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Mathematics, Cryptocurrencies and Blockchain Technology

José Luis Miralles-Quirós * and María Mar Miralles-Quirós

Faculty of Economic and Business Sciences, University of Extremadura, 06006 Badajoz, Spain;
marmiralles@unex.es
* Correspondence: miralles@unex.es

This book contains the successful invited submissions [1–9] to a Special Issue of Mathe-
matics on the subject area of “Mathematics, Cryptocurrencies and Blockchain Technology”.

Blockchain is the innovative database technology that is at the heart of nearly all
cryptocurrencies and has already significantly changed the future of money, finance, supply
chain management and more. In this Special Issue, we focus on the pricing mathematics
underlying mathematical and computational methods that can be useful tools for prediction
or for estimating the reasonable value of something.

This Special Issue includes the most important studies of the Cryptocurrencies and
Blockchain Technologies, such as the analysis of the Bitcoin price dynamics, the macroeco-
nomic consequences of introducing Central Bank Digital Currencies (CBDC), and concerns
about sustainable development or the Blockchain token economy.

Chen and Huang [1] focus on the issue of the fact that cryptocurrencies involve
significant jump risks and conduct an in-depth investigation of hedging strategies. They
find that the inclusion of jumps in returns and volatilities is significant in the historical time
series of Bitcoin prices. In a similar order, considering Blockchain technology’s potential to
revolutionize stock trading, Cohen [2] proposes a trading system based on second order
stochastic dominance to different cryptocurrencies. He finds that the system is able to
predict long trends but also to outperform the Buy and Hold strategy in most cases.

The COVID-19 pandemic and its consequences were also discussed in this Special
Issue. Boguslavsky et al. [3] state, after performing gallop polls, that one of the main
reasons for the significant rise in cryptocurrencies is that they are an “epidemiologically
safe” means of transaction.

Pinto-Gutiérrez et al. [4] and Guo et al. [5] focus their studies on Tokens and Non-
Fungible Tokens (NFTs), which offer to their holders a medium to purchase various goods,
services or privileges. The former show that Bitcoin returns can predict the following week’s
NFT growth after using different vector autoregressive models, while the latter propose
a “dual incentive value-based” paradigm to improve profitability in Blockchain token
economy. For that reason, they develop a business study case for improving merchants’
environmental states and show that merchants obtain greater profits following the proposed
paradigm.

As mentioned above, this Special Issue also pays attention to one of humanity’s
greatest problems, the development of a sustainable world. Syed et al. [6] focus on the
relationship between green bonds and Bitcoin and find that positive shocks of Bitcoins exert
a positive influence on green bonds. There is also a space for machine-learning models
and their use to discriminate between malicious and non-malicious tokens in different
scenarios, such as the paper of Mazorra et al. [7], but also for predicting Bitcoin’s prices, as
Ye et al. [8] propose.

Finally, we should point out the study of Syarifudding and Bakhtiar [9] who develop a
medium-sized dynamic stochastic general equilibrium model to assess the macroeconomic
consequences of introducing interest-bearing CBDC, finding that they offer a significant
number of macroeconomic benefits.

The response to our call had the following statistics:

Mathematics 2022, 10, 2038. https://doi.org/10.3390/math10122038 https://www.mdpi.com/journal/mathematics1
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Submissions (12);
Publications (9);
Rejections (3);
Article types: Research Articles (9);
Authors’ geographical distribution (published papers):
China (3);
Spain (2);
Chile (1);
Colombia (1);
India (1);
Indonesia (1);
Israel (1);
Pakistan (1);
Russia (1);
Taiwan (1).
We found the edition and selections of papers for this book very inspiring and re-

warding. We thank the editorial staff and reviewers for their efforts and help during the
process.
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Abstract: In this paper, we conduct a fast calibration in the jump-diffusion model to capture the
Bitcoin price dynamics, as well as the behavior of some components affecting the price itself, such as
the risk of pitfalls and its ambiguous effect on the evolution of Bitcoin’s price. In addition, in our
study of the Bitcoin option pricing, we find that the inclusion of jumps in returns and volatilities are
significant in the historical time series of Bitcoin prices. The benefits of incorporating these jumps
flow over into option pricing, as well as adequately capture the volatility smile in option prices.
To the best of our knowledge, this is the first work to analyze the phenomenon of price jump risk
and to interpret Bitcoin option valuation as “exceptionally ambiguous”. Crucially, using hedging
options for the Bitcoin market, we also prove some important properties: Bitcoin options follow a
convex, but not strictly convex function. This property provides adequate risk assessment for convex
risk measure.

Keywords: blockchain; convex risk measure; jump-diffusion model; fintech; option pricing

1. Introduction

In the Fintech era, Bitcoin has shown remarkable performance in the decade since
Nakamoto (2008) invented the cryptocurrency, due the blockchain-based and decentralized
system. It has also risen rapidly in market capitalization since the COVID-19 pandemic
outbreak. In the past decade, Bitcoin prices have been extremely volatile, and its abnormal
return expands the potential in phases of extreme price; unpredictable and massive crashes
broke out after the 2017/18 crash. Consequently, the price of Bitcoin appears to jump. As
shown in Figure 1, the price of Bitcoin rose by more than 1900 percent in 2017, starting
the year at around USD 1000 and grazing almost USD 20,000 in mid-December. However,
there is still no clear explanation as to why there is a price jump, that is, a sudden spike
in interest. Bitcoin is notoriously volatile and has seen multiple booms and crashes. As
previously stated, these peaks are in line with price bubbles, and the current Bitcoin market
is comparable to the internet bubble of the late 1990s. A popular ambiguity model in finance
is the ambiguous volatility approach. Models with ambiguous volatility and jumps in
returns and volatility are quite different to contingent claims usages which have no analytic
solutions. A more effective approach was proposed by the implied diffusion approach
of Poisson jumps by Dupire [1] and Andersen and Andreasen [2]. They show significant
evidence that this technique exhibits some dominant in terms of capturing the form of a
smile or a skew of implied volatilities. In addition, there are several studies addressing
the valuation of options under jump-diffusion processes. In response, Ma et al. [3] apply
in univariate and self-exciting (i.e., Hawkes) jump-diffusion models to the valuation of
European-type contingent claims. Moreover, two different hedging strategies, which are
used for the option under a jump-diffusion model, were explored by He et al. [4]. Briefly,
there are two crucial problems when the underlying asset follows Merton [5] and Bates’ [6]
jump-diffusion process. First, the calibration is an ill-posed inverse problem, even for

Mathematics 2021, 9, 2567. https://doi.org/10.3390/math9202567 https://www.mdpi.com/journal/mathematics3
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simple jump-diffusion models, and may lead to calibration bias of model parameters that
have serious effects on hedging performance and valuation of derivatives, see Cont and
Tankov [7]. Second, a contingent claim cannot be hedged perfectly with standard marketed
instruments available when the underlying asset returns follows a jump-diffusion with
possible jump size taking values on a continuum, see, e.g., Gómez-Valle and Martínez-
Rodríguez [8].

 

Figure 1. Market Price of Bitcoin in the Bitcoin/USD exchange rate from 1 January 2015 to 28 February 2018. Notes. Jump
effect of Bitcoin price revaluation on Bitcoin/USD exchange rate, huge jump starting from Q3/2017.

The purpose of this paper is to address the important issue that cryptocurrencies
involve significant jump risks, in which they behave in a highly volatile manner, are
vulnerable to hacking, and most transactions are aimed at speculative investments in
Bitcoin. The volatility and speculative nature of cryptocurrencies indicates the necessity
for diversification and hedging across market platforms (see Luther and White [9]). The
conclusion reached so far is that Bitcoin are considered a store of value asset class or
speculative investment, rather than a currency. As for the empirics of Bitcoin’s price,
volatility observed in this market is a major concern, for example, Yermack [10] argued
that Bitcoin prices are considerably more volatile than gold prices. In addition, Dowd
and Hutchinson [11] draw a very drastic conclusion: “Bitcoin will bite the dust”. Further-
more, the preliminary findings of current works (e.g., Ardia et al. [12], Fang et al. [13],
Bouri et al. [14], Bouri and Gupta [15], and Cao and Celik [16]), argue that the heightened
volatility of Bitcoin prices is likely to be driven by the uncertainty macroeconomics, e.g., the
US–China trade war and the COVID-19 pandemic outbreak. Recently, a few studies have
been devoted to combining the Bitcoin literature with that on option pricing to construct
Bitcoin option pricing models with dynamic jumps. There are several notable papers on this
topic, such as Scaillet, Treccani, and Trevisan [17], Siu and Elliott [18], Jalan, Matkovskyy,
and Saqib [19], which have documented the earlier analysis. However, these literatures do
not provide a specific measure by detecting jumps for implied volatility in jump-diffusion
models, and the option is hedged with the underlying Bitcoin.

In this paper, we focus on theoretical properties for the suggested model; the choice for
the most suitable model parameters among the ones proposed in the literature is made in
view of market data considering historical volatility and jumps (e.g., Hilliard et al [20]). It is
worth noting that a market for these contingent claims has recently appeared in the existing
literature, such as Kapetanios, Neumann, and Skiadopoulos [21] and Qiao et al. [22].

Our study makes the following contributions: From a theoretical viewpoint, it con-
tributes to a recently emerged literature in two ways. First, the model is proven to elaborate
on how Bitcoins can be captured using a fast calibration in the Bates jump-diffusion process.
Second, we conduct an in-depth investigation of hedging strategies with perfect replica-
tion of a contingent claim. The paper empirically analyses the behavior of Bitcoin prices;
we contribute to the literature by fitting the calibrated model combining the ambiguous
parameters and detecting spurious jump component from Table 1.
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Table 1. Descriptive statistics on significant jumps using LM statistics.

Q1 Q2 Q3 Q4

No. of
Jumps

P(Jump
freq.)

No. of
Jumps

P(Jump
freq.)

No. of
Jumps

P(Jump
freq.)

No. of
Jumps

P(Jump
freq.)

2015 45 0.125 52 0.1429 61 0.1685 44 0.1196
# Observations 360 364 368 368

2016 45 0.1236 42 0.1154 47 0.1291 37 0.1016
# Observations 364 364 368 368

2017 38 0.1056 36 0.0989 50 0.1359 41 0.1114
# Observations 360 364 368 368

2018 35 0.1483
# Observations 236

# jumps 573
(Mean)

(Std. dev.)
(Total Obs.

(0.124)
(0.02)
4,620

Regarding number of jumps and jump intensity, we further provide the total number jumps (# jumps), their proportion (%) over sample
observations, i.e., expressed as (P(jump) = 100(#jumps/#obs.)), and their mean and standard deviation of full sample observations (values
in parentheses). Quarterly estimates for BTC and no. of jumps represents number of detected jumps, and P (jump freq.) implies the
proportion of observations with a significant jump arrivals at α = 0.05. LM statistics represent the Lee and Mykland [23] jump test statistic.

The rest of the paper is s organized as follows. In Section 2, we briefly describe the
jump detection technique to capture the Bitcoin price dynamics and calculus the intensity of
the jumps. In Section 3 we introduce a quasi-closed formula for European-style options for
Bitcoin derivations pricing and computation of Greeks. Section 4 is devoted to a numerical
application and some preliminary results. Finally, Section 5 offers some concluding remarks.
Most technical proofs are provided in the Appendix.

2. Methodology

2.1. Jump Detection Methodology

The evolution of Bitcoin prices under jump-diffusion processes can be expressed the
following stochastic differential equation as:

d log Pt = μtdt + σ(t)dWt + YtdJt (1)

where μt, σ(t) and Wt are the drift and volatility stochastic processes and the Brownian
motion, respectively, such that d log Pt denotes an Itô process with continuous sample paths;
Jt is a counting process that controls the jumps arrival; and Yt represents the jump size.

Due to competing approaches, the study uses Lee and Mykland’s [23] jump detection
technique to identify whether there are any arrival jumps in Bitcoin prices for a review
of frequency jump detection. Moreover, the jump detection test proposed by Lee and
Mykland [23] can identify jumps that occur at any time during the trading day in financial
assets, whereas the other jump tests in the existing literature can merely examine the
daily discontinuous sample-path, see Dumitru and Urga [24]. The discrete time returns of
Equation (1) are expressed as follows:

Rt= log (Pt ) − log (Pt−1) (2)

where Rt is the log return. Additionally, to formally define our empirical volatility measures
on the trading day t, we sum the squared j-th intraday returns by:

RVt =
M

∑
j=1

R2
t,j (3)

5
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where M refers to the number of observations within the measurement time frame. Multiply
the above estimator by π/2, a consistent estimator for quadratic variance in the arrival
jumps, to obtain the realized bipower variation (BV) as follows:

BVt ≡ π

2
M

M − 1

M

∑
j=2

∣∣Rt,j
∣∣∣∣Rt,j−1

∣∣ (4)

where the M
M−1 term indicates a finite sample correction. Therefore, an empirically more

robust measure was developed by Huang and Tauchen [25] as the following relative jump
statistic, defined as:

RJt =
RVt − BVt

RVt
(5)

or the corresponding (approximate) logarithmic form can be expressed as:

RJt ≡ log RVt − log BVt (6)

In addition, both BVt and RJt, in order to capture the distinct components, are calcu-
lated for the total daily price variation. Therefore, the jump detection statistic is defined as:

L(i) = Rt,i

σ̂t,i
(7)

where σ̂t,i
2 = 1

K−2 ∑i−1
j=i−K+2

∣∣Rt,j
∣∣∣∣Rt,j−1

∣∣, and K is the window size. Additionally, Lee and
Mykland [23] construct a rejection region to test the null hypothesis of no jump at (ti−1, ti]
at a given significance level α meeting the following condition:

|L(i)| − Cn

Sn
> − log(− log(1 − α)) (8)

where Cn =

√
2 log n

0.7979 − log π+log(log n)
1.5958

√
2 log n

, Sn = 1
1.5958

√
2 log n

. The null hypothesis of no jumps

is rejected whenever L(i)− Cn
Sn

> β* exceeds the critical value β* under a significance level of
α= 0.05. For a given confidence level α is obtained with β* such that exp(—e−β∗ ) = 1 − α = 0.95,
namely, β*= − log(− log(0.95)) = 2.9702. This procedure can be expected to detect only a
spurious jump in a given sample of n observations. Finally, by the above procedure, we
can obtain the jump intensity, and these results can later be applied as a setting parameter
to calibrate in the Bates model.

2.2. The Bitcoin and Its Options Market Model

To model uncertainty, we consider a complete, filtered, probability space (Ω,F , P)
with a right-continuous filtration (Ft)t>0 that satisfies the usual conditions of completeness
on which is defined the price process S = (St)t of a Bitcoin asset. This asset serves us later
as underlying European derivatives. Using Ito’s Lemma, the corresponding model for
the Bitcoin price under the physical probability measure P, the Bitcoin price whose return
dynamics are given by the following:

dSt

St
=
(

μ − λk
)

dt + σWt + kdNt (9)

where μ,σ are the instantaneous expected return and the instantaneous volatility, respec-
tively, scaled to correspond to the unit time interval; Wt denotes a standard Wiener process
under the market measure P. The Nt follows a Poisson counting process, with the mean

6
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number of jumps per unit time λ under the measure P so that arrival jump intensity is also
given by:

dNt =

{
0 with probability 1 − λdt,

1 with probability λdt.
(10)

where k is magnitude of the sudden jumps, the expected proportional jump size takes
the form:

k ≡ EP

(
eJ − 1

)
.

We next extend the jump-diffusion model and obtain a diffusion approximation as the
following right-continuous process, also called the Levy–Itô decomposition:

St = S0 +
[
b − λk

]
t + σWQ(t) + k

N(t)

∑
i=1

Ji (11)

where S0 is the initial price level of Bitcoin and b is cost-of-carry for Bitcoin options. Their
price dynamics follow the stochastic differential equation described by:

dSt

St
=
(

b − λk
)

t + σWQ(t) + (Ji − 1)dNt (12)

Suppose Zt is a jump-diffusion process with evolution given by:

Zt = Z0+
∫ t

0
as ds +

∫ t

0
σdW + ∑Nt

i=1 ΔZi (13)

where as is the drift term, σ is the volatility term, and ΔZi corresponds to jump i in the
Bitcoin price. Then, using Ito’s formula for jump-diffusions, the stochastic equation can be
further obtained as follows:

lnSt = lnS0 +

[
b − λk − σ2

2

]
(t) + σWt +

Nt

∑
i=1

lnJi (14)

We next obtain the following after taking the exponential of the previous equation

St = S0 exp
{(

b − σ2

2

)
t + σWt

}
exp

(
Nt

∑
i=1

lnji

)
(15)

It is worth recalling the assumption that the price fluctuation of Bitcoin follows a
log-normal diffusion process with jumps. Specifically, using the previous definition of the
price log-return jump size, that is lnji ≡ Ji. Then, for a given under jump-diffusion, the
corresponding Bitcoin price fluctuations process St satisfies the stochastic equation

St = S0exp
[(

b − σ2

2

)
t + σWt

]( Nt

∏
i=1

Ji

)
(16)

2.3. Fourier Transform and Moments of Bitcoin’s Returns Dynamic

From the above model, several interesting implicit parameters, such as implied total
annual volatility, can also be found. When the underlying process under P is defined by
Equation (9), then the log return process is given by:

Ln St
S0

=

[(
α − 1

2 σ2 − λk
)

t + σWt +
Nt
∑

i=1
ln(ji)

]
=
[(

α − 1
2 σ2 − λk

)
t + σWt + ∑Nt

i=1 ln(ji)
] (17)

7
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The characteristic function of the Bitcoin’s log-return process can be expressed as the
following expectation by using the Fourier transform of the log-return density function.

Fω(ln St
S0
) =E

[
exp
(

iω ln St
S0

)]
= E

[
exp
(

iω
(

α − 1
2 σ2 − λk

)
t
)]

E[exp(iω σWt)]E[exp(∑Nt
i=1 iω Ji )]

= exp
[
iω
(

α − 1
2 σ2 − λk

)
t
]
exp
[

1
2 (iω σ)2t

]
E[exp(∑Nt

i=1 iωln(ji) )]

= exp
[
iω
(

α − 1
2 σ2 − λk

)
t − 1

2 (ω σ)2t
] [

exp
(
λtE
(

jiω − 1
) )]

= exp
[
iωαt − 1

2 iωσ2t − iωλkt − 1
2 ω2σ2t + λtE

(
jiω − 1

)]
Fω

(
ln St

S0

)
= exp

{
iωαt − 1

2 iω(1 − iω )σ2t + λ[E
(

jiω − 1
)− iωk]t

}
(18)

Accordingly, the density function is based on the PDF of Poisson counter data, using
the property of the law of iterated expectation and progresses to the Taylor expansion
of exponential function. Note that all ji are identically distributed as j. Expectation of
E
(

jiω − 1
)

is also expressed with the law of iterated expectations. Therefore, moments of
the returns dynamic can be calculated by the inverse Fourier transforms of the characteristic
function. The mean and the volatility of Bitcoin’s log-returns process are obtained by the
derivatives of the aforementioned characteristic function as follows:

E
(

ln St
S0

)
= (−i) ∂F

∂ω |ω=0 =
[
α − 1

2 σ2 + λE(lnj)− λk
]
t

Var
(

ln St
S0

)
= (−i)2 ∂2F

∂ω2 |ω=0 = {σ2 + λ[E(lnj)]2 + λVar(lnj)}t

When the jump size is log-normal, ln(jt)~N
(

αj − 1
2 σ2

j , σ2
j

)
or j ∼ logN[eαj , e2αj(eσj − 1)]

E
(

ln
St

S0

)
=

[
α − 1

2
σ2 + λ

(
αj − 1

2
σ2

j

)
− λk

]
t (19)

Hence, the total variance of the natural logarithm of the Bitcoin price under a jump-
diffusion process is given by:

Var
(

ln
St

S0

)
=

{
σ2 + λ

[
(αj − 1

2
σ2

j )
2
+ σ2

j

]}
t (20)

In the risk-neutral probability process JQ = lnjQ~N
(

αj − γσ2
j − 1

2 σ2
j , σ2

j

)
.

Consequently:

FQ
ω

(
ln

St

S0

)
= exp

[
iωrt − 1

2
iω(1 − iω )σ2t + λQt

[
EQ
(

jiω − 1
)
− iωk

Q
]]

(21a)

EQ

(
ln

St

S0

)
=

[
r − 1

2
σ2 + λQ

(
αj − γσ2

j −
1
2

σ2
j

)
− λQk

Q
]

t (21b)

VarQ
(

ln
St

S0

)
=

{
σ2 + λQ

[
(αj − γσ2

j −
1
2

σ2
j )

2
+ σ2

j

]}
t (21c)

Equations (21a)–(21c) synthesize and depict completely the mapping from the risk-
neutral measures P to Q for transform analysis of affine jump-diffusion options pricing,
given the assumption that the representative investor has a CRRA utility. The next theorem
provides the European call option price.

8
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2.4. Pricing Contingent Claims of Bitcoin under Jump-Diffusion

In the market model outlined above, pricing contingent claims of Bitcoin can be
expressed, and its value is given by:

Ca(S, X, τ) =
∞

∑
i=0

e−λQτ
(
λQτ

)i

i!
CBS(S, X, b, τ, r, σs) (22)

Or equivalently as follows:

Cai(S, X, τ) = POi(λτ)
[
Ste−bτ N(d1i)− Xe−rτ N(d2i)

]
(23a)

A European put option has an analogous jump-diffusion formula

Pui(S, X, τ) = POi(λτ)
[

Xe−rτ N(−d2i)− Ste−bτ N(−d1i)
]

(23b)

where

Poi(λτ) =
∞

∑
i=0

e−λQτ
(
λQτ

)i

i!

and:

• X: the strike price of Bitcoin; St: the underlying price of Bitcoin at time t.
• σs: Volatility of the price variation based on no jump.
• r : risk-free rate, λ and b are as before.

In Proposition 1, we offer a pricing method that can calculate Ca. To price Bitcoin, a
risk–neutrality measure Q is required which is equivalent to real-world measure P, such
that the discounted asset price process is a martingale. Alternative interpretation of Bitcoin
pricing with jump-diffusion Q is a risk-neutral measure. Therefore, the Merton options
pricing formula can be interpreted as the weighted sum of individual Black–Scholes values,
that the probability of i jumps will occur during the life of the option.

Proposition 1. Suppose the Bitcoin price follows the dynamics of (16), and the corresponding
model for the European call option price Ca is given by

Ca(S, X, τ) = ∑∞
i=0

e−λ∗τ(λ∗τ)i

i!

[
StN(d1i)− Xe−riτ N(d2i)

]
(24)

where

d2i =
ln St

X + (ri − λ∗k∗ + σ2
i
2 )τ

σ2
s τ + iσ2

J

and
d2i = d1i − σi

√
τ

with
α ≡ α + γσ2

J
λ∗ = λ∗(1 + k∗)
k∗ = exp

(
α + σ2

J /2
)
− 1

ri = (b − λk)τ +
(

α − σ2
J /2
)

i

σ2
i = σ2

s τ + iσ2
J or σi =

√
σ2

s τ + iσ2
J

τ ≡ T − t time to expiration

Proof of Proposition 1. A Bitcoin option with a payoff of the form φ(Sτ) = (Sτ − X)+ on
the underlying asset Sτ can be written as φ(Sτ)e−rt, which is a martingale under Q. The ex-

9
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pectation operator EQ[.] under the risk-neutral measure, which is a conditional expectation
of the discounted final payoff with a solution for option prices, can be denoted as:

φ(Sτ) = ertEQ

[
φ(Sτ)

ert

∣∣∣∣Ft

]
(25)

Note that the option price discounted by the money market account e−rt is a martingale
in the martingale measure Q. Substituting b = r-g into (14) with the non-dividend yield on
Bitcoin option, that is g = 0, we can proceed to the next step. Let A = {Sτ > X} be the event
that the option is in-the-money at maturity. Event A is equivalent to the event that:

σiWτ +
Nτ

∑
i=1

Ji > ln
St

X
−
(

r − λ∗k∗ − σ2
i

2

)
τ (26)

Hence, in (25), the call option price is

φ(Sτ) = e−rtEQ[(St − X)IA]

= Ste−rτEQ

[
e−

σ2
i
2 τ+σiWτ+∑Nτ

i=1 Ji−λ∗k∗τ)IA

]
− Xe−rτEQIA

= StQ̃(A)− Xe−rτQ(A)

(27)

wherein (27), the Radon–Nikodym derivative is

dQ̃
dQ

∣∣∣∣∣
τ

= e−
σ2

i
2 τ+σiWτ+∑Nτ

i=1 Ji−λ∗k∗τ

from which we note that

Q(A) =
∞

∑
i=0

e−λ∗τ(λ∗τ)i

i!
N(d2i) (28)

where

d2i =
ln St

X + (ri − λ∗k∗ + σ2
i
2 )τ

σ2
s τ + iσ2

J

For a selected γ and ν in the Radon–Nikodym derivative, we can obtain from the
application of the derivative Cheang et al. [26] that the jump-sizes will follow normally
distributed with mean α = α + γσ2

j with the same variance σ2
j under the equivalent

martingale measure Q. Moreover, under the measure Q̃ and the Wiener component σiW̃τ

is normally distributed and J is normally distributed and the Poisson process Nt has the
new intensity of the jump-arrivals λ∗ = λ∗(1 + k∗).

Hence:

Q̃(A) =
∞

∑
i=0

e−λ∗τ(λ∗τ)i

i!
N(d1i) (29)

where
d1i = d2i + σi

√
τ

By plugging Equations (28) and (29) into Equation (27), we can obtain Equation (24).
Consequently, the proof of Proposition 1 is completed. �

Throughout this paper, we shall consider the Bates model as an extension of a Merton
jump-diffusion model. The diffusion based on stochastic volatility models cannot capture
the asymmetry of short-term price returns to describe implied volatility skews of the
options for short maturities. The combined stochastic volatility and jump-diffusion (SVJD)
processes introduced by Bates can deal with this puzzle by incorporating jump components
to the Heston stochastic volatility model. The benefit of the Bates model also reflects the

10
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‘jump fear’ of the participants had experienced from the markets crash. The SVJD processes
also provide the explanation to the distinction between skew and smile with respect to
the asymmetry of jumps expected by the index options market, e.g., the fear of a great
downward jump causes a downward skew (Cont and Tankov [7]). Therefore, Proposition 1
describes the closed-form expression for the Bates model.

Proposition 2. In the market model outlined above, consider a European call option, Ca with
maturity t or T , and strike X written on a futures contract with maturity T, where t ≤ T .
Whereas Bitcoin prices follow a jump-diffusion process, the closed form solutions of contingent
claims Call/Put can be obtained from:

Ca(S, X, τ) = POi(λτ)
[
Ste−biτ N(d1i)− Xe−rτ N(d2i)

]
(30)

Pu(S, X, τ) = POi(λτ)
[

Xe−rτ N(−d2i)− Ste−biτ N(−d1i)
]

(31)

where

Poi(λτ) =
∞

∑
i=0

eλ∗τ(λ∗τ)i

i!

d1i =
ln St

X + bi +
σ2

i
2

σi
, d2i =

ln St
X + bi − σ2

i
2

σi

and

bi = (b − λk)τ +

(
σs −

σ2
J

2

)
i

k∗ ≡ exp
(

σs − σJ

2

)
− 1,

d2i ≡ d1i − σi

σ2
i = σ2

s τ + iσ2
J , or σi =

√
σ2

s τ + iσ2
J

Proof. See Appendix A. Appendix A provides the proof of Proposition 2 and the Xt values
are the terminal Bitcoin drawn from the distribution of the equation. On the other hand,

notice that if the ∑∞
i=0

eλ∗τ(λ∗τ)i

i! term of Equation (30) can be simplified into 1, then Equation
(30) can be written as the B-S formula, one:

Cai(S, X, τ) = Ste−biτ N(d1i)− Xe−rτ N(d2i) (32)

�

Remark 1. In the proof of Proposition 2, the decomposition of the option price in Equation (32) is
similar to that obtained by Geman et al. [27] for the pure-diffusion case. As the jump size becomes
smaller and smaller, that is, the jump rate is equal to zero, λ = 0, then the pricing formulae again
degenerate to the Black–Scholes option formula. Substituting the Black–Scholes call/put price into
Equations (30) and (31), yield the value of a call/put option, respectively.

3. Option Hedging for Bitcoin Market

For each option pricing model, certain risk metrics can be computed and be managed
their risk by analyzing Greeks. The sensitivities of the option price can represent the
different dimensions of the risk in a Bitcoin option.

3.1. Option Hedging for Bitcoin Derivatives and Computation of Greeks

Before proceeding, it should be mentioned that option Greeks are widely adopted to
measure risk exposure and hedging. More precisely, Appendix B provides the proof for the

11
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derivation results of Delta, Gamma, Theta, Vega, and the option Rho, and are summarized
as follows:

1. Delta (Δ)

ΔCa = Poi(λτ).e−biτ N(d1i) (33)

ΔPu = Poi(λτ).e−biτ [N(d1i)− 1] (34)

The algorithm describes the first-order sensitivity of call options price with respect to
the underlying rate is known to option traders as ‘Delta’, i.e., ΔCa .

2. Gamma (Γ)

Gamma represents the second derivative of the option’s price concerning the under-
lying price. Hedges of gamma risk are generally accompanied by a delta hedge, with an
option’s delta being the first partial derivative of the option price with respect to changes
in the underlying asset’s price.

ΓCa = Poi(λτ)
e−biτ

σi
√

τSt
N′(d1i) (35)

ΓPu = Poi(λτ)
e−biτ

σi
√

τSt
N′(d1i) (36)

where N′(di) =
1√
2π

e−
d2

i
2 .

3. Theta (Θ)

ΘCa = [biPoi(λτ) + λPoi−1(τ)− λPoi(τ)][Ste−biτ N(d1i)]−
[rPoi(λτ) + λPoi−1(τ)− λPoi(τ)][Xe−rτ N(d2i)]

(37)

ΘPu = [rPoi(λτ) + λPoi−1(τ)− λPoi(τ)][Xe−rτ N(−d2i)]− [biPoi(λτ)+
λPoi−1(τ)− λPoi(τ)][Ste−biτ N(−d1i)]

(38)

4. Vega (ν)

Vega indicates the amount that an options option’s price changes in reaction to changes
by one percentage point in the implied volatility of the underlying asset. One approach
to managing risk is to establish a hedge against the implied volatility exposure of the
underlying asset.

νCa = Poi(λτ)Ste−biτ
√

τN′(d1i) > 0 (39)

νPu = Poi(λτ)Ste−biτ
√

τN′(d1i) > 0 (40)

5. Rho

RhoCa= Poi(λτ)Xτe−rτ N(d2i) > 0 (41)

RhoPu= −Poi(λτ)τXe−rτ N(−d2i) < 0 (42)

3.2. Derivation of Sensitivity for Bitcoin Options Respective with Exercise Price

Proposition 3 incorporates our results in as far as the jump components for the
European-style options contracts.

Proposition 3. In the Poisson jump-component type model with lognormally distributed jump
sizes at the Bitcoin price, the value of a European call option under the locally risky minimizing
hedging strategy is given by Ca(S, X, τ). The Bitcoin option is convex in (S, X). However, the
function is not strictly convex. In addition, the specific property of a put option Pu(S, X, τ) is
similar to a call option.

12
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Proof. Before proving the proposition we first outline the following definitions:

Definition 1. A matrix A is positive semidefinite if and only if all its principal n minors (not just
leading) are nonnegative.

Definition 2. Let f : U → R be a twice differentiable function f ′′ (x), where U ∈→ Rn is a
convex open subset. It follows that: f is positive semidefinite on Rn if and only if all its principal
minors are positive or zero. Its second derivative Hessian matrix f ′′ (x) is positive semidefinite for
x ∈ U if and only if a function f is convex. If f ′′ (x) is positive definite for every x ∈ U, then f is
strictly convex.

Then, in sensitivity analysis, the optimal hedge is approximated at first-order by the
ratio. For a European call option on a Bitcoin option, the sensitivity can be shown as:

∂Ca

∂X
= −Poi(λτ)e−rτ N(d2i) (43)

The derivation for Equation (41) with respect to X,S are written as

∂2Ca
∂X2 = −∂POi(λτ)e−rτ N(d2i)

∂X = POi(λτ)e−rτ N′(d2i)
Xσ

√
τ

> 0
∂2Ca
∂X∂S = −∂POi(λτ)e−rτ N(d2i)

∂S = −POi(λτ)e−rτ N′(d2i)
Sσ

√
τ

< 0
∂2Ca
∂S∂X = ∂POi(λτ).e−biτ N(d1i)

∂X = −POi(λτ)e−biτ N′(d1i)
Xσ

√
τ

< 0

For simplicity, the term of ∂2Ca
∂S2 yields Poi(λτ)e−biτ

σi
√

τSt
N′(d1i).

The above equations can be rearranged in the following matrix form and the Hessian
matrix of a Bitcoin option can now be written as:[

∂2Ca
∂S2

∂2Ca
∂S∂X

∂2Ca
∂X∂S

∂2Ca
∂X2

]
=

⎡⎣ Poi(λτ)e−biτ

σi
√

τSt
N′(d1i)

−POi(λτ)e−biτ N′(d1i)
Xσ

√
τ

−POi(λτ)e−rτ N′(d2i)
Sσ

√
τ

POi(λτ)e−rτ N′(d2i)
Xσ

√
τ

⎤⎦ (44)

The leading principal minors of the Hessian matrix is Poi(λτ)e−biτ

σi
√

τSt
N′(d1i) > 0 and

det|H| = 0. Therefore, according to Definition 1, the Hessian matrix is a positive semidefinite
matrix, which indicates that Ca(S, X, τ) is convex in (S, X). In addition, according to
Definition 2, Ca(S, X, τ) is not a strictly convex function. Consequently, the corresponding
delta of a long position in a Bitcoin call option is a strictly positive (negative) number; or
equivalently, the call option price is a strictly increasing function of the Bitcoin price. For a
European put option on a Bitcoin option, the sensitivity can be shown as:

∂Pu

∂X
= Poi(λτ)e−rτ N(−d2i) (45)
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The process of derivation Equation (45) is shown as:

∂Pu
∂X = Poi(λτ)

[
e−rτ N(−d2i) + Xe−rτ ∂N(−d2i)

∂X − Ste−biτ ∂N(−d1i)
∂X

]
= Poi(λτ)

{
e−rτ [−N(d2i)] + Xe−rτ ∂[−N(d2i)]

∂d2i

∂d2i
∂X − Ste−biτ ∂[−N(d1i)]

∂d1i

∂d1i
∂X

}
= Poi(λτ)

{
e−rτ [−N(d2i)]− Xe−rτ

(
1√
2π

e−
d2

1i
2 . St

X .eriτ

)(
1

σi
√

τ

)
.−1

X + Ste−biτ 1√
2π

e−
d2

1i
2 .
(

1
σi
√

τ

)
.−1

X

}
= Poi(λτ)

{
e−rτ [−N(d2i)] +

1
σi
√

2πτ
e−

d2
1i
2 . St

X .e−biτ − 1
σi
√

2πτ
e−

d2
1i
2

(
St
X .e−biτ

)}
= POi(λτ)e−rτ N(−d2i)

Next, the derivation for Equation (45) with respect to X,S are written as:

∂2Pu
∂S∂X = ∂POi(λτ).e−biτ [N(d1i)−1]

∂X = −POi(λτ)e−biτ N′(d1i)
Xσ

√
τ

< 0
∂2Pu
∂X∂S = ∂POi(λτ).e−rτ N(−d2i)

∂S = −POi(λτ)e−rτ N′(d2i)
Sσ

√
τ

< 0
∂2Pu
∂X2 = ∂POi(λτ)e−rτ N(−d2i)

∂X = −POi(λτ)e−rτ N′(d2i)
−Xσ

√
τ

> 0

After slightly rearranging the above equations, these equations correspond to the
Hessian matrix of a Bitcoin put option is shown as:[

∂2Pu
∂S2

∂2Pu
∂S∂X

∂2Pu
∂X∂S

∂2Pu
∂X2

]
=

⎡⎣ Poi(λτ)e−biτ

σi
√

τSt
N′(d1i)

−POi(λτ)e−biτ N′(d1i)
Xσ

√
τ

−POi(λτ)e−rτ N′(d2i)
Sσ

√
τ

POi(λτ)e−rτ N′(d2i)
Xσ

√
τ

⎤⎦ = 0 (46)

Similarly, the leading principal minors of the Hessian matrix are also Poi(λτ)e−biτ

σi
√

τSt
N′(d1i) > 0

and det|H| = 0. Therefore, according to Definition 1, the Hessian is a positive semidefinite
matrix. Similarly, Pu(S, X, τ) is convex in (S, X). According to Definition 2, Pu(S, X, τ) is
not a strictly convex function. Thus, the proof of Proposition 3 is completed. �

In general, the price of a Bitcoin put option serves in the same direction as a short
position in the specific portfolio. In particular, to short the specified number of underlying
Bitcoin shares is necessary to hedge a written put option for investors.

