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Citation: Fečkan, M.; Danca, M.-F.

Stability, Periodicity, and Related

Problems in Fractional-Order

Systems. Mathematics 2022, 10, 2040.

https://doi.org/10.3390/

math10122040

Received: 2 June 2022

Accepted: 7 June 2022

Published: 12 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Editorial

Stability, Periodicity, and Related Problems in Fractional-Order
Systems
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Abstract: This Special Issue aims to collect new perspectives on the trends in both theory and
applications of stability of fractional order continuous and discrete systems, analytical and numerical
approaches, and any related problems regarding (but not limited to) time-delayed systems and
impulsive systems in all fields of science, as well as engineering and multidisciplinary applications.

Keywords: fractional-order system; stability; periodic solution; fractional calculus

MSC: 37N30; 34K37; 26A33

This paper contains the submissions [1–5] invited to a Special Issue of Mathematics on
“Stability, Periodicity, and Related Problems in Fractional-Order Systems”.

Fractional-order systems (FOSs), which are said to have fractional dynamics, are
modeled by differential equations with non-integer derivatives. Integrals and derivatives
of fractional orders illustrate objects with power-law nonlocality, power-law long-range
dependence (time history), or fractal properties. FOSs are used to study behavior in
nonlinear chaotic systems in electrochemistry, biology, viscoelasticity, physics, etc.

The response to our call for this Special Issue resulted in the following statistics for
both published and rejected items: 12 total submissions, of which 5 research articles were
published (41.66%), and 7 were rejected (58.3%).

The technical topics covered in the five articles published in this book include:

– The existence and uniqueness of solutions for a nonlinear coupled system of Liouville–
Caputo-type fractional integrodifferential equations supplemented with non-local
discrete and integral boundary conditions [1] for a coupled system of ψ-Caputo
hybrid fractional derivatives of the order of 1 < υ ≤ 2 subjected to Dirichlet boundary
conditions [2].

– A study of a class of a coupled system of fractional integrodifferential equations in the
frame of Hilfer fractional derivatives with respect to another function [3].

– A study of a system of coupled discrete fractional-order logistic maps, modeled by
Caputo’s delta fractional difference in terms of its numerical integration and chaotic
dynamics [4].

– An existence theorem for a unique solution to the fuzzy fractional Volterra–Fredholm
integrodifferential equations (FCFVFIDEs) to our result involving the Caputo derivative [5].

We found that the paper selections for this book were very inspiring and rewarding.
We also thank the editorial staff and reviewers for their efforts and help during the process.

Author Contributions: All authors have read and agreed to the published version of the manuscript.
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Abstract: In recent years, complex-valued fuzzy metric spaces (in short CVFMS) were introduced
by Shukla et al. (Fixed Point Theory 32 (2018)). This setting is a valuable extension of fuzzy metric
spaces with the complex grade of membership function. They also established fixed-point results
under contractive condition in the aforementioned spaces and generalized some essential existence
results in fixed-point theory. The purpose of this manuscript is to derive some fixed-point results
for multivalued mappings enjoying the least upper bound property in CVFMS. Furthermore, we
studied the existence theorem for a unique solution to the Fuzzy fractional Volterra–Fredholm
integro-differential equations (FCFVFIDEs) as an application to our derived result involving the
Caputo derivative.

Keywords: complex-valued fuzzy metric space; fuzzy mappings; fixed-point; cauchy sequence and
contractive condition; least upper bound property

MSC: Primary 47H10; Secondary 54H25

1. Introduction

It is a well-known fact that metric fixed-point theory is developed by Banach fixed-
point theorem. This result is widely applied in nonlinear functional analysis. Indeed, it
is the abstract setting of the successive approximation method to investigate the solution
of differential equations. Additionally, the advances made in fixed-point theory are ap-
plied to differential equations and integral equations. Specifically, fixed-point theory has
applications in nonlinear fractional differential equations.

Mathematical tools such as mathematical logics and mathematical arithmetic etc. are
used to modal many natural phenomena. However, it is not easy to obtain the deterministic
models of mathematical problems using the above-mentioned tools. Such models also
have some vagueness and errors. To obtain or reduce the errors and vagueness, it is
essential to introduce another way of modeling and investigating solutions. In 1965, Zadeh
introduced the fuzzy sets concept [1]. In recent years, fuzzy sets were applied in many
applied branches of science and engineering. This concept has clear advantages over
deterministic-stochastic problems. Observing these applications, the mathematical models
are converted to fuzzy fields, which form a natural association with between crisp and
fuzzy problems, as well as having a natural association between fuzzy fractional and fuzzy
non-fractional problems.

Agarwal et al. solved fuzzy fractional differential equations in the sense of the
Riemann–Liouville dirivative. Following this, several authors have extended the defi-
nitions of generalized gH-differentiability, Caputo derivative and different types of integral

Mathematics 2021, 9, 1969. https://doi.org/10.3390/math9161969 https://www.mdpi.com/journal/mathematics3
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equations in fuzzy field. For example Ahmad et al. [2] performed an analysis of fuzzy
fractional order Volterra–Fredholm integro-differentials. In [3], the authors studied fuzzy
fractional differentail equations under a generalized Caputo derivative. Hoa [4] studied a
fuzzy fractional functional integral and differental equations. Moreover, fuzzy fractional
functional differential equations under Caputo gH-differentiability were investigated in [5].
Using the Caputo–Katagampola fractional derivative approach, Hoa et al. [6] studied
fuzzy fractional differential equations. In 2020, using the concept of kernal ψ-functions,
Vu and Hoa [7] investigated the applications of contractive-like mapping principal to
fuzzy fractional integral equations. A variety of fuzzy fractional differential and integral
equation applications, in different fields of the sciences, such as electrochemistry, physics,
economy, chemistry, electromagnetic, viscoelasticity and control theory, are present in the
literature—for example, [8–13].

Classically, a fuzzy set is associated with a membership function, which assigns a
numerical value ranging between zero and one to each of its elements. In other words,
that fuzzy set is the generalization of the traditional set. Ramot et al. proposed complex
fuzzy sets, which are characterized by complex valued membership functions [14]. This
extension looks like an extension from real numbers to complex numbers. After this,
complex fuzzy sets and logics were systematically reviewed by some authors [15]. Nadler
introduced the concept of multivalued contraction mappings and obtained the fixed-point
results [16]. Heilpern established the idea of fuzzy contractions, which represents the fuzzy
generalization of Banach’s contraction principle [17]. Continuing this, Weiss and Butnairu
also obtained fixed points of fuzzy mappings [18,19]. Kramosil and Michalek established
the notion of fuzzy metric space [20]. Grabiec followed the work of Kramosil, Michalek and
obtained the fuzzy version of the Banach contraction principle [21]. George and Veeramani
modified the setting of fuzzy metric spaces due to Kramosil, and defined the Hausdorff
topology of fuzzy metric space [22]. Following this, many authors have studied different
fixed-point results in fuzzy metric spaces [23]. Furthermore, there are many extensions of
metric space terms, including fuzzy metric spaces.

Very recently, Shukla et al. have initiated a new approach to complex valued fuzzy
metric space, viewing it as a generalization of fuzzy matrices by replacing [0, 1] for the
grade of membership with the complex unit closed interval [24]. They obtained some
significant fixed-point results with valid illustrated examples. This work is quite new and
interesting, so researchers are interested in generalizing more results in this setting and
discussing its applications.

Due to important applications of rational type contractions in complex valued metric
spaces, and the the work carried out in [24], using Dass and Gupta’s [25] rational type
expression, some fixed-point results are established in the context of CVFMS. For the
authenticity of the presented results, an example and existence theorem for the solution of
fuzzy fractional Volterra–Fredholm integro-differential equation under a generalized fuzzy
Caputo derivative is also discussed.

2. Preliminaries

In this section, we present some basic definitions and lemmas of CVFMS and prove
some properties for multi-valued mappings in this setting. In This manuscript is labeled

(I) The set of complex numbers by C,
(II) ℘ = {(λ, χ) : 0 ≤ λ < ∞, 0 ≤ χ < ∞} ⊂ C where (0, 0) = θ, (1, 1) = �,
(III) � = {(λ, χ) : 0 ≤ λ ≤ 1, 0 ≤ χ ≤ 1},
(IV) �0 = {(λ, χ) : 0 ≤ λ < 1, 0 ≤ χ < 1},
(V) �+ = {(λ, χ) : 0 < λ ≤ 1, 0 ≤ χ ≤ 1},
(VII)℘θ = {(λ, χ) : 0 < λ < ∞, 0 < χ < ∞}.

Define a partial ordering � on C by c1 � c2 iff c2 − c1 ∈ ℘. The relations c1 � c2 and
c1 ≺ c2 indicate that

i. Re(c1) ≤ Re(c2), Im(c1) ≤ Im(c2),
ii. Re(c1) < Re(c2), Im(c1) < Im(c2).

4
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For c, λ ∈ C, λ � c iff λ − c ∈ ℘θ . Suppose G ⊂ C. Let the infG exists and it is the
lower bound of G, that is infG � c ∀c ∈ G and v � infG for each lower bound v of G,
then infG is called the greatest lower bound(glb) of G. In the same fashion, one can define
supG, the least upper bound(lub) of G.

Definition 1 ([24]). A sequence {cb}is monotonic with respect to � if either cb � cb+1 or
cb+1 � cb ∀ q ∈ ℵ.

Definition 2 ([24]). A binary relation 	 : �× � → � is called a complex valued ť-norm if the
conditions given below hold:

(1) h̄1 	 h̄2 = h̄2 	 h̄1;
(2) h̄1 	 h̄2 � h̄3 	 h̄4 whenever h̄1 � h̄3, h̄2 � h̄4;
(3) h̄1 	 (h̄2 	 h̄3) = (h̄1 	 h̄2) 	 h̄3;
(4) h̄ 	 θ = θ, h̄ 	 � = h̄;

for all h̄, h̄1, h̄2, h̄3, h̄4 ∈ �

Definition 3 ([24]). IfS is a non-empty set and 	 is continuous complex-valued ť-norm, � a
complex fuzzy set on S × S × ℘θ → �, observing the following conditions:

(1) 0 � �(h̄, λ, r);
(2) �(h̄, λ, r) = � for every r ∈ ℘θ if and only if h̄ = λ;
(3) �(h̄, λ, r) = �(λ, h̄, r);
(4) �(h̄, λ, r) 	�(λ, y, r′) � �(h̄, y, r + r′);
(5) �(h̄, λ, 	) : ℘θ → � is continuous for all h̄, λ, y ∈ S and r, r′ ∈ ℘θ .

Then (S ,�, 	) is known to be a CVFMS. The function �(h̄, λ, r) represents the degree of
nearness and non-nearness between h̄ and λ with respect to the complex parameter r, respectively.

Example 1. Let X = ℵ(set of natural numbers). Define 	 by c′ 	 c′′ = (a′a′′, b′b′′) for all
c′ = (a′, b′), c′′ = (a′′, b′′) ∈ �. Define complex fuzzy set � as

�(λ, χ, r) =

⎧⎪⎨⎪⎩
λ

χ
� i f λ ≤ χ

χ

λ
� i f χ ≤ λ,

for each λ, χ ∈ X, c ∈ ℘θ . Then (X,�, 	) is CVFMS.

Definition 4 ([24]). Let S be a non-empty set. A complex fuzzy set A is characterized by a
mapping defined on S and ranging closed unit complex interval �.

Definition 5 ( [24]). Suppose (S ,�, 	) is CVFMS. A sequence {λb} in S is called a Cauchy
sequence if

lim
b→∞

inf
d>b

�(λb, λd, r) = � ∀ r ∈ ℘θ .

The CVFMS (S ,�, 	) is said to be complete if every Cauchy sequence converges to an
element of S .

Definition 6 ([24]). For assumed t ∈ �θ , r ∈ ℘θ and uθ ∈ S , we fixed B[uθ , t, r]{z ∈ S :
�− t � �(uθ , z, r)}.

Lemma 1 ([24]). If (S ,�, 	) is a CVFMS. If r, r′ ∈ ℘θ and r � r′, then �(λ, ξ, r) � �(λ, ξ, r′)
∀ λ, ξ ∈ S .

Lemma 2 ([24]). Let (S ,�, 	) be CVFMS. A sequence {λb} in S converges to v ∈ S iff
limb→∞ �(λb, v, r) = � holds ∀ r ∈ ℘θ .

5
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Lemma 3 ([24]). Let (S ,�, 	) be CVFMS. If r, r′ ∈ ℘θ and r � r′, then�(λ, ξ, r) � �(λ, ξ, r′)∀λ,
ξ ∈ S .

Lemma 4 ([24]). Let (S ,�, 	) be CVFMS. A sequence {λq} in S converges to v ∈ S iff
limq→∞ �(λq, v, r) = � holds ∀ t ∈ ℘θ .

Remark 1 ([24]). Suppose λb ∈ ℘ ∀ b ∈ ℵ and � are in partial order, then:

(a) If the sequence {λb} is monotonic and there exists γ, η ∈ ℘ with γ � λb � η, ∀ b ∈ ℵ, then
there exists λ ∈ ℘ such that limb→∞ λb = λ.

(b) Although the partial ordering � is not a linear order on C, the pair (C,�) is a lattice.
(c) If S ⊂ C, then infS and supS both exist for γ, η ∈ C with γ � s � η ∀ s ∈ S .

Remark 2 ([24]). Let λb, λ′
b, h̄ ∈ ℘, ∀ b ∈ ℵ, then

(a) If λb � λ′
b � � ∀ b ∈ ℵ and limb→∞ λb = �, then limb→∞ λ′

b = �.
(b) If λb � h̄ ∀ b ∈ ℵ and limb→∞ λb = λ, then λ � w.
(c) If h̄ � λb ∀ b ∈ ℵ and limb→∞ λb = λ, then w � λ.

A relatively important notion in complex fuzzy set theory is σ-level set. Let A be
a complex fuzzy set in S . Then, the function values of A(λ) are said to be the grade of
membership of λ ∈ A. The collection of all those elements in S belonging to A have at
least a degree σ ∈ �+, which is called the σ-level set and denoted by [A]σ. That is,

[A]σ = {λ : A(λ) � σ} if σ ∈ � = [A−
σ , A+

σ ].

Please note that the σ-level representation of fuzzy valued function T is expressed by
Tσ(t) = [T−

σ (t), A+
σ (t)], σ ∈ [0, 1].

Definition 7. Let T : S → F(S) be a fuzzy mapping. An element u ∈ S is known to be a fuzzy
fixed point of T if there exists an σ ∈ �+ such that u ∈ [Tu]σ, where F(S) is a collection of complex
fuzzy sets.

Let (S ,�, 	) be a CVFMS. We denote the family of all nonempty, closed and bounded
subsets of a complex valued fuzzy metric space by CB(S). From now on we denote for
w̄ ∈ S , for r ∈ ℘θ , c ∈ S and G ∈ CB(S) :

s(w̄, r) = {(z̄, r) ∈ � : (z̄, r) � (w̄, r)}

and
s(c,G, r) =

⋃
d∈G

s(�(c, d, r)) =
⋃

d∈G
{z̄ ∈ S : z̄ � �(c, d, r)}

For C,G ∈ CB(S), we denote

s(C,G, r) =

( ⋂
c∈C

s(�(c,G, r))

)⋂( ⋂
d∈G

s(�(d, C, r))

)

Let T be a multivalued mapping from S into CB(S), for z ∈ S and A ∈ CB(S),
we define

Wz(A, r) =
{
�(z, a, r) : a ∈ A

}
.

Thus for z, w ∈ S
Wz(Tw, r) =

{
�(z, u, r) : u ∈ Tw

}
.

Definition 8. In a (S ,�, 	) CVFMS a subset K of S is said to be bounded from above if there
exists some w ∈ S , such that k � wfor all k ∈ S .

6
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Definition 9. In a CVFMS, a multivalued mapping T : S → 2℘ is said to be bounded from above
if and only if, for each z ∈ S , there exists xz ∈ ℘, such that

w � xz

for all w ∈ T z.

Definition 10. A fuzzy mapping � : S → F(S) is supposed to have an upper bound property
on (S ,�, 	), if, for any z ∈ S related with some σ ∈ �, the multivalued mapping T : S → 2℘

defined by
Tz(w) = Wz([�w]σ)

is bounded from above, i.e., for z, w ∈ S there is an element lz([�w]σ) ∈ ℘ with

v � lz([�w]σ)

for each v ∈ Wz([�w]σ), where lz([�w]σ) is known as the upper bound of �.

Lemma 5. Let (S ,�, 	) be CVFMS.

(i) Let (a, f), (b, f) ∈ ℘. If (a, f) � (b, f) then s(a, r) ⊆ s(b, r)
(ii) Let (a, f) ∈ ℘,P,G ∈ CB(S) and c ∈ P. If (a, f) ∈ s(P,G, r) then a ∈ s(c,G, r) for all

c ∈ P or a ∈ s(P, d, r) for all d ∈ G.

Proof.

(i) Let (S ,�, 	) be a CVFMS. Suppose (x, f) ∈ s(a, r) then (x, f) � (a, f). But (a, f) �
(b, , f), therefore (x, f) � (b, f). Consequently (x, f) ∈ s(b, r). Hence
s(a, r) ⊆ s(b, r).

(ii) Suppose c ∈ P and (a, f) ∈ s(P,G, r)

(a, f) ∈
( ⋂

c∈P
s(c,G, r)

)⋂( ⋂
d∈G

s(d,P, r)
)

,

yields that

(a, f) ∈
( ⋂

c∈P
s(c,G, r)

)
and (a, f) ∈

( ⋂
d∈G

s(d,P, r)

)
.

Since (a, f) ∈ ⋂
c∈P s(c,G, r) implies that (a, f) ∈ s(c,G, r) for all c ∈ P. Similarly

b ∈ s(d,P, r) for all d ∈ G.

Remark 3. Let (S ,�, 	) be CVFMS. If � = [0, 1], then (S ,�, 	) is a fuzzy metric space. More-
over, for P,G ∈ CB(S), then H(P,G, r) = sup s(P,G, r) is the Hausdorff distance induced
by �.

Definition 11. Let (S ,�, 	)be CVFMS and let G be fuzzy mappings from S into F(S). A point
λ ∈ G is called a fuzzy fixed point of G if λ ∈ [Gλ]σ, for some σ ∈ �.

Definition 12. Let(S ,�, 	) be CVFMS and the fuzzy mapping U : S → F(S) satisfies the
least upper bound property (lub) on (S ,�, 	), if for any h̄ ∈ S and σ ∈ (0, 1], the least upper
bound (lub) of h̄ω([Uχ]σ, r) exists in C for all h̄, χ ∈ Sand r ∈ ℘θ . If �(h̄, [Uy]σ, 	) be the lub of
h̄ω([Uχ]σ, r). Then,

�
(
h̄, [Uχ]σ, r

)
= sup{�(h̄, u, r) : u ∈ [Uχ]σ, r}.

7
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Definition 13. The generalized Hukuhara difference of two fuzzy numbers u, v ∈ F(S) is defined
as follows

u �gH v = w ⇔
{

(i)u = v + w

or (ii)v = u + (−1)w.

Definition 14 ([2]). The generalized Hukuhara derivative of a fuzzy-valued function T : (a, b) →
F(S) at t0 is defined as

T′
gH(t0) = lim

h→0

T(t0 + δ)�gH T(t0)

δ
,

if (T)′gH(t0) → F(S), we say that T is generalized Hukuhara differentiable (gH-differentiable)
at t0.

Additionally, we say that T is [(i)− gH]-differentiable at t0 if

(T′
gH)σ(t0) = [(T−

σ )
′(t0), (T+

σ )
′(t0)], 0 ≤ σ ≤ 1,

and that f is [(ii)− gH]-differentiable at t0 if

(T′
gH)σ(t0) = [(T+

σ )
′(t0), (T−

σ )
′(t0)], 0 ≤ σ ≤ 1.

Definition 15. Consider f : [a, b] → R, fractional derivative of f(t) in the Caputo sense is
defined as

(Dq
∗f)(t) = (Im−qDmf)(t) =

1
Γ(m − q)

∫ t

a
(t − s)(q−m−1)f(m)(s)ds m − 1 < q ≤ m, m ∈ N, t > a

where D stands for classic derivative.

We denote CF[a, b] as the space of all continuous fuzzy-valued functions on [a, b].
Additionally, we denote the space of all Lebesgue integrable fuzzy-valued functions on the
bounded interval [a, b] ⊂ Rby LF[a, b].

Definition 16. Let f′ ∈ CF[a, b]
⋂

LF[a, b]. The fractional generalized Hukuhara Caputo deriva-
tive of fuzzy-valued function f is defined as follows:

(gHDq
∗f)(t) = I1−q

a (f′gH)(t) =
1

Γ(1 − q)

∫ t

a

(f′gH)(s)ds

(t − s)q , a < s < t, 0 < q < 1.

Additionally, we say that f is cf[(i)− gH]-differentiable at t0 if

(gHDq
∗f)σ(t0) = [(Dq

∗f−σ )(t0), (D
q
∗f+σ )(t0)], 0 ≤ σ ≤ 1,

and that f is cf[(ii)− gH]-differentiable at t0 if

(gHDq
∗f)σ(t0) = [(Dq

∗f+σ )(t0), (D
q
∗f−σ )(t0)], 0 ≤ σ ≤ 1.

3. Main Results

Theorem 1. Let (S ,�, 	) CVFMS such that, for any sequence {rn} in ℘θ with limn→∞ rn = ∞,
we have

lim
r→∞

�(w, z, rn) = �, for all w, z ∈ S , q + e = z ∈ (0, 1) and r > 0.

8
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Assume that there exists some σ ∈ (0, 1], such that, for each z ∈ S , such that [�w]σ is a
nonempty compact subset of S . Let � : S → F(S) be a fuzzy mapping with the least upper bound
property, such that[

1 +�(z, [�z]σ, qr)
]
�(w, [�w]σ, er)

1 +�(w, z, r)
+�(z, w, r) ∈ s

(
[�w]σ, [�z]σ, zr

)
. (1)

Then � has a unique σ-fuzzy fixed point.

Proof. Let c0 be any arbitrary point in S . Define a sequence {cn} in S by

cn ∈ [�cn−1]σ for all n ∈ {1, 2 · · · }.

First of all, we have to show that {cn} is a Cauchy sequence. For this, we define

Λb = {�(cn, cm, r) : m > n} ⊆ �,

for n ∈ {1, 2 · · · } and fixed r ∈ ℘θ . Since θ ≺ (cn, cm, r) � � for all b ∈ {1, 2 · · · }. Using
Remark 1, we obtain that, for all b ∈ 1, 2 · · ·, the infimum, inf Λb = b (say) exists. For
r ∈ ℘θ , n, m ∈ ℵ with m > n, from (1) by setting z = cn and w = cm, we obtain[

1 +�(cn, [�cn]σ, qr)
]
�(cm, [�cm]σ, er)

1 +�(cm, cn, r)
+�(cn, cm, r) ∈ s

(
[�cn]σ, [�cm]σ, zr

)
.

Using Lemma 5 (ii), we obtain[
1 +�(cn, [�cn]σ, qr)

]
�(cm, [�cm]σ, er)

1 +�(cm, cn, r)
+�(cn, cm, r) ∈ s

(
cn+1, [�cm]σ, zr

)
.

Since [�cm]σ is nonempty subset of S , there exists some cm+1 ∈ [�cm]σ such that[
1 +�(cn, [�cn]σ, qr)

]
�(cm, [�cm]σ, er)

1 +�(cm, cn, r)
+�(cn, cm, r) ∈ s

(
�(cn+1, cm+1, zr)

)
.

Using Definition 12, we obtain

�(cn+1, cm+1, zr) �
[
1 +�(cn, [�cn]σ, qr)

]
�(cm, [�cm]σ, er)

1 +�(cm, cn, r)
+�(cn, cm, r).

Applying the least upper bound property of �

�(cn+1, cm+1, zr) �
[
1 +�(cn, cn+1, qr)

]
�(cm, cm+1, er)

1 +�(cm, cn, rq)
+�(cn, cm, r)

� �(cn, cm, r).

Utilizing Lemma 3, this yields

�(cn+1, cm+1, r) � �(cn, cm,
r

z
) � �(cn, cm, r), (2)

which implies that

�(cn, cm, r) � �(cn+1, cm+1, r) for all n, m ∈ ℵ with m > n.

Therefore, by definition, we have

θ � n � n+1 � �. (3)

9
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Thus, {n} is a monotonic sequence in ℘, and by the use of Remark 1 and (3), there
exists �a ∈ ℘, such that

lim
n→∞

n = �a. (4)

Again, from (2), we have, for c ∈ ℘,

n+1 = inf
m>n

�(cn+1, cm+1, r) � inf
m>n

�(cn, cm,
r

z
).

Similarly, for c ∈ ℘θ , we obtain

�(cn+1, cm+1, r) � �(cn, cm,
r

z
)

� �(�cn−1,�cm−1,
r

z
)

� �(cn−1, cm−1,
r

z2 ) = �(�cn−2,�cm−2,
r

z2 )

� �(cn−2, cm−2,
r

z3 ) � · · · � �(c0, cm−n,
r

zn+1 ),

hence, for all c ∈ ℘θ ,

n+1 = inf
m>n

�(cn+1, cm+1, r � inf
m>n

�(c0, cm−n,
r

zn+1 ) � inf
w∈S

�(c0, w,
r

zn+1 ).

Since limn→∞
r

zn+1
= ∞, using (4) and from hypothesis, we have

�a � inf
w∈S

�(c0, w,
r

zn+1 ) = �. (5)

From (4) and (5), we obtain
lim

n→∞
n = �.

Hence, {cn} is a Cauchy sequence in S . Since S is complete and from Lemma 4, there
exists x ∈ S such that

lim
n→∞

�(cn, x, r) = � for all c ∈ ℘θ . (6)

Considering (1), for any c ∈ ℘θ , we obtain[
1 +�(cn, [�cn]σ, qr)

]
�(x, [�x]σ, er)

1 +�(x, cn, r)
+�(cn, x, r) ∈ s

(
[�cn]σ, [�x]σ, zr

)
.

Using Lemma 5 (ii), we obtain[
1 +�(cn, [�cn]σ, qr)

]
�(x, [�x]σ, er)

1 +�(x, cn, r)
+�(cn, x, r) ∈ s

(
cn+1, [�x]σ, r

)
.

By definition, we obtain

�(cn+1, [�x]σ, zr) �
[
1 +�(cn, [�cn]σ, qr)

]
�(x, [�x]σ, er)

1 +�(x, cn, r)
+�(cn, x, r).

Applying the least upper bound property of �

�(cn+1, [�x]σ, zr) �
[
1 +�(cn, cn+1, qr)

]
�(x, xn, er)

1 +�(x, cn, r)
+�(cn, x, r)

� �(cn, x, r). (7)

10
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From the definition and using (7), we obtain

�(x, [�x]σ, r) � �(x, cn+1,
r

2
) ∗�(cn+1, [�x]σ,

r

2
)

� �(x, cn+1,
r

2
) ∗�(cn, x,

r

2z
).

Taking limn→∞, and using (6) and Remark 2, we can see that

�(x, [�x]σ, r) = � for all r ∈ ℘θ .

i.e., x ∈ [�x]σ. Let x1 be another fixed point of �, and there exists r ∈ ℘θ such that
�(x, x1, r) �= � then it yields from (1) that[

1 +�(x, [�x]σ, qr)
]
�(x1, [�x1]σ, er)

1 +�(x1, x, r)
+�(x, x1, r) ∈ s

(
[�x]σ, [�x1]σ, zr

)
.

Using Lemma 5 (ii), we get[
1 +�(x, [�x]σ, qr)

]
�(x1, [�x1]σ, er)

1 +�(x1, x, r)
+�(x, x1, r) ∈ s

(
x, [�x1]σ, zr

)
.

Since [�x1]σ is nonempty subset of S , there exists some x1 ∈ [�x1]σ such that[
1 +�(x, [�x]σ, qr)

]
�(x1, [�x1]σ, er)

1 +�(x1, x, r)
+�(x, x1, r) ∈ s

(
�(x, x1, zr)

)
.

Using Definition 12, we obtain

�(x, x1, zr) �
[
1 +�(x, [�x]σ, qr)

]
�(x1, [�x1]σ, er)

1 +�(x1, x, r)
+�(x, x1, r).

Applyingthe least upper bound property of �

�(x, x1, zr) �
[
1 +�(x, x, qr)

]
�(x1, x1, er)

1 +�(x1, x, r)
+�(x, x1, r)

� �(x, x1, r).

On simplification, we get

�(x, x1, r) � �(x, x1,
r

z
) � �(x, x1,

r

z2 ) � · · · � �(x, x1,
r

zn ).

Using limn→∞
r
zn = ∞ and �(x, x1, r

zn ) � infw∈S �(x, x1, r
zn ). From this we get

�(x, x1, r) � �, which is a contradiction. Thus, �(x, x1, r) = �, for all r ∈ ℘θ . i.e., x = x1,
which follows the uniqueness.

In the succeeding theorem, we use Definition 6 to demonstrate the existence of fixed-
point for a mapping enjoying a restricted condition.

Theorem 2. Let (S ,�, 	) CVFMS and � : S → F(S) be a fuzzy mapping where the least upper
bound property enjoys:

(1) There exists uθ ∈ S and r ∈ �θ with �− t � �(uθ ,�[uθ ]σ, r) for all r ∈ ℘θ .
(2) [

1 +�(z, [�z]σ, qr)
]
�(w, [�w]σ, er)

1 +�(w, z, r)
+�(z, w, r) ∈ s

(
[�w]σ, [�z]σ, zr

)
. (8)

11
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for all z, w ∈ B[uθ ,�uθ , r] and for each z ∈ S , there exist some σ ∈ (0, 1], such that [�w]σ be
a nonempty closed and bounded subset of S , while q + e = z ∈ [0, 1) . Then, � has a unique
σ-fuzzy fixed point in B[uθ , uθ , r].

Proof. To prove this, it is enough to show that B[uθ , t, r] is complete and [�z]σ ∈ B[uθ , t, r]
for all z ∈ B[uθ ,�uθ , r].

