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Nádia F. Afonso and José C. M. Pires
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1. Introduction

Recently, a need has arisen for prediction techniques that can address a variety of problems
by combining methods from the rapidly developing field of machine learning with geoinformation
technologies such as GIS, remote sensing, and GPS. As a result, over the last few decades, one particular
machine learning technology known as artificial neural networks has been successfully applied to a
wide range of fields in science and engineering. In addition, the development of computational and
spatial technologies has led to the rapid growth of geoinformatics, which specializes in the analysis
of spatial information. Thus, recently, artificial neural networks have been applied to geoinformatics
and have produced valuable results in the fields of geoscience, environment, natural hazards, natural
resources, and engineering. Hence, this special issue of the journal Applied Sciences, “Application of
Artificial Neural Networks in Geoinformatics,” was successfully planned, and we here publish many
papers detailing novel contributions that are of relevance to these topics.

2. Applications of Artificial Neural Networks in Geoinformatics

In total, 23 papers were submitted to this special issue, 14 of which were accepted and published,
constituting a 61% acceptance rate. The papers in this special issue cover various areas related to the
application of artificial neural networks to GIS, remote sensing, and GPS, which are typical tools used
by geoinformation researchers. These papers addressed problems such as the detection, assessment,
and prediction of landslides, volcanos, forest, ozone, oil spills, buildings, ships, habitat, and traffic.

Four papers used GIS tools with artificial neural networks. The first and second papers, authored
by Lee, S., Lee, M., Jung, H. [1] and Oh, H., Lee, S. [2], applied GIS and various machine learning
algorithms such as artificial neural networks, support vector machines, and boosted tress to map
landslide susceptibility. The third paper, authored by Lee, S., Lee, S., Song, W., Lee, M. [3], applied GIS
with artificial neural networks to map potential marten and leopard habitats. The fourth paper,
authored by Shah, S., Brijs, T., Ahmad, N., Pirdavani, A., Shen, Y., Basheer, M. [4], used data
envelopment analysis in GIS with artificial neural networks to evaluate risks related to road safety.

Seven papers studied the applications of artificial neural networks to remote sensing. Among
these, three papers used various image technologies and artificial neural networks for the detection
of landslides, oil spills, and ships. Mezaal, M., Pradhan, B., Sameen, M., Mohd, S. H., Yusoff, Z. [5]
used airborne laser scanning images to detect landslides. Chen, G., Li, Y., Sun, G., Zhang, Y. [6]
used polarimetric synthetic aperture radar images to detect oil spills. Hwang, J., Chae, S., Kim, D.,
Jung, H. [7] used X-band Kompsat-5 images to detect ships. Additionally, Piscini, A., Romaniello, V.,
Bignami, C., Stramondo, S. [8] proposed a damage assessment method based on SAR and Sentinel-2
images, and Kadavi, P., Lee, W., Lee, C. [9] analyzed pyroclastic flow deposits using Landsat images.
Kwon, S., Jung, H., Baek, W., Kim, D. [10] classified the vertical structures of forests using aerial
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orthophoto and Lidar images. Finally, Foody, G. [11] analyzed the impact of sample design on data
validation using remote sensing data classified by feedforward neural networks, and then used a
validation dataset to test the classification accuracy.

As the another geoinformation tool, GPS was used for real-time transportation mode identification
with artificial neural networks by Byon, Y., Ha, J., Cho, C., Kim, T., Yeun, C. [12]. The paper authored
by Sameen, M., Pradhan, B. [13] applied artificial neural networks to predict traffic accident recurrence,
and Afonso, N., Pires, J. [14] applied artificial neural networks and genetic algorithms to characterize
surface ozone behavior.

3. Future of Artificial Neural Networks in Geoinformatics

In this special issue, we only included papers on artificial neural networks and geoinformation
technology. However, artificial neural networks are just one machine learning technique, albeit one of
the most popular. Machine learning is a field of computer science that gives computers the ability to
learn without being explicitly programmed. Machine learning explores the study and construction
of algorithms that can learn from data and make data-driven predictions or decisions by building a
model from sample inputs. There are numerous machine learning techniques, such as decision trees,
support vector machines, naive Bayes classifier, clustering, inductive logic programming, and genetic
algorithms. These machine learning techniques can be combined with geoinformation technologies,
and further studies are required in this area.

As we enter the age of the fourth industrial revolution, artificial intelligence technologies have
come to play a very important role in society. Machine learning technologies such as artificial neural
networks are expected to play a key role in the fourth industrial revolution, especially in combination
with geoinformation technology. However, these technologies do not come out of nowhere; they are
developed by scientists. Therefore, many scientists will have to expand on the research presented in
this special issue.
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Abstract: The application of data mining models has become increasingly popular in recent years in
assessments of a variety of natural hazards such as landslides and floods. Data mining techniques
are useful for understanding the relationships between events and their influencing variables.
Because landslides are influenced by a combination of factors including geomorphological and
meteorological factors, data mining techniques are helpful in elucidating the mechanisms by which
these complex factors affect landslide events. In this study, spatial data mining approaches based on
data on landslide locations in the geographic information system environment were investigated.
The topographical factors of slope, aspect, curvature, topographic wetness index, stream power
index, slope length factor, standardized height, valley depth, and downslope distance gradient
were determined using topographical maps. Additional soil and forest variables using information
obtained from national soil and forest maps were also investigated. A total of 17 variables affecting
the frequency of landslide occurrence were selected to construct a spatial database, and support
vector machine (SVM) and artificial neural network (ANN) models were applied to predict landslide
susceptibility from the selected factors. In the SVM model, linear, polynomial, radial base function,
and sigmoid kernels were applied in sequence; the model yielded 72.41%, 72.83%, 77.17% and 72.79%
accuracy, respectively. The ANN model yielded a validity accuracy of 78.41%. The results of this
study are useful in guiding effective strategies for the prevention and management of landslides in
urban areas.

Keywords: spatial data mining; SVM; ANN; validation; ROC

1. Introduction

The rapid growth in data due to the development of information and communication technology
(ICT) has spurred the demand for data mining, which is generally considered to be the most useful
analytical tool in the analysis of large data sets. Data mining has been defined in various ways
previously, and is commonly referred to as an exploratory analysis tool for large amounts of data [1].
Therefore, data mining is a process of finding useful information that is not easily exposed in a large
amount of data, most recently known as “big data”.

With the rapid growth of ICT since the 1980s, countries and corporations have made significant
efforts to build databases to store and manage vast amounts of data. Rational and rapid decision-making
is necessary to increase the utilization of large-scale databases. In this environment, it has become
important to find meaningful new information that can support optimal decision-making. In this
process, an efficient methodology for data mining that extracts not only known information from
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previously established databases but also information that was not previously known has gained
popularity. Therefore, the data mining methodology makes it possible to effectively analyze large
amounts of data in a database and the relationships between parameters.

In recent years, storms bringing localized heavy rains have been reported worldwide, and
precipitation in the mid-latitude regions has increased since the 20th century [2]. In addition, rapid
climate change and abnormal climate conditions have led to extreme weather phenomena, which
provide the appropriate conditions for the creation of landslides, and the frequency of landslides
has increased accordingly [3]. A landslide is the movement of soil down a slope when the stress
exceeds the strength of the soil material due to rapid changes in the natural environment such as heavy
rains or earthquakes [4]. Landslides are caused by various factors, such as topography, geology, soil
characteristics, forest conditions, and climate variables [5–8]. The main purpose of this study was
to generate and validate a landslide susceptibility map using data mining models for Umyeonsan,
South Korea. Therefore, data mining techniques should be used appropriately for the analysis of the
relationships between landslides and impact factors on landslides in landslide susceptibility analyses.
Additionally, given that the data mining models derive their results from the database, the input data
represent a key part in the model. Thus, the database should be constructed using reliable data, such
as nationally distributed government data. Remote sensing data is one of the main sources to be used
to generate the reliable data [9–11].

Due to the complex factors influencing landslides, it is important to perform an appropriate
assessment of the potential for landslide susceptibility using data mining techniques. A susceptibility
analysis based on data on previous damage should be performed to define landslide susceptibility in
areas where landslides are anticipated so that the damage can be predicted in advance and appropriate
mitigation measurements adopted. Over the past several decades, a number of data mining approaches
have been developed for mapping landslide susceptibility [12,13]. The most commonly used methods
are soft computing or statistical techniques such as artificial neural network (ANN) models [14,15],
fuzzy logic methods [16,17] or logistic regression models [18,19]. Landslides are caused by multiple
interactions between various factors, including geometry, geology, soil characteristics, and vegetation
conditions [20,21], and are highly dependent on terrain features [22,23].

As geological hazards, landslides can limit the sustainable development of urban areas, causing
environmental damage, serious casualties, and loss of property [24,25]. An appropriate assessment of
the susceptibility for landslide damage is required to minimize the complex array of losses. In South
Korea, according to an analysis of the scale of landslides by the Korea Forest Service (KFS), the average
annual area affected by landslides increased markedly from 231 ha in the 1980s, to 349 ha in the
1990s, and 713 ha in 2000 [26]. Typhoons accompanied by intense storms caused by local climatic
conditions often cause significant damage; and landslides are concentrated in the rainy season every
summer. Because much of South Korea is mountainous, most studies on landslides in the country have
focused on mountainous areas [27–29]; e.g., in Jangheung [23] or Yongjin [6,30]. Furthermore, due to
the frequency of landslides in mountainous areas, most of the studies in Southeast Asia have been
performed in non-urban areas [31–33]. Assessment of landslide susceptibility in urban areas could
provide an important contribution to minimizing additional damage from these natural disasters;
it could be also used to planning and multi hazard assessment [34–37].

Seoul, the capital of South Korea, also has urban areas occupying mountainous land. Unlike
landslides that occur in sparsely populated mountainous areas, landslides that occur in mountainous
areas in cities result in significant casualties/fatalities and structural damage. For example, landslides
in Umyeonsan located in central Seoul in July 2011 caused unprecedented damage to the city. Following
the 2011 Umyeonsan landslide, the downtown area, which had previously been considered safe, was
no longer regarded as a landslide-safe zone. Various aspects of Korea’s landslide policy have been
re-evaluated and are expected to be revised in the near future. Landslides are more dangerous in urban
areas than non-urban mountainous areas. Policies have shifted to preventative and resident-oriented
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initiatives, with a focus on minimizing injuries to citizens and restoration of their properties after
landslides. Therefore, it is important to analyze potential landslide hazards in urban areas.

To apply the model for this type of data mining analysis, a spatial database should first be
constructed containing information on the area of landslide damage. Because landslides are difficult
to access, the collection of field survey data to build a landslide spatial database is costly and
time-consuming. An effective alternative is to build a database using aerial photography and
geographic information systems (GISs). Landslides leave traces that last for months or years; hence,
aerial imagery can be used to extract data on areas damaged by landslides after the event. Using these
data, the susceptibility for landslides can be analyzed by data mining modeling techniques.

2. Study Area

Seoul is the largest city in South Korea and is located in the center of the Korean Peninsula.
The total urban area covered by Seoul (approximately 605 km2) is less than 1% of the total land area of
South Korea. However, Seoul is one of the most heavily populated cities in the world; over 10 million
citizens were recorded in 2011. Thus, the city has a dense and complex transportation system. Natural
disasters, including landslides, have the potential to cause serious damage in the city [2]. The study
area, Umyeonsan, is an urbanized mountain rising 321.6 m above sea level in the southern sub-central
area of Seoul (Figure 1). Due to the fact that it is not very high or steep, the mountain is a popular site
for Seoul residents and it has a large transient population

Figure 1. Map showing the location of the study area of Umyeonsan: (a) South Korea; (b) Seoul; and
(c) Umyeonsan.

Umyeonsan is comprised of a low mountainous area with a slope of approximately 30◦ near
the top of the mountain. The area is mainly comprised of gneissic rock formed by geomorphological
movement and weathering. The composition of biotite gneiss, which is prone to weathering and fault
formation, increases its susceptibility to landslides. The foliation structure of the gneiss is sparsely
generated due to multiple flexures. The main soil type distributed in the study area is brown forest
soil formed from the base materials of biotite gneiss and granite gneiss, which are metamorphic rocks,
and the soil texture is sandy loam to loam, which has good drainage. Deep soils and high organic
content brown forest soil is distributed in some valley areas in the study area, where the soil texture
is silt loam in silt and sand. Due to the soil textures present, the Umyeonsan area is prone to severe
weathering, causing the unstable condition of outcrops.

6
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The main forest type in Umyeonsan is temperate deciduous broad-leaved forest. Broad-leaved
forest, pine forest, poplar forest, and broad-leaved plantation forest are all present in the study
area. The principal species in the forests are similar to those in the central Korean Peninsula:
Quercus mongolica, Robinia pseudoacacia, Quercus variabilis, oak trees and Asian black birch.

On 27 July 2011, heavy rains occurred in central Korea and a large landslide occurred in
Umyeonsan. The heavy rainfall lasted from 26–28 July. The cumulative precipitation in the Seoul
metropolitan area was 587.5 mm, which is the largest three-day cumulative precipitation recorded
since precipitation monitoring began in Seoul. Based on data from Seocho automatic weather system,
the maximum precipitation per hour at the time of the landslide was 85.5 mm [38]. The landslide
from the heavy rains affected an area of 73.23 ha. Sixteen people were killed, including 6 residents
from the village of Namtaeryeong and 7 residents from the southern area of the southern ring roads;
2 people remained missing, and approximately 400 people were evacuated [39]. The water supply
was cut off. Thousands of apartments near Gangnam and Umyeonsan were damaged; and over
20,000 households experienced water problems. Therefore, we chose this landslide to obtain data
for our study (Figure 2d,e). The study area was determined by the road and river boundaries in the
Umyeonsan area (Figure 2).

3. Data

Given that data mining models are a data-driven methodology, accurate data are essential to build
a suitable database. Accurate data on the state of the earth’s surface can be obtained rapidly using
aerial photographs, which also effectively capture complicated urban structures. Moreover, despite the
high cost of aerial photographs, it is cost-effective to acquire the images of and continuously monitor
urban areas due to their dense nature. To acquire accurate data on the landslide occurrence, aerial
photographs from before and after the Umyeonsan landslides were used (Figure 2a,b). Location data
for the Umyeonsan landslide area were acquired through comparative analysis, as traces of landslides
are visible for several years after the events.

In addition, a digital topographic map (1:5000) generated by the National Geographic Information
Institute (NGII) was obtained, and geometric correction was performed. Overlay and comparative
analysis of the aerial photographs and the 1:5000 digital topographic map indicated the landslide
occurrence area (Figure 2c). The mapped landslide occurrence data were finally confirmed by
comparison with data surveyed in the field by the Seoul metropolitan government [39].

Figure 2. Cont.
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Figure 2. Data of landslide occurrence locations from aerial photographs: (a) before landslides in 2011;
(b) after landslides in 2011; (c) training and validation data; (d) damage situation in Southern Circular
Road [40]; (e) Gyungnam apartment buildings in Seocho-gu [41].

Slopes are established by erosion and sedimentation of terrain surfaces and have a key effect on
landslide occurrence as they affect the flow of water and the soil characteristics [42]. Therefore, among
the factors influencing landslides, topographic factors were preferentially considered and were used
as input data to identify the relationships with landslide occurrence (Figure 3). Prior to calculation of
the topographic factors, a triangulated irregular network (TIN) was produced from a pre-generated
topographic map, and a digital elevation model (DEM) was created using ArcGIS 10.1 (ESRI, Redlands,
LA, USA).

All topographic factors were calculated from the DEM using ArcGIS software (ESRI, Redlands,
LA, USA). The slope, indicated as the angle to the horizontal plane or the ratio of the vertical height to
the horizontal distance as a percentage, was calculated using the SLOPE tool. The ASPECT tool was
used to calculate the aspect, the compass direction of the slope faces. The curvature values of the terrain
surface were calculated using the CURVATURE tool. The curvature represents the morphological
characteristics of the study area; an upwardly convex surface possesses a positive value, while an
upwardly concave surface possesses a negative value.
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Figure 3. Topographical factors related to landslides used to construct a spatial database: (a) slope
gradient; (b) slope aspect; (c) curvature; (d) topographic wetness index (TWI); (e) stream power
index (SPI); (f) slope length factor (SLF); (g) standardized height; (h) valley depth; (i) downslope
distance gradient.
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The topographic wetness index (TWI) is defined for a steady state. The index is commonly used for
hydrological processes to quantify the disposition of water flow and the impact on the topography [43].
The TWI is calculated by the run-off model as follows, which reflects the accumulation of water at a
specific point in the catchment area and the force of gravity on the water in the area [43].

TWI = In
(

a
tan β

)
(1)

where α is the cumulative upslope area drained per unit contour length in a cell, and β is the local
slope angle of the cell.

The stream power index (SPI) estimates the erosion power of a stream, which affects the stability
of the area. Therefore, it is generally used to determine the locations for performing soil conservation
measures to reduce the erosive effects of concentrated surface runoff. SPI can be calculated as
follows [44]:

SPI = As × tan(β) (2)

where As is the area of the target point of the study area, and β is the slope angle.
After calculating the slope, the slope length factor (SLF) for average erosion is calculated using

the Revised Universal Soil Loss Equation (RUSLE) [45]. The SLF for slope of length λ is represented as:

SLF =

(
λ

72.6

)m
(3)

where the constant value 72.6 of the RUSLE is in feet, and the variable, m, is the slope-length exponent
calculated from the local slope angle β [45]. The SLF is influenced by the ratio of rill erosion to interrill
erosion, β. Rill erosion is caused by flow, while interrill erosion is caused by the effects from rainfall.

System for Automated Geoscientific Analyses (SAGA) GIS were used to calculate additional
topographic factors [46]. The standardized height is the absolute height multiplied by the normalized
height of the study area; normalized height is the normalization of the height of the study area between
0 and 1. The standardized height was calculated using linear regression to yield the suitable parameters
for prediction of the soil attributes by simplifying the complex terrain states [47]. The valley depth is
the vertical distance of the specific point from the base level of the channel network [46]. The elevation
of the channel network base level is interpolated, and the valley depth is calculated by subtracting the
base level of the channel network from the DEM [46]. The downslope distance gradient is a quantitative
estimation of the hydraulic gradient. The downslope distance gradient is obtained by calculating the
downhill distance when water loses a determined quantity of energy from precipitation [48]. tanad
identifies the downslope distance gradient:

tan ad =
d
Ld

(4)

where d and Ld are the elevation and the horizontal distance to the reference point, respectively.
The type and composition of the soil influence the occurrence of landslides as they determine the

degree of erosion and saturation [49]. The slope stability can be strengthened by the roots of vegetation
and the degree of strengthening depends on the specific attributes of the vegetation; hence, the impact
of heavy rainfall on the slope can be mitigated by vegetation [50]. The vegetation map was provided
by the Korea Forest Research Institute and was in polygon format with a scale of 1:25,000 (Figure 4).
The attributes of timber diameter, type, density, and age were extracted from the vegetation map.
In addition to the vegetation variables, the soil type and condition also influence the occurrence of
landslides. The soil maps used in this study were provided by the National Academy of Agricultural
Science (RDA) in polygon format with a scale of 1:25,000. Soil depth, drainage, topography, and texture
were derived from the soil maps (Figure 5).
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Figure 4. Landslide-related factors obtained from the vegetation map: (a) timber type; (b) timber
diameter; (c) timber density; (d) timber age.

Figure 5. Landslide-related factors obtained from the soil map: (a) soil depth; (b) soil drainage; (c) soil
topography; (d) soil texture.
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All variables used in this study were resampled into a grid format of 5-m spatial resolution to
create a spatial database. The total size of the spatial database was 1015 × 874, and the study area
contained 457,133 cells. The 103 landslide occurrence locations in point format were also converted
into the 5-m grid format to be included in the data in the spatial database. Half of the 103 landslide
location data points (51 points) were used as training data, and the other half were used as validation
data. All of the collected data were prepared in ASCII format from the grid. Finally, a spatial database
was established to apply the model to (Table 1).

Table 1. Landslide-related factors used to construct spatial database.

Original Data Factors Data Type Scale

Aerial photograph Landslide location Point 1:1000

Topographical map a

Slope gradient [◦]
Slope aspect
Curvature

Topographic Wetness Index (TWI)
Stream Power Index (SPI)
Slope Length Factor (SLF)
Standardized height [m]

Valley depth [m]
Downslope distance gradient [rad]

GRID 1:1000

Forest map b

Timber diameter
Timber type

Timber density
Timber age

Polygon 1:25,000

Soil map c

Soil depth
Soil drainage

Soil Topography
Soil texture

Polygon 1:25,000

a Topographical factors were extracted from digital topographic map by National Geographic Information
Institute; b The forest map produced by Korea Forest Service; c The detailed soil map produced by Rural
Development Administration

4. Methodology

Landslides are affected by various factors and each element is simplified as input data in modeling
studies. Given that natural phenomena such as landslides are composite events of each element, they
should be analyzed using a modeling technique based on the relationships between data in a vast
dataset such as a data mining model. Using data mining models, the relationships among all of
the predisposing factors and the effects of all of the landslide-related factors on the model results
can be analyzed. Therefore, in this study, the factors related to landslide susceptibility were used
as the input data of the data mining models. The input variables were stored in a spatial database;
17 landslide-related variables were chosen from the spatial database, including half of the randomly
selected landslide locations used as training data. Landslide susceptibility maps were created using
two data mining models, specifically support vector machine (SVM) (Boulder, CO, USA) and ANN
models, which are based on linear classifiers. Additionally, the weight of each factor was calculated in
the data mining modeling process, and a validation was performed (Figure 6). A detailed description
of the data mining models used in this study is given below.
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Figure 6. Flowchart of the spatial prediction of landslide susceptibility.

4.1. Support Vector Machine

4.1.1. Basic Principles of SVM

The SVM method is a training algorithm based on nonlinear transformations that uses a
classification based on the principle of structural risk minimization, which has performed well in the
test phase [51]. When training data are represented in multidimensional space, several hyperplanes can
be used to distinguish the data into two classes; however, there is only one optimum linear separating
hyperplane [52]. This optimal hyperplane should maximize the distance between the data closest to the
hyperplane. Thus, the objective of the SVM method is to determine a multi-dimensional hyperplane
that differentiates the two classes with the maximum margin. The SVM model performs this process
according to three main concepts: margin, support vector, and kernel.

The margin is the distance between a specific data point and the hyperplane that separates the data
patterns. It is the shortest distance from the data vector of each class to the given hyperplane. The larger
the margin, the more accurately the SVM model performs the classification; hence, the optimal
hyperplane maximizes the margin when

→
ω is the normal vector of the hyperplane, and is the norm of

the normal of the hyperplane. ||→ω || is the norm of the normal of the hyperplane.

margin =
2

||→ω ||
(5)

The hyperplane, which defines the two classes that maximize the margins when the data are
linearly separable, can be defined by Equation (6). Under these conditions, the training data on these
two hyperplanes constitute the support vector. Therefore, the support vector maintains the shortest
distance to the hyperplane. The support vectors are dependable on the boundary of the hyperplane
and they are time-efficient when a new dataset is tested with a support vector. The dataset of linear
separable training vectors xi (i = 1, 2, . . . , n) and the training vectors consisting of two classes are
represented by yi as the value of ±1 [53,54].

yi

(
(
→
ω·→xi) + b

)
− 1 ≥ 0 (6)

where b is the scalar base, and the scalar product operation is denoted by (·).
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In addition, because the two hyperplanes must maximize the margin between them, the optimization
of objective Equation (7) with the constraints of Equation (6) yields the planes of the two classes:

min(
1
2
||→ω ||2) (7)

However, most cases do not satisfy the constraint as the data are not linearly separable. A formula
including the slack variable ξi indicates the distance from the hyperplane to the data located on the
wrong side [52]; the penalty term C introduced to account for misclassification [55,56] was developed
to address this problem.

yi

(
(
→
ω·→xi) + b

)
≥ 1 − ξi (8)

min(
1
2
||→ω ||2 + C

n

∑
i=1

ξi) (9)

4.1.2. SVM for Nonlinear Classification

In the preceding case of nonlinear boundary data, the SVM model is unable to generate an
appropriate hyperplane. Therefore, the data can be classified into a linear problem as a hyperplane
by mapping them to a high-dimensional space value from the low-dimensional data that cannot be
linearly separated. To solve Equations (8) and (9) when the dataset is linearly separable, the training
data are expressed as a vector inner product in the optimization process. This enables the inner
product in the training algorithm to be expressed by the inner product of a function in a feature
space when nonlinear data in the input space are mapped to a high-dimensional feature space by a
specific function.

The hyperplane of the data with nonlinear data patterns can be derived by transforming the data
space, but x cannot be computed directly; an arbitrary kernel function should be used to satisfy x [53].
The kernel functions, K(xi, xj), convert the original data into linearly separable data in high-dimensional
feature space [52]. The kernel function should satisfy Mercer’s condition. The following four functions
are the main kernel functions used in the SVM model:

Linear : K(xi, yi) = xi
T ·xj (10)

Polynomial : K(xi, yi) =
(
γ·
(

xi
T ·xj

)
+ r

)d
, γ > 0 (11)

where γ and d are parameters of the kernel functions.

Radial basis function : K(xi, yi) = e−γ||xi−xj ||2 , γ > 0 (12)

Sigmond : K(xi, yi) = tanh
(
γ·xi

T ·xj + r
)

(13)

In radial basis function (RBF) kernel, ||xi − xj || is the squared Euclidean distance between the
vectors, and γ is defined as follows:

γ =
1

2σ2 (14)

where σ is a freely adjustable parameter that controls the performance of the kernel, and r is a parameter
of the sigmoid kernel.

In this study, the Environment for Visualizing Images (ENVI 5.0, Exelis Visual Information
Solutions, Boulder, CO, USA) software program was used for the application of the SVM model
(Boulder, CO, USA). The software provides four types of kernels in the SVM classifier as mentioned
above: linear, polynomial, RBF, and sigmoid. Each kernel function has its own parameters, which
should be adjusted appropriately according to the characteristics of the purpose. The default kernel of
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the ENVI software is the RBF kernel, which is known to provide more accurate prediction results in
most classifications, particularly in nonlinear problems. After applying the kernel and classifying each
input factor, the SVM model results were mapped using the process of overlapping and summation.

SVMall =
n

∑
i=1

SVMi (n = number of input factors) (15)

SVMall is the sum of all classification results by the SVM model for all variables, and SVMi is the single
result of a given variable; in this study, the total number of input factors, n was 17. The results were
mapped and validated using the landslide locations not used for training.

4.2. Artificial Neural Network

An ANN is a statistical learning algorithm that describes a neuronal signaling system. The human
brain regulates the connection strength of synapses between neurons and determines whether signals
are delivered or not; the ANN learns to derive the results with minimum error by adjusting the weight
between input data and output data. The unit of the ANN is the perceptron, which is divided into an
input layer and an output layer. The input layers are represented by nodes, which are linked to an
edge having the weight of each node [57]. The model outputs 1 when the sum of the values of each
layer multiplied by the weight is greater than or equal to the threshold; otherwise, the output is −1.
This type of perceptron can only be applied to a linear classification and is not applicable in most cases.

In this study, multi-layered perceptrons allowing classification of nonlinear data were used with
a hidden layer between the input and output layers. A feed-forward network was used for the map
learning. The learning of neural networks progressed via a backpropagation algorithm that propagates
the errors generated in the output layer to each layer and corrects the weights. In other words,
the backpropagation algorithm learns the neural network by inverting the step, and the result most
similar to the output layer value is derived based on the input layer. The process can be simplified
as a combination of nodes and edges [58]. The backpropagation algorithm can be expressed by the
following equation:

ω
up
k = ωk − η∗ ∂Etotal

ωk
(16)

where ωk is the updated weight for connection k and η is the learning rate. The initial value of weight
ω0 is given randomly. Etotal is the error of the final output result when the expected output value is
assumed to be T, according to the input data [59].

Etotal =
1
2

n

∑
j

(
Tj − outoj

)2
(17)

where j is the number assigned to the node in each layer, and n is the number of output layers. Because
the backpropagation algorithm updates the weights while propagating the error generated from the
output to the input direction, it updates the weights starting from the portion from the output. Etotal is
calculated repeatedly using the updated weight so as to be minimized; the differentiation of Etotal is
fundamental. Therefore, when the calculated value is passed to the next layer or is expected to be the
final result, an activation function is used to convert it to a range of values. In this study, a unipolar
sigmoid function was used. The equation of the unipolar sigmoid function is as follows:

f (x) =
1

1 + e−x (18)

Using the activation function, the output value of each layer is adjusted from 0 to 1.
In this study, the ANN model was processed using MATLAB R2015a software (MathWorks,

Massachusetts, MA, USA). Areas where the slope data were 0 were set as areas not prone to landslide
occurrence and used for training data; landslide occurrence point data were also allocated to the
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training set. The backpropagation algorithm of the ANN was applied to estimate the weights between
the input and the hidden layers, and between the hidden and the output layers by updating the hidden
nodes and the learning rate. In this study, the input data were normalized to the range of 0.1–0.9 and a
17 × 34 × 1 structure was selected for the networks. The learning rate was set to 0.01 with a randomly
selected initial weight. The number of epochs was set to 2000, and the root mean square error value
was set to 0.1, which was used for the stopping criterion.

5. Results

Figure 7a–d shows the landslide susceptibility maps produced by applying the SVM models with
four kernels; and Figure 7e shows the map of the results from the ANN models. The values of the
landslide susceptibility results were sorted in descending order and categorized into five classes for
easy visual interpretation. For intuitive and efficient analysis, the results for the landslide susceptible
areas were classified into five groups of approximately the same size: very high, high, medium, low, and
very low susceptibility. The comparative analysis between the results and existing landslide occurrence
locations was also made easier by representing the landslide susceptibility with the five categories.
The spatial distribution of the landslide locations was concentrated in high-susceptibility areas.

In Figure 7, the results map of the linear, polynomial, and sigmoid kernels of the SVM models
showed a similar pattern and represented the influence of the input factors of Figures 4 and 5.
In addition, the RBF kernel showed a similar pattern to the ANN map in that the center of the map
had relatively higher susceptibility. In general, highly susceptible areas were principally distributed in
the northeast direction from the center of the study area. Areas with high susceptibility were located
in dense forest areas of broadleaved forest, above-average soil depth, and steep slopes. The dominant
rocks constituting the Umyeonsan area are gneissic rocks, which have high landslide susceptibility
because they are heavily eroded; landslides occur in areas of high soil drainage.

Figure 7. Cont.
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Figure 7. Landslide susceptibility maps generated using data mining models: Using an (a) support
vector machine (SVM) model with linear kernel; (b) SVM model with polynomial kernel; (c) SVM
model with radial basis function kernel; (d) SVM model with sigmoid kernel; (e) and the artificial
neural network (ANN) model.

In Table 2, the area of each class is represented by percentage. The areas with very high indices in
the SVM model were 2.2599, 2.2599, 2.2889 and 2.28369 km2 for the linear, polynomial, RBF, and sigmoid
kernels, respectively. Among the results from the SVM models, the RBF kernel accounted for a slightly
higher percentage (20.03%) of the areas with a very high index compared with the linear, polynomial,
and sigmoid kernels. The areas with a very high index in the ANN model covered 3.9262 km2, which
had the highest percentage (34.35%). In contrast, the areas with high index accounted for only a small
proportion (8.65%). The area with a very low index accounted for similar percentages of 20.00, 20.00,
20.00 and 19.99% for the linear, polynomial, and sigmoid kernels, and ANN, respectively, while the
RBF accounted for a lower percentage of 19.89%.

Table 3 shows the relative weights per variable, which were calculated from randomly selected
training data for 20 epochs of 200 cycles. The weights between layers represent the contribution of
each variable to the prediction of the landslide susceptibility. Timber age showed the lowest average
value of weight, 0.04828. For the comparison analysis of the relativeness of the weights, the values
were divided by the weight of the timber age and were normalized with respect to the average weight
of the timber age. The highest average weight of 0.09615 for the standardized height was normalized
to 2.00164, which was approximately twice the value of the weight of the timber age. The second major
variable contributing to landslides was timber diameter (1.46886), followed by curvature (1.28335), soil
depth (1.27746), and aspect (1.25804). The standard deviation ranged from 0.00022 to 0.01132.

To investigate the reliability of the proposed landslide susceptibility map using the previously
described SVM and ANN data mining models, we performed a validation. The 2011 landslide
occurrence data not used for the training were used for validation. After 51 points of training data had
been extracted using random sampling from the landslide occurrence data from the 2011 Umyeonsan
landslide and applied to the models, 52 points were used for the validation. Because the predicted
landslide susceptibility map was an indicator of the potential possibility of landslides in the future,
the data obtained after the occurrence of the landslides were a suitable choice for the validation data.
However, an erosion control project implemented after the 2011 event has significantly reduced the
possibility of landslides. Therefore, it is important to obtain information on landslide susceptibility in
areas where landslides have not occurred. In addition, implementation of precautionary measures to
prevent landslides from occurring in the future is necessary. Thus, half of the landslide occurrence
points were used as training data, and the remaining points were used as validation data.
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The AUC of the receiver operating characteristic (ROC) curve was used for the validation of the
models. The ROC consists of specificity, the x-axis, which shows the percentage of the areas where
landslides are expected to occur but have not occurred, and sensitivity, the y-axis, which represents
the predicted landslide areas according to training data of landslide occurrences. The ROC graph was
drawn using the following procedure. To show the rank relative to the predicted results, the values of
the results of landslide susceptibility from the models were sorted in descending order. The ranked
results were represented in ROC curves using 100 classes; a single class comprised an area that was
approximately 1% of the total study area. Figure 8a shows the AUC of the landslide susceptibility
map for the SVM model; the linear, polynomial, RBF, and sigmoid kernel had 72.41 (0.7241), 72.83
(0.7283), 77.17 (0.7717) and 72.79% (0.7279) accuracy versus 78.41% (0.7841) accuracy in the ANN
model (Figure 8b).

Figure 8. Validation results using data mining models: (a) SVM model; (b) ANN model.

A higher AUC value indicates better model performance, but it is important to perform additional
empirical analyses based on input and ground truth data. Our validation results indicated that the five
landslide sensitivity assessments performed well; the AUC values were all greater than 0.7 [60]. In the
SVM model, the AUC value using the RBF kernel was 0.7717, which was superior to the other three
kernels in the study area. The ANN model yielded an AUC value of 0.7841, which was approximately
6% higher than that of the SVM model with the linear kernel, and 0.7% higher than with the RBF
kernel. The graphs of the validation results are depicted in Figure 8; in all of the models, 60% of the
study area incorporated all of the landslide locations.

6. Discussion

In this study, two types of data mining models were used to create landslide susceptibility maps.
Because the results of data mining models are derived from their data, the reliability of the input data
is fundamental. Landslide location data were acquired from aerial photographs to provide accurate
training datasets. The data mining models are suitable for observing the rapid changes in an urban
area with its compactness and complex characteristics. In addition, other topographical-, forest-,
and soil-related variables were obtained, and topographic-related factors were calculated from the
topographical map produced from the aerial photographs.

The results from each model in Figure 7 were not statistically different in the spatial pattern of
the landslide susceptibility area. This can be interpreted that all of the four prediction results from
the SVM model were based on the same input factors, and all landslide predisposing factors were
regarded as having equal importance so that the same weight was assigned to each predisposing
factor. However, for the results from the RBF kernel, which had the highest accuracy among the SVM
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models, the susceptibility on the west, southwest, and southeast slopes was lower than that from the
other kernels, which was similar to the trend for the ANN model. In general, the northern area of the
mountain showed high susceptibility, and had the same pattern as the existing damaged area of the
southern ring roads.

The percentages of the classes of five indices were also calculated. The linear, polynomial,
and sigmoid kernels were distributed fairly evenly, while the RBF kernel showed a slightly higher
percentage in the very high index class, and a lower percentage in the very low index class. This
suggests that a high percentage in the high susceptibility index yields good validation results. Figure 8a
shows that the RBF kernel had a percentage of 77.71%, which was approximately 5% higher than that
of the other kernels. Similarly, the results from the ANN model yielded a high percentage (more than
30% of the total) in the very high class, which represented high risk areas, and this also led to a high
validation percentage for the ANN model, 78.41%. In addition, the ANN model results in Table 3 show
that the standardized height contributed most to landslide susceptibility with a normalized weight of
greater than 2. This can be seen in Figure 7e, which shows the effect of standardized height with the
high relative weight of the ANN model. Standardized height was the most important factor among
all of the landslide-related factors. The factors related to landslide susceptibility should be managed
based on their relative weight.

Because this study investigated the susceptibility of landslides in urban areas, the study area was
fairly small, with an area of approximately 11.4 km2 and a spatial resolution of 5 m along road and river
boundaries rather than a rectangular boundary. It should be noted that the ROC was characterized
using a percentage of the landslide susceptibility rates. Thus, in this study, the validation rate was
relatively low compared with most previous studies, which were based on rectangles. Moreover, we
could use the slope unit instead of common raster unit, which is closely correlated to the topography,
for the further steps; the slope unit is defined as the unit between the valleys and ridges. Most of the
mountains in the city are managed in the framework of city parks in which the various economic and
social aspects of Umyeonsan are also considered, rather than the area being covered solely by forests
that are more resistant to landslides. Given that landslide damage in urban areas can lead to human
casualties, it is important to investigate the soil and topographical characteristics of the areas where
landslides are likely to occur. Furthermore, landslide risk should be incorporated in city-level policies.

7. Conclusions

In this study, we applied a spatial data mining approach to identify areas where landslides
are likely to occur using aerial photographs and GIS. Landslide-prone locations were determined
using the interpretation of aerial photographs and field survey results to construct spatial datasets.
The topographical predisposing factors were extracted from a digital topographical map constructed
from aerial photographs, and the soil and forest predisposing factors were extracted from publicly
available maps. A spatial database was constructed using the extracted and calculated factors including
randomly extracted training data for the landslide area, and landslide susceptibility was mapped
using SVM and ANN models. Finally, the results map was validated using the half of the landslide
location data not used for training.

In urban areas such as Seoul, landslides have previously not been considered a serious concern,
compared with floods and storms. Seoul has undergone rapid urbanization that has taken place
with little consideration of natural disasters. In large cities such as Seoul, global warming, rapid
urbanization, extreme precipitation, and population pressures could potentially lead to complex
events, including landslides occurring in the city, which could have serious consequences. Therefore,
it is important to create a scientifically valid landslide susceptibility map for urban areas such as Seoul.

The predicted rate of landslides was high on the steep mountain tops and similar to the general
landslide pattern on the ridges. The map created in this study showed that susceptibility to landslides
decreased with slope gradient. Because landslides are caused by differences in gravity due to
terrain shape, it is logical that their occurrence is affected by the geographical structure of the area.
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The relationship between landslide occurrence and forested land cover showed that broadleaved
forests had a high susceptibility, and this type of forest occupied the largest proportion of the study
area. In addition, large trunk-size, high-density forests, and middle-aged forests had a high risk of
landslides. Among the soil factors, red and yellow soils had higher landslide susceptibility, as well
as areas with large soil depth; the occurrence rate was higher in areas with good soil drainage.
The performance of the SVM and ANN models was validated using AUC analysis. The SVM model
yielded 72.41%, 72.83%, 77.17% and 72.79% accuracy for the linear, polynomial, RBF, and sigmoid
kernels, respectively; while the ANN model had 78.41% accuracy. The results of this study are expected
to support spatial decision-making from relevant agencies to formulate policies related to landslide
disaster risk reduction in urban areas.
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Abstract: The main purpose of this paper is to present some potential applications of sophisticated
data mining techniques, such as artificial neural network (ANN) and boosted tree (BT), for landslide
susceptibility modeling in the Yongin area, Korea. Initially, landslide inventory was detected from
visual interpretation using digital aerial photographic maps with a high resolution of 50 cm taken
before and after the occurrence of landslides. The debris flows were randomly divided into two
groups: training and validation sets with a 50:50 proportion. Additionally, 18 environmental factors
related to landslide occurrence were derived from the topography, soil, and forest maps. Subsequently,
the data mining techniques were applied to identify the influence of environmental factors on
landslide occurrence of the training set and assess landslide susceptibility. Finally, the landslide
susceptibility indexes from ANN and BT were compared with a validation set using a receiver
operating characteristics curve. The slope gradient, topographic wetness index, and timber age
appear to be important factors in landslide occurrence from both models. The validation result of
ANN and BT showed 82.25% and 90.79%, which had reasonably good performance. The study
shows the benefit of selecting optimal data mining techniques in landslide susceptibility modeling.
This approach could be used as a guideline for choosing environmental factors on landslide occurrence
and add influencing factors into landslide monitoring systems. Furthermore, this method can rank
landslide susceptibility in urban areas, thus providing helpful information when selecting a landslide
monitoring site and planning land-use.

Keywords: landslide susceptibility; artificial neural network; boosted tree; landslide inventory

1. Introduction

The mountainous area of Korea covers approximately 70% of the total land. Areas with landslide
susceptibility in Korea have been reported in the steep slopes of mountainous areas consisting of
granite or gneiss [1]. These conditions, in addition to low strengths of weathered soil and unstable
slopes, are considered vulnerable to particularly shallow landslides when intense rainfall occurs during
the summer rainy season. There is a tendency that suggests that the risk of landslides is increasing
due to frequent localized heavy rain in Korea resulting from recent climate change [1,2]. In addition,
earlier landslides that developed in the upper mountainous areas extend to debris flows in the valley
area, and affect property damage and loss of human life in living areas which are developing and
expanding [3]. Therefore, landslides are viewed as hazards for human life and artificial structures
in Korea.
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The damage caused by landslides is the same worldwide. To minimize the damage to people and
property due to landslides, many efforts over the past few decades have been made to understand how
to control landslides and predict their spatial and temporal distribution [4–13]. Most approaches have
been applied on the Geographic Information System (GIS)-based landslide susceptibility assessment
representing predicted landslide risks. The classification of these approaches (e.g., heuristic, statistical,
probability, and deterministic approaches) are well documented in van Westen et al., 2006.

In particular, statistical and probability application models have been widely applied by several
studies to predict landslide susceptibility using a past landslide inventory and their environmental
factors. The models include frequency ratio [14,15], weight of evidence [16], logistic regression [17],
and fuzzy logic [18]. Recently, data mining techniques have been developed and are extremely
popular [19,20] when dealing with a variety of nonlinear issues. Techniques applied in landslide
susceptibility modeling include: artificial neural network, decision tree, boosted tree, neuro fuzzy,
Bayesian network, support vector machine, and random forest [21–30].

When using these approaches to predict landslide-susceptible areas, it is assumed that past
landslide occurrence conditions are similar to the conditions for future landslide occurrence [12].
Therefore, it is necessary to train and explore the relationship between past landslide locations and
environmental factors (e.g., topographic, hydrologic, soil, and forest data) when using these approaches
to predict landslide-vulnerable areas. To do so, it is important to prepare accurate landslide maps and
to select environmental variables that affect landslide occurrence to apply to models [31].

Although several different models have been compared in previous studies [22,26], this study
analyzed landslide susceptibility based on artificial neural networks (ANN) and boosted tree (BT)
models that have not been applied simultaneously in other studies. Furthermore, as various
topographic and hydrologic factors have been calculated from a digital elevation model (DEM) using
a System for Automated Geoscientific Analyses (SAGA) GIS Module, and landslide occurrences have
accurately been detected from digital aerial photos, the contribution of these factors were evaluated
from these models. Therefore, this research aimed to: (i) investigate and compare the performance
of data mining-based ANN and BT models, (ii) prepare accurate landslide maps using digital aerial
photographs with high resolution, and (iii) determine the contribution of the environmental factors.

The preparation of the landslide susceptibility model was accomplished in three major steps.

(1) Compilation of a spatial database. A total of 82 debris flows were detected by visual
interpretation of aerial photographs with a 50 cm resolution before and after landslide events.
The environmental factors were constructed into a spatial database including eight topographic
factors: slope gradient, aspect, plan curvature, convexity, mid-slope position (MSP), terrain
ruggedness index (TRI), topographic position index (TPI), and landforms; three hydrologic
factors: slope length (SL), stream power index (SPI), and topographic wetness index (TWI); four
soil factors: land-use, material, thickness, and topography; and three timber factors: age, density,
and diameter.

(2) Processing the data from the database. The number of debris flows were randomly divided into
training (50%) and validation (50%) data for landslide susceptibility analysis using ANN and
BT models.

(3) The influence of environmental factors on landslide occurrences as the training set was calculated
as the weight of the factor using both models.

(4) Mapping landslide susceptibility using ANN and BT, and assessing both maps using known
landslide occurrences as a validation set.

2. Study Area and Materials

The study area, Yongin City, recorded over 350 mm of cumulative rainfall on 27 July 2011, and a
shallow landslide occurred due to intense rainfall. Next, the debris flows collapsed houses and parts
of buildings, and resulted in loss of life and property (Figure 1). In this paper, the landslide inventory
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was mapped from digital aerial photographs with a high resolution of 50 cm. The 82 landslides were
detected from visual interpretation of before and after photos of landslide events in the study area.
The altitude of the study area ranges from 47 m to 457 m with 140 m of average and 79 m of standard
deviation. The landslide occurred at an altitude of 70 m~267 m. Specifically, 80% of total landslides
occurred between 100 m and 200 m. Biotite gneiss and alluvium are composed of about 65% and 20%
of the study area, respectively. Almost all landslides occurred in biotite gneiss. There are two fault
lines from the geological map in the study areas.

Topographic and hydrologic factors were constructed from DEM using the terrain analysis of the
SAGA GIS module (Table 1). The soil and timber factors were extracted from soil and forest maps.
The locations of landslides and environmental factors were denoted by pixels of 5 m by 5 m, and the
dimension of the study area had a total number of 1,918,400 cells with 1760 columns by 1090 rows.

(a)

(b) (c)

Figure 1. Digital elevation model (DEM) and landslide occurrences in the study area: (a) collapsed
houses; (b) building; and (c) debris flows in Neungwonri and Hankuk University of Foreign Studies
located in Figure 1a, respectively.
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Table 1. Data layer related to the landslide of the study area.

Category Factors Data Type Scale Source

DEM

Topographic
factors

Slope

Grid 1:5000
National Geographic
Information Institute
(NGII) in Korea

Aspect
Plan curvature

Convexity
Mid-slope position (MSP)

Terrain ruggedness index (TRI)
Topographic position index (TPI)

Landforms

Hydrologic
factors

Slope length (SL)
Stream power index (SPI)

Topographic wetness index (TWI)

Soil map

Land-use

Polygon 1:5000
National Academy of
Agricultural Science
(NAAS) in Korea

Material
Thickness

Topography

Forest map
Timber age

Polygon 1:5000
Korea Forest Research
Institute (KFRI)

Timber density
Timber diameter

2.1. Precipitation Characteristics

Rainfall affects the slope stability by means of its influence on run-off and pore water pressure [32].
Specifically, high intensity rainfall usually relates to a high concentration of landslide events in time
and space [33]. In this study, rainfall characteristics were analyzed over the period 26–28 July 2011,
which affected landslide occurrences. Hourly rainfall data were collected from one automatic weather
station (AWS) in the study area (Figure 2). Figure 2 shows the amount of hourly rainfall and its
accumulative rainfall. It was reported in articles that the landslides occurred around 1:00 p.m. on
27 July 2011. Before the landslide event, the rain fell for 10 h from 3:00 a.m. that day. The highest
hourly rainfall recorded was 78 mm at 10:00 a.m. The second highest recorded hourly rainfall was
68 mm at 12:00 a.m. before the landslide events at 1:00 p.m. The volume of rainfall accumulation at
the time of the landslide events was recorded at 385 mm in the study area. The different seven AWS
sites outside the study area showed a value of 205 mm, 282 mm, 188 mm, 182 mm, 178 mm, 222 mm,
and 130 mm. The study area has the highest volume of rainfall accumulation when compared to the
accumulated volume of rainfall in the surrounding area.

Figure 2. Hourly precipitation characteristics in the past led to landslide events in the study area.

2.2. Landslide Inventory

A landslide map is based on important information to determine the quantitative zoning of
landslide susceptibility, hazards, and risk [34,35]. In this study, a visual interpretation of digital aerial
photographs with a high resolution of 50 cm was used for accurate landslide mapping. Although visual
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interpretation is a classical method [34], it is very useful in detecting accurate landslide locations and
scars using high resolution photographs, as landslide scars are similar to tombs and their surrounding
area in the study area.

These types of photographs without ground control points (GCPs) can be freely obtained at portal
sites such as DAUM [36] and Skymap [37] (“Skymap”) in Korea [38]. The eighteen photos (taken before
and after the landslide events) were selected from each region of landslide occurrences and five GCPs
were applied to each photo from digital topographic features using ArcMap 10.2. Three out of the
82 landslides detected from the visual interpretation of the photos are shown in Figure 3. The photos
taken before and after landslide occurrences are shown in Figure 3a–c, respectively. Figure 3c,d shows
the blue plastic-covered area to prevent soil flow after landslides, and Figure 3d was taken by field
survey. Most of the intensive rainfall-triggered debris flows were approximately 10–70 m in length,
3–20 m in width range, and less than one m in depth.

 

Figure 3. Digital aerial photographs of (a) pre-; (b,c) post-landslide occurrences; and (d) covered blue
plastic at landslide scar after landslide occurrence in 2011.

2.3. Environmental Factors

Intensive rainfall-triggered debris flows are controlled by the interaction of various factors
including topography, hydrology, soil, and forests [39]. Topography and hydrology influence debris
flow initiation through the effect of gradient on slope stability with rainfall. These factors also
determine the concentration and dispersion of the material and the material balance on the slope
associated with the slope stability. In addition, soil and timber factors on the slope affect the spatial
distribution of debris flows. These factors are significant controls, and can be represented as spatial
distribution from digital elevation models (DEM) and soil and forest maps. Geology and faults
were not considered as environmental factors in this study because shallow soil failure was mainly
related to positive pore water pressure in saturated soils by intensive rainfall [39–41]. In this study,
18 environmental factors were considered for landslide susceptibility modeling based on ANN and BT
(Table 1, Figure 4).
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(a) Slope (b) Aspect 

(c) Plan curvature (d) Convexity 

(e) Mid-slope position (MSP) (f) Terrain ruggedness index (TRI) 

(g) Topographic position index (TPI) (h) Landforms 

(i) Slope length (SL) (j) Stream power index (SPI) 

Figure 4. Cont.
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(k) Topographic wetness index (TWI) (l) Soil land-use 

(m) Soil material (n) Soil thickness 

(o) Soil topography (p) Timber age 

(q) Timber density (r) Timber diameter 

Figure 4. Spatial database of the landslide causative factors.

Topographic and hydrologic factors were extracted from the DEM for determining the relationship
between these factors and debris flow using SAGA GIS modules [42]. A DEM with a 5 × 5 m grid
format was generated from a triangulated irregular network (TIN) derived from a digital elevation
contour with 5 m interval lines in ArcGIS 10.2. Soil and forest factors were also extracted from soil and
forest maps with a scale of 1:5000.

The extracted topographic factors were slope, aspect, plan curvature, convexity, topographic
position index (TPI), terrain ruggedness index (TRI), min-slope position (MSP), and landforms
(Figure 4a–h). The considered hydrologic factors were slope length (SL), stream power index (SPI),
and topographic wetness index (TWI) (Figure 4i–k). Slope indicated the steepness of a hill, and aspect
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was the steepest downhill direction. Plan curvature was perpendicular to the slope and affects the
divergence and convergence of flow across the surface. Terrain surface convexity was described as
positive surface curvature and represented the percentage of convex-upward cells [43]. TPI was the
difference between the elevation of each cell and the mean elevation for a neighborhood of cells [44].
Negative values represented lower features than surrounding features, values near zero were flat
areas, and positive values represented features typically higher. TRI were absolute values obtained by
squaring the difference between the value of a cell and neighbor cells, and convex and concave areas
could have similar values. MSP were assigned a 0 value, while maximum vertical distances to the
mid-slope in crest or valley directions were assigned a 1 value. Landform classification (cl 1: deeply
incised streams, cl 2: shallow valleys, cl 3: upland drainages, cl 4: U-shape valleys, cl 5: plains, cl 6: open
slopes, cl 7: upper slopes, cl8: local ridges, cl 9: mid-slope ridges, and cl 10: high ridges) was derived
by ranges of TPI values [45]. SL was based on specific catchment areas and slope, with the former used
as a substitute for slope length. SPI represented the erosive power of a water flow [46]. TWI indicated
the effect of topography on the location of the saturated area size of runoff generation [46]. In general,
higher SL and SPI, and lower TPI, represented a higher landslide susceptibility.

The attribute columns in the digital soil map (Table 1) included land-use, material, thickness,
and topographical values (Figure 4l–o). Land-use was classified into natural grasses, forests, paddy
fields, and farm orchard areas. Soil material included three classes: gneiss, acidic residuum, and granite
residuum. The class of soil thickness from the soil maps was divided into four classes: very shallow
(<20 cm), shallow (20–50 cm), moderate (50–100 cm), and deep (>100 cm). Topography was classified
into mountainous areas, fluvial plains, valley areas, hilly areas, alluvial fan areas, piedmont slope
areas, and diluvium areas.