More generally, we can adopt the preceding convex property for the contingent claim
function based on convex risk measures of probability measures, making it useful for other
applications beyond estimation. Next, we proceed to capture parameter uncertainty by
using convex risk measures for all derivatives without exposure to model (parameter)
risk. Due to the uncertainty that emerges from the estimator’s volatility and possible bias,
adequately specified parameters of a financial model are applied to the case of historical
estimation. Hedging contingent claims with computation of Greeks is assumed in different
model approaches based on convex risk measures in order to incorporate parameter risk
and to transform it into Bitcoin derivatives prices, extending the results in Cont and
Tankov [7] and Bannör and Scherer [28].

4. Numerical Application

The estimation procedures for fast calibration in the jump-diffusion model will be
exhibited as follows:

First, estimates for the jump intensity parameter λ from Table 1 will be needed. The
Bitcoin market data employed for the jump detection on the empirical research will be
described. As closed-form solutions are available for the Bates implied volatility from the
asymptotic formulas, this approach improves the calibration efficiency.

Second, with the setting parameters received from the calibration procedures, Bitcoin
option prices, with Bates’ semi-closed form solution (Equation (30)), were computed. The
calibration results are shown as volatility surface and smiles.
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For the empirical investigation in the study, we select the historical Bitcoin data
from 1 January 2015 to 28 February 2018, which consists of 4620 daily collected data.
The dataset is adopted from the Bitcoin Price Index (BPI) traded daily on CoinDesk
(https://www.coindesk.com/price/bitcoin/ (accessed on 01 October 2018)). In prac-
tice, the Bitcoin Price Index of CoinDesk indicates an average Bitcoin price across leading
Bitcoin exchanges and their rate between the US dollar (USD) and the Bitcoin. The Bitcoin
return profile of log-returns representing Rt = log(St/St−1) is shown in Figure 2. The
magnitude of log-returns depicts from 0.25 to −0.25 and exhibits asymmetry phenomenon.
Additionally, Figures 2 and 3 display both the persistence and asymmetry features in
Bitcoin return volatility. As expected, the RVt, BVt, and RJt are all robust in detecting
irregular jump arrivals and market structure noise. To further analyze the jump dynamics,
we provide quarterly statistics of the significant jump components for a critical value of
α = 0.05 in Table 1. The observations have a jump range of 0.099 to 0.169 for the sample
period, with an average of 0.124. As a comparison shown in Table 1, the intensity of
the exact jump is the highest during the Q3 in any given year of the sample period. For
example, in 2015, there are 45, 52, 61, and 44 jumps in Q1, Q2, Q3, and Q4, respectively.
Similar patterns exist in other years. The jump intensity also varies across years. Hence,
jumps appear to be time-varying.

 

 

Figure 2. Return, Logarithmic Returns of Bitcoin. The top panel of the graph illustrates the daily returns of Bitcoin over the
period time and the bottom panel of the graph illustrates the daily logarithmic returns of Bitcoin.

The following empirical results illustrate some of the rich implications of pricing
contingent claims on Bitcoin following jump-diffusions. The real-world probabilities
calculated from historical price data is referred to as physical or market probabilities
measure P. Accordingly, the estimated model parameters can be used in the option pricing
under the risk-neutral pricing measure Q for price all options. Consider constructing a
portfolio that includes a contingent claim (e.g., a call option) having price S, an underlying
asset whose price follows the process given in Equation (16). For the simulations, we used
the following model parameters: cost-of-carry (b) = 5%, the riskless interest rate r = 0.02,
option’s time to maturity (τ) = 1, 3, or 6 months(M), and nonzero value of the mean jump
size or expected jump size k = −0.05. The Bitcoin price at time t = 0 is set to S0 = 11,000,
which is the average price from 26–31 January, 2018, and σB

2 = 0.25 refers to the annualized
5- or 30-day historical volatility of the Bitcoin Price Index (BPI). Early examples of the use of
this for jump components can be found in Haug [29], Beckers [30], and Ball and Torous [31].
More importantly, in Tables 2 and 3, the base parameters of the jump intensity λ are set
to 9.89%, 13.5%, and 16.85%, the magnitudes are filtered from the empirical outcomes in
Table 1, include jump means uj,t= 0.124, and jump volatilities δ = 0.02.
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Figure 3. Time series of the Bipower variation, realized volatility, and the relative jump and jump statistic component for
Bitcoin prices. The top panel of the figure depicts the BVt (Equation (4)), the second panel plots for respective graphs the
daily realized volatility RVt (Equation (3)); the third panel plots the relative jump component RTt (Equation (6)); and the
bottom panel depicts the jump statistic L(i) (Equation (7)) at significance α = 0.05.
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Table 2. Calculating Bitcoin Call Option Valuation with Merton Jump-Diffusion.

σB
2 Strike

S = 11, 000, δ = 0.02, r = 0.02,
¯
k = −0.05, b = 5 (%)

λ = 9.89%
Time to Maturity

λ = 13.5%
Time to Maturity

λ = 16.85%
Time to Maturity

1M 3M 6M 1M 3M 6M 1M 3M 6M

9000 2014.78 2044.27 2088.59 2014.79 2044.28 2088.58 2014.80 2044.29 2088.57
10,000 1016.44 1053.38 1119.73 1016.43 1053.37 1119.72 1016.45 1053.39 1119.74

0.1 11,000 134.84 245.47 363.59 134.83 245.45 363.58 134.85 245.49 363.57
12,000 0.13 11.66 55.22 0.14 11.67 55.23 0.12 11.68 55.24
13,000 0.01 0.08 3.65 0.01 0.07 3.66 0.01 0.06 3.64

9,000 2015.28 2069.29 2185.76 2015.27 2069.28 2185.76 2015.28 2069.30 2185.76
10,000 1046.95 1203.09 1407.02 1046.94 1203.08 1407.02 1046.95 1203.07 1407.02

0.25 11,000 323.31 570.56 820.85 323.30 570.57 820.85 323.31 570.57 820.85
12,000 46.99 216.75 434.98 46.99 216.74 434.97 46.99 216.76 434.98
13,000 3.06 66.48 211.10 3.05 66.49 211.11 3.06 66.58 211.10

9000 2065.65 2324.81 2670.25 2065.64 2324.80 2670.26 2065.65 2324.831 2670.27
10,000 1239.45 1642.23 2069.64 1239.46 1642.24 2069.63 1239.45 1642.25 2069.65

0.5 11,000 637.06 1111.34 1580.02 637.07 1111.33 1580.03 637.06 1111.37 1580.04
12,000 279.18 723.76 1191.25 279.17 723.77 1191.26 279.18 723.78 1191.27
13,000 105.35 455.94 889.10 105.36 455.92 889.11 105.35 455.95 889.15

European options prices were computed using equation (22). Numerical results are based on historical parameter estimates and then
calibration of the Merton volatility jump-diffusion model is simultaneously applied to call options. Calibrated parameters as follows: initial
volatility = 10%, 25%, and 50%, and mean jump size is −0.05. In addition, jump intensity λ = 0.0989, 0.135, and 0.1685, jump means = 0.124,
and jump standard deviation = 0.02, among the jump distribution are calculated from Table 1.

Table 3. Calculating Bitcoin Call Option Valuation with Bates Jump-Diffusion.

σB
2

S = 11, 000, δ = 0.02, r = 0.02,
¯
k = −0.05, b = 5 (%)

λ = 9.89%
Time to Maturity

λ = 13.5%
Time to Maturity

λ = 16.8%
Time to Maturity

1M 3M 6M 1M 3M 6M 1M 3M 6M

9000 2050.00 2187.91 2410.51 2057.83 2227.12 2488.79 2065.43 2259.81 2550.17
10,000 1114.09 1350.15 1646.38 1146.09 1426.31 1764.11 1171.19 1482.95 1850.13

0.1 11,000 381.98 704.14 1040.01 447.37 806.26 1183.55 489.41 878.62 1285.27
12,000 49.05 295.50 603.86 89.59 392.93 750.66 121.84 463.55 855.31
13,000 0.32 94.32 320.94 3.76 161.27 450.09 11.37 215.11 545.86

9000 2060.35 2249.91 2539.11 2071.18 2292.66 2615.41 2080.69 2326.57 2674.05
10,000 1161.11 1472.97 1840.52 1193.35 1541.26 1941.94 1218.07 1592.42 2017.41

0.25 11,000 486.37 874.77 1280.33 534.45 957.44 1396.49 569.87 1018.31 1481.99
12,000 113.63 468.59 856.52 169.57 548.11 974.78 197.93 607.68 1062.35
13,000 21.77 226.28 552.67 35.06 289.33 662.17 47.64 338.81 744.89

9000 2128.68 2495.99 2961.99 2143.91 2535.12 3022.75 2156.08 2565.66 3069.84
10,000 1332.08 1834.29 2375.33 1358.67 1883.84 2446.11 1379.26 1922.06 2500.62

0.5 11,000 737.67 1306.54 1886.12 769.45 1361.35 1962.91 793.95 1403.54 2021.95
12,000 359.96 905.03 1485.66 387.99 959.66 1564.53 409.98 1001.94 1625.31
13,000 164.43 611.86 1,162.73 174.89 662.07 1,240.36 190.58 701.33 1,300.48

European options prices were computed using Equation (30). Calibration of the Bates volatility jump-diffusion model is simultaneously
applied to call options. Calibrated parameters are the same as Table 2.

In Tables 2 and 3, the empirical outcomes are provided for pricing call options under
the Merton and Bates models, respectively. Tables 2 and 3 summarize the options pricing
under the jump-diffusion process for the setting parameters against several strikes (in
columns). As expected, the values of in-the-money (ITM) options decrease with respect to
strike prices while out of the money (OTM) values show similar results obtained by the
calibration procedure. The pricing values, which are tabulated with different choices of
strike price X, frequency of Poisson events λ, and volatility σ, are key differences for ATM
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prices values of Bitcoin options, while ITM and OTM options in Bitcoin are very small. This
may be justified by the fact that Bitcoin investors consider ambiguity neutrality with respect
to probabilistically sophisticated preferences to ambiguity averse market makers, even the
OTM and ITM ones, as the underlying value is expected to blow up. However, Bitcoin
investors prefer ATM options that are more likely to be exercised under ambiguous Bitcoin
market making, especially on jump-diffusion. Our findings should be interpreted with
caution. What we document here are the price of a call/put option is a strictly decreasing
(increasing) function of Bitcoin price depicted as Figure 4A,B, and which is violated from
the traditional theoretical call/put values (Theoretically, a long call option can only increase
the value of the option. Hence, the delta of a long call option is always positive. Another
way to look at this would be in terms of replicating a Bitcoin with options. The delta of a
long call option goes up when their underlying Bitcoin goes up. Therefore, more shares
of underlying assets, which are represented by the replicated options, should be held to
hedge a written call option). Such deviations may be the result of the jump risk of option
prices in the Bitcoin market (The value of a call option increases when the price of Bitcoin
increases, so the delta of a call option is positive. Conversely the value of a put option
decreases when the price of Bitcoin increases, so the delta of the put option is negative).
If an option holder can always realize the option’s theoretical value by selling (or delta
hedging) in the market, only a European call option is better than a Bitcoin call, as it can be
exercised just before stock becomes an ex-dividend.

Figure 4A–F depict the calibration results of the Greeks for Bitcoin options. As shown
in Figure 4A,B, the surfaces of the delta of call and put options display non-convex. These
Figures illustrate the difficulty of using the method based on convex risk measures to quan-
tify parameter risk. However, the Vega of call and put options, as depicted in Figure 4D,
appear to adequately specify the risk parameters with convex risk measures. Moreover,
Figure 4C shows that the volatility surfaces obtained using jump diffusion model exhibit
both smiles and skews for short maturities, which is also shown in Figure 4E. The findings
interpret that the benefits of incorporating these jumps flow over into option pricing, as
well as accurately capture the volatility smile in option prices (see Duan et al. [32]). Com-
pared to the study of Cretarola et al. [33], they have not considered Bitcoin prices with
jump innovations and not found volatility skews or smiles in Bitcoin options.

To summarize, jump-diffusion models shed light on an explanation of the implied
volatility smile phenomenon as the implied volatility is different from the historical volatil-
ity as well as varies as a function of strikes (see Tankov et al. [34]). Our observations meet
our expectations concerning Figure 5, which shows possible implied volatility patterns (as
a function of strikes) in the Merton–Bates jump-diffusion model.

Stability across Strikes

Calibrated parameters for the Greek of above equations are set to time to maturity
(τ) = 3 month(M), risk-free rate (r) = 2%, cost of carry (b) = 5%, volatility σB

2 = 0.5, jump
size (kbar) = −5%, jump intensity λ = 0.124, and jump standard deviation δ = 0.02. The
setting values of the asset price (S), strike price (X) for the European call option considered
are 11,000 for above Figure 4A–F.

Based on the same maturities, it is clear from the graphs in Figure 5 that the parametriza-
tion of the implied volatility smile in the Bates model converges to a flat smile and is more
stable across different strikes than in the Merton model. For example, in the Bates model,
this convergence is possible as the smile captures the presence of jumps whereas the term
structure of implied volatility is taken into account using the cost-of-carry component.
Moreover, the result is in line with Mijatović and Tankov [35] regarding the function of
both the jump activity index of the jump component and the diffusion process component.
We should emphasize that it only serves as an illustration, to indicate that the model can
yield a close fit even to a very sharp volatility phenomenon. Similar examples are discussed
in Kuo [36].
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Figure 4. (A) The surface of Call options’ Delta; (B) The surface of put options’ Delta; (C) The surface of call and put options’
Gamma; (D) Implied volatilities for call and put options’ Vega; (E) Volatility surface of call options’ Rho on Bitcoin price;
(F) Theta of European call options.
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Figure 5. Volatility Smile Fitting. Figure depicts the volatility smile that the parametrization of the implied volatility smile
in terms of the strike. This figure plots implied volatilities of call options on the Bitcoin price index as a function of their
strikes and maturities for the Bates’ model (red solid line) and the BSM model (blue dotted line). More importantly, the
Bates’ volatility jump-diffusion model is consistent with an asymmetric volatility smile. This model assumes jump risk is
systematic and appears to be a much closer match to reality than Merton due to the simultaneous asset price jumps and
amplitudes, possibly by varying amounts.

5. Concluding Remarks

Overall, Bitcoin prices exhibit highly volitile behavior due to the interventions, spec-
ulative investment interest, and the numerous news-driven shocks in the market (see
Scaillet et al. [17]). In this paper, we adopt the idea that Bitcoin prices are influenced by
jump-diffusion and confidence about the underlying technology; as a consequence, such a
jump-diffusion may spread to Bitcoin prices causing an ambiguous effect.

To describe the jump risk distribution more accurately, this paper applies the jump
detection approach to identify realized jumps on the Bitcoin market and to estimate the
jump parameters of intensity, mean, and variance. Crucially, similar to Tauchen et al. [37],
we find that the jump intensity varies among the 2015–2018Q1 from 9.89% to 16.85%.
Applying this to the Bitcoin market, this finding reports some important implications in
jump frequencies and volatilities across the sample period over time.

Moreover, based on risk-neutral measures, we derive a quasi-closed formula for
European-style Bitcoin derivatives under the Merton–Bates jump-diffusion risk and their
Greeks, and a numerical application is provided.

To shed some light on Bitcoin hedging, this paper introduces the computation of
Greeks relationships for Bitcoin options as asset replication in frictionless markets. Market
makers or confidence about cryptocurrencies are not directly observed, but some major
factors may be considered as target variables, such as the number and volume of Bitcoin
option transactions. More unconventional problems in the current analysis are left for
future research. As suggested in Figure 2A,B, we must ensure that the introduced model
is capable of capturing jumps in the Bitcoin market by simply calibrating the model
parameters.

As future work, we could better fit the model by incorporating the GARCH-Jump
process (e.g., Chan and Maheu [38], Duan et al. [39], and Gronwald [40]) for the volatility
of Bitcoin options or considering a new variable such as the stochastic volatility. Therefore,
its resolution will be considerably more complex, and could be very interesting research.
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Appendix A

The proof of Proposition 2 follows along the line of Chen [41]. To find the stochas-
tic jump-diffusion (SJD) formula of Bates and evaluate the options under a risk-neutral
measure Q. First, the risk-neutral price Ca at time τ ∈ [0,t) of European-style call options
at strike price X and underlying options on the Bitcoin price S expiring in τ under the
martingale measure Q, can be written by:

Ca

(
S, X, τ, r, σ2

s

)
= e−rτ

∞

∑
i=0

{Pi(i jumps)}EQ[max(St − X, 0)|i jumps ] (A1)
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where St = S0 exp
[(

μ − σ2
s

2

)
t + σsdWt

]
denotes the underlying prices of Bitcoin under

risk measure in Black and Scholes’ model (CBS). Thus we proceed to prove the relationship:

eλτ(λτ)i
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[
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(
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S
)]

= eλ∗τ(λ∗τ)i

i! [StN(d1i)− Xe−rτ N(d2i)]
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Under the risk-neutral measure Q, the undelying Bitcoin prices dynamic S̃t can be
written as:

S̃t = S̃0exp
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i
2
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∑
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By Girsanov’s theorem and taking the logarithm on the equation, we then arrange the
results as follows:
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Finally, the desired result is obtained as follows:

Ca(S, X, τ) =
∞
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eλ∗τ(λ∗τ)i
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[
Ste−biτ N(d1i)− Xe−rτ N(d2i)

]
The derivation of put options is analogous to the above procedures.
This completes the proof of Proposition 2.

Appendix B. Risk Metrics of the Model of Bates (1991)

In this appendix, we make various technical remarks on the different kinds of Bitcoin
options which are necessary for our proofs to hold. Instead of hedging the position with
the underlying asset, we consider here a strategy in which we invest in another European
option (call or put). Other important risk metrics are delta Δ, Vega Λ, and gamma Γ under
Bates’ model is derived as follows:
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Appendix B.1. Derivation of Delta for Different Kinds of Bitcoin Derivatives

Recall that the prices of a European call/put option based on Black–Scholes formulas
with the dividend yield paid by the contingent claims are written as follows:

Ca(S, X, τ) = POi(λτ)
[
Ste−bτ N(d1i)− Xe−rτ N(d2i)

]
and

Pu(S, X, τ) = POi(λτ)
[

Xe−rτ N(−d2i)− Ste−bτ N(−d1i)
]

The similar proof of the derivatives of the Greeks letters on the standard Black–Scholes
one can be found in, e.g., Haug [29] and Chen et.al. [42]. First of all, we want to derive the
formula of Delta. To make the following derivations more easily, we calculate Equation
(A14) and Equation (A15) in advance.
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For a European call option on a dividend-paying contingent claim, the Equation (30)
applies; delta can be written as:

Δ = POi(λτ).e−biτ N(d1i) (A16)

The derivation process of (A16) is:
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For brevity, a European call option on continuously compounded dividend yield,
delta can be written as:

Δ = POi(λτ).e−biτ [N(d1i)− 1] (A17)

The derivation process of (A17) is:
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Q.E.D
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Appendix B.2. Derivation of Gamma for Different Kinds of Bitcoin Options

In the model approach outlined above, the derivation process of Equations (35) and (36)
as follows
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Alternative, for a European put option, gamma can be given as
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Q.E.D

Appendix B.3. Derivation Process of Vega for Different Kinds of Bitcoin Options

The derivation process of Equation (39) can be shown as
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Similarly, the derivation process of Equation (40) as follows
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Appendix B.4. Derivation Process of Rho for Different Kinds of Bitcoin Options

The derivation process of Equation (41) as follows
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Similarly, the derivation process of Equation (42) can be shown as
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Q.E.D

B.5. Derivation of Theta for Different Kinds of Bitcoin Options

Proof. Available from the author upon request. �
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Abstract: This research is the first attempt to customize a trading system that is based on second
order stochastic dominance (SSD) to five known cryptocurrencies’ daily data: Bitcoin, Ethereum, XRP,
Binance Coin, and Cardano. Results show that our system can predict price trends of cryptocurrencies,
trade them profitably, and in most cases outperform the buy and hold (B&H) simple strategy. Our
system’s best performance was achieved trading XRP, Binance Coin, Ethereum, and Bitcoin. Although
our system has also generated a positive net profit (NP) for Cardano, it failed to outperform the B&H
strategy. For all currencies, the system better predicted long trends than short trends.

Keywords: cryptocurrencies; Bitcoin; Ethereum; algorithmic trading; artificial intelligence

1. Introduction

The use of algorithmic trading systems is widespread among investment houses and
professional traders who uses algorithmic trading as their major investment tool. In recent
years, investors have realized that those systems are necessary for processing efficiently a
huge amount of financial data and replace many hours of human analysis. Researchers
and practitioners have tried to identify cryptocurrencies’ price behaviors and by doing so
improve their ability to forecasts future prices. Different processes were used to identify
and forecasts cryptocurrencies’ price behaviors, including linear and nonlinear and other
technical tools. This research makes the first attempt to predict price trends of major
cryptocurrencies using second order stochastic dominance (SSD) conditions. The concept
of stochastic dominance arises in decision analysis in situations where one probability
distribution over possible outcomes can be ranked as superior to another. Our aim is to
detect stochastic dominance superiority changes and exploit them for profitable trading.

We tested our system for five major cryptocurrencies: Bitcoin, Ethereum, XRP (Ripple),
Binance Coin, and Cardano. Cryptocurrency such as Bitcoin is traded on special exchanges
including Etoro and CoinBase. The biggest exchange in the world by far is called Binance.
That exchange has developed its own cryptocurrency called Binance Coin to make it
easier to pay for the exchange services, and this currency held in 2021 the third largest
market value of all cryptocurrencies. Cardano was launched in 2017 as a third generation
blockchain that aimed to directly compete with other decentralized platforms as a more
scalable, secure, and efficient alternative. By August 2021, Cardano had the third highest
market value after Bitcoin and Ethereum. We found that the system can predict price trends
of cryptocurrencies, trade them profitably, and in most cases outperform the buy and hold
(B&H) simple strategy.

2. Literature Review

Researchers have documented that the cryptocurrency market is largely affected
by herding behavior (Vidal Tomas et al. [1]; Gama Silva et al. [2]); therefore, techniques
such as machine learning and technical analysis improve price forecasting when they
integrate additional variables related to sentiment (see for example Ortu et al. [3]). Because
of this market behavior, some trading algorithms combines market data with social me-
dia data (Liu [4], Sohangir et al. [5]). The social media information is extracted mainly
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from Google and Twitter along with popular investor idea exchange platforms such as
Seeking Alpha (https://seekingalpha.com/Seekingalpha.com, accessed on 1 November
2021) and Investopedia (https://www.investopedia.com/, accessed on 1 November 2021).
Kim et al. [6] tried to predict fluctuations in the prices of cryptocurrencies by analyzing
comments in online communities. They found that positive comments significantly af-
fected the price fluctuations of Bitcoin, whereas the prices of two other cryptocurrencies,
Ripple (XRP) and Ethereum, were strongly influenced by negative comments. Garcia
and Schweizer [7] also demonstrated the existence of a relationship between returns and
Twitter valence and polarization. Matta et al. [8] reported significant cross correlation
values between the volume of online searches and Bitcoin’s trading volume.

In contrast to stock markets, cryptocurrencies are less regulated and therefore carry
extra risks (Baek and Elbeck [9]). In such a dynamic trading environment, algorithmic
trading systems can provide fast and useful information (Chow et al. [10]; Liu et al. [11];
Cohen [12]; Cohen [13]). Balcilar et al. [14] found that when extreme events are excluded,
volume is an important predictor of Bitcoin’s price. Brandvold et al. [15] investigated the
role of various of cryptocurrency exchanges in the price discovery process and concluded
that information sharing is dynamic and evolves significantly over time. Feng et al. [16]
found evidence of informed trading in the Bitcoin market prior to major events. Moreover,
they noticed that informed traders prefer to build their positions two days before large
positive events and one day before large negative events. This result serves as proof of
market inefficiency that differentiates uninformed traders from informed traders.

3. Data and Methodologies

Our data consisted of daily price and returns of the five most popular cryptocurrencies
that are valued together at more than $1.5 trillion (at the end of August 2021). The time
scope for this research varied from the beginning of January 2015 for Bitcoin and the
beginning of May 2018 for Cardano until the end of September 2021. We programed
a trading system that uses second order stochastic dominance (SSD) to predict short
term price trends of the examined crypto currencies. SSD implies that if two separate
distributions A and B exist, A has a second order stochastic dominance over B if A holds
less risk in terms of particle variations and has at least as high mean value. Concerning the
cumulative distribution functions FA and FB, a is second order stochastic dominant over B
if the area under FA from minus infinity to x is less than or equal to the area under FB for
all x (Equation (1)). ∫ x

−∞
[FB(t)− FA(t)]dt ≥ 0 (1)

where t = particle at time t, of the stochastic distribution.
The necessary conditions for second order stochastic dominance are given in Equation (2):

EA(x) ≥ EB(x)

MinA(x) ≥ MinB(x) (2)

The SSD requirements fit trading, since investors rely heavily on the financial asset
distribution function when they make investment decisions, and in that process, they
usually put more weight on the downside of the investment opportunity since they are
guided by fear of loss and risk aversion. In a recent study, McCarthy and Hillenbrand [17]
found that extrapolative beliefs and risk aversion are important drivers of stock prices,
together explaining 86% of movements in the S&P500 index.

To allow a stronger impact of a new price information over an old one, we used
Exponential Moving Average (EMAx) instead of EA(x), as noted in Equation (3).

EMAx = R(x) ∗ k + EMAx−1 ∗ (1 − k) (3)
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where EMAx = current exponential moving average, R(x) = today’s return, EMAx−1 =
yesterday’s exponential moving average return, N = number of days of the EMA, and
k = 2

N+1 .
We then integrated Equations (2) and (3) to produce long and short trading signals. A

long signal is generated if the following conditions are met (Equation (4)):

EMAx > EMAx−1 and Minx ≥ Minx−1 (4)

A short signal is generated if the following conditions are met (Equation (5)):

EMAx < EMAx−1 and Minx ≤ Minx−1 (5)

Figure 1 shows a bar chart of Bitcoin against the U.S. dollar, demonstrating that in an
uptrend, the average daily return is growing along with a higher minimum daily return.
On the other hand, a downtrend is characterized with lower average and lower minimum
daily returns.

Figure 1. Uptrends and a downtrend of Bitcoin’s daily price.

Each bar in Figure 1 contains information of the open, close, high, and low of the daily
prices. A long red bar symbolizes a large daily price drop, and a long red bar symbolizes
a major price rise. The system is designed to buy or sell one cryptocurrency at a time
for easy comparison to the buy and hold (B&H) strategy. A specific number of days is
entered into the system for it to calculate two consecutive EMAs and distributions and to
establish whether the SSD condition of the current distribution over the latter exists. If
such dominance is recognized, the system generates long or short trade. Once a position
is realized, the system will stay in that position until an opposite dominance occurs. This
trading system is highly sensitive to the range of days for which the SSD and EMAs are
calculated. When it relies on a large number of days for those calculations, the number
of executed trades drop dramatically, since it becomes difficult to recognize a continuous
trend for every financial asset and especially for cryptocurrencies that are characterized
with frequent trend shifts. Therefore, we altered the number of days systematically starting
with one day until the number of recorded trades dropped to zero. We then reported
the results of the best setups that produced the highest net profit (NP) generated by the
trading system and the Profit Factor (PF), which is the gross profits divided by gross
losses. For example, if the profit factor is 1.3, the system generated 30% more profits than
losses. In order to document the downside risk, for each strategy, we calculated Maximum
Draw Down (MDD), which is the maximum observed loss of a single trade without taking
into consideration the frequency of large losses. Since the cryptocurrencies market varies
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dramatically over time because of its complexity and relatively infancy (see, for example,
Fry and Cheah [18]; Fry [19]), we followed the changes of the average NP and MDD per
trade over time for each cryptocurrency. Moreover, we also separated all trades to long and
short trades to find out whether our system has different forecasting power for uptrends
and downtrends.

4. Results

We start our results section by examining Figure 2, which represents Bitcoin price
movement for a two-month random sample. Figure 2 show that the Bitcoin price oscillated
at a reasonable scope before hitting a sharp movement because of a major outside shock,
and then its volatility quadrupled in the next coming days.

Figure 2. Two months of Bitcoin daily price oscillation.

The results of the SSD-based trading system of the five cryptocurrencies are sum-
marized in Tables 1–5. The results reported in the tables are the best results our system
achieved by altering the number of days until reaching the highest NP and PF. Each table
also shows the dollar and percentage gap of the system’s NP versus the B&H strategy for
the entire examined period. Moreover, the tables also contain information about long and
short trades for each cryptocurrency.

Table 1. Results for Bitcoin trades.

Days 10 11 12 13 14 15

B&H$ 60,361 60,361 60,361 60,361 60,361 60,361

All
Trades

NP 52,121 56,436 71,825 73,051 62,445 50,040

PF 1.56 1.65 1.93 1.98 1.78 1.64

MDD 11,424 7515 5952 5716 6751 10,425

$ Gap −8240 −3925 11,464 12,690 2084 −10,321

% Gap −13.6% −6.5% 19% 21% 3.45% −17%

Long
Trades

NP 56,272 58,457 66,158 67,070 61,767 48,747

PF 2.68 2.90 3.25 3.40 3.10 2.62

Short
Trades

NP −4151 −2021 5667 5981 678 1293

PF 0.93 0.96 1.12 1.13 1.01 1.03
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Table 2. Results for Ethereum trades.

Days 22 23 24 25 26 27

B&H$ 3741 3741 3741 3741 3741 3741

All
Trades

NP 4385 4653 4741 4018 4357 4215

PF 2.36 2.49 2.54 2.24 2.48 2.39

MDD 262 181 199 257 311 411

$ Gap 644 912 1000 277 616 474

% Gap 17.2% 24.4% 26.7% 7.4% 16.5% 12.7%

Long
Trades

NP 3719 3869 3916 3556 3724 3655

PF 4.11 4.23 4.20 3.69 4.01 3.80

Short
Trades

NP 666 784 825 462 633 560

PF 1.32 1.40 1.45 1.24 1.37 1.32

Table 3. Results for XRP trades.

Days 12 13 14 15 16 17

B&H$ 0.39 0.39 0.39 0.39 0.39 0.39

All
Trades

NP 1.22 2.39 1.39 1.46 1.23 1.15

PF 1.40 2.05 1.51 1.57 1.47 1.44

MDD 0.17 0.21 0.25 0.33 0.26 0.28

$ Gap 0.83 2.00 1.00 1.07 0.84 0.76

% Gap 207% 502% 250% 274% 215% 195%

Long
Trades

NP 0.81 1.39 0.91 0.94 0.83 0.77

PF 1.70 2.45 1.65 1.70 1.59 1.56

Short
Trades

NP 0.41 1.00 0.48 0.52 0.41 0.38

PF 1.21 1.76 1.36 1.43 1.33 1.29

Table 4. Results for Binance Coin trades.

Days 23 24 25 26 27 28

B&H$ 472.6 472.6 472.6 472.6 472.6 472.6

All
Trades

NP 732 755 805 826 780 783

PF 3.36 3.72 4.21 4.48 4.29 4.35

MDD 15.8 26.7 22.4 20.8 30.4 19.6

$ Gap 259.4 282.4 332.4 353.4 307.4 310.4

% Gap 54.9% 59.7% 70.3% 74.7% 65% 65.7%

Long
Trades

NP 600 612 637 648 624 626

PF 6.75 8.30 8.79 10.55 10.15 10.40

Short
Trades

NP 132 143 168 178 156 157

PF 1.64 1.74 1.99 2.06 1.92 1.93

31



Mathematics 2021, 9, 2861

Table 5. Results for Cardano trades.

Days 50 51 52 53 54 55

B&H$ 1.85 1.85 1.85 1.85 1.85 1.85

All
Trades

NP 1.66 1.69 1.68 1.76 1.75 1.75

PF 2.06 2.09 2.08 2.18 2.17 2.19

MDD 0.26 0.25 0.36 0.31 0.41 0.36

$ Gap −0.19 −0.16 −0.17 −0.09 −0.10 −0.10

% Gap −10.3% −8.6% −9.2% −4.8% −5.4% −5.4%

Long
Trades

NP 1.86 1.88 1.87 1.92 1.92 1.93

PF 3.34 3.42 3.41 3.640 3.63 3.72

Short
Trades

NP −0.20 −0.19 −0.20 −0.16 −0.17 −0.18

PF 0.73 0.75 0.74 0.79 0.78 0.76

Table 1 demonstrates that the best setup for Bitcoin trading through our system
is 13 days, producing 73,051 NP, which is 21% over the B&H strategy. The PF of this
setup is 1.98, which means there are 98% more winning trades than loosing trades. The
MDD calculations indicate that the trading strategy is least risky when it is based on 13
days. Table 1 also show that our SSD-based system better predicts Bitcoin’s uptrends than
downtrends. We also find high dependency of the system performance on its daily selected
setup. Figure 3 show that the average NP and MDD per trade varies over time using the
best setup for Bitcoin.

Figure 3. Bitcoin average NP and MDD per trade for 2017–2021. Note: ANP = average trade net
profit, MDD = maximum loss per trade. The data for 2021 is until the end of September 2021.

Figure 3 shows that our system’s best performance was achieved in 2017, resulting
in an ANP of $584, and the MDD was $1206. The year 2021 had the highest MDD for the
system with $491 average NP per trade. Table 2 summarizes the results of our system for
Ethereum trades.

Table 2 demonstrates that Ethereum price trends changed slower than did Bitcoin’s.
The best trend prediction was achieved using a 24 day setup for Ethereum compared to
13 days for Bitcoin. Using a 24 day setup, our system produced 4741 NP, which is 26.7%
more than the B&H strategy and $199 MDD. The PF at this setup is 2.54, which represents
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154% more winning trades than loosing trades. Moreover, our system results are more
robust for Ethereum trades than for Bitcoin trades. Again, as for Bitcoin, the system predicts
better Ethereum long trends than short trends. Figure 4 demonstrates the average NP and
MDD per trade varies over time using the best setup for Ethereum.

Figure 4. Ethereum average NP and MDD per trade for 2017–2021. Note: ANP = average trade net
profit, MDD = maximum loss per trade. The data for 2021 is until the end of September 2021.

Figure 4 shows that the highest ANP and MDD per trade were achieved in 2021. These
results reflect the large appreciation in the Ethereum price during 2021 and the ability of
our system to detect uptrends. Table 3 summarizes the results of our system for XRP trades.

Table 3 shows that our system outperformed the B&H strategy by 502% ($2) with
$0.21 MDD, for the 13 days setup, making the system a better fit for XRP trends prediction
than for Bitcoin or Ethereum. The system is robust for 12 to 17 day setups, resulting in 1.57
average PF. As for the Bitcoin and Ethereum, the XRP system better predicts long trends
than short trends. Figure 5 shows the average NP and MDD per trade varies over time
using the best setup for XRP.

