence Control Parameters

The parameters h f and hθ are called convergence control parameters that are computed using
the numerical BVPh2.0 package. Resulting optimal numerical values of these parameters are usually
determined by the min of the average error. To significantly reduce the processing time of CPU,
the tactic of average residual error is used at the mth-order of approximation, such that,
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. (27)

The optimal values of the convergence control parameters are h f = −0.32677, hθ = −0.56129
and hφ = −0.46129, when α1 = α2 = β = 0.1, Re = γ = S = 0.2, A = 1.5, Rd = 0.4, Q = 0.2,
Sc = 1.2, St = 0.3, Pr = 1. The values of convergence control parameters are choosen very carefully.
The admissible ranges of parameters are taken. The results are convergent within the ranges of these
values. The values assigned to the fluid parameters are chosen carefully to satisfy the convergence
criteria of OHAM. Beyond these values, the solution might not converge. One can see the total residual
error in Figure 1.
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Figure 1. Total error vs order of approximations.

5. Discussions

The physical insights of parameters, used in this research, on velocity, concentration distribution
and temperature are key aspects to be discussed in this section. Significance and impact of γ (curvature
parameter) over the velocity field is shown in Figure 2. It is witnessed from Figure 2 that initially an
inverse proportion between γ and velocity field as well as boundary layer thickness converts into
a direct proportion at far away from the cylinder. The thickness of boundary layer and the velocity
distribution with a certain decrease near the cylinder gradually starts increasing in fluid far away
from cylinder. More the fluid is near to the cylinder, more is the affect of resistance. Figure 3 shows
the behavior of ratio parameter on velocity distribution. Therefore, it can be noticed that velocity
field goes higher and higher in both cases for A > 1 and A < 1 while the boundary layer shows
a different behavior. Even At A = 1, there are no visuals of boundary layer. The significance of β,
a third grade parameter, in the fluid velocity is depicted in Figure 4. The more the value of β, the low
is the viscosity that causes enhancement in velocity distribution. Consequently, the velocity profile
is enhanced. Figure 5, depicts the the impact of Reynolds Re on the velocity field. Certain decrease
in the velocity field is noticed in moving from near the cylinder to away and finally, it vanishes at
far away from surface. The reason behind this vanishing is the high value of Reynolds number that
reduces the friction in between the surface and fluid. Figure 6 shows the variation of A, the ratio
parameter, on temperature distribution. Higher is the value of A, the lesser is thickness of thermal
and temperature boundary layer. Curvature parameter γ on θ (η) is analyzed in Figure 7. Both,
the thermal field and connected/associated boundary layer are found as increasing functions of the
γ. The Impact of well known Prandtl number on θ (η) is plotted in Figure 8. There is an inverse
relation seen in thermal distributions for Prandtl. The smaller is the Prandtl factor, the higher is
the temperature and thermal boundary layer thickness. The decremented thermal diffusion due to
increment in Prandtl number forces the temperature distribution to decrease. One can conclude that
fluids having low Prandtl numbers normally have high thermal diffusivity. The influence of heat
generation and absorption on θ (η) is shown in Figure 9. An increase in heat generation parameter
Q > 0 and decrease in heat absorption parameter Q < 0 ensures the increase in temperature field.
Further, the increase in heat generation increases the thickness of thermal boundary layer because the
heat generation produces more heat that certainly allows a temperature hike. Rd on θ (η) in Figure 10
shows the variation in temperature distribution due to thermal radiation. More is the thermal radiation
Rd, lesser is the temperature distribution. The stratification parameter S over θ (η) is analyzed in
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Figure 11. An increase in S certainly decreases the θ (η) significantly whereas the thickness of thermal
boundary layer goes higher and higher over a decrease in S. This is justified with the reason that a hike
in S reduces the difference between surface of cylinder and corresponding temperature. The effect
of curvature parameter γ over φ (η) is analyzed in Figure 12. Nearby the cylinder, the concentration
profile attains a decrement and goes on increasing away from the cylinder. Figure 13 shows the
behavior and variation of Schmidt number Sc, ratio of momentum and mass diffusivity, over φ (η).
The more is Sc, φ (η) goes on increasing while thickness of solute boundary layer decreases. Higher
is the value of Sc, smaller is the mass diffusivity and therefore, φ (η) achieves an increment. Finally,
the variation and behavior of solute stratified parameter St over the concentration profile is displayed
in Figure 14. Decrements in concentration profile are noted for high values of St. Hence, an increase
in St is responsible for decreasing concentration distribution existent between surface and ambient
fluid. Consequently, the concentration field decreases. Optimal convergence control parameters are
enlisted in Table 1. It shows the individually calculated average squared r-errors in momentum and
energy equations at different order of approximation. A decrease in squared residual errors is noted
as compared to the order of approximation. Behavior of the coefficient of skin-friction is enlisted in
Table 2. It is evident that for large values of α1, β, γ and Re, skin friction increases. The skin friction
decreases for augmented values of α2 and A. Table 3 enlists the variation in Nusselt number due to
different parameters. Higher the values of α1, α2, β, A, γ, Q, St and Rd, higher is the Nusselt number.
However, it decreases with Pr. Table 4 shows the influence of numerous parameters on Sherwood
number. Higher the values of S, α1, α2, and β, higher is the Sherwood number. However, it experiences
a decrease in values with γ, St and Sc.
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Figure 2. Impact of γ on f ′(η).
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Figure 3. Impact of A on f ′(η).
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Figure 4. Impact of β on f ′(η).
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Figure 5. Impact of Re on f ′(η).
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Figure 6. Impact of A on θ(η).
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Figure 7. Impact of γ on θ(η).
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Figure 8. Impact of Pr on θ(η).
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Figure 9. Impact of Q on θ(η).
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Figure 10. Impact of Rd on θ(η).
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Figure 11. Impact of S on θ(η).
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Figure 12. Impact of γ on φ(η).
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Figure 13. Impact of Sc on φ(η).
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Figure 14. Impact of St on φ(η).

Table 1. Residual errors at α1 = α2 = β = 0.1, Re= γ = S = 0.2, A = 1.5, Rd = 0.4, Q = 0.2,
Sc = 1.2, St = 0.3, Pr = 1 by means of optimal control parameters � f = −0.32677, �θ = −0.56129 and
�φ = −0.46129.

m ε
f
m εθ

m ε
φ
m CPU Time [s]

2.0 0.00108904 0.0161511 0.136643 3.84396
4.0 7.87184 × 10−6 0.0145533 0.117591 20.2511
6.0 1.15481 × 10−6 0.0135712 0.105814 48.3618
8.0 2.90966 × 10−7 0.012861 0.0975497 111.334
10 1.64734 × 10−7 0.0123001 0.0915131 229.121
14 7.54581 × 10−8 0.0114404 0.0838574 822.825
18 4.06748 × 10−8 0.0107921 0.081305 2398.66
20 3.10657 × 10−8 0.0105197 0.0803804 3958.69
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Table 2. Numerical values of Skin friction for various physical parameters.

α1 α2 β γ A Re −Re1/2
r Cf

0.0 0.1 0.1 0.2 0.6 0.4 1.04320
0.1 1.16269
0.2 1.19544
0.1 0.0 0.1 0.2 0.6 0.4 0.58384

0.1 0.57578
0.2 0.56811

0.1 0.1 0.0 0.2 0.6 0.4 0.57440
0.1 0.57718
0.2 0.57985

0.1 0.1 0.1 0.0 0.6 0.4 0.57310
0.1 0.57440
0.2 0.57578

0.1 0.1 0.1 0.2 0.0 0.4 1.21411
0.1 1.16269
0.2 1.09544

0.0 0.1 0.1 0.2 0.6 0.0 0.58381
0.1 0.64578
0.2 0.76811

Table 3. Numerical values of local Nusselt number for various physical parameters.

Rd Pr St Q γ α1 α2 A β Re−1/2
r Nur

0.4 1.0 0.3 0.3 0.2 0.1 0.1 0.6 0.1 1.01341
0.7 1.36421
1.0 1.65732
0.3 0.1 0.3 0.3 0.2 0.1 0.1 0.6 0.1 1.41321

0.5 1.36969
1.0 1.12294

0.3 1.0 0.0 0.3 0.2 0.1 0.1 0.6 0.1 1.11411
0.5 1.26969
1.0 1.39294

0.3 1.0 0.3 0.0 0.2 0.1 0.1 0.6 0.1 1.38941
0.5 1.62315
1.0 1.89561

0.3 1.0 0.3 0.3 0.0 0.1 0.1 0.6 0.1 1.12303
0.1 1.35344
0.5 1.67423

0.0 1.0 0.3 0.3 0.2 0.0 0.1 0.6 0.1 1.12141
0.5 1.24922
1.0 1.41034

0.3 1.0 0.3 0.3 0.2 0.1 0.0 0.6 0.1 1.30312
0.5 1.32601
1.0 1.38923

0.3 1.0 0.3 0.3 0.2 0.1 1.0 0.0 0.1 1.12423
0.5 1.24921
1.0 1.41235

0.3 1.0 0.3 0.3 0.2 0.1 1.0 0.6 0.0 1.25309
0.5 1.31985
1.0 1.51225
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Table 4. Numerical values of local Sherwood number for various physical parameters when A = 0.6
and Re = 0.2.

γ St S Sc α1 α2 β Re−1/2
r Shr

0.0 0.3 0.2 1.2 0.1 0.1 0.1 0.98740
0.1 0.92745
0.2 0.90462
0.3 0.0 0.2 1.2 0.1 0.1 0.1 1.98741

0.1 1.74501
0.2 1.25019

0.3 0.3 0.0 1.2 0.1 0.1 0.1 1.11523
0.1 1.32751
0.2 1.89154

0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.54315
0.1 0.38612
0.2 0.18612

0.3 0.3 0.2 1.2 0.0 0.1 0.1 0.81913
0.1 0.83997
0.2 0.91251

0.3 0.3 0.2 1.2 0.1 0.0 0.1 1.28712
0.1 1.59874
0.2 1.98717

0.3 0.3 0.2 1.2 0.1 0.1 0.0 1.71231
0.1 1.82127
0.2 1.92351

6. Concluding Remarks

Here we have considered an axisymmetric stagnation point third grade fluid flow over a radiative
stretching surface/cylinder. The stagnation point is discussed in detail. Analysis is scrutinized in
the presence of double stratification, heat generation/absorption and Brownian motion. Optimal
homotopy method (OHAM) is used for final solutions. Salient features are listed below:

• Due to the effect of temperature, smaller values of stratified parameters results in higher values
of velocity and temperature distributions.

• Velocity profile enhances with β and Re.
• Radiation parameter enhances while ratio parameter reduces the temperature distribution.
• The coefficient of skin friction is higher for higher values of α1, β, γ and Re.
• An increase in Q and γ results in more convenient heat transfer.
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Abstract: The proposed investigation concerns the impact of inclined magnetohydrodynamics
(MHD) in a Casson axisymmetric Marangoni forced convective flow of nanofluids. Axisymmetric
Marangoni convective flow has been driven by concentration and temperature gradients due to
an infinite disk. Brownian motion appears due to concentration of the nanosize metallic particles
in a typical base fluid. Thermophoretic attribute and heat source are considered. The analysis
of flow pattern is perceived in the presence of certain distinct fluid parameters. Using appropriate
transformations, the system of Partial Differential Equations (PDEs) is reduced into non-linear
Ordinary Differential Equations (ODEs). Numerical solution of this problem is achieved invoking
Runge–Kutta fourth-order algorithm. To observe the effect of inclined MHD in axisymmetric
Marangoni convective flow, some suitable boundary conditions are incorporated. To figure out
the impact of heat/mass phenomena on flow behavior, different physical and flow parameters are
addressed for velocity, concentration and temperature profiles with the aid of tables and graphs.
The results indicate that Casson fluid parameter and angle of inclination of MHD are reducing factors
for fluid movement; however, stronger Marangoni effect is sufficient to improve the velocity profile.

