
Edited by

Codes, Designs,
Cryptography and
Optimization

Raúl M. Falcón
Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics

Codes, Designs, Cryptography and
Optimization

Codes, Designs, Cryptography and
Optimization

Editor

Raúl Manuel Falcón

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editor

Raúl Manuel Falcón

Departamento de Matematica

Aplicada I. Universidad

de Sevilla

Spain

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/journal/mathematics/special

issues/CDCO).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-4355-0 (Hbk)

ISBN 978-3-0365-4356-7 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editor . vii

Preface to ”Codes, Designs, Cryptography and Optimization” ix

José Andrés Armario

Boolean Functions and Permanents of Sylvester Hadamard Matrices
Reprinted from: Mathematics 2021, 9, 177, doi:10.3390/math9020177 1

Vı́ctor Álvarez, José Andrés Armario, Marı́a Dolores Frau, Félix Gudiel, Marı́a Belén Güemes

and Amparo Osuna

Hadamard Matrices with Cocyclic Core
Reprinted from: Mathematics 2021, 9, 857, doi:10.3390/math9080857 9

Vı́ctor Álvarez, Raúl M. Falcón, Marı́a Dolores Frau, Félix Gudiel and Marı́a Belén Güemes

Pseudococyclic Partial Hadamard Matrices over Latin Rectangles
Reprinted from: Mathematics 2021, 9, 113, doi:10.3390/math9020113 23

Laura M. Johnson and Stephanie Perkins

A Discussion of a Cryptographical Scheme Based in F-Critical Sets of a Latin Square †

Reprinted from: Mathematics 2021, 9, 285, doi:10.3390/math9030285 43

Yansheng Wu and Yoonjin Lee

Self-Orthogonal Codes Constructed from Posets and Their Applications in Quantum
Communication
Reprinted from: Mathematics 2020, 8, 1495, doi:10.3390/math8091495 57

Carlos Roncero-Clemente, Eugenio Roanes-Lozano and Fermı́n Barrero-González

A Multi-Criteria Computer Package-Based Energy Management System for a Grid-Connected
AC Nanogrid
Reprinted from: Mathematics 2021, 9, 487, doi:10.3390/math9050487 71

Hyeokdong Kwon, YoungBeom Kim, Seog Chung Seo and Hwajeong Seo

High-Speed Implementation of PRESENT on AVR Microcontroller
Reprinted from: Mathematics 2021, 9, 374, doi:10.3390/math9040374 95

SangWoo An, Hyeokdong Kwon, YoungBeom Kim, Hwajeong Seo, Seog Chung SEO

Efficient Implementation of ARX-Based Block Ciphers on 8-Bit AVR Microcontrollers
Reprinted from: Mathematics 2020, 8, 1837, doi:10.3390/math8101837 111

Matea Ignatoski, Jonatan Lerga

Comparison of Entropy and Dictionary Based Text Compression in English, German, French,
Italian, Czech, Hungarian, Finnish, and Croatian
Reprinted from: Mathematics 2020, 8, 1059, doi:10.3390/math8071059 133

v

About the Editor

Raúl M. Falcón

Dr. Raúl M. Falcón is an Associate Professor of Applied Mathematics at the University of

Seville, from which he received his Ph.D. in Mathematics (2005). His research interest focuses on

the study of Latin squares and related structures, on the classification of finite-dimensional algebras

into isotopism classes and on graph coloring. He is the author of about 50 research papers on these

topics in peer-reviewed journals.

vii

Preface to ”Codes, Designs, Cryptography and

Optimization”

Novel synergies are continuously being developed among research areas in coding theory,

cryptography, combinatorial design, and combinatorial optimization, giving rise to new applications

in other fields and to the real world, including algebraic geometry, artificial intelligence,

communication networks, computer science, hardware and software design, design of experiments,

logistics, machine learning, and scheduling or transportation networks, among others. With

researcher contributions from six different universities from five different countries, this book consists

of a compilation of some relevant and recent investigations concerning this area. It covers a

vast range of topics, such as: Ryser’s formula over Sylvester Hadamard matrices by enumerating

Boolean functions; the study of Hadamard matrices with cocyclic cores; the fundamentals of

the pseudococyclic development of Hadamard matrices over quasigroups; the use of critical sets

associated with autotopisms of Latin squares for describing secret sharing schemes; the study of

binary linear codes through the use of order ideals in hierarchical posets with two levels; the

use of computational algebra systems to control grid-connected nanogrids with hybrid energy

storage systems composed of batteries and supercapacitors; a series of implementation techniques

for lightweight cryptography, namely, PRESENT and its electronic code book (ECB) and counter

(CTR) on low-end embedded processors; the optimized implementations of ARX-based Korean block

ciphers (LEA and HIGHT) with a CTR mode of operation, and CTR DRBG using them on low-end

8-bit AVR microcontrollers; the analysis of algorithms for text compression in different languages.

As the Guest Editor of this Special Issue, I would like to thank the authors of the articles for their

fascinating contributions, the referees for their valuable reviews, Mr. Nikola Yuan and Mr. Claude

Zhang from MDPI for their kind and valuable assistance during the entire process, and the journal

Mathematics for inviting me and providing me the opportunity to publish this book.

Raúl Manuel Falcón

Editor

ix

mathematics

Article

Boolean Functions and Permanents of Sylvester
Hadamard Matrices

José Andrés Armario

Citation: Armario, J.A. Boolean

Functions and Permanents of

Sylvester Hadamard matrices.

Mathematics 2021, 9, 177.

https://doi.org/10.3390/

math9020177

Received: 27 November 2020

Accepted: 15 January 2021

Published: 17 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the author. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Departamento de Matemática Aplicada I, Universidad de Sevilla, Avda. Reina Mercedes s/n,
41012 Sevilla, Spain; armario@us.es

Abstract: One of the fastest known general techniques for computing permanents is Ryser’s formula.
On this note, we show that this formula over Sylvester Hadamard matrices of order 2m, Hm, can be
carried out by enumerating m-variable Boolean functions with an arbitrary Walsh spectrum. As a
consequence, the quotient per(Hm)/22m

might be a measure of the “density” of m-variable Boolean
functions with high nonlinearity.

Keywords: permanent; Sylvester Hadamard matrices; Ryser’s formula; Boolean functions; Walsh spectrum;
high nonlinearity

MSC: 15A15; 05B20; 06E30; 65T50

1. Introduction

The theory of Boolean functions is a fascinating area of research in discrete mathemat-
ics with applications to cryptography and coding theory. Claude Shannon’s properties of
confusion and diffusion are fundamental concepts for achieving security in cryptosystems.
The notion of diffusion is related to the degree to which the influence of a single input
plaintext bit is spread throughout the resulting ciphertext, and the notion of confusion is
related to the complexity of the relationship between the secret key and ciphertext. Boolean
functions with high nonlinearity can be used to provide confusion in block encryption
algorithms [1,2]. Nonlinearity is the minimum number of bits which must change in the
truth table of a Boolean function to become an affine function. The Walsh transform is the
most important mathematical tool for the analysis of cryptographic properties of Boolean
functions. The understanding of the Walsh transform of a Boolean function uniquely
determines the function; therefore, working fully with the Walsh transform is possible.

Here we study a connection between the Walsh spectrum of m-variable Boolean
functions and Ryser’s formula of the permanent for Sylvester Hadamard matrices of
order 2m.

In 1812, Cauchy and Binet independently introduced the notion of the permanent as a
matrix function.

Definition 1. Let N be the set {1, . . . , n}, (n ∈ Z+). The symmetric group Sn is the group of all
n! permutations of N. The permanent of an n × n matrix A =

[
aij
]

is defined by

per (A) = ∑
σ∈Sn

n

∏
i=1

ai,σ(i).

At first glance, it seems to be a straightforward version of the determinant, but this
is a misleading impression. For instance, the determinant of an arbitrary matrix can
be evaluated efficiently using Gaussian elimination; however, the computation of the
permanent is much more complicated. Valiant [3] proved that it belongs to the class
of �P-complete problems, which basically means that there is almost no possibility of

Mathematics 2021, 9, 177. https://doi.org/10.3390/math9020177 https://www.mdpi.com/journal/mathematics1

Mathematics 2021, 9, 177

finding a polynomial time deterministic algorithm for computing the permanent in general.
Precisely, the central problem studied in arithmetic complexity theory is the permanent
versus determinant problem, which is considered the arithmetic analogue of the NP vs. P
problem (see [4]).

There are wide applications of the permanent of certain matrices, such as 0,1 and/or
sparse matrices with special structures. Especially in combinatorial counting and graph
theory [5]. For instance, if G is a balanced (the two parts have equal size) bipartite graph
and MG is its adjacency matrix, the per (MG) counts perfect matchings in G. Nevertheless,
as far as we know, there is not any clear combinatorial interpretation of the permanent of
Hadamard matrices. Here we give some ideas towards an interpretation of the permanent
of the Sylvester Hadamard matrices in terms of Boolean functions with high nonlinearity.

Notation. Throughout the article, we make use of − for −1 and 1 for +1. We write
Hm for a Sylvester Hadamard matrix of order 2m. The cardinality of a set S is denoted �S.
We use In for the identity matrix of order n and MT for the transpose of M. The Galois field
with two elements is denoted by GF(2) and the m-dimensional vector space over GF(2),
equipped with the canonical basis by GF(2)m. 〈gi, gj〉 means the usual inner product for
gi, gj ∈ GF(2)n.

2. Preliminaries

Basic concepts and results on Hadamard matrices and Boolean functions will be
reviewed. We refer the reader to [6] for more details about Hadamard matrices and see [7]
and the references therein for some of the theories of Boolean functions.

2.1. Hadamard Matrices

A Hadamard matrix H of order n is an n × n matrix with entries ±1 and HHT = nI. If a
Hadmard matrix has its first row and column all 1s are said to be normalized. A Hadamard
matrix can always be normalized by multiplying rows and columns by −1 . It is well-
known that n can only be either 2 or a multiple of 4 and it is conjectured that Hadamard
matrices exist for every n ≡ 0 mod 4 (see [6]).

It was observed by Sylvester in 1867 that, if H is a Hadamard matrix of order n, then
[

H H
H −H

]

is a Hadamard matrix of order 2n. Matrices of this configuration are called Sylvester
Hadamard and are defined for all powers of 2. The Sylvester Hadamard matrix of order 2 is
given as

H1 =

[
1 1
1 −

]
.

Sylvester Hadamard matrices of order 2k, denoted by Hk, can be formed by
k−copies

H1 × · · · × H1
the Kronecker product of k copies of H1. These matrices have many interesting properties
(see [8]), for instance Hm = [(−1)〈gi ,gj〉]gi ,gj∈GF(2)m .

Two Hadamard matrices H and H′ are said to be equivalent when one can be acquired
from the other by a series of row and/or column interchanges and row and/or column
negations. The question of classifying Hadamard matrices of order n ≥ 36 remains
unanswered and only partial results are known.

We recollect that Hadamard proved that nn/2 is an upper bound for the absolute value
of the determinant of an n × n matrix with entries from the unic disc, and this bound
is attainable by matrices with entries ±1 if and only if they are Hadamard. However,
the permanent of a Hadamard matrix has hardly been worked on, and it is considered a
very difficult problem. From what we know, the permanents for all Hadamard matrices
of orders smaller or equal to 28 were calculated in [9], but for orders greater than 28 the

2

Mathematics 2021, 9, 177

permanent remains unknown in general. The permanent of the Sylvester Hadamard matrix
of order 32 is 6829323892021002240 ([10]).

2.2. Boolean Functions

A Boolean function is a mapping

f : GF(2)m → GF(2).

We denote by Bm the set of all m-variable Boolean functions. Since there are 2m

possible inputs of length m, �Bm = 22m
.

Example 1. f (x) = 〈x, g〉+ c where g ∈ GF(2)m and c ∈ GF(2) represent a Boolean function,
the so-called affine function. In particular, if c = 0 then f (x) is called a linear function. We
denoted by Am the set of m-variable affine functions and �Am = 2m+1.

A Boolean function can be displayed in several ways. One prospect is to simply list
all values in a fixed order. To this end we denote gi as the binary representation of the
integer i − 1 with m bits. For instance, g1 = (0, 0, . . . , 0) and g2 = (0, . . . , 0, 1), hence this
list g1, g2, . . . , g2m contains all the elements of GF(2)m. The vector

[f (g1), f (g2), . . . , f (g2m)]

is called the truth table (TT) of a Boolean function f . The support of f is the set S f =
{g ∈ GF(2)m : f (g) = 1}, and the weight of f , wt(f), is the cardinality of the support,
i.e., wt(f) = �S f .

The Hamming distance between two Boolean functions f and h on GF(2m) is defined
as wt(f + h). The nonlinearity of f and denoted by Nf is the minimum distance between f
and the set of all affine functions. This concept has several applications in cryptography
and coding theory. For instance, nonlinearity can be utilized as a measure of the strength
of cryptosystems (see [11]). The Walsh-Hadamard transform is the main tool to study the
nonlinearity of Boolean functions, which is defined for an m-variable Boolean function f ,
such as

Wf (g) = ∑
x∈GF(2)m

(−1) f (x)+〈x,g〉, g ∈ GF(2)m.

The vector [Wf (g1), Wf (g2), . . . , Wf (g2n)] is called the Walsh spectrum (WS) of a Boolean
function f . Each component Wf (g) of WS is called a Walsh coefficient. Its magnitude
is the correlation between f and the corresponding linear function lg(x) = 〈x, g〉 for
g, x ∈ GF(2)m.

Now, we recall some results involving the Sylvester Hadamard matrix and the WS of
a Boolean function.

Proposition 1. Assuming that f is an m-variable Boolean function and Hm = [hi,j] is the
Sylvester Hadamard matrix of order 2m. The following identities hold,

1. [F(g1), F(g2), . . . , F(g2m)] Hm = [Wf (g1), Wf (g2), . . . , Wf (g2m)], where F(g) = (−1) f (g).

2. ∑
i∈S f

hi,k = 2m−1δ
gk
g1 −

1
2

Wf (gk), k = 1, . . . , 2m where δ
gk
g1 is Kronecker’s symbol.

3

Mathematics 2021, 9, 177

Proof. The first identity follows from the fact that Hm = [(−1)〈gi ,gj〉]mgi ,gj∈GF(2) . For the

second, we have to take into account the following facts:

• Wf (gk) = ∑
i∈S̄ f

hi,k − ∑
i∈S f

hi,k where S̄ f = {1, 2, . . . , 2m} \ S f .

•
2m

∑
i=1

hi,k =

{
2m k = 0
0 0 < k ≤ 2m

3. Ryser’s Formula for Hm and the Walsh Spectrum of Boolean Functions

H.J. Ryser found the following alternative method to evaluate the permanent of a
matrix A = [aij] of order n,

per (A) = (−1)n
n

∑
r=1

(−1)r ∑
α∈Qr,n

n

∏
j=1

∑
i∈α

ai,j, (1)

where Qr,n denotes the set of all strictly increasing sequences of r integers taken from
the set {1, 2, . . . , n}. This is one of the fastest known general algorithms for computing a
permanent.By counting multiplications it has an efficiency of O(2nn) (see pp. 31–11 [12]).

Proposition 2. Assuming that Hm = [hi,j] is the Sylvester Hadamard matrix of order 2m, f an
arbitary m-variable Boolean function and Φ(f) = ∏2m

j=2 ∑i∈S f
hi,j. Then,

1. Φ(f) = − 21−2m
2m

∏
j=2

Wf (gj).

2. per (Hm) =
2m

∑
r=1

(−1)rr ∑
s f ∈Qr,2m

Φ(f).

Proof. The first identity follows from Proposition 1 and the second one is immediate.

The following result studies some properties of the function Φ that we will use later.

Lemma 1. 1. Let f be an arbitrary f ∈ Bm−1 and h = [f | f] be the result of concatenating the
TT of f to itself. Then Φ(h) = 0.

2. Let l ∈ Am−1, f ∈ Bm−1 and h = [f |l]. If Φ(f) = 0 then Φ(h) = 0. For instance,
Φ(h) = 0 when wt(f) = 2 or 4.

3. Let l(x) = 〈x, gj〉+ c ∈ Am, f ∈ Bm and h = l + f . Then Φ(h) =
(2m − 2wt(f))

Wf (gj)
(−1)cΦ(f).

Proof. Identities 1 and 2 follow from

Wh(gk) =

{
Wf1(gk) + Wf2(gk) 1 ≤ k ≤ 2m−1

Wf1(gk)− Wf2(gk) 2m−1 + 1 ≤ k ≤ 2m

for h = [f1| f2] and Wl(gk) is null for some k > 1. For identity 3, we have to take into
account that Wh(gk) = (−1)cWf (gj + gk).

In the sequel, we will try to extract some consequences of the Proposition 2. Firstly, it may
help in finding an interpretation of the permanent of Hm in terms of nonlinearity.

Since
Wf (g) = 2m − 2wt(f + lg),

the nonlinearity of f is computed from the Walsh sprectrum by

Nf = 2m−1 − 1
2

max
g∈GF(2)m

|Wf (g)|.

4

Mathematics 2021, 9, 177

If a maximum absolute value of Wf occurs at gk, then either lgk is the best linear
approximation of f (when Wf (gk) > 0) or its complement, the affine function 1 + lgk , is as
good as, or better than, the best linear approximation (when Wf (gk) < 0).

It is a simple corollary of Parseval’s identity,

2m

∑
i=1

Wf (gi)
2 = 22m,

that
max

i
|Wf (gi)| ≥ 2

m
2 . (2)

Therefore, for any Boolean function in m variables,

Nf ≤ 2m−1 − 2
m
2 −1,

and this bound is achieved only when m is even and |Wf (gi)| = 2
m
2 , ∀i. Hence,

wt(f) =
2m − 2m/2

2
or

2m + 2m/2

2
.

An m-variable Boolean function with m even and maximum nonlinearity is called
bent. Furthermore, if f is bent then |Φ(f)| = 2m2m−2

. This is the maximum of |Φ| in Bm and
Φ(f) < 0.

The affine functions are the other extreme, with respect to the Walsh spectrum. There
is only one non-null Walsh coefficient for an affine function, and its value is either 2m,
when it is linear, or −2m otherwise. Therefore,

Φ(lgk + c) = 0.

By Parseval’s identity, if some of the Walsh coefficients are smaller than average in
absolute value, especially if some are 0, then the others must be larger. Thus, if f is a
Boolean function with a small Nf and wt(f) even then it can be expected that Φ(f) will be
null. For wt(f) odd and after carrying out some computer searches up to m = 5, we found
that Φ more often takes positive than negative values.

Although the formula for nonlinearity is sign free, the quotient
per(Hm)

�Bm
could provide

some information of the “global” nonlinearity of the whole set m-variable Boolean functions.

Especially, when
per(Hm)

�Bm
<

per(Hm′)

�Bm′
could indicate a better density of Boolean functions

with high nonlinearity in Bm than in Bm′ . For m = 2 and 4, this is confirmed with the
behaviour of the quotient between the number of bent functions in m variables between
the number of Boolean functions (see [2], Chapter 7). Attending to our observation we also
claim the following.

Conjecture 1. If m is even, then

2(m−2)2m−4 ≤ per(Hm) ≤ 2m2m−2

and if m is odd, then
2(m−1)2m−2 ≤ per(Hm) ≤ 2(m+1)2m−2

.

Secondly, we will try to take advantage of computing the permanent of a Sylvester
Hadamard matrix from partitioning Bm in classes under the affine equivalence relationship.

5

Mathematics 2021, 9, 177

Definition 2 ([2]). Two m-variable Boolean functions f and h are said to be affine equivalent if
there exists an invertible matrix A with entries in GF(2) and a constant b ∈ GF(2)m such that for
all x ∈ GF(2)m it holds that

f (x) = h(A(x) + b).

The following Lemma studies the Walsh spectra of affine equivalent Boolean functions
f and h. As immediate consequence, we have Nf = Nh.

Lemma 2 ([13]). Let f and h be two affine equivalent m-variable Boolean functions, f (x) =
h(A(x) + b), then

Wf (g) = (−1)〈b,(A−1)T(g)〉Wh((A−1)T(g)).

Another important consequence is,

Proposition 3. If f and h are affine equivalent m-variable Boolean functions then

Φ(f) = Φ(h).

Proof. This follows from Proposition 2 and Lemma 2. Since (A−1)T(g) runs over all the
elements of GF(2) \ {0} when g runs over all the elements of GF(2) \ {0} and the number
of times that 〈b, (A−1)T(g)〉 = 1 mod 2 is even for any fixed b ∈ GF(2) when when g runs
over all the elements of GF(2) \ {0}. This last statement is due to the fact that the number
of elements of GF(2)m with concrete values in certain positions divides 2m.

Now, the formula for the permanent of Hm can be rewritten in terms of classes under
the affine equivalence relation for the set of m-variable Boolean functions.

Proposition 4.

per(Hm) =
2m−1−1

∑
r=1

(−1)r(2r − 2m)
�Ωr,m

∑
i=1

�[Xr
i]Φ(fXr

i
). (3)

where Ωr,m is the set of classes under the affine equivalence for the m-variable Boolean functions of
weight r, fXr

i
is a representative of the class Xr

i ∈ Ωr,m, r = wt(fXr
i
).

Proof. It is immediate from Proposition 2, Proposition 3 and the fact that ∑
i∈α

hi,j =

− ∑
i∈ᾱ

hi,j, j ≥ 2; where α ∪ ᾱ = {1, 2, . . . , 2m}.

Example 2. Now we are going to compute per (H3) using formula (3),

H3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 − 1 − 1 − 1 −
1 1 − − 1 1 − −
1 − − 1 1 − − 1
1 1 1 1 − − − −
1 − 1 − − 1 − 1
1 1 − − − − 1 1
1 − − 1 − 1 1 −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Taking into account that Φ(f) = 0 for any 3-variable Boolean function with wt(f) even. Then,

per (H3) = (−1)1(2 − 8)
�Ω1,3

∑
i=1

�[X1
i]Φ(fX1

i
) + (−1)3(6 − 8)

�Ω3,3

∑
i=1

�[X3
i]Φ(fX3

i
)

6

Mathematics 2021, 9, 177

(Using Table 1, we get)

= 6 × (8 × 1) + 2 × (56 × 3) = 384.

Therefore, the problem of computing the permanent of a Sylvester Hadamard matrix
of order 2m can be carried out by enumerating m-variable Boolean functions with an arbi-
trary Walsh spectrum. This enumeration problem, although of interest in cryptography [14],
requires a huge amount of computational resources. For instance, the number of bent
functions (those Boolean functions with flat spectrum) so far has only been known for di-
mensions up to and including 8 (see [15]). Thus, Formula (3) only has a theoretical interest.

Finally, we give another formula for the permanent of Hm as a straightforward conse-
quence of some results from [16,17]. Let Sym(E) be the group of permutations on the set E
and ε(σ) be the parity +1 or −1 of σ for each σ ∈ Sym(E). Then, Γ(f) is defined as the set
{σ ∈ Sym(GF(2)m) : ∀a ∈ GF(2)m, f (a + σ(a)) = 1}.

Now, taking into account the following facts:

1. Theorem 1 of [16] proves that the Walsh spectrum of f coincides with the spectrum of
Gf , the Cayley graph associated to f , where the vertex set of Gf is equal to GF(2)m,
while the edge set Ef is defined as follows:

Ef = {(gi, gj) | f (gi + gj) = 1}.

This connects the problem of analyzing the spectral coefficients of Boolean functions
with the framework of spectral analysis of graphs. Let us denote by w f (gi) the
eigenvalues of the adjacency matrix of the Cayley graph associated to f .

2. Corollary 2 of [17] proves that the product Π2m

i=1w f (gi) = ∑σ∈Γ(f) ε(σ).

Therefore, the formula for the permanent of Hm given in Proposition 2 can be rewrit-
ten as

per (Hm) =
2m

∑
r=1

(−1)r+1r ∑
s f ∈Qr,2m

∑σ∈Γ(f) ε(σ)

22m−1w f (g1)
.

Table 1. Number of inequivalent m-variable Boolean functions of weight r under the affine equiva-
lence for m = 3 and r = 1, 3.

r # Inequivalent 3-Variable Boolean Functions # Orbits

1 1 8

3 1 56

4. Conclusions

The paper demonstrates a connection between two different mathematical areas:
Boolean functions and permanents. Firstly, Ryser’s formula for computing the perma-
nent of Sylvester Hadamard matrices has been rewritten in terms of the Walsh spectrum
of m-variable functions. Although this formula does not represent a real shortcut for
computing the permanent of Hm, it suggested the bounds given in Conjecture 1, since
|∏2m

j=2 Wf (gj)| = 2m2m−2
when f is bent. Secondly, we show that the quotient per(Hm)/22m

provides information about the density of m-variable Boolean functions with high non-
linearity (i.e., Boolean functions with linearity close to the minimum). We have checked
until m = 5 that per(Hm)/22m

is a strictly increasing function and the quotient between the
number of bent functions in m variables and the number Boolean functions (22m

) is a strictly
decreasing function (up to m = 8) which means that density Boolean functions with high
nonlinearity are worse when m increase. Finally, let us point out the following asymptotic
result about the linearity of random Boolean functions due to Olejár and Stanek.

7

Mathematics 2021, 9, 177

Theorem 1 ([18]). There is a constant c, such that if m is big enough, then for almost every Boolean
function in m variables

Nf ≥ 2m−1 − c
√

m2m/2.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author thanks Kristeen Cheng for reading the manuscript. This work is
partially supported by the Research Projects FQM-016 from Junta de Andalucí a.

Conflicts of Interest: The author declare no conflict of interest.

References

1. Guesmi, R.; Farah, M.A.B.; Kachouri, A.; Samet, M. Chaos-based designing of a highly nonlinear S-box using Boolean functions.
In Proceedings of the 12th International Multi-Conference on Systems, Signals and Devices, SSD, Tunisia, Mahdia, 16–19 March
2015; Volume 2015, p. 7348106.

2. Tokareva, N. Bent Functions: Results and Applications to Cryptography; Elsevier Science: London, UK, 2015.
3. Valiant, L.G. The complexity of computing the permanent. Theoret. Comput. Sci. 1979, 8, 189–201. [CrossRef]

4. Aaronson, S. P ?
=NP Chapter 3 in Open Problems in Mathematics; Nash, J.F., Rassias, M.T., Eds.; Springer: Berlin/Heidelberg,

Germany, 2016.
5. Minc, H. Permanents. In Encyclopedia of Mathematics and its Applications 6; Addison-Wesley: Reading, MA, USA, 1978.
6. Horadam, K.J. Hadamard Matrices and Their Applications; Princeton University Press: Princeton, NJ, USA, 2007.
7. Carlet, C. Boolean functions for cryptography and error correcting codes. In Boolean Models and Methods in Mathematics, Computer

Science and Engineering; Crama, Y., Hammer, P.L., Eds.; Cambrige University Press: Cambridge, UK, 2010; pp. 257–397.
8. Mitrouli, M. Sylvester Hadamard matrices revisited. Spec. Matrices 2014, 2, 120–124. [CrossRef]
9. Wanless, I.M. Permanents of matrices of signed ones. Linear Multilinear Algebra 2005, 52, 57–63. [CrossRef]
10. Szöllósi, F. (Department of Mathematical Science, Shimane University, Matsue, Japan). Personal communication, 2014.
11. Carlet, C. On cryptographic complexity of Boolean functions. In Proceedings of the Sixth Conference on Finite Fields with Applications

to Coding Theory, Cryptrography, and Related Areas, Berlin, Germany; Mullen, G.L., Stichtenoth, H., Tapia-Recillas, H., Eds.; Springer:
Berlin, Germany, 2002; pp. 53–69.

12. Wanless, I.M. Permanents. In Chapter 31 in Handbook of Linear Algebra; Hogben, L., Ed.; Chapman & Hall/CRC: London, UK, 2007.
13. Preneel, B. Analysis and Design of Cryptographic Hash Functions. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven,

Belgium, 1993.
14. Uyan, E.; Calik, C.; Doganaksoy, A. Counting Boolean functions with specified values in their Walsh spectrum. J. Comput. Appl.

Math. 2014, 259, 522–528. [CrossRef]
15. Langevin, P.; Leander, G. Counting all bent functions in dimension eight 992705892659343370305785861242880. Des. Codes

Cryptogr. 2011, 59, 193–205. [CrossRef]
16. Bernasconi, A.; Codenotti, B. Spectral analysis of Boolean functions as a graph eigenvalue problem IEEE Trans. Comput. 1999,

48, 345–351.
17. Mitton, M. On the Walsh-Fourier analysis of Boolean functions. J. Discret. Math. Scien. Cryptogr. 2006, 9, 429–439. [CrossRef]
18. Olejár, D.; Stanek, M. On cryptographic properties of fandom Boolean functions. J. Univers. Comput. Sci. 1998, 4, 705–717.

8

mathematics

Article

Hadamard Matrices with Cocyclic Core

Víctor Álvarez 1,*, José Andrés Armario 1, María Dolores Frau 1, Félix Gudiel 1, María Belén Güemes 2

and Amparo Osuna 1

Citation: Álvarez, V.; Armario, J.A.;

Frau, M.D.; Gudiel, F.; Güemes, M.B.;

Osuna, A. Hadamard Matrices with

Cocyclic Core. Mathematics 2021, 9,

857. https://doi.org/10.3390/

math9080857

Academic Editor: Abdelmejid Bayad

Received: 10 February 2021

Accepted: 9 April 2021

Published: 14 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Applied Mathematics I, University of Seville, 41004 Sevilla, Spain; armario@us.es (J.A.A.);
mdfrau@us.es (M.D.F.); gudiel@us.es (F.G.); aosuna@us.es (A.O.)

2 Department of Algebra, University of Seville, 41004 Sevilla, Spain; bguemes@us.es
* Correspondence: valvarez@us.es

Abstract: Since Horadam and de Launey introduced the cocyclic framework on combinatorial designs
in the 1990s, it has revealed itself as a powerful technique for looking for (cocyclic) Hadamard matri-
ces. Ten years later, the series of papers by Kotsireas, Koukouvinos and Seberry about Hadamard
matrices with one or two circulant cores introduced a different structured approach to the Hadamard
conjecture. This paper is built on both strengths, so that Hadamard matrices with cocyclic cores are in-
troduced and studied. They are proved to strictly include usual Hadamard matrices with one and two
circulant cores, and therefore provide a wiser uniform approach to a structured Hadamard conjecture.

Keywords: Hadamard matrix; circulant matrix; cocyclic matrix; difference set

MSC: 05B20; 05B10

1. Introduction

Hadamard matrices are square matrices of order n with entries from {−1, 1} such that
their rows are pairwise orthogonal. They were identified as the extremal solutions of the
maximal determinant problem for square matrices with entries from the unit disc [1].

It may be straightforwardly checked that, regardless of the elemental cases n = 1
and n = 2, as soon as three rows have to be mutually orthogonal, this implies that n
is necessarily a multiple of 4. Unexpectedly, the converse assertion (that there exists a
Hadamard matrix for every order n = 4w), remains one of the most famous open century-
old problems in mathematics, the Hadamard Conjecture.

The techniques for constructing Hadamard matrices are usually organized into three
types: multiplication theorems, ”plug-in” methods and direct constructions [2,3]. Nev-
ertheless, none of them has succeeded to provide a uniform method for constructing
these matrices.

The cocyclic approach, as introduced in [4], tries to cast new light on this purpose. A
cocyclic matrix (over a group G) consists of a matrix (ψ(i, j)) constructed from a binary
(2-)cocycle over G, ψ : G × G → {−1, 1}, so that:

ψ(a, b) ψ(a, b · c) ψ(a · b, c) ψ(b, c) = 1, (1)

for all a, b, c ∈ G. It is called a 2-coboundary if a map φ : G → G exists such that
ψ(a, b) = φ(a)φ(b)φ(ab), for every a, b ∈ G.

Accordingly, checking whether a cocyclic matrix is Hadamard translates into checking
if the summation of each row (but the first) is zero [5]. This is not the only advantage of
this approach. It endows the matrix with an enriched structure, which is being successfully
exploited to look for Hadamard matrices [2,6,7]. Nowadays, this framework is broadening
its expected horizons, since more recently even quasigroups [8] and Latin rectangles [9]
have come into play.

Mathematics 2021, 9, 857. https://doi.org/10.3390/math9080857 https://www.mdpi.com/journal/mathematics9

Mathematics 2021, 9, 857

(Cocyclic) Hadamard matrices are intimately related to other combinatorial objects,
such as designs, (almost) difference sets and (almost) perfect sequences. We next briefly
recall these notions and relations, as they are introduced in [2,10], since they will be relevant
in the exposition of the paper. For further information, the interested reader is referred
to [2,10] and the references therein.

A (v, k, λ)-design is a pair D = (P, B) consisting of a v-set P = {p1, . . . , pv} of points
and a v-set B = {B1, . . . , Bv} of k-blocks, 1 < k < v, such that each pair of distinct points is
contained in exactly λ blocks.

If G is an automorphism group of D such that for each pair of points pi, pj there is a
unique g ∈ G such that g(pi) = pj, and similarly for blocks, the design D is called regular
with respect to G, and G is called a regular group for D.

Matricially, D is easily represented by its v × v incidence matrix AD = (aij), rows and
columns in correspondence with blocks and points, respectively, such that aij = 1 if and
only if pj ∈ Bi, and 0 otherwise.

It may be straightforwardly checked that a v × v square matrix A with entries 0,1 is
an incidence matrix of a (v, k, λ)-design if and only if AAT = (k − λ)I + λJ and AJ = kJ,
for I the identity matrix and J the all 1s matrix.

In particular, there exists a Hadamard matrix H of order 4w if and only if there exists
a square (4w − 1, 2w − 1, w − 1)-design D. Actually, noting A′ = 2AD − J, the matrix

obtained from AD by replacing 0s by −1s, then H =

(
1 1

1T A′
)

, is a Hadamard matrix,

and vice versa.
Other combinatorial structures intimately related to Hadamard matrices and designs

are difference sets.
A (v, k, λ)-difference set in a group (G, ·) of order v is a k-subset D ⊂ G such that the

k(k − 1)-list of quotients d1d−1
2 of distinct elements d1, d2 of D contains each non-identity

element of G exactly λ times. The order of the difference set is n = k − λ. The difference
set is called cyclic or abelian, if G has the respective property.

Remark 1. Notice that if D is a (v, k, λ)-difference set, then G\D defines a (v, v − k, v − 2k + λ)-
difference set, the so-called complementary difference set of D.

Let G be a group of v elements, and D ⊂ G a k-subset, 1 < k < v. Then D is a
(v, k, λ)-difference set in G if and only if D = (G, {gD : g ∈ G}) is a (v, k, λ)-design with
regular group G, and vice versa. Therefore, as soon as a (4w − 1, 2w − 1, w − 1)-difference
set exists, there exists a Hadamard matrix of order 4w in turn.

Now we turn our interest to (almost) perfect sequences, as introduced in [10].
Consider a cyclic binary sequence (ai) with entries from {−1, 1} of period v, such

that ai+v = ai, for i ≥ 0. The autocorrelation of (ai) for shift t is defined as the sum

ct(ai) =
v−1
∑

i=0
aiai+t.

A sequence (ai) is called perfect when ct(ai) = r is constant for 0 < t ≤ v − 1, and
equals the smallest possible max |ct(ai)| ∈ {0, 1, 2}, since ct(a) ≡ v mod 4.

Remark 2. Notice that a perfect periodic sequence with period v, k positive entries per period and
autocorrelation ct(ai) = r, 0 < t ≤ v− 1, is equivalent to a cyclic (v, k, λ)-difference set: it suffices
to take D = {i : ai = 1, 0 ≤ i ≤ v − 1}, so that |D ∩ (D + t)| = λ and r = v − 4(k − λ).

Depending on the value ct(ai) = r ∈ {0,±1,±2}, the existence of perfect sequences
(ai) is summarized in [10]. In particular:

• The case r = 0 corresponds to circulant Hadamard matrices of order v, which are
conjectured to exist just for v = 4.

• The case r = 1 corresponds to (2u2 + 2u + 1, u2, u2−u
2)-cyclic difference sets, which

are conjectured to exist just for u = 1, 2.

10

Mathematics 2021, 9, 857

• There is no known example for the case r = 2, and experimental results suggest that
none might exist.

• The case r = −2 gives just one difference set, the (2, 1, 0)-difference set.
• The case r = −1 gives the so-called Paley–Hadamard difference sets, with parameters

(v, v−1
2 , v−3

4), whose existence implies in turn the existence of Hadamard matrices of
order v + 1. These include very well known families of difference sets [10].

Remark 3. The case r = −1 is of particular interest in this paper, since it includes the so-called

Hadamard matrices with one circulant core [11], of the form
(

1 1

1 A

)
, for A being a circulant

matrix whose first row consists of a perfect sequence (ai) with ct(ai) = −1, 0 < t ≤ 4w − 2, and
4w−2

∑
i=0

ai = −1.

When relaxing some conditions, the combinatorial structures described above may be
generalized, in some sense.

For instance, given a k-subset D of a group (G, ·) of order v, it might occur that the
number of occurrences of each non identity element in G among the list of quotients
d1d−1

2 of distinct elements d1 �= d2 ∈ D is either λ or λ + 1, not just λ. Then D defines
a (v, k, λ, s)-almost difference set, where s denotes the amount of elements of G\{1} that
appears precisely λ times in the list d1d−1

2 , the remaining v − s − 1 elements of G appearing
exactly λ + 1 times.

Almost difference sets are related to almost perfect sequences, in the following manner.
A sequence (ai) is called almost perfect when two possible values r1, r2 are allowed

for ct(ai), for 0 < t ≤ v − 1, with |r1|+ |r2| = 4. As noted in [10], this is equivalent to
D = {i : ai = 1, 0 ≤ i ≤ v − 1} being an (v, k, k − � v

4 � − 1, kv − k2 − (k − 1)� v
4 �) almost

difference set, for k = |D|.
As claimed in [10], computer experimentation seems to suggest that balanced (i.e.,

half of the entries are of opposite sign) almost perfect sequences might exist for every
v ≡ 1 (mod 4). As soon as two such balanced sequences (ai) and (bi) combine to give
ct(ai) + ct(bi) = −2, for 0 < t ≤ 2w − 2, a Hadamard matrix of order 4w would exist in
turn: this is one of the most prolific techniques for constructing Hadamard matrices of
order 4w, the so-called two circulant cores "plug-in" method [3,12,13].

Actually, the Hadamard matrix would consist in:
⎛
⎜⎜⎝

−1 −1 1 1

−1 1 1 −1

1 1 A B
1 −1 BT −AT

⎞
⎟⎟⎠, (2)

for A and B being the circulant matrices based on (ai) and (bi), respectively.
As a matter of fact, among the most prominent "plug-in" methods for constructing

Hadamard matrices, precisely the two circulant cores technique and the Goethals–Seidel
arrays [14] were the only ones that remain out of the cocyclic framework, as indicated in [15].
Actually, Goethals–Seidel arrays have been recently characterized as (pseudo)cocyclic
matrices over quasigroups in [16].

Finally, we now recall the characterization of cocyclic Hadamard matrices in terms
of certain difference sets and designs, as introduced in Theorem 2.4 of [17], and which
is used in [6] to provide an exhaustive classification of cocyclic Hadamard equivalent
matrices of orders less than 40. For the sake of simplicity and readability, we will not detail
the definition of these particular combinatorial structures, as they are not needed for the
comprehension of the paper.

11

Mathematics 2021, 9, 857

Theorem 1. [17] The following statements are equivalent:

1. There is a cocyclic Hadamard matrix over G, |G| = 4w.
2. There is a (normal) relative (4w, 2, 4w, 2w)-difference set in a central extension of 〈−1〉 by G,

relative to 〈−1〉.
3. There is a divisible (4w, 2, 4w, 2w)-design, class regular with respect to 〈−1〉, and with

central extension of 〈−1〉 by G as a regular group of automorphisms.

The aim of this paper is to settle a theoretical background for the study of Hadamard
matrices consisting of cocyclic cores, instead of circulant cores. Actually, Hadamard
matrices with a cocyclic core will be shown to be placed in some sense halfway from
full cocyclic Hadamard matrices and usual Hadamard matrices, as 4w × 4w Hadamard
matrices with a cocyclic core will be proven to exist if and only if there exist (4w − 1, 2w −
1, w − 1)-difference sets (Theorem 2), which are already known to imply the existence of
full Hadamard matrices, as commented before.

The paper is organized as follows. In Section 2, we characterize the existence of
Hadamard matrices with a (4w − 1)× (4w − 1) cocyclic core, in terms of some perfect
sequences and difference sets. Section 3 is devoted to the characterization of Hadamard ma-
trices with a (4w − 2)× (4w − 2) cocyclic core, in terms of certain almost perfect sequences
and almost difference sets.

2. Hadamard Matrices with a (4w − 1)× (4w − 1) Cocyclic Core

As introduced in Section 1, Hadamard matrices with one circulant core consist of

matrices of the type
(

1 1

1 A

)
, for A being a circulant matrix whose first row consists of a

perfect binary sequence (ai) with ct(ai) = −1, 0 < t ≤ 4w − 2, and ∑4w−2
i=0 ai = −1. They

were extensively studied in [11].
In this section we study the conditions under which a cocyclic (instead of a simply

circulant) matrix Mψ (for ψ as in (1)) may be plugged in a structure of the type:(
? ?
α Mψ

)
, (3)

in order to provide a Hadamard matrix as well, for α = (αg0 , . . . , αg4w−2), given an ordering
{g0 = 1, . . . , g4w−2} of G.

Notice that the first row of such a structure is not of interest, since every partial
Hadamard matrix of size (4w − z)× 4w, 1 ≤ z ≤ 7, is known to be extendable to a full
4w × 4w Hadamard matrix [18].

Theorem 2. There exists a Hadamard matrix of order 4w with a (4w − 1)× (4w − 1) cocyclic
core if and only if there exists a (4w − 1, 2w, w)-difference set (or, equivalently, a (4w − 1, 2w −
1, w − 1)-difference set).

The following sequence of lemmas will help in the task of proving this result.

Lemma 1. The first row (and column) of Mψ consists of a common single value, either 1 or −1.

Proof. This is a common fact of cocyclic matrices, and it may be straightforwardly derived
from Equation (1): as soon as one fixes a = b = 1 ∈ G, it follows that ψ(1, 1) · ψ(1, gk) = 1,
for every gk ∈ G.

A similar argument applies to the first column, taking b = c = 1 in (1) instead.

Remark 4. Cocylic matrices Mψ for which ψ(1, j) = ψ(j, 1) = 1 are usually termed normalized.

12

Mathematics 2021, 9, 857

The following result is at the very heart of the usual cocyclic test for Hadamard
matrices [2,5]. However, we will rather state it and reproduce its proof explicitly, since both
of them will be extensively used in the paper.

Lemma 2. For every gi, gj ∈ G, the dot product of rows indexed by gi and gj in Mψ consists of:

∑
gk∈G

ψ(gi, gk)ψ(gj, gk) = ψ(gig−1
j , gj) ∑

gk∈G
ψ(gig−1

j , gk).

Proof. Actually, this is an alternative way to read the usual cocyclic Hadamard test of [5].
From (1), taking a = gig−1

j , b = j and c = gk, it follows that:

ψ(gig−1
j , gj) · ψ(gig−1

j , gjgk) = ψ(gi, gk) · ψ(gj, gk).

Therefore, the dot product of rows indexed by gi and gj in Mψ consists of:

∑
gk∈G

ψ(gi, gk)ψ(gj, gk) = ∑
gk∈G

ψ(gig−1
j , gj)ψ(gig−1

j , gjgk) = ψ(gig−1
j , gj) ∑

gk∈G
ψ(gig−1

j , gk).

Lemma 3. Assume that the matrix in (3) is Hadamard. Then ∑
gk∈G

αgk = ±1.

Proof. From Remark 4 we know that ψ(gk, 1) is constant (for both 1 and −1) for every
gk ∈ G. Therefore, the dot product of columns 1 and 2 of the matrix in (3) consists of:

0 = ±1 ± ∑
gk∈G

αgk ,

and the result follows.

Lemma 4. Assume that the matrix in (3) is Hadamard. Then ∑
gk∈G

ψ(gi, gk) = −ψ(gi, 1) · α1 · αgi ,

for every gi ∈ G\{1}.

Proof. Taking gj = 1 ∈ G in Lemma 2, it follows that the dot product of rows indexed by
gi and 1 in (3) consists of:

0 = αgi · α1 + ψ(gi, 1) ∑
gk∈G

ψ(gi, gk),

from which the asserted result derives at once.

Lemma 5. Assume that the matrix in (3) is Hadamard. Then ψ(gi, gj) = ψ(gi, 1) · α1 · αgi · αgj ·
αgi gj , for every gi, gj ∈ G.

Proof. From Lemma 2, the dot product of the rows indexed by gigj and gj in (3) consists of:

0 = αgi gj · αgj + ψ(gi, gj) ∑
gk∈G

ψ(gi, gk).

Consequently, taking into account Lemma 4,

0 = αgi gj · αgj − ψ(gi, 1) · α1 · αgi ψ(gi, gj),

so that ψ(gi, gj) = ψ(gi, 1) · α1 · αgi · αgj · αgi gj .

In the circumstances above, the following results may be straightforwardly derived.

13

Mathematics 2021, 9, 857

Corollary 1. ψ is completely characterized as a 2-coboundary ψ(gi, gj) = φ(gi)φ(gj)φ(gigj), for
φ : G → {−1, 1} defined as φ(gi) = φ(g1) · α1 · αgi , φ(g1) = ±1.

Remark 5. Notice that it is irrelevant whether one fixes φ(g1) to be either 1 or −1. This just has
to be with the (un)normalized character of the related 2-cocycle, as noted in Remark 4.

Corollary 2. ∑
gj∈G

αgj αgi gj = −1, for every gi ∈ G.

Proof. From Lemma 5, ψ(gi, gj) = α1αgi αgj αgi gj . Adding as gj runs on G, we obtain:

−α1αgi = ∑
gj∈G

ψ(gi, gj) = α1αgi ∑
gj∈G

αgj αgi gj ,

from which the result derives at once.

Lemma 6. Assume that (αgk) and Mψ are given so that rows from 2 to 4w in (3) are pairwise
orthogonal. Then this matrix may be completed to a full Hadamard matrix, in essentially one way
(up to negation of the row).

Proof. Let (s1, s2, . . . , s4w) be the unknown entries of the first row of (3).
Lemma 1 guarantees that the first column in Mψ consists of a common constant,

ψ(1, 1). Take s2 = ψ(1, 1), so that the second column of (3) consists of a common constant.
From the orthogonality law, the dot product of column i �= 2 with the second column

has to be zero. Consequently, since the second column is formed by a common constant, the
summation of each column i �= 2 of (3) has to be zero, as well. This characterizes uniquely
the first row of the matrix (once s2 has been fixed).

We can now prove Theorem 2.

Proof. We first prove the sufficient condition.
Assume that a Hadamard matrix of the form (3) exists, with a cocyclic core consisting

of Mψ.
In these circumstances, notice that (αgk) defines a generalized perfect sequence, in the

sense that:

• It is balanced, as Lemma 3 indicates.
• A generalized autocorrelation function for (αgi) may be defined, so that shift gt de-

pends on the right action of gt by means of the group law of G: ct(αgk) = ∑
gk∈G

αgk αgk gt .

• Corollary 2 shows that (αgk) is perfect.

In these circumstances, the set D = {gk : αgk = 1} defines a difference set, as noted in
Remark 2.

Since the sequence is balanced, it follows that |D| = 2w or |D| = 2w − 1. Furthermore,
it may be straightforwardly checked that |D ∩ D · gt| = |D| − w. No matter what the
concrete value of |D| is, a couple of complementary difference sets with parameters (4w −
1, 2w, w) and (4w − 1, 2w − 1, w − 1) are thus defined (see Remark 1).

Conversely, starting from such a difference set, as noted in Remark 2, the process
works the other way around, and the proof ends, as soon as the matrix so obtained may be
extended to a full Hadamard matrix, attending to Lemma 6.

Example 1. Consider the multiplicative cyclic group of order 3, G = (C3, ·) = 〈a : a3 = 1〉,
endowed with the natural ordering {1, a, a2}.

The subset D = {a, a2} defines a (3, 2, 1)-difference set in G, since a · a−2 = a2 and
a2 · a−1 = a.

Let us consider the sequence α = (αg)g∈D = (−1, 1, 1), such that αg = 1 if g ∈ D, and
αg = −1 otherwise.

14

Mathematics 2021, 9, 857

By construction, (αg) defines a perfect sequence. Actually:

• α1 · α1·a + αa · αa·a + αa2 · αa2·a = −1.
• α1 · α1·a2 + αa · αa·a2 + αa2 · αa2·a2 = −1.

Consider the map φ : (C3, ·) → {−1, 1} defined as φ(1) = 1, φ(a) = α1 · αa = −1,
φ(a2) = α1 · αa2 = −1. Let ψ : C3 × C3 → {−1, 1} be the 2-coboundary defined as ψ(i, j) =
φ(i)φ(j)φ(i · j), so that Mψ reads as: ⎛

⎝ 1 1 1
1 −1 1
1 1 −1

⎞
⎠.

Plugging this matrix in (3), we get:
⎛
⎜⎜⎝

? ? ? ?
−1 1 1 1

1 1 −1 1
1 1 1 −1

⎞
⎟⎟⎠.

This matrix may be completed to form a full Hadamard matrix, as soon as one takes its first
row to be (−1, 1,−1,−1), attending to Lemma 6.

Remark 6. Notice that if one negates both of the third and fourth rows and columns of the
Hadamard matrix of Example 1, one obtains the Hadamard equivalent matrix:

⎛
⎜⎜⎝

−1 1 1 1
−1 1 −1 −1
−1 −1 −1 1
−1 −1 1 −1

⎞
⎟⎟⎠,

which is indeed a Hadamard matrix with a back-circulant core. This may be transformed into a
Hadamard equivalent matrix consisting of a usual circulant core, as soon as rows are permuted
accordingly. This is not a casual fact, as the following result asserts.

Proposition 1. Any Hadamard matrix with a circulant core is Hadamard equivalent to a Hadamard
matrix with a cocyclic core.

Proof. As noted in Remark 3 (see [11] for details), any 4w × 4w Hadamard matrix H with
a circulant core HC is in one-to-one correspondence with the cyclic (4w, 2w, w)-difference
set D = {ai : HC(1, i − 1) = 1} ⊂ (C4w−1, ·), consisting of the elements that correspond to
the positions at which the 1s of the first row of HC are located.

As illustrated in Example 1, starting from such a cyclic difference set, application of
the constructive proof of Theorem 2 provides a Hadamard matrix with a cocyclic core Mψ.
Furthermore, Corollary 1 shows that the map φ underlying Mψ, as defined, provides a
cocyclic core, which is Hadamard equivalent to the initial circulant core. To check this, it
suffices to negate both the sets of rows and columns indexed by the elements in D, and
reorder the rows from bottom to top.

A question arises in a natural way: is there any advantage in looking for Hadamard
matrices with cocyclic cores instead of Hadamard matrices with circulant cores?

Proposition 2. Hadamard matrices with cocyclic cores strictly include Hadamard matrices with
one circulant core.

Proof. Hadamard matrices of order 4w with a circulant core are in one-to-one correspon-
dence with cyclic (4w − 1, 2w − 1, w − 1)-difference sets.

However, Hadamard matrices or order 4w with a cocyclic core are in one-to-one corre-
spondence with (4w − 1, 2w − 1, w − 1)-difference sets, which are not necessarily cyclic.

15

Mathematics 2021, 9, 857

Actually, there are orders 4w for which no such cyclic difference sets exist, but as yet,
general difference sets do exist.

Example 2. Consider the case 4w = 28, for instance.
On the one hand, Theorem 2 in [11] states that there are no 28 × 28 Hadamard matrices with

a circulant core. Consequently, no cyclic (27, 13, 6)-different set can exist.
On the other hand, (27, 13, 6)-difference sets do exist: as noted in [19],

D = {1, a, a2, b, ab, b2, c, ac, bc, ac2, a2bc2, b2c2, a2b2c2}
constitutes a (27, 13, 6)-difference set in G = (C3 × C3 × C3, ·) = 〈a, b, c : a3 = b3 = c3 = 1〉,
with ordering ai1 bj1 ck1 < ai2 bj2 ck2 if and only if k1 < k2, or k1 = k2 and j1 < j2, or (j1, k1) =
(j2, k2) and i1 < i2.

Let us consider the sequence α = (αg)g∈D, such that αg = 1 if g ∈ D, and αg = −1
otherwise.

Since α1 = 1, consider the map φ : G → {−1, 1} defined as φ(g) = αg, for g ∈ G. Let
ψ : G × G → {−1, 1} be the 2-coboundary defined as ψ(i, j) = φ(i)φ(j)φ(i · j). Plugging (αg)
and Mψ in (3) and completing with regards to Lemma 6 leads to a 28 × 28 Hadamard matrix with
a cocyclic core.

3. Hadamard Matrices with a (4w − 2)× (4w − 2) Cocyclic Core

Hadamard matrices with two circulant cores [3,12,13] come from a new “plug-in”
technique, which extends the underlying idea applied when constructing Hadamard
matrices with one circulant core. In this occasion, properly fixing two rows and columns, a
full Hadamard matrix may be constructed as soon as two (2w − 1)× (2w − 1) circulant
matrices A and B exist, satisfying the constraint:

AAT + BBT = 4wI2w−1 − 2J2w−1,

in which case the matrix:
⎛
⎜⎜⎝

−1 −1 1 1

−1 1 1 −1

1 1 A B
1 −1 BT −AT

⎞
⎟⎟⎠ (4)

would be Hadamard.
As commented in Section 1, this is the case if and only if the first rows of A and B,

(ai) and (bi), define two balanced almost perfect sequences with ct(ai) + ct(bi) = −2, for
0 < t ≤ w − 1.

In this section we study the conditions under which a cocyclic matrix Mψ (for ψ as in (1))
may be plugged in a structure of the type:(

? ? ?
α β Mψ

)
, (5)

in order to provide a Hadamard matrix as well, for α = (αg0 , . . . , αg4w−3) and
β = (βg0 , . . . , βg4w−3), given an ordering {g0 = 1, . . . , g4w−3} of G.

As noted in Section 1, as soon as the rows from 3 to 4w are pairwise orthogonal, the
matrix can be completed to a full Hadamard matrix [18]. Therefore we will focus on the
rows from 3 to 4w in (5).

In what follows, the notation used in Section 2 still applies, so that the rows from 3 to
4w in (5) will be indexed by the corresponding elements in G. In particular, it is remarkable
that the row indexed by 1 ∈ G corresponds to the third row in (5).