Let {cn} be a Cauchy sequence in B[uθ , t, r]. Thus, from the completeness of the
ground set S and Lemma 4, there is an ν ∈ S with

lim
n→∞

�(cn, ν, r) = � for all r ∈ ℘θ ,

at this instant, for all m, nℵ,

�(uθ , ν, r +
r

m
) � �(uθ , ν, r) ∗�(uθ , ν,

r

m
).

Since cn ∈ B[uθ , c, r], and limn→∞ �(uθ , ν, r) = �, so, by utilizing Remark 2 and using
the properties of t-norm, we obtain

�(uθ , ν, r +
r

m
) � (�− c) 	 � = �− c.

Setting alimit such that m → ∞ and using Remark 2, we have �(uθ , ν, r) � � − c.
Consequently, ν ∈ B[uθ , t, r].

For each z ∈ B[uθ , c, r], it can be seen (8) that

[
1 +�(uθ , [�uθ ]σ, rq)

]
�(z, [�z]σ, re)

1 +�(z, uθ , r)
+�(uθ , z, r) ∈ s

(
[�uθ ]σ, [�z]σ, zr

)
.

By Definition, we obtain

�([�uθ ]σ, [�z]σ, zr) �
[
1 +�(uθ , [�uθ ]σ, rq)

]
�(z, [�z]σ, re)

1 +�(z, uθ , r)
+�(uθ , z, r)

� �(uθ , z, r).

This yields

�(uθ , [�z]σ, r +
r

m
) � �(uθ ,�uθ ,

r

m
) 	�(�uθ , [�z]σ, r)

� (�− t) 	�(uθ , z,
r

z
)

� (�− t) 	�(uθ , z,
r

z2 ) � · · · � (�− t) 	�(uθ , z,
r

zn ),

for all n ∈ ℵ. Using limn→ r
zn and �(uθ , z, r

zn ) � infy∈S �(uθ , z, r
zn ). It yields from above

inequality

�(uθ , [�z]σ, r +
r

m
) � (�− t) 	 �

� (�− t)

Taking limm→∞ and utilizing Remark 2, we have

�(uθ , [�z]σ, r) � (�− t)

Thus, [�z] ∈ B[uθ , t, r].

12
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In Theorem 1 the contractive condition (1) for � can be replaced by the following,
analogous proof:

Corollary 1.[
1 +�(z, [�z]σ, q(r)r)

]
�(w, [�w]σ, e(r)r)

1 +�(w, z, r)
+�(z, w, r) ∈ s

(
[�w]σ, [�z]σ, z(r)r

)
,

for each z, w ∈ ℘θ . Where q, e, z : ℘θ → (0, 1).

By setting �(z, w, r) = θ in Theorem 1, we get the following corollary.

Corollary 2. Let (S ,�, ∗) be a complete complex valued fuzzy metric space, such that, for any
sequence {rn} in ℘θ with limn→∞ rn = ∞, we have

lim
r→∞

M(w, z, rn) = �, for all w, z ∈ S , q ∈ (0, 1) and r > 0.

Assume that there exists some σ ∈ (0, 1], such that, for each z ∈ S such that [�w]σ is a
nonempty compact subset of S for all w ∈ S . Let � : S → F(S) be a fuzzy mapping with least
upper bound property, such that[

1 +�(z, [�z]σ, qr)
]
�(w, [�w]σ, er) ∈ s

(
[�w]σ, [�z]σ, zr

)
,

where q + e = z < 1 Then, � has a unique σ-fuzzy fixed point.

By setting �(w, [�w]σ, er) = θ in Theorem 1, we get the following corollary.

Corollary 3. Let (S ,�, 	) be a complete complex valued fuzzy metric space such that, for any
sequence, {rn} in ℘θ with limn→∞ rn = ∞, we have

lim
r→∞

M(w, z, rn) = �, for all w, z ∈ S , q ∈ (0, 1) and r > 0.

Assume that there exists some σ ∈ (0, 1], such that, for each z ∈ S such that [�w]σ is a
nonempty compact subset of S for all w ∈ S . Let � : S → F(S) be a fuzzy mapping with the least
upper bound property, such that

�(z, w, r) ∈ s
(
[�w]σ, [�z]σ, zr

)
,

where z < 1. Then � has a unique σ-fuzzy fixed point.

The task of Theorem 1, can also be obtained for self mapping while relaxing the least
upper bound property, with analogous proof:

Corollary 4. Let (S ,�, 	) CVFMS such that, for any sequence, {rn} in ℘θ with limn→∞ rn = ∞,
we have

lim
r→∞

�(w, z, rn) = �, for all w, z ∈ S , q + e = z ∈ (0, 1) and r > 0.

Let � : S → S enjoy

�(�w,�z, zr) �
[
1 +�(z,�z, qr)

]
�(w,�w, er)

1 +�(w, z, r)
+�(z, w, r).

Then, � has a unique σ-fuzzy fixed point.

13
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Remark 4. To obtain a unique fixed-point in the the above Corollary, it is sufficient that, to some
extent, sequence {cn} ∈ ℘θ such that limn→∞, we get limn→∞ �(z, w, cn) = � ∀ z, wS . This
state is obtained from the suppositions of Corollary 4 as, for any sequence, {cn} = ∞ also for each
z, w ∈ S .

lim
n→∞

�(z, w, cn) ≥ lim
n→∞

inf
vS

�(z, v, cn) = �.

By the use of the above remark, and the rest of the proof of Corollary 4, we can use a
more general statement for our main theorem, as follows.

Corollary 5. Let (S ,�, 	) be CVFMS. Suppose for any sequence {cn} ∈ ℘θ such that limn→∞ =
∞, we obtained limn→∞ �(z, w, cn) = � ∀ z, wS . Moreover, let for any sequence in ℘θ there
exists c0 ∈ S with limn→∞ = ∞, we obtained

lim
n→∞

inf
yΞc0

�(c0, y, cn) = �, (9)

where Ξc0 represents the collection of �−iterates of c0. If � : S → S with:

�(�w,�z, zr
)
�

[
1 +�(z,�z, qr)

]
�(w,�w, er)

1 +�(w, z, r)
+�(z, w, r),

where q + e = z ∈ [0, 1) . Then � has a unique σ-fuzzy fixed point in S .

Proof. Define a sequence {cn} as cn = �cn−1, for all n ∈ ℵ. Thanks to (9), which guarantee
that {cn} is a Cauchy sequence, as for r ∈ ℘θ ,

n+1 = inf
m>n

�(cn + 1, cm + 1, r) � inf
m>n

�(c0, cm + 1,
r

zn+1 )

= inf
m>n

�(c0,�m−nc0,
r

zn+1 ) = inf
y∈Ξc0>n

�(c0, yc0,
r

zn+1 ).

Thus
lim

n→∞
n+1 � lim

n→∞
inf

y∈Ξc0>n
�(c0, yc0,

r

zn+1 ) = �.

The proof is in the same fashion of Theorem 1.

Corollary 6. Let (S ,�, 	) be CVFMS such that, for any sequence {rn} in ℘θ with limn→∞ rn =
∞, we have

lim
r→∞

M(w, z, rn) = �, for all w, z ∈ S , q ∈ (0, 1) and r > 0.

Suppose L : S → CB(S) be a multivalued mapping with least upper bound property, such that[
1 +�(z, Lz, qr)

]
�(w, Lw, er)

1 +�(w, z, r)
+�(z, w, r) ∈ s

(
Lw, Lz, zr

)
. (10)

Then, L has a unique fixed point.

Proof. Consider the fuzzy mapping � : S → F(S) defined by

�(x)(t) =

{
σ i f t ∈ Lx

θ i f t �∈ Lx,

where σ ∈ �+. Then,
[�x]σ = {t : �(x)(t) ≥ σ} = Lx.

14
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Thus, Theorem 1 can be applied to obtain a fixed point, i.e., there exists v ∈ S such
that v ∈ �v

Example 2. Let �R = [0, 1] and S = �R × 0
⋃

0 ×�R. Let 	 be defined by

c1 	 c2 = (max{a′ + a′′ − 1, 0}, max{b′ + b′′ − 1, 0}),

for all c1 = (a′, b′), c2 = (a′′, b′′) ∈ �. Define D : S × S → C by

D((z, 0), (w, 0)) = |z − w|(2, 1), D((0, z), (0, w)) = |z − w|(1,
3
5
)

and
D((z, 0), (0, w)) = D((0, w), (z, 0)) = (2z + w, z +

3
5

w).

Clearly, (S , D) is a complex valued metric space. Let �D be defined by

�D(u, v, c1) = �− 5D(u, v)
18 + 5ab

for all u, v ∈ S , c1 = (a, b) ∈ ℘θ .

Then, (S ,�D, 	) is a complete CVFMS. Let σ ∈ (0, 1] and G : S → F(S) be a fuzzy
mapping defined by:

G(θ)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
� i f t = θ

1
2
� i f θ < t ≤ w

50

θ i f
w
50

< t ≤ �,

if (w, 0) �= θ,

G(w)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ i f θ ≤ t ≤ w

75
σ

3
i f

w
75

< t ≤ w
10

σ

4
i f

w
10

< t ≤ �,

Then, for w = θ, [Gθ]� = {θ} and ∀ w, z �= θ, [Gw]σ = [θ, w
75 ]. Thus,

Ww
(
[Gw]σ, c1

)
= {�D(z, p, r) : p ∈ [θ,

w
75

]}.

Let �D(z, [Gw]σ, r) be the least upper bound of Ww
(
[Gw]σ, r

)
. Moreover, if �wz ∈ �

such that

�wz = �− 5D([Gw]σ, [Gz]σ)
18 + 5ab

,

then,
s
(
�D([Gw]σ, [Gz]σ, zr)

)
= {ω ∈ � : �yw � ω}.

Consider

�wz = �− 5D([Gw]σ, [Gz]σ)
18 + 5ab

= �− 5| w
75 − z

75 |
18 + 5ab

� �− 5|w − z|
18 + 5ab

= �− 5D(w, z)
18 + 5ab

= �D(w, z, r)
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Therefore, we have
�D(z, w, r) ∈ s

(
[�w]σ, [�z]σ, zr

)
.

Hence, all conditions of Corollary 3 are satisfied by G; therefore, there exists (0, 0) ∈ S , such
that (0, 0) ∈ [G(0, 0)]σ.

4. Applications Fuzzy Caputo Fractional Volterra–Fredholm Integro-Differential
Equations

Consider initial value problem{
(gHDfl

∗u)t = f(t, u(t),Ku(t),Hu(t)), t ∈ J = [t0, T]

u(t0) = u0 ∈ RF ,
(11)

where 0 < γ < 1 is a real number and gHDfl
∗ denote the Caputo fractional generalized

derivative of order γ, f : J ×RF ×RF ×RF → RF is continuous in t, which satisfies some
assumptions that will be specified later, and

Ku(t) =
∫ t

t0

K(t, ru(r))dr, Hu(t) =
∫ T

t0

H(t, ru(r))dr, (12)

This problem is equivalent to the integral equation

u(t) = u0 +
1

Γ(γ)

∫ t

t0

(t − r)γ−1f(r, u(r),Ku(r),Hu(r))dr, (13)

where u is a fuzzy valued cf[(i)− gH]-differentiable on J.
For a detailed study of problem (11), we recommend that the readers look at [8].
To study our results for the existence of a fixed point, we define the integral operator

T as

T u(t) = u0 +
1

Γ(γ)

∫ t

t0

(t − r)γ−1f(r, u(r),Ku(r),Hu(r))dr. (14)

For the sake of simplicity, we mentioned 1
Γ(γ)

∫ t0
t (t− r)γ−1f(r, u(r),Ku(r),Hu(r))dr =

Fu Now, we study the existence and uniqueness of solutions to problem (11). To proceed,
we use the following hypotheses:

Hypothesis 1 (H1). f : J ×RF ×RF ×RF → RF is continuous such that

H(T uT v)(t) �
(1 +A(uv)(t))B(uv)(t)

1 + G(uv)(t)
+ G(uv)(t), (15)

where
H(T uT v)(t) =

c
c + ‖Fu −Fv‖∞

�

A(uv)(t) =
c

‖u − u0 +Fu‖∞
�

B(uv)(t) =
c

‖v − v0 +Fv‖∞
�

G(uv)(t) =
c

‖u − v‖∞
�

Then, the initial value problem (11) has only one solution.

Proof. Consider S = ([0, T],RF ) with the metric

D(x̂, ŷ) = max
t0≤t≤T

(x̂‖t)− ŷ(t)‖∞.

16
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Let � : S × S × ℘θ → � defined by

�(x̂, ŷ, c) =
c

c +D(x̂, ŷ)
�

for c = (a, b) ∈ ℘θ . It is obvious that (S ,�, ∗) is CVFMS. Consider (14), define the integral
operator T : S → S . For x̂, ŷ ∈ S , we have

[T x̂]σ = {u ∈ [t, t0] : u(j) = u0 +Fu � σ, j ∈ [t, T], T x̂(u) � σ},⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(u, v, c) =
c

c + maxt0≤t ‖u − v‖∞
�

�(u, [T u]σ, qc) =
c

c + maxt0≤t ‖u − u0 +Fu‖∞
�

�(v, [T v]σ, ec) =
c

c + maxt0≤t ‖v − v0 +Fv‖∞
�

�([T u]σ, [T v]σ, zc) =
zc

zc + maxt0≤t ‖u0 +Fu − v0 +Fv‖∞
�

(16)

From assumption (15), we obtain, for each t ∈ [t, t0]

H(T uT v)(t) �
(1 +A(uv)(t))B(uv)(t)

1 + G(uv)(t)
+ G(uv)(t)

=
(1 + c

‖u−u0+Fu‖∞
�) c

‖v−v0+Fv‖∞
�

1 + c
‖u−v‖∞

�
+

c
‖u − v‖∞�

�
(1 + c

c+maxt0≤t ‖u−u0+Fu‖∞
�) c

c+maxt0≤t ‖v−v0+Fv‖∞
�

1 + c
c+maxt0≤t ‖u−v‖∞

�
+

c
c + maxt0≤t ‖u − v‖∞�

.

This yields

zc
zc + maxt0≤t ‖Fu −Fv‖∞

� �
(1 + c

c+maxt0≤t ‖u−u0+Fu‖∞
�) c

c+maxt0≤t ‖v−v0+Fv‖∞
�

1 + c
c+maxt0≤t ‖u−v‖∞

�

+
c

c + maxt0≤t ‖u − v‖∞�
.

By using (16), we get

�([T u]σ, [T v]σ, zc) � (
�(u, [T u]σ, c)�(v, [T v]σ, c)

1 +�(u, v, c)
+�(u, v, c).

Thus, all conditions of Theorem 1 hold. Therefore, there exists only one fixed point of
T in S , and so there exists a unique solution to the system (11).

5. Discussion and Conclusions

In many situations, classical models fail to describe the features of natural phenomena
such as the dynamics of viscoelastic materials such as polymers,the atmospheric diffusion of
pollution, and signal transmissions through strong magnetic fields. In such situations, fuzzy
concepts are the best solution. This concept has the ability to model difficult uncertainties
with ease. In our research work, we considered a complex fuzzy set in fuzzy metric spaces,
which is more general than classical fuzzy metric fixed-point theory. We obtained complex
fuzzy versions of rational type contractions via the least upper bound property in the new
approach (complex valued fuzzy metric spaces). We also discussed its applications in
multivalued mappings. Then, we proposed an existence theorem for a unique solution
to fractional Volterra–Fredholm integro-differential equations under generalized fuzzy

17
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Caputo Hukuhara differentiability using the technique of a fixed point. As an application,
we provided an illustrative example, which shows the applicability and validity of the
approach we used in this article.

Our results will open doors for researchers working on rational type contraction in
complex valued fuzzy spaces. The studied results and their applications can be extended
to functional, differential and integral equations via numerical experiment.
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Abstract: This paper studies a system of coupled discrete fractional-order logistic maps, modeled
by Caputo’s delta fractional difference, regarding its numerical integration and chaotic dynamics.
Some interesting new dynamical properties and unusual phenomena from this coupled chaotic-map
system are revealed. Moreover, the coexistence of attractors, a necessary ingredient of the existence
of hidden attractors, is proved and analyzed.

Keywords: discrete fractional-order system; caputo delta fractional difference; fractional-order
difference equation; stability; hidden attractor

1. Introduction

Nonlinear phenomena are difficult to describe by models analysis based only on
smoothness; thereby, fractional calculus has been used to model many such processes for
which the standard integer-order derivatives cannot be applied adequately. The general-
ization of the concept of derivatives of non-integer values dates back to the beginning of
the theory of differential calculus, while the rapid development of the theory of fractional
calculus started from the work of Euler, Liouville, Riemann, Letnikov, and so on [1,2]. In
the past, new results of fractional modeling and applications were reported every year.
The fractional derivatives and integrals are useful in engineering and mathematics, being
helpful for scientists and researchers working with real-life applications (see, e.g., [3,4]).

It is well-known that the classical derivative of a continuous-time periodic function
is a periodic function with the same period. However, with respect to derivatives of
fractional order, this is not necessarily the case [5–12]. The non-periodicity of solutions in
fractional-order (FO) systems was first discovered by engineers (see, e.g., [7]), and then
proved by mathematicians (see, e.g., [5,12]). Generally, FO systems have no non-constant
periodic solutions by their nature (verified, e.g., using Laplace or Z transformations).
Nevertheless, both continuous and discrete FO systems may have asymptotic periodic
solutions. However, just like continuous FO systems, the periodicity of solutions in discrete
FO systems is a delicate issue [10,13–17]. As a consequence, all reported results based on the
“periodicity” of continuous- or discrete-time autonomous FO systems became questionable.

In this paper, orbits apparently indicating some regular behavior will be called
“periodic-like” orbits. Recall that for some values of the bifurcation parameter of the
integral-order (IO) logistic map, unstable periodic orbits (UPOs) will emerge, leading to
chaos. For FO logistic maps, this will be referred to as “chaotic-like” behavior. In [18],
these kinds of periodic-like orbits are called “numerically periodic orbits”. It is also well-
known that in the theory of dynamical systems, every emerging abrupt period-doubling
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phenomenon is considered as bifurcation. Therefore, in this paper, the term bifurcation or
bifurcation diagram is understood in the above sense of a periodic-like phenomenon.

On the other hand, from a computational point of view, based on the complexity or
simplicity in finding a basin of attraction in the phase space, it is natural to consider the fol-
lowing classification of attractors: self-excited attractors, which can be revealed numerically
by integrating the systems with initial conditions within small neighborhoods of unstable
equilibria, and hidden attractors, which have the basins of attraction not connected with
any equilibria [19–23]. Examples of hidden attractors in continuous-time FO systems exist
in some classical systems, such as the Rabinovich-Fabrikant system [24–26], Hopfield neu-
ronal system [27], economic system [28], hyperchaotic discontinuous system [29], and so
on [30].

In a numerical approach, the need for previous history in numerical integration
requires a trade-off between the calculation time and the approximation precision. This is a
basic principle for some classical numerical methods for fractional differential equations
(FDEs), such as the Adams-Bashforth-Moulton method [31], for which a tutorial can be
found in [32]. Finally, it should also be noted that the mathematical theory of FDEs is still
quite limited today, although the subject has been studied since 1956 [33].

With all the above motivations and background, the present paper is devoted to
studying a system of discrete coupled FO logistic maps, with respect to its numerical
bifurcation analysis and hidden attractor search, which reveals some very interesting new
dynamical properties and unusual phenomena.

This paper will also discuss the stability of discrete FO equations, where [34–36] can
be referred to for more details.

2. A Model of Coupled FO Logistic Maps

In [37], the bistability of some “aggregates” of logistic maps with excitation-type
coupling is studied. One such model is composed by two functional units, a neuron or
a group of neurons (voxels), as a discrete nonlinear oscillator with two possible states:
active (meaning one type of activity) or not (meaning other type of activity). A reasonable
modality to take the most elemental local nonlinearity is, for instance, the logistic evolution:

x(n + 1) = p(3y(n) + 1)x(n)(1 − x(n)),
y(n + 1) = p(−3x(n) + 4)y(n)(1 − y(n)), n ∈ N.

(1)

The first equation with the coupled functional units (1) refers to excitation coupling,
while the second equation, to inhibition coupling. These kinds of models are proposed
in [37] to mimic the waking-sleeping bistability and even multistability found in brain
systems (see [37] for details).

In this paper, the Fractional Order (FO) variant of the system (1) is considered.
To obtain the FO form, let Na = {a, a + 1, a + 2, . . .}. Then, for q > 0 and q �∈ N,

the q-th Caputo-like discrete fractional difference of a function u : Na → R is defined
as [38,39]

Δq
au(t) = Δ−(n−q)

a Δnu(t) =
1

Γ(n − q)

t−(n−q)

∑
s=a

(t − s − 1)(n−q−1)Δnu(s), (2)

for t ∈ Na+n−q and n = [q] + 1. In (4), Δn is the n-th order forward difference operator,

Δnu(s) =
n

∑
k=0

(
n
k

)
(−1)n−ku(s + k)

and Δ−q
a represents the fractional sum of order q of u, namely,

Δ−q
a u(t) =

1
Γ(q)

t−q

∑
s=a

(t − s − 1)(q−1)u(s), t ∈ Na+q (3)
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with the falling factorial t(q) in the following form:

t(q) =
Γ(t + 1)

Γ(t − q + 1)
.

Note that the fractional operator Δ−q
a maps functions defined on Na to functions

on Na+q.
For the case considered in this paper, q ∈ (0, 1), when n = 1, Δu(s) = u(s + 1)− u(s),

and Caputo’s fractional difference, denoted hereafter Δq
∗, becomes

Δq
∗u(t) =

1
Γ(1 − q)

t−(1−q)

∑
s=a

(t − s − 1)(−q)Δu(s). (4)

Assuming the starting point of the fractional sum (3), a = 0, one can consider the
following discrete autonomous Initial Value Problem (IVP) of FO (the non-autonomous
case can be found in [40,41]):

Δq
∗u(t) = f (u(t + q − 1)), t ∈ N1−q, u(0) = u0, (5)

for q ∈ (0, 1) and f is a continuous map.
The solution of the IVP (5) is given by [40,41]

u(t) = u0 +
1

Γ(q)

t−q

∑
s=1−q

(t − s − 1)(q−1) f (u(s + q − 1)). (6)

A convenient iterative form of the integral (6) is [35]

u(n) = u(0) +
1

Γ(q)

n

∑
i=1

Γ(n − i + q)
Γ(n − i + 1)

f (u(i − 1)), u(0) = u0, n ∈ N , n > 0. (7)

Now, one can introduce the FO variant of the system (1) modeled by the Caputo delta
fractional difference equation:

Δq
∗x(t) = p(3y(t + q − 1) + 1)x(t + q − 1)(1 − x(t + q − 1)),

Δq
∗y(t) = p(−3x(t + q − 1) + 4)y(t + q − 1)(1 − y(t + q − 1)),

t ∈ N1−q, x(0) = x0, y(0) = y0,
(8)

where p ∈ R is a parameter. In this case,

f (u) := f (x, y) =

(
p(3y + 1)x(1 − x)
p(−3x + 4)y(1 − y)

)
, (9)

and the integral (7) has the following form, which will be used to integrate and simulate
the system dynamics later:

x(n) = x(0) + 1
Γ(q)

n

∑
i=1

Γ(n−i+q)
Γ(n−i+1) p(3y(i − 1) + 1)x(i − 1)(1 − x(i − 1)),

y(n) = y(0) + 1
Γ(q)

n

∑
i=1

Γ(n−i+q)
Γ(n−i+1) p(−3x(i − 1) + 4)y(i − 1)(1 − y(i − 1)),

n ∈ N, n > 0, x(0) = x0, y(0) = y0.

(10)
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3. Bounds and Global Dynamics

The theory of orbits for discrete FO systems is technically rather sophisticated in
general and is still under development. Additionally, finding either bounds of solutions or
qualitative properties of global dynamics are difficult tasks.

Nevertheless, from the expressions (10), one can see that x(n) and y(n) are polynomi-
als of p, that is,

x(n) =
k(n)

∑
j=0

anj(x(0), y(0))pj

y(n) =
k(n)

∑
j=0

bnj(x(0), y(0))pj,

(11)

where the coefficients anj(x(0), y(0)), bnj(x(0), y(0)) are polynomials of x(0), y(0).
From (10), the degree k of polynomials (11) is

k(0) = 0, k(n) = 3k(n − 1) + 1, n ≥ 1,

so
k(n) =

3n − 1
2

.

The formulas anj(x(0), y(0)) and bnj(x(0), y(0)) are difficult to find explicitly for
general n, but nevertheless, one can find that

an0(x(0), y(0)) = x(0), bn0(x(0), y(0)) = y(0),

an1(x(0), y(0)) =
(3y(0) + 1)x(0)(1 − x(0))

Γ(q)

n

∑
i=1

Γ(n − i + q)
Γ(n − i + 1)

,

bn1(x(0), y(0)) =
(−3x(0) + 4)y(0)(1 − y(0))

Γ(q)

n

∑
i=1

Γ(n − i + q)
Γ(n − i + 1)

.

Using [42] (Proposition 1), one obtains the following result.

Theorem 1. The following limits hold:

lim
n→∞

an1(x(0), y(0))
nq =

(3y(0) + 1)x(0)(1 − x(0))
Γ(q + 1)

,

lim
n→∞

bn1(x(0), y(0))
nq =

(−3x(0) + 4)y(0)(1 − y(0))
Γ(q + 1)

.

Consequently, the first-order approximations of (11) diverges to ∞ as n → ∞, except at the
equilibria, where f (u(0)) = 0.

Concerning global dynamics, the following result holds (for the dynamical behavior
of discrete-time linear FO systems, see [43]).

Theorem 2. There is no orbit {(x(n), y(n))}∞
n=1 of (8) such that

(x(n), y(n)) ∈ S, ∀n ≥ n0, (12)

for some n0 ∈ N, where S is one of the following subsets of R2:{
x ≥ 1 + δ, y ≥ −1

3
+ δ

}
,

{
x ≤ −δ, y ≤ −1

3
− δ

}
,{

x ≤ 4
3
+ δ, y ≥ 1 + δ

}
,

{
x ≥ 4

3
+ δ, y ≤ −δ

}
,

(13)
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with δ > 0.

Proof.

(1) If S = {x ≥ 1 + δ, y ≥ − 1
3 + δ} and (12) holds, then (7) implies that

x(n) = x(0) +
p

Γ(q)

n0

∑
i=1

Γ(n − i + q)
Γ(n − i + 1)

(3y(i − 1) + 1)x(i − 1)(1 − x(i − 1))

+
p

Γ(q)

n

∑
i=n0+1

Γ(n − i + q)
Γ(n − i + 1)

(3y(i − 1) + 1)x(i − 1)(1 − x(i − 1))

≤ x(0) +
p

Γ(q)

n0

∑
i=1

(3y(i − 1) + 1)x(i − 1)(1 − x(i − 1))

−3δ2(1 + δ)
p

Γ(q)

n

∑
i=n0+1

Γ(n − i + q)
Γ(n − i + 1)

, (14)

for n ≥ n0 + 1. By applying [42] (Proposition 1), (15) gives limn→∞ x(n) = −∞, which
contradicts x(n) ≥ 1 + δ for n ≥ n0. The proof is completed for the first subset of (13).

(2) If S = {x ≤ −δ, y ≤ − 1
3 − δ} and (12) holds, then (7) implies that

x(n) ≥ x(0) +
p

Γ(q)

n0

∑
i=1

(3y(i − 1) + 1)x(i − 1)(1 − x(i − 1))

+3δ2(1 + δ)
p

Γ(q)

n

∑
i=n0+1

Γ(n − i + q)
Γ(n − i + 1)

, (15)

for n ≥ n0 + 1. By applying [42] (Proposition 1), (15) gives limn→∞ x(n) = ∞, which
contradicts x(n) ≤ −δ for n ≥ n0. The proof is completed for the second subset
of (13).

(3) If S = {x ≤ 4
3 − δ, y ≥ 1 + δ} and (12) holds, then (7) implies that

y(n) ≤ y(0) +
p

Γ(q)

n0

∑
i=1

(−3x(i − 1) + 4)y(i − 1)(1 − y(i − 1))

−3δ2(1 + δ)
p

Γ(q)

n

∑
i=n0+1

Γ(n − i + q)
Γ(n − i + 1)

, (16)

for n ≥ n0 + 1. By applying [42] (Proposition 1), (16) gives limn→∞ y(n) = −∞, which
contradicts y(n) ≥ 1+ δ for n ≥ n0. The proof is completed for the third subset of (13).

(4) If S = {x ≥ 4
3 + δ, y ≤ −δ} and (12) holds, then (7) implies that

y(n) ≥ y(0) +
p

Γ(q)

n0

∑
i=1

(−3x(i − 1) + 4)y(i − 1)(1 − y(i − 1))

+3δ2(1 + δ)
p

Γ(q)

n

∑
i=n0+1

Γ(n − i + q)
Γ(n − i + 1)

, (17)

for n ≥ n0 + 1. By applying [42] (Proposition 1), (17) gives limn→∞ y(n) = ∞, which
contradicts y(n) ≥ −δ for n ≥ n0. The proof is completed for the fourth subset of (13).

The whole proof is thus completed.

Remark 1. Theorem 2 asserts the non-existence of an attractor of (8) within any subsets shown
in (13).
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4. Non-Existence of Hidden Attractors

To numerically find hidden attractors, it is necessary to determine the stability of the
system equilibria.

Proposition 1. The equilibria of system (8) are

E1 =

(
4
3

,−1
3

)
, E2 = (0, 0), E3 = (1, 0), E4 = (0, 1), E5 = (1, 1). (18)

Proof. For 0 < q < 1, by using the explicit form of f (u) given by (9), the equilibrium
means that u(n) = u(0) for all n ≥ 1. This is equivalent to the equation f (u(0)) = 0. By (9),
the equation f (u(0)) = 0 becomes:

(3y(0) + 1)x(0)(1 − x(0)) = 0, (19)

(−3x(0) + 4)y(0)(1 − y(0)) = 0, (20)

with solutions (18).

The Jacobian of the function (9)

J(x, y) = p
(
(3y + 1)(1 − 2x) 3x(1 − x)

−3y(1 − y) (4 − 3x)(1 − 2y)

)
, (21)

evaluated at equilibria Ei, i = 1, 2, . . . , 5, gives the spectrum of eigenvalues σ as shown in
Table 1.