Keywords: Casson nanoliquid; Marangoni convection; inclined MHD; Joule heating; heat source

1. Introduction

The theory of magnetohydrodynamics (MHD) is highly appreciated for the industrial purposes.
It is based on magnetic properties of electrically conducting liquids. The characteristic of MHD field is
to generate currents in moving liquid and produce forces that act upon the liquid flow and reconstruct
the magnetic field itself. To modify flow features of heat and mass analysis, the applied magnetic
field impacts the deferred nanoparticles and reforms their absorption inside the liquid. This efficient
phenomenon was first utilized for astrophysical and geophysical related problems. Recently, heat
transportation and MHD flows have played significant roles in agricultural engineering, petroleum
industries and medical treatment such as MHD strategy used for reduction of blood during surgeries,
magnetic cell separation and treatment of certain arterial diseases. Basically, the MHD parameter is
not only working as a significant parameter to control the cooling/heating rate but also to achieve
desired quality of product for different flows. Further, MHD can be used in continuous casting of metal
processing to suppress instabilities and control flow field. In this context, Hayat et al. [1,2] explored
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the MHD flow through moving surfaces and concluded that enhancement in magnetic parameter
shows increase in nanoparticles concentration and temperature profiles. Hayat et al. [3,4] numerically
studied heat transfer impact on MHD axisymmetric third grade liquid flow. Shafiq et al. [5] presented
the study of bioconvective MHD tangent hyperbolic nanoliquid flow with Newtonian heating. Shateyi
and Makinde [6] prepared MHD stagnant point flow through a radially stretching convectively heated
disk. Hayat et al. [7] investigated the third grade axisymmetric MHD flow over a stretched cylinder
and showed that momentum layer thickness and velocity profile are increasing when the curvature
parameter increases. Moreover, Shafiq et al. [8] discussed magnetohydrodynamics axisymmetric third
grade liquid flow between two porous disks.

The novelty of Marangoni convection is generally the edge dissipative layer between two phase
fluid flows such as gas–liquid and liquid–liquid interfaces. It depends upon the variation of surface
tension driven by temperature, chemical concentration and applied magnetic field. These gradients
can occur only when fluid interfaces contain different fluid properties from each other. Due to
the viscosity of interacting liquids, external forces such as gravitational and shear forces come into
action. Most researchers have focused their interest on simulating these external forces by utilizing
governing equations due to its widespread application in the fields of space processing, industrial
manufacturing processes and microgravity science. The significance of Marangoni convective flows in
the transportation process of heat and mass into different systems have been thoroughly scrutinized
in [9–11]. Kumar et al. [12] discussed Marangoni convective Casson nanoliquid flow in the presence
of chemical reaction and uniform heat source/sink and observed that Marangoni parameter showed
dominant behavior in terms of velocity as well as temperature fields. Din et al. [13] examined the
effect of Marangoni convection on based nanoliquid with thermal radiation and demonstrated that
decreasing behavior of velocity profile depends on suction parameter, whereas the temperature
distribution and boundary layer thickness increased with an increase in nanofluid volume fraction.
Sheikholeslami and Ganji [14] studied the impact of magnetic field on nanoliquid flow by Marangoni
convection by Runge–Kutta technique and observed that an increment in heat transfer depended on
an increment in solid volume fraction of nanofluid. Hayat et al. [15] investigated the impact of radiation
and Joule heating on Marangoni mixed convective flow.

For the last few decades, survey of non-Newtonian fluid flows has been the center of attraction
for researchers, engineers and scientists. This is due to the application of non-Newtonian liquid
flows in the real world, e.g., in bio-engineering, drilling operations, plastic polymers, paint, optical
fibers, coated sheets, cosmetics, salt solutions, food item, etc. The existing problems in nature related
with larger diameter and higher shear rates can be solved easily; however, when these flows are
related to small diameter with low shear rates, the importance of non-Newtonian fluids (see [16,17])
are non-negligible. The deviation from classical Newton’s law of viscosity and flow behavior under
shear stress to the non-Newtonian fluids become complex. These flows are challenging task for
researchers due to their non-linear rheological behavior. Casson liquid model is one of simplest models
of non-Newtonian fluids. The idea of Casson fluid administrated by Casson (see [18]) is to build up
the blood flow problems. Due to its rheological properties, Casson liquid behaves as a soft solid when
yield stress is higher than shear stress, whereas, if shear stress approaches to infinity, then it starts
to deform (see [19]). This structure is widely used for different materials, such as jelly, chocolate,
honey, blood, tomato sauce and condensed fruit juices. Charm and Kurland [20] used Casson fluid
model and investigated the viscosity of human blood. Bhattacharyya and Hayat [21] analyzed the
Casson fluid on MHD boundary layer flow through shrinking sheet. Kumar et al. [22] investigated the
viscous dissipation phenomenon in Casson nanoliquid over a moving radiative surface. Moreover,
Casson fluid flow model [23–25] has been considered for different geometries and various effects
in the literature.

The introduction of nanoparticles in different systems is most favorable to intensify thermal
conductivity of classical liquid flows, convection heat transfer coefficient and to control loss in energy.
The advantages of nanosize particles in fluid systems is to increase surface area, capacity of heat
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transfer, intensify the flow interface after collision and interact fluid particles with each other. Thus,
this phenomenon is a backbone of the industrial processes and is also beneficial for solar energy
resources and bio-medical treatment (see [26–34]). The proficiency of the solar systems [35] can be
improved by incorporating the nanoparticles as working fluid into the systems. The iron based
nanoparticles may be utilized as drug and radiation transportation for the treatment of cancer patient
(see [36,37]). Using magnets the particles can be enter through blood stream to tumor. This type
of cancer treatment permits high local doses of drugs into the body without any significant side
effect. Further, micelles nanoparticles have been recently introduced to target the kidney cells
diseases. These particles can pass into the kidney and remain there. Similarly, magnetic based
nanoparticles are also used for cell separation, hyperthermia therapies and for the increment in
Magnetic Resonance Imaging (MRI) with contrast behavior. Hayat et al. [38] judged that nanofluid
enhanced the temperature and associated boundary layer width of Casson flow. Naseem et al. [39]
numerically investigated third grade nanoliquid flow using the Cattaneo–Christov model over a Riga
plate and observed that, with an increment in thermal and concentration relaxation parameters, a
reduction occurred in concentration and temperature distribution, respectively. Rasool et al. [40]
examined the MHD Darcy–Forchheimer nanoliquid flow under the nonlinear stretched surface.
Rashid et al. [41] investigated the entropy generation in Darcy–Forchheimer flow of nanofluid with
five nanomaterials due to stretching cylinder. Naseem et al. [42] considered the MHD biconvective flow
of a Powell–Eyring nanoliquid over a stretching plate. Rasool et al. [43–48] reported some interesting
results involving the role of nanoparticles in typical base fluids flowing over different surfaces.

In the studies mentioned above, one can see that an utmost attention is given to natural convection
and heat and mass transfer analysis but less importance has been given to the convection through
Marangoni phenomena especially in nanofluid flows. The thermo-capillary and soluto-capillary affects
are the main factors in Marangoni convection of fluids and nanofluids. Furthermore, flat surfaces
with linear stretching are assumed frequently but axisymmetric analyses are less reported. The main
contribution of this research is to examine the process of heat and mass transportation for axisymmetric
Marangoni convective flow with an inclined MHD by taking Casson nanofluid flowing towards an
infinite disk. Brownian motion and thermophoresis are deliberated on account of nanoparticles
structure. Finally, the problem is solved by an accurate numerical technique known as Runge–Kutta
fourth-order algorithm, whereas previous studies are given mostly by HAM.

2. Problem Formulation and Coordinate System

The geometry of the problem (see Figure 1) is based on the MHD effect for axisymmetric
Marangoni convective, incompressible, steady and laminar flow utilizing the electrically conducting
Casson nanoliquid model. Marangoni convective flow is caused due to concentration and temperature
gradients on surfaces generated by surface tension. A uniform magnetic field is applied in such a way
that it makes an angle α1 in non-vertical direction. The cylindrical coordinates system is considered
along and normal to the interface of flow problem. Concentration and temperature interfaces of the
flow structure are altered at the surface of the disk. The analysis of heat transfer is examined through
Joule heating and viscous dissipation. The formulated governing equations for the MHD effect on
Marangoni convective flow structure are given as (see, for example, [4–15]):

∂ũ
∂r̃

+
∂w̃
∂z̃

+
ũ
r̃
= 0, (1)

ũ
∂ũ
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∂ũ
∂z̃

=
μ

ρ

(
1 +

1
β1

)
∂2ũ
∂z̃2 − σB2

0
ρ

sin2 α1ũ, (2)
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ũ
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∂ũ
∂z̃

)2
+

σB2
0

ρcω
sin2 α1ũ2, (3)
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∂z̃2 +
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T̃∞

∂2T̃
∂z̃2 . (4)

In Equations (1)–(4), ρ characterizes fluid density; μ signifies dynamic viscosity; β indicates
parameter of Casson fluid; σ symbolizes surface tension; C̃ and T̃ represent fluid concentration and
temperature, respectively; C̃∞ and T̃∞ characterize fluid ambient concentration and temperature
far away from the surface, respectively; τ shows shear stress; DB is the coefficient of Brownian
diffusion; k indicates coefficient of absorption; cω denotes specific heat; DT̃ characterizes coefficient
of thermophoretic diffusion; Q1 represents heat source sink coefficient; and α1 signifies angle
of inclination.

Figure 1. Physical diagram of the flow model.

The subjected boundary conditions are (see, for example, [10]):
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z̃ →∞ −→ C̃∞. (5)
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The suitable transformations incorporated in the proposed flow structure are (see, for
example, [6]):

η =

√
b
ν

z̃, ũ = br̃ g′(η), w̃ = −2
√

bνg(η), ζ =
C̃ − C̃∞

C̃g − C̃∞
, φ =

T̃ − T̃∞

T̃g − T̃∞
. (6)

Moreover, assumptions indicate that surface tension is a linear function of concentration and
temperature, which may be represented as (see, for example, [10]):

σ = σ0 − γT̃(T̃ − T̃∞)− γC̃(C̃ − C̃∞), (7)

where σ0, γT̃ and γC̃ represent the positive constants. After incorporating the above-mentioned
transformations into Equations (1)–(4), we obtain(

1 +
1
β1

)
g′′′ + 2gg′′ − (g′)2 − M2

1 sin2 α1 g′ = 0, (8)

g(0) = 0, (1 +
1
β1
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ζ ′′ + 2Le gζ ′ + N2

N1
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ζ(0) = 1, ζ(∞) → 0. (13)

In Equations (8)–(13), N1 =
τDB(C̃g−C̃∞)

ν indicates Brownian motion parameter, N2 =
τDT̃(T̃g−T̃∞)

νT̃∞

characterizes thermophoresis parameter, M1 =
σB2

0
8ρb shows magnetic number, Ma =

γT̃
μΩ

√
Ω
γ signifies

Marangoni number, Ra =
γT̃ B
γT̃ A shows Marangoni ratio parameter, B1 = Q
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represents heat source

sink, Pr = ρcωμ
k signifies Prandtl number, Ec = ŭ2

∞
cω(T̃w−T̃∞)

indicates Eckert number, and Le = ν
DB

denotes Lewis number. Additionally, Nu the local Nusselt number is given as

Nu =
−r̃
(

∂T̃
∂z̃

)∣∣∣
z̃ = 0

k(T̃∞ − T̃w)
, (14)

and in dimensionless form becomes

R−1/2
d Nu =

Nu√
Rd

= −φ′(0), (15)

where Rd = ũwr̃
ν is local Reynold’s parameter.

3. Computational Scheme

We now solve the governing Equations (8)–(13), numerically by employing Runge–Kutta
fourth-order technique. For different sundry parameters, we perform numerical computation.

4. Physical Interpretation and Analysis

The main objective of this segment is to communicate the physical importance of heat and mass
transportation phenomenon in axisymmetric Marangoni convective flow with the impact of inclined
MHD on Casson nanoliquid over an infinite disk. To clearly check the insight of proposed model, the
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impact of different parameters (Casson fluid parameter β1, magnetic number M1, angle of inclination
α1, Marangoni number Ma, Brownian motion parameter N1, thermophoresis parameter N2, Prandtl
number Pr, heat source sink B1 and Lewis number Le) are considered on velocity field g(η),
temperature profile φ(η), concentration distribution ζ(η) and local Nusselt number Nu.

4.1. Assessment of Velocity Distribution

The performance of Casson fluid parameter β1 on velocity field g′(η) is demonstrated in Figure 2.
In this figure, one can see that, for enhancement in β1, velocity profile increases near the wall but
decreases when η > 1.4 and vanishes far away from the surface. This is because an increment in Casson
fluid parameter produces a decrease in yield stress and the fluid adopts rheological behavior and
associated boundary layer width reduces. In Figure 3, it is analyzed that a rise in magnetic parameter
M1 drops the fluid velocity. This logic is dependent on the fact that an increment in magnetic field
M1, which causes an increase in the resistive nature of Lorentz force, and consequently decreases the
velocity field. Figure 4 demonstrates the influence of inclination angle α1 on g′(η). It is apparent from
the sketch that velocity profile g′(η) reduces when the angle of inclination α1 increases. This is because,
when angle of inclination increases, the impact of magnetic field rises on liquid and as a result Lorentz
force increases, which in turn decreases the velocity profile. In addition, for α1 = 0, there is no effect
of magnetic field on velocity profile, whereas, for α1 = π/2, maximum resistance is noted. In Figure 5,
graphical representation signifies that velocity field is mounting function of Marangoni number Ma.
This behavior is because of Marangoni number, as it is the ratio between tangential stress and viscosity.
Therefore, the fluid with higher surface tension acts more strongly on the surrounding liquid and
consequently it enhances velocity of the fluid.

