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1. Introduction

Since the discovery of X-rays, the use of the principles and methods of physics in
medicine has contributed to the improvement of human health. Physics-based techniques
have been progressively developed and optimized with the aim to support physicians to
formulate prompt diagnoses and to set up the effective treatments of several diseases.

Together with the continuous advances in the clinical procedures making use of ioniz-
ing radiations and related instruments, several other emerging and powerful resources are
becoming more and more important. Tools such as ultrasounds for oncological and neuro-
logical therapeutic practices, nanoparticles, nanotechnologies for theragnostic applications,
and artificial intelligence for quantitative medical imaging are just a few examples of the
rich panorama of instruments currently available to the Medical Physicists.

Today, medical physics is a mainstream discipline recognized worldwide, with ap-
plications covering numerous areas of medicine and whose impact and scientific results
deserve to be disseminated among the community of the applied sciences.

With this mission in mind, the scope of this Special Issue of Applied Sciences, entitled
“Applications of Medical Physics”, is to collect original research manuscripts describing
cutting-edge physics developments in medicine and their translational applications, as well
as reviews providing update on the latest progresses in this field.

A total of 28 manuscripts have been submitted to the Special Issue, and 20 of them have
been accepted for publication. The final collection includes 17 original research manuscripts
and 3 reviews by authors from 9 different countries. The published papers cover several
areas, spanning from radiation therapy, nuclear medicine, radiology, dosimetry, radiation
protection, and radiobiology.

A quick overview and general classification of the manuscripts is given below.

2. Contributions

Various contributions of this Special Issue deal with the research toward physics-
based innovative approaches for the treatment of oncological diseases or, more in general,
propose the optimization of the methods currently employed in several clinical practices.
External radiation therapy, brachytherapy, and theragnostic approaches are considered,
the improvement of patient outcomes being the final and common aim of the studies. The
attempt to reveal and understand the biological or radio-biological mechanisms governing
such approaches is also often highlighted.

In this context, Crapanzano et al. propose in their review [1] an overview of the
inorganic and hybrid nanoparticles of interest for X-ray-based oncological treatments. The
authors point out how the physicochemical properties of the nanoparticles, together with
the choice of surface functionalization and targeting strategies, affect the key parameters of
external X-ray radiation therapy and X-ray activated photodynamic therapy in terms of
energy deposition and total delivered dose in target tissues.

The optimization of radiotherapy procedures in the cohort of patients affected by
esophageal cancer is considered in the manuscript by Tai et al. [2]. In fact, this study aims to
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evaluate the effect of radiation to the Epicardial Adipose Tissue (EAT) on survival outcomes
in patients with esophageal cancer receiving neoadjuvant chemoradiotherapy followed
by esophagectomy. The authors highlight the importance to consider EAT as an organ at
risk (OAR) and propose the index of “EAT radiation exposure intensity” as a biomarker of
survival outcomes in these patients.

Brachytherapy is the main field considered by Jo et al. [3]. In their manuscript, the
authors highlight how potential applicator displacements can lead to significant changes
in dose distribution during cervical brachytherapy treatments. To face this problem, a
robust optimization scheme developed using a genetic algorithm combined with a median
absolute deviation as a robustness evaluation function is proposed.

In the frame of eye proton therapy optimization for personalized treatments, Petringa
et al. [4] compare Relative Biological Effectiveness (RBE) values obtained from in vitro ex-
perimental data with predictions made by the Local Effect Model, Monte Carlo approaches,
and semi-empirical models based on Linear Energy Transfer (LET) experimental measure-
ments. Their results evidence how a Treatment Planning System based on an RBE and
LET prediction could improve the estimation of the radiobiological response of the treated
neoplasia as well as the surrounding healthy tissues.

Finally, in the field of nuclear medicine, Urbano et al. [5] investigate the possible role
of [99mTc]Tc-Sestamibi in the regulation of biological processes involved in breast cancer
progression such as proliferation and apoptosis. Indeed, ex vivo and in vitro data about the
correlation between sestamibi uptake and apoptosis suggest the possible role of sestamibi in
the regulation of the pathophysiological processes involved in breast cancer. In conclusions,
the authors suggest that the evidence of the accumulation of sestamibi in breast cancer cells
and the subsequent mitochondrial damage can open new clinical perspectives on the use
of this radiopharmaceutical in both the diagnosis and treatment of breast cancers.

Another subject that unites various contributions of this Special Issue is the research
toward the optimization of the procedures employed in radiological imaging and the
characterization of the related instruments and tools with the primary aim of patient
dose reduction.

In this context, Albano et al. [6] compare radiation doses and imaging performances
of an EOS imaging (Paris, France) system with those of conventional radiography and
computed tomography (CT) in the case of the detection and measurement of enchondromas.
The analysis suggests that low-dose EOS digital radiographic evaluation has the same
capability as conventional radiography to detect and measure enchondroma-like inserts on
a phantom. Thanks to its lower radiation dose, this imaging method could be particularly
useful in the follow-up of patients affected by multiple enchondromas.

The study of Muhammad et al. [7] focuses on the possibility of reducing organ doses in
pediatric CT chest-abdominal pelvis examination by optimizing the CT protocols. The effect
of scan parameters such as tube voltage, tube current, slice collimation, pitch, and tube
current modulation on image quality indices and organ doses are accordingly investigated.
The results suggest that a significant potential reduction in the dose for such type of
diagnostic examinations is achievable.

Dose optimization in CT scans is also considered in the manuscript by Barca et al. [8].
The authors highlight the need for an exhaustive characterization of noise properties in
CT imaging with iterative reconstruction (IR) algorithms for assessing the actual dose-
reduction potential of this technique, as well as its possible limitations for specific clinical
applications. In their in-phantom study, the authors carry out a voxel-based assessment of
noise properties in CT imaging with adaptive statistical iterative reconstruction (ASiR) and
adaptive statistical iterative reconstruction-V (ASiR-V) for different blending levels of re-
construction and contrast objects. Their results confirm the potential of ASiR-V and ASiR in
reducing noise as compared with conventional filtered back projection approaches, suggest-
ing, however, that the use of pure ASiR-V or ASiR might be suboptimal for specific clinical
applications. In conclusion, authors recommend a voxel-based characterization of noise
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properties when dealing with a novel IR algorithm or when comparing the performances
of different IR algorithms.

Quantitative imaging is another recurrent topic in various contributions of this Special
Issue. Actually, the quantitative analysis of medical images proved to be a powerful
approach for improving diagnostic and treatment strategies, as well as for developing
predictive models.

Texture analysis is performed by Savini et al. [9] to characterize the impact of the
acquisition angle on Digital Breast Tomosynthesis (DBT) images. The authors conclude that
the DBT acquisition angle affects the textures extracted from DBT images, and this depen-
dence should be considered when establishing baselines for classifiers of malignant tissue.
Therefore, texture analysis in DBT has the potential to be an alternative to other quantitative
techniques such as model observer methods for scoring and comparing DBT images.

Quantitative analyses are also increasingly used in nuclear medicine, both for diag-
nostic and therapeutic purposes. Di Martino et al. [10] highlight how the Partial Volume
Effect (PVE) is the most important factor of loss of quantification in Nuclear Medicine.
Therefore, in order to achieve an accurate quantification of the radioactivity concentration,
PVE has to be considered and compensated, especially in small structures. In this context,
the authors present a new approach for the correction of PVE, using a post-reconstruction
process starting from a mathematical expression, which only requires the knowledge of the
Full Width at Half Maximum of the Point Spread Function of the imaging system.

In the domain of low-field MR-guided radiotherapy for cervical cancer, Cusumano
et al. [11] evaluate the performance of the radiobiological parameter Early Regression Index
ERITCP in predicting pathological complete response. The results suggest that ERITCP,
calculated by combining the tumor volume measured on the MR images acquired at
simulation and during therapy, is a promising response biomarker for cervical cancer. If
validated on a larger cohort of patients, the use of this index can represent a valuable tool
to personalize the treatment strategy in the context of the cervical cancer, moving towards
the anatomical and functional preservation of the irradiated tissues.

Mazzilli et al. [12] propose a semi-automatic segmentation method to characterize
the lungs of COVID-19 patients with respiratory syndrome. The approach is based on
a robust, operator-independent identification of threshold Hounsfield Unit (HU) values
that distinguish three regions of the lungs with intuitively clear functional meaning. The
next step toward a fully automatic segmentation is also considered by combining the
implemented method with an atlas of CT images of COVID-19 patients. The quantitative
analysis carried out on the HU histograms paves the way to the development of predictive
models of early clinical outcome.

The fundamental role of CT images analysis in the COVID-19 pandemic scenario
also emerges in the manuscript by Biondi et al. [13]. The authors propose a study about
the classification performance for COVID-19-patient prognosis from automatic Artificial
Intelligence (AI) segmentation. They highlight the possibility of obtaining a reliable au-
tomated segmentation of lungs and of Ground-Glass Opacities areas in CT scans using
non-supervised approaches and using this segmentation in a prediction pipeline for pa-
tient prognosis. Semi-supervised segmentation, implemented using a combination of
non-supervised segmentation and feature extraction, seems to be a viable approach for
patient stratification and could be leveraged to train more complex models. This would be
useful in a high-demand situation similar to the current pandemic to support gold-standard
segmentation for AI training.

The growing demand and use of AI, not only for quantitative imaging, but in several
other areas of medicine, is highlighted by Avanzo et al. [14]. In particular, in their review,
the authors summarize the main applications of AI in medical physics and express their
point of view on the role and the involvement of Medical Physicists (MPs) in this evolving
scenario by defining the challenges of AI in healthcare for the MPs and by describing the
skills the MPs can offer in this field.
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Finally, the research toward the development or improvement of instruments and
methods for accurate dose evaluation, both in external and internal dosimetry, confirmed
to be very active, and various contributions of this Special Issue deal with this topic.

Arilli et al. [15] evaluate the combined use of the Integral Quality Monitor (IQM, iRT
Systems GmbH, Koblenz, Germany) transmission detector and SoftDiso software (Best
Medical Srl—Chianciano Terme, Italy) for in vivo dose monitoring for the simultaneous
detection of delivery and patient setup errors in whole-breast irradiation. The authors
show that the two devices provide complementary information and allow the fast detection
of all types of errors. The proposed method represents a new strategy in Quality Assurance
(QA) programs and would be an important step forward in the clinical routine to increase
the quality of external breast irradiation.

The issue of in vivo dosimetry in charged particle radiation therapy is considered by
Cirrone et al. [16]. The authors investigate the suitability of a new online, non-invasive, bias-
less detector for relative dose monitoring. The detector, protected by both a national Italian
and an International patent, exploits the idea that when a beam current is injected into the
body of a patient undergoing a charged particle therapy, the current itself can be collected
using a conductive electrode in contact with the skin of patient. After characterizing the
system in vitro, preliminary in vivo tests highlight the capability of the device in acting as
beam monitoring during a proton-therapy treatment and its ability in the verification of
the correct dose delivered among the various fractions of the treatment.

A radiation detector with a relatively longer history is the GEMPix, a detector devel-
oped at CERN a few years ago. It couples two technologies, the Gas Electron Multiplier as
an amplifier for electric charges and four highly pixelated Timepix ASICs as readout. Leid-
ner et al. [17] propose a comprehensive review about the medical applications of GEMPix.
The authors describe examples of the use of this device for relative dose measurements in
X-ray radiation therapy and hadron therapy. Some preliminary measurements performed
to check the capabilities of GEMPix in proton tomography are also illustrated, as well as
the most recent application of the detector in the field of microdosimetry. A discussion
about on-going and future developments concludes the review.

In the frame of internal dosimetry, the study by Milano et al. [18] aims at the validation
of a platform, named MCID, based on patient-specific images and direct Monte Carlo (MC)
simulations for internal dosimetry in the radioembolization of liver tumors with 90Y-labeled
microspheres. The validated platform allows the fast implementation of a personalized
MC dosimetry, based on patient imaging data. Additionally, the authors investigate the
impact of tissue inhomogeneities on the dosimetric evaluation for the radioembolization
treatment and the potential improvement of a MC approach in this therapy.

The same treatment strategy for liver lesions, based on percutaneous ablation using
90Y microspheres embedded into a sealant matrix, is considered by D’Arienzo et al. [19].
In this manuscript, the absorbed dose per unit administered activity is assessed in small
lesions by MC calculations considering a simplified geometry. Furthermore, an analytical
formula derived from MC calculations that incorporates the absorbed fractions for 90Y
is proposed. The authors conclude that in a scenario of the intra-tumoral injection of
microspheres, the proposed equation can be usefully employed in the treatment planning
of spherical lesions of small size (down to 0.5 cm diameter) providing dose estimates in
close agreement with MC calculations.

Lastly, under the main topic of dosimetry, the Special Issue includes the study by
Gonzales et al. [20] which contribute to the development of a practical protocol for fingernail
electron spin resonance (ESR) dosimetry useful for the routine monitoring of the extremity
exposures of medical workers handling radiation sources. The authors investigate the
effects of chemical treatment using dithiothreitol (DTT) on the changes of the ESR spectra in
irradiated and unirradiated fingernails after a long storage time. The results show that the
treatment of fingernail samples with DTT lead to a significant reduction of the background
signal. They also point out that freezer storage of the samples is more effective than
vacuum storage. Furthermore, after the DTT treatment, the fingernail samples provided
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good signal stability for both background and radiation-induced signals with less intra-
individual variations.

3. Conclusions

In conclusion, we were very pleased to guest-edit this Special Issue that collects
relevant contributions reflecting the increasingly widespread interest in medical physics
and related applications.

We hope this Special Issue could reach the widest audience in the scientific community
and contribute to boosting further scientific and technological advances into the intriguing
world of medical physics and their multidisciplinary applications.

Finally, we wish this Special Issue may help the readers to conceive both new and
improved ideas about the “Applications of Medical Physics” in their respective fields.
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Abstract: Nanomedicine is emerging as promising approach for the implementation of oncological
methods. In this review, we describe the most recent methods exploiting heavy nanoparticles
and hybrid nanomaterials aiming at improving the traditional X-rays-based treatments. High-Z
nanoparticles are proposed as radiosensitizers due to their ability to stop the ionizing radiation and
to increase the locally delivered therapeutic dose. Other nanoparticles working as catalysts can
generate reactive oxygen species upon X-rays exposure. Thanks to their high toxicity and reactivity,
these species promote DNA cancer cells damage and apoptosis. Hybrid nanoparticles, composed by
scintillators coupled to organic molecules, are suitable in X-rays activated photodynamic therapy. This
work highlights the roles played by the diverse nanoparticles, upon ionizing radiation irradiation,
according to their physico-chemical properties, surface functionalization, and targeting strategies.
The description of nanoparticle qualities demanded by the oncological nanomedicine is presented in
relation to the processes occurring in biological medium when X-ray radiation interacts with heavy
nanoparticles, including the scintillation mechanisms, the stopping power amplification, and the
disputed modeling of the effective deposit of energy within nanomaterials. The comprehension of
these issues in nanomedicine drives the strategies of nanoparticles engineering and paves the way
for the development of advanced medical therapies.

Keywords: nanoparticles; scintillation; ionizing energy deposition; radiotherapy; photodynamic
therapy; singlet oxygen

1. Introduction

Today, cancer is still one of the greatest global causes of death. In 2018, there were
18.1 million new cases and 9.5 million cancer-related deaths worldwide. By 2040, the
number of new cancer cases per year is expected to rise to 29.5 million with an estimation
of cancer-related deaths close to 16.4 million [1,2]. Currently, regular screening and surveil-
lance programs required for early diagnosis/intervention are the best ways to improve the
outcome and survival. The diagnostic tools in use in healthcare rely on imaging methods,
like optical imaging, radiography, magnetic resonance imaging (MRI), and computed
tomography (CT), as well as nuclear imaging techniques [3,4]. More recently image-guided
cancer treatments and molecular diagnostics have enabled to subcategorize each cancer
type allowing efficient intervention with targeted therapeutics [5,6]. Over the last years,
ceaseless efforts have been put by the scientific and medical communities in the cancer
research with the aim of finding new diagnosis alternatives for the fabrication of sim-
pler, broad use, and cost-effective imaging tools and scanners [7–9]. The most important
goal is to surpass the typical drawbacks of conventional diagnostic procedures, which
are, for instance, related to the choice among the available contrast agents presenting
low accuracy and specificity, short half-life, low radiodensity, and rapid clearance [10,11].
These disadvantages result in the need of massive and prolonged exposure to high levels
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of electromagnetic radiation of the patient for the collection of images with satisfactory
resolution [12,13]. Conventional cancer treatments are chemotherapy, radiotherapy, and
surgery. Despite, in the past years, these consolidate procedures have enabled an active
fight against cancer ensuring long-term survival and quality of life for several malignancies
in oncological patients, their broad use has been always associated to diverse drawbacks
and side effects. One of the main problems of chemotherapy is the low specificity of
chemotherapeutic drugs for cancer cells. Chemotherapy suffers from non-specific biodistri-
bution and poor tumor accumulation of the therapeutic drugs, resulting in high toxicity,
damages of the healthy cells, as well as systemic side effects [14,15]. Surgery can represent
the only potentially curative therapy of high-risk patients. However, the high tumors recur-
rence rate associated with surgical resection as single oncological protocol is responsible
for a significant morbidity and failure percentage in many malignancies [16]. Lastly, the
radiation therapy is limited by the maximum cumulative radiation dose allowed without
incurring significant injuries to the adjacent tissues or organs [17,18]. More recently, small
molecules-based therapies and immuno-oncology have been demonstrated to be effec-
tive owing to some recent successes in the clinic [19,20]. Besides the monotherapies, the
combination of the established and accessible therapeutic protocols with immunotherapy
has been validated to be efficient in cancer patients [21,22]; however, the ability of the
molecular agents used in immunological therapies to reduce immune suppression, or to
enhance activation of cytotoxic processes in the tumor environment is associated to a severe
toxicity, whose side effects results under debate [23,24].

Novel and targeted cancer therapeutic techniques have been recently developed to
guarantee effective, efficient, affordable, and less invasive cancer cares to patients [25]. The
search of developing tailored treatments for specific oncological demands has found its
productive ground in the branch of nanomedicine; in order to visualize the timetable of
the scientific efforts boosting the research on nanomedicine, we the proposed, for instance,
works and reviews published in the recent twenty years [26–32]. The European Medicines
Agency (EMA) defines nanomedicine as including all applications of nanotechnology
and nanoparticles for tumor targeting, imaging, and therapy [27,33]. Nanoparticles (NPs)
definition refers to those materials as large as 1- to 100-nm made from both inorganic
and organic materials. NPs can be administered systemically (via injection inhalation,
and oral intake) or locally (via intratumoral delivery and implantable devices such as
implants loaded with NPs or anticancer agents) [34–37]. Organic based NPs used in
biomedical applications include liposomes [38], polymer constructs [39], and micelles [40].
Inorganic NPs comprise mostly metal, semiconductor, and insulating systems (see [41] and
within references to have an overview of the available NPs). Within the past few decades,
inorganic NPs have been proposed in the biomedical fields for the implementation of the
cancer therapies (chemotherapy, drug delivery [42,43], and hyperthermia [44,45], as well as
radiotherapy, photodynamic therapy and X-ray activated photodynamic therapy [17,46]),
or for the use as diagnostic agents for imaging techniques [12], as well as for the applications
as theranostic tools for oncology and other fatal diseases [47]. The attractiveness of these
NPs relies on the versatility and tunability of the physico-chemical qualities, which depend
on their composition, morphology, size, and high surface-to-volume ratio. Specifically, NPs
modifiable features, like shape, size, and surface charge [28], are key aspects for surface
accommodation of functional groups or hydrophobic molecules. The functionalization
of NPs surfaces results in enhanced solubility and biocompatibility, in improved stability
and retention time in bodily fluids [48,49], and in the ability of the nanosystems to cross
physiological barriers for their use in vivo [50]. Moreover, the engineering of the NPs
surfaces by targeting ligands enables the specificity of their diagnostic and therapeutic
activity towards the malignancy and illness sites in the patients’ body and the release of the
antitumoral drugs in a stable and controlled manner [51,52]. The adjustment of the physico-
chemical properties of NPs by facile doping strategies as well as by the engineering of their
size, crystallinity, and surface chemistry would also affect their luminescence behavior.
Fluorescent NPs, such as lanthanide doped inorganic nanoparticles [53–55], quantum
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dots [56], silica based nanosystems [57,58], as well as metal clusters and nanoparticles [59,60]
have been proposed for in vitro and in vivo bioimaging, sensing, drug delivery, and light-
triggered oncological therapies. The tuning of the luminescence is a crucial point to
satisfy the performance requirements demanded to the nanomaterials for their exploitation
in medicine [53,61,62]. Even though many NPs are composed by purely organic and
inorganic materials, the development of organic/inorganic hybrid materials is eagerly
hunted; hybrid NPs in form of core-shell structures, metal organic frameworks (MOFs),
or of nanocomposites where hybrids NPs are dispersed into a polymeric matrix, enable
to create a new class of functionalized theranostic NPs that possess unique advantages,
exploiting synergistically the feature of their single components [63].

The world of nanomedicine and nanotheranostic is wide and covers many frontiers
of medicine. The use of NPs of diverse composition can represent an alternative to the
traditional oncology and, in parallel, a way to implement the established therapies and
diagnostic tools. In this review, we focus our attention on the utilization of NPs in the
X-rays based oncological treatments, with efforts in describing the multiplicity of the roles
that the diverse NPs can play according to their compositions and surface functionalization
from the radiosensitization in radiotherapy (RT), to the triggered activation of cancer killing
agents in the photodynamic therapies (PDT) and in the X-ray activated photodynamic
therapy (X-PDT). NPs suitable for X-rays can be divided in a simple way into passive and
active nanoparticles. Passive nanomaterials include dense and high atomic number (Z)
NPs (for instance, metal containing nanoparticles), able to efficiently stop the ionizing
X-ray radiation enhancing the energy deposition within the tissue and thus increase the
RT effects at lower doses. A group of active nanoparticles, such as inorganic photo (-and
radio) catalysts, possess lower Z than the passive NPs but can sensitize the RT effects by
generating an excess of reactive oxygen species (ROS) in cells upon X-rays and by causing
ROS-dependent functional disorder/cell death/apoptosis. Another class of active NPs
comprises inorganic/organic multicomponent systems allowing a dual effect because of
the interaction with the ionizing beam: firstly, an improved response to the external stimuli
due to the inorganic dense part; and then the triggered activation of cancer killing agents,
such as singlet oxygen sensitizer, nearby the malignancy.

Specifically, in this review we present especially the use of inorganic NPs and hybrids
that can efficiently interact with the ionizing irradiation in the RT. The use of organic NPs
will be only briefly pictured for topic completeness, regarding especially the possibility to
employ light molecular photosensitizers, like porphyrin molecules, with X-ray radiation.
The exploitation of biomolecules and drugs in chemo-radiotherapy able, for instance,
to increase the cells susceptibility to radiation [64] or inhibit the DNA repair after the
treatment [65] are not included in this review.

2. Radiotherapy Mechanism

Radiotherapy is one of the most effective and widely used cancer therapeutic modali-
ties. About 50% of cancer patients are treated with radiotherapy for curative and palliative
purposes both as single therapeutic modality and in combination with other treatment
methods [66,67]. Although RT cannot be applied to all types of cancer, it is established as
a principal option for treatment of many malignancies, such as breast carcinoma, lung car-
cinoma, melanoma, gastrointestinal cancers, head and neck cancers, gynecological cancers,
hematologic malignancies, prostate or cervix tumors, central nervous system neoplasms
and thyroid carcinomas, as well as for an effective reduction of pain in the of case bone and
brain metastases [68,69].

RT exploits ionizing beams—X-rays or radiation emitted by radionuclides—to stop
the rapid proliferation of cancer cells and to achieve the therapeutic goals [70,71]. For the
description of the RT mechanism, this review focuses mainly on RT applied by an external
X-ray source. As summarized in Figure 1, the interaction of the high energy radiation
within tissues induces the killing of tumor cells directly by the damage of the DNA and
of the molecular structure leading to the termination of cell division and proliferation,
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and even to cell necrosis or apoptosis; otherwise, cancer cells destruction can arise indi-
rectly from the formation of cytotoxic ROS upon interaction with the cellular aqueous
environment [72,73]. A detailed description of biochemical reactions occurring in cellular
environment upon the interaction with the ionizing radiation is depicted by Clement
and co-worker in Ref. [65]. Briefly, in cellular environment, water radiolysis by ionizing
radiation results in the formation of several species, mainly: e−aq (hydrated electrons),
HO• (hydroxyl radicals), H• (hydrogen radicals), H2 (radiolytic hydrogen), H2O2 (hydro-
gen peroxide), and HO•

2 (hydroperoxyl radical). Afterwards, these products can react
and create further ROS, such as O−

2 (superoxide), organic radicals (R•), hydroperoxides
(ROOH), and singlet oxygen (1O2). Under physiological conditions cells generate a certain
amount of ROS, whose concentration is regulated by the antioxidant system to maintain
cellular homeostasis. Perturbing the cellular balance by radiation-induced ROS creation
leads to oxidative stress that can trigger DNA damage and other cell death mechanisms,
for instance by necrosis, apoptosis, autophagy, mutation, and senescence.

 

Figure 1. The direct and indirect cellular effects of ionizing radiation on macromolecules. Absorption
of ionizing radiation by living cells directly disrupts atomic structures, producing chemical and
biological changes and indirectly through radiolysis of cellular water and generation of reactive
chemical species by stimulation of oxidases and nitric oxide synthases. Ionizing radiation may also
disrupt mitochondrial functions significantly contributing to persistent alterations in lipids, proteins,
nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Reproduced from Cancer letters 2012, 327,
48–60 [73]. Copyright Elsevier 2012.

Whatever the cancer cells killing mechanism, i.e., by physically direct ionization or
using free radicals by water ionization, the goal of radiotherapy is to deliver the maximum
dose to the target tumor tissue while safeguarding the surrounding normal tissue. Clinical
radiotherapy uses high-energy external X-ray beam, from 6 MeV up to about 20 MeV, from
linear accelerators. In typical launched protocols, patients are treated through fractionated
regime with dose of 1.8–2 Gy over the course of 4–8 weeks to limit toxicity to normal
tissues [74] but in advanced treatment planning the delivered dose to cancer can reach
values close to 15–20 Gy [75]. Interactions of such X-rays with biological tissue can occur
by (1) photoelectric effect, (2) Compton effect, and (3) pair production, according to the
energy of the external X-ray source. In clinical RT the X-rays beams of few tens of MV are
widely used for deep seated tumors, while low energy beams (up to 200 kV) have very few
applications due to the lower penetration depth (<5 mm) [76]; at these working energies
the Compton and the photoelectric effects are dominant (Figure 2), and the deposit of
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their energy occurs through a cascade of secondary photoelectrons and Auger electrons,
stimulating all the radiobiological effects above depicted.

Figure 2. Schematic illustration of inelastic interactions with a high-Z nanoparticle for: (a) incident keV photons (orange
clouds represent photoelectric events); (b) incident MeV photons (blue and yellow clouds represent Compton scatter and
pair production events, respectively); Image reproduced with permission from Prof. Z. Kuncic and Dr. Y. Gholami from
Phys. Med. Biol. 63 (2018) 02TR01 [77].

The radiobiological effects and efficacy in producing a permanent DNA damage in
cells are related to the type and the energy of interacting radiation by the linear energy trans-
fer (LET) physical factor i.e., energy deposited per unit distance along the ionization track.
LET is higher for heavy ions than for photons (for example a 250 keV X-ray photon have
an average LET of 2 keV/μm, whereas alpha particles LET is of hundreds of keV/μm) [78].
The main difference between high LET radiation and low LET radiation is due to a diverse
induction of DNA damage that is the primary target required for cell killing: it has been
proven that high LET radiation causes more extensive and less repairable cellular damage
by very dense events of energy deposition along the track, without penetrating deeply into
the human tissues; in turn low LET X-rays deposit energy in tissue in a highly dispersed
manner and are thus able to reach deeper tissue penetrations [79]. In RT, the secondary
products of the first ionizing event, especially of the photoelectric effect, include the Auger
electrons. High LET makes the Auger electrons highly toxic to the cells inducing damage
in macromolecular targets of a cancer cell and in the cell membrane, as detailed reviewed
in [80] by A. Ku and co-authors, who display the use of Auger electrons in radiation
dosimetry and for cancer treatments, such as targeted radiotherapy.

From the above picture, it is evidenced that the effective result of RT and the esti-
mation of the dose deposited in the malignancy environment depend on the interactions
in tissue involving a given particle and secondary particles. The modeling of the energy
deposition by the ionizing radiation and the following radiobiological consequences are of
fundamental importance towards the goal of surpassing the common drawback afflicting
RT, like the lack of tissue selectivity, hindering the discrimination between the tumor and
the healthy cells, and the need of high energy primary beam enabling the penetration of
the radiation in deep tumors and the release of an amount of energy adequate to start
the biochemical ROS production to destroy the proliferation of the malignant cells. The
most advanced strategies exploit the use of NPs to enhance a localized therapeutic effect
of RT, in order to reduce the local dose to be delivered and the toxicity towards normal
surrounding tissue, and thus to improve the quality of life of the patience during and after
the radiological treatments.

3. Nanoparticles in Radiotherapy

In the following sections, we aim at describing the most used and promising NPs
that can be exploited in RT to overcome its limitations and to combine the common RT
procedures with novel challenging strategies. Among these strategies, this review empha-
sizes the X-PDT. Nanomaterials are classified into passive (mostly inorganic containing
heavy elements) and active (inorganic nanocatalysts and nanohybrids) NPs. For clarity,
a summary of the properties and the application area of the NPs presented in the manuscript
is provided at the end of this section, in Table 1. It is worth to notice that the boundaries
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of the NPs classes are smooth. In particular, the categorization of the passive and single
component inorganic active nanosystems is rather shaky. We have arbitrary chosen to
consider as passive NPs all the dense and high Z systems that enable to enhance the energy
depositions in the cancer environment; in turn, only nanometric catalysts with lower Z
are sorted as active NPs enabling generation of ROS thanks to the high reactivity of their
surface upon irradiation. Nevertheless, we are aware that (as discussed in Section 2) ion-
izing radiation, by interacting with passive heavy NPs, produces secondary charges that
contribute at generating ROS localized in the neighborhoods of the ionizing event.

3.1. Passive Nanoparticles as Enhancers of Energy Deposition in RT

The scientific and medical communities strive to find X-ray based therapeutic solutions
with the aim to improve the survival rate and life quality in oncological patients subjected
to RT by reducing the illness recurrence, which is related mostly to the massive doses
required for stopping the cancer cells division but delivered also towards the surrounding
healthy tissue. High Z and dense inorganic nanomaterials represent the key to reduce
RT parameters, such as external beam energy, delivered dose, and exposition time, while
boosting all the toxic and fatal effects of the radiation [74,76]. The idea to exploit high
Z materials comes from simple considerations. Indeed, the presence of heavy NPs in
a regime of low energy ionizing radiation (<60 keV) maximizes the X-ray beams attenuation
by photoelectric effects, whose cross section σ depends on (Z/E) n, with n ∼= 3–4 [77]. This
dependency reveals that high Z materials turn out to be supportive in RT by enhancing the
deposit of energy in the tumor and in the proximity of the malignant cells (thus, the dose
delivered during radiotherapy) [81].

Since the early 1970s, the ability of diverse materials, like water/tissue equivalent
materials, alloys of metals, and heavy metals, at stopping the ionizing radiation have
been tested for applications in radiotherapy [82]. Later, it has been discovered that metal
implants, composed by aluminum, tin, stainless steel, titanium, and lead, can alter the
delivered doses in radiotherapy in patients affected by neck and mandibular cancers, due
to the difference in Z value between the biological tissues and the metals [83,84]. In the
last few decades, the scientific research has looked at the capacity of nanosized heavy
metal particles in promoting the dose delivery in cancer tissue as a chance to improve the
RT procedure and its therapeutic outcomes, due to the correlation between the enhanced
energy dose and the increased cancer cell destruction [85].

Over the past few years, NP sensitizers have been proposed in combination with
radiotherapy in order to improve tumor response and control the disease growth. For
instance, there has been lot of interest in metallic—gold, gadolinium, silver, bismuth, and
platinum—and bimetallic based NPs, as well as in nanometric metal oxides [86,87]. Thanks
to the high atomic number, good biocompatibility, and relatively strong photoelectric
absorption coefficient, gold nanoparticles (AuNPs, Z = 79) are largely studied for diagnostic
and therapeutic applications in cancer therapy [88]. Especially, Au nanoparticles have been
under investigation as possible agents for amplification of radiation dose in tumors, in the
so called “gold nanoparticle-assisted radiation therapy”. From the first decades of 2000’s,
AuNPs’ action has been predicted to increase the fraction of the X-rays energy deposited
close to gold NPs because of increased photoelectric interactions, thereby enhancing the
local radiation dose also according to their shape, functionalization, concentration, and
intracellular distribution [89]. In vivo studies performed by Hainfeld et al. [90] and Herold
et al. [91] by injecting Au NPs and microspheres in tumor-bearing mice, have reported the
occurrence of biologically effective dose enhancement by using kilovoltage photon beams;
while the use of isotopes producing low-energy photons has been foreseen for significantly
improving the clinical potential of interstitial brachytherapy. More recent works assess
the Au actions considering the increment of dose together with the corollary activation of
ROS within malignant cells [92] (see for example Figure 3 reproduced from Ref. [92]). On-
going research promotes the optimization of nanoparticles targeting and functionalization
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to reduce the total doses to be delivered, and to combine ionizing radiation with other
therapeutic modalities [93–96]

Figure 3. (a–c) Radiation enhancement effect of 14 nm citrate-capped gold nanoparticles (AuNPs).
(a) AuNPs improve the cell-killing effects of X-rays and fast carbon ions. (b) AuNPs improve
the hydroxyl radical production of X-rays (assessed by 3-CCA). (c) AuNPs improve the hydroxyl
radical production of carbon ions (assessed by 3-CCA). Reproduced with permission from Ref. [92].
Copyright Elsevier 2015.

A valid candidate as sensitizers of RT is Gadolinium (Gd, Z = 64). In addition to its
well-known application as contrast agent in MRI, recently the additional role of gadolinium
nanostructures in RT has been modeled by computational analysis. Modeling results reveal
the capability of Gd NPs at increasing the final delivered dose to the tumors site and the
suitability in brachytherapy applications [97,98]. Moreover, studies on gadolinium-NPs,
namely AGuIX, confirm the occurrence of sensitization under ionizing radiation in vitro
assay on HeLa cells, revealing the attractiveness of gadolinium-based NPs as alternative to
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the widely used gold NPs for improving the efficacy of radiation cancer treatments [99].The
use of platinum (Pt, Z = 78) NPs (PtNPs) as promising radiation sensitizers in radiotherapy
cancer treatment has come into light in a small number of works with respect to the Au
and Gd NPs. For instance, in 2010, it has been examined the case of platinum nanoparticles
upon irradiation by fast carbon ions (LET = 13.4 keV μm−1). Their use enables the strong
enhancement of the biological efficiency of ionizing radiations and the amplification of
tumor cells DNA lethal damage (single strand breaks, and mostly double strand breaks)
induced by irradiation; moreover, formation of radicals in PtNP proximity has been proved
to further contribute to the DNA strand breaks [100]. More recently, porous Pt NPs have
opened the way for novel therapeutic strategies. Indeed, while promoting radiation
induced cell cycle arrest by an effective energy deposition within the cancer cells, porous Pt
systems enable also to generate oxygens (O2) from hydrogen peroxides (H2O2). The final
outcomes of exploiting porous Pt NPs are the formation of DNA breaks with the generation
of ROS and, at the same time, the hampering of the establishment of hypoxia condition in
the tumor, being one of the major causes of cancer radioresistance [101].

Metal oxides nanoparticles are considered an alternative to full metallic systems.
Hafnium oxide (hafnia, HfO2) has been considered in RT as sensitizer to increase energy
dose deposit within cancer cells, owing to its high atomic number, electron density, and
chemical stability. Hafnium (Z = 72) oxide nanoparticles (NBTXR3) have been designed in
terms of size, surface charge, and shape, to concentrate in tumor cells to achieve intracellular
high-energy dose deposit with reduced health hazards. Monte Carlo simulation considering
a high-energy source of a few MeV predicts an enhancement of local energy deposit, within
and close to the tumors where NPs are located, almost 9 times larger with respect to RT
alone. In vitro and in vivo studies on the HT1080 fibrosarcoma cell line with NBTXR3
nanoparticles with high-energy sources confirm the results of the simulation, denoting
a higher radio-induced cancer cell destruction rate in presence of high Z NPs [102]. Another
recently discovered effect of NBTXR3 marks their ability to impact on the activation of the
antitumor immune-response, open the way for their use in radio-immunotherapy [103].
Other interesting high Z materials enabling strong absorption of X-rays, are tantalum
pentoxide (Ta2O5) NPs and bismuth oxide nanoparticles—Bi2Se3, Bi2S3, and Bi2O3, the
latter showing a multiplicity of characteristics for multimodal imaging, radiosensitization,
as well as in radioprotection [81].

3.2. Active Nanoparticles and Catalysts Inducing ROS Generation

As extensively explained above, the augmented photoelectric effect cross section in
presence of NPs with heavy Z enables the creations of secondary charges, mostly Auger
electrons, and the productions of direct and indirect DNA cancer cells damages. However,
as reviewed by Guerreiro et al. in Ref. [104], there are many evidences that also metal oxide
NPs with lower atomic number (made up by Si, Al, Ti, Zn, Fe, Ce and Mn for instance) are
responsible of radiosensitization phenomena within tumor cells. This output is imputed
to the chemical and catalytic activities of the NPs surfaces contributing to the overall
generation of radiation-induced radicals. From a general point of view, nanocatalysts
are materials able to produce ROS under high energy light (photocatalysts) and ionizing
radiation (radiocatalysts) to decompose unwanted chemical and biological agents. Despite
the attempt to treat the radiocatalysis as similar to the well-known photocatalysis [65], it is
worth to notice that the use of ionizing radiation guarantees diverse advantages, such as
the increased rate of a catalytic reaction, the acceleration of degradation of pollutants, the
overcoming of limited penetration of UV/Visible (Vis) light in solutions and biological tis-
sue, as well as the possibility to use a wider range of catalyst also with wider band gap (Eg)
and greater redox capabilities [105–107]. If we consider the case of (nano) titanium oxide,
TiO2, as representative of photo-/radiocatalysis in semiconductors, catalysis phenomenon
can be summarized in the following steps: (1) excitation by high energy ionizing radiation
or light source with energy larger than the Eg of the material; (2) promotion of an electron
(e−) from the valence band to the conduction band, and the concomitant generation of
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a hole (h+) in the valence band; in an efficient nanocatalyst, where recombination of the
generated e−/h+ is restrained, the last step (3) is the diffusion of e−/h+ charges towards
the materials surface to rapidly (in sub-nanoseconds time range) initiate redox reactions
among reactants adsorbed at the nanocatalyst surface, and to start the formation of ROS. In
presence of aqueous environment, electrons reduce molecular oxygen forming superoxide
radical anion; hydroxyl radicals and hydrogen peroxide molecules are induced by the holes
oxidizing water molecules and hydroxide ions. In TiO2, it has been also proven the occur-
rence of singlet oxygen creation (1O2) after oxidation of superoxide radical ion [108–110].
The reactive species, especially hydroxyl radicals, can be used to decompose a variety of
pollutants in environmental applications [111]. More important for the goal of this review
is the effective damage that the generated ROS can produce on DNA of cancer cells and
biomolecules, thus contributing to the biological damage induced during radiotherapy, as
well as to the lethal prolonged metabolic oxidative stress after irradiation [112]. Due to the
large active surface area, it has been established the importance of morphological features
(e.g., size, composition, specific surface ligands, surface charges) on the amount of ROS gen-
erated by NPs [113]. Numerous examples in the literature report chemistry strategies to fix
up the NP surface properties also through functionalization/coating procedures [114,115].

In this review, we aim at providing straightforward examples illustrating the im-
portance to conduct further research on lower Z radiocatalysts, whose effect in reducing
cancer growth in RT is as effective as the one of high Z and dense NPs, thanks to the
boosted ROS productions. We consider two well-known radio-photocatalyst NPs, specifi-
cally titanium and zinc oxide (TiO2 and ZnO, respectively), which have been approved
by Food and Drug Administration (FDA) [116]. In nanomedicine, the ability of ZnO and
TiO2 in producing ROS by themselves under UV/Vis excitation has been exploited for the
photodynamic therapy [117]. Indeed, PDT is considered as a clinically deployed efficient
and non-invasive alternative to the surgery and to the current oncological therapies. PDT
is based on the cytotoxic effects originating when biocompatible photosensitizers (PSs)
are photoexcited, producing ROS and singlet oxygen moieties that induce the cell death
through oxidative damage of cellular membranes [118]. PSs can include organic dyes
and aromatic hydrocarbons, porphyrins and related photosensitizers, transition metal
complexes, and semiconductors [119]. Unfortunately, the PSs approved for routine PDT
treatment require UV/Vis light to be activated. In this spectral region, the human tissue
transparency is low, thus making PDT ineffective for tumors seated at depths larger than
1 cm [120]. Interestingly, TiO2 and ZnO have been proved to create ROS also under ionizing
radiation and to be suitable for X-ray based oncological treatments. For instance, a work
of Youkhana, Esho Qasho, et al. reports the radiosensitization phenomenon in presence
of anatase TiO2 NPs under X-ray beam with energy set from keV to MeV [121]. Tests on
cell viability assays have been performed on phantoms and in vitro to determine cells
survival curves and the dose enhancement percentage. The obtained results evidence the
occurrence of sensitization driven by two different mechanisms: in the keV range, the
photoelectric effect coupled to the difference in the atomic numbers of the biological tissue
and the TiO2 NPs are responsible of the dose enhancement; when MeV energy is used, the
cross section of the photoelectric effect decreases while the active catalytic surfaces of the
NPs start to play the major role in the generation of cell killing ROS, leading to the final
therapeutic sensitization of RT. The possibility to take advantage of the two mechanisms,
i.e., photoelectric and Z-dependent radiosensitization, together with the generation of ROS
capable of destroying tumor cells by nanocatalysts, is at the base of the development of
novel composite materials, like Au nanoparticles supported on TiO2 (Au@TiO2), enabling
the simultaneous and synergetic establishment of the two processes, which lead to superior
performances over the single elements [122].

Nanoparticles of ZnO are attractive materials for biomedical applications due to no-
ticeably low toxicity. ZnO NPs have been widely explored for anticancer, antidiabetic,
antibacterial, antifungal, and anti-inflammatory activities, as well as for drug delivery
applications. Especially, ZnO NPs anticancer action relies on their ability to trigger ROS
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generation and apoptosis mechanisms under external excitations. Recently, the X-ray
radiation-induced therapeutic behavior of ZnO NPs coated by a silica layer (ZnO/SiO2)
has been studied on prostate adenocarcinoma cell lines. The potentiality of ZnO/SiO2
nanoparticles to increase radiation-induced killing of the cells has been validated by com-
paring cells survival after RT with and without NPs. Results display a 2-fold augmented
killing rate in presence of ZnO based NPs; the findings show the active response to ion-
izing radiation of ZnO/SiO2 by means of the radiocatalytic mechanisms occurring at its
surface. The proven catalytic reactions induced by high energy radiation make ZnO/SiO2
nanoparticles suitable for biomedical applications [123]. The combined use of ZnO with
chemotherapeutics represents a step forward in the use of ZnO as anticancer. The load-
ing of the anticancer drug, like doxorubicin as in ref [124], into the ZnO nanoparticles,
results in an augmented cytotoxicity effects of the cancer therapy, due to the simultaneous
combination of the anticancer action of the drug with the lethal ROS production by ZnO.
Current research on nanocatalysts for RT focuses on other oxides, like superparamagnetic
iron oxide nanoparticles (SPIONs) that, although the relatively low atomic number of iron
(Fe, Z = 26), are used in combination with kV and MV X-rays beams and allow to enhance
the impact of X-rays in tumor cells thanks to the production of ROS from catalysis reaction
at the oxides surface [125]. Also, studies on cerium oxide NPs (CONPs) have demonstrated
their capacity to enhance ROS production during RT in human pancreatic cancer cells
and, at the same time, to play a protective role from toxic side effects of RT in normal
tissues [126].

3.3. Multicomponent Nanoscintillators for X-PDT

The attempt of finding oncological cures alternative to surgery, chemotherapy and
radiotherapy relies on the use of selective and non-invasive approaches with reduced
side effects. In the previous paragraph, we mentioned at the advent of PDT as FDA
approved oncological treatment, which has been proposed as alternative to the RT for the
treatment of primary tumors of skin, esophagus and lung. Far from being an exhaustive
explanation, in brief, PDT principle is based on photoexcitation of a PS (among which we
can mention noble metal complexes, metal organic frameworks, metal oxides or carbon-
based nanostructures, as well as polymeric PS and small organic moieties [127]) to locally
generate ROS species and cause cancer cells death. After interaction with light, the PS
is excited from ground state (S0) to unstable singlet excited states. In particular, the
first excited state (S1) may undergo intersystem crossing (ISC) to form a more stable
excited triplet state (T1) with longer lifetime (≈μs). Triplet state of PS can produce ROS by
interacting with water and molecular oxygen. The first interaction generates free radicals
(type I), while the second one produces singlet oxygen moieties (type II). However, the
most common PSs can be excited by UV/Vis light; in this wavelengths range light is
reflected and scattered by the human tissues, rendering the PDT ineffective for deep-tissue
treatment [128]. Moreover, PDT painful side effects can appear immediately after treatment
as well as after months. In the literature, many research studies have been reviewing in
detail the PDT processes, the advantages and limitations, together with the PSs guideline, for
instance see refs [129–133]. One possible solution relies on the so-called second-generation
photosensitizers showing higher molar extinction coefficient in the near-infrared region
where biological tissues present a transparency window [134,135]. Thanks to their high
penetrability, X-rays offer another solution for adapting the PDT principle to deep tumors.
From the first decades of the last century extensive studies have displayed the activation
of the PS under ionizing radiation [136,137]. Recently, an extensive review by Larue et al.
has offered an overview on the efficacy of X-rays in enhancing the toxic activity of some
PSs, like hematoporphyrin derivatives, protoporphyrins, or metalloporphyrins They have
listed the available photosensitizers used as radiosensitizers or as precursors of PDT effects
in combination with radiation therapy [138].

A step forward in the progress of alternative therapies is provided by the so-called X-
PDT. The strategy counts on the employment of scintillating nanoparticles (nanoscintillator;
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NS), able to convert the ionizing radiations into ultraviolet or visible light through a three
stage scintillation process consisting in-conversion, transport, and luminescence [139,140].
NS can be embedded in a biological surrounding, where both the absorption of X-rays
by the NS and the deposition of energy by the exciting beam (or the following secondary
particles) in its proximity can occur. Afterwards, NS can emit fluorescence (Figure 4a),
alternatively, when NS is embedded in biological environment with other elements (organic
dyes and therapeutics, for example), the energy can be transferred to the secondary moieties
through multiple radiative emission/reabsorption process and/or through efficient energy
transfer mechanisms (ET). The interaction can occur between the high-energy beam and
the aqueous environment with the consequent excitation of the NS and then the activation
of organics nearby (ET′); or the NS can directly absorb the X-rays and transfer the energy
to the dye (ET′′). Lastly, also the organic molecules can interact with the primary beam by
themselves (ET′′′) (Figure 4b). In X-PDT, high Z and dense NS are designed to be grafted by
a PS therapeutic agent (Figure 4c). In order to employ energy transfer from the NS to the PS
for triggering the ROS and 1O2 production, the PS absorption spectrum should be resonant
with the NS emission. Potentially, the exploitation of X-rays and heavy NS fulfills all the
constraints for RT applications and for inducing radiosensitization (Section 3.1); at the
same time, the use of PS, mostly 1O2 producing PS, being attested to be more efficient in the
killing of malignant biological tissues and cells [127], guarantees an additional cytotoxicity
towards the cancer cells destruction, mimic the action of the traditional PDT. The outcome
of the RT- and PDT coupling remains unclear: besides the concept that the final result is
just a sum of the effects from the two individual therapies, it has been demonstrated that
X-PDT can produce important synergetic effects resulting in an improved efficiency in
killing the tumor cells and in the overall reduction of the total dose to the patient [18].

Figure 4. Sketch of the working principle of X-ray activated X-PDT. (a) Inorganic nanoscintillators
(NS) can be easily embedded in a biological surrounding. (b) The NS scintillation luminescence can be
exploited to excite a secondary photoactive moiety (dye) by energy transfer (ET). (c) Multicomponent
hybrid nanosystems can be fabricated by decorating the NS surfaces with specific photoactive
functionalities, for example PDT agents, whose action is sensitized by ET from the NS that mainly
interacts with the ionizing radiation.

Many inorganic nanomaterials like oxides, fluorides, silica-based nanostructures and
semiconductor nanocrystals have been combined with organic photosensitizers towards X-
PDT applications [141–148]. We can consider, for instance the case of silica-based nanotubes
coupled to PS, displaying noteworthy therapeutic effects thanks to the synergy between RT
and PDT [149]. Previous studies have proved the low toxicity of stoichiometric chrysotile
[Mg3(Si2O5)(OH)4] nanotubes featuring also the ability to pass the blood brain barrier,
potentially important in cancer brain treatments [58]. Thanks to their density, chrysotile
nanotubes have been proven to respond to X-ray irradiation by emitting light in the blue
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wavelength range, suitable to excite meso-tetra(4-sulfonatophenyl) porphyrin (H2TPPS4−)
as PS. Thus, the surface of chrysotile scintillating nanotubes has been functionalized by
an ionic self-assembly strategy with this efficient PS, able to produce singlet oxygen toxic
species upon photoexcitation (Figure 5a). The study of luminescence behavior under
X-rays (RL) and light (PL) excitations discloses the occurrence of a fast energy transfer (in
ps range) from the chrysotile to the PS, together with the sensitization of singlet oxygen
production upon ionizing radiation (Figure 5b). As expected, also bare nanotubes enable
a sensitization of the 1O2 under ionizing radiation, due to the enhancement in energy
deposition in presence of elements with higher Z than the surrounding biological medium.
A further stabilization of the functionalized nanotubes has been obtained by covering their
surface with polymeric shell. This ultimate composition boosts the ability of the NS to
enhance the production of singlet oxygen in an aqueous environment by ET mechanism
to PS under X-ray irradiation. Tests in vitro—mimic the radiotherapy dose depositions—
show that stabilized chrysotile nanosystems functionalized with porphyrins enable to
sensitize the singlet oxygen species at the lowest doses thanks to the contribution of
a high-density material, and the effective toxic action of PSs activated by the nanoscin-
tillators (Figure 5c,d). This opens the possibility of effectively reducing the high-energy
radiation exposure of patients during oncological therapies.

Figure 5. (a) Sketch of the hybrid nanoscintillator composed based on a chrysotile nanotube (NT) functionalized with and
H2TPPS4− porphyrin (Por*) as singlet oxygen photosensitizer and PEO as stabilizer for colloidal dispersion (NT-PEO-Por*).
(b) Outline of the photophysical process involved in the sensitization of singlet oxygen (1O2*) production upon irradiation
with X-rays. Free electrons and holes generated by interaction with the ionizing radiation in the NT localize at an emissive
state that transfers its energy to the photosensitizer molecules on the surface promoting their excited singlet state (S1*).
Upon intersystem crossing (ISC), the energy is transferred from the photosensitizer triplet to the dispersed molecular oxygen
in triplet ground-state 3O2, which is promoted to its excited singlet state. (c) Evaluation of cell metabolic activity by the
MTT test on U-87 cells stained with 20, 40, and 60 μg cm−2 of NT-PEO-Por*. (d) Relative fraction of dead cells estimated by
the Trypan blue cell exclusion assay on U-87cells stained with 20 μg cm−2 of NT-PEO-Por* as a function of the nominal dose
delivered. (e) Evaluation of cell metabolic activity by the MTT test on U-87 cells stained with 20 μg cm−2 of NT-PEO-Por* as
a function of the nominal dose delivered. MTT assays and Trypan blue cell counting were performed in triplicate. Statistical
analysis: two-way ANOVA, p < 0.0001 ****. Error bars are the standard deviations of the mean values calculated for five
independent experiments. Reproduced with permission from ACS Appl. Mater. Interfaces 2021, 13, 11 [149].
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Metal-organic frameworks containing a heavy metal, such as Zr or Hf, have shown
attractive scintillating performances; especially, MOF architecture can include high energy
radiation interacting dense nodes linked through photosensitizer molecules for therapeutic
and diagnosis applications [150–152]. A variation of the organic component allows for
structural modifications useable to tailor the MOF properties quite easily, thus enabling the
fabrication of molecular-size MOFs—based scintillators where organic dyes or therapeutics
can be used as ligands interconnecting high Z NS. In this architecture, the proximity of
NS and ligands enables the prompt activation of the ligands by energy transfer, after the
interaction of ionizing radiation with the scintillators. The adaptability of these nanometric
architectures has been exploited by Lu et al. in [152] to create cutting edge Hf based
scintillating MOF (nMOF) for simultaneous X-PDT and immunotherapy (Figure 6). The
synergetic combination of radiotherapy and immunotherapy represents a step forward
towards the extension of the applications of radiotherapy for both local and systemic tumor
rejection, by positively reducing the high-dose related RT toxicity.

 

Figure 6. (a) Schematic illustration of the mechanisms of X-ray-induced RT–RDT by MOF nanocrystals. (b) Struc-
ture models of Hf12/Zr12 secondary building units (SBUs), and 5,15-di(p-benzoato)porphyrin-Hf (DBP-Hf), 5,15-di(p-
benzoato)porphyrin-Zr (DBP-Zr) and 2,5-di(p-benzoato)aniline- Hf (DBA-Hf) MOFs nanocrystals. (c) Structure models of
Hf6/Zr6 SBUs, and TBP-Hf and TBP-Zr nMOFs. (d,e) Transmission electron microscopy images of DBP-Hf (d) and TBP-Hf
(e). The nMOF syntheses were repeated more than 20 times in each case and the particle morphologies and sizes were
similar. (f,g) 1O2 generation of DBP-Hf (f) and TBP-Hf (g) upon X-ray irradiation (225 kVp, 13 mA), as determined by
4-nitroso-N,N-dimethylaniline assay. For DBP-Hf, the change in optical density (ΔOD) at 439 nm is linearly fitted against
the product of MOFs concentration (μM) and X-ray dose (Gy). For DBP-Hf or TBP-Hf samples irradiated with 10 Gy at Hf
concentrations of 10 μM, two independent experiments were performed, and similar results were obtained. Reprinted from
Nature Biomed. Eng. 2, 600–610 (2018) [152] Copyright Springer Nature 2017.
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In this work, hybrid nMOFs have been designed by linking Hf clusters and porphyrin-
based photosensitizer ligands. The nMOFs exhibit the suitability to activate X-PDT mecha-
nisms and the ability to stop the ionizing radiation and to trigger efficiently the 1O2 species
creation by PS (Figure 6f,g). In vitro experiments display that hybrid nMOF can induce
cytotoxicity and DNA double-strand breaks for doses < 1 Gy, i.e., lower than the doses
typically delivered in X-rays based oncological therapies. Cancer killing action by nMOF
has been demonstrated in vivo by injection in subcutaneous tumor models of radioresistant
head and neck squamous cell carcinoma (SQ20B), glioblastoma (U87M G) and prostate
cancer (PC-3) xenografts, and into colorectal cancer (CT26) tumor-bearing mice. All tested
cancer models disclose a rapid tumor regression at extremely low X-ray doses with min-
imal toxicity. Being a porous system, nMOF channels and pores have been loaded also
with small-molecule IDO inhibitor (IDOi), which are able to reverse immunosuppression
and control tumor growth, for the activation of immunotherapy modality. The synergy
between IDO inhibition and X-PDT upon low-dose X-ray irradiation leads to the local
regression and eradication of the tumors in in vivo models. Moreover, the blockade of
inhibitory checkpoints by IDOi has been evaluated to reduce other systemic tumors placed
far from the irradiation points. A comparison with no porous Hf based systems (NBTXR3;
Nanobiotix), commonly used as sensitizer in RT, reveals the efficacy of the synergetic treat-
ments with respect to the individual therapeutic modalities. The use of nanosystems with
tunable properties, such as scintillating MOFs, enables to design materials with multiple
therapeutic actions that can be simultaneously activated by X-rays at low doses resulting
in a synergism among the treatments.

Table 1. Table summarizing the properties of the diverse nanoparticles, explored in the manuscript, together with the
proposed application and the expected effects in RT, the type of radiations (with the final delivered dose), and the stage of
the investigation (in vitro or in vivo studies).

Type of NP Size
Surface

Functionalization
Type of Radiation

Maximun
Dose

Application
Type of
Studies

Ref.

Gold NPs 15 nm Capped with
citrate

X-rays (50 kVp);
Carbon ions (165

MeV/u);
4 Gy

Passive
Radio-

sensitization
In vitro [92]

Gadolinium
NPs sub-5 nm Coated with

polysiloxane shell
X-rays (220 kVp);

gamma rays (6 MV) 8 Gy
Passive
Radio-

sensitization
In vitro [99]

Porous
platinum NPs 116 nm Conjugated with

PEG X-rays (250 kVp) 10 Gy
Passive
Radio-

sensitization
In vivo [101]

Hafnium oxide
NPs 50 nm

Coated with a
biocompatible

agent

Gamma rays (1.25
MeV and 0.38 MeV) 4 Gy

Passive
Radio-

sensitization

In vitro
and in vivo [102]

Anatase
titanium oxide

NPs
30 nm

Functionalized
with amine

or PEG

X-rays (80 kV and
6 MV) 8 Gy Active ROS

generation
Phantoms

and in vitro [121]

Zinc oxide
NPs 8–100 nm Coated with silica

shell X-rays (200 kVp) 10 Gy Active ROS
generation In vitro [123]

Cerium oxide
NPs 5–8 nm None X-rays (160 kV) 5 Gy Active ROS

generation In vitro [126]

Chrysotile NTs 20 × 60 nm
Functionalized
with PEO and

porphyrin
X-rays (20 kV) 12 Gy X-PDT In vitro [149]

DBP Hf
nMOF 72 nm None X-rays (225 kVp) 1 Gy X-PDT Tumor

models [152]
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4. The Effect of the Energy Release vs. X-PDT Efficacy

The perspective of discovering novel materials mostly shaped in form of organic
and inorganic nanoparticle or hybrids demands a deeper comprehension of the processes
occurring within the material after the interaction with the ionizing radiation. Indeed, the
reduced material dimension is critical in presence of high energy ionizing radiation, as
the migration distance of secondary charges generated in the NPs along the track from
the point of the ionizing event (relaxation mechanisms) are significantly larger than the
common nanometric radius of the NPs. Therefore, a fraction of energy escapes from the
NPs, limiting the efficiency of activation of the RT and X-PDT mechanisms [18,153].

The effective energy deposition in RT, together with the activation of the scintillating
NPs and the trigger of the PS therapeutic effects in X-PDT, are key open question in
nanosystems. In nanomedicine, the debate can regard the comprehension of the increase
of X-rays absorption cross section, the effective energy release within the nanomaterials
embedded in the biological surrounding, and the radiation dose-enhancement in the
vicinity of the malignancy due to the presence of high-Z elements. The main goal of
exploiting the passive NPs or single component active NPs is to increase the RT effects at
the lowest doses in the disease site, and to localize the radiation energy deposition and
RT damages only in the cancer site, while preserving from the radiation lethal toxicity
the healthy tissue and organ in the patient [154,155]. As discussed in Section 5, this
point can be addressed by creating tumor-targeting NPs, such as NPs functionalized by
folic acid, able to accumulate only in the cancer tissue and thus to locally increase the
absorbed dose [93,156]. Moreover, the question on the X-PDT processes in hybrids is
under debate: here, besides the mechanism due to the presence of high-Z nanoscintillator,
the effect of the photo-toxicity of the PS grafted on their surface should be considered,
together with the possible interaction of the high energy beam directly with the PS. If on
the one hand, different publications in the literature have demonstrated the occurrence of
a synergetic effect given by the simultaneous application of the RT and the PDT in presence
of PS grafted on NS [18,152,157], on the other hand the X-PDT phenomenology lacks
unique explanation—i.e., whether the dominant therapeutic effect is due to the presence
of high Z elements allowing for an enhancement of radiation dose deposition close to the
injured tissues, or to the establishment of a tradeoff between the RT and PDT enabling
simultaneously the reduction of the total dose to the patient and the induction of additional
cell death mechanisms by toxic singlet oxygen moieties.

In this context, Monte Carlo simulations are powerful tools enabling to properly
connect the clinical beam simulations to the phenomena expected to occur at the NP level.
Many Monte Carlo codes have been developed [158,159] to explore the dose enhancement
in RT, especially with X-ray beams, electron beams, and proton beams; each of these
simulations helps to quantify the spatial energy distribution resulting from the interaction
between the X-ray photon at diverse energies and the NP/NS, which finally drives the
sensitization efficiency in RT and the activation of molecular singlet oxygen sensitizers in
PDT and X-PDT. In addition, these computational studies allow to model the release of
secondary particles after the first ionization event in relation to the nanomaterials physical,
chemical, and structural properties. For instance, interesting computational studies have
explored the use of passive high Z agents, like iodine, gadolinium, and gold, to treat
human brain tumors in synchrotron stereotactic radiotherapy (SSRT) with irradiation
by monochromatic X-rays from a synchrotron source, tuned at an optimal energy [160].
Especially, Edouard et al. in [161] have developed theoretical dosimetric investigation,
by using a Monte Carlo code developed for neutrons, photons, and electrons transport
(MCNPX) on an idealized phantom representing a human head bearing a brain tumor
volume. Simulations of irradiation have been conducted for diverse beams: monochromatic
X-ray beams from a synchrotron source (30–120 keV); polychromatic X-ray beams have
been used to simulate irradiations from a conventional X-ray tube (80, 120, and 180 kVp),
and from a linear accelerator (6 MV). The results on the SSRT dose enhancement have been
compared for the diverse ionizing radiation energy ranges and in the presence of iodine

21



Appl. Sci. 2021, 11, 7073

elements. The enthusiastic data proves the major RT enhancement in presence of high Z
agents for the medium energy beam by monochromatic source at 80 keV, despite the lower
penetration of the keV X-rays with respect to the conventionally used higher energy X-rays.
At keV energies, the maximum dose can be delivered to the tumor while preserving skull
and healthy tissues from excessive radiations exposure. In particular, the simulation on X-
ray penetration and dose deposition performed by Edouard and co-workers reveals that by
using 6 MV irradiation, the doses delivered to the skull are similar to the value obtained for
80 keV from monochromatic source but, at the same time, the doses delivered to the healthy
brain are hazardously higher if compared to low energy monochromatic and polychromatic
beams. Moreover, the dose enhancement for 6 MV irradiation is almost negligible. This may
be imputed to the different type of X-rays interaction with the biological medium, ruled by
Compton and photoelectric effects working in the MeV and keV range, respectively. This
work highlights the importance of computational modeling in order to find an optimized
treatment in presence of radiosensitizers, able to significantly reduce the dose to the healthy
tissue, hopefully avoiding the implication of megavoltage irradiation.

In another work, Bulin et al. in [162] have quantified, by Monte Carlo GEANT4
program, the amount of energy deposited in diverse scintillators such as gadolinium oxides
(Gd2O3) nanoparticles, by varying the concentration of the NS in an aqueous medium,
the NS dimension, and the energy of the first high energy beam, as well as the position
of the first interaction event. In this work, the first estimation of the energy transfer from
the primary interaction of an ionizing radiation beam with a sphere of water representing
a volume of tumor, loaded with nanoscintillators, has been conducted by means of the
mass energy absorption coefficient. The results reveal that the maximum energy transfer
enhancement occurs for energies around 40–60 keV, confirming the importance of exploit-
ing beams of ionizing radiation in the kiloelectronvolt energy range in presence of high-Z
elements. However, Bulin and co-workers have highlighted that in such a composite
compound, made by a large volume of water loaded with a small concentration of NS, the
interaction between the first photon and the matter can occur either in the NS or in water.
Especially, when the interaction occurs in the NS a fraction of the expected transferred
energy can escape from the nanoparticle, typically due to the larger migration distance of
the secondary particles generated after the first interaction with respect to the NS dimen-
sions, and the deposited energy is shared between the water and the NS. In this context, the
Monte Carlo GEANT4 calculation has helped to determine the spatial distribution of de-
posited energy in the volume surrounding the nanoparticle where the primary interaction
occurs and to evaluate the fraction of energy loss during the energy relaxation and charge
migration processes in the NS. The new parameter η has been introduced, which quantifies
the percentage of energy that is deposited in the NS itself, as a function of both NS and
external source parameters. The outcome of the computational investigation performed for
three different NS diameters reveals that even for the nanoparticles of 100 nm of diameter,
the deposited energy decreases very quickly when the incident beam energy increases,
resulting in a large amount of energy loss outside the NS and deposited in the surrounding
medium (see Figure 7). From this consideration, the estimation of η is crucial especially in
the case of hybrid nanomaterials for X-PDT, where after the activation of the scintillating
process in the nanoparticles by the external irradiation beam, the subsequent trigger of
the singlet oxygen sensitizers is expected by energy transfer mechanisms (see Figure 4).
The correct evaluation of the energy deposition is critical to optimize the singlet oxygen
production in presence of NS for therapeutic purposes and to exploit the synergy among
RT, radiosensitization and PDT.

The development of further theoretical studies devoted to the modeling of energy
deposition in a biological medium and of scintillation phenomena in nanomaterials and
hybrids is essential for the exploitation of NP/NS in nanomedicine. Computational simu-
lations coupled with the experimental proofs would provide the guidelines for tuning the
nanomaterial composition in order to optimize the interaction with X-rays and the activa-
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tion of therapeutics or diagnostic agents, and thus to accomplish the different requirements
according to the application target.

 

Figure 7. (a,b) Deposited energy per unit of normalized radial distance from the center of the NP
(diameter of 100 nm of Gd2O3) for (1)—2 keV electrons and (2)—10 keV electrons. Visualization
of the spatial distribution of the deposited energy is shown as insets. (c) Percentage of deposited
energy per electron generated in a Gd2O3 nanoparticle for three different diameters, as a function of
the primary electron energy. Reproduced from Nanoscale 2015, 7, 5744–5751 [162]. Copyright Royal
Society of Chemistry 2015.

5. Targeting Strategies for Enhancing NPs Sensitizing Effects

Two important features are required to design effective nanotechnologies conceived
for X-rays based oncological treatments: one is a selective tumor cell targeting and the
other is a rapid clearance from human body after treatment [163,164]. These achievements
are highly dependent on the size of the nanomaterials that can affect the efficacy of the
treatment reducing its side effects (such as undesirable ROS generation, disruption of
cellular compartments, immune reactions, inflammation, destruction of the host home-
ostasis) [165,166]: for instance, it has been reported that non-targeted heavy nanoparticles
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with diameter ~50 nm have the highest cellular uptake and are able to increase the ef-
ficacy of RT treatment [164,167]. Thanks to their size, nanoparticles tend to accumulate
more in tumor tissues with respect to the normal ones due to the enhanced permeability
and retention (EPR) effect [168]. This passive targeting exploits the fact that tumors have
a leaky vasculature, different pH, and different local temperature, and are devoid of
an efficient lymphatic drainage system. Therefore, nanoparticles with suitable physico-
chemical characteristics and size can extravasate from leaky tumor vessels and accumulate
in the tumors [169]. Passive targeting, however, may induce multi-drug resistance (MDR),
a poor drug diffusion, and a-specific accumulation in liver and spleen [163,170]. One of the
most promising approaches for improving the retention and accumulation of NPs in tumor
cells relies on grafting the NPs surface with cancer cell-specific targeting ligands. Tumor
accumulation of actively targeted nanoparticles has been found to be 5 times faster and
approximately 2-fold higher than their passive counterparts, within the 60 nm diameter
range [164]. Among the ligands used to target cancer cells we can mention antibodies,
peptides, and aptamers to recognize and bind overexpressed cancer cell receptors (such as
epidermal growth factor receptors), together with folate receptors and transferrin-receptors
to enhance the cellular uptake of nanoparticles [171–173]. Some monoclonal antibodies
have been exploited in strategies combining chemotherapeutic agents or immunotherapy
with ionizing radiation; in vitro and in vivo results have proven that antibodies promote
and potentiate apoptosis and cytotoxic effects, thus damaging DNA of the cancer cells.
Successful medical outcomes have been obtained especially for the treatment of breast
cancer [174–176]. In this context, the human epidermal receptor-2 (HER-2) is the most
widely studied overexpressed targeting receptor for therapeutic applications [177]. The
most commonly ligand targeted to HER-2, is the anti-HER-2 mAb [178]. The functionaliza-
tion of gold nanoclusters (AuNCs) with anti-HER2-mAb and/or folic acid (FA) as a single
and dual-targeted radiosensitizers has shown the increasing of cellular internalization and
of the RT efficiency (Figure 8) [179].

Figure 8. Schematic illustration of the functionalization process of bovine serum albumin (BSA) gold nanoclusters (AuNCs)
with folic acid and Herceptin and the mechanism of cellular internalization by binding with folate and human epidermal
growth factor 2 receptors on the surface of SK-BR3 cells. Reproduced from European Journal of Pharmaceutical Sciences 2020,
153, 105487. [179] Copyright Elsevier 2020.

Despite the fact that just an exceedingly small amount of antibody is needed to target
a specific site, the expensive production and immunogenic properties may restrain their
applications in clinical trials [180]. An alternative is represented by the aptamers that are
attractive for in vivo visualization, as they can couple some diagnostic agents, such as
fluorescent or radionuclide labels, bioconjugates and nanoparticles, for the delivery of
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therapeutic agents and as sensitizers in RT, especially for brain tumors [181,182]. Aptamer
functionalized metal oxides and metals containing nanostructures have been proposed for
tumor-targeted delivery and efficient PDT treatment [183,184]. ZnO catalyst NPs have been
studied for targeted PDT therapy in combination with chemotherapy by loading the NPs
with anti-cancer drugs. The results presented in [184] show an enhanced cellular uptake of
the NPs and they validate the successful therapeutic cytotoxic effect with a higher rate of
death of cancer cells, if compared to the one of single photo—or chemotherapy.

In spite of the significant advancements made in targeting strategies of NPs, potential
harmful effects may occur depending on the route of delivery. With the systemic intra-
venous delivery, only a small fraction of NPs has the possibility of reaching the target
site, even in case of targeted NPs. Thus, a large number of NPs could remain in systemic
circulation, leading to drug accumulation or systemic toxicity, and affecting the health of
patients [37,185]. For this reason, other delivery routes, such as localized delivery via intra-
tumoral injection have been studied. Localized delivery can be advantageous particularly
in tumor sites where conventional systemic delivery routes fail, enabling the accumulation
of the delivered NP at higher concentrations in the targeted tumor volume. Consequently,
the use NPs localized delivery strategies helps to avoid repeated dosing, to decrease the
final toxicity, and to increase patient compliance [186]. To improve the beneficial effect of
localized delivery strategies, recently NP-loaded or drug-embedded implants have been
obtained from biodegradable polymers. NP can degrade into biocompatible compounds
that are easily absorbed in the body with virtually no side effects [187,188].

The final evaluation of the anticancer performances of each type of nanoparticles relies
on many factors. The radiotherapeutic performance of nanoparticles is affected by their
intrinsic parameters, mainly size, shape, surface charge/functionalization, and toxicity,
as well as by external factors, such as the targeted type of tumor, the administration
methodology, and the irradiation setup [76,189,190]. From this picture coupled to the
description of the issue on the energy/dose deposition in heavy or hybrid materials at the
nanoscale (Sections 3 and 4), it is clear that the comprehension of the physical phenomena
occurring in NP exploited in X-rays-based oncotherapy, together with deeper studies
for the engineering of nanoparticles performances and targeting, are mandatory. The
research for a guideline towards the assessment of the relationship between the NPs key
physico-chemical parameters and their therapeutic efficacy in RT is an open roundtable.
However, it represents a challenging matter for the chance to design NPs with properties
and performances that can be appropriate to address all the pending requests made by the
clinical advanced therapies, to increase the survivor rate in oncology, and to improve the
life quality of oncological patients.

6. Conclusions

The advanced nanomedicine is currently promoting the development of novel nanopar-
ticles able to address the increasing demands for the fight against cancer. This paper
proposes an overview of the inorganic and hybrid nanoparticles of interest for X-ray based
oncological strategies. The aim is to highlight the characteristics that such nanoparticles
should satisfy to be exploitable in oncology to promote the overcoming of the limitations of
the traditional RT, with the following reduction of the collateral effects and improvement of
the therapeutic efficacy. Indeed, this review points out that the physico-chemical properties
of the nanoparticles, together with the choice on surface functionalization and the targeting
strategies, affect the key parameters of RT and X-PDT, including energy deposition and
total delivered dose in cancer tissues. Heavy nanoparticles or hybrids represent a successful
chance in cancer fight as they can both assist the traditional RT as radiosensitizers and
boost the therapeutic effects on malignant cells through the synergetic combination of radio
and photodynamic therapies in X-PDT. The cutting-edge scientific research looks especially
at the development of hybrid systems, whose properties are easily tunable with huge con-
sequences for the therapeutic performances. However, the production of high-performing
inorganic nanoparticles and nanohybrids for medical applications involving the use of
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ionizing radiation must be accompanied by the advancement in the knowledge on scintilla-
tion at the nanoscale, in correlation with the physical-chemical features of nanomaterials.
In this context, this review shows the importance of the theoretical studies on the ionizing
radiation energy deposition in biological medium in the presence of heavy nanoparticles,
as well as on the stimulation of anticancer activities in hybrid nanoscintillators coupled
to toxic single oxygen agents. These studies aim at guiding the optimization of nanopar-
ticles’ qualities according to the specific medical applications. The future achievement
of novel experimental knowledge and theoretical descriptions of the phenomena occur-
ring in heavy and hybrids materials at nanoscale would represent a step beyond in the
field of nanomedicine for the achievement of more and more efficient oncological X-rays
based therapies.
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173. Piktel, E.; Niemirowicz, K.; Wątek, M.; Wollny, T.; Deptuła, P.; Bucki, R. Recent insights in nanotechnology-based drugs and

formulations designed for effective anti-cancer therapy. J. Nanobiotechnology 2016, 14, 1–23. [CrossRef]
174. Larson, S.M.; Carrasquillo, J.A.; Cheung, N.-K.V.; Press, O.W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer 2015, 15,

347–360. [CrossRef] [PubMed]
175. Bernard-Marty, C.; Lebrun, F.; Awada, A.; Piccart, M.J. Monoclonal antibody-based targeted therapy in breast cancer. Drugs 2006,

66, 1577–1591. [CrossRef]
176. Sutton, D.; Nasongkla, N.; Blanco, E.; Gao, J. Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res. 2007,

24, 1029–1046. [CrossRef]
177. Iqbal, N.; Iqbal, N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications.