Table 1. Spectrum σ of eigenvalues of J evaluated at equilibria Ei, i = 1, 2, . . . , 5.

E σ(J)

E1 (− 4p
3 ı, 4p

3 ı)
E2 (p, 4p)
E3 (−p, p)
E4 (−4p, 4p)
E5 (−4p,−p)

The stability of the linearized FO system implies the stability of the nonlinear FO
system (8), which conforms to [44] (Theorem 1.4). The system (8) is asymptotically stable if
all the eigenvalues belong to the following set Sq:

Sq =

{
z ∈ C : |z| <

(
2 cos

|λ| − π

2 − q

)q

and |λ| > qπ

2

}
,

where λ denotes the argument of the eigenvalue.
Obviously, if there exist eigenvalues not belonging to Sq, then the system is unstable.

Theorem 3. The system (8) is unstable for all q ∈ (0, 1) and p.

Proof. Consider E1, for which the arguments of eigenvalues {e1, e2} are λ1,2 = ±π
2 and

|z| = p 4
3 . For both eigenvalues {e1, e2}, the first inequality in Sq becomes (see the first

column in Table 2)

p <
3
4

(
2 cos

|λ| − π

2 − q

)q
= 2q−23 cosq π

2(2 − q)
.

The second inequality in Sq is verified for both arguments λ1,2.
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For E5, λ1,2 = −π, and the first inequality reads

4p <
(

2 cos
0

2 − q

)q

= 2q,

which is the result in the last column of Table 2. The second inequality is verified for all
q ∈ (0, 1).

Because for equilibria E2,3,4, one argument is zero, the second inequality is not verified,
so the eigenvalues do not belong to Sq, e /∈ Sq. Therefore, E2,3,4 are unstable and the system
is unstable for all q ∈ (0, 1) and p (the second column in Table 2).

Table 2. Stability of equilibria Ei, i = 1, 2, . . . , 5.

E1 E2,3,4 E5

stable for p < 3 × 2q−2 cosq π
2(2−q) Unstable for all p and q ∈ (0, 1) stable for p < 2q−2

In the following simulations, unless otherwise mentioned, 3500 iterations were per-
formed for all examples, and the last 600 points are plotted.

The stability regions in the plane (q, p) for equilibria E1,5 are plotted in Figure 1a,b.
The region where all equilibria are unstable is shown in Figure 1c (light brawn). Figure 1d,e
presents orbits starting from initial conditions near equilibria E1 and E5. The spiral orbit of
E1 corresponds to complex eigenvalues of the system at this equilibrium, while the orbit of
E5 corresponds to real eigenvalues.

Figure 1. Stability regions of equilibria. (a) Stability region of E1 (grey plot); (b) Stability region of E5

(grey plot); (c) Instability region of all equilibria (light red plot); (d) Phase plot of a representative
orbit from the point within the stability region of E1, with p = 0.5 and q = 0.5 (Figure 1a) from initial
condition close to E1; (e) phase plot of a representative orbit from a point within the stability region
of E1, with p = 0.1 and q = 0.5 (Figure 1b) from initial condition close to E5.

It is observed that, sometimes, possible system dynamics are richer than what can
be revealed through examining bifurcation diagrams (BDs). As experienced, the BDs are
suggestive and they show what parameter values the system can take on, and therefore
helps to identify potential hidden attractors coexisting with other attractors. Consider,
for example, the BDs of the component x vs. parameter q for fixed p = 0.55 with initial
condition (x0, y0) = (0.1, 0.3) (Figure 2a), and for q = 0.4 vs. parameter p ∈ (0.3, 0.6) (the
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largest range of p for q = 0.4) (Figure 2b). As expected, Figure 2 reveals the influence of the
IO logistic map. However, there are some significant differences, which will be illustrated
and discussed next.

Figure 2. (a) The BD for p = 0.55 vs. q obtained for (x0, y0) = (0.1, 0.3); (b) the BD and for q = 0.4 vs.
p ∈ (0.3, 0.6) for (x0, y0) = (0.1, 0.3).

The first interesting phenomenon observed is related to the apparent “bifurcation
points” (see the zoomed in rectangular region in Figure 2a). This “explosion” takes place
for a relatively large range of q values, which was also found from some other discrete FO
systems (e.g., [45,46]).

Note that this system cannot be numerically characterized in some regions of the
(p, q)-space. There exist some values of p and q for which the orbits are unbounded for
whatever initial conditions (x0, y0), as shown by the BD in Figure 2b, where for q = 0.4,
the upper bound of the range of p values could only be chosen to be p = 0.6 (see also
Theorem 2).

Now, consider the BDs with respect to q ∈ [0.1, 0.5] and p = 0.4, for two different initial
conditions (0.1, 0.3) (blue) and (0.5, 0.5) (red) (Figure 3a), and with respect to p ∈ [0.3, 0.5]
and q = 0.295, for initial conditions (0.1, 0.3) (blue) and (0.9, 0.6) (red) (Figure 3b).

Within the BD with respect to q, we denote the bifurcation sets of points corresponding
to a single initial condition (Poincaré vertical slices through BD) as bifurcative sets (BSs).
For better visualization, within the BD in Figure 3a, the BS corresponding to (0.1, 0.3) is
colored blue, while the BD corresponding to (0.5, 0.5) is colored red. Similarly, the BD with
respect to p, shown in Figure 3b, is composed of two BSs. To each point on the p- or q-axis,
there is a vertical line of points, colored red or blue on the corresponding BS.

The dotted line in Figure 3a indicates a chosen representative case, with q = 0.28 for
p = 0.55. Two different attractors can be seen in the two red and blue BSs: a four-period-
like attractor (red bullets numbered 1, 2, 3, and 4; see also Figure 4a, where the light red
lines indicate the way in which the points 1, 2, 3, 4 are visited) and a two-band, chaotic-like
attractor (dark blue tick lines; see also Figure 4b). The zoomed region around the point
1 (Figure 4c) shows the last 600 points, which reveals the slow convergence of this orbit
towards a regular-like state. The schematic arrows marked on the time series in Figure 4d
indicate the order in which the points 1, 2, 3, and 4 are visited by the orbit.
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Figure 3. (a) The BD for p = 0.55 vs. q with two BSs: one obtained for (x0, y0) = (0.1, 0.3), in Figure 2a
(red plot), and one for a second initial condition (x0, y0) = (0.5, 0.5) (blue plot); (b) the BD for q = 0.4
vs. p ∈ (0.3, 0.6) with two BSs: one for (x0, y0) = (0.1, 0.3), in Figure 2b (red plot), and a new one
for (x0, y0) = (0.9, 0.6) (blue plot). Dotted line in the BD in Figure 2b indicates the existence of two
different attractors: a four-periodic-like orbit (red bullets) and a two-period chaotic band orbit (dark
blue segments).

Figure 4. Two attractors for p = 0.55 and q = 0.28: (a) The four-periodic-like attractor for (x0, y0) =

(0.1, 0.3); (b) the two-period chaotic-like attractor for (x0, y0) = (0.5, 0.5); (c) zoomed region around
the point 1 of the periodic-like orbit underlines the slow convergence of the orbit; (d) time series of
the periodic-like orbit.

From experience, this “coexistence” of attractors or “multistability” suggests the
possible existence of hidden attractor(s). However, instead of the two initial conditions
(0.1, 0.3) (red BS) and (0.5, 0.5) (blue BS) (Figure 5a), if one considers three initial conditions
(0.1, 0.3) (red BS), (0.5, 0.5) (blue BS) and (0.01, 0.7) (green plot) (Figure 5b), then one
can see that there exist three BSs, which allow to find three possibly different attractors
(see dotted lines I, II, and III within the three attractors) and this phenomenon seems to
continue indefinitely.
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Figure 5. The BDs of system (8) for p = 0.55. (a) Initial conditions (0.1, 0.3) (red BS) and (0.5, 0.5)
(blue BS); (b) Initial conditions (0.1, 0.3) (red BS), (0.5, 0.5) (blue BS) and (0.01, 0.7) (green plot).

To verify the influence of the maximum number of iterations on this phenomenon,
consider two BDs generated with the above same three initial conditions, but with different
numbers of iterations, 3500 and 5000 (Figure 6a,b), respectively. The iteration number affects
the shape of BSs only slightly (compare the green two-period chaotic bands generated after
3500 iterations in Figure 6a and the one-period chaotic band in Figure 6b generated after
5000 iterations). However, the existence of different BSs is not affected by the maximum
number of iterations.

To this end, one can conclude that the BSs are non-invariant with respect to the initial
conditions and, in fact, their positions change significantly with initial conditions in the
fractional order space. Similarly, this happens also in the parameter space. While in the
parameter space, the non-invariance is evident for all parameter values p, in the fractional
order space, this property is conceived only for small values of q (once q grows over
q ≈ 0.75, the phenomenon vanishes, see the right vertical dotted line in Figure 3a).

The above-described numerical simulations on the complex dynamics of system (8)
are summarized as follows.

Proposition 2. The BDs of the FO system (8), obtained with the discretization (7), presents
non-invariance with respect to the initial conditions in both the fractional order space and the
parameter space.

Remark 2. Some interesting observations are worth highlighting.

(i) The shapes of BSs approximately preserve the shapes for different initial conditions, but move
along the p-axis.
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(ii) This delay-like phenomenon with respect to the initial conditions (the BSs seem to move
“forward” or “backward” on the BDs (see the dotted lines I, I I, and I I I in Figure 5, as the
initial conditions are changing) was already found in a continuous-time FO system [47], where
the “delay” was observed with respect to the integration step-size of the numerical method
used.

(iii) It is interesting to compare the above results with the case of the Feigenbaum attractor of the
IO logistic map x(n + 1) = px(n)(1 − x(n)), for the limiting value p∞ = 3.569946 . . .
[48], which, however, is not an attracting set and for which there is no sensitive dependence on
initial conditions.

By summarizing the investigation in this work, it is concluded that, because of the
mentioned dependence on initial conditions, it is impossible to find hidden attractors in
the FO system (8) by numerically searching the paths of system orbits by testing initial
conditions within neighborhoods of equilibria.

Figure 6. The BDs of system (8) for p = 0.55, obtained with the same three different initial conditions
but with different maximum iteration numbers: (a) 3500 iterations; (b) 5000 iterations.

5. Discussion

In this paper, the system of coupled logistic maps modeled by Caputo’s delta fractional
difference was studied, both analytically and numerically. The system boundedness
and global dynamics were analyzed in detail. Extensive numerical simulations were
performed on the system dynamics, revealing the impossibility of finding hidden attractors
by numerically testing the orbits starting from initial conditions within neighborhoods of
equilibria. The main reason appears to be that, at least for the considered system, the BSs
forming the BDs for small values of q (about q < 0.75) are different for different initial
conditions; thereby, the existence of hidden attractors cannot be realized numerically, as
typical for continuous integer-order systems. It seems that the coexistence of attractors as
necessary for the existence of hidden attractors cannot be well-defined for such a discrete
fractional-order system, perhaps also for other discrete fractional-order systems. In general,
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the phenomenon of “coexistence of attractors” for discrete fractional-order systems needs
further investigation.

A possible future research direction is to consider k-periodic problems given by the
condition u(k) = u(0) for k ≥ 1, regarding the existence, uniqueness, and bifurcation of
solutions, similarly to the periodic boundary value problem x(0) = x(T) for functional
differential equations [49–51].
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Abstract: In this research paper, we consider a class of a coupled system of fractional integrodif-
ferential equations in the frame of Hilfer fractional derivatives with respect to another function.
The existence and uniqueness results are obtained in weighted spaces by applying Schauder’s and
Banach’s fixed point theorems. The results reported here are more general than those found in the
literature, and some special cases are presented. Furthermore, we discuss the Ulam–Hyers stability
of the solution to the proposed system. Some examples are also constructed to illustrate and validate
the main results.
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1. Introduction

Recently, the theory of fractional differential equations (FDEs) has become an active
space of exploration. This is because of its accurate outcomes compared with the classical
differential equations (DEs). Indeed, fractional calculus has been improving the mathemati-
cal modeling of sundry phenomena in science and engineering, for more details, refer to the
monographs [1–5]. The fundamental benefit of using fractional-order derivatives (FODs)
rather than integer-order derivatives (IODs) is that IODs are local in nature, whereas FODs
are global in nature. Numerous physical phenomena cannot be modeled for a single DE.
To overcome this challenges, these kinds of phenomena can be given the assistance of
coupled systems of DEs. As of late, coupled systems of FDEs have been investigated with
various methodologies, see [6–10].

The existence and uniqueness results play a significant part in the theory of FDEs.
The previously mentioned region has been investigated well for classical DEs. However,
for FDEs, there are many theoretical aspects that need further investigation and exploration.
The existence and uniqueness results of FDEs have been very much concentrated up by
using Riemann–Liouville (R-L), Caputo, and Hilfer FDs, see [11–14].

Recently, notable consideration has been given to the qualitative analysis of initial
and boundary value problems for FDEs with ψ-Caputo and ψ-Hilfer FDs introduced
by Almedia [15] and Sousa et al. [16], respectively, see [17–24]. By considering physical
phenomena which are modeled by utilizing classical FDs, the importance of ψ-Hilfer FD
can be discussed by redesigning and remodeling such models under ψ-Hilfer FD.

In this regard, the most relaxing technique for stability for functional equations was
presented by Ulam [25] and Hyers [26] which is famous for Hyers–Ulam (in short H-U)
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stability. The first investigation into H-U’s stability for DEs was presented by Obloza [27].
Moreover, Li and Zada in [28] provided connections between the stability of U-H and
uniform exponential over Banach space. These types of stability have been very well-
investigated for FDEs, see [29–34]. The existence and stability of solutions of the following
ϑ-Hilfer type FDE:⎧⎪⎨⎪⎩

D
ρ1,ρ2
a+ ,ϑ(κ)υ(κ) = f (κ, υ(κ),Dρ1,ρ2

a+ ,ϑ(κ)υ(κ)), κ ∈ (a, T],
0 < ρ1 < 1, 0 ≤ ρ2 ≤ 1,

I
1−γ
a+ ,ϑ(κ)υ(κ)

∣∣∣
κ=a

= υa, γ = ρ1 + ρ2(1 − ρ1)

have been investigated by Vanterler et al. [35]. Abdo and Panchal in [36] proved the
existence, uniqueness and Ulam–Hyers stability of the following ϑ-Hilfer type fractional
integrodifferential equation:⎧⎪⎨⎪⎩

D
ρ1,ρ2
a+ ,ϑ(κ)υ(κ) = f (κ, υ(κ), χυ(κ)), κ ∈ (a, T],

0 < ρ1 < 1, 0 ≤ ρ2 ≤ 1,
I

1−γ
a+ ,ϑ(κ)υ(κ)

∣∣∣
κ=a

= υa, γ = ρ1 + ρ2(1 − ρ1)

where χυ(κ) =
∫ κ

0 h(κ, s, υ(s))ds, Dρ1,ρ2
a+ ,ϑ(κ) and I

1−γ
a+ ,ϑ(κ) represent ϑ-Hilfer FD and ϑ-

Reimann-Liouville FI, respectively.
Motivated by the above discussion, we investigate the existence, uniqueness, and H-U

stability of the solutions of a coupled system involving aϑ-Hilfer FD of the type:⎧⎪⎪⎨⎪⎪⎩
D

ρ1,ρ2
a+ ,ϑ(κ)υ(κ) = f (κ, υ(κ), Iρ3

a+ ,ϑ(κ)ω(κ)), κ ∈ J := (a, b],
D

ρ1,ρ2
a+ ,ϑ(κ)ω(κ) = g(κ, ω(κ), Iρ3

a+ ,ϑ(κ)υ(κ)), κ ∈ J := (a, b],

I
1−γ
a+ ,ϑ(κ)υ(κ)

∣∣∣
κ=a

= υa, I1−γ
a+ ,ϑ(κ)ω(κ)

∣∣∣
κ=a

= ωa,
(1)

where

(i) 0 < ρ1 < 1, 0 ≤ ρ2 ≤ 1, ρ3 > 0, γ = ρ1 + ρ2(1 − ρ1), and υa, ωa ∈ R;

(ii) D
ρ1,ρ2
a+ ,ϑ(κ) represents the ϑ-Hilfer FD of order ρ1 and type ρ2.

(iii) I
ρ3
a+ ,ϑ(κ) and I

1−γ
a+ ,ϑ(κ) represent the ϑ-R-L fractional integrals of order ρ3 and 1 − γ,

respectively;

(iv) f , g : J× C × C → R are continuous and nonlinear functions on a Banach space C;

(v) ϑ ∈ C1(J,R) are an increasing function with ϑ′(κ) �= 0, for all κ ∈ J.

We pay attention to the topic of a novel operator with respect to another function,
as it covers many fractional systems that are special cases for various values of ϑ. More
precisely, the existence, uniqueness, and U-H stability of solutions to the system (1) are
obtained in weighted spaces by using standard fixed point theorems (Banach-type and
Schauder type) along with Arzelà–Ascoli’s theorem.

The content of this paper is organized as follows: Section 2 presents some required
results and preliminaries about ϑ-Hilfer FD. Our main results for the system (1) are ad-
dressed in Section 3. Some examples to explain the acquired results are given in Section 4.
In the end, we epitomize our study in the Conclusion section.

2. Preliminaries

In this section, we recall the concept of advanced fractional calculus. Throughout
the paper, we assume that J := (a, b] ⊂ R, (a < b), γ = ρ1 + ρ2(1 − ρ1), 0 < ρ1 < 1,
0 ≤ ρ2 ≤ 1, and ϑ : J → R is an increasing linear function which satisfies ϑ′(κ) �= 0, for all
κ ∈ J. Let

C = C(J,R) =
{

φ : J → R; ‖φ‖∞ = max
κ∈J

|φ(κ)|
}
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and

C1−γ,ϑ = C1−γ,ϑ(J,R) =
{

φ : J → R; Dρ1,ρ2
a+ ,ϑ φ ∈ C; ‖φ‖1−γ,ϑ =

∥∥∥(ϑ(κ)− ϑ(a))1−γφ(κ)
∥∥∥

∞

}
.

where 0 ≤ γ < 1. Obviously, C and C1−γ,ϑ are Banach spaces under ‖φ‖∞ and ‖φ‖1−γ,ϑ, re-
spectively. Hence the products C × C and C1−γ,ϑ ×C1−γ,ϑ are also Banach spaces with norms

‖(φ1, φ2)‖∞ = ‖φ1‖∞ + ‖φ2‖∞

and
‖(φ1, φ2)‖1−γ,ϑ = ‖φ1‖1−γ,ϑ + ‖φ2‖1−γ,ϑ

respectively. Let z ∈ C with Re(z) > 0. Then, the gamma function Γ(z) is defined by [37]

Γ(z) =
∫ ∞

0
uz−1e−udu, (2)

and let z1, z2 ∈ C with Re(z1), Re(z2) > 0. Then, the beta function B(z1, z2) is defined
by [37]

B(z1, z2) =
∫ 1

0
uz1−1(1 − u)z2−1du.

Note that, beta function and gamma function have the following relation

B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
. (3)

Definition 1 ([2]). The ϑ-R-L fractional integral of order ρ1 > 0 for a function φ(κ) is given by

I
ρ1
a+ ,ϑ(κ)φ(κ) =

1
Γ(ρ1)

∫ κ

a
ϑ′(t)(ϑ(κ)− ϑ(t))ρ1−1φ(t)dt,

where Γ(·) is the gamma function defined by (2).

Definition 2 ([16]). The ϑ−Hilfer FD of a function φ(κ) of order ρ1 and type ρ2 is defined by

D
ρ1,ρ2
a+ ,ϑ(κ)φ(κ) = I

ρ2(1−ρ1)
a+ ,ϑ(κ)

(
1

ϑ′(κ)
d

dκ

)
I
(1−ρ2)(1−ρ1)
a+ ,ϑ(κ) φ(κ),

where 0 < ρ1 < 1, 0 ≤ ρ2 ≤ 1, and κ > a.

Lemma 1 ([2,16]). Let ρ1, η, δ > 0. Then

1. I
ρ1
a+ ,ϑ(κ) I

η

a+ ,ϑ(κ)φ(κ) = I
ρ1+η

a+ ,ϑ(κ)φ(κ).

2. I
ρ1
a+ ,ϑ(κ)(ϑ(κ)− ϑ(a))δ−1 = Γ(δ)

Γ(ρ1+δ)
(ϑ(κ)− ϑ(a))ρ1+δ−1.

We note also that Dρ1,ρ2
a+ ,ϑ(κ)(ϑ(κ)− ϑ(a))γ−1 = 0, where γ = ρ1 + ρ2(1 − ρ1).

Lemma 2 ([16]). Let φ ∈ C, ρ1 ∈ (0, 1) and ρ2 ∈ [0, 1], then

(
I

ρ1
a+ ,ϑ(κ) D

ρ1,ρ2
a+ ,ϑ(κ)φ

)
(κ) = φ(κ)− (ϑ(κ)− ϑ(a))ζ−1

Γ(γ)
lim
κ→a

(
I
(1−ρ2)(1−ρ1)
a+ ,ϑ(κ) φ

)
(κ),

where φ
[n−k]
ϑ (κ) =

(
1

ϑ′(κ)
d

dκ

)[n−k]
φ(κ) and γ = ρ1 + ρ2(1 − ρ1).

Theorem 1 ([38] (Banach’s Theorem)). Let Ω �= ∅ be a closed subset of a Banach space X . Then
any contraction mapping T : Ω → Ω has a unique fixed point.
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Theorem 2 ([39] (Schauder’s Theorem)). Let Ω be a non-empty closed and convex subset of a
Banach space X . If T : Ω → Ω is a continuous such that T (Ω) is a relatively compact subset of
X , then T has at least one fixed point in Ω.

3. Main Results

In this section, we establish the existence, uniqueness, and U-H stability results for the
system (1). To obtain our principle results, we consider the following assumptions:

(Hy1) f , g : J × C × C → R are continuous such that for each (κ, υ, ω), (κ, υ∗, ω∗) ∈
J× C × C there exist κ f , κg, κ f , κg > 0 with

| f (κ, υ, ω)− f (κ, υ∗, ω∗)| ≤ κ f |υ − υ∗|+ κ f |ω − ω∗|,

|g(κ, υ, ω)− g(κ, υ∗, ω∗)| ≤ κg|υ − υ∗|+ κg|ω − ω∗|.

(Hy2) f , g : J × C × C → R are completely continuous such that for each (κ, υ, ω) ∈
J× C × C there exist ϕ f , ϕg, ϕ f , ϕg > 0 with

| f (κ, υ, ω)| ≤ ϕ f |υ|+ ϕ f |ω|,

|g(κ, υ, ω)| ≤ ϕg|υ|+ ϕg|ω|.

Theorem 3. Let 0 < ρ1 < 1, 0 ≤ ρ2 ≤ 1 and γ = ρ1 + ρ2(1 − ρ1). If (υ, ω) ∈
C1−γ,ϑ×C1−γ,ϑ satisfies ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D
ρ1,ρ2
a+ ,ϑ(κ)υ(κ) = h1(κ), κ ∈ J,

D
ρ1,ρ2
a+ ,ϑ(κ)ω(κ) = h2(κ), κ ∈ J,

I
1−γ
a+ ,ϑ(κ)υ(κ)

∣∣∣
κ=a

= υa,

I
1−γ
a+ ,ϑ(κ)ω(κ)

∣∣∣
κ=a

= ωa,

then ⎧⎨⎩ υ(κ) = (ϑ(κ)−ϑ(a))γ−1

Γ(γ) υa + I
ρ1
a+ ,ϑ(κ)h1(κ), κ ∈ J,

ω(κ) = (ϑ(κ)−ϑ(a))γ−1

Γ(γ) ωa + I
ρ1
a+ ,ϑ(κ)h2(κ), κ ∈ J.

Proof. Let ⎧⎨⎩ D
ρ1,ρ2
a+ ,ϑ(κ)υ(κ) = h1(κ), κ ∈ J,

I
1−γ
a+ ,ϑ(κ)υ(κ)

∣∣∣
κ=a

= υa.

Applying the integral Iρ1
a+ ,ϑ(κ) on the equation D

ρ1,ρ2
a+ ,ϑ(κ)υ(κ) = h1(κ) and using Lemma 2,

we have

υ(κ)− (ϑ(κ)− ϑ(a))γ−1

Γ(γ)
I
(1−ρ2)(1−ρ1)
a+ ,ϑ(κ) υ(a) = I

ρ1
a+ ,ϑ(κ)h1(κ),

which implies

υ(κ) =
(ϑ(κ)− ϑ(a))γ−1

Γ(γ)
I

1−γ)
a+ ,ϑ(κ)υ(a) + I

ρ1
a+ ,ϑ(κ)h1(κ)

=
(ϑ(κ)− ϑ(a))γ−1

Γ(γ)
υa + I

ρ1
a+ ,ϑ(κ)h1(κ).

Similarly,

ω(κ) =
(ϑ(κ)− ϑ(a))γ−1

Γ(γ)
ωa + I

ρ1
a+ ,ϑ(κ)h2(κ).
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3.1. Existence Result

Theorem 4. Assume that (Hy1) and (Hy2) hold. If ℵ1 := Λ
2 (ϑ(b) − ϑ(a))ρ1+ρ3 < 1, then

system (1) has at least one solution, where Λ :=
((

ϕ f + ϕg

)B(γ,ρ1)
Γ(ρ1)

+
(

ϕ f + ϕg

)B(γ,ρ1+ρ3)
Γ(ρ1+ρ3)

)
,

and B(·, ·) is a beta function defined by (3).

Proof. Consider a closed ball

Sβ =

{
(υ, ω) ∈ C1−γ,ϑ×C1−γ,ϑ : ‖(υ, ω)‖C1−γ,ϑ

≤ β, ‖υ‖C1−γ,ϑ
≤ β

2
, ‖ω‖C1−γ,ϑ

≤ β

2

}
,

where β ≥ ℵ�1
1−ℵ1

with ℵ�1 := |υa |+|ωa |
Γ(γ) . In view of Theorem 3, we transform system (1) into a

fixed point system. Define the operator Π = (Π1, Π2) on Sβ, where⎧⎨⎩ Π1(υ(κ), ω(κ)) = (ϑ(κ)−ϑ(a))γ−1

Γ(γ) υa + I
ρ1
a+ ,ϑ(κ) f (κ, υ(κ), Iρ3

a+ ,ϑ(κ)ω(κ)), κ ∈ J,

Π2(ω(κ), υ(κ)) = (ϑ(κ)−ϑ(a))γ−1

Γ(γ) ωa + I
ρ1
a+ ,ϑ(κ)g(κ, ω(κ), Iρ3

a+ ,ϑ(κ)υ(κ)), κ ∈ J.
(4)

For any (υ, ω) ∈ Sβ, we have

‖Π(υ, ω)‖C1−γ,ϑ
≤ ‖Π1(υ, ω)‖C1−γ,ϑ

+ ‖Π2(ω, υ)‖C1−γ,ϑ
. (5)

From (4), we obtain

|Π1(υ(κ), ω(κ))| ≤ (ϑ(κ)− ϑ(a))γ−1

Γ(γ)
|υa|+ I

ρ1
a+ ,ϑ(κ)

∣∣∣ f (κ, υ(κ), Iρ3
a+ ,ϑ(κ)ω(κ))

∣∣∣
≤ (ϑ(κ)− ϑ(a))γ−1

Γ(γ)
|υa|+ I

ρ1
a+ ,ϑ(κ)

(
ϕ f |υ(κ)|+ ϕ f I

ρ3
a+ ,ϑ(κ)|ω(κ)|

)
≤ (ϑ(κ)− ϑ(a))γ−1

Γ(γ)
|υa|+ ϕ f

(
I

ρ1
a+ ,ϑ(κ)|υ(κ)|

)
+ ϕ f

(
I

ρ1+ρ3
a+ ,ϑ(κ)|ω(κ)|

)
≤ (ϑ(κ)− ϑ(a))γ−1

Γ(γ)
|υa|+ ϕ f ‖υ‖C1−γ,ϑ

I
ρ1
a+ ,ϑ(κ)(ϑ(κ)− ϑ(a))γ−1

+ϕ f ‖ω‖C1−γ,ϑ
I

ρ1+ρ3
a+ ,ϑ(κ)(ϑ(κ)− ϑ(a))γ−1

=
(ϑ(κ)− ϑ(a))γ−1

Γ(γ)
|υa|+ ϕ f ‖υ‖C1−γ,ϑ

Γ(γ)
Γ(ρ1 + γ)

(ϑ(κ)− ϑ(a))ρ1+γ−1

+ϕ f ‖ω‖C1−γ,ϑ

Γ(γ)
Γ(ρ1 + ρ3 + γ)

(ϑ(κ)− ϑ(a))ρ1+ρ3+γ−1,

which implies

‖Π1(υ, ω)‖C1−γ,ϑ
≤ |υa|

Γ(γ)
+

ϕ f β

2
Γ(γ)

Γ(ρ1 + γ)
(ϑ(b)− ϑ(a))ρ1

+
ϕ f β

2
Γ(γ)

Γ(ρ1 + ρ3 + γ)
(ϑ(b)− ϑ(a))ρ1+ρ3

≤ |υa|
Γ(γ)

+
β

2

(
ϕ f

B(γ, ρ1)

Γ(ρ1)
+ ϕ f

B(γ, ρ1 + ρ3)

Γ(ρ1 + ρ3)

)
(ϑ(b)− ϑ(a))ρ1+ρ3 . (6)

Similarly, we obtain

‖Π2(ω, υ)‖C1−γ,ϑ
≤ |ωa|

Γ(γ)
+

β

2

(
ϕg

B(γ, ρ1)

Γ(ρ1)
+ ϕg

B(γ, ρ1 + ρ3)

Γ(ρ1 + ρ3)

)
(ϑ(b)− ϑ(a))ρ1+ρ3 . (7)
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In Equations (6) and (7) along with (5), give

‖Π(υ, ω)‖C1−γ,ϑ
≤ |υa|+ |ωa|

Γ(γ)
+

β

2
Λ(ϑ(b)− ϑ(a))ρ1+ρ3

≤ ℵ�1 + βℵ1 ≤ β(1 − ℵ1) + βℵ1 = β. (8)

Hence Π
(
Sβ

)
⊂ Sβ.