Β1 = 1.3, 1.5, 2.0, 2.5

  M1 = 0.5,  Α1 = Π/3, Ra = 0.5,  B1 = 0.2, Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.3
 N1 = 0.5, N2 = 1.5, Le = 1.5,

1 2 3 4 5 6 7
Η

0.1

0.2

0.3

0.4

0.5

0.6

g'�Η�

Figure 2. Influence of β1 on velocity field.
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 Β1 = 1.3,  Α1 = Π/3, Ra = 0.5,  B1 = 0.2, Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.3,
 N1 = 0.5, N2 = 1.5, Le = 1.5,

 M1= 0.0, 0.2, 0.4, 0.6
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Figure 3. Influence of M1 on velocity field.

 Β1 = 1.3,  Ra = 0.5,  B1 = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.5,
 N1 = 0.5, N2 = 1.5, Le = 1.5,
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Figure 4. Influence of α1 on velocity field.
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 Β1 = 1.3,  Ra = 0.5,  B1 = 0.2, M1 = 0.3, Α1 = Π/3,  Q1 = 0.5, Pr = 1.0, Ec = 0.5,
 N1 = 0.5, N2 = 1.5, Le = 1.5,

Ma = 0.3, 0.4, 0.5, 0.6 
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Figure 5. Influence of Ma on velocity field.

4.2. Assessment of Temperature Distribution

In this subsection, the temperature field φ(η) corresponds to various sundry parameter such
as thermophoresis parameter N2, Brownian motion parameter N1 and heat source parameter B1

are plotted in Figures 6–8. The behavior of N1 on φ(η) is sketched in Figure 6. The temperature field
φ(η) is increased with a rise in Brownian motion parameter N1. With the increment in Brownian
motion parameter, the fluid molecules becomes more energetic. As a result, the temperature field is
enhanced. Figure 7 shows the significance of Thermophoresis parameter N2 on φ(η). It is noted that
the temperature field is a mounting function of N2. Figure 8 shows the variation of heat source B1 via
temperature field φ(η). It is examined that temperature as well as the associated boundary layer is
increased by increment in heat source parameter B1. Physically, the rise in rate of heat source parameter
B1 leads to the thermal boundary layer thickness becoming greater, as does the temperature field.

 Β1 = 1.3,  Ra = 0.2,  B1 = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.8,
  Α1 = Π/3, N2 = 0.5, Le = 1.0,

N1 = 0.01, 0.2, 0.4, 0.6 
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0.2
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0.8

1.0

Φ�Η�

Figure 6. Influence of N1 on temperature field.
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 Β1 = 1.3,  Ra = 0.2,  B1 = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.8,
  Α1 = Π/3, N1 = 0.5, Le = 1.0,

N2 = 0.0, 0.5, 1.0, 1.5 
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Figure 7. Influence of N2 on temperature field.

 Β1 = 1.3,  Ra = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.8,
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Figure 8. Influence of B1 on temperature field.

4.3. Assessment of Concentration Distribution

The significance of Brownian motion N1 on concentration profile ζ(η) is displayed in Figure 9. It is
observed from the sketch that larger values of N1 fluid concentration reduce far away from the surface
and vanish after η ≥ 5. On the other side, it increases near the surface. This is due to the existence
of slip mechanisms of fluid particles, which influence the hydrodynamic and thermal bounce. Hence,
the presence of this terminology does not have significant impact on flow concentration. Further,
both thermophoresis parameter N2 and Lewis number Le show increasing impact for concentration
profiles (see Figures 10 and 11). The improvement in fluid concentration profile via Lewis number Le
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is due to the fact that it is characterized by fluid flows where simultaneously mass and heat transport
are involved. Therefore, an improvement is found in fluid concentration.

 Β1 = 1.3,  Ra = 0.2,  B1 = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.8,
  Α1 = Π/3, N2 = 0.5, Le = 1.0,

N1 = 0.2, 0.3, 0.4, 0.5 
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Figure 9. Influence of N1 on concentration field.

 Β1 = 1.3,  Ra = 0.2,  B1 = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.8,
  Α1 = Π/3, N1 = 0.5, Le = 1.0,

N2 = 0.2, 0.3, 0.4, 0.5 
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Figure 10. Influence of N2 on concentration field.
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 Β1 = 1.3,  Ra = 0.2,  B1 = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.8,
  Α1 = Π/3, N2 = N1 = 0.5, 

Le = 1.0, 1.2, 1.5, 1.9 
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Figure 11. Influence of Le on concentration field.

4.4. Assessment of local Nusselt Number

In Table 1, one can see that a good agreement is found between the present results and previous
literature. A very good agreement is found in RK-45 results; however, the results of HAM are
a little different but the variation trend is similar in all the cases. Table 2 presents the significance
of physical parameters through local Nusselt number Nu for axisymmetric Marangoni convective flow
of Casson liquid over an infinite disk with the impact of an inclined MHD. Near the wall or boundary,
Nusselt number has a dominant role, for the computation of thermal profile variations. The numerical
quantities of Nusselt number is supportive to convey the cumulative tendency of temperature gradient
in flow domain. It is observed in the table that rises in the Marangoni convective fluid parameter,
Ma, Marangoni ratio, Ra, and N2 monotonically decrease the Nusselt number Nu by keeping other
fluid parameters fixed. On the other hand, the parameters N1, Pr, B1 and Le manifest rises in heat flux
behavior Nu. The small increase on average Nusselt number indicates that greater heat exchange rate
occurs near boundary of the disk due to these parameters.

Table 1. Comparison table of current results with previously published literature setting the additional
parameters equals to zero.

r N1 = Nb N2 = Nt Pr Nux (Present) Nux ([12]) Nux ([15])

0.0 1.488649 1.488646 –
0.1 1.551383 1.551382 –
0.2 1.609960 1.609962 –

0.5 1.893601 1.893601 –
1.0 1.609966 1.609962 –
1.5 1.376585 1.376584 –

0.5 1.893141 1.893141 –
1.0 1.737723 1.737723 –
1.5 1.609960 1.609962 –

4.0 1.764112 1.764332 1.535191
5.0 1.767000 1.767004 1.696162
6.0 1.768490 1.768493 1.808222
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Table 2. Numeric values of local Nusselt parameter Nu for distinct values of sundry parameter where
β1 = 1.5, M1 = 1.0, Ec = 0.8 and α1 = π/5.

Ma Ra N1 N2 Pr B1 Le −R−1/2
d Nu

0.0 0.2 0.5 0.5 0.5 0.1 1.0 1.00000
0.3 0.99797
0.6 0.99772

0.3 0.1 0.5 0.5 0.5 0.1 1.0 0.99966
0.3 0.99690
0.5 0.99588

0.3 0.2 0.1 0.5 0.5 0.1 1.0 0.99657
0.5 0.99797
1.0 0.99966

0.0 0.2 0.5 0.1 0.5 0.1 1.0 0.99962
0.5 0.99797
1.0 0.99549

0.3 0.2 0.5 0.5 0.1 0.1 1.0 0.99755
0.7 0.99797
1.2 0.99857

0.3 0.2 0.5 0.5 0.5 0.1 1.0 0.99829
0.4 0.99979
0.8 1.00009

0.3 0.2 0.5 0.5 0.5 0.1 1.0 0.99829
1.4 0.99883
1.8 0.99923

5. Conclusions

In the present research work, we used RK45 scheme to simulate the two-dimensional Marangoni
convective flow along with MHD effect and related heat and mass transfer problem over an infinite
disk. The efficiency of proposed model was observed numerically and graphically, and found in
good agreement for heat transportation process. The influence of distinct parameters on proposed
flow problem are discussed in detail above. Further, the main findings of the present study are
highlighted below:

• Increase in Brownian motion parameter enhances the flow temperature field, however the same
goes for a declination of concentration field.

• Rise in thermophrases parameter improves the fluid temperature as well as concentration field.
• Larger values of Lewis number corresponds to the high concentration profile.
• Casson fluid parameter is found to be a reducing factor for fluid movement; therefore, admitting

the higher quantity of Casson fluid parameter causes a reduction in fluid velocity.
• Increment in magnetic parameter and angle of inclination are reducing factors for the motion

of fluid; however, the opposite performance in terms of heat transfer rate via Nusselt number is
noted for the two parameters.

• The higher amount of Marangoni number condenses the active connectivity, which leads
to improve the velocity profile.

• Temperature distribution rises up for the larger values of heat source sink.
• Increase in the Marangoni and Prandtl numbers show high increment on average Nusselt number,

which leads to the conclusion that less heat exchange happens near the disk, while small values
of fractional and physical parameters β1, M1, α1, Ra, N1, N2, Ec, B1 , and Le manifest the high
heat exchange rate near the boundary of the disk.
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Abstract: The current research explores the injection of a viscous fluid through a moving flat plate
with a transverse uniform magneto-hydrodynamic (MHD) flow field to reduce sliding drag. Two cases
of velocity slip between the slider and the ground are studied: a long slider and a circular slider.
Solving the porous slider problem is applicable to fluid-cushioned porous sliders, which are useful
in reducing the frictional resistance of moving bodies. By using a similarity transformation, three
dimensional Navier–Stokes equations are converted into coupled nonlinear ordinary differential
equations. The resulting nonlinear boundary value problem was solved analytically using the
homotopy analysis method (HAM). The HAM provided a fast convergent series solution, showing
that this method is efficient, accurate, and has many advantages over the other existing methods.
Solutions were obtained for the different values of Reynolds numbers (R), velocity slip, and magnetic
fields. It was found that surface slip and Reynolds number had substantial influence on the lift and
drag of the long and the circular sliders. Moreover, the effects of the applied magnetic field on the
velocity components, load-carrying capacity, and friction force are discussed in detail with the aid of
graphs and tables.

Keywords: porous slider; MHD flow; reynolds number; velocity slip; homotopy analysis method

1. Introduction

It is a well-established fact that a moving body reduces drag if it is elevated by a layer of
air. This phenomenon is used in air-cushioned vehicles and in air hockey, in which the frictional
resistance of moving objects is reduced. Skalak and Wang [1] were the pioneers of studying the
three-dimensional flow that arises between a moving porous flat plate and the ground, and they
later on wrote an erratum on their own paper [2]. Wang also studied elliptical porous sliders [3].
In the case of Newtonian fluids, past studies have included porous circular, long, inclined, and
elliptical sliders. R. C. Bhattacharjee studied a porous slider bearing lubricated with a coupled stress (a
magneto-hydrodynamic (MHD) fluid) [4]. Jimit made a comparison of the different porous structures
on the performance of a magnetic fluid [5]. Prawal Sinha analyzed the thermal effects of a long porous
rough slider bearing [6]. Mohmmadrayian analyzed a rough porous inclined slider bearing lubricated
with a ferrofluid in consideration of slip velocity [7]. Ji Lang both theoretically and experimentally
investigated the transient squeezing flow in a highly porous film [8]. Similarly, a large amount of
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literature is available in relation to long porous sliders (LPSs) [1,6,9–13] and circular porous sliders
(CPSs) [2,14–18]. Awati investigated the lubrication of a long porous slider by using the homotopy
analysis method (HAM) [10]. In a separate study, Khan studied the effects of Reynolds numbers
by using different analytical methods [11,12]. Naeem studied the influence of Reynolds numbers
(R) on long [13] and circular porous sliders [18]. Ghoreishi studied the circular slider [14]. Madani
investigated the circular porous slider by using HPM, and also analyzed its lift and drag [19].

All the above mentioned studies were done without a slip condition on either the immobile
ground or slider. However, a slip condition is essential for super-hydrophobic planes, as it is difficult to
have a zero mean tangential velocity from where the fluid is injected when there is a slip. Furthermore,
in order to minimize adhesion, the fluid could be a rarefied gas, where the compact exterior could be
coated with a material, or the ground could be uneven so that an equivalent slip exists or there is a slip
flow regime. Wang [16] discussed slip effects, but didn’t consider the effects of a transverse magnetic
field. Therefore, the goal of the current work is to examine the impact of slip and Reynolds numbers
when a transverse magnetic field is affecting the performance of a porous slider. Through the literature
survey, it is assumed that a three-dimensional flow with slip and a uniform magnetic field does not
exist. Hence, the goal of the current research is to analyze the performance of porous sliders in the
presence of slip and a Reynolds number with a constant magnetic field, and to assess their effects on
the components of velocity lift and drag.