 
Figure 5. XRP average NP and MDD per trade for 2018–2021. Note: ANP = average trade net profit,
MDD = maximum loss per trade. The data for 2021 is until the end of September 2021.
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Figure 5 shows that as the price of the XRP appreciated in the market, our system
better generated profits and was subjected to higher risks (ANP of 0.063 and MDD of 0.21).
Table 4 summarizes the results of our system for Binance Coin trades.

Table 4 shows that the SSD system fits to trade Binance Coin. The best setup was
26 days, resulting in $826 NP, which represents a 74.7% return over the B&H strategy and
$20.8 MDD. Setups from 23 to 28 days produced better results than the B&H strategy by
more than 50%. The system performances are excellent for long trades (PF = 10.55 for the
26 day setup) and good for short trades (PF = 2.06 for the 26 day setup). Figure 6 show that
the average NP and MDD per trade varies over time using the best setup for XRP.

Figure 6. Binance Coin average NP and MDD per trade for 2018–2021. Note: ANP = average trade
net profit, MDD = maximum loss per trade. The data for 2021 is until the end of September 2021.

Figure 6 show that the main profits were accumulated by our system in 2021. From
January 2021 till the end of September 2021, the Binance Coin rose from $42 to $387.5
(822%). The MDD also rose dramatically in 2021, indicating the higher risk involved in
trading the Binance Coin using our system. Table 5 summarizes the results of our system
for Cardano trades.

Table 5 shows that the system’s best performance was achieved using a much longer
period than the other examined cryptocurrencies and with worse results. The best result
was achieved using a 53 day setup, which was $1.76 NP and which was beaten by the B&H
strategy by 4.8% and $0.31 MDD. Although the system generated positive NP for long
trades, it generated net losses for all short trades. Figure 7 demonstrates that the average
NP and MDD per trade varies over time using the best setup for Cardano.

Figure 7 show that in 2021, our system’s performance and risk rose dramatically in
comparison to 2019 and 2020. The ANP was $0.1 compared to $0.03 and $0.02 in 2019 and
2020, respectively. The MDD also rose to $0.31, signaling that the risk involved in trading
rose dramatically.
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Figure 7. Cardano average NP and MDD per trade for 2019–2021. Note: ANP = average trade net
profit, MDD = maximum loss per trade. The data for 2021 is until the end of September 2021.

5. Conclusions and Future Research

This research is the first attempt to design and test cryptocurrency trading systems
based on second order stochastic dominance. The time scope used in this research varies
from the beginning of January 2015 for Bitcoin and the beginning of May 2018 for Cardano
until the end of September 2021. Results show that our system can predict price trends of
cryptocurrencies and in most cases outperform the B&H simple strategy. Our system’s best
performance was achieved trading XRP, Binance Coin, Ethereum, and Bitcoin. Although
our system also generated a positive NP for Cardano, it failed to outperform the simple
B&H strategy. For all currencies the system better predicts long trends than short trends.
The best short trends predicted were achieved trading XRP and the worst trading Cardano.
Future research can try to predict cryptocurrency prices using stochastic behaviors and try
to predict intraday price movements using those behaviors.
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Abstract: In comparison with other respiratory viruses, the current COVID-19 pandemic’s rapid
seizing the world can be attributed to indirect (contact) way of transmission of SARS-CoV-2 virus
in addition to the regular airborne way. A significant part of indirect transmission is made through
cash bank notes. SARS-CoV-2 remains on cash paper money for period around four times larger
than influenza A virus and is absorbed by cash notes two and a half times more effectively than
influenza A (our model). During the pandemic, cryptocurrencies have gained attractiveness as an
“epidemiologically safe” means of transactions. On the basis of the authors’ gallop polls performed
online with social networks users in 44 countries in 2020–2021 (the total number of clear responses
after the set repair 32,115), around 14.7% of surveyed participants engaged in cryptocurrency-
based transactions during the pandemic. This may be one of the reasons of significant rise of
cryptocurrencies rates since mid-March 2020 till the end of 2021. The paper discusses the reasons for
cryptocurrency attractiveness during the COVID-19 pandemic. Among them, there are fear of SARS-
CoV-2 spread via cash contacts and the ability of the general population to mine cryptocurrencies.
The article also provides a breakdown of the polled audience profile to determine the nationalities
that have maximal level of trust to saving and transacting money as cryptocurrencies.

Keywords: COVID-19; Bitcoin; Ether; Ethereum; contact way of disease transmission; respiratory
virus; cash money

1. Introduction

In spring 2020, on the verge of the “coronacrisis”, the event that combined health-
care, economic, financial, administrative, political, employment, and social crises, many
markets experienced a dramatic fall. The situation was exacerbated by massive layoffs.
Most importantly, central banks in the period of COVID-19 pandemic mainly eased their
monetary policy to help different sectors of their economies to overcome the crisis, e.g., the
USD interest rate was diminished from 2.25% in January 2020 to 0.25% in April 2020 and it
has remained at this level thus far [1]. This was an unprecedented Federal Open Market
Committee’s decision, as in the post-war period of US history the USD interest rate was
never this low. Even after the “great financial crisis” of the 21st century broke out in 2008,
the interest rate was 0.50. As a result, fixed-income investments became not as popular as
they were before the pandemic. Treasury notes, bonds, and interest rate swaps plunged
after the FOMC decision. Federal funds rate dropped to 0.00–0.25% and Eurodollar futures,
consequently, jumped [2]. Simultaneously, the financial crisis distracted many investors
from the traditional assets such as stocks. At this uneasy time, electronic money, including
cryptocurrencies, came to the foreground. Luo et al. [3] and Shovkhalov with Idrisov [4]
showed that price-based monetary policy has strong anti-interference, as an increase in
e-money supply leads to weakening of the effect of monetary policy.

The correlation of almost all stock, futures and spot markets worldwide was unprece-
dented at the beginning of the pandemic [5–8]. Almost all world financial assets behaved
in a very similar, nearly identical manner in February–March 2020 [9]. Previously such a
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behavior was observed only in 2008 [10,11]. After the global fall in February–March 2020,
world markets began to revive by degrees. Most of the stock markets, both in economically
developed countries and emerging economies, are higher at the end of 2021 than they were
at the beginning of 2020 [12].

Figure 1 shows the behavior of different financial assets since February 2019 till
September 2020 (the end of the first wave of the COVID-19 pandemic). We can observe
a mixed behavior of traditional assets and a sharp rise in cryptocurrencies price (Bitcoin
and Ether).

Figure 1. Relative change in price of different assets: energy resources; grains; precious, ferrous and non-ferrous metals;
bonds; interest rate swaps; several world stock indices; and cryptocurrencies, since February 2019 till September 2020 (the
end of the first wave of the COVID-19 pandemic). The data are taken from the following sources: New York Mercantile
Exchange; Chicago Board of Trade; London Bullion Market; Singapore Exchange; London Metal Exchange; BrokerTec;
London Clearing House LCH ClearNet; Chicago Mercantile Exchange; Intercontinental Exchange; National Stock Exchange
of India; and several cryptocurrency exchanges.

In February–March 2020, i.e., the very beginning of the pandemic, there was a clear fall
of price of most popular financial assets such as world stock indexes or energy resources.
An especially uncommon, almost absurd situation, was observed with crude oil, whose
prices fell below zero (in this scenario a crude oil producer must pay money for storage
instead of receiving it for crude oil sale). Bitcoin and Ether prices also underwent this
temporary slippage, but to a much lesser degree. By the end of the first wave of the
pandemic cryptocurrencies outperformed every other asset in the world significantly.

The COVID-19 pandemic did not undermine the growing tendency of cryptocurren-
cies. On the contrary, the whole period of the pandemic caused a substantial rise in Bitcoin
prices thus far (15 November 2021), bringing it to its historical maximums (+810%). We
take Bitcoin as a reference for all cryptocurrencies, but for some other cryprocurrencies the
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rise of their price was even more expressed since January 2020 up to now (15 November
2021) (e.g., +3738% for Ether).

This behavior is quite uncommon for the pandemic time. No other financial asset
experienced such a rise in price in the COVID-19 times [13,14]. Instead, economic stagna-
tion, diminishing investment activities, and widening the bond–swap spread are common
phenomena now [15–20]. However, cryptocurrencies outperformed any “traditional”
market. This growth was not broken even by the events which were deemed to impact
cryptocurrencies negatively, e.g., the prohibition of mining farms in PRC on the grounds
of environmental impact or the notorious Elon Musk’s refusal to sustain cryptocurrencies.
It may be partly explained by the “safe haven” effect [21–23]. The Chinese government’s
prohibition of mining as well as restrictions in some other parts of the world were caused by
the huge environmental impact of mining farms. In Asia, Latin America, and Africa, the im-
pact of cryptocurrency mining is especially large [24–26]. However, environmental-based
restrictions did not break the growing trend of cryptocurrencies during the pandemic.

To be sure, during the last five to six years there was a growing trend in prices and trad-
ing volumes of cryptocurrencies. From 2015 thus far, the Bitcoin price rose from 200 USD
to 60,000 USD and the volume from dozens and hundreds of Bitcoins a day to some 50,000
Bitcoins a day, i.e., around 3 billion USD a day (in total on different cryptocurrency ex-
changes) [27–29]. This growing trend was accounted for by the involvement of both the
general population and several large investors (large net-worth individuals and a few
banks) that supported cryptocurrencies from the very beginning. Some of the large players
were attracted by the unclear legislation associated with use of cryptocurrency payments,
savings, trading, and other transactions, e.g., the absence of tax deductions applicable
to cryptocurrency-based operations [30–32]. The other investors were distracted from
cryptocurrencies for the very same reason of lack of legal regulation. To sum up, up until
the pandemic, cryptocurrencies experienced many periods of ebbs and flows. However,
only now can we observe such a rocketing. In the paper, we suppose that this growth can
be partially caused by the pandemic along with the other reasons, as the pandemic may
have raised the attractiveness of cryptocurrency on the whole.

A few authors suggested that cryptocurrencies became to be regarded as safe havens in
the global COVID-related instability [33–38]. Kim and Lee [39] and Lahmiri and Bekiros [40]
argue that the COVID-19 pandemic influenced cryptocurrencies prices negatively, making
them extremely volatile and unpredictable. However, in the works of Woebbeking [41],
Drożdż et al. [42], Friti et al. [43], and Zhu et al. [44] an opposite viewpoint is proposed:
the pandemic was the main reason for stabilizing and supporting the growing trend of
cryprocurrencies.

In the paper, we suggest a reason for an exceptional growth of cryptocurrencies
during the COVID-19 pandemic. We believe that it was cryptocurrency that began to be
regarded as an epidemiologically safe means of transactions and a possible substitution for
cash money.

Of course, cash money was always regarded as a probable means of transmitting dif-
ferent respiratory pathogens, even before the current pandemic. However, it is interesting
to compare the transmissibility of SARS-CoV-2 virus through cash notes with respiratory
viruses close in structure and properties such as influenza A virus. Besides, since this
pandemic caused enormous media coverage, people began to pay larger attention to epi-
demiological safety in their payments than they did before. This may be supported by the
fact that there are many media news regarding coronavirus and cash money unsafety, and
we could find few such news during any previous epidemics of the last two decades, e.g.,
SARS 2002–2004, “bird flu” H5N1, H1N1 epidemics, etc.

We suggest a hypothesis that the significant rise of cryptocurrencies in 2020–2021
may be mainly explained by the large inflow of small investors (general population)
to cryptocurrency trading that were searching for an epidemiologically safe means of
transactions during the time of pandemic.

39



Mathematics 2021, 9, 3263

The article has the following structure. We shall analyze the validity of such allega-
tions about cash money as a means of spreading the virus. Then we shall investigate the
connection between disbelief towards cash money and approving/supporting cryptocur-
rencies instead of credit/debit card operations. We shall study the situation in different
countries and finally evaluate the possible future scenarios of cryptocurrency behavior in
the time of pandemic.

2. Methods

2.1. Cohorts

We investigated social networks users’ opinion regarding cryptocurrencies, cash
money, and the COVID-19 spread in 44 countries. The initial number of responses was
86,841. After the set repair, the final number of responses suitable for analysis was 32,115.

2.2. Time of Study

The main results have been obtained in the interval 15 March 2020 to 15 November 2021.

2.3. Software

Origin 8.1 (OriginLab Corp., Northampton, MA, USA) was used for modelling, statis-
tical calculations and visualization.

2.4. Type of Study

The study is a biosocial analysis of different strata’s attitudes performed along with
computational modelling.

2.5. Description of the Interviewing Procedure

The interviewing was performed as follows.

1. A C++-based program was written to screen through the following networks: Face-
book, Instagram, VK, Google+, and Twitter, for accounts that contained at least
20 posts with the following keywords: cryptocurrency (with and without a space),
cryptocurrencies (with and without a space), crypto, cryptotrading (with and with-
out a space), cryptomining (with and without a space), cryptocurrency exchange
(with and without a space), cryptocurrencies exchange (with and without a space),
cryptocurrency wallet (with and without a space), cryptocurrencies wallet (with and
without a space), mining, mining farm, Bitcoin, Ether, Ethereum, blockchain (with
and without a space), blockchain technology (with and without a space in the first
word), BTC, ETH, Bitfinex, Bitstamp, Bitbay, Btcmarkets, Cex.io, Coinbase, Exmo,
Gemini, Kraken, for the period since 15 March 2020. Versions in different languages
of the keywords were used (excepting the names of the cryptocurrency exchanges
listed here);

2. If the screening procedure returned an account, the other C++- and Silverlight-based
program submitted a private message to the account with an invitation to join the
current research;

3. If the account’s holder responded, the response was stored in the special database on
our server to be analyzed further;

4. The languages used in the screening and invitation were Arabic, Central Thai, Chinese
(simplified), Chinese (traditional), English, Farsi, French, German, Greek, Italian,
Japanese, Korean, Malay, Portuguese, Russian, Spanish, Turkish, and Vietnamese.
These sets of languages were deemed a priori suitable to encompass the majority of
social networks users;

5. In the poll, the social networks users had to respond to the three questions with an-
swers YES (1), NO (2) or -/–/— (different forms of dash that stood for IT’S DIFFICULT
TO SAY) (3):

(1) Do you engage in any transactions with cryptocurrency (mining, speculation,
savings, payment, etc.)? (Q1)
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(2) If cryptocurrencies were widely recognized as means of transactions, regulated
and guaranteed against fraud/hacking/loss, would you prefer them to ordi-
nary cashless bank transactions, e.g., payments with bank-issued debit/credit
cards? (Q2)

(3) Do you regard cash money as an epidemiologically risky means of transactions
during the COVID-19 pandemic? (Q3)

The fourth input factor was the level of ordinary (bank) cashless operations in a
country in 2015–2019. The data for this factor were collected from the following sources:
(1) the number of non-cash transactions per inhabitant, 2014–2019 [45]; (2) overview
of preferred methods of payment around the world [46], and proportion of non-cash
payments in selected countries worldwide in 2015 [47]. The data published by other
researchers/statistical agencies were only used in point 4.

The respondents were asked to answer with only pre-defined replies {YES, NO, . . .
(versions in other languages), -, –, —, or 1, 2, 3}.

2.6. Country Choice

The countries with the number of responses suitable for further analysis larger than the
pre-defined conditional threshold (i.e., responses left in the set after repair) were included
in the study. In our case, this minimal number was arbitrarily chosen as 500. We received
44 countries that fitted our criterion. Introducing the threshold is a measure of increasing
the significance of the sample set for the research.

2.7. Data Cleaning and Set Repairing

We eliminated spoilt and strange responses as well as responses with low credibility
in an algorithmic way.

1. First, a program screened through the database and carried out the simplest linguistic
analysis. It removed all responses in which at least one field was blank or at least one
field did not contain at least one intelligible word in the language list used.

2. Second, a program screened through the database and eliminated all responses with
at least one field different from {YES, NO, . . . (versions in other languages), -, –, —,
1, 2, 3}. Different letter cases (upper case, lower case, or a combination thereof) and
different languages from the list could be used.

As a result, we have chosen 47,823 clean responses that may have been analyzed
further of 86,841 responses initially stored in the database. So, the clean set of responses
was 55.07% of the initial one. Of this intermediate set we excluded the responses of minors,
outliers with an age of more than 64 y.o., and all responses where the respondent’s age
could not be determined. This gave us 32,115 responses (67.15% of the intermediate set
and 36.98% of the initial unrepaired set).

2.8. Final Set Characteristics

The main characteristics of the final sample set after repair are summarized in Table 1.

2.9. Methodology to Assess Risk of SARS-CoV-2 Surface Contact Transmission through
Bank Notes

To estimate the rate of transmitting SARS-CoV-2 by cash bank notes, we may apply a
modified SIR (Susceptible–Infected–Recovered) model with the virus shedding assump-
tion [48–50]. In this model, in addition to the direct airborne route of infection transmission,
an infected person sheds SARS-CoV-2 virions on surfaces that become objects of indirect
infection. It has been repeatedly demonstrated that SARS-CoV-2 has longer average times
of decay on surfaces in comparison with many other respiratory viruses, e.g., influenza,
parainfluenza, adenoviruses, or other coronaviruses [51–54]. Though there were sup-
posedly no works concerning SARS-CoV-2 virions adhesion on cash bank notes thus far,
Xue et al. [55], Azuma et al. [56] and Marquès et al. [57] showed that SARS-CoV-2 virion
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particles behave differently on different surfaces. Paper, especially paper with a layer of
dust, fat, and other contaminants (this may be a good approach to describe cash notes
in circulation), can absorb SARS-CoV-2 large virions (around 100–200 nm in diameter)
effectively [58,59].

Table 1. Main demographics of the respondents and their cryptocurrency-related profile. Detected algorithmically on the
basis of the data provided in social networks accounts (if any) or from the questionnaire. Student distribution of the sample
set was assumed, CI = 95%, p = 0.05.

Age Range: 18–64 years *; mean 32.4 ± 10.2 y.o.

Gender 13,654 females (42.52% **)

IT-related occupation 8366 (26.05%)

Active lifestyle (based on analysis of photo captions posted in the last three years) 10,077 (31.38%)

Self-employed (if stated overtly in the social account profile) 5228 (16.28%)

Academic training (if stated overtly in the social account profile):
• Student (undergraduate or post-graduate) 7420 (23.10%)
• Bachelor degree 5238 (16.31%)
• Master degree 4904 (15.27%)
• PhD degree or higher 82 (0.26%)

Engaged in any operations with any of cryptocurrencies 4728 (14.72%)

Time of using any of cryptocurrencies in group of those persons who use them Mean 1.1 ± 0.7 years

Interest in cryptocurrencies emerged after the beginning of the COVID-19
pandemic, independently of using cryptocurrencies in practice or not (based on
the posts content analysis)

18,106 (56.38%)

Engaged in crypto mining 2264 (7.05%)

Engaged in crypto trading 3588 (11.17%)

Engaged in crypto savings 1012 (3.15%)

Engaged in crypto exchange with other wallets/cryptocurrencies 709 (2.21%)

Regular online payments with cryptocurrencies 134 (0.42%)

* Responses received from minors were not included in the sample set; ** Hereinafter the percentage of the total final set.

Combining an advanced technique by Fred Brauer in his book “Mathematical Models
in Population Biology and Epidemiology” [60] and a number of papers in periodicals [61–65]
with our SIR modified model [48], we receive an additional group of the population that
sheds the virus through the bank notes Vshed. In his works, some of which are published in
co-authorship, Fred Brauer proposed a methodology of calculating/receiving/assessing
age of infection [60,61], final size equation [60,61], contact networks [62], indirect trans-
mission [63], epidemic progression with time [64], and behavior change during an epi-
demic [65]. We then receive the first order Markov differential equation

dVshed
dt

= σI − τV, (1)

where I is the number of infected individuals, σ is the rate of shedding the virus on
cash notes and τ is the decay rate of SARS-CoV-2 on surface. We use the word “decay”
conditionally, as it may include different processes whose result would be the loss of
infectivity of the virus: virus mechanical removal from the note, agglomeration of viruses,
biochemical destruction, photo destruction by sun UV radiation, etc. [66,67]. Hirose
et al. stressed that during any epidemic, cash money circulation is an important factor of
transmitting the disease [67].

The total number of people in the group is N:

N = S + I + R, (2)
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where S is the subgroup of susceptible persons and R recovered. The SIR model assumes
that ⎧⎪⎨⎪⎩

dS
dt = −βairSI − βsur f SV,

dI
dt = βairSI + βsur f SV − αI,

dR
dt = αI

(3)

where βair is the rate of airborne infection, βsurf is the rate of transmission via surfaces, and
α is the rate of recovery. For simplicity of the model, let us suppose that all surface trans-
mission of SARS-CoV-2 is done through cash bank notes. For model (3), basic reproduction
number r0:

r0 =
βair N

α
+

βsur f σN
ατ

. (4)

Equation (4) is a construction based on the simplest model described in the
works [60,61,63]. It was received taking into account the Brauer’s viewpoint on basic
reproduction number and final size relation. It contains two terms. The former describes
the airborne (common) way of pandemic transmission, the latter the transmission through
bank notes. r0,air for SARS-CoV-2 is estimated as 1.6–2.6 for different environments [68–70].
In our works [28,33,50] we found that combined r0 may be assessed as 2.0–5.6 for dif-
ferent environments. Therefore, we can attribute the difference to the second term in
Equation (4), i.e., r0,surf . However, in real life the basic reproduction number depends on
more parameters than Equation (4) assumes.

The approach described above is the simplest approach in which we assumed the
immediate infection/decay of the virus on the cash notes. In reality, the situation is more
complex. In its circulation in the population, a bank note may be infected by different
people with different amounts of SARS-CoV-2 virions several times. Naturally, it can infect
several people. This leads to necessity in presenting infection potential of a bank note and
virus shedding as functions of time: SR = SR(t, tinf)—shedding rate of a person during
the time of being infectious tinf; AV = AV(t, tshed)—“active virus,” i.e., the part of virions
absorbed on bank notes that are still infectious for people, tshed earlier. Then, we may
calculate the amount of active virions that can still be dangerous to people operating with
the bank note at moment t, by substituting a new variable T = t − tinf for integration:

Local AV =

t∫
0

SR
(

tin f

)
AV
(

t − tin f

)
dtin f =

t∫
0

SR(t − T)AV(T)dT. (5)

For the full course of COVID-19 pandemic, we have

Total AV =
∫ ∞

0

∫ t

0
SR(t − T)AV(T)dTdt. (6)

Integrating by variable substitution and the order interchange, we receive

Total AV =
∫ ∞

0

(∫ ∞
T SR(t − T)dt

)
AV(T)dT =

∫ ∞
0

(∫ ∞
0 SR(T)dT

)
AV(T)dT

=
∫ ∞

0 SR(T)dT
∫ ∞

0 AV(T)dT.
(7)

From Equations (4) and (7), it is easy to write the expression for basic reproduction
number r0,surf :

r0, sur f =
βsur f

ατ
N
∫ ∞

0
SR(T)dT

∫ ∞

0
AV(T)dT. (8)

To estimate whether the pandemic will continue in an imagined population that ap-
plies all epidemiological measures to prevent the SARS-CoV-2 airborne spread
(r0,air = 0), only through cash circulation, let us consider the initial moment t = 0. At
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the very beginning of SARS-CoV-2 spread in this biosocial group, we would have the
following system of equations: ⎧⎪⎪⎨⎪⎪⎩

S = N,
t = 0,

Vshed = 0,
TotalAV = 0.

(9)

From Equation (3), for dS
dt and Equation (9) it can be seen that at the beginning of the

pandemic in a given theoretical society where only cash notes circulation contributes to
SARS-CoV-2 spread,

dS
dt

= −βsur f N
∫ ∞

0

(∫ ∞

0
–

dS
dT

(t − T − T)AV(T)dT
)

SR(T)dT. (10)

For Equation (10) to have a solution like

S(t) = Sinitekt, (11)

its characteristic equation should be

βsur f N
∫ ∞

0
e−kTSR(T)dT

∫ ∞

0
e−kT AV(T)dT = 1. (12)

Finally, it is easy to observe from Equations (8) and (12) that at the beginning of
the epidemic

r0, sur f =
1

ατ

∫ ∞
0 SR(T)dT

∫ ∞
0 AV(T)dT∫ ∞

0 e−kTSR(T)dT
∫ ∞

0 e−kT AV(T)dT
. (13)

From Equation (13), we see that in our imagined society there will be no pandemic
spread due to cash circulation, if parameter k < 0. Otherwise, the virus will spread in the
population through operations with bank notes.

Substituting the experimentally obtained figures for r0,surf estimates that may be
derived from [48,54,71] to Equation (13), we can compare SARS-CoV-2 virions behavior
during adhesion on bank notes with the behavior of other respiratory viruses, e.g., influenza
viruses [72–76]. The works of Otter et al. [72] and Cortes and Zuñiga [73] compare the
transmission of coronaviruses SARS 2002–2004 and MERS with that of influenza viruses.
Lauterbach et al. provides data on surface transmission of influenza A virus [74]. The
study of Ikeda et al. describes adhesion of influenza A virus on different surfaces and
provides parameters of adhesion [75]. Robinson et al. describes surface transmission and
inactivation of different respiratory viruses in different ambience [76].

3. Results and Discussion

3.1. Comparison of SARS-CoV-2 and Influenza A Transmission Potential through Paper
Cash Money

Figure 2 shows comparative decay of Influenza A (calculated with data provided in our
works [48,54,71] and works of other researchers [72–76]) and SARS-CoV-2 on dirty paper
surfaces that may be a good approximation for cash bank notes in circulation. Calculation
is made with respect to basic reproduction numbers r0,air and r0,surf for influenza A and
SARS-CoV-2 viruses (Equation (13)) for idealized environments where cash money are the
only surfaces with shed viruses. Modelling is made so that Equation (1) has a solution as
an exponential-type decay.
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Figure 2. Modelling the decay of active viruses on dirty and fat paper surfaces (approximation for cash bank notes) in ideal
conditions free of UV radiation and mechanical stir. The initial amounts of virions shed on the surfaces are equal for the two
viruses. Poisson noise 5%. Modelling is made in OriginPro 8.1 (OriginLab Corp., Northampton, MA, USA) with the use of
nonlinear curve simulation instrument based on multiparametric input.

From Figure 2 one can observe that the half-life time of SARS-CoV-2 active virions
T1/2,SARS-CoV-2 on dirty and fat paper is nearly two times larger than half-life time of
influenza A active virions T1/2,Influenza A. Besides, to reach the level of influenza A active
virions on dirty paper at the time of half-life, it will take SARS-CoV-2 approximately two
days, i.e., the period four times greater than the period for influenza A (point QSARS-CoV-2
on the time scale). This evidences SARS-CoV-2 greater stability on porous surfaces (unclear,
whether this implies mechanical stability or biochemical stability). Then, AVSARS-CoV-2(0)
is around 2.5 times more than AVInfluenza A(0). It may be explained by greater adhesion
capacity of SARS-CoV-2 with respect to dirty, viscous, and hydrophobic paper surfaces,
as in the modelling the initial quantities of viruses shed were equal for SARS-CoV-2 and
influenza A.

Assuming that all surface transmission of the viruses is made through cash bank
notes (a theoretical scenario), we may conclude that cash money has larger epidemiological
risk for transmitting SARS-CoV-2 than influenza A (and possibly many other respiratory
viruses). In reality the transmission of an epidemic is more complex and it may include
different surfaces and airborne ways. However, the main conclusion will be the same as for
our idealized model: during the COVID-19 and similar pandemics, cash money becomes a
risky substance for spreading the pathogen. Currencies with plastic cash money such as
Hong Kong dollars or Macanese patacas may be less risky but they are rare in the world,
as the overwhelming majority of currencies are still printed on paper. We did not conduct
any special research on the matter, however. We supposed it on the basis of several studies
that demonstrated lower transmissibility of respiratory viruses through plastic surfaces
than through paper surfaces [72–76].
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3.2. Growth of Population Interest in Cryptocurrencies as Possible Substitutes for Cash Money

Figure 3 shows the in-group percentage of respondents who answered YES to question
1, by country (green bars), and part of the population who preferred bank debit/credit/online
payments in 2015–2019 (grey bars). It is to emphasize that green bars demonstrate the in-
group percentage of those people who used cryptocurrencies in 2020–2021 and participated
in our study, and they do not show the percentage of the total population of these countries
who use cryptocurrencies. Obviously, the latter may be different from the data we collected
and showed as green bars. Therefore, Figure 3 must be understood in a semi-quantitative
sense and the data depicted as green bars used with caution. Nonetheless, Figure 3 allows
one to make an estimation of cryptocurrency popularity among social network users.
Besides, it demonstrates the trends that push new countries ahead in using cryptocurrencies
in our days.

Figure 3. Part of respondents who engaged in any transactions with any cryptocurrencies in the
groups of respondents studied our investigation (2020–2021), per cent (green bars), and mean part of
population that was using non-cash bank payments (debit/credit cards or online payments) in these
countries in 2015–2019 on a regular basis (third-party data, grey bars).
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In our research, the leader of using cryptocurrencies was India. China followed,
despite the recent prohibition of the Chinese government to mine cryptocurrencies because
of the environmental impact. As we can see, Figure 3 demonstrates a picture a little different
from the data provided by Statista.com website, according to which the top six crypto
countries in 2020 were Nigeria, Vietnam, Philippines, Turkey, Peru, and Switzerland [77].
That may be partly explained by different methodologies applied by Statista.com for their
evaluations and by us in the current research and different set composition.

In Table 2, we provide Pearson correlation coefficients Cxy between people who
responded YES to the above three queries and the fourth factor of level of non-cash bank
payments in a country in 2015–2019.

Table 2. Pearson correlation coefficients Cxy between YES reply proportion in different countries to the queries at the
corresponding significance levels pxy. Strong correlation is highlighted in bold.

Q1 Q2 Q3 Bank Non-Cash

Q1 0.6402 0.8404 * –0.1932
Q2 p ≤ 2.87 × 10–6 0.5904 0.1619
Q3 p ≤ 9.66 × 10–13 * p ≤ 2.46 × 10–5 –0.1730

Bank Non-Cash p ≤ 0.2090 p ≤ 0.2939 p ≤ 0.2615
* Strong correlation is highlighted in bold.

A few important observations may be drawn from Figure 3 and Table 2:

1. There is almost no correlation (even very slight anti-correlation) between Q1 (Figure 3,
green bars) and bank non-cash transactions level (Figure 3, grey bars). From this,
it may be deduced that cryptocurrencies are mainly used by different groups of
population than devoted supporters of only credit/debit cards/online payments
who totally reject using cash. Of course, a person may use both these ways of non-
cash transactions (bank-controlled and cryptocurrencies) but the preferences may
be different on the scale of the whole population of a country, e.g., in India we may
currently observe the highest level of cryptocurrency attractiveness, while the level of
using non-cash bank operations was one of the lowest in the world in 2015–2019;

2. There is still no data in statistical agencies on using debit/credit card/online payments
in the time of the COVID-19 pandemic. However, there are reasons to believe that the
pandemic increased the level of non-cash bank payments somewhat proportionally
with respect to the pre-COVID level, according to the data provided by Statista [78],
European Central Bank [79], and a set of papers on non-cash payments chosen by
Science Direct [80]. With all that said, the demand for cash money also significantly
increased, as works [81–86] demonstrate, despite the decline in cash day-to-day
operations of individuals. Guttmann et al. presented a report on cash demand
during the pandemic made by the Reserve Bank of Australia [81]. Náñez Alonso et al.
discussed changes in cash demand in rural areas of Spain, which were caused by
COVID-19 [82]. In a Bank of Canada Staff Discussion Paper, Chen et al. compared the
demand and use of cash [83]. In a National Bank of Poland working paper, Wisniewski
et al. analyzed the level of transition from cash to cashless payments during the
pandemic [84]. Alvarez and Argente [85] as well as Rogoff and Scazzero [86] described
new trends of cash management after 2020. All these works prove that the cash
volume increased during the COVID-19 pandemic. However, this may be a result
of inflation, whose level was relatively high in different parts of the world during
the pandemic (partly caused by low interest rates). We may hypothesize that persons
who widely used card payments before the pandemic, increased the frequency of card
use. However, the groups of population who became interested in cryptocurrencies
at the time of the pandemic may differ from those who prefer online bank payments
and bank card operations on regular basis;

3. The correlation between Q1 and Q2 is considerable. There were people who replied
YES to Q2 but NO to Q1. Therefore, we may anticipate that in case of larger regulation
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and protection of cryptocurrencies, the proportion of those who approve and use
cryptocurrencies, may rise significantly;

4. The correlation between Q1 and Q3 is very strong (highlighted in bold in Table 1). It
means we may assume that the COVID-19 pandemic was one of the main reasons for
the raising fascination of cryptocurrencies;

5. The country composition is different for supporting cryptocurrency-based operations
and non-cash bank operations. On the whole, with a few exceptions, we can see
that economically developed countries tend to group at the lower part of Figure 3
(lower level of trust for cryptocurrency), whereas the level of non-cash bank trans-
actions may be substantial in these countries. On the contrary, the population of
many emerging countries (mainly Asian states) currently has the highest interest in
cryptocurrencies independently of the level of non-cash card and online payments
made by this population.

3.3. Temporal Change of Attitudes towards Cryptocurrencies in the Course of
COVID-19 Pandemic

Figure 4 demonstrates the temporal change of the weighted average of YES proportion
to queries Q1, Q2, and Q3 (all respondents from all countries) with regard to Bitcoin prices.
Each measurement was made at the middle of the month since March 2020 to November
2021. The Pearson correlation coefficients in regard to time change are provided in Table 3.

Figure 4. Bitcoin price (left axis) and weighted average proportion of respondents who answered YES to queries Q1,
Q2, and Q3 (right axis), depending on time. Fixings were made at the middle of each month from 15 March 2020 to
15 November 2021.
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Table 3. Pearson correlation coefficients Bxy between temporal changes of weighted average YES proportion in the whole
set and Bitcoin prices, at the corresponding significance levels pB, xy.

Q1 (t) Q2 (t) Q3 (t) Bitcoin Price (t)

Q1 (t) 0.5271 0.4187 0.7878 *

Q2 (t) pB ≤ 0.0141 0.5236 0.6953 *

Q3 (t) pB ≤ 0.0589 pB ≤ 0.0149 0.7254 *

Bitcoin Price (t) pB ≤ 2.24 × 10–5 * pB ≤ 4.67 × 10–4 * pB ≤ 1.98 × 10–4 *

* Strong correlations are highlighted in bold.

It is noteworthy that the Bitcoin price is highly correlated with the sentiments of
people who are interested in cryptocurrencies. These are sentiments about Bitcoin future
(Q1 and Q2) and the fear of using cash bank notes during the pandemic (Q3). This makes
cryptocurrencies the assets whose price is currently largely determined by psychological
factors influencing the behavior of the general population, in comparison with more
“traditional” financial assets, where institutional interest plays considerable role.