Timber factors from the digital forest map (Table 1) included timber age, density, and diameter
(Figure 4p–r). Timber age was grouped into the 1st to 6th ages; over 50% of the timber in the study area
belonged to the 1st age (less than 10 years), and the rest were classed as either the 2nd age (11–20 years),
3rd age (21–30 years), 4th age (31–40 years), 5th age (41–50 years), or 6th age (51–60 years). Timber
density was divided into three classes: loose (less than 50% of a covered area), moderate (51–70%),
and dense (over 71%). Timber diameter was divided into four classes: very small (over 51% of area
with <6 cm), small (over 51% of area with <18 cm), medium (over 51% of area with <30 cm), and large
(over 51% of area with >30 cm).

3. Application of Artificial Neural Network (ANN) and Boosted Tree (BT) Models for Landslide
Susceptibility Mapping

3.1. Artificial Neural Network (ANN)

The ANN is an abstract mathematical model based on the knowledge of the human brain
and its activities. The scope of possible applications of ANN is practically unlimited in fields such
as pattern recognition (also known as classification), decision making, automatic control systems,
and many others. Thus, ANN can be applied to the classification of landslide susceptibility by solving
the non-linear relationship between landslides and their spatial environmental factors [47].

A feedforward ANN model called a multilayer perceptron (MLP) maps a set of input values onto
a set of suitable outputs. The MLP comprises of an input and an output with one or more hidden
layers of nonlinearly-activating nodes. Each node in one layer is connected with a certain weight
to every node in the next layer. MLP utilizes a backpropagation algorithm for training the network.
The algorithm trains the network until some goal minimal error is reached between the anticipated
and actual output values of the network. At the end of this training step, the neural network produces
a model that should be able to calculate a target value from a given input value [48].

It is important to select training data, such as landslide- and non-landslide locations, to be used
as input to the ANN’s learning algorithm [49]. In this study, areas with zero slope value were assigned
as areas not prone to landslides, and areas with known landslides were assigned as areas prone to
landslide in the training set. Both groups had 41 datasets. The values of the 18 landslide-related
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environmental factors were normalized to a range of 0.1–0.9 as input data. The backpropagation
algorithm, as one of the most popular training algorithms, was used in this study. The three layered
feed-forward network based on the framework provided by [50] was applied using the MATLAB
software package as 18 (input layer) × 36 (hidden layer) × 2 (output layer). A log-sigmoid transfer
function was used in the hidden layer and the output layer.

The flow of data processing was as follows. First, feedforward sent the input data to the neural
network, and then the cost function with weight and bias were calculated. Many iterations of training
satisfactorily minimized errors in updating optimized weight and bias for the training data. The relative
influence indexes of the variables were calculated as the maximum repetitive number before reaching
the targeted error of 2000, the learning rate of 0.01, and root mean square error (RMSE) of 0.001 using
MATLAB. If the RMSE value of 0.001 was not achieved, then the maximum number of iterations was
terminated at 2000 epochs. When the latter case occurred, then the maximum RMSE value was <0.1.
As the calculated weights were granted to each factor (Table 2), landslide susceptibility for the whole
study area was classified.

Table 2. Summary of the influence weights of predictor variables for Artificial Neural Network (ANN)
and Boosted Tree (BT).

Normalized Weights Based on ANN Normalized Weights Based on BT

Soil thickness 0.00 Soil material 0.00
Plan curvature 0.05 Soil thickness 0.11

Aspect 0.14 Plan curvature 0.13
Slope length (SL) 0.19 Soil topography 0.18

Mid-slope position (MSP) 0.22 Landforms 0.21
Soil topography 0.24 Mid-slope position (MSP) 0.27

Topographic position index (TPI) 0.25 Stream power index (SPI) 0.33
Soil land-use 0.30 Soil land-use 0.34

Timber diameter 0.31 Convexity 0.36
Terrain ruggedness index (TRI) 0.35 Topographic position index (TPI) 0.42

Soil material 0.37 Timber density 0.43
Stream power index (SPI) 0.39 Aspect 0.45

Timber age 0.43 Slope length (SL) 0.65
Convexity 0.45 Slope gradient 0.66
Landforms 0.54 Topographic wetness index (TWI) 0.67

Timber density 0.58 Terrain ruggedness index (TRI) 0.71
Slope gradient 0.60 Timber diameter 0.73

Topographic wetness index (TWI) 1.00 Timber age 1.00

3.2. Boosted Tree (BT)

The boosted-tree technique has emerged as one of the most-influential methods for predictive data
mining over the past few years. The boost-tree algorithm stems from one of the general computational
approaches of stochastic-gradient boosting, also known as TreeNet (TM Salford Systems, Inc., 9685 Via
Excelencia, Suite 208, San Diego, CA 92126, USA). These potent algorithms can effectively be used
for regression as well as classification with continuous and categorical predictors. Boosted trees can
ultimately produce a more-effective fit of the prediction values to the observation values, despite its
complex relationship with the predictor and dependent variables, such as a nonlinear relationship;
therefore, the boosted-tree algorithm can serve as a reliable machine-learning algorithm by fitting a
weighted additive expansion of simple trees.

The training set in the BT model was the same as the training set in ANN. In the BT model in
STATISTICA 10.0 [51], where the learning rate = 0.01, the tree complexity = 5, and the bag fraction = 0.5,
the optimal number of trees was reached/selected at 262. The relative influence indexes of the variables
were calculated summing the contribution of each variable (Table 2).

4. Landslide Susceptibility Mapping and Validation

The probability for landslide susceptibility was predicted by reflecting the relative influence
indexes of predictor variables calculated in the ANN and BT models. The predicted landslide
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susceptibility index was classified into four classes based on area for simple and visual interpretation:
very high, high, medium, and low index ranges in 5%, 10%, 15%, and 70% of the study area, respectively
(Figure 5a,b).

Susceptibility maps were verified and compared by using known 41 actual landslide events
as a validation set that were not used in the ANN and BT training to evaluate whether they could
effectively reflect future landslide hazard areas. The landslide susceptibility indexes were sorted
in descending order, and divided by 100 classes with cumulative 1% intervals. The cumulative
distributions of landslide occurrence were compared with receiver operating characteristics (ROC)
curves in 100 classes [52]. The ANN and BT models had a reasonable performance of 82.25% and
90.79% as percentage of area under ROC curves, respectively (Figure 6).

(a)

(b)

Figure 5. Landslide susceptibility maps based on (a) ANN; and (b) BT approaches. The rank was
divided into four classes based on area: very high, high, medium, and low index ranges in 5%, 10%,
15%, and 70% of the study area, respectively.

34

Bo
ok
s

M
DP
I



Appl. Sci. 2017, 7, 1000

 

Figure 6. Percentage of area under curves (AUCs) of the landslide susceptibility maps based on ANN
and BT models.

5. Discussion and Conclusions

Digital aerial photographs of high resolution are very useful in constructing detailed landslide
inventory maps, as it is difficult to separate the similar shapes of landslide scar areas and surrounding
tombs in the study area using satellite images or panchromatic aerial photographs. Therefore, both shapes
could be easily interpreted visually in high-resolution aerial photographs taken in a high-vegetation
season. Using aerial photographs could also save time and costs in field surveying to identify damage
from natural disasters.

In Korea, debris flows occur randomly in several slope regions due to intensive rainfall per day.
Therefore, it is necessary to select factors related to landslide occurrence and analyze the landslide
susceptibility using pattern classification by looking at the relationship between the various factors
and landslide location. However, it is not possible to know quantitatively how the environmental
factors relate to the occurrence of landslides. ANN and BT models, which are used in many fields as
sophisticated modeling techniques, were applied in identifying the influence of environmental factors
to landslide occurrence and in mapping landslide susceptibility.

The training and validation sets, which were used in the ANN and BT models, were the same:
50% and 50% of a total of 82 landslide occurrences, respectively. ANN modeling was performed while
changing the number of hidden layers (18 to 36), the value of learning rate (0.1 to 0.01), and RMSE
(0.01~0.001). A sigmoid function for a backpropagation network was used as one of the more popular
activation functions. The result of ANN modeling was best in 36 hidden layers, with 0.01 of learning
rate and 0.001 of RMSE. BT modeling was performed at 0.01 of learning rate, 5 of tree complexity,
and 0.5 of bag fraction. The optimal number of trees was reached at 262.

The weights of all factors from the ANN and BT models were normalized from 0 to 1. The factors’
weights were divided into three groups: high, medium, and low influence groups from the ANN
and BT models. The high group of ANN and BT included three factors: timber age, TWI, and slope
gradient. The medium group of both models had three factors: TPI, soil land-use, and SPI. The low
group had four factors: MSP, soil topography, plan curvature, and soil thickness. Although it was
difficult to identify the influence ranking of the environmental factor (i.e., topographic, hydrologic, soil,
forest, etc.) to landslide occurrence because of these intersections from intensive rainfall, the common
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factors in each ANN and BT group could be identified and can be used as a guideline for selecting
environmental factors affecting landslide occurrence in other study areas in Korea.

ANNs are capable of handling complex and robustly nonlinear processes without previously
assuming the relationships between the input and output variables (Lollino et al., 2014). Boosted tree
has all of the strengths of decision trees, including the advantage of being able to handle both
continuous and categorical variables (Krauss et al., 2017). In this study, the validation result of
the ANN and BT models was 82.25% and 90.79%, respectively, which demonstrated reasonably
good performance. In particular, the BT model had a higher accuracy (about 8%) than the ANN
model. In other fields (using both models) [53,54], BT reported a better performance than ANN.
The results of this study demonstrate the benefits of selecting optimal data mining techniques in
landslide susceptibility modeling.

For future study, it is necessary to generalize the regularized relationships between the classes of
each factor and landslide occurrence, and to combine the influence score of factors and factor classes.
This approach could be used as a guideline to apply threshold values to a landslide monitoring system
in the Korean rainy season. In addition, it could rank landslide susceptibility in urban areas, making
this information helpful in selecting landslide monitoring sites and planning land-use.
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Abstract: This study developed habitat potential maps for the marten (Martes flavigula) and leopard
cat (Prionailurus bengalensis) in South Korea. Both species are registered on the Red List of the
International Union for Conservation of Nature, which means that they need to be managed properly.
Various factors influencing the habitat distributions of the marten and leopard were identified to create
habitat potential maps, including elevation, slope, timber type and age, land cover, and distances from
a forest stand, road, or drainage. A spatial database for each species was constructed by preprocessing
Geographic Information System (GIS) data, and the spatial relationship between the distribution of
leopard cats and environmental factors was analyzed using an artificial neural network (ANN) model.
This process used half of the existing habitat location data for the marten and leopard cat for training.
Habitat potential maps were then created considering the relationships. Using the remaining half of
the habitat location data for each species, the model was validated. The results of the model were
relatively successful, predicting approximately 85% for the marten and approximately 87% for the
leopard cat. Therefore, the habitat potential maps can be used for monitoring the habitats of both
species and managing these habitats effectively.

Keywords: habitat mapping; marten; leopard cat; ANN; South Korea

1. Introduction

Medium-sized predators control not only herbivorous animals but also intermediate predators,
and have a combined effect on the overall food chain. Apex predators generally have low population
densities and wide ranges of activities, and are vulnerable to local extinction due to habitat damage
and disconnection [1]. In South Korea, members of the order Carnivora, such as tigers, leopards,
and wolves, have become extinct or lost their ecological functions in natural ecosystems over the
past century. As a result, the importance of the remaining carnivorous animals, such as martens,
leopard cats, and otters, is increasing.

Martens (Martes sp.) are mammals with wide distribution worldwide, from subtropical to
sub-Antarctic habitats. They are generally characterized by a larger sphere of activity than other
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mammals [2], and have roles as forest ecosystem indicator species sensitive to habitat disturbances and
habitat fragmentation [3]. Therefore, the marten in Korea, the yellow-throated marten (Martes flavigula),
is considered a second-grade endangered species of wild fauna and flora by the Ministry of
Environment, South Korea, and belongs to Annex II of the Convention on International Trade in
Endangered Species of Wild Fauna and Flora (CITES). Studies on marten habitats have been conducted
mainly in tropical and subtropical areas such as Thailand [4], and there is insufficient information on
marten habitats on the Korean Peninsula.

The leopard cat (Prionailurus bengalensis) is the only wild feline carnivore in South Korea, which
also belongs to the second-grade endangered species of wild fauna and flora of the Ministry of
Environment and the CITES Annex II list. Leopard cats are distributed within a wide range, from deep
forests to rural and coastal areas in Korea. Moreover, they maintain relatively stable populations,
due to their adaptability to inhabiting various habitats. It has been reported that leopard cats are
distributed widely in forests and rural areas [5], but there have been few quantitative studies on the
environmental spatial characteristics of their habitats. In particular, there is a lack of research on their
distribution throughout South Korea and analysis of their habitat characteristics.

Machine learning is designed to process new data and predict results by learning patterns through
training based on consistent patterns among variables in a dataset [6,7]. Recently, the amount of plant-
and animal-related data has rapidly increased, and many studies using machine learning models
have been conducted [8,9]. Depending on the approach applied, machine learning can use various
algorithms, such as decision tree, neural network, and support vector machine, and it can be divided
into supervised learning and unsupervised learning depending on the presence or absence of training
data. Thus, many studies have been conducted to predict the distribution of plants and animals using
machine learning techniques [10,11]. In addition, Geographic Information System (GIS) platforms
have been used as a useful tool to model the spatial relationships between specific events and related
factors [12–14].

Thus, recent studies have used GIS to indicate the distribution of habitats of various species.
Studies on mapping and quantifying mammalian habitats have been conducted through GIS-based
models [15,16]. Among mammals, studies on martens and leopard cats have been conducted mainly
in Asia. Studies of the genetic structure and mitochondrial genome of the marten and the leopard
cat have also been performed [17,18]. In particular, the complete mitochondrial genome has been
analyzed for martens in Korea [19]. Meanwhile, studies on the movements and activity patterns of
leopard cats have been conducted in China [20,21]. One study predicted the distribution of leopard
cats in Borneo [22], and another similar study predicting the habitat potential of leopard cats was
conducted in South Korea using GIS [23]. Habitat use and activity patterns of martens were also
analyzed in central and northern Thailand [4]. Typically, the habitat distributions of badgers [24,25],
leopard cats [26], and bears [27] have been mapped using logistic regression models. In recent years,
research has been conducted on the creation of habitat distribution maps of leopard cats in South Korea
through probabilistic and statistical models [23]. Supporting this, other probabilistic models have been
used to map European bison habitats [28], and statistical models have been applied to the habitat
distribution of bats [29,30]. Moreover, habitat mapping of water birds for conservation plans was
conducted in the Hamun wetland [31]. In Canada, a high-resolution habitat map of Atlantic wolffish
was also created [32]. However, artificial neural network (ANN) modeling has not been applied to
analyzing the habitat of martens or leopard cats in South Korea. Therefore, the purposes of this study
were to map the distribution of martens and leopard cats in South Korea using ANN modeling and to
clarify the relationship between the habitat distributions and various environmental factors.

South Korea is located in East Asia between latitudes 33◦ and 39◦ N and longitudes 124◦ and
130◦ E, including all of its islands, and occupies the southern part of the Korean Peninsula (Figure 1);
the total area of the country is approximately 100,032 km2 [33]. The boundary of the study area in this
study is marked with a red line in the Figure 1. South Korea can be divided into four regions: a western
region of broad coastal plains, an eastern region of high mountain ranges, a southwestern mountainous
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region, and a southeastern region of a broad basin. Mountains cover about 70% of South Korea, and the
country is surrounded by the Yellow Sea to the west, the East Sea to the east, and the Korea Strait
and the East China Sea to the south. The north of the country is bordered by the Democratic People’s
Republic of Korea, via the demilitarized zone; therefore, it is difficult to support the return of extirpated
terrestrial animals in South Korea, since their path is blocked in all directions. To support conservation
efforts, habitat potential maps should be created to manage habitats before extirpation, including
the selection of development areas. Therefore, in this study, ANN modeling was applied to generate
habitat potential maps for martens and leopard cats. The weights of factors related to the habitat
potentials were calculated with the model, and the results were validated to ensure the reliability of
the maps.

Figure 1. Study area: (a) South Korea in East Asia; and (b) South Korea.

2. Data

2.1. Habitat Survey

This study used data from the Second National Survey on Natural Environment in South
Korea, which included the identification of habitats of endangered species of wild animals and
plants. From 1997 to 2003, the National Institute for Environmental Studies conducted a survey
of species appearances and spatial distributions of wild animals by experts from various research
institutes. Surveys were performed from February to October every year for mammals to consider
changes in seasonal patterns. The survey methods were based on field observations, including direct
observations, community surveys, tracking, feces, and footprints, to investigate the species occurrence
and spatial distribution of wild animals. The locations observed or detected by the traces were
geocoded via Global Positioning System and were composed of GIS data.
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The marten has the second largest sphere of action among mammals in the Korean Peninsula
after the Asiatic black bear. Martens prefer broadleaf forests and mainly inhabit mature forests, such as
fourth-grade forests that have ≥50% occupancy rates of 31–40-year-old trees with diameters of ≥30 cm.
Martens inhabiting the Jirisan area occur at a density of 1–1.6 per 10 km2, and are diurnal animals with
a wide range of behaviors, moving an average of 11.2 ± 5.4 km per day. Martens mainly hunt Eurasian
red squirrels, rats, and other rodents as food, but they also hunt hares, young roe deer, and wild
boars. They also consume tree fruit, such as those from the lotus persimmon tree. In winter, they often
hunt for food in shrubs on the edge of forests and frequently cross two-lane roads in their radius of
action [34].

Leopard cats have activity areas of 3.69 ± 1.34 km2, and the core space of the species is estimated
to be 0.64 ± 0.47 km2 [5]. Leopard cats prefer forests, as well as adjacent grassland and agricultural
land, as habitats. They have a high preference for inland wetlands, such as wild grassland along
riverbanks. Owing to their behavioral radius and nocturnality of movement in a variety of regions,
they suffer a high frequency of road kills on roads adjacent to forests and rivers. Rodents, birds,
and small mammals are their main sources of food, and forest ridges and valleys are used as main
transport routes by leopard cats.

In the Second National Survey on Natural Environment, martens were found at 156 points, and
leopard cats were found at 630 points in the study area (Figure 2). In this study, the observed data
were divided randomly in half for model training and validation. This confirmed that the distribution
of martens is mainly limited to large forest areas, including the Mt. Baekdu range. Meanwhile, leopard
cats inhabit a wide range of emergence sites, from major forests to rivers and agricultural areas.

Figure 2. Data obtained from field observations of (a) Martens; and (b) Leopard cats.

2.2. Habitat-Related Factors

Habitat distributions of wild animals are influenced by the combined impacts of various factors.
Environmental factors such as topographic characteristics, forest properties [22], and distance from
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essential factors to support life, such as water, influence the habitat distributions of mammals, including
martens and leopard cats [22]. In this study, ground elevation, slope gradient, slope aspect, timber type,
timber age, land cover, and distance from road, water, and forest were selected as factors influencing
the habitat distributions of marten and leopard cat (Table 1 and Figure 3). The attribute information of
the timber type of forest map is shown separately in Table 2, due to the limitation of the figure size.
The determination and collection of factors were a fundamental component of mapping the potential
habitats of these species. The factors were collected from nationally generated thematic maps and field
investigations, such as those described in Section 2.1.

Table 1. Data layers related to marten and leopard cat habitat.

Original Data Factors Data Type Scale

Habitat Marten
Leopard cat Point -

Topographical map a
Ground elevation (m)
Slope gradient (◦)
Slope aspect

GRID 1:5000

Forest map b Timber type
Timber age Polygon 1:25,000

Land cover map c

Land cover
Distance from road (m)
Distance from water (m)
Distance from forest (m)

Polygon 1:25,000

a The digital topographic map by National Geographic Information Institute (NGII); b The forest map published by
Korea Forest Service (KFS); c The land use map offered by the Korea Ministry of Environment.

A digital elevation model (DEM) was produced by generating a triangulated irregular network
and digitizing the contours in 100-m intervals from topographical maps published by the National
Geographic Information Institute. The slope gradient and slope aspect calculations were performed
in ArcGIS 10.3. Thematic maps of forest and land cover were prepared at a 1:25,000 scale in a polygon
format. The forest map was provided by the Korea Forest Service, and the timber type and age
were prepared from this map. The land cover map was generated and published by the Ministry of
Environment, South Korea. Land cover, distance from road, water, and forest were also calculated
using ArcGIS.

All factors were converted into a 100 m × 100 m grid format to apply the ANN model. The row
and column sizes of the study area were 6056 and 3533 cells, and the study area consisted of a total of
9,952,165 cells, except in the no data region, based on the DEM. The marten and leopard cat habitat
data were converted from point formats into grid formats. Half of both the marten and the leopard cat
habitat data were selected via random sampling as input data. The other half of the data were used for
validation. Ultimately, all factors were collated into one input dataset with randomly extracted habitat
sample data for both marten and leopard cat.
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Figure 3. Factors related to the habitat potentials of marten and leopard cat: (a) ground elevation,
(b) slope gradient, (c) slope aspect, (d) timber type, (e) timber age, (f) land cover, (g) distance from
road, (h) distance from water, and (i) distance from forest.
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Table 2. Attribute information of timber type from forest map.

Code Forest Type Code Forest Type

Forest species

D
PD
PK
PL
PR
Q

PQ
PO
CA

Pinus densiflora Forests
Pinus densiflora artificial forest
Pinus koraiensis forest
Larch
Pinus rigida forest
Oak forest
Oak artificial forest
Poplar forest
Chestnut artificial forest

Forest physiognomy
C Conifer mixed forest
H Broadleaved forest
M Mixed forest of soft and hardwood

Dentuded area

F Cut-over area
O Non-stocked forest land
E Dentuded land

LP Grassland
L Farmland

Left-over area
R Left-over area
W Water

3. Methods

The machine learning technique determines the algorithm patterns using the sampled training
data and derives the results through learned patterns. In other words, it is possible to learn from
results that are already known according to information from the samples. Habitats are influenced by
various environmental factors based on the nature of animals; therefore, even if there are no animals at
the present time, the possibility of migration into an area with a similar environment exists at any time.
Therefore, the habitat pattern can be determined by training based on habitat data using the machine
learning method, and the habitat potential of an entire study area can be created. Among various
machine learning techniques, habitat potential mapping of martens and leopard cats was conducted
using an ANN in this study.

Interest in ANNs has increased recently. ANN is a highly sophisticated modeling method that
can model complex functions such as environmental problems or social issues with large numbers of
variables. Mimicking the human biological neural system, an ANN adjusts the weight from the basic
unit of perceptron between the input and output data, minimizing the error of the result. In addition
to these strengths, ANNs have been used for prediction or classification in a remarkable range of fields,
such as engineering, physics, geology, and environmental science. In particular, neural networks can
be applied to nonlinear problems of dimensionality and can be used to identify spatial relationships
between observation location data and influencing factors.

Multi-layer perceptron is one of the most popular ANN models, and was created by [35].
This network, which allows for the regression of nonlinear data, was used in this study with
a hidden layer between the input layers of habitat-related factors and the output layer. In this
study, a back-propagation algorithm was used for neural network training. In back propagation,
the algorithm calculates the gradient vector of the error surface and distance from the current point.
The error can be decreased when the point moves a short distance from the output layer to other
layers. The process iterates through a number of epochs, submitting the training data and calculating
the error by comparing the target and output. The weights can be corrected through the error from
the iteration and surface gradient. The initial network is randomly set, and the stopping point is
determined by a set number of epochs or a user-selected stopping point. The following equation
indicates the weight-updating architecture of the back-propagation algorithm.

ω
up
k = ωk − η∗ ∂Etotal

ωk
(1)

where ωk0 is the initial value of the weight ωk, which is given randomly, and ωk is the updated
weight for connection k. η is the learning rate that determines the step size and is typically chosen
experimentally. Etotal is the error of the output.

Etotal =
1
2

n

∑
j

(
Tj − outoj

)2
(2)
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T is the expected output value according to the input data [36] and j is the number assigned to
the node in each layer. n is the number of output layers. Etotal is minimized through the updated
weight from Equation (16). To detect the minimum point, differentiation of Etotal is necessary. Thus,
an activation function is needed for conversion from the result of real number x to a range of values
between 0 and 1 when the value is passed through the next layer or when the final result is expected.
The unipolar sigmoid function was used for the activation function in this study. The equation of the
unipolar sigmoid function is as follows.

f (x) =
1

1 + e−x (3)

In this study, the ANN was supported by MATLAB software. Using the training data of randomly
extracted habitat sample data, the slope data of the flat area were used as non-habitat area for training,
and the input data of the study area were rearranged between 0.1 and 0.9. The weights of the input
layers were calculated using the back-propagation algorithm of the ANN with a 9 × 18 × 1 structure
of the networks. The initial weight was set randomly as described previously, and the learning rate
and number of epochs were set to 0.01 and 1000, respectively. The root-mean-square error, the criterion
of the stopping point of decreasing error, was set to 0.01.

The process of potential mapping for martens and leopard cats can be explained in three steps,
as shown in Figure 4. First, a spatial database was constructed with nine potential habitat-influencing
factors, including the observation points of martens and leopard cats. Half of the marten and leopard
distribution data selected by random sampling were used as training sets. The locations of observations
of martens and leopard cats were confirmed in field surveys for the application and validation of
habitat potential models described in Section 2.2 (Figure 2). The observation location data of martens
and leopard cats were set as dependent variables. Second, the ANN model was applied to a spatial
database to map the habitat potentials. Nine factors that were considered to affect the marten and
leopard cat habitats were set as independent variables. Elevation, slope, and aspect derived from
topographic maps, timber type and timber age from forest maps, and land cover, distance from road,
distance from water, and distance from forest from land cover map were included in the spatial
database with half of the randomly sampled marten and leopard cat habitat data. The ANN model
was applied after constructing the spatial database. To apply the model, MATLAB programming was
used with the GIS data. The resulting maps of the habitat potentials were validated using a receiver
operating characteristic (ROC) curve. Finally, validation of the marten and leopard cat habitat potential
maps was performed using the remaining marten and leopard cat distribution data that were not
included in the spatial database.

 

Figure 4. Flow chart of the steps used in this study.
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4. Results

4.1. Weight of Related Factors and Habitat Potential Mapping

The weights of the related factors between the layers acquired during the ANN model training
process are shown in Table 3. The weight values show the contribution of each weight to the
ANN model. Since the weights were initialized during the first training, the results could differ.
This study attempted to obtain similar results by performing the calculation several times. The weight
calculation was repeated for 10 epochs, with 100 cycles for each epoch, to identify the influence of the
randomly extracted sample for a city/dry area (public area), non-habitat area, since most wild animals
do not live in populated urban areas. No leopard cats were observed in public areas in the results of
the frequency ratio analysis in a previous study [23]. In the iterations of each epoch, the weights were
updated via back propagation. The standard deviation was 0.001–0.018 for martens and 0.002–0.021 for
leopard cats. The ranges of standard deviations indicated that there were minimal effects of random
sampling of non-habitat area on the results.

Table 3. Neural network weight between martens and leopard cats, and habitat-related factors.

Marten Leopard Cat

Average
Standard
Deviation

Normalized Weight
with Respect to

Land Cover
Average

Standard
Deviation

Normalized Weight
with Respect to

Land Cover

DEM 0.1657 0.0175 2.3877 0.1728 0.0208 2.3883
Slope gradient 0.1335 0.0102 1.9242 0.1939 0.0103 2.6790

Slope aspect 0.0901 0.0019 1.2986 0.0768 0.0019 1.0619
Timber type 0.1453 0.0107 2.0945 0.1159 0.0185 1.6014
Timber age 0.0704 0.0104 1.0146 0.1053 0.0059 1.4545
Land cover 0.0694 0.0015 1.0000 0.0724 0.0030 1.0000

Distance from road 0.1092 0.0023 1.5741 0.0817 0.0054 1.1285
Distance from water 0.1210 0.0032 1.7439 0.0854 0.0037 1.1803
Distance from forest 0.0953 0.0008 1.3735 0.0959 0.0044 1.3259

Regarding the average weights of the related factors for the habitat potential mapping of martens,
DEM had the highest value (0.166), followed by timber type (0.145), while land cover showed the
lowest value (0.069). The factor weights for leopard cats were similar. Slope gradient had the highest
value (0.194), followed by DEM (0.173), and land cover had the lowest value (0.072).

However, for a comparison of the same standards between the two analyses, all average weight
values were normalized by dividing by the smallest average weight value, land cover, for each factor for
martens and leopard cats. The lowest values of 0.069 and 0.072 were normalized to 1.000. DEM showed
the highest normalized weight value of 2.388 for martens and timber type was the second highest
normalized factor at 2.095. Likewise, the weight analysis showed that the slope gradient and DEM
presented the highest and second highest normalized weight values of 2.679 and 2.388 for leopard cats,
respectively. The least important factors, land cover for both martens and leopard cats, were used as
references for the normalized weights. Timber age (1.015) and slope aspect (1.299) for martens and
slope aspect (1.062) and distance from road (1.129) for the leopard cats followed.

The weights calculated via iteration, shown above, were applied throughout the study area,
and the final weights determined for martens and leopard cats were applied to the corresponding
factor in each dataset. Figure 5 shows the habitat potential maps for martens and leopard cats.
To simplify the interpretation of the habitat potential maps, the results were classified into five classes
of potentials: very high (10%), high (10%), medium (20%), low (20%), and very low (40%). Based on the
habitat potential maps of both martens and leopard cats, the eastern region of South Korea appeared
to have high potential.
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Figure 5. Habitat potential maps generated using ANN model of (a) martens; and (b) leopard cats.

4.2. Validation

Habitat data can be used to validate whether the habitat potential maps were effectively predicted.
Therefore, the halves of marten and leopard cat habitat data not used for training were used as the
validation data. ROC curves were used to validate the habitat potential maps of martens and leopard
cats generated using the ANN model. The ROC curves were generated for the marten and leopard cat
habitat potential maps to compare the habitat locations of martens and leopard cats, respectively.

The ROC curve is a graphical plot showing the diagnostic capabilities of classification models
with various thresholds. It is a widely used method for validation [37–40]. ROC curves can show
sensitivity and specificity on the x-axis and y-axis, respectively. In this study, specificity represented
the percentage of area that martens and leopard cats could inhabit, while sensitivity represented the
predicted potential marten and leopard cat habitat locations. For the ROC graph, the predicted habitat
potential values after applying the ANN model were sorted in descending order. The ranks of the
habitat potential values were identified and the values were equally classified into 100 classes of
study area.

Figure 6 shows the ROC curves of the marten and leopard cat habitat potential maps; martens
showed 85.01% (0.8501) accuracy, versus 87.03% (0.8703) accuracy for leopard cats. These results are
depicted as a graph of the validation rate (Figure 6), where 65% of the study area included 100% of all
habitat locations for both species.
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Figure 6. Validation results of the habitat potential maps for martens and leopard cats using the
ANN model.

5. Discussion

Machine learning focuses on processing new data and predicting outcomes using patterns learned
through training [12,13]. In other words, the most noticeable advantage of ANN modeling is that
the algorithm itself can learn to be more accurate, although it requires sufficient data to support this.
In South Korea, a government-affiliated organization constructed detailed country-scale thematic
maps. These previously constructed data were sufficient for generalizing and correctly processing
new incoming untrained data. Therefore, a spatial database was constructed based on nationally
constructed data, including topographical, forest, and land use maps. The spatial database built in this
process could be used in conjunction with other methods. MATLAB was used to process large amounts
of data quickly, and the spatial distribution of martens and leopard cats could be confirmed through
a GIS analysis. The results for leopard cats using the ANN showed approximately 5% higher accuracy
than those obtained using the frequency ratio (82.15%) and logistic model (81.48%) in a previous
study [23], even though the input data differed. This confirmed that the ANN model had been applied
appropriately to habitat potential mapping.

The results of machine learning models, such as the ANN model applied in this study, are strongly
influenced by the input data. Therefore, in this study, an input spatial database was constructed
with marten and leopard cat habitat point data based on the Second National Survey on Natural
Environment, and data extracted and calculated from national theme maps, which reflected regional
characteristics. The impacts of factors besides the input data, such as climate or sudden natural
disasters, on martens and leopard cats were assumed to be negligible. In the case of the habitat data,
the generation of errors may depend on the survey method. However, the behavior radii of martens
and leopard cats were within 10 km, and the size of the entire study area was considerably larger by
comparison; therefore, all data were considered to be reliable.

In both species, DEM, slope gradient and timber type were the three most important factors related
to habitat. The relative weight of slope gradient was higher for leopard cats than for martens, indicating
a greater influence of slope gradient in the result map for leopard cats (Figure 5). The smaller radius of
action of leopard cats compared to martens may have influenced this result. Martens mainly inhabit
forests; therefore, the habitat potential of martens was high in relatively dense forests. In contrast,
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the habitat potential of leopard cats tended to be evenly distributed in relatively low areas compared
to martens, which was particularly evident on Jeju Island.

Considering the results of the habitat potential map of this study, elevation, slope gradient
and timber type information of mountain areas should be considered as indices for prioritizing
the protection and management of marten and leopard cat habitats. Moreover, the index should be
managed with weighted indices for each factor. In the future, national natural environment survey data
that are constructed and accumulated in a timely manner will enable the continuous construction and
management of habitat maps for not only marten and leopard cat, but also other endangered species.

6. Conclusions

In this study, ANN modeling was used to predict the habitat potentials for martens and leopard
cats. The factors affecting the habitat distribution of each species were selected and a spatial database
was constructed with the collected data. Using the collected data and half of the field-surveyed
habitat data, the habitat potentials of martens and leopard cats were predicted using the ANN model.
The predicted maps were validated with the other half of the habitat data not used for training.

The first- to third-highest normalized weights with respect to the lowest average weight for both
martens and leopard cats (land cover) were DEM, slope gradient and timber type. This indicates that
factors related to DEM are positively correlated with the habitat location of martens and leopard cats.
In contrast, land cover showed the lowest normalized weights for both martens and leopard cats.
Subsequently, martens had lower weights for timber age and slope aspect, whereas leopard cats had
lower weights for slope aspect and distance from road. Since both species are mammals with large
activity radii, and steep slopes are considered an important factor, the weight value for distance from
mountains was relatively low.

In South Korea, martens and leopard cats exhibited similar habitat patterns, with high habitat
potentials in eastern mountainous areas, except along beach lines and southern areas. Likewise,
coastal areas beyond the eastern range and western plains of the study area showed very low habitat
potentials for both species. Nearly all areas with low habitat potentials were lowlands, coastal areas,
and non-forest areas. These trends are likely similar even though the habitat characteristics of martens
and leopard cats differ because of the large size of the study area.

The results of the marten and leopard cat habitat potential maps were validated with the half of
the marten and leopard cat habitat data not used for modeling. The results of the validation showed
accuracy of 85.01% for martens and 87.03% for leopard cats, both of which were satisfactory (>85%).
These results could lead to more informed decisions for wildlife management planning and land
development planning in areas with high habitat potentials.

Owing to the characteristics of the machine learning model, input data accuracy is very important.
However, it is difficult to determine the exact habitat location of mammals with large activity radii,
such as martens and leopard cats. Since inaccurate location data could result in difficulties in
performing spatial analyses, reliable habitat data should be used when research is conducted for
smaller administrative units. Quantitative evaluation of the ecological consequences of a wide range of
spatial data could be performed using GIS. Integrating several characteristics representing the habitat
potential of mammals is an important aspect of ecological management research.

This study identified habitat-related factors for martens and leopard cats. The methodology
applied in this study could also be used to generate a time-series of habitat maps, and marten
and leopard cat habitat data could be used, since the habitat-related data will be additionally and
continuously constructed during the next national natural environment survey. In addition to martens
and leopard cats, this method can also be applied to habitat mapping of other mammalian species
examined in national natural environment surveys. Moreover, the habitat potential mapping results
can be used as a basis for determining the locations of monitoring sites or creating protection plans for
mammalian species. However, more studies are essential to generalize the habitat-related factors that
affect the habitat characteristics for individual mammalian species.
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Abstract: Identification of the most significant factors for evaluating road risk level is an important
question in road safety research, predominantly for decision-making processes. However, model
selection for this specific purpose is the most relevant focus in current research. In this paper, we
proposed a new methodological approach for road safety risk evaluation, which is a two-stage
framework consisting of data envelopment analysis (DEA) in combination with artificial neural
networks (ANNs). In the first phase, the risk level of the road segments under study was calculated
by applying DEA, and high-risk segments were identified. Then, the ANNs technique was adopted
in the second phase, which appears to be a valuable analytical tool for risk prediction. The practical
application of DEA-ANN approach within the Geographical Information System (GIS) environment
will be an efficient approach for road safety risk analysis.

Keywords: road safety; risk evaluation; data envelopment analysis; artificial neural networks; crash
data analysis

1. Introduction

Crash injury severity has always been a major concern in highway safety research. To model
the relationship between crash occurrence along with severity outcomes, related traffic features,
and contributing factors, a large number of advanced models have been proposed. Road safety
research incorporates a broad exhibit of research territories, and the most successful of them is crash
information investigation. There have been a lot of discussion about crash information-based safety
analysis and other distinguishable activity attributes have been proposed, more regularly than crashes,
as an option. In any case, investigation of crash information remains the most broadly received way
to deal with the safety of a transportation system (e.g., expressways, arterials, crossing points, etc.).
The traditional approach is to build up connections between crash recurrence, traffic flow attributes,
and geometry of the roads [1]. On the one hand, the impact of the geometric design on the probability
of a driver behavior has been very much archived in conventional safety studies. This course of
research is useful in settling on choices in such things as installing cautioning signs on roadway
areas, etc. On the other hand, Average Annual Daily Traffic (AADT) is a generally used indicator
for measuring the traffic movement conditions, as it is recorded by most organizations around the
nation/the world, is accessible to all roadway areas, and gives a measure of introduction to the specific
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roadway segment. Crash recurrence examination in view of AADT is a total or aggregate approach to
take a glance at the crash information where the recurrence of crashes is computed, by amassing the
crash information over particular eras (months or years) and areas (particular roadway segments) [2].

During road safety analysis of a road, a major target is to locate those segments which are
dangerous, and then to identify the factors influencing its safety level. This study focuses on the
concept that crashes can be decreased by better assessment of road hazard incremental elements,
and by recognizable proof of hazardous segments at the initial stage, and after that, assessment of
very dangerous sections with reference to the major contributing components is conducted in the
second stage. In doing so, a combination of Data Envelopment Analysis (DEA) with Artificial Neural
Networks (ANNs) is applied to evaluate the performance of roads with reference to safety conditions.
The outcome is able to help decision makers/safety engineers to build a valuable system to analyze
risk and significant attributes. Although it is new in the road safety research field, such an integrated
mechanism has been popular in other sectors like banks, hospitals, schools, and corporations. Some
researchers have used a combination of DEA-ANNs to evaluate performance (efficiency/risk) of
rail transport, power suppliers, etc. [3–5]. DEA-ANNs was also used for efficiency classification by
different researchers for banks and corporate companies [5–7]. For analysis regarding hospitals and
large companies, screening of training data was also evaluated by using the DEA-ANNs technique.
In addition, DEA-ANNs was also introduced for data processing [8–13], and will be more useful when
applied within a Geographical Information System (GIS) environment. In this study, this integrated
concept, which is popular in other sectors, is introduced to evaluate the safety performance (risk
evaluation) of motorways. This evaluation of risk helps decision makers to decide on economical
investment for risky segments, along with related factors, and consequently to reduce the cost of
risk evaluation.

2. Literature Review

2.1. Risk and Road Safety Analysis

Usually, road safety performance is evaluated on the basis of ‘Risk’ which is associated with the
number of crashes and casualties, known as the road safety outcome. In the field of road safety, the risk
is defined as ‘the road safety outcome to the amount of exposure’ as shown in Equation (1):

Risk =
Road Sa f ety Outcome

Exposure
(1)

Exposure can be measured using different parameters; while comparing the performance of road
segments, it can be measured as vehicle miles traveled, vehicle hours traveled, volume and number
of trips, etc., however for countries it can be passenger kilometers travelled, population and number
of registered vehicles, etc. [14,15]. Risk assessment is necessary for road safety performance analysis.
Although risk can be analyzed on the basis of direct calculation using outcome by exposure, in the
case of multiple outcomes and multiple input, it is difficult to deal with the calculation. Crashes are
random events, and their outcome can also vary, as in one crash there may be zero fatalities, or fifty or
more fatalities. Thus, a method that can deal with multiple outputs can be beneficial in calculating risk
for road safety performance analysis of different units.

2.2. DEA for Road Safety Analysis

Road safety performance analysis of highways is an important task for the safety of travelers.
To analyze the safety performance of certain attributes, a benchmarking mechanism has remained a
basic procedure to be adopted by researchers [16–18]. With reference to the applied techniques for this
purpose, DEA has been a popular technique with its theoretical basis in linear programming. Evolving
the concept of DEA from research work in 1978, Charnes et al. [19] applied a linear program to estimate
an empirical production technology frontier (bench marking) for the first time [19]. In the basic DEA
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model, the definition of the best practices relies on the assumption that inputs have to be minimized
and outputs have to be maximized (such as in the economics field). However, to use DEA for road
safety risk evaluation, the target becomes the output, i.e., the number of traffic crashes, to be as low
as possible with respect to the level of exposure to risk. Therefore, the DEA frontier based Decision
Making Units(DMUs) or the best-performing road segments are those with minimum output levels
given the input levels, and other segments’ risk is then measured relative to this frontier [20].

Mathematically, to use DEA for road safety evaluation, the model is shown as follows:

min R0 =
s
∑

r=1
uryr0

s.t.
m
∑

i=1
vixi0 = 1,

m
∑

i=1
vixij −

s
∑

r=1
uryrj ≤ 0, j = 1, · · · , n

ur, vi ≥ 0, r = 1, · · · , s, i = 1, · · · , m

(2)

where yrj and xij are the rth output and ith input respectively of the jth DMU, ur is the weight given to
output r, and vi is the weight given to input i.

In view of the model applications for road safety analysis, road safety condition was compared
to 21 European countries [16] and an ideal trauma management record score was also calculated by
using DEA [21]. Furthermore, using population, passenger-kilometers, and passenger cars as inputs,
and the number of fatalities as output, DEA was used for the evaluation of risk level of countries [22].
Monitoring of yearly progress in road safety was also conducted by utilizing the DEA technique [23].
Adding to road safety determination on a national level for 27 Brazilian states, two fundamental
indicators accessible in Brazil: death rate (fatalities per capita) and casualty rate (fatalities per vehicle
and fatalities per vehicle kilometer traveled) were focused upon [24]. From the literature review
on DEA application in the field of road safety, it was confirmed that DEA is one of the established
techniques to evaluate the risk level of road safety.

2.3. ANNs for Road Safety Analysis

Artificial Neural Networks is a model instrument of nonlinear statistical data that can be used
to model a complex relationship between input and output to seek patterns. ANNs has been often
implemented in many fields of science for prediction [25]. In road safety research, ANNs was applied
to investigate crashes with reference to driver, vehicle, roadway, and condition attributes [26]. After
application of ANNs, the impact of factors like seatbelt usage, light condition, and driver’s liquor
utilization on driver’s safety was evaluated [27]. ANNs was also applied to determine the relationship
between crash severity and the model parameters including years, highway sections, section length
(km), AADT, the degree of horizontal curvature, the degree of vertical curvature, heavy vehicles
(percentage), and season summer (percentage). The results shown that degree of vertical curvature
has strong impact on number of crashes [28]. By modeling AADT, SL (Posted speed limit), Gradient
(Average segment gradient), and Curvature (Average segment curvature) against road crashes, it was
concluded that ANN was superior to multivariate Poisson-lognormal models [29]. From the literature
review, we can summarize that ANNs was previously used as a crash data analysis model, which
was a useful technique to study road-related features, geometry, and other contributing factors to
road safety.

2.4. DEA-ANNs Approach

The combination of DEA and ANNs has not been applied in the road safety field, but it is popular
in other fields like banks and corporate sectors. From the previous studies it was concluded that DEA
is powerful for efficiency calculation, but for prediction purposes ANNs is ahead, so a discussion
started after [30] on combining these two techniques to obtain the best possible outputs, i.e., efficiency
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calculation for ranking and prioritizing and then efficiency prediction for factor analysis purpose.
To validate this combination, efficiency prediction was performed for 50 companies [31], 19 power
plants [32], 49 Indian business schools [5], 102 bank branches [7], and 45 countries [33]. Efficiency
classification was also tested by studying 142 bank branches [34] and 23 supplier companies [35].
Following the similar pattern, the DEA-ANNs approach is selected in this study for road safety risk
evaluation and analysis of factors affecting risk.

2.5. GIS for Road Safety Analysis

“While geometrical concept can be enriched by culture-specific devices like maps, or the terms of
a natural language, underneath this variability lies a shared set of geometrical concepts. These concepts
allow adults and children with no formal education, and minimal spatial language, to categorize
geometrical forms and to use geometrical relationships to represent the surrounding spatial layout.”
(Elizabeth S. Spelke-Harvard). GIS has gained a reputation that provides a better visualization of a
large data set for understanding and decision making processes. GIS-provided maps which helped in
identifying the crash concentration areas, located along the major road in the main urban areas [36].
During the road safety analysis of motorway (M-25), GIS provided relevant data on road accidents,
traffic and road characteristics for 70 segments [37]. High risky sections on the basis of potential crash
cost for expressways of Shanghai with the application of GIS has been clearly mapped [38]. Zonal crash
frequency has also been expressed through GIS, showing association with several social-economic,
demographic, and transportation system factors [39]. Through spatial analysis of high risk areas,
pedestrian crashes have also been mapped in Tehran [40]. In Belgium, through the use of GIS and
point pattern techniques, mapping road-accident black zones has been conducted within urban
agglomerations [41]. GIS has also been used to explore the spatial variations in relationship between
Number of Crashes and other explanatory variables of 2200 Traffic Analysis Zones (TAZs) in the
study area, Flanders, Belgium [42,43]. GIS was used for modelling crash data at a small-scale level
in Belgium, which permitted the identification of several areas with exceptionally high crash data.
It endorsed more effective reallocation of resources and more efficient road safety management in
Belgium [44].

2.6. ANN-GIS Approach

ANNs has been introduced as a mapping tool to GIS to perform a predictive capability for joint
operations [45]. Although GIS in combination with ANNs was popular in the fields of geoscience,
irrigation, meteorology and Agriculture, it has been tested in the field of road safety by applying deep
learning models using a Recurrent Neural Network (RNN) to predict the injury severity of traffic
crashes for the North-South Expressway-Malaysia [46]. Previously this technique had been applied for
sediment prediction in Gothenburg harbor [45], landslide susceptibility using the landslide occurrence
factors produced with the help of a ANNs model [47], detection of flood hazards in the Blue Nile,
White Nile, Main Nile, and River Atbara [48], macrobenthos habitat potential mapping regarding
Macrophthalmus dilatatus, Cerithideopsilla cingulata, and Armandia lanceolate [49], learning the patterns of
development in the region [50], tunneling performance prediction required in routine tunnel design
works and performance in terms of stability as well as impact on surrounding environment [51],
and deforestation maps production to determine the relationship between deforestation and various
spatial variables such as the vicinity to roads and to expenditures, forest disintegration, elevation,
slope, and soil type [52].

2.7. Research Gap

DEA is popular as an optimization tool with its theoretical background in linear programming.
DEA is popular with reference to benchmarking mechanism for efficiency and risk evaluation [3,6].
Previously, DEA was popular with its multi stage properties, but it has shortcomings with respect
to its prediction capabilities, which reduces its application. A powerful technique, ANN, has
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been joined with DEA to fill that gap. Finally, with the predictive potential of ANNs and the
optimization capacity of DEA performing complementary features, a prominent modeling option is
envisioned [3,6]. The performance of the DEA-ANNs technique in the field of road safety for decision
making mechanisms for road safety performance analysis was evaluated. This is the first study for
an application of the DEA-ANN approach within a GIS environment for road safety performance
analysis, using a case study on Motorways. This will lead traffic engineers and decision makers to
better visualize the risky sections and key factors for road safety condition improvement.

3. Materials and Methods

3.1. Basic Framework of the Analysis

Road authorities have to prioritize the sites which require safety treatment, due to budget
limitations. So in this study, a two phase framework was proposed for road safety risk evaluation,
as shown in Figure 1. In the first phase, the number of crashes and fatalities was evaluated against
exposure variables, with the help of DEA to calculate the risk level of road segments. In the second
phase, that risk was predicted and evaluated with the help of ANNs.

Figure 1. The Proposed Data Envelopment Analysis-Artificial Neural Networks (DEA-ANNs)
Framework for Risk Evaluation.
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3.2. Data Description and Selection of Variables

The study area selected for this study was two motorways in Belgium named E-313 and E-314
(Limburg Province Sections with a total length of 103 km). Each Motorway has segments, traffic-related
characteristics, and road network segmentation derived from the FEATHERS model [53]. In this study,
a segment with at least one crash was considered as a decision-making unit (DMU) to analyze the
road safety condition. According to this criterion, 67 segments are selected for these two motorways.
The crash data used in this study consisted of a geographically coded set of crash data that occurred
between 2010 and 2012, which was provided by the Flemish Ministry of Mobility and Public Works,
as shown in Table 1. The first and very critical step in conducting an analysis is the selection of
inputs and outputs variables. For this purpose in the first stage (DEA), those variables which were
the exposure variables and could not be directly affected by a traffic engineer/decision maker were
selected to calculate risk, while in the second stage (ANN) those variables (i.e., Horz and Vert Curve
design, speed, and flow) which could be altered or improved by directly changing certain parameters,
were selected. So, the target while calculating risk was to reduce the number of crashes (NoC) and
casualties (NoAP) with the increase of average volume to capacity on each segment (V/C), total daily
vehicle miles travelled on each segment (VMT) and total daily vehicle hours travelled on each segment
(VHT). A traffic engineer cannot directly change V/C, VMT, or VHT; however, the geometric design
(Horz and Vert Curve), speed (speed limit) and flow (by controlling access) so practically, a selection of
variables was targeted according to the feasibility of the problem’s solution. To confirm the validity
of the DEA model condition, an isotonicity test [54] was conducted. An isotonicity test comprises
the intention of all inter-correlations between inputs and outputs for detecting whether increasing
amounts of inputs lead to greater outputs. As positive correlations were established, the isotonicity
test was accepted and the presence of the inputs and outputs was reasonable. However there are
no diagnostic checks for improper model specification detection in DEA [55]. However, a general
rule of thumb, the minimum number of DMUs is higher than three times the number of inputs plus
outputs [56]. In our study with a total of three inputs and two outputs, so a set of 15 data points would
be optimal; we have 67 data segments.

Table 1. Description Statistics of the Variables.

Stage Variables Description Mean SD Min. Max.

1st Stage
DEA

NoC No. of Crashes 9.58 13.12 1 74

NoAP No. of Affected Persons (Injured and Killed) 14.36 19.55 1 105

V/C Average Volume to Capacity on each segment 0.4405 0.1807 0.08 0.6435

VMT Total daily Vehicles Miles Travelled on each Segment 1828 1388 77 5186

VHT Total daily Vehicles hours Travelled on each Segment 1093 879 38 3616

2nd Stage
ANN

Flow Average annual daily traffic on each segment (vph) 968.1 449.6 31.5 1483.4

Speed Average Travel Speed for each segment (kph) 110.99 8.23 96.89 120

Horz_Curve 0 = Tangent, 1 = Curve – – 0 1

Vert_Curve 1 = Upward, 2 = Downward, 3 = Flat – – 1 3

3.3. Phase-I: Application of DEA for Risk Calculation and Ranking

As there were two major phases of modeling, we had decide on the variables for both phases.
The initial target was to evaluate risk with reference to the variables that were basically exposure
variables. In the basic DEA model, the definition of the best practice relied on the assumption that
inputs had to be minimized, and outputs have to be maximized (such as in the economics field).
However, to use DEA for road safety risk evaluation, the target became the output, i.e., the number of
traffic crashes, to be as low as possible with respect to the level of exposure to risk.

There are two basic concepts in application of DEA, starting from efficiency as in Equation (3),
and converting into calculation of risk as shown in Equation (4).
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Efficiency: The basic concept of DEA-Efficiency calculation is as follows:

E f f iciency =
Weighted Sum o f Output
Weighted Sum o f Input

=
Maximize Output
Minimize Input

(3)

Risk: The basic concept of DEA-Risk calculation in connection between Equations (1) and (3):

Risk =
Weighted Sum o f Output
Weighted Sum o f Input

=
Minimize Output
Maximize Input

=
Road Sa f ety Outcome

Exposure
(4)

So the equation to calculate the Risk value through DEA is as follows:

Risk =
U2(NoC) + U1 (NoAP)

V1 (V/C) + V2 (VMT) + V3 (VHT)
(5)

where U1 = weights for 1st output (NoC), U2 = weights for 2nd output (NoAP); V1 = Weights for 1st
Input (V/C), V2 = weights for 2nd Input (VMT), V3 = weights for 3rd Input (VHT).

After calculation of Risk value, for ranking purposes, a cross-efficiency approach was one of the
best methods to calculate A cross-risk value for ranking purposes. DEA has an attractive feature in
that each DMU can have its own input and output weights, which leads to difficulty in making a
comparison between DMUs. To compare DMUs, a Cross efficiency matrix (CEM) was developed as
a DEA extension tool to assist in identifying the overall best or worst performer among all DMUs
and rank them. Its basic idea is to apply DEA in a peer assessment instead of a self-assessment mode.
Specifically, the CEM calculates the performance of a DMU with a concept by using not only its own
optimal input and output weights, but also those of all other DMUs. Results can then be accumulated
in a CEM as shown in Table 2. In the CEM, the element in the ith row and jth column signifies the risk
scores of DMU j using the optimal weights of DMU i. The basic DEA risk is thus positioned in the
principal diagonal. The average of each column of the CEM is calculated as a mean cross risk value for
each DMU [20]. Since the same weighting process is applied for all the DMUs, their evaluations can
then be made on a comparison basis, with a higher cross-risk score indicating a higher risky DMU.