The structure of the article is as follows: In the introduction, a brief history of the problem of the
porous slider and its application is presented. In the second section, the formulation of the problems are
given, while in the third section the formulation of a homotopic solution is presented [20]. The fourth
section deals with the convergence criteria of the HAM. Results and discussions are given in the fifth
section. Finally, the conclusion is given in the sixth section, with a list of nomenclature.

As discussed above, the velocity slip condition is considered in this study. Navier introduced the
slip condition for the first time as follows:

x1 = Hς (1)

In Equation (1), tangential velocity u is proportional to the shear stress and H is the constant of
proportionality, which is actually a slip coefficient. In order to ignore the end effects, it is assumed that
the gap between slider and ground is quite small as compared to the slider’s lateral dimension. Both
circular and long porous sliders are considered in this study.

2. Problem Formulation of Long and Circular Sliders

In this study, the incompressible and steady flow of a viscous fluid between porous (long and
circular) sliders and the ground is considered in the presence of a uniform magnetic field, as shown in
Figure 1.
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Figure 1. (a) Schematic diagram of the movement of a long porous slider (LPS). (b) Schematic diagram
of the movement of a circular porous slider (CPS).

Length and width are quite big compared to height d. The slider moves with the velocity
components and is elevated because of the injection of fluid from below with a magnetic field applied
externally. In order to avoid the induced magnetic field formed by the movement of the fluid, it is
assumed that the magnetic Reynolds number is not very big. Furthermore, the induced and imposed
electric field are supposed to be negligible, and therefore the electromagnetic body force per unit
volume simplifies Fem = σ0(v× B) × B, where B =(0, 0, B0) is the magnetic field.

Under the above-stated assumptions and conditions, Navier–Stokes equations take the
following form:
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Velocity components are expressed as (φ1,φ2,φ3), where ρ, p, and υ are density, pressure and
kinematic viscosity, respectively. Law of conservation of mass is as follows:

∂φ1

∂x1
+
∂φ2

∂x2
+
∂φ3

∂x3
= 0 (5)

According to Naeem [13], the following transform has been used:

φ1 = Uψ1(ς) +
W
d

x1ψ3
/(ς),φ2 = Vψ2(ς),φ3 = −Wψ3(ς). (6)

where ς = x3
d . By adding Equation (6) into Equations (2)–(4), the following ordinary differential

equations are obtained:
ψiv

3 = R
(
ψ/

3ψ
//
3 −ψ3ψ

///
3

)
+ M2ψ/

3 (7)

ψ//
1 = R

(
ψ1ψ

/
3 −ψ3ψ

/
1

)
+ M2ψ1 (8)

ψ//
2 = −R

(
ψ1ψ

/
2

)
+ M2ψ2 (9)

where R is the Reynolds number (R = Wd/υ). Boundary conditions at x3 = 0 and x3 = d are given in
Equations (10) and (11), respectively.

φ1 = U + H1μ
∂φ1

∂x3
, φ2 = V + H1μ

∂φ2

∂x3
, φ3 = 0 (10)

φ1 = −H2μ
∂φ1

∂x3
, φ2 = −H2μ

∂φ2

∂x3
= 0, φ3 = −W (11)

where H1, H2, and μ = ρυ are slip coefficients and viscosity, respectively. Equations (10) and (11) take
the following form:

ψ/
3 (0) = β1ψ

//
3 (0) =,ψ3(0) = 0,

ψ3(1) = 1,ψ/
3 (1) = −β2ψ

//
3 (1),

ψ1(1) = −β2ψ
/
1 (1),ψ1(0) − 1 = β1ψ

/
1 (0),

ψ2(1) = −β2ψ
/
2 (1),ψ2(0) − 1 = β1ψ

/
2 (0).

(12)

where β1 = H1μ/d, β2 = H2μ/d are slip factors. Equations (7)–(9) and (12) will be solved by the HAM.
The expression for pressure can be deduced from Equations (2)–(4) as follows:

− p
ρ
=

W2Λx2
1

2d
+

1
2
φ2

3 − γφ3,x3 + A (13)

where Λ, A are constants and

Λ =
(
ψ/

3

)2 −ψ3ψ
//
3 −

1
R
ψ///

3 =
(
ψ/

3 (0)
)2 − 1

R
ψ///

3 (0). (14)

If 2l is the width of the slider with ambient pressure ρ0, then Equation (13) gives

p− p0 = −ρ
ΛW2

(
x2

1 − l2
)

2d2 . (15)
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The relationship between depth and lift can be expressed as follows:

L =

1∫
−1

(p− p0)dx =
2ρW2l3

3d2 Λ. (16)

where 2ρW2l3/
(
3d2

)
is normalized factor. The relationship between depth and drag in the x1−

direction is

Dx1 = −
1∫
−1

μ
∂φ1

∂x3
| z=ddx1 = −2μUl

d
ψ/

1 (1). (17)

Similarly, 2μUl/d is the normalized factor of drag in the x1− direction, which is −ψ/
1 (1), while

−ψ/
2 (1) is normalized drag for the x2− direction:

Dx2 = −
1∫
−1

μ
∂φ2

∂x3
| z=ddx1 = −2μVl

d
ψ/

2 (1). (18)

Similarly, from Figure 1b, a circular slider can be seen, where L is the radius of the slider (which
can be assumed to be comparatively bigger than the width). Since the slider is levitated, the axes on
the slider can be fixed so that the ground is moving with a velocity component in the x1− direction.
For the circular slider, a similar transform [18] helps to reduce the partial differential equations into
ordinary differential equations:

x1 = Uψ5(ς) +
W
d

x1ψ
/
4 (ς), x2 =

W
d

x2ψ
/
4 (ς), x3 = −2Wψ4(ς). (19)

With the help of Equation (19), Equations (2)–(4) take the following form

ψiv
4 − 2Rψ4ψ

///
4 −M2ψ/

4 = 0 (20)

ψ//
5 −R

(
ψ5ψ

/
4 − 2ψ4ψ

/
5

)
−M2ψ5 = 0 (21)

− p
ρ
=

W2Λ(x2
1 + x2

2)

2d
+

1
2

x2
3 − γx3,x3 + C (22)

in which Λ, C are constants and

Λ1 =
(
ψ/

4 (0)
)2 − 1

R
ψ///

4 (0). (23)

The boundary conditions on x3 = 0&d :

ψ/
4 (0) = β1ψ

//
4 (0) =,ψ4(0) = 0,

ψ4(1) = 1/2,ψ/
4 (1) = −β2ψ

//
4 (1),

ψ5(1) = −β2ψ
/
5 (1),ψ5(0) − 1 = β1ψ

/
5 (0).

(24)

To normalize the lift, integrating the bottom of the slider as a result of the normalized factor can
be expressed as πρW2l4/4d.

L =
4d

πρW2l4

�
s

(p− p0)ds =
1

R3 Λ. (25)

The relationship between depth and drag in the x1− direction is

Dx1 =
d

πμUl2

�
s

Hx3x1ds = − 1
R3ψ

/
5 (1). (26)
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3. Homotopic Solution Procedure

To apply HAM [20], the following initial guesses for Equations (7)–(9), (20), and (21) can be
chosen as

ψ3,0(ς) =
−2ς3(1+β1+β2)+3ς(1+2β2)(ς+2β1)

1+4(β1+β2)+12β1β2
,

ψ1,0(ς) =
1−ς+β2

1+β1+β2
,ψ2,0(ς) =

1−ς+β2
1+β1+β2

,

ψ4,0(ς) =
−2ς3(1+β1+β2)+3ς(1+2β2)(ς+2β1)

2(1+4(β1+β2)+12β1β2)
,ψ5,0(ς) =

1−ς+β2
1+β1+β2

(27)

For the initial approximation, the following auxiliary linear operators can be chosen:

L(ψ3) =
d4h
dς4 , L(ψ1) =

d2θ
dς2 , L(ψ2) =

d2θ
dς2 ,

L(ψ4) =
d4θ
dς4 , L(ψ5) =

d2θ
dς2 .

(28)

which satisfies
Lψ1 [A5 + A6ς] = 0, Lψ2 [A7 + A8ς] = 0,
Lψ3

[
A1 + A2ς+ A3ς2 + A4ς4

]
= 0,

Lψ4

[
A9 + A10ς+ A11ς2 + A12ς4

]
= 0, Lψ5 [A13 + A14ς] = 0.

(29)

in which Ai(i = 1− 14) are constants of integration.

Initial Order Deformation Problem

The deformation equations for the initial order can be viewed as follows:

(1−Φ)Lψ1

[�
ψ1(ς, Φ) −�ψ1,0(ς, Φ)

]
= Φ�ψ1Hψ1Nψ1

[�
ψ1(ς, Φ)

]
(30)

(1−Φ)Lψ2

[�
ψ2(ς, Φ) −�ψ2,0(ς, Φ)

]
= Φ�ψ2Hψ2 Nψ2

[�
ψ2(ς, Φ)

]
(31)

(1−Φ)Lψ3

[�
ψ3(ς, Φ) −�ψ3,0(ς, Φ)

]
= Φ�ψ3Hψ3 Nψ3

[�
ψ3(ς, Φ)

]
(32)

(1−Φ)Lψ4

[�
ψ4(ς, Φ) −�ψ4,0(ς, Φ)

]
= Φ�ψ4Hψ4 Nψ4

[�
ψ4(ς, Φ)

]
(33)

(1−Φ)Lψ5

[�
ψ5(ς, Φ) −�ψ5,0(ς, Φ)

]
= Φ�ψ5 Hψ5Nψ5

[�
ψ5(ς, Φ)

]
(34)

and the boundary conditions are

�
ψ1(1, Φ) = −μ2

�
ψ

/

1 (1, Φ),
�
ψ1(0, Φ) − 1 = −μ1

�
ψ

/

1 (0, Φ) (35)

�
ψ

/

2 (0, Φ) − 1 = −μ1
�
ψ

/

2 (0, Φ),
�
ψ2(1, Φ) = −μ2

�
ψ

/

2 (1, Φ) (36)

�
ψ

/

3 (0, Φ) = μ1
�
ψ

//

3 (0, Φ),
�
ψ3(0, Φ) = 0,

�
ψ3(1, Φ) = 1,

�
ψ

/

3 (1, Φ) = −μ2
�
ψ

//

3 (1, Φ) (37)

�
ψ

/

4 (0, Φ) = μ1
�
ψ

//

4 (0, Φ),
�
ψ4(0, Φ) = 0,

�
ψ4(1, Φ) = 1/2,

�
ψ

/

4 (1, Φ) = −μ2
�
ψ

//

4 (1, Φ), (38)

�
ψ5(1, Φ) = −μ2

�
ψ

/

5 (1, Φ),
�
ψ5(0, Φ) − 1 = −μ1

�
ψ

/

5 (0, Φ) (39)

where Nψ1 , Nψ2 , Nψ3 , Nψ4 , and Nψ5 are defined as

Nψ3

[�
ψ3(ς; Φ)

]
=
�
ψ3

//// −R
(�
ψ3

/
�
ψ3

// −�ψ3

�
ψ3

///
)
−M2ψ/

3 (40)

N�
ψ1

[�
ψ1(ς; Φ)

]
=
�
ψ1

// −R
(�
ψ1

�
ψ3

/ −�ψ3

�
ψ1

/
)
−M2ψ1, (41)
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N�
ψ2

[�
ψ2(ς; Φ)

]
=
�
ψ2

// + R
(�
ψ3

�
ψ2

/
)
−M2ψ2, (42)

Nψ4

[�
ψ4(ς; Φ)

]
=
�
ψ4

//// − 2R
�
ψ4

�
ψ4

/// −M2
�
ψ4

/ (43)

Nψ5

[�
ψ5(ς; Φ)

]
=
�
ψ5

// −R
(�
ψ5

�
ψ4

/ − 2
�
ψ4

�
ψ5

/
)
−M2

�
ψ5 (44)

Here, the auxiliary parameters are �ψ1 � 0,�ψ2 � 0,�ψ3 � 0,�ψ4 � 0, and �ψ5 � 0, while
the non-zero auxiliary functions are expressed as Hψ1 , Hψ2 , Hψ3 , Hψ4 , and Hψ5 , and ς ∈ [0, 1] is the
embedding parameter.