Now, we prove that Π is continuous and compact. Let a sequence (υn, ωn) in Sβ such
that (υn, ωn) → (υ, ω) in Sβ as n → ∞, so, we have

‖Π(υn, ωn)(κ)− Π(υ, ω)(κ)‖C1−γ,ϑ

=‖Π1(υn, ωn)(κ) + Π2(ωn, υn)(κ)− Π1(υ, ω)(κ)− Π2(ω, υ)(κ)‖C1−γ,ϑ

≤‖( Π1(υn, ωn)− Π1(υ, ω))(κ)‖C1−γ,ϑ
+ ‖( Π2(ωn, υn)− Π2(ω, υ))(κ)‖C1−γ,ϑ

≤ (ϑ(κ)− ϑ(a))1−γ I
ρ1
a+ ,ϑ(κ)

∣∣∣ f (κ, υn(κ), I
ρ3
a+ ,ϑ(κ)ωn(κ))− f (κ, υ(κ), Iρ3

a+ ,ϑ(κ)ω(κ))
∣∣∣

+(ϑ(κ)− ϑ(a))1−γ I
ρ1
a+ ,ϑ(κ)

∣∣∣g(κ, ωn(κ), I
ρ3
a+ ,ϑ(κ)υn(κ))− g(κ, ω(κ), Iρ3

a+ ,ϑ(κ)υ(κ))
∣∣∣

≤ (ϑ(κ)− ϑ(a))1−γ I
ρ1
a+ ,ϑ(κ)

(
κ f |υn(κ)− υ(κ)|+ κ f I

ρ3
a+ ,ϑ(κ)|ωn(κ)− ω(κ)|

)
+(ϑ(κ)− ϑ(a))1−γ I

ρ1
a+ ,ϑ(κ)

(
κg|ωn(κ)− ω(κ)|+ κg I

ρ3
a+ ,ϑ(κ)|υn(κ)− υ(κ)|

)
≤ (ϑ(κ)− ϑ(a))1−γ

(
κ f ‖υn − υ‖C1−γ,ϑ

I
ρ1
a+ ,ϑ(κ)(ϑ(κ)− ϑ(a))γ−1

+κ f ‖ωn − ω‖C1−γ,ϑ
I

ρ1+ρ3
a+ ,ϑ(κ) (ϑ(κ)− ϑ(a))γ−1

)
+(ϑ(κ)− ϑ(a))1−γ

(
κg‖ωn − ω‖C1−γ,ϑ

I
ρ1
a+ ,ϑ(κ)(ϑ(κ)− ϑ(a))γ−1

+κg ‖υn − υ‖C1−γ,ϑ
I

ρ1+ρ3
a+ ,ϑ(κ) (ϑ(κ)− ϑ(a))γ−1

)
≤

(
κ f

Γ(γ)(ϑ(b)− ϑ(a))ρ1

Γ(ρ1 + γ)
+ κg

Γ(γ)(ϑ(b)− ϑ(a))ρ1+ρ3

Γ(ρ1 + ρ3 + γ)

)
‖υn − υ‖C1−γ,ϑ

+

(
κg

Γ(γ)(ϑ(b)− ϑ(a))ρ1

Γ(ρ1 + γ)
+ κ f

Γ(γ)(ϑ(b)− ϑ(a))ρ1+ρ3

Γ(ρ1 + ρ3 + γ)

)
‖ωn − ω‖C1−γ,ϑ

.

This implies that ‖Π(υn, ωn)− Π(υ, ω)‖C1−γ,ϑ
→ 0 as n → ∞. So, Π is continuous.

Moreover, Π is bounded on Sβ. Therefore, Π is uniformly bounded on Sβ.
To prove that Π is equicontinuous, we take κ1,κ2 ∈ J with κ1 < κ2 and for any

(υ, ω) ∈ Sβ, we obtain

|Π(υ, ω)(κ2)− Π(υ, ω)(κ1)|
≤ |Π1(υ, ω)(κ2)− Π1(υ, ω)(κ1)|+ |Π2(ω, υ)(κ2)− Π2(ω, υ)(κ1)|

≤
∣∣∣∣ (ϑ(κ2)− ϑ(a))γ−1 − ϑ(κ1)− ϑ(a))γ−1

Γ(γ)
υa + I

ρ1
a+ ,ϑ(κ2)

f (κ2, υ(κ2), I
ρ3
a+ ,ϑ(κ2)

ω(κ2))

− I
ρ1
a+ ,ϑ(κ1)

f (κ1, υ(κ1), I
ρ3
a+ ,ϑ(κ1)

ω(κ1))
∣∣∣

+

∣∣∣∣ (ϑ(κ2)− ϑ(a))γ−1 − ϑ(κ1)− ϑ(a))γ−1

Γ(γ)
ωa + I

ρ1
a+ ,ϑ(κ2)

g(κ2, ω(κ2), I
ρ3
a+ ,ϑ(κ2)

υ(κ2))

− I
ρ1
a+ ,ϑ(κ1)

g(κ1, ω(κ1), I
ρ3
a+ ,ϑ(κ1)

υ(κ1))
∣∣∣. (9)

Since f (·, υ(·), Iρ3
a+ ,ϑ(·)ω(·)) and g(·, ω(·), Iρ3

a+ ,ϑ(·)υ(·)) are continuous on J. Therefore,
there exist ξ f , ξg ∈ R such that∣∣∣ f (·, υ(·), Iρ3

a+ ,ϑ(·)ω(·))
∣∣∣ ≤ ξ f , and

∣∣∣g(·, ω(·), Iρ3
a+ ,ϑ(·)υ(·))

∣∣∣ ≤ ξg.
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Hence∣∣∣Iρ1
a+ ,ϑ(κ2)

f (κ2, υ(κ2), I
ρ3
a+ ,ϑ(κ2)

ω(κ2))− I
ρ1
a+ ,ϑ(κ1)

f (κ1, υ(κ1), I
ρ3
a+ ,ϑ(κ1)

ω(κ1))
∣∣∣

≤ 1
Γ(ρ1)

∫ κ1

a
ϑ′(t)

[
(ϑ(κ1)− ϑ(t))ρ1−1 − (ϑ(κ2)− ϑ(t))ρ1−1

]∣∣∣ f (t, υ(t), Iρ3
a+ ,ϑ(t)ω(t))

∣∣∣dt

+
1

Γ(ρ1)

∫ κ2

κ1

ϑ′(t)(ϑ(κ2)− ϑ(t))ρ1−1
∣∣∣ f (t, υ(t), Iρ3

a+ ,ϑ(t)ω(t))
∣∣∣dt

≤
ξ f

Γ(ρ1)

∫ κ1

a
ϑ′(t)

[
(ϑ(κ1)− ϑ(t))ρ1−1 − (ϑ(κ2)− ϑ(t))ρ1−1

]
dt

+
ξ f

Γ(ρ1)

∫ κ2

κ1

ϑ′(t)(ϑ(κ2)− ϑ(t))ρ1−1dt

=
ξ f

Γ(ρ1 + 1)
[
(ϑ(κ1)− ϑ(a))ρ1 + 2(ϑ(κ2)− ϑ(κ1))

ρ1 − (ϑ(κ2)− ϑ(a))ρ1
]

≤
2ξ f

Γ(ρ1 + 1)
(ϑ(κ2)− ϑ(κ1))

ρ1 . (10)

Similarly,∣∣∣Iρ1
a+ ,ϑ(κ2)

g(κ2, ω(κ2), I
ρ3
a+ ,ϑ(κ2)

υ(κ2))− I
ρ1
a+ ,ϑ(κ1)

g(κ1, ω(κ1), I
ρ3
a+ ,ϑ(κ1)

υ(κ1))
∣∣∣

≤ 2ξg

Γ(ρ1 + 1)
(ϑ(κ2)− ϑ(κ1))

ρ1 . (11)

Substituting (10) and (11) into (9), we obtain

|Π(υ, ω)(κ2)− Π(υ, ω)(κ1)| ≤ (ϑ(κ2)− ϑ(a))γ−1 − (ϑ(κ1)− ϑ(a))γ−1

Γ(γ)
(υa + ωa)

+
2
(

ξ f + ξg

)
Γ(ρ1 + 1)

(ϑ(κ2)− ϑ(κ1))
ρ1 .

Thus, |Π(υ, ω)(κ2)− Π(υ, ω)(κ1)| → 0, as κ1 → κ2. Thus, Π is relatively compact
on Sβ. It follows that Π is completely continuous due to the Arzela–Ascolli theorem.
An application Theorem 2 shows that system (1) has at least one solution.

3.2. Uniqueness Result

Theorem 5. Assume that (Hy1) holds. If maxκ∈J{ζ1, ζ2} = ζ < 1, then the system (1) has a
unique solution on J, where

ζ1 : =
(ϑ(b)− ϑ(a))ρ1

Γ(ρ1 + 1)
κ f +

(ϑ(b)− ϑ(a))ρ1+ρ3

Γ(ρ1 + ρ3 + 1)
κg,

ζ2 : =
(ϑ(b)− ϑ(a))ρ1

Γ(ρ1 + 1)
κg +

(ϑ(b)− ϑ(a))ρ1+ρ3

Γ(ρ1 + ρ3 + 1)
κ f

Proof. To demonstrate the desired result, we show that Π is a contraction. For each κ ∈ J

and (υ, ω), (υ�, ω�) ∈ Sβ, we have
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‖Π(υ, ω)− Π(υ�, ω�)‖C1−γ,ϑ

≤‖Π1(υ, ω)− Π1(υ
�, ω�)‖C1−γ,ϑ

+ ‖Π2(ω, υ)− Π2(ω
�, υ�)‖C1−γ,ϑ

≤
∥∥∥Iρ1

a+ ,ϑ(κ) f (κ, υ(κ), Iρ3
a+ ,ϑ(κ)ω(κ))− I

ρ1
a+ ,ϑ(κ) f (κ, υ�(κ), Iρ3

a+ ,ϑ(κ)ω
�(κ))

∥∥∥
C1−γ,ϑ

+
∥∥∥Iρ1

a+ ,ϑ(κ)g(κ, ω(κ), Iρ3
a+ ,ϑ(κ)υ(κ))− I

ρ1
a+ ,ϑ(κ)g(κ, ω�(κ), Iρ3

a+ ,ϑ(κ)υ
�(κ))

∥∥∥
C1−γ,ϑ

≤ max
κ∈J

(ϑ(κ)− ϑ(a))1−γI
ρ1
a+ ,ϑ(κ)

∣∣∣ f (κ, υ(κ), Iρ3
a+ ,ϑ(κ)ω(κ))− f (κ, υ�(κ), Iρ3

a+ ,ϑ(κ)ω
�(κ))

∣∣∣
+ max

κ∈J
(ϑ(κ)− ϑ(a))1−γI

ρ1
a+ ,ϑ(κ)

∣∣∣g(κ, ω(κ), Iρ3
a+ ,ϑ(κ)υ(κ))− g(κ, ω�(κ), Iρ3

a+ ,ϑ(κ)υ
�(κ))

∣∣∣
≤ max

κ∈J
(ϑ(κ)− ϑ(a))1−γI

ρ1
a+ ,ϑ(κ)

[
κ f |υ(κ)− υ∗(κ)|+ κ f I

ρ3
a+ ,ϑ(κ)|ω(κ)− ω∗(κ)|

]
+ max

κ∈J
(ϑ(κ)− ϑ(a))1−γI

ρ1
a+ ,ϑ(κ)

[
κg|ω(κ)− ω∗(κ)|+ κgI

ρ3
a+ ,ϑ(κ)|υ(κ)− υ∗(κ)|

]
≤ (ϑ(b)− ϑ(a))ρ1

Γ(ρ1 + 1)
κ f ‖υ − υ∗‖C1−γ,ϑ

+
(ϑ(b)− ϑ(a))ρ1+ρ3

Γ(ρ1 + ρ3 + 1)
κ f ‖ω − ω∗‖C1−γ,ϑ

+
(ϑ(b)− ϑ(a))ρ1

Γ(ρ1 + 1)
κg‖ω − ω∗‖C1−γ,ϑ

+
(ϑ(b)− ϑ(a))ρ1+ρ3

Γ(ρ1 + ρ3 + 1)
κg‖υ − υ∗‖C1−γ,ϑ

= ζ1‖υ − υ∗‖C1−γ,ϑ
+ ζ2‖ω − ω∗‖C1−γ,ϑ

,

which implies

‖Π(υ, ω)− Π(υ�, ω�)‖C1−γ,ϑ
≤ ζ‖(υ, ω)− (υ∗, ω∗)‖C1−γ,ϑ

.

Since ζ < 1, Π is a contraction map. Thus, a unique solution exists on J for system (1) in
view of Theorem 1, and this completes the proof.

3.3. Special Cases

In this subsection, we present some special cases according to our previous findings:
Case 1: If ϑ(κ) = κ, then the system (1) is reduced to a Hilfer type coupled system of

FIDE of the form ⎧⎪⎪⎨⎪⎪⎩
D

ρ1,ρ2
a+ ,κυ(κ) = f (κ, υ(κ), Iρ3

a+ ,κω(κ)), κ ∈ J,
D

ρ1,ρ2
a+ ,κω(κ) = g(κ, ω(κ), Iρ3

a+ ,κυ(κ)), κ ∈ J,

I
1−γ
a+ ,κυ(κ)

∣∣∣
κ=a

= υa, I1−γ
a+ ,κω(κ)

∣∣∣
κ=a

= ωa,
(12)

where D
ρ1,ρ2
a+ ,κ and I

1−γ
a+ ,κ represent the Hilfer FD of order (ρ1, ρ2) and the R-L fractional

integral of order 1 − γ, respectively (see [5]). Therefore, the results in Theorems 4 and 5
can be presented by⎧⎨⎩ υ(κ) = (κ−a)γ−1

Γ(γ) υa + I
ρ1
a+ ,κ f (κ, υ(κ), Iρ3

a+ ,κω(κ)), κ ∈ J,

ω(κ) = (κ−a)γ−1

Γ(γ) ωa + I
ρ1
a+ ,κg(κ, ω(κ), Iρ3

a+ ,κυ(κ)), κ ∈ J.

Let

C1−γ =
{

φ : J → R; Dρ1,ρ2
a+ ,κφ ∈ C; ‖φ‖1−γ =

∥∥∥(κ − a)1−γφ(κ)
∥∥∥

∞

}
, 0 ≤ γ < 1.

Then the next two corollaries are a special case of the Theorems 4 and 5.
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Corollary 1. Assume that (Hy1) and (Hy2) are satisfied. If Λ
2 (b − a)ρ1+ρ3 < 1, then system (12)

has at least one solution (υ, ω) ∈ C1−γ × C1−γ, where Λ as in Theorem 4.

Corollary 2. Assume that (Hy1) and (Hy2) are satisfied. If maxκ∈J{ζ�1 , ζ�2} = ζ� < 1, then the
system (12) has a unique solution (υ, ω) ∈ C1−γ × C1−γ, where

ζ�1 : =
(b − a)ρ1

Γ(ρ1 + 1)
κ f +

(b − a)ρ1+ρ3

Γ(ρ1 + ρ3 + 1)
κg,

ζ�2 : =
(b − a)ρ1

Γ(ρ1 + 1)
κg +

(b − a)ρ1+ρ3

Γ(ρ1 + ρ3 + 1)
κ f .

Case 2: Let a > 0, and ϑ(κ) = logκ, then the system (1) is reduced to a Hilfer–
Hadamard type coupled system of FIDE of the form⎧⎪⎪⎨⎪⎪⎩

D
ρ1,ρ2
a+ ,logκ

υ(κ) = f (κ, υ(κ), Iρ3
a+ ,logκ

ω(κ)), κ ∈ J,

D
ρ1,ρ2
a+ ,logκ

ω(κ) = g(κ, ω(κ), Iρ3
a+ ,logκ

υ(κ)), κ ∈ J,

I
1−γ
a+ ,logκ

υ(κ)
∣∣∣
κ=a

= υa, I1−γ
a+ ,logκ

ω(κ)
∣∣∣
κ=a

= ωa.
(13)

where D
ρ1,ρ2
a+ ,logκ

and I
1−γ
a+ ,logκ

represent the Hilfer–Hadamard FD of order (ρ1, ρ2) and the
Hadamard fractional integral of order 1 − γ, respectively, (see [40,41]). Consequently,
the results in Theorems 4 and 5 can be offered by⎧⎨⎩ υ(κ) =

(log κ
a )

γ−1

Γ(γ) υa + I
ρ1
a+ ,logκ

f (κ, υ(κ), Iρ3
a+ ,logκ

ω(κ)), κ ∈ J,

ω(κ) =
(log κ

a )
γ−1

Γ(γ) ωa + I
ρ1
a+ ,logκ

g(κ, ω(κ), Iρ3
a+ ,logκ

υ(κ)), κ ∈ J.

Let

C1−γ,logκ =
{

φ : J → R; Dρ1,ρ2
a+ ,logκ

φ ∈ C; ‖φ‖1−γ,logκ =
∥∥∥(log

κ

a
)1−γφ(κ)

∥∥∥
∞

}
, 0 ≤ γ < 1.

Then the following two results are a special case of the Theorems 4 and 5.

Corollary 3. Assume that (Hy1) and (Hy2) hold. If Λ
2 (log b

a )
ρ1+ρ3 < 1, then system (13) has at

least one solution (υ, ω) ∈ C1−γ,logκ × C1−γ,logκ , where Λ is as in Theorem 4.

Corollary 4. Assume that (Hy1) and (Hy2) are satisfied. If maxκ∈J{ζ�3 , ζ�4} = ζ < 1, then the
system (13) has a unique solution in C1−γ,logκ × C1−γ,logκ , where

ζ�3 : =
(log b

a )
ρ1

Γ(ρ1 + 1)
κ f +

(log b
a )

ρ1+ρ3

Γ(ρ1 + ρ3 + 1)
κg,

ζ�4 : =
(log b

a )
ρ1+ρ3

Γ(ρ1 + ρ3 + 1)
κ f +

(log b
a )

ρ1

Γ(ρ1 + 1)
κg.

Case 3: If ϑ(κ) = κρ, for ρ > 0, then the system (1) is reduced to a Hilfer–
Katugumpola type coupled system of FIDE of the form⎧⎪⎪⎨⎪⎪⎩

D
ρ1,ρ2
a+ ,κρ υ(κ) = f (κ, υ(κ), Iρ3

a+ ,κρ ω(κ)), κ ∈ J,
D

ρ1,ρ2
a+ ,κρ ω(κ) = g(κ, ω(κ), Iρ3

a+ ,κρ υ(κ)), κ ∈ J,

I
1−γ
a+ ,κρ υ(κ)

∣∣∣
κ=a

= υa, I1−γ
a+ ,κρ ω(κ)

∣∣∣
κ=a

= ωa,
(14)
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where D
ρ1,ρ2
a+ ,κρ and I

1−γ
a+ ,κρ represent the Hilfer–Katugumpola FD of order (ρ1, ρ2) and the

Katugumpola fractional integral of order 1 − γ, respectively, (see [42,43]). So, the results in
Theorems 4 and 5 can be given by⎧⎨⎩ υ(κ) = (κρ−aρ)γ−1

Γ(γ) υa + I
ρ1
a+ ,κρ f (κ, υ(κ), Iρ3

a+ ,κρ ω(κ)), κ ∈ J,

ω(κ) = (κρ−aρ)γ−1

Γ(γ) ωa + I
ρ1
a+ ,κρ g(κ, ω(κ), Iρ3

a+ ,κρ υ(κ)), κ ∈ J.

Let

C1−γ,κρ =
{

φ : J → R; Dρ1,ρ2
a+ ,κρ φ ∈ C; ‖φ‖1−γ,κρ =

∥∥∥(κρ − aρ)1−γφ(κ)
∥∥∥

∞

}
, 0 ≤ γ < 1.

Then the following results are a special case of the Theorems 4 and 5.

Corollary 5. Assume that (Hy1) and (Hy2) hold. If Λ
2 (b

ρ − aρ))ρ1+ρ3 < 1, then system (14)
has at least one solution (υ, ω) ∈ C1−γ,κρ × C1−γ,κρ , where Λ as in Theorem 4.

Corollary 6. Assume that (Hy1) and (Hy2) are satisfied. If maxκ∈J{ζ�5 , ζ�6} = ζ̃ < 1, then the
system (14) has a unique solution in C1−γ,κρ × C1−γ,κρ , where

ζ�5 : =
(bρ − aρ)ρ1

Γ(ρ1 + 1)
κ f +

(bρ − aρ)ρ1+ρ3

Γ(ρ1 + ρ3 + 1)
κg,

ζ�6 : =
(bρ − aρ)ρ1+ρ3

Γ(ρ1 + ρ3 + 1)
κ f +

(bρ − aρ)ρ1

Γ(ρ1 + 1)
κg.

Remark 1. Many other special cases of function ϑ and parameter ρ2 generate similar problems
and systems some of them addressed in the literature, to name a few, the ϑ-Hilfer type system (1)
reduces to

(1) The R-L type system, for ϑ(κ) = κ, and ρ2 = 0 (see [2]);

(2) The Caputo type system, for ϑ(κ) = κ, and ρ2 = 1 (see [2]);

(3) The Hilfer type system, for ϑ(κ) = κ (see [5]);

(4) The Katugampola type system, for ϑ(κ) = κρ, and ρ2 = 0 (see [42]);

(5) The Caputo–Katugampola type system, for ϑ(κ) = κρ, and ρ2 = 1 (see [44]);

(6) The Hilfer–Katugampola type system, for ϑ(κ) = κρ (see [43]);

(7) The Hadamard type system, for ϑ(κ) = logκ,and ρ2 = 0 (see [40]);

(8) The Caputo–Hadamard type system, for ϑ(κ) = logκ, and ρ2 = 1 (see [45]);

(9) The Hilfer–Hadamard type system, for ϑ(κ) = logκ (see [41]).

3.4. U-H Stability Analysis

In this subsection, we discuss the U-H Stability of the considered system.

Definition 3. System (1) is said to be U-H stable if there exists a constant Υ1,2 = max{Υ1, Υ2} >
0 (Υ1, Υ2 > 0) such that for each ε = max{ε1, ε2}, where ε1, ε2 > 0, and every solution (υ̃, ω̃) ∈
C1−γ,ϑ × C1−γ,ϑ of the inequalities⎧⎨⎩

∣∣∣Dρ1,ρ2
a+ ,ϑ(κ)υ̃(κ)− f (κ, υ̃(κ), Iρ3

a+ ,ϑ(κ)ω̃(κ))
∣∣∣ ≤ ε1, κ ∈ J,∣∣∣Dρ1,ρ2

a+ ,ϑ(κ)ω̃(κ)− g(κ, ω̃(κ), Iρ3
a+ ,ϑ(κ)υ̃(κ))

∣∣∣ ≤ ε2, κ ∈ J,
(15)

there exists a solution (υ, ω) ∈ C1−γ,ϑ × C1−γ,ϑ of system (1) which satisfies

‖(υ̃, ω̃)− (υ, ω)‖C1−γ,ϑ
≤ Υ1,2ε. (16)
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Remark 2. (υ̃, ω̃) ∈ C1−γ,ϑ × C1−γ,ϑ satisfies (15) if and only if there exist functions σ1, σ2 ∈
C1−γ,ϑ such that:

(i) |σ1(κ)| ≤ ε1, and |σ2(κ)| ≤ ε2, κ ∈ J;

(ii) For all κ ∈ J,{
D

ρ1,ρ2
a+ ,ϑ(κ)υ̃(κ) = f (κ, υ̃(κ), Iρ3

a+ ,ϑ(κ)ω̃(κ)) + σ1(κ), κ ∈ J,
D

ρ1,ρ2
a+ ,ϑ(κ)ω̃(κ) = g(κ, ω̃(κ), Iρ3

a+ ,ϑ(κ)υ̃(κ)) + σ2(κ), κ ∈ J,
(17)

Lemma 3. If (υ̃, ω̃) ∈ C1−γ,ϑ ×C1−γ,ϑ satisfies (15), then (υ̃, ω̃) is the solution of the inequalities⎧⎨⎩
∣∣∣υ̃(κ)− (ϑ(κ)−ϑ(a))γ−1

Γ(γ) υa + I
ρ1
a+ ,ϑ(κ) f (κ, υ̃(κ), Iρ3

a+ ,ϑ(κ)ω̃(κ))
∣∣∣ ≤ ε1

(ϑ(κ)−ϑ(a))ρ1

Γ(ρ1+1) ,∣∣∣ω̃(κ)− (ϑ(κ)−ϑ(a))γ−1

Γ(γ) ωa + I
ρ1
a+ ,ϑ(κ)g(κ, ω̃(κ), Iρ3

a+ ,ϑ(κ)υ̃(κ))
∣∣∣ ≤ ε2

(ϑ(κ)−ϑ(a))ρ1

Γ(ρ1+1) .
(18)

Proof. By virtue of Theorem 3 and Remark 2 (ii) the solution of (17) with

I
1−γ
a+ ,ϑ(κ)υ̃(κ)

∣∣∣
κ=a

= υa, I1−γ
a+ ,ϑ(κ)ω̃(κ)

∣∣∣
κ=a

= ωa

is equivalent to:⎧⎨⎩ υ̃(κ) = (ϑ(κ)−ϑ(a))γ−1

Γ(γ) υa + I
ρ1
a+ ,ϑ(κ) f (κ, υ̃(κ), Iρ3

a+ ,ϑ(κ)ω̃(κ)) + I
ρ1
a+ ,ϑ(κ)σ1(κ),

ω̃(κ) = (ϑ(κ)−ϑ(a))γ−1

Γ(γ) ωa + I
ρ1
a+ ,ϑ(κ)g(κ, ω̃(κ), Iρ3

a+ ,ϑ(κ)υ̃(κ)) + I
ρ1
a+ ,ϑ(κ)σ2(κ).

(19)

Hence, ∣∣∣∣υ̃(κ)− (ϑ(κ)− ϑ(a))γ−1

Γ(γ)
υa + I

ρ1
a+ ,ϑ(κ) f (κ, υ̃(κ), Iρ3

a+ ,ϑ(κ)ω̃(κ))

∣∣∣∣
=

∣∣∣Iρ1
a+ ,ϑ(κ)σ1(κ)

∣∣∣
≤ I

ρ1
a+ ,ϑ(κ)|σ1(κ)|

≤ ε1
(ϑ(κ)− ϑ(a))ρ1

Γ(ρ1 + 1)
.

Similarly, we obtain∣∣∣∣ω̃(κ)− (ϑ(κ)− ϑ(a))γ−1

Γ(γ)
ωa + I

ρ1
a+ ,ϑ(κ)g(κ, ω̃(κ), Iρ3

a+ ,ϑ(κ)υ̃(κ))

∣∣∣∣
≤ ε2

(ϑ(κ)− ϑ(a))ρ1

Γ(ρ1 + 1)
.

Theorem 6. Under the hypothesis (Hy1), if
(

1 −L f

)(
1 −Lg

)
−K fKg �= 0, then the solution

of the coupled system (1) is H-U stable, where

L f : = κ f
B(ρ1, γ)

Γ(ρ1)
(ϑ(b)− ϑ(a))ρ1 , K f := κ f

B(ρ1 + ρ3, γ)

Γ(ρ1 + ρ3)
(ϑ(b)− ϑ(a))ρ1+ρ3 ,

Lg : = κg
B(ρ1, γ)

Γ(ρ1)
(ϑ(b)− ϑ(a))ρ1 , Kg := κg

B(ρ1 + ρ3, γ)

Γ(ρ1 + ρ3)
(ϑ(b)− ϑ(a))ρ1+ρ3 .
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Proof. Let (υ̃, ω̃) ∈ C1−γ,ϑ × C1−γ,ϑ satisfies (15), and let (υ, ω) ∈ C1−γ,ϑ × C1−γ,ϑ the
unique solution of the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D
ρ1,ρ2
a+ ,ϑ(κ)υ(κ) = f (κ, υ(κ), Iρ3

a+ ,ϑ(κ)ω(κ)), κ ∈ J,
D

ρ1,ρ2
a+ ,ϑ(κ)ω(κ) = g(κ, ω(κ), Iρ3

a+ ,ϑ(κ)υ(κ)), κ ∈ J,

I
1−γ
a+ ,ϑ(κ)υ(κ)

∣∣∣
κ=a

= I
1−γ
a+ ,ϑ(κ)υ̃(κ)

∣∣∣
κ=a

= υa,

I
1−γ
a+ ,ϑ(κ)ω(κ)

∣∣∣
κ=a

= I
1−γ
a+ ,ϑ(κ)ω̃(κ)

∣∣∣
κ=a

= ωa,

(20)

By virtue of Theorem 3, we obtain{
υ(κ) = Xυ + I

ρ1
a+ ,ϑ(κ) f (κ, υ(κ), Iρ3

a+ ,ϑ(κ)ω(κ)),
ω(κ) = Xω + I

ρ1
a+ ,ϑ(κ)g(κ, ω(κ), Iρ3

a+ ,ϑ(κ)υ(κ)),
(21)

where

Xυ=
(ϑ(κ)− ϑ(a))γ−1

Γ(γ)
υa, and Xω=

(ϑ(κ)− ϑ(a))γ−1

Γ(γ)
ωa.