Furthermore, attending to Hadamard equivalence, up to negation of columns 1 or 2
in (5), without loss of generality we may assume that α1 = β1 = ψ(1, 1), so that the third
row in (5) (that is indexed by 1 ∈ G) consists of the constant vector ψ(1, 1) · 1.

16

Mathematics 2021, 9, 857

We now determine a collection of necessary and sufficient conditions for (5) being a
Hadamard matrix with a cocyclic core.

Lemma 7. Assume that (5) is a Hadamard matrix with a cocyclic core Mψ. Then ∑
g∈G

ψ(h, g) ∈

{−2, 0, 2}, for all h ∈ G\{1}. Moreover,

• ∑
g∈G

ψ(h, g) = 0 if and only if (αh, βh) = (−1, 1) · sh, for some (undetermined by now)

sh ∈ {1,−1}.

• 0 �= ∑
g∈G

ψ(h, g) = ±2 if and only if (αh, βh) = (−1,−1) · sh, for sh =
1
2 ∑

g∈G
ψ(h, g).

Proof. Let h ∈ G\{1}.
Taking into account the orthogonality constraint, it follows that the dot product

〈row h, row 1〉 of rows indexed by h and 1 ∈ G in (5) must be zero. Therefore, from
Lemma 2,

0 = αhα1 + βhβ1 + ψ(h, 1) · ∑
g∈G

ψ(h, g).

Since α1 = β1 = ψ(1, 1) = ψ(h, 1), we get ∑
g∈G

ψ(h, g) = −αh − βh and the result

follows.

Corollary 3. Assume that (5) is a Hadamard matrix with a cocyclic core Mψ, such that ∑
g∈G

ψ(h, g)

∈ {−2, 2}, for all h ∈ G\{1}. Then ψ is a 2-coboundary and w = 1.

Proof. For every g, h ∈ G, attending to Lemma 2, the dot product of rows indexed by gh
and h is:

0 = 2sghsh + ψ(g, h)sg,

so that ψ(g, h) = −sgshsgh is actually a 2-coboundary (ψ(g, h) = φ(g)φ(h)φ(gh), for
φ : G → {1,−1} defined as φ(g) = −sg).

Furthermore, the summation of the row indexed by g in Mψ is 2sg = ∑
h∈G

ψ(g, h) =

−sg ∑
h∈G

shsgh, so that ∑
h∈G

shsgh = −2 and (sg)g∈G defines a perfect sequence. It is known

(see [10] for instance) that the only difference set corresponding to a perfect sequence of
this type is the trivial (2, 1, 0)-difference set, and hence w = 1.

Remark 7. Consequently, from now on, we assume that there are elements h ∈ G for which
∑

g∈G
ψ(h, g) = 0. Actually, in these circumstances, notice that ψ becomes a quasi-orthogonal

cocycle, as introduced in [20].

Lemma 8. In the circumstances above, the elements in G\{1} may be organized into two subsets,
S0 = {h ∈ G\{1} : ∑

g∈G
ψ(h, g) = 0, and S0 = (G\{1})\S0, such that:

1. h ∈ S0 ⇐⇒ h−1 ∈ S0. Accordingly, h ∈ S0 ⇐⇒ h−1 ∈ S0.
2. For all g ∈ S0, g · S0 ⊆ G\S0. Therefore, |S0| ≤ |G\S0|.
3. For all g ∈ G\S0, g · (G\S0) ⊆ G\S0. Therefore, |G\S0| ≤ |S0|.
4. For all g ∈ S0, g · (G\S0) ⊆ S0 and (G\S0) · g ⊆ S0.

17

Mathematics 2021, 9, 857

Proof. We proceed with the demonstration point by point.

1. For every h ∈ G\{1}, since 〈row 1, row h〉 = 〈row h, row 1〉. Therefore
ψ(h−1, h)∑g∈G ψ(h−1, g) = ψ(h, 1)∑g∈G ψ(h, g), and the result follows.

2. Let g, h ∈ S0. Then h−1 ∈ S0 as well. Now:

0 = 〈row g, row h−1〉 = αgαh−1 + αgαh−1 + ψ(gh, h) · ∑
k∈G

ψ(gh, k).

Therefore gh ∈ G\S0.
3. Let g, h ∈ G\S0. Then h−1 ∈ G\S0 as well. Now:

0 = 〈row g, row h−1〉 = αgαh−1 + αgαh−1 + ψ(gh, h) · ∑
k∈G

ψ(gh, k).

Therefore gh ∈ G\S0.
4. Let g ∈ S0 and h ∈ G\S0. Then h−1 ∈ G\S0 as well. Now:

0 = 〈row g, row h−1〉 = αgαh−1 − αgαh−1 + ψ(gh, h) · ∑
k∈G

ψ(gh, k).

Therefore, gh ∈ S0.

Corollary 4. In the circumstances above, |S0| = |G\S0| = 2w − 1, G\S0 is a normal subgroup
of G and G/(G\S0) � C2.

Proof. This is a straightforward consequence of Lemma 8.

Remark 8. In the circumstances above, one may define a new ordering for the elements in G, such
that the last 2w − 1 elements correspond to S0. For instance, when any g ∈ S0 are fixed, such an
ordering would be {1 = n1, . . . , n2w−1, g, gn2, . . . , gn2w−1}.

Corollary 5. In the circumstances above, for h ∈ S0 and g ∈ G, ψ(h, g) = −shsgshg. Further-
more, ∑

g∈G
sgshg = −2.

Proof. Let h ∈ S0 and g ∈ G. Consider the dot product of rows indexed by hg and g in (5).
From Lemma 8, depending on whether:

• g ∈ G\S0, then hg ∈ G\S0. Attending to Lemma 7, then:

0 = 〈row hg, row g〉 = 2shgsg + ψ(h, g) ∑
k∈G

ψ(h, k) = 2shgsg + 2shψ(h, g).

• g ∈ S0, then hg ∈ S0. Attending to Lemma 7, then:

0 = 〈row hg, row g〉 = 2shgsg + ψ(h, g) ∑
k∈G

ψ(h, k) = 2shgsg + 2shψ(h, g).

Whichever is the case, for h ∈ S0 and g ∈ G, it is satisfied that ψ(h, g) = −shsgshg.
Taking a summation as g runs in G, we get 2sh = ∑

g∈G
ψ(h, g) = −sh ∑

g∈G
sgshg. The result

follows immediately.

We next summarize these results.

Theorem 3. Let (5) be a matrix with a cocyclic core Mψ over G. Then it is Hadamard if and only
if the following conditions are satisfied:

18

Mathematics 2021, 9, 857

• G contains a normal subgroup N such that G/N � C2.
• There is a binary sequence (sg)g∈G such that:

– For every h ∈ N, ψ(h, g) = −shsgshg, and ∑
g∈G

sgshg = −2.

– For every k ∈ G\N, ψ(k, g) = −sksgskg ϕ(k, g) (for some 2-cocycle ϕ : G × G →
{1,−1} such that ϕ(h, g) = 1 for all h ∈ N), and ∑

g∈G
sgskg ϕ(g, k) = 0.

Even though it might seem difficult to meet the hypothesis described in Theorem 3
altogether, we next describe a family of Hadamard matrices with a cocyclic core.

Proposition 3. Hadamard matrices with two circulant cores are Hadamard equivalent to Hadamard
matrices with a cocyclic core over D4w−2.

Proof. Consider the group D4w−2 = 〈a, b : a2w−1 = b2 = (ab)2 = 1〉, with ordering
G = {1, a, . . . , a2w−2, b, . . . , a2w−2b}. Notice that N = 〈a〉 is a normal subgroup of G,
and that every element k ∈ G\N is of order 2, that is k2 = 1. Consider the 2-cocycle
ϕ : G × G → {1,−1} defined as ϕ(h, g) = −1 if and only if both h, g ∈ G\N, and
1 otherwise.

Attending to the description of cocyclic matrices over D4w−2 developed in [21,22], it
may be straightforwardly derived that the two-circulant core structure of (2) is Hadamard
equivalent to a cocyclic matrix over D4w−2.

More concretely, consider two balanced sequences (ai) and (bi) such that ∑ ai · ai+t +

∑ bi · bi+t = −2, for 0 < t ≤ w − 1. Take sai = −ai and saib = −bi, for 0 ≤ i ≤ 2w − 2.
Now, consider the subset C ⊂ G of indices at which the positive entries of the

sequence (si) (i.e., negative entries of ((ai)|(bi))) occur, and select the corresponding subset
of elementary coboundaries ∂c, so that ψ = ϕ · ∏c∈C ∂c. For the sake of convenience, it
might be appropriate to recall that these elementary coboundaries are commonly defined
as ∂g(h, k) = δg(h)δg(k)δg(hk), for δi(j) = −1 if and only if i = j, and 1 otherwise.

Actually, as indicated in [21,22], the process of successively negating the row and
column indexed by c ∈ C in Mψ, ends in a Hadamard equivalent matrix with two back
circulant cores similar to (2). Permuting the rows accordingly, the proper core of the
matrix (2) may be obtained.

Now, consider the conditions ∑ ai · ai+t + ∑ bi · bi+t = −2, for 0 < t ≤ w − 1, which
guarantee the orthogonal constraint of (2) in [12,13]. These are straightforwardly translated
to the conditions ∑

g∈G
sgshg = −2, for every h ∈ N, of Theorem 3.

Notice that, as defined, the constraints ∑
g∈G

sgskg ϕ(g, k) = 0, for every k ∈ G\N, are

naturally satisfied. Actually,

∑
g∈G

sgskg ϕ(g, k) = ∑
h∈N

shskh − ∑
g∈G\N

sgskg = 0,

since there is a one-to-one correspondence from N to kN = G\N, taking h ∈ N on gh = kh;
so that each term shskh on the left-hand side of the equation cancels with the corresponding
term on the right-hand side, as −sgh skgh

= −skhsk2h = −skhsh.

Example 3. For instance, consider the 8 × 8 Hadamard matrix with two circulant cores of the
form (2), which arises from the sequences (ai) = (bi) = (1, 1,−1), with a0a1 + a1a2 + a2a0 = −1:

19

Mathematics 2021, 9, 857

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 1 1 1 1 1 1
−1 1 1 1 1 −1 −1 −1

1 1 1 1 −1 1 1 −1
1 1 −1 1 1 −1 1 1
1 1 1 −1 1 1 −1 1
1 −1 1 −1 1 −1 1 −1
1 −1 1 1 −1 −1 −1 1
1 −1 −1 1 1 1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consider the dihedral group D6 = ∠a, b : a3 = b2 = (ab)2 = 1〉, with ordering
{1, a, a2, b, ab, a2b}, normal subgroup N = {1, a, a2} and the subset S0 = {b, ab, a2b}. Let
C = {a2, a2b} and consider the 2-cocycle ψ : D6 × D6 → {1,−1} given by ψ = φϕ, for
φ = ∂a2 ∂a2b and ϕ(g, h) = −1 if and only if both g, h ∈ S0. The related cocyclic matrix is then:

Mψ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 −1 −1 1 −1 −1
1 −1 1 1 −1 1
1 −1 −1 −1 1 1
1 1 1 −1 −1 −1
1 −1 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since φ = ∂a2 ∂a2b, we define s1 = −1, sa = −1, sa2 = 1, sb = −1, sab = −1, sa2b = 1,
which is consistent with Lemma 7 and Proposition 3.

We may therefore extend Mψ to a full Hadamard matrix of the form (5) with a cocyclic
core Mψ, as soon as one takes α = (−s1,−sa,−sa2 ,−sb,−sab,−sa2b) = (1, 1,−1, 1, 1,−1) and
β = (−s1,−sa,−sa2 , sb, sab, sa2b) = (1, 1,−1,−1,−1, 1):

Hψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 1 −1 1 1 −1
−1 1 1 1 −1 −1 −1 1

1 1 1 1 1 1 1 1
1 1 1 −1 −1 1 −1 −1

−1 −1 1 −1 1 1 −1 1
1 −1 1 −1 −1 −1 1 1
1 −1 1 1 1 −1 −1 −1

−1 1 1 −1 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that starting from Hψ and negating both rows and columns 5 (indexed by a2) and 8
(indexed by a2b), and then permuting rows (4,5) to be ordered as (5,4), ends with the matrix H
above, as claimed in Proposition 3.

Nevertheless, Hadamard matrices with a cocyclic core strictly include those Hadamard
matrices with a circulant core. For the sake of completeness, we conclude the paper
by describing an example of a Hadamard matrix with a cocyclic core over a group not
isomorphic to any dihedral group, which supports this claim.

Example 4. Consider the group G = C3 × C2 = 〈a, b : a3 = b2 = 1〉. The subgroup N = 〈a〉 is
normal in G.

Take (si)i∈G = (−1,−1, 1,−1,−1, 1). It may be readily checked that:

• ∑
g∈G

sgsa·g = s1sa + sasa2 + sa2 s1 + sbsab + sabsa2b + sa2bsb = −2.

• ∑
g∈G

sgsa2·g = s1sa2 + sas1 + sa2 sa + sbsa2b + sabsb + sa2bsab = −2.

• ∑
g∈G

sgsb·g = s1sb + sasab + sa2 sa2b − sbs1 − sabsa − sa2bsa2 = 0.

• ∑
g∈G

sgsab·g = s1sab + sasa2b + sa2 sb − sbsa − sabsa2 − sa2bs1 = 0.

20

Mathematics 2021, 9, 857

• ∑
g∈G

sgsa2b·g = s1sa2b + sasb + sa2 sab − sbsa2 − sabs1 − sa2bsa = 0.

Accordingly, consider the 2-cocycle ψ = ϕ · ∂a2 ∂a2b, for ϕ(g, h) = −1 if and only if both
g, h ∈ G\N. By construction, the matrix Mψ may be extended to a full Hadamard matrix with a
cocyclic core, ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 1 −1 −1 −1 1
−1 −1 1 1 −1 1 1 −1

1 1 1 1 1 1 1 1
1 1 1 −1 −1 1 −1 −1

−1 −1 1 −1 1 1 −1 1
−1 1 1 1 1 −1 −1 −1
−1 1 1 −1 −1 −1 1 1

1 −1 1 −1 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4. Conclusions and Further Work

In this paper we have explored the notion of Hadamard matrices with a cocyclic core,
inspired by a series of papers [3,11–13] on Hadamard matrices with circulant cores.

Actually, we have described two new “plug-in” techniques for constructing Hadamard
matrices, which strictly include those based on circulant cores. They depend on the
existence of certain (almost) perfect sequences and (almost) difference sets, which will be
our concern in the future.

Author Contributions: Conceptualization, software and writing—original draft preparation, V.Á.;
methodology, formal analysis and writing—review and editing, J.A.A. and F.G.; validation, resources,
data curation, visualization, supervision and project administration, M.D.F., M.B.G. and A.O.; investi-
gation, V.Á. and J.A.A.; funding acquisition, J.A.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is partially supported by the Research Project FQM-016 from Junta de Andalucía.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the anonymous reviewers for their suggestions and
comments, which have contributed to an improvement of the paper. We also would like to thank the
Guest Editor of this special volume for giving us the opportunity of contributing with this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hadamard, J. Résolution d’une question relative aux determinants. Bull. Sci. Math. 1893, 17, 240–246.
2. Horadam, K.J. Hadamard Matrices and Their Applications; Princeton University Press: Princeton, NJ, USA, 2007.
3. Kotsireas, I.S. Structured Hadamard Conjecture, Number Theory and Related Fields. In Springer Proceedings in Mathematics and

Statistics; Borwein, J., Shparlinski, I., Zudilin, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 43, pp. 215–217.
4. Horadam, K.J.; de Launey, W. Cocyclic development of designs. J. Algebraic Combin. 1993, 2, 267–290; Erratum. J. Algebraic Combin.

1994, 3, 129. [CrossRef]
5. Horadam, K.J.; de Launey, W. Generation of cocyclic Hadamard matrices. Math. Appl. 1995, 325, 279–290.
6. Ó Catháin, P.; Röder, M. The cocyclic Hadamard matrices of order less than 40. Des. Codes Cryptogr. 2011, 58, 73–88. [CrossRef]
7. De Launey, W.; Flannery, D. Algebraic Design Theory; American Mathematical Society: Providence, RI, USA, 2011.
8. Álvarez, V.; Falcón, R.M.; Frau, M.D.; Gudiel, F.; Güemes, M.B. Cocyclic Hadamard matrices over Latin rectangles. Eur. J. Comb.

2019, 79, 74–96. [CrossRef]
9. Falcón, R.M.; Álvarez, V.; Frau, M.D.; Gudiel, F.; Güemes, M.B. Pseudococyclic partial Hadamard matrices over Latin rectangles.

Mathematics 2021, 9, 113. [CrossRef]
10. Arasu, K.T. Sequences and arrays with desirable correlation properties. In Information Security, Coding Theory and Related

Combinatorics; Crnković, D., Tonchev, V., Eds.; IOS Press: Amsterdam, The Netherlands, 2011; pp. 136–171.

21

Mathematics 2021, 9, 857

11. Kotsireas, I.S.; Koukouvinos, C.; Seberry, J. Hadamard ideals and Hadamard matrices with circulant core. J. Comb. Math. Comb.
Comput. 2006, 57, 47–63. [CrossRef]

12. Fletcher, R.J.; Gysin, M.; Seberry, J. Application of the discrete Fourier transform to the search for generalised Legendre pairs and
Hadamard matrices. Australas. J. Combin. 2001, 23, 75–86.

13. Kotsireas, I.S.; Koukouvinos, C.; Seberry, J. Hadamard ideals and Hadamard matrices with two circulant cores. Eur. J. Combin.
2006, 27, 658–668. [CrossRef]

14. Goethals, J.M.; Seidel, J.J. Orthogonal matrices with zero diagonal. Can. J. Math. 1967, 19, 1001–1010. [CrossRef]
15. Ó Catháin, P. Group Actions on Hadamard Matrices. Master’s Thesis, National University of Ireland, Galway, Ireland, 2008.
16. Álvarez, V.; Armario, J.A., Falcón, R.M.; Frau, M.D.; Gudiel, F.; Güemes, M.B.; Osuna, A. On cocyclic Hadamard matrices over

Goethals–Seidel loops. Mathematics 2020, 8, 24. [CrossRef]
17. De Launey, W.; Flannery, D.L.; Horadam, K.J. Cocyclic Hadamard matrices and difference sets. Discrete Appl. Math. 2000, 102,

47–61. [CrossRef]
18. Verheiden, E. Integral and rational completions of combinatorial matrices. J. Combin. Theory Ser. A 1978, 25, 267–276. [CrossRef]
19. Kibler, R.E. A summary of noncyclic difference sets, k < 20. J. Combin. Theory Ser. A 1978, 25, 62–67.
20. Armario, J.A.; Flannery, D. On quasi-orthogonal cocycles. J. Comb. Des. 2018, 26, 401–411. [CrossRef]
21. Ãƒlvarez, V.; Armario, J.A.; Frau, M.D.; Real, P. A system of equations for describing cocyclic Hadamard matrices. J. Comb. Des.

2008, 16, 276–290. [CrossRef]
22. Ãƒlvarez, V.; Armario, J.A.; Frau, M.D.; Gudiel, F.; GÃƒÂ¼emes, M.B.; Osuna, A. On D4t-cocyclic Hadamard matrices. J. Comb.

Des. 2016, 24, 352–368. [CrossRef]

22

mathematics

Article

Pseudococyclic Partial Hadamard Matrices over
Latin Rectangles

Raúl M. Falcón *, Víctor Álvarez, María Dolores Frau, Félix Gudiel and María Belén Güemes

Citation: Falcón, R.M.; Álvarez, V.;

Falcón, M.D.; Gudiel, F.;

Güemes, M.B. Pseudococyclic Partial

Hadamard Matrices over Latin

Rectangles. Mathematics 2021, 9, 113.

http://doi.org/10.3390/math9020113

Received: 2 December 2020

Accepted: 4 January 2021

Published: 6 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Applied Mathematics I, University of Seville, 41004 Sevilla, Spain; valvarez@us.es (V.Á.);
mdfrau@us.es (M.D.F.); gudiel@us.es (F.G.); bguemes@us.es (M.B.G.)
* Correspondence: rafalgan@us.es

Abstract: The classical design of cocyclic Hadamard matrices has recently been generalized by means
of both the notions of the cocycle of Hadamard matrices over Latin rectangles and the pseudococycle
of Hadamard matrices over quasigroups. This paper delves into this topic by introducing the concept
of the pseudococycle of a partial Hadamard matrix over a Latin rectangle, whose fundamentals are
comprehensively studied and illustrated.

Keywords: Hadamard matrix; Latin rectangle; pseudocoboundary; pseudococycle; quasigroup

MSC: 05B20; 05B15; 20N05

1. Introduction

A (binary) Hadamard matrix is a square matrix H of order n with entries in the set
{−1, 1} such that HHt = nIn. As such, all its rows (equivalently, columns) are pairwise or-
thogonal, and hence, its order must be 1, 2, or a multiple of 4. The Hadamard conjecture [1]
ensures the existence of Hadamard matrices for every order multiple of 4. It has remained
open for more than a century [2].

In 1993, as a new way for generating combinatorial designs that generalizes the group
development method, in combinatorial design theory, Horadam and de Launey [3] (see
also [4,5]) introduced the fundamentals of the so-called cocyclic development over finite
groups. In this context, a matrix with entries in the set {−1, 1} is said to be cocyclic over
a finite group (G, ·) if there exists a map φ : G × G → {−1, 1} satisfying the so-called
cocycle equation:

φ(i · j, k) φ(i, j)φ(j, k) φ(i, j · k) = 1, (1)

for all i, j, k ∈ G, so that the matrix under consideration is Hadamard equivalent to the
cocyclic matrix Mφ := (φ(i, j))i,j∈G. That is, they are equal up to permutation or negation
of rows and columns. The map φ is a cocycle [3,6] over the group. A cocyclic matrix
necessarily has a constant row and a constant column. According to the cocyclic test [6],
it is Hadamard whenever the summation of all the entries of each row is zero, except for
the ones in its constant row. As such, determining whether a cocyclic matrix is Hadamard
is computationally much faster than checking the definition of a Hadamard matrix.

In 1995, Horadam and de Launey [6] proved that this cocyclic framework provides
an excellent structural approach for dealing with the Hadamard conjecture, which would
be a consequence of the so-called cocyclic Hadamard conjecture [3], for which a cocyclic
Hadamard matrix of order 4t exists for every positive integer t. It is so that many known
families of Hadamard matrices are cocyclic over certain groups: Sylvester matrices [7],
Paley matrices [1], Williamson matrices [8], or Ito’s type Q matrices [9] (see also [2,10–14]
for some constructions in this regard). Nevertheless, the cocyclic framework turned out to
fail [12] for two of the most prolific families of Hadamard matrices: the two-circulant core
Hadamard matrices [15] and the Goethals–Seidel arrays [16].

Mathematics 2021, 9, 113. https://doi.org/10.3390/math9020113 https://www.mdpi.com/journal/mathematics23

Mathematics 2021, 9, 113

Very recently, a new approach introduced by the authors of [17] has successfully dealt
with a cocyclic development of Goethals–Seidel arrays, not over a group, but over a family
of Moufang loops. This approach is comprehended in the new theory of cocyclic devel-
opment over quasigroups and Latin rectangles, which has also recently been introduced
by the authors in [18]. More specifically, a cocycle φ over a quasigroup (Q, ·) is a map
φ : Q × Q → {−1, 1} satisfying the cocycle Equation (1) for all i, j, k ∈ Q. If an ordering of
the elements of Q is established, then the cocycle φ is uniquely represented by the cocyclic
matrix Mφ := (φ(i, j))i,j∈Q. In particular, the quasigroup (Q, ·) must be a loop whenever
the matrix Mφ is Hadamard. Moreover, the cocyclic Hadamard test also holds in this case.

The main aspect of this new approach is the fact that associativity is no longer a
necessary condition for dealing with any of the concepts and results that are usually
involved in the cocyclic development over finite groups. It is so thatthe existence of
coboundaries over non-associative loops has already been proved [17]. In this regard, we
remind the reader that a cocycle φ over a quasigroup (Q, ·) is called a coboundary if there
exists a map ∂ : Q → {−1, 1} such that

φ(i, j) = ∂(i)∂(j)∂(ij), for all i, j ∈ Q. (2)

This coboundary φ is said to be elementary if there exists an element h ∈ Q such that
∂ = ∂h, where ∂h(i) = −1, if i = h, and ∂h(i) = 1 otherwise. From the cocycle equation,
it is equivalent to say that

i(jk) = h ⇔ (ij)k = h,

holds for all i, j, k ∈ Q. It is straightforwardly satisfied in the case where (Q, ·) is a group.
Moreover, the cocycle equation has turned out not to be necessary in the quasigroup
development theory. In this regard, a pseudocoboundary over the quasigroup (Q, ·) is
defined as any map ψh : Q × Q → Q with h ∈ Q, satisfying Equation (2) for some ∂h
described as above. By extension, a pseudococycle is any map ψ =

(
∏h∈H⊆Q ψh

)
φ that is

obtained as the product of some pseudocoboundaries ψh with h ∈ H ⊆ Q and a cocycle
φ, all of them over a given quasigroup (Q, ·). It is represented by the pseudococyclic
matrix Mψ := (ψ(i, j))i,j∈Q. If it is Hadamard equivalent to a given matrix, then the latter
is called a pseudococyclic Hadamard matrix. Unlike the cocyclic framework over finite
groups, every Goethals–Seidel array constitutes a pseudococyclic Hadamard matrix over a
Moufang loop [17].

This last assertion corroborates the relevant role that non-associative quasigroups play
in the generalization of the cocyclic framework over groups. This paper delves into this
topic by focusing on the fundamentals of the pseudococyclic framework not only over
quasigroups, but also over Latin rectangles. It enables us to generalize the classical notion
of the cocycle of Hadamard matrices over groups to that of the pseudococycle of partial
Hadamard matrices over Latin rectangles. We remind the reader in this regard that a partial
Hadamard matrix is an r × n (binary) matrix H with r ≤ n such that HHt = nIr. The recent
implementation of these types of matrices in cryptography [19], experimental design [20],
and quantum information [21] has awakened the interest in describing different ways of
constructing them [22–25]. In addition, Latin rectangles may be implemented in Internet
of Things (IoT) studies [26], coding theory [27,28], and modern 5G wireless networks [29].
Of particular interest in our study, the relevant role that quasigroups with few associative
triples play in cryptography [30,31] is remarkable. It is so that quasigroups with a high
amount of non-associative triples are receiving particular attention [32–36].

The paper is organized as follows. In Section 2, we review some preliminary concepts
and results on quasigroups and Latin rectangles that are used throughout the paper.
In Section 3, we introduce and illustrate the notions of both the pseudocoboundary and
pseudococycle over Latin rectangles. Then, we deal with the following two open problems
concerning the pseudocoboundary framework over Latin rectangles. Both of them are
completely answered in Section 4.

24

Mathematics 2021, 9, 113

Problem 1. Under which conditions may we ensure the existence of a partial Hadamard matrix
that is a pseudocoboundary over a given Latin rectangle?

Problem 2. Under which conditions is a given partial Hadamard matrix a pseudocoboundary over
a Latin rectangle?

We also deal with the problem of determining under which conditions we may
ensure the existence of a partial Hadamard matrix that is pseudococyclic over a given
Latin rectangle. In this regard, Sections 5 and 6 focus respectively on the pseudococyclic
framework associated with trivial cocycles and the pseudococyclic framework related to
non-trivial cocycles. Finally, since this paper has a high dependence on notation, a glossary
of symbols is shown in Appendix A.

2. Preliminaries

Let us review some of the basic concepts and results on quasigroups and Latin rect-
angles that are used throughout the paper. We refer the reader to [18,37] for more details
about these topics.

A quasigroup [38] of order n is a pair (Q, ·) formed by a finite set Q of n elements that
is endowed with a product · so that any two of the three elements i, j, k ∈ Q in the equation
i · j = k uniquely determine the third element. That is to say, the product · makes possible
both the left and the right division in Q. A loop is a quasigroup (Q, ·) with a unit element e
such that i · e = e · i = i for all i ∈ Q. Every associative quasigroup is a group.

The Cayley table of a quasigroup of order n constitutes a Latin square of the same
order; that is, an n × n array with entries in a set of n distinct symbols so that each symbol
occurs exactly once per row and exactly once in each column. The removal of at least
one row of a Latin square constitutes a Latin rectangle. More specifically, an r × n Latin
rectangle, with r ≤ n, is an r × n array with entries in a set of n distinct symbols so that
each symbol occurs exactly once per row and at most once in each column. From here
on, let Rr,n denote the set of r × n Latin rectangles with entries in the set [n] := {1, . . . , n}.
Further, L[i, j] denotes the symbol contained in the cell (i, j) of a Latin rectangle L ∈ Rr,n.

Let L ∈ Rr,n. If one defines the subset of symbols

S(L) := [r] ∪ {L[i, j] | 1 ≤ i, j ≤ r} ⊆ [n],

then a cocycle over L is any function φ : S(L) × [n] → {−1, 1} satisfying the cocycle
equation

φ(L[i, j], k)φ(i, j)φ(j, k)φ(i, L[j, k]) = 1, (3)

for all positive integers i, j ≤ r and k ≤ n. It is termed trivial if φ(i, j) = 1 for all
(i, j) ∈ S(L)× [n]. Notice that the negation -φ of a cocycle φ over L is also a cocycle over L.
Further, every cocycle φ over L is uniquely represented by the cocyclic matrix

Mφ := (φ(i, j))(i,j)∈S(L)×[n].

The following example illustrates all these concepts. From here on, we represent,
respectively, the symbols −1 and 1 in any given binary array with the symbols + and −.

Example 1. Let us consider the 2 × 4 Latin rectangle

L ≡ 1 2 4 3
3 1 2 4

where we have highlighted those cells that are used to define the subset of symbols S(L) = {1, 2, 3}.
There exist exactly four cocycles over the Latin rectangle L: the trivial one and the function
φ : S(L)× [4] → {−1, 1}, which are represented by the following matrix, together with their
respective negations.

25

Mathematics 2021, 9, 113

Mφ ≡
+ + + +
+ + + −
+ + − +

In particular, let us check that the function φ satisfies the cocycle Equation (3).

• If i = 1, then L[i, j] = j for all j ∈ {1, 2}, and hence, the cocycle equation holds readily from
the fact that the first row of the matrix Mφ is constant.

• If (i, j) = (2, 1), then φ(3, k)φ(2, 1)φ(1, k)φ(2, L[1, k]) = φ(3, k)φ(2, L[1, k]) = 1 for all
k ≤ 4.

• If (i, j) = (2, 2), then φ(1, k)φ(2, 2)φ(2, k)φ(2, L[2, k]) = φ(2, k)φ(2, L[2, k]) = 1 for all
k ≤ 4.

3. Pseudocoboundaries and Pseudococycles over Latin Rectangles

In this section, we introduce the notions of both the pseudocoboundary and pseudo-
cocycle over a Latin rectangle as a natural generalization of the similar concepts described
over quasigroups in [17] by keeping in mind, to this end, the concepts introduced in [18].
Firstly, let us define the types of Latin rectangles where such a generalization is feasible.

Let r and n be two positive integers such that r ≤ n, and let L ∈ Rr,n be such that

L[L[i, j], k] �= L[i, L[j, k]], (4)

for some triple (i, j, k) ∈ [r] × [r] × [n] such that L[i, j] ≤ r. We apply the term “non-
associative” to any such triple satisfying Condition (4). Let NS(L) denote from here on
the set of such non-associative triples within the Latin rectangle L. The cardinality of
this set is the index of non-associativity of L, which is denoted by ns(L). If r = n, then
Condition (4) implies that the associative property does not hold for the triple (i, j, k) in
the non-associative quasigroup with L as its Cayley table. In this case, the index ns(L)
measures the associativity of that quasigroup. This index has been studied for different
types of algebraic structures [39–42] since it was introduced in 1947 by Climescu [43] for
any given multiplicative system. Particularly, it is easily verified [44] that ns(L) ≤ n3 − n
for every Latin square L of order n. This upper bound has recently been proved [32] to be
sharp for order n > 1. Furthermore, it is also known [45] that 16n − 64 ≤ ns(L) for every
Latin square of even order n ≥ 168. The reader is also referred to [46,47] for some other
studies dealing with the number of non-associative triples of a Latin square.

In this paper, we are interested in the Latin rectangles L ∈ Rr,n such that ns(L) > 0.
The following lemma characterizes the case of r = 1.

Lemma 1. Let L ∈ R1,n. Then, ns(L) > 0 if and only if L[1, 1] = 1 and there exists a positive
integer k ≤ n such that L[1, k] �= k.

Proof. Notice from Condition (4) that every non-associative triple of the 1 × n Latin
rectangle L would be of the form (1, 1, k) for some positive integer k ≤ n satisfying that
L[L[1, 1], k] �= L[1, L[1, k]]. In addition, Condition (4) also implies that L[1, 1] = 1 and,
hence, L[1, k] �= L[1, L[1, k]]. As a consequence, L[1, k] �= k.

Let L ∈ Rr,n be such that ns(L) > 0. Every non-associative triple (i, j, k) ∈ NS(L) is
related to two distinct positive integers h1, h2 ≤ n such that h1 = L[L[i, j], k] �= L[i, L[j, k]] =
h2. From here on, let H(L) denote the set of positive integers h ≤ n such that

{h} ⊂ {L[L[i, j], k], L[i, L[j, k]]}, (5)

for some (i, j, k) ∈ NS(L). It is readily verified that ns(L) = 0 whenever n ≤ 2. So, from
now on, we suppose that n > 2 throughout the paper. Notice also that every Latin square
in Rn,n with ns(L) > 0 is the Cayley table of a non-associative quasigroup of order n.
The case r < n is illustrated by the following example.

26

Mathematics 2021, 9, 113

Example 2. Let us consider the Latin rectangle L that is described in Example 1. Then,

NS(L) = {(1, 1, 3), (1, 1, 4), (1, 2, 1), (1, 2, 4), (2, 2, 1), (2, 2, 2), (2, 2, 3), (2, 2, 4)}.

Hence, ns(L) = 8. In addition, H(L) = [4]. To prove it, take, for instance, the triples (2, 2, 1)
and (1, 2, 1) in NS(L).

Let L ∈ Rr,n be such that ns(L) > 0 and let h ∈ H(L). We define the h-pseudocoboun-
dary over the Latin rectangle L as the map ψL;h : [r]× [n] → {−1, 1}, which is described
so that

ψL;h(i, j) := ∂h(i) ∂h(j) ∂h(L[i, j]), (6)

for all positive integers i ≤ r and j ≤ n, where

∂h(k) :=

{
−1, if k = h,

1, otherwise.

In addition, we apply the term “h-pseudocoboundary matrix” over L to the r × n
matrix MψL;h := (ψL;h(i, j))(i,j)∈[r]×[n]. When we want to refer to any h-pseudocoboundary
(matrix) over L, we omit the prefix h. As such, the concept of the pseudocoboundary over
a Latin rectangle constitutes a generalization of that over a quasigroup [17], which arises
when r = n. In any case, the following result establishes that the pseudococyclic framework
over Latin rectangles is not included in the cocyclic framework over such arrays. Hence,
it constitutes a new proposal that has to be independently studied.

Lemma 2. Let L ∈ Rr,n be such that ns(L) > 0 and let h ∈ H(L). The h-pseudococycle ψL;h is
not a cocycle over L.

Proof. Let us see that the h-pseudocycle ψL;h does not hold the cocycle Equation (3). To
this end, let (i, j, k) ∈ NS(L) be such that Condition (5) holds. Then,

ψL;h(L[i, j], k)ψL;h(i, j)ψL;h(j, k)ψL;h(i, L[j, k]) = ∂h(L[L[i, j], k])∂h(L[i, L[j, k]]) = −1.

Let us illustrate all of these concepts with a series of examples.

Example 3. Let L be the Latin rectangle described in Example 1. According to Example 2, we can
define four pseudocoboundaries over L, which are represented by the following matrices.

MψL;1 ≡ − − − −
− − + +

MψL;2 ≡ + + + +
− + + −

MψL;3 ≡ + + − −
− + − +

MψL;4 ≡ + + − −
+ + + +

The following example enables us to ensure that, unlike the cocyclic development
over quasigroups, there exist Hadamard matrices that are pseudocoboundary matrices
over quasigroups that are not loops.

27

Mathematics 2021, 9, 113

Example 4. Let us consider the Latin square

L ≡
1 2 4 3
2 1 3 4
3 4 1 2
4 3 2 1

.

We have that ns(L) = 32 and H(L) = [4]. In order to prove this last end, take, for instance,
the subset {(1, 1, 3), (1, 3, 3)} ⊂ NS(L). It is simply verified that every h-pseudocoboundary
matrix of L with 1 ≤ h ≤ 4 is Hadamard.

MψL;1 ≡
− − − −
− − + +
− + − +
− + + −

MψL;2 ≡
+ + + +
+ + − −
+ − + −
+ − − +

MψL;3 = MψL;4 ≡
+ + − −
+ + + +
+ − + −
+ − − +

Observe that all the pseudocoboundary matrices shown in Examples 3 and 4 constitute
(partial) Hadamard matrices. Proposition 2 described in Section 4 enables us to ensure that
this condition does not hold in general. Finally, the following example enables us to ensure
the existence of Hadamard matrices that are not cocyclic over any Latin rectangle, but that
are pseudocoboundary matrices over a Latin square.

Example 5. It is known ([18] Example 41) that the following Hadamard matrix is not cocyclic
over any Latin rectangle.

M ≡
⎛
⎝ + + + +

− + + −
− − + +
+ − + −

⎞
⎠

Nevertheless, it constitutes a 2-pseudocoboundary matrix over the Latin square

L ≡
1 2 3 4
3 4 2 1
2 1 4 3
4 3 1 2

.

Let us finish this section by introducing the notion of a pseudococycle over a Latin
rectangle as a generalization of both the concepts of a cocycle over a Latin rectangle [18]
and a pseudococycle over a quasigroup [17]. To this end, we take into account the previ-
ously described notion of a pseudocoboundary over Latin rectangles. Thus, we define a
pseudococycle over a given Latin rectangle L ∈ Rr,n with ns(L) > 0 as any map

ψ =

⎛
⎝ ∏

h∈S⊆H(L)
ψh

⎞
⎠φ

that is obtained as the product of some h-pseudocoboundaries with h ∈ S ⊆ H(L) and a
cocycle φ, all of them over the Latin rectangle L. It is represented by the pseudococyclic
matrix Mψ := (ψ(i, j))(i,j)∈[r]×[n]. In particular, notice from this definition that every
pseudocoboundary over a Latin rectangle is a pseudococycle over the latter by means
of the trivial cocycle. Further, if S = ∅, then all of these concepts refer to the cocyclic
framework over Latin rectangles, whose fundamentals were comprehensively studied
in [18].

In a similar way, if r = n, then they refer to the pseudococyclic framework over
quasigroups, which has only been briefly dealt with in [17]. This paper focuses, therefore,
on the fundamentals of the case S �= ∅, whatever the positive integer r ≤ n is. The
following example illustrates this case.

28

Mathematics 2021, 9, 113

Example 6. Let L be the Latin rectangle described in Example 1. Then, the following assertions
are readily verified from the cocyclic matrix Mφ described in that example, together with the
pseudocoboundary matrices MψL;3 and MψL;4 described in Example 3.

• The pseudococyclic matrix over L that is associated with the pseudococycle ψL;3ψL;4 is partial
Hadamard.

MψL;3ψL;4 ≡ + + + +
− + − +

• The pseudococyclic matrix over L that is associated with the pseudococycle ψL;3ψL;4φ is not a
pseudococyclic partial Hadamard matrix.

MψL;3ψL;4φ ≡ + + + +
− + − −

4. Pseudocoboundary Partial Hadamard Matrices over Latin Rectangles

Let us start our study by dealing with Problem 1 concerning the conditions under
which we can ensure the existence of pseudocoboundary partial Hadamard matrices over
a given Latin rectangle L ∈ Rr,n with ns(L) > 0. Firstly, we focus on the case r = 1.

Proposition 1. There always exists a pseudocoboundary partial Hadamard matrix over a Latin
rectangle L ∈ R1,n satisfying that ns(L) > 0.

Proof. Let L ∈ R1,n be such that ns(L) > 0. From Lemma 1, it must be L[1, 1] = 1 and
L[1, j] = h for some positive integers j, h ≤ n such that 1 �= j �= h �= 1. Hence, the Latin
rectangle condition of no repetition of symbols in each row implies that L[L[1, 1], j] = h �=
L[1, h] = L[1, L[1, j]]. Thus, (1, 1, j) ∈ NS(L) and h ∈ H(L). The matrix ψL;h is trivially
partial Hadamard over L.

Let us focus now on the case r > 1. Since ns(L) = 0 for all L ∈ R2,2, we also suppose
that the number n ≥ r of columns is a multiple of 4. We start with a preliminary lemma
that describes the entries within each row and column of any pseudocoboundary partial
Hadamard matrix over a given Latin rectangle. Particularly, it characterizes the rows and
columns that are uniformly signed.

Lemma 3. Let r and n be two positive integers such that 2 ≤ r ≤ n. Further, let ψL;h be the
h-pseudocoboundary over a Latin rectangle L ∈ Rr,n with ns(L) > 0 and h ∈ H(L). Then, the
following assertions hold.

1. Let i ≤ r be such that L[i, h] �= h. Then,

ψL;h(i, j) =

{
−∂h(i), if either j = h or L[i, j] = h,

∂h(i), otherwise.

2. Let j ≤ n. Then,

ψL;h(i, j) =

⎧⎪⎨
⎪⎩

−∂h(j), if

{
h ≤ r, L[h, j] �= h and either i = h or L[i, j] = h,
h > r and L[i, j] = h,

∂h(j), otherwise.

3. The ith row of the h-pseudocoboundary matrix MψL;h with i ≤ r is uniformly signed if and
only if L[i, h] = h. In such a case, ψL;h(i, j) = ∂h(i) for all j ≤ n. As a consequence, there
always exists at most one uniformly signed row.

4. Let j ≤ n. If h > r, then the jth column of Mψh is uniformly signed if and only if L[i, j] �= h
for every positive integer i ≤ r. Otherwise, if h ≤ r, then the jth column of Mψh is uniformly
signed if L[h, j] = h. If r > 2, then this sufficient condition is also necessary. In any case,

29

Mathematics 2021, 9, 113

ψL;h(i, j) = ∂h(j) for all i ≤ r. Furthermore, there exists exactly one uniformly signed
column if h ≤ r and r > 2.

Proof. The first two assertions and the sufficient conditions of the last two assertions follow
from the Definition (6). Let us focus now on the proof of the necessary condition of the
third assertion (that one of the four statements follows similarly). Thus, let us suppose
the existence of a positive integer i ≤ r such that the ith row of the h-pseudocoboundary
matrix MψL;h is uniformly signed. Then, the mentioned Definition (6) implies that either
∂h(L[i, j]) = ∂h(j) or ∂h(L[i, j]) = −∂h(j) for all j ≤ n. Nevertheless, since n > 2, the
definition of the map ∂h, together with the Latin rectangle condition of no repetitions
of symbols per row, implies that the second option is not possible. Hence, it must be
L[i, h] = h. The final consequence described in the third assertion holds straightforwardly
from the Latin rectangle condition of no repetitions of symbols in each column.

Concerning the last sentence of the fourth assertion, the definition of the map ∂h,
together with (6) and the Latin rectangle condition of no repetitions of symbols per row,
implies the existence of exactly one uniformly signed column when r > 2.

Example 7. Let L be the Latin rectangle described in Example 1. The third assertion of Lemma 3
explains, for instance, the uniformity of signs of the first row of both matrices MψL;1 and MψL;2 , and
also of the second row of the matrix MψL;4 , all of them described in Example 3. In addition, it also
explains that there does not exist any uniformly signed row in the matrix MψL;3 .

The fourth assertion of Lemma 3 explains, for instance, the uniformity of signs of the first
column of MψL;1 and the third column of MψL;2 . It also explains the two uniformly signed columns
of both matrices MψL;3 and MψL;4 . Nevertheless, this fourth assertion of Lemma 3 does not explain
the uniformity of signs of the second columns of MψL;1 and MψL;2 , which follows indeed from the
second assertion of this lemma. It illustrates, in particular, the exceptional case r = 2 that was
discarded therein. The case r > 2 is illustrated by the existence of exactly one uniformly signed
column in any of the Latin squares described in Examples 4 and 5.

The following result characterizes the Latin rectangles over which a pseudocobound-
ary partial Hadamard matrix exists. As such, it constitutes, together with Proposition 1,
the answer to Problem 1.

Proposition 2. Let r and n be two positive integers such that 2 ≤ r ≤ n. Further, let ψL;h be
the h-pseudocoboundary over a Latin rectangle L ∈ Rr,n with ns(L) > 0 and h ∈ H(L). Then,
the pseudocoboundary matrix MψL;h is partial Hadamard if and only if n = 4.

Proof. Lemma 3 enables us to ensure that the h-pseudocoboundary ψL;h has at least r − 2
rows with precisely two negative entries. Hence, the pseudocoboundary matrix MψL;h

cannot be Hadamard if n > 4. Concerning the case n = 4, let us remind the reader that
there exist 576 Latin squares of order four, from which only 16 of them constitute the Cayley
table of an associative quasigroup. A simple and exhaustive computation enables us to
ensure that H(L) = [4] for all of the 560 remaining Latin squares L ∈ R4,4, and also that all
of their related h-pseudocoboundary matrices are partial Hadamard, whatever the positive
integer h ≤ 4 is. As a consequence, every h-pseudocoboundary matrix of an r × 4 Latin
rectangle is partial Hadamard, whatever the two positive integers h, r ≤ 4 are.

For Latin squares of any given order, the following result holds as an immediate
consequence of Lemma 3, once it is noticed that its two last assertions always hold in the
case of L being a Latin square. It is illustrated by any of the pseudocoboundary matrices
described in Examples 4 and 5.

Proposition 3. Let ψL;h be the h-pseudocoboundary over a Latin square of order n > 2 with ns(L) >
0 and h ∈ H(L). Then, the h-pseudocoboundary matrix MψL;h contains exactly one uniformly
signed row and exactly one uniformly signed column.

30

Mathematics 2021, 9, 113

Let us finish this section by focusing on Problem 2 concerning the conditions under
which a given partial Hadamard matrix is a pseudocoboundary over some Latin rectangle
L ∈ Rr,n with ns(L) > 0. From Proposition 2, we may assume n = 4. Firstly, we focus on
the case r = 1. Notice in this regard that every 1 × n binary array trivially constitutes a
partial Hadamard matrix by itself.

Lemma 4. Let M = (m1j) be a 1 × 4 partial Hadamard matrix. It is a pseudocoboundary matrix
over a Latin rectangle if and only if m11 = 1 and it contains exactly two negative entries.

Proof. In order to prove the necessary condition, let us suppose that the partial Hadamard
matrix M is an h-pseudocoboundary over a Latin rectangle L ∈ R1,4 with h ∈ H(L) �= ∅.
From Lemma 1, it must be L[1, 1] = 1, and then, the Latin rectangle condition of no
repetitions of symbols in each row implies that (1, 1, 1) �∈ NS(L) and 1 �∈ H(L). Hence,
h �= 1 and m11 = 1. In addition, since every non-associative triple in NS(L) is of the form
(1, 1, k) with k ∈ {2, 3, 4} and h ∈ H(L), it should be {h} ⊂ {L[L[1, 1], k0], L[1, L[1, k0]]} =
{L[1, k0], L[1, L[1, k0]]} for some positive integer k0 ∈ {2, 3, 4}. If k0 = h, then we get
{h} ⊂ {h}, which is a contradiction. So, L[1, h] �= h, and hence, the matrix M contains
exactly two negative entries. More specifically, m1k0 = m1h = −1.

Now, in order to prove the sufficient condition, let us suppose that m11 = 1 and let
h, i, j ∈ [4] \ {1} be three distinct positive integers such that m1,h = m1,i = −1 and m1,j = 1.
Then, let L ∈ R1,4 be defined so that L[1, 1] = 1, L[1, h] = j, L[1, i] = h, and L[1, j] = i.
Then, L[L[1, 1], h] = j �= i = L[1, L[1, h]]. Hence, (1, 1, h) ∈ NS(L) and h ∈ H(L). It is
straightforwardly verified that the partial Hadamard matrix M is an h-pseudocoboundary
over L.

Let us focus now on the case 2 ≤ r ≤ 4. The following preliminary lemma holds
straightforwardly from the definition (6) of a pseudocoboundary.

Lemma 5. Let r ∈ {2, 3, 4} and let M = (mij) be an r × 4 partial Hadamard matrix such that
there exists a Latin rectangle L ∈ Rr,4 with ns(L) > 0, over which M is an h-pseudocoboundary
matrix for some h ∈ H(L). The following assertions hold.

1. The ith row of the partial Hadamard matrix M with i ≤ r is uniformly signed if and only if
L[i, h] = h. In such a case, mij = ∂h(i) for all j ≤ 4.

2. If h ≤ r and L[h, h] = h, then mih = −1 for all i ≤ r. Moreover, if mij = −1 with i �= h �= j
then L[i, j] = h.

3. If L[i, h] = h for some i ∈ [r] \ {h}, then mjh = −∂h(j) for all j ∈ [r] \ {i}. Moreover,
if mjk = −∂h(j) for some j ∈ [r] \ {i} and k ∈ [4] \ {h}, then L[j, k] = h.

Example 8. Let us consider the following four partial Hadamard matrices.

M1 ≡ − − − −
+ − − +

M2 ≡ − − − −
− − + +

M3 ≡ + + + +
+ + − − M4 ≡ + + + +

− + − +

Let N = (nij) ∈ {M1, M2}. The first statement of Lemma 5 enables us to ensure that, if the
matrix N were an h-pseudocoboundary over some Latin rectangle L ∈ R2,4 with h ∈ H(L) �= ∅,
then it should be h = 1 and L[1, 1] = 1. However, then, the second statement of the mentioned
lemma implies that n2,1 = −1, which is not the case when N = M1. As a consequence, the partial
Hadamard matrix M1 is not a pseudocoboundary over any Latin rectangle. Further, concerning
the case N = M2, the second statement of Lemma 5 also enables us to ensure that L[2, 2] = 1.
Thus, for instance, it is readily verified that the matrix M2 is a 1-pseudocoboundary over the
Latin rectangle

31

Mathematics 2021, 9, 113

L ≡ 1 4 2 3
2 1 3 4

.

In particular, (2, 1, 3) ∈ NS(L) = {(1, 1, 2), (1, 1, 3), (1, 1, 4), (2, 1, 2), (2, 1, 3), (2, 1, 4),
(2, 2, 2), (2, 2, 3), (2, 2, 4)} and 1 ∈ H(L) = [4]. More specifically, L[L[2, 1], 3] = 3 �= 1 =
L[2, L[1, 3]].

Notice also that the partial Hadamard matrices M3 and M4 are, respectively, 2-pseudocoboundaries
over the Latin rectangles

L′ ≡ 3 2 1 4
2 4 3 1

and L′′ ≡ 1 2 3 4
3 1 4 2

.

In particular, (2, 1, 3) ∈ NS(L′) = {(1, 2, 3), (1, 2, 4), (2, 1, 1), (2, 1, 3)} and 2 ∈ H(L′) =
{1, 2, 3}. More specifically, L′[L′[2, 1], 3] = 3 �= 2 = L′[2, L′[1, 3]]. Further, concerning the
Latin rectangle L′′, we have that (2, 2, 2) ∈ NS(L′′) = {(2, 2, 1), (2, 2, 2), (2, 2, 3), (2, 2, 4)} and
2 ∈ H(L′′) = [4]. In fact, L′′[L′′[2, 2], 2] = 2 �= 3 = L′′[2, L′′[2, 2]].

The following result characterizes the partial Hadamard matrices that have a uni-
formly signed row with all its entries being negative, which are pseudocoboundaries over a
Latin rectangle. Its constructive proof is illustrated by the matrix M2 and the Latin rectangle
L described in Example 8.

Proposition 4. Let M = (mij) be an r × 4 partial Hadamard matrix with r > 1 such that
mhj = −1 for some h ≤ r and all j ≤ 4. It is a pseudocoboundary matrix over a Latin rectangle if
and only if mih = −1 for all i ≤ r.

Proof. The necessary condition follows from Lemma 5. Now, in order to prove the suffi-
cient condition, let i ∈ [r] \ {h} and j ∈ [4] \ {h} be such that mij = −1. It always exists be-
cause M is an r× 4 partial Hadamard matrix with r > 1. In addition, let k ∈ [4] \ {h} be such
that i �= k �= j. Finally, let L be any r × 4 Latin rectangle satisfying that L[h, h] = L[i, j] = h,
L[h, k] = j, L[i, h] = i, and L[i, k] = k. Moreover, it must be L[i′, j′] = h for all i′ ∈ [r] \ {h}
and j′ ∈ [4] \ {h} such that mi′ j′ = −1. In particular, L[L[i, h], k] = k �= h = L[i, L[h, k]].
Hence, (i, h, k) ∈ NS(L) and h ∈ H(L). It is simply verified that the partial Hadamard
matrix M is h-pseudocoboundary over L.

In a similar way, the next result characterizes the partial Hadamard matrices have a
uniformly signed row with all its entries being positive, which are pseudocoboundaries
over a Latin rectangle. The two subcases described in its constructive proof are respectively
illustrated by the matrices M3 and M4, together with the Latin rectangles L′ and L′′,
which are described in Example 8.

Proposition 5. Let M = (mij) be an r × 4 partial Hadamard matrix with r > 1 such that mij = 1
for some positive integer i ≤ r and all j ≤ 4. It is a pseudocoboundary matrix over a Latin rectangle
if and only if there exists a positive integer h ∈ [r] \ [i] such that mjh = −∂h(j) for all j ∈ [r] \ {i}.

Proof. Again, the necessary condition follows from Lemma 5. Now, in order to prove the
sufficient condition, let j ∈ [4] \ {h} be such that mhj = 1. It always exists because M is an
r × 4 partial Hadamard matrix with r > 1. The following two cases arise.

• If j = i, then let k ∈ [4] \ {h, i} and let L be any r × 4 Latin rectangle satisfying that
L[i, h] = L[h, i] = h, L[i, k] = i and L[h, k] = k. In addition, it must be L[i′, j′] = h for
all i′ ∈ [r] \ {i} and j′ ∈ [4] \ {h} such that mi′ j′ = −∂h(i′). Then, L[L[h, i], k] = k �=
h = L[h, L[i, k]].

32

Mathematics 2021, 9, 113

• If j �= i, then let L be any r × 4 Latin rectangle satisfying that L[i, h] = L[h, j] = h,
L[h, h] = i, and L[h, i] = j. Again, we also impose that L[i′, j′] = h for all i′ ∈ [r] \ {i}
and j′ ∈ [4] \ {h} such that mi′ j′ = −∂h(i′). Then, L[L[h, h], h] = h �= j = L[h, L[h, h]].