Mol. Biol. Int. 2014, 2014. [CrossRef] [PubMed]
178. Zheng, J.; Ren, W.; Chen, T.; Jin, Y.; Li, A.; Yan, K.; Wu, Y.; Wu, A. Recent advances in superparamagnetic iron oxide based

nanoprobes as multifunctional theranostic agents for breast cancer imaging and therapy. Curr. Med. Chem. 2018, 25, 3001–3016.
[CrossRef] [PubMed]

179. Samani, R.K.; Tavakoli, M.B.; Maghsoudinia, F.; Motaghi, H.; Hejazi, S.H.; Mehrgardi, M.A. Trastuzumab and folic acid
functionalized gold nanoclusters as a dual-targeted radiosensitizer for megavoltage radiation therapy of human breast cancer.
Eur. J. Pharm. Sci. 2020, 153, 105487. [CrossRef]

180. Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy.
Nano-Enabled Med. Appl. 2020, 2, 751–760.

181. Zhang, X.; Peng, L.; Liang, Z.; Kou, Z.; Chen, Y.; Shi, G.; Li, X.; Liang, Y.; Wang, F.; Shi, Y. Effects of aptamer to U87-EGFRvIII cells
on the proliferation, radiosensitivity, and radiotherapy of glioblastoma cells. Mol. Ther. Nucleic Acids 2018, 10, 438–449. [CrossRef]
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Abstract: The epicardial adipose tissue (EAT), mainly composed of brown adipose tissue, is a
metabolically active tissue releasing various bioactive factors with a critical role in metabolic diseases.
The EAT is often irradiated during radiotherapy in patients with esophageal cancer due to its
proximity to the target region. We aimed to evaluate the effect of radiation to the EAT on survival
outcomes in patients with esophageal cancer receiving neoadjuvant chemoradiotherapy followed
by esophagectomy. We analyzed data on 36 patients with esophageal cancer treated with trimodal
therapy between 2012 and 2017. The median follow-up period was 22.0 months. The 3-year overall
survival and progression-free survival rates were 39.7% and 32.5%, respectively. Multivariate analysis
revealed that higher EAT-REI was independently associated with worse overall survival (hazard
ratio: 1.002, p = 0.028) and progression-free survival (hazard ratio: 1.002, p = 0.03). The cutoff value
with the highest accuracy for avoiding mortality was EAT-REI = 68.8 cGy/mL (area under the curve,
0.78, p = 0.006). The 3-year overall survival rate in patients with EAT-REI ≥68.8 and <68.8 was
21.7% and 71.9%, respectively (p = 0.003). The EAT should be considered an organ at risk during
radiotherapy in patients with esophageal cancer. EAT-REI might serve as a biomarker of survival
outcomes in these patients.

Keywords: esophageal cancer; neoadjuvant chemoradiation; squamous cell carcinoma; epicardial
adipose tissue

1. Introduction

Esophageal cancer ranks as the seventh most common type of cancer and the sixth
leading cause of cancer-related mortality worldwide [1]. Neoadjuvant chemoradiation
therapy (NACRT) followed by surgery has become the standard of treatment for advanced
esophageal cancer, with an improvement in survival compared with surgery alone [2–5].

The modern radiotherapy technique can deliver a focused dose to targets while mini-
mizing the doses to normal organs. Many thoracic organs are located near the esophagus,
and these normal organs could also be irradiated during esophageal cancer radiotherapy.
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Previous studies have reported that the radiation dose-volume to the lung is associated
with worse survival outcomes in these patients; hence, minimizing the lung radiation dose-
volume was one of the treatment goals during the radiotherapy planning process. In order
to optimize the lung radiation dose-volume, the heart, trachea/bronchus, great vessels,
spinal cord, muscles, adipose tissue, and other soft tissues may receive a higher radiation
dose. A higher RT dose delivered to the lung and heart has been reported to impair the
survival of lung and breast cancer patients [6–8]. However, the impact of adipose tissues
in the thorax, such as the left main coronary artery fat tissue, peri-thoracic adipose tissue
(TAT), subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT), still needs to
be determined.

Epicardial adipose tissue (EAT) is a unique thoracic adipose tissue located between
the myocardium and the visceral layer of the pericardium. EAT is a metabolically active
tissue releasing various bioactive factors that can affect the prognosis of patients with
metabolic diseases [9,10]. It is characterized by a highly active fatty acid metabolism
and high expression of thermogenic genes. EAT is considered to function in a manner
similar to brown adipose tissue with the expression of uncoupling protein-1 (UCP-1),
brown adipocyte differentiation transcription factor PR-domain-missing 16 (PRDM16),
and peroxisome-proliferator-activated receptor γ co-activator-1α (PGC-1α) [11]. Hence,
the radiation dose on EAT may have an impact on the survival outcomes of patients with
esophageal cancer undergoing NACRT. As EAT is commonly irradiated during esophageal
cancer radiotherapy, the associations between radiation on EAT and survival need to be
determined.

We hypothesized that the EAT dose-volume could impact the survival outcomes of
patients with esophageal squamous cell carcinoma (ESCC) undergoing NACRT. This study
aimed to evaluate the EAT dose-volume and their associations with survival outcomes in
patients with ESCC undergoing NACRT.

2. Materials and Methods

2.1. Patients

For analysis of thoracic adipose tissues including EAT, the main criteria for enrolment
of patients were ESCC located at the middle to lower-third esophagus, in stage IIA to
stage IIIC, and with radiation fields covering these tissues. A total of 36 patients who had
been treated with NACRT between July 2012 and December 2017 in a single institute were
included in this study. The exclusion criteria included distant metastasis and incomplete
CCRT course. This study is retrospective research.

2.2. Neoadjuvant Chemoradiotherapy and Surgery

The NACRT comprised concurrent RT and chemotherapy. The prescribed radiation
dose delivered to gross tumors and enlarged lymph nodes was 40–48 Gy, while that deliv-
ered to elective regional lymphatics was 36.0–43.2 Gy, delivered in 20–24 fractions with
simultaneously integrated boost planning technique using intensity-modulated radiation
therapy (Figure 1A). IMRT was performed once daily, 5 days a week. The target volume
included the primary tumor (2 Gy per fraction) and lymphadenopathy plus a 1 cm circum-
ferential margin and a 3 to 4 cm longitudinal margin. Elective nodal (1.8 Gy per fraction)
irradiation was also included in the target volume as per the physician’s discretion [12].
The normal tissue constraints were as follows: a maximal dose of 45 Gy to the spinal cord,
the lung volume received 20 Gy or a radiation dose (V20) of ≤30%, and a mean heart
dose of ≤30 Gy. A dose-volume histogram (DVH) parameter of Vx was defined as the
percentage of the total organ volume receiving a radiation dose of x (Gy) or more. All
patients underwent concurrent chemotherapy during the RT course with weekly cisplatin
(30 mg/m2).
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Figure 1. (A) The dose distribution was in color wash with IMRT treatment planning; (B) the
epicardial adipose tissue (yellow) was contoured based on the anatomical boundary of heart, ranging
from −195 to −45 HU. Abbreviations: EAT, epicardial adipose tissue; MPA, main pulmonary artery;
AAo, ascending aorta; RPA, right pulmonary artery; CTV, clinical target volume.

2.3. Quantification of Adipose Tissues

Computed tomography (CT) is a standard imaging modality for simulation and is
used in the RT planning system prior to NACRT. Using anatomy to delineate the region of
interest (ROI) and the Hounsfield unit (HU) to measure the radiodensity of structures such
as tumor and adipose tissue, data on both context and structure volume could be obtained.
Images were obtained using a CT scanner (Big-Bore CT simulator, Philips, Amsterdam,
Netherlands) equipped for simulation with the following specifications: scanning with
16 × 0.75 mm collimation, rotation time of 420 msec, and tube voltage of 120 kV. The
EAT was contoured based on the anatomical boundary between the outer wall of the
myocardium and the visceral layer of pericardium from the level of the left main coronary
artery to the cardiac base, ranging from −195 to −45 HU (Figure 1B) [13–15]. The left
main coronary artery for fat thickness, peri-thoracic adipose tissue (TAT) for peri-thoracic
aortic fat volume, and subcutaneous adipose tissue (SAT) and visceral adipose tissue
(VAT) of the thorax for fat areas were delineated according to the methods shown in our
previous publications [13,16–18]. For example, the TAT tissue was defined as the adipose
tissue surrounding the thoracic aorta, extending 67.5 mm caudally from the level of the
bifurcation of pulmonary arteries.
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2.4. Definition of EAT-REI

The radiation dosimetric parameters included radiation exposure intensity (REI). EAT-
REI was defined as the mean radiation dose divided by volume of EAT (cGy/mL). The
calculation equation for EAT-REI was listed below

EAT-REI = mean dose of EAT/volume of EAT (cGy/mL)

Quantification of the adipose tissues was performed by reconstruction of delineated
images, and calculation was performed using Varian Eclipse 11.3 (Varian Medical Systems,
Palo Alto, CA, USA).

2.5. Nutrition Status Evaluation

The patient characteristics with nutrition status, metabolic disease, and cardiac dis-
eases of this cohort and their association with the outcomes were analyzed. As demon-
strated in Table 1, the metabolic and cardiac diseases, as well as nutrition status, in terms
of pre-treatment BMI, albumin level, lymphocyte count, triglyceride, and total cholesterol
were listed.

Table 1. Patient and tumor characteristics.

Characteristics Overall (n = 36)

Age (years) 58.8 ± 8.6
Sex

Man 34 (94.4%)
Woman 2 (5.6%)

BMI (kg/m2) 22.1 ± 4.3
Albumin (g/dL) 4.0 ± 0.5
Hb (g/dL) 12.0 ± 1.4
Lymphocyte (%) 21.8 ± 9.0
Cholesterol (mg/dL) 181.5 ± 40.0
Triglycerides (mg/dL) 116.2 ± 57.2
Metabolic diseases 6 (16.7%)
Cardiac diseases 9 (25.0%)
Clinical T stage

cT1-2 9 (25.0%)
cT3-4 27 (75.0%)

Clinical N stage
cN0-1 19 (52.8%)
cN2-3 17 (47.2%)

cTNM stage
II 10 (27.8%)
III 26 (72.2%)

Target volume (mL) 688.8 ± 271.2
Heart volume (mL) 621.4 ± 117.1
Heart mean dose (Gy) 25.9 ± 6.9
Dose-volume of EAT

Volume (mL) 19.2 (8.4–29.4)
Mean dose (Gy) 21.5 (16.2–26.4)
V5 * 16.5 (8.2–26.6)
V10 14.0 (6.8–21.9)
V20 10.2 (3.5–16.5)
V30 4.6 (1.5–11.4)
V40 1.1 (0.5–3.5)

SAT volume (mL) 1239.8 (682.8–1795.5)
SAT mean dose (Gy) 6.7 (5.4–7.8)
VAT volume (mL) 124.2 (76.3–251.3)
VAT mean dose (Gy) 22.5 (17.7–26.6)

* Vx = volume (mL) of EAT receiving X Gy or more; data are mean ± standard deviation, median (interquartile
range), or n (%). Abbreviations: EAT, epicardial adipose tissue; SAT, subcutaneous adipose tissue; VAT, visceral
adipose tissue.
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2.6. Surveillance and Recurrence Evaluation

The patients were followed up monthly for 3–6 months, then every 3 months for the
first year, and then every 6 months thereafter. The follow-up evaluation included clinical
examination, blood tests, chest/abdominal CT, and upper gastrointestinal panendoscopy
with biopsies. Further imaging studies were performed if there was clinical suspicion of
recurrence. Recurrence was diagnosed on the basis of the results of physical or radiographic
examinations or pathological confirmation [19].

2.7. Statistical Analysis

Quantitative data were expressed as means ± standard deviation (SD) and categorical
data as frequencies and proportions. Comparisons between the participants were per-
formed using the independent t-test and chi-square test, as appropriate. Cox proportional
hazards regression analysis was performed to assess the prognostic factors for overall
survival (OS) and progression-free survival (PFS). A logistic regression model was used to
determine the significance of covariate-adjusted associations between variables and OS
and PFS. All statistical analyses were carried out using Statistical Package for the Social
Sciences for Windows, SPSS® software V. 22.0 (IBM Corp., New York, NY, USA; formerly
SPSS Inc., Chicago, IL, USA), and p < 0.05 was considered significant.

3. Results

3.1. Patients and Clinical Outcome

All 36 patients underwent esophagectomy after NACRT (Table 1), with a median
follow-up of 22.0 (interquartile range: 11.3–36.3) months, and showed a pCR rate of 33.3%.
The 3-year PFS and OS values were 32.5% and 39.7%, respectively.

3.2. Analysis of ROC Curve

ROC analysis provides tools to select possibly optimal models and to independently
discard suboptimal ones. ROC analysis is related in a direct and natural way to cost/benefit
analysis of diagnostic decision making. In our study, the area under the curve (AUC) for
PFS and OS for patient was 0.715 and 0.779 (Figure 2), indicating that REI improved the
discrimination ability for OS.
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Figure 2. Receiver-operating characteristic curves for (A) progression-free survival AUC = 0.715 and
(B) overall survival AUC = 0.779. AUC, area under the curve; CI, confidence interval.

3.3. Analysis of Radiotherapy Dosimetric Parameters

For OS, the significant univariate prognostic factors were TAT, EAT (V10), and EAT-
REI. The results of multivariate Cox regression for OS showed that only EAT-REI (HR:
1.002; 95% CI: 1.000–1.004; p = 0.028) (Table 2) was significant. Patients with a smaller
EAT-REI had better OS than those with a higher EAT-REI (p < 0.05). Univariate analysis
for PFS revealed that TAT, SAT, EAT (V5, V10, and V20), and EAT-REI were significant,
but only EAT-REI was significant, as shown in the multivariate analysis (HR: 1.002; 95%
CI: 1.000–1.004; p = 0.03) (Table 3). The receiver-operating characteristics analysis showed
that the area under curve (AUC) values of EAT-REI for OS/PFS were 0.779 (95% CI:
0.623–0.936, p = 0.006) / 0.715 (95% CI: 0.534–0.897, p = 0.048) and the cut-off value of
REI was 68.8 cGy/mL, while the sensitivity and 1-specificity (false positive) was 0.826
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and 0.308, respectively. Indicating an informative predictor for Kaplan–Meier curves for
36-month survival according to EAT-REI cut-off value (68.8 cGy/mL) were significant for
PFS Kaplan–Meier curves (65.9% and 13.0%, p = 0.001) and OS Kaplan–Meier curves (71.9%
and 21.7%, p = 0.003) (Figure 3). With regard to the radiotherapy parameters evaluated by
DVH, the quantities of high-dose and low-dose planning target volumes had no significant
impact on clinical outcome.

Table 2. Univariate and multivariate Cox proportional hazards model for overall survival.

Univariate Multivariate

Characteristics HR (95% CI) p Value HR (95% CI) p Value

Age 1.005 (0.953–1.060) 0.859
BMI (kg/m2) 0.999 (0.907–1.099) 0.979
Albumin (g/dL) 0.772 (0.351–1.702) 0.522
Hb (g/dL) 0.986 (0.733–1.326) 0.926
Lymphocyte (%) 0.976 (0.929–1.025) 0.325
Cholesterol (mg/dL) 1.002 (0.987–1.017) 0.785
Triglycerides (mg/dL) 1.000 (0.991–1.008) 0.931
Metabolic diseases 1.392 (0.470–4.123) 0.550
Cardiac diseases 0.558 (0.188–1.655) 0.293
Clinical T (T1–2 vs. T3–4) 0.658 (0.303–1.432) 0.292
Clinical N (N0–1 vs. N2–3) 1.235 (0.534–2.854) 0.621
cTNM stage (II vs. III) 0.790 (0.321–1.943) 0.608
Pathological response
(non-pCR vs. pCR) 0.561 (0.218–1.445) 0.231

Target volume 1.001 (1.000–1.003) 0.125
Heart mean dose 1.000 (1.000–1.001) 0.639
Dose-volume of EAT *
Volume (mL) 0.981 (0.957–1.007) 0.149
Mean dose (Gy) 1.000 (1.000–1.001) 0.702

V5 0.971 (0.943–1.000) 0.051
V10 0.967 (0.935–1.000) 0.049 0.988 (0.952–1.026) 0.529
V20 0.960 (0.917–1.005) 0.081

V30 0.964 (0.904–1.029) 0.269
V40 0.887 (0.746–1.055) 0.177
REI of EAT (EAT-REI) 1.002 (1.001–1.004) 0.002 1.002 (1.000–1.004) 0.028
TAT volume (mL) 0.999 (0.999–1.003) 0.049 1.000 (0.999–1.000) 0.322
TAT mean dose (Gy) 1.001 (0.999–1.000) 0.294
SAT volume (mL) 0.999 (0.999–1.000) 0.062
SAT mean dose (Gy) 1.001 (0.998–1.003) 0.501
VAT volume (mL) 0.995 (0.991–1.000) 0.054
VAT mean dose (Gy) 1.000 (1.000–1.001) 0.472

* Vx = volume (mL) of EAT receiving X Gy or more; REI(EAT-REI) was defined as the EAT mean dose divided by
volume (cGy/mL). Abbreviations: CI, confidence interval; DVH, dose-volume histogram; REI, radiation exposure
intensity; HR, hazard ratio; TAT, total adipose tissue.
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Figure 3. Kaplan–Meier estimates of the 3-year (A) progression-free survival p = 0.001 and (B) overall
survival p = 0.003 according to EAT-REI cut-off value (68.8 cGy/mL).

Table 3. Univariate and multivariate Cox proportional hazards model for progression-free survival.

Univariate Multivariate

Characteristics HR (95% CI) p Value HR (95% CI) p Value

Age 1.014 (0.965–1.066) 0.572
BMI (kg/m2) 0.974 (0.873–1.087) 0.637
Albumin (g/dL) 0.694 (0.277–1.738) 0.435
Hb (g/dL) 0.998 (0.719–1.385) 0.989
Lymphocyte (%) 0.958 (0.904–1.015) 0.149
Cholesterol (mg/dL) 0.992 (0.973–1.011) 0.429
Triglycerides (mg/dL) 0.996 (0.986–1.007) 0.510
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Table 3. Cont.

Univariate Multivariate

Characteristics HR (95% CI) p Value HR (95% CI) p Value

Metabolic diseases 0.040 (0.000–20.334) 0.311
Cardiac diseases 0.344 (0.078–1.522) 0.160
Clinical T (T1–2 vs. T3–4) 0.904 (0.444–1.839) 0.780
Clinical N (N0–1 vs. N2–3) 1.524 (0.689–3.375) 0.299
cTNM stage (II vs. III) 0.828 (0.342–2.004) 0.675
Pathological response (non-pCR vs. pCR) 0.694 (0.288–1.669) 0.414
Target Volume 1.001 (1.000–1.002) 0.164
Heart mean dose 1.000 (0.999–1.000) 0.663
Dose-volume of EAT *
Volume (mL) 0.982 (0.959–1.005) 0.114
Mean dose (Gy) 1.000 (0.999–1.000) 0.751

V5 0.969 (0.943–0.996) 0.026 1.131 (0.933–1.369) 0.209
V10 0.965 (0.935–0.996) 0.049 0.796 (0.608–1.041) 0.095
V20 0.958 (0.918–1.000) 0.049 1.116 (0.943–1.321) 0.200

V30 0.959 (0.902–1.029) 0.182
V40 0.871 (0.735–1.032) 0.111
REI of EAT (EAT-REI) 1.003 (1.001–1.004) 0.002 1.002 (1.000–1.004) 0.030
TAT volume (mL) 0.999 (0.999–1.000) 0.014 0.970 (0.998–1.000) 0.060
TAT mean dose (Gy) 1.000 (0.998–1.002) 0.896
SAT volume (mL) 0.999 (0.999–1.000) 0.018
SAT mean dose (Gy) 1.000 (0.998–1.002) 0.855
VAT volume (mL) 0.995 (0.991–1.000) 0.035 1.003 (0.995–1.010) 0.458
VAT mean dose (Gy) 1.000 (0.999–1.001) 0.739

* Vx = volume (mL) of EAT receiving X Gy or more. Abbreviations: CI, confidence interval; DVH, dose-volume histogram; REI, radiation
exposure intensity; HR, hazard ratio; TAT, total adipose tissue.

Further analysis of EAT-REI was performed to clarify its clinical significance. The
EAT-REI was defined as the mean dose divided by the volume of EAT. The mean doses
of EAT had no significant impact on OS and PFS (p > 0.05). However, the patients with
a larger volume of EAT had a trend of less progression without statistical significance
(p > 0.05). Thus, the lower EAT-REI mainly, but not completely, resulted from the larger
volume of EAT.

3.4. Analysis of EAT-REI Ratio High and Low Group

The comparison of high and low EAT-REI groups shows no significant difference
among the age, sex, BMI, CRP level, albumin level, lymphocyte count, triglyceride, and
total cholesterol. In clinical T stage (p = 0.69), clinical N stage (p = 0.92), and cTNM stage
(p = 0.72) also showed no significant difference (Table 4).

Table 4. Compare EAT-REI ratio with high and low patient groups.

Characteristics EAT-REI ≥ 68.8 (n = 23) EAT-REI < 68.8 (n = 13) p Value

Age (years), 57.3 ± 7.9 61.6 ± 9.4 0.15
Sex 0.60

Man 22 (95.7%) 12 (92.3%)
Woman 1 (4.3%) 1 (7.7%)

BMI (kg/m2) 21.2 ± 4.4 23.6 ± 3.7 0.11
CRP (mg/dL) 7.0 ± 6.2 6.2 ± 5.5 0.66
Albumin (g/dL) 3.9 ± 0.5 4.0 ± 0.6 0.71
Hb (g/dL) 11.9 ± 1.4 12.3 ± 1.5 0.38
Lymphocyte (number/uL) 1414.4 ± 770.5 1744.2 ± 631.4 0.20
Cholesterol (mg/dL) 178.6 ± 48.6 186.4 ± 18.8 0.60
Triglycerides (mg/dL) 115.8 ± 52.9 116.8 ± 66.1 0.77
Metabolic diseases 4 (17.4%) 2 (15.4%) 1.00
Cardiac diseases 4 (17.4%) 5 (38.5%) 0.24
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Table 4. Cont.

Characteristics EAT-REI ≥ 68.8 (n = 23) EAT-REI < 68.8 (n = 13) p Value

Clinical T stage 0.69
cT1–2 5 (21.7%) 4 (30.8%)
cT3–4 18 (78.3%) 9 (69.2%)

Clinical N stage 0.92
cN0–1 12 (52.2%) 7 (53.8%)
cN2–3 11 (47.8%) 6 (46.2%)

cTNM stage 0.72
II 7 (30.4%) 3 (23.1%)
III 16 (69.6%) 10 (76.9%)

3.5. Analysis of Nutrition Parameters

The distribution of metabolic disease and cardiac diseases has no significant correlation
to OS and PFS. Among the nutrition parameters, no significant survival impact was noted
by BMI, albumin level, lymphocyte count, triglyceride, and total cholesterol. As for
correlation between nutrition parameters and EAT or EAT-REI, only BMI has a significant
correlation to EAT volume.

4. Discussion

EAT is mainly composed of brown adipose tissue [11] and has an impact on the
clinical outcomes of patients with metabolic diseases such as coronary artery disease [20]
and diabetes mellitus [21]. EAT is a metabolically active tissue releasing various bioactive
factors that can affect the prognosis of metabolic diseases [9]. Local expression of chemokine
(monocyte chemotactic protein (MCP)-1) and inflammatory cytokines (interleukin (IL)-1β,
IL-6, and tumor necrosis factor (TNF)-α) was observed in CAD patients. Significant changes
in IL-1β, IL-6, MCP-1, and TNF-α mRNA and protein were observed in the epicardial
adipose stores [9,22]. Ionizing radiation is known to induce inflammatory reactions and
lipid remodeling of adipose tissues [23–25], but its role in brown adipose tissue or EAT
remains unclear. Our investigations indicate that lower radiation exposure intensity may
have a correlation with better survival. Whether this correlation resulted from radiation-
induced inflammatory reactions or radiation-modulated metabolic changes still needs to
be clarified.

The EAT-REI defined as mean radiation dose divided by volume of EAT is a unique
biomarker for radiobiological effect derived from conventional physic dosimetric parame-
ters. The radiation effects from exposure dose and irradiated volume may simultaneously
contribute to this radiobiological marker. Growing evidence demonstrated that local radia-
tion may have a systemic effect due to the release of soluble mediators within the radiation
field. To determine whether EAT-REI has a role in this effect, which is compatible with
the simultaneously irradiated dose and volume concerned, further in vivo studies using
experimental animals are warranted.

In the era of dose painting RT, the use of CT scan images for simulation and RT plan-
ning software is a routine process. Analysis of the volume of EAT and the radiation dose
distribution to EAT using these imaging data, therefore, is feasible and applicable. After
analyzing the correlation between radiation dosimetric parameters and clinical outcomes,
we found that EAT-REI might be a novel imaging biomarker from the radiobiological
aspect. This implies that EAT-REI may have the potential to be adopted as a constraint
when planning for RT. To the best of our knowledge, this is the first study to report EAT-REI
as a constraint to RT planning.

The limitations of this study were mainly due to the retrospective analysis of both
clinical factors and radiotherapy parameters. To ensure the estimated radiotherapy param-
eters were retrieved from the same RT planning algorithm and system, and the sample size
of eligible patients was relatively small (N = 36). Another limitation of this retrospective
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analysis was the lack of measurement of additional biochemical parameters related to
EAT-REI. These study limitations could be overcome by further prospective investigations.

5. Conclusions

The radiation exposure intensity of epicardial adipose tissue might be an impor-
tant factor, with an impact on overall survival of ESCC patients receiving NACRT and
esophagectomy. However, the biological meaning of EAT-REI still needs to be clarified.
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Featured Application: This study developed a robust optimization algorithm to minimize dose

delivery uncertainties by potential applicator-positional errors for MRI or CT-based planning in

the Cervix Brachytherapy. It is important to improve clinical outcomes to minimize the dose to

the organ at risk (OAR) when covering the target.

Abstract: Brachytherapy is an important technique to increase the overall survival of cervical cancer
patients. However, a possible shift of the applicators in relation to the target and organs at risk
may occur between imaging and treatment. Without daily adaptive brachytherapy planning, these
applicator displacements can lead to a significant change in dose distribution. In order to resolve
it, a robust optimization method had been developed using a genetic algorithm combined with a
median absolute deviation as a robustness evaluation function. The resulting robustness plans from
our strategy might be worth considering according to the GEC-ESTRO guidelines. From the point
of view of dose delivery uncertainty from applicator displacement, the robust optimization may
be considered with caution in a single-plan approach for High Dose Rate brachytherapy treatment
planning and should be confirmed by a more thorough investigation.

Keywords: robust optimization; cervical cancer; high dose rate brachytherapy; single plan approach;
median absolute deviation

1. Introduction

Cervical cancer is the fourth most frequent cancer among women worldwide and
ranked second for both incidence and mortality in the lower Human Development Index
(HDI) [1,2]. According to previous reports, cervical cancer patients with initial stages
(stages IB—IIA) who undergo appropriate treatment will develop a recurrence with a risk
factor of 10–15% [3,4]. Therefore, early diagnosis and treatment are crucial for reducing the
mortality rate.

One of the most common treatment strategies for cervical cancer, when high dose
radiation is required to be curative, is a combination of external beam radiotherapy (EBRT),
chemotherapy and brachytherapy, such as EBRT alone, EBRT plus brachytherapy, or
combined EBRT plus brachytherapy with concurrent chemotherapy [5]. Several studies
have verified that the combination of EBRT, chemotherapy, and brachytherapy improves
treatment outcomes [6–8]. It is well known that the brachytherapy boost improves overall
survival by 5 years due to its superiority of rapid dose fall-off with distance from the source
and limited dose exposure to surrounding tissues in accordance with the inverse square
law [9]. Moreover, a remote after-loading platform, including radioactive sources, allows
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for a more precise configuration of the dose to the target and the optimization of dwell
times [10].

Excellent results were achieved with brachytherapy in combination with EBRT al-
though this approach is not without limitations. The dose distribution in brachytherapy has
a sharp dose gradient that is inherent to the radioactive source, and it is more sensitive to un-
certainties of patient setup and applicator position [11]. Uncertainties in brachytherapy for
cervical cancer are mainly related to source calibration, dose and dose–volume–histogram
(DVH) calculation, reconstruction of applicators, contouring, intra- and inter-fraction un-
certainties and dose delivery [12–22]. For the definition of the size and location of the
cervical cancer, magnetic resonance imaging (MRI)/computed tomography (CT)-guided
High Dose Rate (HDR) brachytherapy is currently defined by Groupe Européen de Curi-
ethérapie and the European Society for Radiotherapy and Oncology (GEC–ESTRO) as MR
imaging prior to the first fraction of irradiation with the applicator in place and subsequent
treatment planning of each fraction [23]. However, an MRI is not routinely available in
radiotherapy departments and this optimal approach requires a large amount of personnel,
time and equipment infrastructure. An alternative to using CT or radiographs for sub-
sequent fractions is the use of one implantation for several fractions of irradiation with
a standardized constant bladder filling [24,25]. In the view from above, the dosimetric
impacts of uncertainty should be considered to minimize therapy delivery variations and
to improve patient outcomes: Grigsby et al. [26] investigated the interfractional tandem
displacement between multiple insertions, and found a displacement of about 1.2 cm in
the caudal–cranial direction when a point A based-plan was generated on orthogonal
X-rays, and Hellebust et al. [27] applied one brachytherapy plan for several fractions and
demonstrated that the average relative standard deviation for 13 series of 3 to 6 fractions
were 15 and 17.5% for the rectum and bladder, respectively. Kiristis et al. [25] compared
individual MRI-based 3D treatment planning for each of four fractions with the use of
only one MRI treatment plan for 14 patients. They found significant mean differences the
brachytherapy dose of 9–28% variations.

Applicator displacements especially occurred randomly during interfraction treatments
so that the change-of-dose distribution could not be determined mathematically. For that
reason, a robust optimization method may be considered to address uncertain conditions.
There were many ways to deal with this uncertainty [28–30]; however, there is no direct
literature minimizing dose delivery uncertainty by applicator displacements. The most
relative and straightforward approach was to predict the worst-case objective value from
all scenarios and minimize their dose delivery uncertainty similar to robust optimization
strategies in intensity-modulated radiation therapy and proton therapy [31–35]. Consideration
of the worst-case scenario for dose delivery uncertainties in cervical brachytherapy is useful
for assessing resilience and robustness. In practice, the band of DVHs for a given structure
represents the range of possible dose variations. The evaluation of the band width on the
DVH can be used as a quantitative measure of robustness. The median absolute deviation
(MAD) is used as one of the well-known robustness estimators. It is not only often used
as an initial value for computing more efficient robust estimators but also as a good robust
estimator in regression problems [36]. To cope with the measurements of bandwidth at the
defined dose-volume points on the DVH, a MAD robust estimator was applied to design a
robust optimization algorithm in this study.

In real-world optimization problems, objectives can conflict, so there cannot be a
single solution [37]. Accordingly, the optimization of dwell times and dwell positions
using an inverse optimization technique needed to be carefully considered to improve
the target dose coverage and reduce the dose delivered to the organ at risk (OAR). The
objective function for determining the dwell times at each of dwell position for the desired
dose distributions is a multi-objective optimization problem requiring complex compu-
tation [38,39]. Classical optimization techniques are efficient at finding local minimum
points; however, they may not yield the global minimum point. To solve this problem, we
should search for the set of all optimal compromises. The so-called Pareto set, containing

48



Appl. Sci. 2021, 11, 2592

all Pareto-optimal points based on objective function, has more than one local minimum.
As previously mentioned, the feasible solution to a multi-objective problem in real-world
optimization is to find a set of solutions. Therefore, the genetic algorithm is well-suited
to solving multi-objective optimization problems due to the population-based search ap-
proach. Given the above, a preferred efficient genetic algorithm that can search global
minimum points as a multi-objective optimizer was selected to overcome the complexity
of global searches [39–42]. The focus of this research study was to assess the feasibility of
minimizing dose delivery uncertainty by potential applicator displacements of cervical
brachytherapy treatment using a MAD-constrained robust optimization method with a
multi-objective genetic algorithm.

2. Materials and Methods

2.1. Treatment Plans Data Set

Planning data from five patients who had previously been treated with EBRT followed
by cervical HDR brachytherapy with a Tandem-and-Ring (TR) applicator set was used as a
representative sample in this retrospective study. Each patient who underwent brachyther-
apy procedures was placed in a supine position with a CT/MRI applicator clamp attached
to a base plate, immobilized and transported during imaging and treatment. All patients
received the EBRT dose of 50.40 Gray (Gy) in 28 fractions with a consecutive brachytherapy
boost dose of 25 to 30 Gy in 5–6 fractions. For the first fraction of a brachytherapy patient’s
treatment, an MRI- or CT-based treatment plan was generated and delivered, and then
for subsequent fractions (2–5 or 2–6). The mobile C-arm X-ray imaging unit (WHA-50N,
Shimadzu, Japan) was used only for registration and applicator position verification prior
to each fraction of treatment. It should be noted that the initial brachytherapy plan (made
from the first fraction) was reused for subsequent fractions of treatment. This manually
optimized “nominal plan” (also called “initial plan”) was generated from the first fraction
image and compared with that of a robust optimized treatment plan taking into account ap-
plicator displacement assumptions. To incorporate dose delivery uncertainty by potential
applicator displacements, the translation of the applicator displacement set up 1 mm steps
in the upper and lower bound of 5 mm in the x, y and z directions based on assumptions
in the pre-study reports: the MRI-based 3D treatment plan for each fraction using only
one MRI treatment, interfractional tandem displacement between multiple insertions [26],
interapplication variation of doses and spatial location of the OAR [27] and several reports
by other groups [20–22]. Then, we applied our robust optimization method to anatomical
structures and applicator models delineated from the first fraction image to generate robust
treatment plans for all treatment fractions.

2.2. Optimization System Modelling

A In this study, Elekta microSelectronTM (Nucletron, Elekta AB, Stockholm, Sweden)
HDR after-loader unit with 192 Ir source was used. OncentraTM (Oncentra, version 3.5,
Elekta AB, Stockholm, Sweden) treatment planning system (TPS) was used for making
brachytherapy plans. The voxel sizes of the T2 MRI data used for dose calculations as
before were 0.5 × 0.5 × 4.0 mm3. Here, MR-compatible TR applicator sets (MR ring appli-
cator, Elekta AB, Stockholm, Sweden) of two differently sized (small and large) rings were
used, each with a 30-degree angle, 2.5 mm source position separation, and with a distance
from the first source to the applicator tip defined as 7 mm. Traditionally, an optimization
algorithm needs specific input data such as digitized positions, relevant anatomical struc-
tures and an applicator path to calculate a dose distribution matrix. Regions of interest
(ROIs) including the high-risk clinical target volume (HRCTV), intermediate-risk clinical
target volume (IRCTV), bladder, rectum, bowel, and sigmoid were manually contoured
on each first-fraction image by oncologists and delineation was based on MRI findings.
The contour-point lists for each structure were extracted in sequence from the Digital
Imaging and Communications in Medicine–Radiation Therapy (DICOM–RT) structure
files using C++ program language. Also, applicator paths were reconstructed and ex-
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tracted as radiation source positions in the treatment-planning system. The source dwell
positions provided in the applicator coordinate system were pre-defined according to the
applicator ring structure. Overall, volume delineation and dose constraints were made in
accordance with GEC–ESTRO recommendations and EMBRACE protocol guidelines for
both the nominal and robust plan [18,43,44]. Given the above facts, we only used positional
information of anatomical structures and source positions from the first fraction image to
make the optimization model; then, after determining the positional characteristics of the
source relative to the dose, calculations were completed with care in all robust optimization
processes (Figure 1).

Figure 1. Detailed dose matrix calculation process from the delineation dataset.

2.3. Robust Treatment Plan Optimization

The robust optimization quality evaluation of the treatment plan is defined by the
relation of each objective function to an anatomical structure and source position. Thus,
the robust optimization is based on minimizing the sum of objective functions, f1, . . . , fn.
During an optimization iteration, plan quality was optimized by adjusting dwell times
at each dwell position, x, and χ ⊆ R

n (the certain feasible set). The dose rate to a given
dose point i from dwell position j (dij) was calculated using TG-43 formalism [45–47]. The
dose rate coefficient matrix under that dose delivery uncertainty scenario s is denoted by
D(x; s). Let S represent the set of all dose delivery uncertainties under consideration; then
for all scenarios, let s ∈ S , and all possible dose distributions be Di [32]. In addition, the
constraint functions c(x; s) are scalar, so this constrained optimization approach is bounded
and feasible [35] and can be formulated as

minimize
x∈χ

n
∑

k=1
max
s∈S

fk(D(x; s))

subject to Di = ∑
j

dijxj ∀s ∈ S(x)

xj ≥ 0
c(x; s) ≥ Db

(1)

The voxel dose was calculated as Di = ∑j dijxj (dose rate to a given dose point i from
a dwell position j in each structure) and k, and Db are bounds on the values of the constraint
functions and given in the unit Gy. In this formula, the trade-offs related to robustness
against uncertainty across a variety of scenarios was important for maximizing plan quality
and minimizing uncertainty during optimization. If the set of uncertainty were empty
for all decision variables x, then optimization could be a nominal problem. Therefore,
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we set up the manual plan, generated by the oncologist and medical physics staff, as a
nominal scenario, and it was considered a treatment plan without the shifting position
of the applicator (i.e., uncertainty is zero, s = 0). Additionally, we used the applicator
displacement assumption mentioned in Section 2.1 to create a worst-case scenario.

2.4. Plan Robustness

In this study, the DVH of the target volumes and OARs for each dose distribution
were calculated to encompass all applicator displacement scenarios and assess a large
number of scenarios for statistical interpretation [48–50]. For the statistical approach, we
considered the band width at critical dose-volume points on the DVH under uncertainties
used as a quantitative measure of robustness. Thus, the MAD of the bandwidth at the
critical dose-volume points on the DVH was calculated for how spread out a set of data
is. The worst-case value, determined from a random dataset in a bounded range, may
not reflect a normal distribution, so MAD was used as a robust estimator instead of the
standard deviation. Using the MAD function as a selection criterion served to protect
against potentially large noise in data uncertainties [36]. Therefore, we used the MAD
function to minimize the overshot and undershot dose-delivery uncertainty to the target
volume in this work. The median and MAD functions are

λ̃ = median{DVHs}, ∀s ∈ S(x), ∀i ∈ V (2)

MAD = b × median
{∣∣∣DVHs − λ̃

∣∣∣}, ∀s ∈ S(x), ∀i ∈ V (3)

where λ̃ is the median value of the DVH curve in a given region of interest (ROI) under
uncertainties (DVHs) and b is a constant scale factor: b = 1 was the unscaled default and
b = 1.4826 was used for the scaled version to maintain consistency with Gaussian distribution.

2.5. Robust Optimization with a Genetic Algorithm Optimizer

In this study, given an n-dimensional decision variable vector of dwell times
x = {x1, . . . , xn} in the solution space X , the decision variable vector x was called a chro-
mosome. Normally, the first generation of a chromosome is created randomly and called
the initial population [51–53]. Randomly generated initial values were used when solving
the problem in this work. To find a vector x∗ that maximized or minimized a given set
of k objectives functions F(x∗) = {f1(x∗), . . . , fk(x∗)}, we generated fitness functions to
minimize the given objective functions and constraints for our purpose.

minimize
x∈χ

1
NTARGET

∑
i ∈V

(Di − DTARGET)
2 + 1

NOAR
∑

i ∈V
H(Di − DOAR)(Di − DOAR)

2 + . . .

b × median
{∣∣∣DVHs − λ̃

∣∣∣} (4)

where (1/NTARGET)∑i ∈V (Di − DTARGET)
2 and (1/NOAR)∑i ∈V H(Di − DOAR)(Di − DOAR)

2

were objective functions for all contoured organs and V was the set of all voxels inside
each contoured structure. The DTARGET and DOAR were the prescription dose of the target
volume and the dose constraints of OARs, and b × median

{∣∣∣DVHs − λ̃
∣∣∣} was a robustness

function of the bandwidth at the critical dose-volume points on the DVH of the target
volume and OAR under uncertainty. The constant b was a scalar factor linked to the
assumption of normality of the data and the disregard of abnormality induced by out-
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liers. Then, we needed to set b = 1.4826, as previously mentioned above. The following
constraints of the problem were given.

subject to Di = ∑
j∈T

dijxj ∀s ∈ S(x)

xj ≥ 0

H(Di − DOAR) =

{
1, Di > DOAR

0, Di ≤ DOAR
DVHTARGET(x) ≥ DTARGET

DVHOAR(x) ≤ DOAR
λ̃ = median{DVHs(Di)} ∀s ∈ S(x)

(5)

where H(Di − DOAR) was the step function defined as H(Di − DOAR) = 1 if Di > DOAR;
otherwise, H(Di − POAR) = 0 if Di ≤ DOAR. T was the set of all dwell positions. The
DVH of the target volume and OAR were controlled by each organ’s prescription dose in
accordance with the EMBRACE protocol guidelines as dose constraints, respectively.

The overall objective functions were optimized by the genetic algorithm in a multi-
criteria optimization setting. This robust optimization was performed by calculating the
delivered dose to the target and OAR in all worst-case scenarios and searching for the best
alternative (a given fitness function) through chromosome evolution in each generation
(Figure 2). We performed the multicriteria robust optimization problem with dose delivery
uncertainty to maximize the fraction of the target volume receiving at least the prescribed
dose and to minimize the maximum dose to the OAR [48].

Figure 2. Detailed algorithmic process of the robust optimization scheme.

3. Results

We demonstrated what occurs on the curve of the DVH when applicator displacements
occurs and then validated the performance of the robust algorithm with random scenario
sets of applicator displacements in any direction (x, y, and z). Lastly, we compared treatment
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plans between nominal and robust methods. Five patients’ MRI cases were analyzed with
the cervical brachytherapy of 5 Gy × 5–6 fraction prescription after receiving the EBRT of
1.8 Gy × 28 fractions. All patients received the EBRT dose of 50.40 Gray (Gy) in 28 fractions
and consecutive brachytherapy boost doses of 25–30 Gy in 5–6 fractions.

3.1. DVH Variation under Uncertainty

We investigated how DVH curves were changed to the targets and OARs by applicator
displacements according to data uncertainty. With the assumption that the applicator
moves randomly in any direction in accordance with pre-reported data [20–27], the dose-
distribution variation from applicator positional errors for each target and organ was
plotted (Figure 3, grey curve). We only considered a total of 79 error scenarios chosen
randomly under certain assumptions and a nominal (manual) scenario generated by the
oncologist and medical physics staff (Figure 3, blue curve).

Figure 3. DVH curve variation of the targets (a,b) and OAR (c–f) under applicator positional errors with the assumption of
shift scenarios. The DVH for the nominal plan setting that does not contain uncertainties is the blue curve; the DVHs for
79 error scenarios containing dose uncertainties are the grey curves.

3.2. Performance of the Robust Optimization Algorithm
3.2.1. DVH Curves

The effect of the proposed robust optimization is demonstrated in Figures 4 and 5.
Figure 4 illustrates the DVH curves from the nominal and robust planning for cervical
brachytherapy, including inverse planning without considering the applicator displacement
parameter. The target received a sufficient dose in all plans with improved rectal and
sigmoid dose sparing. We found no severe violation of EMBRACE protocol guidance in
any DVH curves of the target volume or OAR using the robust planning.
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Figure 4. DVH curves for the nominal (manual) plan, inverse plan, and robust plan in EBRT brachytherapy boost treatment
of cervical cancer were plotted using colors indicating HRCTV (Black), IRCTV (Teal), Rectum (Dark Yellow), Sigmoid (Pink),
Bladder (Royal) and Bowel (Violet). Graphs (a,b) are the magnification of the DVH curves of the target and OAR.

Figure 5. The bandwidth variation at the critical dose-volume points on the DVH of the targets
(HRCTV and IRCTV) and OAR (BLADDER, BOWEL, RECTUM, and SIGMOID) under uncertainty
with the applicator-shift scenario assumptions. The dose to 98% for target and dose to 2 cc for OAR
were shown using a black square (nominal plan) and a red circle (robust plan) with a standard
deviation of dose variation based on error scenarios.

In order to show the difference of dose variations between nominal and robust plans,
in this case the dose to 98% for target and dose to 2 cc for OAR (with dose variations under
applicator-displacement uncertainty) were plotted using colors. The standard deviations
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of robust planning were less than the others in most of the target and OARs. They ranged
in standard deviation from 32.72 to −18.99%.

Moreover, although both plans satisfied the requirements for the dose coverage of the
target and the OAR, the band width of the DVH curves under the uncertainty of the robust
plan in all organs was much narrower than its nominal plan.

3.2.2. Isodose Lines

Figures 6 and 7 illustrate the comparison of isodose lines calculated in the Oncentra
Brachytherapy TPS of the nominal (manual) plan, inverse plan and robust plan for a
cervical cancer patient. In all treatment plans, dwell times at each position for the desired
target coverage were successfully encompassed based on EMBRACE protocol guidance. As
shown in Figure 6, the bladder contour is encompassed by a minimum of percent isodose
line in the robust planning while maintaining target-dose coverage and OAR sparing,
rather than both coverage and sparing in the nominal and inverse planning.

Figure 6. Isodose-line comparison of (a) nominal (manual) planning, (b) inverse planning, and (c) robust planning standard
planning in EBRT brachytherapy boost treatment of cervical cancer: axial view. An EBRT total dose of 50.40 Gy was
delivered in 28 fractions, and an ICR total dose of 30 Gy was delivered in 6 fractions using a TR applicator.

Figure 7. Isodose-line comparison of (a) nominal (manual) planning, (b) inverse planning and (c) robust planning. Standard
planning in EBRT brachytherapy boost treatment of cervical cancer: axial view. An EBRT total dose of 50.40 Gy was
delivered in 28 fractions, and an ICR total dose of 30 Gy was delivered in 6 fractions using a TR applicator.
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In Figure 7, the cervical brachytherapy plan showed the isodose line from a coronal
view. Figure 7 demonstrated a reduced dose to the international commission on radiation
units (ICRU) vaginal right (R), left (L) point, and sigmoid than nominal and inverse plans
(blue arrow with a single arrowhead). Furthermore, the robust plan not only minimized
the dose delivery of the ICRU vaginal R and L point, but it also minimized doses to the
OAR, while maintaining coverage of uneven HR- and IR-CTV contours. The most distinct
difference between the methods in the results for the target and OAR is that the robust
optimization method improved the dose distribution and decreased the dose delivery
uncertainty. Table 1 displays the numerical results corresponding to Figures 6 and 7.

Table 1. The dose constraints in accordance with EMBRACE recommendation and the total EQD2 (EBRT + BT) of each
target and OAR for nominal, inverse and robust plan strategy.

EQD2 and Standard Deviation of Dose Distributions

Target/OAR EMBRACE Recommendation ∗ Nominal Plan EQD2
(Gy)(σBT)

Inverse Plan EQD2
(Gy) (σBT)

Robust Plan EQD2
(Gy) (σBT)

α/β = 10 Gy - - -
HRCTV D98 > 75 ∗ 88.59 (±1.0177) 86.71 (±0.9393) 84.84 (±0.9085)

- D90 > 90 ∗ 92.15 (±1.8840) 92.63 (±0.10983) 91.56 (±1.0341)
IRCTV D98 > 60 ∗ 74.96 (±0.6424) 73.29 (±0.6063) 72.24 (±0.5883)

- D90 > 66 ∗ 82.18 (±0.7418) 80.66 (±0.6927) 78.83 (±0.6737)

α/β = 3 Gy - - -
Rectum D2cc < 75 ∗ 55.29 (±0.4927) 54.94 (±0.4620) 54.09 (±0.4052)
Sigmoid D2cc < 75 ∗ 68.20 (±1.2491) 69.13 (±1.2718) 67.25 (±1.1199)
Bladder D2cc < 90 ∗ 84.98 (±2.1211) 81.25 (±1.9764) 81.35 (±2.1459)
Bowel D2cc < 60 ∗ 51.06 (±0.1864) 51.41 (±0.2270) 51.58 (±0.2474)

* Hard constraints which can be used in the treatment plan optimization.

The quantitative results in Table 1 indicate the EQD2 and the standard deviation of each
nominal, inverse and robust plan strategy. For cervical cancer treatment, a prescription dose
of 50.40 Gy to the target was delivered by EBRT as previously mentioned. Then, the total
EQD2 (EBRT + BT) of HRCTV D98 for all plans (nominal, inverse, and robust plans) was
estimated at 88.59 GyEQD2, 86.71 GyEQD2, and 84.84 GyEQD2, respectively, and the standard
deviation for each plan was ±1.0177, ±0.9393, and ±0.9085, respectively. Also, EQD2 and the
standard deviation of the rectum D2cc < 75∗ for all plans were also estimated at 55.29 GyEQD2
(±0.4927), 54.94 GyEQD2 (±0.4620) and 54.09 GyEQD2 (±0.4052), respectively.

3.3. Evaluation of Robust Optimization Algorithm with Various Cases

Further validation of our robust strategy compared plan robustness in the nominal and
robust plans. Four case-sets of applicator displacements can be divided into two categories.
Two cases were a challenge to fit with the EMBRACE protocol guidance, but the other two
were easier because of the shape of targets. There was not an enormous difference in total
time between the two nominal and robust plans, whereas the dose-delivered results of
EQD2 of all cases were affected differently as shown in Figure 8.

It shows the comparison of the EQD2 and the standard deviation values of each
target and OAR using both strategies. Regarding quantitative results, this proposed robust
optimization could reduce the standard deviation of the target and OAR compared to the
nominal plan in most of the cases, whereas the standard deviation of a few organs was not
promising. In addition, the proposed robust optimization also reduced EQD2 in most of
the cases. Although the standard deviation in a few organs was not sufficiently minimized,
the resulting robustness plans from our strategy might be worth considering according to
EMBRACE protocol guidance.
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Figure 8. Comparison of the total EQD2 (EBRT + BT) of each target and OAR for both the nominal and robust plan for
all cases.

For the evaluation of the effects of irregularly shaped targets on robust optimization
outcomes, the degree of asymmetry for HRCTV was measured. The measurements of
asymmetric ratios were obtained from the distance difference between the maximum and
minimum distances from the activated dwell positions inside the HRCTV to the surface of
the HRCTV.

Figure 9 gives a comparison of the measured asymmetric ratios along the given dwell
positions inside the HRCTV. When the asymmetric ratio is close to the value of 1, the target
shape has symmetry. The results of cases that have lower asymmetric ratio variations along
the given dwell positions had a greater standard deviation reduction than the results from
the cases of the higher asymmetric ratio as compared with the optimized results as shown
in Figure 8.

Figure 9. The asymmetric ratio variations along the given dwell positions located inside the HRCTV in all cases.
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4. Discussion

We would like to emphasize that the applicator displacements during brachytherapy
treatment for cervical cancer led to radical changes in dose distribution [54]. With the
advent of MRI-guided brachytherapy, the opportunity to improve outcomes by increasing
the target dose while minimizing the dose to the OAR is essential for the management
of locally advanced cervical cancer. Hence, the dose-delivery uncertainty by applicator
displacements is of significant relevance within the dose distribution. Many studies have
demonstrated that applicator displacement is a problem of critical importance.

Joshua et al. [22] quantified the dosimetric impact of applicator displacements and appli-
cator reconstruction uncertainties through simulated planning studies of virtual applicator
shifts. In addition, Tanderup et al. [21] reported 2 mm errors in applicator reconstruction.
However, the reconstruction approach was rather limited due to the finite slice thickness,
resulting in several sources of uncertainty. Junyi et al. [29] developed a real-time applicator
position monitoring system with a 1 mm accuracy during long wait times between imaging
and treatment. Nevertheless, the real-time monitoring system still depends on the accuracy of
distance computability between the camera and marker. Furthermore, the applicator shift
and intra- and inter-fractional organ movement are inevitable, and this leads to errors in
fractional dose delivery. De Leeuw et al. [16] found geometrical shifts as large as 6 ± 7 mm in
the posterior direction during PDR delivery. Several studies have previously reported such
movements relative to target and organs [16–18,28]. While these efforts may reduce required
dose-delivery errors, there will always remain residual uncertainties.

As mentioned in the above sections, the variations of the DVH parameter due to
the applicator displacements could have occurred (Figure 3). The incorporation of ap-
plicator displacement worst-case scenarios into the robust optimization with the use of
a MAD function may enable the robust optimization approach to minimize the dose de-
livery uncertainty in a single plan approach for HDR brachytherapy treatment planning.
Meerschaert et al. [55] found the importance of adaptive planning method for cervical
cancer HDR brachytherapy; however, a simulation device is not routinely available in
some institution. Hence, a robust optimization method with a multi-objective genetic
algorithm in a single plan approach for minimizing dose delivery uncertainty by potential
applicator displacements was proposed. In our study, the robustness of the treatment plan
was quantified using the MAD function and could have found the optimal solution of
the area of DVH bands defined by worst-case scenarios. We demonstrated the feasibility
of using our robust optimization strategy to minimize the dose-delivery uncertainty by
potential applicator positional displacements. The dwell positions and times were deter-
mined in a way that optimally improved the plan quality according to GEC–ESTRO Gyn
Working Group recommendations. Compared to manual plan approaches, our robust
optimization method resulted in a reduced standard deviation on DVH parameters while
maintaining the target-dose coverage and sparing the OAR, as well as reducing EQD2 in
most of the cases. Similarly, the EQD2 and the standard deviation of DVH parameters
of robust optimized plan in the Table 1 showed their values to be lower compared to
those of the inverse plan without considering applicator displacement assumption. The
resulting robustness plans from our strategy might be worth considering according to
EMBRACE protocol guidance. Evaluation of the effects of irregularly shaped targets on
robust optimization outcomes shows that it was difficult to find an optimized plan for
the target with a higher asymmetric ratio because the dose distribution of brachytherapy
sources was symmetrically isotropic. As a result of irregularly shaped targets, the OAR
(bladder) received a slightly higher radiation dose in some robust optimization process.
This difficulty is unavoidable: optimization may not improve on, or reduce, variation
under specific circumstances. We should consider the asymmetric ratio of the target to
deal with exceptional cases such as overshot and undershot of the target and OAR. Fur-
thermore, applicator displacement relative to important anatomical structures can occur
during treatment delivery due to organ mobility [56]. To minimize the intrafractional dose
variations, EM tracking [57] and real-time applicator position monitoring system using
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an infrared camera and reflective markers may also be considered [29]. Lastly, the quality
assurance (QA) could eventually decrease the source of uncertainties whether technical
(source/equipment related) or clinical [58].

On another issue, optimized dwell times at certain dwell positions may have been
very high compared to adjacent dwell positions, and there may have been almost no dwell
times in adjacent source positions. This may carry a very high risk if a small volume of
OARs is close to certain source positions. In the manual planning, the planner makes the
safer plan by smoothing out dwell times manually over adjacent positions. To resolve this
problem in the robust optimization, the algorithm can make the constraint of the difference
between dwell times at adjacent source positions in the iteration step.

Nonetheless, one advantage of the proposed method is its applicability to an intensity-
modulated brachytherapy (IMBT) system with modifications on the dose matrix and robust
measure function. The IMBT, which is a promising method for cervix brachytherapy, is
capable of increasing the dose to the target by 36.3% while decreasing the dose to the OAR
by 4.7% to 22.4% compared with conventional HDR brachytherapy [59]. However, there are
still a number of uncertainties related to the dose delivery in the IMBT system that include
(a) uncertainty in the orientation of the shields, (b) uncertainty in source positioning and
(c) uncertainty in patient/applicator relative movement [60]. These uncertainties occurring
during treatment can decrease target coverage and increase the dose to organs at risk. There
is a rising question about minimizing the dose-delivery uncertainty in the IMBT system.
For that reason, the implementation of the proposed algorithm into the IMBT system will
be investigated in a future study.

5. Conclusions

Here, our results with proposed algorithm show the feasibility of robust planning to
reduce dose-delivery uncertainty by potential applicator displacements and EQD2 dose
distribution compared to conventional brachytherapy plans. The fundamental assumption
is that only random displacements of applicators were used for objective functions. Subse-
quently, a mathematical robust optimization algorithm was used to minimize the objective
function value for meeting the best planning goals. Indeed, although this work concen-
trated only on a limited number of cases, the implication, at least from the point of view of
dose-delivery uncertainty by applicator displacement, is that the robust optimization may
be cautiously considered in a brachytherapy plan. Furthermore, our proposed algorithm
in treatment planning systems could additionally be updated to incorporate both dwell
position rotation and shield angle as degrees of freedom for minimizing the dose-delivery
uncertainty in the promising IMBT system. Reducing the dose delivery uncertainty by
applicator displacement should be confirmed by a more thorough investigation using
different geometries and clinical cases. Additionally, the results mentioned earlier are only
used for research reporting and not real treatment planning, including dose constraints.
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Abstract: CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) was the first Italian
protontherapy facility dedicated to the treatment of ocular neoplastic pathologies. It is in operation at
the LNS Laboratories of the Italian Institute for Nuclear Physics (INFN-LNS) and to date, 500 patients
have been successfully treated. Even though proton therapy has demonstrated success in clinical
settings, there is still a need for more accurate models because they are crucial for the estimation of
clinically relevant RBE values. Since RBE can vary depending on several physical and biological
parameters, there is a clear need for more experimental data to generate predictions. Establishing a
database of cell survival experiments is therefore useful to accurately predict the effects of irradiations
on both cancerous and normal tissue. The main aim of this work was to compare RBE values obtained
from in-vitro experimental data with predictions made by the LEM II (Local Effect Model), Monte
Carlo approaches, and semi-empirical models based on LET experimental measurements. For
this purpose, the 92.1 uveal melanoma and ARPE-19 cells derived from normal retinal pigmented
epithelium were selected and irradiated in the middle of clinical SOBP of the CATANA proton
therapy facility. The remarkable results show the potentiality of using microdosimetric spectrum,
Monte Carlo simulations and LEM model to predict not only the RBE but also the survival curves.

Keywords: protontherapy; proton; RBE; radiobiology; microdosimetry; Geant4

1. Introduction

Proton beam therapy is becoming increasingly available due to its potential to de-
liver maximal doses on tumour while minimizing irradiation of surrounding healthy
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tissues/organs at risk. In fact, its ballistic precision has always been regarded as the main
physical pillars of such a treatment modality [1]. However, in recent years, with growing
numbers of patients treated and longer follow-up periods, concerns about the potential
side effects of protontherapy have arisen [2,3]. The potential of a given particle irradia-
tion to induce a greater level of specific biological effects compared to photon irradiation,
used as a reference, is expressed in terms of its Relative Biological Effectiveness (RBE) [2].
Nowadays, in the proton-therapy clinical practice, a fixed RBE of 1.1 is assumed [3–5]. This
reflects the known relationship between RBE and Linear Energy Transfer (LET), as in the
tumour volume low-LET protons can be generally found. Despite this, data emerging
from various radiobiological studies indicate that RBE of protons exceed the accepted
value, at least in the distal part of the clinical spread out dose distribution, where high-LET
slowing-down protons become predominant. Hence, a variable RBE should be used to
more precisely describe the radiobiological effects on the tissues and organs involved in
the treatment [6–10].

Successful treatment planning largely depends on the accuracy of biophysical models.
To assure their precision they need to be validated against data from in vitro studies.
Therefore, development of the database with experimental results obtained on various cell
lines is useful for RBE model validation as well as for comparing different models [11].

While a vast literature exists reporting on the clinical results of eye proton therapy [12–16],
no in vitro data evaluating the cellular radioresponse of uveal cancer cells along a clinical
proton SOBP are available. There is only scarce data regarding the response of human
melanoma cell lines along with the proton spread-out Bragg peak. According to these data,
at the distal end of a 65 MeV proton SOBP, an RBE of 1.27 and even higher for the more re-
sistant melanoma cell lines were recorded [17–19].More recently, work carried out on uveal
melanoma Mel270 cells at the mid-SOBP position of a clinical high-energy proton beam
showed an increased anti-migratory effect compared to photon irradiation [20]. Currently,
many commercial Treatment Planning Systems (TPSs) for proton therapy incorporate the
capability of calculating LET distributions and RBE estimations, but there remain chal-
lenges on how to deal with uncertainties resulting from potential RBE variations. Future
TPS that would potentially be able to take into account RBE variability, could reduce the
toxicity and the incidence of later-occurring induced morbidities, thus making it possible to
exploit the full potential of proton therapy [2]. The main aim of this work was to study the
RBE values at the clinical SOBP of the CATANA proton therapy facility. Radiation-induced
biological effects measured in terms of clonogenic cell death (see below) were predicted
by the LEM II (Local Effect Model) [21], Monte Carlo approaches [22], and semi-empirical
models based on LET experimental measurements [23]. All adopted methods were then
compared with in-vitro experimental results. These were evaluated using the human
92.1 uveal melanoma cell line, a well-known model to investigate the aggressive behaviour
of such types of neoplasia. In order to compare the effects induced by proton therapy in a
non-tumorigenic cell line the human normal retinal pigment epithelial ARPE-19 cell line
was also irradiated. The normal cells can easily recover from damage induced by ionizing
radiation due to a more efficient damage response machinery with respect to the cancer
cells. Moreover, choosing the normal retinal pigment epithelial ARPE-19 cell line allows
obtaining insights into the magnitude of biological effects induced by an erroneous dose
distribution during a proton therapy treatment plan. The retina is the organ at risk in uveal
melanoma treatment and despite the usually excellent precision granted by protontherapy,
the anatomical structure of the eye, with dimensions in the order of the millimeter is such
that lack of a rigorous dose contouring is possible in actual clinical scenarios, leading to
unwanted dose deposition. Such information is therefore of paramount importance to
provide an estimate of the possible adverse effects deriving by beam forward straggling.
Microdosimetry experimental spectra acquired to estimate the proton LET in different
positions along the SOBP, were measured in the same experimental conditions of the
biological sample irradiation. Two different detectors were used to this scope: a mini-
TEPC [24,25], developed at the Legnaro National Laboratories of the National Institute
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for Nuclear Physics (LNL-INFN) and a Silicon On Insulator (SOI) microdosimeter with
3D Sensitive Volumes (MicroPlus-Bridge) [26,27]. The Loncol’s weighting function was
then applied to assess the microdosimetric RBE and compare it with the experimental
one. The biological damage was estimated also adopting a computational method which
couples Geant4 with the LEM-II model as well as the pure LEM-II model. In such a way,
it was possible to compare the well-established LEM with a Monte Carlo method and a
semi-empirical one and to establish an approach that best reproduces the biological data at
a depth of 24 mm, the mid-position of the spread-out Bragg peak.

2. Material and Methods

2.1. CATANA Proton Therapy Facility

The CATANA protontherapy facility [28], built thanks to a collaboration between
INFN-LNS and University of Catania Hospital “AOU-Vittorio Emanuele” in Catania (I),
has been active since 2002 and successfully treated more than 500 patients. CATANA is
dedicated to the radiation treatment of ocular melanomas with the 62 MeV proton beams
accelerated by the INFN-LNS superconducting cyclotron. The most frequent neoplasia
treated with proton beams is the uveal melanoma, followed by other eye diseases like
choroidal metastases, conjunctival tumours, and eyelid tumours. The CATANA facility is
based on a passive transport system. The proton maximal range, at the irradiation point, is
about 30 mm, ideal for the treatment of eye tumours. The necessary maximum range and
energy modulation are achieved by means of a set of polymethyl-methacrylate (or PMMA)
absorbers, variable in thickness, and modulator wheels.

2.2. Experimental Set-Up

The clinical SOBP beam configuration was used for the radiobiological and microdosi-
metric measures. The SOBP penetration range, measured as the depth corresponding to
the 80% of the SOBP maximum and measured in the distal part, was 29.5 mm in water.
The measured dose distribution as well as the LET and dose simulated by using the Geant4
Hadrontherapy advanced example that reproduce the entire beamline [28], is reported in
Figure 1). The algorithms adopted to compute the LET take into account both primary and
secondary particles interacting in a voxel, more details are reported in [27].

Absolute absorbed dose was measured in water, by means of a plane-parallel PTW
34045 advanced-type Markus ionisation chamber, according to the International Atomic
Energy Agency Technical Report Series 398 Code of practice [29]. The absorbed dose in
water per monitor unit (cGy/M.U.) for the specific SOBP adopted in cell irradiations, was
measured at the isocenter at 24 mm depth in water, corresponding to the middle of the
SOBP. A reference 25-mm diameter circular collimator was used to determine the beam spot
size at the irradiation point. The absolute dose dosimetry was performed just before each
irradiation session; the variation of beam calibration on the various experiments amounted
to a total of 3%. The overall uncertainty in absolute dose measurement was kept within
1.5%. Details on the irradiation beamlines, dosimetric procedures and related uncertainties
for irradiation conditions can be found elsewhere [28]. As regards cell line irradiation,
the experimental procedure was described previously [30]. Briefly, cells were seeded in
T25 tissue culture flasks with a density of 3–5 ×105 cells per flask 24 h before irradiation.
T25 were irradiated in the upright position in front of the proton beam exit and hit with
separate shots to ensure a complete dose distribution on the flask area. An automatic
system for sample positioning and movement was used to move the flasks after each shot
in order to cover its entire surface. Cell sample irradiations were carried out positioning
each flask at 24 mm, the mid-position of the spread-out Bragg peak, to mimic a clinical
condition, with dose values ranging from 1 to 4 Gy and a dose rate of 6 Gy min−1. Finally,
the microdosimetric spectra were acquired positioning the mini-TEPC and MicroPlus-
Bridge detectors at the entrance and mid position along the same SOBP, while the depths
were varied by placing a stack of calibrated PMMA layers between the detectors and the
beam collimator [27]. The mini-TEPC is a miniaturized, tissue-equivalent, proportional
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counter developed at the Legnaro National Laboratories of the Italian National Institute for
Nuclear Physics (INFN-LNL) to work in a sealed mode, without gas flow [25]. The sensitive
volume (SV) is a cylinder with both diameter and height of 0.9 mm; the cathode is made
of a 0.35 mm-thick A-150 wall, surrounded by a 0.35 mm-thick Rexolite insulator and a
0.2 mm-thick titanium sleeve; the total external diameter is 2.7 mm. The anode is a 10-μm
gold plated tungsten wire. The detector was filled with propane gas, at the pressure of
45.4 kPa at 21.8 ◦C; these conditions simulate a water volume of 1 μm in diameter.

Figure 1. The relative dose measured with the Markus chamber (black crosses), simulated dose
distribution (black line), primary LET-dose computed for only primary protons (red line) and
LET-Total-dose considering also the contribution of generated secondary particles (red circles) are
reported.The vertical blue lines show the positions at which measurements were performed. Simu-
lated and measured values for the absorbed dose are in good agreement when a 2% uncertainty is
considered in both sets of data.

The silicon detector adopted was the MicroPlus-Bridge, designed by the Centre for
Medical Radiation Physics (CMRP), University of Wollongong, Australia. It consists of an
array of 3D right parallelepiped (RPP) shape SVs with an area of 30 μm × 30 μm each and
a thickness of 10 μm, constructed on a silicon-on-insulator wafer. The water equivalent
thickness of this microdosimeter is 17.24 μm. Additional details and microdosimetric
results on the MicroPlus-Bridge microdosimeter technology can be found elsewhere [26].
It has already been shown that the dose mean lineal energy measured with these two
detectors reproduces the variation with depth of the dose-averaged LET [23].

2.3. Cell Culture and Clonogenic Assay

The ARPE19 human retinal pigment epithelial cell line was purchased from American
Type Culture Collections (ATCC, Manassas, VA, USA) and cultured according to the
manufacturer’s instructions. Cell culture maintenance was performed with the same
methods previously described [31]. The 92.1 human uveal melanoma cell lines were kindly
provided by Prof. CD Anfuso and cultured according to the procedure described in the
work by Anfuso et collaborators [32]. A clonogenic survival assay was adopted to evaluate
cell survival after proton and gamma-ray irradiation. After irradiation, cells were seeded
in 6-well plates in triplicate and at an increasing density, depending on the dose delivered;
they were incubated for 12–14 days to allow for colony formation. Colonies were stained
with 0.05% crystal violet, diluted in 20% ethanol for 30 min at room temperature. Colony-
forming ability was determined, both for unirradiated (controls) and irradiated samples,
by dividing the counted colony number by the number of cells plated after irradiation
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in order to obtain the plating efficiency (PE) and survival fraction (SF) of the samples
respectively. For each dose, the SF was then derived by normalizing the above-mentioned
results by the PE. For each experimental session, the effect due to the different doses was
evaluated on three cell samples. Each point of the survival curves represent the average of
three independent experiments. The survival curve was fitted by the linear-quadratic (LQ)
equation [33]:

S = e−αD−βD2
(1)

The fit was performed by using the MATLAB-R2019b software, where D is the phys-
ical dose deposited by protons and photons, S the surviving fraction, and α and β the
radiosensitivity parameters. The fit provided the linear and quadratic parameters with their
standad error and the R2 value. These parameters was used to calculate the enhancement
ratios at 10% survival.

Irradiations with γ-rays issued by 60Co source (CIRUS-Cis Biointernational, Gif-sur-
Yvette, France) were performed at the Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Cells were irradiated with doses ranging from 1 to 6 Gy at the rate of �1 Gy/min, in the
air at room temperature, following the same experimental procedures as defined for
irradiations with protons.

2.4. Micorodosimetric Spectra

The acquired microdosimetric spectra were represented as the distributions of the
lineal energy y, the stochastic variable defined as the energy deposited by a single event in a
specific volume, divided by the mean chord length [34]. Frequency f (y) and dose d(y) distri-
butions of the lineal energy obey the usual normalization rules of probability distributions:∫ ∞

0
f (y)dy = 1 (2)

and ∫ ∞

0
d(y)dy = 1 (3)

with

d(y) =
y f (y)∫ ∞

0 y f (y)
(4)

The frequency and dose-mean lineal energy values, yF and yD, are calculated as:

yF =
∫ ∞

0
y f (y)dy (5)

and
yD =

∫ ∞

0
yd(y)dy (6)

The microdosimetric lineal energy distribution was used to estimate RBE, following
the approach of the biological weighting function [35]. A weighting function r(y) was
applied to the measured dose distribution in lineal energy d(y) in order to determine a
single parameter, RBEμ, that estimates the biological effectiveness:

RBEμ =
∫ ∞

0
r(y)d(y)dy (7)

In this work, the Loncol’s function r(y) [36] was adopted to weight the lineal energy.
The Loncol’s function was numerically determined by an unfolding procedure on empirical
and statistical bases. The results of a RBE-microdosimetry intercomparison study between
experimental measurements (performed with a TEPC simulating 2 μm) and in-vivo exper-
imental data of intestinal tolerance assessment by crypt cells regeneration was adopted.
The unfolding procedure allowed to determine r(y) by minimizing the differences between
biological RBE and RBEμ calculated applying the Equation (7). Despite the function r(y)
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was derived for a specific biological end-point in vivo (early intestinal tolerance in mice),
previous works have already shown that the same function allows to reproduce the trend
of the RBE10 as a function of depth for a variety of cell lines [22,23]. In this work the RBEμ

was here calculated at positions P0 (entrance) and P1 (mid-SOBP). These two results were
afterwards multiplied by a constant factor so that RBEμ at position P0 (entrance) equal the
clinical value of 1.1:

RBEμ(Pi) =
∫ ∞

0
r(y)d(y, Pi)dy × [1.1 ÷

∫ ∞

0
r(y)d(y, P0)dy] (8)

Applying the LQ model, the estimated RBEμ and the α and β derived from cell
survival assessments for reference radiation, were used to calculate αμ, starting from the
expression for RBEμ:

RBEμ =
αμ +

√
α2

μ − 4βμln(0.1)

αγ +
√

α2
γ − 4βγln(0.1)

(9)

assuming a constant βμ=βγ and using Equation (9), αμ can be calculated as follows:

αμ =
RBE2

μ · A2
γ + 4βγln(0.1)

2RBEμ · Aγ
(10)

with
Aγ = αγ +

√
α2

γ − 4βγln(0.1) (11)

2.5. Monte Carlo Simulations and LEM II Calculations

The RBE values for the two cell lines used in the experimental part of this work
were calculated by means of two different approaches. The first was a hybrid procedure,
allowing to link the Monte Carlo simulations of the irradiation with a cell-specific look-
up table (LUTs) containing the results of the radiation damage calculated with the LEM
II model [21]. The LUTs were derived using the software “Survival” [37]. The second
approach consisted in the direct use of the Survival code, without including the mixed
field contribution, in order to obtain the direct output of the LEM II model. The Monte
Carlo simulation of the experimental set-up, including the specific conditions of biological
sample irradiation, was carried out using the Geant4 Hadrontherapy application [38,39],
freely available inside the official Geant4 [40,41] distribution. Hadrontherapy simulates
the CATANA eye proton therapy beamline with all its beam passive and dynamical
transport elements, including the scattering and modulation systems for spatial and energy
distribution beam definition, collimators and detectors for the online beamline monitoring.
A voxelized detector at the end of the beamline simulates the typical water tank used for the
dose curves reconstructions. In order to reproduce the adopted experimental conditions,
the tank was divided into slabs perpendicular to the beam propagation direction, along
the z-axis. Each slab was 4 × 4 × 0.1 mm3 in dimension. Dose, fluence, dose- and track-
averaged LET, survival, RBE and all the related quantities necessary for their estimation
were retrieved using the application as described elsewhere [22,27]. Every quantity was
stored at the end of each run. A total number of 3.6 × 107 histories were simulated in each
simulation; the production cut for secondary protons, gamma and electrons was fixed at
0.1 mm. All calculations were carried out using the 10.07.p01 version of Geant4.