If I
1−γ
a+ ,ϑ(κ)υ(κ)

∣∣∣
κ=a

= I
1−γ
a+ ,ϑ(κ)υ̃(κ)

∣∣∣
κ=a

and I
1−γ
a+ ,ϑ(κ)ω(κ)

∣∣∣
κ=a

= I
1−γ
a+ ,ϑ(κ)ω̃(κ)

∣∣∣
κ=a

,
then Xυ = Xυ̃ and Xω = Xω̃. Consequently, we have{

υ(κ) = Xυ̃ + I
ρ1
a+ ,ϑ(κ) f (κ, υ(κ), Iρ3

a+ ,ϑ(κ)ω(κ)),
ω(κ) = Xω̃ + I

ρ1
a+ ,ϑ(κ)g(κ, ω(κ), Iρ3

a+ ,ϑ(κ)υ(κ)),
(22)

Therefore, by (22), Lemma 3 and (Hy1), we obtain

|υ̃(κ)− υ(κ)| ≤
∣∣∣υ̃(κ)−Xυ̃ + I

ρ1
a+ ,ϑ(κ) f (κ, υ̃(κ), Iρ3

a+ ,ϑ(κ)ω̃(κ))
∣∣∣

+I
ρ1
a+ ,ϑ(κ)

∣∣∣ f (κ, υ̃(κ), Iρ3
a+ ,ϑ(κ)ω̃(κ))− f (κ, υ(κ), Iρ3

a+ ,ϑ(κ)ω(κ))
∣∣∣

≤ ε1
(ϑ(κ)− ϑ(a))ρ1

Γ(ρ1 + 1)
+ I

ρ1
a+ ,ϑ(κ)

[
κ f |υ̃(κ)− υ(κ)|+ κ f I

ρ3
a+ ,ϑ(κ)|ω̃(κ)− ω(κ)|

]
≤ ε1

(ϑ(κ)− ϑ(a))ρ1

Γ(ρ1 + 1)
+ κ f ‖υ̃ − υ‖C1−γ,ϑ

I
ρ1
a+ ,ϑ(κ)(ϑ(κ)− ϑ(a))γ−1

+κ f ‖ω̃ − ω‖C1−γ,ϑ
I

ρ1+ρ3
a+ ,ϑ(κ)(ϑ(κ)− ϑ(a))γ−1

= ε1
(ϑ(κ)− ϑ(a))ρ1

Γ(ρ1 + 1)
+ κ f ‖υ̃ − υ‖C1−γ,ϑ

B(ρ1, γ)

Γ(ρ1)
(ϑ(κ)− ϑ(a))ρ1+γ−1

+κ f ‖ω̃ − ω‖C1−γ,ϑ

B(ρ1 + ρ3, γ)

Γ(ρ1 + ρ3)
(ϑ(κ)− ϑ(a))ρ1+ρ3+γ−1.

Thus

‖υ̃ − υ‖C1−γ,ϑ
≤ ε1

(ϑ(b)− ϑ(a))ρ1−γ+1

Γ(ρ1 + 1)
+ κ f ‖υ̃ − υ‖C1−γ,ϑ

B(ρ1, γ)

Γ(ρ1)
(ϑ(b)− ϑ(a))ρ1

+κ f ‖ω̃ − ω‖C1−γ,ϑ

B(ρ1 + ρ3, γ)

Γ(ρ1 + ρ3)
(ϑ(b)− ϑ(a))ρ1+ρ3 ,

which implies
(1 −L f )‖υ̃ − υ‖C1−γ,ϑ

≤ Υ1ε1 +K f ‖ω̃ − ω‖C1−γ,ϑ
. (23)

Similarly
(1 −Lg)‖ω̃ − ω‖C1−γ,ϑ

≤ Υ2ε2 +Kg‖υ̃ − υ‖C1−γ,ϑ
, (24)
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where

Υ1 = Υ2 :=
(ϑ(b)− ϑ(a))ρ1−γ+1

Γ(ρ1 + 1)
.

Now, we can express (23) and (24) by

(1 −L f )‖υ̃ − υ‖C1−γ,ϑ
−K f ‖ω̃ − ω‖C1−γ,ϑ

≤ Υ1ε1, (25)

−Kg‖υ̃ − υ‖C1−γ,ϑ
+ (1 −Lg)‖ω̃ − ω‖C1−γ,ϑ

≤ Υ2ε2. (26)

The matrix formula of (25) and (26) is(
1 −L f −K f
−Kg 1 −Lg

)(
‖υ̃ − υ‖C1−γ,ϑ

‖ω̃ − ω‖C1−γ,ϑ

)
≤

(
Υ1ε1
Υ2ε2

)
.

It follows that(
‖υ̃ − υ‖C1−γ,ϑ

‖ω̃ − ω‖C1−γ,ϑ

)
≤ 1

Δ

(
1 −Lg K f
Kg 1 −L f

)(
Υ1ε1
Υ2ε2

)
,

where Δ =
(

1 −L f

)(
1 −Lg

)
−K fKg �= 0. Hence

‖υ̃ − υ‖C1−γ,ϑ
≤

(
1 −Lg

)
Υ1ε1

Δ
+

K f Υ2ε2

Δ
, (27)

and

‖ω̃ − ω‖C1−γ,ϑ
≤ KgΥ1ε1

Δ
+

(
1 −L f

)
Υ2ε2

Δ
, (28)

By (27) and (28), we find that

‖(υ̃, ω̃)− (υ, ω)‖C1−γ,ϑ
≤ ‖υ̃ − υ‖C1−γ,ϑ

+ ‖ω̃ − ω‖C1−γ,ϑ

≤
(
1 −Lg

)
Υ1ε1

Δ
+

K f Υ2ε2

Δ

+
KgΥ1ε1

Δ
+

(
1 −L f

)
Υ2ε2

Δ
≤ Υε,

where Υ =
2−Lg+K f +Kg−L f

Δ Υ1,2 and ε = max{ε1, ε2}.

4. Examples

Consider the ϑ-Hilfer type system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D

1
3 , 1

4
0+ ,κ3

υ(κ) = f (κ, υ(κ), Iρ3
a+ ,ϑ(κ)ω(κ)), κ ∈ (0, 1],

D
1
3 , 1

4
0+ ,κ3

ω(κ) = g(κ, ω(κ), Iρ3
a+ ,ϑ(κ)υ(κ)), κ ∈ (0, 1],

I
1
2
0+ ,κ3

υ(κ)

∣∣∣∣
κ=0

= 1, I
1
2
0+ ,κ3

ω(κ)

∣∣∣∣
κ=0

= 2,

(29)

where ρ1 = 1
3 , ρ2 = 1

4 , ρ3 = 1
4 , γ = 1

2 , υ0 = 1, and ω0 = 2.
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1. In order to illustrate Theorem 5, we take ϑ(κ) = κ
3 and⎧⎪⎪⎨⎪⎪⎩

f (κ, υ(κ), Iρ3
a+ ,ϑ(κ)ω(κ)) = 8

20

(
sin υ(κ) + sin

(
I

1
4
0+ ,κ3

ω(κ)

)
+ 1

)
,

g(κ, ω(κ), Iρ3
a+ ,ϑ(κ)υ(κ)) =

1
30

(
cosκ + ω(κ) + sin

(
I

1
4
0+ ,κ3

υ(κ)

))
.

(30)

Then we have∣∣∣ f (κ, υ(κ), Iρ3
a+ ,ϑ(κ)ω(κ))− f (κ, υ(κ), Iρ3

a+ ,ϑ(κ)ω(κ))
∣∣∣

≤ 8
20

|sin υ(κ)− sin υ(κ)|+
∣∣∣∣sin

(
I

1
4
0+ ,κ3

ω(κ)

)
− sin

(
I

1
4
0+ ,κ3

ω(κ)

)∣∣∣∣
≤ 8

20

(
|υ(κ)− υ(κ)|+

∣∣∣∣I 1
4
0+ ,κ3

ω(κ)− I
1
4
0+ ,κ3

ω(κ)

∣∣∣∣)
and ∣∣∣g(κ, ω(κ), Iρ3

a+ ,ϑ(κ)υ(κ))− g(κ, ω(κ), Iρ3
a+ ,ϑ(κ)υ(κ))

∣∣∣
≤ 1

30

(
|ω(κ)− ω(κ)|+

∣∣∣∣sin
(
I

1
4
0+ ,κ3

υ(κ)

)
− sin

(
I

1
4
0+ ,κ3

υ(κ)

)∣∣∣∣)
≤ 1

30

(
|ω(κ)− ω(κ)|+

∣∣∣∣I 1
4
0+ ,κ3

υ(κ)− I
1
4
0+ ,κ3

υ(κ)

∣∣∣∣).

Thus, (Hy1) holds with κ f = κ f = 8
20 and κg = κg = 1

30 . From the above data, we
obtain ζ1 ≈ 0.33 and ζ2 ≈ 0.26. Hence maxκ∈J{ζ1, ζ2} = ζ ≈ 0.33 < 1. Thus, with the
assistance of Theorem 5, the system (29) with f and g given by (30) has a unique
solution (υ(κ), ω(κ)) on (0, 1].

2. In order to illustrate Theorem 4, we take⎧⎪⎪⎨⎪⎪⎩
f (κ, υ(κ), Iρ3

a+ ,ϑ(κ)ω(κ)) = 1
40 υ(κ) sin ω(κ) + 3

20 cos υ(κ)

(
I

1
4
0+ ,κ3

ω(κ)

)
,

g(κ, ω(κ), Iρ3
a+ ,ϑ(κ)υ(κ)) =

1
10+κ

sin
(
I

1
4
0+ ,κ3

υ(κ)

)
+ 3

100

(
e−

κ
2 ω(κ)

)
.

(31)

It is easy to see that∣∣∣ f (κ, υ(κ), Iρ3
a+ ,ϑ(κ)ω(κ))

∣∣∣ ≤ 1
40

|υ(κ)|+ 3
20

∣∣∣∣I 1
4
0+ ,κ3

ω(κ)

∣∣∣∣,
∣∣∣g(κ, ω(κ), Iρ3

a+ ,ϑ(κ)υ(κ))
∣∣∣ ≤ 1

10

∣∣∣∣(I 1
4
0+ ,κ3

υ(κ)

)∣∣∣∣+ 3
100

|ω(κ)|.

So, condition (Hy2) is satisfied with ϕ f =
1

40 , ϕ f =
3
20 , ϕg = 1

10 , ϕg = 3
100 . Moreover,

Λ =
√

π

8Γ( 5
6 )

+ 9
√

π

50Γ( 13
12 )

and ℵ1 ≈ 0.14 < 1. Thus, Theorem 4 is applied to system (29)

with f and g given by (31).
3. In order to illustrate Theorem 6, we have from case 1 that (Hy1) is satisfied. As

has been shown in Theorem 6, for ε1 = 1
2 and ε2 = 1

4 , if (υ̃, ω̃) ∈ C 1
2 ,κ3

([0, 1],R)×
C 1

2 ,κ3
([0, 1],R) satisfies⎧⎪⎪⎨⎪⎪⎩

∣∣∣∣D 1
3 , 1

4
0+ ,κ3

υ̃(κ)− 8
20

(
sin υ̃(κ) + sin

(
I

1
4
0+ ,κ3

ω̃(κ)

)
+ 1

)∣∣∣∣ ≤ 1
2 , κ ∈ (0, 1],∣∣∣∣D 1

3 , 1
4

0+ ,κ3
ω̃(κ)− 1

30

(
cosκ + ω̃(κ) + sin

(
I

1
4
0+ ,κ3

υ̃(κ)

))∣∣∣∣ ≤ 1
4 , κ ∈ (0, 1],
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there exists a unique solution (υ, ω) ∈ C 1
2 ,κ3

([0, 1],R)× C 1
2 ,κ3

([0, 1],R) of the problem
(29) with f and g given by (30) such that

‖(υ̃, ω̃)− (υ, ω)‖C 1
2 , κ3

≤ 1
2

Υ.

where Υ =
2−Lg+K f +Kg−L f

Δ Υ1,2 = 0.952857 > 0, ε = max{ε1, ε2} = 1
2 , Υ1,2 =

max{Υ1, Υ2} = 1

(3)
5
6 Γ( 4

3 )
,

Υ1 = Υ2 =
1

(3)
5
6 Γ( 4

3 )
> 0,

and

L f =
2
√

π

5 3
√

3Γ( 5
6 )

, K f =
2
√

π

5 12√37Γ( 13
12 )

,

Lg =

√
π

30 3
√

3Γ( 5
6 )

, Kg =

√
π

30 12√37Γ( 13
12 )

.

Hence Δ =
(

1 −L f

)(
1 −Lg

)
−K fKg = 0.88 �= 0, which implies that system (29) is

H-U stable.

5. Conclusions

Recently, FDEs have attracted the interest of several researchers with prosperous
applications, especially those involving generalized fractional operators. It is important
that we investigate the fractional systems with generalized Hilfer derivatives since these
derivatives cover many systems in the literature and they contain a kernel with different
values that generates many special cases. As an additional contribution in this topic,
existence, uniqueness, and U-H stability results of a coupled system for a new class of
fractional integrodifferential equations in the generalized Hilfer sense are examined. The
analysis of obtained results is based on applying Schauder’s and Banach’s fixed point
theorems, and Arzelà-Ascoli’s theorem.

It should be noted that in light of our obtained results, our use of the generalized
Hilfer operator covers many systems associated with different values of the function ϑ and
the parameter ρ2, as is the case in the Special Cases section.
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Abstract: In this article, we investigate sufficient conditions for the existence and stability of solutions
to a coupled system of ψ-Caputo hybrid fractional derivatives of order 1 < υ ≤ 2 subjected to Dirichlet
boundary conditions. We discuss the existence and uniqueness of solutions with the assistance of the
Leray–Schauder alternative theorem and Banach’s contraction principle. In addition, by using some
mathematical techniques, we examine the stability results of Ulam–Hyers. Finally, we provide one
example in order to show the validity of our results.

Keywords: ψ-Caputo fractional derivative; existence; fixed point theorems; Ulam–Hyers stability

MSC: 26A33; 34K37; 34A08

1. Introduction

Fractional calculus has a long history, going all the way back to Leibniz’s 17th-century
explanation of the derivative order in 1965. Mathematicians use fractional calculus to study
how derivatives and integrals of noninteger order work and how they change over time.
Since then, the new theory has proven to be very appealing to mathematicians, biologists,
chemists, economists, engineers, and physicists. Subsequently, the subject attracted the
interest of numerous famous mathematicians, including Fourier, Laplace, Abel, Liouville,
Riemann, and Letnikov. For current and wide-ranging analyses of fractional derivatives and
their applications, we recommend the monographs [1–4]. In [5], the authors investigated
new results of the existence and uniqueness of systems of nonlinear coupled DEs and
inclusions involving Caputo-type sequential derivatives of fractional order and new kinds
of boundary conditions. In [6], the authors investigated a new type of SFDE and inclusions
involving ψ-Hilfer fractional derivatives, associated with integral multi-point BCs.

Fractional derivatives have played a very important role in mathematical modeling in
many diverse applied sciences, see [7]. In [8], the authors applied a new technique called
“local fractional Laplace homotopy perturbation method” (LFLHPM) on Helmholtz and
coupled Helmholtz equations to obtain analytical approximate solutions. In [9], the authors
present a new analytical method called the “local fractional Laplace variational iteration
method” (LFLVIM) for solving the two-dimensional Helmholtz and coupled Helmholtz
equations. In [10], the authors find the solution of the LFFPE on the Cantor set. They make
a comparison between the RDTM and LFSEM used in LFFPE. For example, the authors
in [11] employed the LFLVIM and LFLDM to obtain approximate solutions for solving
the damped wave equation and dissipative wave equation within LFDOs. The authors
in [12] employed the fractional derivative of the ψ-Caputo type in modeling the logistic
population equation, through which they were able to show that the model with the
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fractional derivative led to a better approximation of the variables than the classical model.
In addition, the authors in [13] employ the fractional derivative of the ψ-Caputo type,
and use the kernel Rayleigh, to improve the model again in modeling the logistic population
equation. Various research has studied the existence and uniqueness of solutions to initial
and boundary value problems utilizing ψ-fractional derivatives, see [14–18].

Fractional differential equations have been used to describe a wide variety of occur-
rences in a number of different engineering and scientific areas. Differential equations
of fractional order are suitable for critical aspects in finance, electromagnetics, acoustics,
viscoelasticity, biochemistry, and material science, see [19–21].

Additionally, it is essential to examine coupled systems through the use of fractional
differential equations, as these systems are found in a wide range of applications. A number
of scholars have also investigated coupled fractional differential equation systems. Some
theoretical work on coupled fractional differential equations is included in this article,
see [22–24].

The fractional derivatives of an unknown function are included in hybrid differential
equations, as is the nonlinearity that relies on them. This class of equations arises in a
wide variety of applications and physical science areas, for example, in the redirection of
a bent pillar with a constant or variable cross-area, a three-layer shaft, electromagnetic
waves, or gravity-driven streams. In the literature, hybrid FDEs have been examined
by employing a variety of different forms of fractional derivatives; see [23,25,26]. Some
recent results on the existence and uniqueness of initial and boundary value problems
and Ulam–Hyers stability can be found in [27–29] and the references therein. For recent
results from the ψ-Caputo hybrid fractional derivatives (CHFDs), we refer to [22,23,30,31]
and the references cited therein. Choukri Derbazi et al. recently investigated the existence of
extremal solutions to the nonlinear coupled system in [32]. Using the so-called “monotone
iterative technique” together with the method of upper and lower solutions, the authors
investigate the existence of extremal solutions of the following BVP that involves the
ψ-Caputo derivative with ICs.⎧⎪⎨⎪⎩

CDυ,ψ
a+ ϕ(ω) = f(ω, ϕ(ω), ζ(ω)), ω ∈ J [a, b];

CDυ,ψ
a+ ζ(ω) = g(ω, ϕ(ω), ζ(ω)), ω ∈ J [a, b];

ϕ(a) = ϕa ζ(b) = ζb,

where CDυ;ψ
a+ denote the ψ-Caputo fractional derivatives (CFDs) of order υ and f, g : [a, b]×

R2
e → Re are continuous functions and ϕa, ζb ∈ Re with ϕa ≤ ζb.

Mohamed I Abbas [30] investigated the uniqueness of solutions for the following
coupled system of fractional differential equations (CSFDEs). Based on the Leray–Schauder
alternative and Banach’s fixed point theorem, the authors investigated the existence and
uniqueness of the following BVP associated with four-point BCs.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

CDυ,ψ
0+ ϕ(ω) = f(ω, ϕ(ω), ζ(ω)), ω ∈ [0, 1] 1 < υ < 2;

CDβ,ψ
0+ ζ(ω) = g(ω, ϕ(ω), ζ(ω)), ω ∈ [0, 1] 1 < β < 2;

ϕ(0) = ζ(0) = 0,
ϕ(1) = λϕ(η), ζ(1) = μζ(ζ), 0 < η < ζ < 1, λ, μ > 0,

where CDυ;ψ
0+ , CDβ;ψ

0+ denote the ψ-CFDs of order υ, β and f, g : [0, 1]×R2
e → Re are contin-

uous functions.
In 2020, the authors of [33] studied the existence and uniqueness of the following BVP

associated with multi-point BCs, with results obtained via topological degree theory and
Banach’s contraction principle:
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⎧⎪⎨⎪⎩
CDα;ψ

a+ z(τ) + h(τ, z(τ)) = 0, 2 < α ≤ 3, a ≤ τ ≤ b,

z(a) = z′(a) = 0, z(b) =
n

∑
k=1

δkz(μk), a < μk < b,

where CDα;ψ
a+ denotes ψ-Caputo fractional derivatives, h : [a, b]×Re → Re is assumed to

be continous and δk ∈ Re, k = 1, 2, . . . , n.
In previous works, researchers investigated the existence and uniqueness of linear

fractional differential equations involving ψ-Caputo.
This work is devoted to investigating the existence and uniqueness of the solutions for

the following system of equations with Dirichlet BCs. Adding to this, we show that BVP is
stable via the Ulam–Hyers technique.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CDυ1;ψ
(

ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
= h1(ω, ϕ(ω), ζ(ω)), ω ∈ [ξ, T ] 1 < υ1 ≤ 2;

CDυ2;ψ
(

ζ(ω)

g(ω, ϕ(ω), ζ(ω))

)
= h2(ω, ϕ(ω), ζ(ω)), ω ∈ [ξ, T ] 1 < υ2 ≤ 2;

ϕ(ξ) = ϕ(T ) = 0,

ζ(ξ) = ζ(T ) = 0,

(1)

where CDυi ,ψ
0+ , i = 1, 2. is the ψ-CFDs of order υi, and f, g : [ξ, T ]×R2

e → Re are continuous
functions. To be valuable, the findings of this paper must be novel and generalize several
earlier findings that are important to the research. To the best of our knowledge, there
are no articles that discuss boundary value problems for systems of fractional differential
equations with ψ-Caputo and no articles that investigate Ulam–Hyers stability for differ-
ential equations that contain ψ-Caputo derivatives. This paper is organized as follows. In
Section 2, we will briefly recall some basic definitions and some preliminary concepts about
fractional calculus and auxiliary results used in the following sections. In Section 3, we
establish the existence of solutions to the ψ-Caputo fractional hybrid differential equation
by using the Leray–Schauder alternative and Banach’s fixed point theorem. In Section 4,
the stability of Ulam–Hyers solutions is shown. In Section 5, we finally give an example to
illustrate the application of the results obtained and we give our conclusion in Section 6.

2. Preliminaries

There are some basic definitions, lemmas and results of the ψ-CFDs with regard to
another function ([1–4]).

Definition 1. Let υ > 0, f ∈ L′([ξ, T ],Re) and ψ : [ξ, T ] → Re such that ψ′(ω) > 0
∀ ω ∈ [ξ, T ]. The ψ-Riemann–Liouville fractional integral of order υ for the function f is given by

Iυ;ψ
ξ

f(ω) =
1

Γ(υ)

∫ ω

ξ
(ψ(ω)− ψ(s))υ−1f(s)ψ′(s)ds, (2)

where Γ denotes the standard Euler gamma function.

Definition 2. Let υ > 0, f ∈ Cm−1([ξ, T ],Re) and ψ ∈ Cm([ξ, T ],Re) such that φ′(ω) > 0
∀ω ∈ ([ξ, T ],Re). The ψ-Caputo fractional derivative (CFD) of order υ for the function f is
given by

CDυ;ψ
ξ f(ω) =

1
Γ(n − υ)

∫ ω

ξ
ψ′(s)(ψ(ω)− ψ(s))n−υ−1f

[n]
ψ (s)ds, (3)

where

f
[n]
ψ (s) =

(
1

ψ′(s)
d
ds

)n
f(s) and n = [υ] + 1,
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and [υ] denotes the integer part of the real number υ.

Remark 1. If υ ∈ (0, 1), then Equation (3) can be written as follows:

CDυ;ψ
ξ f(ω) =

1
Γ(υ)

∫ ω

ξ
(ψ(ω)− ψ(s))υ−1f′(s)ds.

In another way, we have

CDυ;ψ
ξ f(ω) = I1−υ,ψ

(
f′(ω)

ψ′(ω)

)
.

Remark 2. Note that if ψ(ω) = ω and ψ(ω) = log(ω), then Equation (2) is reduced to the
Riemann–Liouville and Hadamard fractional integrals, respectively.

Remark 3. In particular, note that if ψ(ω) = ω and ψ(ω) = log(ω), then Equation (3) is
reduced to the CFDs and Caputo–Hadamard fractional integrals, respectively.

Definition 3. Let υ > 0 and an increasing function ψ : [ξ, T ] → Re satisfy ψ′(ω) 0 for all
ω ∈ [ξ, T ]. We define the left-side ψ-Riemann–Liouville integral of an integrable function f on
[ξ, T ] in the fractional framework with regard to another differentiable function ψ as

(ξIυ;ψf)(ω) =
1

Γ(υ)

∫ ω

ξ
(ψ(ω)− ψ(s))υ−1f(s)ψ′(s)ds,

where Γ denotes the standard Euler gamma function.

Definition 4. Let m ∈ N with m = [υ] + 1. The left-sided ψ-Riemann–Liouville fractional
derivative of an existing function f ∈ Cm([ξ, T ],Re) with regard to a nondecreasing function ψ
such that ψ′(ω) = 0, for all ω ∈ [ξ, T ] in the functional framework, is represented as follows:

Dυ;ψ
ξ+

f(ω) =

(
1

ψ′(ω)

d

dt

)m
(Im−υ;ψ

ξ f)(ω),

=
1

Γ(m − υ)

(
1

ψ′(ω)

d

dt

)m ∫ ω

ξ
(ψ(ω)− ψ(s))m−υ−1f(s)ψ′(s)ds.

Definition 5. Let m ∈ N with m = [υ] + 1. The left-sided ψ-Caputo fractional derivative of
an existing function f ∈ Cm([ξ, T ],Re) with regard to a nondecreasing function ψ such that
ψ′(ω) = 0, for all ω ∈ [ξ, T ] in the functional framework, is represented as follows:

cDυ;ψ
ξ+

f(ω) =Im−υ;ψ
ξ+

(
1

ψ′(ω)

d

dt

)m
f(ω),

=
1

Γ(m − υ)

(
1

ψ′(ω)

d

dt

)m ∫ ω

ξ
(ψ(ω)− ψ(s))m−υ−1f(s)ψ′(s)ds.

Definition 6. Let ψ ∈ Cn([ξ, T ]) be such that ψ′(ω) > 0 on [ξ, T ]. Then,

ACm;ψ([ξ, T ]) =

{
f : [ξ, T ] → C and f[m−1] =

(
1

ψ′(ω)

d

dt

)m−1
f

}
.

Proposition 1. Let υ > 0 and β > 0, then

(1) Iυ;ψ
ξ+

(ψ(ω)− ψ(ξ))β−1 = Γ(β)
Γ(υ+β)

(ψ(ω)− ψ(ξ))υ+β−1,

(2) CDυ;ψ
ξ+

(ψ(ω)− ψ(ξ))β−1 = Γ(β)
Γ(β−υ)

(ψ(ω)− ψ(ξ))β−υ−1,

(3) CDυ;ψ
ξ+

(ψ(ω)− ψ(ξ))k = 0, for any k = 0, . . . , m − 1; m ∈ N.
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Proposition 2. Let υ > 0, if f ∈ Cm−1([ξ, T ],Re), then we have

(1) CDυ,ψ
ξ+

Iυ,ψ
ξ+

f(ω) = f(ω),

(2) Iυ,ψ
ξ+

CDυ,ψ
ξ+

f(ω) = f(ω)− ∑n−1
J=0

f[k]ψ(0)
k! (ψ(ω)− ψ(0))k.

(3) Iυ,ψ
ξ+

is linear and bounded from C([ξ, T ],Re) to C([ξ, T ],Re).

Lemma 1 (Hybrid Fixed Point Theorem). Let X be a convex, bounded and closed set contained
in the Banach algebra Y and the operators P ,S : Y → Y and Q : X → Y be such that:

(1) P and S are Lipschitz maps with Lipschitz constant LP and LS , respectively;
(2) Q is continuous and compact;
(3) ϕ = PϕQζ + Sϕ ∀ ζ ∈ X =⇒ ϕ ∈ X ; and
(4) LPMQ + LS < 1, where MQ = ||Q(X )|| = sup{||Qϕ|| : ϕ ∈ X}, then the operator

equation ϕ = Pϕ + Sϕ possesses a solution in X .

Theorem 1. A contraction mapping T : Ω → Ω possesses a unique fixed point where Ω is a
nonempty closed set contained in a Banach space Y .

Theorem 2 (Banach Contraction Mapping Principle). A contraction mapping on a complete
metric space has exactly one fixed point.

Theorem 3 (Arzelà–Ascoli Theorem). A set of functions in C([a, b]) with supremum norm is
relatively compact if, and only if, it is uniformly bounded and equicontinuous on [a, b].

Before presenting our main results, the following auxiliary lemma is presented.

Lemma 2. The solution of the following boundary value problem (BVP):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CDυ1;ψ
(

ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
= H1(ω), ω ∈ [ξ, T ] 1 < υ1 ≤ 2;

CDυ2;ψ
(

ζ(ω)

g(ω, ϕ(ω), ζ(ω))

)
= H2(ω), ω ∈ [ξ, T ] 1 < υ2 ≤ 2;

ϕ(ξ) = ϕ(T ) = 0,
ζ(ξ) = ζ(T ) = 0,

(4)

is given by

ϕ(ω) =f(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1H1(ς)dς

)
(5)

− (ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ1−1H1(ς)dς,

and

ζ(ω) =g(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ2)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ2−1H2(ς)dς

)
(6)

− (ψ(ω)− ψ(ξ))

Γ(υ2)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ2−1H2(ς)dς.

Proof. First, we apply the fractional integral ψIυ1
ξ+

to the equation

CDυ1;ψ
(

ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
= H1(ω),

and we obtain (
ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
= ψIυ1

ξ+
H1(ω) + b0 + b1(ψ(ω)− ψ(ξ)), (7)

57



Mathematics 2022, 10, 1681

the first boundary condition ϕ(ξ) = 0, which yields

b0 = 0,

and the second boundary condition ϕ(T ), which implies

b1 =
−ψIυ1

ξ+
H1(T )

(ψ(ω)− ψ(ξ))
.

Substituting the obtained values of b0 and b1 in Equation (7), we have(
ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
= ψIυ1

ξ+
H1(ω)− 1

(ψ(ω)− ψ(ξ))
ψIυ1

ξ+
H1(T ),

(
ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
=

(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1H1(ς)dς

)
− (ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ1−1H1(ς)dς,

which completes the proof.

3. Main Result

Defining the space B = {(ϕ(ω), ζ(ω)) : (ϕ, ζ) ∈ C([ξ, T ],Re)× C([ξ, T ],Re)}, it is
obvious that B is a Banach space. Furthermore, this space is endowed with the norm

||(ϕ, ζ)||B = ||ϕ||+ ||ζ|| ∀(ϕ, ζ) ∈ B.

By Lemma 2, we define an operator Φ : B → B as

Φ(ϕ, ζ)(ω) =

{
Φ1(ϕ, ζ)(ω),
Φ2(ϕ, ζ)(ω),

(8)

where

Φ1((ϕ, ζ)(ω))

= f(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1H1(ω, ϕ(ω), ζ(ω))dς

)
(9)

− (ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ1−1H1(ω, ϕ(ω), ζ(ω))dς,

and

Φ2((ϕ, ζ)(ω))

= g(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ2)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ2−1H2(ω, ϕ(ω), ζ(ω))dς

)
(10)

− (ψ(ω)− ψ(ξ))

Γ(υ2)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ2−1H2(ω, ϕ(ω), ζ(ω))dς.