Table 2. A Generalized Cross-Efficiency Matrix (CEM) [20].

Rating DMU Rated DMU

1 2 3 . . . . . . n

1 E11 E12 E13 . . . . . . E1n
2 E21 E22 E23 . . . . . . E2n
. . . . . .
n En1 En2 En3 . . . . . . Enm

Mean E1 E2 E3 . . . . . . En

For those DMUS, which have illogical weights in the basic DEA model, a relatively low or
higher risk value will be calculated. Therefore, for ranking purpose, this method serves a type of
sensitivity analysis by applying a method of a different set of weights to each DMU, with a back channel
mechanism of self-generated weights rather than an externally imposed [20]. So the target value,
which is a value of 1 to be considered for the best DMU, can now be changed, and after application of
CEM it can vary, but the selection of best DMU (with the lowest Risk) will be easier.So after applying
model (1) for calculating risk R0 in road safety field, the lowest level has been considered as the frontier
of safety. As explained above, for ranking purposes, a cross risk procedure [20] has been adopted to
obtain the best ranking, as shown in Table 3.

The major advantage of using DEA here is that it can handle multiple inputs and multiple outputs.
Moreover, DEA has some benefits as it does not require an assumption of a functional form relating
inputs to outputs; DMUs considered in DEA are directly compared against a peer or combination of
peers; Inputs and outputs used in DEA can have different measurement units. In this study, number of
crashes (NoC) and number of affected persons-injured or killed (NoAP) are considered as two outputs,
while exposure variables—average volume to capacity on each segment (V/C), total daily vehicle miles
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travelled on each segment (VMT), and total daily vehicle hours travelled on each segment (VHT)were
considered as three inputs. Although the segment length also varied, it was not included here because
it was already been involved in the backup calculation of VMT.

Table 3. DEA-Based Risk Evaluation and Ranking Segments.

DMUs Input 1 Input 2 Input 3 Output 1 Output 2 CE-RISK
VALUE

RANK
Road Seg. V/C VMT VHT NoC NoAP

1 0.368518 3039.221 1541.607 74 105 91.06902 1
29 0.139052 109.169 54.58458 6 8 71.72984 2
19 0.603085 183.7303 118.162 12 20 69.92395 3
2 0.384021 2494.327 1268.376 49 76 65.10151 4
34 0.07999 82.51051 41.25526 3 6 62.90294 5
5 0.277711 2190.904 1096.683 38 50 62.28254 6
25 0.139052 76.73981 38.36996 3 6 58.10739 7
26 0.236548 202.3093 101.2386 9 11 57.15026 8
3 0.360649 2683.937 1361.267 40 61 53.2604 9
21 0.53409 594.7792 336.9631 13 24 35.40002 10
- - - - - - - -
53 0.631117 4275.086 3046.694 2 3 1.47492 64
67 0.592324 1093.968 734.8267 1 1 1.312419 65
49 0.498964 3214.268 1780.697 1 2 1.08319 66
66 0.574944 1714.219 1098.003 1 1 1.068806 67

Based on Model (1), the range of risk value began at 1 and proceeded to a higher value, so a segment
with a value of 1 was considered safest, while the road segment with the highest value was considered
the most dangerous. Moreover, the cross risk method [20] was used to make all the DMUs comparable.
Table 3 presents the results. As the ranking was done on a priority basis to evaluate the safety
condition of that segment, the risk value of 91.07 was the highest value in the table and was ranked
first (i.e., the most risky segment). The top 10 riskiest segments are shown in Table 3 to explain an idea
of risky segment selection for improvement.

Furthermore, risk value was normalized by applying natural log, and with the help of GIS,
a complete spatial map of both motorways is shown in Figure 2. A straight line demonstration
provides an insight in locating the most riskiest segment on a motorway or highway.

Figure 2. Risk based Straight Line Map for Motorways (E-313&314).
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3.4. Phase-II: Application of ANNs Model for Risk Prediction and Evaluation

In the second phase, the dependent variable is the risk value generated by the DEA model, was
transformed by applying natural log to have data normalized. For independent variables, speed
could be controlled by controlling the speed limit; flow was directly related to the number of vehicles,
and could be controlled by controlling access; horizontal curve could be removed or altered as per
infrastructural changes, and the same was the case for vertical curve as a geometric design feature.
So for the application of ANN, data was distributed on the basis of a K-Fold mechanism with five
folds (i.e., distribution is as 53 segments-DMUs for Training and 14 segments-DMUs for validation).

ANNs, unlike other modeling platforms, requires some form of model validation to aid in the
model-building process and to help prevent overfitting of the model. The basic idea behind validation
(or cross-validation) is to hold a subset of the data out of the model-building process. This process
forms two partitions of the data, a training set and a validation set (note that a third set, or test set, can
also be used). The model is built using the training set, while the k-fold validation set is then used to
assess how well the model performs, and to aid in model selection. The most mainstream decision
for the quantity of concealed layers is used. A solitary concealed layer is typically adequate to catch
even extremely complex connections between the indicators. The quantity of links in the shrouded
layers likewise decides the level of multifaceted nature of the connection between the indicators that
the system catches [57].

From one viewpoint, utilizing an excessive couple of links is not adequate to catch complex
connections (e.g., review the unique instances of a straight relationship in direct and calculated relapse,
in the extraordinary instance of zero links or no shrouded layer). Then again, an excessive number
of links may prompt overfitting. A dependable guideline is, to begin with (number of indicators)
links and reduce or increment gradually while checking for overfitting. Another approach is to start
with the default neural model, with one layer and four nodes, and then run a much more complex
model with two layers and several nodes, and different activation functions. If the fit statistics do not
improve substantially with a more complex model, then a simpler model may suffice [57]. We applied
a simpler model to check the performance of the ANNs model in our case of risk evaluation, as shown
in Figure 3. After running the model as shown in Figure 3, we displayed the model structure. We saw
input variables mapping to each of the activation functions in the hidden layer, and nodes in the
hidden layer mapping to the output layer. The background mechanism in each of the nodes in the
hidden layer designated that the Gaussian activation function was used. Model results for both the
training and validation sets are shown in Table 4. The response variable (risk) for this model was
continuous. Like other techniques, it was necessary to follow the validation mechanism. With the
validation mechanism and separation of the data into two sets, unbiased results were provided.

Figure 3. Risk Prediction GIS Map based on the ANNs Model.
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In this study, as discussed earlier, original data were distributed into two parts. Out of 67 segments,
53 as the major data set were used for the training of the ANNs setup, while the remaining 14 were used
for validation after model building. The training set was the part that estimated model parameters.
The validation set was the part that assessed or validated the predictive ability of the model. In addition,
the most critical validation was applied in this study. Specifically, the K-Fold technique was adopted,
which divided the original data into K subsets. In turn, each of the K sets is used to validate the model
fit on to the rest of the data, fitting a total of K models. The model giving the best validation statistic
was chosen as the final model. This method was best for small data sets because it made efficient
use of limited amounts of data [57,58].The ANN based predicted value of risk was mapped in the
GIS environment as shown in Figure 4, showing a red line as the riskiest segments, while dark green
segments are the safest as there zero crashes on these segments.

Table 4. Parametric estimates of the ANNs Model.

Parameters
Estimates-Hidden Layer

Code H1_1 H1_2 H1_3 H1_4

Flow 0.258908 −2.00717 0.868246 4.984629
Speed −1.26756 3.435496 −1.83834 2.048267
Horz_Curve 0 2.150204 13.66468 −1.03056 1.968045

Vert_Curve
1 2.141838 −2.07175 1.313892 0.014534
2 −3.21511 7.986301 −3.09312 −0.53461

Intercept 1.90514 −1.87443 0.481882 −4.76064

Int H1_1 H1_2 H1_3 H1_4

NLog_Risk 2.221 −2.34861 6.612427 −1.8978 2.041027

Cross Validation

Sample Size Training 53 Validation 14
R2 (Training) 0.788 R2 (Validation) 0.775 RMSE 0.624

Figure 4. Geographical information system (GIS)-based ANNs-predicted risk spatial map.
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The values of R-square and Root Mean Square Error (RMSE) are the two basic validation indicators
for testing the goodness-of-fit of the model. ANNs is a very flexible model and has a tendency to overfit
data. When that happens, the model predicts the fitted data very well, but predicts future observations
poorly. To mitigate overfitting, the neural platform applies a penalty on the model parameters and
uses an independent dataset to assess the predictive power of the model. The applied technique to
control overfitting is the squared method. This method is applied if it is considered that independent
variables are contributing to the predictive ability of the model.

During the analysis, the graphical representation of data showed a better performance both in
the case of training and validation data. The data distribution was adopted in five segments, having
a distribution of 53 segments for training and 14 segments for validation. The plots showing the
perfection of predictability were shown in Figure 5 for both training and validation data. The values of
R-square were also almost similar for both major and training and validation data sets.

Figure 5. Actual By Predicted Plot (a) Training (b) Validation.

The contribution of factors associated with risk can be analyzed by the importance of the variables
(i.e., Flow, Speed, Vertical and Horizontal Curve).The impact of variables is one of the necessary targets
to analyze and improve the safety performance of the roads. Traffic safety engineers always search for
the relationships between factors and safety performance indicators (i.e., Risk). The relationship can
be observed in Table 5, which shows that speed and flow were two major factors which are having a
high impact on risk.

Table 5. Factors Association with the Risk.

Factor Main Effect Total Effect Comparison
Flow 0.224 0.908
Speed 0.064 0.47

Vert_Curve 0.072 0.426
Horz_Curve 0.052 0.288

A comprehensive analysis to overview the importance of factors provides traffic engineers to take
a decision during road safety analysis and implementation procedure.

3.5. Model Selection Criteria

In order to assess the performance of the DEA-based Risk prediction models, a number of
evaluation criteria were used to evaluate these models. These criteria were applied to measure how
close the real values were to the values predicted using the developed models. They included Root
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Mean Square Error (RMSE) and the correlation coefficient R or R2. These are given in Equations (6)
and (7) respectively [59].

RMSE =

√
1
n

n

∑
i = 1

(yi − ŷi)
2 (6)

R =
∑n

i = 1 (yi − y)
(
ŷi − ŷ

)√
∑n

i = 1 (yi − y)2
√

∑n
i = 1

(
ŷi − ŷ

)2
(7)

where y is actual Risk values, ŷ is the estimated Risk values using the proposed techniques, and n is
the total number of observations of DMUs.

4. Results

In order to find the factors influencing the road safety risk, ANNs and multiple linear
regression (MLR) were generated using the Road Traffic and Crash data obtained for European
routes (E-313&E-314) of Limburg (Belgium). Although the basic target was to implement the ANNs
model, regression analysis was also conducted to assess the performance of ANNs.

4.1. Performance of Model

The main objective of the methods (ANNs and MLR) was to fit an accurate model for risk
prediction. The adequacy of such models are typically measured either by the coefficient of
determination of the predictions against actual values (R2) or by RMSE. Figure 6 shows the comparative
diagram of prediction between ANNs and MLR.

The graph shown in Figure 6 suggests that ANNs is a better predictor than MLR. Moreover, if we
considered the comparative assessment of model predicting capability, we see that R2 from ANNs
(0.788) is much higher than that from MLR (0.276). Another major tester of the capability of the model
is the RMSE; a smaller value indicating better fit. It also indicated that ANNs (0.624) has performed
better in comparison with MLR (1.0789), as shown in Table 6.

Figure 6. Comparative Analysis for Predicted Vs Actual Risk Values.
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Table 6. Comparative Analysis of ANNs Vs Multiple Linear Regression (MLR).

Model R2 Predicted R2 (K-Fold) Validation RMSE

Sample Size 53 14
ANN 0.788 0.774 0.624109
MLR 0.276 0.147 1.0789985

Note: RMSE = Root Mean Square Error.

4.2. Analysis of Factors

As far as a solution to the problem is concerned, we can also analyze data on a graphical basis
were the relationship can serve as a better understanding of our problem. After successfully applying
the DEA-ANNs model for the road safety risk evaluation, we focused on the contributing factors
used in the risk prediction. Decision makers/traffic safety engineer aim for low-cost treatments for
problematic/risky segments. Thus from graphical analysis of the contributing factors, we saw that the
majority of the crashes were on the curved portions of the motorways. Decision makers usually avoid
infrastructural changes because redesigning and reconstruction is a costly procedure, so if they focus
on the low-cost treatments, they can focus on speed and flow control. Figure 7 presents the relationship
between the risk and the different contributing factors. The red lines represent mean speed levels,
while the green lines represent mean flow level. We can see from Figure 7 that the risk level could be
reduced by controlling just these two factors.

Figure 7. Contributing Factor based Risk Analysis.
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4.2.1. Speed

In the case of motorways, a high speed limit is preferred to provide for free and easy maneuvering,
but excessive speed is a very important factor having an impact on the number of crashes and injuries.
In high-income countries, speed is one of the major factors (probably one third) of fatal and serious
crashes [60–62]. We observed from the data that 35 out of 67 segments (52%) were above the mean
speed limit 110 kph. So a reduction in speed limit could help in reducing risk level.

4.2.2. Flow

Flow is one of the major factors related to road safety, in parallel speed, the analysis showed that 39
out of 67 segments (58%) of the portion had above mean levels of traffic flow, i.e., 1000 vehicles. Traffic
flow is one of the major contributing factor in road crashes [63,64]. “Based on the fluid mechanics
theory of the traffic flow, the traffic flow parameters were specified, and the models of compressibility
and viscosity of traffic flow were established respectively. Traffic control measures such as restricting
the traffic flow at the upstream and downstream of the accident section should be carried out to control
the crashes” [65]. So controlling the flow factor for the risky segments could assist in reducing the risk
level of those segments.

4.2.3. Horizontal Curve

For the road safety analysis, the horizontal alignment designed cannot be ignored, especially the
horizontal curve [66]. From previous research , the occurrence of accidents occurring on the curve is
higher than the tangent (straight line), and it is necessary to design a horizontal curve [66]. In this
analysis 80% of the risky level was along with the horizontal curves, so continuous marking of road
marking signs for horizontal curves and straightening of curves can help in reducing crashes.

4.2.4. Vertical Curve

Research related to geometric characteristics showed that vertical curves had a significant effect
on road crashes, and also while estimating speeds on highways [67]. Researchers also concluded
that roads with vertical curves and higher speed limits tended to have more severe crashes [68].
Sometimes, a combination of horizontal and vertical curves is dangerous for road safety. The upward
and downward gradient of the road contributed 76% in risk segment contribution, so a change in level
could also help in reducing the risk level of road segments.

4.3. Safety Management and Financial Decision Making

Road safety management system and decision making is linked with econometrics i.e., funding
and investments. Most countries need to enhance their understanding of spending on the significances
of road safety, both by administration and organizations, and investment in road safety improvement.
Road safety establishments need this knowledge to prepare financial and economic indication on
the costs and usefulness of proposed solutions in order to win public and state support for funding
road safety programs. There are prospects for targeted road safety funds that provide competitive
revenues [69]. Road safety consultants and specialists develop business cases for this investment by
applying such methods (i.e., the proposed DEA-ANNs method). A step change in funds invested in
road safety management and in safer transport systems is compulsory to comprehend the success of
motivated road safety targets in most of the world [69].

“Even though the implementation and maintenance costs of motorways vary significantly between
the countries, in some cases also due to the different tendering systems, they are usually high,
comparing to the implementation costs of other road safety road infrastructure related initiatives” [70].
During Cost-benefit analysis (CBA), the “cost-effectiveness of motorways also varies from case to
case, especially due to the different implementation costs. In most cases, though, CBA results reveal
relatively small ratios for new motorway development comparing to respective ratios regarding other
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road safety investments, mainly due to the very high implementation costs. However, even these
ratios are considered as adequate to support the decisions for motorway development or the upgrade
of existing rural network into motorways and apart from the strict financial criteria, the significant
benefits for the road users can enhance the investment’s effectiveness and should also be taken into
account by the appropriate authorities” [70].

After safety analysis, we can target a different type of solutions: low-cost solutions, relatively
costly solutions, and costly solutions. Speed limit change is considered as a low-cost solution because
by changing sign boards for speed limit can help in the implementation of safety related alternatives.
Consultants sometimes even recommend to installing permanent solution of electronic speed limit
signs which help in controlling speed limit, some may be electronically related to the flow of the road
and speed limit, to automatically change according to requirements. Flow limit is also another problem
on the road, and can be solved by implementing the option of controlling access. The controlling flow
option needs to have structures (e.g., toll installation) which lead to an investment higher than speed
controlling signs. Flow can be controlled by applying tolls on those segments which are under high
risk, which leads towards higher investments. Infrastructural change is one of the costly solutions
during the safety solution process. Horizontal curve and vertical curve change can be backed by higher
investments. Decision makers are always reluctant to change the structural pattern because a proper
structural design change and construction is required to implement the decision. Sometimes, cost can
increase by additional super elevation changes, in combination to horizontal and vertical changes.

4.4. Advantages and Limitations of Using the DEA-ANN Method

Since DEA offers some benefits to other approaches such “as “(1) DEA is able to handle multiple
inputs and outputs (2) DEA does not require a functional form that relates inputs and outputs
(3) DEA optimizes on each individual observation and compares them against the “best practice”
observations. (3) DEA can handle inputs and outputs without knowing a price or knowing the
weights and (4) DEA produces a single measure for every DMU that can be easily compared with
other DMUs and also have some limitation as (1) DEA only calculates relative efficiency measures
and (2) As a nonparametric technique statistical hypothesis test are quite difficult” [71,72]. “Neural
networks offer a number of advantages, including requiring less formal statistical training, ability
to implicitly detect complex nonlinear relationships between dependent and independent variables,
ability to detect all possible interactions between predictor variables, and the availability of multiple
training algorithms. Disadvantages include its “black box” nature, greater computational burden,
proneness to overfitting, and the empirical nature of model development” [73]. However, overfitting
can be controlled by the penalty method. Previously, DEA was popular with its multi-stage properties,
but it has shortcomings with respect to its prediction capabilities, which reduces/limits its application.
So, a powerful technique, ANNs, has been joined with DEA to fill that gap. Finally, the predictive
potential of ANNs and the optimization capacity of DEA perform complementary features, thus
envisioning a prominent modelling option [3,6].

5. Conclusions

This study focuses on road safety risk evaluation and connection between risk recurrence with
respect to contributing factors. To enhance the estimation accuracy, a joint technique has been proposed
and applied to achieve the risk evaluation, i.e., a benchmarking mechanism of DEA in combination
with a prediction model of ANNs has been introduced to the road safety field. A crash dataset
extracted from the Flemish Road safety department is stratified by two factors: the number of total
crashes and number of affected persons, and is utilized to exhibit the proposed model formation of
DEA and neural network performance. Notwithstanding the over-scattered crash information and
the high relationship between the crash frequencies of the distinctive damage degrees, the outcomes
demonstrate that comprehensive neural systems beat the multiple linear regression, shows in fitting
and prescient execution. It demonstrates the neural system’s prevalence over linear regression.
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Risk has been calculated with the help of DEA for two motorways. Calculating risk has another
advantage if segment length or volume of traffic is high or low; if we had just analyzed on the basis
of number of crashes, it would not be a fair way to evaluated the most problematic segments out of
a length of highway. Thus, using maximum information to evaluate an overall risk, DEA is a better
option. In addition, we can rank them on the basis of risk value, and we can select our priorities on
the basis that it could lead us to better decision making. So, for selecting problematic segments, it is a
great achievement if we are able to indicate the most dangerous (risky) segments.

The predictability of risk values were checked with the assistance of ANNs: speed, flow,
and horizontal and vertical curve. These are the most important factors which could be influenced
by decision makers/transportation engineers. Selecting the contributing factors and changing the
speed limit and flow limitation for risky segments could provide low-cost safety solutions. On the
other hand, an infrastructural change like an amendment in the horizontal and vertical curve can
cost much. However, this system can also help with designing better solutions as no one would
prefer to change the structure of an entire highway (i.e., if a 100 km long highway), thus, selecting the
most problematic section and solving the safety problem of only those segments would also provide
low-cost decision making outcomes. Furthermore, combining ANN with GIS in a road safety analysis
system can further encompass the functionality of the ANNs and, at the same time, increase the set of
potential applications of GIS. The main advantage of using an ANNs system within a GIS environment
for road safety and crash analysis includes the collection, manipulation, and analysis of the crash
related data, which can be used effectively and resourcefully. The results of the overlay functions and
spatial analysis performed by a GIS can be used as the input and training settings of a neural network,
while the results of the neural network may be deployed by a GIS to produce a geospatial output. Each
spatial input data and outcome of the neural network can be easily accumulated, normalized, rescaled,
re-projected, and overlaid. It may accept different kinds of parameters (e.g., class, ordinal, continuous
and categorical) as input or output values, and can handle deficient data [74]. The system is extremely
flexible and self-adaptive, and capable of incorporating any improvement new data set. So, a joint
approach of DEA-ANN within a GIS environment can provide an easy and an efficient output for
decision makers for road safety data analysis and decision making for safety improvement.

Acknowledgments: This research is jointly supported by TITE and IMOB. and sponsored by IMOB for
publication. Authors would like to thank HE-Boong Kwon (USA), one of pioneer of DEA-ANN method for his
valuable guidance.

Author Contributions: Ali Pirdavani, Tom Brijs and Syyed Adnan Raheel Shah conceived and designed the
concept; Syyed Adnan Raheel Shah and Naveed Ahmad performed literature review; Syyed Adnan Raheel Shah,
Yongjun Shen and Tom Brijs applied DEA and ANN model; Muhammad Aamir Bashir and Ali Pirdavani
contributed in data extraction-GIS application and contributed in analysis tools; Syyed Adnan Raheel Shah wrote
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Songchitruksa, P.; Tarko, A.P. The extreme value theory approach to safety estimation. Accid. Anal. Prev.
2006, 38, 811–822. [CrossRef] [PubMed]

2. Golob, T.F.; Recker, W.W.; Alvarez, V.M. Tool to evaluate safety effects of changes in freeway traffic flow.
J. Transp. Eng. 2004, 130, 222–230. [CrossRef]

3. Kwon, H.B. Exploring the predictive potential of artificial neural networks in conjunction with DEA in
railroad performance modeling. Int. J. Prod. Econ. 2017, 183, 159–170. [CrossRef]

4. Hsiang, H.L.; Chen, T.Y.; Chiu, Y.H.; Kuo, F.H. A comparison of three-stage DEA and artificial neural network
on the operational efficiency of semi-conductor firms in Taiwan. Mod. Econ. 2013, 4, 20.

5. Sreekumar, S.; Mahapatra, S. Performance modeling of Indian business schools: A DEA-neural network
approach. Benchmarking 2011, 18, 221–239. [CrossRef]

6. Kwon, H.B. Performance modeling of mobile phone providers: A DEA-ANN combined approach.
Benchmarking 2014, 21, 1120–1144. [CrossRef]

69

Bo
ok
s

M
DP
I



Appl. Sci. 2017, 7, 886

7. Azadeh, A.; Azadeh, A.; Saberi, M.; Moghaddam, R.T.; Javanmardi, L. An integrated data
envelopment analysis–artificial neural network–rough set algorithm for assessment of personnel efficiency.
Expert Syst. Appl. 2011, 38, 1364–1373. [CrossRef]

8. Mostafa, M.M. Modeling the efficiency of top Arab banks: A DEA–neural network approach.
Expert Syst. Appl. 2009, 36, 309–320. [CrossRef]

9. Emrouznejad, A.; Anouze, A.L. Data envelopment analysis with classification and regression tree—A case of
banking efficiency. Expert Syst. 2010, 27, 231–246. [CrossRef]

10. Samoilenko, S.; Osei-Bryson, K.M. Using Data Envelopment Analysis (DEA) for monitoring efficiency-based
performance of productivity-driven organizations: Design and implementation of a decision support system.
Omega 2013, 41, 131–142. [CrossRef]

11. Çelebi, D.; Bayraktar, D. An integrated neural network and data envelopment analysis for supplier evaluation
under incomplete information. Expert Syst. Appl. 2008, 35, 1698–1710. [CrossRef]

12. Kuo, R.J.; Wang, Y.C.; Tien, F.C. Integration of artificial neural network and MADA methods for green
supplier selection. J. Clean. Prod. 2010, 18, 1161–1170. [CrossRef]

13. Pendharkar, P.C. A hybrid radial basis function and data envelopment analysis neural network for
classification. Comput. Oper. Res. 2011, 38, 256–266. [CrossRef]

14. Al Haji, G. Towards a Road Safety Development Index (RSDI): Development of an International Index to Measure
Road Safety Performance; Linköping University Electronic Press: Linköping, Sweden, 2005; p. 113.

15. Yannis, G.; Papadimitriou, E.; Lejeune, P.; Treny, V.; Hemdorff, S.; Bergel, R.; Haddak, M.; Holló, P.; Cardoso, J.;
Bijleveld, F.; et al. State of the Art Report on Risk and Exposure Data. SafetyNet, Building the European Road Safety
Observatory, Workp 2 Deliv D2; European Road Safety Observatory: Brussels, Belgium, 2007; p. 120.

16. Elke, H.; Tom, B.; Geert, W.; Koen, V. Benchmarking road safety: Lessons to learn from a data envelopment
analysis. Accid. Anal. Prev. 2009, 41, 174–182.

17. Wegman, F.; Oppe, S. Benchmarking road safety performances of countries. Saf. Sci. 2010, 48, 1203–1211.
[CrossRef]

18. Shen, Y.; Hermans, E.; Bao, Q.; Brijs, T.; Wets, G. Serious injuries: An additional indicator to fatalities for
road safety benchmarking. Traffic Inj. Prev. 2015, 16, 246–253. [CrossRef] [PubMed]

19. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res.
1978, 2, 429–444. [CrossRef]

20. Shen, Y.; Hermans, E.; Brijs, T.; Wets, G.; Vanhoof, K. Road safety risk evaluation and target setting using
data envelopment analysis and its extensions. Accid. Anal. Prev. 2012, 48, 430–441. [CrossRef] [PubMed]

21. Shen, Y.; Hermans, E.; Ruan, D.; Wets, G.; Brijs, T.; Vanhoof, K. Evaluating trauma management performance
in Europe: A multiple-layer data envelopment analysis model. Transp. Res. Rec. 2010, 2148, 69–75. [CrossRef]

22. Shen, Y.; Hermans, E.; Bao, Q.; Brijs, T.; Wets, G. Road safety development in Europe: A decade of changes
(2001–2010). Accid. Anal. Prev. 2013, 60, 85–94. [CrossRef] [PubMed]

23. Shen, Y.; Shen, Y.; Hermans, E.; Bao, Q.; Brijs, T.; Wets, G.; Wang, W. Inter-national benchmarking of road
safety: State of the art. Transp. Res. Part C 2015, 50, 37–50. [CrossRef]

24. Bastos, J.T.; Shen, Y.; Hermans, E.; Brijs, T.; Wets, G.; Ferraz, A.C.P. Traffic fatality indicators in Brazil: State
diagnosis based on data envelopment analysis research. Accid. Anal. Prev. 2015, 81, 61–73. [CrossRef] [PubMed]

25. Williams, J.; Li, Y. A case study using neural networks algorithms: Horse racing predictions in Jamaica.
In Proceedings of the International Conference on Artificial Intelligence (ICAI 2008), Las Vegas, NV, USA,
14–17 July 2008.

26. Abdelwahab, H.; Abdel Aty, M. Development of artificial neural network models to predict driver injury
severity in traffic accidents at signalized intersections. Transp. Res. Rec. 2001, 1746, 6–13. [CrossRef]

27. Chong, M.M.; Abraham, A.; Paprzycki, M. Traffic accident analysis using decision trees and neural networks.
arXiv 2004, arXiv:cs/0405050.

28. Yasin Çodur, M.; Tortum, A. An Artificial Neural Network Model for Highway Accident Prediction: A Case
Study of Erzurum, Turkey. Promet-Traffic Transp. 2015, 27, 217–225.

29. Zeng, Q.; Huang, H.; Pei, X.; Wong, S.C. Modeling nonlinear relationship between crash frequency by
severity and contributing factors by neural networks. Anal. Sci Accid. Res. 2016, 10, 12–25. [CrossRef]

30. Athanassopoulos, A.D.; Curram, S.P. A comparison of data envelopment analysis and artificial neural
networks as tools for assessing the efficiency of decision making units. J. Oper. Res. Soc. 1996, 1000–1016.
[CrossRef]

70

Bo
ok
s

M
DP
I



Appl. Sci. 2017, 7, 886

31. Vaninsky, A. Combining data envelopment analysis with neural networks: Application to analysis of stock
prices. J. Inf. Optim. Sci. 2004, 25, 589–611. [CrossRef]

32. Azadeh, A.; Javanmardi, L.; Saberi, M. The impact of decision-making units features on efficiency by
integration of data envelopment analysis, artificial neural network, fuzzy C-means and analysis of variance.
Int. J. Oper. Res. 2010, 7, 387–411. [CrossRef]

33. Ülengin, F.; Kabak, Ö.; Önsel, S.; Aktas, E.; Parker, B.R. The competitiveness of nations and implications for
human development. Socio-Econ. Plan. Sci. 2011, 45, 16–27. [CrossRef]

34. Wu, D.D.; Yang, Z.; Liang, L. Using DEA-neural network approach to evaluate branch efficiency of a large
Canadian bank. Expert Syst. Appl. 2006, 31, 108–115. [CrossRef]

35. Wu, D. Supplier selection: A hybrid model using DEA, decision tree and neural network. Expert Syst. Appl.
2009, 36, 9105–9112. [CrossRef]

36. Ciobanu, S.M.; Benedek, J. Spatial characteristics and public health consequences of road traffic injuries in
Romania. Environ. Eng. Manag. 2015, 14, 2689–2702.

37. Wang, C.; Quddus, M.A.; Ison, S.G. Impact of traffic congestion on road accidents: A spatial analysis of the
M25 motorway in England. Accid. Anal. Prev. 2009, 41, 798–808. [CrossRef] [PubMed]

38. Chen, C.; Li, T.; Sun, J.; Chen, F. Hotspot Identification for Shanghai Expressways Using the Quantitative
Risk Assessment Method. Int. J. Environ. Res. Public Health 2016, 14, 20. [CrossRef] [PubMed]

39. Zhang, C.; Yan, X.; Ma, L.; An, M. Crash prediction and risk evaluation based on traffic analysis zones.
Math. Probl. Eng. 2014, 2014, 9. [CrossRef]

40. Moradi, A.; Soori, H.; Kavousi, A.; Eshghabadi, F.; Jamshidi, E.; Zeini, S. Spatial analysis to identify high risk
areas for traffic crashes resulting in death of pedestrians in Tehran. Med. J. Islam. Repub. Iran 2016, 30, 450.
[PubMed]

41. Steenberghen, T.; Dufays, T.; Thomas, I.; Flahaut, B. Intra-urban location and clustering of road accidents
using GIS: a Belgian example. Int. J. Geogr. Inf. Sci. 2004, 18, 169–181. [CrossRef]

42. Pirdavani, A.; Bellemans, T.; Brijs, T.; Wets, G. Application of geographically weighted regression technique
in spatial analysis of fatal and injury crashes. J. Transp. Eng. 2014, 140, 04014032. [CrossRef]

43. Pirdavani, A.; Bellemans, T.; Brijs, T.; Kochan, B.; Wets, G. Assessing the road safety impacts of a teleworking
policy by means of geographically weighted regression method. J. Saf. Res. 2014, 39, 96–110. [CrossRef]

44. Eksler, V.; Lassarre, S. Evolution of road risk disparities at small-scale level: Example of Belgium. J. Pet. Sci. Eng.
2008, 39, 417–427. [CrossRef] [PubMed]

45. Yang, Y.; Rosenbaum, M. Artificial neural networks linked to GIS for determining sedimentology in harbours.
J. Pet. Sci. Eng. 2001, 29, 213–220. [CrossRef]

46. Sameen, M.I.; Pradhan, B. Severity Prediction of Traffic Accidents with Recurrent Neural Networks. Appl. Sci.
2017, 7, 476. [CrossRef]

47. Pradhan, B.; Lee, S.; Buchroithner, M.F. A GIS-based back-propagation neural network model and its
cross-application and validation for landslide susceptibility analyses. Comput. Environ. Urban Syst. 2010, 34,
216–235. [CrossRef]

48. Elsafi, S.H. Artificial neural networks (ANNs) for flood forecasting at Dongola Station in the River Nile,
Sudan. Alex. Eng. J. 2014, 53, 655–662. [CrossRef]

49. Lee, S.; Park, I.; Koo, B.J.; Ryu, J.H.; Choi, J.K.; Woo, H.J. Macrobenthos habitat potential mapping using
GIS-based artificial neural network models. Mar. Pollut. Bull. 2013, 67, 177–186. [CrossRef] [PubMed]

50. Pijanowski, B.C.; Brown, D.G.; Shellito, B.A.; Manik, G.A. Using neural networks and GIS to forecast land
use changes: A land transformation model. Comput. Environ. Urban Syst. 2002, 26, 553–575. [CrossRef]

51. Yoo, C.; Kim, J.M. Tunneling performance prediction using an integrated GIS and neural network.
Comput. Geotech. 2007, 34, 19–30. [CrossRef]

52. Mas, J.F.; Puig, H.; Palacio, J.L.; Sosa López, A. Modelling deforestation using GIS and artificial neural
networks. Environ. Model. Soft 2004, 19, 461–471. [CrossRef]

53. Janssens, D.; Wets, G.; Timmermans, H.J.; Arentze, T.A. Modelling short-term dynamics in activity-travel
patterns: Conceptual framework of the Feathers model. In Proceedings of the 11th World Conference on
Transport Research, Berkeley, CA, USA, 24–28 June 2007.

54. Avkiran, N.K. An application reference for data envelopment analysis in branch banking: Helping the novice
researcher. Int. J. Bank Mark 1999, 17, 206–220. [CrossRef]

71

Bo
ok
s

M
DP
I



Appl. Sci. 2017, 7, 886

55. Galagedera, D.; Silvapulle, P. Experimental evidence on robustness of data envelopment analysis. J. Oper.
Res. Soc. 2003, 54, 654–660. [CrossRef]

56. Raab, R.L.; Lichty, R.W. Identifying subareas that comprise a greater metropolitan area: The criterion of
county relative efficiency. J. Reg. Sci. 2002, 42, 579–594. [CrossRef]

57. Shmueli, G.; Patel, N.R.; Bruce, P.C. Data Mining for Business Analytics: Concepts, Techniques and Applications;
John Wiley & Sons: Hoboken, NJ, USA, 2016.

58. Jmp, A.; Proust, M. Specialized Models; AS Institute Inc.: Cary, NC, USA, 2013.
59. Tso, G.K.; Yau, K.K. Predicting electricity energy consumption: A comparison of regression analysis, decision

tree and neural networks. Energy 2007, 32, 1761–1768. [CrossRef]
60. Elvik, R. Speed and road safety: Synthesis of evidence from evaluation studies. Transp. Res. Rec. 2005, 1908,

59–69. [CrossRef]
61. Kweon, Y.J.; Kockelman, K. Safety effects of speed limit changes: Use of panel models, including speed, use,

and design variables. Transp. Res. Rec. 2005, 1908, 148–158. [CrossRef]
62. WHO. World Report on Road Traffic Injury Prevention; World Health Organization: Geneva, Switzerland, 2004.
63. Garber, N.; Ehrhart, A. Effect of speed, flow, and geometric characteristics on crash frequency for two-lane

highways. Transp. Res. Rec. 2000, 1717, 76–83. [CrossRef]
64. Golob, T.F.; Recker, W.; Pavlis, Y. Probabilistic models of freeway safety performance using traffic flow data

as predictors. Saf. Sci. 2008, 46, 1306–1333. [CrossRef]
65. Xie, F.; Feng, Q. Research of effects of accident on traffic flow characteristics. In Proceedings of the

International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shengyang,
China, 20–22 December 2013.

66. Zhang, Y. Analysis of the Relation between Highway Horizontal Curve and Traffic Safety. In Proceedings
of the International Conference on Measuring Technology and Mechatronics Automation (ICMTMA),
Zhangjiajie, China, 11–12 April 2009.

67. Vayalamkuzhi, P.; Amirthalingam, V. Influence of geometric design characteristics on safety under
heterogeneous traffic flow. Transp. Res. Rec. 2016, 3, 559–570. [CrossRef]

68. Ma, M.; Yan, X.; Abdel Aty, M.; Huang, H.; Wang, X. Safety analysis of urban arterials under mixed-traffic
patterns in Beijing. Transportation Research Record. Transp. Res. Rec. 2010, 2193, 105–115. [CrossRef]

69. Zero, T. Towards Zero: Achieving Ambitious Road Safety Targets through a Safe System Approach; OECD: Paris,
France, 2008.

70. Yannis, G.; Evgenikos, P.; Papadimitriou, E. Best Practice for Cost-Effective Road Safety Infrastructure Investments;
Conference of European Directors of Road (CEDR): Paris, France, 2008.

71. Blumenberg, S. Benchmarking Financial Processes with Data Envelopment Analysis. 2005. Available online:
www.is-frankfurt.de/publikationenNeu/BenchmarkingFinancialProcesses1208.pdf (accessed on 20 June 2017).

72. Charnes, A.; Cooper, W.W.; Lewin, A.Y.; Seiford, L.M. Data Envelopment Analysis: Theory, Methodology,
and Applications; Springer Science & Business Media: New York, NY, USA, 2013.

73. Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for
predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [CrossRef]

74. Tsangaratos, P.; Benardos, A. Applying artificial neural networks in slope stability related phenomena.
In Proceedings of the 13th International Congress-Bulletin of the Geological Society of Greece (BGSG),
Chania, Greece, 5–8 September 2013; pp. 1901–1911.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

72

Bo
ok
s

M
DP
I



applied  
sciences

Article

Optimized Neural Architecture for Automatic
Landslide Detection from High-Resolution Airborne
Laser Scanning Data

Mustafa Ridha Mezaal 1, Biswajeet Pradhan 1,2,* , Maher Ibrahim Sameen 1,

Helmi Zulhaidi Mohd Shafri 1 and Zainuddin Md Yusoff 1

1 Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia,
Serdang 43400, Malaysia; gismustafa87@gmail.com (M.R.M.); maherrsgis@gmail.com (M.I.S.);
helmi@eng.upm.edu.my (H.Z.M.S.); zmy@upm.edu.my (Z.M.Y.)

2 School of Systems, Management and Leadership, Faculty of Engineering and Information Technology,
University of Technology Sydney, Building 11, Level 06, 81 Broadway,
Ultimo NSW 2007 (P.O. Box 123), Australia

* Correspondence: Biswajeet24@gmail.com or biswajeet@lycos.com

Academic Editor: Saro Lee
Received: 29 June 2017; Accepted: 13 July 2017; Published: 16 July 2017

Abstract: An accurate inventory map is a prerequisite for the analysis of landslide susceptibility,
hazard, and risk. Field survey, optical remote sensing, and synthetic aperture radar techniques are
traditional techniques for landslide detection in tropical regions. However, such techniques are
time consuming and costly. In addition, the dense vegetation of tropical forests complicates the
generation of an accurate landslide inventory map for these regions. Given its ability to penetrate
vegetation cover, high-resolution airborne light detection and ranging (LiDAR) has been used to
generate accurate landslide maps. This study proposes the use of recurrent neural networks (RNN)
and multi-layer perceptron neural networks (MLP-NN) in landscape detection. These efficient
neural architectures require little or no prior knowledge compared with traditional classification
methods. The proposed methods were tested in the Cameron Highlands, Malaysia. Segmentation
parameters and feature selection were respectively optimized using a supervised approach and
correlation-based feature selection. The hyper-parameters of network architecture were defined
based on a systematic grid search. The accuracies of the RNN and MLP-NN models in the analysis
area were 83.33% and 78.38%, respectively. The accuracies of the RNN and MLP-NN models in the
test area were 81.11%, and 74.56%, respectively. These results indicated that the proposed models
with optimized hyper-parameters produced the most accurate classification results. LiDAR-derived
data, orthophotos, and textural features significantly affected the classification results. Therefore, the
results indicated that the proposed methods have the potential to produce accurate and appropriate
landslide inventory in tropical regions such as Malaysia.

Keywords: landslide detection; LiDAR; recurrent neural networks (RNN); multi-layer perceptron
neural networks (MLP-NN); GIS; remote sensing

1. Introduction

Landslides are dangerous geological disasters with catastrophic effects on human lives and
properties. Landslides occur with high frequency in mountainous and hilly areas, such as the Cameron
Highlands in Malaysia. Landslide incidence is related to a cluster of triggering factors, such as
intense rainfall, volcanic eruptions, rapid snowmelt, elevated water levels, and earthquakes. Landslide
inventory maps are crucial for measuring the magnitude and analyzing the susceptibility, hazard, and
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risk of earthquakes [1,2], as well as for examining distribution patterns and predicting the landscapes
affected by landslide [3]. Mapping a landslide inventory in tropical areas is challenging because the
dense vegetation cover in these regions obscures underlying landforms [4]. Moreover, the majority of
available conventional landslide detection techniques are not rapid and accurate enough for inventory
mapping given the rapid vegetation growth in tropical regions. Therefore, inventory mapping requires
the use of more rapid and accurate techniques, such as light detection and ranging (LiDAR) [5], which
uses active laser transmitters and receivers to acquire elevation data. In addition, LiDAR has the
unique capability to penetrate densely vegetated areas [5] and provide detailed information on terrains
with high point density. Moreover, it depicts ground surface features and provides useful information
on topographical features in areas where landslide locations are obscured by vegetation cover [6,7].

Numerous studies have applied a multiresolution segmentation algorithm for the remote sensing
of land features [8]. This algorithm requires the identification of three parameters (i.e., scale,
shape, and compactness); the values of these parameters can be determined using the traditional
trial-and-error method, which is very time consuming and laborious [5]. Moreover, using the algorithm
to delineate the boundary of an object at different scales remains challenging [9]. Thus, optimal
parameters for segmentation should be identified via semiautomatic and automatic approaches [10–12].
The automatic selection of segmentation parameters requires the use of the advanced supervised
approach presented in [13].

Processing a large number of irrelevant features causes overfitting [14]. By contrast, the best
classification results are obtained by selecting the most relevant feature [15]. Landslide identifcation in
a particular area can be improved by selecting the most significant feature [15,16]. As shown in [2],
selecting the most significant feature facilitates the differentiation of landslides from non-landslides.
Accuracy can be improved by decreasing the number of features, as recommended in [17]. The
efficiency of feature selection techniques for landslide detection has been proven in [18–20].

The neural network (NN) is effective in remote sensing applications [21], particularly in
solving different image classification problems [22] specified by nonlinear mathematical fitting for
function approximation. NN architectures are classified into the recurrent neural network (RNN),
back-propagation neural network, probability neural network, and multilayer perceptron neural
network (MLP-NN). NN-based classifiers can adapt to different types of data and inputs, and can
overcome the issue of mixed pixels by providing fuzzy output and fit with multiple images [23,24].
These classifiers include parallel computation, which is superior to statistical classification approaches
because it is non-parametric and does not require the prior knowledge of a distribution model for input
data [25]. Moreover, NN-based classifiers can evaluate non-linear relationships between the input
data and desired outputs and are distinguished by their fast generalization capability [26]. NN-based
classifiers have been successfully in function approximation, prediction, pattern recognition, landslide
detection, image classification, automatic control, and landslide susceptibility [27–32]. Authors of [33]
found that MLP-NN can be effectively applied in landslide detection using multi-source data. The RNN
model can effectively predict landslide displacement [34]. The above neural architecture techniques
have not been extensively used for landslide detection using only LiDAR data. This research gap
urged us to apply the RNN and MLP-NN models in landslide detection based on very high-resolution
LiDAR data. To achieve this objective, we optimized multiresolution segmentation parameters via a
supervised approach. Using the correlation-based feature selection (CFS) algorithm, we selected the
most significant feature from high-resolution airborne laser scanning data.

2. Study Area

This study was performed in a small section of the Cameron Highlands, which is notorious for
its frequent occurrence of landslides. The study area covers an area of 26.7 km2. It is located on
northern peninsular Malaysia within the zone comprising latitudes 4◦26′3′ ′ to 4◦26′18′ ′ and longitudes
101◦23′48′ ′ to 101◦24′4′ ′ (Figure 1). The annual average rainfall and temperature in this region are
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approximately 2660 mm and 24/14 ◦C (daytime/nighttime temperatures), respectively. Approximately
80% of its area is forested with a flat (0◦) to hilly (80◦) land form.

Figure 1. Location of the study area. The red boundary represents the analysis area and the yellow
boundary represents the test area.

Two sites were selected to implement and test the proposed models (Figure 1). All the prerequisite
considerations were taken in to account during test site selection to avoid missing any land cover
classes. To obtain an accurate map of the analysis and test sites, the training sample size was measured
via the stratified random sample method.

3. Methodology

3.1. Overall Methodology and Pre-Processing

LiDAR data and landslide inventories were first pre-processed to eliminate noise and outliers.
A high-resolution digital elevation model (DEM) at 0.5 m was then derived from LiDAR point clouds
to generate other LiDAR-derived products (i.e., slope, aspect, height or (normalized digital surface
model (nDSM)), and intensity. LiDAR-derived products and orthophotos were then composited by
rectifying their geometric distortions to generate one coordinate system and were finally prepared
in geographic information system (GIS) for feature extraction. Suitable parameters (scale, shape,
and compactness) at various levels of segmentation were obtained via a supervised approach, i.e.,
a fuzzy-based segmentation parameter optimizer (FbSP optimizer) [13]. The stratified random
method was used to evaluate the training dataset in accordance with the procedure in [35]. The
correlation-based selection algorithm (CFS) [36] was used to rank features from the most to least
important. RNN and MLR-NN models were applied to detect landslide locations. The results of
the models were validated using a 10-fold cross validation method. In addition, the models were
evaluated in another part of the study area (i.e., the test site). Slope and aspect layers were overlaid
with the results to identify other landslide characteristics (i.e., direction and run off). The study flow is
illustrated in Figure 2.
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Figure 2. Overview of the proposed method. LiDAR: light detection and ranging; RNN: recurrent
neural networks; MLP-NN: multi-layer perceptron neural networks; CFS: correlation-based feature
selection; DEM: digital elevation model.

3.2. Landslide Inventory

The landslide inventory; produced previously by Pradhan and Lee, [39] was used to develop the
proposed detection method and the total number of landslides is 21 in the study area covering 3781 m2

(Figure 3).

3.3. Data

LiDAR point-cloud data were collected on 15 January 2015 at a point density of 8 points/m2

and frequency pulse rate of 25,000 Hz. The absolute accuracy of the data (root-mean square errors)
was restricted to 0.15 m and 0.3 m in the vertical and horizontal axes, respectively. Orthophotos were
obtained using the same acquisition system that relied on the abovementioned cloud data. A DEM
was derived from LiDAR point clouds with a spatial resolution of 0.5 m after non-ground points
were removed using inverse distance weighting with a spatial reference of GDM2000/Peninsula RSO.
Subsequently, LiDAR-based DEM was used to generate derived layers to facilitate the identification
and characterization of landslide locations [37].
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Figure 3. Shows the locations of landslide in the study area.

According to the authors of [38], slope directly and highly affects landslide phenomenology.
The authors of [39] also inferred that slope is the principal factor that affects landslide occurrence.
The author of [40] indicated that a hillshade map provides a good image of terrain movements,
thus facilitating the development of landslide maps. Texture and geometric features are crucial for
improving the classification accuracy of landslide mapping [14]. Landslide intensity and texture
derived from LiDAR data are affected by the accuracy of landslide detection [9]. The accuracy and
capacity of DEM to represent surface features are determined by terrain morphology, sampling density,
and the interpolation algorithm [41]. In this study, hillshade, height (nDSM), slope, and aspect were
generated from LiDAR-based DEM. As shown in Figure 4, landslide locations were detected using
visible bands and texture features.

3.4. Image Segmentation

The sizes and shapes of image objects [42] are determined via image segmentation, the preliminary
step in object-based classification. Optimal segmentation parameters depend on the environment
under analysis, the selected application, and the underlying input data [8]. Previous studies have used
the multiresolution segmentation algorithm with eCognition software for image segmentation [8,9].
Three parameters (scale, shape, and compactness) are defined in this algorithm. According to [5], these
parameters can be obtained via the traditional trial-and-error method, which is time consuming and
laborious. Therefore, the fuzzy logic supervised approach presented by [13] was adopted in this study.
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Figure 4. Cont.
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Figure 4. LiDAR-derived data; (A) Orthophotos; (B) digital terrain model (DTM); (C) digital surface
model (DSM); (D) Intensity; (E) Height; (F) Slope; and (G) Aspect.

3.5. Training Sets

The authors of [35] suggested the use of stratified random sampling method to obtain an
adequately sized training dataset for every class without any bias during sample selection. Accordingly,
the present study adopted stratified random sampling to evaluate training samples and achieve high
performance without strong bias. Four classes with different numbers of objects were set as shown in
Table 1.

Stratified random sampling is a prerequisite to obtain prior knowledge of the two sites considered
for landslide inventory. Hence, segmentation parameters were first optimized. Then, the landslide
inventory was overlapped with the segmented layer for object labeling. ArcGIS 10.3 was used to
construct sample sets automatically at each optimal scale. Subsequently, stratified random sampling
was applied on the labeled objects. This process was performed 20 times at each optimal scale.
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Table 1. Number of selected training objects in four classes.

Class Name Number of the Object for Each Class

Landslide 52
Cut slope 67
Bare soil 80

Vegetation 150

3.6. Correlation-Based Feature Selection

The authors of [15] reported that the selection of only the most relevant features improves the
quality of landslide identification and classification. Working with large numbers of features causes
numerous problems. As reported in [43] and [14], some of these problems include the slow run time
of algorithms due to the consideration of numerous resources, low accuracy when the number of
features exceed the number of observation features, and overfitting when irrelevant features are used
as inputs. Therefore, the most significant features should be selected to enhance the accuracy of feature
extraction. In this study, relevant features were extracted using the CFS algorithm with Weka 3.7
software. Furthermore, the CFS algorithm was applied to all LiDAR-derived data, visible bands,
and textural features, and was used to determine the feature subsets required to develop models for
landslide identification. The CFS algorithm comprises two basic steps: the ranking of initial features
and the elimination of the least important features through an iterative process.

3.7. MLP-NN

NNs are a family of biological learning models in machine learning. The NN model comprises
interconnected neurons or nodes, which are structured into layers with random or full interconnections
among successive layers [44]. The NN model comprises input, hidden, and output layers that are
responsible for receiving, processing, and presenting results, respectively [44]. Each layer contains
nodes connected by numeric weights and output signals. The weights are the functions of the sum of
the inputs to the node modified by a simple activation function [45]. The possibility of learning is the
most important feature that attracts researchers to use NNs.

Back-propagation, which was first proposed by Paul Werbos in 1974 and independently
rediscovered by Rumelhart and Parker, is the most common learning algorithm used in NN. It aims
to minimize the error function via the iterative approach as shown in Equation (1). NNs have
been successfully used in remote sensing applications. However, this model has some limitations,
specifically, high computational complexity and overlearning [46,47].

E =
1
2

L

∑
i=1

(di − oi)
2 (1)

where di and oi represent the desired output and the current response of node ′′i′′in the output layer,
respectively. “L” is the number of nodes in the output layer. Corrections to weight parameters
were calculated and effected with the previous values in the iterative method, as demonstrated in
Equation (2): {

Δwi,j = −μ ∂E
∂wi,j

Δwi,j(t + 1) = Δwi,j + αΔwi,j(t)
(2)

where delta rule Δwi,j is the weight parameter between nodes i and j; μ is a positive constant that
controls the amount of adjustment and is referred to as learning rate; α is the momentum factor, which
takes a value between 0 and 1; and t is the iteration number. α is referred to as the stabilizing factor
because it smoothens quick changes between weights [48].
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3.8. RNN

RNNs are designed to model sequences in NNs with feedback connections. They are very
powerful in computational analysis and are biologically more reliable than other NN techniques given
their lack of internal states. The memory of past activations in RNN is very effective with feedback
connections, making them suitable for learning the temporal dynamics of sequential data. RNN is
very powerful when used to map input and output sequences because it uses contextual information.
However, traditional RNNs face the challenge of exploding or vanishing gradients. Hochreiter and
Schmidhuber [49] proposed long short-term memory (LSTM) to tackle this issue.

Hidden units in LSTM are replaced with memory blocks that contain three multiplicative units
(input, output, forget gates) and self-connected memory cells to allow for reading, writing, and
resetting through a memory block and behavioral control. A single LSTM unit is shown in Figure 5. ct

is the sum of inputs at time step t and its previous time step activations. LSTM updates time step i
given inputs xt, ht−1, and ct−1 as reported in [50].

Figure 5. Structure of a memory cell in long short-term memory (LSTM)-RNN.