4. Limitations

The major limitations of the study are the following:

− Our results reflect participation of only one social group in using cryptocurrencies,
i.e., active users of social networks Facebook, Instagram, VK, and Google+. Therefore,
our approach is not very representative. The results for the total population of the
countries studied may be different;

− We may have overlooked a few countries with a considerable level of using cryp-
tocurrencies due to introducing a minimum threshold on number of responses, e.g.,
Nigeria, Peru, or Colombia [77];

− We widely used the concept of correlation between different factors. However, corre-
lation is not capable of showing the direction of causative relations, nor does it take
into account the multitude of possible factors. Therefore, we may have missed several
factors in the sociological survey. As well, we did;

− We assumed that the main reason for tremendous cryptocurrency growth was the
COVID-19 pandemic. However, it may be only one of several important factors;

− We focused on Bitcoin, but we did not study a variety of cryptocurrencies and their
behavior during the pandemic;

− We compared the level of using cryptocurrencies in 2020–2021 with the level of non-
cryptocurrency bank cashless payments in 2015–2019. Strictly speaking, that may
have blurred the results to a certain degree;

− We did not study the involvement of large institutional investors in cryptocurrencies
trading during the pandemic. However, without studying this field the full picture of
the cryptocurrency–pandemic relation is hardly attainable;

− We only compared SARS-CoV-2 with influenza A virus in terms of transmissibility
through cash bank notes. It would be interesting to compare it with other respiratory
viruses and epidemics;

− We did not investigate psychological attitudes of the general population towards
cryptocurrencies as a substitute for banks monopoly on producing money and how
this may have contributed to the rise of cryptocurrencies rates during the pandemic.
Taking into account psychological attractiveness of cryptocurrencies as a competitor
to the money produced by banks may be a serious factor of cryptocurrencies rocketing
during the COVID-19 pandemic;

− We did not compare paper money and plastic money in terms of epidemiological risk;
− We did not assess epidemiological risk of using debit/credit cards kept in wallets

along with cash money;
− We did not distinguish between different ways of using cryptocurrencies, i.e., the ever-

changing levels of mining, trading, keeping in cryptocurrency wallets, payments, etc.
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− We applied a very strict algorithmic set repair that led to a substantial contraction
of the set [Final Set (after repair) = 37% × Initial Set (before repair)] algorithmically
without any complex linguistic analysis of the responses.

− We did not perform any manual analysis of the responses. That may have excluded
many relevant responses from the further analysis, e.g., those that were input in
the questionnaire in a different form from the sample we proposed {YES, NO, . . .
(versions in other languages), -, –, —, or 1, 2, 3}.

Of all of the limitations stated above, we regard the following two the most important:
(1) research of using cryptocurrency not in the whole population, but in a group that cannot
give the full representativeness; and (2) absence of a multifaceted comparative study of
cryptocurrencies/cash/bank cards and other online payments in the time of pandemic due
to lack of third-party data. Addressing these limitations can provide a guidance how to
devise and conduct a future research.

5. Conclusions

The COVID-19 pandemic caused fear of using cash bank notes as an epidemiologically
risky means of transactions and simultaneous surge of almost all cryptocurrencies rates.
We may hypothesize that this surge is explained by the growth of the general population’s
interest in cryptocurrencies as more suitable means for new types of social relations in the
global world where epidemiological measures must be ensured and observed. Heldt [87]
and Biały [88] write that caution for cash money may be one of the ways to enhance
the culture of communication during the pandemic events. Using cryptocurrencies is a
possible option to make such an enhancement. Santos et al. [89], Naughton et al. [90],
VanMeter et al. [91], and Sassin [92] emphasize the appeal of new electronic techniques of
financial transactions for many people in the situation of a crisis-related uncertainty and
cryptocurrencies may have attractiveness as a psychological safe haven. Besides, based on
works of Wilder-Smith et al. [93], Peeri et al. [94], Nomura et al. [95], Maria and José Luis
Miralles-Quirós [96], and Dwita et al. [97] we may suppose that cryptocurrencies may be a
part of the Sustainable Finance paradigm.

In our model described in this article, we proved that the fear of cash money as a
SARS-CoV-2 spreader is explainable. A significant part of indirect transmission of SARS-
CoV-2 virus is made through cash bank notes circulation. SARS-CoV-2 remains on cash
paper money for a period around four times larger than the influenza A virus and it is
absorbed by cash notes two and a half times more effectively than influenza. With all that
said, it should be stressed that using cash money is not any more dangerous to people
during the pandemic than wearing clothes, driving cars, or buying utilities. However, due
to the persistence of cash money in our life and frequent incompliance with routine safety
measures by people during the pandemic (e.g., neglect of elementary washing hands after
dealing with cash notes) make cash notes an important factor in spreading the pathogen.

Our conclusions about the use of cash bank notes on the whole agrees with the recent
research of Bank of England that says “The COVID pandemic has changed the way that
people shop. In response to social distancing guidelines, more people are shopping online,
meaning fewer cash payments”. [98].

However, our estimations of coronavirus viability on paper cash surfaces do not
coincide with the results obtained on behalf of the BoE [98]. The authors of the report on
virus viability published by the BoE [98] (“Cash in the time of COVID” BoE paper, Box 2)
argue that it is difficult to get the coronavirus from the cash notes or coins. However,
the results obtained by Blutest Laboratories Ltd., Glasgow, UK, (the BoE’s contractor)
cannot be unambiguously interpreted in the context of our investigation for the following
reasons. 1. The laboratory did not used SARS-CoV-2, the causative pathogen of COVID-19.
Instead, they used a surrogate coronavirus, but they did not specify which one. As it is
known, coronaviral infections represent the group of infectious diseases caused by RNA-
containing viruses of the order Nidovirales, family Coronaviridae, which affect many species
of birds and mammals [99]. These viruses are numerous and currently there are more

50



Mathematics 2021, 9, 3263

than a hundred representatives known to scientists [100]. A number of coronaviruses are
pathogenic to humans, e.g., HKU1, NL63, OC43, and E229 coronaviruses cause mild human
diseases [101,102]. All coronaviruses deviate from each other in size, physical conformation,
and physical properties [103] and to substitute the causative agent of COVID-19 by another
member of the family was possibly not the best option, as the results obtained by Blutest
Laboratories Ltd. can hardly be extrapolated to SARS-CoV-2. 2. In the report published by
the BoE the researchers do not provide information on the sample set of surfaces. We have
no idea on the number of experiments and statistics used. 3. The authors of this report
do not provide data on the techniques used to bring samples of virions to the surfaces
they studied. Was it an aerosol, spray, gas, liquid, or large-droplet injection? 4. They do
not provide technical data on amplification and detection of the viral RNA to assess the
amount of remaining virions. To measure a virus quantity on a surface is not a trivial task
and, therefore, to use the data provided by Blutest Laboratories Ltd., a reader must be
fully aware of the methodology. In any case, the BoE report says that the transmission
level of the novel coronavirus SARS-CoV-2 is negligibly small by cash bank notes during
the pandemic. We cannot agree due to the lack of information given by the authors from
Blutest Laboratories Ltd.

As epidemiologically safe means of transactions, cryptocurrencies could be attractive
as a perspective for possible substitutes for cash, were they more regulated, protected,
and broadly accepted as a legal means of payment, and the transactions based on them
guaranteed by different institutions. The preference of cryptocurrencies to bank non-cash
operations by the growing number of people (especially persons of young age, having an
active lifestyle, or engaged in IT-related professions) during the pandemic may also be
explained by the psychological appeal of cryptocurrencies as money that is produced by
individuals, not by banks who produce customary money (USD, EUR, etc.).

Our paper helps to see a broad perspective of cryptocurrencies development during a
crisis time. We studied the “coronacrisis”, but the conclusions may be applied to different
crisis events and pivotal points in the development of societies.

In a global world without borders, we may anticipate unstable epidemiological situa-
tion in the decades to come. In this situation, if cryptocurrencies are recognized as legal
means of savings and payments by different governments, as it is already done with Bitcoin
in El Salvador, we may see them achieve tremendous success.
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Abstract: Non-fungible tokens (NFTs) can be used to represent ownership of digital art or any other
unique digital item where ownership is recorded in smart contracts on a blockchain. NFTs have
recently received enormous attention from both cryptocurrency investors and the media. We examine
why NFTs have gotten so much attention. Using vector autoregressive models, we show that Bitcoin
returns significantly predict next week’s NFT growth in popularity, measured by Google search
queries. Moreover, wavelet coherence analysis suggests that Bitcoin and Ether returns are significant
drivers of next week’s attention to NFTs. These results indicate that the remarkable increases in prices
of major cryptocurrencies can explain the hype around NFTs.

Keywords: NFT; non-fungible tokens; investor attention; cryptocurrency

1. Introduction

The non-fungible token (NFT) market has shown a significant increase in popularity in
2021. In just one year, the NFT market went from total daily sales of about USD 183,121 in
2020 to an average of USD 38 million in 2021 (data from https://nonfungible.com/market/
history, accessed on 22 December 2021). Some NFT examples include the sale made by
the artist Beeple, who sold a piece of digital art for USD 69 million, or the sale of the first
Tweet made by Twitter CEO Jack Dorsey for USD 2.9 million. Two others popular NFTs are
the CryptoPunks and Decentraland. The entire CryptoPunks collection, created in 2017 by
Larva Labs, surpassed USD 1 billion in sales in 2021. Meanwhile, MANA, the native token
of Decentraland, a metaverse platform where users can buy and sell virtual properties,
spiked 400% and hit an all-time high market capitalization of more than USD 6 billion after
Facebook announced it was changing its name to Meta.

NFTs are tokens stored on a blockchain that can be used to represent ownership of
digital assets like artworks, recordings, virtual real estate and pets. NFTs are sold on
specialized marketplaces, such as OpenSea, Axie Marketplace, and Rarible. On these
platforms, investors can also exchange the property right to the asset underlying the NFT.
And because NFTs use smart contract technology, they can be set up so that the original
artist can earn a percentage of all subsequent sales. The main difference between NFTs and
cryptocurrencies, such as bitcoin, is that cryptocurrencies are fungible or interchangeable;
they are all worth the same amount. However, NFTs are non-fungible, meaning that an
NFT cannot be exchanged for another since each one is unique. Precisely, this uniqueness
enables the use of NFTs to authenticate ownership of digital assets. Furthermore, each
NFT is stored on a public and transparent blockchain (often Ethereum’s). Thus, NFTs are
decentralized applications with high levels of verifiability, tamper resistance, usability,
atomicity, and traceability. For additional details about the technicalities of NFTs, please
see Wang et al. (2021) [1].
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In 2021, public attention towards NFTs exploded, and the NFT market has become
quite popular among investors and collectors. For instance, the largest NFT marketplace,
OpenSea, has more than one million users buying and selling digital art and collectibles
via their platform (data from https://dune.xyz/rchen8/opensea, accessed on 22 December
2021). Thus, why have NFTs received such attention? In this paper, we examine the
factors that explain investor attention to non-fungible tokens. This rise in awareness can
be attributed to several factors, including the excitement around blockchain technology.
We argue that rising cryptocurrency prices may have played a role in the surge of NFTs.
We posit that NFT markets have benefited from the hype around major cryptocurrencies,
particularly Bitcoin, as the digital currency with the largest market capitalization. Bitcoin
has attracted significant attention recently, and it has undeniably assumed an important
role in global financial markets. We also examine the effects of Ether, as NFTs are primarily
registered on Ethereum smart contracts and often valued in Ether.

The literature on NFT markets is scarce. Prior papers have examined the factors
that determine the prices of NFTs, finding a positive relationship between the prices of
cryptocurrencies and the prices of NFTs [2,3]. The literature has also suggested that NFTs
are difficult assets to value. For instance, Dowling (2021a) [4] shows that Decentraland is
inefficiently priced and characterized by a steady rise in value. Chohan (2021) [5] claims
that demand forces determining NFT prices are fundamentally dependent upon inherent
scarcity and a buyer’s readiness to purchase a one-of-a-kind item. Oppositely, other studies
contradict this, stating that scarcity is not necessarily relevant in all NFTs. For example,
Serada et al. (2020) [6] analyze CryptoKitties, an online game where players collect, breed,
buy, and sell various kinds of virtual cats. They found that the least common game tokens
experience rapid devaluation quickly if not enough players are in the game. Nadini et al.
(2021) [7] created a superb overview of some central NFT features that span the six main
NFT categories, including art, games, and collectibles. The findings show that past sale
history is the best predictor of NFT prices, as one would expect. In addition, NFT-specific
properties like a digital object’s appearance also increase price predictability.

This paper provides novel evidence for the factors that draw investors’ attention to
the NFT market. To our knowledge, this is the first study to examine the levels of attention
to non-fungible tokens. The NFT market started getting mainstream attention in early
2021, coinciding with a price run-up in all major cryptocurrencies. Accordingly, using
a database featuring weekly data on Google search activity for the topic “non-fungible
token” and two of the most popular NFTs, “Cryptopunk” and “Decentraland,” between
2017 and 2021, we explore if NFT attention is related to cryptocurrency pricing. We
test this hypothesis using various time-series econometric models, ranging from vector
autoregressive (VAR) regressions to wavelet coherence analysis. We select the empirical
models based on the experience of prior literature. Other studies examining investor
attention to cryptocurrencies have primarily used VAR models (see, for example, [8–12]).
Meanwhile, wavelet coherence models have recently been used in the financial literature to
examine the dynamic relations among cryptocurrencies (see, for instance, [2,13–16]).

Using vector autoregressive (VAR) models, we find that the previous week’s bitcoin
returns significantly drive attention to NFTs. Moreover, when wavelet coherence analysis
is used, we find that investors are more attracted to NFTs after increases in both Bitcoin
and Ether returns. These results are consistent with the notion that as Bitcoin and other
cryptocurrencies have boomed in price and popularity over the last few years, NFTs have
also soared. In other words, the results suggest that the hype around cryptocurrencies
could explain the NFT growth in popularity.

Our study has implications for financial practices, particularly for digital artists, collec-
tors, and cryptocurrency investors. We believe our results will help NFT market participants
better understand this disruptive innovation and the impacts that the accelerated growth
of NFTs has on decentralized markets.
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We organize the rest of the paper as follows. First, Section 2 provides the materials
and methods used. Then, Section 3 presents our main results. Finally, Section 4 shows the
conclusion and examines the implications of our findings.

2. Materials and Methods

2.1. Methodology

We first study the dynamics between cryptocurrency returns and NTF attention by
estimating vector autoregressive (VAR) models with exogenous variables. VAR models
are used to capture the complex dynamics of multiple time series. Prior studies ana-
lyzing investor attention to cryptocurrencies have mainly used VAR models (see, for
example, [8–12]). In this paper, we estimate VAR models with exogenous variables. These
exogenous variables include economic factors that could also determine investor attention
to NFT markets. For example, we have variables such as CBOE Volatility Index (VIX), gold,
and S&P 500 returns. We also control for the level of attention toward Bitcoin and Ethereum.
The VAR model we evaluate in this study consists of the following two equations:

NFT attentiont = α +
p

∑
j=1

β′NFT attentiont−j +
p

∑
j=1

β′Crypto returnt−j + δ′Zt−1 + μt, (1)

Crypto returnt = α +
p

∑
j=1

β′NFT attentiont−j +
p

∑
j=1

γ′Crypto returnt−j + δ′Zt−1 + μt. (2)

Our primary dependent variable is NFT attention, which represents the weekly time
series measuring the frequency of Google searches with the topic “non-fungible token”
together with the term “NFT” at the worldwide level. We also use the weekly search
volume for the topic “Cryptopunk” and “Decentraland”, two of the most popular NFTs.
Google search data are being increasingly utilized in financial and cryptocurrency literature
to measure investor attention. For instance, Urquhart (2018) [8] and Lin (2021) [10] use
Google data to gauge investors’ interest in Bitcoin and several different cryptocurrencies.
One of the main benefits of Google searches is that, under a single topic, its algorithms can
cover various languages and group different searches with the same meaning [17].

In Equations (1) and (2), α is a vector of constants, β is a vector of coefficients on
the first endogenous variable (the weekly NTFs Google attention), and γ is a vector of
coefficients on the second endogenous variable (either weekly Bitcoin price returns or
weekly Ethereum price returns). The vector Zt represents the exogenous control variables,
and δ is the vector of coefficients on these control variables. Finally, μt is a vector of
independent white noise innovations. In Equations (1) and (2), the value p denotes the
number of lags. We determine the optimal number lags using several information criteria,
including the Akaike information criterion (AIC), Hannan–Quinn information criterion
(HQIC), Schwarz-Bayesian information criteria (SBIC), and final prediction error (FPE).

Next, we use the wavelet coherence technique to investigate co-movement between
cryptocurrency returns and NFT levels of attention. Wavelet coherence analysis enables
investigation of any detectable co-movement between two-time series (bivariate wavelets)
in the domains of time and frequency, whereas standard time series modeling does not.
Nonstationary signals can also be analyzed with wavelet coherence. Recent studies by
Dowling (2021b), Goodell and Goutte (2021), and Qiao et al. (2020) [2,13,14] employed
wavelet coherence for cryptocurrency analyses.

We use cross-wavelets in keeping with Torrence and Compo (1998) [18]. The cross-
wavelet transform explores the simultaneity of two signals in the frequency and the time
domains, and the wavelet coherence analysis clarifies the correlation of this cross transform.
The cross wavelet transform of two times-series is defined by the complex conjugate of
their cross wavelet transform, Wx(a, b) and Wy(a, b), as:

Wxy(a, b) = Wx(a, b) ∗ Wy(a, b), (3)
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where a is associated with the location and b to the scale. Wx(a, b) and Wy(a, b) are the
wavelet transformations of the times series x (either Bitcoin or Ether returns) and y (NFT
attention), respectively. The value of Wxy(a, b) indicates the strength of the correlation
between the two examined series.

Then, R2(a, b) returns the magnitude-squared wavelet coherence, which measures the
correlation between signals x and y in the time-frequency plane. Torrence and Webster
(1999) [19] define the wavelet squared coherence as follows:

R2(a, b) =

∣∣S(b−1Wxy(a, b)
)∣∣2

S(b−1Wx(a, b))2S
(
b−1Wy(a, b)

)2 , (4)

where S refers to a smoothing process over time and scale. R2(a, b) is a value between
0 and 1 that captures the co-movement between the time series x and y. The higher the
value of R2(a, b), the higher the co-movement between the two variables. Wavelet squared
coherence is restricted to positive values as opposed to the classical correlation of two time
series. This means determining whether the co-movement between the variables is positive
or negative is not possible. Thus, we use the phase difference of Torrence and Compo
(1998) [18] to separate out the positive and negative co-movements. The phase difference is
required to present lead-lag relationships as a function of frequency. It gives a graphical
presentation of the wavelet squared coherence analysis considering the causal relationships
between the two-time series. The phase difference can be provided by

Φxy = arctan

(
Im
{

S
(
b−1Wxy(a, b)

)}
Re
{

S
(
b−1Wxy(a, b)

)} ), (5)

where Im and Re are the imaginary and real operators, respectively. To indicate the direction
of influence, we incorporate phase positions in the wavelet analysis.

2.2. Data

We collected Google search activity for the keywords “NFT + non-fungible token” (the
plus sign means that results can include searches containing the words “NFT” or “non-
fungible token"), “Cryptopunk”, “Decentraland”, “Bitcoin”, and “Ethereum” from Google
Trends (https://trends.google.com/, accessed on 9 August 2021) between 1 December 2017
and 30 July 2021. The Google search index ranges between 0 and 100. Average weekly NFT
sales in USD are available from nonfungible.com (https://nonfungible.com, accessed on 9
August 2021). This data source has been previously used in NFT research (see, for exam-
ple, [2,4]). We also collected weekly Bitcoin and Ethereum prices between the exact same
dates from coinmarketcap.com (https://coinmarketcap.com, accessed on 9 August 2021).
This data source has been widely used in cryptocurrency research (see, e.g., [20–22]). VIX
index, S&P 500 index, and gold prices are from Yahoo Finance (https://finance.yahoo.com,
accessed on 9 August 2021).

Table 1 provides descriptive statistics for the final sample. The results show that the
weekly average Google search volume for the topic “non-fungible token + NFT” is 7.93. The
weekly average search volume for “Cryptopunk” is 3.93, and the average search volume for
“Decentraland” is 7.63. The average weekly return and standard deviation for Bitcoin were
0.76% and 11.91%, respectively. The average weekly return and standard deviation for Ether
were 1.02% and 15.00%, respectively. We employ augmented Dickey-Fuller tests (ADF) to
examine the stationarity of time-series variables. This analysis is essential as non-stationary
data could lead to spurious regression results. The results reported in Table 1 show that, for
some series, we cannot reject the null hypothesis of non-stationarity. In particular, we find
that unit-roots are present in most Google search indexes. To normalize and detrend these
series, we use the first differences of Google search queries in all empirical models in the
subsequent sections. In the case of the Bitcoin and Ether returns series, the null hypothesis
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of a unit root is discarded. Likewise, the series we use as control variables are all stationary
according to the ADF test.

Table 1. Descriptive statistics of key variables.

Observations Mean Media SD Min Max Skewness Kurtosis ADF Test

NFT attention 193 7.93 1.00 19.81 0.00 100.00 3.18 12.66 −1.52
CryptoPunk

attention 193 3.93 0.00 11.38 0.00 100.00 4.78 32.69 −0.43

Decentraland
attention 193 7.63 3.00 13.66 0.00 100.00 3.63 19.53 −3.95 ***

Bitcoin return 193 0.76 0.75 11.91 −53.94 31.51 −0.53 5.17 −13.98 ***
Ether return 193 1.02 1.18 15.00 −65.97 49.89 −0.46 5.54 −12.62 ***
VIX return 193 0.16 −1.68 17.00 −46.09 85.37 0.96 6.41 −15.43 ***
Gold return 193 0.14 0.20 2.08 −9.90 10.10 −0.11 8.31 −17.17 ***

S&P 500 return 193 0.27 0.59 2.86 −16.23 11.42 −1.30 11.39 −15.19 ***
Bitcoin attention 193 16.27 10.00 14.04 6.00 83.00 2.16 7.85 −3.58 ***

Ethereum attention 193 14.03 6.00 17.92 2.00 100.00 2.38 9.37 −2.24
CryptoPunk return 191 4.87 1.32 63.88 −177.31 208.32 0.06 3.44 −21.98 ***

Decentraland
return 179 2.76 −0.97 67.62 −227.13 207.45 0.06 4.65 −18.97 ***

Note: This table reports summary statistics for the dependent, independent, and control variables used in this
study. The last column shows augmented Dickey-Fuller (ADF) tests to examine the stationarity of time-series data.
All variables are defined in Appendix A. *** indicate that the Dickey-Fuller test statistic is significantly larger than
the critical value at the 1%.

3. Results

Table 2 shows the estimated results for VAR models. Columns 1 and 2 report the
results when we use Google searches for the topic “non-fungible token” together with the
term “NFT”. Columns 3 and 4 present the results for the key term “Cryptopunk”. Columns
5 and 6 present the results for the term “Decentraland”. In column 1, we find that past
Bitcoin returns significantly influence search queries for NFT at lag 1 and 4, respectively,
indicating that an increase in returns will lead to a rise in search queries in the following
weeks. We also employ Granger causality tests to investigate the causal relationships
between Bitcoin returns and attention to NFTs. We present Granger causality tests for each
VAR model at the bottom of Table 2. The Granger causality test indicates that past Bitcoin
returns provide significant information about future NFT search queries. In column 2, the
estimation results reveal that past NFT search queries do not significantly influence Bitcoin
returns as the coefficients are statistically insignificant. The Granger causality test also
supports this finding, failing to reject the null hypothesis that NFT search queries does not
cause Bitcoin returns. We find similar results when we analyze the dynamic relationship
between Bitcoin returns and search queries for specific NFTs. Furthermore, these results
remain even after controlling for other economic factors such as CBOE Volatility Index (VIX)
returns, gold returns, and S&P 500 returns. Thus, these results support the hypotheses
suggesting that an increase in Bitcoin returns will lead to greater attention to other crypto
assets such as NFTs.

Table 3 shows the estimated results for VAR models when we use Ether returns.
Although NFTs are normally registered on an Ethereum blockchain, we do not find any
significant relationship between Ether returns and attention to NFTs when we use VAR
models. Furthermore, Granger causality tests also show no meaningful causal relationships
between Ether returns and NFT attention.
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Table 2. Dynamic relationships among NFT attention and Bitcoin returns.

ΔNFT +
Non-Fungible

Tokens

Bitcoin
Return

ΔCryptoPunk
Bitcoin
Return

ΔDecentraland
Bitcoin
Return

(1) (2) (3) (4) (5) (6)

ΔNFT attention t-1 0.1341 * 0.1829 −0.2068 * 0.0677 −0.2799 *** −0.0327
(1.8302) (0.8562) (1.8806) (0.3778) (3.8149) (0.2673)

ΔNFT attention t-2 0.3235 *** −0.1923 −0.1756 0.0870 −0.1820 ** 0.0425
(4.5670) (0.9313) (1.5079) (0.4587) (2.3972) (0.3361)

ΔNFT attention t-3 −0.1944 *** −0.1244 0.2142 * 0.2004 −0.1005 0.2011
(2.6200) (0.5749) (1.8522) (1.0642) (1.3672) (1.6426)

ΔNFT attention t-4 −0.1223 * 0.3184 −0.0509 0.0440 −0.0467 −0.1380
(1.7283) (1.5428) (0.4595) (0.2442) (0.6327) (1.1215)

Bitcoin return t-1 0.0556 ** 0.0069 0.0603 0.0128 0.1087 ** 0.0432
(2.1739) (0.0930) (1.3078) (0.1709) (2.3429) (0.5586)

Bitcoin return t-2 −0.0286 −0.0070 0.1322 *** −0.0295 0.1045 ** −0.0065
(1.0645) (0.0899) (2.7199) (0.3723) (2.1046) (0.0781)

Bitcoin return t-3 0.0070 0.0938 0.0131 0.0823 −0.0371 0.0807
(0.2813) (1.2892) (0.2912) (1.1219) (0.7938) (1.0368)

Bitcoin return t-4 0.0637 ** −0.0107 0.0026 −0.0097 0.0518 −0.0181
(2.5245) (0.1456) (0.0577) (0.1313) (1.0692) (0.2238)

Exogenous Controls:
VIX return t-1 0.0011 −0.0027 0.0008 −0.0069 −0.0668 −0.0001

(0.0417) (0.0357) (0.0172) (0.0921) (1.4132) (0.0015)
Gold return t-1 −0.3016 ** −0.8107 * −0.3271 −0.8532 * 0.0857 −0.6342

(2.0328) (1.8741) (1.2189) (1.9527) (0.3402) (1.5114)
S&P 500 return t-1 0.0429 0.1559 −0.1134 0.1776 −0.3700 0.1548

(0.2677) (0.3339) (0.3939) (0.3789) (1.3214) (0.3319)
ΔBitcoin attention t-1 −0.0325 −0.0646 0.0112 −0.0874 −0.0083 −0.2024

(0.5749) (0.3926) (0.1166) (0.5598) (0.0869) (1.2687)
NFT return t-1 0.0038 0.0082 −0.0073 0.0043

(0.4614) (0.6073) (0.9768) (0.3418)
Constant 0.1017 0.6930 0.5000 0.6854 0.0071 1.0141

(0.3600) (0.8416) (0.9770) (0.8224) (0.0147) (1.2506)

Observations 189 189 187 187 178 178
R2 0.212 0.0476 0.1244 0.0446 0.1495 0.0693

H0: Bitcoin return
does not

Granger-cause NFT
attention

14.585 *** 9.1201 * 11.795 **

Prob > chi2 0.006 0.058 0.019

H0: NFT attention
does not

Granger-cause
Bitcoin return

2.9402 1.2094 5.777

Prob > chi2 0.568 0.877 0.216

Note: This table presents the parameter estimates from vector autoregressive (VAR) models for Bitcoin returns
and NFT attention. The key independent variable is the first differences (Δ) of NTF attention from Google search
activity for the keywords “NFT + non-fungible token”, “Cryptopunk”, “Decentraland”. t values are in parentheses.
All variables are defined in Appendix A. ***, **, and * indicate that the coefficient is significantly different from
zero at the 1%, 5%, and 10% levels, respectively.
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Table 3. Dynamic relationships among NFT attention and Ether returns.

ΔNFT +
Non-Fungible

Tokens

Ether
Return

ΔCryptoPunk
Ether

Return
ΔDecentraland

Ether
Return

(1) (2) (3) (4) (5) (6)

ΔNFT attention t-1 0.1768 ** 0.2538 −0.1129 −0.1201 −0.2507 *** −0.0253
(2.4669) (0.9336) (1.0393) (0.4997) (3.4229) (0.1546)

ΔNFT attention t-2 0.3163 *** −0.5096 * −0.1087 0.2110 −0.1649 ** −0.0143
(4.4703) (1.8990) (0.9621) (0.8440) (2.1956) (0.0849)

ΔNFT attention t-3 −0.1626 ** −0.0936 0.3096 *** 0.0424 −0.0625 0.3265 **
(2.3019) (0.3495) (2.7317) (0.1692) (0.8868) (2.0698)

ΔNFT attention t-4 −0.1381 * 0.5839 ** 0.0021 0.0637 −0.0343 −0.1064
(1.9423) (2.1656) (0.0190) (0.2650) (0.4703) (0.6514)

Ether return t-1 0.0341 0.1175 0.0086 0.1257 0.0536 0.1082
(1.6196) (1.4728) (0.2341) (1.5474) (1.4360) (1.2954)

Ether return t-2 −0.0317 0.0422 0.0484 0.0024 0.0485 −0.0165
(1.5223) (0.5339) (1.2928) (0.0285) (1.2779) (0.1936)

Ether return t-3 −0.0050 0.0135 −0.0072 0.0173 −0.0281 0.0032
(0.2593) (0.1834) (0.2081) (0.2271) (0.8033) (0.0409)

Ether return t-4 0.0287 −0.0166 −0.0192 −0.0029 −0.0267 0.0000
(1.4527) (0.2217) (0.5486) (0.0373) (0.7481) (0.0004)

Exogenous Controls:
VIX return t-1 0.0037 0.0147 0.0092 0.0185 −0.0433 0.0219

(0.1427) (0.1497) (0.2017) (0.1842) (0.9078) (0.2049)
Gold return t-1 −0.2884 ** −0.6605 −0.3151 −0.7557 0.1009 −0.3971

(1.9685) (1.1886) (1.2265) (1.3294) (0.3981) (0.7001)
S&P 500 return t-1 0.0787 0.1536 0.0033 0.2078 −0.1986 0.1819

(0.4857) (0.2498) (0.0116) (0.3313) (0.7087) (0.2900)
ΔEthereum attention

t-1 −0.1333 *** −0.1152 0.3334 *** −0.1137 0.0239 −0.1033

(2.6990) (0.6149) (3.8449) (0.5923) (0.2823) (0.5457)
NFT return t-1 −0.1129 −0.1201 −0.0057 0.0130

(1.0393) (0.4997) (0.7523) (0.7693)
Constant 0.1340 0.7301 0.5101 0.8031 0.0644 1.3120

(0.4745) (0.6818) (1.0325) (0.7345) (0.1303) (1.1872)

Observations 189 189 187 187 178 178
R2 0.2095 0.0499 0.18 0.0273 0.1212 0.0477

H0: Ether return does
not Granger-cause NFT

attention
7.5409 2.1153 4.8831

Prob > chi2 0.11 0.715 0.3

H0: NFT attention does
not Granger-cause

Ether return
6.5483 1.4026 6.1733

Prob > chi2 0.162 0.844 0.187

Note: This table presents the parameter estimates from vector autoregressive (VAR) models for Ether returns
and NFT attention. The key independent variable is the first differences (Δ) of NTF attention from Google search
activity for the keywords “NFT + non-fungible token”, “Cryptopunk”, “Decentraland”. t values are in parentheses.
All variables are defined in Appendix A. ***, **, and * indicate that the coefficient is significantly different from
zero at the 1%, 5%, and 10% levels, respectively.
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We now turn to our set of results based on a wavelet coherence approach. Figure 1
illustrates the co-movement and phase difference between Bitcoin returns and attention to
NFT. Figure 2 shows the results for the co-movement and phase difference between Ether
returns and attention to NFT. The horizontal axis depicts time, and the vertical axis shows
frequency in all the figures (the lower the frequency, the higher the period). The warmer
end of the color spectrum (red) stands for regions with significant interrelation, with the
cooler end (blue) signifying lower dependence between the series. Cold regions beyond the
significant areas represent time and frequencies without any dependence in the series. The
arrows in the wavelet coherence plots represent the lead/lag phase relations between the
examined series. Arrows pointing to the right (left) indicate time series that are in-phase
(out of phase) or positively (negatively) correlated. An upward-pointing arrow suggests
that the first time series leads the second. If it points downward, it indicates the reverse in
that the second one leads the first.

Figure 1 confirms the co-movement for Bitcoin returns and NFT attention. In panel
A of Figure 1, we see much co-movement between Bitcoin returns and search queries
for the topic “non-fungible token” together with the term “NFT”. This co-movement
is evident at the 1–4-week cycle at the end of 2020 and early 2021. Panel B of Figure 1
shows the co-movement and phase difference between Bitcoin returns and search queries
for the term “Cryptopunk”. There is also consistent evidence of short-term (1–8 week)
positive correlation cycles for Bitcoin returns and attention to the CryptoPunk collection of
NFTs. When we consider search queries for the term “Decentraland”, panel C of Figure 1
shows clear evidence of co-movement with Bitcoin returns across our sample period at the
1–4-week cycle and at the larger 8–16-week cycle as well. Figure 1 also suggests a positive
correlation between Bitcoin returns and NFT attention, which is the most common arrow
direction. Regarding the lead/lag relation between variables, the evidence depicted in the
charts is inconclusive.

In contrast with the results obtained using VAR models, the wavelet coherence analysis
depicted in Figure 2 illustrates the existence of co-movement between Ether returns and
NFT attention. This co-movement is particularly evident across the period at the 1–4-week
cycle and a larger 8–16-week cycle that dominates the chart of co-movement between
Ether and Decentraland. Panel C of Figure 2 shows several red regions with significant
interrelation, and the arrows pointing to the right indicate a positive correlation between
Ether returns and Decentraland attention.
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Panel A. Wavelet coherence: NFT attention and Bitcoin returns 

 
Panel B. Wavelet coherence: CryptoPunk attention and Bitcoin returns 

 
Panel C. Wavelet coherence: Decentraland attention and Bitcoin returns 

Figure 1. This figure represents the wavelet coherence analysis for Bitcoin returns and NFT levels
of attention (Panel A), Bitcoin returns and CryptoPunk attention (Panel B), and Bitcoin returns and
Decentraland attention (Panel C). Correlation is shown by the colour—hotter colours (cool blue to hot
red) indicate higher absolute correlations. For the arrows, → shows positive correlation, ← shows
negative correlation, ↗ and ↙ show Bitcoin leads the NFT, and ↘ and ↖ show the NFT leads
Bitcoin. We use weekly Bitcoin returns and Google search activity between 1 December 2017 and 30
July 2021.
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Panel A. Wavelet coherence: NFT attention and Ether returns 

 
Panel B. Wavelet coherence: CryptoPunk attention and Ether returns 

 
Panel C. Wavelet coherence: Decentraland attention and Ether returns 

Figure 2. This figure represents the wavelet coherence analysis for Ether returns and NFT levels
of attention (Panel A), Ether returns and CryptoPunk attention (Panel B), and Ether returns and
Decentraland attention (Panel C). Correlation is shown by the colour—hotter colours (cool blue to hot
red) indicate higher absolute correlations. For the arrows, → shows positive correlation, ← shows
negative correlation, ↗ and ↙ show Ether leads the NFT, and ↘ and ↖ show the NFT leads Ether.
We use weekly Ether returns and Google search activity between 1 December 2017 and 30 July 2021.
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4. Discussion and Concluding Remarks

This paper utilizes Google search queries to analyze the drivers of attention to non-
fungible tokens (NFTs). We use weekly data between 2017 and 2021 to show that Google
search activity for the topic “non-fungible token” and “NFT” is positively associated with
major cryptocurrency returns. We arrive at similar conclusions when using Google search
activities for specific NFT collections, such as “Cryptopunk” and “Decentraland”. Using
vector autoregressive (VAR) models, we find that the previous week’s Bitcoin returns
are significant attention drivers to NFTs. Furthermore, when we use wavelet coherence
analysis, we find that investors are more attracted to NFTs after increases in both Bitcoin
and Ether returns. Our findings are consistent with the notion that the excitement around
cryptocurrencies induced by record-high prices in 2021 could explain the NFT growth in
popularity during the same period.

Our paper contributes to the academic literature on NFTs that focuses on the factors
that explain the sudden attention of investors in the NFT market. Furthermore, we ex-
tend the understanding of the effects of the leading cryptocurrencies on new blockchain
developments, such as the NFT market.