In any case, h ∈ H(L), and thus, the partial Hadamard matrix M is an h-pseudocoboun-
dary over L.

Finally, in order to give a complete answer to Problem 2, the following result char-
acterizes the r × 4 partial Hadamard matrices with r > 1 and without uniformly signed
rows, which are pseudocoboundaries over a Latin rectangle. Example 9 illustrates its
constructive proof.

Proposition 6. Let M = (mij) be an r × 4 partial Hadamard matrix with r > 1 and without
uniformly signed rows. Then, the following assertions hold.

1. If r = 4, then the matrix M is not a pseudocoboundary over any Latin square of order four.
2. If r ∈ {2, 3}, then the matrix M is pseudocoboundary over an r × 4 Latin rectangle if and

only if the following two conditions hold.

(a) There exists a positive integer h ≤ 4 such that mih = −∂h(i) for all i ≤ r.
(b) For each positive integer i ≤ r, there exists exactly one positive integer ji ∈ [4] \ {h}

such that mi,ji = mi,h. Moreover, the set {j1, . . . , jr} is formed by r distinct positive
integers.

If this is the case, then the matrix M is indeed an h-pseudocoboundary over an r × 4 Latin
rectangle.

Proof. Let us suppose that the partial Hadamard matrix M is an h-pseudocoboundary
over a Latin rectangle L ∈ Rr,4 with ns(L) > 0 and h ∈ H(L). From the first assertion of
Lemma 5, the non-existence of uniformly signed rows within M implies that L[i, h] �= h
for every positive integer i ≤ r. It constitutes a contradiction when r = 4 because of the
Latin rectangle condition of no repetitions of symbols per column. Hence, the first assertion
holds. Further, if r ∈ {2, 3}, then mih = ψL;h(i, h) = ∂h(i)∂h(h)∂h(L[i, h]) = −∂h(i) for
every positive integer i ≤ r. Similarly, it is readily proven that the elements ji described in
Condition (2b) refer to the columns in which the symbol h appears in the ith row of L. That
is, L[i, ji] = h for all i ≤ r. Notice that all these columns are pairwise distinct from the Latin
rectangle condition of no repetition of symbols in each column.

In order to prove the sufficient condition of the second assertion, let us suppose that
both Conditions (2a) and (2b) hold. Then, let L be any r × 4 Latin rectangle satisfying that
L[i, h] �= h = L[i, ji] for every positive integer i ≤ r. The following two cases arise.

• If h ≤ r, then let us consider a positive integer i ∈ [r] \ {h}. It exists because r ≥ 2.
The following two subcases arise.

– If i = ji, then let us impose that L[i, jh] = jh. Then, L[L[i, i], jh] = h �= jh =
L[i, L[i, jh]].

– If i �= ji, then let us impose that L[i, h] = i, L[i, jh] = ji and L[h, ji] = jh. Under
such assumptions, we have that L[L[i, h], ji] = h �= ji = L[i, L[h, ji]].

• If h > r, then let us consider a pair of distinct positive integers i1, i2 ≤ r. Notice again
to this end that r ≥ 2. Similarly to the previous case, the following two subcases arise.

– Firstly, let us suppose the existence of a positive integer i ∈ {i1, i2} such that
i = ji. Without loss of generality, we can suppose that i1 = ji1 . Then, let us
impose that L[i2, i1] = i1 and L[i2, h] = i2. Under such assumptions, we have that
L[L[i2, i1], i1] = h �= i2 = L[i2, L[i1, i1]].

– Otherwise, let us suppose that i1 �= ji1 and i2 �= ji2 . Then, let us impose
that L[i1, i1] = i1 and L[i1, h] = i2. Under such assumptions, we have that
L[L[i1, i1], ji1] = h �= i2 = L[i1, L[i1, ji1]].

In any case, h ∈ H(L), and thus, the partial Hadamard matrix M is an h-pseudocoboun-
dary over L.

33

Mathematics 2021, 9, 113

Example 9. Let us consider the following six partial Hadamard matrices.

M1 ≡
+ − + +
+ − − −
+ + + −

M2 ≡
+ − + +
+ + + −
+ − − −

M3 ≡
− − + +
− + + −
+ − + −

M4 ≡
+ − − +
− + − +
− − + +

M5 ≡
− + + −
+ + − −
+ − + −

M6 ≡
+ + − −
− + + −
+ − + −

Condition (2a) in Proposition 6 implies that M1 is not a pseudocoboundary over any 3× 4 Latin
rectangle. It also enables us to ensure that the only possibility to get M2 to be an h-pseudocoboundary
over some 3 × 4 Latin rectangle for some positive integer h ≤ 4 is by considering h = 2. However,
then, Condition (2b) implies that it neither is an option because, for instance, the first row only
contains one negative sign.

On the other hand, the partial Hadamard matrix M3 is a 2-pseudocoboundary over the
Latin rectangle

L ≡
2 1 3 4
1 4 2 3
4 3 1 2

.

Here, ns(L) = 20, (1, 1, 3) ∈ NS(L), and 2 ⊂ H(L) = [4]. More specifically, L[L[1, 1], 3] =
2 �= 3 = L[1, L[1, 3]].

Further, the partial Hadamard matrices M4 and M5 are, respectively, 2- and 4-pseudocoboundaries
over the Latin rectangle

L′ ≡
4 1 2 3
1 3 4 2
2 4 3 1

.

In particular, ns(L′) = 16, {(1, 2, 3), (2, 1, 1)} ⊂ NS(L′), and {2, 4} ⊂ H(L′) = [4].
More specifically, L′[L′[1, 2], 3] = 2 �= 3 = L′[1, L′[2, 3]] and L′[L′[2, 1], 1] = 4 �= 2 =
L′[2, L′[1, 1]].

Finally, the partial Hadamard matrix M6 is a 4-pseudocoboundary over the Latin rectangle

L′′ ≡
1 3 4 2
4 1 2 3
2 4 3 1

.

Particularly, ns(L′′) = 18, (1, 1, 3) ∈ NS(L), and 4 ∈ H(L′′) = [4]. More specifically,
L′′[L′′[1, 1], 3] = 4 �= 2 = L′′[1, L′′[1, 3]].

5. Pseudococyclic Partial Hadamard Matrices Associated with the Trivial Cocycle

Let us focus now on the characterization of the Latin rectangles L ∈ Rr,n with ns(L) > 0
over which there exists a pseudococyclic partial Hadamard matrix. As a first stage, we
focus in this section on the pseudococycles associated with the trivial cocycle; that is, on the
pseudococycles of the form ∏h∈S⊆H(L) ψL;h. Of course, the case |S| = 1 corresponds to the
pseudocoboundary framework that has already been studied in the previous subsection. It
is so that we start with a generalization of Lemma 3 that describes the rows and columns
of the pseudococyclic matrix associated with one such pseudococycle. To this end, for each

34

Mathematics 2021, 9, 113

given subset S ⊆ H(L) and each pair of positive integers i ≤ r and j ≤ n, we previously
define the sets

D−
L (S, i) := {k ∈ [n] : L[i, k] ∈ S} and D+

L (S, j) := {k ∈ [r] : L[k, j] ∈ S}.

If r = n, then the sets D−
L (S, i) and D+

L (S, i) constitute, respectively, the left division
of S by i and the right division of S by j, both of them within the quasigroup with the Latin
square L as its Cayley table. In addition, for all r ≤ n, the Latin rectangle condition of no
repetitions of symbols per row implies that |D−

L (S, i)| = |S|. Further, let AΔB denote from
here on the symmetric difference between two given sets A and B.

Lemma 6. Let ψ = ∏h∈S⊆H(L) ψL;h be a pseudococycle over a Latin rectangle L ∈ Rr,n with
ns(L) > 0. Then, the following assertions hold.

1. Let i ∈ [r]. Then,

ψ(i, j) =

{
−∏h∈S ∂h(i), if j ∈ SΔD−

L (S, i),

∏h∈S ∂h(i), otherwise.

2. Let j ∈ [n]. Then,

ψ(i, j) =

{
−∏h∈S ∂h(j), if i ∈ (S ∩ [r])ΔD+

L (S, i),

∏h∈S ∂h(j), otherwise.

3. Let i ∈ [r]. The ith row of the pseudococyclic matrix Mψ is uniformly signed if and only if
one of the following two conditions hold.

(a) SΔD−
L (S, i) = ∅, in whose case, ψ(i, j) = ∏h∈S ∂h(i), for all j ≤ n.

(b) SΔD−
L (S, i) = [n], in whose case, ψ(i, j) = −∏h∈S ∂h(i), for all j ≤ n.

4. Let j ∈ [n]. The jth column of the pseudocyclic matrix Mψ is uniformly signed if and only if
one the following two conditions hold.

(a) (S ∩ [r])ΔD+
L (S, i) = ∅, in which case ψ(i, j) = ∏h∈S ∂h(j) for all i ≤ r.

(b) (S ∩ [r])ΔD+
L (S, i) = [r], in which case ψ(i, j) = −∏h∈S ∂h(j) for all i ≤ r.

Proof. The first two assertions and both sufficient conditions of the last two assertions
follow readily from the definition (6). So, let us focus on the necessary condition of the
third statement (that one of the last statements follows similarly). Thus, let us suppose
the existence of a positive integer i ≤ r such that the ith row of the pseudococyclic
matrix Mψ is uniformly signed. Then, the mentioned definition (6) implies that either
∏h∈S ∂h(j) = ∏h∈S ∂h(L[i, j]) or ∏h∈S ∂h(j) = −∏h∈S ∂h(L[i, j]) for all j ≤ n. In the first
case, j ∈ S if and only if L[i, j] ∈ S, and hence, Condition (3a) holds. In the second case,
j ∈ S if and only if L[i, j] �∈ S, and hence, Condition (3b) holds. In any case, the result
follows then from the Latin rectangle condition of no repetitions of symbols in each row.

Example 10. Let L be the Latin rectangle described in Example 1. The third assertion of Lemma 6
explains, for instance, the uniformity of signs of the first row of the pseudococyclic matrix MψL;3ψL;4

appearing in Example 6. More specifically, if we consider the subset S = {3, 4}, then D−
L (S, 1) = S.

That is, the the first row of L satisfies the condition described in Lemma 6. (3a).
The third assertion of Lemma 6 also implies that S = [4] is the only way to get a pseudococyclic

matrix related to a pseudococycle ψ = ∏h∈S⊆[4] ψL;h of L, whose rows are all uniformly signed. In
such a case, all the signs within Mψ are negative.

Further, the fourth assertion of Lemma 6 explains, for instance, the uniformly signed columns
of the following two pseudococyclic matrices.

MψL;1ψL;2 ≡ − − − −
+ − + − MψL;2ψL;3 ≡ + + − −

+ + − −

35

Mathematics 2021, 9, 113

Thus, concerning the first pseudococyclic matrix, we have that, if S = {1, 2}, then D+
L (S, 2) =

S and D+
L (S, 4) = ∅. Concerning the second pseudococyclic matrix, we have that, if S =

{2, 3}, then D+
L (S, 1) = D+

L (S, 3) = {2} = S ∩ [2] and (S ∩ [2]) ∩ D+
L (S, 2) = (S ∩ [2]) ∩

D+
L (S, 3) = ∅.

Finally, the last statement of the fourth assertion of Lemma 6 explains, for instance, the
uniformity of signs of the second and fourth columns of the pseudococyclic matrix MψL;3 MψL;4 ,
which is described in Example 6. Here, if S = {3, 4}, then D+

L (S, 2) = ∅ and D+
L (S, 4) = {1, 2}.

The following result characterizes the Latin rectangles L ∈ Rr,n with r > 1 and
ns(L) > 0 over which a pseudococycle ∏h∈S⊆H(L) ψL;h exists, so that its related pseudoco-
cyclic matrix is partial Hadamard.

Proposition 7. Let ψ = ∏h∈S⊆H(L) ψL;h be a pseudococycle over a Latin rectangle L ∈ Rr,n with
r > 1 and ns(L) > 0. The pseudococyclic matrix Mψ is partial Hadamard if and only if, for each
pair of distinct positive integers i1, i2 ≤ r,

∣∣D−
L (S, i1)ΔD−

L (S, i2)
∣∣ = n

2
.

Proof. Since the pseudococyclic matrix Mψ is partial Hadamard, all its rows are pairwise
orthogonal and, hence, ∑j≤n ψ(i1, j)ψ(i2, j) = 0. Then, the first statement of Lemma 6
implies that

∣∣(SΔD−
L (S, i1)

) ∩ (
SΔD−

L (S, i2)
)∣∣+ ∣∣([n] \ (SΔD−

L (S, i1)
)) ∩ (

[n] \ (SΔD−
L (S, i2)

))∣∣ = n
2

.

Equivalently, after all the set operations are done and simplified, we have that

∣∣[n] \ (D−
L (S, i1)ΔD−

L (S, i2)
)∣∣ = n

2

and the result follows straightforwardly.

The worst-case complexity of the implicit algorithm described in Proposition 7 corre-
sponds to a Latin square of order n. Thus, the time complexity of this algorithm is O(n4),
which is required for the computation of all the difference sets under consideration (notice
that the computation of all the sets D−

L (S, i) with i ≤ n only requires a time complexity
of O(n3)).

Example 11. Let L be the Latin rectangle defined in Example 1, and let us consider the pseudoco-
cyclic matrix associated with the pseudococycle MψL;2 MψL;4 , which is partial Hadamard.

MψL;2 MψL;4 ≡ + + − −
− + + −

If we consider the subset S = {2, 4}, then we have that D−
L (S, 1) = {2, 3} and D−

L (S, 2) =
{3, 4}. Hence, D−

L (S, 1)ΔD−
L (S, 2) = {2, 4}, which is formed by two elements, as is required by

Proposition 7.

Proposition 7 establishes a lower bound of the cardinality of H(L) for any r × n Latin
rectangle L with r > 1 over which a pseudococyclic partial Hadamard matrix associated
with the trivial cocycle exists.

Theorem 1. Let ψ = ∏h∈S⊆H(L) ψL;h be a pseudococycle over a Latin rectangle L ∈ Rr,n with
r > 1 and ns(L) > 0 such that |H(L)| < n

4 . Then, the pseudococyclic matrix Mψ is not
partial Hadamard.

36

Mathematics 2021, 9, 113

Proof. For each positive integer i ≤ r, we have already indicated that |D−
L (S, i)| = |S|.

As a consequence, |D−
L (S, i1)ΔD−

L (S, i2)| ≤ 2 · |S| ≤ 2 · |H(L)| < n
2 for all i1, i2 ≤ r. Then,

the result follows straightforwardly from Proposition 7.

The following example illustrates how the bound described in Theorem 1 does not
constitute a necessary condition for ensuring the non-existence of pseudococyclic partial
Hadamard matrices associated with the trivial cocycle.

Example 12. Let us consider the following 2 × 12 Latin rectangle.

L ≡ 1 2 4 3 5 6 7 8 9 10 11 12
2 4 3 1 6 5 8 7 10 9 12 11

It is easily verified that NS(L) = {(1, 1, 3), (1, 1, 4), (1, 2, 2), (1, 2, 3), (2, 1, 3), (2, 1, 4)},
and H(L) = {1, 3, 4}. In addition, we have that

D−
L ({1}, 1)ΔD−

L ({1}, 2) = {1, 4}, D−
L ({3}, 1)ΔD−

L ({3}, 2) = {3, 4},
D−

L ({4}, 1)ΔD−
L ({4}, 2) = {2, 3}, D−

L ({1, 3}, 1)ΔD−
L ({1, 3}, 2) = {1, 3},

D−
L ({1, 4}, 1)ΔD−

L ({1, 4}, 2) = {1, 2, 3, 4}, D−
L ({3, 4}, 1)ΔD−

L ({3, 4}, 2) = {2, 4}

and D−
L ({1, 3, 4}, 1)ΔD−

L ({1, 3, 4}, 2) = {1, 2}. Thus, |D−
L (S, 1)ΔD−

L (S, 2)| �= 6 for all S ⊆
H(L), and hence, no pseudococyclic partial Hadamard matrix associated with the trivial cocycle
over L exists.

The next result deals with the pseudococyclic partial Hadamard matrices that have a
uniformly signed row.

Theorem 2. Let ψ = ∏h∈S⊆H(L) ψL;h be a pseudococycle over a Latin rectangle L ∈ Rr,n with
ns(L) > 0 so that the pseudococyclic matrix Mψ is partial Hadamard. Then, there exists at most
one positive integer i ≤ r such that SΔD−

L (S, i) ∈ {∅, [n]}. If it exists, then |SΔD−
L (S, i′)| = n

2
for all i′ ∈ [r] \ {i}. Moreover, n

4 ≤ |S| ≤ 3n
4 , and hence, |H(L)| ≥ n

4 .

Proof. Since the partial Hadamard matrix Mψ can only have at most one uniformly signed
row, the third statement of Lemma 6 implies the existence of at most one positive integer
i ≤ r such that SΔD−

L (S, i) ∈ {∅, [n]}. Thus, D−
L (S, i) ∈ {S, [n] \ S}. Now, let us consider

a positive integer i′ ∈ [r] \ {i}. The following two cases arise.

• If D−
L (S, i) = S, then Proposition 7 implies that

n
2
= |D−

L (S, i)ΔD−
L (S, i′)| = |SΔD−

L (S, i′)|.

• If D−
L (S, i) = [n] \ S, then Proposition 7 implies that

n
2
= |D−

L (S, i)ΔD−
L (S, i′)| = ∣∣([n] \ S)ΔD−

L (S, i′)
∣∣ = n − |SΔD−

L (S, i′)|.

Hence, |SΔD−
L (S, i′)| = n

2 . The rest of the result follows easily from the fact that the Latin
rectangle condition of no repetitions of symbols per row implies that |D−

L (S, i)| = |S|.
The worst-case complexity of the implicit algorithm in Theorem 2 corresponds to a

Latin square of order n. Thus, the time complexity of this algorithm is O(n3), which is
required for computing all the sets D−

L (S, i) with i ≤ n, and also for computing all the
difference sets under consideration.

The following example illustrates the sharpness of both bounds concerning the cardi-
nality of the subset S in Theorem 2.

Example 13. Let L be the Latin rectangle defined in Example 1. In order to illustrate that the upper
bound described in Theorem 2 is sharp, it is enough to consider the pseudococyclic matrix over L

37

Mathematics 2021, 9, 113

MψL;1ψL;2ψL;3 ≡ − − + +
− − − − .

Thus, if we consider the subset S = {1, 2, 3}, then D−
L (S, 2) = S ,and hence, SΔD−

L (S, 2) =
∅. In addition, D−

L (S, 1) = {1, 2, 4}, and thus, SΔD−
L (S, 1) = {3, 4}. That is, |SΔD−

L (S, 1)| = 2.
Now, in order to illustrate the sharpness of the lower bound described in Theorem 2, we

can make use of any of the h-pseudocoboundary matrices over L with h ∈ {1, 2, 4} that are
described in Example 3. Thus, for instance, if we consider S = {1}, then D−

L (S, 1) = S and
SΔD−

L (S, 2) = {1, 2}.
In order to illustrate the sharpness of this lower bound, but now avoiding the purely pseudo-

coboundary framework, let us consider the following 2 × 8 Latin rectangle.

L′ ≡ 1 2 3 4 5 6 7 8
4 3 1 2 6 5 8 7

It is easily verified that NS(L′) = {(1, 1, 3), (1, 1, 4), (1, 2, 1), (1, 2, 2)}, and H(L′) =
{3, 4}. If we consider the subset S = {3, 4}, then we have that D−

L′(S, 1) = S and SΔD−
L′(S, 2) =

{1, 2, 3, 4}. Then, the pseudococyclic matrix over L′ associated with the pseudococycle ψL′ ;3ψL′ ;4 is
partial Hadamard.

MψL′ ;3ψL′ ;4 ≡ + + + + + + + +
− − − − + + + +

6. Pseudococyclic Partial Hadamard Matrices Associated with Non-Trivial Cocycles

Let us finish our study by focusing on the pseudococycles ∏h∈S⊆H(L) ψL;hφ over a
given Latin rectangle L ∈ Rr,n with ns(L) > 0 where the cocycle φ over L is not trivial. The
following result generalizes Proposition 7 by characterizing the Latin rectangles over which
one such pseudococycle exists so that its related pseudococyclic matrix is partial Hadamard.

Proposition 8. Let ψ = ∏h∈S⊆H(L) ψL;hφ be a pseudococycle over a Latin rectangle L ∈ Rr,n
with ns(L) > 0 for some cocycle φ over L. The pseudococyclic matrix Mψ is partial Hadamard if
and only if, for each pair of positive integers i1, i2 ≤ r, the set

{
j ∈ D−

L (S, i1)ΔD−
L (S, i2) : φ(i1, j) = φ(i2, j)

} ∪ {
j �∈ D−

L (S, i1)ΔD−
L (S, i2) : φ(i1, j) = −φ(i2, j)

}
(7)

has cardinality n
2 .

Proof. The result follows in a similar way to the proof of Proposition 7, once it is observed
that ∑j≤n ψ(i1, j)ψ(i2, j) = 0 if and only if

∑
j∈D−

L (S,i1)ΔD−
L (S,i2)

φ(i1, j)φ(i2, j) = ∑
j �∈D−

L (S,i1)ΔD−
L (S,i2)

φ(i1, j)φ(i2, j).

Keeping in mind the observation made just after Proposition 7, the time complexity of
the implicit algorithm described in Proposition 8 is O(n5), which corresponds once more
to the Latin square case.

Example 14. Let L be the Latin rectangle defined in Example 1 and let us consider the pseu-
dococyclic matrix MψL2;3ψL2;4 φ2 described in Example 6, which is not partial Hadamard. If we
again take S = {3, 4}, then we have that D−

L (S, 1) = {3, 4} and D−
L (S, 2) = {1, 4}. Hence,

D−
L (S, 1)ΔD−

L (S, 2) = {1, 3}. In this case, the set defined in (7) concerning the pseudococycle
ψL;3ψL;4φ2 is the set {2, 3, 4}, which is not formed by two elements, as is required by Proposition 8.

38

Mathematics 2021, 9, 113

Example 15. Let us consider the Latin rectangle L ∈ R2,12 that is described in Example 12, and
let us define the cocycle φ over L that is represented by the matrix

Mφ ≡
+ + + + + + + + + + + +
+ + + + − − + + + + + +
+ + + + + + + + + + + +

Notice here that the third row of this cocyclic matrix corresponds to the positive integer
4 ∈ S(L) = {1, 2, 4}. The pseudococyclic matrix associated with the pseudococycle ψL;1ψL;4φ is

MψL;1ψL;4φ ≡ − − + + − − − − − − − −
− − + + − − + + + + + +

which is partial Hadamard. If we consider the subset S = {1, 4}, then we have that D−
L (S, 1)ΔD−

L
(S, 2) = [4]. Moreover, the set defined in (7) concerning the pseudococycle ψL;1ψL;4φ is the set
{1, 2, 3, 4, 5, 6}, which is formed by six elements, as is required by Proposition 8.

The pseudococyclic partial Hadamard matrix in Example 15 shows that Theorem 1
cannot be generalized for pseudococycles associated with non-trivial cocycles. Concerning
the possible generalization of Theorem 2, the following result deals with the case of
a pseudocycle related to a non-trivial cocycle whose pseudococyclic partial Hadamard
matrix contains a uniformly signed row.

Proposition 9. Let ψ = ∏h∈S⊆H(L) ψL;hφ be a pseudococycle over a Latin rectangle L ∈ Rr,n
with ns(L) > 0 for some cocycle φ over L. If the pseudococyclic matrix Mψ is partial Hadamard,
then there exists at most one positive integer i ≤ r and an integer a ∈ {−1, 1} such that

φ(i, j) =

{
a, if j ∈ SΔD−

L (S, i),
−a, if j �∈ SΔD−

L (S, i).

Proof. Since the pseudococyclic matrix Mψ is partial Hadamard, it can only have at most
one uniformly signed row. Hence, there exists at most one positive integer i ≤ r such that
ψ(i, j1) = ψ(i, j2) for all pairs of positive integers j1, j2 ≤ n. The result then follows from
the third statement of Lemma 6, together with the definition of the cocycle φ.

Example 16. Let us consider the Latin rectangle L ∈ R2,12 that is described in Example 12 and
let us consider the cocycle φ over L that is represented by the matrix

Mφ ≡
− − + + − − − − − − − −
+ + − − − − − − − − − −
+ + + + + + + + + + + +

Further, let us consider the subset S = {1, 4}. Then, SΔD−
L (S, 1) = {3, 4} and SΔD−

L (S, 2) =
{1, 2}. According to Proposition 9, the pseudococyclic matrix MψL;1ψL;4φ over L is not partial
Hadamard. In fact,

MψL;1ψL;4φ ≡ + + + + + + + + + + + +
− − − − − − − − − − − − .

7. Conclusions and Further Work

In this paper, we have introduced the concepts of both the pseudocoboundary and
pseudococycle over a Latin rectangle (see Section 3) as a natural generalization of the
similar notions recently described in [17] over quasigroups. To this end, we have made
use of the cocyclic framework over Latin rectangles previously introduced by the authors
in [18]. Both cocyclic and pseudococyclic developments over Latin rectangles together

39

Mathematics 2021, 9, 113

constitute a much more general framework than the classical cocyclic framework over
groups. Its potential has already been illustrated in the mentioned papers by means of
examples of (pseudo)cocyclic Hadamard matrices over quasigroups that are not cocyclic
over any group. This paper constitutes a step forward in this regard. Thus, for instance,
Example 5 illustrates a pseudocoboundary Hadamard matrix over a Latin square that is
not cocyclic over any Latin rectangle.

Let us remark that this paper is conceived as an introductory stage concerning the
fundamentals of both the pseudocoboundary and the pseudococyclic frameworks over
Latin rectangles. Particularly, in Section 4, we completely answered both Problems 1 and 2
concerning the conditions under which we may ensure either the existence of a partial
Hadamard matrix that is a pseudocoboundary over a given Latin rectangle or, reciprocally,
the existence of a Latin rectangle over which a given partial Hadamard matrix is a pseudo-
coboundary. More specifically, Propositions 1 and 2 give the answer of the first question,
whereas the second one is answered by Lemma 1, together with Propositions 4–6.

Furthermore, we have also dealt with the problem of determining under which
conditions we may ensure the existence of a partial Hadamard matrix that is pseudococyclic
over a given Latin rectangle. To this end, we have distinguished two distinct frameworks
(see Sections 5 and 6), depending on whether we make use of trivial cocycles or not.
The reciprocal problem concerning the conditions under which we may ensure the existence
of a Latin rectangle over which a given partial Hadamard matrix is pseudococyclic is
established as future work. Once this last question is solved, the next natural stage would
be the construction of pseudococyclic partial Hadamard matrices of higher dimensions in
order to deal with the Hadamard conjecture described in the introductory section, which
indeed constitutes the keystone of the theory of Hadamard matrices.

The following open questions are also established as future work. They generalize
similar ones described for the cocyclic development of Hadamard matrices over Latin
rectangles [18].

Problem 3. Let M be an r × n partial Hadamard matrix that is not pseudococyclic over any Latin
rectangle. Does there exist, however, a partial Hadamard equivalent matrix in the same equivalence
class of M for which one such Latin rectangle can be found?

Problem 4. Let us consider an equivalence class of Hadamard matrices such that none of them are
cocyclic over any finite group. Does there exist, however, a Hadamard matrix within such a class
that is pseudococyclic over a Latin rectangle?

Pseudococycles over Latin rectangles have been introduced in this paper as the prod-
uct of a cocycle with some pseudocoboundaries. A possible generalization of this notion
consists of enabling the product of a cocycle not only with pseudocoboundaries (related
to non-associative triples), but also with elementary coboundaries (related to associative
triples). This would constitute a more general framework that puts together both co-
cyclic and pseudococyclic frameworks over Latin rectangles. Its formal description and
characterization is also proposed as future work.

Finally, another question to take into consideration for further study is the following
one. Both the pseudocoboundary and the pseudococyclic frameworks over Latin rectangles
described in this paper are based on the existence of non-associative triples within a Latin
rectangle. As was already indicated in the introductory section and in Section 3, the study
of this type of triple in the case of dealing with Latin squares has received particular
attention in the recent literature [32–36] because of its possible application in different areas
as cryptography [30,31]. A comprehensive study of non-associative triples in the case of
dealing with Latin rectangles instead of Latin squares is established, therefore, as natural
further work.

40

Mathematics 2021, 9, 113

Author Contributions: Conceptualization, V.Á., R.M.F. and F.G.; Data curation, M.D.F., F.G. and
M.B.G.; Formal analysis, V.Á., R.M.F. and F.G.; Investigation, V.Á. and R.M.F.; Methodology, R.M.F.,
M.D.F. and M.B.G.; Software, V.Á. and R.M.F.; Supervision, F.G.; Validation, M.D.F. and M.B.G.;
Writing—original draft, R.M.Falcón; Writing—review & editing, V.Á., R.M.F., M.D.F. and F.G. All au-
thors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This work was partially supported by the Research Project FQM-016 from Junta
de Andalucía. In addition, the authors want to express their gratitude to the anonymous referees for
the comprehensive reading of the paper and their pertinent comments and suggestions, which helped
improve the manuscript. Particularly, we are grateful to the anonymous referee who suggested to us
the more general framework described in the conclusion section concerning the product of a cocycle
with both types of pseudocoboundaries and elementary coboundaries of a given Latin rectangle.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Glossary of Symbols

H(L) The set of positive integers satisfying Condition (5).
MψL;h The h-pseudocoboundary matrix associated to a Latin rectangle L ∈ Rr,n, with h ∈ H(L).
[n] The set {1, . . . , n}.
ns(L) The non-associative index of a Latin rectangle L.
NS(L) The set of non-associative triples of a Latin rectangle L.
Rr,n The set of r × n Latin rectangles with entries in [n].
S(L) The subset of symbols describing the rows of a cocyclic matrix over a Latin rectangle L.
ψL;h The h-pseudocoboundary over a Latin rectangle L, with h ∈ H(L).

References

1. Paley, R.E.A.C. On orthogonal matrices. J. Math. Phys. 1933, 12, 311–320. [CrossRef]
2. Horadam, K.J. Hadamard Matrices and Their Applications; Princeton University Press: Princeton, NJ, USA, 2007.
3. Horadam, K.J.; de Launey, W. Cocyclic development of designs. J. Algebr. Comb. 1993, 2, 267–290; Erratum: J. Algebr. Comb. 1994,

3, 129. [CrossRef]
4. de Launey, W. On the construction of n-dimensional designs from 2-dimensional designs. Australas. J. Comb. 1990, 1, 67–81.
5. de Launey, W.; Horadam, K.J. A weak difference set construction for higher dimensional designs. Des. Codes Cryptogr. 1993,

3, 75–87. [CrossRef]
6. Horadam, K.J.; de Launey, W. Generation of cocyclic Hadamard matrices. Math. Appl. 1995, 325, 279–290.
7. Sylvester, J.J. LX. Thoughts on inverse orthogonal matrices, simultaneous sign-successions, and tessellated pavements in two or

more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers. Lond. Edinb. Dublin Philos.
Mag. J. Sci. 1867, 34, 461–475. [CrossRef]

8. Williamson, J. Hadamard’s determinant theorem and the sum of four squares. Duke Math. J. 1944, 11, 65–81. [CrossRef]
9. Ito, N. On Hadamard groups III. Kyushu J. Math. 1997, 51, 369–379. [CrossRef]
10. de Launey, W.; Flannery, D.L.; Horadam, K.J. Cocyclic Hadamard matrices and difference sets. Discret. Appl. Math. 2000,

102, 47–61. [CrossRef]
11. de Launey, W.; Smith, M.J. Cocyclic orthogonal designs and the asymptotic existence of cocyclic Hadamard matrices and maximal

size relative difference sets with forbidden subgroup of size 2. J. Comb. Theory Ser. A 2001, 93, 37–92. [CrossRef]
12. Catháin, P. Group Actions on Hadamard Matrices. Master’s Thesis, National University of Ireland, Galway, Ireland, 2008.
13. de Launey, W.; Flannery, D. Algebraic Design Theory; American Mathematical Society: Providence, RI, USA, 2011.
14. Egan, R.; Flannery, D.L. Automorphisms of generalized Sylvester Hadamard matrices. Discret. Math. 2017, 340, 516–523.

[CrossRef]
15. Fletcher, R.J.; Gysin, M.; Seberry, J. Application of the discrete Fourier transform to the search for generalised Legendre pairs and

Hadamard matrices. Australas. J. Comb. 2001, 23, 75–86.
16. Goethals, J.M.; Seidel, J.J. Orthogonal matrices with zero diagonal. Can. J. Math. 1967, 19, 1001–1010. [CrossRef]
17. Álvarez, V.; Armario, J.A.; Falcón, R.M.; Frau, M.D.; Gudiel, F.; Güemes, M.B.; Osuna, A. On cocyclic Hadamard matrices over

Goethals-Seidel loops. Mathematics 2020, 8, 1–22. [CrossRef]
18. Álvarez, V.; Falcón, R.M.; Frau, M.D.; Gudiel, F.; Güemes, M.B. Cocyclic Hadamard matrices over Latin rectangles. Eur. J. Comb.

2019, 79, 74–96. [CrossRef]

41

Mathematics 2021, 9, 113

19. Craigen, R.; Faucher, G.; Low, R.; Wares, T. Circulant partial Hadamard matrices. Linear Algebra Appl. 2013, 439, 3307–3317.
[CrossRef]

20. Kao, M.H. Universally optimal fMRI designs for comparing hemodynamic response functions. Stat. Sin. 2015, 25, 499–506.
[CrossRef]

21. Shi, F; Zhang, X.; Guo, Y. Constructions of unextendible entangled bases. Quantum Inf. Process. 2019, 18, 14.
22. Banica, T.; Skalski, A. The quantum algebra of partial Hadamard matrices. Linear Algebra Appl. 2015, 469, 364–380. [CrossRef]
23. Lin, Y.L.; Phoa, F.K.H.; Kao, M.H. Circulant partial Hadamard matrices: construction via general difference sets and its application

to fMRI experiments. Stat. Sin. 2017, 27, 1715–1724.
24. Banica, T.; Özteke, D.; Pittau, L. Isolated partial Hadamard matrices and related topics. Open Syst. Inf. Dyn. 2018, 25, 27.

[CrossRef]
25. Álvarez, V.; Armario, J.A.; Falcón, R.M.; Frau, M.D.; Gudiel, F.; Güemes, M.B.; Osuna, A. Generating binary partial Hadamard

matrices. Discret. Appl. Math. 2019, 263, 2–7. [CrossRef]
26. Boucetta, C.; Nour, B.; Moungla, H.; Lahlou, L. An IoT scheduling and interference mitigation scheme in TSCH using Latin rect-

angles. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December
2019; pp. 1–6.

27. Chang, C. Reliable and Secure Storage with Erasure Codes for OpenStack Swift in PyECLib. Master’s Thesis, KTH Royal Institute
of Technology, Stockholm, Sweden, 2016.

28. Stones, R.J. K-plex 2-erasure codes and Blackburn partial Latin squares. IEEE Trans. Inform. Theory 2020, 66, 3704–3713 [CrossRef]
29. Gligoroski, D.; Kralevska, K. Expanded combinatorial designs as tool to model network slicing in 5G. IEEE Access 2019, 7,

54879–54887. [CrossRef]
30. Dénes, J.; Keedwell, A.D. A new authentication scheme based on Latin squares. Discret. Math. 1992, 106/107, 157–161. [CrossRef]
31. Grošek, O.; Horák, P. On quasigroups with few associative triples. Des. Codes Cryptogr. 2012, 64, 221–227. [CrossRef]
32. Drápal, A.; Lisoněk, P.. Maximal nonassociativity via nearfields. Finite Fields Appl. 2020, 62, 27. [CrossRef]
33. Artamonov, V.A.; Chakrabarti, S.; Pal, S.K. Characterizations of highly non-associative quasigroups and associative triples.

Quasigroups Relat. Syst. 2017, 25, 1–19.
34. Drápal, A.; Valent, V. Few associative triples, isotopisms and groups. Des. Codes Cryptogr. 2018, 86, 555–568. [CrossRef]
35. Drápal, A.; Valent, V. High nonassociativity in order 8 and an associative index estimate. J. Comb. Des. 2019, 27, 205–228.

[CrossRef]
36. Drápal, A.; Valent, V. Extreme nonassociativity in order nine and beyond. J. Comb. Des. 2020, 28, 33–48. [CrossRef]
37. Bruck, R.H. A Survey of Binary Systems; Springer: New York, NY, USA, 1958.
38. Moufang, R. Zur Struktur von Alternativkörpern. Math. Ann. 1935, 110, 416–430. [CrossRef]
39. Gavrilov, M.; Čobanov, I. The index of non-associativity of multiplicative structures. Annu. Univ. Sofia Fac. Sci. Phys. Math. Livre 1

Math. 1963, 56, 23–26.
40. Drápal, A.; Kepka, T. Sets of associative triples. Eur. J. Comb. 1985, 6, 227–231. [CrossRef]
41. Kepka, T.; Trch, M. Groupoids and the associative law. I. Associative triples. Acta Univ. Carol. Math. Phys. 1992, 33, 69–86.
42. Waldhauser, T. Almost associative operations generating a minimal clone. Discuss. Math. Gen. Algebra Appl. 2006, 26, 45–73.

[CrossRef]
43. Climescu, A.C. Etudes sur la théorie des systèmes multiplicatifs uniformes I. L’indice de non-associativité. Bull. Ecole Polytech.

Jassy 1947, 2, 347–371.
44. Ježek, J.; Kepka, T. Notes on the number of associative triples. Acta Univ. Carol. Math. Phys. 1990, 31, 15–19.
45. Drápal, A. On quasigroups rich in associative triples. Discret. Math. 1983, 44, 251–265. [CrossRef]
46. Dénes, J.; Keedwell, A.D. Latin Squares and Their Applications; Academic Press: New York, NY, USA; London, UK, 1974.
47. Drápal, A.; Kepka, T. Group distances of Latin squares. Comment. Math. Univ. Carol. 1985, 26, 275–283.

42

mathematics

Article

A Discussion of a Cryptographical Scheme Based in F-Critical
Sets of a Latin Square †

Laura M. Johnson 1,* and Stephanie Perkins 2

Citation: Johnson, L.M.; Perkins, S.

A Discussion of a Cryptographical

Scheme Based in F-Critical Sets of a

Latin Square †. Mathematics 2021, 9,

285. https://doi.org/10.3390/

math9030285

Academic Editor: Carsten Schneider

Received: 30 November 2020

Accepted: 27 January 2021

Published: 31 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mathematics and Statistics, University of St. Andrews, St Andrews KY16 9SS, UK
2 School of Computing and Mathematics, University of South Wales, Pontypridd CF37 1DL, UK;

stephanie.perkins@southwales.ac.uk
* Correspondence: lj68@st-andrews.ac.uk
† The work detailed in this short communication was undertaken as part of an MMath research module at the

University of South Wales.

Abstract: This communication provides a discussion of a scheme originally proposed by Falcón in
a paper entitled “Latin squares associated to principal autotopisms of long cycles. Applications in
cryptography”. Falcón outlines the protocol for a cryptographical scheme that uses the F-critical
sets associated with a particular Latin square to generate access levels for participants of the scheme.
Accompanying the scheme is an example, which applies the protocol to a particular Latin square
of order six. Exploration of the example itself, revealed some interesting observations about both
the structure of the Latin square itself and the autotopisms associated with the Latin square. These
observations give rise to necessary conditions for the generation of the F-critical sets associated with
certain autotopisms of the given Latin square. The communication culminates with a table which
outlines the various access levels for the given Latin square in accordance with the scheme detailed
by Falcón.

Keywords: F-critical sets; Latin square; Latin subsquare; intercalate; secret sharing scheme

1. Introduction and Preliminaries

A Latin square of order n is an n×n array comprising of n distinct elements, such that
each element occurs exactly once in each row and column [1,2]. A partial Latin square is
an n×n array with all entries of the array belonging to the set {0, 1, . . ., n − 1}. There can
be blank entries within a partial Latin square, but each element of the set {0, 1, . . ., n − 1}
must only occur once in each row and column [3]. Partial Latin squares can be considered
substructures of Latin squares, as such; a partial Latin square can be completed to form a
Latin square by replacing the blank entries of the partial Latin square with elements of the
set {0, 1, . . ., n − 1} in such a way that each element in the set only occurs once in each row
and column [3]. A partial Latin square is said to be uniquely completable if it only has one
possible completion [3]. We consider two mechanisms by which a partial Latin square P can
be (uniquely) completed to a Latin square L. A triple (i, j; k) ∈ P denotes an entry within
a partial Latin square such that i is the row component, j is the column component and k
denotes the symbol in the cell (i, j). A triple (i, j; k) in a partial Latin square P is forced if the
cell (i, j) is the only empty cell in either the ith row or jth column and the symbol k is the
only symbol not appearing in the respective row or column. Similarly a triple is forced if
the symbol k appears in every row and column of L except the ith row and jth column [4].

The second mechanism considered is applying autotopisms to the set of triples of
a partial Latin square P to generate a Latin square L, on occasion this may additionally
require the application of forced moves. Before defining an autotopism, it is important to
define the notion of a quasigroup; a set S is a quasigroup if there exists a binary operator
∗ such that ∀a, b ∈ S a ∗ x = b and y ∗ a = b have exactly one solution. The multiplication
table of a quasigroup forms a Latin square [1,2]. An autotopism is formally defined [1,2,5];

Mathematics 2021, 9, 285. https://doi.org/10.3390/math9030285 https://www.mdpi.com/journal/mathematics43

Mathematics 2021, 9, 285

Definition 1. Let (B, ·) and (C, ∗) be two quasigroups. An isotopism is an ordered triple of row,
column and symbol permutations, θ = (α, β, γ) that maps (B, ·) onto (C, ∗), providing that ∀i, j ∈
B, i, j denote a pair of row and column coordinates (α(i)) ∗ (β(j)) = γ(i·j). An autotopism is an
isotopism that maps a quasigroup onto itself.

Let Atop(L) denote the set of all autotopisms associated with a Latin square L. Atop(L)
constitutes a group under the composition of permutations; this is know as the autotopism
group of L [4]. As stated in [4], each autotopism θ = (α, β, γ) ∈ Atop(L) generates a
subgroup of Atop(L), denoted 〈θ〉. This may be extended to the set generated by θ1, .., θq ∈
Atop(L), which will also form a subgroup of Atop(L), denoted 〈θ1, . . . , θp〉.

As in [4], let Ent(P) denote the set of non-empty cells of a partial Latin square P.
Further, Reference [4] defines the θ-orbit of a triple (i, j; k) ∈ Ent(L), for some autotopism
θ = (α, β, γ) ∈ Atop(L), as the set

Orbθ((i, j; k)) = {(αm(i), βm(j); γm(k) : m ≥ 0} ⊆ Ent(L)

This idea can be extended to F-orbits [4]. For a collection of autotopisms F ⊆ Atop(L),
the F-orbit of a triple (i, j; k) ∈ Ent(L) is the set

OrbF((i, j; k)) =
⋃

θ∈F
{(αm(i), βm(j); γm(k) : m ≥ 0} ⊆ Ent(L).

We are interested in using F-orbits to determine F-critical sets. A critical set is formally
defined [5]:

Definition 2. A critical set C in a Latin square, L, is a set

C = {(i, j; k) : i,j,k ∈ {0, 1, ..., n − 1}}

where:

1. L is the only Latin square of order n which has the symbol k in the cell (i, j) for each (i, j; k) ∈ C.
2. No proper subset of C has property 1.

Furthermore, we define a partial Latin square P to be F-completable to a Latin square
L, with F ⊆ Atop(P), if there exists a partial Latin square Q that is completable to L such
that;

Ent(Q) =
⋃

t∈Ent(P)
OrbF(t).

We can say that P is uniquely F-completable if L is unique, and moreover, P is an
F-critical set of the Latin square L if no proper subset of Ent(P) is F-completable to L [4].

The paper by Falcón [6], on which this communication is based, looks at building a
secret sharing scheme using F-critical sets.

A secret sharing scheme is a cryptographical scheme in which k participants are each
given a part of a secret key K, called a share [7]. In secret sharing schemes, certain shares
may be combined to generate the original secret key K. These are referred to as authorised
groups. All unauthorised groups will be unable to recover the secret key K [6]. The
access structure Γ defines the set of authorised groups of shares [6]. Throughout this
communication, the term access level will be used to refer to each minimal authorised group.

A previous secret sharing scheme based on critical sets in Latin squares was proposed
by Cooper et al [8]. In this secret sharing scheme, a particular Latin square K of order n is
chosen as the secret key. The k shares distributed to participants in this scheme are triples
of Ent(K). The access structure for this scheme is the set Γ = {S | Ent(C) ⊆ Ent(S) ⊆
Ent(K), where C is a critical set of K}.

The scheme proposed by Falcón, seeks to extend the scheme proposed by Cooper
et al. to F-critical sets of Latin squares. The secret key for the scheme proposed in [6]
is also a Latin square K. However, in this scheme there are two types of shares that
may be distributed to the k participants of the scheme; a group of the shares will be

44

Mathematics 2021, 9, 285

autotopisms θ ∈ F, such that F ⊆ Atop(K) and the remaining shares will be triples Ti ∈
Ent(K). Formally, the access structure for the scheme is then the set Γ = {S | Ent(C) ⊆
Ent(S) ⊆ Ent(K), where C is an F-critical set of K}.

Below, an overview of the scheme proposed in [6] is given:

Overview of the secret sharing scheme:

• A Latin Square K of order n is selected as the key for the scheme. The order n of the
Latin Square K is made public, whilst K is kept private.

• A set of T triples, where Ent(T) ⊂ Ent(K) is selected, along with a collection of F
autotopisms associated with K.

• The triples of Ent(T) and autotopisms in F associated with K are distributed to the
k participants in the secret sharing scheme in such a way that when a group of t
participants come together, the union of whose shares form an F-critical set of K. They
are thus able to combine their shares in order to find the key K.

In [6], Falcón provides an example to accompany the scheme, which demonstrates
how the secret sharing scheme may be applied to a particular Latin square of order 6. The
example is detailed below.

Example 1. The Latin square K is chosen as the key for the secret sharing scheme, where;

K =

0 1 2 3 4 5
1 2 0 4 5 3
2 0 1 5 3 4
3 4 5 0 1 2
4 5 3 1 2 0
5 3 4 2 0 1

The k participants in the scheme will be assigned autotopisms belonging to F and
triples belonging to a partial Latin square T, where Ent(T) ⊂ Ent(K). In this example, the
set F consists of the four autotopisms F={θ1,θ2,θ3,θ4} associated with the Latin square K.
These are defined;

θ1 = ((012)(345), (0)(1)(2)(3)(4)(5), (021)(354))
θ2 = ((0)(1)(2)(3)(4)(5), (012)(345), (021)(354))
θ3 = ((03)(14)(25), (03)(14)(25), (0)(1)(2)(3)(4)(5))
θ4 = ((0)(1)(2)(3)(4)(5), (03)(14)(25), (03)(14)(25))

There are 11 triples in the partial Latin square T. Each triple in the set T={T1,...,T11} is
defined;

T1 = (0, 4; 4), T2 = (1, 1; 2), T3 = (1, 5; 3), T4 = (2, 2; 1), T5 = (2, 4; 3), T6 = (3, 1; 4), T7 = (3, 2; 5), T8 = (3, 3; 0),
T9 = (4, 0; 4), T10 = (5, 3; 2), T11 = (5, 5; 1)

The autotopisms and T triples are assigned to participants within the scheme in accor-
dance with Table 1, where Table 1 provides examples of access levels for the autotopisms
and T triples given in Example 1. Note that m in Table 1 denotes the number of shares
within each access level. There has also been a change in notation from the original example
in [6]; the notation 〈. . .〉 has been used in Table 1 in place of the notation {. . . }. This is to
highlight more clearly that the autotopisms in each access level will generate a subgroup
of Atop(K).

45

Mathematics 2021, 9, 285

Table 1. Access level definitions in [6].

m Permutations Triples of P m Permutations Triples of P

11 - T 6 {θ1,θ2} {T1,T2,T6,T8}

11 〈θ4〉 T\{T9} 6 〈θ1,θ4〉 {T2,T3,T7,T9}

10 〈θ3〉 T\{T1,T11} 6 〈θ2,θ3〉 {T3,T6,T8,T10}

10 〈θ3,θ4〉 T\{T1,T9,T11} 6 〈θ1,θ3,θ4〉 {T2,T4,T8}

9 〈θ1〉 T\{T5,T7,T10} 5 〈θ1,θ2,θ3〉 {T1,T2}

9 〈θ2〉 T\{T1,T7,T10} 5 〈θ2,θ3,θ4〉 {T1,T2}

7 〈θ1,θ3〉 {T2,T3,T4,T6,T9} 5 〈θ1,θ2,θ4〉 {T2,T4}

7 〈θ2,θ4〉 {T1,T2,T4,T6,T9} 5 〈θ1,θ2,θ3,θ4〉 {T1}

To give an example of how these access levels work; take the set of shares θ3 and
T\{T1, T11}. Table 1, shown above, states that the union of F-orbits for each triple in the
set T\{T1, T11}, should form an F-critical set, when F is the subgroup of autotopisms
generated by 〈θ3〉. The autotopisms within this subgroup are;

Id = ((0)(1)(2)(3)(4)(5), (0)(1)(2)(3)(4)(5), (0)(1)(2)(3)(4)(5))
θ3 = ((03)(14)(25), (03)(14)(25), (0)(1)(2)(3)(4)(5))

This subgroup of Atop(K) will generate the following F-orbits for the shares T\{T1, T11};

OrbF(T2) = OrbF((1, 1; 2)) = {(1, 1; 2), (4, 4; 2)}
OrbF(T3) = OrbF((1, 5; 3)) = {(1, 5; 3), (4, 2; 3)}
OrbF(T4) = OrbF((2, 2; 1)) = {(2, 2; 1), (5, 5; 1)}
OrbF(T5) = OrbF((2, 4; 3)) = {(2, 4; 3), (5, 1; 3)}
OrbF(T6) = OrbF((3, 1; 4)) = {(3, 1; 4), (0, 4; 4)}
OrbF(T7) = OrbF((3, 2; 5)) = {(3, 2; 5), (0, 5; 5)}
OrbF(T8) = OrbF((3, 3; 0)) = {(3, 3; 0), (0, 0; 0)}
OrbF(T9) = OrbF((4, 0; 4)) = {(4, 0; 4), (1, 3; 4)}
OrbF(T10) = OrbF((5, 3; 2)) = {(5, 3; 2), (2, 0; 2)}

Ent(Q1) =
⋃

Ti∈T\{T1,T11}
OrbF(Ti).

Let q1=Ent(Q1) be a partial Latin square, where;

q1 =

0 4 5
2 4 3

2 1 3
4 5 0

4 3 2
3 2 1

Observe that the partial Latin square q1 is uniquely completable, hence applying
the subgroup of Atop(K) generated by 〈θ3〉 to the set of triples T\{T1, T11} will give a
uniquely F-completable set. Notice that the removal of any F-orbit of Ent(Q1) will generate
a partial Latin square q1=Ent(Q1) that is not uniquely completable to K. This demonstrates
that F-orbits of T\{T1, T11} under the autotopism θ3 form an F-critical set. As the set is a
minimal collection of shares that combine to generate the secret key K, it is an access level
for the scheme.

46

Mathematics 2021, 9, 285

2. Interesting Observations about Uniquely Completable Partial Latin Squares and
the Applications of These Observations to the Example

The Applications of These Observations to the Example in [6], In this section, we
will consider further substructures of Latin squares and demonstrate how the existence
of these substructures within a Latin square L informs how the F-critical sets of L may be
constructed.

Definition 3. [9] A Latin subsquare of a Latin square is an m × m submatrix of (not necessarily
adjacent) entries that is itself a Latin square. Note that a Latin subsquare has order at least 2.

Definition 4. [9] An intercalate of order 2 is a Latin subsquare of order 2.

Example 2. Observe that the four quadrants of the Latin square K given in the example in [6] form
four Latin subsquares of order 3, which will form a set S = {S(0,0), S(0,3), S(3,0), S(3,3)}, where
S(i,j) = {(i, j; k), (i, j + 1; k + 1), (i, j + 2; k + 2), (i + 1, j; k + 1), (i + 1, j + 1; k + 2), (i + 1, j +
2; k), (i+ 2, j; k+ 2), (i+ 2, j+ 1; k), (i+ 2, j+ 2; k+ 1)} for i, j, k ∈ {0, 3}. There are also nine in-
tercalates of the form I(i,j) = {(i, j; k), (i+ 3, j; k+ 3), (i, j+ 3; k+ 3), (i+ 3, j+ 3; k)} for i, j, k ≤
2 within K. The set of intercalates will be denoted I = {I(0,0), I(0,1), I(0,2), I(1,0), I(1,1), I(1,2),
I(2,0), I2,1), I(2,2)}.

Lemma 1. All Latin squares of order n ≥2 contain critical sets.

Proof. Let L be a Latin square of order n ≥ 2. Removing the triple (i, j; k) from L will
generate a partial Latin square P in which the cell (i, j) is empty, but all other cells within P
are non-empty. Hence, P is a uniquely completable to the Latin square L and P ⊂ L.

The empty partial Latin square P′ of order n ≥ 2 is not uniquely completable to any
Latin square of order n.

Therefore, every Latin square L of order n contains a non-empty partial Latin square P
that is uniquely completable to L and a partial Latin square that is not uniquely completable
to L. Therefore, there exists a minimal partial Latin square P∗ that is uniquely completable
to L, such that every subset of P∗ is not uniquely completable to L. Hence, every Latin
square of order n ≥ 2 contains a critical set.

Corollary 1. For each Latin subsquare Q of order m ≥ 2 there exists a partial Latin square A such
that A is not uniquely completable to Q.

Proof. A Latin subsquare Q is a Latin square of order m within a Latin square of order n.
By Lemma 1, as Q has order m ≥ 2, it has a critical set and hence there will be some partial
Latin square A such that A is not uniquely completable to Q.

Lemma 2. Let Q be a Latin subsquare of order m ≥ 2 contained within a Latin square L and let A
be a partial Latin square that is not uniquely completable to the Latin subsquare Q. If a partial Latin
square P contains A and no other elements of Ent(Q), then P will not be uniquely completable to L.

Proof. By Corollary 1, every Latin subsquare Q of order m, where |m| ≥ 2, contains a
partial Latin square A, where A is not uniquely completable to Q. Note, when Q is an
intercalate, A is the empty partial Latin square. Let P denote a partial Latin square, such
that P ⊂ L. If a partial Latin square P contains A and no other triples in Ent(Q), then the
partial Latin square P will not force the entries of the Latin subsquare Q. As Q ⊂ L and
the triples of Q are not forced from the triples of P, then P is not uniquely completable to
L.