Now, let us assume that the following assumptions hold true:
(A1) ϕ, ζ are assumed to be continuous and bounded, and there exist ∂f, ∂g > 0

such that

|f(ω, ϕ, ζ)| ≤ ∂f, and |g(ω, ϕ, ζ)| ≤ ∂g, ∀(ω, ϕ, ζ) ∈ [ξ, T ]×R2
e .
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(A2) Both H1 and H2 are assumed to be continuous and there exist δi, εi > 0, i = 1, 2
such that

|H1(ω, ϕ1, ζ1)−H1(ω, ϕ2, ζ2)| ≤δ1|ϕ1 − ϕ2|+ δ2|ζ1 − ζ2|,
|H2(ω, ϕ1, ζ1)−H2(ω, ϕ2, ζ2)| ≤ε1|ϕ1 − ϕ2|+ ε2|ζ1 − ζ2|,

∀ ω ∈ [ξ, T ], ϕi, ζi ∈ Re, i = 1, 2.
(A3) There exist λ0, μ0 > 0, and λi, μi ≤ 0, i = 1, 2 such that

|H1(ω, ϕ, ζ)| ≤λ0 + λ1|ϕ|+ λ2|ζ|,
|H2(ω, ϕ, ζ)| ≤μ0 + μ1|ϕ|+ μ2|ζ|, ∀ω ∈ [ξ, T ], ϕ, ζ ∈ Re.

(A4) Let S ⊂ B be a bounded set, then there exist Ki > 0, i = 1, 2 such that

|H1(ω, ϕ(ω), ζ(ω))| ≤K1,

|H2(ω, ϕ(ω), ζ(ω))| ≤K2, ∀ ω ∈ [ξ, T ], ∀ϕ, ζ ∈ S .

Using A4, observe that ∀ i = 1, 2.∣∣∣∣( 1
Γ(υi)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υi−1Hi(ς, ϕ(ς), ζ(ς))dς

)
− (ψ(ω)− ψ(ξ))

Γ(υi)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υi−1H1(ς, ϕ(ς), ζ(ς))dς

∣∣∣∣,
≤2Ki(ψ(T )− ψ(ξ))υi

Γ(υi + 1)
.

For computational convenience, we let

Li =
(ψ(T )− ψ(ξ))υi

Γ(υi + 1)
. (11)

Next, we introduce our main result by setting two theorems with their proofs.

Theorem 4. If the assumptions A1 and A2 hold, and

P = 2(∂fL1(δ1 + δ2) + ∂gL2(ε1 + ε2)) < 1, (12)

then the BVP in (1) has a unique solution on [ξ, T ].

Proof. Considering the operator given by (1), let

B̂r = {(ϕ, ζ) ∈ B : ||(ϕ, ζ)|| ≤ r}

be closed ball in B with

r ≥ 2
(
∂fL1(NH1) + ∂gL2(NH2)

)
1 − [2(∂fL1(δ1 + δ2) + ∂gL2(ε1 + ε2))]

,

where

NH1 = sup
ξ≤ω≤T

|H1(ω, 0, 0)| and NH2 = sup
ξ≤ω≤T

|H2(ω, 0, 0)|.

Observe that

|H1(ω, ϕ, ζ)| =|H1(ω, ϕ, ζ)−H1(ω, 0, 0) +H1(ω, 0, 0)|,
≤ δ1‖ϕ‖+ δ2‖ζ‖+NH1 ,
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≤ (δ1 + δ2)r+NH1 .

Now, we demonstrate that ΦB̂r ⊂ B̂r, ∀ (ϕ, ζ) ∈ B̂r, ω ∈ [ξ, T ], then

|Φ1((ϕ, ζ)(ω))|

=

∣∣∣∣f(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1H1(ω, ϕ(ω), ζ(ω))dς

)
− (ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ1−1H1(ω, ϕ(ω), ζ(ω))dς

∣∣∣∣,
≤∂f sup

ξ≤ω≤T

{(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς

)
+

(ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς

}
,

≤∂f
(
(δ1 + δ2)r+NH1

)
sup

ξ≤ω≤T

{(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1dς

)
+

(ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ1−1dς

}
,

|Φ1((ϕ, ζ)(ω))| ≤∂f(2L1)
[
(δ1 + δ2)r+NH1

]
,

and

‖Φ1((ϕ, ζ)(ω))‖ ≤ ∂f(2L1)
[
(δ1 + δ2)r+NH1

]
, (13)

similarly,

‖Φ2((ϕ, ζ)(ω))‖ ≤ ∂g(2L1)
[
(ε1 + ε2)r+NH2

]
. (14)

Equations (13) and (14) yield

||Φ(ϕ, ζ)|| ≤ r.

Next, we show that Φ is a contraction. Let (ϕ1, ζ1), (ϕ2, ζ2) ∈ B, then

|Φ1(ϕ1, ζ1)(ω)− Φ1(ϕ2, ζ2)(ω)|

≤∂f sup
ξ≤ω≤T

{(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1

|H1(ω, ϕ1(ω), ζ1(ω))−H1(ω, ϕ2(ω), ζ2(ω))|dς)

+
(ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ1−1

|H1(ω, ϕ1(ω), ζ1(ω))−H1(ω, ϕ2(ω), ζ2(ω))|dς, },

≤∂f(δ1||ϕ1 − ϕ2||+ δ2||ζ1 − ζ2||)(2L1),

||Φ1(ϕ1, ζ1)− Φ1(ϕ2, ζ2)||
≤ ∂f(δ1 + δ2)(||ϕ1 − ϕ2||+ ||ζ1 − ζ2||)(2L1). (15)

Similarly,

||Φ2(ϕ1, ζ1)− Φ2(ϕ2, ζ2)||
≤ ∂g(ε1 + ε2)(||ϕ1 − ϕ2||+ ||ζ1 − ζ2||)(2L2). (16)
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Equations (15) and (16) give

||Φ(ϕ1, ζ1)− Φ(ϕ2, ζ2)|| (17)

≤ [∂f(2L1)(δ1 + δ2) + ∂g(2L2)(ε1 + ε2)](||ϕ1 − ϕ2||+ ||ζ1 − ζ2||)
≤||ϕ1 − ϕ2||+ ||ζ1 − ζ2||.

Operator Φ is a contraction, and the Banach contraction mapping principle applies,
that is, on [ξ, T ], the BVP (1) has a unique solution.

Theorem 5. If (A1), (A3) and (A4) are satisfied, and if

2(∂fL1λ1 + ∂gL2μ1) < 1

and
2(∂fL1λ2 + ∂gL2μ2) < 1,

then the proposed problem given by (1) has at least one solution on [ξ, T ].

Proof. To begin, we show that Φ is (c.c), if H1,H2, f and g are both continuous, which
implies that Φ is continuous.

By A4, for any (f, g) ∈ S , we have

|Φ1((ϕ, ζ)(ω))|

≤ ∂f sup
ξ≤ω≤T

{(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς

)
+

(ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς

}
,

that is

‖Φ1(ϕ, ζ)‖ ≤ ∂f(2L1)K1, (18)

similarly,

‖Φ2(ϕ, ζ)‖ ≤ ∂g(2L2)K2, (19)

and, from (18) and (19), we obtain

‖Φ(ϕ, ζ)‖ ≤ ∂f(2L1)K1 + ∂g(2L2)K2, (20)

which implies that our operator Φ is uniformly bounded.
Next, we investigate the equicontinuity of our operator to see this, ∀ω1, ω2 ∈ [ξ, T ]

with ω1 < ω2, i = 1, 2. We have

|Φ1((ϕ, ζ)(ω2))− Φ1((ϕ, ζ)(ω1))|

≤∂f

{(
1

Γ(υ1)

∫ ω1

ξ
ψ′(ς)

[
(ψ(ω1)− ψ(ς))υ1−1 − (ψ(ω2)− ψ(ς))υ1−1

]
|H1(ω, ϕ(ω), ζ(ω))|dς

)
+

(
1

Γ(υ1)

∫ ω2

ω1

ψ′(ς)
[
(ψ(ω2)− ψ(ς))υ1−1

]
|H1(ω, ϕ(ω), ζ(ω))|dς

)
+

(ψ(ω2)− ψ(ω1))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς

}
,

≤ ∂fK1

Γ(υ1)

{(∫ ω1

ξ
ψ′(ς)

[
(ψ(ω1)− ψ(ς))υ1−1 − (ψ(ω2)− ψ(ς))υ1−1

]
dς

)
+

(∫ ω2

ω1

ψ′(ς)
[
(ψ(ω2)− ψ(ς))υ1−1

]
dς

)
+
(ψ(ω2)− ψ(ω1))

(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ1−1dς

}
,
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and

|Φ2((ϕ, ζ)(ω2))− Φ2((ϕ, ζ)(ω1))|

≤∂g

{(
1

Γ(υ2)

∫ ω1

ξ
ψ′(ς)

[
(ψ(ω1)− ψ(ς))υ2−1 − (ψ(ω2)− ψ(ς))υ2−1

]
|H2(ω, ϕ(ω), ζ(ω))|dς

)
+

(
1

Γ(υ2)

∫ ω2

ω1

ψ′(ς)
[
(ψ(ω2)− ψ(ς))υ2−1

]
|H2(ω, ϕ(ω), ζ(ω))|dς

)
+

(ψ(ω2)− ψ(ω1))

Γ(υ2)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ2−1|H2(ω, ϕ(ω), ζ(ω))|dς

}
,

≤ ∂gK2
Γ(υ2)

{(∫ ω1

ξ
ψ′(ς)

[
(ψ(ω1)− ψ(ς))υ2−1 − (ψ(ω2)− ψ(ς))υ1−1

]
dς

)
+

(∫ ω2

ω1

ψ′(ς)
[
(ψ(ω2)− ψ(ς))υ2−1

]
dς

)
+
(ψ(ω2)− ψ(ω1))

(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ2−1dς

}
.

Note that the above inequality approaches zero and is independent of (f, g), that is, Φ
is equicontinuous. Finally, we let Δ = {(ϕ, ζ) ∈ B : (ϕ, ζ) = rΦ(ϕ, ζ), r ∈ [0, 1]}∀ ω ∈ [0, 1]
and we obtain ϕ(ω) = rΦ1(ϕ, ζ)(ω) and ζ(ω) = rΦ2(ϕ, ζ)(ω). By (A3), we obtain

||ϕ|| ≤ ∂f(2L1)(λ0 + λ1||ϕ||+ λ2||ζ||) (21)

||ζ|| ≤ ∂g(2L2)(μ0 + μ1||ϕ||+ μ2||ζ||), (22)

and adding (21) and (22), we obtain

||ϕ||+ ||ζ|| ≤(∂f(2L1)λ0 + ∂g(2L2)μ0)

+ (∂f(2L1)λ1 + ∂g(2L2)μ1)||ϕ||
+ (∂f(2L1)λ2 + ∂g(2L2)μ2)||ζ||. (23)

Equation (23) can be rewritten as

||(ϕ, ζ)|| ≤ (∂f(2L1)λ0 + ∂g(2L2)μ0)

min{1 − (∂f(2L1)λ1 + ∂g(2L2)μ1), 1 − (∂f(2L1)λ2 + ∂g(2L2)μ2)}
, (24)

which shows that the defined subset Δ is bounded. Now, applying the Leray–Schauder
alternative, the problem (1) has at least one solution on [ξ, T ].

4. Ulam–Hyers Stability

This section is devoted to the investigation of Hyers–Ulam stability for our system.
Consider the following equations:

ϕ(ω) =Φ1(ϕ, ζ)(ω), (25)

ζ(ω) =Φ2(ϕ, ζ)(ω),

where Φ1 and Φ2 are given by (9) and (10), respectively. Consider the following definitions
of nonlinear operators h1, h2 ∈ C([ξ, T ],Re)× C([ξ, T ],Re) → C([ξ, T ],Re) :

CDυ1;ψ
(

ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
− h1(ω, ϕ(ω), ζ(ω)) = H1(ω, ϕ(ω), ζ(ω)), ω ∈ [a, T ],

CDυ2;ψ
(

ζ(ω)

g(ω, ϕ(ω), ζ(ω))

)
− h2(ω, ϕ(ω), ζ(ω)) = H2(ω, ϕ(ω), ζ(ω)), ω ∈ [a, T ].

Considering the following inequalities for some Λ̂1 and Λ̂2,

||H1(ω, ϕ(ω), ζ(ω))|| ≤Λ̂1, (26)
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||H2(ω, ϕ(ω), ζ(ω))|| ≤Λ̂2.

Definition 7. The coupled system 1 is said to have Hyers–Ulam stability, if there exist M1,M2 >
0, showing that, for every solution (ϕ′, ζ ′) ∈ C([ξ, T ],Re)×C([ξ, T ],Re) of the inequalities (26),

||ϕ(ω)− ϕ′(ω)|| ≤M1Λ̂1,

||ζ(ω)− ζ ′(ω)|| ≤M2Λ̂2, and ω ∈ [ξ, T ].

Theorem 6. If all conditions of Theorem 4 are satisfied, the CSFDEs given by (1) are U-H stable.

Proof. Let C([ξ, T ],Re)× C([ξ, T ],Re) be the solution to (1).
Let (ϕ, ζ) be any solution that meets the condition (26):

CDυ1;ψ
(

ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
= h1(ω, ϕ(ω), ζ(ω)) +H1(ω, ϕ(ω), ζ(ω)), ω ∈ [ξ, T ],

CDυ2;ψ
(

ζ(ω)

g(ω, ϕ(ω), ζ(ω))

)
= h2(ω, ϕ(ω), ζ(ω)) +H2(ω, ϕ(ω), ζ(ω)), ω ∈ [ξ, T ],

so,

ϕ(ω)

= ϕ′(ω) + f(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1H1(ω, ϕ(ω), ζ(ω))dς

)
− (ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ1−1H1(ω, ϕ(ω), ζ(ω))dς,

|ϕ(ω)− ϕ′(ω)|

= f(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς

)
− (ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς,

≤ (ψ(T )− ψ(ξ))υ1

Γ(υ1 + 1)
Λ̂1

≤L1Λ̂1, (27)

and

ζ(ω)

= ζ ′(ω) + g(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ2)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ2−1H2(ω, ϕ(ω), ζ(ω))dς

)
− (ψ(ω)− ψ(ξ))

Γ(υ2)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ2−1H2(ω, ϕ(ω), ζ(ω))dς,

|ζ(ω)− ζ ′(ω)|

= g(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ2)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ2−1H2(ω, ϕ(ω), ζ(ω))dς

)
− (ψ(ω)− ψ(ξ))

Γ(υ2)(ψ(T )− ψ(ξ))

∫ T

ξ
ψ′(ς)(ψ(T )− ψ(ς))υ2−1|H2(ω, ϕ(ω), ζ(ω))|dς,

≤ (ψ(T )− ψ(ξ))υ2

Γ(υ2 + 1)
Λ̂2

≤L2Λ̂2, (28)

where L1 and L2 are defined in (11). Hence, Definition (7) is verified, with the help of
(27) and (28). Hence, the problem (1) is Ulam–Hyers stable.
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5. Example

Example 1. Let us consider the following CSFDEs:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

CDυ1;ψ
(

ϕ(ω)
f(ω,ϕ(ω),ζ(ω))

)
= h1(ω, ϕ(ω), ζ(ω)), ω ∈ [ξ, T ] 1 < υ1 ≤ 2;

CDυ2;ψ
(

ζ(ω)
g(ω,ϕ(ω),ζ(ω))

)
= h2(ω, ϕ(ω), ζ(ω)), ω ∈ [ξ, T ] 1 < υ2 ≤ 2;

ϕ(ξ) = ϕ(T ) = 0;
ζ(ξ) = ζ(T ) = 0.

(29)

The problem (29) has a coupled system of hybrid FDEs (1), where υ1 = 1
2 , υ2 = 1

3 ,
T = 1, ψ(ω) = ω, ξ = 0. To prove Theorem 4 , let ω ∈ [ξ, T ] and ϕ, ζ ∈ Re, then we have

h1(ω, ϕ(ω), ζ(ω)) =
1
99

(
ωζ(ω)

2 + ζ(ω)
− ζ(ω)

2 + ζ(ω)

)
,

h2(ω, ϕ(ω), ζ(ω)) =
e−ω

87

(
ω2 − ϕ(ω)ζ(ω)

2 + ζ(ω)ϕ(ω)

)
,

f(ω, ϕ(ω), ζ(ω)) =
1
99

(
ωζ(ω)

3
+

ωϕ(ω)

2
+

5
6

)
,

g(ω, ϕ(ω), ζ(ω)) =
1
98

(
ζ(ω)

5
+ ωϕ(ω) + 6

)
,

|f(ω, ϕ, ζ)| ≤ 2
97

, |g(ω, ϕ, ζ)| ≤ 1
87

,

|h1(ω, ϕ, ζ)− h1(ω, ϕ̂, ζ̂| ≤ 1
99

{|ϕ − ϕ̂|+ |ζ − ζ̂|},

|h2(ω, ϕ, ζ)− h2(ω, ϕ̂, ζ̂| ≤ 1
98

{|ϕ − ϕ̂|+ |ζ − ζ̂|}.

Moreover, we have

L1 = 1.183791995,L2 = 1.1193470177,

∂f = 0.02061855676, ∂g = 0.0114942528,

δi = 0.01010101, εi = 0.010200816,

(30)

as i = 1, 2. We substitute values in Equation (12), and we obtain

2(∂fL1(δ1 + δ2) + ∂gL2(ε1 + ε2)) ≈ 0.0014651668 < 1.

Based on the computations mentioned above, all conditions of Theorem 4 are satisfied. Therefore,
the BVP given by (29) guaranteed a unique solution on [ξ, T ] (Table 1 and Figure 1) .

Table 1. The impact of fractional order (υ) on the condition P given by (12).

T υ = 0.15 υ = 0.30 υ = 0.45 υ = 0.60 υ = 0.75 υ = 0.90

P
0.3 0.00169289 0.00164105 0.00156982 0.00148344 0.00138603 0.00128146

1.3 0.00338579 0.00364173 0.00386534 0.00405286 0.00420167 0.00431029

2.3 0.00507868 0.00580513 0.00654797 0.00729616 0.00803837 0.00876327

4.3 0.00677158 0.0080815 0.00951759 0.0110728 0.0127371 0.014498

5.3 0.00677158 0.0104457 0.0127207 0.0153029 0.0182023 0.0214241

6.3 0.0101574 0.0128824 0.016123 0.0199337 0.0243678 0.029476

7.3 0.0118503 0.015381 0.0197005 0.0249265 0.0311839 0.0386034
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Figure 1. The impact of fractional order (υ) on the condition P given by (12) is represented graphically.
Based on the P value given by (12) and the conditions A1 and A2, the graph shown above describes
the behavior of the solution of problem (29) for different values of υ ∈ (0, 1). It is noted that as T
increases, the value of P increases as well and, with an increase in time, the condition P increases
gradually for all values of υ ∈ (0, 1), and the P is clearly less than 1, satisfying the condition obtained
in Theorem 4. An important observation to be made is that when order (υ) is small, the value of P
decreases with increasing time. As the order (υ) increases, this trend changes with the value of P
increasing with time. The figure describes the behavior of the solution.

6. Conclusions

In previous works, researchers investigated the existence and uniqueness of linear
fractional differential equations involving ψ-Caputo. The legacy of this work lies in veri-
fying the existence and uniqueness of solutions to a coupled system of ψ-Caputo hybrid
fractional differential equations with Dirichlet boundary conditions. Our major findings are
demonstrated using the Banach fixed point theorem and the alternative of Leray–Schauder.
The stability of the solutions involved in the Hyers–Ulam type was investigated. We
provide an example to demonstrate the study results. ψ-fractional calculus has its own
prominence. For example, some researchers showed that by considering different ψs,
a particular natural phenomenon can be remodeled with more accuracy. For replacing the
fractional calculus by ordinary calculus, see [34]. In future studies, researchers can verify
the existence, uniqueness and stability of the solutions for the system of equations given
by Equation (1) using the ψ-Hilfer fractional derivative or any other derivatives such as
the fractional Katugambula derivative. In addition, this system can be used in practical
applications of the subject by taking our results as proven facts.
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31. Aydin, M.; Mahmudov, N.I.; Aktuğlu, H.; Baytunç, E.; Atamert, M.S. On a study of the representation of solutions of a ψ-Caputo
fractional differential equations with a single delay. Electron. Res. Arch. 2022, 30, 1016–1034. [CrossRef]

32. Derbazi, C.; Baitiche, Z.; Benchohra, M.; Graef, J.R. Extremal solutions to a coupled system of nonlinear fractional differential
equations with Caputo fractional derivatives. J. Math. Appl. 2021, 44, 19–34. [CrossRef]
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Abstract: In this article, we investigate the existence and uniqueness of solutions for a nonlinear
coupled system of Liouville–Caputo type fractional integro-differential equations supplemented with
non-local discrete and integral boundary conditions. The nonlinearity relies both on the unknown
functions and their fractional derivatives and integrals in the lower order. The consequence of
existence is obtained utilizing the alternative of Leray–Schauder, while the result of uniqueness is
based on the concept of Banach contraction mapping. We introduced the concept of unification in the
present work with varying parameters of the multi-point and classical integral boundary conditions.
With the help of examples, the main results are well demonstrated.

Keywords: coupled system; integro-differential equations; Caputo derivatives; multi-point; integral
boundary conditions; fixed point theorems

MSC: 26A33; 34A08; 34B15

1. Introduction

In the mathematical modeling of many real-world problems, the study of coupled
systems of fractional orders of differential equations (FDEs) has gained significant attention;
for example, chaotic system synchronization [1,2], anomalous diffusion [3], ecological
models [4], etc. We refer to some papers for some recent results on coupled systems with
FDEs [5–13]. The use of fractional calculus methods is quite prominent in the mathematical
modeling of various processes and phenomena. The main reason is that fractional operators,
unlike integer operators, are non-local and able to trace the past effects of the phenomena
involved; see [14–19] for examples and details. Some researchers have addressed the
problem of fractional boundary value problems (BVPs), and a significant trend can be seen
in the recent literature; for example, see [20–37] and the references cited therein. A few
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authors have recently started investigating coupled fractional BVPs. Ahmad et al. [38]
discussed the solvability of the following coupled FDEs with integral boundary conditions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

CDqx(t) = f (t, x(t), y(t)),
CDpy(t) = h(t, x(t), y(t)),
x
′
(0) = α

∫ ξ
0 x

′
(s)ds, x(1) = β

∫ 1
0 g(x

′
(s))ds,

y
′
(0) = α1

∫ θ
0 y

′
(s)ds, y(1) = β1

∫ 1
0 g(y

′
(s))ds,

t ∈ [0, 1], 1 < q, p ≤ 2, 0 ≤ ξ, θ ≤ 1,

where CDq, CDp denote the Caputo fractional derivatives (CFDs) of order q, p, f ,
h: [0, 1]×R×R → R are given continuous functions, and α, β, α1, β1 are real constants.
The FDEs with integral and ordinary-fractional flux boundary conditions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

CDαx(t) = f (t, x(t), y(t)),
CDβy(t) = h(t, x(t), y(t)),
x(0) + x(1) = a

∫ 1
0 x(s)ds, x

′
(0) = bCDγx(1),

y(0) + y(1) = a1
∫ 1

0 y(s)ds, y
′
(0) = b1

CDδy(1),
t ∈ [0, 1], 1 < α, β ≤ 2, 0 < γ, δ ≤ 1,

were discussed in [39], where CDα, CDβ, CDγ, CDδ denote the CFDs of order α, β, γ, δ, f ,
h: [0, 1] × R2 → R, are given continuous functions, and a, b, a1, b1 are real constants.
Ahmad et al. analyzed in [40] the existence results for coupled system of FDEs:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dαu(t) = f (t, v(t),Dpv(t)),
Dβv(t) = g(t, u(t),Dqu(t)),
u(0) = 0, u(1) = γu(η),
v(0) = 0, v(1) = γv(η),
0 < t < 1, 1 < α, β < 2, 0 < η < 1,

where Dα, Dβ, Dp, Dq denote the Riemann–Liouville fractional derivatives of order α,
β, p, q, f , g : [0, 1]×R2 → R are given continuous functions, and γ is the real constant.
Agarwal et al. [41] analyzed the results with discrete and integral boundary conditions of
the existence of coupled fractional-order systems. In fractional BVP involving the Caputo
derivatives, Subramanian et al. [42] studied coupled non-local slit-strip conditions.

In this article, we are investigating the existence of solutions for nonlinear coupled
Caputo fractional integro-differential equations,{

CD
u(τ) = f (τ, u(τ), v(τ), CDς1 v(τ), Iξ v(τ)), τ ∈ [0, T] := U ,

CDςv(τ) = g(τ, u(τ), CD1 u(τ), Iζ u(τ), v(τ)), τ ∈ [0, T] := U ,
(1)

supplemented by nonlocal integral and multi-point boundary conditions,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(0) = ψ1(v), u
′
(0) = ε1

∫ ν1
0 v

′
(θ)dθ, u

′′
(0) = 0, · · ·, un−2(0) = 0,

u(T) = λ1

∫ δ1

0
v(θ)dθ + μ1

k−2

∑
j=1

�jv(ϑj),

v(0) = ψ2(u), v
′
(0) = ε2

∫ ν2
0 u

′
(θ)dθ, v

′′
(0) = 0, · · ·, vn−2(0) = 0,

v(T) = λ2

∫ δ2

0
u(θ)dθ + μ2

k−2

∑
j=1

ωju(ϕj),

(2)

where CD, CDς, CD1 , CDς1 are the Caputo fractional derivatives of order n− 1 < , ς < n,
0 < 1, ς1 < 1, Iζ , Iξ are the Riemann–Liouville fractional integrals of order ζ, ξ > 0, f ,
g:U ×R4 → R, ψ1, ψ2 : C(U ,R) → R are given continuous functions, 0 < ν1 < ν2 < δ1 <
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δ2 < ϑ1 < ϕ1 < · · · < ϑn−2 < ϕn−2 < T, and εi, λi, μi (i = 1, 2), �j, ωj (j = 1, 2, . . . , k − 2)
are positive real constants.

The rest of the article is assembled appropriately. In Section 2, we retrieve those
concepts for a good reference and prove an auxiliary lemma, which provides the basis for
solving the problem. Section 3 presents the primary outcomes, while Sections 4–6 provide
examples, some important observations, and closing remarks, respectively.

2. Preliminaries

Firstly, we remember some fundamental fractional calculus definitions.

Definition 1. The fractional integral of order α with the lower limit zero for a function f is defined as

If(τ) =
1

Γ()

∫ τ

0

f(s)
(τ − s)1−

ds, τ > 0,  > 0, (3)

provided that the right-hand side is point-wise defined on [0.∞), where Γ(·) is the gamma function,
which is defined by Γ() =

∫ ∞
0 τ−1e−τdτ.

Definition 2. The Riemann–Liouville fractional derivative of order  > 0 , n − 1 <  < n, n ∈ N

is defined as

D
0+f(τ) =

1
Γ(n − )

(
d

dτ

)n ∫ τ

0
(τ − s)n−−1f(s)ds, τ > 0, (4)

where the function f has an absolutely continuous derivative up to order (n − 1).

Definition 3. The Caputo derivative of order  ∈ [n − 1, n) for a function f : [0, ∞) → (R) can
be written as

CD
0+f(τ) = D

0+

(
f(τ)−

n−1

∑
k=0

τk

k!
f(k)(0)

)
, τ > 0, n − 1 <  < n. (5)

Note that the Caputo fractional derivative of order  ∈ [n − 1, n) exists almost everywhere on
[0, ∞) if f ∈ ACn([0, ∞), (R)).

Remark 1. If f ∈ Cn[0, ∞), then

CD
0+ f̂(τ) =

1
Γ(n − )

∫ τ

0

f(n)(s)
(τ − s)+1−n ds = In−f(n)(τ), τ > 0, n − 1 <  < n.