3. Results and Discussion

One of the aims of this work is the comparison of three methods to calculate the
RBE in a clinical setting: microdosimetric-based, Monte Carlo and LEM II model. All
of the proposed approaches were compared with experimental data. Radiation-induced
cell death was measured by clonogenic assay and RBE values were calculated using the
Linear-Quadratic model. The clonogenic survival curves of two specific cell lines were
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experimentally measured at 24 mm, the mid-position of the 62 MeV clinical proton SOBP.
Additionally, at the SOBP entrance, the survival curves were also estimated from the
experimental measurements of the microdosimetric spectra. The estimation of the survival
curves with these three approaches permitted the estimation of the RBE values in the centre
of the SOBP region. The radiobiological effects of protons were experimentally evaluated
using the human 92.1 uveal melanoma cell line. In order to evaluate the damage induced
by proton therapy in a typical tissue belonging to the same anatomical site, the human
normal retinal pigment epithelial ARPE-19 cell line was also irradiated. The assessment of
the detrimental effects in healthy tissues due to radiotherapy is pivotal, especially for the
treatment of cancers affecting the eye since even slight impairment of the normal ocular
tissue would lead to a loss of function of the entire organ [42]. The results of the clonogenic
curves with the fitted parameters, for the two cell lines irradiated at the proton mid-SOBP
and under a reference gamma beam, are summarised in Table 1. Table also report the
corresponding derived values of RBEs.

Table 1. Survival curve parameters measured for proton and gamma irradiation of the 92.1 and
ARPE-19 cell line. The statistical parameters of the double exponential fit function and the values of
the derived RBEs are reported.

Irr. Type α(Gy−1) β(Gy−2) α/β Fit. Std. Err. RBE10

92.1
γ-rays 0.20 ± 0.03 0.076 ± 0.004 2.68 0.02

1.4
protons 0.40 ± 0.02 0.095 ± 0.003 4.25 0.007

ARPE19
γ-rays 0.34 ± 0.14 0.03 ± 0.02 11.33 0.02

1.2
protons 0.43 ± 0.01 0.041 ± 0.003 10.49 0.04

Two fundamental radiobiological parameters were contextually obtained, the alpha
and beta values, together with their ratio. Within the LQ model context, the alpha and
beta coefficients of the clonogenic survival curves represent the single-hit, lethal damage,
generally not repairable, and the multiple-hit damage, associated with sub lethal damage,
respectively. Sublethal damage is responsible for the shouldered part of the clonogenic
curve and can be usually repaired [43]. The α/β ratio is an useful indicator of radiosen-
sitivity, hence, its calculation is of paramount importance to evaluate the cell response to
the radiation therapy (RT) treatment [44,45]. The clonogenic endpoint has, in fact, shown a
lower radiosensitivity exhibited by the ocular cancer cells with respect to the normal cells
as expected. In addition, for both cell lines, an increased RBE with proton beam irradiation
was obtained. The capability of the two microdosimeters to describe not only the RBE
but also the survival curve at the mid-SOBP was then investigated. Figure 2 shows the
acquired microdosimetric spectra from which the RBEs values and the parameters of the
corresponding clonogenic curves were derived. Distributions are presented as yd(y) versus
y on a logarithmic x-axis to facilitate visual interpretation. In this representation, the area
under the curve between two values of y is proportional to the fraction of physical absorbed
dose due to the events in that interval.

Specifically, in Figure 2 the two positions (entrance and mid of the SOBP) and the
two detectors (mini-TEPC and MicroPlus Bridge) are considered. In the same figures,
the Loncol’s biological weighting function r(y) and the corresponding weighted-dose
curves yr(y)d(y) are also reported. The observed increase of the area under the red curve
(i.e., the yr(y)d(y) curve) for the spectra acquired at the cell position (bottom row of Figure 2),
reflects an increase in the RBE. It can be observed, in fact, that at the entrance position
the biologically weighted distributions overlap almost perfectly with the un-weighted
distributions, because for y < 10 keV/μm the weighting function r(y) almost equals almost
equals 1. Different behaviour can be observed at the mid-SOBP, where the weighting
function augments the contribution of events above 10 keV/μm leading to an increase
of the RBEμ (Equations (8)–(11)). The RBE calculated at the mid-SOBP with the mini-
TEPC, (RBEμ-TECP = 1.18), resulted slightly higher than that calculated with the Microplus
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Bridge (RBEμ-MicroPlus = 1.12). With respect to the entrance position, the RBEμ-TECP at
the mid-SOBP increases by about 17%, and the RBEμ-MicroPlus increases by about 13%.
The reason for this underestimation of the MicroPlus with respect to the TEPC is the larger
simulated site size (about 17 μm with respect to 1 μm of the TEPC): low energy protons
stop inside the silicon thickness, therefore the largest proton events (proton-edge) are at
about 40 keV/μm for the Microplus, while they are at about 140 keV/μm for the mini-
TEPC. The RBEμ values, corrected by a constant factor to have RBEμ = 1.1 at the entrance
position of the SOBP, and the linear parameters αμ of the linear-quadratic model, calculated
using Equation (11), are reported in Table 2. The βμ was assumed to be equal to βγ (see
Section 2.4).

Figure 2. The microdosimetric spectra yd(y) measured at the entrance (top) and at cell position
(bottom) acquired with the mini-TEPC (left) and with the MicroPlus Bridge microdosimeter (right).
The thick grey line represents the biological weighting function r(y) (Loncol, 1994). The red curves are
the weighted distributions yr(y)d(y). The black curves are the experimental microdosimetric spectra.
See text for more details.

Table 2. RBEμ calculated from microdosimetric spectra, and corrected by a constant factor to
have RBEμ = 1.1 in entrance. The parameters αμ TEPC and αμ MicroPlus were calculated with
Equations (8)–(11).

Cell Type RBEμ-TEPC RBEμ-MicroPlus αμ TEPC αμ MicroPlus

92.1 1.29 1.24 0.35 ± 0.03 0.31 ± 0.02

ARPE19 1.29 1.24 0.45 ± 0.04 0.41 ± 0.04

Finally, the survival curves relative to the mid-SOBP position and derived from the
microdosimetric data, experimentally measured from cell irradiation experiments and
calculated with the described Monte Carlo and using the Survival software [37], are
reported in Figure 3 (92.1 cell line) and Figure 4 (ARPE-19 cell line). Both figures also show
the survival curve measured for the 60Co gamma-ray irradiation. The survival experimental
curves were fitted using the double exponential function (Equation (1)) and the α and β
derived from it were reported in Table 1. The survival fraction related to the experimental
data and applyed approaches for the two investigated curves is reported in the Table 3
(92.1 cell line) and Table 4 ARPE-19 cell line).
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Figure 3. Survival fractions for 92.1. Biological survival data acquired with proton beam irradiations
(red symbols) are plotted together with the linear-quadratic best fit (red dashed line). Biological
survival data acquired with gamma rays (black symbols) are plotted together with the best fit (black
dashed line). The survival fractions predicted from microdosimetric measurements calibrated on
gamma-rays cell survival are also plotted. Purple and green points are related to the mini-TEPC and
MicroPlus respectively. The blue points were calculated by coupling the Monte Carlo Geant4 with
the LEM-II model. Finally, the orange points are obtained with the LEM-II module.

Figure 4. Survival fractions for ARPE19. Biological survival data acquired with proton beam
irradiations (red symbols) are plotted together with the linear-quadratic best fit (red dashed line).
Biological survival data acquired with gamma rays (black symbols) are plotted together with the
best fit (black dashed line). The survival fractions predicted from microdosimetric measurements
calibrated on gamma-rays cell survival are also plotted. Purple and green points are related to the
mini-TEPC and MicroPlus respectively. The blue points were calculated by coupling the Monte Carlo
Geant4 with the LEM-II model. Finally, the orange points are obtained with the LEM-II module.
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Table 3. Survival Fraction of the 92.1 cell line obtained applying the three approaches: LEMII, Geant4
coupled with LEMII and Loncol’s function applied to the microdosimetric spectra. The first column
reports experimental data.

Dose [Gy] Exp Data LEMII G4-LEMII mini-TEPC MicroPlus

1 0.606 ± 0.121 0.496 ± 0.009 0.528 ± 0.011 0.62 ± 0.03 0.68 ± 0.02

2 0.304 ± 0.061 0.232 ± 0.004 0.263 ± 0.005 0.34 ± 0.03 0.41 ± 0.02

3 0.126 ± 0.025 0.102 ± 0.002 0.124 ± 0.002 0.15 ± 0.02 0.03 ± 0.20

4 0.043 ± 0.008 0.042 ± 0.001 0.055 ± 0.001 0.06 ± 0.01 0.09 ± 0.01

Table 4. Survival Fraction of the ARPE19 cell line obtained applying the three approaches: LEMII,
Geant4 coupled with LEMII and Loncol’s function applied to the microdosimetric spectra. The first
column reports experimental data.

Dose [Gy] Exp Data LEMII G4-LEMII mini-TEPC MicroPlus

1 0.618 ± 0.123 0.584 ± 0.011 0.605 ± 0.012 0.60 ± 0.03 0.64 ± 0.02

2 0.353 ± 0.071 0.334 ± 0.006 0.358 ± 0.007 0.34 ± 0.03 0.38 ± 0.03

3 0.186 ± 0.037 0.187 ± 0.003 0.207 ± 0.004 0.18 ± 0.02 0.22 ± 0.03

4 0.091 ± 0.018 0.102 ± 0.002 0.117 ± 0.002 0.09 ± 0.01 0.11 ± 0.02

The agreement between the three investigated methods, with the experimental ra-
diobiological data, was statistically evaluated by applying the χ2 test. Results of the test
(p-values included) are reported in Tables 5 and 6: the χ2 values are calculated taking into
account the data reported in the Tables 3 and 4.

Table 5. Results of the χ2 test for the comparison of the experimental survival curves of 92.1 cells
against the survival fraction calculated with the LEM II, Geant4 coupled with LEM II and the Loncol’s
function applied with the microdosimetric spectra obtained with the two detectors. The correspond-
ing χ2 probabilities are calculated for four degrees of freedom.

92.1

χ2 p-Value

LEM2 3.06 0.38
LEM2-G4 2.70 0.44
MicroPlus 12.87 0.004
MiniTEPC 2.34 0.50

Table 6. Results of the χ2 test for the comparison of the experimental survival curves of ARPE19
cells against the survival fraction calculated with the LEM II, Geant4 coupled with LEM II and
the Loncol’s function applied with the microdosimetric spectra obtained with the two detectors.
The corresponding χ2 probabilities are calculated for four degrees of freedom.

ARPE19

χ2 p-Value

LEM2 0.54 0.91
LEM2-G4 2.42 0.49
MicroPlus 1.56 0.67
MiniTEPC 0.04 0.99

In almost all the investigated cases, the resulting p-value is well above 0.25, showing
that the models are able to well reproduce the experimental data. The p-value calculated
applying the Loncol’s function and using the microdosimetric spectra measured with the
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MicroPlus probe is lower than 0.05 as shown in Table 5. This disagreement could be related
to the higher sensitive volume of the adopted detector with respect to Mini-TEPC.

4. Conclusions and Perspectives

In this study, we showed that the LEM-II model, the Monte Carlo-based LEM model
and a semi-empirical method based on microdosimetric spectra, can adequately reproduce
experimentally derived survival curves from in vitro cell irradiations performed at the
mid-SOBP of the CATANA 62 MeV clinical proton beam.

For both cell lines, an RBE greater than 1.1 was measured and reproduced applying all
of the investigated approaches. This points out that the biological damage of both healthy
and tumorigenic cells is underestimated if a fixed RBE of 1.1 is assumed. Microdosimetric
spectra were measured at the entrance and mid-SOBP position with both a mini-TEPC, sim-
ulating a 1 μm water site size, and the MicroPlus microdosimeter (17 μm water equivalent
thickness). Despite the markedly different microdosimetric spectra obtained with these two
detectors, when the Loncol’s weighting function is applied to the dose distributions both
lead to an assessment of the RBE10 that is in good agreement with radiobiological data for
ARPE-19 cells obtained in the same beamline. The higher discrepancy obtained with the
92.1 cell line and the solid-state detector could be due to a lower detector sensitivity related
to the higher SV volume. The remarkable obtained result showed the potentiality of using
a microdosimetric spectrum to predict not only the RBE but also the full survival curve,
at least at the mid-position of the 62 MeV proton SOBP. Currently, different commercial
treatment planning softwares for proton therapy incorporate tools for calculating LET
distributions and RBE prediction. However, while the dose prescriptions calculated by
the treatment planning are routinely verified with certified ionization chambers, there
is no commercial equipment currently available to perform routine verification of LET
or RBE distributions calculated by the TPS. The Local Effect Model is the computational
radiobiological approach most widely used in hadrontherapy. The LEM model was fully
integrated into the analytical treatment planning system TRiP98 and successfully tested
for clinical application. In this work, the good agreement between the Monte-Carlo-based
LEM model and LEM-II model with the experimental data clearly evidence how a TPS
based on an RBE and LET prediction could improve the estimation of the radiobiological
response of the treated neoplasia as well as the surrounding healthy tissues. Moreover,
the pretty good accordance between the semi-empirical methods based on microdosimetric
spectra with the experimental data shows that the LET estimation procedure should be
successfully inserted in the clinical routine to optimize the RBE distribution. The current
study identifies a clinical and critical aspect of the uveal melanoma protontherapy treat-
ment. The correct evaluation of the damage induced by ionizing radiation during RT
treatment, also thanks to Monte Carlo-based simulations, represents a valuable and potent
tool to foresees the impact of ionizing radiation on cancer tissues. Moreover, studying
both healthy and tumorigenic cells allows obtaining fundamental information about the
biological effects induced by an erroneous dose distribution during a proton therapy ocular
treatment plan. The biological response is therefore of paramount importance to provide
an estimate of the possible adverse effects deriving by beam forward straggling. A correct
prediction of the damage is a key point for a more personalized TPS.
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Abstract: The aim of this study was to investigate the possible role of [99mTc]Tc-Sestamibi in the regu-
lation of cancer cell proliferation and apoptosis. To this end, the in vivo values of [99mTc]Tc-Sestamibi
uptake have been associated with the in-situ expression of both Ki67 and caspase-3. For in vitro in-
vestigations, BT-474 cells were incubated with three different concentrations of [99mTc]Tc-Sestamibi:
10 μg/mL, 1 μg/mL, and 0.1 μg/mL. Expression of caspase-3 and Ki67, as well as the ultrastruc-
ture of cancer cells, was evaluated at T0 and after 24, 48, 72, and 120 h after [99mTc]Tc-Sestamibi
incubation. Ex vivo data strengthened the known association between sestamibi uptake and Ki67
expression. Linear regression analysis showed a significant association between sestamibi uptake
and the number of apoptotic cells evaluated as caspase-3-positive breast cancer cells. As concerning
the in vitro data, a significant decrease of the proliferation index was observed in breast cancer cells
incubated with a high concentration of [99mTc]Tc-Sestamibi (10 μg/mL). Amazingly, a significant
increase in caspase-3-positive cells in cultures incubated with 10 μg/mL [99mTc]Tc-Sestamibi was
observed. This study suggested the possible role of sestamibi in the regulation of pathophysiological
processes involved in breast cancer.
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1. Introduction

A recent report by the American College of Radiology released the clinical indications
for the use of dedicated breast γ imaging, including breast-specific γ imaging (BSGI),
in breast cancer patients not suitable for magnetic resonance imaging (MRI) analysis [1].
Indeed, BSGI with the cationic lipophilic agent [99mTc] (technetium 99-m) labeled ses-
tamibi (99mTc-Sestamibi) is considered a reliable and useful medical device for the early
preoperative detection of primary breast cancer [2]. BSGI with [99mTc]Tc-Sestamibi can
also be considered complementary to mammography in women showing dense breasts,
palpable abnormalities, and mammographically indeterminate breast lesions > 1 cm [3].
For all these reasons, the correct use of BSGI with [99mTc]Tc-Sestamibi in the breast units
frequently allows for a reduction in the number of unnecessary biopsies, thus improving
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the management of breast cancer patients. Moreover, it established the role of BSGI with
[99mTc]Tc-Sestamibi in accurate stereotactic breast biopsy procedures. In fact, Collarino
and colleagues [4] described a new clinical method for stereotactic breast biopsy guided
by [99mTc]Tc-Sestamibi uptake that allows for the achievement of larger and suitable
histopathologic samples, if compared with automated core needle biopsy methods [5,6].

Recently, Urbano et al. demonstrated that BSGI with [99mTc]Tc-Sestamibi can be used
to detect breast cancer lesions characterized by the presence of microcalcifications and
breast osteoblast-like cells [7]. Indeed, authors showed a significant association between
[99mTc]Tc-Sestamibi uptake, the presence of breast microcalcifications made of hydroxyap-
atite, and the presence of cancer cells associated with the development of bone metastatic
lesions breast osteoblast-like cells [8]. Thus, BSGI with [99mTc]Tc-Sestamibi could also be
used for the early detection of breast cancer lesions with a high propensity to form bone
metastasis [9].

In regard to [99mTc]Tc-Sestamibi uptake, two different biodistribution models based
on its chemical-physical characteristics have been proposed [10–12]: (a) binding of [99mTc]-
Tc-Sestamibi with 8–10-kDa cytoplasmic proteins, and (b) easy lipid partitioning and mem-
brane translocation mainly reflecting passive transmembrane distribution in accordance
with the imposed transmembrane potential. Passive membrane translocation is currently
the most supported mechanism [13,14]. Based on this mechanism, the uptake of sestamibi
is generally associated with the presence of several mitochondria with a high membrane
potential [15].

Despite the important chemical-physical and clinical evidence regarding the use of
BSGI with [99mTc]Tc-Sestamibi in the management of breast cancer patients reported above,
few studies have been performed on the cellular/molecular modifications of breast cancer
tissues induced by the sestamibi uptake. In fact, only indirect data about the association
between [99mTc]Tc-Sestamibi uptake and the cellular/molecular characteristics of breast
cancer cells, such as their proliferation index, have been investigated. In this context, Erba
et al. reported very preliminary data about the role of [99mTc]Tc-Sestamibi uptake as
an indicator of chemotherapy induced apoptosis [16]. However, no definitive clinical or
in vitro experimental data are currently available.

Starting from these considerations, this study aims to investigate the possible role of
[99mTc]Tc-Sestamibi in the regulation of biological processes involved in cancer progression
such as proliferation and apoptosis ex vivo and in vitro. To this end, the in vivo values of
[99mTc]Tc-Sestamibi uptake have been associated with the in situ expression of both Ki67
(proliferation index) and caspase-3 (apoptosis). In addition, in vitro investigations using
a breast cancer cell line (BT474) have been performed to study the possible cellular and
molecular modifications of cancer cells following [99mTc]Tc-Sestamibi uptake.

2. Materials and Methods

The Policlinico Tor Vergata ethical committee approved this protocol with the refer-
ence number # 129.18, 26 July 2018. Furthermore, all methodologies and experimental
procedures described herein were achieved in agreement with the last Helsinki Declaration.

Exclusion criteria were a second cancer and neoadjuvant hormonal or radiation ther-
apy prior to surgery.

According to these criteria, we retrospectively enrolled 40 consecutive breast cancer
patients (58.36 ± 1.99 years; range 42–65 years) who underwent both BSGI with [99mTc]Tc-
Sestamibi and breast biopsy procedures.

For each of them, histological diagnosis and immunohistochemical investigations
were performed.

2.1. [99mTc]Tc-Sestamibi-High Resolution SPECT

BSGI with [99mTc]Tc-Sestamibi investigations were performed as described in a previ-
ous study [17]. Briefly, a BSGI scan was performed in 10–15 min following an intravenous
administration of 740 MBq [99mTc]Tc-Sestamibi through an antecubital vein contralateral
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to the suspicious breast side to avoid potential false-positive uptake in the axillary lymph
nodes. The patients remained seated during the procedure. Craniocaudal and mediolateral
oblique (MLO) images were obtained in both breasts using high-resolution BSGI.

All 40 patients had biopsy. BSGI was performed before biopsy in 25 patients and
after biopsy in 15 patients. When BSGI was performed after biopsy, the minimum interval
between biopsy and imaging was 7 days in an attempt to avoid the effects of post-biopsy
inflammation as much as possible.

For the qualitative analysis of the BSGI, two investigators classified positive and
negative findings. Lesions with no demonstrable uptake and those with diffuse heteroge-
neous or minimal patchy uptake were considered negative, whereas lesions with scattered
patchy uptake, partially focal uptake, or any other focal uptake were regarded as positive.
Irregular-shaped regions of interest (ROIs) were used to encase the lesions. The evalua-
tion of the lesion to nonlesion ratio (L/N) was estimated according to the study of Tan
et al. [18]. For patients who underwent BSGI with [99mTc]Tc-Sestamibi before biopsy (n =
25), the BSGI-guided biopsy procedure was performed as previously described [19].

2.2. Histology

Breast biopsy samples were formalin fixed and embedded in paraffin. Serial sections
were used for both hematoxylin-eosin (H&E) and immunohistochemistry staining [20].

2.3. Immunohistochemistry

Immunohistochemistry was used to study the expression of an apoptotic in situ
biomarker, caspase-3, and the proliferation index by Ki67. Paraffin sections with a thickness
of 3 μm were treated with EDTA citrate buffers at a pH of 7.8 for 30 min at 95 ◦C to antigen
retrieval reaction. Afterwards, sections were incubated with the primary antibodies diluted
1:100 for 60 min at room temperature; anti-Ki67 rabbit monoclonal antibody (clone 30-9,
Ventana, Tucson, AZ, USA) and anti-caspase-3 mouse monoclonal antibody (31A1067,
Novus Biologicals, Centennial, CO, USA). Washing was performed with PBS/Tween 20
with a pH of 7.6 (UCS Diagnostic, Morlupo, RM, Italy).

Digital scanning was used to evaluate the immunohistochemical reactions (Iscan
Coreo, Ventana, Tucson, AZ, USA). Specifically, digital images from caspase-3 reactions
were evaluated in a semi-quantitative approach by counting the number of positive breast
cancer cells (out of a total of 500 in randomly selected regions). Ki67 was calculated in terms
of percentage of positive cancer cells. Reactions have been set up by using specific positive
and negative control tissues.

2.4. Cell Culture

BT-474 cells obtained from the American Type Culture Collection (ATCC. Manassas,
VA, USA) and maintained by the Cell and Tissue Culture Core, Lombardi Cancer Center
(Reservoir Rd. NW Washington D.C. 20057, USA). Cells were routinely cultured in DMEM
high glucose (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine
serum (FBS).

In detail, cells from the first or second passage were seeded into a 24-well plate
at a density of 30 × 103 cells/well. Successively, BT-474 cells were incubated with: (a)
[99mTc]Tc-Sestamibi 10 μg/mL, (b) [99mTc]Tc-Sestamibi 1 μg/mL, and (c) [99mTc]Tc-
Sestamibi 0.1 μg/mL. The expression of both Ki67 and caspase-3 were evaluated at T0
and after 24, 48, 72, and 120 h after sestamibi incubation. Cells treated with the vehicle
(lyophilisate resuspended) were used as a control (CTRL).

Cell proliferation was investigated both by counting the number of cells for each time
point, and by bromodeoxyuridine incorporation assay performed at time 0 and after 72 h.
Morphology was studied by both toluidine blue staining.
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2.5. Immunocytochemistry

Immunocytochemistry was performed to investigate the expression of caspase-3
and Ki67 on BT-474 cells treated with 99mTc-Sestamibi. Caspase-3 was evaluated by
immunoperoxidase analysis, while Ki67 expression was evaluated by immunofluorescence
staining in order to reduce the background.

BT-474 Cells were plated on poly-l-lysine coated slides (Sigma-Aldrich cat #P4707)
in 24-well cell culture plates and fixed in 4% paraformaldehyde. After pre-treatment with
EDTA citrate at 95 ◦C for 20 min and 0.1% Triton X-100 for 15 min, cells were incubated for
1 h with the anti-Ki67 rabbit monoclonal antibody (clone 30-9, Ventana, Tucson, AZ, USA)
and anti-caspase-3 mouse monoclonal antibody (31A1067, Novus Biologicals, Littleton, CO,
USA). Washing was performed with PBS/Tween20 with a pH of 7.6. Regarding the study
of caspase-3 expression, reactions were revealed by using an horseradish peroxidase-3,3′-
Diaminobenzidine detection kit (UCS Diagnostic, Rome, Italy). Conversely, the Ki67 signal
was revealed by using a TexasRed conjugate anti-rabbit antibody.

Reactions were evaluated by counting the number of Ki67 or caspase-3-positive cells
of 500 in total in randomly selected regions.

2.6. TEM and EDX Analysis of Cell Cultures

Cells were fixed in 4% paraformaldehyde, post-fixed in 2% osmium tetroxide and
embedded in EPON resin for morphological studies. After washing with 0.1 M phos-
phate buffer, the sample was dehydrated by a series of incubations in 30%, 50%, and 70%
ethanol. Dehydration was continued by incubation steps in 95% ethanol, absolute ethanol,
and hydroxypropyl methacrylate, then samples were embedded in EPON (Agar Scientific,
Stansted, Essex, UK).

Eighty μm ultra-thin sections were mounted onto copper grids and observed with
a Hitachi 7100FA transmission electron microscope (Hitachi, Schaumburg, IL, USA) to
study the mitochondria ultrastructure.

Unstained ultra-thin sections with a thickness of approximately 100 nm were mounted
onto copper grids for microanalysis. EDX spectra were acquired with a Hitachi 7100FA
transmission electron microscope (Hitachi, Schaumburg, IL, USA) and an EDX detector
(Thermo Scientific, Waltham, MA, USA).

2.7. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 5 software (San Diego, CA,
USA). Immunohistochemical data were analyzed by the Kruskal-Wallis test (p < 0.05) and
by Mann-Whitney test (p < 0.0005). In vitro data about the number of Ki67-positive cells
and caspase-3-positive cells were analyzed by using one-way ANOVA (p < 0.05).

3. Results

3.1. 99mTc-Sestamibi-High Resolution SPECT Analysis

BSGI with [99mTc]Tc-Sestamibi showed the uptake of radiopharmaceuticals in all 35
breast cancer patients (L/N max 5.09; min 1.43) (Figure 1A). No significant differences
concerning L/N Ratio were observed among breast cancer histotypes.
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Figure 1. Breast-specific γ imaging with [99mTc]Tc-Sestamibi and both caspase-3 and Ki67 expression.
(A) Maximum-intensity projection of breast-specific γ imaging with [99mTc]Tc-Sestamibi in a 69-
year-old breast cancer patient. (B) The graph shows the positive and significant association between
the number of caspase-3-positive breast cancer cells and the sestamibi uptake (L/M ratio). (C) The
graph displays significant association between the number of Ki67-positive breast cancer cells and
the sestamibi uptake (L/M ratio). (D) T hematoxylin and eosin section shows G3 infiltrating breast
carcinomas (scale bar represents 50 μm). (E) The image displays numerous caspase-3-positive breast
cancer cells (scale bar represents 50 μm). (F) High percentage of Ki67-positive breast cancer cells
(scale bar represents 50 μm).

3.2. Histology

Breast biopsies were classified according to the Nottingham histological system [21].
In particular, 8/40 G1 infiltrating carcinomas, 14/40 G2 infiltrating carcinomas, and 9/40
G3 infiltrating carcinomas were found.

3.3. [99mTc]Tc-Sestamibi Uptake vs. Apoptosis

To investigate the possible association between sestamibi uptake and the apoptotic
phenomenon, linear regression analyses have been performed by comparing the L/N
ratio values and the number of caspase-3-positive cells. Linear regression analysis showed
a positive association between sestamibi uptake and the number of caspase-3-positive
breast cancer cells (p = 0.0424; r2 0.1190) (Figure 1B,D,E), even though the absolute number
of apoptotic cells were low, especially if compared with the number of Ki67-positive cells
(Figure 1C,D).

3.4. [99mTc]Tc-Sestamibi Uptake vs. Proliferation Index

The percentages of Ki67-positive breast cancer cells, evaluated by immunohistochem-
istry, have been used as proliferation index values. According to our previous investigation,
a positive and significant correlation between sestamibi uptake and the proliferation index
was observed (p < 0.0001; r2 0.5685) (Figure 1C,F).

3.5. Effect of Sestamibi on Breast Cancer Cells: In Vitro Study

At the end of each experimental point, BT-474 cells were fixed with 4% paraformalde-
hyde and used to evaluate the number of both Ki67- and caspase-3-positive cells. One-way
ANOVA showed significant data distribution for both the number of caspase-3- (p < 0.0001)
and Ki67- (p = 0.0038) positive cells. Notably, a high concentration of [99mTc]Tc-Sestamibi
(10 μg/mL) induced a significant increase in the number of apoptotic cells (caspase-3-
positive cells) when compared with all other experimental conditions, including the control
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(Figure 2A–I). Specifically, a great increase in the number of caspase-3-positive cells was
observed after 48h (Figure 2A,C). This datum suggests that [99mTc]Tc-Sestamibi could
be able to induce the apoptotic process by caspase-3 signal only at high concentrations.
In other experimental conditions, no significant effects were detected (Figure 2A).

Figure 2. In vitro evaluation of the effect of [99mTc]Tc-Sestamibi on BT474 breast cancer cells. (A)
The graph shows the number of caspase-3-positive BT474 breast cancer cells after sestamibi treatment.
(B) No/rare caspase-3-positive cells at T0. (C) The image shows caspase-3-positive cells after 48 h
of [99mTc]Tc-Sestamibi incubation (10 μg/mL). (D) Numerous caspase-3-positive cells after 72 h
of [99mTc]Tc-Sestamibi incubation (10 μg/mL). (E) High number of caspase-3-positive cells after
120 h of [99mTc]Tc-Sestamibi incubation (10 μg/mL). (F–I) No/rare caspase-3-positive cells at each
time point in the absence of [99mTc]Tc-Sestamibi incubation. Scale bar represents 50μm for (B–I)
images. (J) Immunofluorescence displays numerous Ki67-positive breast cancer cells (blue DAPI-
Texas red Ki67) at T0. (K) Some Ki67-positive breast cancer cells (blue DAPI-Texas red Ki67) after
48 h of [99mTc]Tc-Sestamibi incubation (10 μg/mL). (L) Rare Ki67-positive breast cancer cells (blue
DAPI-Texas red Ki67) after 120 h of 10 μg/mL [99mTc]Tc-Sestamibi incubation. (M) The graph shows
the number of caspase-3-positive BT474 breast cancer cells after sestamibi treatment. (N–P) Numerous
Ki67-positive breast cancer cells (blue DAPI-Texas red Ki67) at each time point in the absence of
[99mTc]Tc-Sestamibi incubation (10 μg/mL). Scale bar represents 20 μm for (J–L,N–P) images.

Concerning the cell proliferation (Ki67), a significant decrease in the number of Ki67-
positive cells was observed in cell cultures incubated with both 10 μg/mL and 1 μg/mL of
[99mTc]Tc-Sestamibi when compared with cells treated with a concentration of 1 μg/mL
(Figure 2M–P). Indeed, the data reported here showed that a low concentration of [99mTc]Tc-
Sestamibi (1 μg/mL) does not influence the proliferation index (Figure 2M). Cell cultures
treated with both 1 μg/mL and 0.1 μg/mL [99mTc]Tc-Sestamibi displayed a proliferation
index similar to that observed in the control (Figure 2M). This datum can explain the as-
sociation observed in vivo between sestamibi uptake and the percentage of Ki67-positive
cells. It is important to note that high concentration of [99mTc]Tc-Sestamibi (10 μg/mL)
induced a significant reduction in the proliferation index already after 24 h of treatment
(Figure 2M–L).

By comparing the value of Ki67 and caspase-3 at every time point it became clear
that by only using 10 μg/mL of [99mTc]Tc-Sestamibi concentration, a complete reversion
between proliferation and apoptosis was obtained (Figure 3A–C). In particular, after 72h,
the number of caspase-3-positive cells was higher than those positive for Ki67, suggesting
an imbalance capable of arresting the tumor’s proliferation (Figure 3A). Morphological
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evaluation confirmed the presence of apoptotic bodies in the cell cultures cultured with
a high concentration of [99mTc]Tc-Sestamibi (10 μg/mL) (Figure 3D–G). Transmission
electron microscopy investigations showed numerous apoptotic bodies in cell cultures
incubated with 10 μg/mL [99mTc]Tc-Sestamibi (Figure 3E–G). The damages were evident
after 72 h. EDX microanalysis frequently showed the presence of [99mTc]Technetium
in the cytoplasm of apoptotic cells (Figure 3F,G) or in the mitochondria of the cell in the early
phases of apoptotic process.

Figure 3. Comparison between apoptosis and proliferation of BT474 breast cancer cells treated with [99mTc]Tc-Sestamibi
and ultrastructural analysis. (A) Graph shows the number of both caspase-3- and Ki67-positive BT474 breast cancer cells
after 24, 48, 72, 96, and 120 h of [99mTc]Tc-Sestamibi incubation (10 μg/mL). (B) Graph displays the number of both
caspase-3- and Ki67-positive BT474 breast cancer cells after 24, 48, 72, 96, and 120 h of [99mTc]Tc-Sestamibi incubation
(10 μg/mL). (C) Graph shows the number of both caspase-3- and Ki67-positive BT474 breast cancer cells after 24, 48, 72, 96,
and 120 h of [99mTc]Tc-Sestamibi incubation (10 μg/mL). (D) Electron micrograph displays ultrastructure of BT474 breast
cancer cells (CTRL T0). (E) Image shows an apoptotic breast cancer cell (asterisk) close to a non-apoptotic cell (10 μg/mL at
48 h). (F,G) EDX spectrum revealed the presence of [99mTc]Technetium into the cytoplasm of apoptotic cells (10 μg/mL at
120 h).

4. Discussion

BSGI with [99mTc]Tc-Sestamibi can represent a remarkable opportunity to detect
both primary and metastatic lesions characterized by the presence of breast cancer cells
with high amounts of mitochondria. In fact, the current data about the chemical-physical
characteristics of sestamibi, as well as its pharmacokinetics, seem to indicate its tropism
for the accumulation in the cell organelles with a negative membrane potential, such as
mitochondria. In support of this, it is known that once in the cytoplasm, sestamibi may
translocate into the mitochondria according to its cationic nature [15,16]. The positive
charge on sestamibi may drive this molecule into the mitochondria during cell metabolic
activities that increase the negative plasma membrane potential. Despite this evidence, few
studies have been performed about the possible effect of sestamibi uptake in breast cancer
cells. The accumulation of sestamibi in the cell allows it to hypothesize the alteration of
normal mitochondria functions and consequently of the cancer cell’s homeostasis, mainly
at the level of cell proliferation and cell death.

Ex vivo data reported here strengthened the known association between sestamibi up-
take and Ki67 expression, thus confirming the capability of BSGI with [99mTc]Tc-Sestamibi
to identify breast cancer lesions characterized by high proliferation index [17]. In line
with this, Urbano et al. also demonstrated the association between sestamibi uptake and
proliferation index in parathyroid lesions [18]. Surprisingly, linear regression analysis also
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showed a significant association between the sestamibi uptake and the number of apoptotic
cells evaluated as caspase-3-positive cells. Caspase-3 is a protein effector involved in apop-
tosis [19]. Activated caspase-3, as well as caspase-6 and caspase-7, may cleave multiple
structural and regulatory proteins that are critical for cell survival and maintenance [18].
However, caspase-3 is considered the most important executioner caspase and it is involved
in both intrinsic and extrinsic apoptotic pathways [20]. Alteration in both mitochondrial
function and structure induce the release of mediators such as BCL-2 family proteins that
amplify caspase-3 activity, inducing the intrinsic pathway of apoptosis [21]. Thus, the ex-
pression of caspase-3 in breast cells can be related to the occurrence of intrinsic apoptosis.
Data on both Ki67 and caspase-3, despite being in disagreement, can be related to the same
processes involved in breast cancer progression. Indeed, as demonstrated by Ryoo and
Bergmann [22], the caspase-3 related apoptotic phenomenon may be related to cancer
progression due to the communication between apoptotic cells and surrounding ones.
This biological process occurs physiologically during embryogenesis, where proapoptotic
proteins—mostly caspases—can induce the proliferation of neighboring surviving cells to
replace dying cells. It is demonstrated that the deregulation of this process in cancer tissues
could sustain tumor proliferation and progress. Thus, apparently only our in vivo data
seem conflicting. The association of sestamibi uptake with both proliferation index and
apoptosis could be considered an instrumental/clinical manifestation of pathophysiologi-
cal mechanisms commonly involved in breast cancer development. However, a molecular
characterization of the events associated with the accumulation of sestamibi into the mito-
chondria could open new clinical perspectives in the management of breast cancer cells.
In fact, the regulation of the mitochondria related apoptotic process is currently one of
the main targets of anti-cancer therapies.

In this context, the preliminary data of Erba and colleagues suggested that the ses-
tamibi uptake correlated with apoptosis levels in breast cancer tissues following chemother-
apy treatment [23].

In this study, the biological link between sestamibi uptake and the apoptotic phe-
nomenon has been investigated in vitro by using BT-474 breast cancer cell lines. In particu-
lar, three different concentrations of [99mTc]Tc-Sestamibi (10 μg/mL, 1 μg/mL, 0.1 μg/mL)
have been used to investigate the response of breast cancer cells to sestamibi uptake. Con-
cerning the proliferation index, a significant decrease was observed in breast cancer cells
incubated with a high concentration of [99mTc]Tc-Sestamibi (10 μg/mL). It is important
to note that both in the control and at a lower concentration of [99mTc]Tc-Sestamibi (0.1
μg/mL), no decrease in proliferation index was observed after 120h. Excluding the experi-
ment with a high concentration of [99mTc]Tc-Sestamibi (10 μg/mL), in vitro data confirmed
the uptake of sestamibi in breast cancer cells during the proliferation phase. Amazingly,
in vitro investigations showed a significant increase in caspase-3-positive cells in cultures
incubated with 10 μg/mL of 99mTc-sestamibi. In particular, after 72 h, the presence of
sestamibi in the cell medium induced a complete inversion between the proliferation index
and apoptosis. In fact, at this time point, the number of caspase-3-positive cells was greater
than those positive to the Ki67 markers. From a morphological point of view, these cell
cultures showed numerous dead cells characterized by typical apoptotic sign such as
pyknosis, or karyopyknosis. In addition, transmission electron microscopy investigations
allowed us to evaluate the ultrastructure of breast cancer cells incubated with [99mTc]Tc-
Sestamibi, demonstrating a progressive increase in the presence of apoptotic alterations.
These damages were associated with both [99mTc]Tc-Sestamibi concentration and incuba-
tion time. Remarkably, EDX investigations also showed the presence of [99mTc]Technetium
in the cytoplasm of apoptotic cells.

Altogether, the data of this study suggest that, in the early phases, sestamibi uptake
occurs mainly in breast cancer cells with a high proliferation index because of the high
metabolic cell activity and the subsequent increase in the mitochondrial membrane poten-
tial. Then, the accumulation of sestamibi in the breast cancer cell mitochondria can induce
an alteration of normal homeostasis, thus triggering the apoptotic event.
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5. Conclusions

For the first time, this study reported ex vivo and in vitro data about the correlation
between sestamibi uptake and apoptosis, suggesting the possible role of sestamibi in the reg-
ulation of the pathophysiological processes involved in breast cancer. The evidence of
the accumulation of sestamibi in breast cancer cells and the subsequent mitochondrial
damage can open new clinical perspectives on the use of this radiopharmaceutical in both
the diagnosis and treatment of breast cancers. If confirmed by further ex vivo and in vitro
studies, the capability of sestamibi to induce apoptosis of breast cancer cells can lay down
the scientific rationale for considering this molecule as a theragnostic agent. Indeed, dif-
ferent concentrations of [99mTc]Tc-Sestamibi could be used for the detection of cancer
lesions with a high proliferation index or to stimulate apoptosis, thus countering cancer
growth. Lastly, these investigations further highlight the fundamental cooperation between
nuclear medicine and general diagnostic imaging, and the pathology in both research and
diagnostic applications [24,25].
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Abstract: Background: Radiation doses and capability of EOS, conventional radiography (CR),
and computed tomography (CT) to detect and measure enchondromas in a dedicated five-year-old
anthropomorphic phantom were compared. Methods: To simulate enchondromas, minced pieces of
chicken bone and cartilage were packed in conventional kitchen plastic foil to create ovoidal/rounded
masses and randomly hung on the phantom. The phantom was imaged five times with CR, CT,
and EOS, each time changing the number and position of inserts. All images were reviewed by a
senior radiologist and a radiology resident. Results: EOS and CR detected all inserts in 4/5 cases (80%),
while in one case 1/17 inserts was not seen. Excellent agreement of EOS with CR (88% reproducibility;
bias = 14 mm; repeatability coefficient (CoR) 2.9; 95% CI from −2.8 to 3.1 mm; p = 0.5) and CT
(81% reproducibility; bias = 15 mm; CoR 5.2; 95% CI from −5.5 to 5.2 mm; p = 0.7) was found.
EOS showed 71% interobserver reproducibility (CoR 7.2; bias = 0.6 mm; 95% CI from −6.6 to 7.8 mm;
p = 0.25). The EOS-Fast radiation dose was also significantly lower than the median radiation dose of
CR (644.7 (599.4–651.97) mGy•cm2, p = 0.004). Conclusions: Low-dose EOS has the same capability as
CR to detect and measure enchondroma-like inserts on a phantom and may be considered to monitor
patients with multiple enchondromas.

Keywords: EOS; conventional radiography; computed tomography; radiation dose;
enchondroma; phantom

1. Introduction

Enchondromas are common, benign cartilage tumors that mostly develop in the metaphysis
of long bones in close proximity to growth plate cartilage [1–5]. Ollier disease, also known as
enchondromatosis, is a nonhereditary disorder defined by the presence of multiple enchondromas,
while Maffucci syndrome is that condition in which multiple enchondromatosis is associated with
soft tissue hemangiomas [6]. The prevalence of Ollier disease is estimated to be 1/100,000, while there
are about 200 reports of Maffucci syndrome. Both conditions usually present during childhood as a
possible consequence of a differentiation disorder during endochondral ossification of growth plate
tissue [7]. Clinical problems caused by enchondromas depend on the extent of skeletal involvement
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and include skeletal deformities associated or not with pathological fracture, limb-length discrepancy,
and the potential risk for malignant transformation to chondrosarcoma [3–5]. The diagnosis of Ollier
disease is mainly based on clinical and radiological evaluations, which typically show an irregular
distribution of multiple, radiolucent, homogenous lesions with an oval or elongated shape and a
well-defined, slightly thickened bony margin. Since children affected by Ollier disease will undergo
multiple radiographs during childhood for diagnosis and follow-up, the need for accurate assessment
of enchondromas has to balance with the risks associated with repeated radiation exposure. Repeated
exposure of children to radiation is a major concern, having been reported to be 2 to 5 times more
radiosensitive than adults [8] and to have the highest risk of cancer development, as radiologic
stochastic damage has a latency of one or even two decades. Thus, in the last few decades, much effort
has gone into developing radiologic techniques able to keep radiation doses “as low as reasonably
achievable” (ALARA), while not compromising image quality, especially in pediatric imaging [9].

EOS (EOS Imaging, Paris, France) is a relatively novel low-dose imaging system that is capable
of producing radiographic images with very low radiation exposure [10]. It exploits a biplanar
slot-scanning technology that employs highly sensitive gaseous photon detectors [11–13]. It consists
of a cabin in which the patient is positioned standing erect, and the two linear X-ray sources
and two gaseous detector arrays allow for the patient to be scanned in two orthogonal planes
simultaneously. The X-ray sources move in synchronous fashion so that the beam is always horizontal
to the patient, thus avoiding the magnification error (the so-called “parallax effect”) of teleradiography.
Once acquisition parameters have been set on the basis of three predefined morphotypes, the scan
can start. The scan has a variable duration of up to twenty seconds, making this modality sensitive to
motion artifacts. However, the acquisition can be shortened, further minimizing the dose with minimal
reduction of image quality [14].

In general, the EOS system is excellent in the evaluation of biomechanical alignment of the
spine and of the lower limbs, while it is not routinely used in the evaluation of focal bone lesions.
Indeed, the diagnostic accuracy of the EOS system to identify and measure bone tumors has not
been investigated previously. Moreover, the reduction of dose obtained by the EOS system has been
established. Nevertheless, this exam can be acquired with different speeds, which are associated
with different radiation doses and image quality, but a comparison of radiation doses of different
sets of EOS images and conventional radiography to image the whole skeletal system has not been
previously reported. The rationale for conducting this study was the lack of data concerning the
potential use of this low-dose imaging examination to follow patients with multifocal bone lesions,
namely enchondromatosis, in order to decrease the radiation burden on young patients affected by
these conditions but providing images with enough quality to be used for oncologic purposes. Thus,
the objective of this study was to compare radiation doses and the capability of the EOS imaging
system with those of conventional radiography and computed tomography (CT) to detect and measure
enchondromas in a dedicated phantom.

2. Materials and Methods

2.1. Study Design

Institutional review board approval was not needed since no humans were involved in the
present study. This report is concerned with the comparison of radiation doses and the capability
of the EOS imaging system, a conventional radiographic system, and a CT system to detect and
measure enchondromas in a dedicated five-year-old anthropomorphic phantom (ATOM Dosimetry
Verification Phantom, Model 705; pediatric 5 years; height = 110 cm; weight = 19 kg; physical
density = 1.52 g/cm3; electron density = 4.801 × 1023). This phantom is routinely used to perform
radiation dose measurements. To simulate enchondromas, minced pieces of chicken bone and cartilage
were packed in conventional kitchen plastic foil to create ovoidal/rounded masses. The inserts had
a shortest diameter ranging from 1.3 cm to 3.8 cm and a longest diameter ranging from 2 cm to
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4.9 cm. They were randomly hung on the phantom anteriorly, posteriorly, and laterally to simulate
a real irregular disposition of multiple enchondromas. The phantom was imaged with the use of
conventional radiography, CT, and EOS radiographic imaging. Anteroposterior (AP) and laterolateral
(LL) conventional radiography and EOS images, as well as CT scans, were performed five times.
Each time the number and position of inserts were changed, hanging 3, 6, 9, 16, and 17 inserts on the
phantom, respectively. The phantom was configured by a physicist who was then not involved in
image analysis.

2.2. Conventional Radiography

Full-length long radiographs of the phantom were made with direct digital acquisition using
a Siemens Ysio Max X-ray machine (Siemens AG, Erlangen, Germany) and a Fuji imaging machine
(FujiFilm, Stamford, CT) (35.4 × 124.5 cm) behind a standard bucky grid. The phantom was secured to
an Octostop immobilizer (Octostop, QC, Canada) with Velcro straps in a vertical orientation and was
positioned directly in front of the grid and cassette with the front of the phantom directed anteriorly
toward the X-ray source. The X-ray parameters were set automatically by the system.

2.3. Computed Tomography

The phantom was positioned in the center of a 64-slice Siemens CT scanner (Definition AS+,
Siemens Healthcare, Forchheim, Germany). The phantom was subjected to a whole-body CT scan from
head to feet with the following acquisition parameters: 120 kV; 60 mA; slice thickness 1 mm; pitch 0.8.

2.4. EOS

Different sets of radiographs were made with the EOS scanner. The phantom was fixed with
Velcro straps to an Octostop immobilizer and was placed with a vertical orientation in the scanning
chamber. The phantom was aligned with laser-light markings to ensure that the anterior side was
oriented anteriorly and in the center of the scanning field.

For radiation dose evaluation, three sets of imaging parameters (with 200 mA, 83 kV for AP
images and 102 kV for LL images) were used: (1) a slow setting (speed setting 4, 7.6 cm/s), (2) a
medium setting (speed setting 3, 11.4 cm/s), and (3) a fast ultralow-dose setting (speed setting 2,
15.2 cm/s). For each configuration of the inserts (i.e., 3, 6, 9, 16, and 17 inserts) and for each set of image
parameters, one AP and one LL view were acquired. Thus, a total of 15 AP and 15 LL images of the
phantom were acquired, with the phantom being removed and repositioned after each image was
made. Only EOS-Fast images were reviewed to detect and to measure the enchondromas-like inserts,
while EOS-Medium and EOS-Slow images were used to compare the radiation doses of the different
sets of images.

2.5. Image Analysis

All images were downloaded to a picture-archiving and communication system (Andra, Stockholm,
Sweden). A radiologist with more than five years of experience in musculoskeletal radiology and
research and a radiology resident reviewed the images in a random order and blinded to the number
of inserts and type of scan (for EOS images). The number of inserts visible on each image was counted
and their size was measured using an electronic caliper.

2.6. Statistical Analysis

The continuous variables are reported as means ± standard deviations. Intermodality and
interobserver reproducibility were tested by using the Bland–Altman method [15]. The radiation doses
in terms of Kerma-area product (KAP) [16], calculated from both conventional radiography and EOS
system examinations, are reported as medians ± interquartile ranges, and differences were analyzed
using the Mann–Whitney U test. A p-value less than 0.05 was considered statistically significant,
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where appropriate [17]. Statistical analysis was performed using SPSS software (v. 25, IBM, Armonk,
NY, USA).

3. Results

3.1. Diagnostic Accuracy

Seventeen different inserts were used for this experiment, whose dimensions ranged from
20 × 14 mm to 49 × 34 mm.

The two different readers measured the longest insert length, with both EOS and conventional
radiography obtaining values ranging from 7 mm to 40 mm with the EOS system and from 6 mm
to 36 mm with conventional radiography. Both conventional radiography and EOS underestimated
the true length of the inserts by an average of 6.6 mm (25.2%) and 6.1 mm (23.9%), respectively,
when compared with the true length of a respective insert on its longest axis. The comparison of the
mean difference between the measurements for both modalities and the true length is reported in
Table 1.

Table 1. Insert length measurements with EOS and CR.

EOS Imaging System Conventional Radiography

Difference from true length of
phantom inserts (mm) * −6.1 (from −18 to +1) −6.6 (from −19 to +1.5)

Relative magnification ** −23.9% −25.2%

* The values indicate the difference from the true length of the phantom inserts as provided by the manufacturer
and are expressed as the mean, with the range in parentheses. ** The relative magnification was derived by dividing
the difference between the measured length and the true length by the true length.

Both observers were able to detect the same number of inserts per phantom on EOS and
conventional radiography: This was equal to the number of inserts placed on the phantom in 4/5 cases
(80%), while in one case, 1 out of 17 inserts was not seen. On CT, both observers always detected the
correct number of inserts, as compared to the real number (Table 2).

Table 2. Number of inserts detected per phantom on the three imaging modalities by two different
observers who reviewed all images independently.

Observer 1 Observer 2

Phantom n. Inserts CT n. Inserts EOS n. Inserts CR n. Inserts CT n. Inserts EOS n. Inserts CR

# 1 16 16 16 16 16 16
# 2 17 16 16 17 16 16
# 3 3 3 3 3 3 3
# 4 6 6 6 6 6 6
# 5 9 9 9 9 9 9

Total 51 50 50 51 50 50

Intermodality reliability, quantified as the mean of the difference between the two modalities’
measurements (bias) and the repeatability coefficient (CoR), showed excellent agreement for EOS,
conventional radiography, and CT with a bias calculated to be 0.14 mm (88% reproducibility; CoR 2.9;
95% CI from −2.8 to 3.1 mm; p = 0.5) and 0.15 mm (81% reproducibility; CoR 5.2; 95% CI from
−5.5 to 5.2 mm; p = 0.7) when comparing EOS to conventional radiography and CT, respectively.
The assessment of interobserver reliability in the EOS modality showed 71% reproducibility between
different observers, with a bias as low as 0.6 mm (CoR 7.2; 95% CI from −6.6 to 7.8 mm; p = 0.25)
(Figure 1).
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Figure 1. Intermodality and interobserver reliability of insert length measurements among different
modalities and among different observers: (A) Intermodality reliability between EOS imaging system
and computed tomography (CT) scanning. The mean of the measurements obtained with EOS and
CT for each insert is reported on the x-axis; the difference between the two measurements is reported
on the y-axis. (B) Intermodality reliability between the EOS imaging system and conventional X-ray.
The mean of the measurements obtained with EOS and X-ray for each insert is reported on the x-axis;
the difference between the two measurements is reported on y-axis. (C) Interobserver reliability
between measurements obtained by two different observers with the EOS imaging system. The mean
of the measurements is reported on the x-axis; the difference between them is reported on the y-axis.

3.2. Radiation Dose

By applying different image scanning speeds, the radiation dose delivered was progressively and
significantly lower for the EOS-Fast protocol (KAP 258.6 mGy cm2) compared with the EOS-Medium
protocol (KAP 387.89 mGy cm2, p < 0.001), and even more when compared with the EOS-Slow
protocol (KAP 517.19 mGy cm2, p < 0.001) (Figure 2). Moreover, the EOS-Fast radiation dose was also
significantly lower than the median radiation dose of conventional radiographs (644.7 (599.4–651.97)
mGy cm2, p = 0.004) for all phantom configurations (Figure 3). Figure 4 shows a case from this study.

Figure 2. Bar graph illustrating the mean radiation dose by modality. CR = conventional radiographs
and EOS=EOS imaging system at three different speed settings (speed 2= 15.2 cm/s; speed 3 = 11.4 cm/s;
speed 4 = 7.6 cm/s).
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Figure 3. Radiation doses delivered by the EOS-Fast (speed 2), EOS-Medium (speed 3), and EOS-Slow
(speed 4) protocols, and CR examinations.

Figure 4. EOS (A), CR (B), and CT (C) images of a phantom with six inserts (arrows).

4. Discussion

The results from this study indicate that EOS performs similarly to conventional radiography in
both number detection and length evaluation of enchondroma-like inserts in a standardized phantom
setting. The mean difference between insert length assessed with EOS and conventional radiograph,
and their true length was in fact as low as 6.1 mm and 6.6 mm, respectively. However, it should be
underlined that an underestimation of the insert size was expected, in view of the bidimensional
imaging provided by both techniques that does not make a precise identification of the longest diameter
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of the inserts possible. Notably, these results were obtained by testing the capability of the reviewers to
detect and measure the enchondroma-like inserts on EOS fast-speed images, which should present
minimal reduction of image quality when compared with the other sets of EOS images.

The intermodality reliabilities of EOS imaging, conventional radiography, and CT were also
excellent, which is essential when dealing with a new diagnostic test not yet used in the clinical
routine [18]. Moreover, perfect agreement of measurements performed by different observers with the
EOS system was observed, thus demonstrating that EOS is both accurate and reproducible. There was
only a single case where the number of inserts was different between conventional radiography and
EOS versus CT and the actual number of inserts placed on the phantom. In this case, two inserts were
placed very close to one another. Thus, the bidimensional images of conventional radiography and
EOS showed them almost superimposed on one another, making the distinction almost impossible.

This study also demonstrates that, since radiation dose is inversely related to scanning speed,
you can impact the radiation dose administered by the EOS system by changing the speed of the
image-acquisition parameters. Indeed, doubling the speed from EOS-Slow (7.6 cm/s) to EOS-Fast
(15.2 cm/s), the radiation dose decreased from 517.19 mGy cm2 to 258.6 mGy cm2 without affecting
the capability of observers to detect and measure the inserts on the phantom. These data lead us
to consider EOS as a potential imaging tool technique for detecting and following enchondromas
over time, while minimizing radiation exposure. A drawback of EOS to consider is the increased risk
of motion artifacts related to the fact that EOS is performed with the patient in a standing position
and the acquisition time at a speed setting of 4 is about 8 s. This should be considered especially in
pediatric patients who are particularly prone to movement during a scan. This limitation can be partly
overcome, given that image-acquisition time can be decreased to three to four seconds (on the EOS-Fast
speed setting of 2) without affecting the capability of observers to detect and measure the inserts on
a phantom.

In the future, we may envision a clinical setting where initial evaluation of enchondromas is
performed using conventional radiography and follow-up is performed using EOS. In case of a change
in the number and size of enchondromas, a standard workup should then be resumed. Clearly,
one limitation of this approach is that EOS is not a widely available imaging modality.

A limitation of this work is that the image quality of conventional radiography was not compared
with that of EOS at different acquisition speeds. It is known that EOS is very good in assessing spine
and limb orientation, but, especially at higher speeds, image quality may also decrease in favor of
radiation dose reduction. However, the excellent results of this study were obtained by testing the
capability of the reviewers to detect and measure the enchondroma-like inserts on EOS fast-speed
images, which should have had reduced image quality when compared with the other sets of EOS
images. Also, the enchondroma-like inserts were attached on the external surface (i.e., the “skin”) of
the phantom, which is not exactly what happens in enchondromatosis. However, this was the best
approximation possible, as the anthropomorphic phantom is not empty and lesions cannot be placed
inside its body.

In conclusion, low-dose EOS digital radiographic evaluation has the same capability as
conventional radiography to detect and measure enchondroma-like inserts on a phantom. Thanks to
its lower radiation dose, this method may be considered in the follow-up of patients with multiple
enchondromas. However, clinical studies are warranted to confirm these preliminary results on
a phantom.

Author Contributions: Conceptualization, D.A., A.d.V., and L.M.S.; methodology, D.A., C.M., A.L, A.d.V.,
and L.M.S.; formal analysis, D.A., C.F., A.B., C.M., and L.M.S.; investigation, D.A. and A.B.; data curation, D.A.,
A.L., A.B., C.F., and L.M.S.; writing—original draft preparation, D.A. and C.F.; writing—review and editing,
C.M., A.L., A.d.V., and L.M.S.; supervision, L.M.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

93



Appl. Sci. 2020, 10, 8941

References

1. Albano, D.; Messina, C.; Gitto, S.; Papakonstantinou, O.; Sconfienza, L.M. Differential Diagnosis of Spine
Tumors: My Favorite Mistake. Semin. Musculoskelet. Radiol. 2019, 23, 26–35. [CrossRef] [PubMed]

2. Gitto, S.; Cuocolo, R.; Albano, D.; Chianca, V.; Messina, C.; Gambino, A.; Ugga, L.; Cortese, M.C.; Lazzara, A.;
Ricci, D.; et al. MRI radiomics-based machine-learning classification of bone chondrosarcoma. Eur. J. Radiol.
2020, 128, 109043. [CrossRef] [PubMed]

3. Maroteaux, P.; Le Merrer, M. Les Maladies Osseuses de L’enfant; Médecine-Sciences Flammarion: Paris,
France, 2002.

4. Unni, K.K. Cartilaginous lesions of bone. J. Orthop. Sci. 2001, 6, 457–472. [CrossRef] [PubMed]
5. Whyte, M. Acquired disorders of cartilage and bone. Am. Soc. Bone Miner. Res. 2003.
6. Fletcher, C.D.M.; Unni, K.K.; Mertens, F. Pathology and Genetics of Tumours of Soft Tissue and Bone; Iarc: Lyon,

France, 2002; Volume 4.
7. Hopyan, S.; Gokgoz, N.; Poon, R.; Gensure, R.C.; Yu, C.; Cole, W.G.; Bell, R.S.; Jüppner, H.; Andrulis, I.L.;

Wunder, J.S.; et al. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat. Genet. 2002, 30, 306–310.
[CrossRef] [PubMed]

8. Strauss, K.J.; Kaste, S.C. ALARA in pediatric interventional and fluoroscopic imaging: Striving to keep
radiation doses as low as possible during fluoroscopy of pediatric patients—A white paper executive
summary. J. Am. Coll. Radiol. 2006, 3, 686–688. [CrossRef] [PubMed]

9. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication
103. Ann. ICRP 2007, 37, 1–332.

10. Melhem, E.; Assi, A.; El Rachkidi, R.; Ghanem, I. EOS((R)) biplanar X-ray imaging: Concept, developments,
benefits, and limitations. J. Child. Orthop. 2016, 10, 1–14. [CrossRef] [PubMed]

11. Dubousset, J.; Charpak, G.; Dorion, I.; Skalli, W.; Lavaste, F.; Deguise, J.; Kalifa, G.; Ferey, S. A new 2D and 3D
imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing
position: The EOS system. Bull. Acad. Natl. Med. 2005, 189, 287–300. [PubMed]

12. Dubousset, J.; Charpak, G.; Skalli, W.; Kalifa, G.; Lazennec, J.-Y. EOS stereo-radiography system: Whole-body
simultaneous anteroposterior and lateral radiographs with very low radiation dose. Revue de Chirurgie
Orthopedique et Reparatrice de L’appareil Moteur 2007, 93, 141–143. [CrossRef]

13. Albano, D.; Messina, C.; Gambino, A.; Gurgitano, M.; Sciabica, C.; Oliveira Pavan, G.R.; Gitto, S.;
Sconfienza, L.M. Segmented lordotic angles to assess lumbosacral transitional vertebra on EOS. Eur. Spine J.
2020, 29, 2470–2476. [CrossRef] [PubMed]

14. Deschenes, S.; Charron, G.; Beaudoin, G.; Labelle, H.; Dubois, J.; Miron, M.C.; Parent, S. Diagnostic imaging
of spinal deformities: Reducing patients radiation dose with a new slot-scanning X-ray imager. Spine 2010,
35, 989–994. [CrossRef] [PubMed]

15. Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical
measurement. Lancet 1986, 1, 307–310. [CrossRef]

16. Huda, W. Kerma-area product in diagnostic radiology. AJR. Am. J. Roentgenol. 2014, 203, W565–W569.
[CrossRef] [PubMed]

17. Di Leo, G.; Sardanelli, F. Statistical significance: P value, 0.05 threshold, and applications to radiomics-reasons
for a conservative approach. Eur. Radiol. Exp. 2020, 4, 18. [CrossRef] [PubMed]

18. Albano, D.; Martinelli, N.; Bianchi, A.; Giacalone, A.; Sconfienza, L.M. Evaluation of reproducibility of
the MOCART score in patients with osteochondral lesions of the talus repaired using the autologous
matrix-induced chondrogenesis technique. Radiol. Med. 2017, 122, 909–917. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

94



applied  
sciences

Article

Evaluation of Organ Dose and Image Quality Metrics of
Pediatric CT Chest-Abdomen-Pelvis (CAP) Examination:
An Anthropomorphic Phantom Study

Nor Azura Muhammad 1, Zunaide Kayun 1, Hasyma Abu Hassan 2, Jeannie Hsiu Ding Wong 3, Kwan Hoong Ng 3

and Muhammad Khalis Abdul Karim 1,*

Citation: Muhammad, N.A.; Kayun,

Z.; Abu Hassan, H.; Wong, J.H.D.;

Ng, K.H.; Karim, M.K.A. Evaluation

of Organ Dose and Image Quality

Metrics of Pediatric CT Chest-

Abdomen-Pelvis (CAP) Examination:

An Anthropomorphic Phantom Study.

Appl. Sci. 2021, 11, 2047. https://

doi.org/10.3390/app11052047

Academic Editor: Salvatore Gallo

Received: 25 January 2021

Accepted: 11 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Physics, Faculty of Science, University Putra Malaysia, Serdang 43400, Malaysia;
norazura11@gmail.com (N.A.M.); zunaide@moh.gov.my (Z.K.)

2 Department of Radiology, Faculty of Medicine, University Putra Malaysia, Serdang 43400, Malaysia;
hasyma@upm.edu.my

3 Department of Biomedical Imaging, University Malaya Medical Centre,
Petaling Jaya 59100, Kuala Lumpur, Malaysia; jeannie.wong@ummc.edu.my (J.H.D.W.);
ngkh@ummc.edu.my (K.H.N.)

* Correspondence: mkhalis@upm.edu.my

Featured Application: We evaluate and propose a method for evaluating optimized CT protocol

for pediatric-based figure of merit and image performance metrics.

Abstract: The aim of this study is to investigate the impact of CT acquisition parameter setting on
organ dose and its influence on image quality metrics in pediatric phantom during CT examina-
tion. The study was performed on 64-slice multidetector CT scanner (MDCT) Siemens Definition
AS (Siemens Sector Healthcare, Forchheim, Germany) using various CT CAP protocols (P1–P9).
Tube potential for P1, P2, and P3 protocols were fixed at 100 kVp while P4, P5, and P6 were fixed at
80 kVp with used of various reference noise values. P7, P8, and P9 were the modification of P1 with
changes on slice collimation, pitch factor, and tube current modulation (TCM), respectively. TLD-100
chips were inserted into the phantom slab number 7, 9, 10, 12, 13, and 14 to represent thyroid, lung,
liver, stomach, gonads, and skin, respectively. The image quality metrics, signal to noise ratio (SNR)
and contrast to noise ratio (CNR) values were obtained from the CT console. As a result, this study
indicates a potential reduction in the absorbed dose up to 20% to 50% along with reducing tube
voltage, tube current, and increasing the slice collimation. There is no significant difference (p > 0.05)
observed between the protocols and image metrics.

Keywords: computed tomography; absorbed dose; signal–noise ratio; contrast–noise ratio;
figure of merit

1. Introduction

The transformation and sophistication of the computed tomography (CT) system
have led to the increased use of CT examinations. The development of CT technology
begins from the single detector and now the multidetector CT (MDCT) able to produce
high contrast sectional images in short scanning time [1,2]. Recent advances in the tech-
nological breakthrough of CT scan performance, such as application of automatic tube
current modulation (ATCM) and utilization of iterative reconstruction algorithm technique,
have decreased CT radiation exposure while retaining diagnostic image consistency [3–5].

The imaging of pediatric CT examination is still challenging even though the per-
formance and technology of the latest generation of CT scanners have been introduced.
Recently, with growing involvement in radiation-induced cancer, this debate is again in the
spotlight, as radiation exposure optimization is a particular problem in pediatric patients
receiving repeated CT examination [6–8]. Despite the high frequency of CT procedure
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usage amongst children, radiation burden from CT examination needs to be considered as
children are more sensitive to radiation as compared to adults [9,10]. Since 2007, the Amer-
ican College of Radiology (ACR), the Society for Pediatric Radiology (SPR), the American
Association of Physicists in Medicine (AAPM), and the American Society of Radiology Tech-
nologists (ASRT) have engaged in the Image Gently campaign in the United States to grow
the knowledge of practice by increasing awareness among radiation personnel [11,12].

Generally, the radiation-absorbed dose can be measured by inserting a passive dosime-
ter inside anthropomorphic phantom as it is the accurate way to measure the radiation
absorbed by radiosensitive organs or tissues of patients [13–15]. Likewise, Monte Carlo es-
timation on computational phantom, such as CT-Expo (Version 2.3.1, Hannover, Germany),
is able to estimate an organ-absorbed dose and effective dose based on the subject’s age
and gender [16–18]. In addition, multiplying organ-absorbed dose with tissue weighting
factor as stated in the International Commission on Radiological. Protection (ICRP 103)
can also be used to calculate the value of effective dose which is an important radiation
metric for the estimation of cancer risk of individual patients [19,20].

CT chest-abdominal pelvis (CAP) examination is generally used to evaluate the
anatomy structures and to diagnose the degree of malignancies in lungs, liver, pelvic organ,
lymphatic nodules, and bony structures. According to Park et al. [21], CT CAP examination
was performed purposely for the cancer staging. The mean effective dose of pediatric
CT CAP examination was ranging from 3.4 to 7.5 mSv between one year and five years
of age [22,23]. Hence, pediatric patients who require CT CAP scans due to their health
problems may have an elevated chance of cancer because children are more vulnerable
to radiation effects than adults [24]. CT dose reduction protocols have been developed
amongst researchers and a variety of strategies have been established to minimize CT
dose without compromising diagnostic image quality [25–27]. These include reducing tube
current (mAs) and tube voltage (kVp), automatic attenuation-based tube current selection,
decreased pitch factor, increased slice collimation and improper positioning [28,29]. Several
researchers have proposed CT dose reduction by increasing the pitch value combined with
the iterative reconstruction method to obtain significant dose reduction of the normal chest
and abdominal scans while preserving the consistency of the image quality [28,30,31].

The vigorous action by the institution in setting the best optimization protocols,
particularly for pediatric patients, is an indispensable part in reducing dose exposure in CT
examination. Therefore, the study highlights the current finding in optimizing radiation
doses from altering pediatric CT CAP scan parameters in terms of tube voltage, tube current,
slice collimation, pitch, and effect of tube current modulation (TCM) application, as well
as the effect on image quality indices in regard of image noise, signal to noise ratio (SNR),
and contrast to noise ratio (CNR).

2. Materials and Methods

This study utilized 1 y/o anthropomorphic phantom (ATOM, 704 model CIRS, Norfolk,
VA, USA). The body weight, height and thorax dimension of the phantom were 10 kg,
75 cm, and 12 × 14 cm, respectively. This phantom was made from tissue equivalent
material, which consisted of the lung, soft, and bone tissue. The phantom was made up
of 28 slabs with 2.5 cm slice thickness, which cover from head to lower leg and each slab
contains a hole about 5.0 mm in diameter for inserting dosimeter, such as TLD, to measure
the absorbed dose at the specific area of sensitive organs and for the simulation study of a
blood vessel filling with contrast material, as shown in Figure 1.
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(a) (b) 

Figure 1. (a) One-year-old anthropomorphic phantom was set up before the scan. (b) The anthropo-
morphic lung tissue slab comprises a-holes matrix about 5.0 mm in diameter for dosimeter insertion,
such as TLD.

The CT CAP examination was performed on 64 slices using a multidetector CT
scanner (MDCT) Siemens Definition AS (Siemens Sector Healthcare, Forchheim, Germany)
by applying nine different CT protocols (P1 to P9). The tube potential of P1, P2, and P3
were fixed at 100 kVp and P4, P5, and P6 were fixed at 80 kVp with various tube current
reference values (ref. mAs: 210, 180, and 150), while in P7, P8, and P9 the modification was
made on P1 with changes on slice collimation, pitch factor, and tube current modulation
(TCM), respectively. The details of the CT acquisition parameter used in this study were
shown in Table 1. The scan range starts from 1 cm above the apex of lungs and ends at 1 cm
below symphysis pubis with a total length of 32 cm for all protocols involved. The source
to detector (SDD) and source to object distance (SOD) used in this study were 100 cm and
50 cm, respectively.

Table 1. Routine and modified CT CAP acquisition parameters used in this study.

Parameter
Protocols

P1 P2 P3 P4 P5 P6 P7 P8 P9

Slice thickness recon (mm) 3 3 3 3 3 3 3 3 3
Tube potential (kVp) 100 100 100 80 80 80 100 100 100

Effective tube current (mAs) 27 23 19 33 31 26 27 26 -
Ref. mAs 210 180 150 210 180 150 210 210 210

Number of detector 64 64 64 64 64 64 32 64 64
Slice collimation (mm) 0.6 0.6 0.6 0.6 0.6 0.6 1.2 0.6 0.6

Pitch 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.2 1.4
Dose Modulation On On On On On On On On Off

Table Feed 53.8 53.8 53.8 53.8 53.8 53.8 53.8 56.0 53.8
Exposure time (s) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Kernel filtration B30f B30f B30f B30f B30f B30f B30f B30f B30f
CTDIvol (mGy) 1.8 1.5 1.3 1.0 0.9 0.8 1.7 1.7 6.9
DLP (mGy.cm) 58 48 42 32 29 26 54 54 221

E (DLP x k factor) 1.6 1.3 1.2 0.9 0.8 0.7 1.5 1.5 6.2
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2.1. CT Radiation Dose

Dose data, such as volume weighted CT Dose Index (CTDIvol) and dose length product
(DLP), were collected from the CT console. CTDIvol is the most established radiation metric
for CT and considered an important value for quality assurance. CTDIvol is defined as:

CTDIvol =
CTDIw

pitch factor
(1)

where CTDIw is the weighted average dose across a single slice and pitch is the distance of
the table moving in one 360◦ gantry rotation. DLP is calculated by multiplying the scan
range of the patients with the CTDIvol, and it represents the overall dose output along
the z-axis. Furthermore, the effective dose (E) is estimated by multiplying the DLP with a
conversion coefficient factor (CC) [13].

The organ dose of the phantom was measured by using TLD-100 (LiF: Mg, Ti) with
dimensions of 3.2 × 3.2 × 0.6 mm. TLD-100 is the common passive dosimeter used in the
measurement of radiation dose due to high sensitivity and response to the photon of X-ray.
A total of 55 TLD-100 were used in this study and calibrated and compared with standard
ionization chamber. The calibration process should be done to obtain a conversion factor
(CF) in each TLD-100. Nine TLD-100 were used to measure background radiation. The CF
was computed based on the equation:

CF =
Qrad(

M − Mbackground − Cbackground

) (2)

where Qrad is energy photons from X-ray beam, M is the result of the Harshaw TLD reader,
Mbackground is the background reading from TLD reader, and Cbackground is the background
reading from TLD-100.

All the TLD-100 were read out using a Harshaw 3500 TLD reader (Thermo Scientific,
Waltham, MA, USA), combined with an operating software for all Harshaw TLD reader
known as WinREMS after 24-h exposure. Before reuse, the TLD-100 chips were annealed
using an oven (TLD annealing oven, PTW, Freiburg, Germany) for 1 h at 400 ◦C and 2 h at
100 ◦C followed by rapid cooling to make the TLD chips reusable. All the TLD-100 kept
inside labeled plastic and sealed before inserting into the hole of the phantom. In this
study, four TLD chips were inserted into the phantom slab no 9, 12, and 14 to represent
lung, liver, and stomach, three TLD were inserted into slab no 7 and 19 to represent thyroid
and gonads, and five TLD was placed on top of the phantom at the area of the thorax
(slab number 8 and 11), abdomen (slab number 12 and 13), and pelvis (slab number 18) for
the skin dose measurement.

2.2. Image Quality Metrics

The image quality was assessed by using Radiant DICOM Viewer software (Medixant,
Poznan, Poland) to extract CT numbers and noise values from each protocol by placing
the circular region of interest (ROI) about 0.8 cm2 in the selected image (Figure 2). The in-
formation regarding CT numbers and noise was used to calculate the signal to noise ratio
(SNR) and contrast to noise ratio (CNR). The SNR was calculated by dividing the mean
(CT number) by the corresponding standard deviation, SD (noise value) as shown in the
equation below:

SNR =
meanROI

SDROI
(3)

Furthermore, the CNR were measured by using the equation below:

NR =
|meanROI − meanBG|

SDROI+SDBG
2

(4)
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where the meanBG and SDBG is CT number value of background and noise value of the
background, respectively. We quantify the dose information to correlate with the CT image
quality. The figure-of-merit (FOM) was used to characterize the radiation dose trade-off
with image quality by considering all the image parameters. In this study, the FOM values
represent the efficiency between SNR and CTDIvol with different CT CAP protocols and
they can be calculated with the equation below:

FOM =
SNR2

CTDIvol
(5)

Besides SNR, CNR also can be used to calculate the FOM with the CTDIvol parameter.
The FOM allows SNR to be evaluated independently of the current tube and the dose of
radiation. However, as it is determined for a specific scan mode (helical or axial) and a
specific diagnostic task, it should not be used, for example, when comparing head and
abdomen imaging, to compare different scanned areas of diagnostic tasks [22].

Data were analyzed using IBM SPSS V25.0 (SPSS, version 25.0 for Windows, Chicago,
IL, USA). The data of organ-absorbed dose were presented as mean value with standard
deviation (SD). One-way ANOVA with post-hoc Dunnett test was used to analyze the
significant value of organ-absorbed dose and image quality between default protocol 1
(P1) with other modified protocols CT CAP. A p-value < 0.05 was considered statistically
different.