From Equations (30)–(34), it is observed that when ς = 0 there is

�
ψ1(ς, 0) =

�
ψ1,0(ς),

�
ψ2(ς, 0) =

�
ψ2,0(ς),

�
ψ3(ς, 0) =

�
ψ3,0(ς),

�
ψ4(ς, 0) =

�
ψ4,0(ς),

�
ψ5(ς, 0) =

�
ψ5,0(ς). (45)

As ς = 1 and �ψ1 � 0,�ψ2 � 0,�ψ3 � 0,�ψ4 � 0, �ψ5 � 0 and Hψ1 � 0, Hψ2 � 0, Hψ3 � 0,
Hψ4 � 0, Hψ5 � 0, then Equations (30)–(34) are obtained as

�
ψ1(ς, 1) =

�
ψ1(ς),

�
ψ2(ς, 1) =

�
ψ2(ς),

�
ψ3(ς, 1) =

�
ψ3(ς),

�
ψ4(ς, 1) =

�
ψ4(ς),

�
ψ5(ς, 1) =

�
ψ5(ς),

In order to get mth- order deformation equations, Equations (30)–(34) are differentiated m- times
with respect to ς, after substituting ς = 0 and dividing both sides by m!. Finally, the mth- order
deformation equations take the following forms:

Lψ1 [ψ1,m(ς) − χmψ1,m−1(ς)] = �ψ1R1,m(ς). (46)

Lψ2 [ψ2,m(ς) − χmψ2,m−1(ς)] = �ψ2R3,m(ς). (47)

Lψ3

[
ψ3,m(ς) − χψ3hψ3−1(ς)

]
= �ψ3R3,m(ς). (48)

Lψ4

[
ψ4,m(ς) − χψ4 hψ4−1(ς)

]
= �ψ4R4,m(ς). (49)

Lψ5

[
ψ5,m(ς) − χψ5 hψ5−1(ς)

]
= �ψ5 R5,m(ς). (50)

with boundary conditions

�
ψ1,m(1) = −μ2

�
ψ

/

1,m(1),
�
ψ1,m(0) − 1 = μ1

�
ψ

/

1,m(0) (51)

�
ψ2,m(1) = −μ2

�
ψ

/

2,m(1),
�
ψ2,m(0) − 1 = μ1

�
ψ

/

2,m(0) (52)

�
ψ

/

3,m(0) = μ1
�
ψ

//

3,m(0) =,
�
ψ3,m(0) = 0,

�
ψ3,m(1) = 0,

�
ψ

/

3,m(1) = −μ2
�
ψ

//

3,m(1) (53)

�
ψ

/

4,m(0) = μ1
�
ψ

//

4,m(0) =,
�
ψ4,m(0) = 0,

�
ψ4,m(1) = 0,

�
ψ

/

4,m(1) = −μ2
�
ψ

//

4,m(1) (54)

�
ψ5,m(1) = −μ2

�
ψ

/

5,m(1),
�
ψ5,m(0) − 1 = μ1

�
ψ

/

5,m(0) (55)

where

R1,m(ς) = ψ
//
1,m−1 −R

m−1∑
k=0

ψ1,m−1ψ
/
3,k + R

m−1∑
k=0

ψ3,m−1ψ
/
1,k (56)

R2,m(ς) = ψ
//
2,m−1 + R

m−1∑
k=0

ψ3,m−1ψ
/
2,k (57)
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R3,m(ς) = ψ
////
3,m−1 −R

m−1∑
k=0

ψ/
3,m−1ψ

//
3,k + R

m−1∑
k=0

ψ3,m−1ψ
///
3,k (58)

R4,m(ς) = ψ
////
4,m−1 − 2R

m−1∑
k=0

ψ4,m−1ψ
///
4,k −M2

m−1∑
k=0

ψ/
4,k (59)

R5,m(ς) = ψ
//
5,m−1 −R

m−1∑
k=0

ψ5,m−1ψ
/
4,k − 2

m−1∑
k=0

ψ4,m−1ψ
//
5,k −M2ψ5 (60)

A well-known software called MATHEMATICA has been used to solve the modeled problem.

4. Convergence Criteria

HAM was applied to compute the solution of the problems given in Equations (7)–(9), (20), and
(21), as HAM contains the non-zero auxiliary parameter �i(i = 1− 5), which ensures the convergence of
the solution. To get a suitable value for the �i,�i− curves are displayed. To guarantee the convergence,
20th order �i− curves have been drawn in Figures 2–6. It can easily be seen from the �i curves that the
acceptable values of �i were 0.5 ≤ �1 ≤ 1.5, − 1.5 ≤ �2 ≤ −0.5, 0 ≤ �3 ≤ 6, for the long slider. Similarly,
acceptable values for the circular slider were 0.5 ≤ �4 ≤ 1.5, − 1 ≤ �5 ≤ 4.

Figure 2. �1 for the strip/long slider.
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Figure 3. �2 for the strip/long slider.

Figure 4. �3 for the strip/long slider.

361



Mathematics 2019, 7, 748

Figure 5. �4 for the circular slider.

Figure 6. �5 for the circular slider.

5. Results and Discussion

The obtained results from the above-mentioned method (HAM) are presented in the form of tables
and graphs. Tables 1 and 2 display the effects of the slip on the dynamic properties of a slider, showing
that normalized lift and drag decrease as the slip and/or Reynolds number increases. The lift (per area)
of the strip slider was much greater than the circular slider, although the drag remained the same in
both cases. The effect of slip could be substantial, affecting the drag much more than the lift.
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Table 1. Properties of the long porous slider. Normalized lift Λ, normalized x1− direction drag, and
normalized x2− direction drag.

β1,β2 M2 R Λ −ψ/1(1) −ψ/2(1)
0, 0 0 0.2 62.33 0.896 0.932

- - 0.5 26.34 0.760 0.836
- - 2.0 8.412 0.334 0.467
- - 5.0 4.917 0.063 0.123
- - 20 3.267 0 0
- - 50 2.909 0 0

0.1, 0.1 2 0.2 39.27 0.743 0.780
- 4 0.5 16.78 0.626 0.704
- 6 2.0 6.596 0.4372 0.2536
- 10 5.0 3.436 0.3245 0

20 20.0 2.440 0.1520 0
50 50.0 2.240 0 0

0.1, 1 2 0.2 20.31 0.424 0.463
- 4 0.5 8.859 0.357 0.436
- 6 2.0 3.159 0.160 0.321
- 10 5.0 2.050 0.035 0.123

20 20.0 1.513 0 0.0632
50 50.0 1.391 0 0.012

0.1, 10 2 0.2 5.316 0.064 0.082
- 4 0.5 2.702 0.046 0.080
- 6 2.0 1.413 0.013 0
- 10 5.0 1.175 0.002 0

20 20.0 1.068 0 0
50 50.0 1.047 0 0

1, 1 2 0.2 9.727 0.275 0.315
- 4 0.5 4.591 0.210 0.288
- 6 2.0 2.048 0.068 0.172

10 5.0 1.569 0.011 0.047
20 20.0 1.355 0 0
50 50.0 1.315 0 0
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Table 2. Properties of the circular porous slider. Normalized lift Λ, normalized drag −ψ/
1 (1).

β1,β2 M2 R Λ −ψ/1(1)
0, 0 0 0.2 30.78 0.914

- - 0.5 12.79 0.797
- - 2.0 3.833 0.392
- - 5.0 2.019 0.085
- - 20 1.349 0
- - 50 1.194 0

0.1, 0.1 2 0.2 19.33 0.761
- 4 0.5 8.089 0.663
- 6 2.0 2.503 0.310
- 10 5.0 1.445 0.1014

20 20.0 0.994 0
50 50.0 0.908 0

0.1, 1 2 0.2 9.853 0.441
- 4 0.5 4.130 0.394
- 6 2.0 1.288 0.129
- 10 5.0 0.752 0.0145

20 20.0 0.529 0
50 50.0 0.483 0

0.1, 10 2 0.2 6.438 0.084
- 4 0.5 2.699 0.076
- 6 2.0 0.841 0.015
- 10 5.0 0.488 0

20 20.0 0.338 0
50 50.0 0.305 0

1, 1 2 0.2 4.611 0.294
- 4 0.5 2.043 0.244
- 6 2.0 0.776 0.0215

10 5.0 0.549 0
20 20.0 0.466 0
50 50.0 0.453 0

Velocity distributions for the long and circular slider are presented graphically in Figures 7–9.

Figure 7. Similarity function ψ/
3 for the long slider.
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Figure 8. Similarity function ψ2 for the long slider.

Figure 9. Similarity function ψ1 for the long slider.

For the long slider, the effect of the Reynolds number in the presence of slip and the magnetic field
is shown in Figures 10–18. It is observed that the velocity profile was very much changed. It was seen
that slip near the ground reduced the lateral velocity much more than slip on the slider. Moreover,
increasing the magnetic parameter decreased the lateral velocity components further (see Figure 12).
The effects of the Reynolds number on the typical velocity distribution for the circular slider were
similar, as displayed in Figures 19–28. The behavior of velocity profiles was similar for the long and
circular sliders in cases of no-slip (see Figures 19 and 20). Further, velocity profiles behaved in a similar
fashion in both cases (i.e., parabolic or linear for a low Reynolds number, while a boundary layer
formed near the surface in cases of a large Reynolds number). Figures 21–28 demonstrate the effect of
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the slip parameter on the velocity components corresponding to different Reynolds numbers. These
pictorial descriptions demonstrate that velocity profiles decrease with an increase in slip parameters,
and that this decrease become even greater after applying the magnetic field. This is due to the fact
that slip hinders fluid particles and displaces motion in the vicinity.

Figure 10. Similarity function ψ/
3 for the long slider.

Figure 11. Similarity function ψ2 for the long slider.

Figure 12. Similarity function ψ1 for the long slider.
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Figure 13. Similarity function ψ/
3 for the long slider.

Figure 14. Similarity function ψ2 for the long slider.

Figure 15. Similarity function ψ1 for the long slider.
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Figure 16. Similarity function ψ/
3 for the long slider.

Figure 17. Similarity function ψ1 for the long slider.

Figure 18. Similarity function ψ/
3 for the long slider.
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Figure 19. Similarity function ψ/
3 for the circular slider.

Figure 20. Similarity function ψ1 for the circular slider.
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Figure 21. Similarity function ψ/
3 for the circular slider.

Figure 22. Similarity function ψ1 for the circular slider.
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Figure 23. Similarity function ψ/
3 for the circular slider.

Figure 24. Similarity function ψ1 for the circular slider.

Figure 25. Similarity function ψ/
3 for the circular slider.
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Figure 26. Similarity function ψ1 for the circular slider.

Figure 27. Similarity function ψ/
3 for the circular slider.
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Figure 28. Similarity function ψ1 for the circular slider.

These results qualitatively confirm the expectation that a drag-like Lorentz force is created by
the magnetic field normal to the lateral flow direction, and this force decreases the lateral velocity
components. Lift and drag components are important physical quantities for a porous slider. It is
interesting to note that the lift is free of translation, but the drag components depend on a cross flow.
The effectiveness of a porous slider can be enhanced by making the ratio of friction force to lift smaller.
As pointed out by Wang [16], the porous slider should be operated at a cross-flow Reynolds number
below unity for optimum efficiency. According to Table 1, porous sliders should be operated at small
values that are still valid even when an external uniform magnetic field is applied. Moreover, from the
point of view of optimum efficiency, it is more efficient to move a flat slider on a fluid subject than in a
high-intensity magnetic field.

6. Conclusions

In this research, different studies have been complied altogether. Different researchers have
analyzed fluid flow on a long slider without slip, while others were interested only in a circular slider
without slip. Wang presented a comparative study of the both sliders and added velocity slip, but did
not cover the effects of a magnetic field. As such, one concern of this study was theoretical investigation
of a steady three-dimensional flow of a viscous fluid between a porous slider and the ground in the
presence of a transverse uniform magnetic field with velocity slip. The effects of different physical
parameter values like Reynolds number and magnetic field on the lateral velocity profiles and lift and
drag components were presented in graphs and tables in the presence of velocity slip. It is expected
that the results of the present study could be useful for the understanding of various technical problems
related to porous sliders where magnetic and velocity slip are the main physical parameters. The main
findings are as follows:

• It was shown that normalized lift and drag go down as slip and/or the Reynolds number goes up
(see Tables 1 and 2). The lift (per area) of a long slider is much greater than a circular slider. The
drag remains the same for both sliders.

• Slip near the ground reduces lateral velocity of the slider much more than slip. By increasing the
magnetic parameter, the lateral velocity components decrease further.
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• The behavior of velocity profiles is similar for the long and the circular sliders in cases of no-slip
(i.e., parabolic or linear for a low Reynolds number).