Although Lemma 2 does not imply that a partial Latin square P will always be
uniquely completable to a Latin square L if it contains a critical set of each Latin subsquare

47

Mathematics 2021, 9, 285

Q ∈ L, it does imply that if this condition is not met, then P will not be uniquely completable
to L.

To relate this to F-critical sets in the example in [6]; if the F-orbits for some partial Latin
square P do not intersect with the critical sets of each Latin subsquare within S(i,j), I(i,j) ∈ K,
then the partial Latin square P will not be an F-critical set of K. Example 3 details the more
specific implications of Lemma 2 to the example in [6].

Example 3. In [4], it was demonstrated that the critical sets of Latin squares of order 3 either
consist of two triples (i1, j1; k1) and (i2, j2; k2), where i1 �= i2, j1 �= j2 and k1 �= k2, or a critical set
of a Latin square of order 3 consists of a set of three triples such that each pair of triples in this set
share exactly one common ith, jth or kth component. The key observation here is that critical sets of
Latin squares of order 3 must contain entries in at least two distinct rows, two distinct columns and
the critical sets contain two sets of distinct symbols. By Lemma 2, a partial Latin square P is not
uniquely completable to the Latin square K if it does not contain a critical set of each Latin subsquare
in K. This implies that if a partial Latin square P does not contain an entry in at least two distinct
rows and columns of each order 3 Latin subsquare Si,j ∈ K, or if each of the Latin subsquare Si,j in
P does not contain at least two distinct symbols, then P will not be uniquely completable to K.

Furthermore, the Latin square K contains nine intercalates, each denoted by I(i,j) for i, j ≤ 2.
Since order 2 Latin squares have a critical set of size 1, if a partial Latin square does not contain at
least one entry in each intercalate I(i,j) ∈ K, then P will not be uniquely completable to K.

3. Interesting Observations about the Autotopisms θ1,θ2,θ3 and θ4 in the Example

Interesting Observations about the Autotopisms θ1,θ2,θ3 and θ4 in the Example in [6].
Each individual autotopism θ ⊆ Atop(L) for some Latin square L will act differently on
the triples of L. The actions of individual autotopisms on a Latin square L is important
in determining the structure of F-critical sets of L. It is therefore worth examining the
actions of the individual autotopisms θ1,θ2,θ3,θ4 ⊆ Atop(K), where K is the Latin square in
example [6], to determine the structure of each F-critical set associated with each subgroup
of autotopisms in the group Atop(K).

Example 4. The autotopisms θ1 and θ2 permute the elements of some Latin subsquare of order 3
Si ∈ S to two other triples within the same Latin subsquare S(i,j). Both θ1 and θ2 map each triple T
in some intercalate I(i,j) to some intercalate I(i′ ,j′), where I(i,j) �= I(i′ ,j′).

The autotopisms θ3 and θ4 permute the sets {0,3}, {1,4} and {2,5}. They map triples of an
intercalate I(i,j) to another triple within the same intercalate, and map triples in a particular Latin
subsquare S(i,j) of order three to some Latin subsquare S(i′ ,j′) of order three, where i �= i′ and j �= j′.

4. Discussion of Example

Ref [6]. Not all autotopisms listed in example [6] are members of the autotopism
group Atop(K). Further to this, there are some minor errors in the access levels listed in
Table 1 in Section 1. Lemma 2 and the observations about the autotopisms discussed in
Section 3, make it possible to modify to the example. Each amendment will be discussed in
detail within this section.

4.1. Discussion Regarding the Autotopisms θ1 and θ2

Discussion Regarding the Autotopisms θ1 and θ2 in [6]. The first two modifications are
changes to some of the autotopisms associated with the Latin square K in [6]. Two of the
autotopisms, θ1 and θ2, are not associated with the Latin square K. By definition, applying
an autotopism to a Latin square that it is associated with should generate another element
of that Latin square. However, applying the autotopisms θ1 and θ2 to any of the 11 chosen
shares from the set {T1,...,T11} does not generate another element of K. To demonstrate this,
θ1 and θ2 are applied to the share T1;

T1 = (0, 4; 4) =⇒ θ1(T1) = (1, 4; 3), θ2(T1) = (0, 5; 3)

48

Mathematics 2021, 9, 285

Observe, applying θ1 and θ2 to T1 does not generate elements of the original Latin
square, L. Hence, these autotopisms are not associated with Atop(K). It is believed that the
intended autotopisms for θ1 and θ2 should be;

θ1 = ((012)(345), (0)(1)(2)(3)(4)(5), (012)(345))
θ2 = ((0)(1)(2)(3)(4)(5), (012)(345), (012)(345))

From this point in the communication, when θ1 and θ2 are referred to, they refer to the
autotopisms θ1 and θ2 given above and not the autotopisms given in [6].

All subsequent suggested amendments focus on the access levels.

4.2. Discussion Regarding the Access Level for the Autotopisms in the Subgroup 〈θ4〉
Discussion Regarding the Access Level for the Autotopisms in the Subgroup 〈θ4〉

in [6]. The access level generated by the autotopism subgroup 〈θ4〉 was mis-recorded in [6].
According to the example in [6], combining the subgroup of Atop(K), 〈θ4〉, with all triples
in the set T\{T9} should generate a uniquely completable partial Latin square. However,
combining 〈θ4〉 with the stated triples generates the following F-orbits;

OrbF(T1) = OrbF((0, 4; 4)) = {(0, 4; 4), (0, 1; 1)}
OrbF(T2) = OrbF((1, 1; 2)) = {(1, 1; 2), (1, 4; 5)}
OrbF(T3) = OrbF((1, 5; 3)) = {(1, 5; 3), (1, 2; 0)}
OrbF(T4) = OrbF((2, 2; 1)) = {(2, 2; 1), (2, 5; 4)}
OrbF(T5) = OrbF((0, 4; 4)) = {(2, 4; 3), (2, 1; 0)}
OrbF(T6) = OrbF((3, 1; 4)) = {(3, 1; 4), (3, 4; 1)}
OrbF(T7) = OrbF((3, 1; 4)) = {(3, 2; 5), (3, 5; 2)}
OrbF(T8) = OrbF((3, 3; 0)) = {(3, 3; 0), (3, 0; 3)}
OrbF(T10) = OrbF((5, 3; 2)) = {(5, 3; 2), (5, 0; 5)}
OrbF(T11) = OrbF((5, 5; 1)) = {(5, 5; 1), (5, 2; 4)}

The union of these F-orbits gives the partial Latin square P1, where;

P1 =

∗ 1 ∗ ∗ 4 ∗
∗ 2 0 ∗ 5 3
∗ 0 1 ∗ 3 4
3 4 5 0 1 2
∗ ∗ ∗ ∗ ∗ ∗
5 ∗ 4 2 ∗ 1

This partial Latin square P1 is not uniquely completable as it only uniquely completes
to the partial Latin square P2, where;

P2 =

0 1 2 3 4 5
∗ 2 0 ∗ 5 3
2 0 1 5 3 4
3 4 5 0 1 2
∗ 5 3 ∗ 2 0
5 3 4 2 0 1

Since there are no entries in the intercalate I(1,0), by Lemma 2, P2 is not uniquely
completable to L. In order for the partial Latin square P1 to be uniquely completable to L,
the share T9 needs to be included within this access level so that there is an entry in the
intercalate I(1,0).

It is also worth noting that F-critical sets are supposed to be minimal. As T1 and T6 are
both members of the intercalate I(0,1) and similarly T4 and T11 both belong to the intercalate
I(2,2), this set is not minimal. By removing one element of each set {T1, T6} and {T4, T11},
the access level becomes an F-critical set comprising of nine triples from the set T and the

49

Mathematics 2021, 9, 285

autotopism θ4; giving ten individual shares in total. An example of a viable F-critical set is
to take the F-orbits of the triples {T1, T2, T3, T4, T5, T7, T8, T9, T10}, where F is the subgroup
of Atop(K) generated by the autotopism θ4.

4.3. Discussion Regarding the Access Level for the Autotopisms in the Subgroup 〈θ3, θ4〉
Discussion Regarding the Access Level for the Autotopisms in the Subgroup 〈θ3, θ4〉

in [6]. Access levels can also be generated by F-orbits, where F is a subgroup of the Atop(K)
generated by more than one autotopism. The first access level to be generated by a set
of multiple autotopisms, is the access level generated by the F-orbits of the subgroup of
autotopisms 〈θ3, θ4〉. This subgroup consists of the following non-trivial autotopisms;

θ3 = ((03)(14)(25), (03)(14)(25), (0)(1)(2)(3)(4)(5))
θ4 = ((0)(1)(2)(3)(4)(5), (03)(14)(25), (03)(14)(25))
θ3θ4 = ((03)(14)(25), (0)(1)(2)(3)(4)(5), (03)(14)(25))

The example in [6] (see Table 1 in Section 1) suggests that applying this subgroup
of Atop(K) to the set of triples {T2,T3,T4,T5,T6,T7,T8,T10} will generate an F-critical set.
However, when F is the subgroup of Atop(K) generated by 〈θ3, θ4〉, the F-orbits of the
set of triples {T2,T3,T4,T5,T6,T7,T8,T10} forms a partial Latin square that is not uniquely
completable, as the F-orbits do not contain an entry in the intercalate I(1,0). As above, if the
triple T9 is included within the set of triples for this access level, then the resultant partial
Latin square is uniquely completable to the Latin square K. However, adding T9 to this set
means that this access level consists of nine triples from the set T and both autotopisms θ3
and θ4. This gives a total of eleven shares. As previously shown, the F-orbits of the triples
{T2,T3,T4,T5,T6,T7,T8,T9,T10} under the subgroup of Atop(K), 〈θ4〉, form an F-critical set of
size 10. Hence, the autotopisms 〈θ3, θ4〉 will generate a uniquely F-completable set that
is not minimal, and therefore not an F-critical set. Therefore, the autotopisms θ3 and θ4
cannot be used in combination to generate an access level for this scheme.

4.4. Discussion Regarding the Access Level for for the Autotopisms in the Subgroup 〈θ2, θ3, θ4〉
Discussion Regarding the Access Level for for the Autotopisms in the Subgroup

〈θ2, θ3, θ4〉 in [6]. This access level uses the subgroup of Atop(K) generated by 〈θ2, θ3, θ4〉. As
θ2 is an autotopism based upon length 3 cycles and θ3 and θ4 are based upon length 2 cycles,
this subgroup of Atop(K) consists of eleven non-trivial autotopisms, these autotopisms are;

θ2 = ((0)(1)(2)(3)(4)(5), (012)(345), (012)(345))
θ2θ2 = ((0)(1)(2)(3)(4)(5), (021)(354), (021)(354))
θ3 = ((03)(14)(25), (03)(14)(25), (0)(1)(2)(3)(4)(5))
θ4 = ((0)(1)(2)(3)(4)(5), (03)(14)(25), (03)(14)(25))
θ2θ3 = ((03)(14)(25), (042315), (012)(345))
θ2θ2θ3 = ((03)(14)(25), (051324), (021)(354))
θ2θ4 = ((0)(1)(2)(3)(4)(5), (042315), (042315))
θ2θ2θ4 = ((0)(1)(2)(3)(4)(5), (051324), (051324))
θ3θ4 = ((03)(14)(25), (0)(1)(2)(3)(4)(5), (03)(14)(25))
θ2θ3θ4 = ((03)(14)(25), (012)(345), (042315))
θ2θ2θ3θ4 = ((03)(14)(25), (021)(354), (051324))

The example in [6] suggests that, when F is generated by 〈θ2, θ3, θ4〉, the union of
the F-orbits OrbF(T1) and OrbF(T2) should be uniquely F-completable to K. However,
combining these F-orbits generates the partial Latin square P3, where;

50

Mathematics 2021, 9, 285

P3 =

0 1 2 3 4 5
1 2 0 4 5 3
∗ ∗ ∗ ∗ ∗ ∗
3 4 5 0 1 2
4 5 3 1 2 0
∗ ∗ ∗ ∗ ∗ ∗

As the intercalates I(2,0), I(2,1) and I(2,2) are missing from P3, it is not uniquely com-
pletable under the autotopism θ2. A triple present in any one of these intercalates will gen-
erate an F-orbit that spans all three intercalates under the subgroup of Atop(K) generated
by 〈θ2,θ3,θ4〉. Hence, to make this an access level, one triple from the set {T4, T5, T10, T11}
should be included in the set of triples.

There are multiple F-critical sets that may be formed using this subgroup of Atop(K).
As discussed in Section 3, each autotopism within the autotopism group Atop(K) has
a unique action. When multiple autotopisms are combined in an F-critical set, each
autotopism generated by the union of any subgroup of autotopisms will also take on
a unique action. Observe that in combination, the subgroup of Atop(K) generated by
autotopisms 〈θ3, θ4〉 takes a triple Ti ∈ I(i,j) and maps it to every other triple within the same
intercalate. The autotopism subgroup generated by 〈θ2〉 maps each Ti′ = (i′, j′; k′) ∈ S(i,j)
to all other triples in the i′th row of the Latin subsquare S(i,j). This means that the combined
action of the autotopism subgroup generated by 〈θ2, θ3, θ4〉 takes a triple Ti′ ∈ K and maps
Ti′ = (i′, j′; k′) to all triples in i′th and i′ + 3 mod 6 row of K. Hence, any F-critical set under
the subgroup of autotopisms 〈θ2, θ3, θ4〉 must contain 3 triples, with one triple in either the
0th or 3rd row, one triple in either the 1st or 4th row and finally one triple in either the 2nd
or 5th row. This ensures that the F-orbits contain a critical set of each intercalate I(i,j) and
each Latin subsquare S(i,j).

Therefore, exactly one entry must be chosen from each of the following three sets;
{T1,T6,T7,T8}, {T2,T3,T9} and {T4,T5,T10,T11}, as each individual set contains all entries of the
ith and i + 3th rows, where i ≤ 2.

4.5. Discussion Regarding the Access Level for for the Autotopisms in the Subgroup 〈θ1, θ2, θ4〉
Discussion Regarding the Access Level for for the Autotopisms in the Subgroup

〈θ1, θ2, θ4〉 in [6]. This access level uses the subgroup of Atop(K) generated by 〈θ1, θ2, θ4〉.
As θ1 and θ2 are both autotopisms based upon length 3 cycles, and θ4 is an autotopism based
upon length 2 cycle; this subgroup of Atop(K) will consist of 17 non-trivial autotopisms.
Example 4 states that autotopism θ1 maps a triple Ti ∈ S(i,j), where Ti = (i, j; k) to the
other two triples in the ith row of the Latin subsquare S(i,j) ∈ S, while the autotopism θ2
maps each triple Ti ∈ S(i,j) to the other two triples in the jth column of the Latin subsquare
S(i,j) ∈ S and the autotopism θ4 maps a triple Ti ∈ I(i,j), where I(i,j) ∈ I, to the triple
I(i,j+3)mod 6. This means that the subgroup of autotopisms generated by θ1, θ2 and θ4 will
map a triple Ti ∈ S(i,j), for S(i,j) ∈ S to all other triples in the Latin subsquare S(i,j), as well
as all triples in the Latin subsquare S(i,j+3) mod 6 ∈ S

The access level in the example in [6] suggests that this subgroup of Atop(K) should
be combined with the triples {T1,T2} and from here it should be possible to generate the
Latin square L. However, when F is generated by 〈θ1, θ2, θ4〉, OrbF(T1) ∪ OrbF(T2) is the
partial Latin square P4, where:

P4 =

0 1 2 3 4 5
1 2 0 4 5 3
2 0 1 5 3 4
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

51

Mathematics 2021, 9, 285

The entries of the Latin subsquares S(3,0) and S(3,3) are missing from the partial
Latin square P4, hence by Lemma 2, P4 is not uniquely completable to K. To amend this
access level, either T1 or T2 should be removed and replaced with a triple from the set
{T6, T7, T8, T9, T10, T11}.

There are multiple pairs of F-orbits that constitute an F-critical set when F is the
subgroup of Atop(K) generated by 〈θ1, θ2, θ4〉. As an F-orbit of a triple Ti under these
autotopisms will span two adjacent Latin subsquares S(i,j) and S(i,j+3)mod 6, when Ti ∈
S(i,j) each F-orbit contains a critical set of each intercalate I(i,j) ∈ I. Therefore, a second
F-orbit is only required to ensure that the union of F-orbits contains a critical set of the
Latin subsquares S(i+3,j)mod 6 and S(i+3,j+3)mod 6. Hence, any two triples Ti, Tj ∈ T,
where Ti �= Tj will generate an F-critical set under the autotopisms θ1,θ2 and θ4 providing
that if Ti is a triple in some Latin subsquare S(i,j) ∈ S, then the triple Tj is either in the Latin
subsquare S(i+3,j) or the Latin subsquare S(i+3,j+3). All triples in the set {T1, T2, T3, T4, T5}
belong either to the Latin subsquare S(0,0) or the Latin subsquare S(0,3), while triples
in the set {T6, T7, T8, T9, T10, T11} belong either to the Latin subsquare S(3,0) or the Latin
subsquare S(3,3). Therefore, if Ti ∈ {T1, T2, T3, T4, T5} and Tj ∈ {T6, T7, T8, T9, T10, T11} then
the union of the F-orbits OrbF(Ti) ∪ OrbF(Tj) will be an F-critical set, when F is generated
by 〈θ1, θ2, θ4〉.

4.6. Discussion Regarding the Access Level for the Autotopisms in the Subgroup 〈θ1, θ3〉
Discussion Regarding the Access Level for the Autotopisms in the Subgroup 〈θ1, θ3〉

in [6]. Whereas other access levels given in the example in [6] contain too little information,
the access level specified for the subgroup of Atop(K) generated by 〈θ1, θ3〉 gives too
much information.

The subgroup 〈θ1, θ3〉 consists of 5 non-trivial autotopisms, these are autotopisms
denoted by; θ1, θ1θ1, θ3, θ1θ3 and θ1θ1θ3. The example suggests that the F-orbits, where F is
generated 〈θ1, θ3〉, for the triples {T2,T3,T4,T6,T9} should be an F-critical set. However, the
union F-orbits of these triples is the partial Latin square P5, where;

P5 =

∗ 1 2 3 4 5
∗ 2 0 4 5 3
∗ 0 1 5 3 4
3 4 5 ∗ 1 2
4 5 3 ∗ 2 0
5 3 4 ∗ 0 1

Observe that P5 is uniquely completable to L, however, access levels are supposed to
provide the minimal amount of information required to generate the original key. Note
that if either one of the shares T3 or T6 were to be removed from this access level, then one
is still able to generate a uniquely F-completable partial Latin square, hence the specified
set of triples is not an F-critical set when F is generated by 〈θ1, θ3〉. To amend this, each
access level should be defined in such a way that only one triple from the set {T3, T6} is
included.

4.7. Summary of Findings

The above subsections discuss amendments to particular errors in the example in [6].
Following this, it is possible to generalise sets of triples of T that can be combined with

each possible subgroup of the autotopism group Atop(K) generated by some collection
of the autotopisms θ1, θ2, θ3 and θ4. Using the results discussed in Sections 2 and 3, it is
possible to generalise combinations of triples that form F-critical sets under the subgroups
of Atop(K) defined by the autotopisms θ1, θ2, θ3 and θ4. Table A1 in Appendix A details
the combinations of triples that will generate a F-critical set when combined with the
autotopisms stated in the same row of the table. Reasoning behind the constructions of
certain F-critical sets in Table A1 in Appendix A is outlined in Section 4. Table A2 in

52

Mathematics 2021, 9, 285

Appendix A provides an example of an F-critical set for each subgroup of autotopisms
generated by elements of the set {θ1, θ2, θ3, θ4}.

5. Conclusions

In this correspondence, minor errors in the original definitions of the F-critical sets
detailed within the paper [6] are amended. The importance of Lemma 2 in determining
both critical sets and F-critical sets within a Latin square is highlighted.

Lemma 2 states that if a partial Latin square P does not contain a critical set for each
Latin subsquare Q ∈ L, where L is a Latin square, P is not be uniquely completable to
L. Further, let a partial Latin square P ⊂ L, where L is a Latin square and let F denote a
subgroup of the autotopism group of L. If the F-orbits of a partial Latin square P, do not
contain a critical set for each Latin subsquare Q ∈ L, then the combination of these triples
and autotopisms do not form an F-critical set. Lemma 2 can therefore be used to eliminate
several partial Latin squares that are not F-critical sets of a Latin square L.

By considering F-orbits that satisfy Lemma 2, F-critical sets of a Latin square K can be
generated, where:

K =

0 1 2 3 4 5
1 2 0 4 5 3
2 0 1 5 3 4
3 4 5 0 1 2
4 5 3 1 2 0
5 3 4 2 0 1

The F-critical sets detailed within the correspondence use subgroups of the autotopism
group of K to generate all possible combinations of the autotopisms θ1, θ2, θ3 and θ4, where;

θ1 = ((012)(345), (0)(1)(2)(3)(4)(5), (012)(345))
θ2 = ((0)(1)(2)(3)(4)(5), (012)(345), (012)(345))
θ3 = ((03)(14)(25), (03)(14)(25), (0)(1)(2)(3)(4)(5))
θ4 = ((0)(1)(2)(3)(4)(5), (03)(14)(25), (03)(14)(25))

The F-critical sets generated by the F-orbits of the triples (0,4;4),(1,1;2),(1,5;3),(2,2;1),
(2,4;3),(3,1;4),(3,2;5), (3,3;0),(4,0;4),(5,3;2),(5,5;1) ⊆ Ent(K) are listed in Table A1 of
Appendix A. For comparison, the suggested F-critical sets for the example in [6] are
listed in Table 1 in Section 1.

If a partial Latin square P satisfies Lemma 2, this does not guarantee that P is uniquely
completable to a Latin square L; however, Lemma 2 does provide a necessary condition,
that if not met, means a partial Latin square P is not uniquely completable. Lemma 2 can
then be applied to all partial Latin squares P of order n. In other words, by looking at all
Latin subsquares of order m within a Latin square L of order n, where m < n, one can
ascertain the critical sets of each Latin subsquare Q within L. Each partial Latin square P
that is uniquely completable to L then contains some combination of critical sets of Latin
subsquares of L, hence by determining the Latin subsquares of L, the problem of generating
the critical sets of L is reduced in size. This approach may similarly be applied to θ-critical
sets or F-critical sets.

Further work is needed to determine necessary conditions for ensuring that a partial
Latin square P is a critical set of a Latin square L, but by the application of Lemma 2, it may
be possible for larger Latin squares of order n to be analysed.

Author Contributions: This short communication was written as part of an MMath research project
at the University of South Wales undertaken by L.M.J. and supervised by S.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

53

Mathematics 2021, 9, 285

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank Raul Falcón for his advice about the original example,
as well as his help with proof reading.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1 details the newly defined access levels, generated by results in this commu-
nication. Note that m the number of individual shares in each access level.

Observe, that the access level defined by the autotopisms 〈θ3, θ4〉 has been removed
from Table A1, as it is shown that these autotopisms cannot form an F-critical set.

Table A2 gives specific examples of F-critical sets for the Latin square K under the
autotopisms {θ1, θ2, θ3, θ4}. Each F-critical set is constructed in accordance with the specifi-
cations of Table A1.

Table A1. Redefined access levels based upon results of this communication.

m Permutations Triples of P

11 - T

10 〈θ3〉 T exluding one entry from each of the sets {T1,T6} and {T4,T11}

10 〈θ4〉 T exluding one entry from each of the sets {T1,T6} and {T4,T11}

9 〈θ1〉 T excluding one entry from each of the sets {T1,T5}, {T8,T10} and
{T6,T7,T9}

9 〈θ2〉 T excluding one entry from each of the sets {T6,T7}, {T10,T11} and
{T1,T3,T5}

7 〈θ2, θ4〉 Exactly one entry from five out of the following six sets;
{T1},{T2,T3},{T4,T5}, {T6,T7,T8},{T9},{T10,T11}

6 〈θ1, θ3〉 To ensure that two distinct columns of S(0,3) and S(3,0) contain two entries, one triple should
be selected from two of the following three sets {T1, T5, T6}, {T3, T7}, {T9}, to

ensure two distinct columns of S(0,0) and S(3,3) contain entries, two of the three sets;
{T2}, {T4, T11}, {T8, T10} should be selected. To ensure each intercalate contains
at least one entry, at least one element from the following sets should be chosen;

{T1, T2, T5, T6}, {T3, T4, T7, T11}, {T8, T9, T10}
6 〈θ1, θ2〉 Exactly one entry should be chosen from each of the sets {T1,T3,T5}, {T2,T4},

{T6,T7,T9} and {T8,T10,T11}.

6 〈θ1, θ4〉 To ensure that two distinct columns of S(0,0) and S(0,3) contain entries, one triple should
be selected from both of the following sets {T1, T2, T5}, {T3, T4}, to ensure two

distinct columns of S(0,0) and S(3,3) contain entries, one entry from two of the sets;
{T6}, {T7, T11}, {T8, T9, T10} should be selected. To ensure each intercalate contains

at least one entry, at least one element from the following sets should be chosen;
{T1, T2, T5, T6}, {T3, T4, T7, T11}, {T8, T9, T10}

6 〈θ2, θ3〉 To ensure that two distinct columns of S(0,3) and S(3,0) contain entries, one triple should
be selected from two of the following three sets {T1,T6,T7} {T3,T9}, {T5}, to

ensure two distinct columns of S(0,0) and S(3,3) contain entries, two of the three sets;
{T2} {T4,T10,T11}, {T8} should be selected. To ensure each intercalate contains

at least one entry, at least one element from the following sets should be chosen;
{T1, T6, T7, T8}, {T2, T3, T9},{T4, T5, T10, T11}

6 〈θ1,θ3,θ4〉 One entry from each of the sets {T1,T2,T5,T6}, {T3,T4,T7,T11} and
{T8,T9,T10}

6 〈θ2,θ3,θ4〉 One entry from each of the sets {T1,T6,T7,T8}, {T2,T3,T9} and {T4,T5,T10,T11}

5 〈θ1, θ2, θ3〉 One entry from each of the sets {T1,T3,T5,T6,T7,T9} and {T2,T4,T8,T10,T11}

5 〈θ1, θ2, θ4〉 One entry from each of the sets {T1,T2,T3,T4,T5} and {T6,T7,T8,T9,T10,T11}

5 〈θ1, θ2, θ3, θ4〉 One share of T

54

Mathematics 2021, 9, 285

Table A2. Examples of access levels as outlined in Table A1.

m Permutations Triples of P m Permutations Triples of P

11 - T 6 〈θ1, θ4〉 {T1, T4, T6, T10}
10 〈θ3〉 T\{T1, T4} 6 〈θ2, θ3〉 {T1, T2, T9, T10}
10 〈θ4〉 T\{T6, T11} 6 〈θ1, θ3, θ4〉 {T1, T3, T10}
9 〈θ1〉 T\{T5, T7, T10} 6 〈θ2, θ3, θ4〉 {T1, T2, T4}
9 〈θ2〉 T\{T5, T6, T11} 5 〈θ1, θ2, θ3〉 {T1, T2}
7 〈θ2, θ4〉 {T1, T2, T4, T6, T9} 5 〈θ1, θ2, θ4〉 {T1, T6}
6 〈θ1, θ3〉 {T1, T3, T4, T8} 5 〈θ1, θ2, θ3, θ4〉 {T7}
6 〈θ1, θ2〉 {T1, T2, T6, T8}

References

1. Laywine, C.F.; Mullen, G.L. Discrete Mathematics Using Latin Squares; Wiley-Interscience: New York, NY, USA, 1998.
2. Dénes, J.; Keedwell, A.D. Latin Squares and Their Applications; English Universities Press Limited Ltd.: London, UK, 1974.
3. Burton, B.A. Completion of Partial Latin Squares. Ph.D. Thesis, University of Queensland, Brisbane, Australia, 1996.
4. Falcón, R.M.; Johnson, L.; Perkins, S. A census of critical sets based on non-trivial autotopisms of Latin squares of order up to five.

AIMS Math. 2020, 6, 261–295. [CrossRef]
5. Olsson, C. Discreet Discrete Mathematics: Secret Communication Using Latin Squares and Quasigroups. Independent Bachelor

Thesis, Umeå University, Umeå, Sweden, 2017.
6. Falcón, R. Latin squares associated to principal autotopisms of long cycles. Applications in cryptography. In Proceedings of

Transgressive Computing 2006: A Conference in Honor of Jean Della Dora; Universidad de Granada: Granada, Spain, 2006; pp. 213–230.
7. Piper, F.; Murphy, S. Cryptography A Very Short Introduction; Oxford University Press Inc.: New York, NY, USA, 2002.
8. Cooper, J.; Donovan, D.; Seberry, J. Secret Sharing Schemes Arising From Latin Squares. Bull. ICA 1994, 12, 33–43.
9. Wanless, I.M. Latin squares with one subsquare. J. Comb. Des. 2001, 9, 128–146. [CrossRef]

55

mathematics

Article

Self-Orthogonal Codes Constructed from Posets
and Their Applications in Quantum Communication

Yansheng Wu 1,2 and Yoonjin Lee 2,*

1 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
wysasd@163.com

2 Department of Mathematics, Ewha Womans University, Seoul 03760, Korea
* Correspondence: yoonjinl@ewha.ac.kr

Received: 3 August 2020; Accepted: 31 August 2020 ; Published: 3 September 2020

Abstract: It is an important issue to search for self-orthogonal codes for construction of quantum
codes by CSS construction (Calderbank-Sho-Steane codes); in quantum error correction, CSS codes are a
special type of stabilizer codes constructed from classical codes with some special properties, and the
CSS construction of quantum codes is a well-known construction. First, we employ hierarchical posets
with two levels for construction of binary linear codes. Second, we find some necessary and sufficient
conditions for these linear codes constructed using posets to be self-orthogonal, and we use these
self-orthogonal codes for obtaining binary quantum codes. Finally, we obtain four infinite families of
binary quantum codes for which the minimum distances are three or four by CSS construction, which
include binary quantum Hamming codes with length n ≥ 7. We also find some (almost) “optimal”
quantum codes according to the current database of Grassl. Furthermore, we explicitly determine
the weight distributions of these linear codes constructed using posets, and we present two infinite
families of some optimal binary linear codes with respect to the Griesmer bound and a class of binary
Hamming codes.

Keywords: binary linear code; poset; weight distribution; self-orthogonal code; quantum code

MSC: 94B05; 81P70

1. Introduction

Quantum error-correcting codes have attracted wide attention in recent years due to their
applications in quantum communications and quantum computations [1–3]. In quantum error
correction, CSS codes (Calderbank-Sho-Steane) are a special type of stabilizer codes constructed from
classical codes with some special properties, and the CSS construction of quantum codes is a well-known
construction. As we can see from the CSS construction of quantum codes [1,3], self-orthogonal codes
have been used for construction of quantum codes. Moreover, for construction of quantum codes,
there have been some developments on non-stabilizer codes [4] and nonadditive quantum codes such
as permutation-invariant quantum codes [5–8]; permutation-invariant quantum codes are constructed
using the generator function method [5,6].

Recently, some optimal and minimal binary linear codes were constructed using simplicial
complexes by Hyun et al. [9,10]. Then, Wu et al. [11,12] applied simplicial complexes to construct
few-weight linear codes over Fp + uFp with u2 = 0. Afterwards, the construction method was
extended using arbitrary posets [13], and they presented some optimal and minimal binary linear
codes not satisfying the condition of Ashikhmin–Barg [14]. Most recently, Wu and Lee [15] first used
the difference of simplicial complexes for construction of binary linear complementary dual codes and
binary self-orthogonal codes.

Mathematics 2020, 8, 1495; doi:10.3390/math8091495 www.mdpi.com/journal/mathematics

57

Mathematics 2020, 8, 1495

Note that, especially, anti-chains correspond to simplicial complexes. Inspired by the works
mentioned as above, we focus on constructing binary self-orthogonal codes with new parameters and
quantum codes using self-orthogonal codes. The main contributions of our paper are the following:

(1) We employ hierarchical posets with two levels for generating binary linear codes, and we
explicitly determine the weight distributions of these codes (Theorem 1).

(2) We present some optimal binary linear codes (Corollary 1), and we find some necessary
and sufficient conditions for the binary linear codes constructed from posets to be self-orthogonal
(Theorem 3).

(3) We obtain four infinite families of binary quantum codes for which the minimum distances are
three or four; this is achieved by construction of binary self-orthogonal codes (Theorem 4). We also
find some (almost) optimal quantum codes; their optimality is based on the current database of Grassl.

(4) Furthermore, we obtain infinite families of binary quantum codes using these self-orthogonal
codes, which include all binary quantum Hamming codes with length n ≥ 7; some binary quantum
codes with minimum distance three or four are obtained by using Theorem 4, and we confirm the
optimality of the codes in the tables according to the database of Grassl [16].

As final remarks, we point out that all binary quantum Hamming codes for which the length
is n ≥ 7 (including the Steane code) are special cases of an infinite family of the binary quantum
Hamming codes, which is one of the four infinite families of quantum codes in this paper (See Remark 2
for more details). Furthermore, in [17,18], the authors constructed many interesting binary quantum
codes with a minimum distance of three or four. There are significant differences between our results
and the results in [17,18]; in Remark 4, we compare our results with the results in [17,18].

The rest of this paper is organized as follows. In Section 2, we introduce some basic concepts
and notations on hierarchical posets with two levels and the CSS construction of quantum codes.
In Section 3, we determine the weight distributions of binary linear codes associated with order ideals
in hierarchical posets with two levels, and we also discuss the minimum distances of their dual codes
and find some optimal binary linear codes. In Section 4, we obtain some binary self-orthogonal codes,
and we find four infinite families of binary quantum codes and some (almost) optimal binary quantum
codes. Finally, we finish this paper with some remarks in Section 4 and a conclusion in Section 5.

2. Preliminaries

Let F2 be the finite field of order two. For positive integers n, k, and d, an [n, k, d] linear code C
over F2 is just a k-dimensional subspace of Fn

2 with the minimum Hamming distance d. The number of
codewords in a linear code C with Hamming weight i is denoted by Ai. Then, the weight enumerator
of the code C is defined by 1 + A1z + A2z2 + · · ·+ Anzn. The sequence (1, A1, A2, . . . , An) is called
the weight distribution of the linear code C. We say that a code C is t-weight if the number of nonzero
Ais in the sequence (A1, A2, . . . , An) is equal to t. We say that a linear code is distance-optimal if it
has the highest minimum distance with a prescribed length and dimension. An [n, k, d] linear code is
called almost optimal if the code [n, k, d + 1] is optimal [19] (Section 2). For an [n, k, d] binary linear code,
the Griesmer bound (see [20]) could be stated as follows:

n ≥
k−1

∑
i=0

⌈
d
2i

⌉
,

where �x� is the ceiling function.
For a vector v ∈ Fn

2 , the support supp(v) of v is defined by the set of nonzero coordinate positions.
The Hamming weight wt(v) of v ∈ Fn

2 is defined by the cardinality of supp(v). Let [n] = {1, . . . , n}
and 2[n] denote the power set of [n]. There is a bijection between Fn

2 and 2[n], defined by v �→ supp(v).
In this paper, we always identify a vector in Fn

2 with its support. For two sets A and B, the cardinality
of A is denoted by |A| and the set {x : x ∈ A and x /∈ B} is denoted by A\B.

58

Mathematics 2020, 8, 1495

2.1. Generic Construction of Linear Codes

Let D be a subset of F∗
q , where q is a power of a prime number p. A linear code CD of length |D|

over the finite field Fp is defined by

CD = {cD(β) = (Tr(βα))α∈D : β ∈ Fq},

where Tr is the trace function from Fq to Fp. The code CD is called a trace code over Fp, and the set D is
called the defining set of CD. This generic construction was first introduced by Ding et al. [21,22].

Zhou et al. [23] reconsidered the generic construction of linear codes as follows. Let D =

{g1, . . . , gn} ⊆ Fm
p . We give a linear code CD of length n over Fp as follows:

CD = {cu = (u · g1, u · g2, . . . , u · gn) : u ∈ F
m
p }, (1)

where x · y denotes the Euclidean inner product of x = (x1, . . . , xm) and y = (y1, . . . , ym) in Fm
p .

From the defining set D, we have the following m × n matrix:

G = [g1
Tg2

T · · · gn
T], (2)

where T denotes the transpose.
Let C be an [n, k] linear code over Fp. Then, the dual C⊥ of the code C is defined by C⊥ = {w ∈

Fn
p : w · c = 0 for all c ∈ C}. If C ⊆ C⊥, then C is called a self-orthogonal code. If C⊥ ⊆ C, then C is

called a dual-containing code.
There is a simple characterization of those linear codes defined in Equation (1) in terms of their

self-orthogonality as follows:

Lemma 1 ([23] (Corollary 16)). Let CD be the linear code in Equation (1). Then, CD is self-orthogonal if and
only if GGT = 0, where the matrix G is given in Equation (2).

2.2. Generating Functions and Hierarchical Posets with Two Levels

A set P = ([n],�) is called a partially ordered set (abbreviated as a poset) if there is a partial order
relation on [n]: for all i, j, k ∈ [n], we have that (i) i � i; (ii) i � j and j � i imply i = j; and (iii) i � j
and j � k imply i � k.

Let P = ([n],�) be a poset. An order ideal I in P is exactly a nonempty subset and if j ∈ I and i � j
imply i ∈ I. For a given subset S of P, 〈S〉 denotes the smallest order ideal of P containing S. For an
order ideal I of P, the set of order ideals of P which is contained in I is denoted by I(P).

Let X be a collection of 2[n]. Chang and Hyun [9] defined the generating function

HX(x1, x2 . . . , xn) = ∑
u∈X

n

∏
i=1

xui
i ∈ Z[x1, x2, . . . , xn],

where u = (u1, u2, . . . , un) ∈ Fn
2 and where Z is the ring of integers.

Example 1. Let X = {(1, 0, 0), (1, 1, 0), (0, 0, 1)} be a subset of F3
2. Then, HX(x1, x2, x3) = x1 + x1x2 + x3.

Let m and n be positive integers with m ≤ n. In [13], H(m, n) = ([n],�) is a hierarchical
poset with two levels if [n] is the disjoint union of two incomparable subsets U = {1, . . . , m} and
V = {m + 1, . . . , n} and i ≺ j whenever i ∈ U and j ∈ V. Its Hasse diagram is given in Figure 1.
H(m, m) is considered an anti-chain.

Lemma 2 ([13]). Every order ideal of H(m, n) can be expressed by A ∪ B, where A ⊆ [m] and B ⊆ [n] \ [m]

and where one of the following holds: (i) B = ∅ or (ii) B �= ∅ and A = [m].

59

Mathematics 2020, 8, 1495

Lemma 3 ([13]). Let I = A ∪ B be an order ideal of P = H(m, n), where A ⊆ [m] and B ⊆ [n] \ [m].
(1) If B = ∅, then

HI(P)(x1, x2 . . . , xn) = ∑
u∈I(P)

n

∏
i=1

xui
i = ∏

i∈A
(1 + xi).

In particular, we have that |I(P)| = 2|A|.
(2) If B �= ∅, then

HI(P)(x1, x2 . . . , xn) = ∏
i∈[m]

(1 + xi) + ∏
i∈[m]

xi(∏
j∈B

(1 + xj)− 1).

In particular, we have that |I(P)| = 2m + 2|B| − 1.

m + 1 m + 2 n − 1 n

1 2 m − 1 m

Figure 1. H(m, n).

2.3. Quantum Codes and CSS Construction

A q-ary quantum code Q with cardinality K and length n is exactly a K-dimensional subspace of
the qn-dimensional Hilbert space (Cq)⊗n ∼= Cqn

. Let k = logq(K). In the following, we always use the

notation [[n, k, d]]q to denote a q-ary quantum code which has length n, cardinality qk, and minimum
distance d. For a given [[n, k, d]]q quantum code, it can detect any d − 1 quantum errors and can correct
any � d−1

2 � quantum errors. In the research of quantum coding theory, one of the main subjects is to
construct quantum codes with the best possible minimum distance.

In recent years, there has been active research done on construction of quantum codes using
classical codes; for instance, refer to [24–40]. Many permutation-invariant quantum codes have been
constructed from generating functions [5,6] and from the null-space of matrices [7].

An important result on constructing quantum error-correcting codes via classical linear codes over
finite fields is presented by Robert Calderbank, Peter Shor, and Andrew Steane, which is well-known
as the CSS construction. The construction can be stated as follows.

Lemma 4 ([3], CSS Construction). Let C1 and C2 be [n, k1, d1] and [n, k2, d2] q-ary linear codes, respectively,
with C2 ⊆ C1. Furthermore, let d = min{d1, d2}. Then, there exists a quantum error-correcting code with
parameters [[n, k1 + k2 − n, d]]q. Moreover, if C⊥

1 ⊆ C1, then there exists a quantum error-correcting code with
parameters [[n, 2k1 − n, d1]]q.

3. Weight Distributions of Binary Linear Codes

In this section, we determine the weight distribution of the code in Equation (1), which is involved
with hierarchical posets of two levels.

60

Mathematics 2020, 8, 1495

Assume that P is a hierarchical poset H(m, n) with two levels (which was introduced in Section 2)
and D = (I1(P)) \ (I2(P)), where I1 and I2 are two distinct order ideals of P. Recall that D can be
viewed as a subset of Fn

2 . We define a binary linear code associated with D as follows:

CD = {cD,u = (u · x)x∈D : u ∈ F
n
2}. (3)

Then, the length of the code CD is |D| and its dimension is at most n. The Hamming weight of the
codeword cD,u of CD is given by

wt(cD,u) = |D| − 1
2 ∑

y∈F2

∑
x∈D

(−1)(u·x)y =
|D|
2

− 1
2 ∑

x∈D
(−1)(u·x)

=
|D|
2

− 1
2 ∑

x∈(I1(P))\(I2(P))

(−1)u1x1(−1)u2x2 · · · (−1)unxn

=
|D|
2

− 1
2
HI1(P)

((−1)u1 , . . . , (−1)un) +
1
2
HI2(P)

((−1)u1 , . . . , (−1)un). (4)

In general, it is hard to compute the value in Equation (4). However, when both I1 and I2 are
generated by a single element, we obtain the following theorem.

Theorem 1. Let H(m, n) be a hierarchical poset with two levels. Let I1 = A1 ∪ B1 and I2 = A2 ∪ B2 be
two distinct order ideals of H(m, n), where Ai ⊆ [m], Bi ⊆ [n] \ [m], i = 1, 2, and I2 ⊂ I1. Let D =

(I1(P)) \ (I2(P)).
(1) If B1 = ∅, then the code CD has parameters [2|A1| − 2|A2|, |A1|] and its weight distribution is given

in Table 1.

Table 1. Weight distribution of the code in Theorem 1 (1).

Weight Frequency

0 1
2|A1|−1 2|A1|−|A2| − 1

2|A1|−1 − 2|A2|−1 2|A1| − 2|A1|−|A2|

(2) If B1 �= ∅ and B2 = ∅, then we have the following two subcases:
(2a) If |A2| = m, then the code CD has parameters [2|B1| − 1, 1 + |B1|, 2|B1|−1 − 1] and its weight

distribution is given in Table 2.

Table 2. Weight distribution of the code in Theorem 1 (2a).

Weight Frequency

0 1
2|B1|−1 2|B1| − 1

2|B1| − 1 1
2|B1|−1 − 1 2|B1| − 1

(2b) If |A2| < m, then the code CD has parameters [2m + 2|B1| − 2|A2| − 1, m + |B1|] and its weight
distribution is given in Table 3.

61

Mathematics 2020, 8, 1495

Table 3. Weight distribution of the code in Theorem 1 (2b).

Weight Frequency

0 1
2|B1|−1 2|B1| − 1

2m−1 − 1 + 2|B1| 2m−1−|A2|
2m−1 − 1 + 2|B1| − 2|A2|−1 2m−1 − 2m−1−|A2|

2m−1 − 1 + 2|B1|−1 (2|B1| − 1)2m−|A2|−1

2m−1 − 1 + 2|B1|−1 − 2|A2|−1 (2|B1| − 1)(2m−1 − 2m−1−|A2|)
2m−1 2m−|A2|−1 − 1

2m−1 − 2|A2|−1 2m−1 − 2m−1−|A2|
2m−1 + 2|B1|−1 (2|B1| − 1)(2m−1−|A2| − 1)

2m−1 + 2|B1|−1 − 2|A2|−1 (2|B1| − 1)(2m−1 − 2m−1−|A2|)

(3) If B1 �= ∅ and B2 �= ∅, then the code CD has length 2|B1| − 2|B2| and its weight distribution is given
in Table 4.

Table 4. Weight distribution of the code in Theorem 1 (3).

Weight Frequency

0 1
2|B1|−1 2|B1|−|B2| − 1

2|B1| − 2|B2| 1
2|B1|−1 − 2|B2| 2|B1|−|B2| − 1

2|B1|−1 − 2|B2|−1 2|B1|+1 − 2|B1|+1−|B2|

Proof. Let P = H(m, n). Recall that, for X, a subset of Fn
2 , there is a Boolean function in

n-variable, denoted by χ(u|X), and χ(u|X) = 1 if and only if u
⋂

X = ∅. We also recall that, for
u = (u1, u2, . . . , un) ∈ Fn

2 , we can write u = (v, w), where v = (u1, . . . , um) and w = (um+1, . . . , un).
(1) Let B = ∅. By Lemma 2, the length of the code CD is 2|A1| − 2|A2| and

HI1(P)
((−1)u1 , (−1)u2 , . . . , (−1)un)

= ∏
i∈A1

(1 + (−1)ui) = ∏
i∈A1

(2 − 2ui) = 2|A1| ∏
i∈A1

(1 − ui) = 2|A1|χ(v|A1). (5)

By Equation (4),
wt(cD,u) = 2|A1|−1(1 − χ(v|A1))− 2|A2|−1(1 − χ(v|A2)).

(2) Let B1 �= ∅ and B2 = ∅. By Lemma 2, the length of CD is 2m + 2|B1| − 2|A2| − 1 and

HI1(P)
((−1)u1 , . . . , (−1)un)

=
m

∏
i=1

(1 + (−1)ui) + (−1)u1+···+um(∏
j∈B1

(1 + (−1)uj)− 1)

= 2mχ(v|[m]) + (−1)wt(v)(2|B1|χ(w|B1)− 1). (6)

By Equations (4)–(6), we have

wt(cD,u) =
|D|
2

− 1
2
HI1(P)

((−1)u1 , . . . , (−1)un) +
1
2
HI2(P)

((−1)u1 , . . . , (−1)un)

= 2m−1(1 − χ(v|[m])) + 2|B1|−1(1 − (−1)wt(v)χ(w|B1))

− 2|A2|−1(1 − χ(v|A2))− 1
2
(1 − (−1)wt(v)).

62

Mathematics 2020, 8, 1495

(a) If |A2| = m, then

wt(cD,u) = 2|B1|−1(1 − (−1)wt(v)χ(w|B1))− 1
2
(1 − (−1)wt(v)).

We divide the proof into three parts as follows:
(i) If wt(v) ≡ 0 (mod 2), then wt(cD,u) = 2|B1|−1(1 − χ(w|B1)).
(ii) If wt(v) ≡ 1 (mod 2), then wt(cD,u) = 2|B1|−1(1 + χ(w|B1))− 1.
(b) If |A2| < m, then we divide the proof into three parts as follows:
(i) If v = 0, then χ(v|[m]) = χ(v|A2) = 1 and wt(cD,u) = 2|B1|−1(1 − χ(w|B1)).
(ii) If v �= 0 and wt(v) are odd, then χ(v|[m]) = 0 and

wt(cD,u) = 2m−1 − 1 + 2|B1|−1(1 + χ(w|B1))− 2|A2|−1(1 − χ(v|A2)).

(iii) If v �= 0 and wt(v) are even, then χ(v|[m]) = 0 and

wt(cD,u) = 2m−1 + 2|B1|−1(1 − χ(w|B1))− 2|A2|−1(1 − χ(v|A2)).

(3) Let B1 �= ∅ and B2 �= ∅. By Lemma 2, the length of CD is 2|B1| − 2|B2|.
By Equations (4) and (6), we have

wt(cD,u) =
|D|
2

− 1
2
HI1(P)

((−1)u1 , . . . , (−1)un) +
1
2
HI2(P)

((−1)u1 , . . . , (−1)un)

= 2|B1|−1 − 2|B2|−1 − 1
2
(−1)wt(v)(2|B1|χ(w|B1)− 2|B2|χ(w|B2)).

We divide the proof into two parts as follows:
(i) If wt(v) ≡ 0 (mod 2), then

wt(cD,u) = 2|B1|−1(1 − χ(w|B1))− 2|B2|−1(1 − χ(w|B2)).

(ii) If wt(v) ≡ 1 (mod 2), then

wt(cD,u) = 2|B1|−1(1 + χ(w|B1))− 2|B2|−1(1 + χ(w|B2)).

The frequency of each codeword can be computed by the vector u. This completes the proof.

Remark 1. Let us discuss the parameters of the code CD in Theorem 1.
(1) The parameters of the code CD in Theorem 1 (1) are [2|A1| − 2|A2|, |A1|, 2|A1|−1 − 2|A2|−1], and these

are the same as that in [15].
(2) The parameters of the code CD in Theorem 1 (3) are [2|B1| − 2|B2|, k], where k = |B1| + 1 or |B1|.

For instance, if |B1| = |B2|+ 1, then 2|B1|−1 − 2|B2| = 0, and its dimension is |B1| in this case.

In the following corollary, we present some (almost) optimal binary linear codes which can be
obtained from Theorem 1.

Corollary 1. (1) The code in Theorem 1 (2a) has parameters [2|B1| − 1, 1 + |B1|, 2|B1|−1 − 1] and meets the
Griesmer bound with equality.

(2) If |B1| = |B2|+ 1, then the code in Theorem 1 (3) has parameters [2|B2|, 2 + |B2|, 2|B2|] and meets
the Griesmer bound with equality; if |B2| = 1 and 3 ≤ |B1|, then the code has parameters [2|B1| − 2, 1 +

|B1|, 2|B1|−1 − 2] and it is almost optimal.

63

Mathematics 2020, 8, 1495

Proof. (1) By Table 2, the code has parameters [2|B1| − 1, 1 + |B1|, 2|B1|−1 − 1]. By the Griesmer bound,

|B1|
∑
i=0

⌈
2|B1|−1 − 1

2i

⌉
= (2|B1|−1 − 1) + 2|B1|−2 + · · ·+ 2 + 1 + 1 = (2|B1| − 1) + 1 = 2|B1| − 1. (7)

(2) Let |B1| = |B2| + 1. By Table 4, the code has parameters [2|B2|, 2 + |B2|, 2|B2|]. By the
Griesmer bound,

|B2|+1

∑
i=0

⌈
2|B2|

2i

⌉
= 2|B2| + 2|B2|−1 + · · ·+ 2 + 1 + 1 = 2|B2|.

If |B2| = 1 and 3 ≤ |B1|, then the code has parameters [2|B1| − 2, 1 + |B1|, 2|B1|−1 − 2].
By Equation (7), the code is almost optimal.

Next, we will determine the minimum distances of the dual codes of the codes obtained in
Theorem 1. In particular, we agree with the reader that the minimum distance of {0} is infinite.

Theorem 2. Let H(m, n) be a hierarchical poset with two levels. Let I1 = A1 ∪ B1 and I2 = A2 ∪ B2 be
two distinct order ideals of H(m, n), where Ai ⊆ [m], Bi ⊆ [n] \ [m], i = 1, 2, and I2 ⊂ I1. Let D =

(I1(P)) \ (I2(P)). Then, the minimum distance d⊥ of C⊥
D is given by

d⊥ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if B1 = ∅ and 1 ≤ |A1| = |A2|+ 1 = 2
or 1 ≤ |B1| ≤ 2 and A2 = [m]

or |B1| = 1 and |A2| = m − 1;
4 if B1 = ∅ and |A1| = |A2|+ 1 ≥ 3

or |B1| ≥ 3, B2 = ∅ and A2 = [m]

or |B1| ≥ 2, B2 = ∅ and |A2| = m − 1
or |B1| ≥ 3 and B2 �= ∅;

3 if B1 = ∅ and |A1| > |A2|+ 1
or B1 �= ∅, B2 = ∅ and |A2| < m − 1.

Proof. Assume that D = {g1, g2, . . . , gl} ⊆ Fn
2 with l = |D|. The generator matrix G′ of the code CD

can be induced by the matrix G in Equation (2) by deleting all zero row vectors in G. Of course, G′ is
the parity-check matrix of C⊥

D . Since any two columns in G are distinct, the minimum distance of C⊥
D

should be greater than 2. By Theorem 1, we divide the proof into three cases.
(1) B1 = ∅. Note that A2 ⊆ A1 ⊆ [m]. It is easy to check that, if 1 ≤ |A1| = |A2|+ 1 ≤ 2 and

C⊥
D = ∅, by [15] (Theorem 1), the minimum distance of C⊥

D is 4 when |A1| = |A2|+ 1 ≥ 3 and 3 when
|A1| > |A2|+ 1.

(2) B1 �= ∅ and B2 = ∅. Then, we have A1 = [m], A2 ⊆ [m], and the following three subcases:
(2a) A2 = [m]. Let ek = (e1, e2, . . . , en) ∈ Fn

2 , where ek = 1 and el = 0 if l �= k. If |B1| ≤ 2,
then C⊥

D = ∅ as eT
1 + · · ·+ eT

m should appear in every column in G′. If |B1| ≥ 3, then for any three
columns of G′, they are linearly independent as eT

1 appears in every column of G′. Suppose that
i, j, k ∈ B1. Then, the following four vectors in G′ are linear dependent:

eT
1 + · · ·+ eT

m + eT
i , eT

1 + · · ·+ eT
m + eT

j , eT
1 + · · ·+ eT

m + eT
k , eT

1 + · · ·+ eT
m + eT

i + eT
j + eT

k

Therefore, the minimum distance of the dual code C⊥
D is 4.

(2b) |A2| = m − 1. If |B1| = 1, then C⊥
D = ∅. If |B1| ≥ 2, then for any three columns of G′, they are

linearly independent as eT
i appears in every column of G′ where i ∈ [m]\A2. Suppose that i, j ∈ B1.

Then, the following four vectors in G′ are linear dependent:

eT
1 + · · ·+ eT

m, eT
1 + · · ·+ eT

m + eT
i , eT

1 + · · ·+ eT
m + eT

j , eT
1 + · · ·+ eT

m + eT
i + eT

j .

64

Mathematics 2020, 8, 1495

Then, the minimum distance of C⊥
D is 4.