 

Figure 2. Example of objective image quality analysis of CT number (mean), image noise (SD), SNR,
and CNR by putting the region of interest (ROI) in the lungs and soft tissue field.

3. Results

3.1. Organ Equivalent Dose

Table 2 summarized the organ equivalent dose for the selected organs in protocols
P1–P6. As observed, the highest organ-absorbed dose was found in the liver and the
lowest was presented in the thyroid for 100 kVp with a mean value of 1.22 ± 0.13 mSv
(P1) and 0.31 ± 0.07 mSv (P3), respectively. However, for 80 kVp, the highest organ-
absorbed dose was found in the stomach compared to the other organs with a mean value of
0.72 ± 0.01 mSv. Figure 3 presents the mean organ equivalent doses of standard pediatric
CT CAP examinations with varying tube potential and tube current. As a result, the value
of doses reduced as tube voltage and tube current decrease in P2 to P6. In comparison
between 100 and 80 kVp, the results of organ-absorbed dose were decreased with the
reduction of tube voltage. Overall, this study found that the organ dose measurements in
thyroid, lungs, liver, stomach, gonads, and skin were reduced by almost 50% with lessening
tube voltage from 100 to 80 kVp.
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Table 2. Organ Equivalent Dose from TLD measurement between 100 and 80 kVp with variation ref. mAs.

Selected Organ

Organ Equivalent Dose (mSv)

100 kVp 80 kVp

P1
(Ref. mAs 210)

P2
(Ref. mAs 180)

P3
(Ref. mAs 150)

P4
(Ref. mAs 210)

P5
(Ref. mAs 180)

P6
(Ref. mAs 150)

Thyroid 0.49 ± 0.03 0.41 ± 0.05 0.31 ± 0.07 0.24 ± 0.16 0.22 ±0.16 0.20 ± 0.17
Lungs 0.88 ± 0.12 0.74 ± 0.06 0.58 ± 0.06 0.51 ± 0.04 0.37 ±0.09 0.35 ± 0.05
Liver 1.22 ± 0.13 0.95 ± 0.06 0.83 ± 0.06 0.53 ± 0.15 0.46 ± 0.12 0.39 ± 0.08

Stomach 1.05 ± 0.03 0.95 ± 0.09 0.82 ± 0.07 0.72 ± 0.01 0.62 ± 0.04 0.56 ± 0.04
Gonads 0.87 ± 0.02 0.75 ± 0.03 0.64 ± 0.06 0.43 ± 0.02 0.40 ± 0.01 0.34 ± 0.02

Skin 1.07 ± 0.14 0.90 ± 0.16 0.68 ± 0.24 0.59 ± 0.14 0.48 ± 0.17 0.32 ± 0.16

Table 2 and Figure 3 present the impact of standard protocol, tube voltage, and tube
current on organ equivalent dose during the examination. Table 3 summarizes the influence
of increased slice collimation (P7), reduced pitch factor (P8), and disabling the TCM function
(P9) on organ dose. The doses were slightly reduced when slice collimation was increased.
However, by reducing the pitch value, the organ dose was slightly increased. Furthermore,
the organ equivalent dose was increased by more than 50% in P9 after disabling the TCM
function. Figure 4 shows the highest organ dose was observed in the liver followed by skin,
stomach, lungs, gonads, and thyroid in all protocols. The highest organ dose was detected
in P9. Therefore, the application of TCM in pediatric patients offers a big consequence in
CT radiation dose due to different in-patient body habitus and thickness.

3.2. Analysis of Image Quality Metrics

The image quality metrics were obtained to compare with the dose information.
The mean of image quality indices of CT number, noise, SNR, and CNR were summarized
in Table 4. The reduced tube voltage and tube current lead to an increase in image noise.
Noting that the highest mean of noise was 13.1 ± 0.6 HU presented in P6. There is no
significant difference of CNR in P4 and P6 after reducing the tube voltage from 100 to
80 kVp. However, reducing tube voltage in P4, P5, and P6 resulting in significant differences
(p < 0.05) of SNR value. The highest mean of SNR and CNR in P9 (disabling TCM) was
6.66 ± 0.5 HU and 1.34 ± 0.2 HU, respectively, and the organ dose in P9 protocol were
among the highest. Thus, the highest FOM value was obtained in P9, followed by P7
and P2.
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Figure 3. The mean organ-absorbed doses of standard pediatric CT CAP examinations with varying tube potential and tube
current in: (a) Thyroid, (b) lungs, (c) liver, (d) stomach, (e) gonads, and (f) skin.

Table 3. Organ Equivalent Dose from TLD measurement from optimization protocols.

Selected Organs
Organ Equivalent Dose (mSv)

P1(R) P7 (S.C = 1.2) P8 (P = 1.2) P9 (Off TCM)

Thyroid 0.49 ± 0.03 0.36 ± 0.36 0.58 ± 0.23 4.25 ± 0.27
Lungs 0.88 ± 0.12 0.82 ± 0.14 0.91 ± 0.13 6.2 ± 0.55
Liver 1.22 ± 0.13 1.10 ± 0.07 1.30 ± 0.04 7.10 ± 0.54

Stomach 1.05 ± 0.03 0.97 ± 0.07 1.18 ± 0.11 6.91 ± 0.42
Gonads 0.87 ± 0.02 0.79 ± 0.04 0.90 ± 0.02 6.35 ± 0.10

Skin 1.07 ± 0.14 1.04 ± 0.17 1.15 ± 0.11 6.06 ± 0.74
R = Routine, S.C = Slice Collimation, P = Pitch, TCM = Tube Current Modulation.

Table 4. A comparison of all objective image quality parameter values acquired in different CT CAP protocols.

Image Quality
CT CAP Protocol

P1 P2 P3 P4 P5 P6 P7 P8 P9

CT Number
(Mean) 22.5 ± 0.9 22.3 ± 0.9 19.9 ± 1.9 19.5 ± 0.8 20.3 ± 1.9 10.1 ± 1.3 22.6 ± 0.5 22.0 ± 0.9 21.4 ± 0.9

Noise (SD) 8.9 ± 1.1 9.3 ± 0.9 10.5 ± 1.6 10.8 ± 2.3 11.5 ± 0.6 13.1 ± 0.6 7.4 ± 1.0 8.8 ± 0.7 3.2 ± 0.2
SNR 2.54 ± 0.4 2.41 ± 0.2 1.93 ± 0.4 1.87±0.4 * 1.77 ± 0.1 * 0.77 ±0.1 * 3.10 ± 0.4 2.51 ± 0.2 6.66 ± 0.5 *
CNR 0.71 ± 0.1 0.69 ± 0.1 0.47 ± 0.1 0.59 ± 0.1 0.45 ± 0.1 * 0.61 ± 0.1 0.54 ± 0.1 0.23 ± 0.1 * 1.34 ± 0.2 *
FOM 3.65 3.90 2.97 3.59 3.54 0.75 5.73 3.73 6.47

Dunnett t-tests
(p value) Control 1.000 0.058 0.611 0.028 0.779 0.255 0.000 0.000

* p-value < 0.05.
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Figure 4. The mean organ-absorbed doses from the modification of standard pediatric CT CAP protocols in: (a) Thyroid,
(b) lungs, (c) liver, (d) stomach, (e) gonads, and (f) skin.

4. Discussion

Our aim in this work is to correlate between dose and image quality metrics in
pediatric while implementing CT optimization protocols. Among radiation dose metrics,
organ equivalent dose is considered one of the best indicators for characterizing patient
radiation burden [10,32]. Several researchers have been inspired to reduce the risk by
altering the variable of scan parameters, including growing the pitch factor, increasing
slice collimation, choosing tube voltage, and utilizing automatic tube current modulation
(ATCM) feature [33–35].
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In this work, we have measured organ-absorbed dose in pediatric patients by inserting
a TL dosimeter into the hole designed at the slab of the one-year-old anthropomorphic
phantom to represent specific radiosensitive organ parts. The CT CAP protocol was
selected because of the high frequency performed amongst pediatric patients and the rise
in repetitive scans due to the standard protocol used for cancer staging. Nevertheless,
patients with early detection of malignancy can have multiple follow-up CT scans with
elevated combined sensitivity to radiation, contributing to a possibility of radiation-related
illness. Consequently, there is the concern as scan length that includes more than one part
of the body may lead to the pediatric patient’s over-exposure if CT parameter optimization
has not been implemented.

The highest organ-absorbed dose was presented in the liver, skin, stomach, and lungs
as the site of these organs was situated in the primary beam. As CT CAP is often applied as
a routine CT examination in the pediatric population due to its benefit in revealing diseases
in the lungs, liver, stomach, and deliberately for cancer staging, this can contribute to a
rise in cancer incidence. The modification in CT parameter by lowering the tube voltage
and tube current results in substantially different organ equivalent dose. Another research
found that small adjustments in tube voltage might significantly reduce the radiation
exposure and raise the quantum mottle resulting in increased image noise [36,37].

However, lowering the capacity of the X-ray tube is an acceptable operation to evalu-
ate iodine structures as a consequence of the rise in iodine attenuation energy due to the
proximity of the K-edge of iodine and the photoelectric influence. The optimum kilovoltage
for a CT analysis should be selected depending on the imaging task and patient habitus [32].
Furthermore, the practice of low tube potential technique with a proper selection of mAs
value will improve contrast resolution in a patient with a smaller body thickness. The de-
crease in tube voltage from 120 to 100 kVp and 80 kVp is the best range tube potential in
pediatric CT chest, abdominal and pelvic examination without deteriorating CNR and SNR
consistency index.

The alteration of CT scan parameter by reducing the pitch factor from 1.4 to 1.2 slightly
increased the organ-absorbed dose without affecting image quality. This was supported by
Lambert et al. [38], where the increased pitch factor on selected pediatric CT parameter may
decrease the radiation output. As presented in P8, there is no significant difference (p > 0.05)
in organ-absorbed dose albeit it was slightly increased compared to the routine protocol
(P1) and also image diagnostic quality in terms of image noise and SNR value in this study.
However, the CNR was found to be varied. Studies have shown that high-pitch CT is not
only effective for cardiac imaging, but also for routine chest and abdominal CT analysis
by minimizing radiation sensitivity while retaining diagnostic image consistency [33,39].
Moreover, the efficient high pitch value was found along with the iterative reconstruction
algorithm for decreased radiation exposure and image noise, while tube current (mAs)
stayed unchanged [40,41].

Different size of the detector and slice collimation setting in P7 resulted in declining
organ-absorbed dose in pediatric CT CAP analysis by contrasting the organ dose in all
protocols. Besides dose reduction, it also indicates that there is no significant difference
in image quality. According to the previous study reports, apart from growing pitch
factor and reducing tube current and tube voltage in the optimization phase, increasing
slice collimation is a technique to minimize radiation dose without sacrificing image
quality performance [41,42]. Furthermore, previous research indicates that increased beam
collimation resulted in a decrease of around 17% over-ranging in CT study, which may
prevent overexposure to patients and decreased dose to radiosensitive organs beyond
primary beam [43]. However, a wider detector z-coverage screening applied may increase
radiation scattering. Scattered radiation can cause hypodense artefacts, affect the stability
of the CT number, and the scatter-induced noise in the images may decrease the CNR [44].

The radiation dose metrics in terms of CTDIvol, DLP, E and organ-absorbed dose
results were substantially higher in P9. The body habitus of children populations varied in
size and weight. In addition to the patient’s size, the patient’s anatomy has a major effect
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on X-ray attenuation and noise. At most children’s health centres, CT CAP was applied for
further investigation to determine the metastasis of cancer to the patients who were already
diagnosed with primary cancer diseases. With the introduction of automatic tube current
modulation (ATCM), this technique was used to optimize the radiation dose, particularly
amongst pediatric patients. Moreover, with using TCM, 80% of organ-absorbed dose was
reduced in pediatric CT CAP examination. This study was similar to the previous study
shows by using TCM, 68% of effective dose reduce in CT CAP examination [40]. Therefore,
the patient size, the shape, and anatomy of the patient has a significantly effect on TCM in
terms of declining radiation dose without sacrificing image quality [4,24].

The adjustments to these scanning parameters were investigated as to how these
influences the patient dosage and the performance of CNR, SNR, and image noise. Never-
theless, there is a trade-off between image quality and dosage. The larger dose leading to
the higher signal improves contrast resolution, lowering the noise and providing clearer
depiction of low-contrast structures. Detection of low contrast information and lesions is
restricted primarily by noise, which can be minimized by increasing the radiation expo-
sure. Dose output of CT scanners operating in such modes can be described along with
standard-dose indicators by image quality values. Hence, the trade-off between image
quality and radiation dose were accessed by FOM based on SNR and CTDIvol in this study.
Several studies explored the probability of dose reduction by optimization dependent on
FOM approach [14,45,46].

In addition, artificial intelligence has lately been commonly used to optimize radiation-
based processes and has several benefits over conventional approaches. The usage of
artificial intelligence contributes to refining photon radiation-based applications in both
the medical and manufacturing industries [47–49]. Likewise, Machine Learning and Deep
Learning a subset of artificial intelligence have been used in a number of applications to
evaluate complicated data sets and to identify similarities and associations within those
data without being directly configured [50,51].

This research has some limitations to list. First, this analysis just checked the alteration
of the pediatric CT CAP protocols on a one-year-old anthropomorphic phantom. Therefore,
the age variation in anthropomorphic phantom can be used to present radiation intensity
and the dosage received by the organs of children owing to the variation of body size and
habitus. Second, this research did not conduct a subjective evaluation of the accuracy of
the picture by an expert radiologist. Third, the standard image reconstruction approach,
which is Filter Back Projection (FBP) also known as Radon transform, was used for image
processing since the CT scanner used in this study did not have an iterative reconstruction
algorithm. The degree of image noise filtering is then reduced relative to the use of the
iterative reconstruction process. The image quality by leveraging iterative reconstruction
information is important to explain the impact on diagnostic quality subjectively as it has
enhanced image quality, improve image clarity, and reduce image noise [52].

5. Conclusions

As a conclusion, the impact of the modification of acquisition parameter in pediatric CT
CAP, indicates a potential reduction in a dose up to 30% to 80%. Noting that, this study has
focused on phantom study by selecting pertinent tube voltage, tube current, pitch value,
slice collimation, and comparing ATCM technology. The attenuation-based treatment
modifications are more effective than external patient features, such as patient age, weight,
BMI, or external measurements. The radiation-induced risk from current CT acquisition
parameters is still relatively lower compared to natural background radiation. Even so,
the justification for CT scan as well as optimization of the scanning parameters is still
paramount for those patients who require multiple CT scans.
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Abstract: Given the inherent characteristics of nonlinearity and nonstationarity of iterative recon-
struction algorithms in computed tomography (CT) imaging, this study aimed to perform, for the
first time, a voxel-based characterization of noise properties in CT imaging with the ASiR-V and
ASiR algorithms as compared with conventional filtered back projection (FBP). Multiple repeated
scans of the Catphan-504 phantom were carried out. CT images were reconstructed using FBP and
ASiR/ASiR-V with different blending levels of reconstruction (20%, 40%, 60%, 80%, 100%). Noise
maps and their nonuniformity index (NUI) were obtained according to the approach proposed
by the report of AAPM TG-233. For the homogeneous CTP486 module, ASiR-V/ASiR allowed a
noise reduction of up to 63.7%/52.9% relative to FBP. While the noise reduction values of ASiR-V-
/ASiR-reconstructed images ranged up to 33.8%/39.9% and 31.2%/35.5% for air and Teflon contrast
objects, respectively, these values were approximately 60%/50% for other contrast objects (PMP,
LDPE, polystyrene, acrylic, Delrin). Moreover, for all contrast objects but air and Teflon, ASiR-V
showed a greater noise reduction potential than ASiR when the blending level was ≥40%. While
noise maps of the homogenous CTP486 module showed only a slight spatial variation of noise (NUI
< 5.2%) for all reconstruction algorithms, the NUI values of iterative-reconstructed images of the
nonhomogeneous CTP404 module increased nonlinearly with blending level and were 19%/15%
and 6.7% for pure ASiR-V/ASiR and FBP, respectively. Overall, these results confirm the potential of
ASiR-V and ASiR in reducing noise as compared with conventional FBP, suggesting, however, that
the use of pure ASiR-V or ASiR might be suboptimal for specific clinical applications.

Keywords: computed tomography; iterative reconstruction algorithms; ASiR; ASiR-V; noise level;
noise spatial uniformity

1. Introduction

The impact of computed tomography (CT) imaging on patient dose has been a topic
of increasing attention in recent years [1–8]. Given that CT examinations are the major
source of population exposure to ionizing radiation in industrialized countries [9,10], many
strategies have been implemented to keep patient dose as low as reasonably achievable
while maintaining a good diagnostic image quality [11]. In this regard, acquisition-related
approaches, such as tube current modulation (both in the axial and longitudinal planes),
appropriate selection of tube voltage according to patient size, table motion, and gantry ro-
tation speed optimization have been successfully adopted on modern CT scanners [11–13].
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The introduction of iterative reconstruction (IR) algorithms in clinical practice represents
an important step toward dose optimization [13–18]. Unlike the conventional filtered back-
projection (FBP) algorithm, IR algorithms take into account various physical aspects of CT
image acquisition and can be based on statistical or model-based approaches [19–22]. While
statistical-based IR algorithms usually consider the fluctuations in the projection measure-
ment through a statistical method (e.g., by modeling the photon counting), model-based
algorithms include a more complex description of physical and optical aspects in the recon-
struction process, resulting in a better representation of the whole imaging process but in a
longer reconstruction time [19–22]. When compared with conventional FBP, IR algorithms
have proven to significantly decrease noise in CT imaging, allowing CT examinations with
reduced patient exposure while providing still acceptable diagnostic images [23–28]. The
noise properties of CT images obtained using IR algorithms can be rather different from
those of FBP-derived CT images [20,21]. Indeed, IR algorithms can have an impact not
only on the noise level but also on the noise texture of CT images [24,29–35]. Therefore, for
each specific IR algorithm, a comprehensive characterization of the noise properties and
quality of reconstructed CT images is recommended to adequately assess its dose reduction
potential and usefulness.

So far, a number of IR algorithms with different characteristics have been implemented
on clinical CT scanners [21,22], such as the adaptive statistical iterative reconstruction
(ASiR) [36], adaptive statistical iterative reconstruction-V (ASiR-V) [37], and Veo [38] (GE
Healthcare, Waukesha, WI, USA). The ASiR algorithm works on sinogram data by modeling
the photon statistics and some noise-related properties of the scanned object (e.g., scatter),
and can be employed with different FBP–ASiR blending levels [36]. Although ASiR is
widely adopted due to its fast reconstruction time, some image quality properties, such as
image texture and spatial resolution, depend on the blending level of reconstruction and the
dose level, yielding some artificial image texture and degradation of spatial resolution at a
higher percentage of blending for low-contrast objects [24,29,33,39,40]. The model-based
Veo algorithm allows limiting these drawbacks by modeling the entire imaging system
(i.e., X-ray tube output, detector response, radiation scatter properties, geometric features
of the beam) [21,22,34,41]. However, due to the complexity of the imaging system model,
Veo reconstruction time is greatly increased compared with ASiR, hampering its wide use
in clinical practice [31,34,41,42]. The more recent ASiR-V algorithm has been proposed to
reduce reconstruction time with respect to Veo while preserving some advantages of the full
model-based approach in terms of image quality [22,34,36]. In particular, ASiR-V features
more advanced noise and object modeling as compared with ASiR [36] and implements
parts of the Veo physics model, but excludes the system optics in the modeling process,
enabling reconstruction time almost comparable to that of FBP [36]. Like ASiR, ASiR-V can
be blended with FBP at different percentages of reconstruction, from 0% (i.e., FBP) to 100%
(i.e., pure ASiR-V) [36].

Several previous studies have characterized the image quality of CT imaging with
ASiR [24,28,29,33,39,43,44], finding substantial noise reduction properties as compared
with conventional FBP. For instance, Miéville et al. showed that the benefit of ASiR in terms
of noise reduction occurs almost independently of dose level (CTDIvol range: 0.2–7.2 mGy)
with a noise reduction relative to FBP of approximately 20% and 50% for ASiR 40% and
ASiR 100%, respectively [24]. Analogously, Hussain et al. found, for two different radiation
exposures (tube loads of 130 and 260 mAs at 120 kVp), a noise reduction relative to FBP of
approximately 30% and 50% with ASiR 50% and ASiR 100%, respectively [43]. A study by
Barca et al. confirmed that ASiR has the capability of reducing noise by up to 50% relative
to FBP while preserving diagnostic information at low radiation exposure [33].

More recently, a number of clinical and phantom studies have evaluated the dose
reduction potential and performance of ASiR-V [45–59]. In particular, some studies have
assessed the noise properties of CT imaging with ASiR-V in comparison with FBP or other
IR algorithms [45,46,49–55,57–59]. For instance, a clinical study by Gatti et al. showed that
a relevant noise reduction can be obtained using ASiR-V 40% with respect to ASiR 50% in
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the CT imaging of oncologic patients [50]. Goodenberger et al. compared abdomen and
phantom CT images reconstructed by adopting FBP, ASiR, Veo, and ASiR-V algorithms [51].
They performed subjective and objective analyses showing that ASiR-V 30% and ASiR-V
60% provided the best combination of qualitative and quantitative performances. In a
phantom study, Lim et al. compared the image quality of images reconstructed using
FBP, ASiR, and ASiR-V algorithms [52]. They found that ASiR-V can allow an appreciable
reduction of CT image noise and an improvement in contrast-to-noise ratio and spatial
resolution. Euler et al. evaluated image noise, spatial resolution, lesion detectability, and
dose reduction potential of ASiR-V (50% and 100%) in comparison with FBP by performing
phantom CT acquisitions [54]. They reported that ASiR-V has the capability of reducing
image noise and improving low-contrast lesion detectability when compared with FBP.
They suggested that such improvement in detection can allow radiation exposure reduction.
De Marco and Origgi [55] assessed the noise level and noise power spectrum properties of
CT imaging with ASiR-V, considering phantom images reconstructed with soft, standard,
and bone kernels. As compared with FBP, they found a greater noise reduction provided
by ASiR-V with respect to ASiR for soft and standard kernels, while less noise reduction
was found for the bone kernel.

While these studies [50–52,54,55] have explored in detail some image quality aspects
of CT imaging with ASiR-V and possibly ASiR as compared with FBP, noise level has been
estimated by computing the standard deviation (SD) of CT numbers within a given region
of interest (ROI) [17,60,61]. However, this approach would be conceptually appropriate
only for ergodic and stationary imaging systems, which feature uncorrelated noise [17,62].
Actually, due to image reconstruction and processing, CT image noise may present some
degrees of correlation [63,64]. Moreover, this approach cannot provide information on the
degree of spatial nonuniformity of noise [65]. Therefore, a more rigorous characterization
of noise properties should be performed by computing voxelwise noise maps through
multiple repeated CT imaging acquisitions [17,41,65]. Notably, these issues might be of
particular relevance for IR algorithms given their inherent nonlinearity and nonstationarity
properties. Therefore, the purpose of this phantom study was to carry out a voxel-based
assessment of noise properties in CT imaging with ASiR-V and ASiR for different blending
levels of reconstruction and contrast objects.

2. Materials and Methods

2.1. Scanner and Phantom Acquisitions

A 64-slice CT scanner (Optima CT660, GE Healthcare, Waukesha, WI, USA) was
employed to acquire (helical scan mode; pitch, 0.984; rotation time, 1 s; tube load, 100 mAs
without modulation; tube voltage, 120 kVp; collimation, 40 mm) images of the Catphan-504
phantom (The Phantom Laboratory, Salem, NY, USA). The entire phantom was scanned
40 times under identical conditions. CT images (slice thickness, 2.5 mm; display field of
view, 250 mm × 250 mm; standard convolution kernel) were reconstructed using conven-
tional FBP and ASiR/ASiR-V algorithms with different blending levels of reconstruction
(20%, 40%, 60%, 80%, and 100%).

The Catphan-504 phantom has a cylindrical shape (20 cm outer diameter) and consists
of four modules. In particular, the CTP486 and CTP404 modules were employed for noise
properties assessment. The CTP486 module is a homogeneous medium, while the CTP404
module includes different contrast objects within a homogeneous background. Nominal
CT numbers of the contrast objects are reported in Table 1.
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Table 1. Nominal CT numbers of the Catphan-CTP404 contrast objects [66].

Material CT Numbers (HU)

Air −1046: −986
PMP a −220: −172
LDPE b −121: −87

Polystyrene −65: −29
Acrylic 92: 137
Delrin 344: 387
Teflon 941: 1060

a Polymethylpentene, b low-density polyethylene.

2.2. Noise Maps

In order to assess local noise properties, as suggested by the AAPM Task Group 233
report [65], noise maps of CT images reconstructed by using FBP (N-FBP), ASiR (N-ASiR),
and ASiR-V (N-ASiR-V) were obtained on a voxel-by-voxel basis computing the SD of
each voxel value across the 40 repeated acquisitions. Then, maps of the percentage differ-
ence between noise of FBP-reconstructed images and noise of both ASiR-V-reconstructed
(PDN-ASiR-V) and ASiR-reconstructed (PDN-ASiR) images were computed voxelwise. In
particular, N-FBP as well as N-ASiR, N-ASiR-V, PDN-ASiR-V, and PDN-ASiR maps with
different blending levels of reconstruction were obtained for the slice at the central level of
both the CTP486 and CTP404 phantom modules.

For CT imaging of the homogeneous CTP486 module, a summary noise level was
estimated as the mean ± SD value of N-FBP, N-ASiR, and N-ASiR-V maps within a central
circular ROI of 1 cm diameter. Analogously, a summary percentage noise reduction of ASiR-
V and ASiR with respect to FBP was estimated as the mean ± SD value of PDN-ASiR-V
and PDN-ASiR maps, respectively, within a central circular ROI of 1 cm diameter.

For CT imaging of the CTP404 module, a summary noise value of each contrast object
was estimated as the mean ± SD value of N-FBP, N-ASiR, and N-ASiR-V maps within
a circular ROI of 1 cm diameter placed in the center of the contrast object. Analogously,
for each contrast object, a summary percentage noise reduction of ASiR-V and ASiR with
respect to FBP was estimated as the mean ± SD value of PDN-ASiR-V and PDN-ASiR
maps, respectively, within a circular ROI of 1 cm diameter placed in the center of the
contrast object.

In order to assess the spatial nonuniformity degree of N-FBP, N-ASiR, and N-ASiR-
V maps, the nonuniformity index (NUI) [67], as proposed by the AAPM Task Group
233 report [65], was employed. Specifically, for both the CTP486 and CTP404 modules,
the entire inner part of the phantom (diameter, 15 cm) was divided into k = 249 ROIs
(size, 8 mm × 8 mm). Then, for each map (N-FBP, N-ASiR, and N-ASiR-V), the NUI was
calculated as:

NUI =
100

< m >

√√√√ 1
k − 1

k

∑
i=1

(mi −< m >)2 (1)

where mi and <m> are the average of the values of the considered map within the i-th ROI
and the average of all mi values, respectively.

Furthermore, in order to characterize the spatial distribution of noise in CT imaging
with ASiR and ASiR-V reconstruction algorithms, the histograms of N-ASiR and N-ASiR-V
maps, as well as of N-FBP map, were computed for the entire inner part of the CTP486
module (diameter, 15 cm). Then, the histogram descriptors of median, interquartile range,
kurtosis, and skewness were calculated.

Image analysis was performed by using the MATLAB R2018a (MathWorks, Natick,
MA, USA) software package.
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3. Results

N-FBP and N-ASiR/N-ASiR-V maps (with different blending levels of reconstruction)
of the CTP486 homogeneous module and CTP404 module with contrast objects are shown
in Figures 1 and 2, respectively.

Figure 1. Noise maps (HU) of a CT image of the CTP486 phantom module reconstructed using FBP
and ASiR/ASiR-V with different blending levels (20%, 40%, 60%, 80%, and 100%). The corresponding
FBP-reconstructed CT image of the phantom is also displayed.

Figure 2. Noise maps (HU) of a CT image of the CTP404 phantom module reconstructed using FBP
and ASiR/ASiR-V with different blending levels (20%, 40%, 60%, 80%, and 100%). The corresponding
FBP-reconstructed CT image of the phantom is also displayed.

Moreover, PDN-ASiR and PDN-ASiR-V maps (with different blending levels of recon-
struction) of the CTP486 homogeneous module and CTP404 module with contrast objects
are displayed in Figures 3 and 4, respectively.

Figure 3. CTP486 phantom module. Maps of the percentage difference (%) between noise of the
FBP-reconstructed CT image and noise of both ASiR-V-reconstructed and ASiR-reconstructed CT
images with different blending levels (20%, 40%, 60%, 80%, and 100%).

Figure 4. CTP404 phantom module. Maps of the percentage difference (%) between noise of the
FBP-reconstructed CT image and noise of both ASiR-V-reconstructed and ASiR-reconstructed CT
images with different blending levels (20%, 40%, 60%, 80%, and 100%).
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Noise maps of the homogenous CTP486 phantom module (Figure 1) showed only a
slight spatial variation of local noise values for the FBP-reconstructed CT image, which
seemed less for ASiR-V- and ASiR-reconstructed CT images with higher blending levels.
This is corroborated by the NUI values reported in detail in Figure 5. In particular, the
NUI value for the FBP-reconstructed CT image was 5.2%, while the NUI values for the
ASiR-V- and ASiR-reconstructed CT images with a 100% blending level were 2.7% and 3.4%,
respectively. On the other hand, noise maps of the CTP404 phantom module (including
various contrast objects) (Figure 2) showed a more appreciable degree of spatial variation
of noise, with higher noise values at the boundary between each contrast object and
background, especially for ASiR-V- and ASiR-reconstructed CT images. The NUI value
for the FBP-reconstructed CT image was 6.7%. The NUI values for the IR-reconstructed
CT images increased nonlinearly with the blending level and were 19% and 15% for pure
ASiR-V and ASiR, respectively.

Figure 5. Nonuniformity index (NUI) values of noise maps of CT reconstructed images (FBP, ASiR-V,
and ASiR) of the CTP486 (a) and CTP404 (b) phantom modules. For NUI estimation, only the inner
part of the phantom (diameter, 15 cm) was considered.

As shown by PDN-ASiR-V and PDN-ASiR maps of the homogenous CTP486 module
(Figure 3), when compared with conventional FBP, both ASiR and ASiR-V allowed a
substantial noise reduction in CT imaging. In this regard, noise values in the CT imaging
of the homogenous CTP486 phantom module are reported in Table 2 for FBP, ASiR-V, and
ASiR. The percentage difference between noise in the FBP-reconstructed CT image and that
in both ASiR-V- and ASiR-reconstructed CT images increased with increasing blending
level, up to 64% and 53% for ASiR-V and ASiR, respectively (Figure 6). Except for the
lowest blending level of 20%, ASiR-V presented greater noise reduction potential than
ASiR (Figure 6).

Table 2. Homogeneous CTP486 module. Noise level estimated as the mean (SD) value of N-FBP,
N-ASiR, and N-ASiR-V maps within a central circular ROI of 1 cm diameter.

Blending Level FBP ASiR ASiR-V

0% 9.5 (1.3)
20% 7.9 (1.1) 8.0 (1.2)
40% 6.9 (1.0) 6.5 (1.0)
60% 5.8 (0.8) 5.4 (0.8)
80% 4.9 (0.7) 4.4 (0.6)
100% 4.5 (0.7) 3.4 (0.5)
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Figure 6. CTP486 homogeneous phantom module. Noise reduction properties of ASiR-V and ASiR
reconstruction algorithms with respect to conventional FBP, NR(%), estimated as the mean (SD) value
of PDN-ASiR-V and PDN-ASiR-V maps within a central circular ROI of 1 cm diameter.

For different contrast objects (i.e., air, PMP, LDPE, polystyrene, acrylic, Delrin, Teflon)
of the CTP404 phantom module, summary noise level values in CT imaging using FBP
and ASiR-V/ASiR with different blending levels of reconstruction are reported in detail in
Table 3. Figure 7 shows the noise reduction properties of ASiR-V and ASiR reconstruction
algorithms with respect to conventional FBP for different contrast objects and blending
levels of reconstruction. For all contrast objects, when compared with conventional FBP,
both ASiR-V and ASiR allowed a substantial reduction in noise level, which decreased with
an increasing blending level of reconstruction (Table 3). The noise reduction properties
of both ASiR and ASiR-V depended on the contrast object. In particular, higher contrast
objects (i.e., air and Teflon) were characterized by a lower noise reduction degree (Figure 7).
Moreover, for all contrast objects but air and Teflon, ASiR-V showed a greater noise
reduction potential than ASiR when the blending level was ≥40%.

Table 3. CTP404 phantom module with different contrast objects (i.e., air, PMP, LDPE, polystyrene,
acrylic, Delrin, Teflon). Summary noise level of each contrast object estimated as the mean (SD) value
of N-FBP, N-ASiR, and N-ASiR-V maps within a central circular ROI of 1 cm diameter.

Air PMP LDPE Polystyrene Acrylic Delrin Teflon

FBP 9.0 (1.0) 9.7 (1.1) 9.8 (1.1) 9.6 (1.0) 9.7 (1.2) 10.4 (1.1) 11.3 (1.3)

ASiR

20% 8.1 (0.9) 8.6 (0.9) 8.6 (0.9) 8.4 (0.9) 8.5 (1.0) 9.2 (0.9) 10.2 (1.2)
40% 7.3 (0.8) 7.5 (0.8) 7.6 (0.8) 7.4 (0.8) 7.5 (0.9) 8.1 (0.8) 9.4 (1.1)
60% 6.6 (0.8) 6.5 (0.7) 6.5 (0.7) 6.4 (0.7) 6.4 (0.8) 7.0 (0.7) 8.5 (1.1)
80% 5.8 (0.7) 5.5 (0.7) 5.6 (0.6) 5.4 (0.6) 5.5 (0.6) 6.0 (0.6) 7.7 (1.0)
100% 5.4 (0.7) 5.1 (0.7) 5.0 (0.6) 4.9 (0.6) 5.0 (0.7) 5.5 (0.7) 7.3 (1.0)

ASiR-
V

20% 8.4 (0.9) 8.5 (0.9) 8.6 (0.9) 8.5 (0.9) 8.5 (1.0) 9.1 (0.9) 10.5 (1.2)
40% 7.7 (0.9) 7.4 (0.8) 7.4 (0.8) 7.3 (0.8) 7.4 (0.9) 7.9 (0.8) 9.7 (1.2)
60% 7.1 (0.9) 6.3 (0.7) 6.3 (0.7) 6.2 (0.7) 6.2 (0.7) 6.7 (0.7) 9.0 (1.2)
80% 6.5 (0.9) 5.3 (0.6) 5.2 (0.6) 5.2 (0.6) 5.1 (0.6) 5.6 (0.6) 8.3 (1.2)
100% 6.0 (1.0) 4.3 (0.5) 4.2 (0.5) 4.2 (0.5) 4.1 (0.5) 4.6 (0.5) 7.7 (1.3)

Histograms of N-ASiR and N-ASiR-V maps, as well as of the N-FBP map, are shown
in Figure 8. Moreover, values of histogram descriptors (median, interquartile range,
kurtosis, skewness) are reported in detail in Table 4. While noise map histogram of
the FBP-reconstructed CT image approximated a Gaussian distribution (kurtosis and
skewness values of 3 and 0.23, respectively), noise map histograms of ASiR- and ASiR-V-
reconstructed CT images leaned to deviate from a Gaussian distribution when increasing
the blending level of reconstruction, with kurtosis/skewness values for pure ASiR- and
ASiR-V-reconstructed CT images of 3.57/0.41 and 3.35/0.24, respectively.
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Figure 7. CTP404 phantom module with different contrast objects (i.e., air, PMP, LDPE, polystyrene,
acrylic, Delrin, Teflon). Noise reduction properties of ASiR-V and ASiR reconstruction algorithms
with respect to conventional FBP, NR(%), estimated as the mean (SD) value of PDN-ASiR-V and
PDN-ASiR-V maps within a central circular ROI of 1 cm diameter placed in each contrast object.

Figure 8. Histograms of noise maps (bin width of 0.1 HU) for FBP- (a), ASiR- (b), and ASiR-V-
reconstructed (c) CT images of the homogenous CTP486 module with different blending levels of
reconstruction (20%, 40%, 60%, 80%, and 100%).

Table 4. Descriptive metrics of noise map histograms for FBP-, ASiR-, and ASiR-V-reconstructed CT
images of the homogenous CTP486 module with different blending levels of reconstruction (20%,
40%, 60%, 80%, and 100%). Median and interquartile range values are expressed as HU; kurtosis and
skewness values are unitless.

Median
Interquartile

Range
Kurtosis Skewness

FBP 9.16 1.62 3.00 0.23

ASiR

20% 7.81 1.39 3.07 0.27
40% 6.86 1.17 3.10 0.26
60% 5.88 0.99 3.13 0.25
80% 5.00 0.83 3.14 0.22
100% 4.51 0.80 3.57 0.41

ASiR-V

20% 7.91 1.37 3.03 0.24
40% 6.57 1.15 3.10 0.27
60% 5.51 0.92 3.11 0.25
80% 4.52 0.74 3.14 0.23
100% 3.60 0.57 3.35 0.24
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4. Discussion

Given that IR algorithms in CT imaging can be inherently nonlinear and nonstationary,
noise properties should be possibly assessed by using a rigorous voxel-based approach
exploiting multiple repeated acquisitions. Unlike the widely employed approach of esti-
mating noise as the SD of CT numbers within an ROI, this more complex approach allows
for solving potential issues related to nonvalidity of the ergodic theorem for CT imaging
with IRs, as well as for assessing the spatial nonuniformity degree of noise. However, so
far, only few studies [67–70] have employed such an approach to characterize noise proper-
ties in CT imaging with IRs. In particular, Solomon and Samei [68] performed multiple
repeated CT acquisitions of a uniform phantom and of two anatomically informed textured
phantoms, and used these phantoms to assess noise properties for FBP and the sinogram
affirmed iterative reconstruction (SAFIRE, Siemens Healthcare) algorithm. They found that
noise was globally nonstationary, and this was mostly relevant for SAFIRE-reconstructed
CT images of textured phantoms. In a similar study, Solomon et al. [69] showed that the
advanced modeled iterative reconstruction (ADMIRE, Siemens Healthcare) algorithm with
different iterative strengths (i.e., 3, 4, and 5) allowed a noise reduction of up to 64% relative
to FBP. A study by Funama et al. [70] compared noise in CT images of a porcine liver phan-
tom surrounded by agar gel acquired 100 times, reconstructed using FBP and the iterative
model reconstruction (IMR, Philips Healthcare) algorithm with various noise reduction
levels (L1, L2, and L3, where L3 offers the greatest noise reduction). They revealed a spatial
dependence of noise for IMR-reconstructed CT images. Moreover, for IMR-L3, a noise
reduction of 68%–75% relative to FBP was observed. Li et al. [67] acquired 50 repeated ac-
quisitions of a homogeneous phantom in order to assess the spatial nonuniformity of noise
maps associated with FBP- and Veo-reconstructed images. Veo-reconstructed CT images
were characterized by at least a 50% reduction in NUI values relative to FBP-reconstructed
CT images.

Some previous clinical or phantom studies have reported a higher noise reduction
capability of ASiR-V as compared with ASiR. For instance, Gatti et al. [50] conducted a
retrospective case–control study involving oncologic patients who underwent baseline and
follow-up CT scans with ASiR 50% and ASiR-V 40%, respectively. Noise was estimated
as the SD of CT numbers within three circular ROIs placed in homogeneous regions of
three different tissues. Regardless of the anatomical region, noise was found lower in
ASiR-V 40%-reconstructed images than in ASiR 50%-reconstructed images, albeit radiation
exposure was 38% lower for the ASIR-V examinations than for the ASiR ones. Similarly,
Goodenberger et al. carried out a retrospective study on 36 patients who underwent an
abdomino-pelvic CT scan [51]. They assessed the noise level within lesions for CT images
reconstructed using FBP, ASiR 80%, Veo, and ASiR-V (30%, 60%, and 90%). The highest
noise level was revealed on FBP-reconstructed images, followed by ASiR-V 30%-, ASiR
80%-, Veo-, ASiR-V 60%-, and ASiR-V 90%-reconstructed images. Lim et al. [52] compared
the noise performances of ASiR-V, ASiR, and FBP on an anthropomorphic phantom using
three blending levels of reconstruction (30%, 50%, and 70%) and five different tube currents.
By assessing the noise magnitude and noise reduction relative to FBP within a circular ROI
in a homogeneous area of the phantom, they found that ASiR-V 30%, ASiR-V 50%, and
ASiR-V 70% can allow a noise reduction of 30%–45%, 41%–61%, and 52%–67%, respectively.
On the other hand, ASiR with the same blending levels showed a lower noise reduction of
18%–20%, 30%–33%, and 41%–49%, respectively. Euler et al. [54] characterized the noise
level of ASiR-V-reconstructed (50% and 100% blending levels of reconstruction) CT images.
On average, they found a noise reduction of 37% (ASiR-V 50%) and 72% (ASiR-V 100%)
relative to FBP. Another phantom study by De Marco and Origgi [55] compared the noise
levels of FBP-, ASiR-V-, and ASiR-reconstructed images (blending levels of 40%, 60%, and
100%) acquired on two different CT scanners (i.e., ASiR-V- and ASiR-reconstructed images
were not obtained from the same sinogram data). Specifically, this study assessed the effect
of convolution kernel (standard, soft, and bone), slice thickness, and radiation exposure on
noise level for all the used reconstruction algorithms. When compared with FBP, ASiR-V
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showed a greater noise (estimated as the SD of CT numbers within a square ROI in a
homogeneous phantom) reduction than ASiR with noise reduction values of 12%–28%,
18%–41%, and 29%–64% for ASiR-V 40%, 60%, and 100%, respectively. For both ASiR-V
and ASiR, noise reduction relative to FBP was almost independent of dose exposure.

To the best of our knowledge, this is the first study that performed, for different
blending levels of reconstruction and contrast objects, a voxel-based assessment of noise
properties in CT imaging with ASiR-V and ASiR algorithms as compared with conventional
FBP. This approach, which can allow a better characterization of noise properties in CT
imaging with IR algorithms, is based on spatial noise maps (Figures 1 and 2). In general,
we found that, when compared with FBP, ASiR-V presents a greater noise reduction than
ASiR for a homogeneous medium, except for the lowest blending level of 20% (Figure 6).
In particular, the noise reduction value ranged up to 52.9% and 63.7% for pure ASiR and
pure ASiR-V, respectively. This finding has also been confirmed for various contrast objects
(i.e., PMP, LDPE, polystyrene, acrylic, Delrin) (Figure 7) with noise reduction values rather
independent of contrast objects and ranging up to approximately 50% and 60% for pure
ASiR and pure ASiR-V, respectively. On the other hand, for higher contrast objects (i.e., air
and Teflon) and all blending levels, ASiR-V showed a lower noise reduction capability than
ASiR. In this case, the noise reduction values of ASiR-V-/ASiR-reconstructed images were
lower and ranged up to 33.8%/39.9% and 31.2%/35.5% for air and Teflon contrast objects,
respectively.

In this work, unlike a few previous studies on the characterization of noise in CT
imaging with ASiR-V and ASiR [50–52,54,55], voxelwise noise maps allow an assessment
of the spatial uniformity of noise, which might be affected by the nonlinearity and non-
stationarity effects of IR algorithms. For the homogeneous medium, FBP-reconstructed
images showed a rather low level of the spatial nonuniformity of noise with an NUI value
of 5.2%. The NUI values of ASiR-V- and ASiR-reconstructed CT images were lower than
the NUI value of FBP-reconstructed images and slightly decreased with an increasing
blending level of reconstruction (Figure 5a). This could be partly associated with a shift of
noise power spectrum curves toward lower spatial frequencies, which has been observed
for CT imaging with ASiR-V and ASiR mostly at higher blending levels of reconstruc-
tion [24,29,35,55]. Notably, for the nonhomogeneous medium with contrast objects, both
ASiR-V- and ASiR-reconstructed CT images showed NUI values greater than the NUI value
of FBP-reconstructed CT images (approximately 7%), increasing with the blending level of
reconstruction (Figure 5b). In particular, the NUI values of CT imaging with pure ASiR-V
and pure ASiR were approximately three and two times, respectively, that of CT imaging
with FBP. This is likely to derive from a noise reduction capability of ASiR-V and ASiR
reconstruction algorithms that does not seem so effective at the boundary between different
media (Figures 2 and 4). While this effect has been reported for other IR algorithms [68–70],
no previous study has observed it for CT imaging with ASiR-V and ASiR. As submitted by
Solomon and Samei [68], given that IR algorithms aim at reducing noise while preserving
the fidelity of fine details, this necessitates a conservative approach to noise reduction for
voxels near edges, and therefore, noise is not reduced as much near edges or structures
(i.e., “edge” effect).

The nonuniformity findings of this study suggest that, for CT imaging, a noise evalua-
tion only in homogeneous phantoms could be incomplete and/or partly misleading when
IR algorithms are employed. While pure ASiR-V/ASiR offers the maximum noise reduc-
tion capability in reconstructed CT images, a blending level of 100% can affect the spatial
uniformity of noise mostly at the boundary between different structures. Therefore, for
specific clinical applications of CT imaging with ASiR-V and ASiR, the use of a maximum
blending level of reconstruction might be not optimal [27,40,43,44,71,72]. In particular, the
revealed “edge” effect might partly limit the potential of IR algorithms in studying small
structures (such as metastases, vessels, pulmonary nodules, or brain ischemic lesions),
especially when they present reduced contrast.
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Analysis of noise map histograms (Table 4) showed that, for both ASiR- and ASiR-V-
reconstructed CT images, kurtosis and interquartile range/median values monotonically
increased and decreased, respectively, with increasing blending level of reconstruction.
Moreover, for all the blending levels of reconstruction, noise map histograms of ASiR-
reconstructed CT images were characterized by higher or equal kurtosis and interquartile
range values compared with that of ASiR-V-reconstructed CT images. Overall, these results
might reflect the inherent nonlinear and nonstationary properties of iterative reconstruction
algorithms in CT imaging.

5. Conclusions

In this preliminary study, we aimed at characterizing in greater detail noise properties
in CT imaging with ASiR-V and ASiR by means of spatial noise maps obtained from
multiple repeated acquisitions of a homogeneous phantom and of a phantom with different
contrast objects. Our results confirm the potential of ASiR-V and ASiR in reducing noise
(up to 60% or more) as compared with conventional FBP. In this regard, while ASiR-V
outperforms ASiR in general, this does not necessarily hold true for the CT imaging of
structures with high contrast. Both ASiR-V- and ASiR-reconstructed CT images show a
higher spatial nonuniformity of noise than FBP-reconstructed images. This effect increases
with increasing blending level of reconstruction and reflects a less effective noise reduction
potential of ASiR-V and ASiR at the boundary between different structures.

In summary, an exhaustive characterization of noise properties in CT imaging with
IR algorithms is needed to actually assess the dose reduction potential of this technique
and its possible limitations for specific clinical applications. This study suggests that,
when using IR algorithms, the conventional approach of estimating the noise level by
computing the SD of CT numbers within a given ROI is inadequate and precludes showing
any non-negligible spatial nonuniformity of noise, which may vary with the blending level
of reconstruction. Overall, our findings indicate that a voxel-based characterization of noise
properties is recommended when dealing with a novel IR algorithm or when comparing
the performances of different IR algorithms.
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Abstract: Background: Digital breast tomosynthesis (DBT) systems employ a sophisticated set of
acquisition parameters to generate an image set, and the DBT acquisition angle is considered to be
one of the most important parameters. The aim of this study was to use texture analysis to assess how
the DBT acquisition angle might influence DBT images of breast parenchyma. Methods: Thirty-four
patients were selected from a clinical study conducted at IRST Institute. Each patient underwent a
dual DBT scan performed with Fujifilm Amulet Innovality (Fujifilm Corp, Tokyo, Japan) in standard
(ST, angular range = 15◦) and high-resolution (HR, angular range = 40◦) modalities. Texture analysis
was applied on the paired dataset using histogram-based features and gray level co-occurrence matrix
(GLCM) features. Wilcoxon-signed rank and Pearson-rank tests were used to assess the statistical
differences and correlations between extracted features. Results: The DBT acquisition angle did not
affect histogram-based features, whereas there was a significant difference in five GLCM features
(p < 0.05) between DBT images generated with 15◦ and 40◦ acquisition angles. Correlation analysis
showed that two GLCM features were not correlated at a p < 0.05 significance level. Conclusions:
DBT acquisition angle affects the textures extracted from DBT images and this dependence should
be considered when establishing baselines for classifiers of malignant tissue. Furthermore, texture
analysis could be proposed as a quantitative method for comparing and scoring the contrast of
DBT images.

Keywords: medical imaging; radiomics; tomosynthesis; acquisition angle

1. Introduction

Texture analysis is a promising technique for extracting quantitative features from radiographic
images to be correlated with clinical or pathological characteristics of a tissue [1,2]. In the 1990s, several
authors began applying texture analysis to mammographic images to identify and classify malignant
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masses or microcalcifications [3–7]. Other authors correlated texture features with BRCA1/BRCA2
mutations [8] or with breast cancer subtypes [9]. In a recent work by Li et al., texture analysis of
digital mammographic images was deemed as an excellent tool for differential diagnosis of benign and
malignant tumors, especially if combined with standard visual analysis by radiologists [10]. Digital
breast tomosynthesis (DBT) is a relatively new technique compared to digital mammography (DM),
and for this reason, studies on texture analysis applied to DBT are less widespread. Kontos et al.
studied the correlation between texture features calculated from DBT images and risk factors such as
breast percent density or Gail and Claus risk models [11,12]. They concluded that texture features
extracted from DBT images are more favorably correlated with risk factors than those extracted from
DM. However, the authors also observed that the gray level distribution of DBT images may be affected
by several factors such as the image acquisition geometry [13] and the reconstruction algorithm,
hence suggesting that further research is needed to analyze the variability of features according to
these parameters. At IRST institute, clinical DBTs can be performed with two acquisition geometries
that differ in terms of the acquisition angle (15◦ and 40◦) and in-plane image resolution (0.15 and
0.10 mm/pixel). With the final aim of developing a computer-aided diagnosis (CAD) system based on
texture features, we first needed to investigate whether different acquisition geometries had an impact
on texture values. Several authors have demonstrated that the parameter that most influences DBT
images is the DBT acquisition angle. In particular, Li et al. found that an increased acquisition angle
positively correlated with improved z-resolution [14]. Goodsitt et al. observed that increasing the DBT
acquisition angle improved the contrast-to-noise ratio of disk details, as well as the subjective scoring
of image quality by multiple readers [15]. Other authors used a model-observer approach to study
the detectability of small signals in simulated DBT datasets, reporting that the acquisition angle had
a positive effect on the detectability of each signal size considered [16]. A model-observer approach
was also used recently by Lee et al., who studied the signal detectability of simulated DBT patterns by
varying several acquisition parameters including angle, reconstruction filter, and slice thickness [17].
However, all these studies were performed on phantoms or simulated DBT datasets. The aim of the
present study was to use texture analysis to characterize the impact of the acquisition angle on DBT
images. This research was conducted on real DBT images of breast parenchyma originating from a
clinical paired dataset (i.e., a single patient underwent dual DBT scan with 15◦ and 40◦ acquisition
angle). To the best of our knowledge, no similar studies have been published elsewhere.

2. Materials and Methods

We used a Fujifilm Amulet Innovality (Fujifilm Corp, Tokyo, Japan) DBT system, which has 2
imaging modalities, i.e., a “standard” (ST) modality wherein the X-ray tube angular range continuously
spans a range of 15◦, and a “high-resolution” (HR) modality wherein the angular range is 40◦.
The number of acquired projections was 15 for both modalities. The in-plane pixel size of DBT
reconstructed images was 0.1 mm in the HR modality and 0.15 mm in the ST modality. The slice
thickness was 1 mm for both modalities. The automatic exposure control (AEC) of the HR modality
was routinely tuned to deliver a higher dose to the breast than that of the ST modality. In order to
eliminate this bias, we set up a scanning protocol to equalize the dose for both ST and HR modalities.
This was carried out by applying the exposure parameters (i.e., anode/filter, kVp, mAs) for the HR
modality, determined by the AEC during the ST acquisition.

This study was conducted as part of a clinical trial called “Digital Breast Tomosynthesis in a
screening population—Investigation on angular range and dose level acquisition” currently ongoing
at our institute (Protocol Code: IRST174.13). The trial was approved by the IRST Ethics Committee
and was conducted in accordance with the ethical standards laid down in the 1964 Declaration of
Helsinki. All patients gave written informed consent before being scanned. The trial inclusion criteria
were: age between 45 years and 74 years and BI-RADS ≥ 3 evaluated with DM from the regional
screening program. Exclusion criteria were: pregnancy, participation in another clinical trial, or a
clinical diagnosis of breast cancer. Patients satisfying the study criteria were scheduled to undergo
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a dual DBT scan in accordance with the above-mentioned scanning protocol. Each DBT scan was
accompanied by an ultrasound (US) scan. The present study was conducted on a subset of the enrolled
patients. In particular, we selected 34 patients (for a total of 36 image sets) whose DBT and US imaging
results were scored as negative by 2 independent radiologists (i.e., BI-RADS = 1 after DBT and US
re-evaluation). A follow-up of least two years was available for the selected patients.

We considered the craniocaudal (CC) view for each DBT image set, focusing the analysis on 7 slices
at the center of the imaging study (Figure 1). Our choice was guided by Kontos et al., who suggested
insulating the fibro-glandular tissue for feature extraction as superficial layers (skin and subcutaneous
fat) only act as anatomical noise and are not correlated with breast cancer risk [11]. This choice is
particularly relevant for small-sized breasts, as the number of slices in a DBT set is a function of breast
thickness. Furthermore, preliminary analysis showed that mean feature values were not influenced
by increasing the number of considered slices in large-sized breasts (data not shown). In order to
apply a coherent texture analysis and insulate the effect of the acquisition angle, an in-house program
developed in MATLAB (MathWorks, Inc., Natick, MA, USA) was used to downsample the in-plane
resolution of HR images to the in-plane resolution of ST images, i.e., from 0.1 to 0.15 mm/pixel.
The downsampling was performed using nearest-neighbor interpolation to maintain the integrity of
original data and avoiding generating fictitious pixel values [18–20]. A region of interest (ROI) of
256 × 256 pixels was placed behind the nipple (Figure 1). This combination of ROI size and position
was previously reported to have the highest discrimination power with regard to texture performance
in DM [8,21] and in DBT [12]. Furthermore, the ROI size is a trade-off between different needs. In fact,
the ROI size used in the present work is defined to include the limited parenchymal area of small
breasts and is assumed standard for all breasts to avoid potential biases in the features’ calculation.
Feature computation was performed for each ROI in the 2D mode with MaZda software package [22].
We considered first-order features based on the image gray levels histogram and second-order features
based on the gray level co-occurrence matrix (GLCM) [1,23] (Table 1). GLCM features were extracted
using first-order neighbors and 0◦, 45◦, 90◦ and 135◦ directions. Feature values extracted from each slice
were averaged into a single value. The same averaging operation was performed for the feature values
obtained along the different GLCM calculation directions (0◦, 45◦, 90◦ and 135◦). With these averaging
operations, a single value for each feature was associated with a single DBT image set. Descriptions and
mathematical details of the relevant features for this study can be found in Supplementary Materials.

Figure 1. Workflow followed for texture analysis. DBT, digital breast tomosynthesis; ROI, region of
interest; GLCM, gray level co-occurrence matrix.

In our DBT system, image gray levels had 14 bits and this resolution was maintained for
histogram-based features. However, resampling was needed for GLCM features to avoid the risk of
excessively large and sparse matrices that would inhibit a robust statistical analysis [24,25]. We extracted
GLCM features after reducing the bits per pixel to 6 bits (MaZda default value), repeating the analysis
with 5 bits and 7 bits to confirm the robustness of extracted features in relation to the bits rescaling.
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Table 1. Features considered in this study. See [22] and Supplementary Materials for definitions.

First-Order Features (Histogram)

Mean
Variance
Skewness
Kurtosis

Second-Order Features (GLCM)

Angular Second Moment
Contrast

Correlation
Sum of Squares

Inverse Difference Moment
Sum Average
Sum Variance
Sum Entropy

Entropy
Difference Variance
Difference Entropy

The features reported in Table 1 were extracted from the DBT images obtained with both ST
(15◦ acquisition angle) and HR (40◦ acquisition angle) scan angles. All statistics comparisons were
conducted considering these two paired datasets. Populations were compared with boxplots and the
difference was assessed with a Wilcoxon-signed rank test (R-software version 3.5.3 Lucent Technologies,
Murray Hill, New Providence, NJ, USA). A p-value < 0.05 was deemed statistically significant.
Correlation between features that showed a significant difference between ST and HR images was
inferred with Spearman rank correlation test. The datasets generated and/or analyzed during the
current study are available from the corresponding authors on reasonable request.

3. Results

For a single DBT image set, feature values deviated within <1% from the value averaged over the
slices and over the GLCM direction calculation. This low deviation justified taking the average value
for each feature, corresponding to a single DBT image set. A total of 15 features were extracted and five
of them (all belonging to the second-order group, i.e., GLCM features) showed significant differences
between ST and HR images (see Table 2). The scenario was unchanged when the analysis was repeated
after varying the bits’ resampling amplitude (i.e., 5-bit, 6-bit and 7-bit). The correlation matrix of
the features showing a significant difference between ST and HR images is reported in Figure 2.
The Correlation feature was not correlated with any other feature. The Contrast feature was strongly
correlated with other features (Spearman-ρ = ± 0.99 with a p-value < 0.001) except the Correlation
feature (Spearman-ρ = 0.31 with a p-value = 0.14). Again, this scenario was unchanged for 5-bit, 6-bit
and 7-bit resampling amplitudes. For this reason, further analysis only took into consideration the
not correlated GLCM features, Contrast and Correlation. Figure 3 shows boxplots comparing these
features in ST and HR images. Figure 4 contains boxplots of Mean and Variance features that showed
no significant difference between ST and HR images. Finally, in Figure 5, we show the differences
between ST and HR in 2D space employing the two most relevant features.
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Table 2. Differences between feature median values calculated from the high-resolution (40◦ acquisition
angle) and standard (15◦ acquisition angle) DBT images. Only significant differences are reported
(p < 0.05, Wilcoxon signed-rank test).

% Difference
40◦–15◦ Acquisition Angle

(p < 0.05)

First-Order Features (Histogram)

Second-Order Features (GLCM)

Contrast +50%
Correlation −5%

Inverse Difference Moment −14%
Difference Variance +45%
Difference Entropy +17%

Figure 2. Spearman rank correlation matrix for features showing a significant difference between
15◦ acquisition angle (standard mode) and 40◦ acquisition angle (high resolution mode) DBT images.
Red and Blue elements indicate a positive and negative correlation, respectively, with a significance:
p < 0.001. Crossed elements indicate that the correlation is not significant p > 0.05.

Figure 3. Boxplots of the non-correlated features Contrast (a) and Correlation (b). These features show
a significant difference between 15◦ acquisition angle (standard mode) and 40◦ acquisition angle (high
resolution mode) DBT images.
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Figure 4. Boxplots of Mean (a) and Variance (b) histogram-based features. These features show no
significant difference between 15◦ acquisition angle (standard mode) and 40◦ acquisition angle (high
resolution mode) DBT images.

Figure 5. Scatter plot of Correlation vs. Contrast, the two most relevant features, showing the
distribution in 2D space of the two imaging modalities.

4. Discussion

In the present work, we investigated the variability in texture features extracted from DBT of
breast parenchyma in relation to the DBT acquisition angle. Insulating the effect of the acquisition
angle was not a simple task. Different manufacturers use different angles, and comparisons are
influenced by numerous confounding variables (e.g., different detector technology, different X-ray
quality, different dose levels). The Fujifilm Amulet Innovality offers two acquisition modalities (ST and
HR) on the same DBT system, which enabled us to eliminate many of these variables. We succeeded in
insulating the DBT acquisition angle effect by designing a specific acquisition and data normalization
protocol that equalized the image resolution and the dose of the two modalities. Furthermore,
our comparison between feature values was performed on a paired dataset. The DBT acquisition angle
influenced second-order features (from GLCM). GLCM features have been widely used in DM to
build classifiers of malignant breast tissue [5,7,21,26,27]. Research has also been extended to DBT by
other authors using different DBT systems with different acquisition angles [11,12,28]. In the present
work, we demonstrated that the DBT acquisition angle significantly influences several GLCM features
extracted from healthy breast parenchyma. This must be taken into consideration when developing
classifiers for malignant tissue in DBT (i.e., the GLCM feature values for healthy breast tissue may
differ simply because of the different DBT acquisition angle) and also when comparing texture values
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calculated from different DBT systems, as these may differ on the basis of the acquisition angle. Texture
features showing a significant difference may translate to physical considerations in DBT images
and in the DBT acquisition process. In particular, the GLCM Contrast feature is a measure of the
amount of local variation present in the image [23]. From this viewpoint, our results demonstrate
that DBT images show a higher level of local contrast for healthy breast parenchyma (around 50%
increase in median value) when DBT reconstruction is performed using projections with a wider
acquisition angle (see Table 2). The observed difference can only be attributed to the wider acquisition
angle because other variables such as higher dose or higher resolution were ruled out by the chosen
acquisition protocol, and the image processing performed before the texture analysis. This result
can be considered to be an addition to the existing findings regarding the quantitative comparisons
between different DBT acquisition systems [29,30]. Our finding is coherent with findings of other
authors regarding the positive effect of wider DBT acquisition angle on several quantitative parameters
such as z-resolution, contrast-to-noise ratio of disk details, and subjective scoring of image quality by
multiple readers [15,21]. In this context, texture analysis applied to DBT images has the potential to be
an additional quantitative method for scoring and comparing DBT images.

Analogous considerations can be made regarding the difference observed for the Correlation
feature, which is a measure of gray levels linear dependency in the image [23]. In our study,
DBT images, reconstructed using wider acquisition angle projections, showed pixel gray levels which
were less correlated.

Histogram-based features were not affected by DBT angular range, which may have been because
histogram-based features do not depend on the local distribution of gray levels. Rather, they depend
globally on the gray levels which were aggregated in the histogram within the ROI. For this reason,
we could argue that local differences induced by different DBT acquisition angles were averaged out
when looking globally at the histogram.

Our study had some limitations. We restricted the analysis to the features based on gray levels
histogram and GLCM because these are the features most often considered by other authors for
developing classifiers in DM [3–7] and DBT [11,12]. However, it might be useful in future studies to
extend the analysis to other high-order features (e.g., run length matrix or wavelet features). In this
study, we considered a dataset of 34 patients. The sample size was sufficient to reveal with statistical
significance (i.e., p < 0.05) differences larger than 5% in DBT texture studies due to the different
acquisition geometries. This fact needs to be considered when developing feature-based classifiers
for healthy/malignant tissues. Statistical significance was obtained for 5 out of 15 considered features.
Further studies will be performed with a larger dataset of patients in order to investigate subtler
differences between the two imaging modalities.

The added value of our findings is that they were obtained by analyzing real images of breast
parenchyma from a paired clinical DBT dataset. Kontos et al. [12] concluded that parenchymal texture
features from DBT images have the potential to be used as imaging biomarkers to provide a more
comprehensive quantitative characterization of breast parenchyma complexity. The texture analysis
methodology applied in this study can be extended to assess the way in which the quantitative texture
differences in DBT breast parenchyma might impact the clinical diagnostic performances.

5. Conclusions

In the present study, we found that texture features calculated from DBT images were influenced
by the DBT acquisition angle, which is a key geometrical parameter of a DBT scan. This effect was
observed for several GLCM-based features. Two main conclusions can be drawn from our results,
the first being that the variability in texture values due to different acquisition geometries should be
taken into consideration when developing GLCM texture-based classifiers for healthy/malignant tissue.
Our second conclusion derives from the physical significance of some GLCM features. In particular,
we demonstrated that the Contrast feature, defined from the GLCM, showed a significant increase
(+50% in the median value) when a wider DBT acquisition angle was chosen. In this scenario, texture

129



Appl. Sci. 2020, 10, 6047

analysis in DBT has the potential to be an alternative to other quantitative techniques such as model
observer methods [16,17] for scoring and comparing DBT images. The approach used in this work
could be extended to other clinical parameters and it could have the possibility of reducing the
considerable effort of performing clinical studies with real human observers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/17/6047/s1,
Feature mathematical description S1: Short tutorial about relevant features calculations and descriptions.
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Featured Application: The proposed approach allows recovering the loss of quantification due

to Partial Volume Effect. This is an alternative post-processing method to the Recovery Coef-

ficient method, with the same limitations, but with the advantage of deriving theoretically the

dependencies of the parameters that describe the effect. With the proposed approach, the need

of measuring these parameters every time they change could be overcome.

Abstract: Quantitative analyses in nuclear medicine are increasingly used, both for diagnostic
and therapeutic purposes. The Partial Volume Effect (PVE) is the most important factor of loss of
quantification in Nuclear Medicine, especially for evaluation in Region of Interest (ROI) smaller
than the Full Width at Half Maximum (FWHM) of the PSF. The aim of this work is to present a new
approach for the correction of PVE, using a post-reconstruction process starting from a mathematical
expression, which only requires the knowledge of the FWHM of the final PSF of the imaging system
used. After the presentation of the theoretical derivation, the experimental evaluation of this method
is performed using a PET/CT hybrid system and acquiring the IEC NEMA phantom with six
spherical “hot” ROIs (with diameters of 10, 13, 17, 22, 28, and 37 mm) and a homogeneous “colder”
background. In order to evaluate the recovery of quantitative data, the effect of statistical noise
(different acquisition times), tomographic reconstruction algorithm with and without time-of-flight
(TOF) and different signal-to-background activity concentration ratio (3:1 and 10:1) was studied. The
application of the corrective method allows recovering the loss of quantification due to PVE for all
sizes of spheres acquired, with a final accuracy less than 17%, for lesion dimensions larger than two
FWHM and for acquisition times equal to or greater than two minutes.

Keywords: partial volume effect; quantitative analysis; point spread function; post-reconstruction-
correction-method

1. Introduction

Quantitative positron emission tomography/computed tomography (PET/CT) is
currently used as a diagnostic/prognostic tool and for assessing therapy efficacy. Quan-
tification in fluorodeoxyglucose (FDG) PET/CT is mainly performed using standardized
uptake value (SUV) [1]. Moreover, there is an increasing interest in deriving other quantita-
tive parameters such as the metabolic tumor volume (MTV) and the total lesion glycolysis
(TLG) [2].

It is well known that there are several sources of errors in SUV measurements, which
are usually even poorly standardized between institutions with different PET equipment.
Image reconstruction variability seems to have a prominent role in the unreliability of
quantitative assessment of PET images mainly because of improvements in PET technology,
which significantly affect SUV measurement. Thus, it has been reported that PET recon-
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structions including PSF compensation can increase SUVmax more than 66% in small nodal
metastases in breast cancer or for NSCLC [3,4].

Moreover, an international survey reported that 52% of PET centers use alternative
protocols with adapted reconstruction parameters. Additional complications arise consid-
ering the reconstruction variability between centers running similar systems. In fact, it
has been reported that site-specific reconstruction parameters increased the quantitative
variability among similar scanners [5,6].

The use of post-processing corrective methods could be a way to reduce this variabil-
ity in order to achieve a better harmonization of SUV measurements between different
PET centers.

In this context, quantitative parameters such as the SUV are strictly related to the
system spatial resolution performances.

Spatial resolution depends on the physics of PET imaging (positron range, collinearity,
scatter), on the detector design, and on the reconstruction method. All these factors lead to
some amount of blurring on the images, limiting the final spatial resolution of the system.

The finite spatial resolution affects the quality of the image and the correct estimation
of radioactivity concentration, which consequently causes difficulties in the application of
a quantitative approach in the evaluation of PET studies [7].

From a theoretical point of view, spatial resolution is defined as the Full Width Half
Maximum (FWHM) of the Point Spread Function (PSF) of the imaging system, which is
the description of the image response to a point source [8]. Once the PSF is defined for
the imaging system, the final image can be modelled as the real radioactivity distribution
convolved by the PSF of the imaging system.

The PSF of the PET system is responsible for the so-called partial volume effect (PVE),
which affects images both qualitatively and quantitatively [9].

The direct effect of the PSF on the image is due to the fact that the contribution of each
ideal point source of radioactivity is spread over a wider volume, i.e., the content of each
voxel is the sum of the contributions of neighboring point sources.

This can result in an overestimation of the object size, but also in an underestimation
of the real radioactivity concentration, because part of the signal from the source spills
out in the background (spill out effect), hence it is seen outside the actual source, as
well as, part of the background surrounding the source spreads into the source (spill in
effect). The combined effect depends by the source/background activity concentration
ratio and by the size of the source. Moreover, from a quantitative point of view, it becomes
particularly important when the target is smaller in comparison to the FWHM of the
imaging system [10].

In order to achieve an accurate quantification of the radioactivity concentration, PVE
has to be considered and compensated, especially in small structures. To date, several
techniques have been proposed to compensate for PVE, which are illustrated in details in
many papers and reviews [11–13].

The method proposed in this work can be included in the post-reconstruction cor-
rection methods applied at regional level. The method is based on the exact analytical
deconvolution of the PSF of the imaging system in the case of an activity distribution,
which consist of a single source with homogeneous activity, surrounded by a homogeneous
background. The method is experimentally tested by means of an IEC NEMA phantom
acquisition, and the results are shown and discussed.

2. Materials and Methods

2.1. Theory

In order to analytically describe how the real counts can be recovered from the image
counts, some basic assumptions have been made. Specifically, the method proposed here
takes into account only how the system PSF affects the PVE under ideal conditions of
uniform radioactive source surrounded by uniform background.
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Starting from these assumptions, the post-reconstruction PSF of a 1D PET imaging
system can be modeled as a normalized Gaussian function completely described by its
standard deviation σ:

PSF1D = (x, σ) =
1

σ
√

2π
e−

x2

2σ2 (1)

In a 1D case, a source uniformly distributed surrounded by a homogeneous back-
ground, can be then described by the following function:

S1D(x, l) =

{
s ∀ x ∈

[
− l

2 ; l
2

]
b outside

(2)

in which “s” is the source counts concentration, “b” the background counts concentration,
and “l” the source dimension. In this case, the image of the source (L1D, see Equation (3))
generated by the imaging system characterized by the PSF of Equation (1) is given by
the convolution product between the function that describes the source in a uniform
background and the PSF, i.e., the convolution between Equations (1) and (2):

L1D(x, l, σ) = S1D(x, l)× PSF1D(x, σ) (3)

The S1D(x,l) function that describes the source and the background together can
be further split into two factors (Equation(4)), related to the source and background,
respectively, S1D(x, l) = Ss

1D(x, l) + Sb
1D(x), where:

Ss
1D(x, l) =

{
(s − b) ∀x ∈

[
− l

2 ; l
2

]
0 outside

and Sb
1D(x) = b∀x ∈ [−∞; ∞] (4)

By considering the linearity properties of the convolution operator, it follows that:

L1D(x, l, σ) =
[
Ss

1D(x, l) + Sb
1D(x)

]
× PSF1D(x, l) =

Ss
1D(x, l)× PSF1D(x, σ) + Sb

1D(x)× PSF1D(x, σ) =

(s − b) 1
σ
√

2π

∫ l
2
− l

2
e−

(x−x′)2
2σ2 dx′ + b 1

σ
√

2π

∫ +∞
−∞ e−

(x−x′)2
2σ2 dx′

(s − b)I1D(x, l, σ) + b

(5)

in which the first integral of Equation (5) can be seen as the sum of two error functions (erf)
and it is indicated with I1D(x,l,σ) (Equation (6)), while the second one results 1. Therefore,
the I1D(x,l,σ) function can be written as:

I1D(x, l, σ) =
1
2

[
er f

(
x + l

2

σ
√

2

)
− er f

(
x − l

2

σ
√

2

)]
(6)

The average value of the counts concentration in the image (Cimage) can then be ob-
tained by integrating Equation (3), within the source bounds [−l/2;+l/2] and dividing by l:

Cimage =
1
l

∫ l
2
−l
2

L1D(x)dx = (s − b)H1D(l, σ) + b =

sH1D(l, σ) + b(1 − H1D(l, σ))
(7)

where H1D(l,σ) in Equation (7) describes the effect of the PSF on the image counts and can
be written as:

H1D(l, σ) =
1
l

∫ l
2

−l
2

L1D(x)dx =

∫ l
2
−l
2

I1D(x, l, σ)dx∫ l
2
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2

I1D(x, l, σ)dx
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2√
π
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−l2
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)
+ er f

(
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2

σ
√

2

)
(8)
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From Equation (7) and Equation (8) it is possible to obtain the value of the source
counts concentration s (see Equation (9)), as a function of the background counts concen-
tration b, Cimage and H1D(l,σ):

s =
1

H1D(l, σ)
Cimage − b

1 − H1D(l, σ)

H1D(l, σ)
(9)

Equation (9) shows that it is possible to quantify s from the knowledge of:

(1) the function H1D(l,σ), which is an analytic function of measurable parameters: the
dimension of the source and the σ of the image system’s PSF;

(2) Cimage directly measurable on the image space;
(3) b that, in the practice, can be evaluated considering a background region of interest

(ROI) away from the source (i.e., away with respect to the FWHM of the system’s PSF)
on the image space.

It is important to notice that:

(1) 0 ≤ H1D(l, σ) ≤ 1;
(2) 1

H1D(l,σ) is the factor which corrects the effect of loss of counts on the image space
inside the ROI (spill out);

(3) 1−H1D(l,σ)
H1D(l,σ) is the factor that corrects the effect of increase of counts on the image space

inside the ROI due to the background (spill in).