• In cases of a large Reynolds number, a boundary layer formed near the surface, while velocity
profiles decreased with an increase in slip parameters, a decrease which grew more pronounced
after applying the magnetic field.
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Nomenclature

B0 Magnetic field μ Dynamic viscosity
d Width η Similarity variable
H1, H2 Slip coefficient τ Extra stress tensor
I Identity tensor β1, β2 Slip factors
l Length ψ1,ψ2,ψ3 Velocity function
p Pressure φ1,φ2,φ3 Velocity components
v0 Constant viscosity ρ Fluid density
x1, x2, x3 Space coordinates
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Abstract: The influence of second-order velocity slip on the MHD flow of nanofluid in a porous
medium under the effects of homogeneous-heterogeneous reactions has been analyzed. The
governing flow equation is exactly solved and compared with those in the literature for the skin
friction coefficient in the absence of the second slip, where great differences have been observed. In
addition, the effects of the permanent parameters on the skin friction coefficient, the velocity, and
the concentration have been discussed in the presence of the second slip. As an important result,
the behavior of the skin friction coefficient at various values of the porosity and volume fraction
is changed from increasing (in the absence of the second slip) to decreasing (in the presence of the
second slip), which confirms the importance of the second slip in modeling the boundary layer flow
of nanofluids. In addition, five kinds of nanofluids have been investigated for the velocity profiles
and it is found that the Ag-water nanofluid is the lowest. For only the heterogeneous reaction, the
concentration equation has been exactly solved, while the numerical solution is applied in the general
case. Accordingly, a reduction in the concentration occurs with the strengthening of the heterogenous
reaction and also with the increase in the Schmidt parameter. Moreover, the Ag-water nanofluid is of
lower concentration than the Cu-water nanofluid. This is also true for the general case, when both of
the homogenous and heterogenous reactions take place.

Keywords: homogeneous-heterogeneous reactions; porous medium; first slip; second slip; exact
solution

1. Introduction

The main characteristic of nanofluid is the significant enhancement of the thermal properties
of the base fluid. The term nanofluid comes back to a pioneering experimental research by Choi [1]
in which a conclusion had been reached that the thermal conductivity of a base fluid is enhanced
up to two times by adding a small amount of nanoparticles. In addition, some authors [2,3] found
that the dispersion of a small amount of copper nanoparticles led to 40% of the thermal conductivity
of the fluid, while adding a small amount of carbon nanotubes in ethylene glycol or oil led to 50%.
Aly and Ebaid [4] considered five metallic and nonmetallic nanoparticles in a base of water, where an
effective approach was introduced to derive the exact solution. One of the important results in the
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field of nanofluid flow has been presented by Majumder [5], in which it was experimentally proven
that nanofluidic flow exhibits partial slip against the solid surface, which can be characterized by
the so-called slip length. Accordingly, the authors in [6] discussed the effect of partial slip boundary
condition on the flow and heat transfer of nanofluids past stretching sheet at constant wall temperature.
Furthermore, the no-slip condition is no longer valid for fluid flows at the micro- and nanoscale and,
instead, a certain degree of tangential slip must be allowed [7,8]. Very recently, Sharma and Ishak [9]
studied the second-order velocity slip effect on the boundary layer flow of Cu-water-based nanofluid
with heat transfer over a stretching sheet. Their numerical results were based on the finite element
method (FEM). A model for isothermal homogeneous-heterogeneous reactions in boundary layer
flow of viscous fluid past a flat plate was studied by Merkin [10]. He presented the homogeneous
reaction by cubic autocatalysis and the heterogeneous reaction by a first-order process and showed
that the surface reaction is the dominant mechanism near the leading edge of the plate. Chaudhary
and Merkin [11] studied the homogenous-heterogeneous reactions in boundary layer flow of viscous
fluid. They found the numerical solution near the leading edge of a flat plate. Bachok et al. [12] focused
on the stagnation-point flow towards a stretching sheet with homogeneous-heterogeneous reactions
effects. Effects of homogeneous-heterogeneous reactions on the flow of viscoelastic fluid towards a
stretching sheet were investigated by Khan and Pop [13]. Kameswaran et al. [14] extended the work
of [13] for nanofluid over a porous stretching sheet. In general, porous medium is used for transport
and storage of energy. Analysis of flow through a porous medium has become the core of several
scientific and engineering applications. These applications include the utilization of geothermal energy,
the migration of moisture in fibrous insulation, food processing, casting and welding in manufacturing
processes, the dispersion of chemical contaminants in different industrial processes, the design of
nuclear reactors, chemical catalytic reactors, compact heat exchangers, solar power, and many others.
Further, the use of micro/nano electromechanical systems (MEMS/NEMS) has been increased in many
industries. Such systems have association with velocity slip [15–19]. Very recently, Hayat et al. [20]
studied the MHD flow of nanofluid with homogeneous-heterogeneous reactions of two chemical
species and velocity slip. In this field of research, some pioneer works were introduced in [21–24] in
which several non-Newtonian models have been analyzed. In [21], a novel radiation MHD activation
energy Carreau and nanofluid effects of thermal energy systems have been investigated. The combined
electrical MHD Ohmic dissipation forced and free convection of an incompressible Maxwell fluid on
a stagnation point heat and mass transfer energy conversion problem have been studied in [22]. In
addition, an applied thermal system for heat and mass transfer and energy management problem of
hydromagnetic flow with magnetic and viscous dissipation effects of micropolar nanofluids towards
a stretching sheet has been investigated by [23]. Moreover, the effect of the slip boundary condition
on the stagnation electrical MHD nanofluid mixed convection on a stretching sheet was introduced
in [24].

The objective of this work is to extend the model investigated by Hayat et al. [20] by considering
the second-order slip velocity. Therefore, the extended model is given as

f ′′′ (η) =
(

λ + (1 − φ)2.5M
)

f ′(η)− φ1

(
f (η) f ′′ (η)− ( f ′(η)

)2
)

, (1)

1
Sc

g′′ (η) = Kg(η)(h(η))2 − f (η)g′(η), (2)

δ

Sc
h′′ (η) = −Kg(η)(h(η))2 − f (η)h′(η), (3)

subject to
f (0) = 0, f ′(0) = 1 + γ f ′′ (0) + μ f ′′′ (0), f ′(∞) = 0, (4)

g′(0) = Ksg(0), g(∞) = 1, (5)

δh′(0) = −Ksg(0), h(∞) = 0, (6)
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where

φ1 = (1 − φ)2.5

(
1 − φ + φ

(ρCp)s
(ρCp) f

)
, (7)

and φ is the solid volume fraction of the nanoparticles, λ is the porosity parameter, M is the Hartman
number, Sc is the Schmidt parameter, K is the measure of the strength of the homogeneous reaction, Ks

is the measure of the strength of the heterogeneous reaction, δ is the ratio of the diffusion coefficient, ρs

and ρf are respectively the densities of nanoparticles and base fluid, γ and μ are respectively the first
and the second velocity slip parameters, and f ′(η), g(η) and h(η) are respectively the fluid velocity
and the concentrations of the two chemical species.

Following [20], the parameter δ can be taken as unity especially when the diffusion coefficients of
two chemical species are the same. In this case, we have [20]

h(η) + g(η) = 1, (8)

and hence Equations (2) and (3) reduce to

1
Sc

g′′ (η) = Kg(η)(1 − g(η))2 − f (η)g′(η), (9)

subject to the same boundary conditions given in Equation (5). In [20], the authors applied the
homotopy analysis method to solve the set of boundary value problems (1)–(6) in the absence of the
second slip parameter (i.e., when μ = 0). However, Equation (1) with the boundary conditions (3) can
be exactly solved, even in the presence of the second slip parameter μ, as will be introduced in the next
section. This exact solution for f (η) will be then compared with the results obtained by [20] at a special
case. Further, this exact formula for f (η) is to be inserted into Equation (9) to form with the boundary
conditions (5) a single nonlinear differential equation in the unknown g(η). Details of the suggested
procedure are presented in the next section.

2. Methodology

Following [25,26], f (η) can be obtained as

f (η) =
1

β(1 + γβ − μβ2)

(
1 − e−βη

)
, (10)

where β is the positive root of the following nonlinear equation:

μβ4 − γβ3 −
(

1 + λμ + μM(1 − φ)2.5
)

β2 +
(

γλ + Mγ(1 − φ)2.5
)

β +
(

φ1 + λ + M(1 − φ)2.5
)
= 0. (11)

On inserting Equation (11) into Equation (9), we obtain the following nonlinear ordinary
differential equation (ODE) for g(η):

g′′ (η) + Ω
(

1 − e−βη
)

g′(η)− KScg(η)(1 − g(η))2 = 0, (12)

where Ω is defined as
Ω =

Sc
β(1 + γβ − μβ2)

. (13)

The skin friction coefficient is defined in [20] by Equation (14) and hence Equation (15) is obtained
by using the exact expression for f (η) in Equation (10).

Skin friction coefficient = − 2

(1 − φ)2.5 f ′′ (0), (14)
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Skin friction coefficient =
2β

(1 − φ)2.5(1 + γβ − μβ2)
. (15)

At the special case, K → 0, the analytic solution of Equation (12) is given as

g(η) =
1 + εΓ

(
Ω/β, Ω/βe−βη , Ω/β

)
1 + εΓ(Ω/β, 0, Ω/β)

, (16)

where ε is defined by

ε = Ks(β)Ω/β−1
(

eβ2
/Ω
)Ω/β

. (17)

This case may be of a physical meaning when only the heterogenous reactions occur. The
concentration is therefore given as

g(0) =
1

1 + εΓ(Ω/β, 0, Ω/β)
. (18)

3. Discussion

In the beginning, it should be noted that the exact formula for the skin friction coefficient given
by Equation (15) will be invested here and used to validate the numerical results obtained in [20] by
applying the homotopy analysis method (HAM) when the second slip vanishes (i.e., at μ = 0). The
thermophysical properties of water and nanoparticles are introduced in Table 1. These properties have
been implemented to conduct the numerical results in Table 2. In view of these comparisons, it may be
concluded that the outputs of [20] need some revisions, especially since the differences between the
current exact values and the approximate ones seem to be obvious. Besides, the same values of the
physical parameters [20] have been selected to hold these comparisons.

Table 1. Properties of water and nanoparticles.

Cp (J/kg·K) ρ (kg/m3) K (W/m·K)

Pure Water 4179 4179 0.613
Copper (Cu) 385 8933 401
Silver (Ag) 235 10500 429
Alumina (Al2O3) 765 3970 40
Titanium Oxide(TiO2) 686.2 4250 8.9538
Silicon Dioxide (SiO2) 765 3970 36

Table 2. Comparisons between the numerical results of skin friction coefficient [20] and the present
exact values for copper and silver at μ = 0 and λ = 0.4.

φ M γ Cu Ag

HAM [20]
Exact

(Present)
HAM [20]

Exact
(Present)

0.05 0.5 1.0 1.278 1.23278 1.284 1.23843
0.1 1.465 1.41390 1.475 1.42485
0.2 1.955 1.88407 1.973 1.90636
0.2 0.1 1.897 1.81545 1.917 1.84209

0.3 1.928 1.85097 1.945 1.87529
0.7 1.981 1.91500 1.996 1.93552
0.5 0.1 4.542 4.31610 4.672 4.45659

0.5 2.827 2.70491 2.865 2.75469
0.9 2.079 2.00347 2.098 2.02905

In the presence of the second slip, exact values for the skin friction coefficient for the Ag-water
and the Cu-water nanofluids are listed in Table 3 at various values of φ, M, and γ when λ = 0.4.
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The results reveal that the skin friction coefficient for both nanofluids increases with an increase in the
volume fraction φ and the Hartman number M; however, it decreases with the increase in the first slip
γ and with the decrease in the second slip μ. Further, the variation of the skin friction coefficient is
depicted in Figure 1 against the porosity parameter λ at various values of the solid volume fraction
φ when μ = 0. It is clear from this figure that the skin friction increases with increases in both λ

and φ. However, in [20], it was found that this behavior is different than the current one. This also
confirms the conclusion made above that the method applied in [20] needs further improvement. In
addition, the results in Figure 2 indicate that the skin friction decreases with increases in both λ and φ

in the presence of the second slip parameter. Therefore, the behavior is changed from increasing in
Figure 1 (μ = 0) to decreasing in Figure 2 (μ = −0.5), which confirms the importance of the second slip
in modeling the boundary layer flow of nanofluids.

Table 3. Values of skin friction coefficient for copper and silver at various values of φ, M, γ and μ at
λ = 0.4.

φ M γ μ Cu Ag

0.01 0.5 1.0 −0.5 0.83677 0.83698
0.03 0.85850 0.85891
0.05 0.92832 0.92930
0.02 0.1 0.83658 0.83755

0.3 0.84949 0.85013
0.7 0.86457 0.86483
0.5 0.1 1.37395 1.37485

0.5 1.08412 1.08475
0.9 0.89573 0.89618
1.0 −0.1 1.06481 1.06653

−0.5 0.85850 0.85891
−0.9 0.72553 0.72545

Figure 1. Effects of φ on skin friction coefficient when the second slip vanishes.
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Figure 2. Effects of φ on skin friction coefficient in the presence of second slip.