(2c) |A2| < m − 1. Then, there are two distinct positive integers i and j in [m]\A2. Then, it is
easy to check that eT

i , eT
j , and eT

i + eT
j are three distinct linearly dependent columns of G′. Then,

the minimum distance of C⊥
D is 3.

(3) B1 �= ∅ and B2 �= ∅. Then, we have A1 = A2 = [m]. If |B1| ≤ 2, then C⊥
D = ∅ as eT

1 + · · ·+ eT
m

should appear in every column in G′. If |B1| ≥ 3, then for any three columns of G′, they are linearly
independent as eT

1 appears in every column of G′. Assume that i, j, k ∈ B1 and i /∈ B2. Then,
the following four vectors in G′ are linear dependent:

eT
1 + · · ·+ eT

m + eT
i , eT

1 + · · ·+ eT
m + eT

i + eT
j , eT

1 + · · ·+ eT
m + eT

i + eT
k , eT

1 + · · ·+ eT
m + eT

i + eT
j + eT

k .

Then, the minimum distance of C⊥
D is 4.

This completes the proof.

By Theorems 1 and 2, we have the following corollary.

Corollary 2. Let |A2| = 0 and |A1| > 1 in Theorem 1 (1). Then, C⊥
D is a binary [2|A1| − 1, 2|A1| − 1− |A1|, 3]

Hamming code.

4. Self-Orthogonal Binary Linear Codes and Quantum Codes

In this section, we will present some self-orthogonal binary linear codes based on the results in
Section 3 and use these codes to construct quantum codes.

Theorem 3. Let H(m, n) be a hierarchical poset with two levels. Let I1 = A1 ∪ B1 and I2 = A2 ∪ B2 be
two distinct order ideals of H(m, n), where Ai ⊆ [m], Bi ⊆ [n] \ [m], i = 1, 2, and I2 ⊂ I1. Let D =

(I1(P)) \ (I2(P)). Then, the code CD is self-orthogonal if and only if one of the following holds:
(1) B1 = ∅, A2 = ∅, and 3 ≤ |A1|.
(2) B1 = ∅ and 3 ≤ |A2| < |A1|.
(3) B1 �= ∅, B2 = ∅, 3 ≤ |B1|, m = 1, and A2 = ∅.
(4) B1 �= ∅ and 3 ≤ |B2|.

Proof. Let M = (mij)m×m = GGT . By [23] (Lemma 18), suppose that ci is the ith row vector of matrix
G. Then, mi,j = cicj

T . Let Ui,j = {g = (g1, g2, . . . , gm) ∈ D : gi = gj = 1}. Then, mi,j = |Ui,j|
(mod 2). If B1 = ∅, then the result holds by [15] (Theorem 3). Next, we always assume that B1 �= ∅.
From Lemma 1, we have that CD is self-orthogonal if and only if GGT = 0. Next, we divide the proof
into some cases:

(1) B2 = ∅ and A2 = [m]. Then, Ui,i = 2|B1| − 1 ≡ 1 (mod 2) for any i ∈ [m] and, hence, CD could
not be self-orthogonal in this case.

(2) B2 = ∅ and |A2| < m. Suppose that i ∈ [m]\A2. Then, Ui,i = 2|B1| − 1 + 2m−1. Hence,
CD cannot be self-orthogonal if m ≥ 2. If m = 1, then

Ui,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2|B1| if i = j ∈ [m],
2|B1|−1 if i ∈ [m], j ∈ B1 or j ∈ [m], i ∈ B1, or i = j ∈ B1,
2|B1|−2 if i �= j, i, j ∈ B1,
0 otherwise.

Hence, in this case, the code CD is self-orthogonal if and only if |B1| ≥ 3 and m = 1.

65

Mathematics 2020, 8, 1495

(3) B2 �= ∅. If |B2| = 1, then we have Ui,i = 2|B1|−1 − 1 for i ∈ B2. If |B2| = 2, then we have
Ui,j = 2|B1|−2 − 1 for i �= j, i, j ∈ B2. Hence, CD cannot be self-orthogonal if |B2| ≤ 2. Assume that
|B2| ≥ 3. Then,

Ui,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2|B1| − 2|B2| if i ∈ [m],
2|B1|−1 − 2|B2|−1 if i ∈ B2,
2|B1|−1 if i ∈ B1\B2,
0, otherwise

and for i �= j

Ui,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2|B1| − 2|B2| if i, j ∈ [m],
2|B1|−1 − 2|B2|−1 if i ∈ [m], j ∈ B2 or j ∈ [m], i ∈ B2,
2|B1|−1 if i ∈ [m], j ∈ B1\B2 or j ∈ [m], i ∈ B1\B2,
2|B1|−2 if i ∈ B2, j ∈ B1\B2 or j ∈ B2, i ∈ B1\B2,
2|B1|−2 − 2|B2|−2 if i, j ∈ B2,
2|B1|−2 if i, j ∈ B1\ B2

0 otherwise.

Hence, CD is self-orthogonal in this case.

We present three examples of Theorem 3 as follows.

Example 2. Let H(3, 4) be a hierarchical poset with two levels. Let I1 = {1, 2, 3}, I2 = ∅, and

D = (I1(P)) \ (I2(P)) = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (1, 1, 1, 0)}.

It is easy to check that GGT = 0. Then, CD is a one-weight binary self-orthogonal [7, 3, 4] code. The result is
confirmed by Magma [41].

Example 3. Let H(1, 4) be a hierarchical poset with two levels. Let I1 = {1, 2, 3, 4}, I2 = ∅, and

D = (I1(P)) \ (I2(P))

= {(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (1, 1, 1, 1)}.

It is easy to check that GGT = 0. Then, CD is a two-weight binary self-orthogonal [8, 4, 4] code with weight
enumerator 1 + 14z4 + z8. The result is confirmed by Magma [41].

Example 4. Let H(1, 6) be a hierarchical poset with two levels. Let I1 = {1, 2, 3, 4, 5, 6}, I2 =

{1, 2, 3, 4, 5}, and

D = (I1(P)) \ (I2(P))

= {(1, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 1), (1, 0, 1, 0, 0, 1), (1, 0, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1), (1, 1, 1, 0, 0, 1),

(1, 1, 0, 1, 0, 1), (1, 1, 0, 0, 1, 1), (1, 0, 1, 1, 0, 1), (1, 0, 1, 0, 1, 1), (1, 0, 0, 1, 1, 1),

(1, 0, 1, 1, 1, 1), (1, 1, 0, 1, 1, 1), (1, 1, 1, 0, 1, 1), (1, 1, 1, 1, 0, 1), (1, 1, 1, 1, 1, 1)}.

It is easy to check that GGT = 0. Then, CD is a two-weight binary self-orthogonal [16, 5, 8] code with
weight enumerator 1 + 30z8 + z16. The result is confirmed by Magma [41].

Note that, if a code is self-orthogonal, then its dual code will be a dual-containing code.
Using Lemma 4 and Theorems 1, 2, and 3, we obtain the following theorem.

66

Mathematics 2020, 8, 1495

Theorem 4. Let H(m, n) be a hierarchical poset with two levels. Let I1 = A1 ∪ B1 and I2 = A2 ∪ B2 be
two distinct order ideals of H(m, n), where Ai ⊆ [m], Bi ⊆ [n] \ [m], i = 1, 2, and I2 ⊂ I1. Let D =

(I1(P)) \ (I2(P)).
(1) If B1 = ∅, A2 = ∅, and 3 ≤ |A1|, then there exists a quantum error-correcting code with parameters

[[2|A1| − 1, 2|A1| − 1 − 2|A1|, 3]]2.
(2) If B1 = ∅ and 3 ≤ |A2| < |A1|, then there exists a quantum error-correcting code with parameters

[[2|A1| − 2|A2|, 2|A1| − 2|A2| − 2|A1|, δ]]2, where

δ =

{
3 if |A1| > |A2|+ 1,
4 if |A1| = |A2|+ 1.

(3) If B1 �= ∅, B2 = ∅, 3 ≤ |B1|, m = 1, and A2 = ∅, then there exists a quantum error-correcting code
with parameters [[2|B1|, 2|B1| − 2 − 2|B1|, 4]]2.

(4) If B1 �= ∅ and 3 ≤ |B2| < |B1|, then there exists a quantum error-correcting code with parameters
[[2|B1| − 2|B2|, 2|B1| − 2|B2| − 2η, 4]]2, where

η =

{
|B1| if |B1| = |B2|+ 1,
1 + |B1| otherwise.

Remark 2. From Corollary 2, recall that there are binary Hamming codes with parameters [2|A1| − 1, 2|A1| −
1 − |A1|, 3], where |A1| > 1. Using Theorem 4, we find an infinite family of quantum Hamming codes with
parameters [[2|A1| − 1, 2|A1| − 1 − 2|A1|, 3]]2, where |A1| ≥ 3. In particular, the code with the smallest length
in that family is [[7, 1, 3]]2, called Steane code; this is a tool in quantum error correction. Consequently, it turns
out that all binary quantum Hamming codes for which the length is greater than or equal to seven are special
cases of the family above.

Remark 3. In [42], for a binary [[n, k, d]] quantum code, there is a quantum Hamming bound:

2k
t

∑
l=0

3l
(

n
l

)
≤ 2n,

where t =
⌊ d−1

2
⌋
. A binary quantum code is called quantum perfect if its parameters attain the quantum

Hamming bound.
We note that the minimum distance of the quantum codes in Theorem 4 is three or four; thus, we have t = 1

and the quantum Hamming bound is reduced to 1 + 3n ≤ 2n−k. It is easy to verify that none of the quantum
codes in Theorem 4 are quantum perfect. For example, in Theorem 4 (1), [[2|A1| − 1, 2|A1| − 1 − 2|A1|, 3]]2
quantum Hamming codes with |A1| ≥ 3 are quantum perfect if and only if 1 + 3(2|A1| − 1) = 4|A1|, which is
equivalent to |A1| = 0 or |A1| = 1. This implies that any of these quantum Hamming codes cannot be quantum
perfect.

Remark 4. In [17,18], the authors constructed many interesting binary quantum codes with minimum distance
three or four. We compare our results with two papers [17,18] as follows. First of all, one of the major differences
between theirs and ours is the code length. The lengths of our quantum codes are even or odd. On the other
hand, the lengths of these binary quantum codes are all even. Moreover, comparing the parameters in the tables
in [17,18] with the parameters of our quantum codes, we find that exactly one family of quantum codes are
overlapped with theirs; these parameters are [[2l , 2l − 2l − 2, 4]]2 with l ≥ 6 in Theorem 4 (3). However, all
other families of quantum codes are different from their parameters.

Remark 5. Tables 5 and 6 are obtained by using Theorem 4. We confirmed the optimality of the codes in the
tables according to the database of Grassl [16], where he provides a list of binary quantum codes [[n, k]]2 up to
256. We have constructed four families of binary quantum codes of infinite lengths in Theorem 4.

67

Mathematics 2020, 8, 1495

Table 5. Binary quantum codes with minimum distance three from Theorem 4.

Parameters Optimality Remark

[[7, 1, 3]]2 Optimal Steane code

[[15, 7, 3]]2 Optimal Quantum Hamming code

[[24, 14, 3]]2 Almost optimal

[[31, 21, 3]]2 Almost optimal Quantum Hamming code

[[48, 36, 3]]2 Almost optimal

[[63, 51, 3]]2 Almost optimal Quantum Hamming code

[[96, 82, 3]]2 Almost optimal

[[112, 98, 3]]2 Almost optimal

[[120, 106, 3]]2 Almost optimal

[[127, 113, 3]]2 Almost optimal Quantum Hamming code

[[224, 208, 3]]2 Almost optimal

[[240, 224, 3]]2 Almost optimal

[[248, 232, 3]]2 Almost optimal

[[255, 239, 3]]2 Almost optimal Quantum Hamming code

Table 6. Binary quantum codes with minimum distance four from Theorem 4.

Parameters Optimality Reference

[[8, 0, 4]]2 Optimal [17]

[[16, 6, 4]]2 Optimal [17]

[[24, 14, 4]]2 Optimal Theorem 4

[[32, 20, 4]]2 Optimal [17]

[[48, 36, 4]]2 Optimal Theorem 4

[[56, 44, 4]]2 Optimal Theorem 4

[[64, 50, 4]]2 Optimal [17]

[[96, 82, 4]]2 Optimal Theorem 4

[[112, 98, 4]]2 Optimal Theorem 4

[[120, 106, 4]]2 Optimal Theorem 4

[[128, 112, 4]]2 Optimal [17]

[[224, 208, 4]]2 Optimal Theorem 4

[[240, 224, 4]]2 Optimal Theorem 4

[[248, 232, 4]]2 Optimal Theorem 4

[[256, 238, 4]]2 Optimal [17]

5. Concluding Remarks

In this paper, we constructed binary linear codes by using order ideals in hierarchical posets
with two levels. We also explicitly determined the weight distributions of these codes, and we
obtained some necessary and sufficient conditions for the binary codes constructed using posets to be
self-orthogonal. Employing the CSS construction of quantum codes, we obtained four infinite families

68

Mathematics 2020, 8, 1495

of binary quantum codes with minimum distance three or four. We also present Tables 5 and 6, which
contain almost optimal or optimal binary quantum codes obtained from Theorem 4.

As a future work, we are interested in using other types of various posets for constructing more
optimal binary linear codes, binary self-orthogonal codes, and optimal quantum codes.

Author Contributions: Conceptualization, Y.W.; formal analysis, Y.W.; investigation, Y.W. and Y.L.;
supervision, Y.L.; writing—original draft, Y.W. All authors have read and agreed to the published version
of the manuscript.

Funding: Y. Lee is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MEST)(NRF-2017R1A2B2004574) and by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (grant No. 2019R1A6A1A11051177).

Acknowledgments: We thank the reviewers of this paper for their helpful comments, which improved the clarity
of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ashikhmin, A.; Knill, E. Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 2001, 47, 3065–3072.
[CrossRef]

2. Calderbank, A.K.; Rains, E.M.; Shor, P.W.; Sloane, N.J.A. Quantum error correction and orthogonal geometry.
Phys. Rev. Lett 1997, 78, 405–408. [CrossRef]

3. Calderbank, A.R.; Rains, E.M.; Shor, P.W.; Sloane, N.J.A. Quantum error correction via codes over GF(4).
IEEE Trans. Inf. Theory 1998, 44, 1369–1387. [CrossRef]

4. Shor, P.W.; Smith, G.; Smolin, J.A.; Zeng, B. High Performance Single-Error-Correcting Quantum Codes for
Amplitude Damping. IEEE Trans. Inf. Theory 2011, 57, 7180–7188. [CrossRef]

5. Ouyang Y. Permutation-invariant quantum codes. Phys. Rev. A 2014, 90, 062317. [CrossRef]
6. Ouyang Y. Permutation-invariant qudit codes from polynomials. Linear Algebra Appl. 2017, 532, 43–59.

[CrossRef]
7. Ouyang Y.; Chao R. Permutation-invariant constant-excitation quantum codes for amplitude damping.

IEEE Trans. Inf. Theory 2020, 66, 2921–2933 [CrossRef]
8. Ruskai, M.B. Pauli Exchange Errors in Quantum Computation. Phys. Rev. Lett. 2000, 85, 194–197. [CrossRef]
9. Chang, S.; Hyun, J.Y. Linear codes from simplicial complexes. Des. Codes Cryptogr. 2018, 86, 2167–2181.

[CrossRef]
10. Hyun, J.Y.; Lee, J.; Lee, Y. Infinite families of optimal linear codes constructed from simplicial complexes.

IEEE Trans. Inf. Theory 2020. [CrossRef]
11. Wu, Y.; Hyun, J.Y. Few-weight codes over Fp + uFp associated with down sets and their distance optimal

Gray image. Discret. Appl. Math. 2020, 283, 315–322. [CrossRef]
12. Wu, Y.; Zhu, X.; Yue, Q. Optimal few-weight codes from simplicial complexes. IEEE Trans. Inf. Theory

2020, 66, 3657–3663. [CrossRef]
13. Hyun, J.Y.; Kim, H.K.; Wu, Y.; Yue, Q. Optimal minimal linear codes from posets. Des. Codes Cryptogr. 2020.

[CrossRef]
14. Ashikhmin, A.; Barg, A. Minimal vectors in linear codes. IEEE Trans. Inf. Theory 1998, 44, 2010–2017.

[CrossRef]
15. Wu, Y.; Lee, Y. Binary LCD and self-orthogonal codes via simplicial complexes. IEEE Commun. Lett.

2020, 24, 1159–1162. [CrossRef]
16. Grassl, M. Bounds on the Minimum Distance of Linear Codes. Available online: http://www.codetables.de

(accessed on 15 May 2020).
17. Li, R.; Li, X. Binary construction of quantum codes of minimum distance three and four. IEEE Trans.

Inf. Theory 2004, 50, 1331–1336. [CrossRef]
18. Li, R.; Li, X. Quantum codes constructed from binary cyclic codes. Int. J. Quantum Inf. 2004, 2, 265–272.

[CrossRef]
19. Huffman, W.C.; Pless, V. Fundamentals of Error-Correcting Codes; Cambridge University Press: Cambridge,

UK, 2003.
20. Griesmer, J.H. A bound for error correcting codes. IBM J. Res. Dev. 1960, 4, 532–542. [CrossRef]

69

Mathematics 2020, 8, 1495

21. Ding, C. Linear codes from some 2-designs. IEEE Trans. Inf. Theory 2015, 61, 3265–3275. [CrossRef]
22. Ding, C.; Niederreiter, H. Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 2007, 53, 2274–2277.

[CrossRef]
23. Zhou, Z.; Tang, C.; Li, X.; Ding, C. Binary LCD codes and self-orthogonal codes from a generic construction.

IEEE Trans. Inf. Theory 2019, 65, 16–27. [CrossRef]
24. Chen, B.; Ling, S.; Zhang, G. Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory

2015, 61, 1474–1484. [CrossRef]
25. Hu, L.; Yue, Q.; Zhu, X. New quantum MDS codes from constacyclic codes. Chin. Ann. Math 2016, 37B,

891–898. [CrossRef]
26. Jin, L.; Kan, H.; Wen, J. Quantum MDS codes with relatively large minimum distance from Hermitian

self-orthogonal codes. Des. Codes Cryptogr. 2017, 84, 463–471. [CrossRef]
27. Jin, L.; Xing, C. A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 2014, 60, 2921–2925.
28. Kai, X.; Zhu, S. New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 2013, 59, 1193–1197.

[CrossRef]
29. Kai, X.; Zhu, S.; Li, P. Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 2014,

60, 2080–2086. [CrossRef]
30. Ketkar, A.; Klappenecker, A.; Kumar, S.; Sarvepalli, P.K. Nonbinary stabilizer codes over finite fields.

IEEE Trans. Inf. Theory 2006, 52, 4892–4914. [CrossRef]
31. Knill, E.; Laflamme, R. Theory of quantum error-correcting codes. Phys. Rev. A 1997, 55, 900–911. [CrossRef]
32. Li, R.; Wang, J.; Liu, Y.; Guo, G. New quantum constacyclic codes. Quantum Inf. Process. 2019, 18, 127.

[CrossRef]
33. Li, S.; Xiong, M.; Ge, G. Pseudo-cyclic codes and the construction of quantum MDS codes. IEEE Trans.

Inf. Theory 2016, 62, 1703–1710. [CrossRef]
34. Liu, Y.; Li, R.; Lv, L.; Ma, Y. A class of constacyclic BCH codes and new quantum codes. Quantum Inf. Process.

2017, 16, 66. [CrossRef]
35. Shi, X.; Yue, Q.; Zhu, X. Construction of some new quantum MDS codes. Finite Fields Appl. 2017, 46, 347–362.

[CrossRef]
36. Steane, A.M. Multiple particle interference and quantum error correction. Proc. Roy. Soc. Lond. A 1996, 452,

2551–2577.
37. Steane, A.M. Enlargement of Calderbank-Shor-Steane quantum codes. IEEE Trans. Inf. Theory 1999, 45,

2492–2495. [CrossRef]
38. Xu, G.; Li, R.; Guo, L.; Ma, Y. New quantum codes constructed from quaternary BCH codes.

Quantum Inf. Process. 2016, 15, 4099–4116. [CrossRef]
39. Zhang T.; Ge, G. Quantum MDS codes with large minimum distance. Des. Codes Cryptogr. 2016, 83, 503–517.

[CrossRef]
40. Zhang T.; Ge, G. Quantum MDS codes derived from certain classes of polynomials. IEEE Trans. Inf. Theory

2016, 62, 6638–6643. [CrossRef]
41. Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Symbolic Comput.

1997, 24, 235–265. [CrossRef]
42. Gottesman, D. Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A

1996, 54, 1862–1868. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

70

mathematics

Article

A Multi-Criteria Computer Package-Based Energy Management
System for a Grid-Connected AC Nanogrid

Carlos Roncero-Clemente 1, Eugenio Roanes-Lozano 2,* and Fermín Barrero-González 1

Citation: Roncero-Clemente, C.;

Roanes-Lozano, E.; Barrero-González,

F. A Multi-Criteria Computer

Package-Based Energy Management

System for a Grid-Connected AC

Nanogrid. Mathematics 2021, 9, 487.

https://doi.org/10.3390/math9050487

Academic Editor: Raúl M. Falcón

Received: 31 January 2021

Accepted: 22 February 2021

Published: 27 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Power Electrical and Electronic System Research Group (PE&ES), School of Industrial Engineering,
University of Extremadura, 06006 Badajoz, Spain; carlosrc@unex.es (C.R.-C.); fbarrero@unex.es (F.B.-G.)

2 Instituto de Matemática Interdisciplinar & Departamento de Didáctica de las Ciencias Experimentales,
Sociales y Matemáticas, Facultad de Educación, Universidad Complutense de Madrid, c/ Rector Royo
Villanova s/n, 28040 Madrid, Spain

* Correspondence: eroanes@mat.ucm.es; Tel.: +34-91-3946248

Abstract: The electric system scenario has been changing during the last years moving to a dis-
tributed system with a high penetration of renewables. Due to the unpredictable behavior of some
renewables sources, the development of the energy management system is considered crucial to
guarantee the reliability and stability of the system. At the same time, increasing the lifespan of
the energy storage system is one of the most important points to take into account. In this sense, a
software package implemented in the computer algebra system Maple is proposed in this work to
control a grid-connected nanogrid with hybrid energy storage system (composed by batteries and
supercapacitors). The energy management system considers several rules as the state of charge of the
energy storage system, the photovoltaic power generation and the load profile, the nanogrid power
trend and the energy prices. The improved performance of the nanogrid is proven by simulations in
MATLAB/Simulink.

Keywords: energy management system; rule-based expert systems; microgrid; nanogrid; renew-
able energies

1. Introduction

The European Commission defines as main goals for 2030 a 40% reductions in green-
house gas emissions compared to 1990 levels (although an increase up to 55% was recently
established), a 32% share of green energies in the generation mix and an improvement of at
least 32.5% in energy efficiency [1]). In this sense, a high penetration of renewable energies
is currently being experienced.

Concurrently, microgrids (MG) are intended as the essential building blocks of smart
grids, being the latter defined as “electricity network that can intelligently integrate the
actions of all users connected to it (generators, consumers and those that do both) to
efficiently deliver sustainable, economic and secure electricity supplies” [2]. At the same
time, nanogrids (NGs) with various electric appliances were defined as kW scale smart
grids that can combine different power sources with the help of information technology [3].
In the context of this paper, a NG is understood as a single-end user with embedded
generation, storage and loads. Some examples of NG applications include households,
buildings, businesses and campuses. This concept has been studied in several works in
the last few years [4–7]. The NGs usually include emerging technologies as new power
electronic converters acting as interfaces to distributed energy resources (DER), mainly
based on renewable energy sources (RES) (e.g., solar and wind), which are able to operate
in both grid-connected (GC) [4] and stand-alone (SA) [8,9] modes to supply the local
consumers. The use of the energy storage system (ESS) is crucial in the NG operation
to guarantee the continuity of supply. The optimal use of these resources allows the
NG’s users to obtain energy bills savings as the electricity is mainly supplied by the RES.

Mathematics 2021, 9, 487. https://doi.org/10.3390/math9050487 https://www.mdpi.com/journal/mathematics71

Mathematics 2021, 9, 487

Furthermore, profits for owners of ESS and RES also rise because they can sell the energy
to the utility grid during high-price periods [4,10] or they can even locally optimize their
resources by using a peer-to-peer energy sharing approach [11].

The “brain” of the NG is the energy management system (EMS), which determines
the power flows between the main grid, the loads existing in the NG, and the different
DERs to achieve a finite set of goals, providing several benefits for the NG´s stakeholders.
Some of these goals may include: a reduction in the NG operation costs, to maximize
the overall efficiency, to minimize the peak demand and to minimize emissions or the
fuel usage among others [12]. Communication between the EMS and other devices and
sensors installed in the NG allows an optimal energy management by the EMS, collecting
and computing some parameters, e.g., state of charge (SOC) of batteries, weather forecast,
energy prices and consumption profiles [10]. Both DER and ESS are equipped with power
electronic interfaces that are capable of tracking the set-points given by the EMS.

Once the NG topology has been designed and the main objectives to be met by
the NG have been determined, the EMS can be implemented by different manners and
techniques The techniques used for the EMS implementation in NG applications found
in the literature can be based on: fuzzy logic control [10,13–16], linear programming [4,5],
integer programming [17], dynamic programing [8], neural networks [10], a finite state
machine [18], game theory approaches [7,19] and model predictive control [20]. The EMS
for NG based on linear programming approaches defines a feasible region which is used to
find the optimal solution considering a set of linear inequalities [4,5]. In order to reduce the
computational time, the integer programming technique can be an alternative as expenses
of relaxing the constraints, but the accuracy is sacrificed [17]. A neural network-based
EMS has the advantage of being adaptive (with reinforcement learning) and being able to
learn complex models. In fact, for our application field, the neural networks are commonly
included in the forecast stage (e.g., solar irradiance) [10]. The implementation of a finite
set of states to determine the operation mode of the NG by means of a finite state machine
was studied in [18]. The main objectives were to provide ancillary services to the grid and
to guarantee a coordination with the distribution system operation. From another side,
some EMS for NG determines the operation mode by means of the Nash equilibrium point
of the game [7,19]. This kind of method highlights because the motivation and incentives
they generate among the users. Finally, model predictive control was used in a smart
building EMS [20]. The basis of this technique is the analysis of the future trajectories of
the plant states in a defined prediction horizon. Its main drawback is to require many plant
parameters that can usually be unknown.

Fuzzy logic stands out among other control approaches for the design and implemen-
tation of EMS. Thus, this technique has been widely applied. In [13], fuzzy logic is applied
to regulate the operation of the ESS of a direct current (DC) small microgrid and the energy
trading. This fuzzy logic-based approach can also take into account the evolution of the
energy prices, generation and demand [13]. As previously mentioned, if the MG/NG
includes controllable loads (smart lighting, water pumps, etc.), the fuzzy logic control
can perform some demand response strategies. Following this approach, an EMS for a
residential grid-connected MG architecture based on wind and photovoltaic (PV) sources
and ESS based on batteries is proposed in [14]. This study implements a 25-rules based
fuzzy logic control to smooth the power exchanged with the utility, but meeting at any time
the power consumption and some ESS constrains. An extension of previous works that
considers the problems derived from the unpredictable nature of the energy consumption
and production can be found in [15]. In that document, power demand and generation
trends are included as extra inputs to the fuzzy logic controller (consisting of 50 control
rules that define the operation of the EMS). The optimization of such an approach in order
to reduce the system complexity is presented by the same authors in [16].

In this work, a software package in the computer algebra system Maple (Maple is
a trademark of Waterloo Maple Inc.) is developed and implemented as EMS for a grid-
connected alternating current (AC) NG with a hybrid ESS and a PV system. The package

72

Mathematics 2021, 9, 487

is based on a multi-criteria system approach, where several rules related to individual
SOC, PV power, maximum charging/discharging ESS power, demanded power, NG power
trend and energy prices are computed. The main goals of the proposed EMS are:

i. to smoothen the power exchanged with the utility;(be list format, and add the
full bracket)

ii. to keep the SOC within secure thresholds;
iii. to apply energy curtailment to the PV power if required (when, for example, power

injection into the utility network is not permitted by contract and there is a situation
of high PV production, low local load and batteries fully charged);

iv. to guarantee a safety operation of the hybrid ESS in terms of power rating; and
v. to maximize the revenue coming from energy trading with the utility.

The contribution of this paper is as follows:

1. A new multi-criteria approach based on rules or knowledge is included in the EMS
for controlling the operation of a NG.

2. The hybrid combination of batteries and supercapacitors at the residential level in the
considered grid-connected NG is quite interesting for increasing the lifespan of such
infrastructure.

3. The proposed package can be easily upgraded by including other rules or parameters
in a very easy way. This fact is possible due to the powerful algebraic capabilities of
Maple.

The rest of the paper is organized as follows. Section 2 describes the architecture and
main variables of the NG under study as well as its modelling. Then, in Section 3; rules, con-
strains, thresholds and priorities are carefully described to develop the EMS. Sections 4–6
detail the step by step design of the multi-criteria computer package. Section 7 illustrates
the NG performance through simulation results using MATLAB/Simulink (MATLAB and
Simulink are registered trademarks of The MathWorks, Inc.) where the SOC improvements
for both the battery and the supercapacitor are represented. Finally, Section 8 presents the
main conclusions of this work.

2. Nanogrid (NG) under Study

The architecture of the residential NG under study is represented schematically in
Figure 1. It is composed of a PV array with a peak power equal to 4 kW. The NG is
capable to store electrical energy in the hybrid energy storage system (HESS) based on the
association between a lead-acid battery pack and supercapacitors. The rated capacity of
the battery pack and supercapacitors are 14.4 kWh and 15 F, respectively. Each of these
equipment is connected to the DC voltage bus by means of a DC–DC power converter.
A common DC–AC power converter interfaces the NG to the main grid, regulating the
power flow between them. The static transfer switch (STS) connects the utility to the system
at the PCC. Moreover, household loads belonging to the NG are also connected there.

2.1. NG Modelling

The PV and HESS are modelled to emulate the behavior of the DERs. The following
subsections describe in detail the model implemented for the NG study by means of their
mathematical expressions.

2.1.1. Photovoltaic (PV) Array Model

Manufacturers of PV modules provide the main parameters in their datasheet referred
to reference values of irradiance (W) and temperature (T) at standard test conditions (STC),
which corresponds to 1000 W/m2 and 25 ◦C and a family of curves that illustrates how
the panel curves are modified when those values change. An example of the named main
parameters is available in Table 1, which shows the main specifications of module Shell
SP150 referred to STC.

73

Mathematics 2021, 9, 487

Figure 1. The residential nanogrid considered in the study.

Table 1. Electrical characteristics of Shell SP150-P module at standard test conditions (STC).

Parameter Description Value

Pmpp (W) Power at maximum power point 150
Vmpp (V) Voltage at maximum power point 34
Voc (V) Open circuit voltage 43.4
Isc (A) Short circuit current 4.8

Most of the models in the literature assume the PV cell to be an electrical equivalent
circuit (Figure 2). Those models require some parameters such as shunt resistance (Rsh),
series resistance (Rs), the diode factor and the effective cell area. Nevertheless, they are not
provided by the manufacturers in the datasheet, so this makes them complex to use.

Ipv Id Ir

Rs
I

Rsh

Figure 2. Equivalent circuit of a photovoltaic (PV) cell.

Due to the aforementioned reasons, the mathematical model proposed in [21] is used
in the NG study. Firstly, the PV current and voltage (I–V) curve in the STC is fitted and
then the influence of irradiance and temperature is taken into account. The equations that
describe the model are expressed as follows (1)–(5):

Ipv = ISC,TW

(
1 − Be(Vpv − VOC,TW)/τ − (1 − B)e(Vpv − VOC,TW)/τ/2

)
(1)

where Ipv and Vpv are the module current and voltage respectively. Short-circuit current at
any irradiance and temperature conditions (ISC,TW) is determined as (2):

ISC,TW = ISC,STC
W

WSTC
. (2)

74

Mathematics 2021, 9, 487

In (2), ISC,STC is the short-circuit current at STC, and W and WSTC are the current and the
reference irradiance (1000 W/m2) respectively. Open-circuit voltage at any irradiance and
temperature conditions (VOC,TW) are determined in (3):

VOC,TW = VOC,STC − kT(T − TSTC)− kW
(W−WSTC)/W (3)

with VOC,STC, TSTC, kT and kW as the open-circuit voltage at STC, the reference temperature
(25 ºC) and the temperature and irradiance coefficient respectively. Constants B and τ can
be calculated by the expressions (4) and (5), being VMPP and IMPP, the voltage and current
values at the maximum power point (MPP) respectively:

B =
1 − IMPP

ISC

e
VMPP−VOC

τ

(4)

τ =
VMPP
IMPP

(ISC − IMPP) (5)

To validate the accuracy of the model, these equations are implemented in MATLAB/Simu-
link using as input parameters those in Table 1. Figure 3a,c represents the curves provided by
the manufacturer and Figure 3b,d the simulated ones, respectively.

Figure 3. Current and voltage (I–V) photovoltaic (PV) curves. (a) I–V characteristics provided by the manufacturer for
different irradiance values; (b) I–V characteristics simulated for different irradiance values; (c) I–V characteristics provided
by the manufacturer for different temperatures and (d) I–V characteristics simulated for different temperatures.

2.1.2. Battery and Supercapacitor Models

One of the most common ESS model aims to estimate the battery open-circuit voltage
(VBAT,OC) as a function of the battery current (IBAT). The estimated voltage can control a

75

Mathematics 2021, 9, 487

voltage source in series with a resistance that models the instantaneous voltage drop due
to the internal ESS resistance. VBAT,OC is obtained from (6) [22]:

VBAT,OC = VBAT0 − k
Q

Q − ∫
IBATdt

+ Ae(−B
∫

IBATdt) (6)

where VBAT0 is the battery voltage, K is the polarization voltage, Q is the battery capacity,∫
IBATdt represents the actual battery charge, A is the exponential zone amplitude and B

the exponential zone time constant inverse.
In a similar way, it is possible to develop a generic model based on the supercapacitor

parameters. Supercapacitor voltage (VSC) is estimated by the Stern Equation (7) [23]:

VSC =
NSQTd

NpNeεε0 Ai
+

2NeNsRT
F

sinh−1

(
QT

NpN2
e Ai

√
8RTεε0c

)
RSCuiSCu. (7)

NS, Np and Ne represents the number of series and parallel supercapacitors, and the
number of layers of electrodes respectively. QT , d, ε, ε0, F, R and Ai correspond to the
electric charge, molecular radius, permittivity of the material, permittivity of free space,
Faraday constant, ideal gas constant and the area between electrodes and electrolyte.
Finally, RSCu and iSCu stand for the total resistance and the supercapacitor current.

3. Residential Nanogrid Energy Management System

According to Figure 1, the power flow is considered positive in the direction of the
corresponding black arrows. Red arrows represent the possibility of each element of the
system to operate in unidirectional or bidirectional way. From the same figure, the main
power flow relationships are derived as:

PNET = PLOAD − PPV (8)

PHESS = PBAT + PSC (9)

PNG = PPV + PBAT + PSC (10)

where PNET represents the net power. PPV and PLOAD corresponds to the PV power and the
power demanded by the household loads respectively. At the same time, PHESS, PBAT and
PSC are the injected power by the HESS (total storage system, battery and supercapacitors).
Finally, PNG is the power generated by the residential NG under study. Furthermore, the
power demanded from the utility PGRID is positive when it injects power to the NG.

3.1. Hybrid Energy Storage System (HESS) Strategy and Constraints

Both battery and supercapacitor powers must be limited during their charging (PBAT−C
and PSC−C) and discharging (PBAT−D and PSC−D) cycles to ensure their safety and life.
In this sense, the following constrains have to be accomplished at any time ((11)–(14)):

PBAT−D ≤ Pmax
BAT−D (11)

PBAT−C ≤ Pmax
BAT−C (12)

PSC−D ≤ Pmax
SC−D (13)

PSC−C ≤ Pmax
SC−C. (14)

Just in case any of the previous variables overpass their maximum limits, the EMS
will have to saturate the corresponding value, rearranging the energy surplus somehow.
At the same time, the HESS has to operate within healthy SOC limits. Assuming that
the initial SOC (SOC0) is known, the current SOC for the battery and supercapacitors can
be estimated. The selected method for estimating the current battery SOC is based on
the Coulomb counting method, which integrates the battery current flow over time. This

76

Mathematics 2021, 9, 487

method presents a simple implementation and just one measurement is required. In our
particular case, the current flowing from the battery to the DC bus is considered positive
and the current battery SOC (SOCBAT) is determined by Equation (15) [24]:

SOCBAT(%) = SOC0(%)−
∫ t

0 iBAT(t)dt
QBAT

· 100 (15)

with iBAT (t) and QBAT as the battery current (A) and capacity (Ah), respectively. To deter-
mine the supercapacitor SOC (i.e., SOCSC), the following expression is derived (16) [25]:

SOCSC(%) =
1
3

⎡
⎣4

(
VSC

VNOM
SC

)2

− 1

⎤
⎦ · 100. (16)

In (16), VSC and VNOM
SC are the supercapacitor voltage and the supercapacitor nominal

voltage. The HESS deals with several functionalities. For example, depending on the
energy price, the HESS or the utility will release power when PNET > 0 if possible. The
battery and the supercapacitors can also fulfill energy shifting by storing energy in some
strategical times. For these kinds of purposes, the SOC is considered as a crucial issue.
The ideal situation for any practical NG operation would be to keep the SOC around
50%. To further distinguish a multi-criteria based decision making, five SOC intervals
are proposed. The SOC is divided by 4 user-customizable levels, k1, ..., k4, which can be
different for the battery and for the supercapacitors. Figure 4 represents such different
levels and the action to be taken (if possible).

SOCBAT, SOCSC

k1BAT, k1SC

k2BAT, k2SC

k3BAT, k3SC

k4BAT, k4SC

SOC= 50%

SOC= 0%

SOC= 100% Obligatory
discharge

Required
discharge

Obligatory
charge

Required
charge

Figure 4. State of charge (SOC) intervals and corresponding energy management system (EMS) action.

As an example, if k4BAT < SOCBAT < k3BAT and PNET > 0, probably (depending on
other factors) the utility will provide power to guarantee the load supply and to charge
the battery. Another situation could be that 0 < SOCSC < k4SC and k2BAT < SOCBAT < k1BAT,

77

Mathematics 2021, 9, 487

and, depending on other factors to be detailed later, the battery will inject power to the
supercapacitors.

In order to distribute the amount of PHESS that will be delivered or stored by the battery
or by the supercapacitor, the following reasons are considered. Batteries are usually devoted
to providing the bulk of energy in the long term, presenting a slow dynamic. Meanwhile,
supercapacitors are suitable for providing or absorbing the power generation or demand
peaks because of its fast response. In this sense, many previous works like [25,26] aim to
distinguish between the low-frequency component and the high-frequency component of
the power to be delivered/absorbed by the HESS. For this purpose, a conventional low-
pass filter (LPF) will be used to extract the low-frequency component, which is LPF(PNET).
Then, the power sharing will be as follows (17) and (18):

PBAT = LPF(PNET)− PGRID (17)

PSC = PNET − PBAT . (18)

3.2. NG Net Power Trend

A quite interesting parameter to develop operation rules in the EMS for controlling the
NG is the consideration of both the generation and consumption trend within the NG. The
NG net power trend (PT

NET) can be understood as the predicted behavior of the net power.
This parameter can help to improve the NG capability by storing or delivering power. In
this sense, the NG can anticipate a future scenario with a more adequate HESS state. The
PT

NET will help to smooth the power exchanged with the main grid and to improve the
SOCBAT, besides contributing to increase the revenues for the NG users. It is important to
note that this parameter will have only influence in the low-frequency component of PHESS,
that is, in the battery power. Calculation of PT

NET is based on the derivative of PNET (19):

PT
NET =

LPF (PNET(t))− LPF (PNET(t − 1))
TS

(19)

where TS is the sample rate (in the considered case of study is one hour).
A positive slope of PNET means that PPV is increased and/or PLOAD is decreased. Nev-

ertheless, a negative slope is related to an increase in PPV generation and/or a reduction in
PLOAD. At the same time, PT

NET values can be classified into several ranges: positive, slightly
positive, zero, slightly negative or negative. Thresholds to determine this classification can
be user-defined, depending on the power rating. In the NG under study, four thresholds
are considered (τ1, τ2, τ3 and τ4) to define five ranges for PT

NET , as shown in Table 2.

Table 2. Proposed ranges for PT
NET .

Interval for PT
NET Consideration

PT
NET ≥ τ1 Power trend positive

τ1 ≥ PT
NET ≥ τ2 Power trend slightly positive

τ2 ≥ PT
NET ≥ τ3 Power trend null

τ3 ≥ PT
NET ≥ τ4 Power trend slightly negative

τ4 ≥ PT
NET Power trend negative

An example of a possible rule in our expert system based on the consideration of
PT

NET could be as follows. If τ4 < PT
NET < τ3 (slightly negative) and k2BAT < SOCBAT < k1BAT

(obligatory discharge), and, depending on other factors to be detailed later, the battery will
supply the load power instead of the main grid.

3.3. PV Power Regulation

The main goal of a PV system is usually the extraction of the maximum possible power
from the panels, i.e., operation at the MPP is required. This operation corresponds to the

78

Mathematics 2021, 9, 487

maximum environmental benefits and renewable resources exploitation but, in certain
situation, it could be required to apply power generation curtailment, changing from MPP
operation mode to reference power point (RPP) operation mode. In this work, the operation
at RPP will be taken as a secondary option due to the aforementioned reasons. At the same
time, RPP can help to maintain SOCBAT and SOCSC within healthy limits (for example,
if PLOAD is low and SOCBAT is high) or for providing ancillary services to the main grid
(voltage and frequency regulation). There are several approaches to implement a RPP
algorithm in the PV DC/DC power converter. This algorithm calculates the proper duty
cycle for the power electronics switches to make the PV array working at any reference
working point. In this paper, an algorithm based on the perturb and observe (P&O) method
with adaptive step to minimize the power fluctuation is implemented. Details of this
method are available in [27].

Figure 5 represents a typical P-V curve where the maximum power point with coordi-
nates (VMPP, PMPP) is marked. The EMS will generate a reference power for the PV system
(PREF

PV) depending on a specific situation. As can be seen, there are two feasible points that
correspond with PREF

PV (x and y). The one placed at the right of the MPP will be the desired
one for a better operation as VPV is higher (leading to a reduced duty cycle). For example,
if during the NG operation PLOAD is low and SOCBAT is high, and at the same time the
utility is not available, the EMS will determine the appropriate PREF

PV .

10.8 0.920 0.690.460.23
VPV (p.u)

1

0.26

0.53

0.8

VMPP

PMPP

PREF

P P
V (

p.
u)

x yPV

Figure 5. Traditional P-V curve.

3.4. Energy Price

The NG under study can produce renewable energy for its own usage and sell excess
to the main grid. Besides the aim of obtaining a friendly bi-directional operation between
the NG and the utility, maximization of revenues is interesting to incentive the NG user
in this business model, establishing negotiations with the utility or any aggregator [19].
At the same time, the HESS can store the energy surplus to be delivered during high-price
time periods. In the case supposed in this paper, the EMS considers the same energy price
for selling the energy by the NG to the utility and vice versa. At the same time, high-price
and low-price periods are distinguished.

3.5. Comtrol Rules

The proposed EMS strategy consists of a set of rules to control the energy flow between
the different components of the NG. The main objectives are the stability and the economy
of the system. From the stability point of view, the power generation must satisfy the load
demand at any time, and the AC system voltage and frequency must remain within the
allowed range. From the economic point of view, the cost must be reduced as much as

79

Mathematics 2021, 9, 487

possible under the premise of guaranteeing system stability. The instructions at time t + 1
are computed using multi-objective optimization rules at time t. Taking into account the
consideration mentioned in the previous sub-sections, the detailed rules are summarized
in Tables 3–5. The NG is working in grid-connected mode and the PV is operating at MPP.
Remind that PT

NET is not controllable as no demand response strategy is applied.

Table 3. EMS control rules for charging/discharging the batteries.

St.1:

PT
NET≥τ1

St.2:

τ1≥PT
NET≥τ2

St.3:

τ2≥PT
NET≥τ3

St.4:

τ3≥PT
NET≥τ4

St.5:

τ4≥PT
NET

St.1 :
100% ≥ SOCBAT ≥ k1BAT

(strongly charged)
B2L N2G B2L N2G

B2G
B2L
B2G

N2G
B2G

B2L
B2G

N2G
B2G

B2L
B2G

N2G
B2G

St.2 :
k1BAT ≥ SOCBAT ≥ k2BAT

(charged)

B2L N2G
B2L
B2G

N2G
B2G

B2L
B2G

N2G
B2G

B2L
B2G

N2G
B2G B2L

B2G
N2G
B2GB2L N2G B2L N2G B2L

B2G
N2G
B2G

St.3 :
k2BAT ≥ SOCBAT ≥ k3BAT

(intermediated)

G2L
G2B

N2B
B2L N2G

B2G
B2L N2G

B2G
B2L
B2G

N2G
B2G

B2L N2G
B2GB2L

G2L
N2B G2L N2G B2L N2G

St.4 :
k3BAT ≥ SOCBAT ≥ k4BAT

(discharged)

G2L
G2B

N2B
G2B

B2L N2G B2L N2G
N2B

B2L
B2G

N2G
B2G G2L N2G

B2L
G2L

N2B B2L
G2L

N2B B2L N2G

St.5 :
k4BAT ≥ SOCBAT ≥ 0%
(strongly discharged)

G2L
G2B

N2B
G2B

G2L
G2B

N2B
G2B

G2L
G2B

N2B
G2B

G2L
G2B N2B G2L N2B

Table 4. EMS control rules for supercapacitors.

St.1
100%≥SOCSC≥k1SC

St.2
k1SC≥SOCSC≥k2SC

St.3
k2SC≥SOCSC≥k3SC

St.4
k3SC≥SOCSC≥k4SC

St.5
k4SC≥SOCSC≥0

St.1
100% ≥ SOCBAT ≥ k1BAT

(strongly charged)
- - - - - - B2SC B2SC B2SC B2SC

St.2 :
k1BAT ≥ SOCBAT ≥ k2BAT

(charged)
- - - – - - B2SC B2SC B2SC B2SC

St.3 :
k2BAT ≥ SOCBAT ≥ k3BAT

(intermediated)
- - - - - B2SC G2SC B2SC G2SC

St.4 :
k3BAT ≥ SOCBAT ≥ k4BAT

(discharged)
- - - - - - G2SC G2SC G2SC G2SC

St.5 :
k4BAT ≥ SOCBAT ≥ 0%
(strongly discharged)

- - - - - - G2SC G2SC G2SC G2SC

80

Mathematics 2021, 9, 487

Table 5. EMS control rules for the PV system.

St.1:
PT

NET≥τ1

St.2:
τ1≥PT

NET≥τ2

St.3:
τ2≥PT

NET≥τ3

St.4:
τ3≥PT

NET≥τ4

St.5:
τ4≥PT

NET

St.1
100% ≥ SOCBAT ≥ k1BAT

(strongly charged)
MPPT RPPT MPPT RPPT RPPT RPPT RPPT RPPT RPPT RPPT

St.2 :
k1BAT ≥ SOCBAT ≥ k2BAT

(charged)
MPPT RPPT MPPT RPPT RPPT RPPT RPPT RPPT RPPT RPPT

St.3 :
k2BAT ≥ SOCBAT ≥ k3BAT

(intermediated)
MPPT MPPT MPPT RPPT RPPT RPPT RPPT RPPT RPPT RPPT

St.4 :
k3BAT ≥ SOCBAT ≥ k4BAT

(discharged)
MPPT MPPT MPPT MPPT MPPT MPPT MPPT MPPT MPPT MPPT

St.5 :
k4BAT ≥ SOCBAT ≥ 0%
(strongly discharged)

MPPT MPPT MPPT MPPT MPPT MPPT MPPT MPPT MPPT MPPT

Table 3 shows the rules regarding charging/discharging the batteries and the in-
jecting/extracting power into/from the utility grid, related to conditions about power
production and load. The following acronyms are used for the power flows: B2L: Battery
to load; B2G: Battery to Grid; G2B: Grid to Battery; N2G: Surplus to Grid; N2B: Surplus
to Battery; G2L: Grid to Load. The inputs are SOCBAT and PT

NET . Each cell is divided into
two or four sub-cells. The latter occupy the central part of the table. Within each cell, the
sub-cells on the left represent the case of PNET > 0 and those on the right PNET < 0. On
the other hand, also within each cell, the top ones correspond to the case of high energy
prices and the bottom ones to low energy prices. When a sub-cell contains two lines, it
indicates that two actions are executed simultaneously, both with equal power flow. For
the cells outside the central box, the SOC is in the limit zone and PT

NET presents a strong
slope. In such a case, the priority will be to redirect the SOC to the central zone in order
to assure the battery health. On the other hand, in the cells in the central box, attention
will also be paid to the power purchase/sale price in order to get economic benefits. The
reading of one of the cells is given below as an example (the one highlighted in yellow):

If (k3BAT ≥ SOCBAT ≥ k4BAT-battery discharged) and (τ1 ≥ PT
NET ≥ τ2-trends is

slightly positive (more power will be required f or PLOAD)) and (PNET > 0-more
power is required for PLOAD)) and (price is low) then the load will be supplied
by the grid (50%, as the price is low) and by the battery (50%)(as we are not in
the state of the battery “strongly discharged”).

Table 4 shows the rules regarding the regulation of the SOC in the supercapacitors.
The following acronyms are used for the power flows: B2SC: Battery to Supercapacitor;
G2SC: Grid to Supercapacitor. Inside each main cell, division in left and right corresponds
to high-price and low-price time respectively.

Table 5 shows the rules regarding the regulation the operation mode in the PV system:
MPPT: Maximum Power Point Tracking; RPPT: Reference Power Point Tracking. Inside
each main cell, the division into left and right corresponds to PNET > 0 and PNET < 0.

4. The Associated Rule-Based Expert System (RBES)

The NG described in this paper is a first step of a new development in the line of
research of these authors. Therefore, the method and the representation of knowledge
chosen is a frame designed to be reused in more complex (detailed) scenarios.

On the one hand, the experts summarize the electrical knowledge in tables, the
conclusions of which have to be concatenated (in this first step that will take place only with
Tables 3–5, but will be increased when further details are considered in future extensions

81

Mathematics 2021, 9, 487

of this work). The advantages of using rules when deductions have to be concatenated are
well known.

4.1. Analysing the Structuring of the Information in the Tables

Let us use Table 3 to illustrate the procedure. This table is not homogeneous, as some
cells have been merged.

Four variables are considered as input:

SOCBAT, PT
NET, PNET, price

and 5 intervals are distinguished for the first and second variables and 2 possibilities for
the third and fourth variables. In the expert system they will be abbreviated for the sake of
simplicity:

• SOCBAT: x1, x2, x3, x4, x5

• PT
NET: y1, y2, y3, y4, y5

• PNET: z1, z2
• Price: u1, u2

There are 6 possible conclusions (operations modes):

GRID2LOAD, GRID2BAT, NET2GRID, NET2BAT, BAT2LOAD, BAT2GRID.

In some cases (cells) there is one operation mode to be carried out, but in other cases
there are two to be carried out.

In this case we would initially have a table with 52 × 22 cells = 100 cells. Nevertheless,
the experts in electrical grids have grouped all cells outside the dark black rectangle in
pairs (the third variable, z, is not considered for those cells), resulting in double height cells
outside the dark black rectangle. One example is the upper left cell:

BAT2LOAD is recommended if we have x1 and y1 and u1 (despite having
z1 or z2)

(these groupings are from an engineering origin: in many cases it does not matter
whether we have z1 or z2: the same operation mode(s) is(are) recommended).

The table with abbreviated names of variables can be found in Table 6.

4.2. Combinatorial Manual Grouping of the Information in the Tables

For instance, the cell in the upper left corner of the table can be merged with the one
below it. The same can be said about the two cells to their right.

There are many other possible groupings. Using colors can simplify viewing possible
groupings (a task to be performed by a second group of experts: mathematicians or
computer scientists, that have to consider which cells can be easily grouped into a single
logic rule or into a few logic rules).

For instance, as exactly one yi must hold (because the intervals considered for PNET
T

are mutually exclusive), the information provided by all the cells containing GRID2BAT in
the lower row of Table 6 (all columns but the last three ones) can be summarized as follows:

IF ×5 AND (NOT(y4 AND u2) OR NOT y5) THEN GRID2BAT

that is, “in the situation described by the last row (x5) and any of the possibilities for the
columns yi (i∈{1,2,3,4,5}) except ((simultaneously y4 and u2) or y5) then GRID2BAT is
operation mode is recommended”. If we use the usual logic symbols: ∧ (conjunction), ∨
(disjunction), ¬ (negation) and → (implication), it can be written:

x5 ∧ (¬(y4 ∧ u2) ∨ ¬y5) → GRID2BAT

82

Mathematics 2021, 9, 487

T
a

b
le

6
.

Ta
bl

e
3

w
it

h
th

e
no

ta
ti

on
of

th
e

ru
le

-b
as

ed
ex

pe
rt

sy
st

em
(R

BE
S)

.