The results of this study have practical implications for investors, institutions and
governments that are called to understand this burgeoning industry as part of this new
digital economy where the crypto markets are the protagonists.

Future research directions need to address the continued evolution of the NFT eco-
system, the effect of the transaction and environmental costs, and the legal framework
associated with the use of the crypto technology.
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Appendix A

Table A1 defines all the variables we use in this study.

Table A1. Definitions of variables.

Variable Name Definition

Bitcoin return (%) Weekly Bitcoin return in percentage is defined as
[
ln
(

bitcoin pricet
bitcoin pricet−1

)]
∗ 100. Bitcoin price on

week t is taken from coinmarketcap.com (accessed on 9 August 2021).

Ether return (%) Weekly Ether return in percentage is defined as
[
ln
(

ether pricet
ether pricet−1

)]
∗ 100. Ether price on

week t is taken from coinmarketcap.com (accessed on 9 August 2021).

VIX return (%) Weekly VIX index return in percentage is defined as
[
ln
(

VIX indext
VIX Indext−1

)]
∗ 100. VIX index on

week t is taken from Yahoo Finance (accessed on 9 August 2021).

Gold return (%) Weekly gold return in percentage is defined as
[
ln
(

gold pricet
gold pricet−1

)]
∗ 100. Gold price on week

t is taken from Yahoo Finance (accessed on 9 August 2021).
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Table A1. Cont.

Variable Name Definition

S&P 500 return (%) Weekly S&P 500 index return in percentage is defined as
[
ln
(

S&P500 indext
S&P500 indext−1

)]
∗ 100. S&P

500 index on week t is taken from Yahoo Finance (accessed on 9 August 2021).

NFT attention
Weekly time series measuring the frequency of Google search volumes for the topics “NFT”

and “Non-Fungible Token” at the worldwide level. The Google search index ranges
between 0 and 100. Data is taken from Google Trends (accessed on 9 August 2021).

CryptoPunk attention
Weekly time series measuring the frequency of Google search volumes for the topic

“CryptoPunk” at the worldwide level. The Google search index ranges between 0 and 100.
Data is taken from Google Trends (accessed on 9 August 2021).

Decentraland attention
Weekly time series measuring the frequency of Google search volumes for the topic

“Decentraland” at the worldwide level. The Google search index ranges between 0 and 100.
Data is taken from Google Trends (accessed on 9 August 2021).

NFT return (%)
Weekly NFT return in percentage is defined as

[
ln
(

NFT pricet
NFT pricet−1

)]
∗ 100. NFT price on week

t is either the price of CryptoPunk or Decentraland, depending on the model. Prices are
taken from nonfungible.com (accessed on 9 August 2021).

Bitcoin attention
Weekly time series measuring the frequency of Google search volumes for the topic

“Bitcoin” at the worldwide level. The Google search index ranges between 0 and 100. Data
is taken from Google Trends (accessed on 9 August 2021).

Ethereum attention
Weekly time series measuring the frequency of Google search volumes for the topic

“Ethereum” at the worldwide level. The Google search index ranges between 0 and 100.
Data is taken from Google Trends (accessed on 9 August 2021).
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Abstract: Blockchain solves the problem of mutual trust and consensus in the business market of the
token economy. In the existing paradigm of blockchain token economy, there are disadvantages of
lacking the incentive mechanism, business applications and virtual token value. These shortcomings
reduce consumers’ willingness to consume and the profits of the merchants. In this paper, we propose
a novel “Dual incentive value-based” paradigm to improve the business market profitability in
blockchain token economy. To evaluate our proposed paradigm, we propose a business study case
for improving merchants’ environment state. In this case, we set up two economic models and make
simulations to validate the profitability. The result shows that merchants with the novel paradigm
have 32% more profit compared with those without the paradigm and at most 10% more profitable
than those in existing paradigms.

Keywords: blockchain; token economy; incentive mechanism; effects in business market; economic
model

1. Introduction

A token economy is a complex system of reinforcement, and it offers some medium of
exchange (i.e., a token) for the participants to purchase various goods, services, or privi-
leges [1]. The token economy could make the business market more active and profitable
than before [2]. Traditional token economy has not fully reflected the characteristics of
co-governance and mutual trust [3]. With the development of blockchain technology, many
studies believe that the blockchain token economy is a crucial grasp to achieve this goal
based on the consensus mechanism and autonomy of the blockchain [4].

Blockchain can be referred as a distributed ledger. Its data and transactions are not un-
der the control of any third party [5]. Each node in the blockchain is equal. The blockchain
is considered as persistence, anonymity and auditability by the academia and the indus-
try [6]. In 2008, Satoshi Nakamoto proposed the definition of Bitcoin, where the concept
blockchain was firstly proposed. After that, the blockchain experienced three development
stages. Blockchain 1.0 resolves Double-spend with distributed transfer in the cryptocur-
rency transactions such as the Bitcoin. Blockchain 2.0 realized the programmable finance
in the financial fields such as the Ethereum. Blockchain 3.0 focuses on using blockchain
for various applications in industries other than finance [7]. Currently, Blockchain 3.0
can be well applied in many fields, such as healthcare [8], education [9] and the token
economy introduced in this paper. In the blockchain, the token (i.e., Bitcoin) is a medium
to stimulate nodes to work for the community more. The incentive mechanism is the
approach to offer tokens. The incentive mechanism is a common approach to stimulate
roles to work in different scenarios. It is widely used in different fields, such as network
communications [10] and IoT [11]. The design of the incentive mechanism is the critical
challenge of decentralized token design [12]. Moreover, it increases the blockchain nodes’
interests in the token [13]. In the business market, the blockchain token economy can
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enforce a mutually beneficial business environment [14]. In this environment, the values of
the token and the incentive mechanism are two essential factors [15].

Existing studies on the blockchain token economy mainly focus on three aspects: new
incentive mechanism design, new economic scenario design and new business schema design

• For the first aspect, researchers concentrate on designing new incentive mechanism on
the token to stimulate nodes to join in the activities of the community. Barreiro-gomez
et al. [16] designed a game theory-based incentive mechanism on the token to research
the risks in the token’s circulation. Kim et al. [12] introduced the details in a Swiss
blockchain’s token, including the design of the incentive mechanism. Drasch et al. [17]
modeled the associated incentives in a multi-sided blockchain-enabled platform for
token value development.

• For the second aspect, researchers import particular economic scenarios in the
blockchain token economy. The definitions of novel economies and management
methods are necessary. Narayan et al. [18] proposed a tokenizing coopetition in the
circular token economy to show how competition could be operationalized and opti-
mized using tokens in a blockchain. Kim et al. [19] proposed a process for building a
desirable model of a sustainable growth token economy.

• For the last aspect, researchers introduces the application of tokens in the actual
business schema, such as the joint application of Initial Coin Offering (ICO) [20] and
tokens. Tonnissen et al. [21] introduced the cluster-analysis of 195 ICOs and identified
three different archetypes on ICO tokens.

At present, there is a lack of systematic research on the token economy paradigm.
Therefore, we divide the current researches into three categories according to their research
directions: the incentive-based paradigm, the new scenario-based paradigm, and the
business schema-based paradigm.

However, the three paradigms all have disadvantages. First, the incentive-based
paradigm’s token cannot be used as a real currency [12,16]. Meanwhile, the current
incentive-based paradigm focuses on the single incentive mechanism, leading to limited
influence in their scenario. Second, the new scenario-based paradigm lacks applications in
the business scenario. It also lacks regulation and control effects to the business market
economy. Finally, the business schema-based paradigm lacks the incentive mechanism. It
takes terrible effects, such as the virtual tokens scam.

Token economy strengthens the market profit and helps to build mutual trust and co-
government [22]. The incentive mechanism and the liquidity of tokens are most essential
parts. To increase market profitability, we combine the features of token value, business
applications and incentive mechanisms in one paradigm to propose a novel paradigm
“dual incentive value-based paradigm” as the fourth paradigm in the business blockchain
token economy. Different with the previous paradigms, the novel paradigm achieves
dual incentive effects on different types of nodes by only one token to expend the usage
scenario. Meanwhile, it contains token value design and the liquidation design. Therefore,
the token can be used as real currency and the novel paradigm can be used in the business
market economy.

To prove the applicability in the business scenario, we propose a study case for improv-
ing merchants’ environment state in the business scenario. In this case, the government, the
alliance, the merchant and the customer are four roles, and the voucher is the token. Then
we set up two economic models to prove that the novel paradigm can be more profitable
than the existing paradigms. After that, we make simulations to compare the expected
profitability of merchants in non-paradigm, existing paradigm and novel paradigm scenar-
ios. The result shows that merchants in the novel paradigm can obtain at most 10% more
profit than those in the existing paradigm and at most 32% more profit than those without
paradigms. The contributions of our study are as follows:

• We conclude three existing paradigms of the blockchain token economy novelly and
analyze the shortcomings of each paradigm.
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• We propose a novel dual incentive value-based paradigm in the blockchain token
economy. It can make dual incentive effects and enhance the entity value of the token
in the business blockchain economy.

• We propose a study case and set up two economic models to prove the novel paradigm’s
profitability.

• We compare our novel paradigm with other paradigms in the study case to prove its
effectiveness.

Our following sections are structured as follows: Section 2 summarizes existing
paradigms of blockchain token economy; Section 3 proposes the novel “dual incentive
value-based paradigm”; Section 4 proposes a business study case, a hierarchical alliance
structure model to set the level for merchants and a new “newsvendor proble” profit model
to evaluate the profit; Section 5 makes experiments to prove that the new paradigm is more
profitable than the existing three paradigms and makes discussion and suggestions based
on experiment results; Section 6 concludes our paper.

2. Literature Review

Blockchain token is originated from Bitcoin. At the early age of the blockchain devel-
opment, the studies of the tokens are about the transcations of ICOs, such as the Bitcoin and
the Ethereum. The ICO is a method of generating tokens and raising funds. It can be traded
and liquidated as the currency. In February 2018, the Swiss Financial Market Supervisory
Authority (FINMA) released ICO guidelines [23]. However, with the development of the
ICO, more and more financial and economic problems are appearing, such as the scams
and the fraud. As a consequence, the design of the Bitcoin is only used to stimulate nodes.
Therefore, researchers design new tokens with incentive mechanisms in their customized
business blockchain. This is the origin of the blockchain token economy.

Currently, researchers conduct blockchain token economy studies on three aspects:
(1) the design of token’s incentive mechanisms; (2) the design of particular economic
scenarios; and (3) the relationship analysis between the ICO and the tokens.

The first aspect is the design of token’s mechanisms. These studies on the blockchain
token economy concentrate on how to design a token in detail and how to make token
valuable. Since the incentive mechanism determines the rule of obtaining the tokens in the
blockchain, some studies focus on designing novel incentive mechanisms. In these studies,
a well-designed incentive mechanism can make nodes obtain tokens equally. It should
also be able to control the circulation and balance the value of the token. Jung et al. [24]
set up three roles in the healthcare blockchain and two real-world business scenarios of
healthcare companies recruiting. In the scenarios, two economic models are set up by the
game theory to explain the novel incentive mechanism for controlling the token’s reward
and the recruitment costs. The result shows the novel incentive mechanism can control
them effectively. Drasch et al. [17] modeled a novel associated incentives on the token in a
business blockchain platform. Drasch et al. proposed a two-stage incentive at the stage
of platform development and platform operation. They use economic theory to analyze
that tokens can help to overcome the “chicken and egg” problem and lead to contradictory
incentives for platform participants. Takemiya [25] proposed a self-regulating token-based
economic system and a dual-token system with a novel incentive mechanism. The self-
regulating system is implemented through allocating votes in a Sybil-resistant manner. The
dual-token system is designed in economic theories. In the incentive mechanism, each
token’s users can obtain the other token by storing and servicing their tokens. This could
guarantee the users’ and the system’s benefit.

The second aspect is the design of particular economy scenarios. Generally, the
economy contains sub-classifications, such as the circular economy, the market economy,
and the government economy. In the blockchain token economy, different economies
increase the variety of token value. In the service of different blockchains, different tokens
can take different methods for nodes to obtain tokens. Therefore, researchers made studies
on new economic scenarios to increase token variety in recent years. Kim et al. [19]
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proposed a process for building a desirable model of a token economy. It can make a
sustainable growth. The sustainable growth of the token economy is implemented by
voluntary activities of participants and well defined economic models. It can increase
the participants’ interests and obtain sustainable profit growth. Kim et al. set up the
economic model by strategic managements and set up incentive mechanisms to support the
economic model on the token for a sustainable growing token economy. Narayan et al. [18]
proposed a tokenizing coopetition in the circular token economy. The circular economy
offers a way for businesses to conceptualize sustainable economic activity with a concern
for environmental and societal wellbeing. Narayan et al. set up circular models by using
competition to operationalize and optimize using tokens.

The third aspect is the relationship analysis between the ICO and the tokens. Except
the well-defined tokens in different business scenarios, ICO is also a type of token in the
blockchain. Therefore, a small number of researchers study the relationship between ICO
and the token. Tonnissen et al. [21] analyzed 195 ICOs and performed cluster-analysis in
order to identify three different archetypes. The archetypes are the pioneering model, the
expansion model and the authority model. They can offer research concerns on token-based
business models.

After analyzing the studies, the research of three aspects can be summarized into three
well-designed types: First, most of the studies on designing the incentive mechanism

set up economic models or theories to design a new incentive mechanism in the business
scenario; Second, most of the studies on the novel economic sub-classifications explain
the sub-classification. They use non-economic methods to model the sub-classification,
and use economic model to design the token in non-business scenario. Third, most of the
studies on the relationship between the ICO and the token introduce the combination of
ICOs and tokens without incentive mechanisms in the business scenario. Based on this, we
summarize the existing blockchain token economy literature into three paradigms. The
paradigm characteristics and disadvantages are as follows:

(1) Incentive-based paradigm:

The incentive-based paradigm concentrates on the design of the incentive mechanism
of the token and how to attain the best situation of maximum incentive effect:

• Incentive Mechanism: It aims to make the platform obtain maximum benefits or
make consumers cost minimum;

• Token Design: It includes guidelines for the issuance, trading and functioning
of tokens;

• Token Visualization: It contains a flow chart or a sequence diagram to explain how
the token works;

• Mechanism Feasibility Validation: It includes theoretical and experimental verification.
• Practical Application: A healthcare blockchain system [24]. It models an incentive

mechanism of blockchain based on game theory and a mechanism design that recruits
participants through a health care blockchain platform in game theory. It proposes
three roles: participants, data recipients (companies) and data providers (health care
organizations). It also defines rules how roles can obtain tokens and represents a figure
to show the token visualization. Finally, it sets simulations to estimate the benefit
which the incentive mechanism can provide for users and the cost for the company.
Results show that the incentive mechanism can minimize the cost of the company and
stimulate users to join.

However, two disadvantages exist in this paradigm:

• Disadvantage 1: Few literature defines multiply roles. The current paradigm only
includes two roles such as the community and the participates (nodes). Therefore, only
the single incentive mechanism exist between the community and the participates.

• Disadvantage 2: No literature introduces the relationship between its token and ICO
or the currency. Therefore, the value of the token is virtual and can only be expressed
in their design.
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(2) New scenario-based paradigm:

The new scenario-based paradigm concentrates on how the token economy works
in a particular blockchain economic scenario, such as the circular economy and sustain-
able economy:

• Scenario Explanation: It explains the new scenario and the potential advantages of
token economy use in non-traditional scenarios;

• Token Design: It includes the effect of the token in their new scenario.
• Theoretical model: Models for the new scenario that comes from any research field,

such as the collaborative, crypto-economic, and management models;
• Research framework/flow: It includes two types: one does not contain the experiment

based on the theories; the other contains the experiment with the research flow same
as the incentive-based one.

• Practical Application: A blogging and social networking website “Steemit”. It pro-
poses a sustainable growing token economy [19]. It sets up a strategic model using
cryptoeconomics and strategic management theories, which contains eight processes
to define the token. It shows the research flow by a sequence diagram and theoreti-
cal analysis.

The disadvantage for the paradigm is shown as follows:

• Disadvantage: No literature applies the paradigm in the business scenario, and no
literature defines roles. In a business scenario, multiple roles can be existing at the
same time. Therefore, the paradigm lacks the regulation and control effect on the
business market economy.

(3) Business schema-based paradigm:

The business schema-based paradigm introduces the application of tokens in the actual
business schema, such as the joint application of ICO and tokens. It also optimizes the
existing token economy system from the perspective of business economics and strengthens
the value of its token. Moreover, the relationship between suppliers and consumers in the
blockchain token economy is essential and needs to be considered:

• Supplier analysis: Supplier is the most critical role. It defines token issuing rules and
using rules. This part contains the token’s design and value and basic information of
the supplier;

• Roles in the business schema;
• Practical Application: A blockchain-based token business start-up ecosystem [21]. It

contains three roles: supplier, the network and participant. Suppliers work together
in order to define the value proposition for each participant. The ecosystem uses
theoretical analysis to show token visualization and mechanism feasibility.

Token visualization and Mechanism Feasibility Validation are the same with the
incentive-based paradigm. Business schema-based paradigm’s disadvantage is shown
as follow.

• Disadvantage: Although the tokens in the paradigm can be circulated as a currency,
no literature introduces the incentive mechanism. The value of the token in the
paradigm may gradually bubble, such as virtual token fraud.

In summary, existing paradigms lack multiple incentive mechanisms, business appli-
cations and the liquidity of tokens. The design of incentive mechanisms and the valuable
token determines consumers’ consumer willingness and the profitability of the entire
business market. Therefore, a novel paradigm with the multiple incentive mechanisms
of a valuable token is essential to improve the business market profit in the blockchain
token economy.
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3. Dual Incentive Value-Based Paradigm

In this paper, we propose a novel blockchain token economy paradigm called “Dual
Incentive Value-based paradigm”(DIV for short). To solve the disadvantages in the existing
paradigms and improve the profitability of the paradigm, the following parts are novelly
designed in DIV.

(1) Dual incentive effects by a token: Among different roles of the market, there
are dual incentive mechanisms. For example, the community stimulates suppliers, and
suppliers stimulate consumers by offering tokens in different periods.

(2) Entity value of the token: The token has strong liquidity and can be traded with
other real currency, such as the dollar.

(3) Liquidation of token: The token has a service period. The community will liqui-
date unused tokens at the end of each period.

(4) Hierarchical roles: Roles are hierarchical in DIV. Each role hierarchy can set up
multiple roles, and roles in the same hierarchy have the same functions and permission.

(5) Business study case: DIV should contain a suitable business case, and the case
needs to prove the profitability of DIV.

Thus DIV consists of four parts: Roles, token design, incentive mechanism design and
paradigm execution flow.

Roles:

(1) Initiator: The initiator is the creator of the blockchain token economy applied in
the paradigm. It is an authoritative organization or individual. It offers the authorization
of the alliance to stimulate suppliers to join in.

(2) Alliance: The alliance is similar to the “league” in the business scenario. It accepts
suppliers to join in. It also offers and liquidates the tokens to the members at each period.
The alliance obtains members’ membership fees at the beginning of each period and
liquidates members’ unused tokens at the end of each period. Moreover, an alliance can
exist with more than one type of supplier simultaneously. For example, a shopping market
league can hold different shops, such as snack shops and fruit shops.

(3) Supplier (Member): The supplier is similar to the “merchant” in the business
scenario. If the supplier joins the alliance, it becomes a Member of the alliance and obtains
tokens from it at beginning of each period. Suppliers cannot obtain tokens from the alliance
if they do not join the alliance. Each member has a level that determines the number of
tokens they can obtain from the alliance. The level is based on some pre-defined rules.
Members offer their tokens to consumers to obtain more profits and consumers. Moreover,
members should pay the membership fee regularly to the alliance.

(4) Consumer: The consumer is similar to the “participant” in the blockchain. It can
obtain benefits from using tokens and taking part in members’ activities more. Moreover, a
supplier/member can hold more than one type of consumer simultaneously.

Token Design is as follows.

(1) Overview of the token: In the business market scenario, the token is similar to the
“voucher”. Members obtain tokens and offer tokens to consumers. Members should bear
the discount of consumers’ tokens, small profits but quick turnover. Moreover, members
can obtain profit from token liquidation. The authority of the token is from the initiator,
and the transactions of tokens are recorded on the blockchain.

(2) Token liquidation: In the business market scenario, to increase the liquidity of the
token, the alliance liquidates the unused tokens of members and gives compensation to
them based on their unused tokens numbers at the end of each period. In the blockchain,
the liquidation of tokens means a signal block with unused tokens information, which is
created and recorded on the blockchain.

(3) The representation of token’s value: The token can be used directly as a currency.
Therefore, it has strong liquidity and entity value than other tokens in the blockchain.
Moreover, the token can benefit all the roles in the paradigm. Consumers obtain discounts
from tokens. Members obtain more profit from offering tokens. The alliance obtains profit
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by obtaining membership fees from suppliers of the alliance. The circulation of tokens is
shown in Figure 1.

Alliance Members Customers

Offer

Liquidate

Offer

Use

create

Figure 1. Circulation of tokens in the business-based paradigm. Tokens flow among the alliance, the
members and the customers.

Incentive mechanism design:

In the paradigm, two types of incentive mechanisms coexist, and both use only
one token.

• The incentive between the alliance and the members: The alliance sets levels and
offers tokens to members. The profit of members increases by more consumers and
liquidating from the alliance. The profit of members increases by more consumers and
liquidating from the alliance.

• The incentive between the members and the consumers: Members offer tokens to
consumers. Consumers obtain tokens and obtain discounts. Members need to bear
the discounts of consumers, acquiring small profits but quick turnover.

Execution flow:

The total execution flow of the paradigm is shown in Figure 2.

Initiator Alliance Members Customer

1. CreateAlliance

2. JoinAlliance

3. Tokens

4. OfferToken

5. UseToken

6. Liquidate

RecycleRecycle During Each Period

7. ConfirmStates

8. ConfirmStates

Figure 2. Total execution flow of the dual incentive value-based paradigm. The initiator creates
the alliance. The alliance creates tokens and offers tokens to members at the beginning of a period.
Members join in the alliance and offer tokens to customers. Customer can use tokens in members.
When the period is over, the alliance liquidate all the unused token from members.

4. Study Case: A Business Blockchain Alliance for Improving Environment
and Profitability

In this section, we propose a business blockchain alliance study case for improving
environment and profitability (Env-profit for short) of DIV firstly. Then, we propose a
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theoretical analysis method to evaluate the profit of the roles in Env-profit. The route map
is shown as Figure 3.

Env-profit
Study Case

Roles: Government, Busi-
ness Alliance, (Member-
ship) Merchant, Customer

Token design: Voucher Dual-Incentive Mechanism

Theoretical
Analysis

Value creation network:
analyze the main factor in
Env-profit.

Hierarchical alliance struc-
ture model: set levels for
merchants

New “Newsvendor prob-
lem” profit model: esti-
mate profits.

Evaluate role’s profit in our study case

Figure 3. Route Map of the Study Case Env-Profit.

4.1. Details of Env-Profit

The corresponding relationships between Env-alliance and DIV are shown in Table 1.

Table 1. Corresponding relationships between the case and the paradigm.

DIV Paradigm Env-Profit Case

Roles

Initiator Government

Alliance Business Alliance

Supplier/Member Merchant/Membership Merchant

Consumer Customer

Token’s real value Use as a currency and can be liquidated

Design Multiple incentive effects (1) Business alliance offers vouchers to membership merchants.
(2) Membership merchants offer vouchers to customers.

Token Token Voucher

In Env-profitt, the government builds up a blockchain-based business alliance to stim-
ulate merchants to improve air quality consciously. The business alliance is a decentralized
and autonomous organization. It provides a membership system that each merchant can
join the alliance. Each membership merchant has a level, which depends on the average
air quality of a period. The membership merchant can obtain vouchers from the alliance
as incentives based on its level. Moreover, each membership merchant should pay the
membership fee to the alliance regularly.

The voucher is the token of the blockchain alliance. It has a use period, such as a month.
It can be used as a currency for customers to obtain discounts. In Env-profit, the merchant
can choose whether to join the alliance or not. If it joins, it can become a membership
merchant. Moreover, only the membership merchant can obtain vouchers, and it should
afford the discount of vouchers. Despite this, the alliance also offers a liquidation system to
repurchase membership merchants’ unused vouchers at the end of each period. Moreover,
because of the authority of the alliance, customers can visit more membership merchants.
In this manner, membership merchants obtain more customers and obtain more profits.

Customers are the users of vouchers, and they obtain vouchers from membership mer-
chants. Moreover, the alliance gathers many high-air quality merchants so that customers
will consume more in the league, which improves the profitability of the entire business
market. The summary relationship of roles in Env-profit is shown in Figure 4.
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Finally, dual incentive effects exist in the Env-profit. The first incentive effect is that
the alliance offers vouchers to membership merchants to improve air quality. The better
air quality the membership merchants obtains, the higher the level they can be. The more
vouchers they can have, the higher the profits they can have. The second incentive effect is
that the membership merchants give out vouchers to customers to consume more, then
membership merchants and the alliance can obtain more profits. Moreover, the voucher
makes the token more valuable. It can be used as money, and its value and liquidity
are shown.

� � � �

� � � �

�

�

Customer

Merchants

Business
Alliance

Government

Purchase Offer Vouchers

Offer Vouchers Liquidation

Provide authority

Figure 4. Summary relationship of roles in the case. Customers, merchants, the business alliance
and the government are roles. The government provides the authority for the business alliance. The
business alliance offer vouchers to merchants, and merchants offer vouchers to customers. Customers
can purchase in merchants’ by vouchers, and at the end of the period, the business alliance liquidates
all unused vouchers from merchants.

4.2. Theoretical Analysis

In this section, we propose a theoretical analysis method to evaluate membership
merchants’ profit in Env-profit case. Firstly we set up a value creation network to analyze
the main factor. Then, we propose two economic models: one is a hierarchical alliance
structure model to set levels for merchants, and the other is a new “Newsvendor problem”
profit model to evaluate membership merchants’ profit.

4.2.1. Value Creation Network

We draw on the value net model concept, combine the value co-creation theory [26]
and conclude a novel value creation network [27]. It consists of six creation modules:
participants, external demand, value proposition, key business, core source and profit
schema. The relationship among the modules is shown in the Figure 5. The corresponding
relationships of the case is shown in the Table 2.

In Table 2, the level system effects the value proposition, key business and the core
source modules, which mainly controls the entire paradigm. Therefore, we conclude that
the level system is a significant model of the alliance; thus, we first set up the hierarchical
alliance structure model to set levels of membership merchants.
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Table 2. Corresponding relationship of the case in the value creation model.

Value Creation Model Modules Modules in the Case

Participants Merchants

Value proposition Stimulate merchants by the level system and improve
the authority of external demand

Key business Set levels of merchants’ air quality, give out and liquidate vouchers

Core source Voucher and authorize level system

Profit schema Collect membership fees

Participant External
Demands

Value
Proposition

Core
Source

Profit
Schema

Key
Business

Suggestion

Demands

Demand
Corresponding

Figure 5. The relationship among value creation network model modules. The participant wants to
create value. It has external demands. External demands can be exchanged into value proposition
with receiving suggestions and demands. The value proposition is shown by the profit schema, the key
business and the core source. The profit schema and the key business with demand correspondingly
affect the participant’s value, and the core source determines the profit schema and the business effect.

4.2.2. Hierarchical Alliance Structure Model

The effect of the merchant’s level is shown in Figure 6, in which the membership
merchant’s score is transformed to the level. Three significant profit factors, namely the
membership fee, the traffic and the number of vouchers, are affected by the level. This
model sets up a rule to calculate membership merchants’ scores and determine their levels
in the alliance. The main steps are shown as follow:

1. We firstly need to find out all the corresponding qualitative and quantitative indicators;
2. Then, we set weights for each indicator;
3. Next, we calculate the scores based on the indicators’ weights;
4. Later, we can set levels for membership merchants based on the score;
5. At last, we define other interactive functions in the Env-profit.

(1) Set indicators: We set qualitative and quantitative indicators of membership
merchants that influence the level and is shown in Table 3. The quantitative factors are
more important than qualitative factors. Therefore, we set the weight of quantitative
indicators as 80% and the weight of qualitative indicators as 20%.

(2) Set weights: We use the “Analytic Hierarchy Process” (AHP) [28] to confirm the
weight of every single indicator.

80



Mathematics 2022, 10, 439

a. Construct the judgment matrix of indicators: The judgment matrix is denoted as
XLevel ∈ Rn×n(n ∈ r), and n = 8 in our case. Xi,j

Level indicates the degree of importance
between indicator i and indicator j. The degree is shown in Table 4. Elements should follow
rule Xi,j

Level × Xj,i
Level = 1. The final judgment matrix XLevel is shown as Equation (1).

XLevel =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 2 4 4 3 5
1 1 2 2 4 4 3 5
1
2

1
2 1 1 2 2 2 3

1
2

1
2 1 1 2 2 2 3

1
4

1
4

1
2

1
2 1 1 1 2

1
4

1
4

1
2

1
2 1 1 1 2

1
3

1
3

1
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1
2 1 1 1 2

1
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1
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1
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1
3

1
2

1
2

1
2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

Air Quality
(AQ) Level Traffic

Membership
Fee

Voucher
Amount

Model1 g(x)

f(x)

h(x)
S x

Figure 6. Importance of the merchant’s level. The membership merchants’ air quality(shorten as
AQ) S can be exchanged into a level x by the hierarchical alliance structure model. Level x can be
exchanged to three key factors: the membership fee, the traffic of the membership merchant and the
voucher amount of the membership. The corresponding functions between the level and three factors
are defined as f (x), g(x) and h(x).

Table 3. Quantitative and qualitative indicators in the model.

Indicator Type Indicator Name Symbol

Qualitative

Average number of used vouchers x1

Average air quality x2
Average number of customers x3

Average number of obtained vouchers x4

Average number of membership merchants’ store visits x5

Quantitative

Type of membership merchant x6

Merchant awareness x7

Reviews of membership merchant x8

b. Use root method to calculate indicator weight: We use the root method to calcu-

late each indicator’s weight as wi = n
√

∑n
j=1 xi,j

Level . Then, we normalize the element in

W = (w1, w2, w3, · · · , w8) as wi =
wj

∑8
j=1 wj

and obtain the indicator weight vector WLevel of

XLevel as Equation (2).

WLevel = (w1, w2, w3, · · · , w8)

= (0.246, 0.246, 0.13, 0.13, 0.067, 0.067, 0.073, 0.041)
(2)
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Table 4. Degree explanation of the elements.

Degree of Xi,j Explanation

1 The ith indicator is the same important with the jth indicator.

3 The ith indicator is more important than the jth indicator.

5 The ith indicator is strongly more important than the jth indicator.

7 The ith indicator is absolutely more important than the jth indicator.

2, 4, 6 Judgment median

c. Consistency test: We define the consistency indicator as C(I), the average ran-
dom indicator as R(I) and the consistency ratio as C(R). The corresponding relation-
ship between n and R(I) is shown in Table 5, and Equation (3) shows the calculation of
C(R). If C(R) ≤ 0.1, the judgment matrix XLevel passes the consistency test. C(I) = 0.05,
R(I)n=8 = 1.41, C(R) = 0.035 < 0.1 and WLevel pass the test. Thus, the weight of indicators
is WLevel .

C(R) =
C(I)
R(I)

=

∣∣∣∣∣ 1
n ∑n

i=1
∑n

j=1 Wi,j
Level ·wj

wi
− n

∣∣∣∣∣
(n − 1) · R(I)

(3)

Table 5. Relationship between indicator amount and R.I.

n 1 2 3 4 5 6 7 8 9 10

R.I. 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49

(3) Calculate scores: This step contains a quantitative judgment model and a qualita-
tive model to calculate the final score for membership merchants and set the level. In the
quantitative judgment model, three parts are needed:

a. Confirm the quantitative indicators and judgment set: The quantitative indi-
cators set is SetQuan = {x1, x2, x3, x4, x5}. We define the quantitative judgment set as
Y = {Excellent, Good, Medium, Pass, Fail}, and the max rating score is 100. Based on the
80% weighting, the reference table between the score and the quantitative judgment set is
in the Table 6.

rij =

⎧⎪⎪⎨⎪⎪⎩
0

(
Ui < ui,j−1, Ui < ui,j+1

)
Ui−ui,j−1
ui,j−1−uij

(
ui,j−1 < Ui < uij

)
ui,j−Ui

uij−ui,j+1

(
uij < Ui < ui,j+1

) (4)

Table 6. Judgment-Score reference table.

Judgment Excellent Good Medium Pass Fail

Score (65, 80) (49, 64) (33, 48) (17, 32) (1, 16)

b. Confirm the indicator fuzzy judgment matrix: The judgment-indicator table is
shown in Table 7, and each quantitative indicator owns a judgment score pi. We define
the indicator scoring vector PQuan = {p1, p2, p3, p4, p5}T and the indicator fuzzy judgment
matrix RQuan =

(
ri,j
)

5×5. rij means the membership degree of grade jth judgment for the
ith indicator. Then, we define Ui as the real value of each indicator, and uij as the value
border of each judgment for each indicator. The relationship among rij, uij and Ui is in
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Equation (4). For example, the real value of indicator x1 is 450; thus, the Ui of x1 is 450,
according to the Table 7; the score p1 is 64; and u11 is 500, u12 is 300, r11 is 0.25 and r12 is 0.75.
Each merchant has an indicator judgment fuzzy matrix RQuan according to its situation.

Table 7. Judgment-indicator table.

Indicator
Excellent
(65, 80)

Good
(49, 64)

Medium
(33, 48)

Pass
(17, 32)

Fail
(0, 16)

x1(amount) >500 [300,500] [150,300] [50,150] <50

x2(AQI) <40 [40,60] [60,90] [90,150] >150

x3(amount) >1000 [500,1000] [200,500] [50,200] <50

x4(amount) >750 [450,750] [200,450] [75,200] <75

x5(amount) >3000 [1500,3000] [500,1500] [100,500] <100

c. Calculate the quantitative score with quantitative indicators weight: With the
combination of WQuan , RQuan and PQuan , the final quantitative score ScoreQuan is as follows.

ScoreQuan = WQuan × RQuan × PQuan

= (0.246, 0.246, · · · , 0.067)

⎛⎜⎜⎜⎜⎝
r11 r12 r13 r14 r15
r21 r22 r23 r24 r25
r31 r32 r33 r34 r35
r41 r42 r43 r44 r45
r51 r52 r53 r54 r55

⎞⎟⎟⎟⎟⎠(p1, p2, p3, p4, p5)
T (5)

In the qualitative judgment model, due to the uncertain value of qualitative indicators,
the judgment of qualitative indicators should be signed manually. Each customer can give
each merchant a score in x7, x8 and x9 indicators and the total score of each indicator is 100.
Due to the extreme scores, we calculate the average top 25% to 75% customers’ scores of
each indicator and obtain a customer score vector CQual = (Cx7 , Cx8 , Cx9)

T . If a membership
merchant has less than 50 customers’ ratings, its qualitative score would be ScoreQual =
0.25ScoreQuan. Based on the weights in WLevel , the weight vector of qualitative indicators
WQual is (0.067, 0.073, 0.041), and the qualitative score is ScoreQual = CQual × WQual . Thus,
the total score of a membership merchant is ScoreFinal = 0.2ScoreQual + 0.8ScoreQuan.

(4) Set levels: In Env-profit, we set that only the merchant’s air quality is better than 70,
and the merchant can enter the alliance. We set a score ranking-level table for membership
merchants in Table 8. The hierarchical alliance structure model offers researchers reference
on setting levels for an alliance.

Table 8. Ranking-Level table.

Ranking Top 5% Top 5% to 15% Top 15% to 35% Top 35% to 65% Bottom 35%

Level 5 4 3 2 1

(5) Definitions of othe interactive functions in the Env-profit: We define some basic
functions of the Env-profit. Based on Figure 6, we define the membership fee of merchants
as FeeMer(LevelMer), the traffic of merchants as Tra f fMer(LevelMer) and the number of
vouchers for merchants as VoucherMer(LevelMer).