The effect of the first slip parameter γ on the velocity of the nanofluids suspended with five
nanoparticles is displayed through Figures 3–5. Figures 3 and 4 show that the velocities of the
Ag/Cu/TiO2-water nanofluids satisfy f ′(η)|Ag < f ′(η)|Cu < f ′(η)|TiO2 . Figure 5 indicates that f ′(η)|SiO2

≈ f ′(η)|Al2O3 ≈ f ′(η)|TiO2 . Therefore, it can be concluded from Figures 3–5 that the Ag-water nanofluid
is of lower velocity than any of the four other types. This later conclusion is also observed and
confirmed through Figures 6–8 for the effect of the second slip μ on the velocity of the present five
types of nanofluids.

 
Figure 3. Effect of first slip γ on velocity of Cu-water and Ag-water nanofluids.

382



Mathematics 2019, 7, 220

 
Figure 4. Effect of first slip γ on velocity of Cu-water and TiO2-water nanofluids.

 
Figure 5. Effect of first slip γ on velocity of SiO2-water, Al2O3-water, and TiO2-water nanofluids.

 
Figure 6. Effect of second slip μ on velocity of Cu-water and Ag-water nanofluids.
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Figure 7. Effect of second slip μ on velocity of Cu-water and TiO2-water nanofluids.

 
Figure 8. Effect of second slip μ on velocity of SiO2-water, Al2O3-water, and TiO2-water nanofluids.

In the absence of the homogenous reaction (i.e., at K = 0), the exact solution for the concentration
g(η) is available and given by Equation (16). In that case, the effects of Ks and Sc on g(η) are plotted
in Figures 9 and 10, respectively. It is shown that a reduction in the concentration occurs with the
strengthening of the heterogenous reaction Ks and also with the increase in the Schmidt parameter
Sc. Moreover, the Ag-water nanofluid is of lower concentration than the Cu-water nanofluid. This is
also true for the general case, when both of the homogenous and heterogenous reactions take place in
Figure 11, where the NDSolve command in Mathematica 7.0 (Wolfram Research, Champaign, IL, USA)
has been used to solve the systems (5) and (12).
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Figure 9. Effects of Ks on g at K = 0.

 
Figure 10. Effects of Sc on g at K = 0.

 
Figure 11. Effects of Ks on g.
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4. Conclusions

In this paper, the effect of second velocity slip on the MHD flow of nanofluid in a porous medium
with homogeneous-heterogeneous reactions has been analyzed. In the absence of the second slip,
remarkable differences have been detected between the current exact results and those in the literature
for the skin friction coefficient. For velocity, it has been found that the Ag-water nanofluid is lower
than the other four kinds of nanofluids. For concentration, the exact solution has been given when
only the heterogeneous reaction occurs. When both of the homogenous and heterogenous reactions
take place, the concentration equation has been numerically solved. The concentration reduces with
the strengthening of the heterogenous reaction and also with the increase in the Schmidt parameter,
where the Ag-water nanofluid is of lower concentration than the Cu-water nanofluid.

Author Contributions: Conceptualization, F.A. and S.M.K.; methodology, F.A.; software, A.E.; validation, A.E.;
project administration, F.A.; funding acquisition, F.A.

Funding: This research was funded by the Deanship of Scientific Research (DSR), University of Tabuk, Tabuk,
Saudi Arabia, grant number 0074-1439-S.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. In Developments and Applications
of Non-Newtonian Flows; Siginer, D.A., Wang, H.P., Eds.; ASME: New York, NY, USA, 1995; Volume 66,
pp. 99–105.

2. Eastman, J.A.; Choi, S.U.S.; Li, S.; Yu, W.; Thompson, L.J. Anomalously increased effective thermal
conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78,
718–720. [CrossRef]

3. Choi, S.U.S.; Zhang, Z.G.; Yu, W.; Lockwoow, F.E.; Grulke, E.A. Anomalous thermal conductivities
enhancement on nanotube suspension. Appl. Phys. Lett. 2001, 79, 2252–2254. [CrossRef]

4. Aly, E.H.; Ebaid, A. Exact analytical solution for suction and injection flow with thermal enhancement of
five nanofluids over an isothermal stretching sheet with effect of the slip model: A comparative study. Abstr.
Appl. Anal. 2013, 2013, 721578. [CrossRef]

5. Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B.J. Nanoscale hydrodynamics: Enhanced flow in carbon
nanotubes. Nature 2005, 438, 44–46. [CrossRef] [PubMed]

6. Noghrehabadi, A.; Pourrajab, R.; Ghalambaz, M. Effect of partial slip boundary condition on the flow and
heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int. J. Sci. 2012, 54,
253–261. [CrossRef]

7. Gad-el-Hak, M. The fluid mechanics of macrodevices-the Freeman scholar lecture. J. Fluids Eng. 1999, 121,
5–33. [CrossRef]

8. Van Gorder, R.A.; Sweet, E.; Vajravelu, K. Nano boundary layers over stretching surfaces. Commun. Nonlinear
Sci. Numer. Simulat. 2010, 15, 1494–1500. [CrossRef]

9. Sharma, R.; Ishak, A. Second order slip flow of Cu-waternanofluid over a stretching sheet with heat transfer.
Wseas Trans. Fluid Mech. 2014, 9, 26–33.

10. Merkin, J.H. A model for isothermal homogeneous-heterogeneous reactions in boundary layer flow. Math.
Comput. Model. 1996, 24, 125–136. [CrossRef]

11. Chaudhary, M.A.; Merkin, J.H. A simple isothermal model for homogeneous-heterogeneous reactions in
boundary layer flow: I. Equal diffusivities. Fluid Dyn. Res. 1995, 16, 311–333. [CrossRef]

12. Bachok, N.; Ishak, A.; Pop, I. On the stagnation-point flow towards a stretching sheet with
homogeneous-heterogeneous reactions effects. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4296–4302.
[CrossRef]

13. Khan, W.A.; Pop, I. Effects of homogeneous-heterogeneous reactions on the viscoelastic fluid towards a
stretching sheet. J. Heat Transf. 2012, 134, 1–5. [CrossRef]

14. Kameswaran, P.K.; Shaw, S.; Sibanda, P.; Murthy, P.V.S.N. Homogeneous-heterogeneous reactions in a
nanofluid flow due to porous stretching sheet. Int. J. Heat Mass Transf. 2013, 57, 465–472. [CrossRef]

386



Mathematics 2019, 7, 220

15. Rashidi, M.M.; Kavyani, M.; Abelman, S. Investigation of entropy generation in MHD and slip flow over a
rotating porous disk with variable properties. Int. J. Heat Mass Transf. 2014, 70, 892–917. [CrossRef]

16. Mahmoud, M.A.A.; Waheed, S.E. MHD flow and heat transfer of a micropolar fluid over a stretching surface
with heat generation (absorption) and slip velocity. J. Egypt. Math. Soc. 2012, 20, 20–27. [CrossRef]

17. Ibrahim, W.; Shankar, B. MHD boundary layer flow and heat transfer of a nanofluid past a permeable
stretching sheet with velocity, thermal and solutal slip boundary conditions. Comput. Fluids 2013, 75, 1–10.
[CrossRef]

18. Rooholghdos, S.A.; Roohi, E. Extension of a second order velocity slip/temperature jump boundary condition
to simulate high speed micro/nanoflows. Comput. Math. Appl. 2014, 67, 2029–2040. [CrossRef]

19. Malvandi, A.; Ganji, D.D. Brownian motion and thermophoresis effects on slip flow of alumina/water
nanofluid inside a circular microchannel in the presence of a magnetic field. Int. J. Therm. Sci. 2014, 84,
196–206. [CrossRef]

20. Hayat, T.; Imtiaz, M.; Alsaedi, A. MHD flow of nanofluid with homogeneous-heterogeneous reactions and
velocity slip. Therm. Sci. 2017, in press. [CrossRef]

21. Hsiao, K.-L. To Promote Radiation Electrical MHD Activation Energy Thermal Extrusion Manufacturing
System Efficiency by Using Carreau-Nanofluid with Parameters Control Method. Energy 2017, 130, 486–499.
[CrossRef]

22. Hsiao, K.-L. Combined Electrical MHD Heat Transfer Thermal Extrusion System Using Maxwell Fluid with
Radiative and Viscous Dissipation Effects. Appl. Therm. Eng. 2016. [CrossRef]

23. Hsiao, K.-L. Micropolar Nanofluid Flow with MHD and Viscous Dissipation Effects towards a Stretching
Sheet with Multimedia Feature. Int. J. Heat Mass Transf. 2017, 112, 983–990. [CrossRef]

24. Hsiao, K.-L. Stagnation Electrical MHD Nanofluid Mixed Convection with Slip Boundary on a Stretching
Sheet. Appl. Therm. Eng. 2016, 98, 850–861. [CrossRef]

25. Ebaid, A.; al Mutairi, F.; Khaled, S.M. Effect of velocity slip boundary condition on the flow and heat transfer
of Cu-Water and TiO2-Water Nanofluids in the Presence of a Magnetic Field. Adv. Math. Phys. 2014, 2014,
538950. [CrossRef]

26. Ebaid, A.; al Sharif, M.A. Application of Laplace Transform for the Exact Effect of a Magnetic Field on Heat
Transfer of Carbon Nanotubes-Suspended Nanofluids. Z. Für Nat. A 2015, 70, 471–475. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

387





mathematics

Article

Optimal Design of Isothermal Sloshing Vessels by
Entropy Generation Minimization Method

Mohammad Yaghoub Abdollahzadeh Jamalabadi 1,2

1 Department for Management of Science and Technology Development, Ton Duc Thang University,
Ho Chi Minh City 700000, Vietnam; abdollahzadeh@tdtu.edu.vn

2 Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

Received: 20 March 2019; Accepted: 22 April 2019; Published: 26 April 2019

Abstract: In this manuscript, the optimal design of geometry for a forced sloshing in a rigid container
based on the entropy generation minimization (EGM) method is presented. The geometry of the
vessel considered here is two dimensional rectangular. Incompressible inviscid fluid undergoes
horizontal harmonic motion by interaction with a rigid tank. The analytical solution of a fluid
stream function is obtained and benchmarked by Finite element results. A parameter study of the
aspect ratio, amplitude, and frequency of the horizontal harmonic motion is performed. As well,
an analytical solution for the total entropy generation in the volume is presented and discussed.
The total entropy generation is compared with the results of the Reynolds-Averaged Navier–Stokes
(RANS) solver and the Volume-of-Fluid (VOF) method). Then, the effect of parameters is studied on
the total entropy generated by sway motion. Finally, the results show that, based on the excitation
frequency, an optimal design of the tank could be found.

Keywords: fluid structure-interaction; vibration suppression; entropy generation minimization;
sloshing; damping factor

1. Introduction

The ship maneuver-induced motion in the partially-filled tanks by liquid, sloshing poses a
thoughtful danger to the controllability and stability of this phenomenon. The entropy generation
minimization method is used for the design of fluid flow motion system [1] as well as thermal
systems [2–4] in recent years. Although the method is applied to the thermodynamic optimization
of many finite-size systems and finite-time processes [5], the application in isothermal fluid flow is
rare [6]. For the specific case of sloshing, as such systems are used to damping the solid motion [7],
the minimization of entropy could not be a true objective function for optimization. Even if a new
engineering application has emerged in the future where the minimization of the entropy in sloshing
fluid is the aim, the fluid cannot consider as a complete thermodynamic system. The fluid motion is
caused by a solid structure consists of internal damping which causes entropy generation. The entropy
generation in an isothermal wall container could be a measure of viscous dissipation which produces
heat and could cause to danger in flammable liquids.

The analytical solution of a similar problem was presented by Ibrahim [8]. The liquid sloshing
dynamics of a liquid in a vessel with horizontal excitation was presented Ibrahim [8] while the entropy
generation was not discussed. Ikegawa studied the fluid flow problem motion of a rigid container
excited by a horizontal harmonic acceleration with Finite Element Methods [9]. His results used in
many texts as a benchmark [1]. Damping of surface waves in an incompressible liquid is studied by
Case and Parkinson [10].

Jamalabadi et al. [11] found the optimal design of circular baffles in the sloshing problem occurred
in a rectangular tank which is horizontally coupled by a one-story structure. Their method was

Mathematics 2019, 7, 380; doi:10.3390/math7050380 www.mdpi.com/journal/mathematics389
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pure numeric, and the optimization was based on the vibration suppression of the liquid motion.
Although the problem is a classic case [12–25], the study of its exergy is discussed comprehensively in
rare studies [1,26]. The entropy analysis of the flow systems is performed in many flow motions [27–34],
as well and the recent developments in fluid modeling [35–39].

The aim of the current paper is to derive an analytical expression for entropy generation
isothermal sloshing phenomenon and discuss the use of entropy generation minimization for such
systems. The analytical expression for entropy generation in the rectangular tanks is obtained for the
first time in the rectangular storage tank.