T
A

B
L

E
N

U
M

B
E

R
6

y
1

y
2

y
3

y
4

y
5

u
1

u
2

u
1

u
2

u
1

u
2

u
1

u
2

u
1

u
2

x1
z1 —

–
z2

B
A

T
2

L
O

A
D

N
E

T
2

G
R

ID

B
A

T
2

L
O

A
D

N
ET

2G
R

ID
BA

T2
G

R
ID

BA
T2

LO
A

D
BA

T2
G

R
ID

N
ET

2G
R

ID
BA

T2
G

R
ID

BA
T

2L
O

A
D

BA
T

2G
R

ID
N

ET
2G

R
ID

BA
T

2G
R

ID
BA

T
2L

O
A

D
BA

T
2G

R
ID

N
ET

2G
R

ID
BA

T
2G

R
ID

x2
z1 —

–
z2

B
A

T
2

L
O

A
D

N
E

T
2

G
R

ID

BA
T2

LO
A

D
BA

T2
G

R
ID

N
ET

2G
R

ID
BA

T2
G

R
ID

BA
T2

LO
A

D
BA

T2
G

R
ID

N
ET

2G
R

ID
BA

T2
G

R
ID

BA
T

2L
O

A
D

BA
T

2G
R

ID
N

ET
2G

R
ID

BA
T

2G
R

ID
BA

T
2L

O
A

D
BA

T
2G

R
ID

N
ET

2G
R

ID
BA

T
2G

R
ID

BA
T2

LO
A

D
N

ET
2G

R
ID

BA
T2

LO
A

D
N

ET
2G

R
ID

BA
T

2L
O

A
D

BA
T

2G
R

ID
N

ET
2G

R
ID

BA
T

2G
R

ID

x3
z1 —

–
z2

G
R

ID
2L

O
A

D
G

R
ID

2B
A

T

N
E

T
2

B
A

T

BA
T2

LO
A

D
N

ET
2G

R
ID

BA
T2

G
R

ID
BA

T2
LO

A
D

N
ET

2G
R

ID
BA

T2
G

R
ID

BA
T

2L
O

A
D

BA
T

2G
R

ID
N

ET
2G

R
ID

BA
T

2G
R

ID
B

A
T

2
L

O
A

D

N
ET

2G
R

ID
BA

T
2G

R
ID

BA
T2

LO
A

D
G

R
ID

2L
O

A
D

N
ET

2B
A

T
G

R
ID

2L
O

A
D

N
ET

2G
R

ID
BA

T
2L

O
A

D
N

ET
2G

R
ID

x4
z1 —
— z2

G
R

ID
2L

O
A

D
G

R
ID

2B
A

T
N

ET
2B

A
T

G
R

ID
2B

A
T

BA
T2

LO
A

D
N

ET
2G

R
ID

BA
T2

LO
A

D
N

ET
2G

R
ID

N
ET

2B
A

T
BA

T
2L

O
A

D
BA

T
2G

R
ID

N
ET

2G
R

ID
BA

T
2G

R
ID

G
R

ID 2
L

O
A

D

N
E

T
2

G
R

ID
BA

T2
LO

A
D

G
R

ID
2L

O
A

D
N

ET
2B

A
T

BA
T2

LO
A

D
G

R
ID

2L
O

A
D

N
ET

2B
A

T
BA

T
2L

O
A

D
N

ET
2G

R
ID

x5
z1 —
— z2

G
R

ID
2L

O
A

D
G

R
ID

2B
A

T
N

ET
2B

A
T

G
R

ID
2B

A
T

G
R

ID
2L

O
A

D
G

R
ID

2B
A

T
N

ET
2B

A
T

G
R

ID
2B

A
T

G
R

ID
2L

O
A

D
G

R
ID

2B
A

T
N

ET
2B

A
T

G
R

ID
2B

A
T

G
R

ID
2L

O
A

D
G

R
ID

2B
A

T

N
E

T
2

B
A

T

G
R

ID 2
L

O
A

D

N
E

T
2

B
A

T

83

Mathematics 2021, 9, 487

Nevertheless, that would imply to include an integrity constraint describing that
exactly one yi must hold. A preferable alternative equivalent way to express it (without the
need to include integrity constraints) is:

x5 ∧ (y1 ∨ y2 ∨ y3 ∨ (y4 ∧ u1)) → GRID2BAT

that is, “in the situation described by the last row (x5) and the columns (y1 or y2 or y3 or
(y4 and u1)) then GRID2BAT operation mode is recommended”.

An advantage of the logic rule translation is that there are no problems if the groupings
do not describe a partition of the set of cells but a covering, that is, if the subsets of cells
are not disjointed two by two—that will only allow a conclusion (that is, the operation
mode(s)) to be reached by forward firing more than one rule, which is not a problem.

For instance, an exact description of the information provided by the three cells
containing GRID2BAT in the antepenultimate and penultimate rows and the first and
second columns of the table is:

((x3 ∨ x4) ∧ y1 ∧ u1) ∨ (x4 ∧ y1 ∧ u2) → GRID2BAT

which is equivalent to the two simpler rules:

(x3 ∨ x4) ∧ y1 ∧ u1 → GRID2BAT

x4 ∧ y1 → GRID2BAT

The latter rules describing two intersecting (non-disjoint) subsets of cells (these will
be the rules R2 and R3 of our RBES). Note that this is a technique typically used in
Karnaugh maps.

5. About the Inference Engine Chosen

We have decided to use the algebraic inference engine described in detail in [28,29].
Among the many available existing approaches, we have chosen this one because of our
experience with it and because of the possibility to straightforwardly move to a multivalued
modal logic in future extensions, if necessary.

5.1. A Brief Overview of the Algebraic Model for Logic

Let us consider the Boolean logic case. If there are m propositional variables, X1,X2,
. . . ,Xm, the algebraic model considers the polynomial variables x1,x2, . . . ,xm and the
residue-class ring

Z2[x1,x2, . . . ,xm]/<x1
2 − x1,x2

2 − x2, . . . ,xm
2 − xm>

where I = <x1
2 − x1,x2

2 − x2, . . . ,xm
2 − xm> denotes the ideal generated by x1

2 − x1,x2
2

− x2, . . . ,xm
2 − xm. If X ∧ Y X ∨ Y, X xor Y and ¬X are translated by x·y, x + y − x·y, x·y

and 1−x, respectively, we have a ring isomorphism (or a Boolean algebra isomorphism,
depending on the logic and algebraic operations considered).

The advantage of moving to the algebraic model is that we have an effective method
for performing computations: Gröbner bases (and the derived normal form of a polynomial
modulo an ideal) [30,31].

The main result is that Q is a tautological consequence of P (P→Q) is equivalent in the
algebraic model to NormalForm(1 − q,<1 − p> + I) = 0, where p and q are the translations of
P and Q in the polynomial model, respectively (and let us recall that 1−p and 1−q are the
translations of ¬P and ¬Q in the polynomial model, respectively).

In the n-valued modal logic case (n prime) the only differences are:

• Zn is considered instead of Z2 as the base field,
• the ideal <x1

2 − x1,x2
2 − x2, . . . ,xm

2 − xm> is substituted by ideal <x1
n − x1,x2

n − x2,
. . . ,xm

n − xm>

84

Mathematics 2021, 9, 487

so the polynomial ring considered is Zn[x1,x2, . . . ,xm]/ <x1
n − x1,x2

n − x2, . . . ,xm
n −

xm>, and:

• the polynomial translations of the logic connectives do change.

5.2. A Brief Overview of the Algebraic Model for RBES (Boolean Case)

The facts, rules and integrity constraints are logic formulae stated as true. The rules
and integrity constraints are fixed, meanwhile the set of facts stated as true change (al-
though it must be a subset of the set of potential facts). The corresponding polynomial
model presented in the previous subsection was Z2[x1,x2, . . . ,xm]/<x1

2 − x1,x2
2 − x2,

. . . ,xm
2 − xm> = Z2[x1,x2, . . . ,xm]/I.

As the facts, rules and integrity constraints are stated as true, if

• J is the polynomial ideal generated by the polynomial translation of the negation of
the rules and integrity constraints, and

• K is the polynomial ideal generated by the polynomial translation of the negation of
the given facts,

Then its polynomial model is the residue-class ring:

(Z2[x1,x2, . . . ,xm]/I)/(J + K)= Z2[x1,x2, . . . ,xm]/(I + J + K).

5.3. The Maple Implementation of the Algebraic Model for RBES

The algebraic model for RBES can be easily implemented in any computer algebra
system (CAS). For instance, in the CAS Maple, the implementation is straightforward.
Firstly the packages Groebner and Ore_algebra (that allow to define the polynomial ring
where the computations will take place) have to be loaded.

Afterwards the polynomial variables have to be declared. For instance, in the case
of Table 6, we can store the x, z, y, u variables and the conclusions (operation modes)
GRID2LOAD, GRID2BAT, etc. in a sequence (denoted, for instance, SV).

Then the polynomial ring where computations have to take place and the ordering
to be applied and the order between variables have to be declared, and the polynomial
ideal I has to be defined. At this point we are ready to define the polynomial translation of
the logic connectives as Maple functions, which is straightforward and needs just 6 lines
of code (the complete code required can be found in Appendix A in order the acquainted
reader to be able to reproduce the computations).

For instance, the expression mentioned above:

(x3 ∨ x4) ∧ y1 ∧ u1 → GRID2BAT

is translated into Rule 2 of the RBES just by typing:

R2: = (x3 &OR x4) &AND y1 &AND u1 &IMP GRID2BAT:

which is very close to the usual notation in logic.

6. The Energy Management Nanogrid RBES Developed

The RBES developed will be described afterwards. It has been divided into 3 subsys-
tems, each one dealing with the knowledge contained in one of the Tables 3–5.

6.1. Subsystem I

We have written 35 rules, similar to R2 in Section 5.3, that translate the knowledge
contained in Table 6 (let as recall that this table is Table 3 with another notation). This
translation can be made in several ways. The set (or list) of the negations of the chosen
rules is a base of ideal J. Then we are ready to extract knowledge: if K is the ideal generated
by the negation of the facts stated as true, the following two lines:

> B:=Basis([op(iI),op(J),op(K)], Orde);

85

Mathematics 2021, 9, 487

> NormalForm(NEG(NET2BAT),B,Orde);
determine if NET2BAT can be deduced from the facts stated as true, by forward firing

the 35 rules. The complete code of this subsystem can be found in Appendix B.
Nevertheless, it is usually more convenient to directly determine which of the possible

operation modes (GRID2LOAD, GRID2BAT, . . . , BAT2GRID) are recommended. A brief
procedure, that we have denoted operation_mode, allows us to do this with a single order
(see Appendix C for details).

Moreover, obtaining the operation modes is not restricted to a single cell. Other more
complex tasks can be solved by the RBES (see Appendix C).

Finally, we could underline that it is possible to check that the rules developed correctly
translate the knowledge summarized in Table 6 using a procedure developed ad hoc (see
Appendix D).

6.2. Subsystem II

The variables considered in the five rows of Table 4 were denoted x1, ...,x5 in Table 6.
The variables in the upper part of Table 4 (SOCSC) are new, and are denoted v1, ...,v5,
respectively. Each column is divided into two columns, corresponding variables of which
(high-price, low-price), were denoted z1 and z2, respectively, in Table 6.

In this case we have written 4 rules that translate the knowledge contained in Table 4.
For instance, the first rule, R101, is:

(x1 ∨ x2) ∧ (v4 ∨ v5) → BAT2SC

The corresponding code and the way knowledge extraction is performed is similar to
Subsystem I (see Appendix E).

6.3. Subsystem III

The variables considered in the five rows of Table 5 were denoted x1, ...,x5 in Table 6.
Similarly, the variables in the upper part of Table 5 were denoted y1, ...,y5 in Table 6. Each
column is divided into two columns, corresponding variables of which (PNET positive or
negative) will be denoted w1, w2, respectively.

In this case we have written 7 rules that translate the knowledge contained in Table 5.
For instance, the first rule, R201, is:

(x1 ∨ x2 ∨ x3) ∧ (y1 ∨ y2) ∧ w1 → MPPT

The corresponding code and the way knowledge extraction is performed is similar to
Subsystem I (see Appendix F).

7. Simulations

The associated RBES acting as EMS to the NG under study which was defined in
Section 2 is tested through simulation using MATLAB/Simulink. Figure 6a shows an hourly
PV generation and load consumption profiles for the NG under study. These curves are
considered quite realistic for a 4 kW peak power PV generation system during a sunny
day. PNET is represented in Figure 6b. Positive and negative values of PNET take place
along the day. Thus, surplus or deficit must be compensated by the HESS or by the main
grid. For simplicity, supposing that the main grid cannot participate (PGRID = 0), PBAT
is represented in Figure 6c. It corresponds to the filtered value of PNET. Meanwhile, the
supercapacitors will compensate the peak power according to Equation (18) as depicted in
Figure 6d. Subsequently, Figure 7a depicts PNET and its slope is produced by two hourly
consecutive samples. These slopes can be positive or negative. At the same time, PT

NET is
displayed in Figure 7b.

86

Mathematics 2021, 9, 487

 (d)

(a) (b)

(c)

PPV
PLOAD

Figure 6. HESS power distribution. (a) PPV and PLOAD; (b) PNET; (c) PBAT and (d) PSC.

Figure 7. NG net power trend analysis. (a) PNET and the slopes coming from two consecutive samples (hourly) and
(b) PT

NET .

From PNET, just the sign (positive or negative) of this value is required as RBES input.
The value of PT

NET is given a consideration according to Table 2. For our case of study,
thresholds equal to 1.5 kW, 0.5 kW, −0.5 kW and −1.5 kW are selected as constants τ1,
τ2, τ3 and τ4 respectively. Current values of the SOCBAT and SOCSC, calculated with
Equations (15) and (16), define specific intervals according to Figure 4. These intervals will
also feed the RBES back (the facts stated as true at each moment). Regarding the SOC for
both the battery and the supercapacitor, the following levels: 80%, 65%, 35% and 20%, were
chosen for k1, k2, k3 and k4.

Considering as initial SOCBAT equal to 50% and initial SOCSC equal to 35%, the
control of the NG with the proposed EMS and its associated RBES, clearly improves the
performance of the HESS. Figure 8 represents the corresponding SOC before (SOCBAT and
SOCSC) and after considering the proposed control (SOC´BAT and SOC´SC). Before the
EMS activation, SOCBAT reaches almost 100% (around 20:00 p.m.) and falls 10% (around
10 a.m.). The maximum SOCSC corresponds to 14:30 p.m., with around 65%. On the other

87

Mathematics 2021, 9, 487

hand, at 7:30 a.m. the SOCSC is around 5%. As we can see in Figure 8, after applying the
proposed control, both SOC are maintained close to 50% during the day. Thus, both SOC
are kept within secure thresholds, guarantying a safety operation of the HESS.

 (a)

SOC´BAT

(b)

SOCBAT

SOC´SC
SOCSC

Figure 8. Improved performance of the NG thanks to the RBES acting as EMS. (a) SOCBAT and SOC´BAT and (b) SOCSC and
SOC´SC.

Finally, battery and supercapacitor powers before and after (P´BAT and P´SC respec-
tively) the EMS activation are represented in Figure 9a,b. Thanks to the EMS the system
has a smoother response which also helps to improve the HESS lifespan.

(a)

P´BAT

(b)

PBAT

P´SC
PSC

Figure 9. Smoother responses in the battery and supercapacitor powers thanks to the RBES acting as EMS. (a) PBAT and
P´BAT and (b) PSC and P´SC.

8. Conclusions

This paper exposes the relevance of the EMS in the NG operation. A new approach to
EMS for a NG was developed by designing a RBES step by step. The proposed approach
has as its main advantage the reduction of the computational burden, while providing
the possibility to straightforwardly move to a multivalued modal logic if the NG becomes
more complex. At the same time, the possibility to concatenate the conclusions according
to new variables or operation modes allows a modular design of the EMS. Further work
will consider the presence of other energy sources in the NG, such as diesel generation, as
well as the integration of some demand-side and peak load-shifting strategies. At the same
time, environmental concerns are planned to be added in further extensions, as well as
other energy required in the residential sector as thermal energy.

Regarding the chosen computational approach (a RBES), it has been shown how the
knowledge included in table format can be conveniently condensed in the format of logic
rules. The chosen inference engine (algebraic) is slower than other approaches already
used by the authors, like answer set programming [32,33], but timings are very small, due
to the size of problems treated (see Appendix B). The main advantage of the inference
engine chosen is its simplicity (see Appendix A) and the fact that, during the development

88

Mathematics 2021, 9, 487

step, the underlying logic can be easily changed to a modal logic if desired (which is very
convenient as this work is a first step in a new line of research by the authors).

Author Contributions: Conceptualization, C.R.-C. and E.R.-L.; methodology, C.R.-C. and E.R.-L.;
validation, C.R.-C. and E.R.-L.; formal analysis, F.B.-G.; investigation, C.R.-C., E.R.-L. and F.B.-G.;
writing—original draft preparation, C.R.-C. and E.R.-L.; writing—review and editing, E.R.-L. and
F.B.-G.; supervision, C.R.-C., E.R.-L. and F.B.-G.; project administration, F.B.-G.; funding acquisition,
C.R.-C., F.B.-G. and E.R.-L. All authors have read and agree to the published version of the manuscript.

Funding: This research was funded by the Junta de Extremadura within the programs “Ayudas
Talento” (TA18003) and “Funding for Research Groups” (GR18087) and partially funded by the
research project PGC2018-096509-B-100 (Government of Spain).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers for their most
valuable comments and suggestions, that have greatly improved the final version of the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The Code of the Implementation Described in Section 5.3. The complete Maple code
can be found afterwards. Note that the “&” symbols are necessary in Maple to declare infix
operators.

> with(Groebner):
> with(Ore_algebra):
>SV:=x1,x2,x3,x4,x5,z1,z2,y1,y2,y3,y4,y5,u1,u2,GRID2LOAD,
> GRID2BAT, NET2GRID, NET2BAT, BAT2LOAD, BAT2GRID:
> A:=poly_algebra(SV,characteristic=2):
> Orde:=MonomialOrder(A,’plex’(SV)):
> fu:=var->varˆ2-var:
> iI:=map(fu,[SV]):
> NEG :=(m::algebraic) -> NormalForm(1+‘m‘,iI,Orde):
> ‘&AND’ :=(m::algebraic,n::algebraic) ->
> NormalForm(expand(m*n),iI,Orde):
> ‘&OR’ :=(m::algebraic,n::algebraic) ->
> NormalForm(expand(m+n+m*n),iI,Orde):
> ‘&IMP’ :=(m::algebraic,n::algebraic) ->
> NormalForm(expand(1+m+m*n),iI,Orde):
> ‘&XOR’ :=(m::algebraic,n::algebraic) ->
> (m &OR n) &AND NEG(m &AND n):
(observe that ideal I is denoted iI in the implementation above because I is a reserved

word in Maple).
That is all the code required.

Appendix B. Subsystem I—Construction and Extracting Knowledge

The 35 rules that we have written to translate the knowledge contained in Table 6 are:
> R1 := x5 &AND (y1 &OR y2 &OR y3 &OR (y4 &AND u1)) &IMP GRID2BAT:
> R2 := (x3 &OR x4) &AND y1 &AND u1 &IMP GRID2BAT:
> R3 := x4 &AND y1 &IMP GRID2BAT:
> R4 := x5 &AND (y2 &OR y3 &OR y4) &AND u1 &IMP GRID2LOAD:
> R5 := (x3 &OR x4 &OR x5) &AND y1 &AND u1 &IMP GRID2LOAD:
> R6 := (x3 &OR x4) &AND (y2 &OR y3) &AND u1 &AND z2 &IMP GRID2LOAD:
> R7 := (x4 &OR x5) &AND y5 &AND u1 &IMP GRID2LOAD:

89

Mathematics 2021, 9, 487

> R8 := x3 &AND y1 &AND u2 &IMP NET2BAT:
> R9 := x4 &AND y1 &AND u2 &IMP NET2BAT:
> R10:= x5 &AND (y1 &OR y2 &OR y3 &OR y4 &OR y5) &AND u2 &IMP NET2BAT:
> R11:= x3 &AND z2 &AND y2 &AND u2 &IMP NET2BAT:
> R12:= x4 &AND z1 &AND y3 &AND u2 &IMP NET2BAT:
> R13:= x4 &AND z2 &AND (y2 &OR y3) &AND u2 &IMP NET2BAT:
> R14:= (x1 &OR x2) &AND y1 &AND u1 &IMP BAT2LOAD:
> R15:= x1 &AND (y2 &OR y3 &OR y4 &OR y5) &AND u1 &IMP BAT2LOAD:
> R16:= (x2 &OR x3) &AND y5 &AND u1 &IMP BAT2LOAD:
> R17:= (x2 &OR x4) &AND (y2 &OR y3 &OR y4) &AND u1 &IMP BAT2LOAD:
> R18:= x3 &AND (y2 &OR y3 &OR y4) &AND z1 &AND u1 &IMP BAT2LOAD:
> R19:= x3 &AND (y2 &OR y4) &AND z2 &AND u1 &IMP BAT2LOAD:
> R20:= x1 &AND y2 &AND u2 &IMP BAT2GRID:
> R21:= x1 &AND (y3 &OR y4 &OR y5) &IMP BAT2GRID:
> R22:= x2 &AND z1 &AND (y2 &OR y3 &OR y4) &IMP BAT2GRID:
> R23:= x2 &AND z2 &AND y4 &IMP BAT2GRID:
> R24:= x3 &AND z1 &AND (y2 &OR y3 &OR y4) &AND u2 &IMP BAT2GRID:
> R25:= x3 &AND z1 &AND y4 &AND u1 &IMP BAT2GRID:
> R26:= x4 &AND z1 &AND y4 &IMP BAT2GRID:
> R27:= x2 &AND y5 &IMP BAT2GRID:
> R28:= x3 &AND y5 &AND u2 &IMP BAT2GRID:
> R29:= x1 &AND (y1 &OR y2 &OR y3 &OR y4 &OR y5) &AND u2 &IMP NET2GRID:
> R30:= x2 &AND y1 &AND u2 &IMP NET2GRID:
> R31:= (x2 &OR x3 &OR x4) &AND y5 &AND u2 &IMP NET2GRID:
> R32:= (x2 &OR x3 &OR x4) &AND (y2 &OR y3 &OR y4) &AND z1 &AND u2

&IMP NET2GRID:
> R33:= x2 &AND (y2 &OR y3 &OR y4) &AND z2 &AND u2 &IMP NET2GRID:
> R34:= x3 &AND (y3 &OR y4) &AND z2 &AND u2 &IMP NET2GRID:
> R35:= x4 &AND y4 &AND z2 &AND u2 &IMP NET2GRID:
and the set (or list) of their negations is a base of ideal J:
J:=[NEG(R1),NEG(R2),NEG(R3),NEG(R4),NEG(R5),NEG(R6),NEG(R7),

NEG(R8),NEG(R9),NEG(R10),NEG(R11),NEG(R12),NEG(R13),NEG(R14),
NEG(R15),NEG(R16),NEG(R17),NEG(R18),NEG(R19),NEG(R20),
NEG(R21),NEG(R22),NEG(R23),NEG(R24),NEG(R25),NEG(R26),
NEG(R27),NEG(R28),NEG(R29),NEG(R30),NEG(R31),NEG(R32),
NEG(R33),NEG(R34),NEG(R35)]:

Now we are ready to extract knowledge. For instance, let us state as facts x2, z2, y2
and u1:

K:=[NEG(x2),NEG(z2),NEG(y2),NEG(u1)]:
Which of NET2BAT, BAT2GRID, BAT2LOAD, GRID2BAT, GRID2LOAD, NET2GRID

follow from these facts? (the ideal considered is iI+J+K and its basis, B, is computed firstly):
> B:=Basis([op(iI),op(J),op(K)], Orde);
> NormalForm(NEG(NET2BAT),B,Orde);

NET2BAT + 1
> NormalForm(NEG(BAT2GRID),B,Orde);

BAT2GRID + 1
> NormalForm(NEG(BAT2LOAD),B,Orde);

0
> NormalForm(NEG(GRID2BAT),B,Orde);

GRID2BAT + 1
> NormalForm(NEG(GRID2LOAD),B,Orde);

GRID2LOAD + 1
> NormalForm(NEG(NET2GRID),B,Orde);

NET2GRID + 1

90

Mathematics 2021, 9, 487

(the 6 calculations above took 0.078 s on a standard computer with a 8 GB RAM). 0
is obtained only for BAT2LOAD, so that is the only operation mode recommended in this
case.

Appendix C. Subystem I—Simplifying Knowledge Extraction

Obtaining the operation modes can be simplified declaring them and using a simple
procedure that performs the six questions and looks for the results equal to zero:

> Operation_Modes:=[NET2GRID,NET2BAT,BAT2LOAD,BAT2GRID,GRID2LOAD,
GRID2BAT]:

> operation_mode:=proc(facts::list)
> local i,K,OM,B;
> OM:=[[];
> K:=map(NEG,facts);
> B:=Basis([op(iI),op(J),op(K)], Orde);
> for i in Operation_Modes do
> if NormalForm(NEG(i),B,Orde)=0 then OM:=[op(OM),i] end if;
> end do;
> OM;
> end proc:
For example:
> Facts:=[x1,u1,y1,z2]:
> operation_mode(Facts);

[BAT2LOAD]
> Facts:=[x4,z1,y3,u2]:
> operation_mode(Facts);

[NET2GRID, NET2BAT]
> Facts:=[x4,z1,y3,u2]:
> operation_mode(Facts);

[NET2GRID, NET2BAT]
As said above, other more complex tasks can be solved by the RBES. For instance: Can

something be deduced from x1∧u1∧(z1∨z2)? Let us ask the system:
> Facts:=[x1,y1 &OR y2 &OR y3 &OR y4 &OR y5,u1,z1 &OR z2]:
> operation_mode(Facts);

[BAT2LOAD]
(if we have a look at the first row of the table, BAT2LOAD is obtained in the first three

odd columns and BAT2LOAD or BAT2GRID is obtained in the rest of the odd columns).

Appendix D. Subsystem I—Checking the Correctness of the Rules

A simple procedure that generates the columns of Table 6 (with its peculiarities) can
be easily implemented in Maple (in order to check the correctness of the rules):

> column:=proc(facts::list)
> local i,j;
> for i to 5 do
> if {op(facts)} intersect {y2,y3,y4}<>{} and i in {2,3,4}
> then
> for j to 2 do
> print(x||i,z||j,op(1,facts),op(2,facts),
> operation_mode([op(facts),x||i,z||j]));
> end do;
> else
> print(x||i,op(1,facts),op(2,facts),
> operation_mode([op(facts),x||i]));
> end if;
> end do;

91

Mathematics 2021, 9, 487

> end proc:
We can then ask, for example, for the first and fourth columns of Table 6 (note that the

number of rows has been automatically adjusted):
> column([y1,u1]);

x1, y1, u1, [BAT2LOAD]
x2, y1, u1, [BAT2LOAD]
x3, y1, u1, [GRID2LOAD, GRID2BAT]
x4, y1, u1, [GRID2LOAD, GRID2BAT]
x5, y1, u1, [GRID2LOAD, GRID2BAT]

> column([y2,u2]);
x1, y2, u2, [NET2GRID, BAT2GRID]

x2, z1, y2, u2, [NET2GRID, BAT2GRID]
x2, z2, y2, u2, [NET2GRID]
x3, z1, y2, u2, [NET2GRID, BAT2GRID]
x3, z2, y2, u2, [NET2BAT]
x4, z1, y2, u2, [NET2GRID]
x4, z2, y2, u2, [NET2BAT]

x5, y2, u2, [NET2BAT, GRID2BAT]

Appendix E. Subsystem II—Extracting Knowledge

The four rules describing the knowledge contained in Table 4 considered are:
> R101:= (x1 &OR x2) &AND (v4 &OR v5) &IMP BAT2SC:
> R102:= x3 &AND (v4 &OR v5) &AND z1 &IMP BAT2SC:
> R103:= x3 &AND (v4 &OR v5) &AND z2 &IMP GRID2SC:
> R104:= (x4 &OR x5) &AND (v4 &OR v5) &IMP GRID2SC:
and, in this case, the ideal J is:
> J:=[NEG(R101),NEG(R102),NEG(R103),NEG(R104)]:
We have, for example:
> Facts:=[x2,v4,z2]:
> operation_mode(Facts);

[BAT2SC]
> Facts:=[x4,v4,z1 &OR z2]:
> operation_mode(Facts);

[GRID2SC]

Appendix F. Subsystem III—Extracting Knowledge

The seven rules describing the knowledge contained in Table 5 are:
> R201:= (x1 &OR x2 &OR x3) &AND (y1 &OR y2) &AND w1 &IMP MPPT:
> R202:= x3 &AND (y1 &OR y2) &AND w1 &IMP MPPT:
> R203:= x3 &AND y1 &AND w2 &IMP MPPT:
> R204:= x4 &OR x5 &IMP MPPT:
> R205:= (x1 &OR x2) &AND y1 &AND w2 &IMP RPPT:
> R206:= (x1 &OR x2 &OR x3) &AND (y1 &OR y2) &AND w2 &IMP RPPT:
> R207:= (x1 &OR x2 &OR x3) &AND (y3 &OR y4 &OR y5) &IMP RPPT:
and, in this case, the ideal J is:
> J:=[NEG(R201),NEG(R202),NEG(R203),NEG(R204),NEG(R205),

NEG(R206),NEG(R207)]:
For example:
> Facts:=[x3,y3,w1]:
> operation_mode(Facts);

[RPPT]
> Facts:=[x4,y1 &OR y2 &OR y3 &OR y4 &OR y5, w1 &OR w2]:
> operation_mode(Facts);

[MPPT]

92

Mathematics 2021, 9, 487

Abbreviations
AC Alternating Current
B2G, BAT2GRID Battery to Grid
B2L, BAT2LOAD Battery to Load
B2SC, BAT2SC Battery to Supercapacitor
CAS Computer Algebra System
DC Direct Current
DER Distributed Energy Resources
EMS Energy Management System
ESS Energy Storage System
G2B, GRID2BAT Grid to Battery
G2L, GRID2LOAD Grid to Load
G2SC, GRID2SC Grid to Supercapacitor
GC Grid-Connected
HESS Hybrid Energy Storage System
LPF Low-Pass Filter
MPP Maximum Power Point
MG Microgrid
MPPT Maximum Power Point Tracking
N2B, NET2BAT Surplus to Battery
N2G, NET2GRID Surplus to Grid
NG Nanogrid
P&O Perturb and Observe
PV Photovoltaic
PCC Point of Common Coupling
RBES Rule Based Expert System
RPP Reference Power Point
RES Renewable Energy Sources
RPPT Reference Power Point Tracking
SA Stand-Alone
STC Standard Test Conditions
SOC State of Charge
STS Static Transfer Switch

References

1. European Commission. 2030 Climate & Energy Framework; European Commission: Brussels, Belgium. Available online: https:
//ec.europa.eu/clima/policies/strategies/2030_en#tab-0-0 (accessed on 24 November 2020).

2. SETIS. Smart Electricity Grids. Available online: https://setis.ec.europa.eu/relatedjrc-activities/jrc-setis-reports/smart-
electricity-grids (accessed on 3 April 2019).

3. Lee, S.; Jin, H.; Vecchietti, L.F.; Hong, J.; Har, D. Short-Term Predictive Power Management of PV-Powered Nanogrids. IEEE
Access 2020, 8, 147839–147857. [CrossRef]

4. Sandgani, M.R.; Sirouspour, S. Energy Management in a Network of Grid-Connected Microgrids/Nanogrids Using Compromise
Programming. IEEE Trans. Smart Grid 2018, 9, 2180–2191. [CrossRef]

5. Ban, M.; Shahidehpour, M.; Yu, J.; Li, Z. A Cyber-Physical Energy Management System for Optimal Sizing and Operation of
Networked Nanogrids With Battery Swapping Stations. IEEE Trans. Sustain. Energy 2019, 10, 491–502. [CrossRef]

6. Luo, F.; Ranzi, G.; Wang, S.; Dong, Z.Y. Hierarchical Energy Management System for Home Microgrids. IEEE Trans Smart Grid
2019, 10, 5536–5546. [CrossRef]

7. Farzaneh, H.; Shokri, M.; Kebriaei, H.; Aminifar, F. Robust Energy Management of Residential Nanogrids via Decentralized Mean
Field Control. IEEE Trans. Sustain. Energy 2020, 11, 1995–2002. [CrossRef]

8. Salazar, A.; Berzoy, A.; Song, W.; Velni, J.M. Energy Management of Islanded Nanogrids Through Nonlinear Optimization Using
Stochastic Dynamic Programming. IEEE Trans. Ind. Appl. 2020, 56, 2129–2137. [CrossRef]

9. Lee, S.; Lee, J.; Jung, H.; Cho, J.; Hong, J.; Lee, S.; Har, D. Optimal power management for nanogrids based on technical
information of electric appliances. Energy Build. 2019, 191, 174–186. [CrossRef]

10. Youssef, T.A.; Hariri, M.E.; Elsayed, A.T.; Mohammed, O.A. A DDS-Based Energy Management Framework for Small Microgrid
Operation and Control. IEEE Trans. Ind. Inform. 2018, 14, 958–968. [CrossRef]

11. Roncero-Clemente, C.; Gonzalez-Romera, E.; Barrero-González, F.; Milanés-Montero, M.I.; Romero-Cadaval, E. Power-Flow-Based
Secondary Control for Autonomous Droop-Controlled AC Nanogrids with Peer-to-Peer Energy Trading. IEEE Access 2021, 9,
22339–22350. [CrossRef]

93

Mathematics 2021, 9, 487

12. Young, B.; Ertugrul, N.; Chew, H.G. Overview of optimal energy management for nanogrids (end-users with renewables and
storage). In Proceedings of the 2016 Australasian Universities Power Engineering Conference (AUPEC), Brisbane, Australia,
25–28 September 2016; pp. 1–6. [CrossRef]

13. Bhosale, R.; Agarwal, V. Fuzzy Logic Control of the Ultracapacitor Interface for Enhanced Transient Response and Voltage
Stability of a DC Microgrid. IEEE Trans. Ind. Appl. 2019, 55, 712–720. [CrossRef]

14. Barricarte, J.J.; Martín, I.S.; Sanchis, P.; Marroyo, L. Energy management strategies for grid integration of microgrids based on
renewable energy sources. In Proceedings of the 10th International Conference on Sustainable Energy Technology, Istambul,
Turkey, 4–7 September 2011; pp. 4–7.

15. Arcos-Aviles, D.; Espinosa, N.; Guinjoan, F.; Marroyo, L.; Sanchis, P. Improved fuzzy controller design for battery energy
management in a grid connected microgrid. In Proceedings of the IECON 40th IEEE Annu. IEEE Industrial Electronics Society,
Dallas, TX, USA, 29 October 2014; pp. 2128–2133.

16. Arcos-Aviles, D.; Pascual, J.; Marroyo, L.; Sanchis, P.; Guinjoan, F. Fuzzy Logic-Based Energy Management System Design for
Residential Grid-Connected Microgrids. IEEE Trans. Smart Grid 2018, 9, 530–543. [CrossRef]

17. Ding, Y.; Wang, Z.; Liu, S.; Wang, X. Energy Management Strategy of PV Grid-Connected Household Nano-Grid System.
In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019;
pp. 1–5. [CrossRef]

18. Ghiani, E.; Garau, M.; Celli, G.; Pilo, F.; Marongiu, G. Smart integration and aggregation of nanogrids: Benefits for users and DSO.
In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; pp. 1–6. [CrossRef]

19. Latifi, M.; Rastegarnia, A.; Khalili, A.; Bazzi, W.M.; Sanei, S. A Self-Governed Online Energy Management and Trading for Smart
Micro/Nano-Grids. IEEE Trans. Ind. Electron. 2020, 67, 7484–7498. [CrossRef]

20. Caldognetto, T.; Mion, E.; Bruschetta, M.; Simmini, F.; Carli, R.; Tenti, P. A Model Predictive Approach for Energy Management in
Smart Buildings. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE ’19 ECCE
Europe), Genova, Italy, 3–5 September 2019; pp. P.1–P.10. [CrossRef]

21. Roncero-Clemente, C.; González-Romera, E.; Romero-Cadaval, E.; Milanés-Montero, M.I.; Miñambres-Marcos, V. PSCAD/EMTDC
model for photovoltaic modules with MPPT based on manufacturer specifications. In Proceedings of the 2013 International
Conference-Workshop Compatibility and Power Electronics, Ljubljana, Slovenia, 5–7 June 2013; pp. 69–74. [CrossRef]

22. Tremblay, O.; Dessaint, L.; Dekkiche, A. A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles.
In Proceedings of the 2007 IEEE Vehicle Power and Propulsion Conference, Arlington, TX, USA, 9–12 September 2007; pp. 284–
289. [CrossRef]

23. Miniguano, H.; Barrado, A.; Fernández, C.; Zumel, P.; Lázaro, A. A General Parameter Identification Procedure Used for the
Comparative Study of Supercapacitors Models. Energies 2019, 12, 1776. [CrossRef]

24. Kong, S.N.; Chin-Sien, M.; Yi-Ping, C.; Yao-Ching, H. Enhanced coulomb counting method for estimating state-of-charge and
state-of-health of lithium-ion batteries. Appl. Energy 2009, 86, 1506–1511. [CrossRef]

25. Ruiz-Cortés, M.; Romero-Cadaval, E.; Roncero-Clemente, C.; Barrero-González, F.; González-Romera, E. Energy management
strategy to coordinate batteries and ultracapacitors of a hybrid energy storage system in a residential prosumer installation.
In Proceedings of the 2017 International Young Engineers Forum (YEF-ECE), Almada, Portugal, 5 May 2017; pp. 30–35. [CrossRef]

26. Ruiz-Cortés, M.; Romero-Cadaval, E.; Roncero-Clemente, C.; Barrero-González, F.; González-Romera, E. Comprehensive study
of the benefits of integrating a sharing energy strategy between prosumers. In Proceedings of the IECON 2017—43rd Annual
Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 3609–3614. [CrossRef]

27. Roncero-Clemente, C.; Vilhena, N.; Delgado-Gomes, V.; Romero-Cadaval, E.; Martins, J.F. Control and operation of a three-phase
local energy router for prosumers in a smart community. IET Renew. Power Gener. 2020, 14, 560–570. [CrossRef]

28. Roanes-Lozano, E.; Laita, L.M.; Roanes-Macías, E. A Groebner Bases Based Many-Valued Modal Logic Implementation in Maple.
In AISC/Calculemus/MKM 2008, LNAI 5144; Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F., Eds.; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 170–183. [CrossRef]

29. Roanes-Lozano, E.; Laita, L.M.; Hernando, A.; Roanes-Macías, E. An algebraic approach to rule based expert systems. Rev. R.
Acad. Cien. Ser. A. Mat. 2010, 104, 19–40. [CrossRef]

30. Buchberger, B. Bruno Buchberger’s PhD Thesis 1965: An algorithm for finding the basis elements of the residue class ring of a
zero dimensional polynomial ideal. J. Symb. Comp. 2006, 41, 3–4. [CrossRef]

31. Cox, D.; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms; Springer: Berlin/Heidelberg, Germany, 1992.
32. Smodels Web Page. Available online: http://www.tcs.hut.fi/Software/smodels/ (accessed on 14 February 2021).
33. Roanes-Lozano, E.; Alonso, J.A.; Hernando, A. An approach from answer set programming to decision making in a railway

interlocking system. RACSAM 2014, 108, 973–987. [CrossRef]

94

mathematics

Article

High-Speed Implementation of PRESENT on AVR
Microcontroller

Hyeokdong Kwon 1, Young Beom Kim 2, Seog Chung Seo 2,3 and Hwajeong Seo 1,*

Citation: Kwon, H.; Kim, Y.B.; Seo,

S.C.; Seo, H. High-Speed

Implementation of PRESENT on AVR

Microcontroller. Mathematics 2021, 9,

374. https://doi.org/doi:10.3390/

math9040374

Academic Editor: Raúl M. Falcón

Received: 7 January 2021

Accepted: 4 February 2021

Published: 13 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of IT Convergence Engineering, Hansung University, Seoul 136-792, Korea; hyeok@hansung.ac.kr
2 Department of Financial Information Security, Kookmin University, Seoul 02707, Korea;

darania@kookmin.ac.kr (Y.B.K.); scseo@kookmin.ac.kr (S.C.S.)
3 Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 02707, Korea
* Correspondence: hwajeong@hansung.ac.kr; Tel.: +82-2-760-8033

Abstract: We propose the compact PRESENT on embedded processors. To obtain high-performance,
PRESENT operations, including an add-round-key, a substitute layer and permutation layer opera-
tions are efficiently implemented on target embedded processors. Novel PRESENT implementations
support the Electronic Code Book (ECB) and Counter (CTR). The implementation of CTR is improved
by using the pre-computation for one substitute layer, two diffusion layer, and two add-round-key op-
erations. Finally, compact PRESENT on target microcontrollers achieved 504.2, 488.2, 488.7, and 491.6
clock cycles per byte for PRESENT-ECB, 16-bit PRESENT-CTR (RAM-based implementation), 16-bit
PRESENT-CTR (ROM-based implementation), and 32-bit PRESENT-CTR (ROM-based implementa-
tion) modes of operation, respectively. Compared with former implementation, the execution timing
is improved by 62.6%, 63.8%, 63.7%, and 63.5% for PRESENT-ECB, 16-bit PRESENT-CTR (RAM based
implementation), 16-bit PRESENT-CTR (ROM-based implementation), and 32-bit PRESENT-CTR
(ROM-based implementation) modes of operation, respectively.

Keywords: PRESENT; counter mode of operation; AVR; software implementation

1. Introduction

Lightweight cryptography is getting more important than ever due to the emergence
of the Internet of Things. The lightweight cryptography supports encryption in resource-
constrained environments, such as sensor network, health care, and surveillance systems.
Therefore, the implementation of lightweight cryptography aims at optimizing certain
criteria, such as energy consumption, execution time, memory footprint, and chip size.

We propose a number of implementation techniques for well-known lightweight
cryptography, namely PRESENT, and its Electronic Code Book (ECB) and Counter (CTR)
on low-end embedded processors, where ECB encrypts the plaintext directly with the
master key and CTR encrypts the counter value with the master key and then the result
of encryption is XORed with the plaintext. In order to achieve optimal results on target
microcontrollers, we used processor-specific optimizations for PRESENT block ciphers.
Furthermore, the compact counter mode of PRESENT and its bit-slicing-based implemen-
tation are also presented. Novel implementation techniques for PRESENT block cipher can
be extended to other lightweight cryptography algorithms and other platforms.

1.1. Contribution
1.1.1. Optimal Implementation of PRESENT Block Cipher on Embedded Processors

We implemented the PRESENT block cipher on low-end microcontrollers. The Alf and
Vegard’s RISC (AVR) processor is a resource-constrained device that is used extensively
in low-end Internet of Things (IoT) applications, such as Arduino UNO and Arduino MEGA.
The PRESENT-ECB implementation is optimized in terms of execution timing and other
factors (e.g., code size and RAM). The word size of general purpose registers in the target

Mathematics 2021, 9, 374. https://doi.org/10.3390/math9040374 https://www.mdpi.com/journal/mathematics95

Mathematics 2021, 9, 374

AVR microcontroller is 8-bit wise. All 16-bit wise PRESENT operations are optimized for
8-bit word and instruction set. Compared with the former implementation of PRESENT-
ECB for a 128-bit security level on AVR microcontrollers, the proposed work improved the
execution timing by 62.6% [1].

1.1.2. Pre-Computation for PRESENT with CTR

CTR is utilized in real applications and services, such as Transport Layer Security
(TLS) and Virtual Private Network (VPN). CTR receives the input consisting of two parts,
including constant nonce and variable counter. Since the nonce part is the constant vari-
able, the constant nonce value is repeated several times throughout computations. For
this reason, some computations of PRESENT block cipher can be optimized through pre-
computation. By exploiting this feature, we further improved the execution timing of
PRESENT-CTR. The method is a generic algorithm and can be implemented with other
processors. Compared with the state-of-art implementation,the proposed works on embed-
ded processors that have obtained performance enhancements by 63.8%, 63.7%, and 63.5%
for 16-bit PRESENT-CTR (RAM), 16-bit PRESENT-CTR (ROM), and 32-bit PRESENT-CTR
(ROM), respectively.

1.1.3. Open Source

The proposed PRESENT implementation is a public domain and full source codes are
available at https://github.com/solowal/PRESENT_AVR (accessed on 7 January 2021).
Source codes were written in (mixed) AVR assembly language (core algorithm) and C
language (function call). Codes support four 128-bit PRESENT implementations, including
PRESENT-ECB, PRESENT-CTR16 (RAM based implementation), PRESENT-CTR16 (ROM
based implementation), and PRESENT-CTR32 (ROM based implementation). Projects were
created and evaluated with Atmel Studio 7.0 framework. Researchers can evaluate and
re-create the result with the available source codes.

2. Related Works

2.1. PRESENT Block Cipher

PRESENT block cipher was introduced in CHES’07 [2]. PRESENT block cipher sup-
ports two parameters (i.e., PRESENT-64/80 and PRESENT-64/128). PRESENT block cipher
requires 31 rounds and the Substitution-Permutation-Network (SPN) structure is adopted.
PRESENT requires three computations including the substitution layer, permutation layer,
and add-round-key.

The add-round-key operation performs exclusive-or computations with plaintext and
round keys. Round keys (roundkey = (roundkey1, roundkey2, ..., roundkey32)) are generated
from the key schedule. In particular, roundkey32 is used for post-whitening. PRESENT block
cipher uses a 4-bit substitution layer. The inner state of PRESENT block cipher (S63, ..., S0)
can be seen as 16 4-bit words (w15 ... w0), where one w word consists of four states (i.e.,
wx = {S4·x+3 ‖ S4·x+2 ‖ S4·x+1 ‖ S4·x}, 0 ≤ x ≤ 15). The 4-bit substitution layer can be
represented in Boolean operations for the bitslicing implementation. The PRESENT 4-bit
S-box is designed for higher hardware efficiency and compact implementation. PRESENT
block cipher uses a bit of permutation for the linear diffusion layer. The permutation
layer performs bit permutation in the intermediate result. Each bit state (x) is permutated
through P(x).

2.2. Target Processor

The AVR microcontroller finds many interesting applications in embedded systems,
such as sensor networks, surveillance systems, and health care. The number of available
registers is only 32 8-bit long. Basic arithmetic instructions take a single clock cycle. The
memory load/store instruction requires two clock cycles. The microcontroller supports
an 8-bit instruction set, 128 KB of FLASH memory, 8 MHz of working frequency, two-stage
pipeline design, and 4 KB of RAM (e.g., ATmega128). Among them, 6 registers (i.e.,

96

Mathematics 2021, 9, 374

R26∼R31) are reserved for address pointers, and the remaining registers can be utilized
for general purpose registers by a programmer. In particular, the R1 register is the ZERO
register that should be cleared before function returns.

2.3. Former Implementations on Low-End Embedded Processors

Several works optimized the LEA on embedded processors [3–7]. They optimized ex-
ecution timing and memory consumption. There are many implementations of lightweight
cryptography such as CHAM, SPECK, and SIMON [5,7–17].

Many works are also devoted to improve the execution timing of AES on embedded
processors [18–22]. In [23], the compact implementation of ARIA on low-end microcon-
trollers was proposed.

In CHES’17, optimized PRESENT implementation on embedded ARM CPUs was
presented by using a novel decomposition of permutation layers (see Listing 1.2 of [24]),
and bitsliced for the S-boxes [24]. A description of PRESENT is detailed in Algorithm
2 of [24]. Unlike a traditional PRESENT algorithm, it performs the permutation layer
before the substitution layer. This order of computation is beneficial for bit-slicing-based
substitution layer implementation.

In this paper, we presented the compact PRESENT implementation on AVR micro-
controllers. We re-designed the PRESENT implementation for 8-bit architecture. Then,
we also suggested the PRESENT-CTR. The CTR implementation technique optimizes
2 add-round-key, 2 permutation, and 1 substitution operations with a 1 look-up table
operation.

3. Proposed Method

3.1. Optimization of PRESENT–ECB

For the efficient implementation of PRESENT block cipher, add-round-key, substituion,
and permutation layers are optimized.

In Algorithm 1, add-round-key operation is described in a source code level. The com-
putation is performed with XOR operations with round keys where XOR operation rep-
resents logical bitwise exclusive-or operation. The memory access for round keys is
performed with the incremental memory pointer mode.

Algorithm 1: Add-round-key operation in assembly language.

Input: Intermediate data (reg0∼7), round
key pointer (X).

Output: Output results (reg0∼7).

1: LD tmp, X+

2: EOR reg0, tmp

3: LD tmp, X+

4: EOR reg1, tmp

5: LD tmp, X+

6: EOR reg2, tmp

7: LD tmp, X+

8: EOR reg3, tmp

9: LD tmp, X+

10: EOR reg4, tmp

11: LD tmp, X+

12: EOR reg5, tmp

13: LD tmp, X+

14: EOR reg6, tmp

15: LD tmp, X+

16: EOR reg7, tmp

The efficient implementation of permutation (P0) is described in Algorithm 2. A
16-bit wise rotation operations are performed with LSR, ROR, LSL, and ROL instructions.
Exclusive-or and logical and operations are performed with EOR and ANDI instructions.
Similar to the P0 operation, the permutation (P1) is implemented, efficiently.

97

Mathematics 2021, 9, 374

Algorithm 2: Permutation (P0) operation in assembly language.

Input: Intermediate data (reg0∼7).

Output: Result (reg0∼7).

//t=(X0⊕(ROR_u16(X1,1)))&0x5555

1: MOVW tmp0, reg4

2: LSR tmp1

3: ROR tmp0

4: EOR tmp0, reg6

5: EOR tmp1, reg7

6: ANDI tmp0, 0X55

7: ANDI tmp1, 0X55

//X0=X0⊕t; X1=X1⊕(ROL_u16(t,1));

8: EOR reg6, tmp0

9: EOR reg7, tmp1

10: LSL tmp0

11: ROL tmp1

12: EOR reg4, tmp0

13: EOR reg5, tmp1

//t=(X2⊕(ROR_u16(X3, 1)))&0x5555;

14: MOVW tmp0, reg0

15: LSR tmp1

16: ROR tmp0

17: EOR tmp0, reg2

18: EOR tmp1, reg3

19: ANDI tmp0, 0X55

20: ANDI tmp1, 0X55

//X2=X2⊕t; X3=X3⊕(ROL_u16(t, 1));

21: EOR reg2, tmp0

22: EOR reg3, tmp1

23: LSL tmp0

24: ROL tmp1

25: EOR reg0, tmp0

26: EOR reg1, tmp1

//t=(X0⊕(ROR_u16(X2, 2)))&0x3333;

27: MOVW tmp0, reg2

28: LSR tmp1

29: ROR tmp0

30: LSR tmp1

31: ROR tmp0

32: EOR tmp0, reg6

33: EOR tmp1, reg7

34: ANDI tmp0, 0X33

35: ANDI tmp1, 0X33

//X0=X0⊕t; X2=X2⊕(ROL_u16(t, 2));

36: EOR reg6, tmp0

37: EOR reg7, tmp1

38: LSL tmp0

39: ROL tmp1

40: LSL tmp0

41: ROL tmp1

42: EOR reg2, tmp0

43: EOR reg3, tmp1

//t=(X1⊕(ROR_u16(X3, 2)))&0x3333;

44: MOVW tmp0, reg0

45: LSR tmp1

46: ROR tmp0

47: LSR tmp1

48: ROR tmp0

49: EOR tmp0, reg4

50: EOR tmp1, reg5

51: ANDI tmp0, 0X33

52: ANDI tmp1, 0X33

//X1=X1⊕t; X3=X3⊕(ROL_u16(t, 2));

53: EOR reg4, tmp0

54: EOR reg5, tmp1

55: LSL tmp0

56: ROL tmp1

57: LSL tmp0

58: ROL tmp1

59: EOR reg0, tmp0

60: EOR reg1, tmp1

98

Mathematics 2021, 9, 374

The bitslicing substitution operation is performed with Boolean operations. Detailed
descriptions are given in Algorithm 3. Boolean operations, such as logical XOR, AND, OR,
and one’s complement are performed with EOR, AND, OR, and COM instructions. To move two
adjacent registers in a single instruction, MOVW instruction is utilized.

Algorithm 3: Substitution operation in assembly language.

Input: Intermediate data
(reg0∼7).

Output: Result (reg0∼7).

//T1=x2⊕x1;

1: MOVW tmp0, reg2

2: EOR tmp0, reg4

3: EOR tmp1, reg5

//T2=x1&T1;

4: MOVW tmp2, reg4

5: AND tmp2, tmp0

6: AND tmp3, tmp1

//T3=x0⊕T2;

7: MOVW tmp4, reg6

8: EOR tmp4, tmp2

9: EOR tmp5, tmp3

//T5=x3⊕T3;

10: MOVW tmp7, reg0

11: EOR tmp7, tmp4

12: EOR tmp8, tmp5

//T2=T1&T3;

13: MOVW tmp2, tmp0

14: AND tmp2, tmp4

15: AND tmp3, tmp5

//T1=T1⊕T5;

16: EOR tmp0, tmp7

17: EOR tmp1, tmp8

//T2=T2⊕x1;

18: EOR tmp2, reg4

19: EOR tmp3, reg5

//T4=x3|T2;
20: MOVW tmp6, reg0

21: OR tmp6, tmp2

22: OR tmp6, tmp3

//x2=T1⊕T4;

23: MOVW reg2, tmp0

24: EOR reg2, tmp6

25: EOR reg3, tmp6

//x3=x3⊕0xFFFF;

26: COM reg0

27: COM reg1

//T2=T2⊕x3;

28: EOR tmp2, reg0

29: EOR tmp3, reg1

//x0=x2⊕T2;

30: MOVW reg6, reg2

31: EOR reg6, tmp2

32: EOR reg7, tmp3

//T2=T2|T1;

33: OR tmp2, tmp0

34: OR tmp3, tmp1

//x1=T3⊕T2;

35: MOVW reg4, tmp4

36: EOR reg4, tmp2

37: EOR reg5, tmp3

//x3=T5;

38: MOVW reg0, tmp7

3.2. Optimization of PRESENT–CTR

For high-end IoT devices, such as 32-bit ARM-based processors, the size of the counter
is fixed at 32-bit [20,25]. However, in an 8-bit ATmega processor, the memory size is limited
to at least 2KB depending on the ATmega model (e.g., ATtiny). For this reason, block
cipher encryption is usually performed by 216 times [26]. From the security perspective
of CTR mode, the attacker can pre-compute and collect ciphertext information relied
on the IV. When the initial CTR mode is operated, the counter of IV (Initial Vector) is
initialized to zero. If there is an unpredictable n-bit input in the encryption process other
than the master key, the effective key size for Time-Memory Trade Off (TMTO) attack
and Key Collision (KC) attacks increases by n-bit [27]. For an 8-bit AVR microcontroller
with a small memory footprint, it is suitable to use a 16-bit counter. For general cases, a
32-bit counter is also widely used in practice. In this section, we present both PRESENT-
CTR mode implementations with 16-bit and 32-bit counter modes of operation on the
ATmega128 microcontroller.

PRESENT-CTR with a 16-bit counter is described in Figure 1. We represent the bit
in square form. Since PRESENT block cipher performs 64-bit block-wise encryption,
64 squares are utilized (i.e., 64-bit data). The most left square and the most right square
represent the first and last bit, respectively. Colored squares represent a counter part. The

99

Mathematics 2021, 9, 374

remaining white squares represent nonce part. The computation is performed from top
to bottom.

Figure 1. PRESENT-CTR with 16-bit counter.