The traffic of merchants in the case is affected by merchants’ levels and the incentive
of vouchers. Agarwal and Qian [29] propose a study that MPC (Marginal Propensity
to Consume) [30] of giving vouchers can rise 15% to 40%. In Env-profit, we set that
membership merchants of Level 1 can obtain a 15% increase and membership merchants of
Level 5 can obtain a 40% increase in traffic based on [29]. In addition, merchants cannot
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increase the traffic. We make a logarithmic fit on the function of Level-Traffic increase, and
it is shown in Equation (6). We obtain the traffic increase rate of each level in Env-profit in
Table 9.

Tra f fMer(LevelMer) = 0.236ln(LevelMer + 1.129) + 0.971 LevelMer = 0, 1, 2, 3, 4, 5 (6)

Table 9. Relationship between traffic increase rate and level.

Level 0 1 2 3 4 5

Traffic increase rate
(new traffic/old traffic)

1 1.15 1.24 1.306 1.357 1.4

4.2.3. New “Newsvendor Problem” Profit Model

We introduce an alliance and the level system in the DIV to promote customers’ con-
sumption and increase profits of membership merchants. Therefore, we need to propose a
novel profit model to reasonably estimate profits of membership merchants. “Newsvendor
problem” [31] is a typical single-cycle storage problem in operations research. In Env-profit,
membership merchants are similar to the newsvendors, and vouchers are similar to the
newspapers. Therefore, we propose a new “newsvendor problem” profit model based on
Env-profit to calculate the membership merchants’ profits. In the DIV, the number of the
customers is uncontrolled and essential to the membership merchants’ profits, and other
factors such as the discount and repurchase rate are controllable. Therefore, the objective of
the model is to find the number of customers when a merchant can make the most profit.

Problem Description: A membership merchant has Q vouchers at the beginning of
the period. During the period, r customers have used the voucher in the membership
merchant. At the end of the period, the alliance repurchased the unused vouchers as u
dollars per voucher.

Problem Denotation: We have the following denotations in this problem:

• The possible value of r is denoted as rj, (j = 1, 2, . . . , n);
• The membership merchant’s average cost is denoted as c;
• The average selling price is denoted as p, (u < c < p);
• The membership fee of membership merchant is denoted as f (x);
• the discount of a voucher is denoted as d%, and it is given;
• The probability of r is satisfied with P(rj): 0 < P(rj) < 1, ∑r>rn P(r) = 1.

Problem Objective: The objective of the problem is to obtain the best value of Q when
the membership merchant can obtain the most profit.

Solving: We firstly calculate the expectation of membership merchant’s normal profit
without repurchasing E(R(r)) and the profit of repurchasing E(Ru(r)). Then, we calculate
the accounting profit expectation of a membership merchant W(Q). Next, we divide W(Q)
into a constant and a new function F(Q), and we use the differential to find the extreme of
F(Q). After our analysis, the extreme of F(Q) is the best value of Q.

Set membership merchant’s normal profit without repurchasing R(r) as follows.

R(r) =
{

r > Q : p · a% · Q + (r − Q)p
r ≤ Q : p · d% · Q

(7)

The expectation of membership merchant’s normal profit without repurchasing E(R(r)) is
the following.

E(R(r)) = ∑ R(r)P(r) = p · ∑
r>Q

[r + Q(d% − 1)]P(r) + p · d% ∑
r≤Q

rP(r) (8)

Set the profit of repurchasing Ru(r) as follows.
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Ru =

{
r > Q : 0
r ≤ Q : (Q − r)u

(9)

Moreover, the expectation of the profit of repurchasing E(Ru(r)) is E(Ru(r)) =

∑ Ru(r)P(r) = u · ∑r≤Q(Q − r)P(r); thus, the total profit expectation for a membership
merchant in a period is as follows.

∑[R(r) + Ru(r)]P(r) = ∑ R(r)P(r) + ∑ Ru(r)P(r) (10)

The explicit cost expectation of the membership merchant at each period is cr + f (x);
thus, the accounting profit expectation of a membership merchant W(Q) is as follows.

W(Q) =∑[R(r) + Ru(r)]P(r)− cr − f (x)

=p · ∑
r>Q

[r + Q · (d% − 1)]P(r) + p · d% · ∑
r≤Q

rP(r) + u · ∑
r≤Q

(Q − r)P(r)

=[p · d% · ∑ rP(r)− f (x)− cr]− (Q − r)[p(1 − d%) ∑
r>Q

P(r)− u · ∑
r≤Q

P(r)]

(11)

Set F(Q) = (Q − r)[p(1 − d%) · ∑r>Q P(r)− u · P(r)], because ∑ rP(r) is the expecta-
tion of r, and p, d%, f (x), c and r are all constant values. We set Cons = p · d% · ∑ rP(r)−
f (x) − cr; then, we obtain W(Q) = Cons − F(Q). The goal of the model is to find the
maximum value of W(Q), and because of the finite number of values for r and Q, the
maximum of W(Q) and the minimum of F(Q) must be existing. Cons is a constant value;
thus, the maximum value of W(Q) is in the situation that F(Q) is at the minimum value. To
find the minimum of F(Q), we set F(rm) = min

{
F(rj) | j = 1, 2, · · · , n

}
(1 ≤ m ≤ n) and

consider the differences of ΔF(Q) of F(rm) = F(Q). We set rn+2 > rn+1 > rn; thus, the
following is the case.

ΔF(Q) =ΔF(rj) = F(rj+1 − rj)

=(rj+1 − rj)[p · (1 − d%) · ∑
r>rj+1

P(r)− u · ∑
r≤rj

P(r)] (12)

Using ∑r>rj+1
P(r) = 1 − ∑r≤rj

P(r), ΔF(Q) = (rj+1 − rj)[p · (1 − d%) + u]
(∑r>rj+1

P(r)− u
p·(1−d%)+u ). Since rj+1 > rj, [p · (1 − d%) + u] > 0, when ∑r>rj+1

P(r) <
u

p·(1−d%)+u , ΔF(Q) < 0, F(Q) is decreasing, and when ∑r>rj+1
P(r) > u

p·(1−d%)+u ,
ΔF(Q) > 0, F(Q) is increasing. Thus, when ∑r>rj+1

P(r) = u
p·(1−d%)+u , F(Q) has a

minimum. Thus, the best value of Q that can make the most profit is the following.

Q = {r | ∑
r>rm+1

P(r) =
u

p · (1 − d%) + u
} (13)

The final profit of membership merchant Pro f itMer is the following.

Pro f itMer = p · d% · ∑ rP(r)− cr − f (x) (14)

As long as the profit at Q for membership merchants is more than the merchant’s, the
paradigm is usable and profitable. Thus, we make simulations to show the results of the
model more accurately in Section 5.

5. Experiment

In this section, we make simulations to prove the profitability of DIV. Our codes for all
experiments are available at https://github.com/NEUSoftGreenAI/DIVEconomicBlockchain
accessed on 28 January 2022.
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5.1. Setup

Environment: The hardware environment contains: an Intel Core i7-8750H CPU, 8G
memory and a 240G hard disk. The software environment is as follows: Windows 10 and
Jupyter Notebook under Python 3.8.

Simulations: We set up two simulations based on the Env-profit:

1. The first simulation proves membership merchants can obtain more profits
than merchants.

2. The second simulation proves DIV is more profitable than the incentive-based, new
scenario-based and business schema-based paradigm. The new scenario-based
paradigm lacks business application, and Env-profit has solved the disadvantage.
The business schema-based paradigm lacks the incentive mechanism; thus, it has
no incentive. The incentive-based and the new scenario-based paradigms have a
single incentive. Therefore, we compare merchants’ profits among dual, single and no
incentive scenarios. In the second simulation, we set up two single incentive scenarios
based on the dual incentive paradigm:

• Air Quality Evaluation incentive (AQE for short): In the AQE scenario, the
government directly offers tokens to stimulate merchants based on their air
quality. No customers in the scenario. The government and the alliance are the
same role. Merchants can obtain tokens to exchange money from the government.

• Merchants’ Voucher incentive (MV for short) scenario: In the MV scenario,
merchants directly offers vouchers to stimulate customers to consume more. No
government and alliance in the scenario. Merchants need to bear the discount of
vouchers and small profits, but it has quick turnover.

Assumptions: We have following assumptions in the experiments:

• Each period of Env-profit is a month. The merchants who are not in the alliance can
obtain 1000 customers per month. The average sale price is 100$ and the average cost
is 50$.

• The number of merchants’ customers r obeys standard normal distribution and the
expectation is 1000 for merchants not in the alliance. For membership merchants,
the expectation of r is based on the level of merchants. The relationship between
merchants’ expectations and the level is shown in Figure 7.

• The discount of a voucher is a fixed rate to the selling price as d%, and the repurchase
money of each unused voucher is also a fixed rate to the selling price as rp%. In the
first simulation, we set d% = 2.5%, 5% and 10% as a precondition.

• The variance of r is σ, the expected number of customers for a merchant is CustomerExp,
the z-score for r is z and the amount of voucher VoucherMer that a membership mer-
chant obtains is VoucherMer(LevelMer) = CustomerExp + σ · z.

Baseline The situation of merchants in the no incentive and dual incentive scenarios
is the baseline. The baseline number of customers is 1000, the baseline profit of the alliance
is 0$ and the baseline profit of a merchant is 50,000$.

Test Case Design: In the two simulations, we set up seven test cases as follows, and
the result of each test case is analyzed from Sections 5.2.1–5.2.7:

Test Case 1: In the first simulation, when d% = 5%, we compare the profit in dif-
ferent σ and rp% to analyze the impact of the number of customers on membership
merchants’ profits.

Test Case 2: In the first simulation, when d% = 5%, we analyze the relationship
between rp% and σ to obtain a suitable range of σ.

Test Case 3: In the first simulation, when d% = 5%, we estimate profit comparison for
merchants of different levels and r to prove that the profitability of DIV can increase as the
level and r increase.

Test Case 4: In the first simulation, when d% = 5%, we evaluate the expected profits
for alliance and membership merchants to prove that both the alliance and the membership
merchants can obtain more profits than the baseline.
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Test Case 5: In the first simulation, when d% = 5%, we estimate the expected profit of
membership merchants in different levels and rp% to validate that the DIV’s profitability is
more than the baseline’s roundly.

Test Case 6: In the first simulation, we compare the value of σ when rp% = 2.5%, 5%,
10% to explain that the suitable value of d% is 5%.

Test Case 7: In the second simulation, we compare alliance and merchant’s expected
profit at the same d% and rp% under four scenarios (no incentive mechanism, AQE, MV
and Dual). We change the level of merchant to prove that the profitability of dual incentive
scenario is better than other scenarios’.

Metrics: In the first simulation, based on the assumptions and baseline, if a customer
uses the voucher, a membership merchant can earn 50–100·d%$. If a voucher is repurchased,
the merchant can obtain 100 · rp%$ profit. We set the actual number of customers for a
merchant as Customerreal , and the actual profit of a merchant in the alliance Pro f itreal is
the following.

Pro f itreal =

{
VoucherMer > Customerreal : (50 − 100 · d%)Customerreal + 100(VoucherMer − Customerreal) · rp%
VoucherMer ≤ Customerreal : (50 − 100 · d%)VoucherMer + 50(Customerreal − VoucherMer)

(15)

Figure 7. The relationship of merchants’ expectation and level. The corresponding merchants’
expectations from Level1 to Level5 are 1150, 1241, 1306, 1357 and 1400.

In Section 3, we experience the situation in which the merchant can obtain the max-
imum profit in Equation (13), as we assumed that the repurchased money u is 100 · rp%,
and p is 100. Therefore, the formula can be simplified as follows.

Q = {r | ∑
r>rm+1

P(r) =
100 · rp%

100 · (1 − d%) + 100 · rp%
=

rp%
1 − d% + rp%

} (16)

Since ∑r>rm+1
P(r) + ∑r≤rm+1

P(r) = 1, ∑r≤rm+1
P(r) = 1−d%

1−d%+rp% , the z-score z of
r can be obtained from the standard normal distribution table. The variance σ of r is
calculated by the baseline situation.

σ =

50000−Customerreal ·(50−100·d%)
100·rp% − CustomerExp

z
(17)

In addition, the profit of the alliance is denoted as Pro f itAl . It is the sum of the
membership fees and minus the cost of repurchasing the vouchers. We set the membership
fee as FeeMer(LevelMer) = 0.5 · r · Level (Level = 1, 2, 3, 4, 5).

In the second simulation, we set the profit and the number of merchant’s vouchers in
the AQE scenario as Pro f itAQE and VoucherAQE, and those in the MV scenario as Pro f itMV
and VoucherMV . In the AQE scenario, we assume that the profit of tokens for merchants is
Pro f itAQE = 50,000 +d%×VoucherAQE × 100. We define VoucherAQE = 200Level(Level =
1, 2, 3, 4, 5). In the MV scenario, we set that the number of vouchers of a merchant obeys all
assumptions. Therefore, the equation of Pro f itMV is as follows.
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Pro f itMV =

{
VoucherMV > Customerreal : (50 − 100 · d%) · Customerreal
VoucherMV ≤ Customerreal : (50 − 100 · d%) · VoucherMV + 50(Customerreal − VoucherMV)

(18)

5.2. Results

In this section, we show the experiment results of the seven test cases above.

5.2.1. Test Case 1: Result

In the first situation, we set the default level as Level 1. When d% = 5%, Figure 8
shows the membership merchants’ expected profit comparison when σ is from 50 to 800
and rp% = 10% ,15% and 20%. It shows that when σ increases, the membership merchant’s
profit also increases. Moreover, with the increase in rp%, the membership merchant can
reach the baseline at a minor σ. The larger σ indicates that the number of customers is more
unstable. The larger rp% indicates the profit of the alliance reduces. Therefore, a suitable σ
and rp% is critical for both alliance and membership merchants.
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Figure 8. Profits comparison for different σ and rp%.

5.2.2. Test Case 2: Result

Figure 9 shows the relationship between rp% and σ when rp% is from 5% to 20%.
It shows that when rp% rises, σ decreases slower and slower. The expectation of r for
membership merchants in Level 1 is 1150. The membership merchant should ensure that the
maximum fluctuation is not more than half of our expectations. It means 2σ < 1150

2 = 575,
σ < 287.5; thus, rp% < 10% is unsuitable. We set rp% as 10% to 20% in the following analysis.

Figure 9. Relationship between rp% and σ.
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5.2.3. Test Case 3: Result

Figure 10 shows the membership merchants’ expected profit in different levels when
rp% is from 10% to 20%. When the level rises, the profit of the same rp% also increases.
Moreover, when the number of customers is the same as the baseline, membership mer-
chants are also more profitable than the baseline. Figure 11 shows the relationship between
r and membership merchant’s profit when rp% is 10%, 15% and 20%. It shows that the
profit increases in different rp% when r increases. When r > 1000, the profit is higher
than the baseline in any rp%. Moreover, we can conclude that each line in Figure 11 has
a turning point. The bigger rp% is, the fewer vouchers merchant can obtain. The fewer
profit merchants get, the earlier the turning point appears. Figures 10 and 11 validate the
expected result that DIV is more profitable than the baseline when parameters are fixed at
level-profit and r-profit.
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Figure 10. Merchants’ profits comparison in levels and rp%.
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Figure 11. Profits comparison for merchants in r and rp%.

5.2.4. Test Case 4: Result

Figure 12 considers the alliance’s profit and shows the expected profits for the alliance
and membership merchants. The membership merchant’s profit here is below the baseline
of 50,000, and the alliance’s baseline profit is 0. We can conclude that membership merchants
and the alliance can all obtain more profits than the baseline in expected situations. The
higher the membership merchant’s level is, the more profit the membership merchant and
the alliance can obtain.
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5.2.5. Test Case 5: Result

Figure 13 shows the expected profit of merchants in each level (we set the baseline as
Level 0) and expected r. It shows that the profit of membership merchants can be improved
from 51,612.5 to 66,000. It is 3.2% to 32% more than merchants who are not in the alliance.
In our case, all membership merchants can earn more profit. Therefore, the novel paradigm
is more profitable than the baseline.
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Figure 13. Expected profits of merchants in levels and rp%.

5.2.6. Test Case 6: Result

Figure 14 represents the value of σ when rp% is from 10% to 20% and d% is 2.5%, 5%
and 10%. It shows that when d% is too tiny(d% = 2.5%), σ is very small even negative,
which means that the discount of the voucher is too small and membership merchants
do not use enough vouchers and even do not need vouchers to obtain the baseline profit.
Therefore, we conclude that when σ is too small, and the incentive mechanism is useless.
Moreover, σ is very large when d% is too large(d% = 10%). It means that the discount
of the voucher is so big that membership merchants need many vouchers to reach the
baseline, and the fluctuation in the number of customers is large as well. However, we have
analyzed that σ is less than 287.5 in Section 5.2.2. When d% = 10% and rp% = 20%, σ is
still more than 287.5. Therefore, the situation of d% = 5% is more suitable than d% = 2.5%
and d% = 10%. A suitable d% is needed in DIV.

5.2.7. Test Case 7: Result

In the second simulation. We calculate the expected profit of each merchant and the
alliance of four scenarios in different levels. Based on the first simulation, we set d% = 5%,
rp% = 10%, and the value of r is the expectation of different levels.

Figure 15 shows the alliance’s profit from one merchant in four scenarios. As men-
tioned, there is no alliance in the MV scenario and no incentive scenario. Therefore, their
alliance’s profit is zero. The alliance’s profit in the AQE scenario is negative. It decreases as
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the level increases, because the token profits of merchants in the AQE scenario is from the
alliance. Therefore, the AQE scenario is not profitable for the alliance. It is not suitable in
the business market either. The profit in the dual incentive scenario is positive. It increases
as the level increases. Therefore, only the dual incentive scenario can make profits for the
alliance. The dual incentive paradigm is friendly relative to large alliances and governments
in the business market.

Figure 14. The value of σ in different rp% and d%.

Figure 16 shows the merchant’s profit comparison of four scenarios in five levels. We
can conclude that the profit of the AQE, MV and dual incentive scenario can increase as the
level increases. Moreover, the profit of the dual incentive scenario is the highest in each
level. The result is in line with our expectations.

To sum up, DIV is more profitable than the baseline and all existing blockchain token
economy paradigms. DIV is the most suitable paradigm in business blockchain token
economy scenario at present.
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Figure 15. Alliance’s profit comparison of four scenarios.
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Figure 16. Merchant’s profit comparison of four scenarios.
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5.3. Discussion and Suggestions

Based on the experiments, we can conclude that the DIV paradigm can be more
profitable than other paradigms in the Env-profit case. In our analysis, the alliance and
the customers are the two essential roles in the DIV paradigm. The alliance offers the
second incentive mechanism to the merchants. The merchants receive the second incentive
mechanism and offer more tokens to customers. Therefore, the customers can obtain more
tokens and consume more and increase market profitability. There are two reasons why
existing paradigms are less profitable than the DIV paradigm: (1) The business schema-
based paradigms and the incentive-based incentive lack the role of alliance, which lack
the second incentive mechanism. (2) The new scenario-based paradigm lacks business
applications, which lacks dual incentive mechanisms in the business scenario. Overall, the
DIV paradigm is the most profitable paradigm in our case. It implements the exchange
between the currency and the token by suitable incentive mechanisms in the business
scenarios. Moreover, it increases the liquidity and the value of the token.

Currently, people’s enthusiasm on ICOs increased, but the value of ICOs is being criti-
cized. We suggest that the ICO market can be applied the DIV in future. DIV can provide a
complete set of ICO acquisition, ICO repurchase and the ICO transaction process. Therefore
the value of the ICO is guaranteed and supervised by the DIV paradigm. The authority,
liquidity and credibility of the ICO are also guaranteed. Moreover, we set up a business al-
liance in the Env-profit, and the business alliance can hold different merchants. We suggest
that a blockchain token league can be founded in the real blockchain economy. Different
tokens and ICOs can be traded and exchanged as currencies in the league. Moreover, the
league can design novel cross-chain tokens and implement the cross-chain transactions of
the tokens. However, the transformation rules of different ICOs and tokens and the suitable
incentive mechanism to obtain different ICOs and tokens should be well designed.

6. Conclusions

The blockchain token economy has played an essential role in the business market. It
increases the economy’s security and strengthens the marketization of resource allocation.
The incentive-based paradigm, the new scenario-based and the business schema-based
paradigm are existing blockchain token economy paradigms. They lack the incentive
mechanism, the business application and the token’s liquidity. They can maximize the
consumers’ willingness to consume, but they can also decrease the profitability of the entire
business market. In this paper, we propose a “Dual incentive value-based” paradigm (DIV),
including roles, token design, incentive mechanism design and execution flow. Then, we
propose a business study case called “Env-profit” based on the DIV paradigm. We propose
a hierarchical alliance structure model and a new “newsvendor problem” profit model in
Env-profit and set up two simulations to prove the profitability of DIV. The results show
that the alliance of the DIV paradigm can make all the members be more profitable than
those not in the alliance, and the DIV paradigm can be more profitable than other three
existing paradigms. Based on the results, we analyze that the alliance provides the second
incentive mechanism in order to stimulate customers to consume and profitability increases.
Existing paradigms all lack the role of alliance so that profitability is less than the DIV
paradigm without the second incentive mechanism. Overall, the DIV paradigm set the
incentive mechanism to obtain tokens. The tokens can be liquidated, used and traded
as real currencies. It increases the value of the token and market profitability. Moreover,
the DIV paradigm will be widely used in the business blockchain, which can offers new
research directions for researchers. For example, the ICO market can be applied the DIV,
and a blockchain token league containing different tokens and ICOs can be founded in the
real blockchain economy.

In addition to profitability, risk assessment is also an essential part of economic theory.
In this paper, we focus on dual incentive mechanism research and do not consider the risk
control mechanisms. In the future, if there are risks in the DIV environment, the methods
for strengthening the risk avoidance ability of the DIV paradigm will be our novel research
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priorities. We believe that the DIV paradigm can be the leader in blockchain token economy
study, and the blockchain token economy will be the mainstream in the token economy.
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Abstract: The environmental degradation and the concern for sustainable development have garnered
extensive attention from researchers to evaluate the prospects of green bonds over other traditional
assets. Against this backdrop, the current study measures the asymmetric relationship between
green bonds, U.S. economic policy uncertainty (EPU), and bitcoins by employing the Nonlinear
Autoregressive Distribution Lag (NARDL) estimation technique recently developed by Shin et al.
The outcome of the empirical analysis confirms an asymmetric cointegration between EPU, bitcoins,
the clean energy index, oil prices, and green bonds. The NARDL estimation substantiates that
positive shock in EPU exerts a negative impact on green bonds, whereas a negative shock in EPU
increases the performance of green bonds. It implies, in the long run, a 1 percent increase (decrease)
in EPU decreases (increases) the performance of green bonds by 0.22 percent and 0.11 percent,
respectively. Likewise, the study also confirms a bidirectional relationship between bitcoins and
green bonds. A positive shock in bitcoin increases the performance of green bonds and vice versa. In
addition, our study also reveals a direct co-movement between clean energy, oil prices, and green
bonds. This outcome implies that green bonds are not a different asset class, and they mirror the
performance of other asset classes, such as clean energy, oil prices, and bitcoins. The findings offer
several implications to understand the hedging and diversification properties of bitcoins, and assist
in understanding the role of U.S. economic policy uncertainty on green bonds.

Keywords: green bonds; environmental sustainability; asymmetric analysis; EPU; clean energy

1. Introduction

The rapid environmental degradation and climate change over the past several years
have garnered the attention of policymakers to take suitable actions to lower the emission
of harmful gases, and evade devastating consequences on human life and the ecosystem.
The innovation in cleaner sources of energy is considered a revolutionary move toward de-
carbonization and environmental sustainability. Previous studies highlighted that massive
investment is needed to convert from a high carbon economy to a low carbon economy [1].
For instance, according to the United Nations’ Intergovernmental Panel on climate change,
$3 trillion investments are required every year until 2050 to limit the temperature increase
by two centigrade [2]. In context to the above investment concern, Baker et al., 2018, ad-
vocated that green bonds could play a prominent role in channelizing funds toward such
environmentally friendly projects. Green bonds are similar to fixed income securities, but
the only difference is that the proceeds of green bonds are employed to fund sustainable
projects. In 2007, the first green bond was issued; in the initial years, the price of green
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bonds recorded a slow growth, but later on, due to the Paris Agreement and the Sustainable
Development Goals, green bond prices witnessed exponential growth. It is estimated by
the Climate Bonds initiative that the value of the green bond market will reach $ I trillion
by 2023 [3].

Furthermore, since the global financial crisis in 2008, economic uncertainty prompted
investors to search for alternative investments tools to diversify risk, and provide hedg-
ing facilities. Due to the above benefits globally, the green bond has also emerged as a
potential risk-diversifying and hedging investment option for investors. Green bonds are
becoming more popular among investors than other conventional assets, since they address
the issue of financial resources and environmental sustainability [4]. As the green bond
complements government plans for environmental sustainability, they are considered a
more stable investment tool. In addition, the formation of Green Bond Principles (GBP)
by the International Capital Markets Association in 2014 also instilled confidence to invest
in green bonds among the investors. Thus, due to the benefit of diversification, and the
growing interest in environmental projects, green bonds are an ideal investment avenue
among investors [5]. Similar to green bonds, cryptocurrencies have also emerged as an
alternative investment option. Cryptocurrencies are an ideal choice for risky investors,
given the likelihood of high profits in a short period of time, and a shift away from con-
ventional assets. Cryptocurrencies are binary data used for digital exchange. Since 2009,
cryptocurrencies have captured a sizeable market share. According to the world bank, the
market share of cryptocurrencies has reached US$364.5 billion in 2020. Previous studies
show that since the last decade, cryptocurrencies (bitcoins) have witnessed exponential
growth. The value of one bitcoin has increased from $1 in 2009 to around $60,000 in 2021 [6].
Despite high volatility and return, the future of cryptocurrencies is still unclear. A strand
of literature described cryptocurrencies more as a speculative tool, bubble event, or a
technologically driven product rather than a medium of exchange [7,8]. In the recent past,
a vast body of literature advocated that cryptocurrencies have a spillover effect on the
conventional stock market performance. A few studies reported a positive relationship
between cryptocurrencies and stock market performance, whereas others concluded a
negative relationship between the two variables [9,10]. In addition, there is another strand
of literature that highlights cryptocurrencies and the stock market are unrelated [11]. Based
on these interrelation and transmission effects of investment products, the current study
attempts to explore the probable relationship between cryptocurrencies, preferable bitcoins,
and green bond markets. The above variables are incorporated, since they are new financial
investment products that provide diversification and hedging benefits. Besides, both of
them have also captured a sizable market share in a quick span of time. Past literature re-
veals that there are sufficient studies on the relationship between the conventional financial
market and green bonds [12,13]. However, there are limited studies that have examined
the above relationship. In addition, the studies have only explored the symmetric impact of
cryptocurrencies on green bond markets [14,15]. The literature, on the other hand, suggests
that the relationship between explanatory and outcome variables can be both symmetric
and asymmetric [16]. Thus, against this backdrop, we have explored the asymmetric impact
of bitcoins on the green bond market.

In addition to the above analysis, we have also explored the impact of the U.S. eco-
nomic policy uncertainty (EPU) on the green bond. EPU is an independent risk associated
with the interaction of the financial system, fiscal policy, monetary policy, and other regula-
tory policies. Previous studies have highlighted that it is easier to diversify security-specific
risk, but it is difficult to avoid systematic risk such as EPU. Global financial integration
and several financial crises over the years, such as the global financial crisis and the euro-
zone crisis, had a transmission effect on the economic policy uncertainty. These economic
disturbances have a magnified impact on the functioning of varied industries; the finance
and investment industries are no exception. During the recent pandemic, we have again
witnessed similar economic uncertainty. As previously stated, green bonds are considered
stable investment options due to their environmental goals and government support. There-
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fore, it is worth investigating whether high and low EPU has a symmetric and asymmetric
impact on the performance of green bonds in the U.S., or if green bonds are immune to
the EPU. The clean energy index and oil prices, which are relevant to the study, are also
included for empirical analysis. The clean energy index is included because the production
of clean energy complements sustainable goals. Therefore, improvement in the clean energy
stock can also enhance the performance of the green bond and vice versa. Furthermore, we
have included oil prices in our empirical analysis to re-establish the theoretical assumption
that an increase in oil prices surges the purchase of green bonds. An increase in oil prices
necessitates the diversification of energy sources, especially for oil-importing economies.
Likewise, a decrease in oil prices might have a decreasing influence on the issuance of
green bonds, as there is less pressure to encourage renewable energy resources [17].

The current study contributes to the extant literature in the following ways. Initially,
this is the first study that explores the asymmetric long-run and short-run relationship
between EPU, bitcoins, and green bonds. There are a few studies that have explored the
above relationship; however, the previous studies have only explored the one side move-
ment of time-series analysis, but the present study examines how the negative and positive
shocks of explanatory variables (bitcoins and U.S. EPU) influence the outcome variables
(green bonds), thus adding to the literature void. The question we try to address is whether
uncertainty in the U.S. EPU helps to explain risk spillover on green bonds, and likewise,
whether bitcoin volatility drives the movement of green bonds, and if the clean energy
index or oil prices have any association with green bond volatility. Analyzing the empirical
interrelationship between the green bond and other investment options over a different
period is important for the various economic agents. From the viewpoint of investors, it
is also worthwhile to know the suitability of green bonds as a hedging or diversifying
instrument over other asset classes. Besides, the study also explores whether green bonds
are resilient to financial market shocks and economic volatility due to their involvement
in the sustainable financial system that increases the effectiveness of governments’ cli-
mate policies. Second, in the present study, we have also explored the consequences of
structural breaks on the robustness of the results by employing a Brock, Dechert, and
Scheinkman (BDS) test. Thus, identifying structural breaks induced by financial crisis and
pandemics will also add to the methodological novelty of the study. Third, the sample
country also adds to the existing literature. We have included the United States in our
empirical analysis because it is one of the fastest developed economies in the world. Due to
the tag of a developed country, the U.S. economy act as the growth engine of the world
economy. The United States has a trading or economic tie with every country across the
globe. Therefore, any disturbance in its economic policies has a transmitting effect on the
world economy, which we have already witnessed during the global financial recession.
Another justification for including the U.S. in our empirical analysis originates from the
fact that the United States accounts for the highest value of the investment in the green
bond market globally, amounting to 36.7 billion dollars. Therefore, empirically analyzing
how these explanatory variables influence the U.S. green bond market will give significant
policy-oriented recommendations for emerging and developing economies. In addition,
due to the negative consequences of COVID-19, the US GDP shrank by 1.22 percent in
the first quarter of 2020. As a corollary, examining how economic policy uncertainty in
the United States affects green bond markets will considerably contribute to the existing
literature on the relationship between EPU and sustainable indices. Finally, we included
energy stocks, such as the clean energy index and oil prices, in our empirical analysis to
assess the relationship between green bond performance, oil price volatility, and the clean
energy index.

The rest of the paper proceeds as follows. Section 2 discusses the previous literature,
Section 3 highlights the data and methodology, Section 4 reports empirical findings, and
the last section focus on the concluding remarks.
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2. Literature Review

Over the years, the environmental crisis, and the need for generating investment
for sustainable development, have attracted the interest of investors toward green bonds.
Since the world bank issue in 2008, the green bond market has grown significantly, from
$11 billion in 2013 to $167 billion in 2018 [18]. Regardless of the rapid growth in the
green bond market, only a few studies have estimated the transmission effect of other
modern financial assets on green bonds [19]. A few recent studies projected that the
interdependency between green bonds and other financial and energy stocks might vary
due to the heterogeneity of the magnitude of investors who interact in these indices [1].
Investors deal in different time frames, ranging from a day to several years, because
of their varied needs, risk appetite, preferences, information asymmetry, and monetary
constraints. Such diverse alternatives and information asymmetry lead to abrupt responses
to the market news, and economic uncertainty. In this reference, Berger and Czudaj [20]
advocated that negative news and economic environments compel short-term investors to
sell, and creates an opportunity to buy for long-term investors. Likewise, Park et al. [21],
while exploring green bonds’ asymmetric volatility, revealed that green bonds have a
unique character whose volatility is sensitive to positive shocks, unlike other financial
assets. Importantly, they also affirmed that the green bond and financial markets have
several spillover effects, and neither of them responds remarkably to markets’ negative
shock. Drawing inferences from these conceptual arguments, we can predict that economic
and financial shocks can be transmitted asymmetrically across financial markets; the green
bond market is not an exception. Thus, studying the short-run and long-run asymmetric
connectedness between green bonds, cryptocurrencies (bitcoin), and economic policy
uncertainty will assist in answering the unanswered questions, and contribute to the
existing literature void. The subsequent section delves into the specifics of the existing
literature on the above interrelationship between green bonds and other economic and
financial agents.

Chiappini et al. [22] conducted one of the recent studies on the interaction of sustain-
able indexes with COVID-19 lockdown. The study intends to examine how the sustainable
indexes react to market distress. They conclude that sustainable indexes in the US and
Europe are susceptible to COVID-19-induced lockdown and uncertainty. However, the
sustainable indexes are less volatile compared to the other traditional assets. Likewise,
Huynh et al. [4] examined the role of artificial intelligence, green bonds, bitcoins, and
robotics stocks on portfolio diversification during policy uncertainty. The authors report
that the probability of joint losses is high during high economic uncertainty. In addition,
the author also reveals that although the above classes of the asset are a good source of
return, these assets are shock senders, and fluctuation and volatility are remarkably high
in these assets. Considering the relationship between traditional assets and green bonds,
Hung [19] empirically investigates the influence of commodity and energy indexes on the
green bond market performance. Using the Quantile and Quantile method, the author
reveals a positive interaction between the performance of the explanatory and the outcome
variables. Likewise, Park et al. [21] explored the volatility dynamics and spillovers between
green bonds and equity markets. The author advocated that similar to conventional assets,
the green bond also shows asymmetric responses. The volatility of green bonds is more
sensitive toward positive market shocks than negative market shocks.

Nguyen et al. [23] added to the existing literature by exploring the relationship between
green bonds and other asset classes, such as stock, commodities, and conventional bonds.
The authors concluded a strong correlation between the asset classes, which peaked during
the global financial recession. The authors also highlighted the diversification properties
of green bonds, due to their low correlation with conventional stock markets. Pham and
Nguyen [24] also strengthen the above findings by highlighting the hedging properties
of green bonds. They investigated the influence of oil volatility, EPU, and stock returns
on green bonds, and concluded that the impact of policy uncertainty on the green bond is
time-varying and state-dependent. Furthermore, the author also suggested that as EPU
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and green bonds are weakly related, green bonds can be used as a perfect hedging tool
during such uncertainty. In another study on the interaction between green bonds and stock
markets, Baulkaran [25] concluded that the issue of green bonds at a higher coupon rate
exerts a negative response on the conventional stock market performances. In context to the
influence of traditional and fixed-income markets on green bonds, Reboredo [13] advocated
that the transmission influence of the fixed-income market is high on green bonds, and
green bonds are less sensitive to energy and stock market fundamentals. Contrary to
the above findings, Liu et al. [26], while examining the spillover relationship between
green bonds and clean energy stock, commented that there is a positive tail dependence
between clean energy stocks and green bonds. Hammoudeh et al. [27] and Jin et al. [28] also
strengthen the above findings, and conclude a direct and significant association between
carbon emission stocks and green bonds. Further, they also added that green bonds are
the perfect substitute for carbon futures, and they perform well even during crisis periods.
Other studies which reported similar findings are Zerbib [29] and Nguyen et al. [23].