Input gates:
it = σ(Wxi·xt + Whi·ht−1 + Wci·ct−1 + bi) (3)

Forget gates:
ft = σ

(
Wx f ·xt + Wh f ·ht−1 + Wx f ·xt + Wc f ·ct−1 + b f

)
(4)

Cell units:
ct = it·tanh

(
Wxc·xt + Whc·ht−1 + bc + b f ·ct−1

)
(5)

Output gates:
ot = σ(Wxo·xt + Who·ht−1 + Wco·xt + bo) (6)

The hidden activation (output of the cell) is also given by a product of the two terms:

ct = ot·tanh(ct) (7)

where σ and tanh are an element-wise non-linearity, such as a sigmoid function and hyperbolic tangent
function, respectively; W is the weight matrix; xt refers to input at time step t; t, ht−1 represents the
hidden state vector of the previous time step; and bcdenotes the input bias vector. The memory cell
unit ct is a sum of two terms: the previous memory cell unit ct−1, which is modulated by ft and ct,
a function of the current input, and previous hidden state, modulated by the input gate it due to it
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and ft being sigmoidal. Their values range within [0, 1], and it and ft can be considered as knobs that
the LSTM learns to selectively forget its previous memory or consider its current input, whilst ot is an
output gate that learns how much of the memory cell to transfer to the hidden layers.

3.9. Neural Network Models

3.9.1. MLP-NN

This study proposed the network architectures RNN and MLP-NN. Figure 6 depicts the MLP-NN
model architecture, which has two hidden layers of 50 hidden units. Ten features were taken as inputs
in the model to detect different types of objects, such as landslide, cut slope, bare soil, and vegetation.
The MLP-NN model was trained through a back-propagation technique with the Adam optimizer and
a batch size of 64. The hyper-parameters used in this NN were carefully selected through grid search
and a 10-fold cross validation process.

Figure 6. Architecture of the MLR-NN model; GLCM: gray level co-occurrence matrix, StdDev:
standard deviation.

3.9.2. RNN

RNN is a sequence problem considered as the addition of loops to architecture. For example, in
any layer under consideration, signals can be passed to each neuron and are subsequently forwarded
to the next layer. The network output can be input to the network in the next input feature, and so on,
as shown in Figure 7. In this study, RNN received 10 features as inputs to differentiate landslides from
other objects (cut slope, bare soil, and vegetation). RNN consisted of an LSTM layer with 50 hidden
units, two fully connected layers, a dropout layer, and a softmax layer. The back-propagation technique
was used in trained the RNN model with Adam optimizer and a batch size of 128.

To avoid overfitting, a dropout layer was used in the RNN model and the NN learned weights
from the training dataset. However, overfitting may occur when new data are inputted. The dropout
layer randomly set some selected activations to zero, thus alleviating overfitting. The selected
activations were used only during training and not during testing. The parameter was controlled by
the number of activations that the dropout layer referred to as keep probability.
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Figure 7. Architecture of the RNN model.

3.9.3. Optimization of Model Hyper-Parameters

The hyper-parameters of the RNN and MLP-NN models were optimized via a systematic grid
search in scikit-learn [51] for 100 epochs. Despite its high computational cost, the systematic grid
search provides better results because it systematically tunes the hyper-parameter values. Parameter
combinations were selected for the models. The models were evaluated using a 10-fold cross-validation
method. Among the evaluated parameters, the model with the highest validation accuracy was selected.
Table 2 presents the most optimized parameters obtained for the models.

Table 2. Optimized model hyper-parameters; RNN: recurrent neural networks, MLP-NN: multi-layer
perceptron neural networks.

Optimized Parameter Suitable Value Description

Minibatch size 126 (RNN)
64 (MLP-NN)

Number of training cases over which the
Adam update is computed.

Loss function categorical cross-entropy
The objective function or optimization score
function is also called as multiclass legless,
which is appropriate for categorical targets.

Optimizer Adam Adaptive moment estimation
dropout rates 0.6 Dropping out units (hidden and visible)

4. Results and Discussion

4.1. Supervised Approach for Optimizing Segmentation

The supervised approach was employed to optimize the parameters (i.e., scale, shape, and
compactness) of the multiresolution segmentation algorithm for landslide identification and for
differentiation from non-landslides (bare soil, cut slope, and vegetation). The optimized parameters
rapidly increased the accuracy of classification to the optimum level by delineating the segmentation
boundaries of the landslide. The application of optimized segmentation parameters allowed for the
spatial and textural identification of features (landslide and non-slides). In our proposed method,
accurate segmentation results should be first obtained prior to performing subsequent steps.

The optimal parameters of the multiresolution segmentation algorithm were obtained. The
selected values for the three parameters are shown in Table 3. The initial segmentation parameters set
in the supervised approach were 50, 0.1, and 0.1 for scale, shape, and compactness, respectively. After
100 iterations with these initial values, the optimal values obtained for scale, shape, and compactness
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were 75.52, 0.4, and 0.5, respectively in the analysis area. Meanwhile, the test area values were 100, 0.45
and 0.74, respectively. Figure 8a,b show the initial and optimal segmentation processes. The results of
optimized segmentation accurately delineated landslide objects in the analysis and test areas.

Table 3. Multi-resolution segmentation parameters.

Initial Parameters Optimal Parameters

Number Scale Shape Compactness Scale Shape Compactness
1 50 0.1 0.1 75.52 0.4 0.5
2 80 0.1 0.1 100 0.45 0.74

(a) Initial Segmentation (b) Optimized Segmentation

Figure 8. Parameter optimization of the multiresolution segmentation algorithm: (a) initial
segmentation and (b) optimized segmentation.

4.2. Relevant Feature Subset Based on a CFS Algorithm

In this study, the feature input consisted of 39 items of LiDAR-derived data (i.e., slope, height,
and intensity), texture features (i.e., GLCM StdDev and GLCM homogeneity), and visible band. The
optimal combination of features was selected via ten experiments using a CFS algorithm. Selection
began from (1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39) of the features. The most
relevant feature subsets were obtained after 100 iterations in every experiment; this result is in line
with the procedure proposed by Sameen et al. [52]. High classification accuracy was achieved when 10
of the features were applied, indicating that LiDAR-derived data, visible bands, and textural features
were more effective in detecting the landslide location. Table 3 shows the most significant results of
feature selection based on the CFS algorithm.

4.3. Results of Landslide Detection

Classification techniques affect the quality of the classification maps. Many classification
algorithms have been established for each category, and each has its merits and demerits. In the
present work, the RNN and MLP-NN models with optimized parameters were used for landslide
detection with good accuracy. Figure 9 shows the classification results of the RNN and MLP-NN
models in the analysis area. The qualitative assessment of the RNN model yielded high-quality results,
as shown in Figure 9A. Well-defined landslide boundaries were detected and correctly differentiated
from other objects (cut-slope, bare soil and vegetation). On the other hand, the qualitative assessment
of MLP-NN produced low-quality results, as shown in Figure 9B.
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Figure 9. Results of the qualitative assessment of (A) RNN and (B) MLP-NN for the analysis area.

The proposed models were evaluated using another LiDAR dataset (test site) from the Cameron
Highlands. All features (all existing objects) of the test area were carefully considered. Segmentation
parameters were optimized using the FbSP optimizer. A 10-fold cross-validation approach introduced
by Bartels et al. [53] was used to resolve this issue with high accuracy. Environmental conditions and
differences in landslide characteristics resulted in misclassification [9]. Differences in the sensors used,
illumination conditions, and the spatial resolutions of images are some of the challenges faced by the
proposed NN models [54]. The results of qualitative assessment indicated that the proposed NNs with
optimized techniques correctly detected landslide locations in the test site, as shown in Figure 10. The
qualitative assessment of the RNN model yielded high-quality results, as shown in Figure 10A,B. On
the other hand, the qualitative assessment of the MLP-NN model produced low-quality results, as
shown in Figure 10.

Figure 10. Results of the qualitative assessment of (A) RNN and (B) MLP-NN for the test area.
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It is crucial to take the required measures to avoid the issue of the landslide separation from the
bare land. The morphology characteristics of the landslide map is different from other types of land
cover. For example, the shape, slope and other characteristics (i.e., dip direction, width and length)
of the surface terrain may be changed after landslide occurs. Therefore, by using relevant features
derived from very high resolution LiDAR, data such as texture and geometric features can be used to
separate between landslides and bare land. In addition, applying different optimization techniques
helped us to improve the classification accuracy in landslide detection over other landcover classes,
such as bare land, man-made, etc., as described previously by Pradhan and Mezaal [9]. Their results
demonstrated that using optimized techniques with very high resolution LiDAR data (0.5) enabled
them to separate landslide and other types of land cover. In addition, the most relevant features in
Table 4 were optimized during this study. Furthermore, authors of [16] suggested that using the object
feature from LiDAR data is a suitable solution for landslide identification.

Table 4. Correlation-based feature selection (CFS) results for the most relevant feature subset at a scale of
75.52; StdDe: Standard deviation, DTM: Digital terrain model, GLCM: Gray level co-occurrence matrix.

Feature Iteration Rank

StdDe DTM 20 1
GLCM homogeneity 18 2

Mean slope 20 3
GLCM angular second moment 20 4

Mean intensity 17 5
Mean red 20 6

Mean DTM 20 7
GLCM contrast 18 8

GLCM dissimilarity 15 9
StdDev blue 20 10

The landslide detection results showed that the proposed model is robust. Optimizing the
segmentation parameters, namely, scale, shape, and compactness, using the fuzzy logic supervised
approach resulted in the effective differentiation of landslide from non-landslide (bare soil, cut slope
and vegetation) objects. Creating accurate objects through the optimized segmentation process allowed
the use of spatial, orthophoto, and textural features for feature detection. Landslides should be
differentiated from non-landslides based on the accurate segmentation of spatial and textural features.
The selection of relevant features in landslide detection relies on the experience of the analysts. Thus, a
feature selection method is crucial for accurate and reliable landslide detection. The optimal features
selected via the CFS method simplified landslide detection by the NN model. Computation time and
reliance on the expert knowledge of the analyst were reduced. Moreover, the optimized parameters of
the NN models improved the performance of the models, reduced the complexity of the models, and
decreased overfitting in the training sample.

4.4. Performance of the MLP-NN and RNN

The models were implemented in Python using the open source TensorFlow deep learning
framework developed by Google [26]. Meanwhile, the accuracy of the proposed NN models was
tested using a 10-fold cross-validation method. The results are presented in Table 5. The best accuracy
of 83.33% in the analysis area was achieved by the RNN model. The MLR-NN model achieved an
accuracy of 78.38% in the same area. Furthermore, the RNN model outperformed the MLR-NN model
in terms of stability of accuracy across different folds of the tested dataset. In the test area, accuracies
of 81.11% and 74.56% were achieved with the RNN and MLP-NN models, respectively. These results
indicated that the RNN model has better accuracy than the MLR-NN model in the analysis and
test areas and indicated the high stability of the RNN model in detecting the spatial distribution
of landslides.
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Table 5. Cross-validation accuracy results of the proposed models.

Neural Network Model Analysis Area Test Area

RNN model 83.33% 81.11%
MLP-NN model 78.38% 74.56%

However, producing neural network models such as LSTM and convolution layers with fully
connected networks is a crucial task. Complex networks with more hidden units and many modules
often tend to have a better overfit due to the detection ability with respect to any possible interaction
so the model becomes too specific to the training dataset. Thus, optimizing the network structures is
very crucial for avoiding over-fitting. This study indicated that the hyperparameters in both models
have a significant effect on their results. For example, the effect of learning rate varied from 0.1, 0.01,
0.05 and 0.001 in landslide detection. The highest accuracy was obtained when a learning rate reached
0.001. In contrast, increasing the learning rate to 0.1 significantly reduced the accuracy in both models.
The batch size parameter in both models had significant effects on the result accuracy. The results of
MLR-NN and RNN models showed high accuracies with batch sizes of 64 and 128, respectively. This
indicates that RNN model achieved high accuracy with the increase of the batch size, whereas the
accuracy of MLB-NN model was decreased.

Furthermore, it was revealed that the dropout rate had a substantial influence on the results of
the RNN model. The RNN model showed higher accuracy when the dropout rate reached 0.6. The
results of the RNN model indicated that the accuracy increased when the dropout rate parameter
was increased.

The results of two models (Table 5), show that the accuracies of the RNN model outperformed
the MLP-NN model in both study areas. This is due to several reasons, for example the fact that
the MLP-NN model uses only local contexts and therefore it does not capture the temporal and
spatial correlation in the dataset. Meanwhile, the hidden units of the RNN model contain historical
information from the previous step. This indicates RNN model has more information about the data
structure and accurate as compared to the MLP-NN model.

4.5. Sensitivity Analysis

The optimization of network architecture is necessary and should be considered over the use
of standard parameters [28] because network architecture models are principally influenced by the
analytical task and data type. Data could differ in size, relationships between independent and
dependent variables, and complexity. Therefore, the neural architecture of the RNN and MLP-NN
networks was enhanced using a grid search implemented in SciPy-python. The combinations of
10 parameters that can best identify landslide locations in densely vegetated areas were optimized.

The Adam optimizer is the most suitable algorithm for the optimization of the two NN models.
Using the Adam optimizer with default parameters (learning rate μ = 0.001, beta β1 = 0.9, epsilon
ε = 1e-08 and weight decay = 0.0) yielded an accuracy of 0.77 and 0.825 for MLP-NN and RNN models,
respectively, as shown in Figure 11. Rmsprop and Nadam optimizers also achieved excellent results for
the two models. Overall, the Adam algorithm is more suitable for analyzing landslide data. However,
better accuracy was obtained when Adadelta was used with the RNN model. Meanwhile, adding the
weight decay in the neural network did not affect the results.
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Figure 11. Impact of the optimization algorithm on the performance of MLP-NN and RNN models;
SGD: Stochastic Gradient Descent.

Batch size, which refers to the number of training examples computed during optimization, has
substantial effects on model accuracy. The results of the RNN and MLR-NN models are shown in
Figure 12 and depict how increasing batch size from 2 to 128 (by ×2) affected model accuracy. The
MLR-NN and RNN models exhibited the best accuracies with batch sizes of 64 and 128, respectively.
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Figure 12. Impact of batch size on the performance of the MLP-NN and RNN models.

Overfitting can be avoided when dropouts are controlled through the number of parameters in
the RNN model. Figure 13 illustrates the sensitivity analysis of the effects of dropout rate with various
keep probability parameters on the RNN model. The results showed that the appropriate dropout
rate is 0.6 for the RNN model. The selected dropout rate considerably affects the performance of NN
models. The keep probability was selected in each dataset and analysis was conducted via a systematic
grid search.
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Figure 13. Influence of dropout rate on the performance of the RNN model.

4.6. Field Investigation

The reliability of the proposed methods was validated via field investigation using a handheld
Global Position System (GPS) device (GeoExplorer 6000) to locate landslides (Figure 14) and to produce
a precise and reliable inventory map of the Cameron Highlands. The more detailed information
(landslide extent, source area, deposition, and volume) was obtained from in situ measurements which
ultimately demonstrate the reliability of the produced inventory map in the field through use of a
GeoExplorer 6000 handheld GPS. The results illustrated that the neural network techniques were able
to detect true landslide locations which occurred in past years. Therefore, the results of this study
verified that the proposed models can detect landslide locations and generate a reliable landslide
inventory map.

Figure 14. Field photographs showing landslide locations during field investigation in (A) Tanah Rata
and (B) Tanah Runtuh.

5. Conclusions

The Cameron Highlands, Malaysia form an ideal site for testing the feasibility of RNN and
MLP-NN models for landslide detection based on high-resolution LiDAR data. The optimization of
segmentation parameters is crucial for improving model performance and computational efficiency
with different spatial subsets in the Cameron Highlands. Furthermore, optimization is essential for
feature selection to improve the classification accuracy and the computational efficiency of the proposed
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methodology. The optimization of NN model parameters helped improve the performance of the model
by reducing model complexity and preventing overfitting in the training sample. The RNN model
exhibited better accuracy in the analysis and test areas than the MLR-NN model. This investigation
showed that network architectures based on optimized techniques, very high resolution (VHR) airborne
LiDAR-derived data, and spatial features could be used to effectively identify landslide locations
in tropical regions. Therefore, this proposed automatic landslide detection method is a potential
geospatial solution for managing landslide hazards and conducting landslide risk assessments.

Given that the proposed RNN model is more efficient than the MLP-NN model and has the
potential to process the most relevant features, further studies should be conducted to fully optimize
network structures for higher flexibility and eligibility for landslide detection. More theoretical tasks
are recommended to enhance the representation of variables and data structure by the RNN model
and the storage capacity of the data. Faster and more accurate NN techniques for landslide detection
should be developed to overcome all the limitations related to accuracy and time. In addition, the
RNN model can be integrated with other NN techniques to help improve other landslide applications.
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Featured Application: Using polarimetric synthetic aperture radar (SAR) remote sensing to

detect and classify sea surface oil spills, for the early warning and monitoring of marine oil

spill pollution.

Abstract: Polarimetric synthetic aperture radar (SAR) remote sensing provides an outstanding
tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and
biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large
number and correlated nature of polarimetric SAR features make the selection and optimization of
these features impact on the performance of oil spill classification algorithms. In this paper, deep
learning algorithms such as the stacked autoencoder (SAE) and deep belief network (DBN) are
applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise
unsupervised pre-training. An experiment was conducted on RADARSAT-2 quad-polarimetric
SAR image acquired during the Norwegian oil-on-water exercise of 2011, in which verified mineral,
emulsions, and biogenic slicks were analyzed. The results show that oil spill classification achieved
by deep networks outperformed both support vector machine (SVM) and traditional artificial neural
networks (ANN) with similar parameter settings, especially when the number of training data
samples is limited.

Keywords: oil spill; polarimetric synthetic aperture radar (SAR); deep belief network; autoencoder;
remote sensing

1. Introduction

As one of the most significant sources of marine pollution, oil spills have caused serious
environmental and economic impacts to the ocean and coastal zone [1]. Oil spills near the coast
can be caused by ship accidents, explosion of oil rig platforms, broken pipelines, and deliberate
discharge of tank-cleaning wastewater from ships. The NEREIDs program, sponsored by the European
Commission, was the first robust attempt to use shipping, geological and metocean data to characterize
oil spills in one of the major oil exploration areas of the world, prior to any major oil spill accident.
Based on this data, oil spill models were established to simulate the development and trajectories of
oil spills and investigate the susceptibility of coastal zone and find suitable measures to alleviate its
impacts to the environment [2–5].

Early warning and near-real-time monitoring of oil slicks plays a very important role in cleaning
up operation of oil spill to alleviate its impact to coastal environment [2,3]. Synthetic aperture radar
(SAR) is one of most promising remote sensing systems for oil spill monitoring, for it can provide
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valuable information about the position and size of the oil spill [1]. Moreover, the wide coverage and
all-day, all-weather capabilities make SAR very suitable for large scale oil spill monitoring and early
warning [6–8].

In their early stages, studies of oil spill detection are mainly based on single polarimetric SAR
images [9–12]. The theoretical rationale of SAR oil spill detection is that the presence of oil slicks on the
sea surface dampens short-gravity and capillary waves, so the Bragg scattering from the sea surface is
largely weakened. The ideal sea surface wind speed for oil spills detection is 3–14 m/s [13]. As a result,
oil spills can be detected as “dark” areas in SAR images. However, some other manmade or natural
phenomena can result in very similar low scattering areas on the sea surface, e.g., biogenic slicks,
waves, currents and low-wind areas, etc. Conventional oil spill detection procedures use intensity,
morphological texture, and auxiliary information to distinguish mineral oil and its lookalikes, with its
processing chain divided into three main steps [13]: (1) dark spot detection; (2) features extraction;
and (3) classification between mineral and its lookalikes.

Single polarimetric SAR-based oil spill detection algorithms need auxiliary information and
large number of data samples to classify mineral oil and its lookalikes. Sometimes the shape and
texture of oil slicks may vary, affecting the robustness of intensity-based oil spill classification
algorithms. Polarimetric observation capabilities provided by advanced SAR sensors have much
stronger capabilities for oil spills detection [14]. For instance, biogenic slicks and mineral oil are difficult
to distinguish by single polarimetric SAR images. Yet, their polarimetric scattering mechanisms are
largely different: for oil-covered areas, Bragg scattering is largely suppressed, and high polarimetric
entropy can be documented. In the case of a biogenic slick, Bragg scattering is still dominant, but with
a low intensity. Thus, similar polarimetric behaviors as those of oil-free areas should be expected in
the presence of biogenic films. Hence, polarimetric features can largely help the image classification
between mineral and biogenic lookalikes [14].

Various polarimetric features have been proposed to classify oil spills. The standard deviation of
copolarized phase difference (phase difference between Vertical transmit and Vertical receive-VV and
Horizonal transmit and Horizonal receive-HH channel) has shown a strong oil classification capability
on C-, X-, and L-band data [15]. Nunziata et al. (2011) proposed pedestal height to describe the
different polarization signature between mineral oil and biogenic lookalikes [16]. Minchew et al. (2012)
took the advantage of copolarization ratio to study the mixing status of crude oil and sea water [17].
Zhang et al. (2011) used the conformity coefficient as a binary classifier [18]. Other polarimetric
features such as degree of polarization, entropy, alpha angle, and Bragg likelihood angle were also
used to classify oil spills [19–21].

Some previous studies conducted automatic oil-spill classification algorithms. Marghany (2001)
developed models to discriminate textures between oil and water by using co-occurrence textures [22].
Gambardella et al. (2008) proposed one-class classification with an optimized feature selection
algorithm and obtained a promising oil spill classification [23]. Frate et al. (2000) proposed a
semiautomatic detection of oil spills by neural network [24]. Garcia-Pineda et al. (2008) developed
the Textural Classifier Neural Network Algorithm (TCNNA) to map an oil spill in the Gulf of Mexico
Deepwater Horizon accident [11]. Marghany (2013) used a genetic algorithm (GA) for automatic
detection of an oil spill from ENVISAT ASAR (Advanced Synthetic Aperture Radar) data [25].
Li et al. (2013) used a Support Vector Machine (SVM) to detect oil spills based on morphological
features on very limited data samples [26].

Polarimetric SAR features contain massive complementary and redundancy information.
The extraction and optimization of them are closely related to the performance of oil spill
classification [27]. Deep learning algorithms have very strong capabilities of exploring complex
correlation between features and achieve very promising fitting result on complicated problems.
It has been a very popular technique for image processing, computer vision, and natural language
processing. According to the authors, deep learning has not been used in features optimization for oil
spills detection based on polarimetric SAR data, and it should be a very promising research topic.
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Deep neural network with multilayer neuron has powerful capabilities in describing complex
functions compared with shallow networks [28]. However, the traditional gradient descent technique
works poorly on a deep neural network when the weights are initialized randomly. The reason is that
when the derivative is calculated using the back propagation method, the magnitude of the gradient
(from the output layer to the initial layer of the network) decreases dramatically as the network depth
increases. As the result, the gradient of the overall loss function, with respect to the weights of the
first few layers, is very small. Thus, when the gradient descent method is used, the weights of the
first layers change very slowly, so that they cannot learn effectively from the samples. This problem is
often referred to as “gradient dispersion”. In 2006, Hinton et al. proposed the deep belief network
(DBN), which is a belief network composed of Restricted Boltzmann Machine (RBM) one layer at a
time, to take the advantage of complementary priors of the data. Inspired by DBN, Beigio et al. (2006)
used a stacked autoencoder, which is a deep multilayer neural network that initialized its weights by a
greedy layer-wise unsupervised training strategy [29].

Moreover, feature dimension reduction can be seen as an early fusion step. Fusion at different
stages of classification procedures is a booming research field that has shown capabilities for
improvement of classification results. For instance, Vergara et al. fused the output of nonindependent
detectors to derive the optimum classification result [30]. Late fusion of scores of several classifiers
could be adapted to the proposed problem as a future research work.

The aims of this paper are exploring the capabilities of deep learning algorithms on polarimetric
SAR-based marine oil spill detection. In Section 2, research methods including the representation of
polarimetric SAR data, feature extraction methods and deep learning algorithms including DBN and
SAE will be introduced. In Section 3, experiments were conducted on RADARSAT-2 data containing
verified oil spills and biogenic lookalikes. The performance of different algorithms on various sample
sizes for oil spill classification will be compared. Finally, conclusions are drawn in Section 4, and the
significance and future work of the study will be briefly presented.

2. Methods

2.1. Foudamentals of Polarimetric SAR

The scattering characteristics of the observed target can be described by matrix, S; which links the
scattered and incident electromagnet field, in the backscattered coordinate system:

ES =
e−jkr

r
SEi (1)

where k is the wavenumber of the EM wave, r is the distance.
Fully polarimetric SAR observations can be achieved by quad-polarimetric mode, in which

both horizontal and vertical polarized signals are transmitted alternatively and received coherently.
The 2 × 2 scattering matrix is used to represent the single look complex quad-pol SAR data:

S =

(
Shh Shv
Svh Svv

)
(2)

where Sij describes the transmitted and received polarization, respectively, with h denoting the
horizontal direction and v denoting the vertical direction.

To take advantage of statistical properties and reduce the effect of speckle noise of SAR data,
covariance matrix is often derived from the scattering matrix by multilook its second order products:

C =

⎛⎜⎜⎜⎝
〈
S2

hh
〉 〈√

2ShhS∗
hv

〉
〈ShhS∗

vv〉〈√
2ShvS∗

hh

〉 〈
2S2

hv
〉 〈√

2ShvS∗
vv

〉
〈
SvvS∗

hh
〉 〈√

2SvvS∗
hv

〉 〈
S2

vv
〉

⎞⎟⎟⎟⎠ (3)
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where “*” is the symbol of conjugate, and “< >“ stands for multilook by using an averaging window.
Multilook is applied as a standard procedure to obtain the second order statistics (covariance matrix,
coherence matrix) of the SAR data, an average window of 5 × 5 is normally used for balancing the
multilook result and maintaining the spatial resolution.

2.2. Features Extraction for Oil Spills Detection

Previous studies proved experimentally that various SAR features could assist oil spill detection
and classifications [31]. In this study, ten features including single VV channel intensity, entropy,
alpha angle, degree of polarization, ellipticity, pedestal height, copolarized phase difference (CPD),
conformity coefficient, correlation coefficient and coherence coefficient are extracted from the
covariance matrix (or coherence matrix and Stokes vector deriving from the covariance matrix) [32]
of polarimetric SAR data. The ten features investigated in this study, and their behavior on clean sea
surface and sea surface covered by different materials, are given in Table 1. Detailed definitions and
their behavior on different targets are provided explicitly in [27].

Table 1. Features investigated in this study.

Feature Definition
For Mineral

Oil
For Biogenic

Slicks
For Clean Sea

Surface

VV intensity S2
VV Lower 1 low High

Entropy (H)
Pi =

λi
3
∑

j=1
λj

High Low Lower

Alpha (α) α = P1α1 + P2α2 + P3α3 High Low Lower

Degree of
Polarization

(DoP)
P =

√
g2

i1+g2
i2+g2

i3
g2

i0
Low High High

Ellipticity (χ) sin(2χ) = − s3
ms0

Positive Negative Negative

Pedestal Height
(PH) NPH = min(λ1,λ2,λ3)

max(λ1,λ2,λ3)
High Low Lower

Standard
Deviation of

CPD
CPD: ϕc = arg(

〈
SHHS∗

VV
〉
) High Low Lower

Conformity
Coefficient
(Conf. Co.)

μ ∼= 2(Re(SHH S∗
VV )−|SHV |2)

|SHH |2+2|SHV |2+|SVV |2
Negative Positive Positive

Correlation
Coefficient
(Corr. Co.)

ρHH/VV =

∣∣∣∣ 〈SHH S∗
VV 〉

〈S2
HH〉〈S2

VV〉
∣∣∣∣ Low High Higher

Coherence
Coefficient
(Conf. Co.)

Coh = |〈T12〉|√
〈T11〉〈T22〉 Low High Higher

1 Note: “lower” and “higher” mean that the property of the feature on a certain type of surface is close to the other
surface that has the property of “low” or “high”, but slightly lower or higher. “Std. copolarized phase difference
(CPD)” stands for the standard deviation of CPD.

2.3. Deep Belief Network (DBN)

2.3.1. Restricted Boltzmann Machine

RBM is a neural perceptron consisting of visible and hidden layers, and the neurons between
the visible layer (vi, i = 1, . . . , Nv) and the hidden layer (hj, j = 1, ..., Nh) are bidirectional and fully
connected. The basic structure of RBM is shown in Figure 1:
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Figure 1. The illustration of a Restricted Boltzmann Machine (RBM) with two hidden units and four
visible units.

In RBM, W represents the weight between any two connected neurons, in which each neuron has
a bias coefficient b (of neurons) and c (of hidden neurons).

The energy of the RBM can be represented by:

E(v, h) = −∑Nv
i=1 bivi − ∑Nh

j=1 ci ji − ∑Nv,Nh
i,j=1 Wi,jvihj (4)

And the probability of the activation of the hidden layer neuron hj is:

P
(
hj
∣∣v) = σ(bj + ∑i Wi,jxi) (5)

Similarly, the neurons in the visible layer can also be activated by the bidirectional connected
hidden neurons:

P(vi|h) = σ(ci + ∑j Wi,jhj) (6)

where σ is the activation function, e.g., sigmoid function:

σ(x) =
1

1 + e−x (7)

Since for RBM the neurons of the same layer is not connected, they are independent:

P(h|v) = ∏Nh
j=1 P

(
hj
∣∣v) (8)

P(v|h) = ∏Nv
i=1 P(vi|h) (9)

Based on the input data vector x, the possibility of the activation of each hidden layer neuron can
be calculated. Similarly, based on the activation state of hidden layer neurons, the activation state of
visible layers can be calculated. Through a contrastive divergence algorithm [28], the parameters of the
RBM: (b, c, W) can be set based on the input data vector x iteratively by a Gibbs sampling technique.
An RBM can be seen as a feature detector, which is often used for dimensional reduction of the data.
The training process of RBM is to find a probability distribution that can best produce training samples.

2.3.2. The Structure of DBN

DBN is a generative model which establishes a joint distribution between a label and the data
sample. It not only considers P (label/observation), but also P (observation/label). In a DBN, several
RBMs are connected. The hidden layer of the previous RBM is the next RBM’s visible layer, and the
output of the previous RBM is the input of the next RBM. During the pre-training process, the upper
layer of RBM is trained before the training of the current layer. Usually when the top RBM is trained,
the label information is also considered as the visible units.
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2.3.3. The Fine-Tuning of DBN

Contrastive Wake-Sleep algorithms are usually used to fine-tune the pre-trained DBN. In the
wake stage, the status of nodes of each layer is generated by external features and cognitive weights
(upward), and the generated weights (downward) are modified using gradient descent algorithm.
In the sleep stage, the state of the bottom neurons is generated through the top-level representation
(the states learned by waking) and the weights generated in previous stage, then the cognitive weights
of each layer are modified.

2.4. Stacked Autoencoder

2.4.1. Autoencoder

As shown in Figure 2, to build an autoencoder, three layers, namely, an input layer, a hidden
layer and an output layer have to be established. The explanations of symbols used in Figure 2 are
listed below:

n: the size of the input and output layer.
m: the size of the hidden layer.
x ε R

n, h ε R
m, y ε R

n stand for the data vector of the input, hidden and output layers, respectively.
b ε R

m, c ε R
n stand for the bias vector of the hidden and output layers, respectively.

W ε R
m × n stands for weights matrix between the input and hidden layer.

W̃ ε R
n × m stands for weights matrix between the hidden and input layer.

Figure 2. The structure of an autoencoder.

From the input layer to the output of hidden layer, the input signal is encoded. And from hidden
layer to the output, the output of hidden layer is decoded by:

h = f (x) = s f (Wx + b) (10)

y = g(x) = sg(W̃x + c) (11)

In Equations (10) and (11), f () and g() stand for the encoding and decoding functions, respectively.
Sf and Sg are the corresponding activation functions of the encoder and decoder. sigmoid function can
be chosen as the activation function and WT can be taken as the weights W̃ of the decoder.

Given input vectors, the autoencoder aims to minimize the difference between an input x and the
output y. The reconstruction error can be described by the cross-entropy function:

L(x, y) = −
n

∑
i=1

[xi log(yi) + (1 − xi) log(1 − yi)] (12)
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For the training set, S; the average reconstruction error can hence be established as:

L(θ) = ∑
x ∈ S

L(x, g( f (x))) (13)

By minimizing L(θ), the parameter θ = {W, b, c} of the autoencoder can be fitted. The learning
of an autoencoder does not need the label information, so it is an unsupervised procedure. The output
of the hidden layer h can be seen as a representation of input x.

2.4.2. The Stacking of Autoencoders

In a SAE, autoencoders are stacked so that they take the output h(k) of one hidden layer of the
former autoencoder as the input for its successive autoencoder. Each layer is trained by a greedy
unsupervised layer-wise training strategy, and the upper layers are the representations of relevant
high-level abstractions (Figure 3). Stacked autoencoders can establish the deep neural network more
efficiently by initializing its weights in a region near its local minimum.

Figure 3. The demonstration of stacked autoencoder.

2.4.3. Fine-Tuning of the SAE

Normally the last layer of the SAE is connected to a classifier, it can be a neural network, Softmax
classifier, SVM, etc. Finally, a fine-tuning process is also taken on either the whole network or only the
classifier by taking the advantage of the label information through a supervised classification, using
the back-propagation algorithm.

3. Experimental Results

3.1. The Experiment Data

In this study, RADARSAT-2 quad-pol SAR data acquired during the 2011 Norwegian oil-on-water
experiment (59◦59′ N, 2◦27′ E) were used for analysis. The data was received at 17:27 of 8 June 2011
UTC in fine-quad polarimetric mode, with the spatial resolution of 4.7 × 4.8 m in range and azimuth
directions. The incident angle of the image is 34.5–36.1◦ and the local wind speed is 1.6–3.3 m/s.
For the convenience of processing and display, a data sample with 2000 × 2000 pixels was picked
from the single look complex (SLC) data. The pseudo RGB image of the RADARSAT-2 data on the
Pauli basis are provided in Figure 4. In the scene, three verified slicks were present; from left to
right, they were: biogenic film, emulsions and mineral oil [33]. The biogenic film was simulated
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by Radiagreen plant oil. Emulsions were made of Oseberg blend crude oil mixed with 5% IFO380
(Intermediate Fuel Oil), released 5 h before the radar acquisition. Additionally, the Balder crude oil
was released 9 h before the radar acquisition [34].

 

Figure 4. Pauli RGB image of RADARSAT-2 data. (RADARSAT-2 Data and Products © Macdonald,
Dettwiler and Associates Ltd., Vancouver, BC, Canada, 2011—All Rights Reserved. RADARSAT is an
official mark of the Canadian Space Agency).

3.2. The Experiment Procedure

The SLC quad-polarimetric SAR data was firstly multi-looked, and then the covariance matrix and
coherency matrix of the data samples were generated. As mentioned before, 10 features are extracted
and saved as a 10-dimension vector for each pixel.

As shown in Figure 5, the 24,000 data samples were picked up from the image, including
12,000 verified positive (mineral oil) and 12,000 negative (clean sea surface and biogenic slick) samples.
The data samples were picked by squared boxes with the size of 20 × 20 for convenience and keeping
the purity of the sample, and then their order was shuffled.

In order to test the performance of different algorithms and avoid over-fitting, a six-fold
cross-validation was applied. We first divided the training set into six subsets equally. Then the
five-sixths of the data samples were used as training set and the rest were taken as testing set.
Sequentially, we repeat the classification and another one-sixth data sample were used as testing set.
The experiment was conducted six times until each instance of the whole training set is predicted once.
Finally, the cross-validation accuracy is the overall percentage of data which are correctly classified.

In order to test the performance of these algorithms on smaller sample sizes, the whole dataset
was divided into smaller groups. All the 24,000 data samples were divided into 5 and 25 groups
randomly. Then classifications were conducted on these groups, namely 4000 training, 800 testing and
800 training, and 160 testing samples respectively. In the experiment, the classification accuracy of
smaller sample size was obtained by averaging the classification result on each group respectively.

In the experiment, two previously introduced deep learning algorithms (i.e., DBN and SAE)
were tested on their performance of oil spill detection and classification. In addition, two traditional
supervised classifiers including neural network (NN) and SVM were compared.
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Figure 5. Demonstration of a selected area for analysis (taking VV2 image as background); 24,000 pixels
are picked as data samples.

The key parameters of these applied classifiers are shown in Tables 2–5:

Table 2. Parameter settings of the neural network.

Parameter Value

Sizes of layers [10, 8, 6, 2]
Activation function Sigmoid

Learning rate 1
Number of epochs 100

Batch size 100

Table 3. Parameter settings of the support vector machine (SVM).

Parameter Value

Type of SVM C-SVC (n kind classification)
Type of kernel Radial Basis Function (RBF): exp (−γ × |u − v|2)
γ of the RBF 1/k (k: number of features)

Cost 1
ε (termination criterion) 0.001

Weight wi 1 (set the parameter C of class i to wi × C)
Shrinking h 1 (use the shrinking heuristics)

Table 4. Parameter settings of the stacked autoencoder (SAE).

Parameter Value

Sizes of SAE layers [8, 6]
Activation function SAE Sigmoid

Learning rate of SAE 1
Input Zero Masked Fraction of SAE 0.5

Number of epochs when training SAE 10
Batch size when training SAE 100

Size of the whole network [10, 8, 6, 2]
Activation function of the neural network Sigmoid
Learning rate when making fine-tuning 3

Number of epochs when making fine-tuning 100
Batch size when making fine-tuning 100
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Table 5. Parameter settings of the deep belief network (DBN).

Parameter Value

Sizes of RBM layers [8, 6]
Number of epochs when training RBM 10

Batch size when training RBM 100
Momentum for RBM 0

Learning rate alpha of RBM 1
Size of the whole network [10, 8, 6, 2]

Activation function of the neural network Sigmoid
Number of epochs when making fine-tuning 100

Batch size when making fine-tuning 100

LIBSVM-a library for Support Vector Machines [33] was used to implement the SVM algorithm.
The parameters C and γ were derived by shrinking heuristics search technique. The neural network has
ten input neurons, two hidden layers and two output neurons. The initialization of the former layers
of deep learning algorithms SAE and DBN were carried out by unsupervised pretraining, and then the
outputs were connected to a neural network with two output neurons.

3.3. Results and Discusion

To examine the feature dimension reduction capability of the deep neural networks, scatter plots
of the main original features and the features derived by principal component analysis (PCA), DBN
and SAE are shown in Figure 6. Two of the most discriminative features, conformity coefficient
and degree of polarization (DoP) of HH and VV transition/receiving combinations, as two of the
most effective feature in oil spill classification [31], are plotted in Figure 6a. Scatter plots of the first
two components derived by PCA are shown in Figure 6b. In this paper, taking the advantage of
DBN and SAE, the dimension of polarimetric features are reduced to six, then they are put into fully
connected neural network. To show these features in a scatter plot, PCA was implemented on the six
features, and then the first two components are shown in Figure 6c,d. It can be observed that deep
neural network algorithms effectively extracted the information from high dimensional features and
improved their separability to distinguish mineral oil and none mineral samples.

The classification results are shown in Table 6 statistically, some key findings and discussions are
listed as follow:

• SAE achieved the highest classification accuracy (lowest testing error) among all the algorithms
on different sample sizes. DBN achieved a close performance to SAE. SAE and DBN applied in the
experiment had similar structures and both of them took the advantage of greedy unsupervised
layer-wise pretraining, so very similar performances were achieved. The unsupervised pretraining
worked as a feature optimizer, which can reveal the latent relationship and reduction of noise in
features. It helps to improve the performance of the followed supervised classification procedure.

• On the small training data set, deep learning algorithms have much higher performance than
neural networks. When the number of data set is reduced, the parameters of traditional NN
cannot be sufficiently tuned. Based on unsupervised pretraining, deep learning algorithms
such as SAE and DBN have much stronger capability to achieve the optimized solution of the
learning problem.

• When the number of data sample size is reduced, the classification error will increase (i.e.,
the accuracy is reduced). When the number of data sets reduced, the characteristics of the studied
object cannot be sufficiently expressed by the limited number of data samples, so the classification
performance is reduced.

• On the large training data set, NN have a close performance to deep learning algorithms.
With large number of training data, the parameters of NN can be sufficiently adjusted. In this
experiment, the NN have a few hidden layers, the gradient of objective function could pass to the
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layers in the front effectively. As the result, comparable classification performance was achieved
by NN on large data set.

• SVM has better performance on small sample sizes than NN. SVM is based on structural risk
minimization, which has superior performance on relative small data sets. It maximizes the
classification margin, which is decided by a few support vectors and could successfully avoid
the risk of the “curse of dimensionality”. However, although the SVM has several advantages,
it is equivalent to a NN with one hidden layer, so on learning complicated relationships its
performance is no better than the other three more complex classifiers applied in the experiment.

(a) (b) 

(c) (d) 

Figure 6. Scatter plots of the main original features (a) and the features derived by principal component
analysis (PCA), deep believe network (DBN) and stacked autoencoder (SAE) (b–d).

Table 6. Testing error (1-accuracy) of classification achieved by different classifiers and on different
sizes of data samples.

Classifier

Number of Data Samples (Training-Testing) Accuracy
(Execution Time/Seconds)

a. 20,000–4000 b. 4000–800 c. 800–160

SVM (support vector Machine) 1.26% (1.16) 1.38% (0.07) 1.64% (0.01)
NN (nerual network) 1.16% (6.52) 1.68% (1.33) 2.13% (0.34)

PCA (principal component analysis)-SVM 1.20% (0.9) 1.33% (0.06) 1.58% (0.01)
PCA-NN 1.17% (6.2) 1.48% (1.2) 1.90% (0.35)

SAE (stacked autoencoder) 1.05% (6.33) 1.33% (1.24) 1.39% (0.32)
DBN (deep believe network) 1.16% (5.63) 1.42% (1.18) 1.53% (0.28)

The confusion matrix of the cross-validation testing result is shown in Tables 7–10. The best
classification results were achieved by SAE on the largest data set: 20,000 training and 4000 testing
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samples. On the 24,000 testing set, 251 pixels were wrongly classified. 101 pixels of these 251 pixels
were false positive (commission errors) and 150 pixels were false negative (omission errors). Similar
false positive was achieved by DBN, with slightly higher false negative rate. In the confusion
matrix achieved by NN and SAE, it can be discovered that compared with deep learning algorithms,
they achieved lower false negative and higher false positive rates.

Table 7. Confusion Matrix (20,000 training, 4000 testing, six-fold) derived by SAE.

Confusion Matrix of SAE Mineral Oil Non Mineral Oil Total

Mineral oil (truth) 11,844 150 12,000
Nonmineral oil (truth) 101 11,896 12,000

Total 11,948 12,052 24,000

Table 8. DBN Confusion Matrix (20,000 training, 4000 testing, six-fold) derived by DBN.

Confusion Matrix of DBN Mineral Oil Non Mineral Oil Total

Mineral oil (truth) 11,819 181 12,000
Non mineral oil (truth) 101 11,899 12,000

Total 11,948 12,052 24,000

Table 9. SAE Confusion Matrix (20,000 training, 4000 testing, six-fold) derived by NN.

Confusion Matrix of NN Mineral Oil Non Mineral Oil Total

Mineral oil (truth) 11,881 119 12,000
Non mineral oil (truth) 160 11,840 12,000

Total 11,948 12,052 24,000

Table 10. SAE Confusion Matrix (20,000 training, 4000 testing, six-fold) derived by SVM.

Confusion Matrix of SVM Mineral Oil Non Mineral Oil Total

Mineral oil (truth) 11,893 107 12,000
Non mineral oil (truth) 201 11,799 12,000

Total 11,948 12,052 24,000

From the binary output that achieved by SAE (Figure 7), it can be observed that a few pixels
in the area covered by the biogenic slick are classified as mineral oil. The possible reason of these
“misclassifications” is the affection of signal noise on space-borne SAR data or the uniform distribution
of the mineral oil and biogenic slicks. This misinterpretation can be further eliminated by a simple
postprocessing step. Corrosion and swelling algorithms can be applied on the binary classification
result to fix the small holes (missing alarm) in large oil-covered areas and isolated positive targets
(false alarm) in the sea surface area.

The receiver operating characteristics (ROC) of these classifiers in oil spill detection are approached
based on 20,000 training, 4000 testing (Figure 8a,b) and 4000 training, 800 testing samples (Figure 8c,d)
respectively. All the ROC curves are very close to the upper-left corner of the ROC map (Figure 8a,c).
In the zoomed-in map (Figure 8b,d), some minor differences can be observed. Compared with
other classifiers, SVM achieved a lower true positive rate under low false positive rate requirements,
and higher true positive rate under high false positive rate requirements. And for NN the situation is
just opposite. Deep neural networks, SAE and DBN achieved a modest true positive rate in the whole
false positive rate range.
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Figure 7. Classification result achieved by SAE, 0 stands for nonoil and 1 stands for mineral oil.

 
(a) (b) 

 
(c) (d) 

Figure 8. Receiver operating characteristics (ROC) curves of the classifiers. (a) ROC curve achieved
based on 20,000 training, 4000 testing samples; (b) Zoomed in map of (a); (c) ROC curve achieved
based on 4,000 training, 800 testing samples; (d) Zoomed in map of (c).
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4. Conclusions

In this paper, the capability of polarimetric SAR to detect and classify marine oil spills was
investigated. Potential features were extracted from a covariance matrix, a coherence matrix and a
Stokes vector of the original SLC quad-pol SAR data. Deep learning algorithms together with classic
classifiers were compared and analyzed. A key discovery of this paper is that given insufficient number
of data samples, deep learning algorithms such as SAE and DBN can achieve better performance than
traditional algorithms by initializing their parameters from a position closer to the optimum solution.
Polarimetric SAR data confirmed its strong capacity in distinguishing mineral oil and its biogenic
lookalikes. This can be achieved by a one-step operation, with no need to firstly segment and then
classify data samples based on auxiliary information. The advantages demonstrated by polarimetric
SAR can greatly boost the efficiency and accuracy of marine oil spill detection. Further studies will
be conducted on features extracted from compact polarimetric SAR modes, with wider swath width,
to achieve larger monitoring areas and shorter revisit times: two of the prime requirements for marine
surveillance through large areas.
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Abstract: For ship detection, X-band synthetic aperture radar (SAR) imagery provides very useful
data, in that ship targets look much brighter than surrounding sea clutter due to the corner-reflection
effect. However, there are many phenomena which bring out false detection in the SAR image, such
as noise of background, ghost phenomena, side-lobe effects and so on. Therefore, when ship-detection
algorithms are carried out, we should consider these effects and mitigate them to acquire a better result.
In this paper, we propose an efficient method to detect ship targets from X-band Kompsat-5 SAR
imagery using the artificial neural network (ANN). The method produces the ship-probability map
using ANN, and then detects ships from the ship-probability map by using a threshold value. For the
purpose of getting an improved ship detection, we strived to produce optimal input layers used for
ANN. In order to reduce phenomena related to the false detections, the non-local (NL)-means filter and
median filter were utilized. The NL-means filter effectively reduced noise on SAR imagery without
smoothing edges of the objects, and the median filter was used to remove ship targets in SAR imagery.
Through the filtering approaches, we generated two input layers from a Kompsat-5 SAR image, and
created a ship-probability map via ANN from the two input layers. When the threshold value of 0.67
was imposed on the ship-probability map, the result of ship detection from the ship-probability map
was a 93.9% recall, 98.7% precision and 6.1% false alarm rate. Therefore, the proposed method was
successfully applied to the ship detection from the Kompsat-5 SAR image.

Keywords: synthetic aperture radar (SAR); ship detection; artificial neural network (ANN); Kompsat-5

1. Introduction

Ship-detection algorithms from SAR images have been proposed by many researchers [1–5].
Most methods exploit the fact that ships on SAR images are much brighter than the sea surface due
to the corner-reflection effect [6,7]. That is, the ship is a target having a higher backscatter coefficient,
and hence the ship is very bright in SAR imagery, while the sea surface is very dark in SAR imagery
because it has a lower backscatter coefficient.

Constant false-alarm rate (CFAR) has been widely used for ship detection. The CFAR detects ships
by finding a threshold value using the probability density function (PDF) of background clutter [8–11].
However, detection results from the CFAR algorithm can be biased by statistical variables such as
mean and standard deviation, because the false-alarm rate must be fixed [12]. In addition, the CFAR
algorithm has the disadvantages that it is very complex and time-consuming [13]. The adaptive
threshold approach is very similar to CFAR in that it estimates the mean and standard deviation of
an image using constant value c, but the approach has a drawback in that it does not consider the
characteristics of background noise [14].
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Recently, many studies have relied on image-based feature extraction (machine learning) methods,
such as the artificial neural network (ANN) and support vector machine (SVM) methods [15,16].
The machine-learning analyzes the input data by calculating weighting factors from the relation
between input data and training set. Thus, results from the machine learning can be varied according
to input data and training set [17]. This means that the performance of the machine-learning algorithm
is largely dependent on the selection of input data and training sets. In order to choose the training
set for ship detection, we can use automatic identification system (AIS) data if it is available, whereas
we can select the training set from a map which is manually created if AIS data is not available [18].
Thus, the selection of training set used for ship detection is not very difficult. However, the selection
of input layers used for ship detection is not easy. The limitations of ship detection using the
machine-learning algorithm are as follows:

Firstly, image characteristics have been ignored when the ANN approach is applied to the
detection of a target. For a better detection of the detected target using machine learning, image
characteristics of the detected target must be emphasized, while those of other targets should be
not underlined. Consequently, the input layers of ANN must be created from the image after
target-emphasis procedures are done. This means that we need to emphasize ships in an SAR image in
order to detect ships from SAR images. However, in most previous studies, input layers have not been
created from SAR images without ship emphasis processing [19–22]. The SAR images have speckle
noise, the ghost phenomena, the side-lobe effect, and so on. The SAR image characteristics affect the
precision of ship detection. To remarkably reduce the negative effects in the ANN approach, we need
to minimize these effects. Moreover, the Kompsat-5 SAR image has severe ghost phenomena and
side-lobe effects. Additional steps to mitigate the effects should be applied to the Kompsat-5 image.

Secondly, subset images have usually been used to validate the ship detection algorithm in the
previous studies [17,23]. When ships are detected from SAR images, the most important thing is to
minimize the negative effects from background noise, the side-lobe effect, wave effect, land area effect
and so on. Thus, it is a better choice that the algorithm performance is validated by using the full
scene. Therefore, for a better performance of the ship detection using the ANN approach, the input
layers of ANN should be created by minimizing the negative effects of the Kompsat-5 SAR image,
and the detection performance should be tested and validated by using the full scene rather than
the sub-image.

In this paper, we propose an efficient method to detect ship targets from X-band Kompsat-5
SAR imagery using the ANN approach. The proposed method creates two input layers for ship
detection through optimal image processing in order to consider Kompsat-5 SAR image characteristics.
The method is tested and validated by using a full-scene Kompsat-5 SAR image. The detection
procedure is as follows: (1) two input layers, an intensity differential map and a texture differential
map, are generated from an SAR image using the azimuth low-pass filter, the non-local (NL)-means
filter, the median filter, the sum-of-square (SS) operation, and so on; (2) a ship-probability map is
created by the ANN approach; and (3) ships are detected from the map by using a threshold value.
The NL-means filter and median filter were used to reduce phenomena related to the false detections.
The NL-means filter effectively reduced noise on SAR imagery without smoothing edges of the
objects, while the median filter was used to remove ship targets in SAR imagery. For the performance
validation of the proposed method, the X-band Kompsat-5 SAR data with horizontal transmitting and
horizontal receiving (HH) polarization was used in the study. A total number of 78 ship targets were
extracted from the test full scene via a visual analysis and used to calculate the precision, recall and
false detection rate.

2. Test Data

X-band Kompsat-5 SAR data with the HH single polarization of the standard mode was used
in this study (Figure 1). The data was provided in the single look complex (SLC) Level 1A format,
and the detailed information for the data is summarized in Table 1. As seen in Figure 1, ships on sea
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and artificial structures on the land are very bright due to the corner reflection effect in SAR imagery.
Especially, the ghost phenomenon is very severe in the Kompsat-5 SAR image as seen Figure 1b, and
the side-lobe effect is severe in the image as seen Figure 1a. The side-lobe effect is caused by the
matched filtering when the SAR image compression is applied [24,25]. The compression of the raw
radar signal is represented as a sinc function, and the side lobes of the sinc function are relatively
high. The ghost phenomena are caused by aliasing of the Doppler phase history of each target [26].
If the ghost phenomena occur in a SAR image, after-images of land objects having high backscattering
coefficients appear in the ocean, and hence, the after-images can be misunderstood as ships because
they are much brighter than the sea surface. Therefore, the side-lobe effect and ghost phenomena
should be mitigated before detecting ship targets, because they degrade the quality of an image and
are an obstacle to ship detection.

Figure 1. Kompsat-5 single look complex (SLC) image used for this study. (a–d) indicate the sub-images
magnified from the A to D boxes in the Kompsat-5 SLC image.

Table 1. Kompsat-5 single look complex (SLC) synthetic aperture radar (SAR) data information. HH:
horizontal transmitting and horizontal receiving.