1. First add-round-key. 64-bit plaintext is XORed with 64-bit round key. Since this is a
bit-wise operation, each bits do not interfere with each other;

2. Permutation P0. The intermediate result is permuted. 16-bit counter values are
distributed throughout the 64-bit intermediate result. Bits of the counter are arranged
by 1 bit in the order of green, red, blue, and yellow according to a permutation rule;

3. Substitution. The 4-bit input values consist of 1-bit counter-part and 3-bit nonce part.
The output of substitution can be pre-computed with the counter-part;

4. Permutation P1. The intermediate result is permuted again. After the permutation,
the intermediate result is aligned by 16-bit wise;

5. Second add-round-key. The intermediate result is XORed with a second 64-bit
round key.

The 4-bit data for each color of the initial 16-bit counter is distributed to the 16-bit data
through permutation P0 and the bitslicing-substitution process. After the permutation P1
process is done, 16-bit data for each color is gathered regularly in the color (green, red,
blue, and yellow) order of the initial counter. Through this, it is possible to predict 16-bit
data through 4-bit of the initial counter. During the encryption process up to permutation
P1, there is no interference between each color. For four 4-bit counter data, four 16-bit
data can be pre-computed, independently. The required look-up table size is 128 bytes
(4 colors × 24 counters × 16-bit size of data). A detailed description of look-up table
generation is given in Algorithm 4. It generates 16 16-bit data with a counter divided into
4-bit data and repeats this process 4 times. The cost of generating a look-up table is less
than performing PRESENT-ECB encryption by 4 times. We computed the pre-computation

100

Mathematics 2021, 9, 374

table in a parallel way, which generates four look-up tables at once. Four index parts
(1∼4-th bits, 5∼8-th bits, 9∼12-th bits, and 13∼16-th bits) generate four pre-computed
outputs (1∼16-th bits, 17∼32-th bits, 33∼48-th bits, and 49∼64-th bits). This ensures the
generation of pre-computation is independent of each other. The computation of a look-up
table on AVR requires only 4022 clock cycles. This is roughly one time of PRESENT-ECB
encryption. The look-up table can be stored in RAM or ROM. If we allocate the look-up
table to RAM, we can access to the data with the LD instruction in 2 clock cycles. Otherwise,
we can store it to ROM and access to the data with the LPM instruction in 3 clock cycles.
The encryption process of PRESENT-CTR mode can be optimized away from the operation
up-to the second add-round-key operation by using the created look-up table. Overall, this
approach replaces the two permutation layers, two add-round-key, and one substitution
layer to one look-up table accesses.

Algorithm 4: Generation of look-up tables for proposed PRESENT-CTR16 en-
cryption.

Input: 64-bit block of Initial Vector (16-bit counter and 48-bit nonce) B, roundkeys
(roundkey1, roundkey2).

Output: Look-up tables for 16-bit counter (LUT160, LUT161, LUT162, LUT163).

1: CTR ← 0

2: MASK ← 0xFFFFFFF0

3: for i = 0 to 3 do

4: C ← (B&(MASK ≪ 4i))|(CTR & 4i)

5: for j = 0 to 15 do

6: C ← C ⊕ roundkey1

7: C ← P0(C)

8: C ← SBitslicing(C)

9: C ← P1(C)

10: C ← C ⊕ P(roundkey2)

11: LUT16i(j) ← C

12: end for

13: end for

14: return LUT160, LUT161, LUT162, LUT163

Algorithm 5 shows the proposed PRESENT-CTR16 implementation using a 16-bit
counter. In steps 2–5, look-up table access with 16-bit counter is performed. Afterward, the
remaining PRESENT computations are performed. Listing 1 shows the AVR assembly code
for the 16-bit data look-up. In order to improve performance, 16-bit LUT is performed with
two 8-bit memory accesses. The memory access for 16-bit data is 9 clock cycles. This process
is repeated 4 times. PRESENT encryption is optimized at the cost of just 36 clock cycles.

101

Mathematics 2021, 9, 374

Listing 1. Look up table access for 16-bit counter.

1 .macro LUT16 LUT0 , LUT1 , OFFSET , T0, T1
2 LDI R31 , hi8(LUT0)
3 MOV R30 , OFFSET
4 LPM T0, Z
5 LDI R31 , hi8(LUT1)
6 LPM T1, Z
7 .endm

Algorithm 5: Proposed PRESENT-CTR16 encryption.
Input: 64-bit plaintext B, a key K.

Output: 64-bit ciphertext C.

1: roundkey = (roundkey1, roundkey2, ..., roundkey32) ← keySchedule(K)

2: C0∼15 ← LUT160(B0∼3)

3: C16∼31 ← LUT161(B4∼7)

4: C32∼47 ← LUT162(B8∼11)

5: C48∼63 ← LUT163(B12∼15)

6: C ← SBitslicing(C)

7: for i = 2 to 15 do

8: C ← C ⊕ roundkey2i−1

9: C ← P0(C)

10: C ← SBitslicing(C)

11: C ← P1(C)

12: C ← C ⊕ P(roundkey2i)

13: C ← SBitslicing(C)

14: end for

15: C ← C ⊕ roundkey31

16: C ← P(C)

17: C ← SBitslicing(C)

18: C ← C ⊕ roundkey32

19: return C

PRESENT-CTR with 32-bit counter is described in Figure 2. The 1-th to 16-th counters
are indicated by a colored square. The 17-th to 32-th counters are indicated by symbol

102

Mathematics 2021, 9, 374

squares. During the encryption process, the colored symbol square, which can be shown in
Permutation P1, represents part of being affected by a color square and symbol square.

1. First add-round-key. Similarly to the 16-bit counter mode, the 64-bit plaintext is
XORed with 64-bit round key. Since this is a bit-wise operation, bits do not interfere
with each other;

2. Permutation P0. The intermediate result is permuted. 32-bit counter values are
distributed throughout 64-bit intermediate results. The 16-bit to 32-bit of 32-bit
counter are arranged one by one behind each color square;

3. Substitution. The 4-bit input values consist of a 2-bit counter part and 2-bit nonce
part. The output of substitution can be pre-computed with the counter part;

4. Permutation P1. The intermediate result is permuted again. After the permutation,
the intermediate result is aligned by 16-bit wise;

5. Second add-round-key. Similarly to the 16-bit counter mode of operation, the inter-
mediate result is XORed with a second 64-bit round key.

Figure 2. PRESENT-CTR with 32-bit counter.

The 8-bit data for each 4-bit color and 4-bit symbol parts of the initial 32-bit counter is
distributed to the 16-bit data through permutation P0 and bitslicing-substitution process.

Unlike the 16-bit counter case, the counter-part represented by the colored square and
the counter-part represented by the symbol square interfere with each other during the
bitslicing-substitution process. This can be seen in detail in Figure 2. When permutation
(P1) is completed, the 16-bit data mixed by color and symbol is gathered in the color and
symbolic order of the initial counter. This allows the pre-computation of 16-bit data through
the 8-bit (4-bit color and 4-bit symbol) of the initial counter. At this time, the required look-
up table size is 2048 bytes (= 4 color and symbol × 28 counter × 16-bit size of data). Unlike
the 16-bit PRESENT-CTR implementation, 32-bit PRESENT-CTR implementation requires a
huge look-up table (i.e., 2048). We placed a look-up table in ROM instead of RAM. The man-
ufacture of AVR provides secure memory-based architecture (i.e., CryptoMemory; https:

103

Mathematics 2021, 9, 374

//www.microchip.com/design-centers/security-ics/mature-products/cryptomemory ac-
cessed on 7 January 2021). For real world implementation, we can utilize this technology.
A detailed description of look-up table generation is given in Algorithm 6.

Algorithm 6: Generation of look-up tables for proposed PRESENT-CTR32 en-
cryption.

Input: 64-bit block of Initial Vector (32-bit nonce and 32-bit counter) B, roundkeys
(roundkey1, roundkey2).

Output: Look-up tables for 32-bit counter (LUT320, LUT321, LUT322, LUT323).

1: CTR ← 0

2: MASK ← 0xFFF0FFF0

3: for i = 0 to 3 do

4: C ← (B&(MASK ≪ 4i))|(CTR0∼3 & 4i)|(CTR4∼7 & 4i + 16)

5: for j = 0 to 256 do

6: C ← C ⊕ roundkey1

7: C ← P0(C)

8: C ← SBitslicing(C)

9: C ← P1(C)

10: C ← C ⊕ P(roundkey2)

11: LUT32i(j) ← C

12: end for

13: end for

14: return LUT320, LUT321, LUT322, LUT323

Similarly to the 16-bit counter, the encryption process of PRESENT-CTR mode can be
optimized from the operation up-to the second add-round-key by using the created look-up
table. Overall, this approach replaces the two permutation layers, two add-round-key,
and one substitution layer to one look-up table accesses.

Algorithm 7 shows the proposed PRESENT-CTR32 implementation using a 32-bit
counter. In Steps 2∼5, 16-bit data look-up with 8-bit (4-bit color and 4-bit symbol) counter is
performed. Listing 2 shows the AVR assembly code for the 32-bit data look-up. The cost of
looking-up 16-bit data is 10 clock cycles. This process is repeated 4 times. This is optimized
at the cost of just 40 clock cycles.

104

Mathematics 2021, 9, 374

Algorithm 7: Proposed PRESENT-CTR32 encryption.
Input: 64-bit plaintext B, a key K.

Output: 64-bit ciphertext C.

1: roundkey = (roundkey1, roundkey2, ..., roundkey32) ← keySchedule(K)

2: C0∼15 ← LUT320(B0∼3‖B16∼19)

3: C16∼31 ← LUT321(B4∼7‖B20∼23)

4: C32∼47 ← LUT322(B8∼11‖B24∼27)

5: C48∼63 ← LUT323(B12∼15‖B28∼31)

6: C ← SBitslicing(C)

7: for i = 2 to 15 do

8: C ← C ⊕ roundkey2i−1

9: C ← P0(C)

10: C ← SBitslicing(C)

11: C ← P1(C)

12: C ← C ⊕ P(roundkey2i)

13: C ← SBitslicing(C)

14: end for

15: C ← C ⊕ roundkey31

16: C ← P(C)

17: C ← SBitslicing(C)

18: C ← C ⊕ roundkey32

19: return C

Listing 2. Look up table access for 32-bit counter.

1 .macro LUT32 LUT0 , LUT1 , OFFSET1 , OFFSET2 , T0 , T1
2 LDI R31 , hi8(LUT0)
3 MOV R30 , OFFSET1
4 ADD R30 , OFFSET2
5 LPM T0, Z
6 LDI R31 , hi8(LUT1)
7 LPM T1, Z
8 .endm

105

Mathematics 2021, 9, 374

4. Evaluation

In CHES’17, bitslicing-based PRESENT implementation was proposed [24]. It has
been theoretically and practically proven that the bitslicing technique shows the best results
in 32-bit or higher processors. However, bitslicing-implementation in an 8-bit AVR environ-
ment has not been explored before. In embedded devices, bitslicing optimizes the memory
access for the substitution layer but it requires Boolean operations. The AVR microcon-
troller has 8-bit wise 32 general-purpose registers and it should be carefully optimized
to achieve high performance in bitslicing implementation. We evaluated PRESENT-ECB
and PRESENT-CTR implementations and compared them with former works. ATmega128
is selected as a microcontroller, which is one of the most popular AVR microcontrollers
in wireless sensor networks. In the case of CTR mode, 16-bit counter and 32-bit counter
versions are evaluated. The software was evaluated with Atmel Studio 7 and -Os op-
tion. Benchmarks are checked in clock cycles per byte which occurs when each mode of
operation is called once.

Table 1 describe the comparison between this work and former implementations.
PRESENT-ECB encryption by Dinu et al. (80-bit) and Engel et al. (128-bit) required 930.8
and 1349.0 clock Cycles Per Byte (CPB), respectively [1,28]. On the other hand, the proposed
PRESENT-ECB implementation uses almost the same RAM as the existing implementation,
but only requires 504.2 clock cycles per byte. For the code size, the proposed implemen-
tation utilized two permutation operations (P0, P1). The code size is bigger than former
works. Since the proposed PRESENT-CTR implementation is optimized further by utilizing
pre-computation, the proposed PRESENT-CTR mode achieved a higher performance than
the existing PRESENT-ECB mode. The code size of the CTR mode of operation is bigger
than the ECB mode of operation, but it achieved 488.2, 488.7, and 491.6 CPB, for 16-bit
counter (RAM), 16-bit counter (ROM), and 32-bit counter (ROM). In Table 2, the com-
parison of execution timing depending on the message size is given. The RAM based
16-bit counter mode of operation requires look-up table generation online. For this reason,
performance is lower than the ROM-based 16-bit counter mode of operation. However,
the RAM-based implementation outperforms when the length is over 8192 bytes. PRESENT
implementations are publicly available at: https://github.com/solowal/PRESENT_AVR
(accessed on 7 January 2021), where anyone can access PRESENT implementations.

Table 1. Comparison of PRESENT on target embedded processors (Alf and Vegard’s RISC (AVR)) in
terms of timing (cycles per byte), RAM (bytes), and code size (bytes), 1: Pre-computation in RAM,
2: Pre-computation in ROM, †: 16-bit counter, ‡: 32-bit counter. ECB: Electronic Code Book.

Method Security Level Mode of Operation Code Size RAM Timing

[28] 80 ECB 760 281 930.8

[1]

128

ECB
660 280 1349.0

This work

956 282 504.2

CTR †,1 1150 420 488.2

CTR †,2 1152 292 488.7

CTR ‡,2 3072 292 491.6

106

Mathematics 2021, 9, 374

Table 2. Comparison of PRESENT on target embedded processors (AVR) in terms of timing (106 clock
cycles) depending on message size (bytes), 1: Pre-computation in RAM, 2: Pre-computation in ROM,
†: 16-bit counter, ‡: 32-bit counter.

Method
Message Size (bytes)

4096 8192 16,384 32,768 65,536

CTR †,1 2.0038 4.0037 8.0035 16.0030 32.0019

CTR †,2 2.0010 4.0038 8.0076 16.0153 32.0307

CTR ‡,2 2.0136 4.0273 8.0547 16.1095 32.2191

In Table 3, a comparison with other lightweight block cipher implementations on
target-embedded processors is given. On the 8-bit AVR environment, previous PRESENT
implementation using 128-bit key shows a lower performance than other lightweight
cryptographic algorithms [28], since substitution and permutation layers of the PRESENT
algorithm incurs considerable overheads in an 8-bit AVR environment. We achieved the
execution timing improvement of target block cipher implementation to 504 clock cycles
per byte in an 8-bit AVR environment. Therefore, we believe that our optimization results
are not only actually usable from real 8-bit AVR microcontrollers but can be applied to
various cryptographic application algorithms.

Table 3. Comparison of other implementations on target embedded processors (AVR) in terms of
timing (cycles per byte), RAM (bytes), and code size (bytes).

Algorithm Plaintext Security Level Code Size RAM Timing

PIPO [29]

64 128

320 31 197

SIMON [17] 290 24 253

RECTANGLE [28] 466 204 403

RoadRunneR [30] 196 24 477

PRESENT [this work] 956 282 504

SKINNY [28] 502 187 877

PRIDE [28] 650 47 969

PRESENT [1] 660 280 1349

CRAFT [31] 894 243 1,504

5. Conclusions

We presented compact ECB and CTR for PRESENT on embedded processors. The
ECB mode of operation was efficiently implemented in an optimization of diffusion layer,
substitute layer, and add-round-key operations. The operation was accelerated with pre-
computation in CTR. This new approach optimized away PRESENT operations by the
substitution layer of second round. Finally, PRESENT block cipher on target microcon-
trollers consumed 504.2, 488.2, 488.7, and 491.6 CPB for ECB, 16-bit CTR (RAM-based
implementation), 16-bit CTR (ROM-based implementation), and 32-bit CTR (ROM-based
implementation) modes of operation, respectively.

Author Contributions: Investigation, H.K. and Y.B.K.; Software, H.K., Y.B.K., S.C.S., and H.S.;
Writing-original draft, H.K. and Y.B.K.; Writing-review and editing, H.K., Y.B.K., S.C.S., and H.S. All
authors have read and agreed to the published version of the manuscript.

107

Mathematics 2021, 9, 374

Funding: This research of Hyeokdong Kwon and Hwajeong Seo was partly supported by the
National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.
NRF-2020R1F1A1048478) and this research of Hyeokdong Kwon and Hwajeong Seo was partly
supported by Institute for Information & communications Technology Promotion(IITP) grant funded
by the Korea government(MSIT) (No.2018-0-00264, Research on Blockchain Security Technology
for IoT Services). This research of YoungBeom Kim and Seog Chung Seo was funded by National
Research Foundation of Korea: 2019R1F1A1058494.

Conflicts of Interest: The authors declare no conflicct of interest.

References

1. Engels, S.; Kavun, E.B.; Paar, C.; Yalçin, T.; Mihajloska, H. A non-linear/linear instruction set extension for lightweight ciphers.
In Proceedings of the 2013 IEEE 21st Symposium on Computer Arithmetic, Austin, TX, USA, 7–10 April 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 67–75.

2. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.; Seurin, Y.; Vikkelsoe, C. PRESENT: An
ultra-lightweight block cipher. In Proceedings of the International Workshop on Cryptographic Hardware and Embedded
Systems, Vienna, Austria, 10–13 September 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 450–466.

3. Hong, D.; Lee, J.K.; Kim, D.C.; Kwon, D.; Ryu, K.H.; Lee, D.G. LEA: A 128-bit block cipher for fast encryption on common
processors. In Proceedings of the International Workshop on Information Security Applications, Jeju Island, Korea, 19–21 August
2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–27.

4. Seo, H.; Liu, Z.; Choi, J.; Park, T.; Kim, H. Compact implementations of LEA block cipher for low-end microprocessors. In
Proceedings of the International Workshop on Information Security Applications, Jeju Island, Korea, 20–22 August 2015; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 28–40.

5. Seo, H.; Jeong, I.; Lee, J.; Kim, W.H. Compact implementations of ARX-based block ciphers on IoT processors. ACM Trans. Embed.
Comput. Syst. (TECS) 2018, 17, 1–16. [CrossRef]

6. Seo, H.; An, K.; Kwon, H. Compact LEA and HIGHT implementations on 8-bit AVR and 16-bit MSP processors. In Proceed-
ings of the International Workshop on Information Security Applications, Jeju Island, Korea, 23–25 August 2018; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 253–265.

7. Kim, Y.; Kwon, H.; An, S.; Seo, H.; Seo, S.C. Efficient Implementation of ARX-Based Block Ciphers on 8-Bit AVR Microcontrollers.
Mathematics 2020, 8, 1837. [CrossRef]

8. Hong, D.; Sung, J.; Hong, S.; Lim, J.; Lee, S.; Koo, B.S.; Lee, C.; Chang, D.; Lee, J.; Jeong, K.; et al. HIGHT: A new block cipher
suitable for low-resource device. In Proceedings of the International Workshop on Cryptographic Hardware and Embedded
Systems, Yokohama, Japan, 10–13 October 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 46–59.

9. Eisenbarth, T.; Gong, Z.; Güneysu, T.; Heyse, S.; Indesteege, S.; Kerckhof, S.; Koeune, F.; Nad, T.; Plos, T.; Regazzoni, F.; et al.
Compact implementation and performance evaluation of block ciphers in ATtiny devices. In Proceedings of the International
Conference on Cryptology in Africa, Ifrance, Morocco, 10–12 July 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 172–187.

10. Kim, B.; Cho, J.; Choi, B.; Park, J.; Seo, H. Compact Implementations of HIGHT Block Cipher on IoT Platforms. Secur. Commun.
Netw. 2019, 2019, 5323578. [CrossRef]

11. Koo, B.; Roh, D.; Kim, H.; Jung, Y.; Lee, D.G.; Kwon, D. CHAM: A family of lightweight block ciphers for resource-constrained
devices. In Proceedings of the International Conference on Information Security and Cryptology, Xi’an, China, 3–5 November
2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–25.

12. Seo, H. Memory-efficient implementation of ultra-lightweight block cipher algorithm CHAM on low-end 8-bit AVR processors.
J. Korea Inst. Inf. Secur. Cryptol. 2018, 28, 545–550.

13. Roh, D.; Koo, B.; Jung, Y.; Jeong, I.W.; Lee, D.G.; Kwon, D.; Kim, W.H. Revised Version of Block Cipher CHAM. In Pro-
ceedings of the International Conference on Information Security and Cryptology, Seoul, Korea, 4–6 December 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 1–19.

14. Kwon, H.; Kim, H.; Choi, S.J.; Jang, K.; Park, J.; Kim, H.; Seo, H. Compact Implementation of CHAM Block Cipher on Low-End
Microcontrollers. In Proceedings of the International Conference on Information Security Applications, Jeju Island, Korea, 26–28
August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 127–141.

15. Kwon, H.; An, S.; Kim, Y.; Kim, H.; Choi, S.J.; Jang, K.; Park, J.; Kim, H.; Seo, S.C.; Seo, H. Designing a CHAM Block Cipher on
Low-End Microcontrollers for Internet of Things. Electronics 2020, 9, 1548. [CrossRef]

16. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK Families of Lightweight
Block Ciphers. IACR Cryptol. EPrint Arch. 2013, 2013, 404–449.

17. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK block ciphers on AVR
8-bit microcontrollers. In Proceedings of the International Workshop on Lightweight Cryptography for Security and Privacy,
Istanbul, Turkey, 1–2 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–20.

18. Osvik, D.A.; Bos, J.W.; Stefan, D.; Canright, D. Fast software AES encryption. In Proceedings of the International Workshop on
Fast Software Encryption, Seoul, Korea, 7–10 February 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 75–93.

19. McGrew, D.; Viega, J. The Galois/counter mode of operation (GCM). Submiss. NIST Modes Oper. Process 2004, 20, 1–27.

108

Mathematics 2021, 9, 374

20. Park, J.H.; Lee, D.H. FACE: Fast AES CTR mode Encryption Techniques based on the Reuse of Repetitive Data. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018, 469–499.10.13154/tches.v2018.i3.469-499. [CrossRef]

21. Kim, K.; Choi, S.; Kwon, H.; Liu, Z.; Seo, H. FACE–LIGHT: Fast AES–CTR Mode Encryption for Low-End Microcontrollers. In
Proceedings of the International Conference on Information Security and Cryptology, Seoul, Korea, 4–6 December 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 102–114.

22. Kim, K.; Choi, S.; Kwon, H.; Kim, H.; Liu, Z.; Seo, H. PAGE–Practical AES-GCM Encryption for Low-End Microcontrollers.
Appl. Sci. 2020, 10, 3131. [CrossRef]

23. Seo, H.; Kwon, H.; Kim, H.; Park, J. ACE: ARIA-CTR Encryption for Low-End Embedded Processors. Sensors 2020, 20, 3788.
[CrossRef]

24. Reis, T.B.; Aranha, D.F.; López, J. PRESENT runs fast. In Proceedings of the International Conference on Cryptographic Hardware
and Embedded Systems, Taipei, Taiwan, 25–28 September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 644–664.

25. Seo, H.; Lee, G.; Park, T.; Kim, H. Compact GCM implementations on 32-bit ARMv7-A processors. In Proceedings of the 2017
International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 18–20 October 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 704–707.

26. Kim, Y.; Seo, S.C. An Efficient Implementation of AES on 8-Bit AVR-Based Sensor Nodes. In Proceedings of the International
Conference on Information Security Applications, Jeju Island, Korea, 26–28 August 2020; Springer: Berlin/Heidelberg, Germany,
2020; pp. 276–290.

27. McGrew, D.A. Counter mode security: Analysis and recommendations. Cisco Syst. Novemb. 2002, 2, 1–8..
28. Dinu, D.; Biryukov, A.; Großschädl, J.; Khovratovich, D.; Le Corre, Y.; Perrin, L. FELICS–fair evaluation of lightweight

cryptographic systems. In Proceedings of the NIST Workshop on Lightweight Cryptography, Gaithersburg, MD, USA, 20–21 July
2015; Volume 128.

29. Kim, H.; Jeon, Y.; Kim, G.; Kim, J.; Sim, B.Y.; Han, D.G.; Seo, H.; Kim, S.; Hong, S.; Sung, J.; et al. A New Method for Designing
Lightweight S-Boxes with High Differential and Linear Branch Numbers, and Its Application*. In Proceedings of the 23rd Annual
International Conference on Information Security and Cryptology (ICISC 2020), Seoul, Korea, 2–4 December 2020; pp. 105–132.

30. Baysal, A.; Şahin, S. RoadRunneR: A small and fast bitslice block cipher for low cost 8-bit processors. In Lightweight Cryptography
for Security and Privacy; Springer: Cham, Switzerland, 2015; pp. 58–76.

31. Beierle, C.; Leander, G.; Moradi, A.; Rasoolzadeh, S. CRAFT: Lightweight tweakable block cipher with efficient protection against
DFA attacks. IACR Trans. Symmetric Cryptol. 2019, 2019, 5–45. [CrossRef]

109

mathematics

Article

Efficient Implementation of ARX-Based Block
Ciphers on 8-Bit AVR Microcontrollers

YoungBeom Kim 1, Hyeokdong Kwon 2, SangWoo An 3, Hwajeong Seo 2 and

and Seog Chung Seo 1,*

1 Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 02707, Korea;
darania@kookmin.ac.kr

2 Division of IT Convergence Engineering, Hansung University, lSeoul 136792, Korea;
hyeok@hansung.ac.kr (H.K.); hwajeong@hansung.ac.kr (H.S.)

3 Department of Financial Information Security, Kookmin University, Seoul 02707, Korea;
pinksnail06@kookmin.ac.kr

* Correspondence: scseo@kookmin.ac.kr; Tel.: +82-02-910-4742

Received: 24 August 2020; Accepted: 13 October 2020; Published: 19 October 2020

Abstract: As the development of Internet of Things (IoT), the data exchanged through the network has
significantly increased. To secure the sensitive data with user’s personal information, it is necessary
to encrypt the transmitted data. Since resource-constrained wireless devices are typically used
for IoT services, it is required to optimize the performance of cryptographic algorithms which are
computation-intensive tasks. In this paper, we present efficient implementations of ARX-based Korean
Block Ciphers (HIGHT and LEA) with CounTeR (CTR) mode of operation, and CTR_DRBG, one of
the most widely used DRBGs (Deterministic Random Bit Generators), on 8-bit AVR Microcontrollers
(MCUs). Since 8-bit AVR MCUs are widely used for various types of IoT devices, we select it
as the target platform in this paper. We present an efficient implementation of HIGHT and LEA
by making full use of the property of CTR mode, where the nonce value is fixed, and only the
counter value changes during the encryption. On our implementation, the cost of additional function
calls occurred by the generation of look-up table can be reduced. With respect to CTR_DRBG,
we identified several parts that do not need to be computed. Thus, precomputing those parts in
offline and using them online can result in performance improvements for CTR_DRBG. Furthermore,
we applied several optimization techniques by making full use of target devices’ characteristics
with AVR assembly codes on 8-bit AVR MCUs. Our proposed table generation way can reduce
the cost for building a precomputation table by around 6.7% and 9.1% in the case of LEA and
HIGHT, respectively. Proposed implementations of LEA and HIGHT with CTR mode on 8-bit
AVR MCUs provide 6.3% and 3.8% of improved performance, compared with the previous best
results, respectively. Our implementations are the fastest compared to previous LEA and HIGHT
implementations on 8-bit AVR MCUs. In addition, the proposed CTR_DRBG implementations on
AVR provide better performance by 37.2% and 8.7% when the underlying block cipher is LEA and
HIGHT, respectively.

Keywords: LEA block cipher; HIGHT block cipher; counter mode of operation; 8-bit AVR MCUs;
CTR_DRBG; random bit; Internet of Things

1. Introduction

With the advent of Internet of Things (IoT), new types of services have become available. In these
IoT services, a number of small and wireless devices around users collect the user data or surrounding
information. Since the collected data are transmitted through wireless communication, the data can
be easily revealed to attackers. For this reason, the sensitive data should be properly encrypted

Mathematics 2020, 8, 1837; doi:10.3390/math8101837 www.mdpi.com/journal/mathematics

111

Mathematics 2020, 8, 1837

by a secure cryptographic algorithm before the transmission. Since it is required to transmit the
data in an encrypted form rather than the original form, applying cryptographic algorithms is a
fundamental building block for providing robust and secure communication in these IoT services.
However, the implementing cryptographic algorithm on low-end IoT devices is not an easy task
because typical client devices for these IoT services equip only limited resources, in terms of CPU,
RAM, and ROM. For example, 8-bit AVR-based sensor nodes use in wireless sensor networks (WSNs),
which is one of the representative IoT services, have only 4 KB of RAM, 128 KB of ROM, and 7.3728 MHz
of computing frequency.

Recently, several lightweight block ciphers have been developed for efficient performance on
IoT devices. Lightweight block ciphers ensure low-cost and simple computations. The computational
structure is based on ARX (Addition, Rotation, and XOR) architecture. In South Korea, two ARX-based
lightweight block ciphers, HIGHT [1] and LEA [2], have been developed and have been widely used.
When data are larger than basic processing blocks (64-bit in HIGHT and 128-bit in LEA), the mode
of operation needs to be applied. There are several modes of operations and CTR mode is the most
popular among them. Until now, these ARX-based lightweight block ciphers have been optimized on
resource-constrained 8-bit AVR Microcontrollers [1,3–5], which are widely used as sensor nodes in
wireless sensor networks that are representative IoT services.

In addition to applying block ciphers to data to be transmitted, it is also important to securely
generate secret keys used in block ciphers. If a weak key is used in a block cipher, the ciphertext can
be revealed to attackers even if the underlying block cipher is secure. DRBGs (Deterministic Random
Bit Generators) are widely used to generate secret information including keys. Among standardized
DRBGs [6], CTR_DRBG provides strong resistance against backward security and forward security.
Since CTR_DRBG makes use of CBC-MAC and CTR mode of operation in its derivation function and
output generation function, it takes a larger execution time than executing block cipher algorithms.
Thus, optimizing the performance of CTR_DRBG on the resource-constrained AVR-based devices is
important for constructing secure and robust communications in IoT services [7].

In this paper, using a look-up table, we present optimized implementation of ARX-based
lightweight block ciphers (HIGHT and LEA) on CTR mode and optimized CTR_DRBG implementation
in an 8-bit AVR Microcontroller.

The contribution of this paper is as follows:

1. Fast implementation for CTR mode of operation for LEA and HIGHT on 8-bit AVR MCUs

As nonce is repeatedly used in CTR mode, the result has an identical value when the nonce part
is encrypted. Therefore, look-up tables can be generated using the results of encryption data
of nonce. In this paper, we present efficient methods that generate look-up tables. Using the
optimal implementation, we proposed, in a fixed key scenario, the performance of encryption
can be improved by skipping the calculation procedure while loading only the calculation result
from the look-up table. For better performance, optimizations of rotation operation and memory
access are utilized. Finally, the implementation of LEA-CTR and HIGHT-CTR outperforms
previous works by 6.3% and 3.8% than previous works, respectively. Our implementations of
LEA and HIGHT are the fastest implementation compared to the previous implementation on
8-bit AVR MCUs. Furthermore, unlike the typical look-up table generation using a separated way,
our implementation generates the look-up table, simultaneously, while executing the encryption
process. Therefore, in our implementation, the cost of additional function calls that occurred
from the generation of look-up table can be reduced. By using this, we obtained performance
improvement of 6.7% and 9.1% compared to the previous separated encryption process which
generates the look-up table, respectively.

2. Optimized CTR_DRBG implementations on 8-bit AVR MCUs for fast random bit generation

The implementation of CTR_DRBG is optimized with the look-up table. In CBC-MAC of the
Derivation Function, the look-up table is created for the encryption result of data depending
on the initial block bit. The optimization of the Update Function is achieved with the look-up

112

Mathematics 2020, 8, 1837

table by taking advantage of the condition that the initial Operational Status is zero. In addition,
the look-up table does not require an update, but also requires a low cost of 96 bytes, making it
effectively applicable to 8-bit AVR Microcontrollers. Moreover, we presented methods to optimize
Korean block cipher in the Extract Function on 8-bit AVR Microcontrollers. The Extract Function
is optimized by utilizing the table for the CTR mode that uses fixed keys to reduce the execution
timing. Our works of Derivation Function and Update Function outperform previous works
by 13.3% and 72.4%, respectively. By applying CTR optimization methods, implementations of
Extract Function using LEA and HIGHT outperform the standard implementation of Extract
Function by 36.4% and 3.5%, respectively. By combining the proposed Derivation Function,
Update Function, and Extract Function, overall, our CTR_DRBG implementation provides 37.2%
and 8.7% of performance improvement compared with the native CTR_DRBG implementation
using the works from [3–5] as an underlying block cipher of Extract Function.

3. Proposing optimization methods that can be applied to various platforms

In this paper, we propose general optimization methods for ARX-based block ciphers using the
CTR mode. These methods have the advantage to be extended to other Addition-Rotation-XOR
(ARX) based ciphers such as CHAM, Simon, and Speck [8,9]. While the significance of DBRG is
increasing with the advent of the IoT era, there have been a few academic papers on optimization
for CTR_DRBG that are popular to use. In this paper, we present CTR_DRBG optimization
methods on 8-bit AVR Microcontrollers, the most limited IoT device. Our work is meaningful as
it is the first attempt to optimize CTR_DRBG. Furthermore, our proposed Korean block cipher
optimization methods and CTR_DRBG optimization methods are not only applicable to 8-bit
AVR Microcontroller, but also to other low-end-processors and high-end-processors such as 16-bit
MSP430, 32-bit ARM, and the CPU environment.

The rest of this paper is organized as follows. In Section 2, target platform, target ARX ciphers
(LEA and HIGHT), target mode of operation, CTR_DRBG, and previous implementations are given.
In Section 3, related work of Korean block ciphers (LEA and HIGHT) and CTR_DRBG is presented.
In Section 4, optimized implementation of counter mode of operation is presented. In Section 5,
optimized implementation of CTR_DRBG is presented. In Section 6, the performance is evaluated.
Finally, Section 7 concludes the paper.

2. Background

2.1. 8-Bit AVR Microcontroller

AVR Microcontroller is based on Harvard architecture. All AVR commands require less than
four clock cycles to execute. Table 1 shows operand and clock cycles of commands used in this
paper. Currently, there are various types of AVR Microcontrollers, and they have various peripherals
and memory sizes. This structure ensures that instructions always can be executed in a single cycle.
There are 32 general-purpose registers with a single clock cycle. Of the 32 registers, six registers
used for 16-bit indirect address register pointer for addressing, which these registers called X,
Y, and Z registers [10]. These address pointers can also be used as a pointer for Flash Program
memory. Our target device, in this paper, is ATmega128, which is used worldwide in the IoT era [11].
ATmega128 has a 128 KB of programmable flash memory, 4 KB SRAM, and 4 KB EEPROM.

113

Mathematics 2020, 8, 1837

Table 1. 8-bit AVR Assembly Instruction, cc means clock cycle [10,12].

Asm Operands Description Operation cc

ADD Rd, Rr Add without Carry Rd ← Rd+Rr 1

ADC Rd, Rr Add with Carry Rd ← Rd+Rr+C 1

EOR Rd, Rr Exclusive OR Rd ← Rd⊕Rr 1

LSL Rd Logical Shift Left C|Rd ← Rd«1 1

LSR Rd Logical Shift Right Rd|C ← 1»Rd 1

ROL Rd Rotate Left Through Carry C|Rd ← Rd«1||C 1

ROR Rd Rotate Right Through Carry Rd|C ← C||1»Rd 1

BST Rd, b Bit store from Bit in Reg to T Flag T ← Rd(b) 1

BLD Rd, b Bit load from T Flag to a Bit in Reg Rd(b) ← T 1

MOV Rd, Rr Copy Register Rd ← Rr 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr 1

LDI Rd, K Load Immediate Rd ← K 1

LD Rd, X Load Indirect from Rd ← (X) 2

LPM Rd, Z Load Program Memory Rd ← (Z) 3

ST Z, Rr Store Indirect (Z) ← Rr 2

2.2. Target Block Ciphers

2.2.1. LEA Block Cipher

In WISA’13, lightweight block cipher LEA was presented [2]. With the development of IoT, it was
developed to provide confidentiality in various embedded devices, cloud service, mobile environments,
and so on. LEA is an algorithm that encrypts 128-bit data blocks. It can use 128, 192, and 256-bit secret
keys, and its uses are classified according to required safety standards. LEA-128/128, LEA-128/192,
and LEA-128/256 require 24, 28, and 32 rounds, respectively. While ensuring safety, it is possible to
implement lightweight by eliminating the use of S-box. More information on parameters are shown in
Table 2.

Table 2. Parameters of LEA block cipher, where n, k, rk, and r represent block size (bit), key size (bit),
round key size (bit), and the number of rounds, respectively [2].

Cipher n k rk r

LEA-128/128 128 128 192 24

LEA-128/192 128 192 192 28

LEA-128/256 128 256 192 32

LEA block cipher performs encryption for 3 32-bit words in one round that represented in Figure 1.
In the figure, the Xi[0] word of round i directly becomes the input value to Xi+1[3] word of round i + 1.
All words are moved to the left every end of rounds.

114

Mathematics 2020, 8, 1837

Round i

Xi[3]

Xi[2]

Xi[1]

Xi[0]

Round i+1

RKi
enc[5]

Xi+1[3] Xi+2[3]

Xi+1[2]

Xi+1[1]

Xi+1[0]

Xi+2[2]

Xi+2[1]

Xi+2[0]

ROR3

RKi
enc[3]

ROR5

RKi
enc[1]

ROL9

RKi
enc[0]

RKi
enc[2]

RKi
enc[4]

RKi
enc[5]

ROR3

RKi
enc[3]

ROR5

RKi
enc[1]

ROL9

RKi
enc[0]

RKi
enc[2]

RKi
enc[4]

Figure 1. Encryption process of LEA block cipher [2].

2.2.2. HIGHT Block Cipher

HIGHT is a transformed Feistel ARX structure that encrypts 64-bit plaintext with a 128-bit secret
key. The encryption process comprises of initial conversion, round functions, and final conversion.
The key scheduling generates a round key of 136 bytes to be used for encryption with a 128-bit
secret key. HIGHT performs encryption using 8-bit wise addition, rotate–shift, and XOR operation.
Both encryption and decryption consist of 32 rounds. The structure of Round function in HIGHT block
cipher is shown in Figure 2. During every single round, eight 8-bit words are encrypted. In each round
in HIGHT, the four words are through by the F0 or F1 function. F0 and F1 functions perform left shift
operation that is expressed in the following equations:

F0(X) = X≪1 ⊕ X≪2 ⊕ X≪7

F1(X) = X≪3 ⊕ X≪4 ⊕ X≪6

In each round, HIGHT uses a 64-bit round key. Since the number of round of HIGHT is 32, 2048-bit
memory space is needed for storing roundkeys of each round. HIGHT parameters are represented in
Table 3.

Table 3. Parameters of HIGHT block cipher, where n, k, rk, and r represent block size (bit), key size
(bit), round key size (bit), and the number of rounds, respectively [1].

Cipher n k rk r

HIGHT-64/128 64 128 64 32

115

Mathematics 2020, 8, 1837

Round i

Xi[0]

Xi[1]

RK[4i - 4]

F1

Xi[2]

Xi[3]

RK[4i - 3]

F0

Xi[4]

Xi[5]

Xi[6]

Xi[7]

Round i+1

Xi+1[0]

Xi+1[1]

Xi+1[2]

Xi+1[3]

Xi+1[4]

F1

Xi+1[5]

Xi+1[6]

Xi+1[7]

F0

RK[4i - 2]

RK[4i - 1]

RK[4i - 4]

F1

RK[4i - 3]

F0

Xi+2[0]

Xi+2[1]

Xi+2[2]

Xi+2[3]

Xi+2[4]

F1

Xi+2[5]

Xi+2[6]

Xi+2[7]

F0

RK[4i - 2]

RK[4i - 1]

Figure 2. Round function scheme for the HIGHT block cipher [1].

2.3. CTR_DRBG

With the development of IoT, it is important to securely generate security keys when
communicating with each other in WSNs (Wireless Sensor Network). For generating a security
key safely, a true random bit generator should be used; however, in reality, the creation of a true
random bit is almost impossible. Therefore, in the field, we use pseudo-random bits that are difficult
to distinguish from true random bits. As pseudo-random bit generators, DRBGs (Deterministic
Random Bit Generators) are used to securely generate random bit information, including secret
keys, initial vectors, nonces, and so on [6,7]. There are CTR_DRBG based on a block cipher algorithm,
HASH_DRBG using HASH Function, and HMAC_DRBG using HMAC among various types of
pseudo-random number generators. HASH Function used in HASH_DRBG and HMAC_DRBG is
mainly the SHA-2 Family. However, it is difficult to maintain the internal status of SHA-2 Family in
the general-purpose register on 8-bit AVR MCUs. Note that internal states of SHA-256 and SHA-512

116

Mathematics 2020, 8, 1837

are 512-bit and 1024-bit, respectively [13,14]. However, with respect to the lightweight cryptography,
blocks of LEA and HIGHT are 128-bit and 64-bit, respectively. Therefore, these blocks (states of LEA
and HIGHT) can be stored in a general-purpose register.

Table 4 defines notations used in this paper and Table 5 shows parameters based on the block
ciphers used in CTR_DRBG. Seed Bit is the addition of Key bit and Block Bit, and N is the representation
of Seed Bit in bytes. Len_seed is the value of Seed Bit divided by Block Bit.

Figure 3 shows the detailed operational process of CTR_DRBG. Instantiate Function generates seed
with Derivation Function. In addition, Instantiate Function updates Internal State, using the seed and
Update Function. Reseed Function consists of Derivation Function and Update Function, and Generate
Function consists of Reseed Function, Extract Function, and Update Function. Note that Update
Function is called Instantiate Function, Generate Function, and Reseed Function. Generate Function
outputs the random bits based on the internal state by using Extract Function. Before Extract Function
is executed, if it supports Prediction Resistance or if Reseed Counter is greater than Reseed Interval,
Generate Function calls Reseed Function to update Operational Status. In the opposite case, Generate
Function calls an Extract Function to generate a random number, and calls the Update Function to
update the Operational Status. When additional requests occur for random bit generations, a series of
functions except for Instantiate Function are repeated.

Table 4. Notations for CTR_DRBG [6,7].

Notation Descriptions

Personalization String Information for differentiating the instances being created, non-confidential
input (optional).

Nonce Input information used to generate a seed during instance Function.

Internal State Information used during CTR_DRBG. It consists of Operational Status and
Control Information.

Operational Status Information directly used for random number output. Consisting of C and V, C
is the key used for block cipher, and V is the plain text used for block cipher.

Control Information Information consists of security strength, Prediction Resistance flag and
Derivation Function flag.

Prediction Resistance Characteristics of the exposure of internal status information of CTR_DRBG
without affecting future output.

Instantiate Function Function to create and initialize CTR_DRBG instances as needed.

Derivation Function Function called from an Instantiate Function to generate a seed using entropy
input, Nonce and Personalization String.

Update Function Function to update Internal State, using the CTR mode encryption

Reseed Function Function to update Internal State using entropy and additional input.
This function is affected by Reseed Counter.

Generate Function Function to generate an output(random number) using Internal State and update
Internal State.

Extract Function Function to generate random number sequence, using the CTR mode encryption.

Figure 4 shows the structure of Derivation Function of CTR_DRBG. Derivation Function makes
use of CBC-MAC in order to produce an output of seed length by inputting variable data S.
Derivation Function is called in Instantiate Function and Reseed Function. Step 1 is a CBC-MAC
encryption process by using counter value C. Step 2 is the process of CBC mode which encrypts V
with Key generated from Step 1. First, it formats input S for CBC-MAC using Input Data consisting of
Entropy, Nonce, and Personalization String. C, L, and N are 32-bit data. The initial C is zero, and padded
to zero after C by the length of Block Bit minus 32-bit. L and N are byte lengths of Input Data and
seed. Derivation Function makes S using C, L, N and Input Data. At this sequence of generating S,

117

Mathematics 2020, 8, 1837

the length of S is padded to 0 so that it is a multiple of Block Bit. Then, Derivation Function increases C
of S by 1 and repeats CBC-MAC as many times as Len_seed. Using the results of CBC-MAC as key and
V, Derivation Function performs CBC mode encryption as many times as Len_seed to generate seed.

Table 5. Constant parameters of CTR_DRBG depending on block cipher [6,7].

Parameters HIGHT-64/128 LEA-128/128 LEA-128/192 LEA-128/256

Key Bit 128 128 192 256

Block Bit 64 128 128 128

Seed Bit 192 256 320 384

N 0 × 18 0 × 20 0 × 30 0 × 40

Len_seed 3 2 3 3

Figure 3. Detailed procedures of CTR_DRBG [6,7].

118

Mathematics 2020, 8, 1837

Figure 4. Overview of Derivation Function [6,7].

Figure 5 shows the structure of the Update Function in CTR_DRBG. Update Function updates C
and V of Operational Status using CTR mode and Input data. Update Function performs with CTR
mode encryption as many times as Len_seed. Update Function executes XOR operation on Input data
and results generated in CTR mode encryption. Note that Update Function is called by Instantiate
Function, Generate Function, and Reseed Function.

Figure 5. Overview of Update Function [6,7].

Generate Function consists of Reseed Function, Extract Function, and Update Function. As shown
in Figure 3, Generate Function generates a random number using Extract Function. Figure 6 shows the
structure of Extract Function called in Generate Function. Extract Function is a function that uses the
same CTR mode as Update Function. Therefore, using Operational Status C as the key and V as the
counter, Extract Function generates a random number by using CTR mode.

119

Mathematics 2020, 8, 1837

Figure 6. Overview of Extract Function [6,7].

3. Related Works

3.1. Block Cipher Implementations on AVR

Various studies have been conducted to improve performance for block ciphers in 8-bit AVR
Microcontrollers. In 8-bit AVR MCUs, which are low-end-processors, the study of optimization has
been mainly done using minimize memory access and pre-computation tables.

There are two main categories of block ciphers: Addition, Rotation, and eXclusive-or (ARX) based
block ciphers and Substitution Permutation Network (SPN) based block ciphers.

Efficient implementations of ARX-based ciphers have been studied in various ways in an 8-bit
AVR MCUs environment [1–5,8,15–21].

In WISA’13, the Institute of Electronics and Telecommunications Research Institute (ETRI)
presented a light-weight LEA block cipher. In 8-bit AVR MCUs, the first LEA’s implementation
needed 3040 clock cycles for encryption [2].

In [19], the hardware design and implementation of LEA was proposed. Based on the key size,
Ref. [19] introduced suitable hardware designs. For the area-optimized version, resource-shared
structure for LEA was proposed.

In WISA’15, an efficient LEA implementation technique of dividing a 32-bit word operation using
4-byte units was proposed [3]. The method proposed in [3] minimizes memory access. A technique
for efficiently operating rotate–shift used in 8-bit AVR MCUs was proposed. The proposed technique
implicitly performs a byte-wise rotate–shift [3]. In addition, the source code was reduced by maximizing
the use of the instruction set, and internal states of LEA were efficiently placed in general-purpose
registers [3].

In [4], efficient implementation of LEA and method of rotate–shift-right were proposed,
fully utilizing the AVR assembly instruction set and general-purpose registers in 8-bit AVR MCUs.
For the optimized LEA implementation, Ref. [4] presented a compact ARX task on a target 8-bit AVR
Microcontroller. Using both BST and BLD instructions in the AVR instruction, Ref. [4] improved the right
rotation by 1 bit. By using the BST instruction in a 1-bit shift-right, the first bit of the register is reflected
in the status flag. After that, rotate–shift–right is performed, using LSR and ROR instruction. Finally,
Ref. [4] applied the status flag to the 8th bit in the register by using BLD instruction. By using this, when
implementing LEA in 8-bit AVR MCUs, less than seven clock cycles are incurred for all rotate–shift
operations. In addition, Ref. [4] efficiently places the LEA’s internal state in a general-purpose register.
Using MOVW instruction, clock cycles of execution time were reduced.

In [15], efficient LEA implementation was proposed in ARM Cortex-M3 processors. The general
purpose registers are fully utilized to retain the required variables for the key scheduling and
encryption operations and the rotation operation is optimized away by using the barrel-shifter
technique. Since the on-the-fly method does not store the round keys, the RAM requirements
are minimized.

120

Mathematics 2020, 8, 1837

In [5], efficient techniques using general-purpose registers were presented. The general-purpose
registers in 8-bit AVR MCUs are compactly used for storing results during the key scheduling of LEA.

The HIGHT’s implementation was first presented in [16]. Execution time of HIGHT for encryption
and decryption in 8-bit AVR MCUs is 2438 and 2520 clock cycles, respectively [16].

In [21], efficient implementation using parallel architecture to enhance throughput was proposed.
It shares key scheduling block for encryption and decryption to reduce hardware complexity.

In [20], hardware implementation for a significant reduction in the number of memory resources
was proposed. Its implementation is useful for wireless applications such as a radio frequency
identification system (RFID).

In [4], efficient rotation operations were introduced, and they achieved high performance. Like the
LEA implementation proposed in [4], an efficient rotate–shift was used. Its implementation won the
second round of Fair Evaluation of Lightweight Cryptographic Systems (FELCS).

In [17], fast HIGHT implementation was proposed. For optimizing delta update, F0 function,
and F1 function, Ref. [17] uses the Look-Up Table (LUT). In addition, [17] proposed the memory-
efficient way for F0 and F1 function, using bit-wise operations.

In 2015, SIMON and SPECK were presented by The US National Security Agency (NSA) [18].
Both SIMON and SPECK have advantages for efficient implementation in hardware and software
environments. These two block ciphers support various block sizes and various key sizes. Therefore,
in various IoT devices, SIMON and SPECK can be widely used. For 8-bit AVR MCUs, efficient
implementation was presented in [8] using RAM-minimizing.

In an 8-bit AVR MCUs environment, block ciphers based on SPN also have also been actively
studied. Since Advanced Encryption Standard (AES) is an international standard, AES implementations
have widely studied.

In 2010, Ref. [22] presented efficient techniques for AES implementation, using a Z address pointer
to perform SubBytes operation. In [22], MixColumns were implemented by a branch instruction set.
Previous AES implementation in 8-bit AVR MCUs mainly focused on ECB Mode; however, in the field,
AES-CTR Mode is more widely used (e.g., TLS/SSL) [23].

In ICISC’19, Fast AES-CTR Mode Encryption LIGHT (FACE-LIGHT) was presented by [24].
FACE-LIGHT is a variant of FACE implementation suggested by [25] in 8-bit AVR MCUs. FACE-LIGHT
uses LUT for caching repeated data in IV. By using LUT, some operations can be omitted in 0,1,
and 2 Round.

In WISA’20, efficient AES implementation was presented by [11]. The column-wise implementation
was proposed. Proposed techniques have advantages for constant-time implementation and low
cost for generating LUT. In addition, using 0 round optimization, Ref. [11] presented the optimized
AES-CTR mode encryption for Wireless Sensor Network (WSN).

3.2. DRBG Implementations on AVR

To the best of our knowledge, the implementation of DRBG has not been presented in academic
papers. The commercial product provides the AES-DRBG, but the performance is much slower than
our work (http://cryptovia.com/cryptographic-libraries-for-avr-cpu/). Furthermore, the detailed
information is not available. For this reason, our work is the-state-of-art work.

4. Optimized Implementations of LEA-CTR and HIGHT-CTR

The optimized implementation of a counter mode of operation for block cipher utilizes unique
features of fixed nonce and variable counter values. The counter value indicates the block number,
while the nonce is a fixed random value. Every block has the same nonce value. The calculation based
on the nonce block is always a constant value. For this reason, the part can be pre-computed. The CTR
implementation is categorized into two different scenarios, including fixed-key and variable-key. In this
paper, we optimize both cases for various applications.

121

Mathematics 2020, 8, 1837

In the fixed-key scenario, the key value is fixed. For this reason, the precomputation result is
always same and the precomputation table does not require update. In the implementation, the LDI

instruction was used instead of the LD instruction to load the precomputation value from table. The LDI
instruction operates at one cycle faster than the LD instruction.

On the other hand, the LDI instruction cannot be used for the variable-key scenario because the
LDI instruction can only load the fixed value. Furthermore, the pre-computed table should be updated
efficiently whenever the key is updated. This implementation shows the lower performance than
that of fixed-key implementation. However, the variable-key implementation is able to perform the
encryption with updated keys, which is more suitable for practical usages than fixed-key.

4.1. Optimized Implementation of LEA-CTR

The LEA algorithm was suggested [2]. However, we use [4] implementation. [4] has optimized
key scheduling; in particular, LEA-128/128 can reuse some round keys.

- Round 0 In one round of LEA, the operations are performed in three parts. In Round 0, only
X0[0] word has a counterpart of IV. Consequently, two words can be implemented through the
precomputation method.

- Round 1 However, due to the Round 0, the X1[1] word is also beginning to be affected by the
counter value. For this reason, it might be thought that the precomputation part is only available
at X1[2] word. The part where X1[3] word is used as the input value of X1[0] in Round 1 can be
expressed by the following equation:

ROL3((X1[3] ⊕ RKenc
1 [2]) � (X1[0] ⊕ RKenc

1 [3]))

At this equation, it can be seen that the blue parts X1[3] word and round key are fixed values.
Consequently, XOR instruction between X1[3] word and round key part can be skipped.

- Round 2 In Round 2, only the X2[3] word is not affected by counter value. Therefore,
precomputation is not applicable as a whole. However, like the previous round, in order to
use X2[3] word as an input value for X3[0] word, the operation part that performs XOR instruction
with a round key can be a precomputation implement. The optimized LEA-128/128 CTR mode of
operation is described in Figure 7.

- Generation of look-up table When generating a look-up table, it has the advantage that the
table can be generated during the encryption process. CACHE can be saved in the look-up table
through the result of the operation in executing each round. When creating the look-up table,
only the address translation cost based on ST instruction is incurred.

Optimization for LEA-128/192 and LEA-128/256

Our optimization strategy for LEA-128/128 can be directly applied to both LEA-128/192 and
LEA-128/256 because their computational structures are identical except for the number of rounds.
In addition, we combine each four rounds into one for better performance in our LEA implementations.

122

Mathematics 2020, 8, 1837

Round 0

X0[0]

X0[1]

X0[2]

X0[3]

CACHE X1[1]ROL9

X1[0]

RK0
enc[0]

CACHE

Round 1

X2[2]

X2[1]

X2[0]

ROL9

RK1
enc[0]

CACHE

ROR3

CACHE

Round 2

X3[3]

X3[2]

X3[1]

X3[0]

RK1
enc[3]

ROL9

RK2
enc[0]

ROR3

RK2
enc[3]

RK2
enc[3]

RK2
enc[3] CACHE

ROR5

Figure 7. Optimized three rounds of LEA-128/128 block ciphers.

4.2. Optimized Implementation of HIGHT-CTR

The HIGHT-64/128 split input value into eight 8-bit words. The CTR mode of operation using
32-bit counter, so four words are affected by counter of IV in the initial round. Figure 8 shows this.