2. Mathematical Modeling

Consider a rigid rectangular tank as the physical domain of this research with length L, base at y
= −h, free surface y = 0. Figure 1 shows the schematic of the problem with Coordinate system. As a
first approximation the fluid motion can considered by the use of velocity potential. The replace of
velocity potential in the continuity Equation (∇.V = ∂u

∂x + ∂v
∂y = 0) leads to Laplace equation as, (see

Equation 1.23 in [8])
∂2φ

∂x2 +
∂2φ

∂y2 = 0 . (1)

Figure 1. Diagram of fluid-vessel interaction with its cross section.

The boundary condition of the fluid domain in the right wall is the no-slip condition.

∂φ

∂x

∣∣∣∣∣∣
x=L

= 0 (2)

where L is the tank length. The no-slip condition at the left wall is

∂φ

∂x

∣∣∣∣∣∣
x=0

= 0 (3)

and the no-slip condition at the bottom wall is

∂φ

∂y

∣∣∣∣∣∣
y=−h

= 0 (4)

where h is the fluid height. At the free surface, the kinematic boundary is

∂φ

∂y

∣∣∣∣∣∣
y=η

=
∂η

∂t
+
∂η

∂x
∂φ

∂x

∣∣∣∣∣∣
y=η

(5)
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and the total pressure equation (neglecting the surface tension) from the Bernoulli equation is

P = −ρ
⎛⎜⎜⎜⎜⎜⎝∂φ∂t +

1
2

⎧⎪⎪⎨⎪⎪⎩
(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
⎫⎪⎪⎬⎪⎪⎭+ gy +

..
Xx

⎞⎟⎟⎟⎟⎟⎠ (6)

where g is the gravity acceleration. The pressure at the free surface can be derived from the Equation
of the motion (ρ

(
∂V
∂t + (V.∇)V

)
= −∇p + ρ

(→
g −→a

)
+ ∇.

(
μ
(
∇V + ∇VT

))
) by the aid of fluid density (ρ)

and viscosity (μ) as well. The linearized surface conditions (leads to linear wave theory) are

φy(y = 0) = ηt, (7)

which is the kinematic condition for free surface elevation (η) and

φt(y = 0) + gη+ x
..
X = 0 (8)

for kinetic condition. Combining the kinematic and dynamic free-surface conditions leads to
the equation

φtt(y = 0) + gφy(y = 0) = x
...
X. (9)

The solution satisfying Equation (l) with the rigid wall boundary conditions, Equations (2)–(4) is
obtained in a general form as a sum of infinite sloshing modes as

φ =
∞∑

i=1

ai(t) cos(
iπx
L

)
cosh

(
iπ(y+h)

L

)
iπ
L sinh

(
iπh
L

) (10)

where ai(t) is an arbitrary time function and its related spatial function characterizes the velocity
potential function of the nth sloshing mode and the dot notation (.) represents d( )/dt. The free surface
profile associated with Equation (10) with the boundary condition of Equation (7) is

η =
∞∑

i=1

ai(t) cos(
iπx
L

). (11)

The surface condition of Equation (9) can be used to determine the coefficients ai(t), which appears
in Equation (10) and Equation (11) for the external acceleration of

..
X as

..
ai(t) + g

iπ
L

tanh(
iπh
L

)ai(t) +
4
iπ

tanh(
iπh
L

)
..
X = 0 (12)

where the cosine expansion of the x is used as

x =
L
2
+ 2L

∞∑
i=1

cos(
iπx
L

)
(−1)i − 1

(iπ)2 (13)

to derive Equation (11). The fundamental sloshing frequency (i = 1) of the liquid inside the rectangular
tank could be obtained by considering the free oscillation in Equation (11) as

fw =
1

2π

√
πg
L

tanh
(
πh
L

)
(14)

and replacing the X = Xmax cos(ωt) in Equation (11) for the external motion gives

..
ai(t) + g

iπ
L

tanh(
iπh
L

)ai(t) = − 4
iπ

tanh(
iπh
L

)ω2Xmax sin(ωt) (15)
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where ω2
i = g iπ

L tanh( iπh
L ). The steady-state solution of Equation (15) is

ai(t) = tanh(
iπh
L

)
4Xmax

iπ
ω2

ω2 −ω2
i

sin(ωt). (16)

The final linearize solutions are

η = Xmax

∞∑
i=1

tanh(
iπh
L

)
4
iπ

ω2

ω2 −ω2
i

sin(ωt) cos(
iπx
L

) (17)

φ = LXmaxω
∞∑

i=1

(
2ω
iπ

)2

ω2 −ω2
i

cos(ωt) cos(
iπx
L

)
cosh

(
iπ(y+h)

L

)
cosh

(
iπh
L

) . (18)

The entropy generated can be calculated by [5]

S′′′ g =
μ

T
ϕ+

k
T2

(∇T)2 (19)

where the dot notation (′”) represents the value per volume. The dissipation function in Equation (19)
is calculated from

ϕ = 2

⎡⎢⎢⎢⎢⎣(∂u∂x
)2

+

(
∂v
∂y

)2⎤⎥⎥⎥⎥⎦+ (
∂u
∂y

+
∂v
∂x

)2

. (20)

The total entropy generated in the volume of the fluid in the case of an isothermal condition
(∇T = 0) is calculated from Equation (18) as

Sg =

∫ ∫
μ

T
ϕ dxdy. (21)

By substituting the analytical solution in the definition of entropy generation we get:

Sg =
16πμX2

maxω
2

T

∞∑
i=1

⎛⎜⎜⎜⎜⎝ ω2

ω2 −ω2
i

cos(ωt)

⎞⎟⎟⎟⎟⎠2 tanh
(

iπh
L

)
i

. (22)

The entropy appearing in Equation (22) is the total entropy generated by the fluid, and since the
energy exchanged with the moving wall has been considered as a thermodynamic system, the entropy
of the working fluid is well established and can be used as an objective function. The entropy generation
in an isothermal wall container could be a representation of viscous dissipation that could lead to
explosion in liquids with flammable materials.

3. Results and Discussion

The analytical solution of Equation (17) is benchmarked with a finite element method (FEM)
solution obtained by Ikegawa [9], whose dimensions of the liquid container are h = 0.6 m and L = 0.9 m.
The vessel is exposed to the forced horizontal motion as given by X = 0.002 sin(5.5t). Figure 2 presents
the time history of η (x = + L, t). The numerical result is denoted by circles and the analytical solution
is denoted by a solid line. As shown, there is a good agreement between the analytical solution and
numerical result with FEM.

An inspection of the analytical solution of Equation (22) is performed in Figure 3. The maximum
distribution of the dimensionless entropy generation rate through the volume, with respect to time, is a

plot for various aspect ratios in that figure, according to (Sg =
(ω2−ω2

i )
2
TSg

16πμX2
maxω

4 ). The axes in Figure 3 are
Cartesian coordinate system of the vessel in accordance with Figure 1. The dimensions of rectangular
storage tanks for each aspect ratio are L = (0.54α) 0.5 and h = (0.54/α) 0.5. As shown by the increase of
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the aspect ratio, the amount of entropy generated through the volume decreased. Further, the position
of maximum entropy changed from the free surface to the side walls. It was expected that by an
increase of the aspect ratio, the length of the tanks would increase and the dimensionless penetration

length (
√
υ

L2ω
) would decrease. An increase of the aspect ratio made the dampening effects of sidewalls

and bottom dominant in comparison with the free surface effects [10].

 

Figure 2. Time history of η (x = + L, t).

Figure 3. Distribution of dimensionless entropy generation for various aspect ratios (a) α = 1, (b) α = 3,
(c) α = 5, and (d) α = 7.
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Horizontal periodic sway motions as X = Am sin (ω t) were applied to the rectangular storage
tanks with different aspect ratios, namely the ratios of height to length of the rectangular storage
tank (AR). Then, the effect of Am and ω was studied on the results. The oscillations of total entropy
generation rate in the volume for the aspect ratio of α = 2.05 are plotted in Figure 4a. Similar to the
time history of the wave, the entropy generation rate reaches its maximum after 10 periods of motion
and decreases. The beating behavior of the entropy profile repeats as times goes on. To demonstrate
the capability and accuracy of the present method, the results of the generated waves are compared
with the available numerical calculations. Figure 4b takes from the results of [1]. Results from [1] are
opposed to those stemming from this study, where Figure 4a should be compared with AR = 2.05
Figure 4b. The true unit for Sg obtained by the surface integration of volumetric entropy generation is
(W/Km). However, in reference [1], as they considered the two-dimensional case with a 1 m depth,
the unit appeared as (W/K). Moreover, the results show that an increase in the AR causes a decrease in
the total entropy generation rate in the volume.

 
(a) 

(b) 

Figure 4. Entropy generation versus time for α = 2.05 (a) current study, (b) Reference [1].

Figure 4b was obtained by using the Reynolds-Averaged Navier–Stokes (RANS) and the
Volume-of-Fluid (VOF) methods, together, in a commercial software solver [1]. The RANS equations
were discretized and solved using the staggered grid finite difference and simplified marker and cell
(SMAC) methods, and the available data were used for the model validation. By comparing the case of
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α = 2.05, it is clear that the trend and the order of magnitude of a maximum of entropy (2 × 10−2) are
the same. Since the current analytical solution is a suitable measure to decide on optimization based
on the entropy generation, the entropy generation distribution offers designers with valuable data
about the reasons for the energy loss.

Finally, Figure 5 reveals the value of the total entropy generation rate versus aspect ratio for α = 3.
As shown, the trend of maximum entropy generation versus aspect ratio decreasing expects a peak
point, which is caused by approaching the natural frequency of the system to the external forced
frequency. Such phenomena lead to a local minimum point before the resonance, since the α = 1.4–1.5
is a candidate for the entropy minimization point. Generally, the overall function has no optimum and
a higher aspect ratio leads to lower values of entropy generation.

 

Figure 5. Total entropy generation rate versus aspect ratio for α = 3.

As shown in reference [7] (see Figure 3c), 80 percent of energy of the fluid could be dissipated for
the dimensionless frequencies in the range 0.95–1.05 (f’ = f /fn), since the engineers try to design the
sloshing vessels with the frequencies near to the structure frequency for highest energy absorbance
rate. If the value of the energy of the fluid is symbolized by

E f =
1
2

m f (2ξ fω)X2
maxω

2 (23)

and the work of no-conservative damping of the coupling structure are

Es =
1
2

ms(2ξsω)X2
maxω

2 (24)

then the ratio of structure energy loss to the fluid loss is

γ =
ξsms

ξ f m f
. (25)

The damping of the fluid could be estimated by the inverse of square root of the Galileo number
(ratio of gravity forces and viscous forces)

ξ f =
υ1/2

L3/4g1/4
(26)
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where υ is the kinematic viscosity. The damping factor of 1–2% is predicted for fluids [10] (logarithmic
decrement ≈ 6ξ) and 0.32% for solids [7], since the ratio of structural energy loss to fluid loss is
approximated by 0.1–1 of the ratio of structural mass to fluid mass. As an example for engineering
applications, the mass ratio of the tuned liquid damper to the solid structure is 1.05% [7], and then the
amount of structure energy loss to the fluid loss is about 10–100. Subsequently, most of the energy
dissipated in the solid part, which is not considered for optimization.

Since, as stated in the introduction section, for the specific case of sloshing, as such systems are
used for the damping of the solid motion entropy of only fluid, they could not be a true objective
function, and the energy dissipation in the structure should be considered, too. Today’s practical
meaning of EGM is very low. Although today engineers in the field of large vessels are mostly focused
on frequency response design and exergy efficiency is not considered in engineering code, the entropy
minimization method is a growing topic in literature. In the current study, fluid entropy generation
used as a measure of optimization of the sloshing phenomenon that is classified among free surface
flows. The current research proposes future studies performing experiments for coupled cases with
the sum energy dissipation of fluid and structure as an objective function.

4. Conclusions

In this manuscript, the entropy generation rate in a forced sloshing rigid tank was studied
analytically. The analytical solution of the fluid was obtained and benchmarked. The following points
were concluded:

• By the increase of the aspect ratio, the amount of entropy generated through the volume decreased.
• By the increase of the aspect ratio, the position of maximum entropy is changed from the free

surface to the side walls.
• As the order of magnitude of the maximum of entropy for the analytical case and numerical results

are the same, the analytical solution is a suitable measure for entropy generation minimization.
• The minimum entropy generation point for the sloshing problem is local and general; the entropy

generation has no optimum as a function of aspect ratio.
• The ratio of structural energy loss to fluid loss is approximated by the ratio of structural mass to

fluid mass.
• The energy dissipation in the structure coupled with sloshing fluids should be considered for

entropy generation minimization.
• The current research proposes to do experiments for coupled cases with total dissipation function

(i.e., sum energy dissipation of fluids and structures) as an objective function in future studies.
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