We can infer that, considering the importance of green bonds, there are still limited
studies conducted on this topic. Few empirical studies have examined the relationship
of green bonds with conventional stocks markets (for example, Pham et al. [30], Broad-
stock et al. [31], Reboredo et al. [32]). Another strand of literature has examined the
interaction of green bonds with commodities, cryptocurrencies, and the traditional bond
market (for example, Naeem et al. [33], Bouri et al. [34]). In addition, a more recent strand
of literature has also highlighted the hedging and diversification properties of green bonds
over other conventional assets (for instance, Guo and Zhau [35], Arif et al. [36]). In the
previous literature, although the behavior of green bonds relative to other financial as-
sets has been analyzed from multiple angles, there is a literature void in context to the
asymmetric relationship between the green bond market, economic policy uncertainty, and
other innovative financial assets such as bitcoins. Against this backdrop, the current study
examines the asymmetric influence of the U.S. EPU, and bitcoins, in addition to measuring
the impact of the clean energy index and oil prices on the Standard and Poor (S&P) green
bonds.

3. Data Description and Empirical Model

We have included the following proxies to empirically investigate the influence of
economic policy uncertainty, cryptocurrencies, clean energy, and oil prices on green bonds.
We have taken the green bond select index released by S&P to measure green bonds. It
is a composite index representing the relevant green bond stocks. We have used the S&P
global clean energy index for measuring clean energy. We have taken the daily oil prices
to measure the influence of oil price volatilities on green bonds. In addition, to estimate
the impact of cryptocurrencies on green bonds, we have used the daily prices of bitcoin.
We have included only bitcoin because it represents the highest proportion of the global
cryptocurrency market. Finally, to estimate the influence of policy uncertainty on the green
bond market, U.S. daily economic policy uncertainty data is extracted. To understand the
time-varying properties of the explanatory and outcome variables, and to consider the lack
of data availability, we have included the daily time-series data from December 2016 to
October 2021. Moreover, we have considered the following sources for data extraction:
policyuncertainty.com, datastream.com, as well as the S&P green index website, and the
S&P global clean energy index.

In the present paper, to estimate the asymmetric relationship between the explanatory
and outcome variables, we have employed the recently developed Nonlinear Autoregres-
sive Distribution Lag (NARDL) estimation technique proposed by Shin et al. [37]. We have
used the above estimation technique because this technique provides a robust estimate in
the presence of nonlinearity and structural breaks. Previous studies highlight that economic
and financial distress augments structural breaks in time series data. Therefore, to avoid the
complexity of structural breaks, and to provide a robust estimate, the NARDL estimation
technique is employed. Furthermore, we have also used the NARDL estimation technique
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due to the following benefits: first, this technique is suitable for small sample data. Second,
it is also appropriate for the mixed level of integration. In addition, this technique also
confirms cointegration and hidden asymmetries. Considering the above benefits, the ARDL
symmetric takes the following form:

ΔGBt = ∅EPUEPUt−1 +∅BIT BITt−1 +∅CIICI It−1+∅OILOILt−1 + ∑r
j=1 ϕGBΔGBt−j+

∑s
j=1 ϕEPUΔEPUt−j + ∑s

j=1 ϕBITΔBITt−j+∑s
j=1 ϕCIIΔCIIt−j+∑s

j=1 ϕOILΔOILt−j + μt
(1)

In Equation (1), GB represents green bonds, EPU denotes economic policy uncertainty,
CII represents the clean energy index, BIT shows daily bitcoin prices, OIL denotes daily oil
prices, μt is the error term, r and s are the lead and lag order based on SIC criteria, and Δ is
the first-order difference. Furthermore, based on Shin et al. [37], Equation (1) is reframed
after including the short and long run asymmetries:

ΔGBt = φ0 + ω1GBt−1 + φ+
2 EPU+

t−1+φ−
3 EPU−

t−1+φ+
4 BIT+

t−1+φ−
5 BIT−

t−1+φ6CIIt−1+φ7OILt−1+

∑r
j=1 ϕ1jΔGBt−j+∑s

j=1 ϕ+
2jΔEPU+

t−j+∑s
j=0 ϕ−

3jΔEPU−
t−j + ∑s

j=0 ϕ+
4jΔBIT+

t−j+∑s
j=0 ϕ−

5jΔBIT−
t−j+

∑s
j=0 ϕ6jΔCIIt−j+∑s

j=0 ϕ7jΔOILt−j+μt

(2)

where φ and ϕ represent the short-long-run coefficients; EPU+
t−1, EPU−

t−1, BIT+
t−1, BIT−

t−1
denote positive and negative shocks in economic policy uncertainty and bitcoins, respec-
tively. Under NARDL estimation, short-run parameters measure the response of the
outcome variable to the independent variables, whereas long-run parameters quantify
the speed of adjustments. The positive and negative variation in the economic policy
uncertainty and bitcoins can be further derived as follows:

EPU+
t = ∑t

jΔEPU+
j = ∑t

j=1max(ΔEPUj, 0) (3)

EPU−
t = ∑t

j=1ΔEPU−
j = ∑t

j=1min(ΔEPUj, 0) (4)

BIT+
t = ∑t

j=1ΔBIT+
j = ∑t

j=1max(ΔBITj, 0) (5)

BIT−
t = ∑t

j=1ΔBIT−
j = ∑t

j=1min(ΔBITj, 0) (6)

In addition, the long-run positive and negative coefficient of economic policy un-
certainty and bitcoins are further ascertained as: φ+

EPU= −φ+
2 /ω1, φ−

EPU= −φ−
3 /ω1 and

φ+
BIT= −φ+

4 /ω1, φ−
BIT= −φ−

5 /ω1 respectively. Likewise, the short-run positive and negative

shocks are estimated as follows: ∑
j
i=1 ϕ+

2j, ∑
j
i=1 ϕ+

3j and ∑
j
i=1 ϕ+

4j, ∑
j
i=1 ϕ+

5j.
Previous studies highlight that it is mandatory to confirm the presence of unit root

before applying the linear or nonlinear ARDL model. Furthermore, the linear and nonlinear
model also mandate that none of the variables be of the second order of integration.
Therefore, to confirm the presence of unit root, we have employed the Augmented Dicky–
Fuller (ADF) unit root test. Most of the earlier studies suggest that a conventional unit root
test does not provide robust estimates in the presence of structural breaks [38]. To provide
an unbiased estimate in the presence of structural breaks, we have used the Zivot and
Andrews unit root test. The presence of a structural break in the data also entails the use of
a structural break test, and, therefore, we have also included the BDS (Broock, Scheinkman,
Dechert, and LeBaron [39]) structural break test in our empirical analysis. The BDS test
permits us to confirm the presence of nonlinearity in the series. After implementing all
of the above tests, we proceed with the NARDL estimation. We have used the bound
test approach to figure out the asymmetric cointegration among the variables, and for
optimum lag selection, we have used SIC criteria. We have referred to the F-statistic, and
compared its lower and upper bound values to estimate the presence of cointegration. If the
F-statistic value is more than the upper and lower bound value, we can infer an asymmetric
cointegration among the variables. Finally, the Wald test is employed to confirm the
asymmetric relationship between EPU, bitcoin, and green bonds.
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4. Result and Discussion

Table 1 exhibits the stochastic properties of all of the explanatory and outcome vari-
ables. The descriptive statistic shows that most of the variables are negatively skewed. We
can observe that the standard deviation of the green bond (0.06%) is less than the standard
deviation of the rest of the variables, for instance, bitcoin (1.85%). Thus, we can infer that
green bonds are less risky compared to other variables. In addition, based on the probability
value of the Jarque–Bera test, we can reject the claim of normality, and conclude that the
data are not normal. The claim of non-normality further encourages to proceed with the
asymmetric estimation [40].

Table 1. Descriptive Statistics.

Measures EPU GB OIL CII BIT

Mean 4.2379 4.1474 3.9900 6.0567 9.0180

Median 4.5744 4.9354 4.0244 6.4686 9.1419

Minimum 1.3987 4.8159 2.1871 6.2101 8.0857

Maximum 6.7582 5.0688 4.4501 7.6511 11.120

Skewness 0.4262 −0.1748 −1.9700 0.9294 −0.6327

Kurtosis 4.7451 7.1587 9.9080 6.3282 2.1426

Jarque–Bera 196.62 *** 43.262 *** 327.70 *** 203.64 *** 121.79 ***

Std. Dev 0.9651 0.0632 1.7261 0.0824 1.8575
Note: *** represents the rejection of the null hypothesis at a 1 percent level of significance.

After discussing the stochastic properties of the variables, we proceed with the unit
root estimation. Confirming the level of integration is a pre-condition for the NARDL
analysis, and hence, we have used the Augmented Dicky–Fuller (ADF) unit root test.
The resulting outcome attached in Table 2 reveals that green bond and clean energy are
stationary at a level, whereas economic policy uncertainty, oil prices, and bitcoins are first-
difference stationary at a 5 percent significance level. The result also indicates that none
of the variables are of the second order of integrations. The outcome of mix integration
further permits us to proceed with the asymmetric investigation.

Table 2. Augmented Dicky–Fuller unit root test.

Variables Level First Difference

Constant
Constant and

Trends
Constant

Constant and
Trends

EPU −2.56 (−2.085) −2.78 (−3.091) −4.18 (−2.812) * −3.76 (−3.182)

GB −0.19 (−2.182) * −1.08 (−2.813) −3.04 (−2.670) −3.98 (−2.053)

OIL −3.07 (−2.271) −3.17 (−3.114) −2.78 (−1.009) * −2.74 (−2.198)

CII 2.17 (−1.191) −1.04 (−2.031) * −3.09 (−2.765) −2.92 (−3.513)

BIT −1.12 (−2.610) −2.18 (−2.964) −2.18 (−2.228) −2.05 (−3.782) *
Note: * refers to a 5 percent level of significance.

Previous studies confront that conventional unit root tests are not equipped to handle
the issue of time break, which may result in biased estimates [41]. In the presence of
structural breaks, the Zivot and Andrews (ZA) test is an appropriate choice among the
researchers. Therefore, as financial data are more susceptible to structural breaks, we have
included the ZA test in our empirical analysis. In addition, the above test also reconfirms
the order of integration in our sample series. The outcome of the ZA test attached in
Table 3 depicts the presence of a structural break in our sample, and also reinstates that the
variable is integrated at I(0) and I(1), and that none of the variables are of the I(2) order of
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integration. The structural break in the explanatory and outcome variable is experienced
during 2020–2021. We can relate the probable reason for the structural break in the data
series to the COVID-19 outbreak. The study conducted by Taghizadeh-Hesary et al. [42] also
strengthens the above justification for the structural break in the data series. They reiterated
that COVID-19-induced recession reduced the investments in green bonds globally, and
thus, the exorbitant growth in green bond markets recorded a sudden fall.

Table 3. Zivot and Andrews test.

Variables Level First Difference

t-Statistic Time Break t-Statistic Time Break

EPU −3.1941 *** 2020 −6.7140 * 2020

GB −5.0674 * 2019 −4.9302 ** 2021

OIL −4.7123 2020 −3.2815 * 2020

CII 3.1980 * 2020 −5.1817 ** 2020

BIT −6.1853 ** 2020 −5.4461 ** 2021
Note: *, **, and *** refer to 10, 5, and 1 percent levels of significance.

The presence of time breaks in the data series further entails the usage of the BDS
test, which examines the nonlinear dependence. The result of the Broock et al., 1996 test
attached in Table 4 confirms the presence of non-linearity among the various dimensions of
the variables, by rejecting the null hypothesis of identical distribution. The confirmation of
non-linearity re-affirms the reason for employing the NARDL approach.

Table 4. BDS test results.

m = 2 m = 3 m = 4 m = 5 m = 6

EPU 0.2418 *** 0.1183 *** 0.2189 *** 0.3131 *** 0.3182 ***

GB 0.0854 ** 0.2491 *** 0.3531 *** −0.0124 *** 0.1983 **

OIL 0.1134 *** 0.1874 ** 0.2815 ** 0.2109 *** 0.4171 **

CII 0.0381 *** 0.2980 * 0.3817 *** 0.4763 ** 0.0167 **

BIT 0.1721 ** 0.1617 ** 0.0198 ** 0.4246 ** 0.3184 **
Note: *, **, and *** refer to 10, 5, and 1 percent levels of significance.

Previous studies depict that it is mandatory to choose the optimal lag length before
estimating cointegration between the variables. Following the Schwarz and Akaike infor-
mation criteria, we have taken lag 2 in our empirical model. Furthermore, earlier studies
advocate that we need to run the various diagnostic tests before estimating NARDL cointe-
gration. Therefore, we have included the following diagnostic test, which is similar to the
Ramsey RESET test to confirm misspecification, the Lagrange multiplier, and the Brush
Pagan test to ascertain serial correlation and heteroskedasticity. The resulting outcome of
all the diagnostic tests validates the stability and specification of the model. The result
further confirms no heteroskedasticity and serial correlation in the data. After validating
the diagnostic test, we proceed with the NARDL cointegration. The result showcased in
Table 5 highlights that the F-statistic value is greater than the critical value in all three
cases. This suggests that on the basis of the F-value, we can reject the null hypothesis of
no-cointegration among the variables, and conclude the existence of long-run cointegration
among the variables.
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Table 5. Bound test cointegration.

F-Statistic (7.24) * Lower Bound I(0) Upper Bound 1(1)

10% 2.04 3.97

5% 2.43 4.02

1% 2.91 4.53
Note: * Critical value at 5 percent level of significance; SIC criteria are used for optimum lag selection.

The long-run cointegration relationship between the variables encourages us to pro-
ceed with the estimation of the asymmetric relationship between EPU, bitcoin, and green
bonds. Tables 6 and 7 present the proceedings of the short-run and long-run NARDL
approaches. The short-run result exhibits a short-run asymmetric relationship between U.S.
economic policy uncertainty, bitcoins, and green bonds. The result unveils that an increase
in policy uncertainty reduces the performance of green bonds, whereas a decrease in policy
uncertainty enhances the performance of green bonds. A 1 percent increase (decrease) in
EPU decreases (increases) green bond performances by 0.07 and 0.15 percent. The short-run
NARDL result further reveals that positive shocks in bitcoin performances create a positive
impact on green bonds and vice versa. The coefficient value reveals that the impact of
bitcoins on green bonds is minimal (0.0092, 0.0103). In addition, in context to control
variables, the short-run outcome suggests that fluctuation in oil prices are insignificant in
determining the performances of green bonds, whereas in the short-run, clean energy has a
positive impact on the performance of green bonds. This indicates that with the increase
in the performance of clean energy, the performance of green bonds also increases. The
coefficient value shows that the performance of green bonds increases by 0.10 percent with
a 1 percent increase in the clean energy index. The difference in the magnitude and the
outcome of the Wald test also confirms the asymmetric relationship between bitcoins, EPU,
and green bonds in the short run.

Table 6. NARDL short-run estimates.

Dependent Variables: GB Coefficient St. Error t-Statistics

ΔEPUt
+ −0.0701 0.1629 2.1012 ***

ΔEPUt
− 0.1583 0.2810 3.3854 **

ΔBITt
+ 0.0092 0.1683 2.4190 **

ΔBITt
− 0.0103 0.4910 3.0119 ***

ΔOILt 0.0812 0.1843 4.1890

ΔCIIt 0.1019 0.0441 3.4014 **

Wald Test (Section B) F-Value Probability Value

EPUSR 14.321 0.000

BITSR 16.041 0.000
Note: **, and *** refer to 5 and 1 percent levels of significance. H0 denotes no short-run asymmetric relationship.

After confirming the short-run NARDL estimates, we proceed with the long-run
NARDL estimation. The resulting outcome of the long-run NARDL estimates presented
in Table 7 confirms an asymmetric relationship between economic policy uncertainty and
green bonds. The coefficient value reveals that positive shocks in EPU reduce the perfor-
mance of green bonds, whereas negative shocks increase the performance of green bonds.
In addition, the outcome also depicts that the long-run coefficient is much more powerful
than the short-run estimates. The economic policy uncertainty long-run estimate shows
that a 1 percent increase in EPU reduces the performance of green bonds by 0.22 percent.
The probable reason for such an outcome is because higher uncertainty curtails the free
flow of investments required for sustainable projects, which eventually hampers the market
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potential of industries associated with green products; hence, the performance of green
bonds falls. Based on the findings, we can also infer that green bonds are not an appropriate
hedging tool in the case of U.S. EPU. The empirical outcome is in line with the study
performed by Pham et al. [24], and contradicts the findings of Haq et al. [43]. The work
performed by Pham et al. [24] advocates that green bonds are severely affected by high
economic uncertainty. During high economic uncertainty, green bonds cannot be used as a
risk-hedging instrument; however, during a period of low economic uncertainty, they can
be considered as a risk-hedging option.

Table 7. NARDL long-run estimates.

Dependent Variables: GB Coefficient St. Error t-Statistics

ΔEPUt
+ −0.2201 0.1732 3.2198 **

ΔEPUt
− 0.1135 0.2298 2.0140 **

ΔBITt
+ 0.0201 0.3610 2.2139 ***

ΔBITt
− 0.0110 0.2917 4.1781 **

ΔOILt 0.0541 0.1253 3.2853 *

ΔCIIt 0.1310 0.0951 2.2109 **

Wald Test (Section B) F-Value Probability Value

EPULR 11.031 0.000

BITLR 12.261 0.010

Diagnostic Test (Section C)

RAMSEY RESET LM Test Brush–Pagan Test CUSUM Test

1.88 (0.510) 1.391 (0.833) 0.741 (0.419) Stable parameters
Note: *, **, and *** refer to 10, 5, and 1 percent levels of significance. H0 denotes no short-run asymmetric
relationship.

In context to the long-term asymmetric relation between green bonds and bitcoins, the
study highlights a bi-directional asymmetric relationship. It implies that positive shocks
in bitcoins increase the performance of green bonds and vice versa. A 1 percent increase
in bitcoins increases the performance of green bonds by 0.02 percent, and a 1 percent
decrease in bitcoins prices decreases green bonds by 0.01 percent. The coefficient value
reveals the minimum transmission effect between green bonds and bitcoins. The resulting
outcome reiterates the connectedness between modern financial investment instruments
and sustainable financial products. A reasonable justification for such a relationship exists
because both asset classes are the latest innovations in financial markets. Investors prefer
these investments options over conventional assets due to the higher returns and future
prospects. Therefore, based on such optimistic attitudes of investors, these instruments
refer to similar co-movements. We can also infer that in the case of bitcoins, the green
bond is not an appropriate hedging instrument. Besides, we can consider green bonds as a
risk-diversifying instrument. The resulting outcome is consistent with the study carried
out by Le et al. [15]. Our empirical findings also collaborate with the previous studies that
project a medium-risk transmission between innovative financial assets, and recommend
careful investment strategies for risk diversification and hedging [3].

The changes in the magnitudes and the probability values of the Wald test further
substantiate the long-run asymmetric relationship between EPU, bitcoins, and green bonds.

In addition, in reference to the energy-related variables, we can conclude that oil
prices and the clean energy index have a positive influence on green bond performance.
The result shows that a 1 percent increase (decrease) in oil prices increases (decreases)
the performance of green bonds by 0.05 percent. Likewise, a 1 percent increase (decrease)
in the clean energy index increases (decreases) green bond performance by 0.13 percent.
In addition, the coefficient value indicates that the influence of the clean energy index is
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more on green bonds as compared to the oil prices in the long run. The time series plot
of green bonds, the clean energy index, and oil prices reported in Figure 1 also reports a
similar association. One plausible reason for a similar movement between clean energy and
green bonds can be attributed to the fact that both of the assets’ class belongs to the same
category of investors, who are risk-averse and have a conservative profile. Thus, similar
investor profiles and risk aversion play a prominent role in the strong linkage between
green bonds and the clean energy index. The findings recommend that green bonds offer
noteworthy diversification benefits for investors both in energy stocks and oil-related
assets regardless of their investment horizon. Overall, our results suggest that although
green bonds represent a different asset class, they closely replicate the performance of oil
prices and clean energy stock. The empirical outcome of a positive linkage between green
bonds and oil prices also strengthens the theoretical viewpoint that an increase in oil prices
should increase the issuance of green bonds, as it necessitates the diversification of energy
sources, especially for oil-importing economies. Likewise, a decrease in oil prices might
have a decreasing influence on the issuance of green bonds, as there is less pressure to
encourage renewable energy resources, and a continued reliance on the available fossil
fuels. Lastly, we can infer that the study highlights a complementary relationship between
green bonds, oil prices, and the clean energy index. Our result outcome is in line with
the study conducted by Azhgaliyeva et al. [44], Lee et al. [45], and Ahmed et al. [46] who
projected that oil, the clean energy index, and green bond prices mutually affect each other
in such a way that any movements in oil prices and the clean energy index will lead to
changes in green bond prices and vice versa. Therefore, investors and portfolio managers
should consider this causal transmission mechanism when making portfolio and hedging
decisions. Furthermore, the diagnostic test also confirms the stability and reliability of the
long-run NARDL model.

Figure 1. Cont.
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Figure 1. Time series plot of explanatory and outcome variables.

5. Conclusions and Policy Recommendations

The concern for environmental sustainability, and the urge to generate adequate in-
vestments to finance sustainable environment goals, have attracted the interest of investors
towards green bonds. The growing investor interest in green bonds has motivated us to
examine how modern financial assets, policy uncertainty, oil prices, and the clean energy
index influence green bond performances. In the present study, we tried to answer whether
green bonds are a hedging tool or a risk-diversifying instrument among investors. Further-
more, we also evaluated the bidirectional relationship between green bonds, U.S. economic
policy uncertainty, and bitcoins from 1st December 2016 to 31st October 2021. To this end,
we utilized the Baker et al. [47] EPU index, S&P clean energy index, S&P green bond index,
daily oil prices, bitcoin prices, and nonlinear autoregressive distribution lag approach
recently developed by Shin et al. [37]. Another major contribution of this research is the
inclusion of structural break and nonlinearity tests to estimate the presence of nonlinearity
and structural breaks in the time series. Our empirical outcome confirms an asymmetric re-
lationship between green bonds, bitcoins, and U.S. economic policy uncertainty. According
to our findings, a positive shock in the U.S. EPU creates a negative influence on green bonds.
On the other side, a negative shock in the U.S. EPU helps to increase the performance
of green bonds. This implies that, similar to other conventional assets, green bonds are
also not immune to economic policy uncertainty. Fluctuations in monetary, fiscal, and
other economic policies have a consequential impact on green bonds. Hence, during high
economic policy uncertainty, green bonds cannot be considered as a hedging tool; moreover,
they account as risk-diversifying instruments. In addition to the above results, the study
also concludes an asymmetric relationship between bitcoins and green bonds. The positive
shocks of bitcoins exert a positive influence on green bonds and vice versa. These results
reiterate that green bonds are similar to other modern financial instruments, and report
similar movement. Thus, investors can use them as a risk-diversifying instrument, and
not as a hedging tool. In addition to the above results, our study also highlights a positive
relationship between oil prices, the clean energy index, and green bonds. It implies that
green bond performance increases with an increase in the clean energy index and oil prices.
Our findings support the theoretical explanation that an increase in oil prices necessitates
the expansion in the purchase of green bonds, as it necessitates the diversification of energy
sources, especially for oil-importing economies. Thus, based on these outcomes, we can
infer that we cannot consider green bonds as a different asset class, and they work more as
a substitute to conventional assets. Investors must include these shares in their portfolios
as risk-diversifying instruments.

Our empirical analysis offers several policy implications highlighting the diversifica-
tion and hedging properties of green bonds vis-à-vis bitcoins, clean energy, and economic
policy uncertainty. The asymmetric dynamic connectedness provides instructive sugges-
tions from a portfolio diversification standpoint. Based on the empirical outcome, we can
recommend that investors include green bonds in their portfolios as a risk-diversifying
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instrument. Aside from the environmental benefits, they offer significant diversification
benefits to investors against conventional stocks, cryptocurrencies, oil, and clean energy
stock in the long run. It is highlighted in the study that during high policy uncertainty,
investors should be more cautious when investing in green bonds, as in the long run, the
negative influence of EPU on green bonds is much more severe. Therefore, on the basis
of environmental benefits, investors should not presume that green bonds are immune
to economic policy uncertainty. Our study also recommends that investors looking to
contribute toward sustainable development include green bonds in their portfolios, as
green bonds are viable alternatives to clean energy or renewable energy stocks. In addition,
based on the findings, we can recommend that, similar to bitcoins, green bonds also offer
attractive returns. Green bonds are also more stable than bitcoins due to their long-term
goal of sustainability. Therefore, investors looking for moderate returns and long-term
growth can switch to green bonds over bitcoins. Likewise, in the short-run, investors can
hedge the volatility of oil prices by investing in green bonds, as in the short-run, there is no
significant linkage between oil prices and green bonds. To sum up, we can conclude that
over the years, green bonds have emerged as a powerful tool to combat climate change by
attracting funds required for sustainable projects. The diversification properties against
conventional and innovative market instruments also make green bonds an attractive
investment avenue, provided investors consider the vulnerability of green bonds to policy
uncertainty.

Our study provides insights into green bonds, an innovative financial asset that not
only enhances the transition to a low-carbon economy, but also generates the attention of
policymakers and investors to reduce risk and innovative transmission across different mar-
kets. The diversification benefit of green bonds develops policymakers’ confidence to scale
up the green bond market for environmental responsibility. Furthermore, understanding
the relationship between green bonds and other asset classes is of paramount importance
to global investors, especially ethical investors, since this information helps gain superior
risk-adjusted returns across the allocation of conventional assets to a portfolio. Finally,
the above empirical outcomes will also assist in understanding the long-run influence of
explanatory variables on green bonds, especially for emerging and developing countries.
Emerging countries, such as the BRICS countries, are the largest emitters of carbon emis-
sions. Therefore, to meet their ESG goals, these countries are resorting to environmentally
friendly measures; green bond financing is no exception. However, the green bond market
of these countries is in a transition process (except for China), and thus, considering the
immense investment and financing opportunities to meet the sustainable goal, the above
outcome will assist the investor in understanding how green bonds react to financial assets
and policy uncertainties. These outcomes will assist them in devising appropriate long-run
investment strategies.

6. Limitation and Future Direction of the Study

Despite the novelty and extensiveness, the current study only explores the asymmetric
relationship between green bonds, bitcoins, and U.S. economic policy uncertainty; hence,
it will be more beneficial for future studies to explore the connectiveness of green bonds
with other conventional financial indices. In addition, future studies can also investigate
the influence of economic policy uncertainty in European countries on green bond markets,
as these countries are more inclined toward sustainable development goals. The inclusion
of a wider sample of countries and variables will give a clearer picture to understand the
future of green bonds as risk-diversifying and hedging instruments.

Author Contributions: Conceptualization, A.A.S. and F.A.; methodology, A.A.S. and M.A.K.; for-
mal analysis, A.U. and M.A.K.; investigation, F.A. and M.A.K.; data curation, A.A.S. and A.U.;
writing—original draft preparation, J.P.R.-R. and A.A.S.; writing—review and editing, A.U. and
J.P.R.-R.; funding, F.A. and J.P.R.-R. All authors have read and agreed to the published version of
the manuscript.

107



Mathematics 2022, 10, 720

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can
be found here: S&Pgreenbond.com, policyuncertainty.com (accessed on 14 November 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ferrer, R.; Shahzad, S.J.H.; Soriano, P. Are green bonds a different asset class? Evidence from time-frequency connectedness
analysis. J. Clean. Prod. 2021, 292, 125988. [CrossRef]

2. Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy
transformation. Energy Strategy Rev. 2019, 24, 38–50. [CrossRef]

3. Bachelet, M.J.; Becchetti, L.; Manfredonia, S. The green bonds premium puzzle: The role of issuer characteristics and third-party
verification. Sustainability 2019, 11, 1098. [CrossRef]

4. Huynh, T.L.D.; Hille, E.; Nasir, M.A. Diversification in the age of the 4th industrial revolution: The role of artificial intelligence,
green bonds and cryptocurrencies. Technol. Forecast. Soc. Change 2020, 159, 120188. [CrossRef]

5. Reboredo, J.C.; Ugolini, A. Price connectedness between green bond and financial markets. Econ. Model. 2019, 88, 25–38.
[CrossRef]

6. MacAskill, S.; Roca, E.; Liu, B.; Stewart, R.; Sahin, O. Is there a green premium in the green bond market? Systematic literature
review revealing premium determinants. J. Clean. Prod. 2020, 280, 124491. [CrossRef]

7. Katsiampa, P.; Corbet, S.; Lucey, B. High frequency volatility co-movements in cryptocurrency markets. J. Int. Financ. Mark. Inst.
Money 2019, 62, 35–52. [CrossRef]

8. Gronwald, M. Is Bitcoin a Commodity? On price jumps, demand shocks, and certainty of supply. J. Int. Money Financ. 2019, 97,
86–92. [CrossRef]

9. White, R.; Marinakis, Y.; Islam, N.; Walsh, S. Is Bitcoin a currency, a technology-based product, or something else? Technol.
Forecast. Soc. Change 2020, 151, 119877. [CrossRef]

10. Demiralay, S.; Gencer, H.G.; Bayraci, S. How do Artificial Intelligence and Robotics Stocks co-move with traditional and alternative
assets in the age of the 4th industrial revolution? Implications and Insights for the COVID-19 period. Technol. Forecast. Soc. Chang.
2021, 171, 120989. [CrossRef]

11. Umar, M.; Su, C.-W.; Rizvi, S.K.A.; Shao, X.-F. Bitcoin: A safe haven asset and a winner amid political and economic uncertainties
in the US? Technol. Forecast. Soc. Chang. 2021, 167, 120680. [CrossRef]

12. Tang, D.Y.; Zhang, Y. Do shareholders benefit from green bonds? J. Corp. Financ. 2018, 61, 101427. [CrossRef]
13. Reboredo, J.C. Green bond and financial markets: Co-movement, diversification and price spillover effects. Energy Econ. 2018, 74,

38–50. [CrossRef]
14. Karim, S.; Naeem, M.A.; Mirza, N.; Paule-Vianez, J. Quantifying the hedge and safe-haven properties of bond markets for

cryptocurrency indices. J. Risk Financ. 2022. [CrossRef]
15. Le, T.-L.; Abakah, E.J.A.; Tiwari, A.K. Time and frequency domain connectedness and spill-over among fintech, green bonds

and cryptocurrencies in the age of the fourth industrial revolution. Technol. Forecast. Soc. Chang. 2020, 162, 120382. [CrossRef]
[PubMed]

16. Syed, A.A.; Kamal, M.A.; Tripathi, R. An empirical investigation of nuclear energy and environmental pollution nexus in India:
Fresh evidence using NARDL approach. Environ. Sci. Pollut. Res. 2021, 28, 54744–54755. [CrossRef] [PubMed]

17. Grobys, K.; Ahmed, S.; Sapkota, N. Technical trading rules in the cryptocurrency market. Financ. Res. Lett. 2019, 32, 101396.
[CrossRef]

18. Azhgaliyeva, D.; Kapoor, A.; Liu, Y. Green bonds for financing renewable energy and energy efficiency in South-East Asia: A
review of policies. J. Sustain. Financ. Investig. 2019, 10, 113–140. [CrossRef]

19. Hung, N.T. Green Bonds and Asset Classes: New Evidence from Time-varying Copula and Transfer Entropy Models. Glob. Bus.
Rev. 2021. [CrossRef]

20. Berger, T.; Czudaj, R.L. Commodity futures and a wavelet-based risk assessment. Phys. A Stat. Mech. Its Appl. 2020, 554, 124339.
[CrossRef]

21. Park, D.; Park, J.; Ryu, D. Volatility Spillovers between Equity and Green Bond Markets. Sustainability 2020, 12, 3722. [CrossRef]
22. Chiappini, H. Sustainable Finance and COVID-19 Pandemic: Weathering the Storm and Preventing a New One. In Contemporary

Issues in Sustainable Finance: Financial Products and Financial Institutions; Palgrave Macmillan: Cham, Switzerland, 2021; p. 285.
23. Naeem, M.A.; Nguyen, T.T.H.; Nepal, R.; Ngo, Q.T.; Taghizadeh–Hesary, F. Asymmetric relationship between green bonds and

commodities: Evidence from extreme quantile approach. Financ. Res. Lett. 2021, 43, 101983. [CrossRef]
24. Pham, L.; Nguyen, C.P. Asymmetric tail dependence between green bonds and other asset classes. Glob. Financ. J. 2021, 50, 100669.

[CrossRef]
25. Baulkaran, V. Stock market reaction to green bond issuance. J. Asset Manag. 2019, 20, 331–340. [CrossRef]

108



Mathematics 2022, 10, 720

26. Liu, N.; Liu, C.; Da, B.; Zhang, T.; Guan, F. Dependence and risk spillovers between green bonds and clean energy markets. J.
Clean. Prod. 2021, 279, 123595. [CrossRef]

27. Hammoudeh, S.; Ajmi, A.N.; Mokni, K. Relationship between green bonds and financial and environmental variables: A novel
time-varying causality. Energy Econ. 2020, 92, 104941. [CrossRef]

28. Jin, J.; Han, L.; Wu, L.; Zeng, H. The hedging effect of green bonds on carbon market risk. Int. Rev. Financ. Anal. 2020, 71, 101509.
[CrossRef]

29. Zerbib, O.D. The effect of pro-environmental preferences on bond prices: Evidence from green bonds. J. Bank. Financ. 2018, 98,
39–60. [CrossRef]

30. Pham, L. Is it risky to go green? A volatility analysis of the green bond market. J. Sustain. Financ. Investig. 2016, 6, 263–291.
[CrossRef]

31. Broadstock, D.C.; Cheng, L.T. Time-varying relation between black and green bond price benchmarks: Macroeconomic determi-
nants for the first decade. Financ. Res. Lett. 2019, 29, 17–22. [CrossRef]

32. Reboredo, J.C.; Ugolini, A.; Aiube, F.A.L. Network connectedness of green bonds and asset classes. Energy Econ. 2020, 86, 104629.
[CrossRef]

33. Naeem, M.A.; Adekoya, O.B.; Oliyide, J.A. Asymmetric spillovers between green bonds and commodities. J. Clean. Prod. 2021,
314, 128100. [CrossRef]

34. Dutta, A.; Bouri, E.; Noor, H. Climate bond, stock, gold, and oil markets: Dynamic correlations and hedging analyses during the
COVID-19 outbreak. Resour. Policy 2021, 74, 102265. [CrossRef] [PubMed]

35. Guo, D.; Zhou, P. Green bonds as hedging assets before and after COVID: A comparative study between the US and China.
Energy Econ. 2021, 104, 105696. [CrossRef]

36. Arif, M.; Naeem, M.A.; Farid, S.; Nepal, R.; Jamasb, T. Diversifier or More? Hedge and Safe Haven Properties of Green Bonds
during COVID-19. (February 8, 2021). CAMA Working Paper No 20/2021. Available online: http://dx.doi.org/10.2139/ssrn.37
82126 (accessed on 14 November 2021).

37. Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling asymmetric cointegration and dynamic multipliers in a non-linear ARDL
framework. In Festschrift in Honor of Peter Schmidt; Springer: New York, NY, USA, 2014; pp. 281–314.

38. Ullah, A.; Zhao, X.; Kamal, M.A.; Zheng, J. Environmental regulations and inward FDI in China: Fresh evidence from the
asymmetric autoregressive distributed lag approach. Int. J. Financ. Econ. 2020, 27, 1340–1356. [CrossRef]

39. Souto, F.; Calado, V.; Pereira, N., Jr. Lignin-based carbon fiber: A current overview. Mater. Res. Exp. 2018, 5, 072001. [CrossRef]
40. Hashmi, S.H.; Fan, H.; Fareed, Z.; Shahzad, F. Asymmetric nexus between urban agglomerations and environmental pollution in

top ten urban agglomerated countries using quantile methods. Environ. Sci. Pollut. Res. 2021, 28, 13404–13424. [CrossRef]
41. Shahbaz, M.; Zakaria, M.; Shahzad, S.J.H.; Mahalik, M.K. The energy consumption and economic growth nexus in top ten

energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach. Energy Econ. 2018, 71, 282–301.
[CrossRef]

42. Taghizadeh-Hesary, F.; Yoshino, N.; Phoumin, H. Analyzing the characteristics of green bond markets to facilitate green finance
in the post-COVID-19 world. Sustainability 2021, 13, 5719. [CrossRef]

43. Haq, I.U.; Chupradit, S.; Huo, C. Do green bonds act as a hedge or a safe haven against economic policy uncertainty? Evidence
from the USA and China. Int. J. Financ. Stud. 2021, 9, 40. [CrossRef]

44. Azhgaliyeva, D.; Mishra, R.; Kapsalyamova, Z. Oil Price Shocks and Green Bonds: A Longitudinal Multilevel Model; Asian Develop-
ment Bank Institute: Tokyo, Japan, 2021.