Lemma 1. For any f̂ , ĝ ∈ C[0, T], the solution of the linear system of FDEs{
CD

u(τ) = f̂ (τ), τ ∈ U ,
CDς

v(τ) = ĝ(τ), τ ∈ U ,
(6)

supplemented with the boundary conditions (2) is equivalent to the system of integral equations

u(τ) =
1

Γ()

∫ τ

0
(τ − θ)−1 f̂ (θ)dθ + ψ1(v)[1 + κ1Λ4(τ)− Λ3(τ)] + ψ2(u)[κ2Λ3(τ)− Λ4(τ)]

+
Λ2(τ)ε2

Γ( − 1)

∫ ν2

0

(∫ θ

0
(θ − σ)−2 f̂ (σ)dσ

)
dθ +

Λ1(τ)ε1

Γ(ς − 1)

∫ ν1

0

(∫ θ

0
(θ − σ)ς−2 ĝ(σ)dσ

)
dθ

+Λ4(τ)

[
λ2

Γ()

∫ δ2

0

(∫ θ

0
(θ − σ)−1 f̂ (σ)dσ

)
dθ + μ2

k−2

∑
j=1

ωj

Γ()

∫ ϕj

0
(ϕj − θ)−1 f̂ (θ)dθ

− 1
Γ(ς)

∫ T

0
(T − θ)ς−1 ĝ(θ)dθ

]
+ Λ3(τ)

[
λ1

Γ(ς)

∫ δ1

0

(∫ θ

0
(θ − σ)ς−1 ĝ(σ)dσ

)
dθ
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+μ1

k−2

∑
j=1

�j

Γ(ς)

∫ ϑj

0
(ϑj − θ)ς−1 ĝ(θ)dθ − 1

Γ()

∫ T

0
(T − θ)−1 f̂ (θ)dθ

]
, (7)

and

v(τ) =
1

Γ(ς)

∫ τ

0
(τ − θ)ς−1 ĝ(θ)dθ + ψ2(u)[1 + κ2Λ7(τ)− Λ8(τ)] + ψ1(v)[κ1Λ8(τ)− Λ7(τ)]

+
Λ5(τ)ε1

Γ(ς − 1)

∫ ν1

0

(∫ θ

0
(θ − σ)ς−2 ĝ(σ)dσ

)
dθ +

Λ6(τ)ε2

Γ( − 1)

∫ ν2

0

(∫ θ

0
(θ − σ)−2 f̂ (σ)dσ

)
dθ

+Λ7(τ)

[
λ1

Γ(ς)

∫ δ1

0

(∫ θ

0
(θ − σ)ς−1 ĝ(σ)dσ

)
dθ + μ1

k−2

∑
j=1

�j

Γ(ς)

∫ ϑj

0
(ϑj − θ)ς−1 ĝ(θ)dθ (8)

− 1
Γ()

∫ T

0
(T − θ)−1 f̂ (θ)dθ

]
+ Λ8(τ)

[
λ2

Γ()

∫ δ2

0

(∫ θ

0
(θ − σ)−1 f̂ (σ)dσ

)
dθ

+μ2

k−2

∑
j=1

ωj

Γ()

∫ ϕj

0
(ϕj − θ)−1 f̂ (θ)dθ − 1

Γ(ς)

∫ T

0
(T − θ)ς−1 ĝ(θ)dθ

]
,

where

ξ1 =
λ1δ2

1
2

+ μ1

k−2

∑
j=1

�jϑj, ξ2 =
λ1δn

1
n

+ μ1

k−2

∑
j=1

�jϑ
n−1
j , ξ3 =

λ2δ2
2

2
+ μ2

k−2

∑
j=1

ωj ϕj, ξ4 =
λ2δn

2
n

+ μ2

k−2

∑
j=1

ωj ϕ
n−1
j , (9)

γ̂1 = 1 − ν1ν2ε1ε2, γ̂2 = T2 − ξ1ξ3, γ̂3 = Tn − ξ1ξ4, γ̂4 = Tn−1ξ3 − ξ4T, γ̂5 = ξ1Tn−1 − Tξ2, γ̂6 = Tn − ξ2ξ3, (10)

υ1 = γ̂2ν1νn−1
2 ε1ε2 + γ̂1γ̂3, υ2 = γ̂2νn−1

2 ε2 + γ̂1γ̂4, υ3 = γ̂2νn−1
1 ε1 + γ̂1γ̂5, υ4 = γ̂2νn−1

1 ν2ε1ε2 + γ̂1γ̂6,

υ = υ2υ3 − υ1υ4 �= 0, (11)

η1 = 1 +
(ν1νn−1

2 ε2β1 − νn−1
1 β5)ε1

υ
, η2 = ε1ν1 +

(ν1νn−1
2 ε2β2 − νn−1

1 β6)ε1

υ
, η3 =

(ν1νn−1
2 ε2β3 − νn−1

1 β7)ε1

υ
,

η4 =
(ν1νn−1

2 ε2β4 − νn−1
1 β8)ε1

υ
, η5 = ε2ν2 +

(νn−1
2 β1 − ε1νn−1

1 ν2β5)ε2

υ
, η6 = 1 +

(νn−1
2 β2 − ε1νn−1

1 ν2β6)ε2

υ
,

η7 =
(νn−1

2 β3 − ε1νn−1
1 ν2β7)ε2

υ
, η8 =

(νn−1
2 β4 − ε1νn−1

1 β8ν2)ε2

υ
, (12)

β1 = γ̂2(υ4 − υ3ε2ν2), β2 = (υ4ε1ν1 − υ3)γ̂2, β3 = (υ3ξ3 − υ4T)γ̂1, β4 = γ̂1(υ3T − υ4ξ1),

β5 = (υ2 − υ1ε2ν2)γ̂2, β6 = (υ2ε1ν1 − υ1)γ̂2, β7 = (υ1ξ3 − υ2T)γ̂1, β8 = γ̂1(υ1T − υ2ξ1), (13)

κ1 = λ2δ2 + μ2

k−2

∑
j=1

ωj, κ2 = λ1δ1 + μ1

k−2

∑
j=1

�j, (14)

Λ1(τ) =
τη1
γ̂1

+
τn−1β1

υ
, Λ2(τ) =

τη2
γ̂1

+
τn−1β2

υ
, Λ3(τ) =

τη3
γ̂1

+
τn−1β3

υ
, Λ4(τ) =

τη4
γ̂1

+
τn−1β4

υ
,

Λ5(τ) =
τη5
γ̂1

− τn−1β5
υ

, Λ6(τ) =
τη6
γ̂1

− τn−1β6
υ

, Λ7(τ) =
τη7
γ̂1

− τn−1β7
υ

, Λ8(τ) =
τη8
γ̂1

− τn−1β8
υ

. (15)

Proof. Solving the FDEs (6) in a standard manner, we get

y(τ) =
∫ τ

0

(τ − θ)−1

Γ()
f̂ (θ)dθ + a0 + a1τ + · · ·+ an−1τn−1, (16)

z(τ) =
∫ τ

0

(τ − θ)ς−1

Γ(ς)
ĝ(θ)dθ + b0 + b1τ + · · ·+ bn−1τn−1, (17)

where ai, bi ∈ R, i = 0, 1, 2, · · ·, n− 1, are arbitrary constants. Using the boundary conditions
(2) in (16) and (17) together with notations (9)–(15), we obtain a0 = φ1(z), b0 = φ2(y), and

a1 − b1ε1ν1 − bn−1ε1νn−1
1 =

ε1

Γ(ς − 1)

∫ ν1

0

(∫ θ

0
(θ − σ)ς−2 ĝ(σ)dσ

)
dθ, (18)
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b1 − a1ν2ε2 − an−1ε2νn−1
2 =

ε2

Γ( − 1)

∫ ν2

0

(∫ θ

0
(θ − σ)−2 f̂ (σ)dσ

)
dθ, (19)

a1T + an−1Tn−1 − b1ξ1 − bn−1ξ2 =
λ1

Γ(ς)

∫ δ1

0

(∫ θ

0
(θ − σ)ς−1 ĝ(σ)dσ

)
dθ

+ μ1

k−2

∑
j=1

�j

Γ(ς)

∫ ϑj

0
(ϑj − θ)ς−1 ĝ(θ)dθ

− 1
Γ()

∫ T

0
(T − θ)−1 f̂ (θ)dθ

+ κ2φ2(y)− φ1(z), (20)

b1T + bn−1Tn−1 − a1ξ3 − an−1ξ4 =
λ2

Γ()

∫ δ2

0

(∫ θ

0
(θ − σ)−1 f̂ (σ)dσ

)
dθ

+ μ2

k−2

∑
j=1

ωj

Γ()

∫ ϕj

0
(ϕj − θ)−1 f̂ (θ)dθ

− 1
Γ(ς)

∫ T

0
(T − θ)ς−1 ĝ(θ)dθ

+ κ1φ1(z)− φ2(y). (21)

Solving the system (18)–(21) for a1, an−1, b1 and bn−1, we get

a1 =
1

γ̂1

[
η1ε1

Γ(ς − 1)

∫ ν1

0

(∫ θ

0
(θ − σ)ς−2 ĝ(σ)dσ

)
dθ

+
η2ε2

Γ( − 1)

∫ ν2

0

(∫ θ

0
(θ − σ)−2 f̂ (σ)dσ

)
dθ

+ η3

(
λ1

Γ(ς)

∫ δ1

0

(∫ θ

0
(θ − σ)ς−1 ĝ(σ)dσ

)
dθ

+ μ1

k−2

∑
j=1

�j

Γ(ς)

∫ ϑj

0
(ϑj − θ)ς−1 ĝ(θ)dθ − 1

Γ()

∫ T

0
(T − θ)−1 f̂ (θ)dθ

+ κ2φ2(y)− φ1(z)

)
+ η4

(
λ2

Γ()

∫ δ2

0

(∫ θ

0
(θ − σ)−1 f̂ (σ)dσ

)
dθ

+ μ2

k−2

∑
j=1

ωj

Γ()

∫ ϕj

0
(ϕj − θ)−1 f̂ (θ)dθ − 1

Γ(ς)

∫ T

0
(T − θ)ς−1 ĝ(θ)dθ

+ κ1φ1(z)− φ2(y)

)]
,

b1 =
1

γ̂1

[
η5ε1

Γ(ς − 1)

∫ ν1

0

(∫ θ

0
(θ − σ)ς−2 ĝ(σ)dσ

)
dθ

+
η6ε2

Γ( − 1)

∫ ν2

0

(∫ θ

0
(θ − σ)−2 f̂ (σ)dσ

)
dθ

+ η7

(
λ1

Γ(ς)

∫ δ1

0

(∫ θ

0
(θ − σ)ς−1 ĝ(σ)dσ

)
dθ

+ μ1

k−2

∑
j=1

�j

Γ(ς)

∫ ϑj

0
(ϑj − θ)ς−1 ĝ(θ)dθ − 1

Γ()

∫ T

0
(T − θ)−1 f̂ (θ)dθ
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+ κ2φ2(y)− φ1(z)

)
+ η8

(
λ2

Γ()

∫ δ2

0

(∫ θ

0
(θ − σ)−1 f̂ (σ)dσ

)
dθ

+ μ2

k−2

∑
j=1

ωj

Γ()

∫ ϕj

0
(ϕj − θ)−1 f̂ (θ)dθ − 1

Γ(ς)

∫ T

0
(T − θ)ς−1 ĝ(θ)dθ

+ κ1φ1(z)− φ2(y)

)]
,

an−1 =
1
υ

[
β1ε1

Γ(ς − 1)

∫ ν1

0

(∫ θ

0
(θ − σ)ς−2 ĝ(σ)dσ

)
dθ

+
β2ε2

Γ( − 1)

∫ ν2

0

(∫ θ

0
(θ − σ)−2 f̂ (σ)dσ

)
dθ

+ β3

(
λ1

Γ(ς)

∫ δ1

0

(∫ θ

0
(θ − σ)ς−1 ĝ(σ)dσ

)
dθ

+ μ1

k−2

∑
j=1

�j

Γ(ς)

∫ ϑj

0
(ϑj − θ)ς−1 ĝ(θ)dθ − 1

Γ()

∫ T

0
(T − θ)−1 f̂ (θ)dθ

+ κ2φ2(y)− φ1(z)

)
+ β4

(
λ2

Γ()

∫ δ2

0

(∫ θ

0
(θ − σ)−1 f̂ (σ)dσ

)
dθ

+ μ2

k−2

∑
j=1

ωj

Γ()

∫ ϕj

0
(ϕj − θ)−1 f̂ (θ)dθ − 1

Γ(ς)

∫ T

0
(T − θ)ς−1 ĝ(θ)dθ

+ κ1φ1(z)− φ2(y)

)]
,

bn−1 =
−1
υ

[
β5ε1

Γ(ς − 1)

∫ ν1

0

(∫ θ

0
(θ − σ)ς−2 ĝ(σ)dσ

)
dθ

+
β6ε2

Γ( − 1)

∫ ν2

0

(∫ θ

0
(θ − σ)−2 f̂ (σ)dσ

)
dθ

+ β7

(
λ1

Γ(ς)

∫ δ1

0

(∫ θ

0
(θ − σ)ς−1 ĝ(σ)dσ

)
dθ

+ μ1

k−2

∑
j=1

�j

Γ(ς)

∫ ϑj

0
(ϑj − θ)ς−1 ĝ(θ)dθ − 1

Γ()

∫ T

0
(T − θ)−1 f̂ (θ)dθ

+ κ2φ2(y)− φ1(z)

)
+ β8

(
λ2

Γ()

∫ δ2

0

(∫ θ

0
(θ − σ)−1 f̂ (σ)dσ

)
dθ

+ μ2

k−2

∑
j=1

ωj

Γ()

∫ ϕj

0
(ϕj − θ)−1 f̂ (θ)dθ − 1

Γ(ς)

∫ T

0
(T − θ)ς−1 ĝ(θ)dθ

+ κ1φ1(z)− φ2(y)

)]
,

where γ̂1, υ, ηi and βi i = 1, 2, · · ·, 8, are given by (10)–(13) respectively. Substituting the
values of a0, a1, an−1, b0, b1 and bn−1, in (16) and (17), we obtain the solutions (7) and
(8).
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3. Existence and Uniqueness Results

We define space G = {u|u ∈ C(U ,R), CD1 u ∈ C(U ,R)} equipped with norm
‖u‖G = ‖u‖ + ‖CD1 u‖ = sup

τ∈U
|u(τ)| + sup

τ∈U
|CD1 u(τ)|. Furthermore, H = {v|v ∈

C(U ,R), CDς1 v ∈ C(U ,R)} equipped with norm ‖v‖H = ‖v‖+ ‖CDς1 v‖ = sup
τ∈U

|v(τ)|+

sup
τ∈U

|CDς1 v(τ)|. Obviously (G, ‖ · ‖G) and (H, ‖ · ‖H) are Banach spaces, and thus the

product space (G ×H, ‖ · ‖G×H) is a Banach space with norm ‖(u, v)‖G×H = ‖u‖G + ‖v‖H
for (u, v) ∈ G ×H.

Using Lemma 1, we consider an operator Π : G ×H → G ×H as

Π(u, v)(τ) = (Π1(u, v)(τ), Π2(u, v)(τ)), (22)

where

Π1(u, v)(τ) =
1

Γ()

∫ τ

0
(τ − θ)−1Ŝu(θ)dθ + ψ1(v)[1 + κ1Λ4(τ)− Λ3(τ)] + ψ2(u)[κ2Λ3(τ)− Λ4(τ)]

+
Λ2(τ)ε2

Γ( − 1)

∫ ν2

0

(∫ θ

0
(θ − σ)−2Ŝu(σ)dσ

)
dθ +

Λ1(τ)ε1

Γ(ς − 1)

∫ ν1

0

(∫ θ

0
(θ − σ)ς−2S̃v(σ)dσ

)
dθ

+Λ4(τ)

[
λ2

Γ()

∫ δ2

0

(∫ θ

0
(θ − σ)−1Ŝu(σ)dσ

)
dθ + μ2

k−2

∑
j=1

ωj

Γ()

∫ ϕj

0
(ϕj − θ)−1Ŝu(θ)dθ (23)

− 1
Γ(ς)

∫ T

0
(T − θ)ς−1S̃v(θ)dθ

]
+ Λ3(τ)

[
λ1

Γ(ς)

∫ δ1

0

(∫ θ

0
(θ − σ)ς−1S̃v(σ)dσ

)
dθ

+μ1

k−2

∑
j=1

�j

Γ(ς)

∫ ϑj

0
(ϑj − θ)ς−1S̃v(θ)dθ − 1

Γ()

∫ T

0
(T − θ)−1Ŝu(θ)dθ

]
,

and

Π2(u, v)(τ) =
1

Γ(ς)

∫ τ

0
(τ − θ)ς−1S̃v(θ)dθ + ψ2(u)[1 + κ2Λ7(τ)− Λ8(τ)] + ψ1(v)[κ1Λ8(τ)− Λ7(τ)]

+
Λ5(τ)ε1

Γ(ς − 1)

∫ ν1

0

(∫ θ

0
(θ − σ)ς−2S̃v(σ)dσ

)
dθ +

Λ6(τ)ε2

Γ( − 1)

∫ ν2

0

(∫ θ

0
(θ − σ)−2Ŝu(σ)dσ

)
dθ

+Λ7(τ)

[
λ1

Γ(ς)

∫ δ1

0

(∫ θ

0
(θ − σ)ς−1S̃v(σ)dσ

)
dθ + μ1

k−2

∑
j=1

�j

Γ(ς)

∫ ϑj

0
(ϑj − θ)ς−1S̃v(θ)dθ (24)

− 1
Γ()

∫ T

0
(T − θ)−1Ŝu(θ)dθ

]
+ Λ8(τ)

[
λ2

Γ()

∫ δ2

0

(∫ θ

0
(θ − σ)−1Ŝu(σ)dσ

)
dθ

+μ2

k−2

∑
j=1

ωj

Γ()

∫ ϕj

0
(ϕj − θ)−1Ŝu(θ)dθ − 1

Γ(ς)

∫ T

0
(T − θ)ς−1S̃v(θ)dθ

]
.

where

Ŝu(τ) = f (τ, u(τ), v(τ), CDς1 v(τ), Iξ v(τ)), τ ∈ U ,

S̃v(τ) = g(τ, u(τ), CD1 u(τ), Iζ u(τ), v(τ)), τ ∈ U ,

and Λi (i = 1, 2, · · ·, 8) are given by (15). Suitable for computation, we represent

Δ1 =
1

Γ( + 1)

[
T(1 + Λ3) + Λ2ε2ν


2 + Λ4

(
λ2

δ
+1
2

( + 1)
+ μ2

k−2

∑
j=1

ωj ϕ

j

)]
, (25)

Δ2 =
1

Γ(ς + 1)

[
TςΛ4 + Λ1ε1ν

ς
1 + Λ3

(
λ1

δ
ς+1
1

(ς + 1)
+ μ1

k−2

∑
j=1

�jϑ
ς
j

)]
, (26)
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Δ3 =
1

Γ( + 1)

[
TΛ7 + Λ6ε2ν


2 + Λ8

(
λ2

δ
+1
2

( + 1)
+ μ2

k−2

∑
j=1

ωj ϕ

j

)]
, (27)

Δ4 =
1

Γ(ς + 1)

[
Tς(1 + Λ8) + Λ5ε1ν

ς
1 + Λ7

(
λ1

δ
ς+1
1

(ς + 1)
+ μ1

k−2

∑
j=1

�jϑ
ς
j

)]
, (28)

Δ̂1 =
1

Γ( + 1)

[
T−1 + Λ

′
3T + Λ

′
2ε2ν


2 + Λ

′
4

(
λ2

δ
+1
2

( + 1)
+ μ2

k−2

∑
j=1

ωj ϕ

j

)]
, (29)

Δ̂2 =
1

Γ(ς + 1)

[
TςΛ

′
4 + Λ

′
1ε1ν

ς
1 + Λ

′
3

(
λ1

δ
ς+1
1

(ς + 1)
+ μ1

k−2

∑
j=1

�jϑ
ς
j

)]
, (30)

Δ̂3 =
1

Γ( + 1)

[
TΛ

′
7 + Λ

′
6ε2ν


2 + Λ

′
8

(
λ2

δ
+1
2

( + 1)
+ μ2

k−2

∑
j=1

ωj ϕ

j

)]
, (31)

Δ̂4 =
1

Γ(ς + 1)

[
ςTς−1 + Λ

′
8Tς + Λ

′
5ε1ν

ς
1 + Λ

′
7

(
λ1

δ
ς+1
1

(ς + 1)
+ μ1

k−2

∑
j=1

�jϑ
ς
j

)]
, (32)

Φ1 =

(
Δ1 +

T1−1

Γ(2 − 1)
Δ̂1 + Δ3 +

T1−ς1

Γ(2 − ς1)
Δ̂3

)
r0 +

(
Δ2 +

T1−1

Γ(2 − 1)
Δ̂2 + Δ4 +

T1−ς1

Γ(2 − ς1)
Δ̂4

)
s0, (33)

Φ2 =

(
Δ1 +

T1−1

Γ(2 − 1)
Δ̂1 + Δ3 +

T1−ς1

Γ(2 − ς1)
Δ̂3

)
r1

+

(
Δ2 +

T1−1

Γ(2 − 1)
Δ̂2 + Δ4 +

T1−ς1

Γ(2 − ς1)
Δ̂4

)(
max{s1, s2}+

s3Tζ

Γ(ζ + 1)

)

+

{
κ2Λ3 + Λ4 +

T1−1(κ2Λ
′
3 + Λ

′
4)

Γ(2 − 1)
+ 1 + κ2Λ7 + Λ8 +

T1−ς1(κ2Λ
′
7 + Λ

′
8)

Γ(2 − ς1)

}
W2, (34)

Φ3 =

(
Δ1 +

T1−1

Γ(2 − 1)
Δ̂1 + Δ3 +

T1−ς1

Γ(2 − ς1)
Δ̂3

)(
max{r2, r3}+

r4Tξ

Γ(ξ + 1)

)
+

(
Δ2 +

T1−1

Γ(2 − 1)
Δ̂2 + Δ4 +

T1−ς1

Γ(2 − ς1)
Δ̂4

)
s4

+

{
1 + κ1Λ4 + Λ3 +

T1−1(κ1Λ
′
4 + Λ

′
3)

Γ(2 − 1)
+ κ1Λ8 + Λ7 +

T1−ς1(κ1Λ
′
8 + Λ

′
7)

Γ(2 − ς1)

}
W1, (35)

Ψ1 = Δ1ι1V1 + Δ2ι2V2 + (1 + κ1Λ4 + Λ3)V1 + (κ2Λ3 + Λ4)V2, (36)

Ψ2 = Δ̂1ι1V1 + Δ̂2ι2V2 + (κ1Λ
′
4 + Λ

′
3)V1 + (κ2Λ

′
3 + Λ

′
4)V2, (37)

Ψ3 = Δ4ι2V2 + Δ3ι1V1 + (1 + κ2Λ7 + Λ8)V2 + (κ1Λ8 + Λ7)V1, (38)

Ψ4 = Δ̂4ι2V2 + Δ̂3ι1V1 + (κ2Λ
′
7 + Λ

′
8)V2 + (κ1Λ

′
8 + Λ

′
7)V1, (39)

P1 = Δ1T1 + Δ2T2, P2 = Δ̂1T1 + Δ̂2T2, P3 = Δ4T2 + Δ3T1, P4 = Δ̂4T2 + Δ̂3T1, (40)

P = P1 +
T1−1

Γ(2 − 1)
P2, P̂ = P3 +

T1−ς1

Γ(2 − ς1)
P4, (41)

Ψ = Ψ1 +
T1−1

Γ(2 − 1)
Ψ2, Ψ̂ = Ψ3 +

T1−ς1

Γ(2 − ς1)
Ψ4 (42)

T1 = sup
τ∈U

f (τ, 0, 0, 0, 0) < ∞, T2 = sup
τ∈U

g(τ, 0, 0, 0, 0) < ∞,

ι1 = 1 +
Tξ

Γ(ξ + 1)
, ι2 = 1 +

Tζ

Γ(ζ + 1)
, (43)
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where Λi = max
τ∈H

|Λi(τ)| and Λ
′
i = max

τ∈H
|Λ′

i(τ)| i = 1, 2, · · ·, 8. We need the following

assumptions in the forthcoming analysis: f , g : U ×R4 → R and ψ1, ψ2 : C(U ,R) → R are
continuous functions ψ1(0) = ψ2(0) = 0.

(F1) There exist positive constants ri and si ≥ 0, r0 > 0, s0 > 0, ∀wi ∈ R, i = 1, 2, 3, 4.

| f (τ, w1, w2, w3, w4)| ≤ r0 + r1|w1|+ r2|w2|+ r3|w3|+ r4|w4|,
|g(τ, w1, w2, w3, w4)| ≤ s0 + s1|w1|+ s2|w2|+ s3|w3|+ s4|w4|.

(F2) There exists positive constants W1,W2 > 0,

|ψ1(v)| ≤ W1‖v‖, |ψ2(u)| ≤ W2‖u‖, ∀ u, v ∈ C(U ,R).

(F3) There exist positive constants Vi, i = 1, 2, ∀ τ ∈ U and ri, si ∈ R(i = 1, 2, 3, 4), we
have

| f (τ, r1, r2, r3, r4)− f (τ, s1, s2, s3, s4)| ≤ V1

(
|r1 − s1|+ |r2 − s2|+ |r3 − s3|+ |r4 − s4|

)
,

|g(τ, r1, r2, r3, r4)− g(τ, s1, s2, s3, s4)| ≤ V2

(
|r1 − s1|+ |r2 − s2|+ |r3 − s3|+ |r4 − s4|

)
.

(F4) There exist positive constants Vi (i = 1, 2) such that

|ψ1(r1)− ψ1(r2)| ≤ V1‖r1 − r2‖, |ψ2(r1)− ψ2(r2)| ≤ V2‖r1 − r2‖,

∀ r1, r2 ∈ R.

Theorem 1. Assume that (F1) and (F2) hold. Further, if Φ̂ = min{Φ2, Φ3} < 1, then the
problem (1) and (2) has at least one solution on U .

Proof. In the first step, we show that operator Π : G ×H → G ×H is completely continu-
ous. Operator Π is continuous by the continuity of f , g, ψ1, ψ2 functions. Let Ω ⊂ G ×H
be bounded. Then, ∃ positive constants L f and Lg such that

|Ŝu(τ)| = | f (τ, u(τ), v(τ), CDς1 v(τ), Iξ v(τ))| ≤ L f

|S̃v(τ)| = |g(τ, u(τ), CD1 u(τ), Iζ u(τ), v(τ))| ≤ Lg,

∀ (u, v) ∈ Ω, and constants Lψ1 , Lψ2 > 0 such that |ψ1(v)| ≤ Lψ1 , |ψ2(u)| ≤ Lψ2 , ∀u,
v ∈ C(U ,R). Then, for any (u, v) ∈ Ω, we have

|Π1(u, v)(τ)| ≤ 1
Γ()

∫ τ

0
(τ − θ)−1|Ŝu(θ)|dθ + |ψ1(v)|[1 + κ1|Λ4(τ)|+ |Λ3(τ)|] + |ψ2(u)|[κ2|Λ3(τ)|+ |Λ4(τ)|]

+
|Λ2(τ)|ε2

Γ( − 1)

∫ ν2

0

(∫ θ

0
(θ − σ)−2|Ŝu(σ)dσ

)
dθ +

|Λ1(τ)|ε1

Γ(ς − 1)

∫ ν1

0

(∫ θ

0
(θ − σ)ς−2|S̃v(σ)dσ

)
dθ

+|Λ4(τ)|
[

λ2

Γ()

∫ δ2

0

(∫ θ

0
(θ − σ)−1|Ŝu(σ)dσ

)
dθ + μ2

k−2

∑
j=1

ωj

Γ()

∫ ϕj

0
(ϕj − θ)−1|Ŝu(θ)|dθ

+
1

Γ(ς)

∫ T

0
(T − θ)ς−1|S̃v(θ)|dθ

]
+ |Λ3(τ)|

[
λ1

Γ(ς)

∫ δ1

0

(∫ θ

0
(θ − σ)ς−1|S̃v(σ)dσ

)
dθ

+μ1

k−2

∑
j=1

�j

Γ(ς)

∫ ϑj

0
(ϑj − θ)ς−1|S̃v(θ)|dθ +

1
Γ()

∫ T

0
(T − θ)−1|Ŝu(θ)|dθ

]
≤ Δ1L f + Δ2Lg + [1 + κ1Λ4 + Λ3]Lψ1 + [κ2Λ3 + Λ4]Lψ2 .
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Likewise, we get |Π′
1(u, v)(τ)| ≤ Δ̂1L f + Δ̂2Lg + [κ1Λ

′
4 +Λ

′
3]Lψ1 + [κ2Λ

′
3 +Λ

′
4]Lψ2 , which

implies that |CD1 Π1(u, v)(τ)| ≤ T1−1
Γ(2−1)

(Δ̂1L f + Δ̂2Lg + [κ1Λ
′
4 + Λ

′
3]Lψ1 + [κ2Λ

′
3+

Λ
′
4]Lψ2). Thus, we have

‖Π1(u, v)‖G ≤ Δ1L f + Δ2Lg + [1 + κ1Λ4 + Λ3]Lψ1 + [κ2Λ3 + Λ4]Lψ2

+
T1−1

Γ(2 − 1)
(Δ̂1L f + Δ̂2Lg + [κ1Λ

′
4 + Λ

′
3]Lψ1 + [κ2Λ

′
3 + Λ

′
4]Lψ2). (44)

We obtain that, equivalently, |Π2(u, v)(τ)| ≤ Δ4Lg +Δ3L f + [1+ κ2Λ7 +Λ8]Lψ2 + [κ1Λ8 +

Λ7]Lψ1 , and |Π′
2(u, v)(τ)| ≤ Δ̂4Lg + Δ̂3L f + [κ2Λ

′
7 + Λ

′
8]Lψ2 + [κ1Λ

′
8 + Λ

′
7]Lψ1 , which im-

plies that |CDς1 Π2(u, v)(τ)| ≤ T1−ς1
Γ(2−ς1)

(Δ̂4Lg + Δ̂3L f + [κ2Λ
′
7 + Λ

′
8]Lψ2 + [κ1Λ

′
8 + Λ

′
7]Lψ1).

Thus, we have

‖Π2(u, v)‖H ≤ Δ4Lg + Δ3L f + [1 + κ2Λ7 + Λ8]Lψ2 + [κ1Λ8 + Λ7]Lψ1

+
T1−ς1

Γ(2 − ς1)
(Δ̂4Lg + Δ̂3L f + [κ2Λ

′
7 + Λ

′
8]Lψ2 + [κ1Λ

′
8 + Λ

′
7]Lψ1). (45)

Thus, Π is uniformly bounded by (44) and (45). Operator Π must be shown
to be equicontinuous.

For τ1, τ2 ∈ U with τ1 < τ2, we have

|Π1(u, v)(τ2)− Π1(u, v)(τ1)|

≤
L f

Γ( + 1)
[(τ2 − τ1)

 + (τ

2 − τ


1 )] + |ψ1(v)|

[
κ1(|Λ4(τ2)− Λ4(τ1)|) + (|Λ3(τ2)− Λ3(τ1)|)

]
+|ψ2(u)|

[
κ2(|Λ3(τ2)− Λ3(τ1)|) + (|Λ4(τ2)− Λ4(τ1)|)

]
+

(|Λ2(τ2)− Λ2(τ1)|)ε2ν

2L f

Γ( + 1)

+
(|Λ1(τ2)− Λ1(τ1)|)ε1ν

ς
1Lg

Γ(ς + 1)
+ (|Λ4(τ2)− Λ4(τ1)|)

[
λ2δ

+1
2 L f

Γ( + 2)
+ μ2

k−2

∑
j=1

ωj(ϕj)
L f

Γ( + 1)
+

TςLg

Γ(ς + 1)

]

+(Λ3(τ2)− Λ3(τ1))

[
λ1δ

ς+1
1 Lg

Γ(ς + 2)
+ μ1

k−2

∑
j=1

�jϑ
ς
j Lg

Γ(ς + 1)
+

TL f

Γ( + 1)

]
,

and

|Π′
1(u, v)(τ2)− Π

′
1(u, v)(τ1)|

≤
∣∣∣∣∫ τ1

0

[(τ2 − θ)−2 − (τ1 − θ)−2]

Γ( − 1)
× f (θ, u(θ), v(θ), CDς1 v(θ), Iξv(θ))dθ

∣∣∣∣
+

∣∣∣∣∫ τ2

τ1

(τ2 − θ)−2

Γ( − 1)
f (θ, u(θ), v(θ), CDς1 v(θ), Iξ v(θ))dθ

∣∣∣∣+ |ψ1(v)|
[
κ1(|Λ

′
4(τ2)− Λ

′
4(τ1)|) + (|Λ′

3(τ2)− Λ
′
3(τ1)|)

]
+|ψ2(u)|

[
κ2(|Λ

′
3(τ2)− Λ

′
3(τ1)|) + (|Λ′

4(τ2)− Λ
′
4(τ1)|)

]
+

(|Λ′
2(τ2)− Λ

′
2(τ1)|)ε2ν


2L f

Γ( + 1)

+
(|Λ′

1(τ2)− Λ
′
1(τ1)|)ε1ν

ς
1Lg

Γ(ς + 1)
+ (|Λ′

4(τ2)− Λ
′
4(τ1)|)

[
λ2δ

+1
2 L f

Γ( + 2)
+ μ2

k−2

∑
j=1

ωj(ϕj)
L f

Γ( + 1)
+

TςLg

Γ(ς + 1)

]

+(|Λ′
3(τ2)− Λ

′
3(τ1)|)

[
λ1δ

ς+1
1 Lg

Γ(ς + 2)
+ μ1

k−2

∑
j=1

�jϑ
ς
j Lg

Γ(ς + 1)
+

TL f

Γ( + 1)

]
.