Imaging Mode Standard (Strip)
Polarization HH

Incidence angle (deg.) 41.98
Azimuth pixel spacing (m) 1.75

Range pixel spacing (m) 1.29
Ground-range pixel spacing (m) 1.93

Azimuth processing bandwidth (Hz) 3100
Pulse repetition frequency (Hz) 4032

Orbit Ascending

The shuttle radar topography mission digital elevation model (SRTM DEM) with a spatial
resolution of 30 m was used for this study [27]. A synthetic SAR image was simulated from the
SRTM DEM and used to mask land area in the SAR image, in order to remove false alarms from
the land area. However, some areas, such as fish farms, offshore bars and so on, were still left
in the SAR image. The structures over the areas could bring out false detection, as shown in

110

Bo
ok
s

M
DP
I



Appl. Sci. 2017, 7, 961

Figure 1c,d. Therefore, we need to mitigate the false detection from the structures for a better ship
detection precision.

3. Methods

In this study, we proposed an efficient method to detect ships from Kompsat-5 SAR imagery
through the ANN approach. A key of the proposed method is that the input layer of the ANN
approach uses two ship-emphasized images through minimizing the negative effects of the SAR
image characteristics. Figure 2 presents the detailed workflow of the proposed method. The proposed
method is categorized into (1) input-layer generation from a SAR image via SAR image processing,
(2) ship-probability map creation through the ANN approach and (3) ship identification from the
probability map using threshold value.

 
Figure 2. Detailed workflow of the proposed method in this study. SAR: synthetic aperture radar;
SRTM DEM: shuttle radar topography mission digital elevation model; NL: non-local.

For more-optimal input-layer generation, we need to (1) enhance ships in the SAR image and
(2) reduce the negative effects of the SAR image characteristics, such as the speckle noise, ghost
phenomena, side-lobe effect, and so on. Especially, since the negative effects are very severe in the
X-band Kompsat-5 image, the effects should be corrected. The input-layer generation procedure is
as follows:

(1) azimuth low-pass filtering, which is designed to mitigate the ghost phenomena,
(2) multi-look processing, which is normally used for speckle noise reduction,
(3) sigma-naught conversion, which includes a unit conversion,
(4) intensity differential image creation,
(5) texture differential image creation.
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The azimuth low-pass filtering is used to mitigate the ghost phenomena. This filter is designed to
reduce the azimuth processing bandwidth. If the azimuth processing bandwidth is large, the spatial
resolution is high while the ghost effect is severe. Otherwise, low spatial resolution and reduced
ghost effect can be seen in the SAR image. For the filter, the SAR SLC image is Fourier transformed
in the azimuth direction, and then multiplied with the Hanning window having the bandwidth of
n·PRF, where n is a fraction factor and PRF is the pulse repetition frequency. The fraction factor n
depends on the characteristics of SAR sensor. Finally, we obtain the ghost-mitigated SLC image after
the inverse Fourier transform is applied. The multi-look processing is used for the speckle noise
reduction. It is well-known that this step improves SAR image quality [28,29]. The multi-looked SAR
image is converted into the sigma-naught image, which has a decibel unit.

In order to create intensity- and texture-differential images, the NL-means and median filters are
used. The PDF of the sigma-naught image is a normal distribution, and hence the NL-means filter can
be properly applied to the sigma-naught image. The NL-means filter smooths images using weighting
factors that are estimated from a similarity between the center and adjacent pixels. For this, the filter
uses two moving window kernels, unlike conventional filters. The smoothing factors of the filter can
be determined from the standard deviation of noisy areas. Generally, conventional smoothing filters
reduce the noise component of images while they smooth the edge of objects. However, the NL-means
filter can reduce the noise without smoothing the object edges. Thus, when the NL-means filter is
applied to the ship detection, the edge of ships can be preserved while the noise can be well-reduced.
The median filter estimates the median value from the window kernel, and hence the filter does
effectively remove outliers. The filter has been widely used for smoothing SAR images due to the
speckle noise characteristics. The median filter is used to remove small bright objects, such as ship
objects, from the SAR image. The details for the intensity- and texture-differential image generation
will be followed in the subsections.

After the two input layers are created, the land areas in the input layers are masked out by using
the SRTM DEM. Then, they are used for the ANN approach, and finally, the ship-probability map is
created. If ground-truth data, such as the automatic information system (AIS), are available, they can be
used for training and verification. However, since in-situ data is not available in this study, the training
set for the ANN approach is determined by using a statistical threshold technique. Training samples
of the ship detection are determined from the range calculated from the intensity-differential image.
The ship training samples (PS) are selected as follows:

PS(i, j) =

{
1, i f P(i, j) > MAX(P)− TS × Range(P)
0, otherwise

, (1)

where P(i,j) is the pixel value at the range i and azimuth j, TS is the threshold value for the ship samples,
MAX(P) is the maximum value of all of the pixels and Range(P) is the range, which is defined as
MAX(P) − MIN(P). The non-ship training samples (PNS) are selected by:

PNS(i, j) =

{
1, i f P(i, j) < MIN(P) + TNS × Range(P)
0, otherwise

, (2)

where TNS is the threshold value for the non-ship samples. The threshold values of TS = 0.4 and
TNS = 0.1 are used for this study, because the standard deviation of sea objects is a smaller value
whereas that of ship objects is a higher value.

The final ship detection is performed by applying a threshold value to the ship-probability map.
The threshold value is estimated from the histogram of the ship-probability map. This step is done by
finding a point that the two PDFs from the ship and non-ship objects cross.
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3.1. Intensity Differential Image

The intensity-differential image is created from the sigma-naught image by using the NL-means
and median filter operations. Then, the image is used as the input layer of the ANN approach.
The intensity-differential image is created by the following procedure:

(1) applying the NL-means filter to the sigma-naught image,
(2) applying the median filter to the NL-means-filtered image,
(3) subtracting the median-filtered image from the NL-means-filtered image.

In this process, it is important to determine the optimal parameters of NL-means and median
filters. The NL-means filter is designed to minimize noise effects in the ANN processing. That is,
the reason why the NL-means filter is used is to reduce noise without smoothing object edges.
Thus, the optimal parameters used for the NL-means filter should be determined by considering
the noise reduction as well as the edge preservation. The median filter is used to remove ship objects.
Thus, the kernel size of the median filter should be larger than the size of ship objects, because the
median value should not come from ship-object pixels but sea-object pixels. If the filter is successful,
we will not be able to see any ships in the median-filtered image. The median filter does not remove
objects larger than ships, including fish farms and offshore bars, but it smooths the objects. If the larger
objects disappear in the image, the ship false-detection might increase. Finally, the intensity-differential
image can be created by subtracting the median-filtered image from the NL-means-filtered image.
The background is almost zero in the intensity-differential image, and the brightness values of fish
farms and offshore bars are low in the image. The intensity-differential image enhances ship targets,
and hence it must increase the ship-detection probability.

3.2. Texture Differential Image

The texture-differential image is created from the NL-means-filtered image by using the median
filter and sum-of-square operation. The image is used as one of the input layers. The texture differential
image is created as follows:

(1) applying the NL-means filter to the sigma-naught image,
(2) calculating the difference between the NL-means-filtered image and the sigma-naught image,
(3) creating the texture image by applying the sum-of-square operation to the difference image,
(4) applying the median filter to the texture image,
(5) subtracting the median-filtered image from the texture image.

The texture image is calculated by summing the squares of the pixel values of the difference
image within a window kernel. The difference image is acquired by the difference between the
sigma-naught image and NL-means-filtered image. The texture differential image is generated by
subtracting the median-filtered image from the texture image. The kernel size of the NL-means filter
in the texture-differential image generation may be same as, or smaller than, the intensity-differential
image generation. The NL-means filter is utilized to enhance the object edges in the texture-image
processing, unlike its use for noise reduction in the intensity-image processing. Thus, a little weak
filtering can be imposed in the NL-means filtering. If the optimal processing is applied, most ship
pixels in the texture image are still bright, except some pixels within large ships. Thus, the ship
objects have higher pixel values through the sum-of-square calculation. The brightness values of
background pixels are reduced by using the texture-differential image, which is created by subtracting
the median-filtered image from the texture image. In this texture-differential image, the ship objects
are highlighted, while the side-lobe and ghost effects, fish farms and offshore bars have low brightness
values. Therefore, the texture-differential image can be efficiently used to reduce the misdetection rate
in some areas.

113

Bo
ok
s

M
DP
I



Appl. Sci. 2017, 7, 961

3.3. Short Description of ANN

ANN is a computing system that is inspired by the biological neural network. It is composed of
interconnecting artificial neurons. In general, a neural network function creates a linear output pattern,
given a particular input layer [30]. A multilayer perceptron (MLP) is commonly used as several types
of neural. The MLP is a feed-forward artificial neural-network model that maps input data onto an
appropriate output. An MLP is comprised of multiple node layers. Each layer connects a network
with the next layer. In many cases, the units of these networks use a sigmoid function as an activation
function. For training the network, MLP utilizes back propagation [31]. The back-propagation
algorithm consists of a propagation and weight update phases. In the propagation step, the calculated
error, which is the difference between the target value and the output value, is propagated to each
layer. By using this propagated error, the weight is modified in a weight-update phase. They are
repeated until the network performance is good enough [32]. We implemented the ANN with
MATLAB software. The used ANN method is a two-multilayer perceptron with sigmoid-function and
four neurons in the hidden layer and one linear-function output neuron. It is also trained with the
back-propagation algorithm.

4. Results and Discussion

The X-band Kompsat-5 SLC image listed in Figure 1 was used for the validation of the proposed
method. Since the Kompsat-5 image has severe ghost phenomena, the azimuth band-pass filtering
was applied first. The fraction factor n = 0.5 was used for the filter, and hence the azimuth processing
bandwidth of about 3100 Hz was reduced to that of about 2419 Hz. The ghost phenomena were
effectively mitigated in the SAR image, while the spatial resolution in the azimuth direction was
degraded from about 2.29 to 2.94 m. In order to reduce the speckle noise of the image, the multi-look
operation of 5 × 5 looks in the range and azimuth directions was applied to the image by considering
the ratio of azimuth and ground-range pixel spacing. The sigma-naught image was created by
considering the incidence angle, and converted into the decibel unit.

To generate the intensity-differential image from the sigma-naught image, the parameters of the
NL-means filter was estimated from the standard deviation of some land areas where the intensity of
noise components is relatively high. The kernel size of 5 × 5 and the filtering parameter of 5.0 were
used for the NL-means filter. The NL-filtered image enhanced the edge of ship objects and reduced
the image noise and the side-lobe effects, as shown in Figure 3b, Figure 3f or Figure 3j. The median
filter was used to remove ships from the NL-means-filtered image. The kernel size of the median filter
of 21 × 21 in both the azimuth and range directions was used for this study, because the maximum
length of ships was about 20 pixels. As shown in the Figure 3c, all of the ships disappeared in the
median-filtered image, while the fish farms and offshore bars were smoothed but still preserved in
the median-filtered image in Figure 3g or Figure 3k. Consequently, the pixel values of the ships in the
intensity-differential image were much higher than those of the sea (Figure 3d). Moreover, the side-lobe
effect was remarkably reduced, as seen in Figure 3d, and most of the land area, fish farms and offshore
bars were removed in Figure 3h or Figure 3l. The intensity-differential image can raise the possibility
of ship detection.
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Figure 3. Procedure for the generation of a differential image, one of the input layers of artificial neural
network (ANN): (a,e,i) the intensity images, (b,f,j) the NL-means filtered images, (c,g,k) the median
filtered images and (d,h,l) differential images in the boxes A, C and D (see Figure 1).

One of the input layers, the texture image, was calculated by summing the squares of the difference
between the sigma-naught image and the NL-means-filtered image. In order to enhance the ship
objects in the texture image, the kernel size of 5 × 5 and the filtering parameter of 3.0 were used for the
NL-means filter. After the NL-means filter was applied to the sigma-naught image, the difference map
was generated by subtracting the NL-means-filtered image from the sigma-naught image. Figure 4a,
Figure 4e or Figure 4i show the sub-images of the difference image in the boxes A, C and D of Figure 1.
In the figures, the object edges were enhanced, and most bright pixels came from ships or buildings.
Since most ships and buildings are small, their pixel values could be preserved because most of their
pixels can be considered as edges. Moreover, the object edges were enhanced in the texture image by
the sum-of-square calculation using the window kernel of 5 × 5, as shown in Figure 4b, Figure 4f or
Figure 4j. As seen in Figure 4b, all of the ship pixels in the texture image were much brighter than other
objects. This means that the ship objects in Figure 4b were emphasized through the sum-of-square
calculation. The median filter, having the kernel size of 21 × 21, was used for the removal of the
ships in the texture image. The ships effectively disappeared in Figure 4c. Thus, the ships were much
enhanced in the texture-differential image that was created by the difference between the texture image
and median-filtered image (Figure 4d), while the pixel values in the fish farms and offshore bars were
remarkably reduced (Figure 4d, Figure 4h or Figure 4l). This image can increase the ship-detection rate
as well as reduce the false-detection rate. However, the texture-differential image was a little noisy
due to the sum-of-square calculation. An image-processing step can be further applied for the noise
reduction. In this study, we did not consider the additional noise reduction step because the noise
pixel values were very small.
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Figure 4. Procedure for the generation of a texture-differential image, which is another input layer used
for ANN: (a,e,i) the difference between sigma-naught and NL-means-filtered images, (b,f,j) the texture
images, (c,g,k) the median-filtered texture images and (d,h,l) the texture-differential images in the
boxes A, C and D (see Figure 1).

The intensity- and texture-differential images were applied as the input layers to the ANN
approach. The training set was obtained by the statistical-threshold approach of Equations (1) and (2).
The threshold values of 15.16 and 2.53 for ship and non-ship training selections, respectively, were
estimated from the intensity-differential image, and then 67 training ship samples were selected from
the statistical-threshold approach. The ANN approach was applied to the ship detection using the two
input layers and the training set. Figure 5 shows the ship-probability map estimated by using ANN.
The pixels in the ship-probability map have values between 0 and 1. The pixel value of ‘0’ means that
the pixel is not a ship at all, while the pixel value of ‘1’ denotes that the pixel is definitely a ship. The sea
surface had values as low as 0.1, while the ship objects had values as high as 0.85. If accurate coastline
maps or large-scale topographic maps are available, the bridges can be masked out. In Figure 6a,b,
the ghost and side-lobe effects were as low as 0.3. As shown in Figure 6c,d, the probability value in the
fish farms and offshore bars was lower than the ship objects.
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Figure 5. Ship-probability map obtained by using the ANN approach. The boxes A to D are used for
the detailed analysis.

In order to estimate the ship-thresholding value from the ship-probability map, the histogram of
the ship-probability map was created (Figure 7). From the histogram, the point that the PDFs of ship
and non-ship objects cross was determined, as shown in Figure 7. The threshold value of 0.67 was
applied by determining the ship objects from the probability map.

We calculated the recall and precision to validate the performance of the proposed method.
The recall (sensitivity) measures how many objects are detected, and the precision denotes how many
objects are correct among the detected objects. The recall and precision have a value between 0 and 1.
The recall and precision can be defined as given by:{

Recall = Nr/Nt

Precision = Nr/Ng
, (3)

where Ng is the number of ground truth, Nt is the number of ships detected by ANN and Nr is the
number of correctly detected ships.
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Figure 6. (a–d) The ship-probability maps magnified from the A to D boxes in Figure 5.

Figure 7. Ship-probability map obtained by using the ANN approach.

We found the total number of 78 ships from the SAR image through visual analysis and identified
ships by using threshold values of 0.67. When the threshold value of 0.67 was used, 82 objects were
identified as ship objects, and 77 objects among them were real ships (while five objects were from
ghost phenomena). Thus, in this case, the recall and precision were about 93.9% and 98.7%, respectively.
The false-detection rate was 6.1%. Table 2 summarizes the recall, precision and false detection rate
from the detection result. The result means that about 98% of all ships can be detected, and the
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detected assignments are actual ships about 97% of the time. The main reason for false detection was
the ghost phenomena. Even though the ghost effect was reduced by the azimuth low-pass filtering,
some targets still had a higher brightness value. One of the false detections was due to the barge.
The one non-detected ship had a lower value in the NL-means-filtered images, unlike the other ships,
because the brightness value of the ship target had a lower value.

Table 2. Recall, precision and false detection rate from the detection result of the test Kompsat-5 image.
Ng: number of ground truth, Nt: number of detected ships, Nr: number of correctly detected ships

Threshold Ng Nt Nr Recall (%) Precision (%) False Detection Rate (%)

0.67 78 82 77 93.9 98.7 6.1

Kompsat-5 SAR imagery has severe ghost phenomena and side-lobe effects. Due to these effects,
it is very hard to identify ship targets. To improve the ship-detection rate, we applied the proposed
method to the Kompsat-5 SAR image. Almost all the ships were detected by the proposed method,
although some of the ghost objects were detected as ship objects. This means that the proposed method
was successfully applied to ship detection from the Kompsat-5 SAR image.

5. Conclusions

We showed an efficient method to detect ship targets from the Kompsat-5 SAR image using the
artificial neural network (ANN) approach. The method is composed of three main steps: (1) input-layer
generation, (2) the ship-probability map generation using the ANN approach and (3) the ship-object
identification. For the reduction of the side-lobe effect, ghost phenomena and speckle noises, we used
the azimuth band-pass, NL-means filters and the median filter. The intensity- and texture-differential
images were generated by image processing from the SAR image, and used as the input layers to
enhance ship objects. The training set was derived by the statistical approach and applied to the
ANN approach. The ship-probability map was generated and the ship objects were highlighted in
the probability map. We have tried to estimate an optimal thresholding value from the probability
map. For this, the histogram of the map was created. From the histogram, the point that the PDFs of
ship and non-ship objects cross was determined as the optimal threshold value. The threshold value
was 0.67.

The performance validation of our proposed method was carried out. The total number of
78 ships were found in the SAR image through visual analysis and identified ships. Through the
process, 82 objects were identified as ship objects, and 77 objects among them were real ships, while five
objects were from the ghost phenomenon. Thus, in this case, the recall and precision were about 93.9%
and 98.7%, respectively. The false-detection rate was 6.1%. This means that about 99% of all ships can
be detected, and the detected ships are true ships about 94% of the time.

It is very important to reduce the ghost and side-lobe effects and speckle noises when we find ship
objects from the Kompsat-5 SAR imagery. Their reduction can enhance the ship objects in SAR imagery.
The proposed method effectively reduced these noise effects, and consequently, the ship objects were
well-enhanced as well as detectable. Therefore, the proposed method was successfully applied to ship
detection from the Kompsat-5 SAR image. Moreover, the proposed method can be applied to other
SAR satellite images such as COSMO-SkyMed and TerraSAR-X by adjusting the filtering parameters
of the proposed method. It would be also expected that the proposed method can be applied not only
to ANN but also to other deep learning techniques, such as convolutional neural networks (CNN).
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Abstract: Artificial Neural Network (ANN) is a valuable and well-established inversion technique
for the estimation of geophysical parameters from satellite images. After training, ANNs are able to
generate very fast products for several types of applications. Satellite remote sensing is an efficient
way to detect and map strong earthquake damage for contributing to post-disaster activities during
emergency phases. This work aims at presenting an application of the ANN inversion technique
addressed to the evaluation of building collapse ratio (CR), defined as the number of collapsed
buildings with respect to the total number of buildings in a city block, by employing optical and
SAR satellite data. This is done in order to directly relate changes in images with damage that has
occurred during strong earthquakes. Furthermore, once they have been trained, neural networks
can be used rapidly at application stage. The goal was to obtain a general tool suitable for re-use in
different scenarios. An ANN has been implemented in order to emulate a regression model and to
estimate the CR as a continuous function. The adopted ANN has been trained using some features
obtained from optical and Synthetic Aperture Radar (SAR) images, as inputs, and the corresponding
values of collapse ratio obtained from the survey of the 2010 M7 Haiti Earthquake, i.e., as target
output. As regards the optical data, we selected three change parameters: the Normalized Difference
Index (NDI), the Kullback–Leibler divergence (KLD), and Mutual Information (MI). Concerning
the SAR images, the Intensity Correlation Difference (ICD) and the KLD parameters have been
considered. Exploiting an object-oriented approach, a segmentation of the study area into several
regions has been performed. In particular, damage maps have been generated by considering a set
of polygons (in which satellite parameters have been calculated) extracted from the open source
Open Street Map (OSM) geo-database. The trained ANN has been proposed for the M6.0 Amatrice
earthquake that occurred on 24 August 2016, in central Italy, by using the features extracted from
Sentinel-2 and COSMO-SkyMed images as input. The results show that the ANN is able to retrieve
a building collapse ratio with good accuracy. In particular, the fusion approach modelled the collapse
ratio characterized by high values of CR (more than 0.5) over the historical center that agrees with
observed damages. Since the technique is independent from different typologies of input data (i.e., for
radiometric or spatial resolution characteristics), the study demonstrated the strength of the proposed
approach for estimating damaged areas and its importance in near real time monitoring activities,
owing to its fast application.

Keywords: earthquake; damage assessment; neural networks; satellite data; SAR; Sentinel-2

1. Introduction

Artificial neural networks (ANN), computational modelling tools, have found wide acceptance in
many disciplines due to their adaptability to complex real world problems.

ANNs have demonstrated their ability to model non-linear physics systems [1], involving complex
physical behaviors, and were applied to the analysis of remotely sensed images with promising
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results. Some examples of applications are: retrieval of soil moisture and agricultural variables from
microwave radiometry [2], estimation of snow water equivalent and snow water depth from microwave
images [3], retrieval of leaf area index (LAI) and other biophysical variables from the MEdium
Resolution Imaging Spectrometer (MERIS) and MODerate-resolution Imaging Spectroradiometer
(MODIS) instruments [4], estimation of chlorophyll from MERIS [5], retrieval of volcanic ash and
sulphur dioxide from hyperspectral data [6]. ANNs are also used, with good results, for rainfall
prediction involving other geophysical data [7,8].

Since an earthquake usually acts in a nonlinear way, the neural network algorithm can be an
appropriate method for damage estimation purposes since it demonstrated to be a good non-linear
approximator [9]. Recently, ANNs have been applied to detect damaged buildings, following an
earthquake, by using high spatial resolution optical images acquired after the seismic event [10].
A neural network based-approach is being implemented to assess the status of buildings after
earthquake excitation, predicting the displacement at different floors considering the wave energy
propagating only into the ground floor [11].

By using change features from satellite images, accurate and reliable damage mapping can be
obtained, exploiting both optical and radar sensors [12–14]. In Romaniello et al., 2016, an unsupervised
algorithm for damage classification purposes has been developed [14].

Currently, quantitative estimation of earthquake damage level as a continuous function, using an
ANN, has not yet been exploited and the present study represents a first attempt at applying an ANN
to both optical high resolution Sentinel-2 and Synthetic Aperture Radar (SAR) remote sensing data for
collapse ratio modelling. To the best of our knowledge, the methodology based on ANN has not been
utilized in modelling earthquake damage assessment.

In the present study, two different neural networks using different Earth Observation (EO) datasets
have been realized in order to model, as a continuous function, building damage. The first neural
network (NN) experiment used, as input, only features obtained from optical data, whilst the second
one (in a data fusion approach) also the features obtained from SAR images. NDI, KLD and MI
features from optical data, and ICD and KLD from SAR data were used. Regarding the SAR data,
KLD and MI parameters are very suitable features that can contribute to damage estimation [15];
the ICD demonstrated itself a very good damage proxy [13,16]. Concerning the optical data, the most
significant performances are related to the NDI, KLD [17], and MI indexes [18]. These features show
very good sensitivity to the collapse ratio.

The case study is the Central Italy strong earthquake, which took place on August 2016. On 24
August 2016 at 1:36 UTC, a M6.0 earthquake occurred in the Apennines of Central (hereafter Amatrice
earthquake) Italy at depth 8 km, over a NNW-SSE striking, WSW dipping normal fault [19], destroying
the closest towns to the epicenter—Amatrice, Accumoli and Arquata del Tronto—and causing near 300
fatalities. This earthquake revealed the importance of a rapid earthquake damage assessment, right
after a seismic event, which can address the civil protection interventions towards the most affected
areas. This work allowed to quantitatively evaluate the performance of NNs in terms of CR retrieval
accuracy and generalization capability.

2. Neural Network Approach and Employed Features

ANNs are based on the concept of the single artificial neuron, the ‘Perceptron’, introduced by [20]
to solve problems in the area of character recognition [21]. Using supervised learning, with the
Error-Correction Learning (ECL) rule for network weights adjustment, those networks can learn to
map from one data space to another using examples [22]. One of the most common and reliable
learning techniques is the back-propagation (BP) algorithm [23]. BP consists of two phases: in the
feedforward pass, an input vector is presented to the network and propagated forward to the output;
in the back-propagation phase, the network output is compared to a desired output; network weights
are then adjusted in accordance with an ECL rule [23–25]. Cross validation can be used to detect when
over-fitting starts during supervised training of a neural network; training is then stopped before
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convergence to avoid over-fitting (early stopping). Early stopping using cross validation was done by
splitting the training data into a training set, a cross-validation set, and a test set, and then training the
networks only using the training set and evaluating the per-example error on the test set on a sample
basis after a defined number of epochs. Finally, training was stopped when the error—the difference
between neural network output and target—on the cross validation set was higher than the previous
error value [26].

The performance of a trained ANN is generally assessed by computing the root mean square
error (RMSE) between expected values and activation values at the output nodes or, in the case of
classification, a percentage of correctly classified examples of the validation set. At the time our study
was carried out, the ground truth was unavailable for Amatrice earthquake, so a visual inspection
using high resolution images has been adopted.

From studies of past literature and development activities performed in a European research
project (APhoRISM, www.aphorism-project.eu), we identified and employed a set of features that
demonstrated a good sensitivity to damage at object scale. Regarding optical data, we used the NDI,
KLD and MI change indexes. As far as SAR data is concerned, we considered the KLD and ICD
parameters. Note that all change indexes have been calculated at object scale, i.e., by considering
polygons that refer to city blocks. These latter have been extracted through the free geo-database of the
Open Street Map project.

The NDI parameter is defined as

NDIi =
POSTi − PREi
POSTi + PREi

(1)

where PREi and POSTi indicate the mean values of intensity, respectively for pre- and post-seismic
images, associated to i-th polygon (see also Figure 2 as example). The intensity values are obtained
averaging the Top of Atmosphere (TOA) Red-Green-Blue (RGB) reflectance and corrected by applying
the Flat Field procedure for atmospheric correction [27].

The MI index measures the correlation loss between pre- and post-seismic images (see Equation (2)).

MIi = − ln
(

1 − r2
i

)
× 0.5 (2)

where ri
2 is the correlation between the pre- and post-seismic pixels within each polygon. Correlation

is obtained from intensity and backscattering values for optical and SAR data, rescpectively. MI is
inversely proportional to the damage grade.

The KLD parameter is defined as

KLDi =
(PREi − POSTi)

2 + Var(PREi) + Var(POSTi)

2
×

(
1

Var(PREi)
+

1
Var(POSTi)

)
− 2 (3)

where PREi and POSTi are the same parameters in the Equation (1), and Var(PREi) and Var(POSTi)
are their variances within the i-th polygon. The KLD parameter has the same behavior of NDI: KLD
increasing values correspond to increasing damage level. The ICD parameter is calculated on the base
of the Pearson Correlation coefficient (ρi) estimated on the pre-seismic SAR image pair (ICpre) and on
the co-seismic SAR image pair (ICcos). From these two intermediate outputs, we can compute the ICD

ICDi = ICpre − ICcos (4)

3. Dataset and NN Training

The training case study was the Mw 7.0 earthquake that hit Haiti on 12 January 2010. The epicenter
was located about 25 km west–southwest of Port-au-Prince city. The disastrous shock caused the
collapse of a huge number of buildings and widespread damage.
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Table 1 describes satellite dataset used which consists of GeoEye-1 optical images (one pre- and
one post-seismic), and three TerraSAR-X SAR images (two pre- and one post-seismic).

Table 1. EO data list for NN training.

Datatype Satellite Acquisition

Optical GeoEye-1 2009/10/01
Optical GeoEye-1 2010/01/13

SAR TerraSAR-X 2009/05/01
SAR TerraSAR-X 2009/10/13
SAR TerraSAR-X 2010/01/20

Optical images inputs, both for pre- and post-, consisted of TOA reflectances at 2 m spatial
resolution for RGB spectral bands; starting from these reflectances, the intensity values are derived
(as described in Section 2).

As regards SAR data, intensity images have been obtained by multi-looking 3 × 3 m TerraSAR-X
applying a re-sampling at 10 × 10 m.

The computation of change indexes based on EO imagery has been performed at object scale by
considering a set of polygons, extracted from the open source Open Street Map (OSM) geo-database
over Port-au-Prince. A total of 1513 polygons corresponding to city blocks of the affected areas have
been considered. All the features (NDI, KLD, MI and ICD) are grouped in a unique dataset necessary
for the Neural Network approach.

In addition to satellite data, a Ground Truth (GT) survey for Port-au-Prince town, expressed
in terms of collapse ratio (CR), has been used (see Figure 1). The CR has been calculated by
using GT information collected during a post-earthquake survey and available from the JRC (Joint
Research Center) database, and considering the same polygons (city blocks) used for the satellite
features calculation.

Figure 1. Collapse ratio (CR) for each polygon obtained from JRC survey data over Port-au-Prince.
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In this work, Back-Propagation Neural Network (BPNN) has been used [23]. The BPNN to model
CR was implemented using, as input, the features extracted from satellite images (see previous section,
e.g., NDI in Figure 2), and CR values as target output. The 1513 samples used for NN training were
split in Training, Cross Validation, and Test datasets of 65, 20 and 15%, respectively.

Figure 2. NDI map obtained from pre- and post-seismic GeoEye-1 images over Port-au-Prince.

A first network topology (Exp 1) consisted of only optical features as input (NDI, KLD and
MI), five hidden layers with variable number of neurons [5–10–20–10–5], and one output, the CR.
Furthermore, in order to perform a data fusion exercise, a different neural network using five inputs
was adopted (Exp 2), adding to the optical features also the SAR ones, i.e., IC and KLD.

Figure 3 shows the statistical distributions for CR, train (a), cross-validation (b) and test (c) sets
used during NN training phase. Despite of histograms put in evidence that values higher than 0.5 are
statistically not well represented, we can consider the dataset a good training ensemble, because it
covers the entire range of values.

Figure 3. Distribution histograms for (a) training; (b) cross validation and (c) test of Haiti datasets used
in the training phase.

Results of NNs training phase for Exp 1 and Exp 2 are depicted in Figures 4 and 5, respectively.
As regard the network using only optical features, the regression coefficient obtained applying the
network to the test dataset is 0.67 (Figure 4), whilst NN using both and optical features obtains 0.73
(Figure 5). In this phase, it seems that using more features improves the NN retrieval accuracy.
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Figure 4. Regression curves for training, cross validation, test and total sets, considering Exp 1.
Red squared regression curves describe the result obtained when an independent dataset is applied.

 
Figure 5. Regression curves for training, validation, test, and total sets, considering Exp 2. Red squared
regression curves describe the result obtained when an independent dataset is applied.
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4. Application of the Trained NN and Results for the Central Italy Case Study

In order to evaluate the performance of NNs in terms of retrieval accuracy and generalization
capability, they were applied to the Amatrice earthquake. The goal is also to evaluate NN capability for
modelling the building collapse ratio. The satellite dataset is made up of two Sentinel-2 optical images
(1 pre- and 2 post-seismic), three COSMO-Sky SAR images (2 pre- and 1 post-seismic), and a building
footprint layer extracted by the Open Street Map service (see Table 2 for EO data characteristics).
Both optical and SAR data have a 10 m spatial resolution.

Table 2. EO data list for NN application.

Datatype Satellite Acquisition

Optical Sentinel-2 2016/08/14
Optical Sentinel-2 2016/09/04

SAR COSMO-Sky 2016/07/19
SAR COSMO-Sky 2016/08/20
SAR COSMO-Sky 2016/08/28

The Amatrice footprint layer extracted from OSM, which is at a single building scale, was modified
to obtain polygons surrounding more than one building. In this way, there are more pixels associated
to each polygon leading a better estimation of change features over the polygon itself. The resulting
layer consists of 112 polygons.

In the Figure 6, histograms for the CR obtained by the NN approach, Exp 1 (a) and Exp 2 (b),
are depicted.

Figure 6. NN Collapse Ratio estimated after the M6.0 earthquake on 24 August 2016. (a) NN approach
using optical inputs and (b) optical and SAR.

The histogram comparison shows that Exp 1 estimates most of polygons with a CR less than 0.1
(92 polygons, 82% of total), which means no damage. Five polygons present a CR between 0.1 and
0.2 and just one between 0.2 and 0.3. Only about 13% of polygons have a CR higher than 0.3, which
spans from medium damaging to total collapsing. Specifically, three polygons with CR between 0.3
and 0.4, four between 0.4 and 0.6, six between 0.6 and 0.8, and only one higher than 0.8, indicating
total collapse.

The location of polygons is well shown in Figure 7a, which describes the damage CR maps
obtained analyzing post 24 August 2016. The map indicates that the severe damage is mainly retrieved
in the northeast part of the Amatrice (red blocks), although information from Civil Protection confirms
that collapses involved the whole historical center. This is confirmed by looking at an optical very high
resolution (VHR) image (Figure 8) acquired after the Amatrice seismic event.
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Figure 7. Amatrice CR maps obtained analyzing post 24 August 2016 remote sensing data: (a) NN
with only optical features as input; (b) NN using both optical and SAR features.

 

Figure 8. Amatrice historical center, post-earthquake damage from RGB VHR DigitalGlobe image.

The fusion of optical and SAR features significantly changes this distribution (Figure 7b),
where occurrences of CR less than 0.1 (blue blocks) drastically decrease with respect to the Exp
1 (19 polygons, only 17% of total). About 54% of polygons show a CR between 0.1 and 0.2 (grey blocks),
indicating light damage. Looking at map in Figure 7b, these light damages lie partially in the historical
center, but most of them are located in the southeast part of the city.

Considering only the historical center and the comparison with the VHR image (Figure 8),
we suppose that Exp 2, involving SAR features, is more sensitive to light/medium damage level.
Indeed, 14 polygons present a CR between 0.2 and 0.3, which indicate a medium damage level. We
also notice that these polygons are located in the southeast part of the historical city center, an area
involving severe damage as confirmed by the VHR image depicted in Figure 8. Considering CR higher
than 0.3, polygons retrieved by Exp 2 increase by about 27% (19 respects of previous 14 of Exp 1).

The NN employed for the data fusion approach (Figure 7b), better identifies the severely damaged
areas in the historical center, also where Exp 1 underestimated the collapses. At the same time, it seems
to overestimate the damage in other areas, especially outside of the historical center. Indeed, Exp 2
indicates zones characterized by building collapses also in the southeast and partially in the northwest
(Figure 7b). In this sense, the Exp 2 seems to provide a more realistic damage distribution: at first
glance the NN regression model using the fusion approach gives the best results better identifying
areas affected by collapses, whereas the Exp 1 seems to underestimate them.

129

Bo
ok
s

M
DP
I



Appl. Sci. 2017, 7, 781

5. Conclusions

The present work shows that neural networks, once they have been trained, can be used to rapidly
retrieve building collapse ratios from optical and SAR remote sensed data. The implemented ANNs
modelled the collapse ratio with quite high accuracy when applied to the post Amatrice earthquake
independent dataset. High values of CR (more than 0.5) were retrieved over the historical center that
are in agreement with a damage assessment observed by optical VHR imagery. The fusion of optical
and SAR derived parameters seem to give a more reliable result using only optical data, even though
it probably underestimates the occurrences of collapse ratios higher than 0.5, due mainly to a minor
statistical characterization of values during the ANN training phase (only 3%).

Considering that the technique is independent of different types of input data, both for radiometric
characteristics and spatial resolution, our work has demonstrated that ANNs are powerful tools able
to estimate damaged areas, and they are important in near real time monitoring activities, owing to
their fast application.

When looking at using an ANN approach in near real time monitoring, special care has to be
taken during the training phase. This is because the neural network needs to be fed and trained
continuously also during its operating phase in order to keep phenomena knowledge updated and
retrieval performance accurate at the operating stage.

Another aspect is related to the input data characteristics, such as the spatial resolution, which can
limit the neural network retrieval accuracy. In this case, a possible improvement could be the use of
VHR satellite data, which could provide information at a building scale.

Future work will consider earthquake surveys in order get ground truth datasets to make
a quantitative assessment of ANN performance. It will also consider extending the analysis to
other areas affected by 2016 Central Italy seismic sequence. Furthermore, because the described
approach needs both pre- and post-earthquake images, and in many cases a pre-earthquake image is
not available or not up to date, a future goal will be the application of Neural Network approaches
only using post-earthquake remote sensed images, available in near real time.
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Abstract: Volcanic eruptions cause pyroclastic flows, which can destroy plantations and settlements.
We used image data from Landsat 7 Bands 7, 4 and 2 and Landsat 8 Bands 7, 5 and 3 to observe
and analyze the distribution of pyroclastic flow deposits for two volcanos, Mount Sinabung and
Merapi, over a period of 10 years (2001–2017). The satellite data are used in conjunction with
an artificial neural network method to produce maps of pyroclastic precipitation for Landsat 7 and 8,
then we calculated the pyroclastic precipitation area using an artificial neural network method after
dividing the images into four classes based on color. Red, green, blue and yellow were used to
indicate pyroclastic deposits, vegetation and forest, water and cloud, and farmland, respectively.
The area affected by a volcanic eruption was deduced from the neural network processing, including
calculating the area of pyroclastic deposits. The main differences between the pyroclastic flow
deposits of Mount Sinabung and Mount Merapi are: the sediment deposits of the pyroclastic flows of
Mount Sinabung tend to widen, whereas those of Merapi elongated; the direction of pyroclastic flow
differed; and the area affected by an eruption was greater for Mount Merapi than Mount Sinabung
because the VEI (Volcanic Explosivity Index) during the last 10 years of Mount Merapi was larger
than Mount Sinabung.

Keywords: Sinabung eruption; Merapi eruption; pyroclastic flow deposits; Landsat imagery; artificial
neural network

1. Introduction

Remote sensing research has used multispectral remote sensing imagery to provide additional
data, proving to be a valuable source of spatio-temporal data for some applications. Applications that
are widely used are: land cover classification, detection catch archeology, extracting spatial features
and classification in a residential area, the extraction of the street, the estimation of urban sprawl
automatic mapping feature flow, classification and feature extraction transport, mapping snow cover
and the evaluation of geomorphological features [1,2].

Land cover assessment (LC) is very important in planning, monitoring and sustaining the
utilization of natural resources. LC has a direct impact on water, atmospheric and soil erosion
and is therefore directly related to many globally-important environmental issues [3]. Appropriate
knowledge, updated and temporal, about LC is very important to address the issue of unplanned
development, environmental degradation, loss of wildlife habitat and depletion of primary agricultural
and forest land [4]. Therefore, it is important to evaluate and monitor the LC dynamics resulting from
anthropogenic activities and natural phenomena to plan, monitor and sustain the utilization of natural
resources [5].
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In this study, land cover assessment is used to see the distribution of volcanic eruptions’
deposits that may be dangerous to the surrounding area when the eruption occurs. The volcano
is a naturally-formed entity on the surface of the Earth that occupies an area and displays volcanism.
An eruption is the discharge of magma from within the Earth and can be divided into three types:
explosive, effusive and hot spot eruptions. The type of eruption that occurs is influenced by many
factors such as magma viscosity, the gas content of the magma, the influence of groundwater and
the depth of the magma chamber [6]. The products ejected by volcanic eruptions, which are often
catastrophic, can be captured by satellite, optical and radar sensors. Remote sensing images can be
utilized to detect the spread of eruptive fumes associated with volcanic eruptions that spread in the
atmosphere, pyroclastic deposits, incandescent lava, lahar distribution and dome deformation [7].

We analyze the evaluation of volcano hazard, especially pyroclastic deposit, using land
classification with Landsat imagery data and the artificial neural network approach. Several different
approaches to the evaluation of volcano hazards can be found in the current literature, including
direct and indirect heuristic approaches and deterministic, probabilistic and statistical approaches.
Lee et al. (2015) summarized the many analyses of volcano activity based on remote sensing and
GIS techniques [8]. Recently, studies on volcano activity assessment made use of remote sensing,
and many applied probabilistic models such as satellite imagery. We used land classification in satellite
imagery using an artificial neural network method to analyze the area affected by an eruption. Lee at al.
(2003) showed that the most frequently-used neural network method is the backpropagation learning
algorithm, a learning algorithm of a multilayered neural network that consists of an input layer, hidden
layers and an output layer [9]. Many experiments have shown that multilayered neural networks are
more accurate for land cover classification than traditional statistical methods [10–13].

2. Study Area

Indonesia is a country located in the ring of fire, an area of frequent geological disasters, including
earthquakes, volcanoes, flash floods, landslides and tsunamis. These disasters are harmful, destructive
and result in a huge loss of life. The most frequent disaster in Indonesia is a volcanic eruption. Indonesia
currently has 129 active volcanoes, and 70 volcanoes have erupted in the last 400 years. The area of
land threatened by a volcanic eruption in Indonesia is 16,670 km2, and around 5,000,000 lives are
threatened by volcanic eruptions [14].

There have been several volcanic eruptions in Indonesia (Figure 1a) in the last 10 years. The focus
of this research is Mount Sinabung (Figure 1b) and Merapi (Figure 1c), the eruptions of which have
caused many casualties. The eruption of Merapi in 2010 was the largest eruption in the last 10 years and
killed 347 people. Mount Sinabung has erupted two times in the last 10 years in 2010 and 2013–2017.
The period of eruption of 2013 is still ongoing and has killed 16 people [14].

Mount Sinabung is in the Karo Highlands, Karo District, North Sumatra Province, Indonesia.
The geographical position of the peak of Mount Sinabung is 3◦10′ north latitude and 98◦23.5′

east longitude. The height of Mount Sinabung is 2460 m above sea level, and its volcano
type is a stratovolcano [14]. Mount Sinabung was dormant for 400 years, from ~1600–2010 CE.
Mount Sinabung finally erupted in 2010, an activity that was predicted from the three earthquakes
that struck Sumatra. The earthquakes measured 8.8, 7.9 and 8.4 on the Richter scale and struck in 2005,
2007 and 2007, respectively [15].

Mount Merapi is located on the border of four districts; Sleman, Yogyakarta and Magelang,
Boyolali and Klaten, in Central Java Province. Its geographical position lies at 7◦32′30′′ north latitude
and 110◦26′30′′ east longitude. Based on its tectonic order, the mountain is located in a subduction
zone, where the meeting of the Indo-Australian and Eurasian Plates controls the volcanism in Sumatra,
Java, Bali and Nusa Tenggara. The height of Mount Merapi is 2986 m above sea level, and its type is
a stratovolcano [14]. Mount Merapi is a very active volcano mountain. Since 1600, Merapi volcano has
erupted more than 80 times, and an eruption occurs on average every 4–5 years. Merapi is a volcano

133

Bo
ok
s

M
DP
I



Appl. Sci. 2017, 7, 935

cone composed of andesitic-basaltic magma with silica (SiO2) content ranging from 52–56%. The top
morphology is characterized by a horseshoe-shaped crater, in which lava domes grow [16–19].

 

Figure 1. Map of Indonesia using Google Maps (a); location of Mt. Sinabung (b) and Merapi (c) on
Sumatra and Java Islands from USGS earth explorer website [20].

3. Data

A pyroclastic flow inundation map can be generated by field surveys from the crater rim to the
furthest extent of the pyroclastic flow after a volcanic eruption. However, a field survey in an active
volcano can be dangerous because of the exposure to hazardous gases and sudden activity. In contrast,
remote sensing techniques are a useful tool for generating pyroclastic flow deposit maps, which provide
a safe, cost-effective alternative to field mapping.

A Landsat image is a picture of the surface of the Earth taken from outside the atmosphere at
an altitude of approximately 818 km from the Earth’s surface, on a scale of 1:250,000. Each Landsat
image covers an area of 185 km2 so that the aspect of a large object can be identified without exploring
all of the surveyed areas [21]. Each color in the satellite image has a meaning; a color on the image
indicates whether a reflection value corresponds to vegetation, aquatic bodies or a body of the Earth’s
surface rock [22]. Therefore, geological interpretation of the Landsat image is based on the difference
between the reflection values [23].

This study used satellite data from Landsat 7 ETM+ and Landsat 8. Landsat 7 ETM+ was
used to see the changes of pyroclastic deposits from 2007 to 2012, while Landsat 8 was used to see
changes in pyroclastic deposits from 2013 to 2017. However, the Landsat 7 ETM+ data suffer from the
scan line corrector (SLC)-off phenomenon because of the failure of the SLC in the ETM+ instrument.
These images can be restored by gap-filling the scan line using one-dimensional interpolation without
any other supplementary data with the gap interpolation and filtering technique [24].

The Landsat 7 and Landsat 8 image data from Mount Sinabung and Mount Merapi were taken
from USGS earth explorer website [20] using RGB Bands 7, 4 and 2 to see the pyroclastic deposit in
Landsat 7 and RGB Bands 7, 5 and 3 to see the pyroclastic deposits in Landsat 8 (Figures 2 and 3).
Landsat image data are taken annually to analyze changes in pyroclastic deposit. Landsat images were
selected based on their image quality. Several parameters were used to assess the quality of Landsat
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images, including sunlight and cloud cover in the image of the object of research. Based on these
parameters, data selection is performed in different months and dates in each year.

We select the Landsat image data representing data before eruption and after eruption to see the
difference in pyroclastic deposit area of Mount Sinabung and Merapi. For Mount Sinabung, we chose
Landsat image data taken 7 February 2007 as data before eruption, 17 November 2011 as data after
the first eruption, 1 July 2016 as data after the second eruption and 28 July 2017 as current pyroclastic
deposit data. For Mount Merapi, we chose Landsat image data taken 16 June 2007 as data before
eruption, 10 May 2011 and 2 November 2014 as data after the big eruption in 2010 and 23 May 2017 as
current pyroclastic deposit data.

Figure 2. Landsat 7 (Bands 7, 4 and 2) and Landsat 8 (bands 7, 5 and 3) imagery data of Mount Sinabung
taken in the year shown below each image. We can see the changes of pyroclastic deposits of
Mount Sinabung from before eruption (a) 7 February 2007, after the first eruption on (b) 17 November
2011, after the second eruption on (c) 7 July 2016, and current pyroclastic deposits on (d) 28 July 2017,
marked with grey color in the middle of the image.
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Figure 3. Landsat 7 (Bands 7, 4, 2) and Landsat 8 (Bands 7, 5, 3) imagery data of Mount Merapi taken
in the year shown below each image. We can see the changes of pyroclastic deposits of Mount Merapi
from before eruption on (a) 16 June 2007, and also during the time after the big eruption in 2010, which
can see on (b) 10 May 2011 and (c) 2 November 2014, and current pyroclastic deposits on (d) 23 May
2017, marked with dark grey color in the middle of the image.

4. Methodology

A neural network model belongs to the branch of artificial intelligence generally referred to
as artificial neural networks (ANNs). ANNs teach a system to execute a task, instead of using
a computational programming system to do defined tasks. To perform such tasks, an artificial
intelligence system (AI) is generated; a pragmatic model that can quickly and precisely find the
patterns buried in data that represent useful knowledge. Neural networks are one example of these AI
models. In the area of medical diagnosis relationships with dissimilar data, artificial intelligence is one
of the most available techniques [25].

In this method, the analyst first determines some training area (sample area) on the image as
a class of the appearance of a particular object. This determination is based on the analyst’s knowledge
of the region of land cover areas. The pixel values in the sample area are then used by computer
software as the key to recognizing other pixels. Areas that have similar pixel values are entered into
predefined classes [10]. Therefore, in this method, the system first identifies the class of information,
and this class is then used to determine the spectral class that represents the class of information.

An ANN is a mathematical model that has been applied for the identification, modeling,
optimization, forecasting, prediction and control of complex systems [26,27]. It can be trained for
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performing a particular task based on available empirical data [28]. ANN is a nonparametric approach
that has advantages over statistical classification techniques and has been widely used in different
LC studies in recent years [29,30]. The NN classifier adopted in this study is a nonlinear layered
feed-forward model with standard backpropagation for supervised learning. To perform the ANN
using ENVI software, the logistic activation method was used, and one hidden layer was selected.
The training threshold contribution and training momentum fields were set to a value of 0.9. Finally,
the training rate field, training RMS exit criteria field and number of training iterations were set to
values of 0.2, 0.1 and 100, respectively.

The links with the neurons located in the so-called hidden neuron layer then take different
weights and are trained depending on the required output, thus modeling complex relationships
among variables [31]. The system requires feed-forward and backpropagation processes to allow the
network to be trained. The visualization of this stage is accomplished through error analysis. If the
error becomes smaller and asymptotic, the network will be ready to receive new input data and predict
the output [32].

The ANN models used in this study are of the multilayer perceptron ANN type [33]. The architecture
is as shown in Figure 4. The input layer is Region 1 (red color as pyroclastic deposits), Region 2
(blue color as water), Region 3 (green color as forest) and Region 4 (yellow color as farmland). In each
case, the training of the proposed network was performed with a backpropagation algorithm, which is
a supervised learning procedure. It uses the method of gradient descent for minimizing the global
quadratic error of the output calculated by the network [32].

Figure 4. Artificial neural network model used for data analysis. Input layer data Regions 1–4, which
are select in ENVI. The output layer is the classification map.

5. Result

5.1. Classification of Landsat Images

The pyroclastic dimension area was analyzed using supervised classification using the artificial
neural network approach in the ENVI program. We used the gap-filled Landsat data to delineate the
pyroclastic deposit surrounding areas through supervised classification. We established four classes
for Mount Sinabung and Mount Merapi. The focus of this study is the pyroclastic deposits, which are
marked as red. The classes used on Mt. Sinabung are forest (green), farmland (yellow), water and
shadow (blue) and pyroclastic deposit (red). Mt. Merapi is divided into forest (green), farmland
(yellow), cloud (blue) and pyroclastic deposit (red).

Land classification on Mount Sinabung using the artificial neural network approach is shown
in Figure 5. The land classification is divided into four classes based on its color: green as forest,
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yellow as farmland, blue as water and shadow and red as pyroclastic precipitate. We selected Landsat
image data in this study taken on 7 February 2007 as data before eruption, 17 November 2011 as
data after the first eruption, 1 July 2016 as data after the second eruption and 28 July 2017 as current
pyroclastic deposit data. Based on the supervised classification maps of Mt. Sinabung (Figure 5),
the pyroclastic flow depositional area was primarily in the southern region of Mt. Sinabung before the
first eruption in 2010. However, the pyroclastic flow deposit migrated to the eastern part of the volcano
after the 2010 eruption (Figure 5a,b). The next eruption was in 2013–2017 (Figure 5b,c), and from the
land classification data, it can be seen that after the second eruption on 1 July 2016, there was a very
big change in the pyroclastic deposits of Mount Sinabung. The pyroclastic precipitate flows to the
southeast and extends downward with a shape resembling a landslide. On 28 July 2017, it was seen
that pyroclastic deposits did not change too much from the previous year.

Figure 5. Supervised classification maps from ANN processing in the ENVI program of the Mount
Sinabung Landsat Imagery taken on: (a) 7 February 2007; (b) 17 November 2011; (c) 1 July 2016;
and (d) 28 July 2017.
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Land classification on Mount Merapi using the artificial neural network approach is shown in
Figure 6. The land classification is divided into four classes based on its color: green as forest, yellow
as farmland, blue as cloud and red as pyroclastic precipitate. We selected Landsat image data in this
study taken on 16 June Landsat 2007 as data before eruption, 10 May 2011 and 2 November 2014 as
data after the big eruption in 2010 and 23 May 2017 as current pyroclastic deposits. Based on the
supervised classification maps of Mount Merapi (Figure 6), the pyroclastic flow depositional area
primarily existed in the southwestern region before the eruption in 2010. However, the pyroclastic
flow deposit migrated to the southern part of the volcano after the 2010 eruption.

Figure 6. Supervised classification maps using ANN processing in the ENVI program of Mount
Merapi Landsat imagery data taken on: (a) 16 June 2007; (b) 10 May 2011; (c) 2 November 2014;
and (d) 23 May 2017.
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5.2. Time Series Analysis of Pyroclastic Deposit

Pyroclastic deposits area are constantly changing after an eruption, and therefore, time series
analysis is needed to compare the area of pyroclastic deposits in each year. Time series analysis
of pyroclastic deposit land classification with Landsat imagery data is used to calculate the area of
pyroclastic deposits. We calculate the area of the pyroclastic deposits using ArcMap. The data of the
land classification map with a multilayer format are used to calculate pixels in each class [34], because
the concern of this research is the pyroclastic deposit, so we only calculate red pixels, which means
pyroclastic deposit on the land classification map. The Landsat image has a resolution of 30 × 30 m,
so we just multiply the number of pixels by the resolution of the Landsat image to get the area of
pyroclastic deposits.

The pyroclastic deposits on Mt. Sinabung increased after the eruption in 2010. Since Mt. Sinabung
has been highly active since 2010, the pyroclastic deposit area changes every year. We can see the
change of the pyroclastic deposit of Mt. Sinabung each year based on Table 1. Before the eruption,
pyroclastic deposits were calculated as 0.3807 km2 in 2007. The area of pyroclastic deposits increased
in 2011 due to the eruption in 2010 to 1.5066 km2. The increase of pyroclastic precipitate in 2011 was
not too big because the eruption that occurred in 2010 was a small eruption. Then, in 2013–2017,
the second eruption occurred, and in 2016, the pyroclastic deposit area due to the second eruption of
Mount Sinabung in the last ten years increased very significantly to 20.5911 km2; this can be seen in
Figure 7. The current pyroclastic deposit area of Mount Sinabung is estimated at 18.4572 km2.
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Figure 7. Time series of pyroclastic flow deposits for Mount Sinabung.