The proposed approach can now be generalized in a 3D ideal scenario (Equation (10)),
i.e., by considering a 3D source surrounded by a homogeneous background, which can be
described as:

S3D =
(

x, lx; y, ly; z, lz
)
=

{
s ∀(x, y, z) ∈

[
−lx

2 ; lx
2

]
;
[−ly

2 ; ly
2

]
;
[
−lz

2 ; lz
2

]
b outside

(10)

Since the PSF of the 3-D (three-dimensional) imaging system can be derived as:

PSF3D
(

x, σx; y, σy; z, σz
)
= 1

(σx ,σyσz)
√

8π3 e
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σ2
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σ2
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)
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(11)

it is easy to verify that:
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and
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From Equations (12) and (13), it is possible to derive Equation (14), which describes
the final 3D generalization of Equation (7) simply as:

s =
1

H1D(lx, σx)H1D
(
ly, σy

)
H1D(lz, σz)

Cimage − b
1 − H1D(lx, σx)H1D

(
ly, σy

)
H1D(lz, σz)

H1D(lx, σx)H1D
(
ly, σy

)
H1D(lz, σz)

(14)

2.2. Scanner and Phantom

A Discovery 710 PET/TC hybrid system (General Electric Company, Boston, MA,
USA) [14] was employed for images acquisition. The PET system collects data in three-
dimensional (3D) mode and can reconstruct images with or without time-of-flight technol-
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ogy (TOF) [15]. The CT system allows performing data attenuation correction and provides
morphological information through automatic image co-registration [16].

A standard NEMA IEC body phantom was adopted in this study [17,18]. The phantom
mimics the D-shape of an upper human body; it comprises a cylindrical insert in the center
of phantom and 6 fillable spheres of different sizes. The spheres are suspended in the
D-shaped cavity with the six centers placed on the same plane and with nominal inner
diameters of 10, 13, 17, 22, 28, and 37 mm. The nominal volume of the phantom is
9.7 L (±1%), excluding the volume of the six spheres.

2.3. Experimental Measurements

Two sets of acquisitions were performed in order to apply our correction model. First,
point source images were acquired to estimate the point spread function (PSF) of the
system [19,20] under different conditions, then, a series of acquisitions of the IEC phantom
under the same conditions were performed to test the recovery method.

2.4. Point Source Measurements

An 18 F-FDG point-like source was prepared with an activity of 0.1 mCi. The point-like
source was simulated using the needle of a syringe placed in air through a mechanical support.

The system PSF was evaluated under different conditions in order to match the IEC
NEMA phantom acquisitions. The measurements were performed by placing the source
at the center of the field of view (FOV) and a 5 cm off-center, in order to highlight any
anisotropies of the acquisition system.

The acquisitions were corrected for the attenuation, scatter, radionuclide decay,
dead time of the detectors, random coincidences, and detector normalization; 47 slices
were reconstructed with a matrix size of 256 × 256; the corresponding voxel sizes were
2.73 × 2.73 × 3.27 mm3. The acquisition and reconstruction parameters were the same as
the corresponding IEC phantom measurements described in the following paragraphs.

2.5. IEC Phantom Measurements

The volume of the NEMA phantom and the six spheres were filled with 18 F-FDG mixed
with pure water using two different signal-to-background (SBR) activity concentration ratio
(around 3:1 and 10:1). In order to obtain the concentration on the spheres and background
with accuracy, the following procedure was established: first, the initial activity was
measured through an activity calibrator (Atomlab 500 Dose Calibrator, Biodex, New York,
NY, USA); then, the concentration of the sphere was obtained by mixing the measured
activity with pure water and the spheres were filled through a precision syringe; finally,
the phantom (background) was filled with the remaining 18 F-FDG solution by adding
pure water in order to obtain the 3:1 and 10:1 SBRs. Special care was adopted in order to
ensure a proper homogeneity of the radioactive solution.

The final concentrations are reported in Table 1. Once the phantom was set up
and an accurate alignment with the FOV center achieved, a series of acquisitions were
performed in order to study the effect of different acquisition/reconstruction conditions on
the quantitative recovery model.

Table 1. This table reports the two final signal-to-background with the respective concentrations in
spheres and in background.

SBR Spheres (kBq/mL) Phantom Background (kBq/mL)

3.27 17.27 5.28
10.18 35.94 2.55

The main acquisition and reconstruction parameters are reported in Table 2. All
the data were corrected for the attenuation, scatter, radionuclide decay, dead time of
the detectors, random coincidences, and detector normalization. The complete details
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of the image reconstruction process are reported in Table 3. Both PET and CT images
were collected in DICOM (Digital Imaging and Communications in Medicine) format and
subsequently analyzed.

Table 2. Acquisition parameters for the phantom acquisitions.

Acquisition
Time (min)

Image
Matrix Size

Pixel Dimension
(mm2)

Slice Thickness
(mm)

Number of
Reconstructed Slices

1, 2, 4, 8 256 × 256 2.73 × 2.73 3.27 47

Table 3. Reconstruction parameters of the algorithm.

Reconstruction
Algorithm

Iteration Subs Gaussian Filter
Reconstruction
Enhancement

PET TOF VUE Point FX 3 iteration
24 subs 5.5 mm SharpIR

PET noTOF VUE Point HD 3 iteration
24 subs 5.5 mm SharpIR

2.6. Data Analysis

Images and data analysis were performed by means of in-house scripts running on
Matlab (The MathWorks, Inc., Natick, MA, USA) software package.

2.7. Point Spread Function Assessment

Images of the point source were employed to estimate the PSF of the system, which
was characterized by the standard deviation (σ), assuming a Gaussian profile [7]. The three
horizontal (x), vertical (y), and axial (z) profiles were extracted from the central region of
the image and a Gaussian fit was performed.

2.8. Segmentation Method

In order to study how the PVE quantitatively affects the image, the first step was to
determine the number of the counts (Cimage) inside each of the six spheres of the phantom
in the original image. Since the PVE alters the activity distribution making the contours of
the volume of interest (VOI) undefined, an ideal segmentation criterion was implemented,
using the geometrical information from the CT acquisition.

This criterion consisted of constructing a binary mask of six spherical VOIs with radii
R equal to the phantom spheres and centered on the x and y coordinates of their centers,
determined from the CT acquisition.

The discretization of the sphere brought to the problem that some voxels on the
boundary were partially included in the spherical VOIs. To overcome that, an inclusion
criteria has been chosen in such a way that only the voxels which have all the corners with
a distance from the coordinates of center less than the radius were considered inside.

These voxel completely included in the VOI have a unitary value, while a value of 0 is
assigned to the voxels outside the VOI.

In order to improve the accuracy of the segmentation, the image matrix of PET
acquisition were first resampled on a finer grid, i.e., each voxel was divided in smaller
voxels. The effect of the resampling on the counts was investigated, starting from the
original matrix (256 × 256 × 47) until a 1536 × 1536 × 282 matrix with unitary step.

A voxel by voxel product between the PET image matrix and the binary mask has
been calculated in order to select only the counts of the voxels corresponding to the interior
of the VOIs.
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2.9. Counts Recovery

Once the PSF of the system was characterized and the counts for the original im-
age (Cimage) in the six spheres of the phantom images obtained, the recovery formula
(Equation (14)) was applied in order to obtain the resultant counts (Crecover) and assess the
accuracy of the PVE correction method under different conditions.

The recovery after applying PVE correction, estimated as percentage difference be-
tween Cimage and Crecover was estimated for each comparison.

3. Results

With the purpose of evaluating the efficiency in PVE recovery, the method was applied
changing one parameter at a time:

1. to investigate the effect of quantum noise both on PVE and on the recovery: fixed SBR
and reconstruction algorithm, different acquisition time (1, 2, 4, and 8 min);

2. to investigate the effect of the reconstruction algorithm on the system PSF and PVE:
fixed SBR and same acquisition time (4 min), different reconstruction algorithm with
TOF (VPFXS) and without TOF (VPHDS) [15];

3. to investigate the effect of different source-to-background concentration ratio on
PVE: same acquisition time (4 min) and reconstruction algorithm, different SBRs (3:1
and 10:1).

3.1. PSF

The point-like source was acquired for all the different configurations above, collecting
the σ needed for the analysis that follows. The off-center measurements did not show
appreciable variations, hence we consider the σ values obtained at the center of the FOV.

Figure 1 reports an example for the 2 min acquisition and reconstruction method
with TOF correction. Each of the mono-dimensional data sets were fitted with a Gaussian
function, from which the standard deviations were obtained with confidence interval set
at the 95% level. The values were respectively 2.54 ± 0.01 mm, 2.76 ± 0.03 mm, and
3.31 ± 0.04 mm.

3.2. Resampling

The effect of resampling on the counts within the spheres is illustrated in Figure 2. The
x-axis reports the resampling factor where a factor of 1 represents the original image matrix
(256 × 256 × 47), while the maximum resampling resulted in a 1792 × 1792 × 329 matrix
with a corresponding factor of 7; the y-axis reports the counts ratio between the counts
obtained in the resampled image and the counts associated to the original image.

The accuracy in gain can be appreciated especially in the smallest sphere (“sphere
6” blue dots in Figure 2), where the counts on the resampled image are three times the
original ones.

As can be seen in Figure 2, the counts ratio increases with increasing the resampling
factor with an asymptotic behavior, which has been verified by fitting the data with the
function f(x) = a − b × cx and studying the horizontal asymptote (i.e., the a parameter).
Table 4 reports the asymptotes derived from the fit (with confidence level set at 95%) and
the count ratio obtained with a resampling factor of six (i.e., the factor adopted in the
following analysis, which corresponds to an image matrix of 1536 × 1536 × 282). The
counts ratios associated to a resampling factor of six were very close to the asymptote a
obtained from the fit. Moreover, a finer matrix of 1536 × 1536 × 282 respect to the original
one represents a good compromise between the accuracy in the counts recovery and the
increase in computation time. The increment from a resampling factor of six to seven was
below the 1.5%, but the computation time became three times higher.
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Figure 1. Horizontal (x), vertical (y), and axial (z) profiles extracted from the point-like source fitted with a Gaussian function.

Figure 2. Counts ratio normalized to the original counts at the increasing of the voxel division of the
starting matrix (256 × 256 × 47) for each sphere, marked in different color with different markers.
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Table 4. Parameters obtained by the fit with the function f(x) = a − b × cx. The a parameter represents the asymptote.

Spheres 1 2 3 4 5 6

a 1.16 ± 0.04 1.23 ± 0.01 1.23 ± 0.01 1.62 ± 0.04 1.95 ± 0.04 3.09 ± 0.09

Counts ratio for a resampling factor of 6 1.16 ± 0.01 1.23 ± 0.01 1.22 ± 0.01 1.63 ± 0.01 1.96 ± 0.01 3.07 ± 0.02

b 0.32 ± 0.03 0.54 ± 0.07 0.45 ± 0.06 1.90 ± 0.70 2.70 ± 0.80 4.50 ± 0.70

c 0.50 ± 0.03 0.42 ± 0.07 0.50 ± 0.07 0.30 ± 0.10 0.30 ± 0.10 0.46 ± 0.07

3.3. Evaluation of PVE Recovery

Figures 3–5 show the sphere-to-background counts concentration ratio as a function
of the spheres dimension for the different situations above. However, in order to underline
how the relationship between the dimension of lesions and the PSF of the imaging system
impacts on PVE, the x-axes are reported as the ratio between the diameter of the six spheres
and the σ of the system.

Figure 3. Comparison between the concentration ratio for the raw image (dotted lines) and the PVE
corrected image (continuous line) at different acquisition times, shown with different colors.

The sphere-to-background counts concentration ratio was calculated as the ratio
between the counts concentration in the spheres and in the background, which were
measured as the average over four circular ROIs chosen in areas and slices far from
the spheres.

Figure 3 illustrates the comparison in concentration ratio (y-axis) before and after the
application of the PVE recovery method at different acquisition times (1, 2, 4, and 8 min).

The SBR and the reconstruction algorithm VPFXS were fixed.
For each acquisition time, reported with the same colors, the smaller the lesion, the

greater results the underestimation of the concentration ratio. In particular, the concentra-
tion underestimation ranges from a minimum of 16% for largest spheres to a maximum of
66% for the smallest sphere.
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Figure 4. Comparison of the concentration ratio for the same acquisition time (4 min) between the
reconstruction with TOF correction, reported in red, and the one without TOF, reported in blue,
before (dotted line) and after (continuous line) the application of PVE recovery method.

Figure 5. Comparison for concentration ratio for SBR = 10.18 in light blue and SBR = 3.27 in violet.
For both acquisitions, acquisition time was fixed at 4 min and the reconstruction algorithm was
with TOF correction. The dotted lines represent the raw images, while the continuous ones the PVE
corrected images.
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Table 5 shows the percentage of recovery for all the spheres of the NEMA phantom for
all the acquisition time, highlighting the good PVE recovery for the biggest sphere, which
for all the acquisition time results in the range of ±3%.

Table 5. Comparison of percentage of recovery at different acquisition time for the six spheres of NEMA phantom, where
the dimensions are expressed as the ratio between the diameter of the six spheres and the PSF of the system.

l/σ 3.6 4.7 6.2 8.0 10.1 13.4

1 minraw −66 ± 2% −48 ± 2% −27 ± 2% −20 ± 1% −17.8 ± 0.8% −16.3 ± 0.5%

1 mincor −56 ± 2% −24 ± 2% +4 ± 2% +3 ± 1% +1.4 ± 0.9% −1.9 ± 0.6%

2 minraw −51 ± 2% −44 ± 1% −28.6 ± 0.9% −20.3 ± 0.7% −19.0 ± 0.6% −17.6 ± 0.5%

2 mincor −20 ± 2% −17 ± 1% +1 ± 1% +4.9 ± 0.8% +0.0 ± 0.7% +3.5 ± 0.5%

4 minraw −55 ± 2% −42 ± 1% −30.5 ± 0.9% −22.2 ± 0.7% −19.3 ± 0.6% −16.7 ± 0.5%

4 mincor −30 ± 2% −13 ± 1% −2 ± 1% +1.0 ± 0.8% +0.4 ± 0.7% −2.5 ± 0.6%

8 minraw −50 ± 2% −37 ± 1% −24.7 ± 0.9% −17.9 ± 0.7% −18.4 ± 0.6% −15.7 ± 0.5%

8 mincor −17 ± 2% −1.9 ± 1% +7% ± 1% +8.3 ± 0.9% +0.7 ± 0.7% −1.2 ± 0.6%

Figure 4 compares the concentration ratio with or without the TOF reconstruction for
the 4 min acquisition, showing that every reconstruction underestimates the theoretical
SBR, even if the TOF correction tends to have a proximity of 5% more than the NOTOF.

After the recovery method application (continuous line), the PVE compensation is
shown in Table 6.

Table 6. Comparison of percentage of recovery for the same acquisition time (4 min) between the reconstruction with TOF
correction and the one without TOF.

l/σ 3.6 4.7 6.2 8.0 10.1 13.4

TOFraw −55 ± 2% −42 ± 1% −30.5 ± 0.9% −22.2 ± 0.7% −19.3 ± 0.6% −16.7 ± 0.5%

TOFcor −30 ± 2% −13 ± 1% −2 ± 1% +1.0 ± 0.8% +0.4 ± 0.7% −2.5 ± 0.6%

NOTOFraw −55 ± 2% −45 ± 1% −33.3 ± 0.9% −26.5 ± 0.7% −21.4 ± 0.6% −20.1 ± 0.5%

NOTOFcor −31 ± 2% −19 ± 1% +7 ± 1% +4.6 ± 0.8% +3.3 ± 0.7% +6.8 ± 0.6%

Finally, Figure 5 illustrates the change in SBRs with the theoretical concentration ratio
of 3.27 and 10.19, maintaining unaltered the other parameters (acquisition time = 4 min
and TOF reconstruction).

For higher SBR, the underestimation of theoretical ratio concentration results almost
always greater, as shown in Table 7.

Table 7. Comparison of percentage of recovery for the different SBR. For both acquisitions, acquisition time was fixed at 4
min and the reconstruction algorithm was with TOF correction.

l/σ 3.6 4.7 6.2 8.0 10.1 13.4

SBR3raw −55 ± 2% −42 ± 1% −30.5 ± 0.9% −22.2 ± 0.7% −19.3 ± 0.6% −16.7 ± 0.5%

SBR3cor −30 ± 2% −13 ± 1% −2 ± 1% +1.0 ± 0.2% +0.4 ± 0.7% −2.5 ± 0.6%

SBR10raw −67.5 ± 0.6% −42.5 ± 1% −35.1 ± 0.2% −26.1 ± 0.2% −20.6 ± 0.1% −14.21 ± 0.07%

SBR10cor −28.7 ± 0.7% +9.4 ± 1% +4.9 ± 0.3% +6.7 ± 0.2% +5.5 ± 0.1% +6.27 ± 0.07%

4. Discussion

In this work, we developed a post-reconstruction method for the correction of the
PVE in PET images. Quantitative PET images are increasingly required for diagnostic
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(SUV) and therapeutic (committed dose in metabolic radiotherapy) purposes and radiomics
applications [21]. In general, post-processing corrective methods offer multiple advantages
with respect to those integrated into the reconstruction algorithm [19]:

(1) they do not need access to the reconstruction-code, which is practically impossible for
the standard user, and they can be easily used;

(2) they allow their application independently of the acquisition machine and, conse-
quently, can be used to standardize data from different sites, for example for multi-
center studies.

Our method is based on the theoretical calculation of the PVE effect caused by a
uniformly distributed source on a uniform background. The hypotheses on which it is
“exactly” valid are:

(1) uniform lesion on a uniform background
(2) ideal segmentation of the ROI (Region Of Interest), or by means of CT imaging

Its application is very simple, as it only needs:

(1) to measure the contribution of the background directly on the image;
(2) to know the PSF (Point Spread Function) of the acquisition system, acquiring a

linear or point source or taking the data directly from the NEMA post installation
quality assurance;

(3) to implement a simple analytical formula in a spreadsheet.

The limitations and the field of application of the method are identical to those present
in the well-known and used RC (Recovery Coefficient) method [22], but, unlike the latter,
it has the great advantage that the final formula has been obtained theoretically; therefore,
the final formula intrinsically contains the dependencies of the various parameters that
influence the PVE: size of the lesion, lesion/background concentration ratio, and FWHM of
the PSF of the system. For this reason, it is not necessary, as is the case for the RC method,
to measure experimentally these parameters every time they change.

The method was experimentally validated by acquiring an IEC NEMA PHANTOM,
which allowed to evaluate the recovery of the quantitative data by varying:

(1) the size of the lesions, filling spheres with a diameter of 10, 13, 17, 22, 28, and 37 mm.
(2) the signal-to-background activity concentration ratio (SBR); in particular we have

acquired the values of around 3:1 and 10:1, which covers the standard range of clinical
variation in terms of the lesion/background concentration ratio.

(3) the statistical noise, acquiring the same activity for different acquisition times (1, 2, 4,
and 8 min)

(4) the tomographic reconstruction algorithm, with and without TOF.

The method guarantees an excellent recovery of the quantitative data in the analyzed
conditions. Considering the sigma that characterizes the acquisition system, which is
around 2.5 mm (value measured experimentally), the PVE effect determines a loss of
counts greater than 50% and the corrective method allows to obtain accuracies of less than
17%, for lesion dimensions equal to or greater than 13 mm in diameter and for acquisition
times equal to or greater than 2 min. By increasing the acquisition time, substantial
improvements are not appreciated and this is an important and comfortable result, given
that an acquisition time of 2 min per bed is the standard clinical PET acquisition time.

Additionally, the application of TOF during the reconstruction algorithm inherently
reduces the effect of PVE and the application of the corrective method at this data allows
obtaining results that are even more accurate.

Finally, increasing the SBR, in general makes the effect of PVE to be more marked and
the accuracy of the corrected data is lower.

5. Conclusions

The proposed approach for the correction of the PVE is an alternative post-processing
method to the RC method; it has the same limitations, but the advantage of having
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theoretically included the dependencies of the parameters that describe the effect and
therefore to overcome the need of measuring these parameters every time they change

It represent a straightforward method to implement and adopt on every PET system.
Although its field of application is widespread, its limits are related to the fact that the
method is based on an “ideal” segmentation and does not take into account any inhomo-
geneities within the ROI considered; both of these aspects can be addressed using the same
formalism proposed in the theoretical part of Materials and Methods, and are the topics of
future works we are working on.
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Featured Application: The paper aim to propose an image-based parameter for response

prediction in cervical cancer.

Abstract: Background: Recent studies have highlighted the potentialities of a radiobiological
parameter, the early regression index (ERITCP), in the treatment response prediction for rectal cancer
patients treated with chemoradiotherapy followed by surgery. The aim of this study is to evaluate the
performance of this parameter in predicting pathological complete response (pCR) in the context of
low field MR guided radiotherapy (MRgRT) for cervical cancer (CC). Methods: A total of 16 patients
affected by CC were enrolled. All patients underwent a MRgRT treatment, with prescription of
50.6 Gy in 22 fractions. A daily MR acquisition was performed at simulation and on each treatment
fraction. Gross tumor volume (GTV) was delineated on the MR images acquired at the following
biological effective dose (BED) levels: 14, 28, 42, 54 and 62 Gy. The ERITCP was calculated at the
different BED levels and its predictive performance was quantified in terms of receiver operating
characteristic (ROC) curve. Results: pCR was observed in 11/16 cases. The highest discriminative
power of ERITCP was reported when a BED value of 28 Gy is reached, obtaining an area under curve
(AUC) of 0.84. Conclusion: This study confirmed ERITCP as a promising response biomarker also for
CC, although further studies with larger cohort of patients are recommended.

Keywords: MR-guided radiotherapy; predictive models; cervical cancer

1. Introduction

Cervical cancer (CC) represents one of the most common and severe female cancers. More than
500,000 new cases per year are diagnosed in the world and despite the significant therapeutic
improvements achieved in the recent years, the number of deaths per year ranges from 250,000 to
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350,000 [1–3]. The clinical management of CC involves different specialists, with the aim of tailoring
the treatment on the basis of the tumor staging [4].

According to the Fédération Internationale de Gynécologie et d’Obstétrique (FIGO) classification,
stage IB2-IVA patients are considered as locally advanced cervical cancer (LACC). The standard of care
for these patients is represented by neoadjuvant chemoradiotherapy (nCRT) followed by brachytherapy
boost, with the primary aim of organ preservation [5].

Despite the good results in terms of overall survival and local control achieved through this
approach, alternative approaches have been investigated in the scientific community to further reduce
the rate of treatment failure [6,7].

In this context, some experiences have reported the advantage to administer neo-adjuvant external
beam radiotherapy with concomitant chemotherapy followed by radical surgery, aiming to remove the
residual tumor foci resistant to the previous treatment and reporting favorable rates of local control
and disease-free survival, with acceptable acute and long-term toxicity profiles [8–10].

The response to nCRT followed by surgery is quantified on the basis of the histological evaluation
of the surgical specimen: Pathological complete response (pCR) is achieved when no residual tumor
foci are present.

Clinical experiences reported pCR rates of about 50% for LACC patients undergoing nCRT,
also observing that the pCR status is associated with higher rates of long-term and disease-free
survival [11–14].

Regardless of the clinical approach adopted, there is growing interest towards the identification
of treatment response predictors, to move towards a more personalized clinical approach,
avoiding unnecessary surgical procedures in patients with high probability of pCR or modifying the
clinical management in the case of poor responders.

Different models have been proposed in literature to predict treatment response in CC, some of
them including only clinical data, others combining also image parameters extracted from magnetic
resonance (MR) or computed tomography (CT) images acquired at disease staging [15–18].

Magnetic resonance imaging (MRI) is considered the elective imaging modality for diagnosis
and staging of CC and the recent development of hybrid MRI-radiotherapy systems, combining a
linear accelerator with an on-board MR scanner, may represent a significant step-forward in the clinical
management of this disease, as demonstrated by some preliminary experiences [19–21].

The availability of daily MR images leads to the possibility to define image-based predictive
models able to study the patient treatment sensitivity by means of the analysis of the MR images
acquired during the course of treatment.

In this context, a radiobiological parameter able to predict the treatment response in the locally
advanced rectal cancer has been recently proposed and validated, modelling the tumor shrinkage
during the first weeks of nCRT treatment through a statistical approach. This parameter, known as
early regression index (ERITCP), combining the tumor volume measured on the MR images acquired at
simulation and at mid-therapy, is able to identify the patients who will have complete response with
high AUC value on low and high field MR images [22,23].

Aim of this hypothesis generating study is to evaluate the applicability of this parameter in the
context of response of nCRT in CC, quantifying its performance in predicting pCR by using MR images
acquired using a low field MR-guided radiotherapy unit [24].

2. Materials and Methods

2.1. Patients Selection Criteria and Treatment Workflow

Patients affected by LACC (FIGO IB2-IVA) were enrolled in this study, with the following inclusion
criteria: Patients affected by biopsy proven LACC with no evidence of distant metastases at the
radiological staging exams; Eastern Cooperative Oncology Group (ECOG) performance status ≤2,
no pregnancy or breastfeeding at the moment of nCRT and at least 18 years old at the time of diagnosis.
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Informed consent for therapy and image analysis purposes was acquired from all patients.
Patients presenting clinical contraindications to MRI (e.g., presence of non MRI-compatible implanted
devices, claustrophobia or major psychiatric disorders) or denying specific consent to MR guided
radiotherapy (MRgRT) were not included.

The diagnostic workflow consisted in a gynecological exam, a diagnostic 1.5 T MR of the
abdominal-pelvic site and a whole-body 18FDG-positron emission tomography (PET)-CT staging scan.

All the patients underwent nCRT, combining weekly 40 mg/m2 of cisplatin with concurrent
MRgRT, administered using a simultaneous integrated boost (SIB) technique delivered in 22 fractions
and prescribing a dose value of 50.6 Gy (2.3 Gy/fraction) to clinical target volume (CTV)1 and 39.6 Gy
(1.8 Gy/fraction) to CTV2 [20].

All the patients signed a specific informed consent describing in detail the chosen
therapeutic approach.

Radiotherapy was delivered using a 0.35 T MRgRT hybrid unit (ViewRay Inc., Mountain View,
CA, USA) and therapy volumes were delineated on the 0.35 T TRUFI MR scan acquired during
treatment simulation and using co-registered diagnostic 1.5 T staging MR and 18FDG PET-CT images
as supporting imaging.

The Gross Tumor Volume (GTV) was identified using the MR and PET-CT supporting images.
CTV1 coincided to GTV and CTV2 was delineated as the union of the entire cervix, the uterus,
parametria, vagina (entire or upper half, according to presence or absence of disease) and the
corresponding drainage nodal.

If the pelvic nodes resulted positive at staging imaging, the common iliac nodes were included
in the CTV2 volume, while the para-aortic nodes were included in case that the common nodes
were positive [20]. CTV1 and CTV2 were expanded with 5 mm isotropic margin to generate the
corresponding planning target volumes, following the institutional MRgRT guidelines [21].

An online adaptive procedure was administered in the treatment fractions where the positioning
MR image showed that the GTV was not included in the Planning Target Volume (PTV) margins. GTV,
PTV, bladder, bowel bag and rectum were re-contoured in case of online adaptive.

From six to eight weeks after the end of the treatment a restaging was performed, through
a gynecological visit and a new MRI and 18FDG PET-CT acquisition. A Querleu–Morrow radical
hysterectomy with pelvic lymphadenectomy was performed for each patient within 8 weeks of the
end of nCRT [8].

Pathological response to treatment was evaluated on surgical specimens, and three categories of
treatment response were identified:

� Complete response (pR0), as absence of any residual tumor cells at any site;
� Microscopic response (pR1), as presence of persistent tumor foci not exceeding 3 mm for the

maximum dimension;
� Macroscopic response (pR2), as presence of persistent tumor foci exceeding 3 mm for the

maximum dimension

pCR was considered in case of pR0 [25].

2.2. MRI Imaging Protocol and ERITCP Definition

A total of 16 patients were enrolled: All of them underwent a MRI protocol consisting of the
acquisition of a T2/T1-weighted MR image each day of therapy (including simulation), acquired using
a true fast imaging with steady state precession (TrueFISP) sequence [26].

Images were acquired using the 0.35 T on-board MR scanner integrated into the MRIdian system
(ViewRay Inc, Mountain View, CA, USA), with a spatial resolution of 1.5 mm3 and acquisition time
of 175 s.

For the purposes of this study, the GTV was retrospectively delineated by two radiation oncologists
with gynecological cancer expertise, blinded with respect the outcome of therapy.
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Figure 1 shows a MR image sample with the tumor delineated at the simulation and at 10th day
of therapy.

 

Figure 1. Gross tumor volume (GTV) delineated on simulation imaging and at fraction 10 in axial (A)
and (B) and sagittal plan (C) and (D).

2.3. ERITCP Definition and Performance Evaluation

According to the original definition, the early regression index was calculated as follows [23]:

ERITCP = −ln

⎡⎢⎢⎢⎢⎣
(
1−

(
Vther
Vpre

))Vpre
⎤⎥⎥⎥⎥⎦

where Vpre is the GTV volume calculated on the MR image acquired during simulation and Vther
represents the volume measured on the MR images acquired during the MRgRT treatment.

To identify the optimal time for pCR prediction, GTVs were delineated on MR images acquired at
different fractions, and the ERITCP was calculated at different dose levels. The physical dose values
were converted in biologically effective doses (BED) to make generalizable the results, using the
following formula:

BED = nd

⎛⎜⎜⎜⎜⎝1 +
d
α
β

⎞⎟⎟⎟⎟⎠
where d is the dose per fraction, n is the number of fractions and α/β is the ratio representative of the
tumor radio sensitivity, set equal to 10 Gy [27].

ERITCP was then calculated at the following BED values: 14, 28, 42, 54 and 62 Gy.
The ERITCP performance in identifying pCR patients was evaluated calculating the area under

curve (AUC) under the receiver operating characteristic (ROC) curve for each dose level, estimating
also the 95% exact binomial confidence interval according to the Clopper–Pearson method [28].

For each ERI index calculated, the Youden index (J) was also calculated at different threshold
levels, and the one maximizing J was considered as best cut-off level.
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The performance of the different ERITCP indices at the best cut-off level was then quantified
considering specificity and sensitivity. The same analysis in terms of ROC curve was performed for
the tumor volume calculated at simulation.

The BED value where the ERITCP reported the higher AUC value was identified as the optimal
BED level to predict pCR. The ROC curves calculated at different BED values were then compared
using the DeLong’s test for correlated ROC curves [29].

Lastly, the robustness of ERITCP against inter-observer variability in tumor delineation was tested,
comparing the volume of the contours independently delineated by the two radiation oncologists
using the Mann–Whitney test for paired samples and the intra-class correlation index (ICC) [30,31].
The whole statistical analysis was performed using various software packages implemented in
R environment [32,33].

3. Results

The clinical characteristics of the patients enrolled in this study at diagnosis and after surgery are
reported in Table 1.

Table 1. Clinical information of the patients enrolled in the study.

Clinical Characteristics Cases (Percentage)

Histology at the diagnosis

� Squamous cell carcinoma
� Clear cell adenosquamous carcinoma

15 (94%)
1 (6%)

FIGO Stage at the diagnosis

� IIA
� IIB
� IIIC1

5 (31.3%)
10 (62.5%)
1 (6.2%)

Nodal status

� cN0
� cN1

5 (31.3%)
11 (68.7%)

Pathological Response

• pR0
• pR1
• pR2

11 (68.7%)
3 (18.8%)
2 (12.5%)

The median age of the patients at the diagnosis was 50.2 years (range 32–84 years), while pCR was
achieved in 11/16 patients leading to a pCR rate of 68.7%. Table 2 summarizes the treatment fractions
analyzed, with the corresponding physical and biological doses [34].

The median tumor volumes obtained by the two observers with the corresponding ranges and
the results of the inter-observer analysis (p-value of Mann–Whitney test and ICC) are summarized in
Table 3, to varying of the BED levels in Table 3.

High absolute agreement was observed in the GTV delineations performed by the two observers
for all the different investigated time points, reporting no statistically significant differences in terms of
Mann–Whitney test and high values in terms of ICC.
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Table 2. Analyzed fractions and corresponding physical and biological biologically effective doses
(BED) values, considering an α/β equal to 10 Gy for the tumor.

ERI Fraction Physical Dose BED

ERI14 Gy 5 11.5 Gy 14.1 Gy

ERI28 Gy 10 23 Gy 28.3 Gy

ERI42 Gy 15 34.5 Gy 42.9 Gy

ERI54 Gy 19 43.7 Gy 53.8 Gy

ERI62 Gy 22 50.6 Gy 61.7 Gy

Table 3. Results of inter-observer variability to varying of the different BED levels.

BED
Median Tumor Volume (cc)

p-Value (Mann–Whitney) ICC
Observer 1 Observer 2

0 Gy
(Simulation)

50.5
(7.4–243.6)

45.9
(10.4–259.3) 0.13 0.99

14 Gy 33.7 (6.3–173.4) 33.1 (8.5–155.5) 0.57 0.98

28 Gy 25.8 (4.3–122.3) 21.5 (8.1–108.4) 0.18 0.98

42 Gy 22.2 (4.0–84.5) 20.0 (7.0–72.9) 0.23 0.96

54 Gy 14.7 (3.4–60.8) 33.1 (3.5–59.6.5) 0.53 0.95

62 Gy 11.6 (1.5–50.2) 13.0 (2.6–51.7) 0.32 0.97

The ERITCP was calculated at the different BED levels considering the contours of both observers
and its ability in predicting treatment outcome was quantified by means of the ROC curves, as reported
in Figure 2.

Figure 2. Receiver operating characteristic (ROC) curves calculated at different BED levels considering
the two observers.
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The ROC curves comparison performed using the DeLong test has reported no significant
difference in the predictive performance of ERITCP to varying of the observer for all the BED levels
analyzed. In particular, a p-value of 0.41 was obtained comparing the ROC curves in case of 14 Gy,
p = 0.77 in case of 28 Gy, p = 0.74 in case of BED = 42 Gy, p = 0.63 for BED = 54 Gy and p = 0.42 for
BED = 62 Gy.

The values in terms of predictive performance obtained for ERITCP to varying of the BED levels
are reported in Table 4.

Table 4. Indicators of the predictive performance of the early regression index (ERITCP) index in the
case of cervical cancer at different BED levels.

BED AUC (95% CI) Best Cut-Off Sensitivity Specificity Youden Index

14 Gy 0.80 (0.51–1) 149.5 90.9 80 0.71

28 Gy 0.84 (0.58–1) 96.0 90.9 80 0.71

42 Gy 0.80 (0.53–1) 54.0 90.9 80 0.71

54 Gy 0.74 (0.47–1) 31.5 90.9 60 0.50

62 Gy 0.78 (0.53–1) 16.4 81.8 80 0.62

The values of sensitivity and specificity in Table 4 are referred to the discrimination obtained
when the best threshold is considered. Figure 3 reports the values of the ERITCP to the BED values
showing the highest predictive performance (BED = 28 Gy) considering the two observers.
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Figure 3. ERITCP values calculated at the most significant BED level for both observers (one column
the highest predictive performance (BED = 28 Gy), no significant difference was observed using the
DeLong’s test (all p-values were >0.05).

As regards the tumor volume at simulation, an AUC value of 0.80 (0.57–1) was obtained, with no
significant difference with respect the ROC curve calculated at BED = 28 Gy.

4. Discussion

This study investigated the use of ERITCP as pCR predictor in CC patients undergoing nCRT,
analyzing MR images acquired using a low field MRgRT unit.

Being a morphological parameter, ERITCP can predict the response to nCRT by modelling the
tumor volumetric regression during the treatment, simply using the information due to the volumetric
variation of the tumor during the therapy: This makes ERITCP easy to use and generalizable to MR
images acquired using different techniques and imaging parameters, as already demonstrated in the
framework of rectal cancer [22,23,35].

One of the peculiarities of this study is represented by the possibility to correlate image-based
parameters directly to histopathological data, being quite uncommon in the context of CC, as generally
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the patients affected by this disease are addressed to brachytherapy and not to surgery, not allowing
comparisons with histopathological ground truth.

The limited dimension of the population analyzed in this hypothesis generating study does
not allow to draw definitive conclusions regarding the clinical use of this index, although it is
interesting to observe that the predictive performance of this parameter is high and persists between
independent observers.

The highest ERITCP performance in predicting pCR was observed when a BED value of 28 Gy was
reached, with an AUC of 0.84, a sensitivity of 0.91 and a specificity of 0.8: The high value of sensitivity
reported by this index may allow to successfully identify the patients that will undergo complete
response since the second week of nCRT, avoiding unnecessary overtreatments and paving the way
towards effective treatment personalization.

Although the DeLong’s test did not report statistically significant differences between the ROC
curves calculated at different timings (probably due to the reduced number of cases analyzed), it is
interesting to observe that the most significant ERITCP timing identified for CC is the same observed
for rectal cancer, regardless the obvious biological and histological differences that make the shrinkage
pace not comparable in the two scenarios: This could be one of the reasons why the threshold value
identified as best-cut off (96) is very different from the value of 13 observed in the rectal cancer
experience [22,23].

A second study including an external cohort of patients is therefore recommended to validate the
findings reported in this preliminary experience and confirm the most suitable timing and BED value.
Unfortunately, the collection of homogeneous cohorts of patients affected by CC and undergoing nCRT
will be particularly challenging, as most of these patients are generally addressed to brachytherapy,
according to international guidelines [5].

5. Conclusions

This hypothesis generating study demonstrated that the use of the ERITCP can be extended to the
context of CC, maintaining high levels of discriminative performance.

If validated on larger cohort of patients, the use of this index can represent a valuable tool to
personalize the treatment strategy in the context of the CC, moving towards the anatomical and
functional preservation of the irradiated tissues.
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Abstract: The ongoing COVID-19 pandemic currently involves millions of people worldwide. Radi-
ology plays an important role in the diagnosis and management of patients, and chest computed
tomography (CT) is the most widely used imaging modality. An automatic method to characterize the
lungs of COVID-19 patients based on individually optimized Hounsfield unit (HU) thresholds was
developed and implemented. Lungs were considered as composed of three components—aerated,
intermediate, and consolidated. Three methods based on analytic fit (Gaussian) and maximum
gradient search (using polynomial and original data fits) were implemented. The methods were
applied to a population of 166 patients scanned during the first wave of the pandemic. Preliminarily,
the impact of the inter-scanner variability of the HU-density calibration curve was investigated.
Results showed that inter-scanner variability was negligible. The median values of individual thresh-
olds th1 (between aerated and intermediate components) were −768, −780, and −798 HU for the
three methods, respectively. A significantly lower median value for th2 (between intermediate and
consolidated components) was found for the maximum gradient on the data (−34 HU) compared to
the other two methods (−114 and −87 HU). The maximum gradient on the data method was applied
to quantify the three components in our population—the aerated, intermediate, and consolidation
components showed median values of 793 ± 499 cc, 914 ± 291 cc, and 126 ± 111 cc, respectively,
while the median value of the first peak was −853 ± 56 HU.

Keywords: Covid-19; chest CT; lungs; HU density

1. Introduction

Severe acute respiratory syndrome coronavirus (SARS-CoV-2), a novel RNA coron-
avirus from the same family as SARS-CoV and Middle East respiratory syndrome coro-
navirus (MERS-CoV), was identified in early January 2020 as the cause of a pneumonia
epidemic initially striking China, from where it spread very rapidly around the world. The
World Health Organization named the syndrome coronavirus disease 2019 (COVID-19)
and subsequently declared it a pandemic, given its widespread infectivity and high rate of
contagion. To date, many millions of cases have been confirmed worldwide [1]. Human
coronaviruses typically cause respiratory and enteric infections. SARS-CoV-2 infection
mainly presents flu-like symptoms such as fever, cough, and fatigue, similar to other
coronaviruses. In severe cases, the virus can cause severe interstitial pneumonia, acute
respiratory distress syndrome (ARDS), and subsequent multi-organ failure, responsible for
severe acute respiratory failure and high mortality rates.

Appl. Sci. 2021, 11, 1238. https://doi.org/10.3390/app11031238 https://www.mdpi.com/journal/applsci
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Chest CT plays an important role in diagnosing COVID-19 [2]. Recent studies have
reported the sensitivity and specificity of CT in COVID-19 pneumonia to be 60–98% and
25–53%, respectively [3,4]. A recent study reported positive and negative predictive values
of chest CT in COVID-19 pneumonia of 92% and 42%, respectively [3]. The low negative
predictive value suggests that CT may not be suitable as a screening method in COVID-19
pneumonia, at least in the early stages of the disease. CT sensitivity depends on the time
elapsed after the onset of symptoms [5], and CT findings vary widely for this disease,
depending on clinical severity and the time from symptom onset [6,7]. The disease most
commonly affects the lower and peripheral areas of both lungs, with a prevalent multifocal
pattern [8]. The posterior areas are affected in about 80% of cases, and the disease is
generally quite extensive, with all five lobes affected in a large proportion of patients [9].
Although irregular multifocal distribution is more common than diffuse disease [8], both
unilateral and unifocal involvement may occur.

Ground glass opacity (GGO) is defined as a hyper-attenuated area of the lung without
darkening of the underlying vessels, and is typically caused by partial filling of the air
spaces or interstitial thickening [10]. GGO appears to be the most common CT finding, ob-
served in up to 98% of patients, and is usually the first manifestation [11,12]. It may or may
not be accompanied by other findings, in particular consolidation and reticulation [9]. Con-
solidation is defined as a hyper-attenuated area with darkening of the underlying vessels,
caused by the complete filling of the alveolar air spaces [10]. Consolidations are generally
irregular, while round-shaped lesions have been reported in 11–54% of patients [13], and
are considered to be relatively more specific for this disease [14]. Consolidation usually
appears later than GGO and peaks in days 10 to 12 after the onset of the disease [6]. Retic-
ulation is defined as thickened interlobular septa and intralobular lines that appear as
linear opacities on CT [10], and was the third most common CT feature, after GGO and
consolidation, with a rate of 48.5–59% [8]. Crazy paving pattern (CPP) is defined as thick-
ened interlobular septa or intralobular lines superimposed on GGO, resembling paving
stones [12]. This finding may refer to alveolar edema and acute interstitial inflammation,
also present in severe acute respiratory syndrome (SARS). It has been reported in 5–36% of
patients with COVID-19 pneumonia [12].

Several recent works have evaluated the correlation between quantitative features
extracted from CT and the clinical outcome of patients with COVID-19 pneumonia. Few
articles have dealt with the prediction of disease severity and short-term disease progres-
sion [15–17]. Other authors have developed predictive models of diagnosis and prog-
nosis [18–22]. Artificial-intelligence-based approaches have been shown to significantly
improve sensitivity and specificity in diagnosing COVID-19 pneumonia; machine learning
approaches using convolutional network models have found promising results in distin-
guishing COVID-19 from other types of pneumonia [23–25]. This volumetric calculation
reflects disease extension, and can be used in predicting disease severity, progression, and
response to treatment [26–28].

Within this context, the reliability and repeatability of lung sub-volumes according to
their density is a significant issue. The need for operator-independent approaches, possibly
defining sub-regions with a clear link to functional meaning, is urgent. Thus, the principles
aims of our study were:

1. To develop an automated, operator-independent quantitative method to identify
the different lung regions for COVID-19 patients, based on individually optimized
Hounsfield unit (HU) thresholds; the proposed method is based on an intuitive, inter-
pretable phenomenological characterization of lungs, with clear functional meaning;

2. To achieve a feasible implementation of the proposed method in such a way as to be
potentially usable by other institutions;

3. To demonstrate the robustness of the method with respect to inter-scanner variability
within a single institute;
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4. To report inter-patient distribution of the HU-based parameters extracted by our
approach over a large single-center population of 166 patients during the first wave
of the pandemic.

2. Materials and Methods

2.1. Patient Database

The data used in this work are part of an internal database of the San Raffaele Scien-
tific Institute (Milan, Italy). The database consists of more than 250 COVID-19 patients
who underwent chest CT scan between 28 February 2020 and 21 May 2020. CTs were
performed at maximum inspiration. Demographic data (age, sex) and clinical data (e.g.,
comorbidities) are available for each patient. Patients who presented an acquisition made
with parenchyma reconstruction in non-contrast mode were selected from the database.
The database thus obtained consisted of 166 COVID-19 patients. The number was in fact
limited by the availability of observers in contouring lungs, which is a quite cumbersome
procedure. The significant, temporary reduction of radiotherapy clinical activities during
the first phase of the lockdown afforded more time to planners for this activity. Patients
were randomly chosen from the largest available set. After a return to full activity, the
time available was greatly reduced, and it was thus decided to stop the contouring phase,
resulting in a more than sufficient number of patients to test our approach and from whom
to derive reliable population data. The equipment used for chest CT scans was as follows:

• Lightspeed VCT (64sl), General Electric Medical System(Boston, MA, USA);
• Brilliance (64sl), Philips (Amsterdam, Netherlands);
• Incisive (64sl), Philips (Amsterdam, Netherlands).

88% percent of the exams were performed with Lightspeed, 7% with Brilliance and
5% with Incisive. All scans were performed with an X-ray tube voltage of 120 kV and
automatic current modulation of 149 to 549 mA, slice thickness 1 to 1.25 mm, and matrix
512 × 512. CT images were retrieved from the hospital picture archiving and communica-
tion system (PACS).

2.2. Assessing Inter-Scanner Variations of HU-Density Calibration Curves

Accurate and reproducible assessment of Hounsfield unit (HU) [29] distribution within
the lungs is of paramount importance. The values of the HU of the CT images depends
on the calibration curve internal to each equipment (HU as a function of the attenuation
coefficient of the materials). For verification, we investigated the impact of the HU-density
calibration curves obtained with the parameters used in the image acquisition phase of
the CT equipment utilized. To assess the impact of the calibration curves, the acquisition
parameters of COVID-19 patients we analyzed, and the specific protocol calibration curves
reconstructed for all CT scanners used. For the study description, tube voltage and X-ray
current were collected from the header DICOM (Digital Imaging and COmmunications in
Medicine) of the CT image in the available database. Tube voltage was set at 120 kV for
all CT scans, while the X-ray current was modulated according to patient size. The data
were divided for each piece of equipment—the median values of the X-ray current for each
device were calculated; regarding GE LightSpeed (used for 88% of patients), the values of
the minimum, the maximum, and the first and the third quartile were also calculated, as
shown in Table 1.

These parameters were used to perform acquisitions with the calibrated CT image
quality phantom, Catphan 600—The Phantom Laboratory, Battenville, NY, USA, in the
entire HU range (−1000 to +1000). A tube voltage of 120 kV and the median value of X-ray
current for each piece of equipment was used for the exposition of the Catphan phantom.
Moreover, for the General Electric equipment, the first and third quartiles were also used
as exposure parameters. The Catphan consists of an inner layer containing several inserts
of different materials corresponding to different attenuation coefficients. Knowing the
attenuation coefficients of these materials, and measuring the average HU values inside
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each insert, it was possible to obtain the characteristic linearity curve of the equipment at
the exposure parameters selected in the acquisition phase.

Table 1. Schematic of the CT chest present in the database based on the equipment used, the number of patients, and the
voltage and current range.

Equipment Number of Patients Voltage (kV)
Current (mA)

Range Median 1st Quartile 3rd Quartile

Lightspeed 146 120 149–549 352.5 219.5 451.5
Brilliance 12 120 240–500 458.5 - -

Incisive 8 120 189–368 334 - -

Five repeated measurements were carried out for each scanner, and each X-ray current
value considered. The average HU value was used to calculate the linearity curve for
each insert.

Consequently, for Philips Brilliance and Philips Incisive, a single calibration curve was
obtained, relative to the median value of the current used for the patient scans carried out
on each. For the GE LightSpeed, five calibration curves were obtained, corresponding to
the minimum, maximum, 25th quartile, 50th quartile (median), and 75th quartile values. A
region of interest (ROI) was selected within each Catphan insert. Using the ImageJ image
processing software, the mean value and standard deviation of the HU values within the
ROI were evaluated. The variation in the average HU values within each ROI was then
calculated between the various acquisitions taken.

2.3. HU-Density Histograms

The first step in the implementation of a method for lung characterization in COVID
patients is the accurate identification of the entire lung area. CT acquisitions of the 166
COVID-19 patients considered were initially analyzed, and the 332 lungs were manually
segmented by a team of planners from the San Raffaele Scientific Institute (Milan, Italy)
skilled in the manual segmentation of CT images for radiotherapy planning purposes.
The contouring tool of the Eclipse software (Varian Medical System, Inc. Palo Alto, CA,
USA) was used for the manual segmentation of the lungs. Both the aerated component
and the component affected by COVID pneumonia were included within the contours
thus identified. Right and left lungs were delineated separately for each patient. Since
the original dimensions of CT voxels vary depending on the equipment used, CT images
were resampled with an isotropic 1.5 × 1.5 × 1.5 mm3 voxel size, in order to reduce the
impact of the different CT voxel dimension used during the acquisition. The original lung
contours were overlaid on the resampled images, without any significative differences. The
consistency of the contours was checked on a sample of patients by two skilled radiologists.
On the other hand, “little” inter-observer variations in lung contouring are not expected
to significantly influence our approach, as the threshold values were well away from the
inferior and superior HU limits and identifying internal volumes. All procedures regarding
the resampling at cubic voxel and the analysis of the resampled images to extract lung
HU-density histograms were performed with a specific workflow designed with the MIM
software [30]. Each HU-density unit was associated with the number of voxels having that
HU-density value; this was performed for each individual lung.

2.4. Threshold Definition Methods

Considering the typical HU-distribution, lungs may be divided into three regions: the
aerated component, the consolidated component and an intermediate component. The HU
density of the lungs of COVID-19 patients is generally characterized by the presence of
two peaks with a shape similar to that of a Gaussian curve, as shown in Figure 1, one next
to the air HU (−1000 HU) which defines the aerated, and therefore “properly” functioning,
lung; and one next to the water HU (0 HU) [29] corresponding to the lung component with

160



Appl. Sci. 2021, 11, 1238

consolidated disease. Between these two peaks there is a quite evident and pronounced
region with highly variable patterns from patient to patient. This region corresponds to the
component of the lung affected by the disease, but not yet scarred, and mostly includes
ground glass opacities (GGO) and crazy-paving regions. The corresponding region in the
HU distribution plot often has a plateau-like trend, while in most cases it is characterized
by a bell shape. Taking into account the shape of the HU-density distributions, different
strategies were followed to individually define the best threshold values for distinguishing
the different lung components.

Figure 1. Examples of Hounsfield unit (HU)-density histograms. The histograms shown correspond to the lungs of the
same patient; in particular, (a) is the histogram relating to the right lung and (b) is the histogram relating to the left lung.

The first method consisted of parameterizing the distribution of the HU densities of
the individual lungs with a curve given by the linear combination of three Gaussian curves,
and considering the half-width half-maximum of the curves to assess the thresholds.
This method was named the “Gaussian method”. The three Gaussians used in the fit
corresponded to the three lung components (see Figure 2). The resulting function used for
the fit was as follows:

f it(x) = a1× exp

(
−
(

x − b1
c1

)2
)
+ a2× exp

(
−
(

x − b2
c2

)2
)
+ a3× exp

(
−
(

x − b3
c3

)2
)

where:

• x are the values of the densities HU;
• a1, a2, and a3 are the multiplicative coefficients of the Gaussians;
• b1, b2, and b3 represent the mean values of the Gaussians;
• c1, c2, and c3 are related to the standard deviation from the relation c2 = 2σ2;

• Subscript 1 refers to the Gaussian related to the aerated component;
• Subscript 2 refers to the Gaussian related to the intermediate component;
• Subscript 3 to the Gaussian related to the consolidated component.
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Figure 2. (a–d) Examples of HU-density histogram fit. Each plot shows the overall fit and the three Gaussians that
compose it.

Concerning the fit, it was imposed that the search for peaks corresponding to the
aerated and consolidated components would start from the HU-density values typical of
air (−1000 HU) and water (0 HU), respectively. The standard deviation σ of the individual
Gaussians was obtained from the fit and used to determine the thresholds. The thresholds
were given by the following relations:

th1 = b1 + σ1

th2 = b3 − σ3

where:

• th1 is the value of HU that separates the aerated component from the intermediate one;
• th2 is the value of HU that separates the intermediate component from the consoli-

dated one;
• b1 and b3 are the mean values of the Gaussians and σ1 and σ3 are the relative

standard deviations.

All fits were realized with a Matlab script using the cftool for the curve fitting. The fit-
ting method used was the non-linear least squares with the least absolute residual method.

The second method was the maximum gradient “on the fit”. With this approach the
proper inflection points of the curve were found by looking at the points where the second
derivative of the curves was 0.

The third method used was similar to the previous one, without considering the
Gaussian fit but directly using the original data. This method was identified as maximum
gradient “on the data”. The frequency values of the individual HU densities were jagged,
and thus had many inflection points. Therefore, in order to apply the maximum gradient
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method, it was necessary to post-process the distributions of the HU densities. First, a
rebinning of the data to 25 HU was performed; the values obtained were then interpolated,
and a smooth function applied (see Figure 3). At this point it was possible to apply the
maximum gradient method, as in the case of the fit function, and find the threshold values.

Figure 3. (a–d) Examples of post-processed HU-density histograms.

For each of the three methods, the individual thresholds for each lung and the median
values over the whole population were extracted.

The threshold values individually obtained with the three methods were then com-
pared by means of Kuskall–Wallis tests. Summary statistics of the different lung compo-
nents and their relative ratios were also reported focusing on the third method, which
was found to be the most stable in defining th2 (including visual inspection by two expert
radiologists of 30 sample patients).

3. Results

3.1. Impact of the HU-Density Calibration Curve

The variation of the HU values among the different acquisitions (range 0 to 4 HU)
was much smaller than the standard deviation of the HU values within each ROI for the
single acquisition (range 38 to 69 HU). For this reason, a single HU calibration curve can be
considered given by the average of all the measurements made at the different currents also
for GE LightSpeed. The values of the calibration curves for the different types of equipment
were then compared. It was found that the standard deviation of the HU values of the
inserts was considerably smaller than the average of the standard deviations (SD) relating
to the measurement on the inserts. Results are shown in detail in Table 2 and Figure 4.
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Table 2. Average CT values for the three types of equipment.

Insert
Attenuation Coefficient

@70 keV (1/cm)

Light Speed Brilliance Incisive

N. CT ROI SD N. CT ROI SD N. CT ROI SD

Air 0 −981.23 38.35 −972.12 42.43 −972.57 49.64
PMP 0.157 −181.55 48.03 −175.48 54.13 −181.07 66.68

LDPE 0.174 −90.60 46.14 −85.43 53.53 −90.17 67.73
Polystyrene 0.188 −35.30 46.56 −30.19 52.44 −34.59 69.33

Acrylic 0.215 126.99 47.75 125.71 57.40 121.08 66.92
Delrin 0.245 350.22 52.85 347.33 56.96 341.85 70.77
Teflon 0.363 960.24 68.70 940.18 59.92 940.09 74.29

Figure 4. Plot of the number of CT inserts as a function of the attenuation coefficient for the equipment
used. The trend line for each of the data sets is also represented.

In summary, we can assume that inter-scanner variability did not significantly affect
the HU values of the CT images, regardless of the current used during scanning. The
resulting HU-density histograms can therefore be considered reasonably consistent.

3.2. HU-Density Histogram Parameters—Extraction and Analysis of 166 COVID-19 Patients

Through the script created in the Matlab environment, all the histograms were suc-
cesfully fitted; for each of them, the values of the HU thresholds between the aerated and
intermediate components (th1) and between the intermediate and consolidated (th2) were
calculated for each of the individual lungs using the methods described:

1. Gaussian;
2. Maximum gradient on the fit;
3. Maximum gradient on the data.

Examples of several histograms of representative lungs are shown in Figure 5 as
results of the application of the three methods. Overall (see Table 3), the th1 threshold
values using the Gaussian method were in the range of −870 to −386 HU, with a median
and standard deviation of −768 and 73 HU, respectively; values obtained with the th2
threshold were between−232 and 32 HU with median and standard deviation of −114
and 41 HU, respectively. Using the method of the maximum gradient on the fit, the HU
range was −927 to −322 HU with median and standard deviation of −780 and 77 HU for
the threshold th1, and −706 to 10 HU with median and standard deviation of −87 and
61 HU, respectively, for the th2 threshold. Lastly, the values obtained with the maximum
gradient method on the data were, for the threshold th1, a range of −900 to −430 HU and
median and standard deviation of −798 and 71 HU, and a range of −271 to 64 HU with
−34 ± 41 HU for the median and standard deviation of the th2 threshold.
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Figure 5. (a–f) Examples of graphical representation of the threshold values found by analyzing the HU-density histograms
with the methods described.
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Table 3. Summary table of the threshold values found with the methods used.

Method Threshold Minimun Maximum Median Standard Deviation

Gaussian
Th1 −870 −386 −768 73
Th2 −232 32 −114 41

Maximum
gradient fit

Th1 −927 −322 −780 77
Th2 −706 10 −87 61

Maximum
gradient data

Th1 −900 −430 −798 71
Th2 −271 64 −34 41

The Kruskal–Wallis non-parametric statistical significance test demonstrates that
the distributions of the values of the thresholds th1 and th2 calculated with the three
methods described were statistically different, with a significance level p-value <0.001
for both thresholds. While inter-patient variability was low for the th2 threshold, th1
threshold values were far more variable, as they concerned the fibrotic component of the
consolidated lung.

This is likely because the aerated component of the lung obtained from CT images,
taken in conditions of maximum inspirium, is an extremely patient-dependent measure of
lung function.

As can be seen from the boxplots in Figure 6, the method with the least dispersion was
the maximum gradient on the data. Also from the qualitative point of view, it was clear
that the method that visually best identified the separation of the components of the lungs
of COVID-19 patients was that of maximum gradient on the data. Of note, the approach of
using a plot that follows the trend of real data, rather than a fit made on these data, removes
the intrinsic uncertainty linked to the fit, obtaining values that better represent the true
condition of the lungs. Consequently, in the remaining part of this work, sub-segmentation
will always refer to this method.

Figure 6. Boxplot of the distributions of threshold values Th1 and Th2 according to method used:
Gaussian, maximum gradient on the fit (Max grad fit) and maximum gradient on the data (Max
grad data).

After identifying the threshold values that separate the components of the lungs
in COVID-19 patients, information characterizing each of the regions of the lungs was
extracted from the histograms. The first relevant parameter extracted was the volume (in
cc) of the aerated, intermediate, and consolidation regions. To calculate the volume in cc
starting from the CT images, the area under the curve of the HU-density histograms was
considered. Each voxel had a known size of 1.5 × 1.5 × 1.5 mm3; thus the area under the
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curve was linked to the volume of the lung considered with a normalization factor taking
voxel size into account.

Figure 7 shows the histogram of the volume distributions of the lung components
within the entire patient population. The bin size used was 150 cc. It can be seen that the
consolidated component had the smallest volume, with a median value of 126 cc ± 111 cc.
The intermediate component had a median volume of 914 cc with a standard deviation of
291 cc, while the aerated component had a median volume of 793 ± 499 cc. In addition to
the volumes of the lung regions, their ratio was also calculated. The absolute measurement
of volumes, in fact, may not provide full information on the residual functionality of the
lung. The values found for the consolidated over aerated component ratio and the ratio
between intermediate and aerated components are shown in Figure 8 and were 0.16 ± 0.89
and 1.09 ± 2.56, respectively. Other extracted features that characterized the HU-density
histogram were:

1. HU value corresponding to the peak of the curve for the aerated regions;
2. Shift with respect to −1000 HU, a characteristic value of the aerated component under

normal conditions;
3. Width in HU of the intermediate region.

Figure 7. Histogram of the volume distributions of the aerated, intermediate, and consolidated
components. The bin size used was 150 cc. The number on the y-axis represents the number of
patients per bin.

Figure 8. Boxplot of the volume ratios of the consolidated component compared to the aerated
component and of the intermediate component compared to the aerated one.

The median of the values of the peak position of the aerated region curve was
−853 ± 56 HU in a range of −1000 to −583 HU. Consequently, the median value of the
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peak shift of the aerated region with respect to −1000 HU was 147 HU. The width of
the intermediate region was calculated as the difference between the th2-th1 threshold
values. The width values found were in the range of 282 to 878 HU, with a median and
standard deviation of 754 and 88 HU, respectively. As shown in Figure 9, the inter-patient
distribution of these values was very large and did not follow a Gaussian shape.

Figure 9. Histograms of the distributions of (a) position of the peak of the aerated component and (b) width of the
intermediate component.

4. Discussion

The proposed method was based on the robust, operator-independent identification of
threshold HU values that identified three regions here referred to as aerated, intermediate
and consolidated, with intuitively clear functional meaning. It follows a phenomenological
approach starting from the manual segmentation of the lung and then analyzing the
shape of the HU histogram. Contrary to other approaches, the thresholds that define and
differentiate the lung components were identified on the basis of the shape of the HU
histograms, rather than second-order features and classifiers or radiologist preferences,
thus maintaining a solid link with the residual lung functionality and eliminating, a priori,
any operator dependence.

Prior to the quantitative analysis of the images, it was verified that the image database
was consistent against inter-scanner variability, although 88% of patients were scanned
on one (of the three) scanner. For this purpose, calibrated CT image quality phantom
acquisitions at different X-ray currents were performed on each scanner. Importantly, inter-
scanner variability was not found to significantly influence the HU value of CT images,
and the database can thus be considered consistent.

The lung contours were initially segmented manually. Subsequently, through the
implementation of an automatic procedure implemented in a workflow on the MIM
software, histograms of the HU values inside the contours were extracted. The histograms
obtained were analyzed by means of three different analytical methods.

The maximum gradient on the data method, likely to fit better with visual consistency
in lung component separation, was applied in order to quantify the three components
in our population. The consolidated component was found to have the smallest vol-
ume (126 ± 111 cc) and the intermediate and aerated components showed a volume of
914 ± 291 cc and 793 ± 499 cc, respectively. A number of parameters were also extracted:

1. Ratio between the consolidated component and the aerated component (0.16 ± 0.89);
2. Ratio between the intermediate component and the aerated component (1.09 ± 2.56);
3. HU value corresponding to the peak of the curve for the aerated regions (−853 ± 56 HU);
4. Width in HU of the intermediate region (754 ± 88 HU).
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Some considerations may be made when comparing the findings of the current work
with other reported results. Colombi et al. [18], for instance, reported a median value of
2900 cc for the aerated component of both lungs in a large population of patients hospi-
talized in a center in a neighboring city in the same period as our study; this value was
significantly higher than ours (considering paired lungs, by about 1600 cc). This difference
could be explained by the different segmentation methods used; in fact, Colombi et al. used
fixed threshold values of −950 to −700 HU, while we adopted individual thresholds opti-
mized for the distinction between the aerated component and the intermediate component,
with a far lower th1 value compared to those found by our individually assessed method.
Leonardi et al. [16] reported that the percentage of the lung involved in the disease varied
from 6%, for non-critically ill patients, to 38%, for critically ill patients. Their definition of
the lung component involved in the disease, manually segmented, seemed to include parts
of what we identified as an intermediate component, and this could explain the higher
mean values relative to our consolidation estimates (by about 6.4%). Matos et al. [17]
reported a median volume of disease of 295 cc on the two lungs, quite consistent with our
results. Their method of segmentation of the consolidated component was semi-automatic;
the radiologist identified areas of the disease and a region-growing algorithm was then
applied, likely resulting in the identification of individual thresholds based on maximum
contrast with the tissue surrounding the consolidated component. Liu et al. [15], by ap-
plying thresholds to CT values, extracted three quantitative features corresponding to the
percentage of GGO volume, semi-consolidation volume and consolidation volume. The
percentages of GGO and semi-consolidation volumes were part of what we defined as
intermediate component, and were therefore not directly comparable. The consolidation
volume percentage obtained in this study was 5.8%, comparable to our estimate (6.4%).
Lyu et al. [28] found a volume percentage for the aerated component, using fixed threshold
values of −950 to −800 HU, of 43% of the entire segmented lung. This value was in
line with that found with our segmentation method, as could be expected, as their fixed
threshold value was similar to the median value of our population.

More generally, concerning the choice of threshold to define the aerated component,
our findings suggest that for COVID-19 patients the quantity of air inflated during a deep
inspiration before the CT scan is highly variable among patients, reflecting the variable
residual functionality of the aerated lung. Thus, the individual choice of a “best threshold “
seems to be a more reasonable option, able to adapt the “aerated lung” definition to each
individual patient/lung. In addition, the relatively large variability of the peak position
of the aerated component is also a clear measurement of the change of lung perfusion
compared to healthy patients, typically presenting their peak at much lower values.

In conclusion, this work allowed the development of a semi-automatic, operator
independent segmentation method identifying the main lung components of COVID-19
patients with respiratory syndrome. Our approach intrinsically gives clear functional
meaning to the different sub-volumes identified and overcame the approximation due to
the choice of fixed thresholds, taking individual lung functionality carefully into account;
this is especially true for th1. Very importantly, due to its simplicity and to the clear,
reproducible and interpretable features that can be extracted, the suggested approach can
easily be transferred from our institute.

Work is currently underway to make the segmentation method fully automatic; as
a matter of fact, manual segmentation is cumbersome and this is a limit of our current
approach. An atlas, based on CT images of COVID-19 patients, has been developed to
automate the initial identification of the lungs, and is currently being validated. Combining
this atlas with the method suggested here should allow an automatic sub-segmentation
of the lung components to be obtained in no more than a few minutes. In addition,
the quantitative analysis carried out on the HU histograms is being applied to develop
predictive models of early clinical outcome. On the other hand, atlas-based approaches
for automatic segmentation of the whole lungs do not represent the only way to solve the
issue; further research regarding AI/deep learning approaches may be warranted.
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Abstract: Background: COVID assessment can be performed using the recently developed individual
risk score (prediction of severe respiratory failure in hospitalized patients with SARS-COV2 infection,
PREDI-CO score) based on High Resolution Computed Tomography. In this study, we evaluated the
possibility of automatizing this estimation using semi-supervised AI-based Radiomics, leveraging
the possibility of performing non-supervised segmentation of ground-glass areas. Methods: We
collected 92 from patients treated in the IRCCS Sant’Orsola-Malpighi Policlinic and public databases;
each lung was segmented using a pre-trained AI method; ground-glass opacity was identified using
a novel, non-supervised approach; radiomic measurements were collected and used to predict
clinically relevant scores, with particular focus on mortality and the PREDI-CO score. We compared
the prediction obtained through different machine learning approaches. Results: All the methods
obtained a well-balanced accuracy (70%) on the PREDI-CO score but did not obtain satisfying
results on other clinical characteristics due to unbalance between the classes. Conclusions: Semi-
supervised segmentation, implemented using a combination of non-supervised segmentation and
feature extraction, seems to be a viable approach for patient stratification and could be leveraged to
train more complex models. This would be useful in a high-demand situation similar to the current
pandemic to support gold-standard segmentation for AI training.

Keywords: radiomics; artificial intelligence; machine and deep learning; medical imaging

1. Introduction

Since the beginning of last year, the world has been facing a health emergency, the
pandemic caused by the novel Coronavirus, Sars-CoV2. Even up to the present date, many
aspects of the physiopathology of the COVID-19 infection are yet to be fully understood.
The diagnostic gold standards for Sars-CoV2 are the reverse transcription-polymerase chain
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reaction (rt-PCR) and the gene sequencing of sputum, throat swab and lower respiratory
tract secretion [1,2]. These tests have several limitations: a limited testing capacity related
to insufficient kits or laboratory supplies; a long reporting time, varying from 6 to 48 h;
a great variability in sensitivity, ranging from 37% to 71%. To circumvent these limitations,
imaging has emerged as an important tool to guide diagnosis, especially in cases of clinical-
laboratory discordances.

Imaging protocols directive from public health authorities are heterogeneous: chest
radiography is widely used, although it is not accurate in mild or early COVID-19 infection;
there is an improving interest in bedside lung ultrasound, but limited experiences are
reported in the literature [3]. Among imaging modalities, Computed Tomography (CT) is
the most sensitive (60–98%) acquisition technique, but it has low specificity in the early stage
of the disease [4]. For this reason, World Health Organization (WHO) and most radiologic
societies do not recommend performing screening CT (WHO characterizes COVID-19 as
a pandemic—11 March 2020). High-Resolution Computed Tomography (HRCT) proved
nonetheless to be a valuable aid to the clinical and epidemiological management of affected
patients, especially during shortages of the necessary reagents, long reporting time, and
the high operator-dependency [5–7].

There have been controversial publications about the role of chest CT imaging analysis
in the diagnosis and management of COVID-19 [8]. The identification of healthy lung
chest CTs from pneumonia cases has been deeply investigated in literature [9,10], but the
COVID-19 pandemic has posed the non-trivial problem of classifying different pulmonary
diseases. Patchy shadows or ground-glass opacities (GGOs) and consolidations (CSs)
are not exclusive of COVID-19 but might be also caused by pulmonary edema, bacterial
infection, other viral infection, or alveolar hemorrhage [11].

An initial prospective made by Huang et al. [12] on chest CT scans of patients affected
by COVID-19 has shown that the examined subjects have a bilateral GGO and CS. The
same medical results were also confirmed by other authors [13,14], who posed the basis
for the next quantification studies allowing a better characterization of the COVID-19
features. The classification between early-stage patients and progressive phases has been
thoroughly investigated [15–18], and all of them lead to the same conclusion: the main
COVID-19 features can be difficult to detect in early stages of the disease, and their correct
identification is strongly dependent on the radiologist’s expertise.

The role of HRCT in COVID-19 infection management is also controversial due to
the radiation exposure problem. Initially, the American College of Radiology (ACR) and
the Italian Society of Medical and Interventional radiology (SIRM) guidelines did not
recommend HRCT in the diagnostic workup, the former referring to 2018 guidelines for
acute respiratory illnesses [19–21]. With the increase of available evidence resulting from
clinical trials, a prognostic role of HRCT is now emerging, increasing its value beyond
the diagnosis [3,22]. Moreover, a study from Ria et al. evaluated the risk-benefit ratio of
radiation exposure in COVID-19 patients, stating that HRCT is justified in patients older
than 30 years [23].

The application of automated methods to support the clinicians in the analysis of a
large amount of data aims to remove the subjectivity of the measurement and improve
the time required for the diagnosis formulation [21,24,25]. Machine learning and deep
learning models applied in the medical research field are becoming more popular as the
basis for clinical decision support systems. Medical image segmentation plays a pivotal
role in the automation of these applications since a correct segmentation of anatomical
structures is a crucial step to improve the accuracy of the algorithms and to minimize
possible confounders.

In 2015, Mansoor et al. [26] proposed a classification of classical image processing seg-
mentation algorithms, where they divided them into four classes: (1) thresholding-based
methods [27]; (2) region-based methods [28,29]; (3) shape-based methods [30]; (4) neigh-
boring anatomy [31]. Deep learning models are outperforming all these techniques [32,33].

174



Appl. Sci. 2021, 11, 5438

Deep learning applications have achieved the most significant results also in the
COVID-19 literature [24,27,34–36], with extremely high classification performances and
low execution time. The drawback of these methods is the demand for labeled data: the
training of a deep learning model requires a vast amount of manual (or semi-automatic)
labelled data. This is problematic because data annotation is a very time-consuming
operation, dependent on the operator experience.

To overcome this issue, many authors, such as Wang et al. [34], proposed a different
approach, combining deep learning features with standard machine learning one, proving
the efficiency of this synergy. This approach could also increase the ability to explain the
model, potentially leading to an improvement in the understanding of the main features
of the COVID-19 disease. Wang et al. highlighted the irregularity and heterogeneous
intensities of the lung lesion textures as COVID-19 significant features. Concurrently, in
non-COVID-19 patients, Wang et al. found stronger uniformity of Hounsfield values in
the chest CT within the lesions. Both these features can be automatically quantified by a
machine learning algorithm, allowing stratification of the patients’ severity and removing
possible false positives. Other identified useful characteristics concern the geometry and
shape of the lesions [8,37].

For a more detailed stratification of patients, the Radiological Society of North America
(RSNA) released a consensus statement, endorsed by the Society of Thoracic Radiology and
the American College of Radiology (ACR), that classifies the CT appearance of COVID-19
pneumonia into four categories: “typical,” “atypical,” “undetermined,” and “negative” [38].
The “typical” pattern is characterized by the presence of round-shaped Ground-Glass Opac-
ities (GGO), usually bilateral with a sub-pleural location on the dorsal basal segments. The
GGO can be associated with “Crazy Paving” areas or other signs of organizing pneumonia.
The “undetermined” pattern is characterized by the absence of the “typical” pattern find-
ings, with diffuse GGO areas with a perihilar or unilateral distribution, with or without
consolidated areas. The “atypical” pattern is characterized by either the absence of the
“typical” or “undetermined” signs and the presence of lobar consolidations, “tree in bud,”
smooth thickening of the septa and pleural effusion; in this presentation, no GGO are
detectable. The “negative” pattern is characterized by the absence of pathological findings.
The “typical” and “negative” patterns have proven to be very accurate in identifying the
disease in patients with suspected COVID-19 infection [3].

Many authors have already proved an occasional discordance between HRCT and
rt-PCR. There have been observations of patients with a high clinical suspect of COVID-19
supported by epidemiological criteria and imaging, but with negative rt-PCR [39,40]. On
the other hand, there was evidence of patients with a positive rt-PCR and suggestive clinical
findings, that did not present pathological findings on HRCT [41]. The clinico-radiological
dissociation in asymptomatic individuals requires reconsidering the role of radiological
findings in the clinical management of these patients [42].

To improve the reliability of radiological examination, several authors presented
Texture Analysis of the CT scans as a valuable tool to aid the diagnosis [43–45] and to
identify clinically severe patients [46]. Texture Analysis can identify putative features that
are not part of the RSNA criteria, such as enlargement of pulmonary vessels [47–51], and
that could be overlooked during the human visual inspection, such as fine characteristics
of the GGO areas [52]. Currently, only a few methods exist to automatically process
HRCT scans and quantify the extent of the pulmonary involvement [32,53]. From the
clinical point of view, the disease can be assessed with the newly developed PREDI-CO
(prediction of severe respiratory failure in hospitalized patients with SARS-COV2 infection),
which considers clinical parameters predictive of severe respiratory failure in hospitalized
patients, and is defined as the sum of the following conditions:

• age ≥ 70 years
• obesity BMI ≥ 30 kg/m2

• fever at hospitalization ≥ 38 ◦C
• respiratory rate ≥ 22 breaths/minute
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• lymphocyte count ≤ 900 cells/mm3

• creatinine ≥ 1 mg/dl
• C-reactive protein ≥ 10 mg/dl
• lactate dehydrogenase ≥ 350 IU/l.

This score outperforms in the stratification of patients the well-established qSOFA,
SOFA, CURB-65, and MEWS scores; this is due to the fact that the PREDI-CO score was
designed and validated ad-hoc for this purpose [54].

In the current work, we aim to automatize the evaluation of the PREDI-CO score and
several radiomic features using a novel, non-supervised image processing pipeline.

2. Materials and Methods

2.1. Patients Selection

This study involves 92 CT scans of patients affected by COVID-19. 10 of these scans
come from the public dataset “COVID-19 CT Lung and Infection Segmentation Dataset”
published on Zenodo [55]. Left lung, right lung, and infections are labeled by two radiolo-
gists and verified by an expert radiologist (with more than 10 years of experience). These
scans were used to validate the segmentation performances of the implemented pipeline.