Thus, we have
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|CD1 Π1(u, v)(τ2)− CD1 Π1(u, v)(τ1)|

≤ T1−1

Γ(2 − 1)

{
L f

Γ()
[(τ2 − τ1)

−1 + (τ
−1
2 − τ

−1
1 )] + |ψ1(v)|

[
κ1(|Λ

′
4(τ2)− Λ

′
4(τ1)|) + (|Λ′

3(τ2)− Λ
′
3(τ1)|)

]
+|ψ2(u)|

[
κ2(|Λ

′
3(τ2)− Λ

′
3(τ1)|) + (|Λ′

4(τ2)− Λ
′
4(τ1)|)

]
+

(|Λ′
2(τ2)− Λ

′
2(τ1)|)ε2ν


2L f

Γ( + 1)

+
(|Λ′

1(τ2)− Λ
′
1(τ1)|)ε1ν

ς
1Lg

Γ(ς + 1)
+ (|Λ′

4(τ2)− Λ
′
4(τ1)|)

[
λ2δ

+1
2 L f

Γ( + 2)
+ μ2

k−2

∑
j=1

ωj(ϕj)
L f

Γ( + 1)
+

TςLg

Γ(ς + 1)

]

+(|Λ′
3(τ2)− Λ

′
3(τ1)|)

[
λ1δ

ς+1
1 Lg

Γ(ς + 2)
+ μ1

k−2

∑
j=1

�jϑ
ς
j Lg

Γ(ς + 1)
+

TL f

Γ( + 1)

]}
.

Thus, we obtain ‖Π1(u, v)(τ2) − Π1(u, v)(τ1)‖G → 0 independent of u and v as
τ2 → τ1. According to the above, we get

|Π2(u, v)(τ2)− Π2(u, v)(τ1)|

≤ Lg

Γ(ς + 1)
[(τ2 − τ1)

ς + (τς
2 − τ

ς
1 )] + |ψ2(u)|

[
κ2(|Λ7(τ2)− Λ7(τ1)|) + (|Λ8(τ2)− Λ8(τ1)|)

]
+|ψ1(v)|

[
κ1(|Λ8(τ2)− Λ8(τ1)|) + (|Λ7(τ2)− Λ7(τ1)|)

]
+

(|Λ5(τ2)− Λ5(τ1)|)ε1ν
ς
1Lg

Γ(ς + 1)

+
(|Λ6(τ2)− Λ6(τ1)|)ε2ν


2L f

Γ( + 1)
+ (|Λ7(τ2)− Λ7(τ1)|)

[
λ1δ

ς+1
1 Lg

Γ(ς + 2)
+ μ1

k−2

∑
j=1

�jϑ
ς
j Lg

Γ(ς + 1)
+

TL f

Γ( + 1)

]

+(|Λ8(τ2)− Λ8(τ1)|)
[

λ2δ
+1
2 L f

Γ( + 2)
+ μ2

k−2

∑
j=1

ωj(ϕj)
L f

Γ( + 1)
+

TςLg

Γ(ς + 1)

]
,

and

|Π′
2(u, v)(τ2)− Π

′
2(u, v)(τ1)|

≤
∣∣∣∣∫ τ1

0

[(τ2 − θ)ς−2 − (τ1 − θ)ς−2]

Γ(ς − 1)
× g(θ, u(θ), CD1 u(θ), Iζ u(θ), v(θ))dθ

∣∣∣∣
+

∣∣∣∣∫ τ2

τ1

(τ2 − θ)ς−2

Γ(ς − 1)
g(θ, u(θ), CD1 u(θ), Iζ u(θ), v(θ))dθ

∣∣∣∣+ |ψ2(u)|
[
κ2(|Λ

′
7(τ2)− Λ

′
7(τ1)|) + (|Λ′

8(τ2)− Λ
′
8(τ1)|)

]
+|ψ1(v)|

[
κ1(|Λ

′
8(τ2)− Λ

′
8(τ1)|) + (|Λ′

7(τ2)− Λ
′
7(τ1)|)

]
+

(|Λ′
5(τ2)− Λ

′
5(τ1)|)ε1ν

ς
1Lg

Γ(ς + 1)

+
(|Λ′

6(τ2)− Λ
′
6(τ1)|)ε2ν


2L f

Γ( + 1)
+ (|Λ′

7(τ2)− Λ
′
7(τ1)|)

[
λ1δ

ς+1
1 Lg

Γ(ς + 2)
+ μ1

k−2

∑
j=1

�jϑ
ς
j Lg

Γ(ς + 1)
+

TL f

Γ( + 1)

]

+(|Λ′
8(τ2)− Λ

′
8(τ1)|)

[
λ2δ

+1
2 L f

Γ( + 2)
+ μ2

k−2

∑
j=1

ωj(ϕj)
L f

Γ( + 1)
+

TςLg

Γ(ς + 1)

]
.

Consequently, we have
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|CDς1 Π2(u, v)(τ2)− CDς1 Π2(u, v)(τ1)|

≤ T1−ς1

Γ(2 − ς1)

{
Lg

Γ(ς + 1)
[(τ2 − τ1)

ς + (τς
2 − τ

ς
1 )] + |ψ2(u)|

[
κ2(|Λ

′
7(τ2)− Λ

′
7(τ1)|) + (|Λ′

8(τ2)− Λ
′
8(τ1)|)

]
+|ψ1(v)|

[
κ1(|Λ

′
8(τ2)− Λ

′
8(τ1)|) + (|Λ′

7(τ2)− Λ
′
7(τ1)|)

]
+

(|Λ′
5(τ2)− Λ

′
5(τ1)|)ε1ν

ς
1Lg

Γ(ς + 1)

+
(|Λ′

6(τ2)− Λ
′
6(τ1)|)ε2ν


2L f

Γ( + 1)
+ (|Λ′

7(τ2)− Λ
′
7(τ1)|)

[
λ1δ

ς+1
1 Lg

Γ(ς + 2)
+ μ1

k−2

∑
j=1

�jϑ
ς
j Lg

Γ(ς + 1)
+

TL f

Γ( + 1)

]

+(|Λ′
8(τ2)− Λ

′
8(τ1)|)

[
λ2δ

+1
2 L f

Γ( + 2)
+ μ2

k−2

∑
j=1

ωj(ϕj)
L f

Γ( + 1)
+

TςLg

Γ(ς + 1)

]}
,

which means that ‖Π2(u, v)(τ2)− Π2(u, v)(τ1)‖H → 0 independent of u and v as τ2 → τ1.
Hence, the operator Π(u, v) is equicontinuous, and thus it is completely continuous by
Lemma (see Lemma 1.2 [15]). Next, we demonstrate that the set Φ = {(u, v) ∈ G ×
H|(u, v) = ηΠ(u, v), 0 < η < 1} is bounded. Let (u, v) ∈ Φ; then, (u, v) = ηΠ(u, v), and
for any τ ∈ U , we have u(τ) = ηΠ1(u, v)(τ), v(τ) = ηΠ2(u, v)(τ). Thus,

|u(τ)|G ≤ Δ1

(
r0 + r1‖u‖G +

(
max{r2, r3}+

r4Tξ

Γ(ξ + 1)

)
‖v‖H

)
+Δ2

(
s0 +

(
max{s1, s2}+

s3Tζ

Γ(ζ + 1)

)
‖u‖G + s4‖v‖H

)
+
(

1 + κ1|Λ4|+ |Λ3|
)
W1‖v‖H +

(
κ2|Λ3|+ |Λ4|

)
W2‖u‖G ,

|u′
(τ)| ≤ Δ̂1

(
r0 + r1‖u‖G +

(
max{r2, r3}+

r4Tξ

Γ(ξ + 1)

)
‖v‖H

)
+Δ̂2

(
s0 +

(
max{s1, s2}+

s3Tζ

Γ(ζ + 1)

)
‖u‖G + s4‖v‖H

)
+
(

κ1|Λ
′
4|+ |Λ

′
3|
)
W1‖v‖H +

(
κ2|Λ

′
3|+ |Λ

′
4|
)
W2‖u‖G ,

|CD1 u(τ)| ≤ T1−1

Γ(2 − 1)

{
Δ̂1

(
r0+r1‖u‖G+

(
max{r2, r3}+

r4Tξ

Γ(ξ + 1)

)
‖v‖H

)
+Δ̂2

(
s0 +

(
max{s1, s2}+

s3Tζ

Γ(ζ + 1)

)
‖u‖G+s4‖v‖H

)
+
(

κ1|Λ
′
4|+ |Λ

′
3|
)
W1‖v‖H +

(
κ2|Λ

′
3|+ |Λ

′
4|
)
W2‖u‖G

}
.

Hence, we have
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‖u‖ ≤ Δ1

(
r0 + r1‖u‖G +

(
max{r2, r3}+

r4Tξ

Γ(ξ + 1)

)
‖v‖H

)
+Δ2

(
s0 +

(
max{s1, s2}+

s3Tζ

Γ(ζ + 1)

)
‖u‖G + s4‖v‖H

)
+
(

1 + κ1|Λ4|+ |Λ3|
)
W1‖v‖H +

(
κ2|Λ3|+ |Λ4|

)
W2‖u‖G

+
T1−1

Γ(2 − 1)

{
Δ̂1

(
r0 + r1‖u‖G +

(
max{r2, r3}+

r4Tξ

Γ(ξ + 1)

)
‖v‖H

)
(46)

+Δ̂2

(
s0 +

(
max{s1, s2}+

s3Tζ

Γ(ζ + 1)

)
‖u‖G + s4‖v‖H

)
+
(

κ1|Λ
′
4|+ |Λ

′
3|
)
W1‖v‖H +

(
κ2|Λ

′
3|+ |Λ

′
4|
)
W2‖u‖G

}
.

According to the above, we get

‖v‖ ≤ Δ4

(
s0 +

(
max{s1, s2}+

s3Tζ

Γ(ζ + 1)

)
‖u‖G + s4‖v‖H

)
+Δ3

(
r0 + r1‖u‖G +

(
max{r2, r3}+

r4Tξ

Γ(ξ + 1)

)
‖v‖H

)
+
(

1 + κ2|Λ7|+ |Λ8|
)
W2‖u‖G +

(
κ1|Λ8|+ |Λ7|

)
W1‖v‖H

+
T1−ς1

Γ(2 − ς1)

{
Δ̂4

(
s0 +

(
max{s1, s2}+

s3Tζ

Γ(ζ + 1)

)
‖u‖G + s4‖v‖H

)
(47)

+Δ̂3

(
r0 + r1‖u‖G +

(
max{r2, r3}+

r4Tξ

Γ(ξ + 1)

)
‖v‖H

)
+
(

κ2|Λ
′
7|+ |Λ

′
8|
)
W2‖u‖G +

(
κ1|Λ

′
8|+ |Λ

′
7|
)
W1‖v‖H

}
.

Using the above inequalities in combination with the notations (46) and (47), we deduce the
result below. ‖u‖+ ‖v‖ ≤ Φ1 + min{Φ2, Φ3}‖(u, v)‖G×H, which leads to ‖(u, v)‖G×H ≤

Φ1

1 − min{Φ2, Φ3}
. This concludes that the set min{Φ2, Φ3} is bounded. Therefore, operator

Π has at least one fixed point by Theorem (see Theorem 1.9 [15]), which means the system
(1)–(2) has at least one solutions on U .

Theorem 2. Assume that (F3) and (F4) holds. Additionally, if

Ψ + Ψ̂ < 1, (48)

where Ψ, Ψ̂ are defined by (42), then on U there is a unique solution to the problems (1) and (2).

Proof. Let us fix this ε̂ ≥ max

{
P+P̂

1−(Ψ+Ψ̂)

}
, where Ψ, Ψ̂ and P , P̂ are respectively given

by (41) and (42), and show that ΠBε̂ ⊂ Bε̂, where the operator Π is given by (22) and
Bε̂ = {(u, v) ∈ G ×H : ‖(u, v)‖ ≤ ε̂}. For (u, v) ∈ Bε̂, τ ∈ H, we have

|Ŝu(τ)| = | f (τ, u(τ), v(τ), CDς1 v(τ), Iξ v(τ))| ≤ V1ι1

(
‖(u, v)‖G×H

)
+ T1 ≤ V1ι1 ε̂ + T1,

|S̃v(τ)| = |g(τ, u(τ), CD1 u(τ), Iζ u(τ), v(τ))| ≤ V2ι2

(
‖(u, v)‖G×H

)
+ T2 ≤ V2ι2 ε̂ + T2,

|ψ1(v)| ≤ V1 ε̂, |ψ2(u)| ≤ V2 ε̂,
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which lead to
|Π1(u, v)(τ)| ≤ Ψ1 ε̂ + P1,

where Ψ1 and P1 are given by (36) and (40). With the above notes, we get

|Π′
1(u, v)(τ)| ≤ Ψ2 ε̂ + P2,

which means that

|CD1 Π1(u, v)(τ)| ≤ T1−1

Γ(2 − 1)

(
Ψ2 ε̂ + P2

)
.

Thus, we get

‖Π1(u, v)‖G ≤
(

Ψ1 +
T1−1

Γ(2 − 1)
Ψ2

)
ε̂ +

(
P1 +

T1−1

Γ(2 − 1)
P2

)
. (49)

Similarly, we get
|Π2(u, v)(τ)| ≤ Ψ3 ε̂ + P3,

where Ψ3 and P3 are given by (38) and (40). With the above notes, we get

|Π′
2(u, v)(τ)| ≤ Ψ4 ε̂ + P4,

which means that

|CDς1 Π2(u, v)(τ)| ≤ T1−ς1

Γ(2 − ς1)

(
Ψ4 ε̂ + P4

)
.

Hence, we have

‖Π2(u, v)‖H ≤
(

Ψ3 +
T1−ς1

Γ(2 − ς1)
Ψ4

)
ε̂ +

(
P3 +

T1−ς1

Γ(2 − ς1)
P4

)
. (50)

So, (49) and (50) follow ‖Π(u, v)‖G×H ≤ ε̂, and thus, ΠBε̂ ⊂ Bε̂.
Now, for (u1, v1), (u2, v2) ∈ G ×H and any τ ∈ U , we have

|Π1(u1, v1)(τ)− Π1(u2, v2)(τ)| ≤ Ψ1(‖u1 − u2‖G + ‖v1 − v2‖H).

Next, we find that

|Π′
1(u1, v1)(τ)− Π

′
1(u2, v2)(τ)| ≤ Ψ2(‖u1 − u2‖G + ‖v1 − v2‖H).

Thus, we have

|CD1 Π1(u1, v1)(τ)− CD1 Π1(u2, v2)(τ)| ≤
T1−1

Γ(2 − 1)

(
Ψ2(‖u1 − u2‖G + ‖v1 − v2‖H)

)
,

Hence, we get

‖Π1(u1, v1)− Π1(u2, v2)‖G ≤
(

Ψ1 +
T1−1

Γ(2 − 1)
Ψ2

)
(‖u1 − u2‖G + ‖v1 − v2‖H). (51)

Similarly, we have

‖Π2(u1, v1)− Π2(u2, v2)‖H ≤
(

Ψ3 +
T1−ς1

Γ(2 − ς1)
Ψ4

)
(‖u1 − u2‖G + ‖v1 − v2‖H). (52)

So, (51) and (52) follow

‖Π(u1, v1)− Π(u2, v2)‖G×H

≤
(

Ψ1 +
T1−1

Γ(2 − 1)
Ψ2 + Ψ3 +

T1−ς1

Γ(2 − ς1)
Ψ4

)
(‖u1 − u2‖G + ‖v1 − v2‖H).

It follows that, in view of the condition (48), the operator Π is a contraction. Thus, by
Theorem (see Theorem 1.2.2 [14]), the system (1) and (2) has a unique solution on U .
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4. Examples

Example 1. Consider the system of Caputo type FIDEs given by⎧⎨⎩ CD
68
25 u(τ) = f (τ, u(τ), v(τ), CD

44
25 v(τ), I 46

25 v(τ)),
CD

62
25 v(τ) = g(τ, u(τ), CD

73
50 u(τ), I 39

25 u(τ), v(τ)),
(53)

subject to the boundary conditions⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(0)=ψ1(v),u

′
(0)=ε1

∫ ν1
0 v

′
(θ)dθ, u(T)=λ1

∫ δ1

0
v(θ)dθ + μ1

k−2

∑
j=1

�jv(ϑj),

v(0)=ψ2(u),v
′
(0)=ε2

∫ ν2
0 u

′
(θ)dθ, v(T)=λ2

∫ δ2

0
u(θ)dθ + μ2

k−2

∑
j=1

ωju(ϕj).
(54)

Here,  = 68
25 , ς = 62

25 , 1 = 73
50 , ς1 = 44

25 , ξ = 46
25 , ζ = 39

25 , T = 1, δ1 = 1
8 , δ2 = 37

200 , ϑ1 = 37
250 ,

ϑ2 = 79
500 , ϑ3 = 47

250 , ϑ4 = 11
50 , ϕ1 = 113

500 , ϕ2 = 59
250 , ϕ3 = 6

25 , ϕ4 =
49

200
, �1 = 1

160 , �2 = 58
625 ,

�3 = 29
400 , �4 = 21

250 , ω1 = 17
200 , ω2 = 12

125 , ω3 = 19
250 , ω4 = 7

125 , λ1 = 1
80 , λ2 = 7

200 , μ1 = 9
400 ,

μ2 = 23
500 ,ε1 = 11

400 , ε2 = 19
500 , ν1 = 53

200 , ν2 = 133
500 . We consider the functions,

| f (τ, u1, u2, u3, u4)| ≤ 1
20(τ2 + 1)

+
1

70(2 + τ)2

(
2u2 +

|u1|
1 + |u1|

)
+

sin u3

700
+

arctan u4

140(3 + τ)
,

|g(τ, u1, u2, u3, u4)| ≤ 1
(τ4 + 1)2

+
1

150(1 + τ2)

(u2

3
+ 3u1

)
+

cos u3

800
+

|u4|
400(1 + |u4|)

,

|ψ1(v)| ≤ 1
110

‖v‖, |ψ2(u)| ≤
1

600
‖u‖.

Clearly

| f (τ, u1, u2, u3, u4)| ≤ 1
20

+
1

140
|u1|+

1
70

|u2|+
1

700
|u3|+

1
420

|u4|,

|g(τ, u1, u2, u3, u4)| ≤ 1
2
+

1
50

|u1|+
1

450
|u2|+

1
800

|u3|+
1

400
|u4|,

|ψ1(v)| ≤ 1
110

‖v‖, |ψ2(u)| ≤
1

600
‖u‖.

With the given data, we find that r0 = 1
20 , r1 = 1

140 , r2 = 1
70 , r3 = 1

700 , r4 = 1
420 , s0 = 1

2 , s1 = 1
50 ,

s2 = 1
450 , s3 = 1

800 , s4 = 1
400 , Δ1 = 0.46845200402823617, Δ2 = 0.0007227881649342847,

Δ3 = 0.0011251030301272463, Δ4 = 0.6151822290610394, Δ̂1 = 0.8713184743902467,
Δ̂2 = 0.0014641295646385377, Δ̂3 = 0.00186307333192, Δ̂4 = 1.0704190784503973, we find
that Φ̂ = min{Φ1, Φ2} < 1. Thus, the assumption of Theorem 1 holds and the problem (53) and
(54) has at least one solution on [0, 1].

Example 2. We consider the functions

| f (τ, u1, u2, u3, u4)| ≤ 1

9
√

τ2 + 64

(
3

τ + 1
+ cos(u1 + u2) +

|u3|
|u3|+ 1

+ arctan u4

)
,

|g(τ, u1, u2, u3, u4)| ≤ 1

24
√

36 + τ2

(
τ2

τ + 2
+

(
u2 +

|u1|
1 + |u1|

)
+ sin u3 + |u4|

)
,

|ψ1(v)| ≤ 1
110

‖v‖, |ψ2(u)| ≤ 1
60

‖u‖.

Using the given data, it is found that V1 = 1
72 , V2 = 1

144 , V1 = 1
110 , V2 = 1

60 ,
Δ1 = 0.46845200402823617, Δ2 = 0.0007227881649342847, Δ3 = 0.0011251030301272463,
Δ4 = 0.6151822290610394, Δ̂1 = 0.8713184743902467, Δ̂2 = 0.0014641295646385377,
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Δ̂3 = 0.00186307333192, Δ̂4 = 1.0704190784503973, with Ψ1 +
T1−1

Γ(2−1)
Ψ2 ≈ 0.0514018187

3251667, and Ψ3 +
T1−ς1

Γ(2−ς1)
Ψ4 ≈ 0.05324949686716335; hence, the Theorem 2 is satisfied, and

here the problem (53)–(54) has a unique solution on [0, 1].

5. A Variant of a Problem

Note that the boundary conditions (1) include the strips of different lengths when
modifying the strips in boundary conditions to the same lengths (1); then, the problem
reduces to the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u(0) = ψ1(v), u
′
(0) = ε1

∫ ν
0 v

′
(θ)dθ, u

′′
(0) = 0, · · ·, un−2(0) = 0,

u(T) = λ1
∫ δ

0 v(θ)dθ + μ1 ∑k−2
j=1 �jv(ϑj),

v(0) = ψ2(u), v
′
(0) = ε2

∫ ν
0 u

′
(θ)dθ, v

′′
(0) = 0, · · ·, vn−2(0) = 0,

v(T) = λ2
∫ δ

0 u(θ)dθ + μ2 ∑k−2
j=1 ωju(ϑj).

(55)

Concerning the problem (1) with (55) instead of (2), we obtained the operator Π̂ : G ×H →
G ×H defined by

Π̂(u, v)(τ) = (Π̂1(u, v)(τ), Π̂2(u, v)(τ)),

where

Π̂1(u, v)(τ) =
1

Γ()

∫ τ

0
(τ − θ)−1Q̂u(θ)dθ + ψ1(v)[1 + κ1Λ4(τ)− Λ3(τ)] + ψ2(u)[κ2Λ3(τ)− Λ4(τ)]

+
Λ2(τ)ε2

Γ( − 1)

∫ ν

0

(∫ θ

0
(θ − σ)−2Q̂u(σ)dσ

)
dθ +

Λ1(τ)ε1

Γ(ς − 1)

∫ ν

0

(∫ θ

0
(θ − σ)ς−2Q̃v(σ)dσ

)
dθ

+Λ4(τ)

[
λ2

Γ()

∫ δ

0

(∫ θ

0
(θ − σ)−1Q̂u(σ)dσ

)
dθ + μ2

k−2

∑
j=1

ωj

Γ()

∫ ϑj

0
(ϑj − θ)−1Q̂u(θ)dθ (56)

− 1
Γ(ς)

∫ T

0
(T − θ)ς−1Q̃v(θ)dθ

]
+ Λ3(τ)

[
λ1

Γ(ς)

∫ δ

0

(∫ θ

0
(θ − σ)ς−1Q̃v(σ)dσ

)
dθ

+μ1

k−2

∑
j=1

�j

Γ(ς)

∫ ϑj

0
(ϑj − θ)ς−1Q̃v(θ)dθ − 1

Γ()

∫ T

0
(T − θ)−1Q̂u(θ)dθ

]
,

and

Π̂2(u, v)(τ) =
1

Γ(ς)

∫ τ

0
(τ − θ)ς−1Q̃v(θ)dθ + ψ2(u)[1 + κ2Λ7(τ)− Λ8(τ)] + ψ1(v)[κ1Λ8(τ)− Λ7(τ)]

+
Λ5(τ)ε1

Γ(ς − 1)

∫ ν

0

(∫ θ

0
(θ − σ)ς−2Q̃v(σ)dσ

)
dθ +

Λ6(τ)ε2

Γ( − 1)

∫ ν

0

(∫ θ

0
(θ − σ)−2Q̂u(σ)dσ

)
dθ

+Λ7(τ)

[
λ1

Γ(ς)

∫ δ

0

(∫ θ

0
(θ − σ)ς−1Q̃v(σ)dσ

)
dθ + μ1

k−2

∑
j=1

�j

Γ(ς)

∫ ϑj

0
(ϑj − θ)ς−1Q̃v(θ)dθ

− 1
Γ()

∫ T

0
(T − θ)−1Q̂u(θ)dθ

]
+ Λ8(τ)

[
λ2

Γ()

∫ δ

0

(∫ θ

0
(θ − σ)−1Q̂u(σ)dσ

)
dθ (57)

+μ2

k−2

∑
j=1

ωj

Γ()

∫ ϑj

0
(ϑj − θ)−1Q̂u(θ)dθ − 1

Γ(ς)

∫ T

0
(T − θ)ς−1Q̃v(θ)dθ

]
.

where

Q̂u(τ) = f (τ, u(τ), v(τ), CDς1 v(τ), Iξ v(τ)), τ ∈ U ,

Q̃v(τ) = g(τ, u(τ), CD1 u(τ), Iζ u(τ), v(τ)), τ ∈ U .

and
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ξ1 =
λ1δ2

2
+ μ1

k−2

∑
j=1

�jϑj, ξ2 =
λ1δn

n
+ μ1

k−2

∑
j=1

�jϑ
n−1
j , ξ3 =

λ2δ2

2
+ μ2

k−2

∑
j=1

ωjϑj, ξ4 =
λ2δn

n
+ μ2

k−2

∑
j=1

ωjϑ
n−1
j ,

γ̂1 = 1 − ν2ε1ε2, γ̂2 = T2 − ξ1ξ3, γ̂3 = Tn − ξ1ξ4, γ̂4 = Tn−1ξ3 − ξ4T, γ̂5 = ξ1Tn−1 − Tξ2, γ̂6 = Tn − ξ2ξ3,

υ1 = γ̂2νnε1ε2 + γ̂1γ̂3, υ2 = γ̂2νn−1ε2 + γ̂1γ̂4, υ3 = γ̂2νn−1ε1 + γ̂1γ̂5, υ4 = γ̂2νnε1ε2 + γ̂1γ̂6, υ = υ2υ3 − υ1υ4 �= 0,

η1 = 1 +
(νnε2β1 − νn−1β5)ε1

υ
, η2 = ε1ν +

(νnε2β2 − νn−1β6)ε1
υ

, η3 =
(νnε2β3 − νn−1β7)ε1

υ
,

η4 =
(νnε2β4 − νn−1β8)ε1

υ
, η5 = ε2ν +

(νn−1β1 − ε1νnβ5)ε2
υ

, η6 = 1 +
(νn−1β2 − ε1νnβ6)ε2

υ
,

η7 =
(νn−1β3 − ε1νnβ7)ε2

υ
, η8 =

(νn−1β4 − ε1νnβ8)ε2
υ

,

β1 = γ̂2(υ4 − υ3ε2ν), β2 = (υ4ε1ν − υ3)γ̂2, β3 = (υ3ξ3 − υ4T)γ̂1, β4 = γ̂1(υ3T − υ4ξ1),

β5 = (υ2 − υ1ε2ν)γ̂2, β6 = (υ2ε1ν − υ1)γ̂2, β7 = (υ1ξ3 − υ2T)γ̂1, β8 = γ̂1(υ1T − υ2ξ1),

κ1 = λ2δ + μ2

k−2

∑
j=1

ωj, κ2 = λ1δ + μ1

k−2

∑
j=1

�j,

Λ1(τ) =
τη1
γ̂1

+
τn−1β1

υ
, Λ2(τ) =

τη2
γ̂1

+
τn−1β2

υ
, Λ3(τ) =

τη3
γ̂1

+
τn−1β3

υ
, Λ4(τ) =

τη4
γ̂1

+
τn−1β4

υ
,

Λ5(τ) =
τη5
γ̂1

− τn−1β5
υ

, Λ6(τ) =
τη6
γ̂1

− τn−1β6
υ

, Λ7(τ) =
τη7
γ̂1

− τn−1β7
υ

, Λ8(τ) =
τη8
γ̂1

− τn−1β8
υ

.

6. Discussion

For Caputo form FIDEs, we examined the consequences of existence and unique-
ness supplemented by non-local multi-point and integral boundary conditions by Leray–
Schauder’s alternative and Banach’s fixed-point theorem. By fixing the parameters (ε1, ε2,
λ1, λ2, μ1, μ2) involved in the problem (1) and (2), our results correspond to certain specific
problems. Suppose that taking λ1 = λ2 = μ1 = μ2 = 0 in the results provided, we are
given the problems (1) with the form{

u(0) = ψ1(v), u
′
(0) = ε1

∫ ν1
0 v

′
(θ)dθ, u

′′
(0) = 0, · · ·, un−2(0) = 0, u(T) = 0,

v(0) = ψ2(u), v
′
(0) = ε2

∫ ν2
0 u

′
(θ)dθ, v

′′
(0) = 0, · · ·, vn−2(0) = 0, v(T) = 0,

while the results are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(0) = ψ1(v), u

′
(0) = 0, · · ·, un−2(0) = 0, u(T) = λ1

∫ δ1

0
v(θ)dθ+μ1

k−2

∑
j=1

�jv(ϑj),

v(0) = ψ2(u), v
′
(0) = 0, · · ·, vn−2(0) = 0 v(T) = λ2

∫ δ2

0
u(θ)dθ+μ2

k−2

∑
j=1

ωju(ϕj),

followed by ε1 = ε2 = 0. Using the methods used in the previous section, we can solve the
above-related problems (1) and (2).
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