Table 1. Time series of pyroclastic flow deposits.

Mount Sinabung No. Year
Pyroclastic Deposit Area

Pixel km2

1 2007 423 0.3807
2 2011 1674 1.5066
3 2016 22,879 20.5911
4 2017 20,508 18.4572

Mount Merapi erupted in 2006; thus, the pyroclastic deposit of Mount Merapi was still high in 2007,
as it was calculated to be 16.443 km2 in Table 2. In 2010, Merapi erupted with VEI (Volcanic Explosivity
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Index) 4. Therefore, much volcanic material was ejected and caused damage. The pyroclastic deposits
caused by the eruption in 2010 were very big, increasing two-fold from previous eruptions (Figure 8).
We can calculate the pyroclastic deposit of by the 2010 eruption by 2011 data; it is 38.2536 km2.
After the big eruption of 2010, the pyroclastic deposits area was decreased, calculated for Landsat 2014
as 20.5911 km2. The current pyroclastic deposit area of Mount Sinabung is estimated at 18.4572 km2.
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Figure 8. Time series of pyroclastic flow deposit for Mount Merapi.

Table 2. Time series of pyroclastic flow deposit.

Mount Merapi. No Year
Pyroclastic Deposit Area

Pixel km2

1 2007 18,270 16.443
2 2011 42,504 38.2536
3 2014 34,708 31.2372
4 2017 28,543 25.6887

6. Discussion

The supervised classification neural network analysis was used to view and calculate the area
of pyroclastic flow deposits. From the Landsat imagery data, differences in appearance can be
seen between pyroclastic flow deposits, forests, lakes and plantations. Landsat image data were
used as an object for supervised neural network classification analysis. The supervised neural
network classification divides the area based on the pixels that have been selected according to
the class. The results of the supervised neural network analysis show that there are differences in the
distribution of pyroclastic flow deposits between Mount Merapi and Mount Sinabung. The apparent
differences in the Landsat imagery data that have been found by classification by the supervised
neural network are the direction of flow, the area of deposit and the distribution of pyroclastic flow
deposits. The differences in the distribution of pyroclastic flow deposits between Mount Sinabung and
Mount Merapi were caused by several influential factors, such as the formation of volcanoes, regional
geological conditions, volcano magmatic properties, volcanic type, lava domes and the Volcanic
Explosivity Index.

The geological conditions of Sumatra affect the formation of Mt. Sinabung. The outline of Sumatra
Island consists of three tectonic systems, namely the Sumatra Subduction System, the Mentawai Fault
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system and the Sumatra Fault System. Based on the geological reconstruction by Robert Hall (2000) [35],
the initial formation of the Sumatra region began ~50 million years ago (early Eocene). There are at
least 19 C-section segments, each with lengths of ±60–200 km, in the Sumatra Fault System, which has
a total length of ±1900 km. Lake Toba on the island of Sumatra is evidence of a supervolcano and is
the remains of the largest eruptions of Caldera Crescent (scale: 8 VEI).

The eruptions of Mount Sinabung eject many volcanic materials, one of which is pyroclastic
flow. The pyroclastic flow deposits of Mount Sinabung spread to the southeast, tend to widen and
are not transported far from the crater of Mount Sinabung. These characteristics result from the
acid-intermediate (andesitic-rhyolitic) [17] magma of Mount Sinabung, which tends to be thick and
prevents the pyroclastic flow deposit from being transported far. The other factor is due to the shape of
the slopes of Mt. Sinabung, where the pyroclastic flows and the direction of the river in Sinabung valley
are almost perpendicular. Mount Sinabung is a Type B mountain, which means there was no track
record of eruption before it erupted in 2010 [14]. The eruption of 2010 was a phreatic-type eruption,
as defined by the presence of volcanic dust. A phreatic eruption is the process of magma escaping to the
surface because of the influence of steam caused by the direct or indirect interaction between water and
magma [36]. The second eruption of Mount Sinabung was larger than that in 2010, which could have
been caused by the formation of an old dome on Mount Sinabung after the first eruption. The material
ejected in the next eruption mixed with the material on the surface or around the crater, destroying
the already formed lava dome and forming a new lava dome. The eruptions of Mount Sinabung are
generally rated as VEI 2, which means the eruption is relatively small [37]. However, the eruptions are
continuous and interfere with the activity of the residents. A larger eruption is probable to occur since
Sinabung is located in the Semangko Fault Zone, the largest fault on Sumatra Island.

Based on seismic data, Mount Merapi is estimated to have a magma pouch because no seismic
data from inside the seismic zone exist, indicating that there is a soft material between harder materials
in the seismic zone. This soft material is thought to be the magma pocket of Mount Merapi [19].
This hypothesis is supported by the fact that the temperatures around the top of the Woro and
Gendol plates can reach 830 ◦C, which means there is a sufficiently shallow source of heat. It is
estimated that these magma pockets arise because of this basic fault, where magma can accumulate.
This magma pocket is thought to act as a valve that slows the upward magma migration of the magma
chamber. Therefore, the scale of the eruption is reduced [18]. The absence of an earthquake below
5 km strengthens the case for the existence of a magma kitchen at a depth of ~8 km, as proposed by
Beaducel (1998) based on tiltmeter and GPS data modeling [6].

Mount Merapi erupts almost every five years because of the existence of magma pockets in the
magma chamber of Merapi Volcano, which are likely to have been formed by a major eruption in
the past. The major eruptions recorded on Mount Merapi in the 21st Century were in 2006 and 2010,
with the 2010 eruption causing more than 350 casualties [14].

Landsat imagery data show that the 2010 eruption issued pyroclastic material from inside Merapi’s
crater that spread around the Mt. Merapi area. Landsat 8 image data using Bands 4, 3 and 2 in the
natural view show that the direction of the pyroclastic flow was to the south and southwest and
that Merapi’s pyroclastic flow sediment tends to elongate because it is transported far from the peak.
The long range of the flow could be caused by the valleys that run in the same direction as the slope,
as well as the basaltic-andesitic (intermediate-base) magma type. This type of magma tends to be dilute
and can be transported far, along with the outflow of pyroclastic flows from the eruption. Merapi’s
eruption type can be categorized as a weak volcanic type that is not so explosive, but pyroclastic
flow almost always occurs after an eruption. The eruptive activity of Merapi can be seen to undergo
a long process, from the initial lava dome formation to incandescent lava and hot clouds (pyroclastic
flow). The eruption in 2010 had a strong VEI value of four, and lahar flows occurred in addition to
a pyroclastic flow [16]. Lahar flows damage buildings and bridges because of their high speed and
because they carry material such as stone and sand. In addition, volcanic ash is widely distributed,
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the high silica content of which makes it dangerous to breathe. The volcanic ash sediment can be seen
in Landsat 7 imagery data from 2010.

7. Conclusions

Mount Sinabung first erupted in 2010 after a long break of over 400 years, and this first eruption
was followed by a series of six eruptions between 2013 until 2016. The biggest eruption occurred in
2014 and had a VEI of two, causing ~16 deaths and the destruction of farmland and residents’ houses
by pyroclastic flows. Mount Merapi erupts roughly every five years because of the high magma
activity in its magma chamber, as well as the magma pocket that formed during a past eruption.
We analyzed the differences in the pyroclastic deposit flows between Mt. Sinabung and Mt. Merapi,
using Landsat 7 and 8 imagery with Bands 7, 4, 2 and 7, 5, 3, respectively, to see the pyroclastic
precipitates and deposits of sand and rocks.

An artificial neural network method was used to analyze the pyroclastic precipitates and the
pyroclastic precipitate area using Landsat imagery data taken annually from 2007 to 2017 for each
volcano. The analysis showed that the pyroclastic sediment of Mount Sinabung spread to the east at the
beginning of eruption and then widened to the southeast and south after the series of eruptions took
place. The continuous eruption of Mount Sinabung caused the formation of pyroclastic deposits that
accumulated around the body of the mountain. The pyroclastic sediment of Mount Sinabung tends to
widen and is not transported far because of the direction of river flow on the mountain, which is not in
the direction of the mountain’s slope. In addition, the andesitic-rhyolitic (intermediate-acid) magma
composition of Mount Sinabung prevents pyroclastic flow from being transported far, because the
lava tends to be thick. In contrast, the pyroclastic flows of Mount Merapi flow to the south and to the
southwest along the slope and river flow direction of Mount Merapi. Thus, the pyroclastic sediment of
Mount Merapi does not accumulate much in the body of Merapi Volcano, but flows following the slope
of the volcano. The composition of magma on Mount Merapi is also different from Mount Sinabung;
Mount Merapi’s magma is andesitic-basaltic (intermediate-base), so the flowing lava is thin and easily
transported. Although the maximum VEI of Merapi is larger than that of Sinabung (VEIs of four and
two, respectively), the pyroclastic precipitates of Mount Sinabung’s eruption are wider than those of
Mount Merapi (~18 and ~17 km2, respectively).
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Abstract: Every vegetation colony has its own vertical structure. Forest vertical structure is considered
as an important indicator of a forest’s diversity and vitality. The vertical structure of a forest has
typically been investigated by field survey, which is the traditional method of forest inventory.
However, this method is very time- and cost-consuming due to poor accessibility. Remote sensing
data such as satellite imagery, aerial photography, and lidar data can be a viable alternative to the
traditional field-based forestry survey. In this study, we classified forest vertical structures from
red-green-blue (RGB) aerial orthophotos and lidar data using an artificial neural network (ANN),
which is a powerful machine learning technique. The test site was Gongju province in South Korea,
which contains single-, double-, and triple-layered forest structures. The performance of the proposed
method was evaluated by comparing the results with field survey data. The overall accuracy achieved
was about 70%. It means that the proposed approach can classify the forest vertical structures from
the aerial orthophotos and lidar data.

Keywords: forestry vertical structure; stratification; forest inventory; aerial orthophoto;
lidar (light detection and ranging); ANN (Artificial Neural Network); machine learning

1. Introduction

Since forests are important for human life, forest inventories have been investigated for various
purposes for centuries. In Europe, the first inventories were carried out in the 14th and 15th century
for the purpose of intensive mine development. Since the 1910s, national forest inventories have been
carried out in Norway, Sweden, and Finland, with an emphasis on timber production [1]. However,
the demands of society have changed rapidly over recent decades. In this context, the principles
for the conservation and sustainable management of forests have been newly added by the United
Nations General Assembly [2]. This was in response to an increasing interest in non-timber aspects of
forest structure and the demand for assessing these aspects [3]. In the Republic of Korea, in the 1970s,
when the forest inventory was first investigated, it was aimed at reforestation and forest statistics.
The purpose of the forest inventory has changed as the value of forest resources and impacts on the
environment have evolved. Currently, forest inventories are developed to provide information that is
useful to achieve the following goals: to maintain a healthy forest ecosystem, to preserve and protect
the global environment and to promote sustainable development [4–6].

The vertical structure of a forest, which generally has four layers, is one of several elements
representing forest vitality. In temperate zones, the forests are divided into layers of canopy, understory,
shrub, and grass. The ability of the lower vegetation layer to grow under the canopy layer is determined
by the condition of the soil, the species of vegetation, and the quantity of sunlight received by the
lower vegetation layer due to the opening and closing rate of the crown [7–9].
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In the case of artificial forests, they are usually single- or double-layered forests, as they are
planned and managed for the purposes of wood production and agriculture. Natural forests however,
have formed from a variety of vegetation communities through natural succession over lengthy periods
of time, and have multiple layers. From an ecological point of view, natural forests with multiple-layers
are highly resistant to pests, diseases, and environmental stress, and have high quality ecosystem
services, such as providing habitats for wildlife. This is not the case with single-layered forests [10–14].
Therefore, vertical structure is a useful measure to evaluate the environmental aspects of a forest.

Typically, forest inventories have been investigated through terrestrial surveys. The Korea Forest
Service currently uses aerial orthophotos to survey forests, but it is very difficult to understand
forest structure because orthophotos only image the forest canopy. Thus, a field survey is required
to understand the stratification of a forest. In Korea, more than 70% of the country is made up of
mountainous areas, and a nationwide field survey would be very time- and cost-consuming. Since
remote sensing data is advantageous for extensive regional studies [15], we attempt to develop a
method of effective forest inventory using remotely sensed data. Such a method could reduce the time
and cost of a forest inventory.

Multi-layered mature forests normally have a rough texture in remotely-sensed images, while
single-layered young forests have a smoother texture [16–18]. Therefore, the structure of a forest can be
estimated through the reflectance differences among the communities. The arrangement of the crown
layer (canopy layer) in single-layered artificial forests can be considered consistent, but in natural
forests it is inconsistent [17,18]. Since tree height is closely related to forest vertical structure, lidar
data used for tree height measurements can be used to classify a forest’s vertical structure [7,19–24].
Lidar is an abbreviation for light detection and ranging, and is a device that measures the distance of a
target using laser light. The characteristics of remotely-sensed images and lidar data could enable us
to classify the vertical structure of a forest.

The objective of this study is to classify forest vertical structure from aerial orthophotos and
lidar data using an artificial neural network (ANN) approach. A total of five input layers are
generated including: a median-filtered index map, a non-local (NL) means filtered index map, and
reflectance texture map generated from the aerial orthophotos, and height difference and height
texture maps generated from the lidar data. Since it is difficult to determine the presence of a grass
layer in aerial images, it is omitted from our study and the forest vertical structure is classified into
three groups for the ANN approach. The groups include: (i) single-layered forest that has only the
canopy layer; (ii) double-layered forest that possesses the canopy layer and an understory or shrub
layer; and (iii) triple-layered forest that is composed of the canopy, understory, and shrub layers.
The red-green-blue (RGB) aerial orthophoto is used to obtain optical image information. The digital
surface model (DSM) and digital terrain model (DTM) are extracted from the lidar point cloud. The
height information is extracted by subtracting the DTM height from the DSM height. The accuracy of
the classification is validated using field survey measurements.

2. Study Area and Dataset

The study area is located in Gongju province, South Korea, as shown in Figure 1. Gongju is
864.29 km2 in area, about 0.95% of the total area of South Korea (99,407.9 km2). The area of cultivated
land is 185.82 km2, accounting for 19.76% of the total area. Forests constitute 70% of the area and there
are many hilly mountainous areas of 200–300 m above sea level. The average temperatures are around
11.8 ◦C in spring, 24.7 ◦C in summer, 14.0 ◦C autumn, and −0.9 ◦C in winter. The average annual
precipitation is 1466 mm. The soils are loamy soils and clay loams and at the bottom it has sand soils.
The image of the study area covers a 3.25 km2 area that is 2344.8 m in length and 1385.76 m in width.
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Figure 1. Location of the study area in Gongju province, South Korea. The red-green-blue (RGB) aerial
orthophoto shows the spatial distribution of forests in the study area.

The RGB aerial orthophoto shows the spatial distribution of forests in the study area. Most forests
are present on steep-sloped mountains and the types of forest include coniferous/broad-leaved forests
and artificial/natural forests. Figure 2 shows the three types of forest classification map that are
based on vertical structure, dominant species’ leaf type, and whether the forest is natural or artificial.
These maps were classified based on field survey measurements collected as a part of the Korean
3rd natural environment conservation master plan. The measurements were collected for the whole
country over a period of six years from 2006 to 2012. The field survey of the study area was performed
in 2009. The fourth masterplan started in 2014 and is due to be completed in 2018. The database
construction for the fourth masterplan has not been completed. Figure 2a shows that triple-layered
forests were dominant in the study area, and hence the natural forests are shown to be dominant in
Figure 2c because the artificial forests are generally single- or double-layered. The study area includes
a variety of different forest types including: (i) single-, double-, and triple-layered forests (Figure 2a);
(ii) broad-leaved, coniferous, and mixed forests (Figure 2b); and, (iii) natural and artificial forests
(Figure 2c).

Figure 3 shows examples of single-, double-, and triple-layered forests. Figure 3a shows an
example of a single-layered forest. The forest is a chestnut plantation that the image shows to have
been uniformly planted. Thus, it can be understood that it is an artificial forest. In Figure 3b, the image
was acquired from a double-layered forest. It is a coniferous forest and the nut pine is dominant.
The red reflectance value of coniferous trees was lower than that of broad-leaved trees based on analysis
of the RGB image. This confirmed that the brightness is dependent upon species. Considering that
coniferous forests are mainly single- or double-layered, species identification could be an important
part of the classification of vertical structure. Figure 3c shows an example of a triple-layered forest.
The forest is broad-leaved and oak is dominant tree type. Natural forests are a mixture of various
species, and may contain coniferous and broad-leaved trees. Therefore, it is expected that it will be
more useful to analyze height differences between trees rather than the identification of tree species in
the classification of triple-layered forests. As mentioned above, single- and double-layered forests are
mostly artificial forests. Artificial forests in the study area include broad-leaved forests, such as the
chestnut tree forest, as well as coniferous forests such as the nut pine forest.

The RGB orthophoto was obtained using a DMC II airborne digital camera at an altitude of
1300 m (above sea level) with a redundancy rate of 63% in October 2015. The low-resolution RGB
and high-resolution panchromatic (PAN) images were merged to create a high-resolution RGB image.
The high-resolution RGB image was then orthorectified and mosaicked. The final mosaicked RGB
orthophoto was used for this study. The ground sample distance (GSD) of the orthophoto was 12 cm
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in both the line and pixel. The lidar point cloud was acquired with an ALTM Gemini167 at an altitude
of 1300 m (above sea level) in October 2015 with 2.5 points per square meter in the lowlands and
3~7 points per square meter in the mountain area. The difference in the point density occurred because
the overlap rate of the lidar sensors is different between mountainous and non-mountainous areas.
Points from terrain was classified from the Lidar point cloud, the DTM with the GSD of 1 m was
created from the terrain-derived points. On the other hand, points from trees were extracted, and then
the DSM with the GSD of 1 m was produced from the tree-derived points. The terrain- and tree-derived
points were extracted by using the commercial software Global Mapper. The height difference map
was generated by subtracting DTM from DSM. The height difference map is related with several
tree parameters, including the height and density of trees, etc. That is, the pixel values in the height
difference map are not tree height, but are closely related with tree height.

 

Figure 2. Forest classification maps of the study area produced from the field survey. (a) Forest vertical
structure; (b) dominant species’ leaf type; (c) natural and artificial forests.
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Figure 3. Example images from the study area showing the different forest vertical structures.
(A) A single-layered forest that is a broad-leaved forest. The chestnut tree (Castanea crenata var.
dulcis) is dominant; (B) a double-layered forest, which is a coniferous forest in which the nut pine
(Pinus koraiensis) is dominant; and (C) a triple-layered forest that is a broad-leaved forest. The sawtooth
oak (Quercus acutissima) is dominant.

3. Methodology

In this study, we produced five input maps that were resampled to 0.48 m GSD from
high-resolution RGB imagery and lidar DSM and DTM data. The three maps from the RGB image
include: reflectance values from each tree, reflectance values from each colony, and the variance of
reflectance values (i.e., a texture map of reflectance). The two maps from lidar data reflect the tree
height of each individual species, and the variance of the height values. We classify forest vertical
structure by applying an Artificial Neural Network (ANN) to the five maps. An ANN is a large network
of extremely simple computational units that are massively interconnected with nodes and processed
in parallel. In this study, a multi-layer artificial neural network was used. It contains three layers:
an input layer, a hidden layer, and an output layer, and each layer is composed of nodes. Each node has
a weight, which is adjusted from randomly generated initial values through the iterative experiment
to obtain the most reasonable output [25,26]. Figure 4 shows the detailed workflow used to classify
the forest vertical structure from RGB orthophoto and lidar data using a machine learning approach.
The image processing steps such as median, NL-means filtering, texture calculation was implemented
by using C language, the MATLAB software was used for the ANN processing, and ER-mapper was
used to display input and output maps.
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Figure 4. Detailed workflow used to classify the forest vertical structure from RGB orthophoto and
lidar data using a machine learning approach.

3.1. Generation of Input Data from RGB Imagery

Vegetation has different reflectance values on remotely sensed imagery because different
species have different leaf pigments. When these characteristics were determined from RGB
imagery, the needle-leaf forest was brighter than the broad-leaf forest on the converted red image
(Median-filtered Index Map). To analyze the optical imaging characteristics of each colony’s vegetation,
a normalized index map was produced. First, the initial RGB imagery (0.12 m GSD) has a deep shadow
due to topographic effects that should be reduced. The shadow effect appears in both the red and
green images. Thus, an index map was used instead of the red or green images. The index map is
generated in two steps: (i) the red image is converted using the mean and standard deviation of the
green image; and (ii) the ratio of the difference between the red and green images and the summation
of the red and green images is calculated. This conversion reduces the topographic shadow artefact
very effectively. The converted red image (R) was calculated using:

R(i, j) =
σG
σR

× (R(i, j)− μR) + μG (1)

where i and j are the line and pixel, respectively, R is the red image, σG and σR are the means of
the green and red images, and μG are μR are the standard deviation of the green and red images.
The normalized index map (NI) was defined using:

NI(i, j) =
(
G(i, j)− R(i, j)

)
/
(
G(i, j) + R(i, j)

)
(2)

where G is the green image.
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The index map contains noise from the crown. Since it can degrade the accuracy of the ANN
analysis, we applied a median filter with a kernel size of 3 × 3 pixels to reduce the noise. The median
filtered index map was used as part of the input data for the ANN. To determine each colony’s overall
reflectance, we resampled the median-filtered index map to a spatial resolution of 48 cm and applied a
NL-means filter with a kernel size of 21 × 21 pixels. The NL-means filter is a powerful smoothing filter
that preserves the edges of objects. The NL-means filtered index map represents the overall reflectance
of a forest vegetation colony. The third input map from the RGB image indicates the spatial texture of
the reflectance values. If a colony has a double- or triple-layered forest vertical structure, it must have
several species and the species’ reflectance values must be mixed. Thus, if a colony contains various
species, the spatial texture of the reflectance would be rough. On the contrary, if only a few species are
present such as in an artificial forest, the spatial texture would be smooth. The reflectance texture map
is generated by calculating the standard deviation of the difference between the median-filtered and
NL-means filtered maps using a moving window of 5 × 5 pixels. Figure 5 shows the three input layers
used for the ANN analysis. To ensure that the topographic effect was mitigated in the median-filtered
index map from Figure 5a, it was compared with Figure 1. As shown in Figure 5b, the NL-means
filtered index map was smoothed with well preserved object edges. The smooth or rough texture of
the surface reflectance map can be recognized from Figure 5c. The water surface had lower values
while the forest areas had higher texture values.

 

 

Figure 5. The five input layers used for the artificial neural network (ANN) analysis. (a) median-filtered
index map; (b) non-local (NL)-means filtered index map; (c) reflectance texture map; (d) height
difference map; and (e) height texture map.
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3.2. Generation of Input Data from Lidar Data

Forest vertical structure is highly related to tree height. This is because the criteria for classification
of canopy, understory, and shrub layers in a forest inventory are tree species and tree height. Two input
layers were generated from the lidar data (initially 1 m GSD, but resampled to 0.48 m GSD): a height
difference map and a height texture map. The height difference map was generated by subtracting
the DTM from the DSM. The DSM is a kind of digital elevation model (DEM) that represents the
Earth surface including features such as building, trees, and houses. The DTM is also a kind of DEM,
but it only represents the Earth’s terrain and excludes the natural and manmade features. Thus,
the height difference map shows the height of the natural and manmade features, including the tree
height Pixel values in the height difference map are not direct measurements of tree height, but a
close approximation.

The height difference map was used for the ANN analysis. Since the triple- or double-layered
forests have various tree species, the variance of the tree height in a colony would be uneven and
the standard deviation of height difference in a colony can be large. The calculation of the height
texture map from the lidar data is performed by two processing steps. In the first step, the height
difference map is smoothed using a NL-means filter with the kernel size of 11 × 11 pixels. The second
step involves calculating the standard deviation of the difference between the height difference map
and the NL-means filtered height difference map using a moving window of 5 × 5 pixels. This map is
used for the ANN classification processing. Figure 5d shows the height difference map. The relative
height difference among trees can be recognized from Figure 5d. Figure 5e shows the height texture
map that indicates the spatial variance in tree height.

Figure 6 shows the characteristics of the five input layers used for the ANN. The areas in the
boxes labeled A, B, and C in Figure 6 are representative of single-, double-, and triple-layered
forests, respectively. The dominant species in the area under box A is chestnut tree and the area
is a broad-leaved and artificial forest. The area under box B includes nut pine trees as the dominant
species and is a coniferous and artificial forest. The dominant species in the area under box C is oak
tree and the area is a broad-leaved and natural forest. The nut pine (box B in Figure 6) was the brightest
of the forests among the reflectance index maps. The reflectance texture maps in the single- and
double-layered forests were smoother than the triple-layered forest. In box A of Figure 6d, there are
some individual trees in the artificial forest that appear as bright patches. These trees show different
reflectance values on the RGB and median-filtered index maps as compared with other trees in the
same community and appear to be a different species. They show odd values on the maps from the
lidar data as well. The brightest parts of the Height Texture Map (Figure 6e) are where the standard
deviation was high.

Figure 6. Cont.

153

Bo
ok
s

M
DP
I



Appl. Sci. 2017, 7, 1046

 

Figure 6. Characteristics of the five input layers used for the ANN approach in boxes A, B, and C of
Figure 3: (a) median-filtered index maps; (b) NL-means filtered index maps; (c) reflectance texture
maps; (d) height difference maps; and (e) height texture maps. The areas in boxes A, B, and C are the
single-, double-, and triple-layered forests, respectively.

4. Results and Discussion

Figure 7 shows probability maps of the single-, double-, and triple-layered forests generated using
the ANN and the five input layers. The ANN is a pixel-based analysis that calculates a probability
of an event happening, and the brightness values represent probabilities. Training samples of ten
thousand pixels were selected for the single-, double-, and triple-layered forests from field survey
measurements. The non-vegetation areas and the road (red-dotted box in Figure 8) were masked
out. The ANN determined the weighting factors from the five input layers. Table 1 summarizes the
weighting factor for each input layer.

From the single-, double-, and triple-layered forests shown in Figure 7a–c, a final forest structure
classification map was produced by selecting the highest value from the probability maps of the
single-, double-, and triple-forests. Figure 8 shows the ANN-classified forest structure map and
the field forest structure map for comparison. The red-dotted box in Figure 8b was classified as
single-layered forest using the ANN approach, but the field measurements recorded it as triple-layered
forest (e.g., compare Figure 8a,b). The field measurements have low spatial sampling because most
forests in Korea occur in high mountainous regions. This discrepancy was caused by the spatial
resolution differences. The forest vertical structure classes between the ANN approach and field
measurement were compared and the results are summarized in Table 2. In Table 2, the number
denotes the number of pixels. The classification accuracies of the single-, double-, and triple-layered
forests were 82.84%, 56.56%, and 69.03%, respectively. The overall accuracy was 71.10%.

Table 1. Estimated weighting factor of the input layers.

Input Layers 
Weighting Factor

Single-Layered Double-Layered Triple-Layered 
Median-filtered Index Map 0.13 0.09 0.22 

NL-means Filtered Index Map 0.17 0.47 0.23 
Reflectance Texture Map 0.10 0.07 0.14 
Height Difference Map 0.46 0.16 0.24 

Height Texture Map 0.15 0.21 0.17 
Summation of the weighting factors is 1.
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Figure 7. Probability maps of the (a) single-; (b) double-; and (c) triple-layered forests.

 

Figure 8. (a) Field survey classification map of forest vertical structure (same as Figure 2a);
(b) final classification map of forest vertical structure using the ANN with red box -road way-.
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Table 2. Validation of forest vertical structure classified by using the ANN approach.

ANN
Field Single-Layered Forest Double-Layered Forest Triple-Layered Forest

Single-layered Forest 849,983 * 42,380 785,080
Double-layered Forest 50,920 105,795 * 611,421
Triple-layered Forest 125,118 38,862 3,112,900 *

total 1,026,021 187,037 4,509,401

* Correctly classified pixels.

For the sections with low classification accuracy, the reasons for the misclassification need to be
investigated. However, the overall accuracy of the classification is relatively high, considering that it
is difficult to classify the vertical structure of a mixed-species forest using remotely-sensed data [17].
Our results show that it is possible to classify the forest vertical structure using remotely-sensed data.
Several discrepancies were identified and the causes determined. The triple-layered coniferous colonies
on the ridge of the mountain were mostly classified as double-layered coniferous forest. This was
due to the ANN classification being strongly influenced by the dominant species. The red-dotted box
in Figure 8 is a roadway, which was classified as triple-layered forest in the field measurement data
collected in 2009. However, a single-layered forest exists in the roadway when we checked it in the
field in 2015 RGB imagery. The road was constructed before 2009. In this case, the ANN approach
performed better than the field measurements due to a low spatial resolution of the field survey
sampling. However, we should be aware that the time lag between airborne images and field survey
data can result in differences such as boundary changes or forest succession. The discrepancy between
the ANN and field measurement classifications was very high in the areas of double-layered forest
(Table 2). This is because the double-layered forest is composed of a canopy layer and an understory
or shrub layer, and it was very difficult to distinguish from the other vertical structures using the aerial
orthophoto and lidar data. Even though using remotely-sensed data and an ANN has some limitations,
the approach could be very useful to classify forest vertical structure, because it has a better spatial
resolution and is more time- and cost-effective. One other issue was that the RGB image used for this
study was created through image tiling by a vendor. The left side of the image (Figure 8b), is more
comparable to the field survey data (Figure 8a) than the right side. The reason may be due to a slight
difference in color when tiling several raw images to process one orthophoto. Therefore, in future
studies, it may be better to use raw image data or high resolution satellite image, which have the same
photographic conditions over a single image area.

There is much research on the internal structure of forests using dense lidar data [27], but this
method is limited due to the high cost of investigating large areas. Since the forests of Korea comprise
a variety of species, it has been difficult to apply the methods of previous studies that identified
stratification in coniferous forests composed of similar species [28]. Therefore, the novelty of the
approach used in this study is that it can estimate and classify the complex inner structure of a forest
with simple remotely-sensed data.

5. Conclusions

Forest vertical structure one element that represents the vitality of a forest. In general, the forest
inventory has been investigated through field surveys. Korea Forest Service currently uses the aerial
orthophotos to survey the forests, but it is very difficult to understand the infrastructure of the forests
using the remote sensing images because of the cost. Intensive lidar data and aerial orthophotos were
used because the orthophotos can just image the forest canopy. Thus, the field survey is inevitable in
order to understand the stratification of forest.

In this study, forest vertical structure was classified by using the ANN approach from aerial
orthophotos, and lidar DTM and DSM. A total of five input layers were generated from these datasets:
(i) a median-filtered index map; (ii) a NL-means filtered index map; (iii) a reflectance texture map;
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(iv) a height difference map; and (v) a height texture map. Using these maps, a forest structure
classification map was generated with the ANN. The classification accuracies of the single-, double-,
and triple-layered forests were 82.84%, 56.56% and 69.03%, respectively. The overall accuracy was
71.10%. The accuracy seems good considering that it is not easy to detect the under layers of a mixed
broad-leaf and conifer forest from the remotely sensed data. The ANN approach has a better spatial
resolution, is a more time- and cost-effective procedure for mapping forest vertical structure. Future
studies should consider the effect of time gaps between datasets, and include maps with more detailed
information related plant growth such as soil, sunlight, and species characteristics.
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Abstract: Validation data are often used to evaluate the performance of a trained neural network and
used in the selection of a network deemed optimal for the task at-hand. Optimality is commonly
assessed with a measure, such as overall classification accuracy. The latter is often calculated directly
from a confusion matrix showing the counts of cases in the validation set with particular labelling
properties. The sample design used to form the validation set can, however, influence the estimated
magnitude of the accuracy. Commonly, the validation set is formed with a stratified sample to give
balanced classes, but also via random sampling, which reflects class abundance. It is suggested
that if the ultimate aim is to accurately classify a dataset in which the classes do vary in abundance,
a validation set formed via random, rather than stratified, sampling is preferred. This is illustrated
with the classification of simulated and remotely-sensed datasets. With both datasets, statistically
significant differences in the accuracy with which the data could be classified arose from the use of
validation sets formed via random and stratified sampling (z = 2.7 and 1.9 for the simulated and real
datasets respectively, for both p < 0.05%). The accuracy of the classifications that used a stratified
sample in validation were smaller, a result of cases of an abundant class being commissioned into
a rarer class. Simple means to address the issue are suggested.

Keywords: cross-validation; multi-layer perceptron; remote sensing; classification error; sample
design; machine learning

1. Introduction

Artificial neural networks are widely used for supervised classification applications. In these
applications, cases of known class membership are used to train the neural network in order to allow
it to predict the class membership of previously unseen and unlabeled cases. This type of analysis is
common in, for example, the production of thematic maps, such as those depicting land cover, from
remotely-sensed imagery [1–3]. The imagery contain data on the remotely-sensed response of the
land surface that is converted into information on land cover class via the classification analysis and
a wide variety of approaches and applications have been investigated, e.g., [2,4,5]. Neural networks
have become a popular method for image classification as numerous studies have shown that they
can yield more accurate maps than a variety of other alternative approaches to classification [6–8].
The relative performance of neural network classifiers in relation to a range of alternative methods,
including standard statistical classifiers, machine learning methods, and decision trees, is discussed
in the literature (e.g., [1]). As with all classifiers, the quality of the final classification is, however, in
part a function of the classifier and the nature, notably the size and quality, of the ground reference
dataset on the class membership used [9–12]. Ground reference data are used to provide data to train
the neural network and to evaluate the quality of its predictions. The latter is typically expressed in
terms of the overall accuracy of the classification output from the network.
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In remote sensing applications, the class membership of the cases in the training set is typically
determined by ground-based observation or interpretation of very fine spatial resolution imagery [1,13].
Clearly, the nature and quality of the ground reference data used will impact upon the accuracy of
the predictions obtained from the neural network. Classification accuracy is, for example, influenced
by the size, composition, and quality of the ground reference dataset used in training [2,9,10,14–16].
The way the ground reference data are used is also important, especially if part of it is used for the
purpose of validation [10]. The use of some reference data for validation purposes, to indicate the
quality of the trained model generated, is commonplace in defining a supposedly optimal neural
network. In common remote sensing applications, the optimal approach would be the one that yielded
the most accurate thematic map when applied to the image data.

In a typical remote sensing application, the aim of the classification is to accurately map the
land cover classes in the region of study. Throughout there are a set of basic assumptions made
in classification analyses. These include the need for the set of classes to be mutually exclusive
and exhaustively defined. Failure to satisfy these assumptions will result in errors. Cases of an
untrained class will, for example, typically have to be allocated erroneously to one of the defined
classes [17]. Although there are instances when a neural network may be used to obtain a non-standard
classification, such as soft classification when classes intergrade or are mixed together [17], the standard
hard classification in which a case belongs fully to a single class is the focus on this article. In all cases,
the ground reference data used in training, validating, and testing the neural network have a key role
to play in the production of an accurate map. Hence, the design of these datasets is important.

Good practices for classification accuracy assessment for the evaluation of the quality of thematic
maps derived via remote sensing have been defined and include guidance on the construction of the
testing sample upon which the assessment is to be based. Typically, for example, the use of a reference
dataset acquired following a probabilistic sampling design is recommended [18,19]. This allows a
rigorous design-based assessment of classification accuracy, typically based upon the analysis of an error
or confusion matrix in which the predicted class label obtained from the neural network is cross-tabulated
against the label in the reference dataset for the sample of cases under consideration [1,18].

The goal of training a classifier is different to that of testing its output predictions and, hence, the
nature of the ideal training set may be very different to that of the testing set. In training, the aim is,
essentially, to guide the neural network to learn the identity of the classes from their remotely-sensed
response. Thus, the observed remotely-sensed response for the training sample of known class
membership is used in network learning to ultimately form decision rules to accurately label cases of
unknown class membership in order to map the region of interest [1]. Much conventional guidance on
the design of the training set in remote sensing applications is based upon historical work undertaken
with conventional statistical classifiers, such as the maximum likelihood classification. This advice
typically calls for the sample size to be estimated following basic sampling theory in order to derive a
representative and unbiased description of each class to allow cases of unknown class membership to
then be allocated the label of the class they had greatest similarity to. Alternatively, a simple heuristic,
such as the use of a sample of cases for each class, the size of which is at least 10 times the number
of discriminating variables, such as the spectral wavebands, are used [10,20,21]. In essence, this type
of approach is calling for the use of a stratified sample design in the formation of the training set.
Despite the development of new classifiers, such approaches are still widely used even though the
nature of the ideal training set varies between classifiers.

With neural networks and machine learning methods such as the support vector machine (SVM)
and relevance vector machine (RVM) attention in training is focused more on individual cases than
broad statistical summary statistics that are central to statistical classifiers, such as the maximum
likelihood classification [1]. The individual training cases in the training set can vary greatly in value
to an artificial neural network classification [22,23]. In addition, different classifiers may ideally focus
upon different cases in the training set. For example, a SVM may require only a very small training
sample and, ideally, cases that lie in the boundary region between classes, while a RVM might also
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require only a small number of training cases, but these are anti-boundary in nature [12]. Considerable
research has, therefore, focused on how the properties of the training dataset impact on a classification,
typically with a desire to maximize the final mapping accuracy (e.g., [9,10,24–26]). Sometimes it may
be possible to predict the location of useful candidate training cases for a classification [27] or, contrary
to conventional approaches, even deliberately use mixed cases in training and the analyst can seek to
form a training set intelligently for a given application scenario [22,28,29]. As such, there is no single
ideal way to define a training set that is universally applicable. Given the popularity of consensus
or ensemble methods that use a variety of different classifiers [7,30] it is common to see relatively
large training sets acquired following conventional guidance. While this approach may sometimes
be inefficient, notably in that the sample may be larger than needed, it has the capacity to provide
useful training data for a wide range of classifiers. It is, therefore, common to see either a training
sample designed explicitly for a specific task, which could be a small and highly unrepresentative
sample [29,31], or the use of a stratified design that seeks to ensure each class can be described well [1].
The design details are, however, important. The nature of the training set has a significant impact on
the accuracy of predictions by a neural network [2,15,32]. For example, the size of the training set,
notably in relation to the complexity of the network, can have a marked effect on classification by a
neural network [9,16,33]. The composition of the training set in terms of relative class abundance is
also important [15,34]. Variations in class abundance can yield imbalanced datasets that, as in other
classifiers, can have substantial impacts on the final classification.

In a supervised classification with a conventional feedforward neural network it is common for
part of the training sample to be used for validation purposes [1,2,10,33–35]. In this data splitting
approach part of the training set is used in the normal way to provide examples of the classes upon
which the classifier may learn to form rules to classify cases of unknown membership. The remaining
part of the training set forms the validation set and is used to evaluate the performance of the network
in terms of the accuracy with which the validation set is classified, as well as help determine when
to stop network learning [10,36–39]. A variety of approaches exist for the splitting of the training
cases to form the training set and the validation set. If reference data are plentiful the training set and
validation set could be completely separate and independent samples but if this is not the case other
approaches to cross-validation, such as the leave one out approach, may be used [34]; for simplicity,
the focus here is on the use of a completely independent validation set. The use of a validation
set is important in neural network-based approaches to classification as there is a desire to avoid
overfitting to the training data and there are a variety of network parameters that require definition.
The latter includes the basic structure of the network (e.g., number of hidden layers and units) and
the learning algorithm and parameters (e.g., momentum, learning rate and number of iterations).
There is an extensive literature on this topic [2,10]. The basic idea is that a range of different networks
can be defined and one that is optimal for the task at hand, defined with the aid of the validation
dataset. Thus, for example, a range of different networks may be generated and the one that classifies
the validation set to the highest accuracy is selected for the final classification analysis to produce
a thematic map. This analysis might also suggest ways to further enhance the classification by, for
example, indicating redundant discriminating variables that could be deleted in order to allow more
rapid computation [28,40]. It is also useful as some approaches used in training may artificially inflate
class separability and be unhelpful [23]. Given that the ultimate aim of the analysis in a typical remote
sensing application is the production of an accurate thematic map via a classification analysis the
nature of the validation set can be important. Commonly, with classifiers that use validation data,
the validation set is formed by simply taking cases randomly from the entire set of data acquired for
training activity [38,41] or a separate, often stratified, sample of cases is obtained (e.g., [42]). The size
of the validation set is important. As in other aspects of the analysis, the literature contains guidance
on the way the reference data should be divided up. For example, Mas et al. [43,44] suggests that half
of the labelled cases be used for training, a quarter for validation and the final quarter for testing.
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The composition of the sample of cases forming the validation set, notably in terms of the relative
abundance of the cases of the classes may vary as a function of the design used to acquire the training
dataset. If the validation sample is formed with a simple random sample design it is likely to be
imbalanced in composition, with the number of cases of a class reflecting its relative abundance in
the region being mapped. The use of a stratified sample design in the generation of the validation
sample will act to give a balanced dataset but this need not be an ideal approach. Indeed, the use of
a stratified design could result in the selection of a network that was sub-optimal for the task if the
classes vary in abundance and separability. For example, standard approaches to the assessment of
overall classification accuracy weight errors equally and could inflate the importance of rare classes
while deflating that of abundant classes. Sometimes it may be possible to account for the sample design
if there is information on class abundance [18]. Alternatively, if the study aim is focused on a single
class, which is often the case, the accuracy assessment used in the validation could be focused on that
class at the expense of the others. However, for a general purpose map, it may be more appropriate
to follow the guidance on sampling that is typically used in the formation of the testing set as this
typically allows for variations in class abundance to be accounted for.

The effect of different sample designs for the formation of the validation dataset is explored in this
paper. Specifically, the focus is on the use of samples acquired by simple random and stratified random
sampling designs (both without replication). Due to the way overall accuracy is typically estimated
with a validation sample, it is hypothesized that the overall accuracy of the final classification, evaluated
using the testing set, will be larger for a neural network trained using a validation sample generated
via simple random as opposed to stratified random sampling. Indeed a series of outcomes may be
predicted as having the potential to arise as a function of the validation dataset used. For example,
in relation to two classes that overlap, it would be expected that the hyperplane to best separate the
classes fitted when a balanced validation set was used would migrate away from the more abundant
class if an imbalanced training set was used. As a consequence of this, there is an opportunity for the
accuracy with which the more abundant class is classified to rise as fewer cases of it will be omitted
from it and fewer of its cases commissioned by the rarer class (es). These trends arise as classification
errors are weighted equally in standard assessments of overall accuracy. The overall trend expected
would be for the accuracy with which the abundant class is classified to increase while the accuracy of
the classification of the rarer class would decline. As such it is hypothesized that the use of a stratified
sample design may not be ideal as its use relative to a randomly-defined validation dataset would be
associated with a decrease in overall accuracy, arising noticeably through a decrease in the accuracy
for the abundant class (es) as a result of an increase in the commission of cases of abundant class (es)
by the set of rarer classes.

2. Data and Methods

Two datasets were used. First, a simulated dataset was used to illustrate the issues and also
to facilitate, if desired, replication. Second, a real dataset consisting of remotely-sensed data and
associated ground reference data on land cover class labels was used.

A very simple multi-class classification scenario was simulated. This comprised data on four
classes acquired in two dimensions, or bands. The data for each class were formed using a random
number generator using analyst provided values for the class mean and standard deviation on the
assumption that the data for each class were normally distributed. For each class the standard deviation
was set equal to 5 and the mean values used to generate the data in each band are shown in Table 1.
In the scenario generated, class 1 was the most abundant class. Specifically, class 1 was five times more
abundant than each of the other classes. Most attention was focused on class 1 and class 2, which
exhibited a degree of overlap in their distributions with class 3 and, especially, class 4 was highly
separable (Figure 1).

For the analyses of the simulated dataset, training validation and testing sets were generated
(Table 2). These were used in two series of analyses, one using a validation dataset formed via simple
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random sampling and the other formed via a stratified random sample design. In brief, a single training
set was generated using a stratified random sample of 400 cases per-class. Similarly, a single testing set
was used to evaluate the accuracy of the classifications from the neural networks selected as optimal in
each series of analyses undertaken. This testing set was simulated to represent a sample acquired by
simple random sampling and comprised 800 cases. Due to the way the scenario was designed, class
1 was five times more abundant in it than the other classes. The two validation datasets used each
contained 800 cases, but one was formed via a simple random sample in which class abundance varied
as in the testing set, while the other was formed with a stratified random sample in which each class
was equally represented. Each series of neural network analyses used a software package that sought
to generate an optimal network, with optimality defined as the maximization of the overall accuracy
with which the validation set was classified.

The remotely-sensed data were acquired by an airborne thematic mapper (ATM) sensor for a test
site near the village of Feltwell, Norfolk, UK. The latter is located approximately 58 km to the northeast
of the city of Cambridge. The land around the village was topographically flat and its land cover
mosaic was characterized mainly by large agricultural fields. At the time of the ATM data acquisition
these fields had also typically been planted with a single crop type (Figure 2).

The ATM used was a basic multispectral scanning system that acquired data in 11 spectral
wavebands from blue to thermal infrared wavelengths (Table 3). Given the relatively low altitude
of airborne data acquisition (~2000 m), the spatial resolution of the imagery was very much smaller
than the typical field size, approximately 5 m. As a result, image pixels tended to represent an area
composed of a single class (i.e., pure pixels) and, hence, were appropriate for hard image classification
analysis; boundary pixels were ignored. Attention focused here on the six crop classes that dominated
the region at the time of the ATM data acquisition. These classes and their approximate coverage (%)
of the study area at the time were: sugar beet (S, 30.3%), wheat (W, 30.0%), barley (B, 16.0%), carrot (C,
10.3%), potato (P, 7.8%), and grass (G, 5.4%).

Table 1. The classes in the simulated dataset; note: units are arbitrary.

Band Class 1 Class 2 Class 3 Class 4

Band 1 50 35 83 20
Band 2 50 60 50 20

Figure 1. Simulated data (training, validation (random), and testing). Note: class 2 is shown overlaid
on top of part of class 1 and the area of overlap may be inferred.
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(a) (b) (c) 

Figure 2. Data for Feltwell. (a) The location of Feltwell, © OpenStreetMap contributors; (b) airborne
thematic mapper (ATM) image extract in waveband 4 and (c) ATM image extract in waveband 7.

Table 2. Class composition of the datasets used for analyses of the simulated data.

Dataset Size and Class Composition

Training 400 cases of each class; total = 1600 cases

Validation (random)

500 class 1
100 class 2
100 class 3

100 class 4; total = 800 cases

Validation (stratified) 200 cases of each class; total = 800 cases

Testing

500 class 1
100 class 2
100 class 3

100 class 4; total = 800 cases

Table 3. The 11 spectral wavebands of the ATM sensor used.

Waveband Wavelength (μm)

1 0.42–0.45
2 0.45–0.52
3 0.52–0.60
4 0.60–0.63
5 0.63–0.69
6 0.69–0.75
7 0.76–0.90
8 0.91–1.05
9 1.55–1.75

10 2.08–2.35
11 8.50–13.00

Ground reference data for the purposes of network learning (training) and evaluation were
acquired. Following [43,44], the ground reference dataset was partitioned such that 50% was used
for training, 25% for validation, and 25% for testing. The composition of these datasets, however,
sometimes varied (Table 4).

Conventional guidance on the design of the training set was followed with 110 cases of each class
obtained for training purposes; meeting the often stated requirement of a sample of at least 10 times the
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number of discriminating variables (wavebands) used as input. The training set, therefore, contained
660 cases acquired by a stratified random sampling design. This training set was used throughout.

Testing sets should, ideally, be acquired using a probability sampling design [18,19]. Here, a simple
random sample (without replication) was used to acquire 330 cases to use for testing. Note that this
sample size exceeds that required for accuracy estimation of a map with an accuracy of 85%, a standard
if contentious target accuracy in remote sensing, with an allowable error of 4%. This testing set was
used in all analyses of the ATM data. This latter issue impacts on comparisons of accuracy estimates
and requires the use of a technique suited for related samples [45].

Table 4. Class composition of the datasets used for analyses of the remotely sensed data.

Dataset Size and Class Composition

Training 110 cases of each class; total = 660 cases

Validation (random)

100 sugar beet
99 wheat
53 barley
34 carrot
26 potato

18 grass; total = 330 cases

Validation (stratified) 55 cases of each class; total = 330 cases

Testing

100 sugar beet
99 wheat
53 barley
34 carrot
26 potato

18 grass; total = 330 cases

As with the analyses of the simulated dataset, the search for an optimal neural network was
undertaken twice. In each case the training and testing sets were the same, the only difference was
the composition of the validation set used to identify the optimal network from a set of candidate
networks generated for the task. In one set of analyses, the validation set was generated by simple
random sampling and thus the number of cases of each class tended to reflect the actual abundance of
the classes in the region to be mapped. Indeed, here, the sample was selected to ensure that the class
composition of the validation set equalled that of the testing set. This sample comprised 330 cases.
In the other set of analyses, a validation sample of the same size, but acquired following a stratified
random sample such that each class was equally represented was used. The nature of the datasets
used is summarized in Table 4.

In the search for an optimal neural network to classify the ATM data, optimality was defined in
relation to the maximum overall accuracy of the classification of the validation data. The accuracy of
each classification was calculated from the confusion or error matrix generated for it which shows a
cross-tabulation predicted and actual class label for each case in the dataset analysed [1,18]. Using the
layout and notation defined for the confusion matrix shown in Table 5, which is used throughout the
article, overall accuracy, O, was calculated using Equation (1):

O =
∑ nii

n
(1)

In addition to the global estimate of classification quality conveyed by overall accuracy, the
producer’s, P, and user’s accuracy, U, were calculated with reference to each class [1,18]. These were
obtained for class i from Equations (2) and (3) respectively:

Pi =
nii
n·i

(2)
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Ui =
nii
ni·

(3)

Note that, as is common, the calculations of these measures of accuracy are based on the raw counts
of cases shown in the elements of the confusion matrix. These approaches to accuracy assessment were
used to support all analyses, whether based on the training, validation, or testing datasets. Most focus
is, however, on the accuracy values arising from analyses of the validation and testing datasets.

To determine if the use of different validation samples impacted on the accuracy of the final
thematic classification, the statistical significance of differences in the accuracy of the classifications
of the testing set were assessed. Standard approaches for the comparison of accuracy values that are
popular in remote sensing projects are unsuitable here as the same sample of testing cases was used
throughout. To accommodate for this situation, the statistical significance of differences in accuracy
was assessed using the McNemar test [45,46]. The latter is a non-parametric test that is based on a
binary confusion matrix which shows the cross-tabulation of the cases that have been labelled correctly
and incorrectly by the two classifications being compared. The test focuses on the discordant cases,
those which were classified correctly by one classifier, but incorrectly by the other. Without continuity
correction, the test is based on the normal curve deviate, z, as expressed as:

z =
nCI − nIC√
nCI + nIC

(4)

where nCI indicates the number of cases in the relevant element of the matrix with the subscript
C indicating if the classification was correct in its labelling or I if it was incorrect and order of the
subscripts indicates the specific classification from the pair under study. For a standard two-tailed
test at the 95% level of confidence, the null hypothesis of no significant difference is rejected if the
calculated z exceeds the critical value of |1.96|. Similarly, for a one-tailed test, if the hypothesis under
test has a directional component, the direction (sign) needs consideration and the magnitude of the
critical value of z to indicate that a significant difference exists at the 95% level of confidence is 1.645.

Table 5. The confusion matrix based on raw counts of cases for a classification of q classes. Matrix
columns show the label in the reference data and rows the label in the classification.

Class 1 2 . . . q Total

1 n11 n12 . . . n1q n1·
2 n21 n22 . . . n2q n2·
: : : : :
q nq1 nq2 . . . nqq nq·

Total n·1 n·2 . . . n·q n

3. Results and Discussion

With the simulated dataset, two sets of analyses were undertaken to identify optimal neural
networks, one using the validation set formed via simple random sampling and the other formed
using a stratified random sample. The key properties of the selected networks and their ability to
classify the datasets are defined in Table 6 with a full set of confusion matrices for each set of analyses
shown in Tables 7 and 8.

Attention focused especially on the accuracy with which the testing set was classified, as this
reflects the accuracy of the final product obtained. It was evident that the accuracy of classification
obtained with the use of the simple random sample (98.37%) was slightly higher than that arising from
the use of the validation set formed via stratified sampling (96.62%). Although small, this difference
was significant (p < 0.05), with the calculated value of z from Equation (4) given the 26 discordant
cases observed being 2.745 (Table 9). It was also evident that the predictions of what might happen as
moving from a balanced stratified to random validation sample outlined in the introduction occurred.
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Note, for example, that relative to the classification obtained with a stratified validation sample, the
use of the validation set formed by random sampling resulted in a higher overall accuracy of the
testing set. This arose because of a higher accuracy with which the abundant class was classified due
to a reduction in omission error (from 27 to 7 cases) and the accuracy of the rarer class it was confused
with declined (Tables 7 and 8). Critically, the results suggest that the use of a balanced training set
acquired via a stratified random sample may produce a sub-optimal final output. As hypothesized,
the use of a stratified sample resulted in a lower accuracy than was achievable because the accuracy
with which the abundant class was classified declined, associated with a large omission error due to
cases being commissioned into a rarer class.