Department of Diagnostic and Preventive Medicine of the IRCCS Policlinic Sant’Orsola-
Malpighi provided the remaining 82 scans. The selected patients are composed for the
66.3% by male, the age distribution (min/median/max) is 35/60/89. For each patient,
experts ascertained the presence of ground-glass opacities (100%), consolidation (10%),
crazy paving (53%), multifocal GGO (multiple locations affected by GGO, 32%), peripheral
GGO (presence of GGO areas exclusively far away from the trachea, 23%), and roundish
GGO (GGO characterized by round regular shapes, 12%). Moreover, each patient was
assigned the PREDI-CO score value estimated by two radiologists.

In IRCCS Policlinic Sant’Orsola-Malpighi, HRCT exams were performed with the fol-
lowing parameters: two different Multi-Slices CT (64 slices, GE VCT or PHILIPS Ingenuity),
with keV range 100–120, tube current modulation with a low Quality Index to optimize
patient dose, slice thickness range 1–2 mm; images were reconstructed with high-resolution
kernel. The CT parameters used in the Zenodo dataset are not available.

2.2. Pipeline Overview

The workflow developed in this work as show in Figure 1 can be split into 3 steps:
(1) the segmentation of the lungs; (2) segmentation of the GGO areas; (3) estimation of the
radiomic features.

Figure 1. A schematic representation of the proposed pipeline. From the left: raw CT scan; segmentation of the two lungs
using a pre-trained U-Net model; segmentation of the GGO areas using k-means clustering; extraction of radiomic and
Haralick features; classification and prediction of the clinical characteristics and outcomes.
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2.3. Lung Segmentation

Lung segmentation is a pivotal pre-processing step in many image analyses, such
as identification and classification of pathologies. Rule-based approach, like thresh-
olding, region growing, etc., usually fails for CT scans of patients with severe Intersti-
tial Lung Disease (ILD) [33]. For this reason, we used a pre-trained publicly available
https://github.com/JoHof/lungmaskv0.24 (accessed on 24 March 2021) U-Net model [33]
for lung segmentation.

2.4. GGO Segmentation

In the second step, a novel automated pipeline for the segmentation of GGO areas
was developed, combining 2 different techniques: vessel artifacts exclusion and k-means
clustering. Both these methods are unsupervised learning techniques and have been chosen
due to the limited number of available samples. The decision to avoid supervised methods
such as Convolutional Neural Networks (CNNs) is based on the likelihood of including
strong biases, even including possible data augmentation strategies.

The intensity of pulmonary vessels is very similar to solid components of GGO;
therefore, it affects the segmentation, introducing potential false positives [56]. To remove
these vessels, we used the vesselness measure, i.e., the presence of multiscale tubular
structures. Multiscale Vessel Enhancement Filtering (MVEF) [57] is defined as the likelihood
of an image region to contain vessels, and it is estimated using the Frangi filter [58]. The
areas with high values of MVEF were identified as vessels and therefore removed from the
lung region obtained in the previous step.

After the removal of the vessels, we identified the GGO as areas with a common color
texture. To identify these regions, we used k-means clustering, grouping voxels by color
and texture similarity, and identifying the tissue corresponding to each cluster [59].

Since GGO involves extended areas, it is informative to include neighborhood voxel
information. The color contrast between GGO and healthy areas may change between
patients; it is, therefore, useful to consider different gamma corrections of the image. We
applied a series of image processing filters to obtain a high-dimensional feature space,
including all these features for each individual voxel. For each voxel, we estimated a vector
of features obtained by the application of the following filters:

• Gamma corrected image (γ = 1.5);
• Adaptive Histogram Equalized image, in a radius of 3 voxels;
• Median blurred image with a kernel of radius 3 voxels;
• Standard deviation filtered image with a kernel of radius 1 voxels.

We used the Adaptive Histogram Equalization algorithm for the image standardiza-
tion: for each slice, the histogram was equalized considering a volume of 3 voxels. The
gamma correction is a non-linear operation used to decode the luminance and enhance the
low contrast regions. The median blurring allows considering the information about the
neighborhood voxels, reducing the effect of outlier voxels. The last feature is the application
of a local standard deviation filter; this filter replaces each voxel value with the standard
deviation of its neighborhood. This feature is useful as GGO is characterized by highly
heterogeneous gray level regions, allowing to filter out bronchial structures and motion
artifacts not removed during the lung segmentation.

The k-means clustering is “isotropic” in all directions of space and therefore tends to
produce round (rather than elongated) clusters. In this situation, leaving variances unequal
is equivalent to put more weight on variables with smaller variance. To avoid this, the
features were standardized according to the mean and standard deviation estimated on the
training dataset.

We selected 10 scans and applied the k-means clustering for the estimation of the
centroids using the Euclidean metric. The k-means clustering is sensitive to the class
balance in the training phase (it might give more prominence to more common present
structures). Therefore, for the training phase, we considered only a subset of scans with a
reasonable amount of GGO areas, excluding in all the cases the (overrepresented) image
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background. The k-means cardinality was estimated based on lung anatomy considerations.
The resulting clusters were:

• Healthy lung;
• Edges;
• Remaining vessels;
• Noise;
• GGO.

We implemented the whole pipeline using Python, and the source code is publicly
available on GitHub (https://github.com/RiccardoBiondi/segmentation, accessed on
24 March 2021). We used SimpleITK [60,61] for the implementation and management of
image filters and the OpenCV [62] library for the implementation of the k-means clustering.

We estimated the performances of our segmentation algorithm according to the fol-
lowing scores:

• Sensitivity

TPR =
TP

TP + FN

• Specificity

TNR =
TN

TN + FP

• Precision

PPV =
TP

TP + FP

• F1 score

F1 =
2TP

2TP + FP + FN
where TP, TN, FP, and FN are the True Positives, True Negative, False Positive, and

False Negative scores, respectively.

2.5. Feature Extraction

We applied the proposed pipeline on the 82 patients provided by the Department
of Diagnostic and Preventive Medicine of the IRCCS Policlinic Sant’Orsola-Malpighi of
Bologna. The radiomic features extraction was performed on the identified GGO areas.
The extracted features include morphological and texture-based scores:

• Texture;
• Gray Level Distribution;
• GGO Shape;
• Bilaterality (distribution of GGO between left and right lung);
• Peripherality;
• GGO volume

For the scores classification, we included the patient’s age as informative features.
We measured the texture properties by computing the Haralick features (Energy,

Inertia, Entropy, Inverse Difference Moment, Cluster Shade and Cluster Prominence)
from the Gray Level Co-occurrence Matrix (GLCM), computed on the whole identified
area [63]. For each identified GGO area, we computed its elongation and roundness [64],
obtaining the corresponding distribution for each patient. We computed the distribution
of the distances between the lesion and lung centroids, normalized to the semiaxis of
the equivalent ellipsoid as a measure of the GGO peripherality. Each distribution was
characterized by the minimum, maximum, median, interquartile range (25–75), skewness,
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and kurtosis. We estimated the bilaterality distribution using the Matthews coefficient
(MCC) defined as follows:

MCC =
LGV · LLV − RGV · RLV

(LGV + RGV)(RLV + LGV)(LLV + RGV)(LLV + RLV)

being RGV = Volume of GGO in the right lung, LGV = Volume of GGO in the left lung,
LLV = Left Lung Volume, and RGV = Right Lung Volume. The volume of GGO was
normalized according to the total lung volume to overcome possible issues related to
anatomical differences between patients.

2.6. Classification

We used the whole set of extracted radiomic features to predict the following GGO
characteristics estimated by the expert radiologists:

• Multifocal GGO;
• Presence of Crazy Paving;
• Presence of Consolidation;
• Roundish GGO;
• Peripheral GGO;

Additionally, the two clinical outcomes:

• PREDI-CO score;
• Patient survival.

Not all the above scores were available for all the patients. The GGO characteristics
were reported for only 78/82 patients, while the clinical outcomes for only 72 of them. We
restricted the score classification on these two subsets of data.

The considered scores are all binary values (True/False), representing the pres-
ence/absence of the corresponding characteristic. The only exception is given by the
PREDI-CO score, which, by definition, allows an incremental set of values: PREDI-CO
score values range from 0 (minimal risk) to 9 (maximal risk). The 47% of patients report a
PREDI-CO score of 0 or 1, leading to an overrepresentation of these 2 labels. We grouped
multiple labels into the same class to overcome this issue: we applied the cutoff of 1 to
dichotomize the PREDI-CO score values into two classes.

We applied a feature selection procedure to filter out redundant and non-informative
values for each classification. This step is required to improve the classification per-
formances (remotion of possible confounders) and to make the obtained results more
interpretable from a clinical point of view. The selection was performed using a Fisher
Exact and a χ2 tests selecting the 3 features with the highest significance (lower p-values).
Both the tests require categorical data, so we dichotomized the features according to
their medians.

We used the set of filtered features as input to 4 different classification algorithms to
predict the various GGO characteristics and clinical outcomes:

• Logistic Classifier (L1 penalty);
• (Logistic) Ridge Classifier (L2 penalty);
• K-Nearest Neighbors;
• Random Forest Classifier.

The performances of these 4 methods give us an insight into the structure of the data:
KNN methods are strongly local, Random Forest relies on the separability of the samples
but does not include co-linearities between variables, and linear models (Logistic classifier
and Ridge classifier) strongly rely on linear dependencies between the observed values
and the predictions.

The classification performances were estimated according to the following metrics:

• Precision
• Sensitivity
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• F1 score
• Balanced accuracy

BA =
Sensitity + Speci f icity

2
using a leave-one-out cross-validation strategy.

The numerosity of the labels of each characteristic is strongly unbalanced (e.g., only
10% of patients show the presence of consolidations) for every characteristic, except for
Crazy Paving and PREDI-CO score (after the dichotomization). To compensate for this, we
weighted the classification performances of each algorithm according to the inverse of the
class frequency.

We used the scikit-learn [65] Python package for the implementation of all the analyses.

3. Results

3.1. GGO Segmentation

We applied the proposed segmentation pipeline on each patient under analysis. For
samples, we collected also a manual segmentation performed by an expert radiologist,
which was used as the gold standard.

The collected results were evaluated using the previously introduced metric scores
and their distribution analyzed as show in Table 1, details in Table S1.

Table 1. A comparison between the score results for the gold standard segmentation in the included
databases. For each score, the average value (and corresponding standard deviation at 1 σ) is reported.
For each column the maximum value was indicated with bold font.

Cases Specificity Sensitivity Precision F1 Score

CORONACASES
OVERALL 0.9992 ± 0.0005 0.62 ± 0.13 0.79 ± 0.12 0.67 ± 0.07

GOLD STD OVERALL 0.9993 ± 0.0003 0.74 ± 0.14 0.67 ± 0.28 0.65 ± 0.18
OVERALL 0.9992 ± 0.0005 0.66 ± 0.15 0.75 ± 0.20 0.67 ± 0.12

We show in Figure 2 the distribution of the individual scores (Sensitivity, Specificity,
Precision, and F1 score). The scores were obtained by the average of the whole 15 scans
(overall) on the 10 corona cases (CORONACASES OVERALL) and on the five gold standard
(GOLD STD OVERALL). In Figures 3 and 4, we show a visual comparison between
the achieved segmentation and the ground truth labels (both for corona cases and the
gold standard).

Figure 2. The distribution of segmentation scores obtained by the proposed pipeline. From the left: distribution of Sensitivity,
i.e., True Positive rate, Specificity, i.e., True negative rate, Precision, i.e., Positive Predictive Value, and F1 score, i.e., the
harmonic mean of precision and sensitivity.
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Figure 3. A comparison between the ground truth and the results obtained by the proposed pipeline for the corona
cases segmentation. In green are highlighted the GGO areas identified by the experts, and in red, those identified by our
segmentation pipeline, respectively.

Figure 4. A comparison between the proposed automated segmentation pipeline and a gold standard
segmentation manually performed by an expert radiologist.
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In Table 2 we report the results of other published pipelines in comparison with
our method (details of the employed methods in Table S2). Notice that Jun2020 is a
benchmark database for COVID-19 annotation methods and CT scans segmentation
(https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark, accessed on 24 March 2020).
The evaluation set for both Jun2020 and Muller2020 is COVID-19-CT-Seg, which is the
database containing both corona case studies (the one used for annotation) and radiopedia
ones (removed because rescaled on 8-bit GL images, which is not compatible with the im-
plemented pipeline). For each technique on each database, only the best results presented
in the literature are reported.

Table 2. A comparison between the results of various segmentation techniques applied on the same
datasets. For each column the maximum value was indicated with bold font.

Study Technique F1 Score Sensitivity Specificity Precision

Fan2020 [66] InfNet 0.579 0.870 0.974 0.500
Fan2020 [66] SemiInfNet 0.597 0.865 0.977 0.915

Muller2020 [49] U-Net 0.761 0.739 0.999 -
Jun2020 [52] 3D U-Net 67.3 ± 22.3 - - -
Jun2020 [52] 2D U-Net 60.9 ± 24.5 - - -

Qingsen2020 [65] U-Net 0.726 0.751 - 0.726

3.2. Feature Extraction

We applied the feature extraction step on the GGO areas identified by our segmen-
tation algorithm. In Figure 5 we show the Pearson’s correlation matrix between each
pair of observed features. The cluster plot highlights the existence of multiple groups of
strongly correlated features. The first set of clusters are given by the features related to the
roundness, elongation, and distance features. The most prominent cluster is composed of
the Haralick features: energy, entropy, inertia, and cluster prominence.

In Figure 6 we show the relation between feature distributions and labels. Using the
median of the feature distributions as a threshold, we estimated the percentage of the
patients associated with each label who are above this threshold. A result of 0.5 (white-
like cells) indicates non-specificity of the variable for that individual label, i.e., a uniform
distribution of the feature. A result greater than 0.5 (red-like cells) or smaller than 0.5
(blue-like cells) indicates a high/low percentage of patients for whom the feature values
are greater/smaller than the median of the distribution, respectively. This representation
allows a visual analysis for the identification and selection of the most informative features
related to each label.
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Figure 5. The Correlation Matrix between the estimated features. We report for each pair of features the Pearson’s correlation
coefficient. In red are highlighted the positive correlations, while in blue the negative ones. White-like colors identify the
features with low correlation.
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Figure 6. The relationship between individual features and labels. The values range from 0 (all the feature values are lower
than the median of the sample distribution) to 1 (all the values are greater than the median of the sample distribution). A
value of 0.5 indicates the non-specificity of the variable for the individual label (uniform distribution of the values).

3.3. Individual Features Analysis

For each classification algorithm, we considered the full set of radiomic features
extracted and the three best features identified by the feature selection methods (Fisher
and χ2 tests). For each feature selection criteria, we report the list of the three best features
ordered according to their informative power.

3.3.1. Multifocal GGO

A Multifocal GGO label equal to 1 (32% of the patients) identifies the patients with
the presence of a multifocal lesion, while a label equal to 0 (68% of the patients) identifies
its absence.

The three best features selected by the Fisher criterion are (with the type of feature
indicated in parenthesis):

• Skewness of the gray level distribution (Radiomics);
• Interquartile (25–75) of the roundness distribution (Radiomics);
• Kurtosis of the gray level distribution (Radiomics).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):
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• Kurtosis of the gray level distribution (Radiomics);
• Minimum of the distance distribution (Radiomics);
• Skewness of the gray level distribution (Radiomics).

We show in Table 3 the results obtained in terms of global adjusted accuracy and in
Table 4 the precision, sensitivity and F1 score of the same prediction.

Table 3. Global adjusted accuracy of the models to predict multifocal GGO presence using different
feature selection strategies. From the left: adjusted accuracy score obtained using only the 3 best
features identified by the Fisher Exact test; the 3 best features identified by the χ2 test; all the radiomic
features extracted. For each column the maximum value was indicated with bold font.

Fisher χ2 All

Logistic 0.56 0.52 0.42
Ridge 0.62 0.58 0.45
KNN 0.44 0.44 0.48

R. Forest 0.49 0.43 0.47

Table 4. Precision, Sensitivity, and F1 score for each model and each feature selection strategy to
predict multifocal GGO presence. From the left: dichotomized score value, Precision obtained using
the 3 best features identified by the Fisher test, Precision obtained using the 3 best features identified
by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test, Sensitivity
obtained using the 3 best features identified by the χ2 test; F1 score obtained using the 3 best features
identified by the Fisher test; F1 score obtained using the 3 best features identified by the χ2 test. For
each column the maximum value was indicated with bold font.

Multifocal
1 = Presence
0 = Absence

Fisher
PPV

χ2 PPV
Fisher
TPR

χ2 TPR Fisher F1 χ2 F1

Logistic 0 0.72 0.69 0.64 0.64 0.68 0.67
1 0.39 0.34 0.48 0.40 0.43 0.37

Ridge 0 0.77 0.74 0.64 0.64 0.70 0.69
1 0.44 0.41 0.60 0.52 0.51 0.46

KNN 0 0.65 0.65 0.83 0.83 0.73 0.73
1 0.10 0.10 0.04 0.04 0.06 0.06

R. Forest 0 0.67 0.64 0.77 0.77 0.72 0.70
1 0.29 0.14 0.20 0.08 0.24 0.10

3.3.2. Presence of Crazy Paving

A Crazy Paving label equal to 1 (52% of the patients) identifies the patients with the
presence of a crazy-paving pattern, while a label equal to 0 (48% of the patients) identifies
its absence.

The three best features selected by the Fisher criterion are (with type of feature
indicated in parenthesis):

• Median of the gray level distribution (Radiomics);
• Maximum of the Elongation distribution (Radiomics);
• Entropy (Haralick).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):

• Median of the gray level distribution (Radiomics);
• Inverse Difference Moment (Haralick);
• Skewness of the gray level distribution (Radiomics).

We show in Table 5 the results obtained in terms of global adjusted accuracy and in
Table 6 the precision, sensitivity and F1 score of the same prediction.

185



Appl. Sci. 2021, 11, 5438

Table 5. Global adjusted accuracy of the models to predict the presence of crazy paving using
different feature selection strategies. From the left: dichotomized score value, Precision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the maximum value was indicated with bold font.

Fisher χ2 All

Logistic 0.57 0.61 0.47
Ridge 0.51 0.56 0.45
KNN 0.46 0.50 0.57

R. Forest 0.50 0.51 0.51

Table 6. Precision, Sensitivity, and F1 Score for each model and each feature selection strat-egy to
predict the presence of crazy paving. From the left: dichotomized score value, Pre-cision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best fea-tures identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the max-imum value was indicated with bold font.

Crazy
Paving

1 = Presence
0 = Absence

Fisher
PPV

χ2 PPV
Fisher
TPR

χ2 TPR Fisher F1 χ2 F1

Logistic 0 0.56 0.60 0.49 0.57 0.52 0.58
1 0.59 0.63 0.66 0.66 0.62 0.64

Ridge 0 0.48 0.55 0.41 0.46 0.44 0.50
1 0.53 0.57 0.61 0.66 0.57 0.61

KNN 0 0.43 0.47 0.43 0.51 0.43 0.49
1 0.49 0.43 0.49 0.49 0.49 0.51

R. Forest 0 0.48 0.50 0.35 0.35 0.41 0.41
1 0.53 0.54 0.66 0.68 0.59 0.60

3.3.3. Presence of Consolidation

A consolidation label equal to 1 (10% of the patients) identifies the patients with
the presence of consolidation, while a label equal to 0 (90% of the patients) identifies
its absence.

The three best features selected by the Fisher criterion are (with type of feature
indicated in parenthesis):

• Cluster Prominence (Haralick);
• Median of the gray level distribution (Radiomics);
• Median of the elongation distribution (Radiomics).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):

• Median of the gray level distribution (Radiomics);
• Median of the elongation distribution (Radiomics);
• Cluster Prominence (Haralick).

We show in Table 7 the results obtained in term of global adjusted accuracy and in
Table 8 the precision, sensitivity, and F1 score of the same prediction.
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Table 7. Global adjusted accuracy of the models to predict the presence of consolidations using
different feature selection strategies. From the left: dichotomized score value, Precision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the max-imum value was indicated with bold font.

Fisher χ2 All

Logistic 0.54 0.54 0.70
Ridge 0.54 0.54 0.69
KNN 0.51 0.51 0.50

R. Forest 0.50 0.50 0.49

Table 8. Precision, Sensitivity, and F1 Score for each model and each feature selection strategy to
predict the presence of consolidations. From the left: dichotomized score value, Precision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the max-imum value was indicated with bold font.

Consolidation
1 = Presence
0 = Absence

Fisher
PPV

χ2 PPV
Fisher
TPR

χ2 TPR Fisher F1 χ2 F1

Logistic 0 0.91 0.91 0.59 0.59 0.71 0.71
1 0.12 0.12 0.50 0.50 0.20 0.20

Ridge 0 0.91 0.91 0.59 0.59 0.71 0.71
1 0.12 0.12 0.50 0.50 0.20 0.20

KNN 0 0.90 0.90 0.90 0.90 0.90 0.90
1 0.12 0.12 0.12 0.12 0.12 0.12

R. Forest 0 0.90 0.90 0.90 1.00 0.95 0.95
1 0.00 0.00 0.00 0.00 0.00 0.00

3.3.4. Roundish GGO

A roundish GGO label equal to 1 (12% of the patients) identifies the patients with the
presence of a roundish GGO lesion, while a label equal to 0 (88% of the patients) identifies
its absence.

The three best features selected by the Fisher criterion are (with type of feature
indicated in parenthesis):

• GGO volume percentage (Radiomics);
• Skewness of the roundness distribution (Radiomics);
• Median of the roundness distribution (Radiomics).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):

• GGO volume percentage (Radiomics);
• Skewness of the roundness distribution (Radiomics);
• Median of the roundness distribution (Radiomics).

We show in Table 9 the results obtained in term of global adjusted accuracy and in
Table 10 the precision, sensitivity and F1 score of the same prediction.
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Table 9. Global adjusted accuracy of the models to predict the presence of roundish GGO using
different feature selection strategies. From the left: dichotomized score value, Precision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the max-imum value was indicated with bold font.

Fisher χ2 All

Logistic 0.60 0.60 0.59
Ridge 0.58 0.60 0.56
KNN 0.43 0.43 0.50

R. Forest 0.45 0.45 0.50

Table 10. Precision, Sensitivity, and F1 Score for each model and each feature selection strategy to
predict the presence of roundish GGO lesions. From the left: dichotomized score value, Precision
obtained using the 3 best features identified by the Fisher test, Precision obtained using the 3 best
features identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher
test, Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using
the 3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified
by the χ2 test. For each column the max-imum value was indicated with bold font.

Roundish
1 = Presence
0 = Absence

Fisher
PPV

χ2 PPV
Fisher
TPR

χ2 TPR Fisher F1 χ2 F1

Logistic 0 0.92 0.92 0.64 0.64 0.75 0.75
1 0.17 0.17 0.56 0.56 0.26 0.26

Ridge 0 0.91 0.92 0.61 0.64 0.73 0.75
1 0.16 0.17 0.56 0.56 0.24 0.26

KNN 0 0.87 0.87 0.86 0.87 0.86 0.87
1 0.00 0.00 0.00 0.00 0.00 0.00

R. Forest 0 0.87 0.87 0.90 0.90 0.94 0.89
1 0.00 0.00 0.00 0.00 0.00 0.00

3.3.5. Peripheral GGO

A peripheral GGO label equal to 1 (23% of the patients) identifies the patients with the
presence of a peripheral GGO lesion, while a label equal to 0 (77% of the patients) identifies
its absence.

The three best features selected by the Fisher criterion are (with the type of feature
indicated in parenthesis):

• Patient age (Clinical);
• Minimum of the distance distribution (Radiomics);
• Skewness of the gray level distribution (Radiomics).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):

• Minimum of the distance distribution (Radiomics);
• Patient age (Clinical);
• Skewness of the elongation distribution (Radiomics).

We show in Table 11 the results obtained in terms of global adjusted accuracy and in
Table 12 the precision, sensitivity, and F1 score of the same prediction.
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Table 11. Global adjusted accuracy of the models to predict the presence of peripheral GGO using
different feature selection strategies. From the left: dichotomized score value, Precision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the max-imum value was indicated with bold font.

Fisher χ2 All

Logistic 0.47 0.47 0.62
Ridge 0.52 0.52 0.61
KNN 0.52 0.52 0.51

R. Forest 0.42 0.42 0.53

Table 12. Precision, Sensitivity, and F1 Score for each model and each feature selection strategy to
predict the presence of peripheral GGO lesions. From the left: dichotomized score value, Precision
obtained using the 3 best features identified by the Fisher test, Precision obtained using the 3 best
features identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher
test, Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using
the 3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified
by the χ2 test. For each column the max-imum value was indicated with bold font.

Peripheral
1 = Presence
0 = Absence

Fisher
PPV

χ2 PPV
Fisher
TPR

χ2 TPR
Fisher

F1
χ2 F1

Logistic 0 0.74 0.74 0.43 0.43 0.55 0.55
1 0.21 0.21 0.50 0.50 0.30 0.30

Ridge 0 0.79 0.79 0.43 0.43 0.56 0.56
1 0.24 0.24 0.61 0.61 0.35 0.35

KNN 0 0.78 0.78 0.87 0.87 0.82 0.82
1 0.27 0.27 0.17 0.17 0.21 0.21

R. Forest 0 0.74 0.74 0.83 0.83 0.78 0.78
1 0.00 0.00 0.00 0.00 0.00 0.00

3.4. Primary Outcomes
3.4.1. PREDI-CO Score

The prediction of the PREDI-CO score was performed considering the dichotomized
values obtained by thresholding the labels according to the cutoff of 1: values ≤1 (47%
of the patients) were labelled as 0 and values > 1 (53% of the patients) were labelled as 1.
The considered dataset includes only two patients with a PREDI-CO score ≥6 proving the
strong unbalancing of the classes and highlighting the prominence of non-severe patients.

The three best features selected by the Fisher criterion are (with type of feature
indicated in parenthesis):

• Patient age (Clinical);
• Median of the distance distribution (Radiomics);
• Interquartile (25–75) of the roundness distribution (Radiomics).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):

• Patient age (Clinical);
• Interquartile (25–75) of the elongation distribution (Radiomics);
• Maximum of the distance distribution (Radiomics).

We show in Table 13 the results obtained in terms of global adjusted accuracy and in
Table 14 the precision, sensitivity and F1 score of the same prediction.
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Table 13. Global adjusted accuracy of the models to predict the dichotomized PREDI-CO score using
different feature selection strategies. From the left: dichotomized score value, Precision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the max-imum value was indicated with bold font.

Fisher χ2 All

Logistic 0.70 0.70 0.59
Ridge 0.70 0.70 0.52
KNN 0.62 0.60 0.50

R. Forest 0.61 0.61 0.59

Table 14. Precision, Sensitivity, and F1 Score for each model and each feature selection strategy
to predict the dichotomized PREDI-CO score. From the left: dichotomized score value, Precision
obtained using the 3 best features identified by the Fisher test, Precision obtained using the 3 best
features identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher
test, Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using
the 3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified
by the χ2 test. For each column the max-imum value was indicated with bold font.

PREDI-CO
1 = PREDI-CO > 1
0 = PREDI-CO ≤ 1

Fisher
PPV

χ2 PPV
Fisher
TPR

χ2 TPR
Fisher

F1
χ2 F1

Logistic 0 0.67 0.67 0.71 0.71 0.69 0.69
1 0.72 0.72 0.68 0.68 0.70 0.70

Ridge 0 0.67 0.67 0.71 0.71 0.69 0.69
1 0.72 0.72 0.68 0.68 0.70 0.70

KNN 0 0.56 0.54 0.85 0.85 0.67 0.66
1 0.75 0.72 0.39 0.34 0.52 0.46

R.
Forest 0 0.60 0.60 0.53 0.53 0.56 0.56

1 0.62 0.62 0.68 0.68 0.65 0.65

3.4.2. Patient Survival

A survival label equal to 1 (10% of the patients) identifies the patients survived to the
COVID-19, while a label equal to 0 (90% of the patients) identifies death patients.

The three best features selected by the Fisher criterion are (with type of feature
indicated in parenthesis):

• Inverse difference moment (Haralick);
• Median of the elongation distribution (Radiomics);
• Median of the distance distribution (Radiomics).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):

• Inverse difference moment (Haralick);
• Median of the elongation distribution (Radiomics);
• Skewness of the elongation distribution (Radiomics).

We show in Table 15 the results obtained in terms of global adjusted accuracy and in
Table 16 the precision, sensitivity and F1 score of the same prediction.
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Table 15. Global adjusted accuracy of the models to predict mortality using different feature selection
strategies. From the left: dichotomized score value, Precision obtained using the 3 best features
identified by the Fisher test, Precision obtained using the 3 best features identified by the χ2 test;
Sensitivity obtained using the 3 best features identified by the Fisher test, Sensitivity obtained using
the 3 best features identified by the χ2 test; F1 score obtained using the 3 best features identified by
the Fisher test; F1 score obtained using the 3 best features identified by the χ2 test. For each column
the maximum value was indicated with bold font.

Fisher χ2 All

Logistic 0.41 0.48 0.43
Ridge 0.62 0.70 0.41
KNN 0.41 0.42 0.50

R. Forest 0.46 0.48 0.50

Table 16. Precision, Sensitivity, and F1 Score for each model and each feature selection strategy
to predict patient survival. From the left: dichotomized score value, Precision obtained using the
3 best features identified by the Fisher test, Precision obtained using the 3 best features identified
by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test, Sensitivity
obtained using the 3 best features identified by the χ2 test; F1 score obtained using the 3 best features
identified by the Fisher test; F1 score obtained using the 3 best features identified by the χ2 test. For
each column the maximum value was indicated with bold font.

Survival
1 = Dead
0 = Alive

Fisher
PPV

χ2 PPV
Fisher
TPR

χ2 TPR Fisher F1 χ2 F1

Logistic 0 0.88 0.90 0.82 0.82 0.85 0.85
1 0.00 0.08 0.00 0.14 0.00 0.10

Ridge 0 0.93 0.95 0.82 0.82 0.87 0.88
1 0.20 0.25 0.43 0.57 0.27 0.35

KNN 0 0.89 0.89 0.83 0.85 0.86 0.87
1 0.00 0.00 0.00 0.00 0.00 0.00

R. Forest 0 0.90 0.90 0.94 0.95 0.92 0.93
1 0.00 0.00 0.00 0.00 0.00 0.00

4. Discussion

4.1. GGO Segmentation

The examples reported in Figures 3 and 4 show how the non-supervised segmentation
method proposed in this paper is able to approximate the gold standard results with
satisfactory results.

This result has two strong implications for the Radiomics of the COVID-19 patients.
First, given that the amount of information required for the k-means method training is
considerably lower than CNN methods, while still retaining good results, this segmen-
tation can be implemented with in-patient training. Secondly, this method can be used
with success as a first segmentation method to be used as training for other, more specific
methods. We remark that all the proposed techniques are voxel-based algorithms: this
kind of method requires the whole patient’s scan as input, drastically reducing the dimen-
sionality of the dataset. As a reference, a 3D U-Net-based method [66] required two order
of magnitude training samples to achieve comparable results.

It is worth noting that the various segmentation scores are dependent on the class
balance, and therefore tend to penalize this kind of segmentation where one class (the GGO
class in our case) is substantially under-represented. This can be confirmed by confronting
the results of the proposed segmentation with published methods such as those reported
in Table 1.

191



Appl. Sci. 2021, 11, 5438

4.2. Individual Features Analysis

We noticed an evident improvement in the prediction converting the clinical outcomes
to dichotomized classes. A second improvement in the quality of the prediction was
obtained by the application of the feature reduction techniques, which allow a stabilization
of the results. Most of the predictive power for each feature can be synthesized in 3 to
4 features per variable. Of all the variables, particular prominence was observed for the
Radiomic features. These features were the most important ones in most of the predictions.
Of all the predicted characteristics and outcomes, only the peripherality of GGO and
PREDI-CO score requires the inclusion of the age value. For the PREDI-CO score, this is
not unexpected as it is one of the components of this score. As for the peripherality of GGO
lesions, this is an interesting result as they are an important predictor of clinical outcomes
and not intuitively associated with patients’ age.

If one considers the results for the different predictors (linear penalized, KNN, Ran-
dom Forest), one can observe that in general, KNN and Random Forests achieve similar
performances, while the penalized linear methods consistently perform better. This can be
interpreted as the effect of a progressive non-dichotomic behavior in the system. These
linear models were also the ones that gained the least from the pre-selection of the features.
This can be explained as the L1 and L2 penalization already reducing the effect of the
numerosity of the provided features. Methods such as KNN, based on features metrics,
are particularly affected by the features numerosity and thus are the ones that have the
greatest improvement by feature selection. Linear penalized methods, on the other end,
include an implicit feature selection internally and could be even penalized by a reduction
in the number of considered features.

Most of these features have a strong class unbalance (down to around 10% of samples
in one group, such as in the Consolidation and Roundish GGO), and therefore, the predic-
tion score tends to be strongly unbalanced, with a strong penalization for the prediction of
the least represented class. When this unbalance is not present, such as in the case of the
prediction of the PREDI-CO score, one can observe good, balanced prediction scores.

The prediction scores for the PREDI-CO are also higher than for similarly balanced
classes (such as Crazy Paving). This indicates that the extracted features, albeit not optimal
for predicting individuals’ components of the score, are indeed able to predict the score as
a global value. It is interesting to notice that the variables considered as the most important
in the prediction (both for the Fisher and χ2 method) alongside the age (a well-known risk
factor) are (1) the distance between the GGO area and the trachea and (2) the irregularity
of the GGO lesion shape. This follows the clinical hypothesis that the spreading of the
damaged area toward the peripheral area of the lungs leads to the worst prognosis for
the patient.

The results obtained in this work cannot overcome the performances of the already
published artificial intelligence techniques. The main limitation of this work is related to
the number of available samples: semi-supervised learning algorithms are designed to work
with small datasets but require better labeling of them compared to
supervised methods.

A second criticality is given by the preliminary choice of the number of clusters for
the k-means algorithm: in our work, we identified only five putative clusters for the tissue
segmentation. This degree of freedom determines the quality of the areas used for the
radiomic feature extraction, and therefore, it could affect the efficiency of the prediction
models. In contrast, the manipulation of this single degree of freedom could help to achieve
better results on in-patient segmentations.

The clinical characteristics and outcomes considered in this work are scores estimated
by the expert radiologists for the description of the state of the patient, but they do not
consider the real severity of him. This intrinsic limit does not allow a prediction of the real
outcome of the patient, allowing only an undirected evaluation.
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5. Conclusions

In the present work, we highlighted the possibility of obtaining a reliable automated
segmentation using non-supervised approaches and using this segmentation in a prediction
pipeline for patient prognosis.

Artificial Intelligence for diagnostic uses, such as a clinical decision support system, is
recognized as an approach rich of potential outcomes but is limited by the requirement
of human-driven data curation. With this work, we aimed to prove that semi-supervised
approaches to segmentation are promising, as they would combine the best effort of highly
trained physicians to develop true gold standard segmentation and the expertise of data
analysts to augment that segmentation in full-blown models.

The current COVID-19 pandemic highlights the criticality of relying on high spe-
cialized clinicians for time-demanding tasks, as the same experts that can generate gold-
standard segmentation for AI training are also the ones responsible for patient diagnosis
and care. Improving methods for semi-supervised learning in Radiomics would allow for
more effective use of the time and energy of these experts while capitalizing on AI training
to support them in patient’s diagnosis and treatment.

While the results presented in this work are not yet at the accuracy level necessary for
assisted diagnostic use, we surmise that this approach would be helpful in developing a
solid triage system, which would help to prioritize the resources available and direct them
were most effective.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11125438/s1, Table S1: Comparison between the score results for the gold standard
segmentation in the included databases with details for each sample. For each score, the average
value (and corresponding standard deviation at 1 σ) is reported, Table S2 Details of the various
state-of-art methods referenced in the paper.
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Abstract: Artificial intelligence (AI) is a branch of computer science dedicated to giving machines or
computers the ability to perform human-like cognitive functions, such as learning, problem-solving,
and decision making. Since it is showing superior performance than well-trained human beings in
many areas, such as image classification, object detection, speech recognition, and decision-making,
AI is expected to change profoundly every area of science, including healthcare and the clinical
application of physics to healthcare, referred to as medical physics. As a result, the Italian Association
of Medical Physics (AIFM) has created the “AI for Medical Physics” (AI4MP) group with the aims of
coordinating the efforts, facilitating the communication, and sharing of the knowledge on AI of the
medical physicists (MPs) in Italy. The purpose of this review is to summarize the main applications
of AI in medical physics, describe the skills of the MPs in research and clinical applications of AI,
and define the major challenges of AI in healthcare.

Keywords: artificial intelligence; deep learning; medical physicist; machine learning; big data

1. Introduction

Artificial intelligence (AI) is a branch of computer science dedicated to giving machines
or computers the ability to perform human-like cognitive functions, such as learning,
problem-solving, and decision making [1,2]. AI-based systems have shown performance
superior to experienced human beings in tasks, such as image classification and analysis,
speech recognition, and decision-making [3]. Consequently, AI is expected to change
profoundly every area of science, including medical physics, the clinical application of the
principles of physics to healthcare [4,5]. The knowledge and skills of the medical physicists
(MPs), which include aspects of mathematics, bioinformatics, statistics, safety, and ethics in
the use of medical devices, are invaluable in the clinical and research applications of AI in
medicine.

Moreover, analytical and computational techniques of physics, in particular those
derived from statistical physics of disordered systems, can be extended to large-scale
problems, including machine learning, e.g., to analyze the weight space of deep neural
networks [6,7].

Given the exponential growth of applications of AI, such as machine learning (ML)
and deep learning (DL) in all areas of medicine, which use ionizing radiation, ultrasounds,
and magnetic fields for diagnostic and treatment purposes, witnessed over the past few
years, the MPs’ workflow will be profoundly affected by the advent of AI. The areas
affected will include quality controls of equipment, as linear accelerators and imaging
devices, and software like diagnostic support systems [4,8] and decision support systems.
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The MPs will be more and more involved in the use of the new AI applications in medicine
for patient diagnosis and treatment, with the primary scope of guaranteeing the quality of
the whole process and environment [9].

The Italian Association of Medical Physics (AIFM) has created the AI for Medical
Physics (AI4MP) task-group, with the aims of coordinating the efforts, facilitating the
communication, and sharing of the knowledge on AI of the MPs in Italy. The aim of the
present review is to summarize the point of view of the coordinators of AI4MP on the
role and the involvement of MPs in the new AI world by defining the challenges of AI in
healthcare for the MPs and by describing the skills the MPs can offer in this field. This will
be done with a question in mind: if AI is welcomed by the MPs or vice versa.

2. Artificial Intelligence in Healthcare

Machine learning (ML) is the discipline that builds mathematical models and com-
puter algorithms to perform specific tasks by learning patterns and inferences directly from
data using computers, without being explicitly programmed to conduct these tasks [10].
ML algorithms can be either used for supervised learning, where the machine is provided
with output labels to be associated with a set of input variables, or unsupervised learning.
A popular supervised ML method is Support Vector Machines (SVM), which, by means of a
kernel function, projects the data into a higher-dimensional feature space and determines a
hyperplane in this feature space, which separates data points into categories [11]. Ensemble
ML (EML) methods, such as Random forests or AdaBoost, are other supervised methods,
which aggregate multiple learners, such as Decision Trees, into a single learner [12,13].
Naïve-Bayesian (NB) classifier calculates the probability of each class using the Naive Bayes
formula [14,15]. In unsupervised learning, the labels for given sets of input variables are not
known, and the algorithm aims at finding correlations, patterns, or structures in the input
variable space [16,17]. These include k-means clustering [18], principal component analysis
(PCA) [19], Stochastic Neighbor Embedding (SNE) [20], and Laplacian eigenmaps [21].

Deep learning (DL) is a group of methods, which can be employed for supervised
or unsupervised learning on any type of data, image, or signal. DL employs models with
multiple stacks of neural layers to learn inherent patterns from input data and generate
comprehensive representations, in contrast to classical ML methods, which use hand-
crafted features manually extracted as input [2].

Nowadays, radiological and pathology images are stored, together with their reports,
in picture archiving and communication systems (PACS). Besides, with the introduction of
electronic health records (EHRs), systematic collections of patient health information have
been made available, which include qualitative data, such as documents and records of
patient demographics, medical records, and laboratory and diagnostics tests [22].

ML and DL, if applied to this large and often unstructured digital content, can deter-
mine information useful for epidemiological, clinical, and research studies [23,24]. Natural
language processing (NLP) techniques, a combination of AI and linguistics, aimed at de-
veloping a computer’s ability to understand human language [25], can be used to extract
clinically relevant information from pathology and radiology reports [26], which can be
integrated with features extracted from digital radiologic and pathology images stored in
PACS [27].

The process used for these analyses is defined as “Data Mining”. Data mining is used
to find trends, patterns, correlations, anomalies, and features of interest in a database [28] in
a data-driven inductive approach, which generates hypotheses from data [29]. Ideally, data
mining necessitates the ‘4 V’s’ of ‘Big Data’—volume, variety, velocity, and veracity of data.
Instead of being used for prediction or diagnosis, in this case, ML is used to find clinically
similar patients in the unstructured database, using all available multimodal clinical data
available, with the aim of discovering important groupings or defining features in the
data [28].

Once similar patients are identified, the diagnosis, treatment, and outcome extracted
from EHRs and other digital content can be ranked to give recommendations [17], e.g., by

198



Appl. Sci. 2021, 11, 1691

computerized clinical decision support systems (CDSS), which aid in decision-making [30].
In this way, pipelines can be designed to continuously and automatically extract informa-
tion and improve the accuracy of patient outcome prediction [31].

3. Clinical Applications of Artificial Intelligence

3.1. Imaging

The main purpose of the use of AI and ML applications in imaging is to support the
specialist in the diagnosis of diseases. Computer-aided diagnosis (CAD) is among the
first applications of these new algorithms in the imaging area [32,33] and incorporates
ML classifiers trained to distinguish lesions from normal tissue [34]. In lung computed
tomography (CT), ML applied to combinations of CT textural features scored high accuracy
in distinguishing malignant lesions [35] or invasive from minimally invasive lesions [36].

In the relatively recent radiomics approach, quantitative analysis of radiological
images (mainly CT [37–39], magnetic resonance imaging (MRI) [40–42], and positron
emission tomography (PET) [43] images, but also ultrasounds [44], mammograms [45],
and radiography) by extraction of a large number of image features (up to a few hundred
or thousands) can be combined with ML classifiers to produce prognostic and predictive
models [39].

In image elaboration, DL algorithms can learn the structure labeling of each image
voxel directly (semantic segmentation) in order to contour lesions or organs [46]. U-net,
one of the most popular DL architectures for image segmentation, has proven to be capable
of automatically segmenting lung parenchyma [47] and lung tumor using PET-CT hybrid
imaging [48].

A cornerstone of optimization of clinical imaging protocols is patients’ dose estima-
tion, which allows the dose to be balanced with image quality. Dose to the patient can be
automatically calculated by DL in CT [49], single-photon emission computed tomography
(SPECT) [50], and PET [51]. In interventional radiology, DL has been proposed for skin
dose estimation [52]. In chest CT, ML could be used to predict the volumetric computed to-
mography dose index (CTDIvol) based on scan patient metrics (scanner, study description,
protocol, patient age, sex, and water-equivalent diameter (DW)) and identify exams, which
hold potential for dose reduction by tuning the acquisition parameters [53].

Another pillar of patient dose optimization is image quality improvement, as it allows
dose reduction for the same image quality. The integration of AI algorithms within the
imaging technology allows for improving imaging quality and, consequently, to reduce
patient dose. DL methods have been used for improving PET image quality, reducing
noise [54], removing streak artifacts from CT [55], and developing novel techniques for
tomographic image reconstruction based on a reduced amount of acquired data. Other
promising applications are a generation of synthetic images, such as synthetic CT from
MRI [56], virtual contrast-enhanced images [57], and rigid/deformable intramodal and
multimodal image registration [58], and extraction of the respiratory signal [21] that could
be used for breathing motion compensation of images [59].

In interventional radiology, AI can predict tumor response to transarterial chemoem-
bolization based on image texture and patient characteristics [60,61]. In the future, real-time
registration DL algorithms could be used to superimpose high-resolution preoperative MR
imaging with intra-procedural fluoroscopy, guiding the physicians during the catheter’s
manipulation [62] for estimating ablation margins and helping minimize damages to
structures close to the treated area.

AI can be useful also in longitudinal studies during follow-up of treatments in order to
detect subtle changes between images, thus identifying progress or recurrence at an earlier
stage [63,64]. Ophthalmic imaging, e.g., fundus digital photography, optical coherence
tomography, among other imaging fields, is where artificial intelligence can support the
specialist in the diagnosis of ophthalmic disorders, such as diabetic retinopathy, age-
related macular degeneration, and others [65]. Other areas include cardiology [66,67] and
rheumatology, which have a long history of research in AI applications aimed to detect
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and assess also rheumatological manifestations, bone erosions, and cartilage loss [68]. The
development of digital pathology, due to the introduction of whole-slide scanners, and
the progression of computer vision algorithms have significantly grown the usage of AI
to perform tumor diagnosis, subtyping, grading, staging, and prognostic prediction. In
the big-data era, the pathological diagnosis of the future could merge proteomics and
genomics [69]. Spatial metabolomics is a new field aiming at measuring the distribution of
molecules, such as metabolites, lipids, and drugs, within body structures, using imaging,
such as mass spectrometry, where each pixel is represented by its mass spectrum [70].
Being characterized by a large amount of high dimensional data, including overlapping
and noisy molecular signals, this technique looks promising for the application of AI [71].

Other applications that could become a focus of AI in the near future are computer
vision [72], dealing with object detection and feature recognition in digital images, and
virtual assistants [73], employing speech recognition in neuroradiology [74], radiology, and
beyond. By augmented reality, the operator’s perception of an operating room environment
could be enhanced with AI-generated information [75].

3.2. Therapy

ML can be useful to carry out many of the activities during the whole workflow of
radiotherapy, starting with the choice of the optimal radiation approach, e.g., choice of
proton vs. photon [76]. A convolutional neural network (CNN) can automatically segment
targets and organs at risk in radiotherapy [77]. ML-based auto-planning [78,79] mimics
the iterative plan design, evaluation, and adjustments made by experienced operators
with the goal of improving quality and efficiency and reducing inter-user variability [46].
Knowledge-based approaches leverage a large database of prior treatment plans (up to
thousands) to develop associations between geometric and dosimetric parameters from
a selection of previous plans in order to determine achievable dose constraints or dose
distributions that can be used for benchmarking the quality of plans [9,80]. ML-based auto
planning was also developed for brachytherapy [81].

The dose distribution from radiation therapy treatment can be predicted by DL in
order to speed up the optimization [82] or determine the best achievable dose distribution
from the patient image [83]. ML was applied to predict dose in brachytherapy [84] and
in vivo measured dose in intraoperative radiotherapy [85].

Recently, dosomics, the application of radiomics or DL to the analysis of the dose
distribution, eventually corrected into biologically effective dose to account for diverse
fractionation, was investigated for the ability to predict side effects of radiation therapy
[86,87]. Radiomics can also be applied to cone-beam CT (CBCTs) acquired for image-
guidance of the radiotherapy treatment, making these images useful for data mining [88].

A major concern of radiotherapy is the change in the anatomy of the patient during
therapy, which could result in unwanted dose changes. In this case, re-planning of the
treatment is warranted. ML can identify significant changes in patient anatomy during
radiotherapy [19] and predict patients who would benefit from adaptive radiotherapy
(ART) [89]. Eventually, by using information extracted from radiomics voxel-based analy-
ses, sensitive/resistant tumor sub-volumes might be identified, requiring higher (or lower)
dose, thus enabling dose painting according to a “radiomic target volume” (RTV) [90].

In nuclear medicine, radiometabolic therapy with unsealed (radiopharmaceuticals) or
sealed sources (microspheres, etc.) is of growing importance. The application of AI in this
area can improve dosimetry by accounting for patients’ anatomy, activity distribution, and
tissue density, and planning, in order to administer the highest dose to the target while
sparing critical organs, as well as for predicting treatment response [91]. Methodological
studies have been performed to investigate the robustness of dosomic approaches [92].

3.3. Quality Assurance (QA)

According to the International Organization for Standardization, QA is a system
that ensures quality for a given product, service, process. Quality is the degree to which
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the system fulfills requirements (need or expectation that is stated—generally implied or
obligatory) [93], thus avoiding mistakes and defects. Quality controls (QC) are the tests
performed to describe, measure, analyze, improve, and control a certain product or process.
In radiological sciences, QCs are applied to verify and monitor devices and procedures for
diagnosis and therapy, as well as the support systems used by clinicians. AI can be used to
perform automatically QCs that, if carried out manually, would not be feasible routinely
due to a large amount of time required. AI QC systems could be used to learn and improve
their accuracy over time and develop new tests over time without human intervention.

Quality assurance of radiotherapy (RT) is a significant part of the MP’s work, and it
is aimed at preventing radiological incidents and misadministration of radiation dose. A
number of ML-based approaches have been explored to predict errors in treatment plans
in order to automate chart check of plans. A K-means clustering algorithm was employed
to learn from prior plans to perform the detection of errors in prostate plans [18].

Automated quality control of LINACs is another promising application of ML, which
can be used for predicting machine performance issues, such as deviation of dose out-
put [94], multileaf collimator (MLC) positions [95], and beam symmetry [96]. A method for
automated quality control of LINACs by ML applied to electronic portal imaging device
(EPID) was proposed, which could identify sag and deviations in the vertical direction
and field shift [97]. Other AI applications aim at predicting results of in-phantom pa-
tients’ specific QA of intensity modulated RT (IMRT) or volumetric modulated arc therapy
(VMAT) [98,99].

4. Challenges and Pitfalls of AI

4.1. Data Size and Quality

ML and DL algorithms require a large amount of training samples, which grows
rapidly with the dimensionality of data (the curse of dimensionality). An unappropriated
data size will lead to a reduction in the certainty of the prediction, considering that many
ML applications will always deliver a result, disregard the size and quality of the data
set [100]. Unfortunately, a proper metric to evaluate sample size and power for ML and DL
is missing.

Frequently, datasets used for training AI have a small number of samples with respect
to the dimensionality of data and of the desired tasks [101], to the point that, frequently,
there are more features per subject than subjects in the entire dataset [102]. Under these
circumstances, overfitting, a condition where models are more sensitive to noise in the data
than to their patterns, and instability occur, making the model poorly reproducible and
generalizable, meaning that it will perform poorly on unseen datasets [103].

Feature selection algorithms, such as stepwise feature selection [104], the minimum
redundancy maximum relevance (mRMR) [105], and RELIEF (relevance in estimating
features) [106,107], can be applied to reduce overfitting by selecting a non-redundant
subset of variables best suited to predict the outcome.

To reduce overfitting in DL, data augmentation (e.g., by the affine transformation of
the images) during training is commonly implemented [10], and layers in the networks
are specialized in reducing overfitting, such as dropout layers [108]. On the other side,
DL suffers from other sources of uncertainties (e.g., the presence of many local minima
in the loss function and the stochastic nature of training algorithms), so that repeating
model training multiple times does not necessarily produce the same model [2]. Besides,
the class imbalance problem, in which some classes have a significantly higher number of
samples, is detrimental for ML performance, if not properly accounted for [109,110]. For
overcoming class imbalance, under-sampling or over-sampling can be applied; the latter
has been proven to be more effective [110].

Other biases in the training datasets, e.g., age, gender, and race, or in the diagnostic
or therapeutical approach, e.g., technologies use for imaging or radiotherapy, may result
in biased models, which may lead to poor performance for minority groups who are
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poorly represented in the training dataset. This could potentially aggravate healthcare
disparities [103].

Another source of unreliability stems from the constant evolving of the patterns of
clinical practice over time due to the introduction of new treatment approaches, tech-
nologies, or gradual changes in patient population (e.g., percentage of patients with a
given histological subtype). This may result in increased unreliability of the AI system’s
recommendations or prediction over time [30]. The “half-life” of the relevance of clinical
data used for training is thought to be typical of 4 months [111].

4.2. Interpretability

Interpretability is the level of understanding of the information that the model extracts
from input data, why it is extracted, and how it arrives at its output [2]. ML models are
usually perceived as black boxes by the users and clinicians, meaning that they have a
low level of interpretability. This issue is exacerbated for deep neural networks, given the
complicated multi-layer structures and numerous numerical operations performed by each
layer, and hinders the application of AI in the clinic.

Graph approaches can be of help to improve the interpretability of ML and DL
methods. The activation maps extracted by the CNN, overlaid with the image analyzed,
can show on which image regions the CNN focuses strongly for prediction [112]. For ML
classifiers, interpretation can be facilitated by identification of the most important variables
or features for prediction and comparing their values in illustrative cases, e.g., patients
with a poor and good prognosis, as done in many radiomics studies, e.g., [86,113,114]. In
unsupervised learning, some methods, like t-distributed stochastic embedding (t-SNE),
allow visualization of high-dimensional data by giving each data point a location in a two
or three-dimensional map [20].

4.3. Legal and Ethical Issues

Key ethical issues associated with AI-systems automatically mining large patient
databases include informed consent, privacy and data protection, ownership, objectivity,
transparency of the obtained clinical or research model, and quality of training and valida-
tion data [115]. Automatizing tasks and decisions with the use of AI-based machines on a
large scale could bring increased systemic risks of harm and systematic errors. These errors
are categorized into omission when humans do not notice the failure of an AI tool and
commission when an action is performed following AI’s decision when there is evidence
that AI is wrong [115]. The responsibility to prevent these errors by anticipating incorrect
performance or misuses of AI before incidents occur falls to humans.

A model should be transparent, meaning that its formulas and code should be avail-
able and comprehensible so that it is possible to trace why an algorithm has failed and
adverse clinical events [115]. The data “truthfulness” consists of understanding the type
of information contained, the completeness and accuracy, their variance and bias, and if
they reflect the problem of interest. Because of the “black box” phenomenon, informing
the patient clearly could become more difficult for the doctor when a decision is influenced
by AI [116].

AI systems’ decisions are based on the data used for training, the algorithms that
are used, and what they have learned since their creation [117]. If some human biases,
such as variability in healthcare because of ethnic, social, environmental, or economic
factors, or clinically confounding factors, such as comorbidities, are present in the training
data, they could result in biased decisions of the AI systems [28,117]. Since AI does not
incorporate ethical concepts like equality, humans who use AI will hold the responsibility
for preventing these errors [115]. Finally, before integrating AI into medical practice, it is
important to prevent the loss of competence of the human who will not be able to carry
out a task he used to do before because it has been transferred to the AI, also defined as
“deskilling” [116].
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5. Role of MP

5.1. Imaging

As already underlined in this paper, one of the major tasks in which the MP is deeply
involved in the imaging field is the optimization process, i.e., finding the balance between
dose and image quality.

MP understands the components of an imaging device used and the basic physical
mechanisms at the root of signal change and image contrast and comprehends the tech-
nical and/or physiological artifacts limiting the performance [4,118]. Moreover, the MP
understands the limitations and potential pitfalls of dose measurement, calculation, and
prediction [90]. Thus, MP has knowledge and skills that are of value for the development,
implementation, and use of AI in imaging.

AI-based systems have been developed to estimate patient dose. MP shall validate and
periodically check these systems to avoid possible errors in the estimation. For example, the
dose to each voxel in the calculated distribution depends on the dose calculation algorithm
used, on the calculation voxel spacing, and on the uncertainty in dose measurement in the
dataset used for ML training. In phantom, dose measurements can be planned by the MP
to test algorithms’ predictions.

MP shall also assess image quality through routine testing [119]. Recently, image
quality enhancers, based on DL, have been introduced in clinical practice in order to
ameliorate image quality. Consequently, image acquisition protocols could be updated
to achieve dose reduction, and the MP will be involved in the optimization to ensure the
minimum possible ionizing radiation dose to the patient [119,120].

It is also necessary to verify to what extent the imaging parameters’ change influ-
ences the quantitative image content and, consequently, the response of AI systems. To
this purpose, various physical phantoms have been developed. The Credence Cartridge
Radiomics (CCR) phantom for radiomics was created for CT [121] and CBCT [122] images.
More recently, anthropomorphic phantoms with heterogeneous objects were designed
in order to simulate the texture of lung nodules [123]. PET phantoms with 3D printed
inserts simulating heterogeneities in FDG uptake have been proposed [124], as well as MR
phantoms simulating relaxation times and texture of pelvic tissue and malignancies [125].
Using these kinds of phantoms, the sensitivity of radiomics-based ML classifications on
image acquisition parameters has been investigated. In CT, the classification is affected by
the device used [121], method of image reconstruction [126], noise reduction algorithms,
slice thicknesses [127,128]. PET features depend on acquisition mode [129,130], reconstruc-
tion algorithm, image resolution, and discretization [131,132]. MRI features are sensitive
to the field of view, field strength, pulse sequence, reconstruction algorithm, and slice
thickness [133].

Physical and digital phantoms could also be used to periodically verify the perfor-
mances of image-based ML algorithms. Digital phantoms are usually representative scans
of patients with known acquisition parameters. A dataset of CTs acquired twice on the
same patient 15 min apart allows “test-retest”, an assessment of the reproducibility of the
radiomics workflow under the same conditions [127].

The accuracy of AI-generated segmentation, image reconstruction, and synthetic
images (e.g., MRI) can be assessed using a ground truth digital phantom, for example of
brain glioma patients [133] and image simulators, capable of simulating MRI acquired with
different pulse sequence or field strength and reconstructed with different methods [133].
Specific tests allow assessing the accuracy of AI-based image registration [134].

In addition, MP can ensure correct extraction and quantitative analysis of imaging
data. Thus, before performing quantitative analysis with AI algorithms, the accuracy and
precision associated with the quantitative parameters within the images (e.g., tumors)
should be assessed [29]. Moreover, MP is responsible for the pre-processing of images
necessary for correct AI application. This would include the conversion of PET and
SPECT images in standard uptake value (SUV), the standardization of MR images intensity
scale [135], as well as assessment and correction of confounding factors of images, such

203



Appl. Sci. 2021, 11, 1691

as artifacts for metal implants in CT, magnetic field non-uniformity in MRI, and partial
volume effect (PVE) in nuclear medicine images. Multimodal images should be registered
using a proper method for rigid or deformable registration [136], a critical step that may
affect the accuracy of AI models analyzing hybrid image datasets voxel by voxel [137] in
order to combine metabolic, functional, and morphologic information.

In interventional radiology, MPs are involved in monitoring patients’ dose and manage
patients’ radiation risks by reviewing interventional procedures [138]. The involvement
of MPs will also reach safe implementation and QA of other AI systems, such as robotic
angiographs and/or neuro-navigators, robots, etc., and platforms (catheter navigation
assistants, analyzing relationships between catheter positions, therapeutic effect, and
patient outcomes, etc.) for interventional therapies.

In other fields of medical imaging where AI is rapidly emerging, such as pathology
imaging, MPs can support the acceptance and validation of AI systems. Recently, [139]
pathology Digital Imaging and Communications in Medicine (DICOM) file format has
standardized the representation, storage, and communication of pathology images acquired
with whole-slide scanners [139]. Common acquisition protocols could reduce the variability
in slide preparation and digitization procedures and scanner models among different
centers and improve the performance of AI detection systems.

5.2. Data Collection and Curation

Given their skills in numerical analysis and clinical integration, MPs can significantly
aid in the management of aggregate data [4], which will include clinical and image data
from multiple modalities, such as PET, CT, radiography MRI, ultrasound, daily CBCT,
hybrid imaging, such as PET/CT and PET/MRI, 3D/4D and image time series, and 3D/4D
dose distribution from RT. MP will be involved in the development of metrics to assess
the quality and completeness of data, methods to curate data, and QA programs of data
archives [140].

CAD systems and other AI-based decision systems using images as input will need
minimum quality specification and acquisition protocols in order to ensure output accuracy.
The MP can ensure that the images are acquired according to the protocol required for
correct AI use, free from relevant imaging artifacts, and correctly preprocessed [141] and
harmonized [142] to reduce variability.

Moreover, MP can ensure that image data, together with their acquisition parameters
and the dosimetric data from imaging and therapy, are stored in commonly accepted
standards, such as the Digital Imaging and Communication in Medicine (DICOM), or
comparable format and can create new standards for raw acquisition data to be stored in
the standard format [143]. MP will necessarily oversee storage, security, and integrity of
the large, machine-readable data collections needed to build a model [103]. The QA of
datasets is a guarantee for the clinician, patient, and patient associations of the ethical and
unbiased use of patients’ health data by AI systems.

5.3. Commissioning and Validation of AI

Commissioning of AI tools is a series of tests to assess if the system installed in the
local site operates correctly and is ready for clinical use. The commissioning tasks, tests,
schedule, and tolerances, with the required equipment and human resources, should be
planned before installation [30]. The test plan could consist, for example, of applying AI to
a set of well-known clinical cases, for which ground truth data are available. Comparison
of different ML methods on the same dataset is useful and can show which ML algorithms
have the best performance and which are more prone to overfitting data for the task at
hand [85,144]. A technique called adversarial ML, where attempts to deceive models are
carried out with a number of crafted configurations of data, e.g., by adding noise to images,
can be used for quality assessment of many classes of ML and DL algorithms [145,146].

The lack of interpretability of AI systems—or ‘black-box’ problem—constitutes an
obstacle towards their adoption in the clinic [10]. Monitoring AI performance by proper
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quality controls that test the models in well-known situations can improve the interpretabil-
ity of models, as well as assessing architectures of DL models and their output using
activation and feature maps.

An initiative led by the US FDA, the Microarray Sequencing Quality Control MAQC/
SEQC [147], invites researchers to submit their models, features selected as important,
and performance estimates to a specific data analysis plan (DAP), which includes ML and
statistical crosscheck, before performing external validation data [100].

Validation, e.g., using the criteria in the TRIPOD statement [148], is required because
many of the available AI models are trained using small datasets, and although augmen-
tation and resampling methods are frequently applied, they are affected by overfitting
and poor generalizability and reproducibility [112]. Large and possibly multi-institutional
datasets, independent from the training datasets with realistic variability and the lowest
bias as possible, are needed for validation. These can be achieved by increasing the level
of collaboration among institutions [112], and the MP can play a role in checking the
compliance with the required standards.

5.4. AI in Radiotherapy

MPs contributed to making radiotherapy into a frontier of personalized precision
medicine by developing CT-based dose calculation, treatment planning, and image-guided
radiation therapy (IGRT) [90]. Other traditional domains of MPs in radiotherapy include
quality assurance and radiation protection [90]. MPs have been also at the forefront in
using AI in RT, leading to the implementation of knowledge-based treatment planning,
where ML algorithms are trained on the dataset, comprising patient images, contours,
clinical information, and treatment plans performed by experienced MPs to automatically
develop high-quality plans, allowing to accelerate radiotherapy plan design [46].

As with any other ML-based procedures, auto-planning systems also are as good as
their human-generated training data, and their outcome will need to be tested and finally
approved. Oftentimes, the proposed plan will need to be customized and modified by
clinical MPs because of the unique anatomy of every patient. More importantly, when
potential issues are identified for a specific plan, MPs communicate with other team
members, such as physicians, therapists, and dosimetrists, to reach a clinically acceptable
solution [149].

MPs are involved in validation and quality assurance of dose predicted by DL [90],
which can be tested by properly designed in-phantom film/ion chamber measurements
according to dosimetry protocols and benchmarking against previously established dose
calculation algorithms. Another critical aspect is also investigating how the uncertainties
of dose affect prognostic or predictive dosomic models [90].

Given their familiarity with imaging devices and LINACs derived from managing QA
programs, MP will have a critical role in the analysis of AI applied to the quality control of
LINACs. When an AI tool predicts a machine failure, MPs can help identify the cause of
the issue and corrective actions, such as calibrations [149].

5.5. Safety/Risk Management

One of the key activities of the MP is patient safety management that is the evaluation
of medical devices and procedures to guarantee the safety of patients. MPs are trained to
prevent and analyze accidents [149] by using risk assessment, which consists of the analysis
of events potentially involving accidental medical exposures or injury to a patient [150],
and failure modes and effects analysis (FMEA) [151].

ML has the potential to reduce imaging radiation exposure, which is a hazard for
patients and workers, without penalizing image quality [152].

5.6. Periodical Tests

QA should be applied to AI systems themselves, which, having an impact on patient’s
health, should be considered as medical devices [153]. Physicists are also responsible for
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ensuring that clinically used AI algorithms continue to perform with the desired level of
accuracy by conducting an appropriate routine QA test program with clearly established
frequency, metrics, tolerance levels, and actions to be performed in case of test failure [103].
The frequency and nature of the series of tests will be in need of frequent updates, given
the rapid pace of evolution of AI.

This is especially important for those AI systems that, being constantly learning and
updating, will be subject to change in terms of their response and accuracy [94,119]. At the
same time, it is critical to assess the effect of the decay of the relevance of the training data
due to changes in practices (e.g., changes in prescribed dose and dose per fractions) [94].

5.7. Training of AI Users

According to a white paper, the Canadian Association of Radiologists [154] should
provide practitioners with an understanding of the value, the pitfalls, weaknesses, and
potential errors that may occur in the use of AI products [154]. The medical physics associ-
ations are launching initiatives to provide appropriate training and education programs in
the field of AI applied to imaging and therapy [90]. On the other hand, being skilled at com-
munication and divulgation of science, MPs are critical to establishing a common language
with other professionals and patients [155]; MPs can take part in education and training in
the use of AI of other health care professionals, and be a part of the interdisciplinary team
working for the effective, efficient, and safe delivery of AI in the clinic [3].

5.8. Research in AI

MPs are often active researchers and, having expertise also in statistics, mathematics,
and informatics, are suitable for research in AI. Extensive research is needed to understand
how to successfully introduce AI and define the use and characteristics of AI in clinical
practice [119].

Other active areas of research where MPs will be primarily involved include assessing
data veracity and validity, developing metrics for completeness, accuracy, correctness, and
consistency, and perform data cleaning activities [140]. Physicists should promote the inte-
gration of digital information from diagnostic and therapeutic procedures with genotyping
and phenotyping data into large data sets acquisition across all areas (clinical, dosimetric,
imaging, molecular, pathological, etc.), requiring multi-institutional and multinational
collaboration [24,90]. Examples of this are The Cancer Imaging Archive (TCIA) [156] and
the Platform for Imaging in Precision Medicine (PRISM) platform [157].

The specific task for MPs in AI research includes the definition of the problem to be
solved and determining its category (e.g., classification, regression, pattern recognition)
in the lexicon of AI, choosing proper models to be trained, determining a strategy for
collecting data from the appropriate dataset, and validating the model [103]. MPs also
need to investigate and report the possible pitfalls of the AI-based methods developed and
on how to overcome them. Besides, challenging is a personalizing therapy according to AI
output, e.g., dose painting in radiotherapy [90].

Privacy, security, secure access to health information, de-identification of sensitive
data, and obtaining informed consent, which are also of concern in research areas, become
more relevant in the era of big data. The MP involved in these research areas will be
required to apply the statements and recommendations released by governmental agencies,
scientists, healthcare providers, companies, and other interested parties and will have an
active role in formulating these statements [140].

Moreover, if MPs work at developing AI models or fine-tuning them on their data, they
have to carefully understand and address the limitations of the data used for training and of
the trained models [94]. Exploring multiple approaches, such as different feature selection
and ML methods and their combinations, can help in understanding these limitations.

The Findability, Accessibility, Interoperability, and Reusability (FAIR) principles are
intended to guide researchers into data management and reporting [158]. The methodology
of research studies should be detailed thoroughly, including also deep learning architectures
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and optimization parameters, and the datasets used to train models should be clearly
described in order to increase reproducibility and facilitate meta-analysis. Moreover,
decision, automation, and prediction models relying on AI must be tested in independent
and sufficiently large datasets to compare their validity against established methods,
including conventional biomarkers (e.g., clinical, radiological, etc.). The codes and data
used for training and testing the models should be made publicly available, e.g., by The
Cancer Image Archive. More guidelines for improving transparency and reproducibility of
models can be found in the TRIPOD [148].

6. Conclusions

AI can extend the expertise area of MPs, extracting even more information to improve
patient care, and the MP is ready to welcome the AI revolution. On the other hand, the MPs’
knowledge and skills will be required and beneficial for safe and optimal implementation
of AI, especially in radiological sciences, and their involvement in the multidisciplinary AI
team is crucial.
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Abstract: We evaluate the combined usage of two systems, the Integral Quality Monitor (IQM)
transmission detector and SoftDiso software, for in vivo dose monitoring by simultaneous detection
of delivery and patient setup errors in whole breast irradiation. An Alderson RANDO phantom
was adapted with silicon breast prostheses to mimic the female anatomy. Plans with simulated
delivery errors were created from a reference left breast plan, and patient setup errors were simulated
by moving the phantom. Deviations from reference values recorded by both monitoring systems
were measured for all plans and phantom positions. A 2D global gamma analysis was performed in
SoftDiso for all phantom displacements. Both IQM signals and SoftDiso R-values are sensitive to small
MU variations. However, only IQM is sensitive to jaw position variations. Conversely, IQM is unable
to detect patient positioning errors, and the R-value has good sensitivity to phantom displacements.
A gamma comparison analysis allows one to determine alert thresholds to detect phantom shifts or
relatively large rotations. The combined use of the IQM and SoftDiso allows for fast identification
of both delivery and setup errors and substantially reduces the impact of error identification and
correction on the treatment workflow.

Keywords: quality assurance; in vivo dosimetry; transmission radiation detectors; whole
breast irradiation

1. Introduction

After breast conserving surgery, radiotherapy is the usual therapeutic strategy for breast cancer
patients providing, with fewer toxicity effects, equivalent survival outcomes when compared with
mastectomy [1,2]. Conventional three-dimensional conformal radiotherapy (3DCRT), with tangential
external photon beams, is the standard irradiation modality, which is known to successfully ensure
the local control of the disease [2,3]. Moreover, in recent years, advanced techniques like intensity
modulated radiation therapy (IMRT), helical tomotherapy (HT) and volumetric modulated arc
therapy (VMAT) were investigated and compared in terms of normal tissue toxicities and dosimetric
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advantages [4–8]. However, the preferred breast irradiation modality differs between radiotherapy
departments. At our institution, breast cancer is the most recurrent pathology treated with radiotherapy,
and its high incidence encouraged us to build and share a method to improve the dose delivery
accuracy in 3DCRT breast treatments. Often in radiotherapy, patient quality assurance programs
(QA) are performed in pre-treatment modality. However, pre-treatment verification presents several
drawbacks: (1) the actual patient geometry is never included in pre-treatment measurements, making it
difficult to estimate the effect of observed dosimetric deviations on the actual patient; (2) deviations
from intended treatment occurring during the dose delivery cannot be detected [9,10]; (3) pre-treatment
verification requires additional measurement sessions, taking up valuable linac time and increasing
workload. The first issue is usually addressed in commercial systems by reworking observed deviations
on the patient anatomy (using the planning CT scan) [11–13]; however, the last two issues cannot
be circumvented by using pre-treatment verification. To solve these questions, in vivo dosimetry
systems (IVDs) that perform dose measurements during the treatment and compare them to the
intended dose are sometimes introduced into the clinical routine. In this work, a study of uncertainties
affecting breast irradiation was carried out. Three main error sources were analyzed: delivery errors,
setup errors and human errors. Delivery errors are systematic errors affecting delivery parameters
which can lead to output variations (e.g., incorrect linac dose calibration or incorrect calibration of the
multi-leaf collimator or of the jaws). Inter-fraction setup errors instead are more difficult-to-control
errors tightly related to the patient alignment procedure followed by operators, to anatomical
modifications and to treatment preparation imaging devices. Regrettably, human mistakes could
also occur, e.g., incorrect arrangement of the patient, perhaps due to clothes or objects accidentally
located inside the treatment field, or incorrect identification of the patient occurs. The effectiveness
of IVDs in detecting systematic and random treatment errors has been investigated in several review
papers and reports [9,14–19]. In particular, all authors agreed that standard quality pre-treatment
checks are not able to detect a large number of treatment errors, highlighting the need for IVDs.
Recently, new international recommendations, following the suggestions indicated in many incident
reports [20–23], have encouraged the introduction of IVDs as good practice in radiotherapy [24–29].
For example, article 63 of the European Directive 2013/59/Euratom [24] clearly states that the member
countries have to include a risk analysis in their quality management systems for radiotherapy practice.
In some European countries, such as Sweden, Denmark, Norway, the Czech Republic, and France,
an IVD is mandatory [27–29]. Commercial systems for in vivo dose monitoring are available with
different objectives. Several devices measure the patient’s dose by using detectors placed on the patient
(for example, on the patient’s skin) or next to the patient (in a known position), or by processing the
radiation transmitted through the patient. Other commercial systems measure the photon fluence
at the linac output. Real-time in vivo devices, such as diodes, metal-oxide semiconductor field
effect transistors (MOSFETs) and electronic portal imaging devices (EPID) [30,31], belong to the
first group. In particular, EPID systems use back projection methods on measured portal images to
obtain 2D [32–34] or 3D [35,36] patient dose distributions directly comparable with the planned dose.
Transmission radiation detectors (TRDs), consisting usually of an array located on the linac head,
belong instead to the second group. However, these devices monitor the delivery but not the patient
dose; therefore, they cannot be classified as IVDs [37–42]. Our project aims to implement a new quality
assurance (QA) procedure for patients undergoing highly conformal radiotherapy treatments that
combines a transmission detector to monitor the fluence entering the patient and in vivo dosimetry
with an EPID to measure the dose actually released into the patient during the treatment. An Integral
Quality Monitor detector (IQM, iRT Systems GmbH, Koblenz, Germany) and a SoftDiso (Best Medical
Srl, Italy) system have been simultaneously operated to evaluate their sensitivity in regard to detecting
small delivery and setup errors for 3DCRT breast irradiation of a female phantom.
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2. Materials and Methods

2.1. Equipment

In this study, 6MV energy photon beams were delivered with Precise and Synergy BM linacs
(Elekta AB, Stockholm, Sweden), both equipped with an iViewGT a-Si panel EPID (Elekta AB,
Stockholm, Sweden). Precise and Synergy multi-leaf collimators provide maximum field sizes of
40 × 40 cm2 and 16 × 21 cm2 respectively, both using two banks of 40 leaves. The Synergy linac is also
equipped with an advanced robotic patient positioning platform (HexaPOD evo RT system) enabling
sub-millimeter couch movements with six degrees of freedom. A scheme of the experimental setup is
shown in Figure 1.

Figure 1. A scheme of measurement setup is displayed.