- Round 0 The HIGHT performs four operations in a single round. In Round 0, the operation is
performed using the following word pairs; X0[0] with X0[1], X0[2] with X0[3], X0[4] with X0[5],
and X0[6] with X0[7]. First of all, words of X0[0], X0[1], X0[2], X0[3] have counter values, which is
variable. Thus, two of the four operations must be implemented. However, the other operations
part uses only fixed values, which are nonce, and round keys, so precomputation is available for
these parts.

- Round 1 Unlike the previous round, the pair of words participating in the operation is slightly
different. In this time, the X1[4] word is affected by the counter value; then, precomputation
is not possible. X1[5] and X1[6] words still have nonce value, so this part is precomputation
implementation available. In addition, lastly, X1[0] word operates with a X1[7] word that has
nonce value. The whole operations cannot be skipped, but the result of X1[7] operation through
the F1 function is can be omitted because X1[7] has nonce value, and the F1 function only conducts
left shift operation.

- Round 2 Round 2 has a similar structure to Round 0. However, in this time, X2[4] words are
affected by counter value, so the precomputation part is reduced by one place and then the
Round 0.

- Round 3 Likewise this time, the Round 3 scheme is like Round 1. The difference is that the X4[6]
word is affected by the counter value. For this reason, precomputation implementation is possible
in only one part.

- Generation of look-up table In the same method as the proposed look-up table of LEA,
the proposed method for HIGHT implementation has the advantage of generating a look-up
table during the encryption process. CACHE data are saved during the CTR mode encryption.
When creating the look-up table, only the address translation cost based on ST instruction
is incurred.

123

Mathematics 2020, 8, 1837

Round 0 Round 1 Round 2 Round 3

X0[1]

X0[0] X1[0]

X0[6]

X0[7]

X1[1]

X1[2]

X1[3]

F1

RK[4i - 4]

X0[5]

X2[0] X3[0] X4[0]

X2[1]

F0

RK[4i - 3]

X0[3]

X0[4]

X0[2] X2[2]

X2[3]

F1

RK[4i - 2]

F0

RK[4i - 3]

X1[4] X2[4]

CACHE

CACHE

X3[1]

F0

RK[4i - 3]

X3[2]

F1

RK[4i - 2]

X3[3]

X3[4]
F0

RK[4i - 1]

X3[5]

CACHE

X4[1]

X4[2]

X4[3]

X4[4]

X4[5]

X4[6]

F1

RK[4i - 2]

F0

RK[4i - 1]

F1

RK[4i - 4]

CACHE

CACHE

Figure 8. Optimized four rounds of HIGHT-64/128 block cipher.

4.3. Optimized Implementation of Rotation Operation

The 8-bit AVR microcontroller supports rotation instructions of 8-bit operands by one bit to left
(ROL) and right (ROR). Since one general-purpose register in an 8-bit AVR microcontroller is 8-bit in size,
additional computation is required to apply the rotate operation to data above 8-bit. If the offset of
rotation operation is a multiple of 8-bit, the rotation operation can be optimized away by indexing the
register directly. The optimized 16/32-bit word rotation operations are given in Table 6.

Table 6. Optimized 16/32-bit word rotation operations on 8-bit AVR Microcontroller.

16-bit ROL1 16-bit ROL8 32-bit ROL1 32-bit ROL8

LSL LOW
ROL HIGH
ADC LOW, ZERO

MOV TEMP, LOW
MOV LOW, HIGH
MOV HIGH, TEMP

LSL R0
ROL R1
ROL R2
ROL R3
ADC R0, ZERO

MOV TEMP, R3
MOV R3, R2
MOV R2, R1
MOV R1, R0
MOV R0, TEMP

3 cycles 3 cycles 5 cycles 5 cycles

5. Optimization for CTR_DRBG on 8-Bit AVR Microcontroller

In this section, we present optimization methods for an Instantiate Function of CTR_DRBG.
The proposed method optimizes the constant data in Derivation Function and Update Functions called
from Instantiate Function. This can be applied to any block ciphers used in CTR_DRBG. The proposed

124

Mathematics 2020, 8, 1837

optimization approach with the constant data for Derivation Function and Update Function used in
Instantiate Function is to generate a look-up table for the constant data.

In short, our strategy to speed-up an Instantiate Function is to generate the look-up table for the
result of encryption for size of block from msb of S, which is used in CBC-MAC of Derivation Function.
In addition, we optimize Instantiate Function by generating the look-up table for the result of Update
Function called from an Instantiate Function by using the fact that both C and V values of the initial
Operational Status are zero.

Figure 9 shows our optimization method for Derivation Function in an Instantiate Function.
As mentioned in Section 2.3, Step 1 of Derivation Function uses CBC-MAC. When CBC-MAC is called
in Derivation Function, the data from msb to Block Bit of S is zero. CBC-MAC executes encryption
with increasing C by the number of times Len_seed. Since, at this time, the key used in CBC-MAC is
fixed (0x00010203..), the result for encryption of Block Bit including C can be stored in a look-up table.
For LEA-128/128, as shown in the yellow and green parts in Figure 9, the Derivation Function can
reduce two encryptions during CBC-MAC computation. For other cases (HIGHT-64/128, LEA-128/192,
and LEA-128/256), as shown in the yellow, green, and blue parts, Derivation Function can reduce three
encryptions in the CBC-MAC computation process. The optimized method of Derivation Function we
propose is applicable regardless of the length of Input Data entered in S. In addition, for CTR_DRBG
that supports Prediction Resistance, Reseed Function is called from the Generate Function; even at
this time, our main idea for Derivation Function is applicable. The constant data on the look-up table
is the fixed data and requires the cost of Block Byte ∗ Len_seed. Based on the target block ciphers
used in this paper, the look-up table requires up to 48 bytes. Since the look-up table is used as being
semi-permanent when it is created (look-up table is constant data), the generation time of look-up
table is not considered. Therefore, the look-up table can be used in environments where CTR_DRBG is
repeatedly called.

Figure 10 shows the proposed optimization method for the Update Function of Instantiate
Function. When the Instantiate Function is called, the Derivation Function generates the seed. After
generating the seed, Instantiate Function calls the Update Function to execute an initial updating
process for Operational Status. The initial Operational Status has a value of zero (C = 0, V = 0). Since
Operational Status is zero when Instantiate Function generates the seed and updates Internal State,
we can store the results of Update Function in the look-up table. The orange part in Figure 10 is the
omitted encryption part. That is, the Instantiate Function can perform XOR operation immediately
using Seed (red part) and look-up table without executing the Update Function. The proposed method
that can be applied regardless of the block cipher algorithm, such as the optimization method applied
to the Derivation Function. In addition, the look-up table for Update Function is a constant data table
that can be used regardless of the number of calls made to CTR_DRBG, just like the look-up table
generated by Derivation Function. The look-up table for Update Function requires up-to 48 bytes,
the same as the look-up table generated for the Derivation Function.

The propose method for the Instantiate Function are to omit the encryption process as much
as possible by using the look-up table. The cost of the look-up table requires up to 96 bytes. We can
replace up-to six encryption operations using just 96 bytes. In the case of ATmega128, the most popular
MCU in an 8-bit AVR MCUs environment, as mentioned in Section 2, has 4 KB of SRAM. Therefore,
a maximum 96 bytes of the look-up table for the Instantiate Function can be stored in SRAM of
ATmega128 sufficiently. In addition, the optimization methods we propose for Instantiate Function
have the advantage of being applicable to various platforms such as low-end platforms and high-end
platforms without relying on specific platforms.

The Extract Function called in the Generate Function is a function of extracting random numbers
using the CTR mode. Figure 11 shows the proposed optimization method for the Extract Function
of the Generate Function. The Extract Function uses C and V in Operational Status as a key and
a counter to perform CTR mode to extract random numbers. Using the optimized CTR mode
proposed in Section 4, we apply the optimized CTR mode of Extract Function. In order to apply

125

Mathematics 2020, 8, 1837

the optimized CTR mode using the look-up table proposed in Section 4 to the Extract Function, the
look-up table must be generated first. When Counter is V+1, we apply the optimized CTR mode with
precomputation; through this process, we generate a look-up table. Note that the optimized CTR
mode with precomputation only applies when the counter is V+1. If the counter is V+2 or higher, the
optimized CTR mode using a look-up table is applied for the encryption of all CTR modes during
Extraction Function.

Figure 9. Optimized implementations for Derivation Function in the Instantiate Function.

Figure 10. Optimized implementations for the Update Function in the Instantiate Function.

126

Mathematics 2020, 8, 1837

Figure 11. Optimized implementations for the Extract function of the Generate function.

6. Implementation Results

Proposed implementations of CTR mode and CTR_DRBG were evaluated on 8-bit AVR MCUs.
The performance was measured in Clock cycles Per Byte (CPB). The measurement environment is
Atmel Studio 7 and all code was compiled using an -O2 option.

The comparison criteria are as follows. For comparison, we define three versions of our
implementations: the separation version (denoted as (c, s)), online version (denoted as (c, o)),
and optimized encryption version (denoted as (c) in Figure 12). Both the separation version and
the online version build the precomputation table by taking advantage of the property of CTR
mode for fast encryption. Actually, they include the process for precomputation table generation
and encryption. The difference between the separation version and the online version is that online
version builds the precomputation table while executing encryption (Separation version builds the
precomputation table separately from the encryption). Our optimized encryption version makes use
of the precomputation table generated from either the separation version or the online version for
fast encryption. Our three versions of LEA and HIGHT implementations will be compared with the
previous best works from [3–5] and from [1,4], respectively.

6.1. LEA-CTR on 8-bit AVR Microcontrollers

The LEA implementation result is shown in Figure 12. Three LEA implementations exist on AVR
environments [3–5]. The latest research is [5], but it contains only LEA-128 implementation. Therefore,
in the case of LEA-128/192 and LEA-128/256, we compare our implementations to [3].

The separation version (denoted as (c, s) in the figure) of LEA-128 has worse performance by
about 7.3% compared to [5]. In addition, LEA-128/192 and LEA-128/256 have slightly lower speeds
than [3].

However, the precomputation in online version (denoted as (c, o) in the figure) of LEA-128 shows
similar performance to [5]. The reason for the performance difference is that there is a part that
calculates a cache table.

The reason for the performance difference compared to the separation version is that the online
version combines the generation process of precomputation and the encryption process in order to
reduce additional function calls.

The optimized LEA CTR mode implementations (denoted as (c) in the figure) clearly outperform
the works from [3–5]. It shows around 4.8% performance improvement in case of LEA-128/128
compared with the work from [5]. In case of LEA-128/192, and LEA-128/256, our implementations
provide around 6.3% and 6.3% improved performance compared to [3]. Our LEA implementations
provide the fastest performance on 8-bit AVR platform compared with the previous results.

127

Mathematics 2020, 8, 1837

150 170 190 210 230 250 270

LEA-128/256c

LEA-128/192c

LEA-128/128c

LEA-128/256c,o

LEA-128/192c,o

LEA-128/128c,o

LEA-128/256c,s

LEA-128/192c,s

LEA-128/128c,s

LEA-128/256 [3]

LEA-128/192 [3]

LEA-128/128 [3]

LEA-128/128 [4]

LEA-128/128 [5] 167

168

169

224

256

180

236

267

168

222

252

159

210

240

Figure 12. Comparison of execution time for LEA implementations on 8-Bit AVR Microcontrollers under
the variable-key scenario in terms of clock cycles per byte, c: counter mode of operation (32-bit counter),
s: building precomputation table separately from encryption process, o: building precomputation table
in online while executing encryption process.

6.2. HIGHT-CTR on 8-Bit AVR Microcontrollers

The HIGHT is a 64-bit block cipher and until now there has only been one previous study for
optimization on the AVR platform. Thus, we compare our implementation to the previous work [4],
and the results are represented in Figure 13. Like performance analysis of LEA implementation
described in the previous subsection, there are three HIGHT implementation versions such as the
separation version, online version, and optimized CTR implementation, which are denoted as (c, s),
(c, o), and (c), respectively, in Figure 13.

The separation version (denoted as c, s) has about 9.9% lower performance than [4]. However, the
online version (denoted as c, o) provides a slightly better performance. The reason for this result
is that the separation version performs encryption after calculating a precomputation table in
independent functions. On the other hand, the online version keeps executing an encryption process,
while generating the precomputation table. By using this, additional function calls overhead for
generating a precomputation table can be reduced. Given these points, the online version has better
performance compared with the separation version.

Finally, an optimized CTR mode of operation version (denoted as c) gets 3.8% better performance
than [4]. This is because some of the calculation intervals are skipped through the use of precomputed
values, and this is the fastest timing compared with the previous best results on the same platform.

140 160 180 200 220 240 260 280 300 320

HIGHT-64/128c

HIGHT-64/128c,o

HIGHT-64/128c,s

HIGHT-64/128 [4]

HIGHT-64/128 [1] 311

161

177

160

155

Figure 13. Comparison of execution time for HIGHT implementations on 8-Bit AVR Microcontrollers under
the variable-key scenario in terms of clock cycles per byte, c: counter mode of operation (32-bit counter),
s: building precomputation table separately from encryption process, o: building precomputation table
online while executing the encryption process.

128

Mathematics 2020, 8, 1837

6.3. CTR_DRBG on 8-Bit AVR Microcontrollers

The proposed CTR_DRBG was implemented in Atmel Studio 7, as the same implementation
environment as Section 6.1. In addition, the code was complied in an -O2 option. We implemented
CTR_DRBG using the optimization method proposed in Section 4 and 5. Therefore, we measured the ratio
of performance improvement by comparing our proposed implementation of CTR_DRBG (using optimized
LEA-CTR, and optimized HIGHT-CTR) and CTR_DRBG with LEA [3,5], and HIGHT [4]. Since until now
there have been no implementations of CTR_DRBG, we implement the naive version ourselves. As the
underlying block cipher, we utilize the previous works of LEA implementation from [3,5], and of HIGHT
from [4].

Table 7 shows the ratio of performance improvement to Derivation Function and Update Function,
and shows the ratio of performance improvement in Extract Function depending on the length of the
extracted random number. When measuring the ratio of performance improvement, an Input Data of
Derivation Function was fixed at 64 bytes (which is reasonable because, on AVR platforms, the noise
data are typically collected from hardware noise sources, which contain larger entropy than software
noise sources). The encryption process as much as Len_seed is omitted in the Derivation Function
proposed in Section 5. The block ciphers except HIGHT-64/128 show a performance improvement of
more than 10% in Derivation Function as the Block size is 128-bit.

The actual computation of the method, proposed in Section 5, in the Update Function is only the
XOR operation for the length of the seed. Since, in the Update Function as much encryption process
as Len_seed has been omitted, the ratio of performance improvement is much larger than that of
Derivation Function. We measure performance according to the length of the extracted random number
in the Extract Function. In addition, we implemented the Extract Function using methods proposed
in Sections 4 and 5. In other words, our implementation generates a look-up table when the Counter
equals V+1, and uses a look-up table when the Counter more than V+2. Therefore, it can be seen
that the longer the length of the extracted random number, the greater the ratio of the performance
improvement of the Extract Function for each algorithm.

Figure 14 shows the ratio of performance improvement for CTR_DRBG with the target block
ciphers according to the length of the extracted random number. The ratio of performance improvement
is measured by comparing the previous best results shown in [3–5]. Table 8 shows the ratio of
performance improvement, which shows the best performance among the ratios in Figure 14.

Table 7. Performance improvement of proposed Derivation function and Update function compared
the naive implementation version on 8-bit AVR MCUs [3–5]. The result is based on the number of
extracted random numbers, where B, D.Fnc, U.Fnc, and E.Fnc represent byte, Derivation Function,
Update Function, and Extract Function, respectively.

Block Cipher LEA-128/128 LEA-128/192 LEA-128/256 HIGHT-64/128

D.Fnc 10.1% 13.4% 14.1% 5.6%

U.Fnc 51.1% 69.4% 72.4% 40.6%

32B E.Fnc 13.6% 22.0% 23.5% 1.4%

64B E.Fnc 16.7% 25.1% 26.5% 1.9%

128B E.Fnc 20.2% 28.7% 29.9% 2.4%

256B E.Fnc 23.4% 31.9% 32.8% 3.0%

512B E.Fnc 25.8% 34.3% 35.0% 3.3%

1024B E.Fnc 27.3% 35.8% 36.4% 3.5%

The optimized implementations of CTR_DRBG used LEA-128/128, LEA-128/192, and LEA-128/256
increase the ratio of performance improvement as the length of the extracted random number increases.
In Table 7, the ratio of performance improvement to Extract Function for LEA-128/128, LEA-128/192,

129

Mathematics 2020, 8, 1837

and LEA-128/256 increases by a greater width than HIGHT-64/128 as the length of the extracted random
number increases. Therefore, the ratio of performance improvement to Extract Function for LEA-128/128,
LEA-128/192, and LEA-128/256 affects the performance improvement ratio of CTR_DRBG over the
ratio of performance improvement for Derivation Function and Update Function. HIGHT-64/128 has a
difference of approximately 2.1% in the ratio of performance improvement between 32 bytes and 1024
bytes extracted random number, and the overall ratio of performance improvement of CTR_DRBG does
not increase. In other words, in the case which uses HIGHT-64/128, the ratio of performance improvement
for Extract Function has less effect on the ratio of performance improvement in CTR_DRBG than the ratio
of performance improvement for Derivation Function and Update Function.

Table 8. The best performance improvement ratio (%) of CTR_DRBG using our LEA and HIGHT
implementation compared to CTR_DRBG using previous LEA and HIGHT implementation [3–5].
The result is based on the number of extracted random numbers, Byte represents the number of bytes
with best performance of CTR_DRBG.

Block Cipher LEA-128/128 LEA-128/192 LEA-128/256 HIGHT-64/128

Byte 1024 1024 1024 32

CTR_DRBG 26.7% 36.2% 37.2% 8.7%

The ratio of performance improvement of CTR_DRBG using HIGHT-64/128 drops as the length
of the extracted random number increases. Table 7 shows that the performance increase in the Extract
Function of HIGHT-64/128 results in a performance improvement of less than 3% as the length of
the extracted random number increases. According to our observation, in the ratio of performance
improvement to the extracted 32 byte random numbers and 1024 byte random numbers from the
Extract Function, if the difference between the ratio of performance improvement when extracting
random numbers is less than 8.3%, the ratio of performance improvement in CTR_DRBG does not
increase depending on the length of the extracted random number. The longer the extracted random
number is, the more encryption process is added. The longer the extracted random number, the more
encryption process is added. Therefore, if the ratio of performance improvement of the Extract Function
is significantly less than the ratio of performance improvement for Derivation Function and Update
Function, the ratio of performance improvement for CTR_DRBG is lower. Our work of optimized
CTR_DRBG in this paper shows up to 37.2% performance improvement when using proposed LEA
implementation, and up to 8.7% performance improvement when using proposed HIGHT-64/128
implementation.

32B 64B 128B 256B 512B 1024B
5

9

13

17

21

25

29

33

37

Byte of random number extracted CTR_DRBG

O
pt

im
iz

ed
pe

rf
or

m
an

ce
ra

ti
o(

%
)

LEA-128/128
LEA-128/192
LEA-128/256

HIGHT-64/128

Figure 14. Performance improvement ratio (%) for CTR_DRBG using our LEA and HIGHT
implementations on 8-bit AVR MCUs, compared to CTR_DRBG using previous LEA and HIGHT
implementation [3–5]. The result is based on the number of extracted random numbers. B represents byte.

130

Mathematics 2020, 8, 1837

7. Conclusions

In this paper, we have presented optimized implementations of ARX-based Korean block ciphers
(LEA and HIGHT) with CTR mode of operation, and CTR_DRBG using them on low-end 8-bit AVR
microcontrollers. With respect to CTR mode optimization, the proposed implementation method
for generating look-up tables has the advantage of reducing additional function calls compared
to the existing naive methods. By using this technique, our proposed table generation method
reduced the cost of building precomputation table by around 6.7% and 9.1% in the case of LEA
and HIGHT, respectively. In addition, using the generated look-up table in a fixed key scenario, our
CTR implementations based on LEA and HIGHT provide 6.3% and 3.8% improvements compared
with the previous best results, respectively. Our CTR implementations are the fastest compared to
existing LEA and HIGHT implementations. Regarding CTR_DRBG optimization, we proposed to
precompute several parts of CTR_DRBG, which results in performance improvement. The proposed
method is the first CTR_DRBG optimization technique, and can be applied regardless of any cipher
used for CTR_DRBG. By using this, our CTR_DRBG’s implementations using LEA and HIGHT on
8-bit AVR MCUs provide 37.2% and 8.7% of performance improvement compared with the previous
naive implementation. We believe that our work can be widely used for building various types of
secure IoT services. Furthermore, the optimization techniques from this work can be applied to the
other platforms without difficulties.

Author Contributions: Writing—original draft, Y.K., H.K., and S.A.; Writing—review and editing, H.S. and S.C.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2019R1F1A1058494).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hong, D.; Sung, J.; Hong, S.; Lim, J.; Lee, S.; Koo, B.S.; Lee, C.; Chang, D.; Lee, J.; Jeong, K.; et al. HIGHT:
A new block cipher suitable for low-resource device. In International Workshop on Cryptographic Hardware and
Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 46–59.

2. Hong, D.; Lee, J.K.; Kim, D.C.; Kwon, D.; Ryu, K.H.; Lee, D.G. LEA: A 128-bit block cipher for fast
encryption on common processors. In International Workshop on Information Security Applications; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 3–27.

3. Seo, H.; Liu, Z.; Choi, J.; Park, T.; Kim, H. Compact implementations of LEA block cipher for low-end
microprocessors. In International Workshop on Information Security Applications; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 28–40.

4. Seo, H.; Jeong, I.; Lee, J.; Kim, W.H. Compact implementations of ARX-based block ciphers on IoT processors.
ACM Trans. Embed. Comput. Syst. (TECS) 2018, 17, 1–16. [CrossRef]

5. Seo, H.; An, K.; Kwon, H. Compact LEA and HIGHT implementations on 8-bit AVR and 16-bit MSP
processors. In International Workshop on Information Security Applications; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 253–265.

6. Meltem, S.T.; Elaine, B.; John, K.; Kerry, M.; Mary, B.; Michael, B. Recommendation for the Entropy Sources Used
for Random Bit Generation; NIST DRAFT Special Publication 800-90B; NIST: Gaithersburg, MD, USA, 2018;
pp. 4–47.

7. Kim, Y.; Seo, S. Study on CTR_DRBG Optimization in 8-bit AVR Encironment. In Proceedings of the
Conference on Information Security and Cryptography-Summer 2020 (CICS-S’20), Seoul, Korea, 15 July 2020.

8. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK block
ciphers on AVR 8-bit microcontrollers. In International Workshop on Lightweight Cryptography for Security and
Privacy; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–20.

9. Koo, B.; Roh, D.; Kim, H.; Jung, Y.; Lee, D.G.; Kwon, D. CHAM: A Family of Lightweight Block Ciphers for
Resource-Constrained Devices. In Proceedings of the International Conference on Information Security and
Cryptology (ICISC’17), Seoul, Korea, 29 November–1 December 2017 .

131

Mathematics 2020, 8, 1837

10. Atmel. AVR Instruction Set Manual. 2012. Available online: http://ww1.microch-\ip.com/downloads/en/
devicedoc/atmel-0856-avr-instruction-set-manual.pdf (accessed on 10 October 2020).

11. Kim, Y.; Seo, S.C. An Efficient Implementation of AES on 8-bit AVR-based Sensor Nodes. In Proceedings of
the 21th World Conference on Information Security Applications, Jeju island, Korea, 26–28 August 2020.

12. Kwon, H.; Kim, H.; Choi, S.J.; Jang, K.; Park, J.; Kim, H.; Seo, H. Compact Implementation of CHAM Block
Cipher on Low-End Microcontrollers. In Proceedings of the The 21th World Conference on Information
Security Applications, Jeju island, Korea, 26–28 August 2020.

13. Balasch, J.; Ege, B.; Eisenbarth, T.; Gérard, B.; Gong, Z.; Güneysu, T.; Heyse, S.; Kerckhof, S.; Koeune, F.;
Plos, T.; et al. Compact Implementation and Performance Evaluation of Hash Functions in ATtiny Devices.
IACR Cryptol. ePrint Arch. 2012, 2012, 507.

14. Cheng, H.; Dinu, D.; Großschädl, J. Efficient Implementation of the SHA-512 Hash Function for 8-Bit AVR
Microcontrollers. In Innovative Security Solutions for Information Technology and Communications; Springer:
Berlin/Heidelberg, Germany, 2018; Volume 11359, pp. 273–287.

15. Seo, H.J. High Speed Implementation of LEA on ARM Cortex-M3 processor. J. Korea Inst. Inf. Commun. Eng.
2018, 22, 1133–1138.

16. Eisenbarth, T.; Gong, Z.; Güneysu, T.; Heyse, S.; Indesteege, S.; Kerckhof, S.; Koeune, F.; Nad, T.; Plos, T.;
Regazzoni, F.; et al. Compact implementation and performance evaluation of block ciphers in ATtiny devices.
In International Conference on Cryptology in Africa; Springer: Berlin/Heidelberg, Germany, 2012; pp. 172–187.

17. Kim, B.; Cho, J.; Choi, B.; Park, J.; Seo, H. Compact Implementations of HIGHT Block Cipher on IoT Platforms.
Secur. Commun. Netw. 2019, 2019, 1–10. [CrossRef]

18. Beaulieu, R.; Treatman-Clark, S.; Shors, D.; Weeks, B.; Smith, J.; Wingers, L. The SIMON and SPECK
lightweight block ciphers. In Proceedings of the 52nd Annual Design Automation Conference; IEEE: Piscataway, NJ,
USA, 2015; pp. 1–6.

19. Lee, D.; Kim, D.; Kwon, D.; Kim, H. Efficient Hardware Implementation of the Lightweight Block Encryption
Algorithm LEA. Sensors 2014, 14, 975–994, doi:10.3390/s140100975. [CrossRef] [PubMed]

20. Aguilar, J.; Sierra, S.; Jacinto, E. Implementation of ‘HIGHT’ encryption algorithm on microcontroller.
In Proceedings of the 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and
Communication Technologies (CHILECON), Santiago, Chile, 28–30 October 2015; pp. 937–942.

21. Lee, J.H.; Lim, D.G. Parallel Architecture for High-Speed Block Cipher, HIGHT. Int. J. Secur. Its Appl.
2014, 8, 59–66. [CrossRef]

22. Osvik, D.A.; Bos, J.W.; Stefan, D.; Canright, D. Fast software AES encryption. In International Workshop on
Fast Software Encryption; Springer: Berlin/Heidelberg, Germany, 2010; pp. 75–93.

23. McGrew, D.; Viega, J. The Galois/counter mode of operation (GCM). Submiss. Nist Modes Oper. Process.
2004, 20, 1–13.

24. Kim, K.; Choi, S.; Kwon, H.; Liu, Z.; Seo, H. FACE–LIGHT: Fast AES–CTR Mode Encryption for
Low-End Microcontrollers. In International Conference on Information Security and Cryptology; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 102–114.

25. Park, J.H.; Lee, D.H. FACE: Fast AES CTR mode Encryption Techniques based on the Reuse of Repetitive
Data. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2018, 469–499.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

132

mathematics

Article

Comparison of Entropy and Dictionary Based Text
Compression in English, German, French, Italian,
Czech, Hungarian, Finnish, and Croatian

Matea Ignatoski 1, Jonatan Lerga 1,2,*, Ljubiša Stanković 3 and Miloš Daković 3

1 Department of Computer Engineering, Faculty of Engineering, University of Rijeka, Vukovarska 58,
HR-51000 Rijeka, Croatia; mignatoski@riteh.hr

2 Center for Artificial Intelligence and Cybersecurity, University of Rijeka, R. Matejcic 2,
HR-51000 Rijeka, Croatia

3 Faculty of Electrical Engineering, University of Montenegro, Džordža Vašingtona bb,
81000 Podgorica, Montenegro; ljubisa@ac.me (L.S.); milos@ac.me (M.D.)

* Correspondence: jlerga@riteh.hr; Tel.: +385-51-651-583

Received: 3 June 2020; Accepted: 17 June 2020; Published: 1 July 2020

Abstract: The rapid growth in the amount of data in the digital world leads to the need for
data compression, and so forth, reducing the number of bits needed to represent a text file,
an image, audio, or video content. Compressing data saves storage capacity and speeds up data
transmission. In this paper, we focus on the text compression and provide a comparison of algorithms
(in particular, entropy-based arithmetic and dictionary-based Lempel–Ziv–Welch (LZW) methods)
for text compression in different languages (Croatian, Finnish, Hungarian, Czech, Italian, French,
German, and English). The main goal is to answer a question: ”How does the language of a text
affect the compression ratio?” The results indicated that the compression ratio is affected by the
size of the language alphabet, and size or type of the text. For example, The European Green
Deal was compressed by 75.79%, 76.17%, 77.33%, 76.84%, 73.25%, 74.63%, 75.14%, and 74.51%
using the LZW algorithm, and by 72.54%, 71.47%, 72.87%, 73.43%, 69.62%, 69.94%, 72.42% and 72%
using the arithmetic algorithm for the English, German, French, Italian, Czech, Hungarian, Finnish,
and Croatian versions, respectively.

Keywords: arithmetic; Lempel–Ziv–Welch (LZW); text compression; encoding; English; German;
French; Italian; Czech; Hungarian; Finnish; Croatian

1. Introduction

We live in a digital age. One of the main characteristics of this age is the ability of individuals to
exchange information freely. Daily, dozens of billions of digital messages are exchanged, photos are
taken, articles are written, and so forth. These activities produce data that must be stored or transmitted.
As data size increases, the cost of data storage and transmission time increases. To prevent these
problems, we need to compress the data [1–4]. Data compression is the process of reducing the
quantity of data used to represent a text file, an image, audio, or video content. There are two
categories of data compression methods—lossy and lossless [5,6]. Lossy compression methods reduce
the file size by removing some of the file’s original data [7,8]. The resulting file cannot be completely
reconstructed. Lossy compression methods are generally used for compressing file types where
data loss is not noticeable, such as video, audio, and image files. On the other hand, lossless data
compression methods also reduce file size, but they also preserve file content, so there is no data loss
when data is uncompressed. Of course, text files must be compressed using lossless data compression
methods [9–12].

Mathematics 2020, 8, 1059; doi:10.3390/math8071059 www.mdpi.com/journal/mathematics

133

Mathematics 2020, 8, 1059

In this paper, we focus on text file compression, and therefore we study lossless compression
methods. There are a few commonly used lossless compression methods such as Shannon-Fano
Coding, Huffman Coding, Lempel–Ziv–Welch (LZW) Algorithm, and Arithmetic Coding [13–17].
The optimal compression method depends on many factors, including the text length and amount
of repeating characters. Previous work has focused on the analysis of the compression of texts in
languages whose scripts are less represented in computing [18–21]. Kattan and Poli developed an
algorithm that identifies best combination of compression algorithms for each text [22]. Grabowski and
Swacha developed a dictionary based algorithm for language independent text compression [23].
Nunes et al. developed a grammar compression algorithm based on induced suffix sorting [24].

In this paper, the main question that will be answered is—”How does the language of a text
affect the compression ratio?” We have collected and compared texts of various types such as stories,
books, legal documents, business reports, short articles and user manuals. Some of the texts were
collected only in English and Croatian, and others were collected in Croatian, Czech, Italian, French,
German, English, Hungarian and Finnish. We limited research to languages based on Latin script due
to the required number of bits to encode a single character. The algorithms we used for compression
are Arithmetic Coding, as a representative of entropy encoding methods and LZW Algorithm, as a
representative of dictionary-based encoding methods. LZW algorithm is used in Unix file compression
utility compress.

The rest of the paper is organized as follows—we present a discussion of algorithms in Section 2
before presenting experimental results in Section 3, followed by a discussion Section 4. Finally, we draw
our conclusions in Section 5.

2. Methods

2.1. Arithmetic Coding

Arithmetic coding is a lossless data compression method that encodes data composed of
characters and converts it to a decimal number greater than or equal to zero and less than one.
The compression performance depends on the probability distribution of each character in the text
alphabet. The occurrence of infrequent characters significantly extends encoded data [4,25–27].

Entropy encoding is a type of lossless compression method which is based on coding frequently
occurring characters with few bits and rarely occurring characters with more bits [28–30]. As in the
most entropy encoding methods, the first step is creating a probability dictionary. This is done by
counting the number of occurrences of each character and dividing it by the total number of characters
in the text. The next step is assigning each character in the text alphabet a subinterval in the range [0, 1)
in proportion to its probability. When all characters have been assigned subintervals, the algorithm
can start executing. In this step, a character that is not used in the text can be selected as the “end of
text” character.

As can be seen from the given pseudocode in Algorithm 1 and in Figure 1, in the beginning,
interval bounds are [0, 1). The algorithm calculates new interval bounds for each character in the text.
Once the algorithm reads the last character, which was determined previously, the algorithm stops.
The encoded word can be any number from the resulting interval. It is recommended to take the final
lower boundary of the resulting interval as the encoded word. Instead of using a distinctive character
to determine the end of the text, the length of the text can be used to determine when the algorithm
has to stop executing.

134

Mathematics 2020, 8, 1059

Algorithm 1: Arithmetic Coding Algorithm

l ← 0;
h ← 1 ;
xi ← f irst input character ;
while xi not endO f Message do

l ← l + (h − l) ∗ li ;
h ← l + (h − l) ∗ hi ;
xi ← xi+1 ;

end

encodedMessage ← (l)2

Figure 1. Arithmetic encoding the word AABCA.

Finally, the encoded text needs to be converted into binary code. The length of the binary
code depends on the Shannon information value, which quantifies the amount of information in a
message [31]. One can calculate the Shannon information using the following formula:

I(x1x2x3...xn) = −log2(p(x1) ∗ p(x2) ∗ p(x3) ∗ ... ∗ p(xn)) = −
n

∑
i=1

log2(p(xi)). (1)

First, the probabilities of each character in the text need to be multiplied, and then the binary
logarithm of a product is calculated. The length of the binary code is one integer larger than the result
of the previous calculation. Once the text is converted to binary, it is ready to be transmitted or stored.

For decoding text (pseudocode of the arithmetic decoding algorithm is given in Algorithm 2),
a subinterval dictionary made in the first step of the algorithm is used. Decoding begins with converting
binary code to a decimal number. In the next step, the algorithm finds a subinterval where encoded
text fits, and then it concatenates a subinterval key to the decoded message. The next step is to calculate
a new value of the encoded text and repeat the subinterval search. There are two conditions on which
the algorithm exits: either when it decodes an ”end of text” distinctive character or after a preset
number of repetitions. It depends which information the decoder has, ”end of text” character or length
of text.

135

Mathematics 2020, 8, 1059

Algorithm 2: Arithmetic Decoding Algorithm

l ← (encodedMessage)10;
decodedMessage ← “” ;
while xi not endO f Message do

f ind xi, l ∈ I(xi) ;
decodedMessage ← decodedMessage + xi ;

l ← l−li
hi−li

;

end

2.2. Lempel–Ziv–Welch Algorithm

The Lempel–Ziv–Welch (LZW) Algorithm (pseudocode of which is given in Algorithm 3) is a
dictionary-based lossless data compression method. Unlike Arithmetic Coding, for LZW compression,
there is no need to know the probability distribution of each character in the text alphabet. This allows
compression to be done while the message is being received. The main idea behind compression is to
encode character strings that frequently appear in the text with their index in the dictionary. The first
256 words of the dictionary are assigned to extended ASCII table characters [13,32,33].

Algorithm 3: LZW Coding Algorithm

w ← f irst input character;
while x not endOfMessage do

x ← next input character ;
if wx not in dictionary : then

dictionary[w] append to encoded word ;
add wx to dictionary ;
w ← x ;

else
w ← wx

end

end

The pseudocode and Figure 2 present the steps of the algorithm. Two main values are stored
in the algorithm, the word w, and current character x. In the beginning, the word w is the first text
character. In each iteration, the algorithm reads a text character x and checks if there is a wx key in
the dictionary. If wx is in the dictionary, w takes a value of wx, and the algorithm continues with the
execution. In the other case, the corresponding value of w in the dictionary is added to the encoded
word, whereafter the dictionary is upgraded with wx key and w takes a value of x. The algorithm
stops when the end of file character is read.

136

Mathematics 2020, 8, 1059

Figure 2. Lempel–Ziv–Welch (LZW) encoding of the word SAMOUPRAVNOPRAVNI.

The LZW algorithm achieves the excellent compression ratio when compressing long text files
that contain repeated strings [32].

The LZW Decoding Algorithm (pseudocode of which is given in Algorithm 4) creates the
dictionary the same way as it is created for encoding. The first 256 words of the dictionary are
assigned to extended ASCII table characters as well. The algorithm reads each code in the encoded
word, writes its value from the dictionary to a decoded word, and upgrades a dictionary.

Algorithm 4: LZW Decoding Algorithm

decodedMessage ← “”;
foreach code in encodedWord do

w ← dictionary[code];
decodedMessage ← decodedMessage + w;
x ← f irst character in dictionary[nextCode];
add to dictionary wx;

end

3. Results

The representative test data are prose texts, two legal texts and two user manuals. Because some
of the test alphabets consist of non-ASCII characters, each character is stored using 16 binary bits.
The output of the LZW Coding Algorithm is a sequence of integers; each of them is stored using 16
binary bits as well. The size of data compressed using the Arithmetic Algorithm in binary bits is equal
to Shannon’s information Equation (1) of the original data. The compression results are shown in the
Figures 3–5. Data compressed using the LZW Coding Algorithm varies from 20% to 45% of its original
size. Text data compressed using Arithmetic Coding is ∼30% of its original size.

3.1. Literary Text Compression

We present results for three prose texts of different lengths—a short story The Little Match Girl by
Hans Christian Andersen, novella The Decameron, Tenth Day, Fifth Tale by Giovanni Boccaccio and
novella The Metamorphosis by Franz Kafka (shown in Figures 3–5, respectively).

137

Mathematics 2020, 8, 1059

Figure 3. Encoding The Little Match Girl.

Figure 4. Encoding The Decameron Tale.

Figure 5. Encoding The Metamorphosis.

3.2. Legal Text Compression

As legal text compression, we present compression results for The European Green Deal and
Charter of Fundamental Rights of the European Union given in Figures 6 and 7, respectively.

138

Mathematics 2020, 8, 1059

Figure 6. Encoding The European Green Deal.

Figure 7. Encoding Charter of Fundamental Rights of the European Union.

3.3. User Manual Compression

We present compression results for Samsung Q6F Smart TV user manual and Candy CMG 2071M
Microwave Oven user manual shown in Figures 8 and 9, respectively.

Figure 8. Encoding Samsung Q6F Smart TV user manual.

139

Mathematics 2020, 8, 1059

Figure 9. Encoding Candy CMG 2071M Microwave Oven user manual.

4. Discussion

Both compression algorithms (arithmetic and LZW) have proven effective. The compression ratio
varies depending on the text language. The Italian, French, and English alphabets consist of 26 letters.
The Croatian alphabet consists of 30 letters, 3 of which are composed of two characters from the rest of
the alphabet. Therefore, the Croatian alphabet may be considered to consists of 27 different characters.
The Finnish alphabet consist of 29 letters. The German alphabet consists of 30 letters. The Czech
alphabet consists of 42 letters or 41 different characters. The Hungarian alphabet consists of 44 letters
or 35 different characters.

Figures 3–9 present the compression results. In terms of the percentage of text size reduction,
the compression results are as follows. Arithmetic compression results for Croatian, Czech, Italian,
French, German, English, Hungarian, and Finnish translations of The Little Match Girl are as follows:
72.39%, 70.14%, 73.54%, 72.87%, 72.19%, 73.34%, 70.94%, and 73.83% respectively. The compression
results for Croatian, Czech, Italian, French, German, English, and Hungarian versions of The
Decameron Tale translations are as follows: 72.69%, 70.28%, 73.29%, 72.83%, 72.4%, 73.08%, and 71.15%.
The results for arithmetic compression of The Metamorphosis are 72.78%, 63.87%, 73.01%, 72.97%,
71.87%, 73.33%, and 71.1% for the listed languages. Arithmetic compression results for The European
Green Deal translations are as follows: 72%, 69.62%, 73.43%, 72.87%, 71.47%, 72.54%, 69.94%,
and 72.42% for the Croatian, Czech, Italian, French, German, English, Hungarian, and Finnish
respectively. Finally, compression results for Charter of Fundamental Rights of the European Union
are 70.79%, 68.53%, 72.21%, 71.58%, 70.7%, 71.55%, 69.35%, and 71.99%. Arithmetic compression
results for Samsung Q6F Smart TV user manual are as follows: 70.47%, 68.23%, 71.69%, 70.77%, 70.32%,
70.84%, 68.86%, and 71.09% respectively. Finally, the compression results for Candy CMG 2071M
Microwave Oven user manual translations are as follows: 69.59%, 68.45%, 71.31%, 70.31%, 70.01%,
70.59%, 68.22%, and 70.86% for the Croatian, Czech, Italian, French, German English, Hungarian,
and Finnish respectively.

The compression of texts in Italian, French, English and Finnish achieved the best compression
ratio. The compression ratio of Croatian and German texts is close to the compression ratio of texts in
languages with smaller alphabets. Compressing texts in Czech and Hungarian stands out the most.
Czech versions of The Little Match Girl, The Decameron Tale, The Metamorphosis and Charter of
Fundamental Rights of the European Union compression is >2% lower than compression of the same
texts in different languages with fewer letters in the alphabet. Figure 10 shows arithmetic compression
results. Compression ratio change compared to English is shown in Figure 11.

140

Mathematics 2020, 8, 1059

The number of different characters impacts compression performance. More different characters
in alphabet increase the number of subintervals in Arithmetic Coding and extend the encoded
message accordingly.

Figure 10. Arithmetic compression results.

The Little Match Girl is 4–6 thousand characters long text, depending on the text language, which
makes it the shortest of three prose texts that are shown in this paper. The LZW compression results for
compressing this text are 57.11%, 52.96%, 57.85%, 59.43%, 60.21%, 60.62%, 55.67%, and 59.46% for the
Croatian, Czech, Italian, French, German, English, Hungarian, and Finnish respectively. These results
show that LZW compression is not ideal for shorter texts. The Decameron Tale is approximately twice
as long as The Little Match Girl, and the results of compressed Tale are as follows 62.35%, 59.21%,
64.02%, 64.16%, 64.31%, 64.62%, and 61.41% for the Croatian, Czech, Italian, French, German, English,
and Hungarian, respectively. The Metamorphosis is up to 130 thousand characters long. Results of LZW
compression of The Metamorphosis are 74.22%, 71.46%, 75.03%, 76.63%, 75.76%, 76.83%, and 73.78% for
the Croatian, Czech, Italian, French, German English, and Hungarian, respectively. We can conclude
that LZW compression is affected more by the text length than the arithmetic coding. The LZW
compression results for Croatian, Czech, Italian, French, German, English, Hungarian, and Finnish
translations of The European Green Deal are as follows: 74.51%, 73.25%, 76.84%, 77.33%, 76.17%,
75.79%, 74.63%, and 75.14%, respectively. The compression results for Charter of Fundamental Rights
of the European Union translations are as follows: 69.32%, 66.9%, 71.8%, 71.35%, 70.9%, 71.3%, 68.85%,
and 70.75% for the listed languages. The LZW compression results for Croatian, Czech, Italian, French,
German, English, Hungarian, and Finnish translations of Samsung Q6F Smart TV user manual are
as follows: 69.93%, 67.8%, 71.8%, 71.12%, 70.92%, 69.76%, 68.38%, and 70.1%, respectively. Finally,
the compression results for Candy CMG 2071M Microwave Oven user manual translations are as
follows: 66.71%, 64.22%, 68.62%, 67.55%, 67.66%, 66.69%, 64.69%, and 66%, respectively for the for
Croatian, Czech, Italian, French, German, English, Hungarian, and Finnish.

141

Mathematics 2020, 8, 1059

Figure 11. Compression ratio change compared to English—Arithmetic compression (positive percentages
signify larger compressed file size when compared to English).

Figure 12 shows LZW compression results. Compression ratio change compared to English is
shown in Figure 13.

Figure 12. LZW compression results.

142

Mathematics 2020, 8, 1059

Figure 13. Compression ratio change compared to English—LZW compression (positive percentages
signify larger compressed file size when compared to English).

Figure 14 shows the compression rate for different lengths of text. Generally, as text length
increases, the compression ratio of the LZW algorithm increases. In our test texts, the exception is
the compression ratio of Charter of Fundamental Rights of the European Union which compression
achieves better results than compression of, longer text, Smart TV user manual. The reason for
this irregularity is the repetition of the word ’Article’. As stated in Section 2, LZW compression is
based on encoding character strings that frequently appear in the text. Arithmetic encoding achieves
significantly better compression ratio for compressing texts up to 20,000 characters, the LZW algorithm
achieves better compression ratio for compressing texts longer than 100,000 characters.

Figure 14. LZW compression results—text length dependence.

143

Mathematics 2020, 8, 1059

In addition to the size of the alphabet and text length, the LZW compression also affects the form
of the word. We corroborate this by comparing Croatian and English grammar. Croatian grammar is
more complex than English grammar. In Croatian grammar, the form of the word depends on the tense,
case, and position in the sentence; English grammar also changes the form of the word but in far fewer
cases. The LZW compression is based on encoding repeating strings. Because of these differences in
grammar, English texts achieve a better compression ratio than their Croatian equivalents. In Figure 15
there are several values from the end of the LZW dictionary. It is shown that encoded strings in English
are longer and contain more complete words.

Figure 15. Example from LZW dictionaries in English and Croatian.

5. Conclusions

Data compression is the process of reducing the number of bits needed to represent data.
Compressing data both reduces the need for storage hardware and speeds up file transfer.

Choosing the right compression algorithm is not a simple task because the performance of each
algorithm depends on the text type, length of data, and other text characteristics. Arithmetic Coding
achieves a significant compression ratio regardless of the length of the text, but algorithm performance
decreases as text length increases. Time and space complexity are crucial parts of any algorithm,
and that makes the algorithm not suitable for universal use.

The LZW Algorithm achieves excellent compression ratio when compressing long text files that
contain repetitive strings. The algorithm takes a short time to execute and uses minimal resources.

The main question posed in this paper is—“How does the language of a text affect the compression
ratio?” and, as it can be seen from results, the answer is positive—there are some differences in
compression ratios between texts in different languages and different types of texts. When choosing a
compression algorithm, it is important to determine which algorithm achieves the best compression
ratio for each language and/or type of text.

Author Contributions: Conceptualization, M.I. and J.L.; methodology, M.I. and J.L.; software, M.I.; validation,
L.S. and M.D.; formal analysis, M.I., J.L., L.S., and M.D.; investigation, L.S. and M.D.; resources, M.I.; data
curation, M.I.; writing—Original draft preparation, M.I.; writing—Review and editing, J.L., L.S., and M.D.;
visualization, M.I.; supervision, J.L.; project administration, J.L., L.S., and M.D.; funding acquisition, J.L., L.S.,
and M.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was fully supported by the Croatian Science Foundation under the project IP-2018-01-3739
and IP-2020-02-4358, Center for Artificial Intelligence and Cybersecurity—University of Rijeka, University of

144

Mathematics 2020, 8, 1059

Rijeka under the projects uniri-tehnic-18-17 and uniri-tehnic-18-15, and European Cooperation in Science and
Technology (COST) under the project CA17137.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Celikel, E.; Dalkilic, M.E. A New Encoding Decoding Scheme for Text Compression with Embedded Security.
Math. Comput. Appl. 2004, 9, 475–484. [CrossRef]

2. Rozenberg, L.; Lotan, S.; Feldman, D. Finding Patterns in Signals Using Lossy Text Compression. Algorithms
2019, 12, 267. [CrossRef]

3. Shahbahrami, A.; Bahrampour, R.; Rostami, M.; Mobarhan, M. Evaluation of Huffman and Arithmetic
Algorithms for Multimedia Compression Standards. arXiv 2011, arXiv:1109.0216.

4. Mbewe, P.; Asare, S.D. Analysis and comparison of adaptive huffman coding and arithmetic coding
algorithms. In Proceedings of the 13th International Conference on Natural Computation, Fuzzy Systems
and Knowledge Discovery (ICNC-FSKD), Guilin, China, 29–31 July 2017.

5. Robert, L.; Nadarajan, R. Simple lossless preprocessing algorithms for text compression. IET Softw. 2009, 3,
37–45. [CrossRef]

6. Katugampola, U.N. A New Technique for Text Data Compression. In Proceedings of the 2012 International
Symposium on Computer, Consumer and Control, Taichung, Taiwan, 4–6 June 2012; pp. 405–409.

7. Howard, P.G. Lossless and lossy compression of text images by soft pattern matching. In Proceedings of the
DCC ’96: Proceedings of the Conference on Data Compression, Snowbird, UT, USA, 31 March–3 April 1996;
pp. 210–219.

8. Al-Dubaee, S.A.; Ahmad, N. New Strategy of Lossy Text Compression. In Proceedings of the 2010 First
International Conference on Integrated Intelligent Computing, Bangalore, India, 5–7 August 2010; pp. 22–26.

9. Quddus, A.; Fahmy, M.M. A new compression technique for binary text images. In Proceedings of the
Second IEEE Symposium on Computer and Communications, Alexandria, Egypt, 1–3 July 1997; pp. 194–198.

10. Xu, J.; Zhang, W.; Xie, X.; Yang, Z. SSE Lossless Compression Method for the Text of the Insignificance of the
Lines Order. arXiv 2017, arXiv:1709.04035.

11. Sayood, K. Introduction to Data Compression, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 6,
pp. 165–185, ISBN 978-0-12-809474-7.

12. Kavitha, P. A Survey on Lossless and Lossy Data Compression Methods. Int. J. Comp. Sci. Eng. Technol. 2016,
7, 1277–1280.

13. Shanmugasundaram, S.; Lourdusamy, R. A Comparative Study Of Text Compression Algorithms. Int. J.
Wisdom Based Comput. 2011, 1, 68–76.

14. Bhattacharjee, A.K.; Bej, T.; Agarwal, S. Comparison Study of Lossless Data Compression Algorithms for
Text Data. IOSR-JCE J. Comp. Eng. 2013, 11, 15–19. [CrossRef]

15. Abliz, W.; Wu, H.; Maimaiti, M.; Wushouer, J.; Abiderexiti, K.; Yibulayin, T.; Wumaier, A. A Syllable-Based
Technique for Uyghur Text Compression. Information 2020, 11, 172. [CrossRef]

16. Zhang, N.; Tao, T.; Satya, R.V.; Mukherjee, A. A flexible compressed text retrieval system using a modified
LZW algorithm. In Proceedings of the Data Compression Conference, Snowbird, UT, USA, 29–31 March 2005;
p. 493.

17. Garain, U.; Chakraborty, M.P.; Chanda, B. Lossless Compression of Textual Images: A Study on Indic
Script Documents. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06),
Hong Kong, China, 20–24 August 2006; pp. 806–809.

18. Mohamed, A.S.; El-Sawy, A.H.; Ahmad, S.M. Data compression for Arabic text. In Proceedings of the
Fifteenth National Radio Science Conference, Cairo, Egypt, 24–26 February 1998.

19. Kuruvila, M.; Gopinath, D.P. Entropy of Malayalam language and text compression using Huffman coding.
In Proceedings of the First International Conference on Computational Systems and Communications
(ICCSC), Trivandrum, India, 17–18 December 2014.

20. Morihara, T.; Satoh, N.; Yahagi, H.; Yoshida, S. Japanese text compression using word-based coding.
In Proceedings of the DCC ’98 Data Compression Conference, Snowbird, UT, USA, 30 March–1 April 1998.

145

Mathematics 2020, 8, 1059

21. Farhad Mokter, M.; Akter, S.; Palash Uddin, M.; Ibn Afjal, M.; Al Mamun, M.; Abu Marjan, M. An Efficient
Technique for Representation and Compression of Bengali Text. In Proceedings of the 2018 International
Conference on Bangla Speech and Language Processing (ICBSLP), Sylhet, Bangladesh, 21–22 September
2018; pp. 1–6.

22. Kattan, A.; Poli, R. Evolutionary lossless compression with GP-ZIP. In Proceedings of the IEEE World
Congress on Computational Intelligence, Hong Kong, China, 1–6 June 2008.

23. Grabowski, S.; Swacha, J. Language-independent word-based text compression with fast decompression.
In Proceedings of the VIth International Conference on Perspective Technologies and Methods in MEMS
Design, Lviv, Ukraine, 20–23 April 2010; pp. 158–162.

24. Saad Nogueira Nunes, D.; Louza, F.; Gog, S.; Ayala-Rincón, M.; Navarro, G. A Grammar Compression
Algorithm Based on Induced Suffix Sorting. In Proceedings of the 2018 Data Compression Conference,
Snowbird, UT, USA, 27–30 March 2018; pp. 42–51.

25. Langdon, G. An Introduction to Arithmetic Coding. IBM J. Res. Dev. 1984, 28, 135–149. [CrossRef]
26. Sarkar, S.J.; Kar, K.; Das, I. Basic arithmetic coding based approach for compressing generation scheduling

data array. In Proceedings of the 2017 IEEE Calcutta Conference (CALCON), Kolkata, India, 2–3 December
2017; pp. 21–25.

27. Husodo, A.Y.; Munir, R. Arithmetic coding modification to compress SMS. In Proceedings of the 2011
International Conference on Electrical Engineering and Informatics, Bandung, Indonesia, 17–19 July 2011;
pp. 1–6.

28. Vijayvargiya, G.; Silakari, S.; Pandey, R. A Survey: Various Techniques of Image Compression. arXiv 2013,
arXiv:1311.6877.

29. Behr, F.; Fossum, V.; Mitzenmacher, M.; Xiao, D. Estimating and comparing entropies across written natural
languages using PPM compression. In Proceedings of the Data Compression Conference, DCC, Snowbird,
UT, USA, 25–27 March 2003; p. 416.

30. Ezhilarasan, M.; Thambidurai, P.; Praveena, K.; Srinivasan, S.; Sumathi, N. A New Entropy Encoding
Technique for Multimedia Data Compression. In Proceedings of the International Conference on
Computational Intelligence and Multimedia Applications (ICCIMA 2007) Sivakasi, Tamil Nadu, India,
13–15 December 2007; pp. 157–161.

31. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423.
32. Dheemanth, H.N. LZW Data Compression. AJER 2014, 3, 22–26.
33. Hasan, M.R.; Ibrahimy, M.I.; Motakabber, S.M.A.; Ferdaus, M.M.; Khan, M.N.H. Comparative data

compression techniques and multicompression results. IOP Conf. Ser. Mater. Sci. Eng. 2013, 53, 012081.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

146

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-4356-7

	Codes, cover.pdf
	Codes, Designs, Cryptography and Optimization.pdf
	Codes, cover