A series of analyses was undertaken to define an optimal neural network using the two validation
datasets in the analyses of the remote sensing data. The core focus here is on the classification results
from the network determined to be optimal from each series of analyses. Although the precise details
of the neural networks are relatively unimportant as the classifications that arise from them are the
focus of attention, key details on the networks selected are summarized in Table 10 and the confusion
matrices for the testing set are shown in Tables 11 and 12.

Table 6. Key characteristics of the networks selected for the analyses of the simulated data; note:
network architecture is expressed as input:hidden:output.

Validation
Dataset

Architecture
Algorithm and

Iterations
Classification Accuracy (%)
Training Validation Testing

Random 2:15:2 Backpropagation 48 97.25 97.62 98.37
Stratified 2:8:2 Conjugate gradient 55 98.25 98.75 96.62

Table 7. Confusion matrices for the network selected using a validation set formed by random sampling.

Training

Class 1 2 3 4 Total User’s (%)

1 398 40 2 0 440 90.45
2 2 360 0 0 362 99.44
3 0 0 398 0 398 100
4 0 0 0 400 400 100

Total 400 400 400 400 1600

Producer’s (%) 99.50 90.00 99.50 100

Validation

Class 1 2 3 4 Total User’s (%)

1 490 9 0 0 499 98.19
2 10 91 0 0 101 90.09
3 0 0 100 0 100 100
4 0 0 0 100 100 100

Total 500 100 100 100 800

Producer’s (%) 99.00 91.00 100 100

Testing

Class 1 2 3 4 Total User’s (%)

1 493 6 0 0 499 98.79
2 7 94 0 0 101 93.06
3 0 0 100 0 100 100
4 0 0 0 100 100 100

Total 500 100 100 100 800

Producer’s (%) 98.60 94.00 100 100
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Table 8. Confusion matrices for the network selected using a validation set formed by stratified sampling.

(a) Training

Class 1 2 3 4 Total User’s (%)

1 386 14 0 0 400 96.50
2 14 386 0 0 400 96.50
3 0 0 400 0 400 100
4 0 0 0 400 400 100

Total 400 400 400 400 1600

Producer’s (%) 96.50 96.50 100 100

(b) Validation

Class 1 2 3 4 Total User’s (%)

1 195 5 0 0 200 96.50
2 5 195 0 0 200 96.50
3 0 0 200 0 200 100
4 0 0 0 200 200 100

Total 200 200 200 200 800

Producer’s (%) 97.50 97.50 100 100

(c) Testing

Class 1 2 3 4 Total User’s (%)

1 473 0 0 0 473 100
2 27 100 0 0 127 78.74
3 0 0 100 0 100 100
4 0 0 0 100 100 100

Total 500 100 100 100 800

Producer’s (%) 94.60 100 100 100

Table 9. Cross-tabulation of labelling from classifiers using random (columns) and stratified (rows)
validation sets for the simulated data.

Correct Incorrect Total

Correct 767 6 773
Incorrect 20 7 27

Total 787 13 800

Table 10. Key characteristics of the networks selected for the analyses of the remotely-sensed data.

Validation
Dataset

Architecture Algorithm and Iterations
Classification Accuracy (%)
Training Validation Testing

Random 9:11:6 Conjugate gradient, 435 97.27 98.18 97.87
Stratified 11:16:6 Conjugate gradient, 205 96.21 97.27 96.36

The selected neural networks were able to classify the data accurately. In each case, however,
it was evident that classification accuracy was slightly, no more than 1.51%, less accurate when the
stratified, rather than random, validation dataset had been used in network selection. Although small,
these differences can still be significant. Indeed, a key result was that the accuracy of the classification
of the testing dataset, which indicates the accuracy of the land cover map obtainable, was higher when
the validation set formed using random (overall accuracy = 97.87%), rather than stratified, sampling
(overall accuracy = 96.36%). Although small, a test of the significance of the difference in overall
accuracy, using a one-sided McNemar test to recognize the directional nature of the test and the use of

168

Bo
ok
s

M
DP
I



Appl. Sci. 2017, 7, 888

the same testing set, revealed it to be statistically significant at the 95% level of confidence (Table 13).
Specifically, given the seven discordant cases observed (Table 13), Equation (4) yields z = 1.889.

The difference in accuracy between the classifications of the testing sets by the two selected neural
networks (Tables 11 and 12) was attributable mostly to seven cases of sugar beet being commissioned
into the potato class when the validation set formed using a stratified sample was used. As a result of
these errors the producer’s accuracy for the sugar beet class declined from 99.00% when the validation
sample acquired with a random sample was used to 93.00% when the validation sample had been
generated with a stratified sample. The user’s accuracy for the potato class also differed for the
classifications of the testing set obtained when using the validation set defined with random and
stratified sampling, the accuracies being 96.00% and 77.42%, respectively.

Given that the testing set had been generated using a simple random sample design the variation in
the number of cases per-class reflected the relative abundance of the classes in the region to be mapped.
Critically, the size of the sample of cases for the potato class was approximately one quarter of that for the
sugar beet class. As hypothesized, the overall accuracy of the testing set decreased when the stratified
rather than random sample was used in validation because cases of an abundant class (sugar beet) were
commissioned by a relatively rare class (potato). Thus, even in a situation such as that encountered
here, in which the classes are very highly separable, the sample design used in the formation of the
validation dataset can have a statistically significant effect on the overall accuracy of the final land
cover map, as reflected in the accuracy of the classifications of the testing set (Tables 11 and 12).

Table 11. Confusion matrix for the testing set from the network selected using a validation set formed
by random sampling.

Class S W B C P G Total User’s (%)

S 99 0 1 0 0 0 100 99.00
W 0 96 0 0 1 0 97 98.97
B 0 2 52 0 0 0 54 96.30
C 0 0 0 34 1 0 35 97.14
P 1 0 0 0 24 0 25 96.00
G 0 1 0 0 0 18 19 94.74

Total 100 99 53 34 26 18 330

Producer’s (%) 99.00 96.97 98.11 100 92.31 100

Table 12. Confusion matrix for the testing set from the network selected using a validation set formed
by stratified sampling.

Class S W B C P G Total User’s (%)

S 93 0 1 0 0 0 94 98.94
W 0 97 0 0 1 0 98 98.98
B 0 2 52 0 0 0 54 96.30
C 0 0 0 34 1 0 35 97.14
P 7 0 0 0 24 0 31 77.42
G 0 0 0 0 0 18 18 100

Total 100 99 53 34 26 18 330

Producer’s (%) 93.00 97.98 98.11 100 92.31 100

Table 13. Cross-tabulation of labelling from classifiers using random (columns) and stratified (rows)
validation sets for the remotely sensed data.

Correct Incorrect Total

Correct 317 1 318
Incorrect 6 6 12

Total 323 7 330
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Finally, it was also evident that the networks selected for the analyses of the remotely-sensed
data differed, most notably in terms of architecture (Table 10). When the validation set constructed
with simple random sampling had been used, the data acquired in wavebands 1 and 8 were deemed
unnecessary and, hence, only nine input units used. In addition this latter network also had fewer
hidden units than the network selected when the validation set had been formed with a stratified
sample. Overall, the network formed with the use of the validation sample acquired by random
sampling was smaller and less complex than that selected when the validation set formed with a
stratified sample was used. As such the network might be expected to be less likely to over-train and
have a higher ability to generalize than that selected from the use of the validation sample formed via
stratified sampling. Slightly different trends were observed for the simulated dataset. Here, however,
it should be noted that a large number of networks of very different size, but very similar performance
in terms of ability to classify the data, were generated, limiting the ability to comment on the issue;
note, for example, that some candidate networks that yielded the same accuracy for the classification
of the testing set after use of the random validation set had the smallest number of hidden units.

The results show that the design of the validation sample has a significant effect on classification
by a neural network. Thus, the sample design used to form the validation set should be considered
carefully when using neural networks. If, for example, there are constraints that limit design
possibilities, it may be possible to make simple adaptations to standard practice. For example, if
a stratified sample must be used for the validation sample, then this feature of the dataset should
be accounted for in the assessment of the accuracy of the classification of the validation set. Thus,
rather than use a standard confusion matrix, as indicated in Table 5, the elements of the matrix could
be converted from raw counts to proportions via pij = Wi

nij
ni· where Wi is the proportion of the area

mapped as class i [18]. The use of this approach, for example, shows that the estimated accuracy with
which the validation set formed by stratified sampling of the simulated data was slightly less (98.12%)
than the naïve assessment of the matrix (98.75%) and may indicate that the network it is associated
with is, therefore, less attractive as a candidate for the task at hand than it first appears from the naïve
assessment. Alternatively, if the focus of the application is on a subset of the classes it may be sensible
to weight errors differentially or focus on only on the classes of interest rather than use overall accuracy.
Critically, consideration needs to be given to the design of the validation sample in classification by
a neural network. It should also be noted that this is only one small part of a set of broader validation
issues that should be considered in the use of neural networks [47].

4. Conclusions

Feedforward neural networks are often constructed with the aid of a validation dataset. The latter
data are typically used to indicate the accuracy of the neural network on a dataset independent of
that used in its training phase. Commonly, the optimal network is selected on the basis of the overall
accuracy with which the validation dataset is classified based on the analysis of a raw confusion matrix.
A problem with this approach is that all classification errors are typically treated equally and the
magnitude of the overall accuracy can be distorted by the sample design used to form the validation
sample. Here, it was shown that the use of a stratified, rather than random, sample of cases as a
validation set resulted in a statistically significant reduction of the accuracy with which an independent
test set was classified. This difference in accuracy arose because of the commission of cases of an
abundant class by a relatively rare class. Moreover, these results were obtained for analyses of a
datasets in which the classes were very highly separable within the feature space of both the simulated
and the remotely-sensed datasets used. Assuming that the desired aim is the production of a map
with high overall accuracy, simple ways to address issues connected with the design of the validation
dataset are to the use of a validation sample acquired by simple random sampling or to ensure the
accuracy of its classification is based on proportions calculated on the basis of class abundance rather
than basic raw counts.
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Abstract: Traditionally, departments of transportation (DOTs) have dispatched probe vehicles
with dedicated vehicles and drivers for monitoring traffic conditions. Emerging assisted GPS
(AGPS) and accelerometer-equipped smartphones offer new sources of raw data that arise from
voluntarily-traveling smartphone users provided that their modes of transportation can correctly
be identified. By introducing additional raster map layers that indicate the availability of each
mode, it is possible to enhance the accuracy of mode detection results. Even in its simplest form,
an artificial neural network (ANN) excels at pattern recognition with a relatively short processing
timeframe once it is properly trained, which is suitable for real-time mode identification purposes.
Dubai is one of the major cities in the Middle East and offers unique environments, such as a high
density of extremely high-rise buildings that may introduce multi-path errors with GPS signals.
This paper develops real-time mode identification ANNs enhanced with proposed mode availability
geographic information system (GIS) layers, firstly for a universal mode detection and, secondly
for an auto mode detection for the particular intelligent transportation system (ITS) application of
traffic monitoring, and compares the results with existing approaches. It is found that ANN-based
real-time mode identification, enhanced by mode availability GIS layers, significantly outperforms
the existing methods.

Keywords: artificial neural network; traffic monitoring; GPS; GIS; mode detection

1. Introduction and Related Works

Assessments of level of service (LOS) measures for various modes of transportation are crucial in
monitoring and managing the performance of a transportation system network that consists of multiple
available modes of transportation via inter-modal connection points. Traditionally, departments of
transportation (DOTs) have used either fixed-point sensors or probe vehicles for traffic monitoring
purposes. Fixed-point sensors include loop detectors and video cameras. Loop detectors embedded
under the road surfaces sense fluctuations in electric currents as vehicles pass over it and estimate
their speeds based on the time it took for vehicles to travel the distance between their two axles.
Video cameras are either monitored by dedicated personnel at DOTs or enhanced with motion
detection algorithms in efforts to estimate their speeds on screen that are often challenged by weather
conditions affecting the accuracy, such as rainfall, making the road surface darker, or snowfall, making
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the road too bright. Fixed-point sensors are expensive, at first, with high capital costs associated with
their installations, yet provide near-permanent raw data at economically feasible costs continuously
afterwards. However, they are only capable of monitoring traffic conditions at those fixed points
instead of throughout the route which can often result in misleading local traffic condition estimations.
In order to overcome the issue, DOTs have regularly dispatched dedicated probe vehicles [1] with
dedicated drivers and data logging personnel who are later replaced by conventional GPS data loggers
in efforts to reduce labor costs. The collected data have been typically post-processed to estimate
the traffic conditions throughout the route after the probes have run. This after-the-fact approach
provides insights on near future traffic conditions for planning purposes which is not suitable for
real-time traffic monitoring.

With an emergence and rapid market penetration rates of smartphones, there are new
opportunities for collecting traffic data as smartphone users voluntarily travel throughout all
sectors of transportation networks in all modes of transportation. The majority of smartphones
are typically equipped with multiple sensors including assisted GPS (AGPS) chips, accelerometers,
and magnetometers connected on an economically feasible data plan that continues to lower in costs.
AGPS is an enhanced version of traditional GPS sensors that is typically assisted by cellular tower
signals that improve the startup performance. If the mode of transportation a smartphone user is in
can reliably be identified, technically speaking, the users can be considered as traffic probes themselves
that are hovering over an entire transportation network and can provide enormous amounts of raw
data that greatly benefit traffic monitoring and management applications in the field of intelligent
transportation system (ITS).

Privacy issues associated with such an approach in data collection is beyond the scope of this
paper. However, the users may still give consent to reliable smartphone apps to collect such data with
expectations of valuable real-time traffic information or tax-related benefits from the government in
return, for example. In fact, many users of Internet service providers, such as GoogleTM, and various
other social network services (SNS) have given such consents to them in exchange of different forms
of benefit.

Among all modes of transportation, an “auto” mode is especially useful for traffic monitoring
purposes as it refers to standard private vehicles that have movement patterns that account for
the majority of vehicles on the roads. The auto mode users are also the major audiences of real-time
traffic information. A transit bus, for example, would not be a good candidate to be categorized as
an auto mode. A transit bus on an uncongested road would still frequently stop and typically operates
at a lower maximum speed than private vehicles. The traffic conditions the bus experiences are not
generally considered as proper representations of current traffic conditions.

An artificial neural network (ANN) simulates a human brain that consists of neurons and excels
at pattern recognition rather than analytically processing and formulating for a given phenomenon.
Conventional GPS receivers are only capable of directly measuring location information from which
acceleration data can only be post-estimated. Recent smartphone models have accelerometers
that directly measure the acceleration or deceleration values. In addition, smartphones are also
equipped with magnetometers that can measure the strength of electromagnetic fields in the vicinity.
A well-trained ANN could determine the mode of transportation a user is in by observing the user’s
GPS, accelerometer, and magnetometer related information such as speed, location, quality of GPS data,
acceleration, and electromagnetic field measurements. As an analogy, a man with his eyes and ears
covered may still be able to “feel” and determine whether he is in a typical car (auto mode) or a bus by
sensing the physical characteristics around him, such as acceleration and deceleration patterns.

A geographic information system (GIS) is a platform on which traffic conditions can be spatially
managed and is an important urban analysis tool in geoinformatics. Applying GIS-based spatial
analyses on traffic-related data can enhance mode detection accuracies by considering available modes
near the location where a mode estimation is made.
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Dubai is a city with unique environmental factors that can affect mode detection accuracies.
Due to the high density of high-rise buildings typically with a ratio of a building height to
a street-canyon-width of above 100 to 1, GPS signals are prone to multi-path errors. The extremely hot
outdoor temperature has introduced indoor walk modes at pathways connecting their metro and major
destinations including the Dubai Mall, known as a Metro Link Bridge (https://thedubaimall.com/en/
plan-your-visit/getting-here). It is interesting to see how the unique geographic factors play their roles
as far as the ANN-based mode detection rates are concerned. For example, the high-rise buildings
may tend to introduce noise in the GPS signals making location determination and associated speed
information less accurate. The indoor pathways for pedestrians may block the direct line of sight to
GPS satellites, which may also deteriorate the strength of the signal.

1.1. Artificial Intelligence in Civil Engineering

The field of civil engineering is considered as one of the oldest engineering disciplines which can
also be seen as one of the most matured fields of engineering. With the advancements in computer
technology accompanied by emerging artificial intelligence algorithms, there have been various
attempts to utilize the artificial intelligence in various sectors in civil engineering. French et al. [2] have
applied neural networks for forecasting rainfalls in the field of hydrology. Goh and Jeng et al. [3,4] have
assessed seismic liquefaction potentials with neural networks in the field of geotechnical engineering.
Tsai and Lee [5] and Mizumura [6] have used back-propagation neural networks and Kalman filtering
for tidal-level and ocean data forecasting in the field of ocean engineering. Bassuoni and Nehdi [7]
have developed a neuro-fuzzy based prediction model for the durability of self-consolidating concretes.
Prasad et al. [8] have used ANNs for predicting compressive strength of various structural materials
in the field of structural engineering. In the field of transportation engineering, traffic related forcasts
often deal with classification problems and ITS applications, including traffic monitoring problem, can
greatly benefit from using the ANNs.

1.2. Traffic Monitoring

Traffic monitoring requires remotely sensing the traffic conditions on desired locations on
the roads. Smith et al. [9], in their pioneering work with wireless location technology (WLT)-based
traffic monitoring, conducted multiple operational tests and concluded that there are many advantages,
including the fact that the WLT offers a new platform for collecting traffic data spatially. The authors
point out that there are associated sampling challenges that need to be addressed with concerted efforts
in the future. Byon et al. [10] developed a GPS and GIS-integrated traffic monitoring system, named
GISTT, whose main aim is to replace traditional traffic probes with dedicated data logging personnel
with GPS data loggers. The study assumes that the GPS data loggers are always in the auto mode.
Uno et al. [11] used GPS data for WLT-based transit performance monitoring services. Cathey and
Dailey [12] attempted to utilize public transit vehicles that voluntarily travel on their routes regularly,
for monitoring the general traffic by correlating the behaviors of transit buses to the general traffic.
Due to the intrinsic nature of the bus mode that frequently stops even on uncongested roads for
serving bus stops, the proposed method, at its best, is an indirect estimation of the actual general
traffic conditions. Bar-Gera [13] implemented a WLT-based traffic monitoring system by solely using
the triangulation of cell phone towers without the use of GPS signals on major highways. This approach
results in relatively lower accuracies (100–300 m) and needs sufficiently large sample sizes in order
to overcome the accuracy issues. In addition, the accuracy also depends on the density of cell tower
distributions, which happen to be sufficiently high only near major roads which limits the method’s
expandability into arterial roads. A GPS-based WLT can provide more accurate location information
especially when AGPS chips are assisted with cell phone signals. (Zahradnik, F., Assisted GPS, A-GPS,
AGPS, https://www.lifewire.com/assisted-gps-1683306) Zhong et al. [14] estimated passenger traffic
flows of a transportation hub using mobile phone data using AGPS-enabled phones.
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1.3. Transportation Mode Detection

Transportation mode detection is crucial for categorizing raw data collected from WLT-based
methods into desired modes for specific ITS applications. Tsui and Shalaby [15] developed a fuzzy
logic-based mode identification methodology for raw data collected from personal travel-survey GPS
data loggers. The conventional GPS data loggers were carried by study participants for multiple days
as they traveled in various modes of transportation. Then the collected data were post-processed
in an attempt to estimate their travelled modes retroactively. This after-the-fact approach is suitable
for transportation planning purposes rather than real-time applications, including traffic monitoring.
Zong et al. [16] also used a similar GPS dataset for identifying travel modes for transportation planning
purposes. Chen and Bierlaire [17] proposed a probabilistic method that predicted trip paths taken
and their associated modes by using raw data from smartphone sensors including GPS and Bluetooth
sensors. The method adopts a post-processing of data and is useful for ITS applications with longer
time horizons. Gonzalez et al. [18] and Byon et al. [19] developed real-time mode identification
methods with a conventional GPS receiver with ANNs. Their methods used both directly-measured
and indirectly-processed data. Directly-measured GPS data are location and speed values, while
the indirectly-processed data are acceleration values that are estimated by observing differential speed
values with known sampling intervals. The studies find that an ANN-based mode detection approach
is effective with reasonable accuracies. Byon et al. [20] enhanced the ANN-based mode detection
by utilizing directly-measured acceleration values from smartphones and found that accelerometer
values from smartphones did improve the mode detection performances. Recently, there are more
specialized applications of mode detection. Maghrebi et al. [21] attempted to estimate travel modes
from social media in hopes to utilize social network services as additional input data for mode detection.
Cardoso et al. [22] focused on detecting the transportation mode for elderly care while Lan et al. [23]
used kinetic energy-harvesting wearables for detecting the mode of transportation.

1.4. Statistical Considerations

For real-time traffic monitoring to be considered reliable, there needs to be a certain guideline
for required sample sizes. Li et al. [24] investigated the sample size requirement for GPS-based
traffic monitoring and asserted that existing methods either overestimate [25] or underestimate
the required sample sizes. The authors found that, for reliably estimating travel times, delay and
work-zone conditions require minimum sample sizes of 50, 20, 10, and eight for road sections with
lengths of 0.5, 1.5, 2.5, and 3.3 km, respectively. The findings imply that, from the perspectives of
GPS-based real-time traffic monitoring, there needs to be at least those minimum number of GPS
receivers simultaneously on a particular section of the road. It could also be interpreted that the traffic
monitoring procedure should wait until the minimum sufficient number of samples are collected prior
to attempting to estimate the current traffic conditions when there are not enough simultaneous GPS
probes. Assemi et al. [26] developed and validated a statistical model for travel mode identifications
using smartphones.

2. Study Objective

The objective of this study is to develop an ANN-based real-time mode detection methodology
that utilizes spatial analysis techniques and improves mode detection accuracies that would support
various ITS applications in transportation geoinformatics. This paper assesses the feasibility of using
proposed mode availability GIS layers for enhancing performances of transportation mode detection
ANNs with data from smartphone sensors in Dubai. The GIS layers contain spatial information
of available modes of transportation in a 2D space on a map of the study region. The developed
ANNs are tested with three different experimental scenarios with varying choice sets of transportation
modes, monitoring duration, device querying frequency, data collection time periods, and routes.
The experimental scenarios are:
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1. Universal mode detection with a mode availability layer;
2. Auto mode detection with mode availability layers;
3. Peak (rush hour) versus non-peak (non-rush hour) period comparisons.

In all scenarios, performance of the newly-proposed method with mode availability GIS layers
are compared with existing methods using conventional GPS data loggers and smartphone sensors.

3. Data Collection

Currently, Dubai has various modes of transportation available including; auto; metro; bus; tram;
truck; walk (outdoor and indoor); bike; ferry and boat modes. (Road and Transport Authority of
Dubai; https://traffic.rta.ae/trfesrv/public_resources/service-catalogue.do).

Ideally speaking, if all of these modes can be reliably estimated, many ITS applications can
benefit from the results in the future. Figure 1 shows all currently-available modes of transportation
in Dubai. This paper first develops a universal mode detection ANN that classifies the multiple
modes of transportation. Then, a specific ITS application of traffic monitoring based on private
vehicles, known as an auto mode, with ANNs is developed which can be useful, especially for
transportation practitioners.

 

Figure 1. Available modes of transportation in Dubai.

Conventional GPS data loggers (GL-750FL by Canmore Electronics Co. LTD, Hsinchu City, Taiwan,
http://www.canmore.com.tw/product.php) and smartphones (Galaxy S8 by Samsung Electronics,
Seoul, South Korea, with GPS, accelerometer, and magnetometer sensors, http://www.samsung.
com/global/galaxy/galaxy-s8/) are dispatched along major routes of Dubai on different modes
of transportation: auto, metro, bus, tram, truck, walk, bike, and water transit vehicles (ferries and
boats). The devices have been attached on either side of the waist belt of data collection participants.
The sampling rate is set at 1 Hz (once per second) for both devices. In the spring of 2017, in total,
110 weekday hours of data are collected including morning peak (7–9 a.m.), afternoon peak (5–7 p.m.),
and non-peak periods (10 a.m.–2 p.m.). The morning peak, afternoon peak, and non-peak periods
account for 25%, 25%, and 50% of all data, respectively. Sixty percent of the data are used to train
the ANNs and 40% of the data are used as unseen data for evaluating the performance of the developed
ANNs. The ratio between the training and validating data are arbitrarily chosen in such a way
that the training phase is given with more data for building the ANNs. Analyses on the effect of
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varying ratios between the two datasets are beyond the scope of this paper. Ten people in total with
10 GPS data loggers and 10 smartphones have collected similar amounts of data from different modes
of transportation.

The following criteria are considered for choosing routes and time slots for the data collection
in Dubai.

1. Representative routes of Dubai should share as many modes as possible in order for the different
modes to experience similar physical surrounding conditions nearby so that the proposed ANN’s
distinguishing power can focus on the characteristic variances among the different modes.

2. The data should be collected from different types of roads (highways, arterial roads) from different
regions of the city that would fairly represent the overall road conditions throughout the city.

3. The data should be collected from both peak periods (rush hour) and non-peak periods
(non-rush hour) because the traffic conditions are typically different between those time periods.

Figure 2 shows the study area with different routes for different modes. For the auto mode,
major highways (E11, E44, and D63) and a loop of nearby arterial roads (318th, 8th, Al Thanya St.,
Al Marabea Rd., Al Waha St., and Umm Al Sheif Rd.) are chosen. For the metro mode, which operates
on an elevated rail that is about 20 m above the ground, a section between Nakheel station and Al Rigga
station is selected. For the bus mode, a transit Route 8 is chosen for its wide coverage throughout
the city while Route C9 is chosen because it travels through the central business district (CBD) which
is notorious for extremely high-rise buildings that may cause serious multi-path errors with GPS
signals. For the tram mode, the Dubai Tram route is chosen, which is the only tram route available
in Dubai. For the truck mode, highway E311, also known as a “truck road” is chosen which has
intentionally been built in parallel with a major highway, E11, in order to reduce the load on E11.
(Zaman, S., New highway connects Abu Dhabi to Dubai, Gulf News, http://gulfnews.com/news/
uae/transport/new-highway-connects-abu-dhabi-to-dubai-1.1937213) For the walk and bike modes,
the data are collected from Jumeira Beach due to the relatively higher density of the population using
the two modes in the city. Due to the extremely hot weather, major metro stations are connected
with indoor pathways that are elevated roughly 20 m above the ground to major shopping malls that
often stretch over a few kilometers which introduces a new indoor-walk mode in Dubai. This enables
collecting data from an indoor walk mode based on sufficiently-long indoor pathways that can
provide consistent streams of raw data to the mode detection ANNs in this study. Dubai is located by
the Persian Gulf and its waterways play a major role as a part of the overall transportation infrastructure.
Ferries (Route F1 and F2) and “Abra” boats (B1 and B2) are chosen for the data collection. Abra boats
refer to small motorized water taxis that operate in the Dubai Creek area.

 

Figure 2. Data collection area in Dubai in various modes of transportation.
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4. Implementation of Mode Detection Artificial Neural Networks

A commercial package, Neurosolutions 7 (http://www.neurosolutions.com) is used for
implementing the ANNs for various scenarios, training the ANNs, and computing the mode detection
rates. Table 1 shows the common components of the software package and Figure 3 shows one of
the most popular ANNs consisting of a single hidden layer, an input layer, and an output layer with
a back-propagation algorithm. The particular design of ANN in Figure 3 is described in more detail
in Section 7. If a transportation mode can correctly be identified with one of the simplest ANNs
as adopted in this research with reasonable accuracies, more complex versions of it with sufficient
fine-tuning would only improve the accuracies further.

Table 1. Common components of Neurosolutions.

Icon Name Description

Axon Layer of processing elements

TanhAxon Hyperbolic nonlinear transfer function. M-P PE
can be built by attaching TanhAxon after Axon

FullSynapse Connects Axons from the left to the right

L2Criterion Cost function (J)

BackAxon Placed together with Axon and manages the
back-propagation algorithm

BackFullSynapse Connects BackAxons from the right to the left

Momentum Updates weights with momentum
learning algorithm

Figure 3. Setup of a single-hidden-layer artificial neural network (ANN).

5. Empirical Analysis on Input Factors

Emerging smartphones are generally equipped with AGPS and magnetometer sensors. They can
provide additional assistance in classifying the different modes. Byon et al. [20] find that those sensors
are beneficial in detecting the transportation modes by producing more raw data in addition to
the speed and acceleration values. For example, a boat mode, which usually operates with a wider
view of the sky with less influences from buildings that would cause multi-path errors, can often
see a greater number of satellites in view. Tram vehicles that run on electric motors with associated
electronic parts generally produce higher electromagnetic fields. By utilizing the newly-available
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sensors from the smartphones, it is possible to further assist with classifying the mode with higher
mode detection rates. Table 2 shows the summary of data collection in terms of the average number
of satellites in view and average magnitudes of electromagnetic fields for each mode. The values of
average number of satellites in view and average magnitude of magnetic field, are computed from
the entire set of collected data in the field.

Table 2. Distinctive input variables for each mode.

Modes Average Number of Satellites in View Average Magnitude of Magnetic Field (μT)

Auto 8 49
Bus 6 55

Truck 9 45
Tram 6 138
Walk 8 38
Bike 7 33
Boat 10 25

6. Building Mode Availability Layer

On a particular section of parallel roads, there are only a certain number of modes available
and ANNs can utilize this additional input which can further aid the ANNs classifying capabilities.
In this paper, a newly-developed type of GIS map layer in raster format, which contains binary
(1 for available and 0 for not-available state) information is created. Mode-specific vector map layers
are generated by selecting a particular subset of road networks corresponding to the availability of
the mode throughout the map. Then, the newly-generated vector map is transformed into a raster
map with 10 m × 10 m cells, where cells within a 100-m buffer of the road networks available with
the particular mode are turned on. Once the newly-formed mode availability (MA) layers are prepared
and ready to be accessed for each mode, raw data associated with any particular coordinates of GPS
data from the field can be matched against those MA layers for checking the availability of each mode
at that location (i.e., geocentric coordinates of x, y, z). This would form a new set of binary input factors
to further aid the mode detection processes with ANNs. Figure 4 illustrates the concept of MA layers
for each mode in a raster format. An auto mode is enabled in all sections in Figure 4 while the transit
mode is available via points A-B-D-C and the metro mode is available via points C-D-E.

 

Figure 4. Mode availability (MA) layers in a raster format.
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ANNs are generally categorized as a “black box” approach, referring to the fact that there
are no well-specified analytical relationships between input and output as mathematical functions.
The method is also data-driven. To some, those facts may be viewed as major flaws as the approach is
missing the understanding of phenomenon from the perspectives of intuitive mathematical reasoning.
However, this very black-box approach indeed offers pattern recognition power that explorers search
spaces that analytically approaching minds would not have even recognized they existed. In brief,
the proposed MA approach produces binary (1 or 0) values for each cell on a raster map. When raw
data are collected from within those “enabled” regions for a certain available mode, it gives additional
stimulation to the ANNs and forces its mode classifying estimations towards the actual mode during
the training phase. In other words, the extra stimulation would still help ANNs to estimate the actual
mode more often than the case without the additional input, even when the output layer lists other
non-available dummy modes among its output mode options.

7. Design of an Artificial Neural Network Classifier for Mode Detection

The characteristics of GPS data streams vary depending on the transportation mode in which
the smartphones are located. In this paper, a pattern classification approach is adopted to identify
the mode based on the characteristics of data streams from various sensors and mode availability
layer. In its most general form, a typical neural network (NN) consists of multiple layers of neurons,
connection weights among neurons, and associated nonlinear transfer functions within neurons.
Multi-layer perceptrons (MLP) [27] have been used in the proposed ANNs. More specifically,
one-hidden-layer MLP ANNs with McCulloch-Pitts (M-P) (Marsalli, M., McCulloch-Pitts Neurons,
http://www.mind.ilstu.edu/curriculum/modOverview.php?modGUI=212) processing elements are
used. The MLP is the most common supervised learning ANN. Supervised learning refers to the case
where there are input and output pairs of data for training the network. For the mode identification,
the input of GPS data used include speed, acceleration, and the average number of satellites in view,
while the output includes the corresponding mode of transportation. If the mobile device or the server
can store (and transmit) both current and a few recent GPS readings, the additional past speed and
acceleration values can also be the input to the ANN to possibly improve the detection accuracy.
The ANN maps each set of input data to the most probable mode. The training process adjusts
connection weights between neurons as an entire set of training input data, also known as an epoch,
is repeatedly passed through the network. All ANNs used in this paper consist of three layers of
neurons connected in a feed-forward fashion, trained with the well-established, error-back-propagation
algorithm. Depending on the specifics of each scenario, the number of inputs ranges from six (DL with
two pings) to 220 (MAGIS with 20 pings) and the number of output classes is either seven (auto,
bus, truck, tram, walk, bike, boat) or two (auto or non-auto). Seven output classes are used for
classifying individual modes; i.e., auto, bus, truck, tram, walk, or bike. Two output classes are used
when the classification is for auto vs. non-auto modes. As shown in Figure 5, the number of input
variables varies depending on the monitoring duration and number of pings (n) per unit of time (as
indicated as “Ping n” in Figure 5) in each scenario. For example, if the monitoring duration is 10 min
and the number of pings or queries is 10 in that duration (one ping per minute), there are 10 speed
values, 10 acceleration values, and 10 values for the number of satellites in view. Hyperbolic tangent
functions are used as the nonlinear transfer functions in the M-P PEs (McCulloch-Pitts processing
elements). The number of neurons (nodes) in the hidden layer is varied as 5, 10, 20, and 30. For different
scenarios, different numbers of hidden nodes have been used, depending on the number of input
variables and output classes. As a rule of thumb, having too many hidden nodes forces the NN
to memorize the input-output training data, and leads to poorer generalization. Having too few
hidden nodes, on the other hand, gives the NN difficulties in identifying and isolating the different
classes. Therefore, it is desirable to keep the number of hidden nodes to a minimum without sacrificing
the discriminating power. From the 110 h of collected data, for each scenario of data logger (DL),
smartphone (SP), and smartphone with mode availability GIS (MAGIS), the entire set of data are
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shuffled randomly first. Then, 60% of the data are used to train the network and the remaining 40% are
used for the validation process as unseen data. For example, in the case of the two pings –5 min scenario
of DL, 10 different ANNs are formed with a randomly-shuffled set of data of which 60% of the data
is used to train/develop the ANNs. Then, the average detection rate of those 10 runs of an identical
scenario of two pings –5 min is considered as the resulting detection rate for the scenario. The ratio of
training and validating data is set arbitrarily while assigning more data towards the training phase.
The final number of hidden nodes used is determined after varying the number of hidden nodes over
10 to 20 trials. The number of nodes was kept to a minimum so long as performance of the network did
not degrade compared with networks with a greater number of nodes. During the training processes,
classification performance seemed to stabilize after 3000 epochs. If the error did not stabilize or
continued to fluctuate after 3000 epochs, the number of hidden nodes is increased.

 

Figure 5. Artificial neural network layout for universal mode detection with data logger (DL),
smartphone (SP), and smartphone with mode availability GIS (MAGIS).

8. Experimental Scenarios and Results

This paper considers a few scenarios that effectively test the feasibility of the proposed ANN-based
mode detection method with the developed MA layers. In order to compare the performances of
the proposed method against existing methods, two existing methods are also carried on in addition
to the proposed one. The two existing techniques are the conventional GPS data logger (DL) method
and smartphone (SP) method. The DL approach uses a conventional GPS data logger that is capable
of directly measuring its current location and speed. Indirectly-estimated acceleration values are
produced from the speed values. In the case of the SP approach, the GPS location values are fixed
quicker with the aid of signals from cell phone towers with the smartphones’ embedded AGPS chips.
In addition, directly measured acceleration values from the accelerometers are collected in forms of
absolute magnitude of 3D acceleration vectors. Finally, another measurement from a magnetometer
further aids the mode detection.

The newly-proposed method involves using the smartphone approach with a mode availability
GIS layers, namely the MAGIS method. The MAGIS requires pre-processing of a city’s road networks
filtered for available mode routes information. However, once such GIS layers are built, the database
can be easily maintained in the form of a live GIS database and can be easily updated as the routes for
each mode can be modified in real-time in the database.
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8.1. Universal Mode Detection with Smartphone with Mode Availability GIS (MAGIS)

Figure 5 shows the designs of ANNs for the universal mode detection for all modes of
transportation based on their physical characteristics. Auto mode would typically experience
the highest maximum speed, while transit buses would frequently accelerate and decelerate even
during free-flow periods for serving transit stops. As Table 2 suggests, a boat mode would have
a clearer view of the sky and “see” a greater number of satellites. In all of the above cases, observing
a single particular set of data is not sufficient for reliably detecting the mode, as Li et al. [24] suggest.
By making observations for a longer duration of time and sampling the data more frequently, it would
give more opportunities for ANNs to capture particular sets of patterns for each mode and make more
reliable mode estimations. In this scenario, 10 min of monitoring duration with five data samplings,
also known as “pings”, are used for all three approaches of DL, SP, and MAGIS.

Table 3 and Figure 6 show the results from the universal mode detection using DL, SP, and MAGIS
approaches. All three results show the highest values in its main diagonals, meaning that the proposed
ANNs are detecting the correct modes the most among other modes. However, the mode detection
rates of DL are the lowest among the three methods, probably due to its estimated acceleration
values and lacking newly-available emerging input values from smartphones. The MAGIS performs
significantly better than DL and SP methods due to its additional input factors from smartphone
sensors and the binary input variables prepared from MA layers.

Table 3. Results of universal mode detection rates (%) with DL, SP, and MAGIS.

A. Universal Mode Detection with Conventional GPS Data Logger

Actual Modes
Predicted Modes

Auto Bus Truck Tram Walk Bike Boat

Auto 42 12 18 11 4 5 8
Bus 8 48 10 26 3 2 3

Truck 25 13 42 11 4 4 1
Tram 11 12 10 42 4 11 10
Walk 4 3 2 4 52 23 12
Bike 7 8 5 7 15 53 5
Boat 2 5 8 17 14 9 45

B. Universal Mode Detection with Smartphone

Actual Modes
Predicted Modes

Auto Bus Truck Tram Walk Bike Boat

Auto 61 9 13 7 3 4 3
Bus 7 63 9 14 4 2 1

Truck 18 9 57 10 3 2 1
Tram 9 11 9 53 3 7 8
Walk 1 2 3 4 74 11 5
Bike 5 6 4 5 11 67 2
Boat 1 3 4 13 11 7 61

C. Universal Mode Detection with Mode Availability Layer

Actual Modes
Predicted Modes

Auto Bus Truck Tram Walk Bike Boat

Auto 78 5 7 4 2 3 1
Bus 4 82 4 7 2 1 0

Truck 8 2 82 4 2 1 1
Tram 4 7 5 76 2 5 1
Walk 2 3 4 5 74 7 5
Bike 3 4 5 4 8 72 4
Boat 1 2 2 5 3 5 82
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Figure 6. Bar graphs of the results from universal mode detection with DL, SP, and MAGIS.

8.2. Auto Mode Detection with MAGIS

A particular ITS application of traffic monitoring is considered in this scenario. The traffic
conditions experienced by private auto mode vehicles are usually considered as the general traffic
flow because other modes of transportation, such as public transit or trucks, behave differently due
to their specific roles, such as serving passengers at bus stops or carrying heavy loads of goods.
Therefore, in the case of traffic monitoring, the mode detection among auto vs. non-auto modes are
sufficient. This implies that all modes, other than the auto modes, are considered as non-auto modes
altogether. In this section, raw data from non-auto modes are randomly shrunk down in size to match
the size of the data from the auto mode with 50/50 ratio, in order to truly see the classifying power of
the ANNs. Figure 7 shows the design layout of the ANNs for auto mode detection with DL, SP, and
MAGIS approaches.

 

Figure 7. Artificial neural network layout for auto mode detection with DL, SP, and MAGIS.

Table 4 and Figure 8 show the results of auto mode detection with DL, SP, and MAGIS approaches.
When the actual mode of transportation is auto mode and its mode is correctly estimated as auto mode,
it is denoted as an A-A detection rate. Similarly, if the actual mode is non-auto mode and the estimated
mode is non-auto mode, it is denoted as an N-N detection rate. Ideally, if the A-A and N-N detection
rates are both 100%, the mode detection is considered perfect.
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Table 4. Results of auto mode detection rates (%) with DL, SP, and MAGIS.

A. Auto Mode Detection Rates with Conventional GPS Data Logger

# of Pings
Monitoring Duration

5 min 10 min 15 min 20 min

A-A N-N A-A N-N A-A N-N A-A N-N

2 49 68 52 72 54 75 55 78
5 53 70 59 72 60 77 67 80
10 58 74 62 74 67 81 71 84
15 63 79 65 78 71 83 74 86
20 67 81 69 84 73 87 77 89

B. Auto Mode Detection Rates with Smartphone

# of Pings
Monitoring Duration

5 min 10 min 15 min 20 min

A-A N-N A-A N-N A-A N-N A-A N-N

2 54 77 53 77 56 79 58 81
5 63 83 64 83 63 85 65 85
10 66 82 69 86 73 88 77 89
15 72 85 74 89 77 91 82 94
20 75 88 76 90 84 94 87 92

C. Auto Mode Detection Rates with Mode Availability Layer

# of Pings
Monitoring Duration

5 min 10 min 15 min 20 min

A-A N-N A-A N-N A-A N-N A-A N-N

2 62 82 65 83 69 86 73 88
5 68 85 70 86 78 89 80 90
10 77 88 75 89 82 91 89 93
15 82 91 84 92 89 92 92 94
20 84 92 88 95 93 94 95 97

Figure 8. A-A surface and N-N surface of auto mode detection with DL, SP, and MAGIS.
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The results show the DL approach, while showing the main diagonal with the highest values for
both A-A and N-N are all lower than the SP or MAGIS-based results. The MAGIS approach shows
the highest rates for both A-A and N-N. The results are significantly higher than DL or SP approaches
and it shows that the mode availability binary input does improve the detection rates for both A-A
and N-N rates.

8.3. Peak Versus Nonpeak Auto Mode Detection with MAGIS

During rush hour, (7–9 a.m. and 5–7 p.m.) with 10 pings with 10 min duration scenario,
the A-A rate is found to be 68%, 73%, 81%, for DL, SP, and MAGIS approaches, respectively.
During the non-rush hour period (10 a.m.–2 p.m.) the A-A rate is found to be 56%, 67%, 74%,
for DL, SP, and MAGIS approaches, respectively. It is interesting to note that the mode detection rates
are better during the peak period. It seems that due to congestion, the vehicles tend to experience more
fluctuations in accelerations and decelerations unique to each mode and it actually helps the ANNs to
detect the intrinsic patterns embedded in each mode.

9. Future Research

The mode detection accuracies may be further improved by incorporating more complex ANNs
with more hidden layers and varying the number of neurons. There is a need for a consistent guideline
for optimizing the complexity of the designs and layout of the ANNs for the mode detection.

The MA layers can be implemented as an online database and be available for real-time access in
the case of certain sections being unavailable due to accidents or temporarily paralyzed by grid-lock
situations in the CBD.

Routes of certain modes of transportation are only available at particular ranges of elevations.
For example, a boat mode usually operates at sea level, while elevated rails for the metro is always at
higher elevations from the ground. Different transit bus routes may operate within different ranges of
elevations. When combined with digital elevation models (DEM) it is possible to identify the mode of
transportation more easily by incorporating the operating height information of each mode.

Currently in Dubai, where this study has been conducted, the metro trains operate above
the ground. However, the majority of metro systems internationally operate underground. It is
a challenge to enhance the proposed approach with underground applications without GPS data
due to the blocked line of sight from GPS satellites to the metro users. It would be interesting to see
how other sensors in smartphones, combined with mode availability layers, perform together for
mode detection.

This paper briefly develops universal mode detection ANNs, followed by focusing on a particular
ITS application of traffic monitoring. In the future, unique and specific ITS applications can be built
for each mode. For example, for bike mode-related applications, the ANNs can further be optimized
for detecting the bike mode followed by conducting slope analyses of the ground by processing
the DEM with slope-determining GIS operations in 3D for the flattest route instead of the shortest
route computations for the bike mode.

10. Conclusions

With advancements in computing technology and artificial intelligence algorithms, the field
of civil engineering, which is often seen as a classic field of engineering, can benefit from
the newly-available tools.

Traditionally, traffic monitoring requires fixed sensors with high capital costs that can only monitor
a few fixed locations or probe vehicles with a dedicated vehicle and driver with an advantage of
monitoring traffic conditions throughout the route, yet with high labor costs. There are existing
methods that attempt to replace the probe vehicles with conventional GPS data loggers or smartphones
with additional sensors that can automatically collect data as long as their mode of transportation
can be reliably detected as an “auto” mode. This paper develops an artificial neural network
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(ANN)-based mode detection procedure enhanced with a mode availability (MA) GIS map layer,
named as the MAGIS approach, which can detect various modes of transportation for potential future
ITS applications and an auto mode for traffic monitoring purposes. A new approach of constructing MA
layers in a raster format is proposed, traffic data associated with certain locations are queried against
the MA layers, and the results in binary form are fed into the mode detection ANNs. A thorough data
collection is carried out in Dubai where extremely tall buildings and indoor pathways offer unique
environments to conduct this study. It is found that ANN-based mode detection enhanced with mode
availability layers improve the detection accuracies significantly.

In the case of universal mode detection among seven different modes of transportation, including
auto, bus, truck, tram, walk, bike, and boat, the proposed MAGIS approach has resulted in correct
detection rates that range from 72 to 82% while the existing DL and SP methods resulted in correct
detection rates from 42 to 53% and from 53 to 74%, respectively, for all modes of available transportation.
In the case of the auto mode detection, the MAGIS approach produces correct detection rates ranging
between 62% and 97% across all scenarios, while DL and SP methods have produced correct detection
rates ranges between 49% and 89% and between 54% and 92%, respectively. Figure 9 shows the trends
from the results. The proposed MAGIS approach can be adapted for cities with different sets of
available modes as long as their MAGIS layers can be prepared and managed in parallel with
the real-time operation of ANNs.

Figure 9. Minimum and maximum mode detection rates of DL, SP, and MAGIS methods.
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Abstract: In this paper, a deep learning model using a Recurrent Neural Network (RNN) was
developed and employed to predict the injury severity of traffic accidents based on 1130 accident
records that have occurred on the North-South Expressway (NSE), Malaysia over a six-year
period from 2009 to 2015. Compared to traditional Neural Networks (NNs), the RNN method
is more effective for sequential data, and is expected to capture temporal correlations among the
traffic accident records. Several network architectures and configurations were tested through a
systematic grid search to determine an optimal network for predicting the injury severity of traffic
accidents. The selected network architecture comprised of a Long-Short Term Memory (LSTM) layer,
two fully-connected (dense) layers and a Softmax layer. Next, to avoid over-fitting, the dropout
technique with a probability of 0.3 was applied. Further, the network was trained with a Stochastic
Gradient Descent (SGD) algorithm (learning rate = 0.01) in the Tensorflow framework. A sensitivity
analysis of the RNN model was further conducted to determine these factors’ impact on injury
severity outcomes. Also, the proposed RNN model was compared with Multilayer Perceptron
(MLP) and Bayesian Logistic Regression (BLR) models to understand its advantages and limitations.
The results of the comparative analyses showed that the RNN model outperformed the MLP and
BLR models. The validation accuracy of the RNN model was 71.77%, whereas the MLP and BLR
models achieved 65.48% and 58.30% respectively. The findings of this study indicate that the RNN
model, in deep learning frameworks, can be a promising tool for predicting the injury severity of
traffic accidents.

Keywords: severity prediction; GIS; traffic accidents; deep learning; recurrent neural networks

1. Introduction

Traffic accidents are a primary concern due to many fatalities and economic losses every year
worldwide. In Malaysia, recent statistics show that there are nearly 24 deaths per 100,000 people
for all road users [1]. Expressways are potential sites of fatal highway accidents in Malaysia. Better
accident severity prediction models are critical to enhancing the safety performance of road traffic
systems. According to recent literature, driver injury severity can be classified into a few categories
such as property damage, possible/evident injury, or disabling injury/fatality [2]. Therefore, modeling
accident severity can be addressed as a pattern recognition problem [3], which can be solved by deep
learning, statistical techniques and sometimes by physical modelling approaches [4–7]. In a deep
learning model, an input vector is often mapped into an output vector through a set of nonlinear
functions. In the case of accident severity, the input vectors are the characteristics of the accident,
such as driver behavior and highway, vehicle and environment characteristics. The output vector is
the corresponding classes of accident severity. Deep learning allows computational models to learn
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hierarchal representations of data with multiple levels of abstraction at different processing layers.
The advantage of deep learning neural networks over statistical techniques is that they involve a more
general mapping procedure i.e., a specific function is not required in model building [8]. However,
these techniques can be treated as black box methods, if the network architecture is not carefully
designed and its parameters are not optimized.

Several studies have investigated Neural Network (NN) and deep learning methods in
transportation related applications [9–12]. For example, Abdelwahab and Abdel-Aty [8] used NN
to predict driver injury severity from various accident factors (i.e., driver, vehicle, roadway and
environment characteristics). In their study, the NN model developed performed better than the
ordered probit model. In another paper, Delen et al. [10,13] applied NN to model injury severity
of road accidents using 17 significant parameters. The NN model was used to predict the injury
severity levels, resulting in a low overall accuracy of 40.71%. More recently, Hashmienejad and
Hasheminejad [14] proposed a novel rule-based technique to predict traffic accident severity based on
users’ preferences instead of conventional data mining methods. The proposed method outperformed
the NN and support vector machine methods. In a recent paper, Alkheder et al. [11] used NN methods
to predict the injury severity (minor, moderate, severe, death) of traffic accidents in Abu Dhabi. Their
analysis was based on 5973 traffic accident records that had occurred over a 6-years period. The overall
accuracy of the model for the training and testing data were 81.6% and 74.6%, respectively. In addition,
Zeng and Huang [15] proposed a training algorithm and network structure optimization method for
crash injury severity prediction. Their results indicated that the proposed training algorithm performed
better than the traditional back-propagation algorithm. The optimized NN, which contained less
nodes than the fully connected NN, achieved reasonable prediction accuracy. Also, the fully connected
and optimized NN models outperformed the ordered logit model. Also, their results showed that
optimization of the NN structure could improve the overall performance of model prediction.

In recent years, deep learning has become a popular technique in image [16] and natural language
processing applications [17]. Many researchers have applied deep learning based techniques in
transportation related applications such as traffic flow [18] and accident hotspots prediction [19].
A detailed literature review showed that optimization of network structures is critical for crash severity
prediction. Generally speaking, deep learning allows compositionality and the design of flexible
network structures with multilayer modules, and therefore it is expected that the performance of
deep learning models will be better than the traditional NN models. A deep learning architecture is
a multilayer stack of simple modules, most of which are subjected to learning computing nonlinear
input–output mappings [20]. Each module in the stack transforms its input to increase both selectivity
and invariance of the representation. A Recurrent Neural Network (RNN) is a type of deep learning
module, which is more appropriate for sequential data (e.g., traffic accident data with temporal
correlations). It is effective for a wide range of applications including text generation [21] and speech
recognition [22]. The application of RNNs in various fields motivated the authors to evaluate these
models in deep learning frameworks for severity prediction of traffic accidents.

The main novelty of this work is the development of a RNN model that accurately predicts
injury severity of traffic accidents utilizing the temporal structure of accident data. The specific
objective is to design a deep learning model using a RNN for severity prediction of traffic accidents.
The hyperparameters of the model will be selected through a systematic grid search technique.
In addition, the sensitivity of model parameters and configurations will be assessed, and then will be
compared with the well-known Multilayer Perceptron (MLP) and Bayesian Logistic Regression (BLR)
models to understand its advatange. Finally, the impacts of accident-related factors on injury severity
outcome will be determined using the profile-based method.

2. Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are neural networks with feedback connections specifically
designed to model sequences. They are computationally more powerful and biologically more
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reasonable than feed-forward networks (no internal states). The feedback connections provide a
RNN the memory of past activations, which allows it to learn the temporal dynamics of sequential
data. A RNN is powerful because it uses contextual information when mapping between input and
output sequences. However, the traditional RNNs have a problem called vanishing or exploding
gradient. To handle this problem, Hochreiter and Schmidhuber [23] proposed the Long Short-Term
Memory (LSTM) algorithm.

In LSTM, the hidden units are replaced by memory blocks, which contain one or more
self-connected memory cells and three multiplicative units (input, output, forget gates). These gates
allow writing, reading, and resetting operations within a memory block, and they control the overall
behavior internally. A representation of a single LSTM unit is shown in Figure 1. Let ct be the sum of
inputs at time step t, then LSTM updates for time step i at given inputs xt, ht−1, and ct−1 are [24]:

it = σ(Wxi.xt + Whi.ht−1 + Wci.ct−1 + bi) (1)

ft = σ
(

Wx f .xt + Wh f .ht−1 + Wc f .ct−1 + b f

)
(2)

ct = it.tanh(Wxc.xt + Whc.ht−1 + bc) + ft.ct−1 (3)

ot = σ(Wxo.xt + Who.ht−1 + Wco.ct + bo) (4)

ht = ot.tanh(ct) (5)

where σ is an element-wised non-linearity such as a sigmoid function, W is the weight matrix, xt is the
input at time step t, ht−1 is the hidden state vector of the previous time step and bi denotes the input
bias vector.