2.2. Monitoring Devices

The IQM device is an online delivery monitoring system, checking in real time the accuracy of the
radiation fluence. The device consists of a large area transmission chamber, designed to be mounted
on the linac head. An electric field gradient is generated by the inclined chamber electrode plates,
providing a non-uniform charge collection linearly varying in the direction parallel to the multi-leaf
collimator’s motion. During the irradiation, a spatially sensitive dose-area product is generated and
reported in arbitrary units (counts). A picture of an IQM detector mounted on a linac head is shown in
Figure 2.

Figure 2. Left. The Integral Quality Monitor detector (IQM) system mounted on the linac head.
Right. Alderson RANDO phantom with two silicon prostheses to simulate the female anatomy.

The IQM software allows an easy comparison of the acquired measurements with reference data
to detect possible deviations from nominal parameters. The system has also an integrated inclinometer
to measure collimator and gantry angles. Details of the detector described by several authors can be
found in reference [40].

The SoftDiso system is a piece of online monitoring software reconstructing the dose by using
the transmission signal measured by an EPID device. The reconstructed dose is compared with the
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planned dose through an R-value, defined as the ratio of the measured to calculated doses at the
isocenter point (Diso/DTPS) [32,33]. To check the inter-session patient position reproducibility and
to identify possible anatomical variations over the whole treatment, a 2D gamma-index analysis tool
compares an EPID reference image (usually acquired during the first/second session) with treatment
images by using global gamma passing rate (γPR) and gamma mean value (γmean) indexes.

2.3. Phantom

A suitable phantom was made to reproduce the real female anatomy. An Alderson RANDO
phantom was modified with two silicon breast prostheses placed on the phantom chest. Ultrasound gel
was used to reduce the air gap at the prosthesis–chest interface.

A CT scan of the phantom was acquired with a Big Bore Philips scanner (Philips Medical
Systems, Fitchburg, WI). Two reference 3DCRT plans of the phantom left breast were created for
50 Gy dose prescription (25 fractions) with Philips Pinnacle3 Professional TPS version 9.10 (Philips
Medical Systems, Fitchburg, WI) for Precise and Synergy linacs respectively. Figure 3 shows the
dose distribution for the Precise plan. The clinical target volume (CTV), the heart, the ipsilateral and
controlateral lungs, the contralateral breast and the spinal cord were defined on the CT phantom.

Figure 3. A screenshot of reference treatment plan dose distribution for 50 Gy dose prescription.
Isodose lines are displayed in sagittal, coronal and axial views.

Plan parameters are reported in Table 1.

Table 1. Parameters of the two simulated treatment plans used in the study.

Precise Beam 1 Beam 2

Gantry angle 120◦ 295◦

Collimator angle 264◦ 96◦

Field size (cm2) 14 × 11 14 × 11
Beam energy (MV) 6 6

MU 177 191
Wedge yes yes

Synergy Beam 1 Beam 2

Gantry angle 300◦ 125◦

Collimator angle 96◦ 264◦

Equivalent field size (cm2) 14 × 11 14 × 11
Beam energy (MV) 6 6

MU 161 143
Wedge yes yes
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2.4. Short-Term Reproducibility of Systems

The short-term reproducibility of SoftDiso R-value was checked by repeating the reference Precise
plan 20 times and was evaluated by the ratio of the standard deviation to the average value (σR/Ravg).
The short-term reproducibility of IQM signal has already been studied at our department [43].

2.5. Simulated Delivery Errors

To evaluate the sensitivity of the two devices to delivery errors, 12 plans for Precise linac were
created by modifying the reference plan parameters. To simulate output errors, derived, for example,
for an incorrect dose calibration of linac, MUs were modified by adding 2 MU, 3 MU, 5 MU and 10 MU
at nominal collimator positions; to mimic an incorrect calibration of jaws, the jaw located near to the
ipsilateral lung was displaced by ±2 mm, ±3 mm, ±5 mm and ±7 mm, at nominal MU. IQM and
SofDiso devices were operated simultaneously during the delivery of all 13 plans (the reference and
the 12 modified). The average deviations of the IQM signals and R-values from the reference plan
values were evaluated in 5 consecutive measurement sessions.

2.6. Simulated Setup Errors

Setup errors were simulated with Synergy couch by displacing the phantom by 2 mm, 3 mm,
5 mm, 7 mm and 10 mm in anterior, lateral and longitudinal directions. The phantom was also rotated
around the longitudinal axis by 1◦ and 2.8◦ (maximum extent of rotation reachable with HexaPOD
system). The average deviations of R-value from reference values were evaluated in five consecutive
measurement sessions. The γPR and the γmean values were calculated with SoftDiso for all images and
compared with the corresponding values obtained with the phantom in the reference position. For all
cases, γPR and γmean were evaluated with 2%/2 mm global criteria. Alert thresholds to detect shifts of
2 mm were established by using the gamma comparison. With the same thresholds we also studied
the sensitivity to rotations.

3. Results

3.1. Short-Term Reproducibility of Systems

The R-value short-term reproducibility (σR/Ravg ) was found to be 0.6%, while the IQM signal was
measured to be reproducible within 0.08%, consistent with our previous study [43].

3.2. Simulated Delivery Errors

The average deviations from reference counts and R-values of simultaneously operated IQM
and SoftDiso due to simulated delivery errors obtained from the five measurement runs are reported
in Figure 4. Both SoftDiso and IQM detected all MU variations showing excellent linearity and
sensitivities of (0.53 ± 0.13)%/MU and (0.53 ± 0.01)%/MU respectively. A remarkable correlation
between the outputs of the two devices was also observed. Furthermore, the IQM is also able to
detect small jaw position variations, showing again, good sensitivities of (1.17 ± 0.02)%/mm and
(1.05 ± 0.02)%/mm in both closing and opening movement directions respectively. The linearity
in this case is only approximate, pointing either to an intrinsically non-linear response or to an
underestimation of measurement errors. Nevertheless, IQM measurement errors are negligible
compared to deviations of signal consequent to delivery errors in clinical routine. On the contrary,
the R-value was found to be almost insensitive to the same relatively small jaw position variations,
while still showing a reasonable response linearity, with large uncertainty though.
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Figure 4. Deviations from reference values of IQM signal and SoftDiso R-values as functions of MU
variations (top) and of jaw position variation in close (bottom left) and open (bottom right) directions.

3.3. Simulated Setup Errors

The IQM system is intrinsically insensitive to patient positioning, being placed upstream
of the patient along the beam line. The SoftDiso provides, therefore, the only tool available to
check for the correct patient positioning. The average R-value deviations (absolute values) for all
phantom displacements and rotations with respect to the reference position are shown in Figure 5.
Given the characteristics of the beams and the irradiation region considered in this study, the R-value
measurements show good linearity and a sensitivity of (0.74 ± 0.12%)/mm to displacements in
the anterior direction, where the strictest control of patient positioning is required. In contrast,
as expected, the R-value is insensitive to movements in lateral and longitudinal directions, and to
rotations, which are less critical in this specific case.

Figure 5. Deviations from reference values of the SoftDiso R-value for phantom rotations (left) and
translations (right).
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To further explore the sensitivity of SoftDiso to patient positioning errors, a gamma-index
comparison of EPID images with displaced phantom was performed. The results for 2%/2mm
global criteria are presented in Figure 6. To reveal phantom shifts ≥ 2 mm, alert thresholds of
γPR < 89.7% ± 0.4% and γmean > 0.32 ± 0.04 were obtained. The γPR and γmean indexes show good
linearity with phantom displacements. Results of the comparison for phantom rotations are reported
in Table 2.

From the measurements we conclude that the sensitivity to small rotations is difficult to asses,
with γPR remaining within the alert threshold for both rotation angles and γmean going slightly
above-threshold for the maximum simulated rotation of 2.8◦.

Figure 6. Measured γPR and γmean indexes as functions of phantom anterior (top); lateral (middle) and
longitudinal (bottom) displacements for both beam 1 and beam 2 used in the simulated treatment plan.
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Table 2. Results of the gamma-index comparison for phantom rotations.

Rotation Angle γPR Beam 1 γmean Beam 1 γPR Beam 2 γmean Beam 2

1.0◦ (95.0 ± 0.4)% 0.19 ± 0.05 (95.7 ± 0.4)% 0.18 ± 0.03
2.8◦ (91.0 ± 0.6)% 0.37 ± 0.05 (91.2 ± 0.6)% 0.33 ± 0.04

4. Discussion

In this study deviations in treatment delivery and in patient setup were simulated. Both types
of errors happen in clinical routine. Scenarios can be various: small, but even large deviations can
occur during the treatment, for example, when a wrong linac dose calibration is done or when patient
is not correctly identified or prepared for the therapy. The strength of the combined use of the two
systems in detecting all different kinds of errors, even when very small, has been evidenced in this
work. Separate use of IQM or SoftDiso devices has been widely discussed for different irradiation
modalities [43–49], but to our knowledge, no study exists of their combined use, in particular for breast
irradiation. A clinical study of the SoftDiso-based quality assurance procedure for post-mastectomy
IMRT and VMAT radiation therapy is reported in reference [50], where specific thresholds for
R-value, γPR and γmean indexes were proposed, based on the clinical experience and validated with a
phantom chest. The authors confirmed the feasibility and the importance of a QA procedure based
on EPID-based IVD to detect inter-fraction setup errors to overcome the weakness of a setup control
based only on weekly cone beam CT acquisitions. The high IQM sensitivities to simulated delivery
errors have been assessed by several authors [43–46] and confirmed in our work. However, to our
knowledge, studies of the application of IQM to breast irradiation have not been reported elsewhere.
From our measurements, the IQM device demonstrates high sensitivity to small MU variations and
jaw position deviations. The SoftDiso R-value was also found to be able to detect MU variations with a
sensitivity slightly smaller than for IQM. However, the R-value is much less sensitive to collimator
position variations, as expected given the stability of output factors for small modifications of the field
size. The IQM system is obviously insensitive to patient setup errors given its positioning upstream
the patient itself. However, in this work we have demonstrated the ability of the EPID-based SoftDiso
to detect simulated setup errors. The SoftDiso R-value was shown to have good sensitivity to small
displacements in the anterior direction—the error most critical for the particular simulated plan used.
To recover full sensitivity to 3D displacements a gamma-index analysis was needed. This analysis,
with 2%/2mm criteria, yielded alert thresholds of about 90% for γPR and 0.4 for γmean, in agreement
with those proposed in the literature [50]. The γmean threshold was also demonstrated to be able to
detect a phantom rotation of 2.8◦. It is worth noticing here that the gamma-index analysis, while being
fairly sensitive, cannot distinguish between patient positioning errors and beam setup errors. In this
study we have therefore shown that the combined and simultaneous use of IQM and an EPID-based
system provides a complete monitoring of beam and patient setup errors. Both devices allow one to
set alert thresholds, which can be suitably adjusted according to the specific treatment, providing a
warning message or sound when the measurement is out of tolerance. The IQM system can generate
a real time warning when the delivery is incorrect. On the other hand, the R-values provided by
the SoftDiso immediately after the sessions can be saved in a table, showing not only whether the
tolerance has been exceeded but also whether a trend over a series of sessions appears, pointing to the
need for a setup correction. Finally, the response of gamma analysis comparison is quickly available
after a very fast data analysis (few minutes). Consequently, by combining the IQM and the SoftDiso,
delivery and/or setup errors are detected quickly during or shortly after the delivery, allowing one to
correct the inaccuracies during or immediately following treatment sessions. Both devices can be easily
used by the therapist and do not affect the workflow, increase the booking time or involve the physician
or physicist except when an alert message is activated. In the latter case, moreover, the combined output
of the two devices can help in rapidly identifying the type of error to be corrected. The work presented
is a pilot study simulating errors which could occur while delivering a radiotherapy conforming breast
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treatment. The clinical implementation and the extension of this quality protocol to other districts
is the next step in our project. The combined use of the two detectors is advantageous for IMRT or
VMAT treatments too. In these cases, small deviations in positions of the multileaf collimator leaves
could toughly affect the output delivery.

5. Conclusions

Although the European Commission clearly identified IVD as a relevant element in radiotherapy
QA programs, only a few Institutions use it routinely for different reasons. First of all, many of the
commercially available systems, although exhibiting good performances, do not respond in real time,
often having very long data processing times. Additionally, many devices require dedicated staff,
because of their complicated method to enter the data for processing. Finally, often a single system
is not able to discriminate between all treatment errors, as demonstrated in this work. In this study
we have presented a pilot study showing a new strategy to perform fast and reliable QA tests with a
low impact on the workflow of the institution and patient waiting list. The combined use of IQM and
SoftDiso devices was demonstrated to be able to efficiently detect small delivery and setup errors in
3DCRT breast irradiation. We have shown that the two devices provide complementary information to
detect in almost real time all types of errors. The method would represent an important step forward
in the clinical routine to increase the quality of external breast irradiation. Our study concentrated on
breast irradiation, but the method could be easily extended to other anatomical districts or treatment
modalities, especially when advanced techniques are used. The method proposed helps to comply
with the European Commission requirements [24], and represents a new strategy in QA programs,
thereby overcoming the drawbacks of conventional pre-treatment verification, which are very time
consuming and ineffective to detect in-treatment errors.
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Abstract: This paper describes a new real-time, in vivo, noninvasive, biasless detector system acting
as a beam monitoring and relative dose measurement system. The detector is based on the idea that
when a beam current is injected into the body of a patient undergoing a charged particle therapy,
the current itself can be collected using a conductive electrode in contact with the patient’s skin.
This new approach was studied in vitro using an electrically isolated water tank irradiated with
monoenergetic proton beams. The conductive electrode was immersed in water and positioned
outside the irradiation field. The detection system performance was evaluated by comparing its
response against a SEM (Secondary Emission Monitor) detector, used as a reference beam current
monitor, and an Advanced Markus ionization chamber. Short-, mid- and long-term reproducibility,
current monitoring capability, field size dependence, electrode position and environment temperature
dependence, linearity with dose, and dose rate dependence were investigated. Few preliminary
in vivo tests were also performed that demonstrated the possibility to apply the system in clinical
practice. The potential of the proposed method is considerable, representing a simple and economical
system for online, in vivo, and noninvasive monitoring of the beam current and relative released dose
into the patient during treatment, without perturbing the irradiation field. The system presented in
this work is protected with both a National Italian (N. 102017000087851) and an International N. WO
2019/025933 patent.

Keywords: in vivo relative dosimetry; proton; radiotherapy; quality controls; beam monitoring

1. Introduction

In vivo dosimetry (IVD) represents a dosimetric procedure adopted in external beam
radiotherapy (EBRT) to detect major errors, assess clinically relevant differences between
planned and delivered doses, record doses received by individual patients, and to fulfill
the legal requirements needed for a radiotherapy session. IVD is an essential element of
modern radiation therapy, providing the ability to catch treatment delivery errors, assist in
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treatment adaptation, and record the actual dose delivered to the patient [1,2]. Moreover,
IVD is becoming more strategic considering the new flash radiotherapy modalities [3],
where potential errors could become even larger and more dangerous than in conventional
approaches. It seems, in fact, worthwhile to investigate whether existing IVD detectors
can be used for this purpose after determination of their dosimetric characteristics in
very-high-dose-rate fields [4,5].

In vivo dosimetry involves several techniques and diversified approaches. All the
dosimetric approaches currently adopted, are based on detectors intercepting and, therefore,
somehow perturbing the irradiation field. This is of particular relevance in the case of
charged particles radiotherapy, where energy losses and scattering effects are not negligible.

Thermoluminescent [6] or Radiochromic detectors [7] (off-line approach), silicon
diodes [8–10], diamond detectors [11–13], and MOSFETs (Metal-oxide-semiconductor field-
effect transistors) [14,15] (online approach) are conventionally used for in vivo dosimetry [16].

Thermoluminescent dosimeters [6] may be small in size and tissue equivalent but
they require a long series of pre- and postirradiation processes and a calibration procedure
to be used in the clinical practice. They are not off-line detectors nor usable for real-
time dosimetry. Radiochromic films show an excellent spatial resolution; they are tissue
equivalent, providing 2D dosimetric information. On the other hand, they are passive
detectors, not allowing for real-time measurements. Moreover, their response may be
affected by improper handling and scanner performances.

Silicon diodes are standard reference dosimeters for a variety of applications in radio-
therapy including quality assurance in stereotactic modalities and in vivo dosimetry. Their
major drawback lies in their relatively low radiation resistance, especially when used in
charged particle beams.

Diamonds detectors present high sensitivity and spatial resolution comparable to
that of silicon diode detectors, low leakage current, and high radiation hardness. On
the other hand, some drawbacks limit their use such as high costs and, for the natural
diamonds case, long delivery time due to suitable stone selection. Moreover, synthetic
diamond detectors present some disadvantages (such as the control of type and amount of
incorporated impurities) that seriously limit the production of detector-grade crystals and
strongly affect the response stability.

The MOSFETs are able to achieve excellent spatial resolution because of their high
sensitivity and small sensitive volume. In particular, the MOSkin, a patented dosimetry
based on MOSFET technology and recently introduced by CMRP (Centre for Medical
Radiation Physics, University of Wollongong, Australia), is also able to produce a real-
time readout and provide a reproducible water equivalent depth of dose measurement of
0.07 mm (suitable for measurements of dose delivered on the patient’s skin) [17]. MOS-
FETs’ main disadvantages are finite lifetime (they can collect about 100 Gy as maximum),
angular and energy dependence, and sensitivity change with accumulated dose. Moreover,
MOSFETs do not provide real-time beam current monitoring. Their information on the
dose is accessible only at the end of patient irradiation [18].

All the abovementioned devices can be positioned directly on the patient’s skin in
order to provide information on the dose deposited but they all intercept and perturb the
beam. Moreover, only diodes and diamond detectors are able to follow the beam current
trend during the treatment in a real-time modality.

In this work, we will discuss the characteristics of an innovative detection approach
for relative dose monitoring, based on the use of a simple and commercial electrode as that
used in an electrocardiogram. We will call the name of this detector “Electrode”.

A patient undergoing a charged particle radiation treatment absorbs a well-defined
quantity of charge and, therefore, is subjected to a net local charge imbalance. The charge
disequilibrium generates a potential difference that will produce a current flow through
an external, ground-based, floating electrode positioned on the patient’s skin, outside
the radiation field. The current generated during the potential discharge is directed to a
transimpedance, low-pass, and low-noise amplifier, acting as an high-precision picoam-
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peremeter. The current is hence integrated. The measured charge corresponds to the
net-deposited charge in the patient that can finally be connected to the absorbed dose.
The Electrode system was characterized under the 62 MeV clinical monochromatic proton
beams, available at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate)
proton therapy facility of the Laboratori Nazionali del Sud (Istituto Nazionale di Fisica
Nucleare) in Catania, Italy [19,20]. Moreover, preliminary tests were performed in vivo on
patients undergoing ocular proton-therapy treatments. The tests demonstrated the clinical
applicability of the approach as a beam current monitoring system and the possibility to
use it for in vivo relative dose monitoring. The described “Electrode” technique can be
extended to negative-charged beams, such as electrons, thus, covering the entire range of
charged radiotherapy beams currently used.

2. Material and Methods

2.1. Low-Noise Acquisition Electronic

Electrode consists of a floating electrode (FIAB, model F2080) connected to a tran-
simpedance, current–voltage converter amplifier, designed and realized by the authors of
this paper. The currents collected by the electrode were of the order of nano-Ampere or
a fraction of femto-Ampere, and the transimpedance gain was R = Vout/Iin = 109 Ω. The
amplified voltage signals were then sampled by a commercial high speed (1 MS/s) ± 10 V
digital scope (model NI 9223, National Instruments). The acquisition software, able to
monitor and register the currents and perform a preliminary analysis of the acquired
signals, was also developed by the authors.

The trans-impedance amplifier contains four principal elements:

1. A current–voltage converter (I–V), based on an OPA128 (Texas Instruments) opera-
tional amplifier, coupled with a high-resistance feedback resistor (1 GΩ) and a 100-pF
capacitor, in parallel to the resistance. This configuration limits the maximum cutting
frequency to 1.6 Hz; moreover, it allows the control of the autoinduced oscillations in
the converter and avoids overshoot phenomena. The I–V converter response is linear
in the output range of −10 V ≤ Vout ≤ +10 V. The conversion range will hence be
−10 nA ≤ Iin ≤ +10 nA.

2. A low-pass filter made of a Resistive-Capacitance (RC) network, with a cut frequency
of 0.9 Hz and an attenuation of −68 dB at 50 Hz. The filter has two main roles:
it protects the OPA128 operational amplifier from possible electrostatic discharges
(ESD) induced both by patient and/or medical personnel during the pretreatment
phases; it also weakens the 50-Hz noise currents, induced in the patient by the
environment’s electromagnetic fields, by a factor 2.500.

3. A couple of Junction gate Field-Effect Transistors (JFET), which protect the OPA128
whenever the I–V converter reaches saturation. If the I–V converter works inside
its operational range, the two JFETs are not operative and the leakage currents they
introduce are negligible (order of 100 fA).

4. An active, inverting, second-order, low-pass filter. Its main aim is to cut (with a
slope of 40 dB per decade) the residual noise at the output of the I–V converter. The
inverting characteristic of this filter was designed to compensate the negative voltage
sign at the output of the I–V converter. With this solution, the final output voltage
will be positive, i.e., of the same sign as the input current.

2.2. Experimental Set-Up

Irradiations were performed at the INFN-LNS clinical proton therapy facility where
a 62 ± 0.3 MeV proton beam was available. Details on the irradiation beamline, beam
characteristics, and dosimetric procedures can be found elsewhere [19–21].

All measurements were performed by positioning the floating electrode inside a
20 × 20 × 20 cm3 water tank, on the opposite side of the beam entrance window (see Figure 1)
outside the irradiation field. The water tank was electrically isolated to avoid charge leakages.
The beam spot size was circular, with a 25-mm diameter (Figure 1).
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Figure 1. Experimental set-up adopted for the experimental measurements: (1) circular, 25 mm
in diameter, brass collimator; (2) the water tank; (3) the electrode, positioned inside its holder
and immersed in water outside the proton field; (4) the transimpedance amplifier; (5) the NI 9223
digital scope.

All the experimental measures involved recording the detector signals for five repeated
irradiations corresponding with the same released dose. The integrated charge values and
the corresponding uncertainties were estimated as the average and standard deviation of
the five consecutive measurements, respectively. Figure 2 shows an example of the detector
current output in the five irradiations. Each curve corresponds to a dose of 4 Gy, released
at the water-tank entrance. The huge variations in the signals are due the proton beam
instabilities during the irradiations and could be the cause of the lower observed sensitivity
with respect to the calculations.

Figure 2. Detector current output for five consecutive proton irradiations. Each positive signal
corresponds to a nominal dose of 4 Gy released at the water-tank entrance.

2.3. Set-Up for In Vivo Irradiation

A set of preliminary in vivo tests were also performed on patients undergoing eye
melanoma proton-therapy treatments. During the irradiation, the patients were positioned
upon an electrically isolated chair and the electrode located on the patient’s skin, below the
thermoplastic mask, close to the temporal region but outside the proton irradiation field
(see Figure 3). The whole electronic chain and acquisition system were identical to those
used in the in-phantom measurements.
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Figure 3. A patient just before the proton therapy session with the electrode system positioned under
the thermoplastic mask.

During irradiations, both for the in-phantom and in-patient irradiations, the beam
current was also monitored by a SEM (Secondary Emission Monitor) detector. It was
positioned in vacuum, just before the beam exit window, at about three meters before the
water-tank windows. The SEM is a monitoring system, providing a relative measure of the
proton beam fluence. The SEM response is independent from the proton dose-rates [12,21]
and was used as a beam reference.

3. Results and Discussion

The electrode dosimetric response was studied to investigate its response with respect
to the dose released inside the water-tank and the proton beam dose rate. Short- and long-
term stability, response dependence as a function of the proton beam field-size, position in
the water-tank, and water temperature were also studied.

3.1. Dose and Dose-Rate Dependence

The detector response, as a function of the total dose released by the 62-MeV monochro-
matic proton beam, was studied in the 2–20 Gy range. The beam dose rate was kept fixed
at 16 Gy/min. Considering that the variance associated to each point is not constant in
the whole dose range, a weighted least square regression test was used to linearly fit data
points. The fit result is reported in Figure 4. The detector response versus the released dose
appears linear with an excellent confidence degree. A sensitivity of 0.3912 nC/Gy was
derived from the measured data as the slope of the linear fit. Deviations no larger than
±2% were observed in the whole investigated dose range.
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Figure 4. Detector response as a function of the released dose in water. The linear fit shows an
excellent confidence degree expressed by the R2 parameter.

The detector sensitivity was also evaluated at six different values of dose-rate, in
the range of 10–40 Gy/min. In Figure 5, the percentage discrepancy versus the charge
collected at the maximum dose rate (39 Gy/min) is reported. A maximum variation of 3%
was found.

Figure 5. Percentage variations, with respect to the value measured at the maximum dose rate
(39 Gy/min) of the collected charge for growing values of beam dose—rate.

3.2. Short-, Mid-, and Long-Term Reproducibility

Short-, mid-, and long-term reproducibility were investigated, and their values are
summarized in Table 1. The proton beam dose-rate (16 Gy/min), dose (4 Gy), energy
(60 MeV) at the irradiation point (i.e., at the detector position), and a circular beam spot
25 mm in diameter were taken as constants for all the measures.
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The short-term reproducibility was investigated, evaluating the detector response in
ten repeated irradiations of 4 Gy, then repeated five times within one hour. For each set
of the ten measures, the averaged detector sensitivity, expressed in nC/Gy—i.e., as the
ratio between measured charge and the corespondent released dose—was calculated. The
maximum observed variation in the sensitivity was found to be less than 2% during the
whole hour.

Similarly, the mid-term reproducibility was evaluated estimating the detector sensi-
tivity ten times in five consecutive days. The maximum percentage difference observed
was about 2.3%. For the long-term reproducibility, the sensitivity was measured ten times
within 17 months, using the same irradiation conditions. In this case, the maximum
percentage difference was 4.3%.

Table 1. Short-, mid-, and long-term reproducibility expressed as percentage variations of the detector
sensitivities for the whole set of measurements.

Short-term reproducibility ≤2%
Mid-term reproducibility ≤2.3%
Long-term reproducibility ≤4.3%

3.3. Current Monitoring Capabilities

Consider again the five current signals reported in Figure 2. Each curve corresponds
to a nominal dose Dnom of 4 Gy released at the entrance of the water-tank. Integrating the
current of each signal, we calculated the charge per dose unit (sensitivity) and measured an
average value of <Qexp/Dnom> = 0.367 nC/Gy and a standard deviation of 0.005 nC/Gy.

The expected theoretical sensitivity QTh/Dnom was calculated from the expression (1):

QTh
Dnom

=
Np · qe

Dnom
=

S · qe

( dE
dx )60 MeV

(1)

where S is the beam spot surface at isocenter (S = 5.31 ± 0.21 cm2); dE
dx 60 MeV is the 60-MeV

(energy at the isocenter point) proton massive stopping power in water
(10.78 ± 0.01 MeV·cm2/g); Dnom is the nominal absorbed dose in water at the entrance
of the water phantom; Np is the total number of the incident protons; qe is the elementary
charge unit.

A value of QTh/Dnom = 0.393 ± 0.020 nC/Gy was found, deviating 6.6% from the
experimental <Qexp/Dnom> result. This demonstrated the ability of the developed system
to estimate the total charge received and, hence, of the dose absorbed at the entrance of
the water tank. We quantitatively analyzed the SEM and Electrode signals, comparing
their main characteristics: signal rise- and fall-time (defined as the time intervals needed to
the signal for raising from 10% to 90% and for falling from 90% to 10% of its maximum,
respectively), Full Width at Half Maximum (FWHM), and the curve integrals of each signal.
Results are summarized in Table 2.

Table 2. Comparisons of the main parameters of the curves reported in Figure 2.

Rise Time (s) Fall Time (s) FWHM (s) Charge Integral (nC)

SEM 0.43 ± 0.02 0.37 ± 0.02 52.03 ± 0.02 49.32 ± 0.01
ELECTRODE 0.80 ± 0.02 0.65 ± 0.02 52.03 ± 0.02 49.50 ± 0.01
Difference [%] 46 43 0.02 0.36

Despite the rise-time differences, mainly due to the RC time constants of the Electrode
front-end read-out circuit (see Section 2.1), the percentage difference between the FWHMs
and total integrals was less than 0.02% and 0.4%, respectively.
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3.4. Field-Size Dependence

For circular beams with an homogenous lateral distribution, as those used in the
current work, a proportionality of the detector signal with the square of the beam radius is
expected. In order to verify such a dependence, the collected charge was measured using
irradiation fields of different diameters (5 mm, 10 mm, 15 mm, 20 mm, 25 mm, and 36 mm).
A second-order polynomial fit was applied and an r2 value equal to 0.9978 was obtained,
confirming the expected behavior of the detector response.

3.5. Position and Temperature Dependence

The Electrode response as a function of its position with respect to the beam entrance
and the water temperature was evaluated.

In order to study the position dependence, the detector was irradiated in four different
positions, as shown in Figure 6 where a sketch of the water tank (view from the top)
and the Electrode positions are presented. In each position, ten consecutive irradiations,
corresponding to a released dose of 4 Gy at the entrance position of the water tank, were
performed. A maximum percentage difference of 5.3% was found for the detector response
in the four positions.

Figure 6. Four different irradiation configurations, each for one electrode position in the water
phantom (view from the top).

The detector dependence with respect to the temperature was investigated in the
temperature range of 20–40 °C. Differences lower than 3% between the lowest and highest
values were observed.

4. Preliminary In Vivo Tests

Some in vivo tests were performed on one patient undergoing eye proton-therapy
irradiations at the CATANA facility [19–21].

In each irradiation session (of the four required by the clinical protocols), the patient
received a dose of 15-Gy Cobalt-equivalent, released with a clinical Spread Out Bragg Peak
obtained from a 62-MeV proton beam and a plastic modulator. The proton beam field
was tailored on the tumor shape by means of a brass collimator designed by the treatment
planning system [21]. In Table 3, the treatment duration, the collected charge, and the
nominal delivered dose in each of the four sessions are reported.

Table 3. Irradiation parameters and results obtained during the patient irradiation session.

Session Time (s) Charge (nC) Nominal Dose (cGy)

1 40 3.32 ± 0.06 1366
2 42 3.14 ± 0.06 1366
3 35 3.19 ± 0.06 1366
4 44 3.35 ± 0.06 1366
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The average charge measured in the four sessions was 3.25 ± 0.10 nC; the small
percentage error (around 3%) demonstrates the good repeatability of the detector response
in the case of patient irradiations.

Figure 7, finally, demonstrates how the system can be successfully used to monitor
the beam current during treatment. It shows the detector response corresponding to the
treatment session number 3 of Table 3. Around the second 85, the beam (orange dots)
suddenly stopped for some technical reasons, restarting around the second 90. At the
same time, the detector signal (black dots) dropped off, indicating the beam stop and the
missing irradiation.

Figure 7. Proton beam signal (orange dots) measured by secondary electron monitoring (SEM) and
the corresponding signal acquired by the electrode (black dots) positioned on the patient’s skin (see
Figure 3). It is interesting to note that the sudden and unexpected beam stop during irradiation
(at around second 85) and its next recovery (at around second 90) is perfectly followed by the
electrode signal.

5. Conclusions and Perspectives

The suitability of a new online, noninvasive, biasless detector for relative dose moni-
toring in patients undergoing charged particle radiotherapy treatments was investigated.
The device, a floating electrode connected on the patient’s skin, collects the charge deliv-
ered by the beam and returns a current signal proportional to the total charge deposited
by the beam. The system was firstly characterized in vitro, irradiated inside a dosimet-
ric water-tank with a clinical monochromatic 60 MeV proton beam. Short-, mid-, and
long-term reproducibilities were studied and their values resulted better than 4.3%. The
system resulted was independent from the temperature (5% maximum difference in the
20–40 °C range) and its response was proportional to the irradiation field area with a good
confidence degree (R2 = 0.9978). The characterization evidenced a very good linearity with
the dose absorbed in the water tank, in the 2–20 Gy range, with R2 = 0.9999 and a deviation
from linearity of less than 2%.

The device’s response was also independent from the proton beam dose rate in the
10–40 Gy/min range, where a maximum percentage difference of 3% was found.

Preliminary in vivo tests highlighted the capability of the device in acting as beam
monitoring during a patient proton-therapy treatment and its ability in the verification
of the correct dose delivered among the various fractions of the treatment. The set of
performed tests, even if preliminary, show the capability of the system in operating as
a beam monitoring device. The acquired results appear statistically robust, where no
standard deviation bigger of 4.3% was observed in the sets of the repeated measures. On
the other way, the system characterization must be completed, including additional tests.
For example, the system response with respect to different beams’ energies must be studied
in order to exclude (or determine) potential dependencies with the proton linear energy
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transfer (or LET). Additionally, materials other then water but similar to biological tissue
composition must be investigated. The in vivo characterization, that obviously suffers from
a lack of sufficient data, must be repeated with several more measures in order to reach a
good statistical significance.

Improvement of the Electrode read-out circuits are ongoing to minimize the current
leakage during in vivo irradiations. Its characterization under electrons and carbon ion
beams is under way as well.

6. Patents

The device described in this work is protected by both a National Italian
(N. 102017000087851) and an International N. WO 2019/025933 patent.
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Abstract: The GEMPix is a small gaseous detector with a highly pixelated readout, consisting of
a drift region, three Gas Electron Multipliers (GEMs) for signal amplification, and four Timepix
ASICs with 55 μm pixel pitch and a total of 262,144 pixels. A continuous flow of a gas mixture such
as Ar:CO2:CF4, Ar:CO2 or propane-based tissue equivalent gas is supplied externally at a rate of
5 L/h. This article reviews the medical applications of the GEMPix. These include relative dose
measurements in conventional photon radiation therapy and in carbon ion beams, by which on-line
2D dose images provided a similar or better performance compared to gafchromic films. Depth scans
in a water phantom with 12C ions allowed measuring the 3D energy deposition and reconstructing
the Bragg curve of a pencil beam. Microdosimetric measurements performed in neutron and photon
fields allowed comparing dose spectra with those from Tissue Equivalent Proportional Counters and,
additionally, to obtain particle track images. Some preliminary measurements performed to check the
capabilities as the detector in proton tomography are also illustrated. The most important on-going
developments are: (1) a new, larger area readout to cover the typical maximum field size in radiation
therapy of 20 × 20 cm2; (2) a sealed and low-pressure version to facilitate measurements and to
increase the equivalent spatial resolution for microdosimetry; (3) 3D particle track reconstruction
when operating the GEMPix as a Time Projection Chamber.

Keywords: GEMPix; GEMs; Timepix; Medipix; radiation therapy; hadron therapy; microdosimetry;
gaseous detectors

1. Introduction

The GEMPix is an innovative detector developed at CERN a few years ago within a
Marie Curie Initial Training Network (ITN) funded by the EU under FP7 between 2012 and
2016. ARDENT (Advanced Radiation Dosimetry European Network Training initiative) [1]
was coordinated by CERN and aimed at developing advanced detector technologies for
radiation dosimetry. It involved 13 universities, research organisations and industries and
recruited 15 Early Stage Researchers (ESR) on 3-year contracts, most of whom obtained
a doctorate at the end of the project. The technologies that were part of the program
of work were (1) gaseous detectors such as Gas Electron Multipliers (GEM) and tissue
equivalent proportional counters (TEPC), (2) solid state detectors such as Medipix and
silicon microdosimeters and (3) track detector techniques such as CR-39.

The main objectives of ARDENT targeted radiation dosimetry, microdosimetry and
photon/neutron spectrometry. The envisaged applications were the characterization of
radiation fields at particle accelerators used in research, industry and medicine, the charac-
terization of radiation fields on-board aircrafts and in space, the assessment of secondary
dose to radiation therapy patients and the measurement of the properties of clinical hadron
beams used in particle therapy (hadron therapy).

The seed ideas that brought to the development of the GEMPix lie within a workshop
held at CNAO, the National Centre for Oncological Hadrontherapy sited in Pavia, Italy [2],
soon after the start of ARDENT, in October 2012 [3]. A very fruitful exchange of ideas took
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place around current and envisaged Quality Assurance (QA) instrumentation for particle
therapy. The discussion focussed on:

(1) commissioning of the Treatment Planning System (TPS). This includes experimental
data on integral depth dose distributions of monoenergetic pencil beams using the
PTW Peakfinder (Physikalisch-Technische Werkstätten Dr. Pychlau GmbH, Freiburg,
Germany, [4]), transversal dose profiles in air measured with External Beam Therapy
(EBT3) radiochromic films [5], transversal dose profiles in a water phantom with
pin-point Ionisation Chamber (IC) like the PTW 31014 [6], uniformity tests of the
scanned beam using EBT3 films;

(2) determination of absorbed dose to water under reference conditions with Farmer-type
IC like the PTW 30013 [7], and calibration of beam monitor chambers used to integrate
the dose to patient;

(3) determination of procedures and reference values for periodic QA checks. Daily QA
checks include spot position accuracy and size checks, and beam energy constancy
check, using EBT3 films. Patient-specific pre-treatment QA includes TPS verifica-
tion plan.

The current commissioning and QA procedures at CNAO are described in [8]. The
concept of GEM detectors [9,10], which are mostly used in high-energy physics, was
presented, describing the Triple-GEM construction [11] with the standard pad readout
made of 128 channels allowing spatial resolution of typically a few mm, the FPGA-based
data acquisition system (DAQ) and a specifically designed High Voltage (HV) power supply
called HVGEM to supply the required power via seven HV channels. GEMs allow real time
track reconstruction, from single particle to high intensity beams. At the same time, the
single particle counting pixel detector Timepix [12] was introduced by representatives of
the Medipix collaboration [13–15], explaining its particle tracking capabilities and particle
discrimination properties by cluster analysis.

The idea to merge these two technologies and combine their advantages to build a
gaseous detector with a highly pixelated readout and achieve superior spatial resolution
unfolded rapidly, and yielded the design and construction of the first GEMPix prototypes
in March 2013. Only a few years later the detector has proven very successful and has
been used for several applications. Its use as a tracking detector operated as a highly
granular and compact Time Projection Chamber (TPC) has been shown [16]: the device can
be operated in a hybrid mode with some pixels measuring deposited charge and others
measuring the drift time of the charge in order to obtain a complete 3D reconstruction of
the track. It has been introduced as a novel method to detect the very weak (5.9 keV) X-ray
emission of 55Fe in radioactive waste produced by the operation of particle accelerators
and experimental facilities, to determine its specific activity (Bq/g) in metallic waste
characterization [17]. Furthermore, the GEMPix has been used as a soft X-rays diagnostic
tool for laser produced plasmas [18,19] and for studies on a dark matter detector with a
negative ion TPC read by a GEMPix [20].

The present paper will review the medical applications of the GEMPix. It is mostly a
review paper, but the last sections describe on-going work and anticipate the most recent
results that will be the subject of two dedicated publications currently under preparation.
After illustrating the design and operating principle of the detector (Section 2), Sections 3
and 4 describe its imaging application in photon and electron radiation therapy (that we
call ‘conventional radiation therapy’ in the following) and particle therapy. The results
presented in these two sections have been published in [21] and in [22–24], respectively.
A proof-of-principle of two GEMPix detectors as TPCs for proton tomography [25] is
discussed in Section 5. Section 6 illustrates a very recent version of the detector for
microdosimetry called GEMTEQ, whereas Section 7 discusses the latest development for a
larger area version of the GEMPix (LaGEMPix) for use in QA in hadrontherapy. Finally,
future developments are outlined in Section 8.
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2. The GEMPix

The GEMPix couples two CERN technologies, the Gas Electron Multiplier [9,10] as
amplifier for electric charges with four highly pixelated Timepix ASICs (the so-called quad
or quadboard) as readout [12]. The concept for gas pixel detectors is not new [26]; it was
first developed by Bellazzini et al. [27] as an X-ray polarimeter using a custom ASIC [28]
for X-ray astronomy [29,30]. Other examples include the GRIDPIX designed for high-
energy physics applications [31], but sparks and discharges have proven to be persistent
problems with these devices. Thanks to a specially designed High Voltage power supply
(HVGEM) [32] and a carefully designed GEM electrode layout, the GEMPix demonstrates
good reliability and discharge resistance. Figure 1 shows the GEMPix. It consists of (1) a
drift gap of about 1 cm, (2) a triple-GEM setup for charge amplification and (3) an array of
2 × 2 ‘naked’ Timepix ASICs, i.e., Timepix ASICs without the usual silicon sensor layer. The
GEMPix is thoroughly described in [33,34]. Its design and operating principles are recalled
here, first illustrating those of its two main components, and then their combination in
the GEMPix.

 
Figure 1. The open GEMPix, showing the four Timepix ASICs and the FITPix readout module. The position of the drift gap
and the GEMs is labelled (source: CERN).

The GEM [9] is a thin (50 μm) kapton foil, copper cladded on each side and chemically
perforated by a high density of holes having bi-conical structure with an external (internal)
diameter of 70 μm (50 μm) and a pitch of 140 μm, as shown in Figure 2. By applying
a suitable voltage difference (typically 400 ÷ 500 V) between the two metallic sides, an
electric field with a field strength as large as 100 kV/cm is produced inside the holes.
The holes act as spatially well-confined electron multiplication channels for the electrons
released by ionizing radiation in the drift gap. The maximum gain reachable with a single
GEM foil detector is of the order of 103. In safe operating conditions, effective gas gains
(i.e., the product between the electron multiplication and the transparency, which is the
overall efficiency of transporting the electrons through the GEM holes [11]) of up to 104–105

are reachable by assembling several GEM foils close to each other. The distance between
the three GEM foils of the GEMPix is the same as that used by the LHCb muon chambers in
order to optimize the time resolution (the first gap is 1 mm) and to reduce the probability of
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discharge as much as possible (the second gap is 2 mm, which results in the electron clouds
being shared by more holes of the third GEM foil). Typically, the electric field applied
between two GEMs to transfer the electrons to the next GEM range between 0.5 and
3 kV/cm depending on the gas and the performance required by the detector application.

 
 

 

Figure 2. (Left) magnified image of a GEM foil. (Centre) scheme of a typical triple GEM in the GEMPix detector and
the electric transport fields: drift field (ED), transfer fields (ET) and induction field (EI). (right) electron multiplication
(source: CERN).

Figure 3 shows a scheme of the Timepix chip. The movement of the electric charge
produced by the last GEM induces a signal on a group of pads of the chip underlying the
charge cluster. The Timepix is able to collect and measure the information of this charge
in three different modes, always referring to the time window defined a priori. The first
mode (‘Medipix mode’) allows measuring the number of hits per pixel in the time window.
The second mode is the Time-over-Threshold (‘ToT’): the Timepix is able to measure with
a precision on the order of 10 ns the time spent above the threshold by the analog signal
induced on the single pixel; this time is proportional to the collected charge and, therefore,
if the detector is calibrated, to the energy deposited by the radiation. This mode is typically
used for spectroscopy of X-rays, dosimetry, microdosimetry and for dE/dX measurements.
The third mode is the Time-of-Arrival (‘ToA’): the Timepix measures the time of arrival
of the electron cloud with respect to an external trigger for a maximum of a 2 ms time
window. This mode is typically used for 3D reconstruction of a track inside the detector.
The readout mode can be chosen for each pixel individually, such that a combined ToT and
ToA analysis of a charge cluster becomes possible when using a mixed mode by operating
some pixels in ToA mode and the rest of the pixels in ToT mode.

 
Figure 3. The Timepix chip with the standard silicon sensor on top. The GEMPix uses four ‘naked’
Timepix ASICs, i.e., without the silicon sensor chip (source: CERN).

The Timepix ASICs are read out by the FITPix, an FPGA based module shown in
Figure 1 [35] using the Pixelman software [36]. This software, developed by the University
of Prague, is able to save the time and charge information of each pixel within the preset
time interval in matrix form, showing the image obtained online and saving the data to a
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file. It is also possible to use an online cluster analysis in order to write a file with the list
of reconstructed pixel clusters, reporting for each one the main information such as start
time of the event, the total number of clusters, and for each of them the total charge, some
geometric parameters and the position.

The GEMPix can be assembled with different drift gap sizes according to the type of
particle to be detected. In the case of charged particles, a few millimeters are sufficient
to produce a dozen electrons distributed along the gap, which are sufficient to generate a
detectable signal. There are two possible configurations visible in Figure 4: one in which the
particle enters perpendicularly to the GEM foils (“head-on”) and one in which the particle
enters parallel to them (“side-on”). In the second case, it is possible to expand the drift area
up to a few centimeters in order to create a small TPC with the possibility to reconstruct the
particle track in three dimensions, as for example used in proton tomography (Section 5).
In the case of soft X-rays, a gap of about 1 cm is preferred, both to increase the detection
efficiency and to contain all the tracks of the primary electron produced. In addition, metal
layers suitably designed for the detection of gamma rays can be inserted in the drift area.
Recently, thin layers of B4C have been used for the detection of thermal neutrons: the
lithium ion and alpha particle produced in the 10B(n,α) reaction strongly ionize the gas in
the drift zone, allowing a good discrimination from the gamma signal.

Figure 4. Head-on (left) and side-on (right) configuration of the GEMPix.

In some applications with high intensity beams or highly ionizing particles, it is
possible to reduce the detector configuration to two GEM foils with the advantage of a
lower lateral diffusion of the electron cloud and therefore of a better spatial resolution
(measurements with only two GEMs turned on are described in Section 3). A detailed study
on the gas mixture has been performed in the past [37] showing that a time resolution
of better than 5 ns is achieved with CF4 and iso-C4H10 based gas mixtures, considerably
improving the results obtained with the standard Ar/CO2 (70/30) mixture. Regarding
the discharge probability, the use of a small fraction of iso-C4H10 or a large amount of
CF4 results in a very stable detector operation. Therefore, an Ar/CO2/CF4 (45/15/40) gas
mixture is often used with the GEMPix detector.

The HVGEM [32], designed at the Frascati National Laboratories (LNF) of the National
Institute of Nuclear Physics (INFN) in Italy, is built with seven floating power supplies
with a maximum of 1200 V each, controlled via CANbus and a LabVIEW based software
for voltage settings and current monitoring. In this way, each GEM foil has its own power
supply allowing a safe operation of the detector, avoiding dangerous discharges versus the
front-end electronics. A second shrewdness is the particular electrode path for each GEM
foil trying to stave off the High Voltage from the wire bonding of the ASIC readout.

Like all gas detectors, the gain of the GEMPix also depends on the temperature,
pressure and humidity of the gas. Therefore, a sensor by yoctopuce [38] reading the ther-
modynamic variables has been installed inside the detector with the aim of compensating
the gain variation by changing the voltages applied to the GEM foils, thus keeping the
detector response stable within less than ±5% as shown in Figure 5 (changes of more than
30% were observed without any correction).
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Figure 5. Measurement with an 55Fe source over nine days. The plots show the time evolution of the ToT counts of the 5.9
keV peak from 55Fe (top plot), the ratio temperature/pressure (T/P) (middle plot), and the High Voltage (HV, lower plot).
The ToT counts are within 6000 ± 200 if measurements in the heat-up phase of the detector (‘fast rising T’) and after the HV
was off are discarded.

The GEMPix is able to measure position and charge of the electron clusters produced
by the primary ionization of the particles incident on the detector with great precision,
thanks to the four Timepix ASICs.

3. Conventional Radiation Therapy

The daily QA and treatment plan verification measurements in radiation therapy facil-
ities are typically performed with gafchromic films or a matrix of small ion chambers [39].
The first method shows very good spatial resolution but needs relatively long time for data
analysis, while the second has an online data acquisition but comes with dead space (i.e.,
non-active detection area) in the treatment area. The GEMPix is a detector that could be
used for this application offering advantages on both spatial resolution without dead space
and online monitoring capabilities.

Several measurements have been performed with GEM and GEMPix detectors at
the Tor Vergata Radiotherapy Centre in Italy (Figure 6) using two electric field configu-
rations [21]: the GEMPix in a standard configuration with all electric fields on, and the
triple GEM operated with zero electric drift field and the first GEM foil as a gamma ray
converter. In the latter case, the spatial resolution is expected to be better, as the gap
between the first and the second GEM now serving as the drift gap is only 1 mm and,
therefore, the charge spread is reduced. The conversion efficiency was certainly very low
but still reasonably good to obtain a 2D image in 10 times less time as compared with
gafchromic films. Moreover, with the GEMPix used in ToT mode, the measured charge is
correlated more precisely to the dose released in the gas.

To compare the results obtained with the GEMPix and with gafchromic films quan-
titatively, the gamma index [40,41] was used, one of the most common quantities for
comparison of 2D dose distributions. The gamma index takes into account the dose differ-
ence and the distance difference of the two dose distributions to calculate a dimensionless
metric for each point. It is commonly accepted that the first must be maximum 3% and the
second maximum 3 mm. When the gamma index is less than one, both criteria are satisfied
and this condition must be valid for at least 90% of the reference dose points to which a
measured dose is compared.
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Figure 6. The GEMPix placed in position for irradiation with the Elekta Synergy Linac at the Tor
Vergata Radiotherapy Centre (left) and the EBT gafchromic film placed on the detector window after
irradiation (right) [21].

In case of the first, standard GEMPix configuration with three active GEMs, the
gamma index shows the best results with the lower energy spectrum (6 MV, gamma index
<1 in 96.6% of the points). For higher energy spectra, the percentage of the gamma index
decreases (69 and 40% for 10 and 18 MV spectra, respectively). An analogous result is
obtained for an Intensity-Modulated Radiation Therapy (IMRT) field. High energy fields
are affected by large halos which have no counterpart on the gafchromic films.

A significant optimization of the results has been obtained working in a double-GEM
configuration with zero voltage applied to the first GEM foil, i.e., with zero drift field; in
this way only two GEMs are used as charge amplifiers. The gamma index percentage
improves to better than 90% as shown in Figure 7. Some tests with IMRT fields have shown
an excellent agreement, especially when a threshold cut is applied.

The GEMPix presents some advantages with respect to the traditional methods used
in radiation therapy:

• It is more sensitive and the gain has been even reduced working with only two GEM
foils. The lower limit is represented by the single dose pulse, a limit that gafchromic
films cannot reach [5]. The upper limit is the storage bit limit of the read-out register.

• It has an optimal linearity with dose rate and this result is confirmed by the currents
measured on the GEM electrodes.

• Compared to gafchromic films, it does not need a scanning process to read the mea-
sured doses. This also means no fading and no UV sensitivity problems.

• The spatial resolution obtained with GEM detectors is at least an order of magnitude
better than with ion chamber (IC) matrix arrays. With this spatial resolution, no
interpolation software is needed to calculate the intermediate dose values as it is the
case for IC arrays.

• The pixel pitch of the GEMPix is even better (55 μm) than the one of EBT gafchromic
films (340 μm) [5]. The gamma index showed excellent agreement between the
GEMPix and gafchromic films.

• The GEMPix is able to perform fast real-time IMRT treatment plan verifications. It
has been demonstrated that it is also able to measure single pulses. Then, IMRT fields
both in ‘step and shoot’ and in continuous mode can be reconstructed in time with a
very high resolution [21]. No other devices can reach these performances.

The drawback is represented by the active area which is limited to a few cm2 essentially
due to the wire bonding of the chip, while larger fields are used in radiation therapy
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(for example, 16 × 21 cm2 is the maximum field size for the Elekta Synergy Linac used in
Tor Vergata). A large area GEMPix is under development, as discussed in Sections 7 and 8.

 
Figure 7. A dose distribution measured with the GEMPix (left) is compared to a gafchromic film measurement with a
spatial resolution of 160 μm (centre) for a 6 MV radiation therapy field: the relative dose is color-coded. The gamma index
distribution (right) obtained is less than one for 90.5% of the data points [21].

4. Hadron Therapy

Hadron therapy is an advanced radiation modality for cancer treatment. The inherent
advantage of hadron therapy is its inverted depth dose curve—the so-called Bragg curve—
that allows for highly conformal treatment plans with large dose gradients. The dose is
well confined in depth with a moderate lateral spread [42]. Therefore, detectors for beam
dosimetry and quality assurance should offer a spatial resolution of the order of 1 mm or
better. For patient-specific treatment plan verification, arrays of ionization chambers in a
water phantom are often used [43]. However, the spatial resolution is limited to the size of
each ionization chamber, which is currently around 5 mm.

The GEMPix potentially offers a much better spatial resolution due to its highly
pixelated readout with a pixel pitch of 55 μm. Therefore, it provides new information
such as 2D images and 3D data representation. As a first step, a triple-GEM detector
coupled to an earlier, coarser readout was irradiated with protons and carbon ions in
air [44]. Lateral beam profiles of the GEMPix for one carbon ion beam energy were found
in agreement with those obtained by radiochromic EBT3 films. Then, the GEMPix was
placed inside a watertight box and mounted on the 3D positioning system of a water
phantom used for QA at CNAO in order to measure the 3D dose distribution. Bragg
curves were calculated by normalizing the integrated GEMPix response at certain depth
positions to the respective delivered dose measured by the Dose Delivery System (DDS)
of CNAO [45]. Promising results obtained with this setup [22] led to the development
of an integrated system consisting of an IBA Scanditronix Wellhöfer Blue Phantom type
2001 water phantom, a PTW model 34080 reference ionization chamber, the GEMPix, a
trigger system and other auxiliary equipment such as the high-voltage supply, and the
control and data acquisition software (Figure 8). The system can be set up relatively fast by
keeping all equipment on trolleys. It is a stand-alone system as the normalization to the
delivered dose is performed with the reference ionization chamber [23,24]. Measurements
were performed with carbon ions (C6+) at one of the fixed horizontal beam lines at CNAO,
where a synchrotron delivers scanning proton and carbon ion beams to three treatment
rooms. The smallest intensity characterized for clinical applications of 2 × 106 ions per
spill and three beam energies (280, 332 and 380 MeV/u resulting in ranges in water of 150,
200 and 250 mm, respectively) were used. 2D images in the plane perpendicular to the
beam axis were acquired at different depths in water. From the 2D images, lateral beam
profiles were obtained and compared to radiochromic films showing very good agreement.
The Bragg curve was calculated from the 2D images by summing over all pixel values in a
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single image, normalizing this value to the corresponding reference ionization chamber
measurement, then averaging this normalized sum value over all measurements at the
same depth and finally plotting this number versus depth. Bragg curves obtained with the
integrated system were compared to a dedicated FLUKA Monte Carlo simulation [46,47]
and found to match within ±15% (Figure 9). Figure 10 shows a 3D data representation
of the measured dose. The average value per pixel per position is calculated and a linear
interpolation between positions is used. The figure shows the lateral beam spreading,
the Bragg peak and the fragmentation tail of the carbon ion. This information cannot be
acquired with commercially available QA detectors.

 

Figure 8. Schematic drawing ((left), not to scale) and picture (right) of the water phantom setup. The beam enters from
the left and passes through the reference ionization chamber before entering the water phantom. The GEMPix is inserted
in a watertight box, which is mounted on the positioning system of the phantom. Therefore, depth scans are possible by
remotely changing the distance between beam entrance window and GEMPix box.

Figure 9. The upper plot shows the Bragg curve for 200 mm range in water, measured by the GEMPix
and calculated with FLUKA. The lower plot shows the ratio of the experimental data to the FLUKA
curve. The data points match the simulation within ±15%.
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Figure 10. In this 3D representation of the dose, the carbon ion beam enters from the left. Lateral spread out, Bragg peak
and fragmentation tail are visible.

5. Proton Tomography

With the increasing number of proton therapy centres there is a renewed interest in
proton tomography [48–50]. Preliminary tests with two GEMPix operated as TPCs were
performed to measure the position, direction and energy of protons traversing an object
in order to reconstruct an image of it. The setup consists of two GEMPix-based TPCs
with a Timepix3 (instead of the usual Timepix) quadboard as tracker and a BaF2 crystal
for measurement of the residual proton energy. The results presented in this section are
published in [25].

Figure 11 shows the setup. A phantom was placed between the two tracking devices
to try and measure the performance and spatial resolution of the system. The phantom
and the reconstructed image are shown in Figure 12. Although the sensitive volume of
the TPC is 5 × 5 × 5 cm3 (yielding sufficiently long tracks for measuring the incident
angle of the particle) and the improved temporal resolution of the Timepix3 is included
(drift coordinate precision), the angular resolution is still not optimal for the phantom
image reconstruction. These uncertainties on the track reconstruction are dominated by
the clustering effect of the triple-GEM structure and the inhomogeneity of the electric field
inside the TPC.

 
Figure 11. The experimental setup for proton radiography [25].
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Figure 12. On the left, the portion of the phantom used in the test, on the right the final reconstructed image. The total
exposure time was 100 s at a beam intensity of 3 kHz [25].

In order to improve the performance of the system, an algorithm finding the location
of the primary ionization would be needed. The track fit using only the location of the
primary ionization will be more realistic than using all the hits of the clusters. Another
possible improvement could be an optimized triple-GEM configuration and the use of a
gas mixture generating less lateral diffusion. The final angular resolution obtained with
the current set-up is 30.7 mrad in the xy-plane and 23.4 mrad in the zy-plane. Once the
above-mentioned issues are solved and an angular resolution below 1 mrad is reached,
a step towards proton-CT can be investigated by irradiating the phantom from different
angles. A 3-dimensional energy density map could then be reconstructed to improve future
proton therapy treatment plans.

6. Microdosimetry

The most recent application of the GEMPix to medical physics lies in the field of
microdosimetry. Microdosimetry is the ‘systematic study of the spatial and temporal
distributions of absorbed energy in irradiated matter’ [51]. The golden standard for
detectors in microdosimetry is the Tissue Equivalent Proportional Counter (TEPC). A TEPC
is a device consisting of an active volume filled with tissue equivalent (TE) gas, with TE
walls and a thin anode wire. The gas pressure is only a few percent of the atmospheric
pressure and therefore the ionization of a particle in the active volume is the same as in
a small piece of tissue. Both the lineal energy and the absorbed dose to tissue can be
measured [52]. It is a well-established technology that can measure the microdosimetric
distributions accurately and reliably, but it has important limitations that the GEMPix
could in principle overcome. For example, the equivalent mean path length in a TEPC
can be selected by adjusting the operational pressure, but it is typically limited to a few
micrometres, with a lower limit of operation of 0.3 μm in case of special design [53], which
is not enough to obtain details on the particle track structure. Detectors with the best spatial
resolutions tend to be complex and bulky [54]. Furthermore, conventional TEPCs feature
only a single readout channel in a detection volume of fixed dimensions.

While GEMs had been used before in microdosimetry [55], the combination with
a highly pixelated readout is unique to the GEMPix. In case of the GEMPix detector, it
is possible to achieve a resolution down to the scale of tens of nanometres because the
inherently good spatial resolution (pixel pitch of 55 μm) is scaled down using a gas instead
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of a solid material by a factor of approximately 1000. The particle track imaging capability
of the GEMPix is completely new to microdosimetry.

The version of GEMPix for use as microdosimeter is called GEMTEQ (‘GEMPix
detector for microdosimetry with tissue equivalent gas’). For this application, the GEMTEQ
is operated with a so-called propane-based TE gas (C3H8:CO2:N2, 55:39.6:5.4). It was
calibrated using an 55Fe source and its performance was tested in various radiation fields
(photons from an X-ray generator and from radioactive sources, neutrons from a neutron
generator and a mixed photon/neutron field from an AmBe radioactive source). One
of the GEMTEQ prototypes is equipped with a tissue equivalent cathode replacing the
Mylar foil by an A150 conductive plastic. Figure 13 shows the GEMTEQ detector setup for
measurements in a neutron field.

 
Figure 13. The GEMPix detector (foreground) set up for measurements with an AmBe source (the
metal cylinder housing the source is visible in the background).

Standard dose spectra as with a TEPC were obtained. These results were achieved
by grouping together several pixels in a ‘superpixel’: the superpixels can be defined
offline to adjust the equivalent mean path length. The energy deposition of all pixels in
a superpixel is summed and these values are used to populate a histogram similar to the
pulse height histograms obtained in standard microdosimetry. Figure 14 shows the results
of measurements with an AmBe source (solid black line). In order to show one of the
potential advantages of the pixelated readout of the GEMPix, an analysis to discriminate
photons and neutrons in the mixed radiation field provided by the AmBe source was
set up: a particle track in the GEMPix often stretches over several superpixels. While
for the standard dose distributions, the energy deposition in each superpixel is used to
populate the histogram (as shown for the complete data set in Figure 14), the total energy
deposition of the entire track is used to discriminate neutrons and photons. The value of
the discrimination parameter—the total energy deposition of a particle in the GEMPix—
was chosen to be the maximum energy deposition observed in the measurements with
an Am-241 source. Any particle track in the AmBe data set with an energy below this
limit was assigned as ‘photon-like’, the remaining tracks were assigned as ‘neutron-like’.
The dose distributions of the ‘photon-like’ component of the AmBe data set and the pure
Am-241 data set match well. In conclusion, this analysis makes use of the fact that the
GEMPix provides multi-channel results (i.e., 2D images of particle tracks), while this is not
possible in a TEPC as it features only a single channel.
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Figure 14. Dose spectra obtained with the GEMPix and an AmBe source (mixed photon/neutron field) in the standard
representation for microdosimetry (lineal energy, y, on the x-axis and the dose distribution d(y) multiplied by y on the
y-axis [51]). The complete data set (black line), the ‘neutron-like’ component (dash-dotted black line) and the ‘photon-like’
component (dotted black line) are shown. As a comparison, a measurement with the GEMPix and an 241Am source
(photons only) is presented (red line).

Two-dimensional particle track images were obtained from the measurements using
the same data set as for the dose spectra (Figure 15). This is impossible with conventional
TEPCs and opens the door for many new applications in microdosimetry. These include:
particle tracks can be studied in detail (track structure microdosimetry), particle identi-
fication becomes possible (helping to disentangle contributions from different types of
radiation in a mixed field) and effects of the size of sensitive volumes can be studied offline
on a single data set. An outline of the results recently obtained can be found in [56], and
the full results are given in [57].

 
Figure 15. Examples of particle tracks measured with the GEMPix: a proton track (from neutron irradiation) with a visible
increase in the energy deposition towards the end of the track (left) and an electron track (from 137Cs irradiation, right).
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7. LaGEMPix, a Large Area GEMPix

The superior imaging and particle discrimination capabilities of the GEMPix have been
shown in the previous sections, but the current sensitive area of the detector (2.8 × 2.8 cm)
is too small for a practical application as QA tool in hadron therapy. This section focuses
on the application in hadron therapy, but a larger area detector is also needed in other
fields such as conventional radiation therapy with photon beams. A large area GEMPix
(LaGEMPix) with a 20 × 20 cm2 size (the typical maximum clinical field size with scanned
hadron therapy beams) cannot be easily (and economically) achieved by simply scaling up
the current design by tiling more Timepix ASICs. First, the current Timepix chip has wire
bonds located on one side, so the quad configuration (2 × 2 chips) used in the GEMPix
cannot be enlarged to an arbitrary n x n chip configuration. For this, one would need to use
the latest Timepix4 version that is about four times larger than the Timepix and in which
the connection for data transfer is from below the chip by Through-silicon Via (vertical
interconnect access). However, such a solution would be very expensive just for the cost of
the Timepix4 ASICs. In addition, the 55 μm pixel size would require complex electronics to
handle the large number of signals and each acquisition would generate a huge amount of
data, which are actually not needed as spatial resolution of the order of 1 mm is sufficient
for application in QA.

We have considered a few alternative readouts for a large area detector. In the present
section, we describe the one currently being explored; alternative solutions are briefly
illustrated in the next section. The on-going development uses a novel readout based on
the detection of the scintillation photons generated in the GEM holes. A first LaGEMPix
prototype with a six time larger active area than the GEMPix (6 × 8 cm2) has been de-
veloped in a collaboration between CERN and the Holst Centre/TNO (Eindhoven, The
Netherlands) within an EU ATTRACT funded project [58]. The LaGEMPix combines a
triple-GEM detector and an optical readout based on three main building blocks: a Thin
Film Transistor (TFT) backplane, a light sensitive OPD (optical photo detectors) frontplane
and a transparent thin-film encapsulation, serving as a protection against ambient con-
ditions [59]. The triple-GEM detector includes a 20 μm thick Mylar window used as the
cathode at 3.5 mm from the first GEM. On the bottom of the third GEM, a 1.1 mm thick
ITO (Indium Tin Oxide) coated glass anode is placed at 1.9 mm distance to collect the
electrons produced during the amplification process while allowing the optical photons to
pass through [60,61].

A LaGEMPix prototype (Figure 16) has been built. A first account of the results
obtained are given in [62], the full results can be found in [63]. A number of tests were
performed to characterize the detector, placed inside a custom-made black Polymethyl-
methacrylate (PMMA) box to shield the ambient light and provide a well aligned set-up.
A gain scan was performed while exposing the device to photons from a 3 TBq 137Cs source,
varying the sum of the GEM voltages from 0 to 1030 V, to define the optimal operating con-
ditions. The spatial resolution was determined with 40 kV X-rays from an X-Ray irradiator
employing a 3 mm thick copper plate placed on the inner wall of the box at 7 mm from
the Mylar window, with a set of holes of different spacing (from 3 to 20 mm) drilled in it.
An image obtained with this copper plate is shown in Figure 17. The FWHM of a single
hole of 5 mm diameter is 6.7 ± 0.1 mm. Two holes at a distance of 3 mm (edge to edge) can
be resolved in the sense that two peaks with a dip in the intensity between the peaks are
visible. The current results are promising but also show that the required sub-millimeter
spatial resolution is not yet achieved.

252



Appl. Sci. 2021, 11, 440

 
Figure 16. The LaGEMPix prototype. The triple GEM 10 × 10 cm2 stack coupled to the optical readout matrix is on the left
side; on top, there is the thin Mylar window. The readout boards and the cables to connect the detector to the FPGA module
are on the right side.

 

Figure 17. Heat map of the Cu mask for 40 kV X-rays. A Region of Interest (ROI, green lines) was set
on the holes in 3 mm distance. The spatial resolution was estimated by fitting the profile in the ROIs
by a Gaussian function.

8. On-Going and Future Developments

The developments currently on-going focus on improvements of the GEMTEQ and
LaGEMPix versions of the GEMPix. The long-term goal would be to merge the two
detectors and integrate them into the motorized water phantom described in Section 4,
to achieve an all-in quality assurance tool for treatment planning and dose delivery in
particle therapy, driven by a detailed knowledge of the radiobiological effectiveness (RBE)
of the radiation.
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8.1. GEMTEQ

The GEMTEQ discussed in Section 6 is a version of the GEMPix specifically adapted for
microdosimetry. The pixelated readout of the GEMTEQ is a key feature, which unlike the
TEPC allows visualizing and analysing the full particle track. TEPCs are sealed detectors
operating at low pressure so that the mean path length in the active gas volume is equivalent
to typically a few μm in tissue, simulating the cell size. The current version of GEMTEQ
works with flushing propane-based TE gas at atmospheric pressure (the way GEMs are
usually operated). We are currently designing a sealed version of the GEMTEQ (Figure 18),
consisting of a vacuum chamber provided with a thin carbon window housing the detector,
connected to a pumping station to adjust the operating pressure. The aim is to be able to
run the GEMTEQ in sealed mode, to make it more portable, at pressure below atmospheric
to achieve sub-micrometric spatial resolution and head towards microdosimetry at the
sub-micron level.

Figure 18. A cross-sectional view of the planned vacuum vessel housing the GEMTEQ for sealed and
low-pressure applications. The GEMTEQ is located in the centre of the vacuum vessel and the colors
show the different materials and components: the aluminum vessel (gray), the FITPix (blue), the PCB
(green), the GEM frames (beige) and the Pixelman ASICs (brown). The GEMs are not included in
this drawing.

The spatial information obtained from the pixelated readout will be used to perform
data analyses beyond standard microdosimetry, i.e., particle track analysis, and achieve
track-structure microdosimetry. Upgrading the readout to the latest generation of Timepix
(Timepix3 or Timepix4) will allow for measurements in a data-driven acquisition mode
with simultaneous acquisition of charge and time-of-arrival information, for operation as a
TPC. In this way, 3D particle tracks will be reconstructed and possibly track lengths and
the change of the energy deposition along the track could be measured for each particle.

8.2. LaGEMPix

The final goal of the LaGEMPix development is to achieve a large size detector for
monitoring the typical clinical field size used in hadron therapy, up to 20 × 20 cm2, allowing
for a precise evaluation of the dose distribution with scanned ion beams. Two possible
modifications of the LaGEMPix described in Section 7 are under consideration and will be
explored in the coming months to improve the current spatial resolution. The first implies
slightly modifying the present design, by decreasing the distance between the last GEM
and the readout plane to reduce the dispersion of the light before reaching the readout. The
second focuses on increasing the light detection efficiency by replacing the current OPD
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active layer by a different one offering a better match between the emitted light and the
OPD’s quantum efficiency.

The other options involve changing the readout technology. Excluding the approach of
scaling up the current design by tiling more Timepix ASICs (either Timepix3 or Timepix4)
for the reasons mentioned in the previous section, there are two alternatives that may
be considered. The first alternative to the current readout system is to eliminate the
OPD layer leaving a TFT-only electronic readout. With this approach, the readout would
directly measure the secondary electrons produced in the electron avalanche. This TFT-only
solution could yield a more compact and more efficient device with a higher signal-to-noise
ratio, providing a spatial resolution potentially better than 1 mm, as the electrons are guided
by the electric field and their diffusion is much smaller than unfocused light. The spatial
resolution of the current LaGEMPix has been compared with that of the standard GEMPix
with 40 kV X-rays from an X-Ray irradiator, using the “edge response” method [64]. The
resolution obtained with the GEMPix is about a factor of 2 better than that of the LaGEMPix,
indicating that a better performance can be achieved with the charge readout option.

The other option still exploits the light emitted in the GEM holes, but detecting the
optical photons using a CCD/CMOS camera or the TpxCam [65,66]. The TpxCam is
a fast optical camera based on a silicon pixel sensor combined with the Timepix chip,
providing nanosecond scale time resolution and high quantum efficiency for photons with
wavelength between 400 and 1050 nm. In this version, the LaGEMPix would not be as
compact as the version using a TFT readout, as it will have to include an optical system
consisting of mirror and lenses to focus the light. On the other hand, it would offer the
possibility to keep the electronics off the beam.

Another possible future development is to employ air instead of an argon-based gas
mixture. This could be an optimal solution to simplify the present device. High photon
fluences, like those used in radiation therapy, produce significant ionization in air and the
GEMPix is highly sensitive to detect this ionization.

Finally, it is worth mentioning that QA checks are usually performed before patient
treatment. Some preliminary attempts have been made to build devices for on-line tran-
sit dosimetry: from a measurement of the dose transmitted through the patient during
a treatment session, a software would reconstruct the dose released inside the patient.
Until now, conventional devices, like matrix array and EPID, have not guaranteed satis-
factory and universally accepted results. This is a field where the GEMPix may also bring
a contribution.
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Featured Application: Novel treatment planning system performing Monte Carlo-based voxel

dosimetry for a tailored radioembolization of liver malignancies.

Abstract: The aim was the validation of a platform for internal dosimetry, named MCID, based on
patient-specific images and direct Monte Carlo (MC) simulations, for radioembolization of liver
tumors with 90Y-labeled microspheres. CT of real patients were used to create voxelized phantoms
with different density and activity maps. SPECT acquisitions were simulated by the SIMIND MC
code. Input macros for the GATE/Geant4 code were generated by MCID, loading coregistered
morphological and functional images and performing image segmentation. The dosimetric results
obtained from the direct MC simulations and from conventional MIRD approach at both organ and
voxel level, in condition of homogeneous tissues, were compared, obtaining differences of about
0.3% and within 3%, respectively, whereas differences increased (up to 14%) introducing tissue
heterogeneities in phantoms. Mean absorbed dose for spherical regions of different sizes (10 mm
≤ r ≤ 30 mm) from MC code and from OLINDA/EXM were also compared obtaining differences
varying in the range 7–69%, which decreased to 2–9% after correcting for partial volume effects
(PVEs) from imaging, confirming that differences were mostly due to PVEs, even though a still
high difference for the smallest sphere suggested possible source description mismatching. This
study validated the MCID platform, which allows the fast implementation of a patient-specific
GATE simulation, avoiding complex and time-consuming manual coding. It also points out the
relevance of personalized dosimetry, accounting for inhomogeneities, in order to avoid absorbed
dose misestimations.

Keywords: radioembolization; internal dosimetry; Monte Carlo-based dosimetry

1. Introduction

Radioembolization (RE) is a clinical therapy for the treatment of primary or secondary
hepatic tumors. The procedure is based on the administration of 90Y-loaded microspheres
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through the hepatic artery, which is the major blood supplier for liver malignancies [1].
The vascular targeting makes RE extremely selective: high dose can be delivered to neo-
plastic areas while preserving nearby healthy tissue. Several approaches, empirical and
dosimetric, have been proposed to establish the activity to be administered [2]. Due to
their simplicity, empirical models have been applied for several years, but at present they
are not considered as adequate for patient-specific treatments. In fact, the clinical benefit
evidence of dosimetry-based approaches [3–10] has led the scientific community to recog-
nize the importance of accurate absorbed dose evaluation and to focus on the absorbed
dose–biological effectiveness relationship.

Different dosimetric approaches for RE have been applied throughout the years: the
MIRD scheme at the organ level [11], the partition model [12], the local energy deposition
method (LDM) [13–15], convolution calculations by voxel S-values [16–19], and direct
Monte Carlo (MC) simulations [20,21]. Methods based on the MIRD approach at the organ
level are mostly widespread due to their ease of use, but they present two main limita-
tions: the regions of interest are considered to have homogeneous density, with uniform
activity distributions. These unrealistic hypotheses can be overcome introducing the image-
based 3D voxel dosimetry. Predictive patient-specific dosimetry is derived simulating the
therapeutical procedure with the injection of 99mTc-macroaggregated albumin particles
(99mTc-MAA) to mimic the 90Y-microspheres distribution inside the liver. The invasive
procedure and the use of nonidentical particles may affect the perfect correspondence of pre
vs. post-therapeutical activity distribution, depending on patient specific vascularity, type
of disease, experience, and shrewdness. However, many authors [6,9,22,23] have shown the
good representativity of 99mTc-MAA activity distribution for treatment planning, which is
verified afterwards by post 90Y-PET or 90Y-SPECT imaging. 3D approaches based on LDM
or convolution of S-voxel values allow to account for the nonuniform activity distribution
derived from the SPECT images, whereas they still assume a homogeneous density. MC
simulation, unlike the previous methods, takes into account both tissue inhomogeneities
and nonuniform activity distribution and is considered as the gold standard.

In the last two decades, various Monte Carlo-based internal dosimetry programs or
routines have been applied [24–29]. Despite being considered the gold standard, they all
differ in complexity and have not been integrated in the clinical practice yet, except in
few centers for research purposes only. The main reason is that they usually require very
high computer performances and calculation time, which are not compatible with the daily
clinical routine. A second reason is often the lack of validation processes.

This work deals with the physical validation of a novel treatment planning system
(TPS) named MCID (MC Internal Dosimetry tool) [30,31], performing Monte Carlo-based
voxel dosimetry, applied to 90Y-radioembolization of liver malignancies. Patient’s CT and
SPECT can be imported in MCID software, which creates different macros, i.e., sequences
of scripted commands, for the simulation with GATE/Geant4 [32,33]. Each macro contains
various settings about a specific aspect of the simulation (e.g., geometry of the system,
source type, physics of the simulation etc. [33]). MCID prepares the macros using some
settings defined by the user through the platform (e.g., numbers of primaries, type of
radionuclide etc.) and some default settings, such as the definition of the physics of the
simulation. Most importantly, the activity source of the simulation is defined through the
loaded SPECT of the patient, while the geometry of the simulation is defined after the
segmentation of the loaded patient CT performed by the user on the platform (i.e., the
morphological image is converted into a density map). Default and user-defined settings
can be eventually modified, if necessary, manually changing the macros. These features
allow the preparation of a personalized simulation, accounting for the specific patient
morphology and activity distribution, in a very short time, avoiding manual coding related
difficulties. An additional aim of this work was also to investigate the impact of tissue
inhomogeneities on the dosimetric evaluation for the RE treatment and the potential
improvement of a MC approach in this therapy.
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2. Materials and Methods

For the validation workflow voxelized phantoms were defined, starting from real
patient images. The choice of using phantoms was expressly made in order to set activity
ground truth and to easily define different density/activity combinations by properly
modifying the phantom. It is important to remark that the workflow is strictly related to
the validation process with computational phantoms; in future clinical applications, real
patient images will be directly loaded on MCID.

2.1. Workflow

The workflow developed for the validation and the evaluation of the TPS can be
summarized as follows: (i) phantoms creation, (ii) simulation of the SPECT projections,
(iii) attenuation map generation and tomographic reconstruction, (iv) creation of the input
file for the MC simulation, (v) conversion of the GATE output file in absorbed dose
images, (vi) calculation of absorbed dose images by convolution of voxel S-values (the
latter calculated independently from the TPS tested here) for comparison and validation
purposes. The software packages (and respective references) used for each step are reported
in the corresponding subsection.

2.1.1. Phantoms Creation

The voxelized phantoms used in this study were constructed starting from a real
patient CT (512 × 512 matrix with a pixel size of 1.367 × 1.367 mm2 and a spacing between
slices of 3.27 mm, high quality full diagnostic scan). CT contouring was performed with
ITK-SNAP software [34], using a semiautomatic segmentation technique based on 3D
active contours. The contoured volumes of interest (VOIs) were liver, soft tissue, lungs,
adipose tissue, cortical bone, trabecular bone, air, breast prosthesis. Activity maps, with the
same voxel and matrix size of the CT scan, were also constructed using ITK-SNAP, which
allows the definition of the activity concentration ratio among different regions.

2.1.2. SPECT Simulation
99mTc-SPECT projections were simulated with the SIMIND MC code [35] using the

contoured CT and the activity map created with ITK-SNAP as input. The main parameters
chosen for the simulation are reported in Table 1.

Table 1. Main parameters set for the SPECT simulation.

Parameter Value

Crystal material NaI
Crystal length 39 cm

Crystal thickness 0.9530 cm
Crystal width 53 cm

Energy resolution (at 140 keV) 9.7%
Intrinsic spatial resolution (at 140 keV) 0.32 cm

Final matrix dimension 128 × 128 × 120
Pixel size in the final image 0.41 cm

Photons’ histories per projection angle 108

Collimator type Hexagonal parallel holes

These parameters mimic a MEDISO Anyscan gamma camera, which MCID was
initially optimized for. The simulated activity was 100 MBq (as suggested in [1]) and an
acquisition time for projection angle of 20 s was simulated. Poissonian noise was added to
the simulation in order to obtain a more realistic functional image. A resampled CT (128 ×
128) was also obtained.

261



Appl. Sci. 2021, 11, 1939

2.1.3. Map of Attenuation and Reconstruction

Attenuation maps and reconstructed projections were obtained from MCID, using
the resampled CT and the projections obtained from SIMIND. The reconstruction was
performed using the ordered-subset expectation maximization (OSEM) algorithm, with
two iterations and 10 subsets. Corrections for the collimator-detector response (CDR),
attenuation, and scatter were applied, the latter obtained through the ESSE algorithm [36].
The reconstructed images had cubic voxels of 4.1 mm size and matrix size of 128 × 128.

2.1.4. Input File Elaboration for GATE and Simulation

A new version of the MCID tool, designed for the GATE/Geant4 10.4 code, was used
in this study. MCID is a Windows Executable that can also be run on Windows virtual
machines. MCID can generate input files for GATE starting from a morphological image
(CT) and a coregistered functional image (SPECT or PET). First, the CT image is converted
into a density image, assigning to each voxel density and atomic composition. In our
case, the CT image was the resampled one, obtained from SIMIND. Tissue segmentation
was realized assigning a constant density value for each HU (Hounsfield Units) range
we defined on MCID. The materials selected for the segmentation are reported in the
description of the simulated scenarios (§ 2.2). The Spectrum source description was set: 90Y
β- spectrum was discretized in steps of 10 keV [37]. 108 primaries were also selected for the
simulations. All the files generated by MCID, used as input for GATE, are automatically
stored in two folders, named data and mac. Each .mac file contains a group of GATE
commands which define the settings of the simulation, such as the geometry and the
density of the system, the characteristics of the sources, the physics of the simulation, the
features of the output, the level of verbosity, and the visualization settings. Moreover,
some .mac files recall specific files stored in the data folder (such as the patient density
and activity maps). A list of some .mac files, along with set parameters of most interest, is
reported in Table 2.

Table 2. Some .mac files generated by MCID (Monte Carlo Internal Dosimetry tool) and respective
main set parameters.

File Name Function/Set Parameters

_Y90_spectrum.mac Recalls all the files, # of primaries
actor.mac Types of output *

geometry.mac Geometry and density (CT)
physic.mac Physics list (emstandard_opt3 **)

sourceY90.mac Source type (SPECT)
* (absorbed dose map, deposited energy map, squared deposited energy map, uncertainty map); ** (standard
electromagnetic library, highly accurate for electrons).

The file _Y90_spectrum.mac recalls the other files, therefore the user can start the
simulation just running the command gate _Y90_spectrum.mac on the terminal. The
simulations were performed on a desktop computer with Intel Core i7 5960X and 3 GHz,
16 GB RAM, and Linux Ubuntu 18.04 LTS.

2.1.5. Conversion of the Output GATE File in Absorbed Dose Images with Requested Units

Gate provides as output absorbed dose maps expressed in Gy units [32,33]. However,
to be usable, i.e., quantified coherently, these have to be rescaled considering the effective
activity at the injection time, the number of primaries simulated, and the abundancy of
emission channels. The user needs to insert a calibration factor to rescale for the original
activity at injection time:

f =
A0,90Y

Ctot · λ0,90Y
, (1)

262



Appl. Sci. 2021, 11, 1939

where A0,90Y is the 90Y activity at the injection time, Ctot is the total SPECT counts in the
whole liver and λ0,90Y is the physical decay constant of 90Y, while MCID will automatically
rescale for the numbers of primaries and the abundancy of emission channels. The ratio
between A0,90Y and Ctot consists in a relative calibration factor (converting voxel counts
into activity) [1,12], whereas considering microspheres permanently trapped in capillaries
(as commonly assumed), biokinetics estimation are not needed, and the physical decay
constant of 90Y is used for calculations of number of decays. The 90Y activity at the injection
time simulated in this work is 2 GBq.

2.2. Simulated Cases

Voxelized phantoms were designed, simulating three clinical cases with different
activity and density maps. The materials selected for the segmentation of the different
scenarios are generically reported in Table 3, even though some variations were experienced
(according to the scenario) and described in the following. The ICRU atomic composition
was always assigned [38].

Table 3. Tissues used for the segmentation of validation scenarios.

Tissue/Material Density (g/cm3)

Air 1.205·10−3

Adipose tissue 0.920
Compact bone 1.850

Lung 0.296
Soft tissue 1.040

2.2.1. Uniform Liver (UL) Case

The Uniform Liver (UL) case has liver with homogeneous density, uniform activity
inside the liver and no activity outside of it. Liver homogeneity and uniform activity
distribution are the hypotheses of the standard MIRD approach at the organ level, so
this scenario was considered in order to compare the average absorbed dose calculated
by the MC-based TPS with the average absorbed dose calculated by the classical AAPM
(American Association of Physicists in Medicine) formula [1]:

D(Gy) = 49.38 (Gy kg/GBq) · A0 (GBq)
m (kg)

(2)

where A0 is the 90Y activity at the injection time and m is the liver mass. The multiplicative
factor 49.38 Gy kg/GBq accounts for the physical characteristics of 90Y (half-life and average
energy emitted per nuclear transition) and has a relative statistical uncertainty of 0.1% [1].
No production of bremsstrahlung and energy completely released inside the mass of
interest are also assumed for the calculation of the multiplicative factor.

Examples of slices of the contoured CT, activity map and reconstructed SPECT image
for this case are reported in Figure 1.

Liver and breast prosthesis regions were considered as soft tissue.
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Figure 1. Three transversal slices of different images used in the UL case: (a) contoured CT (in this slice all the contoured
regions are visible), (b) activity map, and (c) SPECT superimposed on the coregistered CT.

2.2.2. Spherical Regions (SR) Case

The Spherical Regions (SR) case has homogeneous liver and activity in three spherical
regions only. These spheres, placed inside the liver, are named “SS” (Small Sphere), “MS”
(Medium Sphere), and “BS” (Big Sphere) and their radii are 10, 20, and 30 mm, respectively.
Slices of the contoured CT, activity map and reconstructed SPECT image for this case are
reported in Figure 2.

Figure 2. Three transversal slices of different images used in the SR case: (a) contoured CT (in this slice all the contoured
regions are visible), (b) activity map and (c) SPECT superimposed on the coregistered CT. Activity is just in the spheres (MS
and BS are visible in (b,c), while SS is located on another transversal plane).

We developed this scenario in order to compare the average absorbed dose for each
sphere obtained from the GATE output with that obtained from OLINDA-EXM [39] S-factor
for 90Y and spheres of soft tissues with unit density. From the table of S-factors associated
to sphere masses included into OLINDA-EXM, the following relationship between S-factor
(expressed in mGy

MBq·s ) and sphere mass m (expressed in g) was obtained and used to derive
the corresponding dosimetric factor for a sphere of arbitrary mass:

S
[

mGy
MBq · s

]
= 0.12456 · m[g]−0.97267 (3)

As S-factors are referred to spheres with unit density, the soft tissue density for this
scenario was set to 1.00 g/cm3.

2.2.3. Nonuniform Liver (NUL) Case

The Nonuniform Liver (NUL) case can be divided in two subcases:

• NUL-a, presenting a liver with homogeneous density and activity placed inside both
spherical regions and liver with activity concentration ratio of 5:1, respectively;
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• NUL-b, presenting a liver with nonhomogeneous density and activity placed inside
the spherical regions (possible tumor lesions) and liver with activity concentration
ratio of 5:1, respectively (Figure 3). For this scenario, four tissues were added to the
segmentation list in Table 3: tumor (1.200 g/cm3), water (0.998 g/cm3), liver (1.050
g/cm3), and trabecular bone (1.140 g/cm3). The spheres were segmented in MCID as
tumor, with different density as compared to the surrounding liver. The left prosthesis
for this subcase was segmented as water.

Figure 3. Transversal slice of the NUL-b contoured CT where tumor regions are shown in purple (BS
and SS are visible in this slice).

NUL-a case presents a nonuniform activity distribution and was built to evaluate the
absorbed dose differences between the S-voxel convolution method and MC (the TPS).

NUL-b is a realistic scenario and was developed in order to quantify the absorbed
dose distribution in tumoral regions with different density as compared to the healthy
parenchyma, using the S-voxel convolution method and MC (the TPS).

2.3. Convolution with Voxel S-Values Calculated Independently

For validation purposes, absorbed dose images were also obtained applying con-
volution technique on the reconstructed SPECT images. The voxel S-values used in the
convolution were calculated with the EGSnrc code [17], independently from the tested
TPS, considering a 4.1 mm voxel size and ICRU soft tissue [38] as medium (density = 1.04
g/cm3). The S-values calculation was set as described in [17]. The source description was
the same as that used for the GATE simulation in the TPS, to increase comparability of
dosimetric results. Absorbed dose images obtained by convolution were used to validate
and test the TPS. Since the convolution technique is based on the application of MIRD
approach at the voxel level, the results obtained with convolution will be labeled as “MIRD”
hereinafter.

A schematic representation of the described workflow is reported in Figure 4.
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Figure 4. Schematic representation of the workflow and software packages used in this study. The
blue steps are specific for the validation with the computational phantoms and they will not be
performed (except for the CT segmentation) when dealing with real patient images. The latter should
be directly imported into the MCID platform.

2.4. Statistical Uncertainty on the GATE Simulation

A map of relative statistical uncertainties of the absorbed dose in each voxel is obtained
as output from each GATE simulation. These values were used for the assessment of the
relative statistical uncertainty on the mean absorbed dose in one region of interest (ROI)
through the following expression, according to [40]:

Uroi,rel =

√
1
n
·

n

∑
k=1

(uk,rel)
2 (4)

where Uroi,rel is the relative statistical uncertainty on the mean absorbed dose to the ROI, n
is the number of the voxels inside the ROI, and uk,rel is the relative statistical uncertainty of
the absorbed dose in the voxel k.

3. Results

The computational time for each MC simulation was around 5 h. The relative statistical
uncertainty on the absorbed dose value in a single voxel was below 1% for the range 150
Gy–700 Gy, below 2% for the range 50 Gy–150 Gy and below 10% for the range 1 Gy–10 Gy.

3.1. UL Case

The results for the mean absorbed dose calculation with the MIRD approach at the
organ level and direct MC simulation are reported in Table 4.
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Table 4. Comparison between average absorbed dose values to the liver, calculated from the Gate
image (Dgate) and from the MIRD approach (Dmird) at the organ level. The relative difference (RD) is

defined as = Dgate−Dmird

Dmird
.

Dgate (Gy) Dmird (Gy) RD (%)

36.79 36.69 0.27

The relative statistical uncertainty on Dgate, assessed using (4), was 2% while the
relative statistical uncertainty on Dmird, calculated from the uncertainty on the factor 49.38
Gy kg/GBq in (2) (§ 2.2.1), was 0.1%. Therefore, the mean absorbed dose values to the liver
obtained from the two methods are compatible.

3.2. SR Case

The comparison between average absorbed dose values for each sphere is reported in
Table 5.

Table 5. Mean absorbed dose values for each sphere, calculated from the Gate image (Dgate) and
from the application of the OLINDA/EXM factors (Dolinda). The relative difference (RD) is defined as

RD =
Dgate−Dolinda

Dolinda
.

Dgate (Gy) Dolinda (Gy) RD (%)

BS 666 625 6.57
MS 558 604 −7.62
SS 176 571 −69.20

The relative statistical uncertainties on the mean absorbed dose from GATE simula-
tions for BS, MS and SS are 0.5%, 0.6% and 0.8%, respectively. Statistical uncertainties for
OLINDA/EXM S-factors were not available.

In this case, differences are more evident, above all for SS, whose result is probably
affected by partial volume effects (PVEs). In order to verify this assumption and reduce
these effects, the initial activity map created with ITK-SNAP was used as input for MC
simulation, skipping SPECT simulation and reconstruction. The obtained results are
reported in Table 6.

Table 6. Mean absorbed dose values for each sphere, calculated from the Gate image (Dgate) with
a reduced workflow and from the application of the OLINDA/EXM factors (Dolinda). The relative

difference (RD) is defined as RD =
Dgate−Dolinda

Dolinda
.

Dgate (Gy) Dolinda (Gy) RD (%)

BS 613 625 −1.92
MS 588 604 −2.65
SS 517 571 −9.46

The relative statistical uncertainties on the mean absorbed dose in the three spheres
obtained from the GATE simulations was 1%.

3.3. NUL Case

Several absorbed dose profiles for each subcase were extracted from different transver-
sal slices. One example profile for the NUL-a case, presenting homogeneous liver and
activity in three spherical regions and liver in concentration ratio 5:1, respectively, is re-
ported in Figure 5. An image of voxel-by-voxel relative difference (RD) for the same slice
from which the profile was selected is also reported in Figure 5.

267



Appl. Sci. 2021, 11, 1939

Figure 5. Absorbed dose profile for the NUL-a case and comparison. (a) Absorbed dose image obtained with the MIRD
scheme and absorbed dose profile selection; (b) absorbed dose image obtained with GATE and absorbed dose profile
selection; (c) relative difference (RD) image for the whole slice; (d) comparison between absorbed dose profiles; (e) plot of
the absorbed dose RDs for each voxel of the profile.

All the profiles selected for the NUL-a case showed a relative difference within 3%
between the absorbed dose images calculated by MC simulation and convolution of voxel S-
values. Relative differences for the entire liver confirmed that this result is valid for all liver
slices, except for some boundary voxels, actually external to the liver and characterized by
low dose values (less than few Grays).

Absorbed dose profiles for the NUL-b case, presenting nonhomogeneous liver and
nonuniform activity, are reported in Figures 6 and 7.
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Figure 6. Absorbed dose profile for the NUL-b case and comparison. (a) Absorbed dose image obtained with the MIRD
schema and absorbed dose profile selection; (b) absorbed dose image obtained with GATE and absorbed dose profile
selection; (c) relative difference (RD) image for the whole slice; (d) comparison between absorbed dose profiles; (e) plot of
the absorbed dose RDs for each voxel of the profile.
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Figure 7. Absorbed dose profile for the NUL-b case and comparison. (a) Absorbed dose image obtained with the MIRD
schema and absorbed dose profile selection; (b) absorbed dose image obtained with GATE and absorbed dose profile
selection; (c) relative difference (RD) image for the whole slice; (d) comparison between absorbed dose profiles; (e) plot of
the absorbed dose relative differences RD for each voxel of the profile.

The relative differences between the absorbed dose images were up to 14% in the
spherical regions, having a different density (1.200 g/cm3) as compared to the surrounding
liver (1.050 g/cm3).

4. Discussion

The validation of MCID platform is demonstrated at both organ and voxel level. In
particular, for the UL scenario, the comparison between mean absorbed doses to liver
assessed with the MIRD approach at the organ level and with the MC-based TPS showed a
very good agreement (RD = 0.27%). This result highlights the efficiency of the developed
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dosimetric routine: under the hypothesis of homogeneous density and uniform activity
distribution in each tissue, both methods are equivalent, as expected. It is interesting to
point out that Dmird is a merely theoretical quantity, while Dgate depends on the image
quality, e.g., partial volume effects (PVEs), which in this first case appear negligible due to
the big size of the observed object (i.e., the whole liver). The effects due to image blurring
become relevant instead when dealing with smaller objects, as in the SR case. This scenario
allowed a comparison between the average absorbed doses to each sphere. While the
BS and the MS present a RD < 8% (absolute value) between the two methods, the SS
shows a dramatic RD of −69.2%, caused by the PVEs affecting the SPECT simulation with
SIMIND. One contribution to PVEs rises from the matrix resampling (512 × 512 to 128
× 128), an additional contribution derives from the impulsive response of the imaging
system, in the SIMIND simulation: spill-out effects affecting voxels cause a change in
the activity quantified by imaging, only partially recovered with CDR corrections during
the tomographic reconstruction. Dgate depends on the activity estimated from the image,
while Dmird is only related to the theoretical initial activity value. The drastic impact of
PVEs is evidenced by the results obtained without the SIMIND simulation: for the BS
and the MS, RD reduced to 2% and 3% (absolute values), respectively, while for the SS,
RD reduced to 9% (absolute value). Remaining discrepancies could be related to some
differences between the MC codes used for calculating the OLINDA-EXM sphere S-factors
and the updated code used in this work, and to possible mismatching in source description.
Relative differences for the BS and the MS are in agreement with the results shown in [41],
where the authors presented an analogous comparison for various sphere diameters: their
smallest sphere had a 27 mm diameter, resulting in RD = −5%, so the RD here obtained
for SS (20 mm diameter, see Table 6) also appears reasonable and comparable. Dosimetry
in lesions with size equal (or less) to the maximum 90Y β- range (around 12 mm in soft
tissue) should be treated carefully, also due to limited resolving power of SPECT imaging.
An analysis of dosimetry in small lesions and a correction factor for the MIRD standard
equation are proposed in [42].

A validation of the TPS at the voxel level was presented in the NUL-a case. The
differences between the two methods (MC simulation and S-voxel convolution) for each
absorbed dose profile were always within 3%.

Finally, the NUL-b scenario shows the importance of a personalized dosimetry in het-
erogeneous tissues, accounting for both activity distribution and density inhomogeneities,
which are often overlooked in present internal dosimetry evaluations. The analysis of
different absorbed dose profiles reveals that in the tumoral spherical regions absorbed
dose values derived from the MC simulation are lower (up to 14% in absolute value) than
absorbed dose values calculated with the convolution method, due to a density increase
in lesions of about 20% with respect to the surrounding tissue. Therefore, it is necessary
to include morphological patient-specific information in the treatment planning system,
including careful calibration of the CT and possibly high quality CT systems (to allow
HU-based density estimation for each voxel) to avoid inaccuracies based on the assumption
of homogeneous tissues. The use of the highest possible quality CT could be of special
value to improve the information especially in inhomogeneous tumors or e.g., in bone
metastases.

The concept of voxel dosimetry is bright and suitable, but it is a highly complex
association between image reconstruction, segmentation, density, PVE, activity recovery,
and absorbed dose calculation. All these issues can concur to limitations which still need
to be well understood and solved.

The scientific community is investing appreciable efforts to improve and assess the
reliability and accuracy of dosimetry at the voxel level in volumes of interest of various
scenarios.

Concerning image quantification, relevant studies are ongoing to highlight and com-
pensate imaging and reconstruction deficiencies that may lead to unrealistic absorbed dose
distributions for different organ substructures, lesions or voxel dimensions [43].
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As regards the potential impact of density and inhomogeneities, the results of this
study, although theoretical, based on a MC approach represent a proof of concept and
challenge analysis of more complex situations with real patient data of different clinical
situations. This is in fact the topic of a current study of some of the authors, and preliminary
results will be soon presented.

5. Conclusions

The validated MCID platform allows the fast implementation of a personalized MC
dosimetry, based on patient imaging data, avoiding complex and time-consuming manual
coding to the user. The system could be easily integrated in the clinical practice, considering
the total computational time of the MC simulation (~ 5 h), suitable with clinical routine. For
liver with homogenous density, the comparison between absorbed dose assessed from MC
simulations and from the MIRD approach at the organ and voxel level showed a very good
agreement. For smaller regions, PVEs from imaging deeply influence the final absorbed
dose evaluation, therefore a careful analysis and PVEs corrections are required. Finally,
patient heterogeneities should be considered in the treatment planning in order to obtain
accurate dosimetric estimations.
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Abstract: The aim of the present paper is twofold. Firstly, to assess the absorbed dose in small lesions
using Monte Carlo calculations in a scenario of intratumoral injection of 90Y (e.g., percutaneous
ablation). Secondly, to derive a practical analytical formula for the calculation of the absorbed
dose that incorporates the absorbed fractions for 90Y. The absorbed dose per unit administered
activity was assessed using Monte Carlo calculations in spheres of different size (diameter 0.5–20 cm).
The spheres are representative of tumor regions and are assumed to be uniformly filled with 90Y.
Monte Carlo results were compared with the macrodosimetric approach used for dose calculation
in liver radioembolization. The results of this analysis indicate that the use of the analytic model
provides dose overestimates below 10% for lesions with diameter larger than approximately 2 cm.
However, for lesions smaller than 2 cm the analytic model is likely to deviate significantly (>10%)
from Monte Carlo results, providing dose overestimations larger than 50% for lesions of 0.5 cm
diameter. In this paper an analytical formula derived from MC calculations that incorporates the
absorbed fractions for 90Y is proposed. In a scenario of intratumoral injection of microspheres,
the proposed equation can be usefully employed in the treatment planning of spherical lesions of
small size (down to 0.5 cm diameter) providing dose estimates in close agreement with Monte Carlo
calculations (maximum deviation below 0.5%).

Keywords: percutaneous radioablation; monte carlo dosimetry; liver lesions; molecular radiotherapy
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1. Introduction

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and today
multiple treatment modalities exist [1]. Due to the lack of effective systemic therapies for HCC,
researchers have been investigating the use of locoregional tumor control with 90Y radioembolization
since the 1960s. Today radioembolization (or Selective Internal Radio Therapy, SIRT) is an
established and effective treatment for liver malignancies based on trans-arterial infusion of 90Y-laden
microspheres [2–4]. At present, there are two clinically available microsphere devices in which
90Y is incorporated: one with microspheres made of glass (TheraSphere; MDS Nordion, Ottawa,
ON, Canada) and the other with microspheres made of resin (SIR-Spheres; Sirtex Medical, Sydney,
Australia). Once administered, the spheres remain in the liver as a permanent implant.

Radiation dose distributions arising from intrahepatic arterial infusion of 90Y microspheres have
been investigated by a number of authors in the past. In recent years a number of studies have
addressed the problem of dosimetry in therapies based on the use of intratumoral administration of
90Y-conjugates by percutaneous puncture. This technique has been successfully applied to patients
treated with 90Y-labeled [DOTA0-D-Phe1-Tyr3]octreotide (90Y-DOTATOC) for malignant gliomas [5–7].
In fact, based on the clinical experience gained in liver radioembolization, it is reasonable to assume
that percutaneous ablation of HCC through the intratumoral injection of an appropriate activity of
90Y has the potential to reduce drastically the chances of local recurrence. In this context, there is
growing interest in the development of new intratumoral procedures for HCC throughout a localized
administration of 90Y in the form of microspheres mixed with biocompatible compounds [8].

As a general rule, intratumoral administration of radionuclides raises questions about the
dosimetry of small lesions as this approach allows sub-centimeters tumors to be selectively
treated [9,10]. To date, there is no simple way to assess exactly the absorbed dose to tumours and
normal liver when 90Y is administered. This is because 90Y only emits pure beta radiation with
limited penetration range in tissue. As a consequence, the delivered dose is highly dependent on the
distribution of the radionuclide and the tumor mass.

Calculation of the radiation dose to tumors may require consideration of the losses of electron
energy. In the traditional macrodosimetric approach, all of the electron energy emitted in a source
region is assumed to be absorbed in that region. This is quite reasonable for most situations because the
range of most electrons in body tissues is small compared to the size of most source regions. However,
when the tumor size is small this assumption is no longer true and the absorbed fraction may be
significantly less than unity. Some preliminary work dedicated to the assessment of the absorbed
fractions for beta particles in spherical regions of different sizes was carried out in the early 1990s by
Siegel [11] and Bardies [12]. In a major advance in 2000 Stabin and Konijnenberg [13] reevaluated and
updated absorbed fractions in spherical regions comparing different Monte Carlo codes, while in 2010
Amato and colleagues [14] calculated absorbed fractions for electrons in ellipsoidal volumes. The aim
of the present paper is to assess the absorbed dose of 90Y after percutaneous administration in small
spherical lesions proposing a practical analytical formula that incorporates the absorbed fractions for
90Y. Of note, in [13] absorbed fractions were assessed for monoenergetic electrons using MCNP version
4B, while in this study absorbed dose fractions were calculated implementing the full 90Y spectrum
and using an upgraded version of MCNP (version 4C). Calculations were performed assuming both
water and liver density (ρ = 1.00 g/cm3 and ρ = 1.05 g/cm3, respectively) for spheres of different
diameter (0.5–20 cm). MC results were then compared with the well enstablished macrodosimetric
approach used for the dose assessment in liver radioembolization Equation (4).

2. Materials and Methods

2.1. Percutaneous Ablation with 90Y

Recently, it has been proposed the intralesional injection of 90Y in the form of resin microspheres
embedded in a bio-compatible matrix. The injection is performed using a proprietary delivery
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system [8]. This procedure is also known as percutaneous radioablation and is a minimally invasive
treatment for patients with small (below approximately 3 to 5 cm) liver tumors performed using
BAT-90, a combination of the following components: (i) BioGlue® (Cryolife, Atlanta, GA, USA),
a FDA-approved mixture of bovine serum albumin (45%) and glutaraldehyde (10%) in a 4:1 ratio,
approved for use in soft tissue repair or to seal damaged parenchyma [15] (ii) SIR-Spheres® coated
with 90Y (Sirtex Medical, Sydney, Australia) approved for implantation into hepatic tumors via the
hepatic artery. BAT-90 is percutaneously injected through the MIPP-Kit® (Svas Biosana, Neaples, Italy)
a dedicated coaxial dual-lumen catheter for the direct, imaging-guided intra-tumoral injection.

The two components of BAT-90 are dispensed from a double-barrel syringe and mix within the
delivery tip in a predefined ratio. The adhesive begins to polymerize within 20–30 s and reaches
maximum bonding strength in 2 min. Once injected into the tumor region, the radiopharmaceutical
combination (BAT-90) remains in the lesion delivering the required tumoricidal dose. As a consequence,
in order to simulate a scenario of percutaneous ablation, in the present study we assumed
that 90Y is homogeneously dispersed into the lesion and that there is no biological removal of
the radiopharmaceutical.

2.2. Dosimetry with 90Y

90Y disintegrates by β emission mainly (99.983% [16]) to the stable 90Y ground state level. A weak
beta branch occurs to the 1760 keV excited level which decays by a E0 gamma transition [16]. This 0+-0+

transition is followed by the emission of two gammas, or an electron-positron pair, or internal
conversion. The adopted half life of 90Y ground state is 64.041(31) h or 2.6684(13) days [16].

Among the radionuclides used in clinical practice, 90Y has attractive physical and radiobiologic
features that make this radionuclide suitable for a loco-regional therapeutic option. The high-energy
β-particles (maximum energy 2278.7(16) keV, average energy 926.7(8) keV [16]) and their penetration
depth (maximum particle range in tissue, 11 mm; range in tissue after which 50% of the energy
particles is transferred, 4 mm) allows high radiation doses to be selectively delivered to the target
area, while sparing surrounding tissues and normal organs. In particular, the penetration depth
of the high-energy β-particles is a key element of this radionuclide’s success in radioembolization,
allowing for high-dose deposition into the tissues between embolized capillars. In the traditional dose
calculation formalism (after locoregional administration of 90Y) two important simplifying assumptions
are generally made:

• β radiation released from 90Y within a given organ is fully absorbed by that organ. In most cases,
this assumption is supported by the average 4 mm 90Y β range in tissue.

• permanence of 90Y in the area where they have been delivered (i.e., no migration of the
radiopharmaceutical outside the tumor region).

Combining these two assumptions allows for easy calculation of average absorbed dose to an
organ of interest on a macroscopic scale. The calculation, carried out using most up-to-date nuclear
data for 90Y [16], is illustrated below and it is generally referred to as the MIRD approach [17]:

Eavg =
∫ ∞

0
Eϕ(E)dE = 926.7 keV = 1.4847 × 10−13 J (1)

Etot = A0Eavg

∫ ∞

0
e−λtdt =

A0

λ
(1.4847 × 10−13 J) = A0 · k (2)

where Eavg is the average energy released per decay of 90Y based on the probability density function
ϕ(E) for emission, λ is the 90Y decay constant based on the half-life of 64.041(31) hours, and k a
constant term. A0 is the activity present in the organ in GBq and Etot is the total energy released by A0

from the time that it is infused until it has fully decayed.
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Assuming that all of the energy of the β− decay is absorbed in the volume where the decay
occurs, the constant term, k, can be calculated taking the given physical values and their statistical
uncertainties:

k =
1.4847 × 10−13 J

λ
=

1.4847 × 10−13 J × 230547 s
0.69315

× 109 dis/s
GBq

= 49.38(5) (J/GBq) (3)

The constant factor 49.38 (J/GBq) is the energy released per unit activity of 90Y. The adopted
uncertainties on the nuclear data [16] reported in Equation (4) lead to a relative standard uncertainty
of 0.1% on the constant term, i.e., 49.38(5) (J/GBq), in line with [18].

Finally, the absorbed dose D (expressed in Gy) can be obtained by dividing the delivered energy,
Etot, by the mass of the target region m (expressed in kg):

Davg (Gy) =
A0 (GBq)× 49.38(5) (J/GBq)

m (kg)
(4)

Of note, the same formula with a slightly different constant term, k, is reported in other
publications (e.g., 49.98 [17], 49.67 [19]).

According to the partition model [20–22], Equation (4) can be used to calculate the absorbed dose
in the tumor, once the fractional tumor uptake FUtumor (i.e., the fraction of the administered activity
accumulated in the tumor) is known:

Dtumor (Gy) =
A0 (GBq)× 49.38(5) (J/GBq)× FUtumor

m (kg)
(5)

It must be reiterated that Equations (4) and (5) are representative of average absorbed dose on a
macroscopic scale, i.e., on an organ or a large lesion where the absorbed fraction can be assumed equal
to unity. These equations may not hold for very small tumor masses, as the assumption that the energy
emitted during decay is totally absorbed by the mass of interest m is no longer true. In particular,
when the size of the lesion is very small (especially in the sub-centimeter region), the energy released
per unit activity of 90Y may decrease significantly. As a consequence hereafter the constant term k in
Equation (3) will be treated as a function of the lesion radius (r) and indicated as k(r).

Monte Carlo Calculations

In the present study the absorbed dose per unit administered activity was assessed using Monte
Carlo calculations in a simplified geometry. MC code MCNP4C has been used for this purpose [23].
MCNP is a general-purpose, continuous-energy, generalized-geometry, time-dependent, coupled
neutron/photon/electron Monte Carlo transport code. For photon transport, the code takes into
account photoelectric absorption, with the possibility of K- and L-shell fluorescent emission or
Auger electron, coherent and incoherent scattering and pair production. The photoelectric cross
sections are based on Storm and Israel [24] whereas the scattering cross sections are taken from
ENDF tabulations [25]. The continuous slowing down approximation energy loss model is used for
electron transport.

Spherical lesions of different size (diameter in the range 0.5–20 cm) were simulated for two
different densities: ρ = 1.00 g/cm3 (water density) and ρ = 1.05 g/cm3 (liver density). In both
scenarios, spheres were assumed to be immersed in a semi-infinite medium with the same density of
the sphere. The spheres are representative of tumor regions and are supposed to be uniformly filled
with 90Y, while the surrounding medium is assumed to contain no radioactivity.

Calculations were performed in coupled electron-photon mode [MODE P E] using the el03 electron
interaction data library (ELIB = 03E) and the mcnplip2 photon interaction data library (PLIB = 02P).
Simulations were carried out taking into account all the available advanced options such as electron
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production by photons, Bremsstrahlung effect and knock-on electron production. MCNP simulations
were run for an adequate time to get a statistical uncertainty on the absorbed dose below 0.01%.

3. Results

Figure 1 shows the fraction of 90Y absorbed dose into the tumor as a function of the tumor size,
obtained from MCNP simulations. The 90Y beta spectrum implemented in the model is also reported in
the same figure. Calculations were performed both for water spheres (ρ = 1.00 g/cm3) and for spheres
made of liver tissue (ρ = 1.05 g/cm3). In both cases, when the lesion diameter drops below 2 cm,
a great amount of the β particle energy is delivered outside the sphere. Consistently, the delivered
energy per unit activity, k(r), shows the same trend (Figure 2) confirming that when the tumor size
is small such term deviates significantly from the value 49.38 (J/GBq), considered in Equation (4).
In order to use information reported in Figure 2 at the clinical level, k(r) data obtained from MC
calculations were fitted with the following function:

k(r) = k0 + A · (1 − exp(− r
a
)) + B · (1 − exp(− r

b
)) (6)

where r is the lesion radius in cm (assuming spherical tumors) and k0, A, a, B, b are parameters
determined by the fit (reported in Table 1 both for water and liver density). An r2 = 0.999 was
obtained form the fit, both for water and liver density. Furthermore, goodness-of-fit was also assessed
through the analysis of residuals (Figure 2B), which shows maximum deviations below 0.2 between
calculated and fitted data, confirming the accuracy of the fit. Based on the fitting function described in
Equation (6), Equation (4) can be rewritten in the following form:

Davg(r) =
A0 · k(r)

m
(7)

.
Figure 1. Fraction of 90Y absorbed dose into the tumor as a function of the tumor size. Simulations
were performed for ρ = 1.00 g/cm3 (water density) and ρ = 1.05 g/cm3 (liver density). Inset: 90Y beta
spectrum implemented in the model.
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.
Figure 2. (A) Delivered energy per unit activity of 90Y, k(r), calculated with MCNP4c as a function of
the tumor diameter. Data were fitted with Equation (6). (B) Analysis of residuals.

Table 1. Fitting parameters of Equation (6) with relative standard uncertainties, for water and liver
density (denoted with superscripts W and L, respectively). R2 = 0.999 in both cases.

Parameter ValueW urel
W/% ValueL urel

L/%

k0 −11.883 1.10 −12.999 1.00

A 4.416 1.15 4.654 1.10

a 2.190 0.90 1.909 1.00

B 56.820 0.05 57.701 0.05

b 0.290 0.15 0.271 0.10

For a given activity A0, Equation (7) can be used to accurately calculate the absorbed dose
for very small lesions (down to 0.5 cm diameter). The absorbed dose to lesions calculated using
Equation (7) provides results in good agreement with MC calculations (maximum deviation below
0.5%). As expected, when ideally r → ∞ Equation (7) reduces to Equation (4). Of note, the energy
per unit activity, k(r), obtained from Equation (6) when x → ∞ is 49.35 (J/GBq), against the accepted
value of 49.38 (J/GBq) derived from Equation (4) (0.06% deviation).

Figure 3 compares absorbed doses per unit activity (Gy/GBq) calculated with Monte Carlo
with those obtained using the analytic approach described by Equation (4), for spherical lesions of
different size and for ρ = 1.05 g/cm3. The same results for ρ = 1.00 g/cm3 are shown in Figure 4.
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In addition Figure 4 reports absorbed doses calculated using the well established Olinda/EXM code,
developed by the RAdiation Dose Assessment Resource (RADAR) Task Group of the Society of Nuclear
Medicine [26]. As illustrated in Figure 4, absorbed dose values calculated with MC approach concur
well with those obtained using Olinda/EMX. Significant deviations were found between MC calculated
dose values and those obtained using the analytic formulation when the lesion diameter drops below
2 cm (Figure 4, inset).

.
Figure 3. Absorbed dose per unit administered activity (GBq), for ρ = 1.05 g/cm3 (liver density).
Comparison between MC approach (MCNP) and the analytical formulation (AA) described by
Equation (4). Inset: detail in the range 0 cm–1 cm lesion size.

Figure 4. Absorbed dose per unit administered activity (GBq), for ρ = 1.00 g/cm3 (water density).
Comparison between MC approach (MCNP) and the analytical formulation (AA) described by
Equation (4). Inset: detail in the range 0 cm–1 cm lesion size.
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Ultimately, Tables 2 and 3 compare absorbed dose values per GBq of administered activity
obtained with MC calculations (DMCNP) and with the analytical approach reported in Equation (4),
(DAA). The percentage differences between the two methods (last column of both tables, Δ) is also
reported, calculated as 100 · (DMCNP − DAA)/DAA. The difference in absorbed dose values is within
∼10% as long as the diameter of the lesion exceeds 2 cm. The two calculation approaches deviate
significantly when the lesion size drops below 2 cm, due to significant energy deposition outside the
sphere. This is consistent with the maximum particle range in tissue for 90Y (about 11 mm). In this case,
for water (liver) density MC calculations provide absorbed doses −9.3% (−9.6%), −27.8% (−26.7%),
−56.7% (−55.4%) lower than those obtained using the analytic formulation described by Equation (4)
for tumor diameter of 2 cm, 1 cm and 0.5 cm, respectively (Tables 2 and 3).

Table 2. Dose per unit activity calculated with MCNP4C for spherical lesions of different size uniformly
filled with 90Y. The lesions are assumed to have a density of ρ = 1.05 g/cm3 (liver density). The same
quantity (dose per unit activity) has been calculated using the analytic approach (AA) described by
Equation (4). The last column of the table (Δ) shows the percentage deviation between the two methods,
calculated as 100 · (DMCNP − DAA)/DAA.

Lesion Diameter Mass (kg) Dose/Particle (Gy/p) MCNP (Gy/GBq) AA (Gy/GBq) Δ

20 cm 4.40 3.38 ×10−14 1.12 × 101 1.14 × 101 −1.8%

10 cm 5.50 × 10−1 2.68 × 10−13 8.91 × 101 9.10 × 101 −2.1%

8.0 cm 2.81 × 10−1 5.21 × 10−13 1.73 × 102 1.78 × 102 −2.5%

6.0 cm 1.19 × 10−1 1.23 × 10−12 4.08 × 102 4.21 × 102 −3.1%

5.0 cm 6.87 × 10−2 2.11 × 10−12 7.01 × 102 7.28 × 102 −3.7%

4.0 cm 3.52 × 10−2 4.08 × 10−12 1.36 × 103 1.42 × 103 −4.2%

3.0 cm 1.48 × 10−3 9.51 × 10−12 3.16 × 103 3.34 × 103 −6.2%

2.0 cm 4.40 × 10−3 3.09 × 10−11 1.03 × 104 1.14 × 104 −9.6%

1.0 cm 5.50 × 10−4 2.01 × 10−10 6.67 × 104 9.10 × 104 −26.7%

0.5 cm 6.87 × 10−5 9.77 × 10−10 3.25 × 105 7.28 × 105 −55.4%

Table 3. Dose per unit activity calculated with MCNP for spherical lesions of different size uniformly
filled with 90Y. The lesions are assumed to have a density of ρ = 1 g/cm3 (water density). The same
quantity (dose per unit activity) has been calculated using the analytic approach (AA) described by
Equation (4). The last column of the table (Δ) shows the percentage deviation between the two methods,
calculated as 100 · (DMCNP − DAA)/DAA.

Lesion Diameter Mass (kg) Dose/Particle (Gy/p) MCNP (Gy/GBq) AA (Gy/GBq) Δ

20 cm 4.19 3.54 ×10−14 1.18 × 101 1.18 ×101 0.0%

10 cm 5.23 ×10−1 2.81 ×10−13 9.33 ×101 9.44 ×101 −1.2%

8.0 cm 2.68 ×10−1 5.47 ×10−13 1.81 ×102 1.84 ×102 −1.5%

6.0 cm 1.13 ×10−1 1.29 ×10−12 4.27 ×102 4.37 ×102 −2.3%

5.0 cm 6.54 ×10−2 2.20 ×10−12 7.31 ×102 7.55 ×102 −3.2%

4.0 cm 3.35 ×10−2 4.27 ×10−12 1.42 ×103 1.47 ×103 −3.4%

3.0 cm 1.41 ×10−3 9.95 ×10−12 3.30 ×103 3.49 ×103 −5.4%

2.0 cm 4.19 ×10−3 3.22 ×10−11 1.07 ×104 1.18 ×104 −9.3%

1.0 cm 5.23 ×10−4 2.05 ×10−10 6.82 ×104 9.44 ×104 −27.8%

0.5 cm 6.54 ×10−5 9.86 ×10−10 3.27 ×105 7.55 ×105 −56.7%
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4. Discussion

Molecular radiotherapy with 90Y has received much attention in the past two decades and the
dosimetry of small lesions remains a key issue. The maximum range of 90Y β-particles is 11 mm in
tissue, while its average energy β-particles has a range of about 2.5 mm. It is worth noting that the
penetration depth of the high-energy 90Y β-particles is a critical component of this radionuclide’s
success in liver radioembolization, allowing for high dose delivery into the tissue between embolized
capillars. Previous work has been dedicated to the assessment of absorbed fractions for electrons
and beta particles in spheres [11–13] and ellipsoidal volumes [14] of various sizes. The present study
focused on the assessment of the absorbed dose per unit activity in a scenario of percutaneous ablation
of HCC through the intratumoral injection of 90Y in lesions of varying size. A simplified model tumor
areas was implemented into MCNP4C MC code with the aim to determine the absorbed dose to the
lesion when the tumor mass is uniformly filled with 90Y. Spherical lesions of different size (diameter
in the range 0.5–20 cm) were simulated for two different densities: ρ = 1.00 g/cm3 (water density)
and ρ = 1.05 g/cm3 (liver density). In both scenarios, lesions were assumed to be immersed in a
semi-infinite medium with the same density of the lesion.

The problem of beta dosimetry in small lesions is not new [11–13]. Absorbed fractions calculated in
this study are hardly comparable with those assessed in [11,13] as the authors performed calculations
assuming monoenergetic electrons, while in this study the full 90Y spectrum was implemented.
Furthermore, in [13] the authors used MCNP4B, while in this work MCNP4C was used instead.

The widely used analytic approach described by Equation (4) and MCNP calculations provide
results in close agreement (within 10%, no matter the density of the lesion) as long as the lesion
diameter exceeds 2 cm. When the lesion diameter drops below 2 cm, significant differences were
obtained between MC calculations and the analytic approach (i.e., deviations >10%). As a general rule,
the analytic described by Equation (4) tends to overestimate the absorbed dose in small lesions, as the
basic assumption of the model is that β radiation is fully absorbed by the tumor or tissue where the
decay occurs. When the radius of the tumor is smaller than the maximum range of the β radiation in
the medium, a significant amount of the energy is delivered out of the lesion, thus providing smaller
absorbed dose values.

Presently, despite the availability of different dose algorithms, the analytic algorithm described by
Equation (4) is still widely used to assess the absorbed dose in tumor and in the liver compartment at
the clinical level. As a general rule, the size of normal liver is large and Equation (4) provides accurate
dose estimates (provided that accurate input parameters are introduced, among which the fractional
uptake of the target). However, when this approach is applied to assess the absorbed dose to small
tumor masses (i.e., approximately below 2 cm diameter) inaccurate dose estimates can be obtained.

In addition, the analytic algorithm is safely used for treatment planning with glass microspheres.
The foundational principle is based on Equation (4), which describes the average dose in a tissue
volume as a function of 90Y activity. During treatment planning, this equation can be solved for
the treatment activity A0. The results obtained in the present study raise questions as to whether
Equation (4) should be used to assess the prescribed 90Y activity in order to achieve a given tumoricidal
endpoint in small liver lesions. This is especially true when intratumoral injection of 90Y is performed.
For example, for HCC 120 Gy should be considered to be a reasonable minimum target dose [21,27,28].
Therefore, when treating an HCC patient with 90Y β-particles, one may wish to set Dtumor to a
minimum of 120 Gy. Equation (5) can be rearranged to derive the prescribed treatment activity:
A(GBq) = Dtumor · mtumor(kg)/49.38 (J/GBq) · FUtumor. Assuming, for example, a tumor mass,
mtumor, of 0.52 g (diameter 1 cm), FUtumor = 1 and Dtumor = 120 Gy, Equation (5) would yield a
treatment activity of 1.21 MBq (considering ρ = 1.05 g/cm3). On the other hand, if Equation (7) is
used instead of Equation (4) a prescribed activity of 1.62 MBq is obtained. As previously outlined,
the cause of this difference is a result of a significant energy deposition outside the sphere (about 26%
of the β-particles energy is delivered outside the sphere, as reported in Figure 1). As a consequence,
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a therapeutic activity of 1.21 MBq would actually correspond to an absorbed dose of about 90 Gy,
well below the therapeutic endpoint.

As mentioned, the intratumoral injection of 90Y is likely to pose specific treatment planning issues
related to the possibility of treating very small lesions very selectively. In his seminal paper [29],
Ariel reported the first interstitial use of 90Y microspheres for the treatment of a rhabdomyosarcoma.
A nodule measuring 1.5 cm in diameter was successfully treated with interstitial injection of 185 MBq
of microspheres. In another study [30], 90Y-glass microspheres were injected into predetermined
tumor sites using an ultrasound-guided procedure. Tumor size ranged from 1.9 to 8.8 cm, with most
lesions being less than 5 cm in diameter [30]. More recently, Ferrari and co-workers assessed the
absorbed doses to small-volumes brain neocavities and surrounding tissues after local 90Y-DOTATOC
injection [5]. A recent review of the literature on the intratumoral treatment with radioactive
beta-emitting microparticles can be found in [31].

The evidence from this study suggests that caution must be taken when planning the treatment
of very small lesions with 90Y, implementing the standard analytic approach. This is particularly
true when intratumoral administration of 90Y is performed, as this approach allows sub-centimeters
tumors to be selectively treated. In such a scenario, the use of the analytic approach to calculate the
therapeutic activity needed to achieve a given tumoricidal endpoint may result in important dose
underestimations. On the other hand, Equation (7) can be usefully employed in the treatment planning
of spherical lesions of small size (down to 0.5 cm diameter) providing dose estimates in close agreement
with Monte Carlo calculations (maximum deviation below 0.5%).

Finally, two potential limitations need to be considered. The first is that in the present study
tumor masses were modelled as perfect spheres. The extent to which it is possible to extend the present
results to irregular spheres (e.g., oblate spheroids) should be further investigated. Another limitation
is that in this study we considered a uniform distribution of the radionuclide into the spheres. As a
consequence, the findings might not be representative of situations where the radionuclide is not
homogeneously distributed in the tumor region.

5. Conclusions

In this paper the absorbed dose in small lesions was assessed using Monte Carlo calculations in a
scenario of percutaneous ablation using 90Y microspheres embedded into a sealant matrix (BAT-90).
Furthermore, an analytical formula derived from MC calculations that incorporates the absorbed
fractions for 90Y is proposed. In a scenario of intratumoral injection of microspheres, the proposed
equation can be usefully employed in the treatment planning of spherical lesions of small size (down
to 0.5 cm diameter) providing dose estimates in close agreement with Monte Carlo calculations
(maximum deviation below 0.5%).
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Featured Application: The technique presented here could be effectively applied for retrospective

assessment of the accidental radiation hand exposure of medical workers.

Abstract: While it is recognized that some medical workers could receive significantly higher radiation
doses to their hands than the routinely monitored personal doses, accurate retrospective dosimetry of
their hand exposure is still challenging. To solve this issue, a combination of electron spin resonance
(ESR) measurement and fingernails is worth to be investigated. However, the application of fingernail
ESR dosimetry requires establishing an effective protocol to eliminate the background signal (BKG)
which changes due to mechanical stress and other unclear factors, so that the radiation doses would
be precisely evaluated from the radiation-induced signals (RIS) only. Thus, the authors investigated
possible applications of antioxidants to remove or reduce the BKG in fingernails. In the present study,
the effectiveness of chemical treatment using the dithiothreitol (DTT) reducing reagent was examined
in irradiated and unirradiated fingernails. Chemically and non-chemically treated fingernails were
subsequently exposed to 20 Gy of 137Cs γ-rays and the time changes of the BKG and RIS were
confirmed in two different storage conditions: vacuum chamber and freezer. The results show
that the non-chemically treated fingernails displayed significant intra-individual variations in the
peak-to-peak intensities of both BKG and RIS. RIS from chemically and non-chemically treated
samples showed correlations after freezer storage; signals were more stable than the samples stored
in the vacuum chamber. Moreover, while the BKG of non-chemically treated samples demonstrated
higher levels than those chemically treated, the intra-individual variations were further reduced by
the DTT treatment. Our results imply that the use of an antioxidant for hand washing of medical
workers prior to starting their work could be effective in reducing the pre-existing free radicals in their
fingernails. This also suggests a practical application of hand exposure monitoring using fingernails
as a part of radiological emergency preparedness in occupations where radiation or radionuclides are
used. Research for finding safer and easier-to-handle antioxidants is to be focused on in future studies.

Keywords: medical worker; radiological accident; emergency response; retrospective dosimetry;
ESR; EPR; fingernails; antioxidant

1. Introduction

It is recognized that some medical workers involved in interventional radiology/cardiology,
diagnostic/therapeutic nuclear medicine, positron emission tomography, brachytherapy, among others,
could receive notably high radiation doses to their extremities. Their hand doses tend to be higher than
the personal doses routinely measured with commonly used personal dosimeters; sometimes they may
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exceed the skin dose limit (500 mSv per year) even though the values from their personal dosimeters
are insignificant [1–3]. In addition, it is still difficult to properly and routinely monitor local hand
exposure as dose distributions change to a large extent, depending on the type of handling radiation or
radionuclide, and the geometric situation between the hands and radiation source. Recent studies also
reported that their fingertip doses could be significantly higher than the average hand dose measured
with a ring-type dosimeter [3,4]. We thus need to develop a novel and practical measure to solve
this issue.

For this aim, a combination of electron spin resonance (ESR) measurement and fingernails is worth
to be investigated. The application of “fingernail ESR dosimetry” has a good potential for quantifying
the number of radiation-induced free radicals that could stay long after exposure. For many decades,
ESR (or electron paramagnetic resonance, EPR) of biomaterials, such as tooth enamel and bone, has been
used successfully for retrospective dosimetry in atomic bomb survivors, radiological accident victims,
residents around nuclear testing sites, and radiotherapy patients [5–20]. However, in the case of
emergency dosimetry, which requires an urgent assessment of absorbed doses to affected individuals,
the number of potential applications using ESR is relatively small and the present guidelines are
yet to be developed. Indeed, in both short-term and long-term aftereffects of any radiation accident,
a systematic protocol for feasible dose assessment, using the available biomaterials is an utmost need.
Additionally, in the search for developing potential tools for retrospective dosimetry, most of the
attention has been paid to alternative materials that are carried close to the human body.

Fingernails are no doubt one of the most promising biomaterials in this context. Its potential
use as a dosimetry tool was first suggested in the late 1980s [21]. Fingernails are mainly composed of
α-keratin, a protein which consists of three long right-handed α-helical peptide chains twisted into a
left-handed coil strengthened by disulfide bridges (S-S) formed from adjacent cysteine groups [22].
Its exposure to ionizing radiation could generate stable free radicals that are the main sources of
ESR signals. Subsequent studies on the ESR signals from fingernails revealed that the spectra are
composed of three main components: radiation-induced signal (RIS), which is assumed to be correlated
with absorbed dose; mechanic-induced signal (MIS), which is attributable to α-radicals formed along
the shear edge of the nail through the breakage of S-S bonds caused by cutting/clipping and other
mechanical stresses [21–23]; pre-existing native signal (PES), whose origin remains unknown [24].
Despite such complexities in the signal processing, the easier sampling of fingernails compared to
tooth enamel and bone has attracted some researchers who paved the way for notable developments
in fingernail ESR dosimetry techniques in the 21st century [25–40]. Comprehensive reviews about
the free radical mechanism and characteristics of fingernail ESR signals can also be found in the
literature [41–43].

In those studies, many authors noted that one of the most problematic issues regarding
fingernail ESR dosimetry is how to identify and quantify the true component of RIS alone, separated
from other background signals (BKG). As demonstrated in some previous studies [36,44–46],
the presence of MIS, PES, and other potential confounding factors, such as ultraviolet light and high
temperature, contributes to the difficulty in the analyses of fingernail ESR signals. Not surprisingly,
numerous attempts have been carried out to circumvent BKG, while RIS remains intact. For example,
it was found that water treatment worked effectively in erasing the BKG (e.g., [25,29,30,35,38,47–49]).
The application of an antioxidant to freshly cut fingernails was also investigated; it was reported that
the 0.1 M dithiothreitol (DTT) reducing reagent with 20 min treatment time reduced both MIS and
BKG [26]. It is still unclear, however, if the DTT treatment would be effective for fingernail samples
that were stored for a long time.

Long storage in an ambient, humid conditions could cause unstable RIS, as well as changing
BKG [29,43]. The difficulty in keeping the stability of RIS and BKG has led some authors to investigate
other variants, such as storage in the freezer at low (sub-zero) temperature [31], in a vacuum desiccator
with 0% air humidity [35,36,38,49], or in olive oil with low water content [39]. Since research on such
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storage mediums started very recently, further comparative studies are desirable to clarify the efficacy
for improving the signal stability of RIS and BKG in conjunction with possible chemical treatments.

The present study pursues this direction and tries to contribute to the development of a practical
protocol of fingernail ESR dosimetry for routine monitoring of the extremity exposures of medical
workers handling radiation sources. Here we investigate the effects of chemical treatment using DTT
on the changes of the ESR spectra in irradiated and unirradiated fingernails after a long storage time.
The efficacy of DTT in the reduction in intra-individual variations of BKG is also examined through
comparative experiments using chemically and non-chemically treated samples stored in two different
mediums (i.e., vacuum chamber and freezer).

2. Materials and Methods

2.1. Sample Preparation

Fingernail samples were obtained from one adult volunteer during regular hygienic practice at
different collection times (usually every two weeks). In every collection, the samples were immediately
placed inside a small tightly sealed plastic bag and stored in darkness inside a vacuum chamber (VE-ALL
1-8-989-01, AS ONE, Osaka, Japan) with silica gel (FUJIFILM Wako Pure Chemical Corporation, Osaka,
Japan) at room temperature. A total of 16 sample collections were used in the experiments described
below. All the experiments in the present study (except during irradiation) were performed under
subdued red lighting conditions to avoid ambient light exposure.

2.2. Experimental Procedures

Two experimental setups were used in the present study, as illustrated in Figure 1. One “with
chemical treatment” process involving the application of DTT reducing reagent and the other “without
chemical treatment” process without the DTT reducing agent. It should be noted that this study is
only limited to fingernail samples collected from one individual to investigate the intra-individual
variations along with the two experimental procedures; no additional experiments were performed for
the examination of inter-individual variations.

Figure 1. Flowchart of the stages of fingernail sample preparation and electron spin resonance (ESR)
measurements. Two experimental setups were employed—one “with chemical treatment” process
including application of dithiothreitol (DTT) and the other “without chemical treatment” process
without DTT. The part indicated with a dashed line in the above flow chart was omitted in the “without
chemical treatment” process.
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2.2.1. With Chemical Treatment

This experiment used eight sample collections with two different storage conditions: four for
vacuum chamber and four for freezer. A more detailed description of the storage conditions is given in
Section 2.4. In each collection, the fingernails from the right/left hands of the volunteer (~90 mg) were
pooled and divided into four portions. Each portion contained 5–6 aliquots, totaling 20 mg. It must
be noted that the first measurement of BKG from all the samples was performed before the chemical
treatment process. Three portions were treated for 30 min with 500 μL aqueous solutions of 0.1 M DTT
reducing reagent (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan), while the remaining
portion was not treated or irradiated and kept as the control. In total, each storage condition consisted
of 12 portions of treated samples and 4 portions of control samples. Following the treatment, all the
samples were rinsed with 500 μL ultrapure water separated through microfiltration, treated with 500 μL
of ethanol (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) for 3 min and rinsed again
with 500 μL ultrapure water separated through microfiltration. The samples were dried inside the dry
heat sterilizer (MOV-112 S-PJ, PHC Holdings Co., Ltd., Tokyo, Japan) at 25 ◦C for 1 h (hereafter we will
call them as chemically treated samples.) After drying the chemically treated samples, the second ESR
measurement was immediately conducted to examine the efficacy of chemical treatment using DTT to
the ESR spectra of fingernails. Additionally, soon after the second ESR measurement, all the samples
were stored inside the vacuum chamber (12 portions of chemically treated, 4 portions of control)
for 24 h and the third ESR measurement was performed the next day. Shortly after the third ESR
measurement, three portions from each collection of the chemically treated samples were irradiated to
20 Gy of 137Cs γ-rays. Further technical details of the irradiation are provided in the next section.

2.2.2. Without Chemical Treatment

Similar to the experiment mentioned above, eight sample collections with two different storage
conditions (i.e., 4 sample collections for each storage condition) were also made. In each collection,
the fingernails from the right/left hands of the volunteer (~90 mg) were also pooled and divided
into four portions (20 mg each). The samples used in this experiment were not given any chemical
treatment (hereafter we will call them as non-chemically treated samples). Three portions from each
collection of the non-chemically treated samples were irradiated to 20 Gy of 137Cs γ-rays while the
other one was left unirradiated and kept as the control. The first measurement of BKG from all the
samples was performed before the irradiation process. In total, each storage condition used in this
experiment consisted of 12 portions of non-chemically treated samples and 4 portions of control
samples. A summary of the experimental work on non-chemically treated samples is also shown in
Figure 1. It is important to note that the storage conditions and irradiations utilized in non-chemically
treated samples were also similar to the chemically treated samples, as described in the following
Sections 2.3 and 2.4.

2.3. Irradiation

Irradiation of the samples was administered using a γ-ray irradiator (Gammacell40 Exactor Low
Dose Rate Research Irradiator, Best Theratronics Ltd., Ottawa, Canada) with a dose rate equal to
0.80 Gy min−1. It has dual 137Cs γ-ray sources with a total radiation activity of 178 TBq. All the
samples were irradiated to a dose of 20 Gy with consideration of the clinical dose level in radiotherapy
(tens of Gy). Though we recognized that this dose level was higher than the reported skin doses (0.5 to
2 Gy) of the hands in recent radiological incidents that occurred in medical facilities (e.g., [50–52]),
we envisaged that the local doses to fingertips could be much higher than the average skin dose in
such an incident. Thus, we have intended to assess the three-dimensional dose distribution of a hand
based on measured fingernail doses.

Three portions of the samples from each collection were positioned at the center of the container
(ϕ 260 × 100 mm) perpendicular to the radiation sources, as shown in Figure 2. The dose uniformity
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inside the whole area of the sample container was ±7%. During irradiation, the room lighting inside
the facility was turned off to limit the ambient light exposure of the samples. Following exposure of
the samples to radiation, ESR measurements were immediately performed.

Figure 2. Experimental setup for the irradiation of the fingernail samples with the γ-ray irradiator (left)
and the geometry of irradiated samples placed in between two 137Cs γ-ray sources (right).

2.4. Storage Conditions

In experiments with chemically and non-chemically treated samples, two different storage
conditions (vacuum chamber and freezer) were used. The samples were initially placed inside a
stainless-steel vacuum fresh box (E-305, Asahi Light Metal Industry Co. Ltd., Osaka, Japan) with
silica gel (192-18285, FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) before storage in
the vacuum chamber or freezer. The humidity logger (LR5001, Hioki, Nagano, Japan) with a built-in
sensor (LR9504, Hioki, Nagano, Japan) and a communication adapter (LR5091, Hioki, Nagano, Japan)
were used to record the air humidity inside the two storage conditions. The recorded air humidity and
temperature inside the vacuum chamber were 2% and 20◦C, respectively. In the case of freezer storage,
the recorded temperature was −20 ◦C, and approximately a 3% air humidity level was achieved with
the use of silica gel.

2.5. Instrumental Settings

ESR measurements were conducted at room temperature on an X-band (~9.4 GHz) spectrometer
JES-FA 100 (JEOL Inc., Chiba, Japan) with an ES-UCX2 standard cavity using a 5 mm sample tube.
Spectra acquisition parameters were as follows: 1 mW microwave power; 10 mT sweep width; 30 s
sweep time; 0.5 mT modulation width; time constant 0.03 s; number of scans 10. During spectra
acquisition, the MgO: Mn2+ internal reference sample was used for calibration. The ESR signal
intensities were measured as the peak-to-peak amplitude (App) of the main "singlet" of the ESR spectra
(i.e., BKG-singlet, RIS-singlet), as described by Sholom and McKeever [36]. The ESR spectra were
adjusted in linear baseline correction within the analytical software of the spectrometer. The ESR spectra
were recorded before and after the chemical treatment and exposure to radiation. ESR measurements
were also repeated at different times to test the stability of the signal after radiation exposure.

3. Results and Discussion

Figure 3 shows the evolution of the ESR spectra obtained from (a) non-chemically and (b)
chemically treated fingernail samples before and after irradiation with 20 Gy of 137Cs γ-rays following
storage in the vacuum chamber. All spectra were recorded soon after the corresponding chemical
treatment or irradiation of the samples and continuously monitored for up to 7 days. Each spectrum is
an average of 12 spectra from 4 sample collections (3 portions of chemically/non-chemically treated
samples per collection). Solid lines correspond to the ESR signals measured after exposure to radiation,
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while dotted lines are the background signal before irradiation (referred to as “NT−BKG”. Dashed lines
show the background signal after chemical treatment of the samples (referred to as “T−BKG”).

As can be seen, the ESR signals of both non-chemically and chemically treated samples increased
during the first day of storage in the vacuum chamber and continuously increased up to 7 days afterγ-ray
irradiation. This behavior was very similar to most of the irradiated vacuum-stored samples with water
treatment [35,36,38]. It seemed, notwithstanding, that the increase rate in chemically treated samples
(30% signal increase over the first 24 h after irradiation) was slower than those in the non-chemically
treated samples (39%). Moreover, it was found that the non-zero, quasi-stable background signal
substantially reduced its ESR intensity when subjected to DTT, compared to the non-chemically treated
background signal (NT−BKG) demonstrated in Figure 3a. It should also be noted that the background
signal with chemical treatment (T−BKG) was quite stable: there was no signal growth in its ESR
intensity for 1 day after storage in the vacuum chamber at room temperature.

Figure 3. Evolution of the ESR spectra recorded at different times in (a) non-chemically and (b)
chemically treated fingernail samples exposed to 20 Gy of 137Cs γ-rays following storage in the vacuum
chamber (2% air humidity level, 20 ◦C temperature). The notations NT−BKG and T−BKG correspond
to the background signal before irradiation for non-chemically treated samples and after chemical
treatment for those chemically treated, respectively. IR represents γ-ray irradiation.

Comparative plots on the evolution of ESR spectra observed in the fingernail samples exposed
to 20 Gy of 137Cs γ-rays, following storage in the freezer, are shown in Figure 4. Each of the spectra
shown here is the mean of 12 spectra obtained from four sample collections (three portions of
chemically/non-chemically treated samples per collection). It is worth mentioning that the chemically
treated samples presented in Figure 4b were also kept inside the vacuum chamber for 24 h in between
chemical treatment and irradiation. All notations used in Figure 4 are the same as those described in
Figure 3.

As seen in this figure, the freezer storage resulted in better stability of ESR signals for both
chemically and non-chemically treated samples following γ-ray irradiation, in contrast with the
vacuum-stored samples. The recorded ESR signals in freezer-stored non-chemically treated samples
increased by about 15% after 1 day of exposure and further increased up to 25% after a week (Figure 4a).
As with chemically treated samples, there was only about a 9% increase in the ESR intensity after
1 day and 17% after 7 days (Figure 4b). Furthermore, the use of DTT for chemical treatment prior
to irradiation was found to have significantly reduced the intensity of the ESR spectra in irradiated
fingernail samples (i.e., RIS). These observations are in accordance with previously reported work from
Romanyukha et al. [26]. It was confirmed that the background signal from unirradiated freezer-stored
samples with chemical treatment (T−BKG) also showed no significant increase within 24 h of storage
time inside the vacuum chamber (Figure 4b), as seen with the vacuum-stored samples (Figure 3b).
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Figure 4. Evolution of the ESR spectra recorded at different times in (a) non-chemically and (b) chemically
treated samples exposed to 20 Gy of 137Cs γ-rays following storage in the freezer. The NT−BKG,
T−BKG, and IR have the same notations as in Figure 3.

Results shown in Figure 5 indicate the efficacy of DTT on the stability of RIS in chemically and
non-chemically treated samples at two different storage conditions (vacuum chamber and freezer).
ESR signals were measured as the peak-to-peak intensity in the magnetic field range from 328.9 mT to
329.7 mT. All experimental data points were normalized to the first ESR signal of the samples measured
soon after exposure to 20 Gy (this corresponds to the fourth and second ESR measurement for chemically
and non-chemically treated samples, respectively, as illustrated in Figure 1. Measurements of the
RIS were also taken up to 7 days in irradiated fingernail samples collected from the same individual.
The dotted lines with unfilled and filled box markers correspond to non-chemically treated samples
stored in the vacuum chamber and freezer, respectively. Solid lines with unfilled and filled circle
markers represent chemically treated samples stored in the vacuum chamber and freezer, respectively.

Figure 5. ESR signal peak-to-peak amplitude (App) changes with time in chemically and non-chemically
treated samples stored at two different conditions (vacuum chamber and freezer). All experimental
points from each experiment were normalized with regard to the first measurement data soon after the
exposure to 20 Gy of 137Cs γ-rays.

As shown in Figure 5, it can be argued that the effect of DTT is more pronounced in fingernail
samples stored in the freezer than those in the vacuum chamber. It may be observed that the signal
intensities in chemically treated samples stored in the freezer increased after 24 h but remained almost
unchanged for up to 7 days after irradiation, while the corresponding signals in the vacuum-stored
chemically treated samples continued to increase for the same measurement times. Another interesting
observation is that the behavior of the signals obtained in non-chemically treated samples correlated
well with the measured signals in chemically treated samples for both storage conditions and
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hence the freezer-stored samples (with 3% air humidity at −20 ◦C temperature) were deemed to be
significantly more stable than the vacuum-stored samples (with 2% air humidity at 20 ◦C temperature).
This observation broadly supports the finding of Reyes et al. [31], that persistent ESR signals can be
achieved if samples are kept at low (sub-zero) temperature, although the air humidity level was not
mentioned in their experimental work.

Next, a comparison was made for background signals measured from non-chemically treated
unirradiated fingernail (control) samples stored in the vacuum chamber and freezer, as presented
in Figure 6. ESR signals were measured as the peak-to-peak amplitude (App) of the main
background-singlet of the spectra from the (a) vacuum-stored and (b) freezer-stored samples.
Each storage medium in this figure consisted of eight portions of non-chemically treated unirradiated
samples and measured in the same way as the irradiated samples, as described in Figure 5. It may
be observed that the median intensity of the background signals in both storage conditions were all
at the same level, but the data sets between the two mediums showed a very different distribution
view. One can also notice from the plots in Figure 6 that the background signals obtained from
the freezer-stored samples span much the same range of values and were more variable than in
the vacuum-stored samples. Moreover, some individual outlying data points can be seen in the
vacuum-stored samples which may be caused by intra-individual variations within the group of
samples. Nevertheless, the stability of the background signals observed in storage conditions with
either low humidity at room temperature or low humidity at sub-zero temperature can be regarded as
good overall, and conclusions regarding the effect of low or lack of oxygen to the signal stability were
equivocal and formed the needs of further scrutiny.

Figure 6. Distribution of the ESR signal peak-to-peak amplitude (App) from non-chemically treated
unirradiated fingernail samples stored inside the (a) vacuum chamber with 2% air humidity at 20 ◦C
and (b) freezer with 3% air humidity at −20 ◦C recorded at different times.

Figure 7 compares the intra-individual variations of the ESR signal peak-to-peak amplitude (App)
measured before and after treatment with DTT in unirradiated fingernail samples stored in the (a)
vacuum chamber and (b) freezer. Each storage consisted of four sample collections and the time
interval between sample collections was 2 weeks. Each experimental data point shown in this plot is
an average of spectral measurements on three portions of unirradiated fingernail samples obtained
from a single donor, and the reported errors are the standard deviation. The background signals of
the samples were measured as the peak-to-peak intensity from the main singlet of the ESR spectra.
Measurements were taken prior to chemical treatment, soon after the corresponding drying conditions
in the chemical treatment process, and at 1, 2, 3, and 7 days after chemical treatment.
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Figure 7. Changes in the background ESR signal (peak-to-peak amplitude, App) in unirradiated
fingernail samples stored in the (a) vacuum chamber and (b) freezer measured before and after (soon,
1, 2, 3, and 7 days) the DTT treatment.

As seen in this figure, there was a significant intra-individual variation in the recorded initial
background signals between the samples from the same individual, whereupon no pre-treatment was
applied. After application of DTT treatment, however, the background signals were observed to be
broadly consistent with each other, giving rise to the opportunity to correct for such uncertainties in
the intra-individual variations within the same group of samples. Furthermore, the recorded App
of the native background signals have been reduced and are quite stable over the 24 h time delay
between chemical treatment and storage of the samples: no substantial gain in the peak-to-peak
intensity was encountered in both storage conditions. This finding is interesting and could be useful as
many of the previous studies advanced differing views that pre-existing native background signal
tends to grow after drying in ambient air conditions and thus cannot be entirely removed in the
spectra [42]. Further investigations into this notable observation should be made with applications of
other antioxidant materials that could have similar effects.

4. Conclusions

In the present work, we confirmed that the BKG (non-RIS) of fingernails can be significantly
reduced by applying the DTT reducing reagent. After the DTT treatment, the fingernail samples
provided good signal stability for both background and RIS signals with less intra-individual variations.
Additionally, we demonstrated that the freezer storage would be more effective to maintain the stability
of RIS after γ-ray irradiation than vacuum storage; it is thus desirable that collected fingernail samples
be stored below the freezing point for performing more accurate dosimetry.

These findings are preferably to be applied in the monitoring of hand exposure of medical workers.
More concretely, workers who might face high hand dose exposure from radiation sources are proposed
to take the following steps to carry out precise dose assessments: (1) dip or wipe one’s fingers with a
reducing reagent before the relevant work; (2) get a small portion of the fingernail (e.g., from the little
finger) as a control sample and store it in a freezer (<0 ◦C); (3) perform the work; (4) cut the fingernails
soon after completing the work in the same way as with the control sample; (5) store the collected
samples in the freezer; (6) measure the ESR signals of all the samples, including the control at the same
time; (7) evaluate the finger dose by subtracting the MIS measured with the control sample from the
ESR signal of the respective sample; (8) assess the three-dimensional dose distribution of the hand.

While the efficacy of DTT for chemical treatment was particularly good for BKG reduction and RIS
stabilization in the fingernail ESR dosimetry, this procedure has some weaknesses. One is that the DTT
treatment substantially reduced the peak-to-peak intensities of both BKG and RIS. This fact implies
that the chemical treatment would reduce the capacity of trapping free radicals, which could induce an
unfavorable saturation response at a lower dose level. Further, the samples used in this study were
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obtained from the fingernails of only one individual and that possible inter-individual variations have
not been identified. It must be critical for practical application of fingernail ESR dosimetry to verify
that the findings of the current study can be universally applied through comprehensive analyses of
the fingernail samples taken from different individuals. Another technical drawback is the toxicity of
DTT, which allows only trained professionals to use hazardous chemicals. Considering these issues,
we are currently focusing on research to find a better antioxidant material that is safer and easier to
handle for any workers posing occupational risks of hand exposure from radiation sources.
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