 

Figure 1. The structure of a memory cell in the Long Short-Term Memory–Recurrent Neural Network
(LSTM–RNN).

3. The Proposed Network Framework

3.1. Network Architecture

Figure 2 shows the high-level architecture of the proposed severity prediction model based on
deep learning. The advantage of LSTM-RNN over the traditional neural networks is that the traffic
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accidents are correlated to the historical and future incidents [25]. The RNN model comprises of five
main layers which include input, LSTM, two dense layers and a Softmax layer.

Figure 2. The high-level architecture of the proposed RNN model used in this study.

The main input of the network is a set of traffic accident-related factors, and the output is
the corresponding accident severity classes (i.e., property damage only, possible/evident injury,
disabling/fatality). The input dimension of the LSTM layer is equal to eight (number of input factors)
with 64 nodes. The output of each node in the LSTM layer is results from the Rectified Linear Unit
(ReLU) activation function applied to a weighted sum of both inputs from the previous layer and
the previous outputs of the layer. The ReLU computes the function f (x) = max(0, x). This activation
function accelerates (e.g., a factor of 6 in [26]) the convergence of Stochastic Gradient Descent (SGD)
compared to the sigmoid/tanh functions. In addition, it can be implemented without expensive
operations as in the case of sigmoid/tanh functions. Then, two fully connected layers were trained
on top of the LSTM layers. They were added to match the output of the LSTM layer and the size of
the accident severity classes. The output layer was a fully connected feed-forward layer and used to
directly map the learned features to the three accident severity classes. A Softmax function is used to
activate the output layer. In addition, three dropout layers with probability of 0.3 were used to reduce
the complexity of the model to prevent over-fitting [27].

3.2. Training Methodology

The network was trained with Backpropagation Through Time (BPTT) [28] and Stochastic
Gradient Descent (SGD) algorithms in Tensorflow on a personal CPU system (Core i7 with 16 GB RAM).
As a RNN can be seen as a normal feedforward NN with shared weights, the BPTT begins by unfolding
the RNN through several steps in time. The network training then proceeds in a manner similar to
training a feed-forward neural network with backpropagation, except that the training patterns were
visited in a sequential order. It determines the gradients of the objective function (Equation (6)) with
respect to a parameter at each time step. Finally, the BPTT calculates the gradient outputs by taking
the average of the individual step-dependent gradients.

Hỳ(y) = −∑
i

`yl log(yl) (6)

where y is the predicted probability distribution and ỳ is the actual distribution (the one-hot vector
with injury severity outcomes).

In addition, the SGD algorithm uses few examples from the input training vector and computes
the outputs and the errors, and then adjusts the weights. The process is recurrent for many small sets
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of examples until the average of the objective function stops. The SGD method could determine a good
set of weights when compared with other optimization techniques [29,30]. The training was run on
a batch size 32 with 100 epochs. The best model was achieved using SGD with the decay of 0.9 and
a momentum = 0.8. The best learning rate was 0.01. In addition, gradient clipping [31] with threshold
2.0 was useful to stabilize the training and to avoid gradient explosion.

3.3. Mitigating Overfitting

Networks with more complicated functions can perform better generalization performance as
they learn different representations in each of their layers. However, complicated networks can
easily over-fit the training data, producing poor generalization capacity and testing performance.
Over-fitting occurs when a network model with high capacity fits the noise in the data instead of the
underlying relationship.

Therefore, to avoid over-fitting in the proposed RNN model, three standard techniques were
used. These were Gaussian noise injection into the training data [32], using a ReLU activation function
in the hidden layers [20], and subsequently applying the dropout technique [29]. Dropout leads to
big improvements in the prediction performance of the model. When a dropout technique is applied,
the generalization capacity of the model is improved because the network is forced to learn multiple
independent representations of the data. A probability of 30% was used in the dropout technique.
This is because low probability has minimal effect and a high probability results in under-learning by
the network.

3.4. Hyperparameter Tuning

The hyper-parameters of the RNN model were selected by performing a systematic grid search
implemented in scikit-learn [33] using 100 epochs. Even though the systematic grid search requires
high computational cost, better results could be obtained by systematically tuning the hyper-parameter
values. Models with various combination of parameters were constructed, and a 3-fold cross-validation
was used to evaluate each model. The parameters of the model with the highest validation accuracy
were found to be the best parameters among the evaluated ones. Table 1 shows the optimized
parameters used in the network.

Table 1. The optimized hyperparameters of the proposed RNN model.

Hyper-Parameter Best Value Description

Minibatch size 32 Number of training cases over which SGD update is computed.

Loss function Categorical crossentropy The objective function or optimization score function is also called as
multiclass logloss which is appropriate for categorical targets.

Optimizer SGD Stochastic gradient descent optimizer.
Learning rate 0.01 The learning rate used by SGD optimizer

Gradient momentum 0.80 Gradient momentum used by SGD optimizer.
Weight decay 0.9 Learning rate decay over each update.

4. Experimental Results and Discussion

The proposed RNN model was implemented in Python using the open source TensorFlow
deep learning framework developed by Google [34]. TensorFlow has automatic differentiation and
parameter sharing capabilities, which allows a wide range of architectures to be easily defined and
executed [34]. The proposed network was trained with 791 samples and validated with 339 samples
using the Tensorflow framework. The SGD optimization algorithm was applied, with a batch size of
32 and a learning rate of 0.01.

4.1. Data

The traffic accident data for the period 2009–2015 from the North-South Expressway (NSE,
Petaling Jaya, Malaysia), Malaysia were used in this study. The NSE is the longest expressway
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(772 km) operated by Projek Lebuhraya Usaha Sama (PLUS) Berhad (the largest expressway operator
in Malaysia, Petaling Jaya, Malaysia) and links many major cities and towns in Peninsular Malaysia.
The data were obtained from the PLUS accident databases. The files used in this study were accident
frequency and accident severity files in the form of an Excel spreadsheet. The accident frequency file
contains the positional and descriptive accident location and the number of accidents in each road
segment of 100 m. The accident records were separated according to the road bound (south, north).
In contrast, the accident severity file contains the general accident characteristics such as accident time,
road surface and lighting conditions, collision type, and the reported accident cause. To link the two
files, the unique identity field (accident number) was used.

According to the vehicle type information in the accident data, three scenarios were found:
(1) single-vehicle with object accidents, (2) two-vehicle accidents, (3) and multiple vehicle accidents
(mostly three vehicles). Training a deep learning model requires many samples to capture the data
structure and to avoid model overfitting. Therefore, the analysis in this study did not focus just
on a single scenario, but instead, all scenarios were included in training the proposed RNN model.
In total, 1130 accident records were reported during 2009–2015. Of these, 740 (approximately 65.4%)
resulted in drivers damaging property only. On the other hand, 172 (15.2%) drivers were involved in
possible/evident injury, and 218 (19.4%) in disabling injury.

The section of the NSE used in this study has a length of 15 km running from Ayer Keroh
(210 km) to Pedas Linggi (225 km) (Figure 3). The accident severity data showed that the last section
(220–225) of the NSE experienced several accidents resulting in serious injury (82) than the other
sections (Table 2). Most accidents have occurred on the main route and southbound of the expressway.
During the accident events, the actual accident causes were documented. The data showed that lost
control, brake failure, and obstacles were the main accident causes on the NSE. With respect to lighting
and surface conditions, most accidents occurred in daylight conditions and with a dry road surface.
The main collision types in the accident records were out of control and rear collision. In addition,
the accident time factor showed that 91.68% of the accidents occurred during the daytime. Additionally,
the data also revealed that two-car accidents, single heavy car with an object and motorcycle with an
object were the most recorded crashes on the NSE.

 

Figure 3. Location of the North-South Expressway (NSE) section analyzed in this study.

196

Bo
ok
s

M
DP
I



Appl. Sci. 2017, 7, 476

Table 2. Driver injury severity distribution according to accident related factors.

Factor Property Damage Only Evident Injury Disabling Injury Total

Location
210–214 185 172 58 415
215–219 234 47 56 337
220–225 238 58 82 378

Road-bound
South 453 99 139 691
North 287 73 79 439

Accident zone
Interchange 14 3 0 17

Junction
Lay-by 2 0 1 3

Main Route 666 155 209 1030
North Bound Entry Ramp 8 2 0 10
North Bound Exit Ramp 4 2 0 6

Rest and Service Area 21 4 2 27
South Bound Entry Ramp 2 0 1 3
South Bound Exit Ramp 7 1 3 11

Toll Plaza 16 5 2 23

Accident reported cause
Bad Pavement Condition 0 1 0 1

Brake Failure 6 2 1 9
Bump-bump 37 12 27 76

Dangerous Pedestrian Behaviour 0 0 1 1
Drunk 0 0 1 1

Loss of Wheel 1 0 2 3
Lost control 75 18 22 115
Mechanical 5 1 0 6

Mechanical/Electrical Failure 11 0 1 12
Obstacle 43 12 6 61

Other Bad Driving 15 1 4 20
Other Human Factor/Over Load/Over Height 3 0 0 3

Over speeding 345 61 91 497
Parked Vehicle 4 4 10 18

Skidding 1 0 0 1
Sleepy Driver 134 44 42 220
Stray Animal 13 1 2 16

Tire burst 47 15 8 70

Lighting condition
Dark with Street Light 47 6 8 61

Dark without Street Light 225 74 89 388
Dawn/Dusk 35 9 9 53

Day Light 433 83 112 628

Surface condition
Dry 460 146 190 796
Wet 280 26 28 334

Collision type
Angular Collision 9 2 0 11

Broken Windscreen 2 0 0 2
Cross direction 2 0 1 3

Head-on Collision 0 1 4 5
Hitting Animal 12 1 2 15

Hitting Object On Road 44 12 7 63
Others 20 0 6 26

Out of Control 457 92 107 656
Overturned 33 11 7 51

Rear Collision 137 48 81 266
Right Angle Side Collision 11 1 1 13

Side Swipe 13 4 2 19

Accident time
Day time 677 156 203 1036

Night time 63 16 15 94
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Table 2. Cont.

Factor Property Damage Only Evident Injury Disabling Injury Total

Vehicle type
Car-Bus 7 3 6 16
Car-Car 499 68 60 627

Car-Heavy Car 51 11 14 76
Car-Motorcycle 4 7 22 33

Heavy Car 131 23 25 179
Heavy Car-Bus 2 3 3 8

Heavy Car-Heavy Car 24 9 15 48
Heavy Car-Motorcycle 0 1 6 7

Heavy Car-Taxi 2 0 0 2
Motorcycle 11 42 60 113

Motorcycle-Taxi 0 1 1 2
Motorcycle-Van 0 0 2 2

Taxi 1 0 1 2
Van 8 4 3 15

Before feeding the accident data into the recurrent neural network, the data must be preprocessed.
The steps included were: removing missing data, data transformation, and detection of highly
correlated factors. Some data were missing in the accident records; therefore, the complete raw
data in which a missing data is found was removed. The data transformation included one-hot
encoding for the categorical factors. In addition, correlation between predictors was assessed to
detect any multicollinearity problem. First, the multiple R2 was calculated for each factor. Second,
the Variance Inflation Factor (VIF) was calculated from the multiple R2 for each factor (Table 3).
The highest correlation of 0.27 was found between lighting condition factor and surface condition
factor. However, the highest multiple R2 and VIF were found to be 0.135 and 1.156 for surface condition
factor. There was no multicollinearity found among the factors if VIF = 1.0, however when the value
exceeded 1.0, then moderate multicollinearity was found. In both cases, no high correlation was found
during the model training and testing phase. Therefore, none of the factors was removed.

Table 3. Multicollinearity assessment among the accident related factors.

Factor Multiple R2 VIF

Accident location 0.062 1.066
Road bound 0.012 1.012

Accident zone 0.040 1.042
Accident reported cause 0.060 1.063

Lighting condition 0.095 1.105
Surface condition 0.135 1.156

Collision type 0.033 1.034
Accident time 0.009 1.009
Vehicle type 0.090 1.099

4.2. Results of RNN Model Performance

Figure 4 shows the accuracy performance and loss of the RNN model calculated for 100 epochs
(iterations) using the training (80%) and validation (20%) datasets. In general, model accuracy on the
training and validation datasets increases after each iteration with fluctuations. The fluctuations in
accuracy are due to the use of the dropout technique in the model, which results in different training
during every iteration. The dropout technique, which was used to prevent over-fitting, introduces
some of the randomnesses to the network. In the first iteration, the accuracy was 61.28% and 66.37%
for training and testing data, respectively. As the model trains during the first pass through the data,
both training and validation losses decline, indicating that the model is learning the structure of the
traffic accident data and possibly its temporal correlations. In the first and consecutive iterations the
validation loss did not increase significantly and was always less than the training loss, indicating that
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the network did not overfit the training data and accurately generalized to the unseen validation data.
After 100 epochs, the validation accuracy of the model was 71.77%.

 

(a) 

(b)

Figure 4. Accuracy performance and loss of the RNN model calculated for 100 epochs; (a) model
accuracy; and (b) model loss.

4.3. Sensitivity Analysis of Optimization Algorithm

Several optimization algorithms such as SGD, Adagrad [35], RMSprop [36] and Adam [37]
are available to adjust the weights and biases of a network by iterating through the training data.
Each algorithm has its own advantages and disadvantages, and there are no clear guidelines for
selecting an optimizer for a particular problem. Therefore, in this study, several optimization
algorithms were evaluated as we searched for the best to train the proposed RNN model. The evaluated
algorithms are SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, and Nadam [38]. The parameters
of each algorithm were obtained from the aforementioned literature. Table 4 shows the performance of
each optimization technique in predicting the severity of traffic accidents. The best validation accuracy
(71.77) was achieved by the SGD method with a learning rate of 0.01. The SGD uses a small batch of the
total data set to calculate the gradient of the loss function with respect to the weights and biases, using
a backpropagation algorithm. The algorithm moves down the gradient by an amount proportional to
its learning rate. Optimization methods such as Adam and Nadam have performed reasonably well.

Table 4. The performance of different optimization methods evaluated in this study.

Optimizer Parameters
Training

Accuracy (%)
Validation

Accuracy (%)

SGD lr = 0.01, momentum = 0.0, decay = 0.0, nesterov = False 71.79 71.77
RMSprop lr = 0.001, rho = 0.9, epsilon = 1 × 10−8, decay = 0.0 71.90 70.80
Adagrad lr = 0.01, epsilon = 1 × 10−8, decay = 0.0 71.35 71.24
Adadelta lr = 1.0, rho = 0.95, epsilon = 1 × 10−8, decay = 0.0 70.24 71.24

Adam lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1 × 10−8, decay = 0.0 73.12 71.68
Adamax Lr = 0.002, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1 × 10−8, decay = 0.0 70.46 71.24
Nadam Lr = 0.002, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1 × 10−8, schedule_decay = 0.004 74.67 71.68

4.4. Sensitivity Analysis of Learning Rate and RNN Sequence Length

Furthermore, the effect of the learning rate and RNN sequence length on the generalization ability
of the proposed network in predicting the severity of traffic accidents was investigated. The learning
rates varied by 0.5, 0.1, 0.05, 0.01, and 0.001. The sequence length varied by 2, 5, and 10. The choices
of learning rate and sequence length were purely on an arbitrary basis. Figure 5 shows the results of
these experiments. The highest validation accuracy was achieved when a learning rate of 0.01 was
used. Reducing the learning rate up to 0.001 did not improve the validation accuracy, but reduced it to
70.8%. Similarly, large learning rates (e.g., 0.5) significantly reduced the performance of the network
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with a validation accuracy of 66.37%. On the other hand, the best validation accuracy (71.77%) was
achieved with a sequence length of 2. In addition, the model performed better with a sequence length
of 10 (70.87%) than 5 (70.43%). The unseen structured pattern in the model performance with different
learning rates and sequence lengths indicated that the optimization of these parameters is critical to
design a network that can best predict the severity of traffic accidents.

 

Figure 5. The sensitivity of the RNN model for different learning rate and sequence
length configurations.

4.5. Network Depth Analysis

Generally, in a deep learning model, several modules and multilayers can be stacked on top of each
other so that it is significant to analyze the network depth (number of hidden layers) to understand the
network behavior. Table 5 shows the accuracy of the RNN model with various numbers of dense layers
used on top of the LSTM layer. The best accuracy was achieved by using two dense (fully-connected)
layers with 64 hidden units. This model achieved training and validation accuracies of 71.79% and
71.77% respectively. When another dense layer was added to the network, the training and validation
accuracies were reduced to 70.09% and 71.24 respectively. When using five dense layers, the validation
accuracy (70.35%) was found to be better than the training accuracy (67.26%); however, it could not
perform better than using only two dense layers. The model started over-fitting when more than five
dense layers were used. The validation accuracy of the network with eight dense layers was 56.37%,
i.e., less by almost 10% than the training accuracy.

Table 5. The training and validation accuracy of the proposed RNN model with a different number of
dense layers.

Number of Dense Layers Training Accuracy (%) Validation Accuracy (%)

2 71.79 71.77
3 70.09 71.24
5 67.26 70.35
8 65.27 56.37

In addition, the effect of the number of LSTM layers on model accuracy was assessed. Table 6
shows that the best training (71.79%) and validation (71.77%) accuracy could be achieved with a
network of one LSTM layer. The accuracy was slightly reduced with another LSTM layer which was
added to the network. Finally, when three LSTM layers were used, the accuracy of the model was
gradually decreased and overfitted the training data.
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Table 6. The training and validation accuracy of the proposed RNN model with a different number of
LSTM layers.

Number of LSTM Layers Training Accuracy (%) Validation Accuracy (%)

1 71.79 71.77
2 71.30 71.58
3 67.11 65.34

4.6. Extraction Factor Contribution in the RNN Model

To compute the contribution of each factor in predicting the severity of traffic accidents, the profile
method [39,40] was used. This technique examines the evolution of each factor with a scale of values,
while the remaining factors keep their values fixed. Each factor xi takes 11 values resulting from the
division of the range, between its minimum and maximum value, into 10 equal intervals. All factors
except one were initially fixed at their minimum value and then were fixed successively at their first
quartile, median, third quartile and maximum values. Five values of the response variable were
obtained for each 11 value and adopted by xi, and the median of those five values was calculated.
Finally, a curve with the profile of variation was obtained for every factor.

Table 7 shows the calculated weight of each factor by the profile method implemented in Python.
The results indicate that the road bound and accident time have a significant effect on injury severity;
the drivers had a greater risk of injuries during daytime along the southbound lanes of the NSE. Also,
dry surface conditions were found to be more dangerous than a wet surface, as far as driver injury
severity is concerned. During rainy times (surface is wet), drivers decrease their speed due to traffic
jams, hence decreasing the severity level of driver injury. Lighting conditions, such as dark with and
without street lights, increase the potential of possible injury and fatality, whereas daylight reduces the
severity level of driver injury. The negative weight of the accident location factor indicates that severe
accidents are most likely to happen in the section 220–225 km of the expressway. When vehicle types
such as cars and motorcycles are involved in crashes, drivers are more prone to possible injury and
fatality than for heavy vehicles and buses. Fatigue and speeding can give the driver a greater chance of
experiencing a severe injury than other causes reported in the dataset. Accidents at the entry and exit
ramps, toll plaza, and main route are more dangerous than accidents in other zones. Collision type
also plays a significant role in increasing or decreasing the severity level of an accident. The analysis in
this paper shows that collisions such as out of control and rear collisions increase the injury severity,
whereas right angle side collision and sideswipe decrease the injury severity on the NSE.

Table 7. The calculated weights of accident related factors.

Factor Weight

Accident location −0.0074
Road bound 0.2899

Accident zone 0.0779
Accident reported cause 0.0469

Lighting condition −0.0892
Surface condition 0.1785

Collision type −0.0603
Accident time 0.3612
Vehicle type −0.0468

4.7. Comparative Experiment

In this experiment, the proposed RNN model was compared with the traditional MLP model and
the BLR approach. The advantages of MLP networks over Radial Basis Function (RBF) networks are
that MLP networks are compact, less sensitive to including unnecessary inputs, and more effective for
modeling data with categorical inputs.
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The Grid Search algorithm was used to search the space of MLP network architectures and
configurations. The number of units in the hidden layer, activation functions and the learning rate
were optimized. The search space of the number of hidden units was 4 to 64 units. Five activation
functions were tested such as Gaussian, Identity, Sigmoid, Softmax, and Exponential for the hidden
and output layers. In addition, five values of learning rate (0.5, 0.1, 0.05, 0.01, and 0.001) were
evaluated. The suboptimal network was then determined according to the best validation accuracy.
The suboptimal network is the one that best represents the relationship between the input and output
variables. In total, 100 network architectures with different combinations of selected parameters and
network configurations were executed, and the validation accuracy on 20% of the data was computed
for each created model. Then, the best network was retained. The best network had eight (8) hidden
units with identity activation function, a Softmax activation in the output layer, and a learning rate of
0.01. The training and validation performance of the network was 68.90% and 65.48% respectively.

On the other hand, the BLR [41] and the computation of Markov chain Monte Carlo (MCMC)
simulations were implemented in OpenBUGS software. BUGS modeling language (Bayesian Inference
using Gibbs Sampling) is an effective and simplified platform to allow the computation using
MCMC algorithms for all sorts of Bayesian models including BLR applied. The simulation of the
posterior distribution of beta (β) allowed estimating the mean, standard deviation, and quartiles of
the parameters of each explanatory variable. In the simulation stage, two MCMC chains were used to
ensure convergence. The initial 100,000 iterations were discarded as burn-ins to achieve convergence
and a further 20,000 iterations for each chain were performed and kept to calculate the posterior
estimates of interested parameters.

In developing the Bayesian model, monitoring convergence is important because it ensures that
the posterior distribution was achieved at the beginning of sampling of parameters. Convergence
of multiple chains is assessed using the Brooks-Gelman-Rubin (BGR) statistic [42]. A value of less
than 1.2 BGR statistic indicates convergence [42]. Convergence is also assessed by visual inspection
of the MCMC trace plots for the model parameters and by monitoring the ratios of the Monte Carlo
errors with respect to the corresponding standard deviation. The estimates of these ratios should be
less than 0.05. In addition, MC error less than 0.05 also indicates that convergence may have been
achieved [43]. The results of BLR showed training and validation accuracies of 70.30% and 58.30%
respectively. In addition, the model had an average MC error of 0.047, Brooks-Gelman-Rubin (BGR) of
0.98, and model fitting performance (Deviance Information Criterion-DIC) of 322.

The comparative analysis showed that the proposed RNN model outperformed both MLP and
BLR in terms of training and validation accuracies (Table 8). The BLR model performed better than
MLP on the training dataset; however, its accuracy on the validation dataset was less than the MLP
model. The MLP model uses only local contexts and therefore does not capture the spatial and
temporal correlations in the dataset. The hidden units of the RNN model contain historical information
from previous states, hence increasing the information about the data structure, which may be the
main reason for its high validation accuracy over the other two methods. Building BLR models
is more difficult than NN models, because they require expert domain knowledge and effective
feature engineering processes. The NN model automatically captures the underlying structure of
the dataset and extracts different levels of features abstractions. However, building deep learning
models with various modules (e.g., fully connected networks, LSTM, convolutional layers) can be a
challenging task. In addition, the BLR models are less prone to over-fitting of the training dataset than
NN models, because they involve simpler relationships between the outcome and the explanatory
variables. Complex networks with more hidden units and many modules often tend to over-fit more,
because they detect almost any possible interaction so that the model becomes too specific to the
training dataset. Therefore, optimization of network structures is very critical to avoid over-fitting
and build practical prediction models. In computing the importance of an explanatory factor, the BLR
models could easily calculate the factor importance and the confidence intervals of the predicted
probabilities. In contrast, NN methods, which are not built primarily for statistical use, cannot easily
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calculate the factor importance or generate confidence intervals of the predicted probabilities unless
extensive computations were done.

Table 8. Performance comparison of the proposed RNN model with Multilayer Perceptron (MLP) and
Bayesian Logistic Regression (BLR) models.

Method Training Accuracy (%) Validation Accuracy (%)

MLP 68.90 65.48
BLR 70.30 58.30
RNN 71.79 71.77

In addition, based on the estimated weight of each accident related factor, the factors could be
ranked by scaling the weights into the range of 1–100 and then giving them a rank from 1 to 9 as shown
in Table 9. The three methods (MLP, BLR, and RNN) did not agree on the factors’ ranking. For example,
the RNN model ranked accident time as the most influential factor in injury severity, whereas accident
time was ranked 2 and 7 by the BLR and MLP models, respectively. Both the RNN and BLR models
agreed on several factors’ ranking i.e., accident location (6), accident reported cause (5), and collision
type (8). The correlation (R2) between the RNN and BLR ranks was 0.72. In contrast, RNN and MLP
did not agree on the ranking of the factors and their ranking correlation was the lowest (0.38).

Table 9. Calculated ranks of the accident related factors in the RNN, MLP, and BLR models.

Factor MLP BLR RNN

Accident location 2 6 6
Road bound 8 4 2

Accident zone 5 3 4
Accident reported cause 3 5 5

Lighting condition 4 7 9
Surface condition 9 1 3

Collision type 6 8 8
Accident time 7 2 1
Vehicle type 1 9 7

BLR:MLP: R2 = 0.51
RNN:MLP: R2 = 0.38
MLP:BLR: R2 = 0.51
RNN:BLR: R2 = 0.72

4.8. Computational Complexity of the Model

The time complexity of the RNN model was measured in terms of training and testing time per
iteration. Table 10 gives information about the average training time per iteration with batch size of 32
and the average testing time per prediction. It can be seen that the model on average spends around
150 milliseconds per iteration during training and only ~13 milliseconds per prediction for new unseen
examples. Although this experiment shows the computational efficiency of the model, it is also worth
to note that the training time can be increased by reducing the batch size or sequence length, and also
by increasing the volume of the training data.

Table 10. Average training and testing time per iteration/ prediction of the proposed model.

Time (milliseconds per iteration) RNN Model

Training Time 150.23
Testing Time 13.17
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Additionally, the major computational problem of NNs is their scalability; sometimes they become
unstable when applied to larger problems. However, recent advancements in hardware and computing
performance such as Graphics Processing Units (GPUs), parallel computing, and cloud computing
have decreased most of the limitations of NN models including RNN-based computations.

4.9. Applicability and Limitations of the Proposed Method

The proposed RNN model is a promising traffic accident forecasting tool that has several
applications in practice. First, identifying the most risky road sections (i.e., site ranking) is a daily
practice of transportation agencies in many cities around the world. Accident prediction models,
such as the one we proposed in this research, are often an effective solution for identifying risky road
sections and helping to conduct investigations into methods for improving the safety performance
of the road systems. Second, the RNN model is able to explain the underlying relationships between
several accidents’ related factors, such as accident time and collision type, and the injury severity
outcomes. Information about the effects of accident factors on the injury severity outcomes provides
huge amount of information to the transportation agencies and stakeholders. Finally, estimating
the expected number of traffic accidents in a road section can help road designers to optimize the
geometric alignments of the roads based on the accident scenarios.

However, the proposed RNN model has some constraints and limitations. The major limitation of
the model is that the input factors are prerequisite and if any of them is missing, the output probabilities
cannot be accurately estimated. Another constraint of the model is the sequence length of the RNN
model, which mainly depends on the number of accident records in the training dataset. To handle this
limitation, the future works should develop RNN models that operate on input sequences of variable
lengths via Tensorflow dynamic calculation.

5. Conclusions

In this paper, a Recurrent Neural Network (RNN) model was developed to predict the
injury severity of traffic accidents on the NSE, Malaysia. An optimized network architecture was
determined through a systematic grid search for the suboptimal network hyper-parameters. Several
hyper-parameters of the RNN model were critical to achieve the highest validation accuracy. The best
optimization algorithm was determined to be the SGD with learning rate, momentum, and weight
decay of 0.01, 0.80, and 0.9, respectively. In addition, the dropout technique helped us to reduce
the complexity of the model and also the chance of over-fitting the training dataset. The RNN
model achieved the best validation accuracy of 71.77% when compared to the MLP and BLR models.
This indicates that additional information about temporal and contextual correlations among accident
records could help the RNN model to perform better than the other models. In the sensitivity analysis
of RNN sequence length, the best accuracy was achieved with a sequence length of 2, whereas the
accuracy was decreased when a sequence length of 10 or 5 was used. This means that the accident
data has temporal and contextual structures that could not be used by the MLP and BLR models.
The impact of each factor in the RNN model was calculated using the profile method. The results
showed that the most influential factors in predicting injury severity of traffic accidents are accident
time and road bound. In the study area, the model predicted that the southbound section is more
dangerous than the northbound, with respct to injury severity. The model also predicted drivers had
a greater risk of injury on a dry surface and with lighting conditions such as dark with and without
street lights.

While the proposed RNN model outperformed the MLP and BLR models and could estimate the
factors’ impacts, further studies should focus on developing more flexible and optimized network
structures to predict accident frequency and injury severity. Future theoretical studies are encouraged
to focus on improving the ability of the RNN model to represent variables and data structures, and to
store data over long timescales. In addition, more applied research is recommended to develop new
techniques to make use of additional information in accident datasets, such as contextual structures,
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spatial and temporal interactions and underlying relationships between accident factors and injury
severity outcomes.
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Abstract: Previous studies showed that the influence of meteorological variables and concentrations
of other air pollutants on O3 concentrations changes at different O3 concentration levels. In this
study, threshold models with artificial neural networks (ANNs) were applied to characterize the O3

behavior at an urban site (Porto, Portugal), describing the effect of environmental and meteorological
variables on O3 concentrations. ANN characteristics, and the threshold variable and value, were
defined by genetic algorithms (GAs). The considered predictors were hourly average concentrations
of NO, NO2, and O3, and meteorological variables (temperature, relative humidity, and wind speed)
measured from January 2012 to December 2013. Seven simulations were performed and the achieved
models considered wind speed (at 4.9 m·s−1), temperature (at 17.5 ◦C) and NO2 (at 26.6 μg·m−3) as
the variables that determine the change of O3 behavior. All the achieved models presented a similar
fitting performance: R2 = 0.71–0.72, RMSE = 14.5–14.7 μg·m−3, and the index of agreement of the
second order of 0.91. The combined effect of these variables on O3 concentration was also analyzed.
This statistical model was shown to be a powerful tool for interpreting O3 behavior, which is useful
for defining policy strategies for human health protection concerning this air pollutant.

Keywords: air pollution; artificial neural network; genetic algorithms; surface ozone;
threshold models

1. Introduction

Surface ozone (O3) is considered one of the most concerning air pollutants in Europe. It is
a secondary pollutant (it is not directly emitted), generated by chemical reactions that occur
in the atmosphere between primary air pollutants (nitrogen oxides—NOx—and volatile organic
compounds—VOCs) catalyzed by sunlight [1]. The impact of this air pollutant has been studied in
different areas [2–5]. Concerning human health, O3 can cause injuries to airway epithelial cells (and
lung diseases such as asthma), hyperplasia, headaches, and nausea, particularly in sensitive people,
such as children and elderly [6–10]. Regarding vegetation, O3 can damage plant leaves (decreases in
both leaf photosynthesis and leaf area), reducing crop yields associated with a high negative economic
impact [11–13]. Moreover, as a strong oxidant, it is responsible for the degradation of material via
corrosion [14].

As already mentioned, O3 is produced by chemical reactions between primary pollutants
present in the atmosphere. It can also be transported from other locations by the wind (horizontal
transport) and from the stratosphere (vertical transport) [15,16]. Thus, the atmosphere works as
an open chemical reactor, in which reaction kinetics depend on the concentrations of reactants
(primary air pollutants), mixture (wind speed and direction), temperature (influencing exponentially
kinetic reaction constants—Arrhenius equation), and solar radiation. Thus, the O3 behavior is
highly dependent on the environment (urban, rural, or background) and meteorological variables.
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In urban areas, O3 concentrations are usually lower than the values observed in rural areas [17–20].
This phenomenon occurs mainly due to high NOx concentrations. Photochemical equilibrium is
defined by the following equations [21–23]:

NO2 + hν (λ< 420 nm) → NO + O (R1)

O + O2 + M → O3 + M (R2)

NO + O3 → NO2 + O2. (R3)

The photochemical reaction of NO2 decomposition (chemical reaction R1) leads to the production
of NO molecules and oxygen atoms that combine with molecular oxygen to produce ozone (chemical
reaction R2). O3 can also react with NO, forming NO2 (chemical reaction R3). The complexity of
phenomena associated with O3 formation makes it hard to understand and predict its concentration
in ambient air. Moreover, there are insufficient data (e.g., inventories of air pollutant emissions) to
develop consistent phenomenological models to describe O3 behavior.

Alternatively, statistical models have the capability of characterizing the relationship between
variables using collected data and they involve mere pattern-recognition using mathematical
operations. One of the most applied statistical models is the artificial neural network (ANN). ANNs are
nonlinear models, which are inspired in the biological neural processing system [24,25]. These models
are composed by artificial neurons (grouped in layers; three layers—input, hidden, and output—are
often applied) that receive an input value and converts to an output through a selected function
(activation function). Additionally, ANNs are characterized by a high fitting performance. The rapid
development of computer hardware has increased the processing capabilities, which have led to
achievement of ANN models with less computation time [26]. Therefore, these models have been used
in a wide range of applications, including classification, regression, and mapping [27–29]. However,
there are too many variables that need to be defined before the model parameters can be determined,
including (i) the number of processing neurons in the hidden layer, and (ii) the activation function for
each neuron. In recent years, genetic algorithms (GAs) have been applied to help in the definition of
these variables. GAs are commonly applied to generate high-quality solutions for optimization and
search problems, based on bio-inspired operators, such as mutation, crossover, and selection [30,31].
In GAs, a set of candidate solutions (called population—a group of individuals) are iteratively
modified though the mentioned genetic operators in order to find a group of better solutions for
the next generation (new iteration). GAs present the following advantages: (i) continuous or discrete
variables can be optimized; (ii) a derivative function is not required; (iii) multivariable problems can
be optimized; (iv) extremely complex cost surfaces can be dealt with; and (v) a list of optimal solutions
(and not just a single one) is provided.

In Porto (selected area in this study—Portugal), an increasing trend of O3 concentrations (147%
higher) has been observed since the 19th century due to the photochemical production of this pollutant,
associated with the increase in anthropogenic emissions mainly due to traffic [32]. Additionally, in
the north of Portugal, Lamas d’Olo is a rural site where the highest O3 concentrations are usually
measured. Consequently, this site is often selected to evaluate O3 behavior. Russo et al. [33] mentioned
that high-ozone episodes can be explained by several factors: (i) atmospheric stagnation; (ii) horizontal
transport by the wind of ozone-rich air masses; (iii) high solar radiation and temperature; and
(iv) the influence of local winds (sea breezes and valley winds). Carvalho et al. [19] observed a
positive correlation between O3 concentrations with temperature and a negative correlation with
relative humidity. Regarding the effect of wind field, the northeast flow from Spain (Galicia and
Asturias) was observed, and this can be associated with the long-range transport of atmospheric
pollutants to Portugal. Fernández-Guisuraga et al. [34] compared O3 trends at urban and rural sites.
At the rural site, O3 concentrations were mainly influenced by the wind (transport), showing low
variability with the concentrations of other pollutants. On the other hand, at the urban site, most
of the variance was explained by the NO2/NOx ratio. Several research studies can be found where
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ANN models were applied to determine O3 trends and to predict its concentration (to provide early
warning to the population when high O3 concentration episodes occur). Comrie [35] compared
the performance of an ANN model with a multiple linear regression (MLR) model to predict daily
average O3 concentrations in different cities with distinct climate and O3 regimes. ANN models
presented slightly better performance than MLR. Abdul-Wahab and Al-Alawi [36] developed ANN
models to predict O3 concentrations through meteorological and environmental data. The contribution
of the meteorological data was defined between 33% and 41%, while the remaining variation was
attributed to chemical pollutants. NO, SO2, relative humidity (the highest contribution), non-methane
hydrocarbon, and NO2 were the variables that most influenced the O3 concentrations. Additionally,
temperature also presents an important role, while solar radiation had a lower effect than expected.
Pires et al. [37] compared threshold autoregressive (TAR) models, autoregressive (AR) models, and
ANN in the prediction of the next day hourly average O3 concentrations. In the training period, ANN
presented a higher performance. However, in the test period, TAR models presented more accurate
results and the distinction became greater when the evaluation was performed for the prediction of
extreme values.

In recent studies, O3 concentrations have shown different behaviors regarding certain explanatory
variables [25,37], which can be classified as O3 regimes. This observation can be justified by the
chemical reactions associated with O3 formation/destruction that are influenced by certain variables,
such as temperature, solar radiation, and wind speed [32]. To take these regimes account, threshold
regression models were considered in this study [38]. Thus, GAs were used to define the threshold
variable and value (the value of the explanatory variable corresponding to the change of the regime;
two regimes were selected), the number of hidden neurons, and the activation function in the hidden
and output layers. In this study, hourly average O3 concentrations were modeled using threshold
models with an ANN, whose structure was iteratively optimized by GAs. The achieved models enable
the characterization of O3 variability with selected meteorological and environmental variables in
different regimes.

2. Materials and Methods

2.1. Data

Air quality data were obtained from an urban background site (Sobreiras—Lordelo do Ouro,
see Figure 1) of the Air Quality Monitoring Network (AQMN) of Porto, Portugal. The AQMN
is managed by the Regional Commission of Coordination and Development of Northern Portugal
(Comissão de Coordenação e Desenvolvimento Regional do Norte), under the responsibility of the Ministry
of Environment. Hourly average concentrations of NO, NO2, and O3 from the period from
January 2012 to December 2013 (8760 hourly average values in 2012 and 7481 in 2013) were used to
develop the proposed models. NO and NO2 were obtained through the chemiluminescence method
according to European Union (EU) Directive 1999/30/EC (European Community). According to EU
Directive 2002/3/EC, O3 measurements were performed through UV-absorption photometry using the
equipment 41 M UV Photometric Ozone Analyzer (Environment S.A., Poissy, France). This monitoring
equipment was subject to a rigid maintenance program, calibrated every 4 weeks. Measurements were
continuously registered, and hourly average concentrations (in μg·m−3) were recorded.

The meteorological data were collected in a meteorological station located at Pedras Rubras, which
is managed by Instituto Português do Mar e da Atmosfera (IPMA, I.P.); these values are considered
representative for the entire Metropolitan Area of Porto. In this study, hourly averages of temperature
(T, ◦C), relative humidity (RH, %), and wind speed (WS, m·s−1) were used to analyze the influence of
meteorological conditions on O3 concentrations.
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Figure 1. Monitoring site of Sobreiras—Lordelo do Ouro (from http://qualar.apambiente.pt/).

2.2. Statistical Model

In this study, threshold models with ANNs were defined with GAs, aiming to evaluate the effect
of environmental and meteorological variables in O3 concentrations. The applied model is defined as
the following:

y =

{
net1(xi), if xd ≤ r

net2(xi), if xd > r
(1)

where y is the output variable, net1 and net2 are ANN models, xi are the exploratory variables, xd is
the threshold variable, and r is the threshold value. Applied feedforward ANN models had three
layers (input, hidden, and output) and considered eight input variables (hourly average data): NO
concentration, NO2 concentration (due to the chemical reactions R1 and R3), the ratio NO2/NO
(due to the equilibrium constant of the chemical reaction R3), T, RH, 1/RH (as RH usually shows a
negative effect on O3 levels), WS, and 1/WS (the same as the RH effect). The output variable was
the hourly average O3 concentrations measured at the same time of the input data to infer the direct
influence of these variables on O3 chemistry. Regarding the activation functions, the linear function
was considered for the output neuron and four functions were selected by GAs: sigmoid, hyperbolic
tangent, inverse, and radial basis. The data were divided in training (75%) and validation (25%) sets
and the early stopping method (ANN training procedure is stopped when an increase in validation
error is observed) was applied to avoid overfitting. The division of the data was performed by time:
75% for training (January 2012 to 25 May 2013); 25% for validation (25 May 2013 to 19 December 2013).
In the training set, O3 concentrations ranged from 0 to 161 μg·m−3, while O3 concentrations ranged
from 0 to 170 μg·m−3 in the validation set.

GAs are a search and optimization technique based on Darwin principles of evolution and
natural genetics [30,31]. This procedure begins with a set of individuals (population) that is randomly
generated. Each individual (also called chromosome) is a binary code string and contains information
about a set of parameters, which is a potential solution to a given problem. To evaluate the quality of
the proposed solution (to rank the individuals in the population), a fitness function should be defined.
To create new chromosomes for the next generation, the fittest chromosomes are submitted to the
genetic operations [30]: (i) selection; (ii) crossover; (iii) mutation. These new chromosomes are then
evaluated according to the fitness function, and the ones with the highest performance were selected.
The repetition of this procedure generates a sequence of populations containing better solutions.
The termination criteria can be (i) to stop after a previously defined maximum number of generations is
achieved, or (ii) to stop when a desired fitness value is achieved. In this study, GAs were used to define
the threshold variable and value, the number of hidden neurons, and the activation function in the
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hidden layer, and to select the explanatory variables to be used in each ANN model. The determination
of the models was coded by the authors with MATLAB® software (R2014a, MathWorks, Natick, MA,
USA, 2014) using the following specifications:

• a population size of 100;
• a selection probability of 0.20 (proportion of the individuals of the new generation obtained by

selection operator);
• a selection criterion based on elitism (a small proportion of the fittest candidates is copied

unchanged into the next generation);
• a crossover probability of 0.70 (proportion of the individuals of the new generation obtained by

crossover operator);
• a mutation probability of 0.1 (proportion of the individuals of the new generation obtained by

mutation operator);
• an evaluation of root mean squared error (RMSE) in training and validation sets;
• a stopping criterion based on the maximum number of generations.

Figure 2 shows an example of chromosome (37 bits). It is divided in 8 sets of bits (SBi). SB1 (3 bits)
defines the threshold variable (from the explanatory variables; the maximum number of 8) through
the conversion from binary to decimal numbers (MATLAB function bin2dec). SB2 (8 bits) defines the
threshold value. With the threshold variable already defined, the maximum (xmax) and minimum (xmin)
values of this variable are determined. Threshold value is calculated based on Equation (2).

r =
bin2dec(SB2)

255
× (xmax − xmin) + xmin. (2)

SB3 and SB6 (2 bits) define the activation function for the hidden layer of each ANN:
00—log-sigmoid (logsig); 01—hyperbolic tangent sigmoid (tansig); 10—inverse (netinv); 11—radial basis
(radbas). SB4 and SB7 (3 bits) define the number of neurons in the hidden layer through the conversion
from binary to decimal number (1 to 8). SB5 and SB8 (8 bits) define the explanatory variables that are
used in each ANN (1 bit for each explanatory variable): 0—not selected; 1—selected.

 
Figure 2. Example of a chromosome.

3. Results and Discussion

3.1. Air Quality and Meteorological Data Characterization

During the analyzed period, the hourly average O3 concentrations were between 0 and 170 μg·m−3

(not exceeding the information neither the alert threshold—180 and 240 μg·m−3, respectively).
Regarding O3 exceedances to EU limits for the protection of human health, the 8 h average O3

concentrations were higher than 120 μg·m−3 twice in September 2012, twice in July 2013, and once
in August 2013. Figure 3 shows the average daily profile of O3 concentrations. As a photochemical
pollutant, its concentration increases during the daylight period, presenting a maximum between
14 and 15 h and a minimum at night time. The observed profile is characteristic of an urban site, as it
does not present a high amplitude of concentrations (due to the presence of high NOx concentrations).

Figure 4 shows the monthly average values of NO, NO2, and O3 concentrations, as well as
the analyzed meteorological variables (temperature, relative humidity, and wind speed). High O3

concentrations were observed in April 2012 (63.7 μg·m−3) and from March to July 2013
(59.9–71.3 μg·m−3). In this period, low concentrations of NO and NO2 were also measured.
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High temperatures and low relative humidity were also observed. On the other hand, lower
O3 concentrations were measured for periods with high NO and NO2 concentrations and lower
temperatures. These observations are in agreement with other research studies in which the behavior
of O3 was analyzed [18,39–41]. Pires et al. [40] compared several linear models to predict O3

concentrations at an urban site in Porto. The correlation analysis performed between O3 concentrations
and meteorological variables showed also negative correlations with NO, NO2, and RH and a positive
correlation with T. In another study focusing on the same region [41], O3 concentrations were negatively
correlated with NO, NO2, and RH and positively correlated with T and WS. Zhang, Wang, Park, and
Deng [18] analyzed high O3 concentration episodes and related them with meteorological variables.
O3 concentrations were highly correlated with maximum temperature and minimum relative humidity.
The effect of minimum WS was also analyzed at urban, suburban, and rural sites. O3 concentrations
were positively (negatively) correlated with minimum WS at urban (suburban and rural) sites. Shan,
Yin, Zhang, Ji, and Deng [39] analyzed the effect of meteorological variables on O3 concentrations at
an urban site in China. Daily average O3 concentrations were negatively correlated with pressure and
RH, and positively correlated with temperature, solar radiation, sunshine duration, and wind speed.

Figure 3. Daily average profile of O3 concentrations at the monitoring site.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e) (f)

Figure 4. Monthly average values of (a) NO concentrations, (b) temperature, (c) NO2 concentrations,
(d) relative humidity, (e) O3 concentrations, and (f) wind speed.

3.2. Linear Correlation Analysis

Figure 5 shows the variation in linear correlation between O3 and meteorological parameters on a
monthly basis. Negative correlations were observed for NO (−0.547 to −0.296) and NO2 (−0.807 to
−0.276) concentrations. The effect of these air pollutants was more significant in winter periods than in
summer periods. Regarding the effect of meteorological variables, temperature was usually positively
correlated with O3, which was in agreement with what was expected. The highest value (R = 0.661) was
determined in September 2013 and an unusual negative correlation (R = −0.376) was determined in
July 2013. RH was negatively correlated in almost all periods. The highest impact was also observed in
September 2013 (R = −0.685) and an unusual positive correlation was determined in July 2013 (R = 0.419).
Chen et al. [42] demonstrated that RH favors O3 decomposition, justifying the associated negative effect.
Regarding WS, this variable can have two different effects on O3 concentrations. Low WS can promote
the accumulation of O3 produced in the region (increasing its concentration), while high values reduce
the levels of other air pollutants (such as NOx) that influence the O3 chemistry (in the case of NOx, its
concentration decrease leads to the increase in O3 levels). Thus, the effect of WS on O3 concentrations
depends on the studied environment: urban or rural. In this study (urban environment), WS was
positively correlated with O3 concentrations, with the highest value (R = 0.593) in February 2013.

(a) (b)

(c) (d)

Figure 5. Cont.
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(e)

Figure 5. Temporal variation of linear correlation between O3 concentrations and the following: (a) NO
concentrations, (b) temperature, (c) NO2 concentrations, (d) relative humidity, and (e) wind speed.

3.3. ANN Models and Interpretation

Seven simulations were performed to determine the models able to describe the relationship
between O3 concentrations with NO, NO2, T, RH, and WS (measured at same time). These models
are threshold models, considering two O3 regimes where the relationship between output and input
variables are different. The change from one regime to another depends on the value (threshold value)
of a specific input variable (threshold variable). GAs were used to optimize the ANN characteristics
(the number of hidden neurons, the activation function in the hidden layer, and the input variables),
and the threshold variable and value. The models were evaluated according their fitting performance
in training and validation sets. Table 1 shows the best models for the seven simulations. All of them
presented similar fitting performance: (i) R2 = 0.71–0.72; (ii) RMSE between 14.5 and 14.7 μg·m−3; and
(iii) the index of agreement of the second order of 0.91. Three explanatory variables were selected,
each one with a specific threshold value: (i) WS with 4.9 m·s−1; (ii) T with 17.5 ◦C; and (iii) NO2 with
26.6 μg·m−3. Generally, hyperbolic tangent and radial basis were the functions selected for the hidden
layer, composed by 7 or 8 neurons. In almost all models, all input variables were selected as ANN
inputs in both O3 regimes.

The analysis of the combined effect of input variables (two variables) was performed for the three
threshold variables, considering the two regimes determined by the best models in Simulations I, II,
and III. Figure 6 shows the combined effect of NO2, T, and WS on O3 concentrations for WS ≤ 4.9 m·s−1

and for WS > 4.9 m·s−1. For WS ≤ 4.9 m·s−1, O3 concentrations (i) decreased with NO2 except when
T > 17 ◦C (without significant variation), (ii) increased with T except when WS > 2.8 m·s−1 (O3

presented a maximum between 17 and 20 ◦C), and (iii) did not change significantly with WS except
when T > 26 ◦C (presenting a decreasing tendency). For WS > 4.9 m·s−1, O3 concentrations (i) decreased
with NO2 except when T > 17 ◦C (presenting a slight increase), (ii) presented high values for high
T with all tested ranges of NO2 concentrations (presenting a local maximum—≈ 87.4 μg·m−3—for
T ≈ 11 ◦C and NO2 ≈ 6 μg·m−3), (iii) increased with T for the tested range of WS, (iv) did not
change significantly with WS, and (v) presented higher values than those where WS ≤ 4.9 m·s−1.
The combined effect of T-NO2 is in agreement with what was concluded in linear correlation analysis.
The effect of NO2 is more significant in the winter period, in which temperatures are usually low and
NO2 concentrations are high (see Figure 4). With high NO2 concentrations, the chemical equilibrium
given by Equation (R3) limits the increase in O3 concentrations. In addition, based on a comparison of
the two regimes defined by WS, the combined effect of these two variables presented similar behavior;
however, O3 concentrations were higher when WS > 4.9 m·s−1 (49–104 μg·m−3) than they were when
WS ≤ 4.9 m·s−1 (11–41 μg·m−3). High values of WS are associated with the dispersion of air pollutants,
reducing their concentration. As NO2 concentrations decrease, O3 concentrations can achieve higher
values [17,19,20,22]. The combined effect of T-WS showed the highest variability of O3 with T, showing
a positive correlation between these variables. The O3 variability with WS is almost insignificant.
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Regarding the combined effect NO2-WS, similar conclusions were drawn: O3 concentrations presented
a decreasing tendency with NO2 concentrations, and their variability with WS is almost insignificant.
Figures S1 and S2 present the effect of the same combinations of variables on O3 concentrations
considering T (simulation II) and NO2 (simulation III) as threshold variables, respectively. Similar
analysis can be performed through these figures.

Table 1. ANN models: their input variables, activation functions (AF), number of hidden neurons
(HN), and performance indexes (R2, RMSE (root mean squared error) and d2) for each performed
simulation (Sim).

Sim Model AF HN R2/RMSE/d2

I O3|t =

⎧⎨⎩ net1

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if WS ≤ 4.9

net2

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if WS > 4.9

tansig
radbas

8
8 0.71/14.7/0.91

II O3|t =

⎧⎨⎩ net1

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if T ≤ 17.5

net2

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if T > 17.5

tansig
tansig

7
7 0.72/14.5/0.91

III O3|t =

⎧⎨⎩ net1

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS

)
, if NO2 ≤ 26.6

net2

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if NO2 > 26.6

tansig
radbas

8
7 0.71/14.7/0.91

IV O3|t =

⎧⎨⎩ net1

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if WS ≤ 4.9

net2

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if WS > 4.9

tansig
radbas

8
8 0.71/14.7/0.91

V O3|t =

⎧⎨⎩ net1

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if T ≤ 17.5

net2

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if T > 17.5

tansig
tansig

7
7 0.72/14.5/0.91

VI O3|t =

⎧⎨⎩ net1

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS

)
, if NO2 ≤ 26.6

net2

(
NO, NO2, T, RH, 1

RH , WS, 1
WS

)
, if NO2 > 26.6

tansig
radbas

8
8 0.71/14.7/0.91

VII O3|t =

⎧⎨⎩ net1

(
NO, NO2, NO2

NO , T, RH, WS
)

, if T ≤ 17.5

net2

(
NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if T > 17.5

tansig
tansig

7
7 0.72/14.5/0.91

The application of this statistical methodology allows for the determination of the influence
of environmental and meteorological variables on O3 concentration. Consequently, it is possible to
develop more accurate predictive models for this secondary pollutant, which is important for the
definition of policy measures for human health protection.

(a) (b)

Figure 6. Cont.
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(c) (d)

(e) (f)

Figure 6. The combined effect of NO2 concentrations, temperature, and wind speed on O3

concentrations based on model determined in Simulation I where WS (wind speed) ≤ 4.9 m·s−1 (a,c,e)
and where WS > 4.9 m·s−1 (b,d,f).

4. Conclusions

Linear correlation analysis showed a positive relationship between O3 concentrations with T
and WS, while NO, NO2, and RH showed a negative effect. In the studied period, the highest O3

concentrations were observed for low NOx concentrations and high wind speed. Threshold models
with ANNs and those defined by genetic algorithms define three important variables that could define
different O3 regimes: (i) a wind speed of 4.9 m·s−1; (ii) a temperature of 17.5 ◦C; and (iii) an NO2

concentration of 26.6 μg·m−3. The achieved models enabled the evaluation of the combined effect
of two input variables in different O3 regimes. This information may be useful for defining policy
strategies for human health protection concerning surface ozone.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/7/9/944/s1.
Figure S1: The combined effect of NO2 concentrations, temperature, and wind speed on O3 concentrations based
on the model determined in Simulation II; Figure S2: The combined effect of NO2 concentrations, temperature,
and wind speed on O3 concentrations based on the model determined in Simulation III.
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