45. Lee, C.-C.; Lee, C.-C.; Li, Y.-Y. Oil price shocks, geopolitical risks, and green bond market dynamics. N. Am. J. Econ. Financ. 2021,
55, 101309. [CrossRef]

46. Ahmed, F.; Syed, A.A.; Kamal, M.A.; de las Nieves López-García, M.; Ramos-Requena, J.P.; Gupta, S. Assessing the Impact of
COVID-19 Pandemic on the Stock and Commodity Markets Performance and Sustainability: A Comparative Analysis of South
Asian Countries. Sustainability 2021, 13, 5669. [CrossRef]

47. Baker, S.R.; Bloom, N.; Davis, S.J. Measuring Economic Policy Uncertainty. Q. J. Econ. 2016, 131, 1593–1636. [CrossRef]

109





Citation: Mazorra, B.; Adan, V.;

Daza, V. Do Not Rug on Me:

Leveraging Machine Learning

Techniques for Automated Scam

Detection. Mathematics 2022, 10, 949.

https://doi.org/10.3390/

math10060949

Academic Editors: Jose Luis

Miralles-Quiros, David Carfi and

María Mar Miralles-Quirós

Received: 4 February 2022

Accepted: 12 March 2022

Published: 16 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Do Not Rug on Me: Leveraging Machine Learning Techniques
for Automated Scam Detection

Bruno Mazorra 1,†, Victor Adan 2,† and Vanesa Daza 1,*

1 Department of Information and Communications Technology, Pompeu Fabra University, Tanger Building,
08018 Barcelona, Spain; brunomazorra@gmail.com

2 Faculty of Economics and Business, Universitat de Barcelona, 08034 Barcelona, Spain;
victor8adan@gmail.com

* Correspondence: vanesa.daza@upf.edu
† These authors contributed equally to this work.

Abstract: Uniswap, as with other DEXs, has gained much attention this year because it is a non-
custodial and publicly verifiable exchange that allows users to trade digital assets without trusted
third parties. However, its simplicity and lack of regulation also make it easy to execute initial coin
offering scams by listing non-valuable tokens. This method of performing scams is known as rug
pull, a phenomenon that already exists in traditional finance but has become more relevant in DeFi.
Various projects have contributed to detecting rug pulls in EVM compatible chains. However, the
first longitudinal and academic step to detecting and characterizing scam tokens on Uniswap was
made. The authors collected all the transactions related to the Uniswap V2 exchange and proposed a
machine learning algorithm to label tokens as scams. However, the algorithm is only valuable for
detecting scams accurately after they have been executed. This paper increases their dataset by 20K
tokens and proposes a new methodology to label tokens as scams. After manually analyzing the data,
we devised a theoretical classification of different malicious maneuvers in the Uniswap protocol. We
propose various machine-learning-based algorithms with new, relevant features related to the token
propagation and smart contract heuristics to detect potential rug pulls before they occur. In general,
the models proposed achieved similar results. The best model obtained accuracy of 0.9936, recall
of 0.9540, and precision of 0.9838 in distinguishing non-malicious tokens from scams prior to the
malicious maneuver.

Keywords: ethereum; DeFi; Dex; scam detection

MSC: 91-08; 91G50

1. Introduction

Blockchain technology has proven to be enormously disruptive and empowering in
both the public and private sectors of computing applications. Blockchains are permis-
sionless and immutable digital ledgers that can be implemented and audited without a
trusted third party or central authority. At their basic level, they enable participants to
record transactions in a shared public ledger such that, under the regular operation of
the blockchain network, no transaction can be changed once committed. In 2008 [1], the
blockchain idea was combined with several other technologies to create Bitcoin: a peer-to-
peer electronic cash system protected through cryptographic mechanisms without needing
a central repository or authority. However, users and developers perceived that Bitcoin
had a limited use case due to the lack of complete programmability of the Bitcoin Virtual
Machine. For this reason, many developers worked on the launch of other chains such
as Ethereum, a Turing-complete blockchain that has evolved to include a wide range of
decentralized applications. Often, a decentralized application (DApp) will use one or more
“smart contracts” deployed on top of the blockchain.

Mathematics 2022, 10, 949. https://doi.org/10.3390/math10060949 https://www.mdpi.com/journal/mathematics111
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A smart contract is an executable code that runs on the blockchain to facilitate, execute,
and enforce the terms of an agreement between untrusted parties. The most popular
and exciting area where smart contracts have been crucial is decentralized finance (DeFi),
which makes financial products available on a publicly decentralized blockchain network.
DeFi could potentially offer a new pseudo-anonymous, non-custodial, and permissionless
financial architecture that allows open audit [2]. However, the Turing-complete blockchain
technology is not a silver bullet; the pseudo-anonymous and permissionless nature of the
blockchain allows attackers, scammers, and money launderers to act with impunity. In
parallel to the work carried out in [3], in this paper, we will focus on the thefts and scams
in the most popular tool of DeFi, the decentralized exchanges (DEX), the DeFi version
of market exchanges. The most common way in which scammers and malicious agents
execute a theft is through a rug pull. A rug pull of a project is a malicious operation or set
of operations in the cryptocurrency industry where the developers abandon the project and
take the investors’ funds as profits. As mentioned in [3], rug pulls are a popular maneuver
that usually happens in DEXs, particularly in Uniswap, where malicious agents develop an
ERC-20 token (Ethereum Request for Comments 20) and list it on a DEX and pair it with
a leading cryptocurrency such as USD or Ether. Once some uninformed investors swap
their leading coin for the token, the developers then remove all the currencies from the
liquidity pool, making the token untradable and with zero economic value. In order to
make the attack more profitable, the creators usually use different marketing tools such as
a fake website, telegram groups, and Discord chat rooms to cultivate confidence among
potential investors.

Our contribution: In this paper, we expand the rug pull dataset of the paper [3] to
27,588 tokens. To do this, we collected all Uniswap data until 3 September 2021 by directly
interacting with the Ethereum blockchain. Then, we labelled different tokens as scam,
malicious, and non-malicious tokens using various relevant features of the smart contract
and the liquidity pool state (see Sections 3.4 and 6). We manually observed different
ways of executing the rug pull, proposed a rug pull classification, and observed new,
complex forms of performing the theft. Moreover, we have observed a further usage of
the Uniswap protocol to send ETH (ETH is the native cryptocurrency of the Ethereum
network) unnoticed for most common tracking protocols. Finally, as we detail in Section 7,
we propose new features of tokens, liquidity pools, and the transaction graphs, and a new
framework to predict the probability of a liquidity pool becoming a rug pull or a scam in
the future.

In summary, in this work, we make the following contributions:

• We provide the most extensive labelled dataset of Uniswap rug pulls to date, including
the source code, the liquidity, the prices, the mint/burn, and transfer events. The
dataset includes all tokens from 4 May 2020 to 3 September 2021. In total, we labelled
26,957 tokens as scams/rug pulls and 631 tokens as non-malicious.

• We provide a theoretical classification of three different types of rug pulls, simple, sell,
and trap-door rug pulls, and provide tools to identify them.

• To the best of our knowledge, we are the first to design an accurate automated rug
pull detection to predict future rug pulls and scams using relevant features of the
pool’s state and the token distribution among the users. More specifically, we used
the Herfindahl–Hirschman Index and clustering transaction coefficient as heuristics to
measure the distribution of the token among the investors.

• We prove that the use of lock contracts such as Unicrypt by other scam detectors [4,5]
provides misleading data about the economic security of the token. More precisely,
we show that 90% of tokens using locking contracts tend to become a rug pull or a
malicious token eventually.

• We define two methods that use machine learning models to discriminate between
malicious and non-malicious tokens in different scenarios. In the first scenario, tokens
can be evaluated at any block prior to the malicious maneuver. In the second scenario,
all tokens are evaluated at a certain time after the creation of their respective pools.
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Specifically, we use a new machine learning algorithm based on attention mechanisms
for tabular data called FT-Transformer [6]. Our best model obtains accuracy of 0.9936,
recall of 0.9540, and precision of 0.9838 in distinguishing non-malicious tokens from
scams in the first scenario and accuracy of 0.992, recall of 0.784, and precision of 0.869
in the second scenario.

All these results can be replicated using the code and the pipeline in [7]. To use it, we
highly recommend access to a full or an archive Ethereum node.

Organization of the paper: In Section 2, we describe the state of the art of scam
detection in smart-contract-based blockchains. Section 3 gives an overview of DeFi and
DEXs and the main features needed for our analysis. Section 4 introduces a classification of
malicious Uniswap maneuvers, emphasizing the theoretical methodology behind different
rug pulls. In Section 5, we explain the methodology used to obtain all the data needed to
train our models and obtain our results. In Section 6, we explain the methodology used to
label the tokens listed in the Uniswap protocol as malicious and non-malicious and give an
overview of the results obtained by applying this methodology. Finally, Section 7 explains
the model used to detect future rug pulls in the early stages. We explain the two different
methodologies used and describe the accuracy, sensitivity, and F1 score of the models used.

2. Related Work

Due to the role of smart contracts in Blockchain Technology, some studies have ana-
lyzed the security and the automatic vulnerability detection within such contracts. Some
have focused on finding anomalies in the transaction graph [8–11] and clustering malicious
addresses [12–14]. For example, paper [8] uses the transaction graph to predict relevant
market price changes and [14] uses the transaction graph and fingerprints in the gas price
(https://ethereum.org/en/developers/docs/gas/, accessed on 15 February 2022) in order
to detect the addresses of the same user.

Other studies have focused on the vulnerabilities of smart contracts [15–18]; for
example, [16] is a static analysis framework for smart contracts that detects potential
vulnerabilities. In a similar direction, other research [19–23] examines the vulnerabilities of
DeFi protocols when interacting with rational agents.

Regarding blockchain scams, many studies have investigated phishing scams [24–27],
Ponzi Schemes [28–30], and automated scam detection [31–33].

More related to our work, various studies or projects [3–5] have addressed the detec-
tion of rug pulls or frauds working on top of DEX protocols. Two projects [4,5] use the
simple heuristics of holders, liquidity, and an automatic smart contract analysis, to give a
risk score of the token. Both projects share two major problems: the lack of longitudinal
studies to check their results, and the failure to detect non-malicious tokens accurately. On
the other hand, ref. [3] provided the only longitudinal and cross-sectional study to date.
The study provides a good introduction and overview of different rug pulls, as well as a
dataset of more than 10K scam tokens listed in Uniswap. However, the major flaw of the
paper is that the algorithm is trained to classify tokens and detect rug pulls only after they
have occurred; that is, the machine learning algorithm is trained in order to classify tokens,
but is not able to detect future rug pulls.

3. Preliminaries

3.1. Ethereum and Smart Contracts

Ethereum is a blockchain with a quasi-Turing-complete programming virtual machine
that compiles different programming languages such as Solidity [34]. One relevant goal
of Ethereum is for any party to develop arbitrary applications and scripts that execute
in blockchain through transactions, using the blockchain to synchronize their state in a
manner that is fully verifiable by any system participant. These scripts are usually referred
to as smart contracts. Participants and smart contracts in the Ethereum network transact
with the base currency known as Ether. Ether is the coin used to transact and to pay the
fees to the miners to transfer Ether or to interact with smart contracts. Accounts on the
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Ethereum network can be linked to programs in a virtual machine-based language called
the Ethereum Virtual Machine (EVM). More specifically, smart contracts are programs
that are deployed on the blockchain public ledger and are executed in transactions, which,
similarly to ACID-style database transactions [19], alter the state of the ledger atomically
(that is, either all the operations of the transaction are executed or all the operations are
reverted). In the moment of deploying a smart contract, a byte-code is sent in a transaction
to the ledger, and this contract is assigned a unique address of 42 hexadecimal characters
and its code is uploaded to the ledger. Once successfully created, a smart contract consists
of a contract address of 42 hexadecimal characters, a balance, a code defined in the contract
creation, and a state. Different users and parties can then change the state of a specific
contract by sending transactions invoking particular functions to a known contract address.
If the transaction holds the constraints hard-coded in the smart contract, this transaction
will trigger a set of actions established in the smart contract code as a result, such as
reading and modifying the contract state, interacting and executing other contracts, or
transferring Ether or tokens to other addresses. These actions can be coded to produce
events, a transaction log of the relevant information produced by the actions triggered.
These events are useful for developers and users to track the state of the smart contract.

The most popular and significant smart contracts of Ethereum are known as ERC-20
tokens, and emerged in 2015 as the technical standard used for all smart contracts on the
Ethereum blockchain for fungible token implementations. A token is fungible if any token
is exactly equal to any other token; no tokens have special rights or behavior associated
with them. This makes ERC-20 tokens useful for currency exchange, voting rights, staking,
and more. ERC-20 defines a common set of functions, of which only the signatures, but not
the implementations, are specified. Table 1 lists the common rules of ERC-20, including the
global variables and functions.

Table 1. ERC-20 standard signatures.

Requirements Type Signature

Required

Method

totalSupply()

balanceOf(address)

transfer(address,uint256)

approve(address,uint256)

allowance(address,address)

transferFrom(address,address,uint256)

Event
Transfer(address,address,uint256)

Approval(address,address,uint256)

Optional Method

name()

symbol()

decimals()

In addition to the base ERC-20 functionality, many tokens provide other functionali-
ties [17]. For instance, it is quite common to find contracts that can freeze accounts, transfer
ownership, pause contracts, or make complex interactions with other DeFi protocols. In
this study, we focused on three functionalities that involve the manipulation of tokens:
minting, pausable, and complex buy/sell operations in which tokens can be obtained from
or exchanged to Ether. Token minting corresponds to the creation of tokens, increasing the
total supply of tokens, and associating the newly minted tokens with a specific address.
Token burning is the reverse operation: tokens can be erased from an account and their
total supply decreases. Token sale works in terms of operations that allow an account to
buy tokens using Ether, or obtain Ether by selling tokens.
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In order to obtain those features, one can use compilers such as Slither [16], a static
analysis framework designed to provide human-readable information and insights into
smart contracts written in the Solidity programming language. Slither allows the applica-
tion of commonly used program analysis techniques such as dataflow and taint tracking.
Moreover, Slither detects various important features and vulnerabilities, such as minting,
reentrancy vulnerability, and pausable smart contracts.

3.2. Decentralized Exchanges

Decentralized exchanges (DEXs) [2] are a category of Decentralized Finance (DeFi)
protocol that allow the non-custodial exchange of digital assets. All trades are executed
on-chain and are, thus, publicly verifiable. The policy that matches buyers and sellers (or
traders and liquidity providers) is hard-coded in a smart contract. DEXs have different
mechanisms for price discovery: order book DEXs and automated market makers (AMM).
While order book exchanges have been broadly studied [35,36] and used in traditional
finance (TradFi), AMMs have been proven to be more useful in blockchain environments
due to their computational efficiency and simplicity [2]. In general, in an automated market
maker, each asset pair comprises a distinct pool or market. Liquidity providers supply
liquidity by adding both assets in proportion to the existing pool size. Traders exchange
assets by adding one asset to the pool and removing the other. The ratio of the two traded
assets is the average price paid, which is calculated according to a downward sloping,
convex relationship called constant function (CF). The convexity implies that the AMM is
liquidity-sensitive; that is, larger orders have a larger price impact. DEXs and, particularly
AMM, have become very popular in DeFi for several reasons:

1. they permit easy provision of liquidity for minor assets, i.e., any assets can be listed in
a DEX;

2. they allow any party to become a market maker;
3. they are censorship-resilient in highly volatile periods;
4. they can be audited by anyone.

However, these properties also have their drawbacks:

1. blockchain transactions are publicly visible in the mempool, which means that miners
or users can front-run trading transactions in DEXs [21,23], consistently leading to a
worse price for users;

2. every token can be listed to trade in AMM protocols, making uninformed users fall
into different scams or suboptimally performing projects [3].

With an AMM, the price of an asset is determined by the state (number of reserves)
and the number of assets that users are willing to trade. The most popular AMMs, such as
Uniswap (https://uniswap.org/whitepaper.pdf), Sushiswap (https://sushi.com/), Curve
(https://curve.fi/whitepaper), and Balancer (https://balancer.fi/whitepaper.pdf), all ac-
cessed on 15 February 2022, use different variations of the constant product formula; see
Section 3.3.

3.3. Uniswap

Uniswap, the most relevant decentralized exchange, was launched in November 2018
and, to date, more than 40,000 ERC-20 tokens are locked and tradable in the Uniswap
protocol, adding a total value of 7 billion USD. In this section, we will provide an overview
of the Uniswap V2 protocol; for more details, see [37,38].

Providing Liquidity: Each pair pool comprises a pair of tokens. Most frequently,
as we will show in Section 5, one of the currencies is wrapped Eth (Weth), the ERC-20
equivalent version of Ether. We will typically use Eth or Weth as the numéraire and will
denote it by E , and we will refer to the other ERC-20 tokens as token, denoted by C. A
party wishing to provide liquidity to a specific pool deposits both E and C into the pool. If
the pair pool has no tokens deposited yet, the deposit ratio can be arbitrarily chosen by the
liquidity provider. Otherwise, the deposit ratio of Eth to token is determined by the existing
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ratio in the pool, which implicitly defines the infinitesimal price of the token C with respect
to Eth E . A liquidity provider who makes such a deposit receives a proportional amount
of a liquidity provider token (LP-token). This third token is specific for each pool listed
in Uniswap and represents the share of the liquidity provided by the agent of the total
liquidity pool. As the users swap tokens in the pool, the value of the liquidity pool may
rise or fall in value. Liquidity providers can redeem their liquidity tokens at any time and
have their share of the liquidity pool paid out in equal value of Eth and tokens. Providing
liquidity is potentially profitable because each trade incurs a transaction fee of 0.3%, which
is redeposited into the pool. However, providing liquidity also has its own risks, leading in
some situations to temporary losses [39].

Price formula: The pricing protocol for tokens listed on Uniswap is given by a constant
product formula [38]. Suppose that a trader wants to buy an amount of Δy tokens, and
the current reserves of the pair pool of Eth and tokens are x and y, respectively. Then, the
amount Δx of Eth that they have to deposit is the unique solution to the following equation:

(x + (1 − f )Δx)(y − Δy) = xy,

where f is the fee of the protocol, currently sett to f = 0.3%. After the trade, the reserves of
the pair pool are updated in the following way: x ← x + Δx, y ← y − Δy. Analogously, a
trader may want to sell tokens for Eth. The name constant product market comes from the
fact that when the fee is set to zero, any trade must change in such a way that the reserves
lie in the curve xy = k for some positive real number k.

Uniswap Architecture: Uniswap V2 contracts are divided into two types of contracts,
the core and the periphery. This division allows the core contracts, which hold the assets and
therefore have to be secure, to be audited more easily. All the extra functionality required by
traders can then be provided by periphery contracts. The most relevant periphery contract
is the UniswapV2Router (https://etherscan.io/address/0x7a250d5630b4cf539739df2c5dacb
4c659f2488d, accessed on 15 February 2022). This contract allows the user to easily interact with
other core contracts in order to quote prices, create pair pools, swap tokens, and add/remove
liquidity. Two of the most fundamental core contracts are the UniswapV2Factory (https://
etherscan.io/address /0x5c69bee701ef814a2b6a3edd4b1652cb9cc5aa6f, accessed on 15 February
2022) and UniswapV2Pair (https://github.com /Uniswap/v2-core/blob/master/contracts/
UniswapV2Pair.sol, accessed on 15 February 2022). The UniswapV2Factory is responsible for
creating new pool pairs and recording all the pairs created. The UniswapV2Pair contract is
responsible for recording the current state of the pool, i.e., the balance of Eth E (or any other
token C′) and the token C, computing the price for trading and the number of tokens needed to
add liquidity. Moreover, the UniswapV2Pair contract has an ERC-20 structure and records the
ownership of the liquidity provided to the pool.

Uniswap Events: As we mentioned in Section 3.1, events track the state of different
variables of a smart contract. The Uniswap protocol contains five important events.

1. PairCreated: It is an event in the UniswapV2 Factory contract. This event emits each time
a new pair is created, and outputs the tuple (token0,token1, pair, block_creation) of
a new pool created.

2. Sync: It is an event in the UniswapV2 PairPool contract. This event emits each time
the reserves of the pool change. Every time the balance of the pool updates, the
smart contract outputs the tuple (reserves0,reserves1), which is the reserves of the
token0 and token1 after the update.

3. Mint,Burn & Transfer: These are events in the UniswapV2 PairPool contract that
tracks the state of the ERC-20 LP-token.

Locking contracts: The locking contracts are protocols that run on top of the Uniswap
protocol to provide a partial solution to rug pulls. These protocols are not part of the
main Uniswap protocol. In general, in the first phase of developing a token or project, the
liquidity provided to Uniswap is mostly added by the developers or creators of the project.
It is for this reason that, initially, the distribution of the LP tokens is managed by a small
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number of addresses, making potential investors less confident in the project. In order to
provide some trust to new investors, the developers lock the liquidity in a smart contract
(Unicrypt is the most popular DEX LP lock) or burn the LP token, making it unfeasible for
the developer to remove the liquidity for some time or indefinitely.

3.4. Token Propagation

We refer to token propagation as the set of metrics and tools to study the token
distribution and circulation of the token during its activity period. As we mentioned
previously, tokens are transferable. To send a token from an address A to an address B, the
sender A can either call the function transfer of the token’s smart contract or call other
smart contracts that inherit the functions approve and transferFrom. Either way, an ERC-
20 token emits the event transfer that contains the tuple (sender,receiver,amount). The
first means of transferring tokens is usually cheaper and is used to directly transfer the
tokens from one external ownable account (EOA) to another. The most common approach
is to deposit or withdraw tokens from centralized exchanges. The second method tends to
be used by different DeFi protocols such as DEXs, lending protocols, or voting systems to
allow smart contracts to exchange tokens on behalf of an EOA address.

3.4.1. Token Distribution

The set of transfers and transactions allows us to compute the balance of each address
for any snapshot. In order to study the distribution of the tokens, we propose using the
Herfindahl–Hirschman Index (HHI).

In a nutshell, the HHI is a popular measure of market concentration and is used
to calculate market competitiveness. The closer a market is to a monopoly, the higher
the market’s concentration (and the lower its competition). As we will explain later, this
measure will be useful in order to detect some potential rug pulls in Uniswap. Below, we
provide a mathematical definition of the HHI (Figure 1).

Definition 1. Let T be a token, A be the set of addresses, and Bt : A → R≥0 be the balance
mapping in some time frame t. The Herfindahl–Hirschman Index of the token T in time t is
defined as

HHIt := ∑a∈A Bt(a)2

(∑a∈A Bt(a))2 .

The HHI curve is defined as HHI : [tinit, tend] → [0, 1].

In the cryptocurrency ecosystem, decentralization and the proper distribution of re-
sources are important features. A smoother distribution of power implies less risk of break-
downs or malfunctioning produced by some participants misbehaving. In exchanges, a
similar pattern occurs. In general, the more centralized the capital or funds, the higher the
risk of market manipulations or liquidity removal, implying a loss of funds by retail investors.

From a game theory perspective, the more uniformly distributed the tokens and
the liquidity, the less likely it is that agents can manipulate the market or remove funds
in a short time period. For this reason, the lower the HHI, the better for the investors.
Clearly, one of the problems of the HHI is that it is easy to manipulate and is sensitive
to Sibyl attacks, since any adversary can create an arbitrary number of addresses and
transfer an arbitrary amount of tokens among the addresses on his control. However,
these manipulations incur some costs for the malicious agent, reducing the net profits of
the attack.

To mitigate some of the problems mentioned, we propose using deeper network
analysis tools. Recent studies used token transactions as a tool to forecast prices [40], detect
price anomalies [8], and detect possible malicious activities [9,11,24]. Each period will be
considered as a set of blocks with a separation of approximately one day between them.
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Figure 1. Ideal Herfindahl–Hirschman curve.

3.4.2. Transaction Graph Analysis

The set of transactions and transfers provides insightful information; however, this set
can be better studied by giving it the natural graph structure, interpreting each address as
a node and each transaction as a weighted edge.

Definition 2 (Transaction graph). Let G = (V, E, w) be a directed and weighted graph where V
is the set of unique addresses, E ⊆ V × V the transfers from one address to another, and w(tx) the
amount transacted by the transfer tx. Then, G = (G1, G2, . . . , Gn), i = 1, . . . , n + 1 is the time
series for which Gi represents the transaction graph generated during period i, i + 1.

This time series captures the relationship between the users at each period. This allows
us to study the circulation of the token between the different addresses.

Now, for each Gi = (Vi, Ei), we define the number of transactions Ntx = #Ei, the
number of unique addresses Naddr = #Vi, and the volume transacted as ∑e∈E w(e). Finally,
the average clustering coefficient is defined as ACCi =

1
n ∑u∈Vi

cu, where cu is the geometric
average of the subgraph edge weights [10], computed as follows:

cu =
1

deg(u)(deg(u)− 1) ∑
vw∈E

(ŵuvŵvwŵwu)
1/3

and ŵuv are normalized by the maximum weight in the network, i.e., ŵuv = wuv/ maxuv∈E
(w(uv)).

The average clustering coefficient is a measure of network segregation that captures the
connections of individual nodes and their neighbors. In our scenario, this calculation allows
us to quantify the interaction of each of the addresses with their neighboring addresses in a
given period of time.

In general, the lower the use case of the token, the lower the average cluster coefficient.
The main reason behind this heuristic is that a low diameter and use case usually imply
that the transaction graph is close to a star graph (Figure 2) with Pool being the center
node. Therefore, the average cluster coefficient is close to zero. However, users use non-
malicious tokens in a large range of protocols, causing the nodes of these protocols to have
a non-trivial cluster coefficient. Moreover, the daily average cluster coefficient is more
prone to bias due to the constant need to make transactions between Sybil nodes and the
impossibility of using batchTransfer operations, a type of operation that allows assets to
be transfered to different addresses in one transaction.
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Figure 2. Transaction graph of centralized token, with average clustering coefficient 0.

4. Malicious Uniswap Maneuvers

As we have mentioned before, a rug pull is one of the most popular means of scamming
in decentralized exchanges combined with a phishing attack. Different techniques are used
to trick new investors into buying malicious tokens. To understand the malicious tokens
traded in UniswapV2, we introduce a comprehensive classification by manually classifying
both malicious and non-malicious tokens. While this classification will provide a clear
overview of the tokens in Uniswap, it depends on non-observable variables, such as
intentionality and profits. Therefore, we will use a weaker classification for our machine
learning model. In this section, we will propose an ideal classification that will provide
insights into different rug pulls. Figure 3 provides an overview of the classification.

Malicious
Uniswap

Maneuvers

Rug Pulls
Pump-and-

dump Schemes
Money

Laundering Others

Simple
rug pull

Sell rug
pulls

SC Trap
doors

Figure 3. Malicious Uniswap maneuver classification.

The terms scam and malicious token are not being used identically by all researchers.
For example, papers such as [3] use the terms scam and under-performing token indis-
tinguishably, leading to inaccurate results and classifications. In the current paper, we
define a malicious token as one released by a developer or a group of developers with no in-
trinsic value or use case. This definition is similar to that used in paper [30]. Clearly,
this definition is ambiguous unless the value and use case are properly defined. In
general, this is a complex issue to address. For example, it is not clear that cryptocur-
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rencies such as Doge (https://dogecoin.com/, accessed on 15 February 2022) or Shiba
(https://www.shibatoken.com/, accessed on 15 February 2022) have any use case or intrin-
sic value, but they are among the most popular meme-coins. In our framework, we say
that a token has no intrinsic value or use case if the developer knows that the trading price
with respect to USD will eventually be zero. In other words, a tradable malicious token in
Uniswap induces a zero-sum game between the users and the developers, i.e., the incen-
tives for the investors are not aligned with those of the token creators. Therefore, the main
difference between malicious and non-malicious tokens is the developer’s intentionality
towards the token. One of the main problems of these definitions is that it is unfeasible to
distinguish between scam tokens and under-performing or abandoned projects without
accurate off-chain data. However, in general, the two terms do coincide. For these reasons,
in the following section, rather than trying to identify whether a token is malicious or
not, we will give a methodology for classifying and predicting under-performing and
inactive tokens.

Simple rug pulls are the most common and easy to identify rug pulls. Essentially, simple
rug pulls consist of three steps. The developer creates an ERC-20 token C and interacts with
UniswapV2 Factory to create a new trading pair with wETH or any other relevant token,
fixing the reserves to (x, y). Then, the investors execute the swap transaction on the trading
pair, exchanging ETH for C, and the reserves update to (x + Δx, y − Δy). Afterwards, the
developer activates the function removeLiquidity, obtaining x + Δx Ether and y − Δy of C.
Since the coin C has no intrinsic value, the net profit of the attacker is x + Δx − fees.

Sell rug pulls are also prevalent. However, they are not easy to identify and compute the
total gains of the attack. A simplification of the attack would be as follows. The developer
creates an ERC-20 token C, with total supply S, and a new trading pair with a relevant
token E . The developer adds a fraction f < S of the total supply of the C to the pool, having
complete control of the remaining coins S − f . Then, they wait for a sufficient number of
investors to execute the swap transaction on the trading pair. Afterwards, the developer
swaps f coins C for E . While this kind of rug pull is theoretically less profitable for the
attacker, if combined with more features, it can be even more profitable than the first one.
For example, in order to build confidence in investors, the attackers lock the liquidity in a
smart contract or burn it. This makes investors think that a simple rug pull cannot happen,
and that therefore it is a potentially profitable investment. In other words, the fact that the
liquidity is locked makes the market volume increase. Moreover, if the token is mintable,
the attacker can recover all the funds, minting as many coins as needed to recover nearly
all the tokens E in the trading pool.

Smart Contract Trap Door rug pulls are the most difficult to identify and prevent. There
are several reasons for this. The first is that the EVM is Turing-complete, and therefore it is
highly complex to identify all vector attacks; the second is that smart contracts do not exist
in isolation, i.e., smart contracts can work on top of other smart contracts. This means that
the economic security of some smart contracts depends on other smart contracts [19]. In the
following section, we will explain some of the most popular examples of these trap doors.

• Mintable is a property shared by many tokens, including non-malicious ones such as
USDT (https://tether.to/, accessed on 15 February 2022). In general, we say that a
token is mintable if it has a function that allows it to increase the supply of the token
with some pre-defined conditions. Usually, mintable tokens give rights to mint new
tokens to the developers to a fixed set of addresses. While this functionality can be a
useful feature in some contexts, it can also be used by malicious users to subtract all
the liquidity of the pull by minting as many tokens as needed.

• TransferFrom/Approve bad design is a property shared by some malicious tokens.
TransferFrom is the function that allows a smart contract to transfer assets on be-
half of an externally owned account. In the context of Uniswap, a proper design
of this function allows tokens to be sold. In other words, arbitrarily changing the
TransferFrom function makes the Uniswap Pool behave as a honeypot [18]. There are
different means of making this smart contract; however, the most popular example
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of this kind of scam is the use of tokens that contain the line code require(from ==

owner ‖‖ to == owner ‖‖ from == UNI) in the TransferFrom function.
• Composability vulnerabilities are the least common ones and the hardest to find. In

general, this type of rug pull is not made by the developers but by malicious agents
external to the project, who take advantage of the bad design of the smart contract
token interacting with Uniswap or other DEXs. Those that we have been able to
identify are the tokens with a price oracle vulnerability. Usually, we observed that
these tokens have Uniswap integrated in the source code of the smart contract in order
to reward holders. However, these rewards depend on the price. The higher the price,
the higher the reward. The fundamental problem of this mechanism is that the price is
defined through an oracle that, as shown in [22], is easy to manipulate with enough
funds or using a flash loan.

In general, these rug pulls are not exclusive and, in reality, different techniques are
applied in order to execute a rug pull. Moreover, these techniques are usually combined
with phishing attacks and pump-and-dump schemes.

Money laundering: In traditional finance, money laundering is the processing of money
obtained from illicit activities, to make it appear that it originated from a legitimate source.
In the Ethereum environment or cryptospace in general, we will define money laundering
as the process of sending some coins obtained from heists, honeypots, or hacks from an
address addr1 to another address addr2 privately. That is, observers cannot link these
two addresses through the transaction graph (Figure 4). In Ethereum, the most common
technique to obtain privacy is through mixers [14]. The most popular mixer is TornadoCash
(https://tornado.cash/, accessed on 15 February 2022), which implements a smart contract
that accepts transactions in Ether so that the amount can later be withdrawn with no
reference to the original transaction by means of using zero-knowledge proofs. Analyzing
rug pulls in the Uniswap protocol, we have found some users that use the Uniswap protocol
to send Ether to other addresses without being noticed by most common address clustering
algorithms. The operation consists of three main steps. First, the address addr2 creates
an unsellable token C and lists it in Uniswap with an arbitrary amount of liquidity. Then,
the address addr1 changes the Ether for C in the Uniswap pool. Finally, the address addr2
removes all the liquidity from the pool.

Figure 4. Transaction graph with depth = 10, of scammer addr = 0x775744. . . (https://etherscan.
io/ address/0x775744a529f73a754164e4fE740e44C7c5aa5942, accessed on 15 February 2022), where
black nodes are addresses directly connected, green nodes are transactions of type rug pull/money
laundering, and red nodes are centralized exchanges, such as Binance, Coinbase, and Huobi.
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A good example of this is given by the user that controls the address 0x775744. . . (https: //
etherscan.io/address/0x775744a529f73a754164e4fE740e44C7c5aa5942, accessed on 15 February
2022), in charge of creating more than 500 tokens in order to money launder, pump prices, and
obtain profits via executing trap door rug pulls.

Pump-and-dump schemes: In traditional finance, a pump-and-dump scheme is a ma-
licious maneuver that manipulates the market price of a stock, in which the executors
first purchase a financial asset at a certain price. They then persuade other speculative
non-informed investors to purchase, within a short period of time, thereby causing the
price to rise artificially (pump), and executors sell their assets at a profit. This typically
leads to a rapid price drop (dump), leaving the victims with a loss. In traditional markets,
pump-and-dump schemes have generally been illegal around the globe. However, in cryp-
tocurrencies, the lack of regulations and the nature of cryptospace allow these maneuvers
to happen easily and avoid sanctions. While these maneuvers have some intersection
points with the rug pull maneuver, the fundamental difference is that, in pump-and-dump
schemes, the targeted asset is not necessarily malicious, while, in rug pulls, it is.

Others: While malicious maneuvers are usually a combination of the ones mentioned
before, all of them have a characteristic in common: the victims are uninformed users.
However, there are other maneuvers in EVM-compatible blockchains that try to attack the
weaknesses of maximal extractable value (MEV) bots. A good example of this is Salmonella
(https://github.com/Defi-Cartel/salmonella, accessed on 15 February 2022), a bot that tries
to trick sandwich traders [23]. Salmonella creates a token with an approve/transferFrom

bad design. Afterwards, it creates a swap transaction that tricks MEV bots to sandwich it
with a buy and sell operation. At the moment that the transactions are executed, by design
of the Salmonella smart contract, the buy is accepted, but the sell transaction is reverted,
leaving a lot of cash in the pool for the Salmonella developer.

5. Data Collection

To download all the data needed to perform the labelling and the analysis, we used an
Infura archive node (https://infura.io/, accessed on 15 February 2022) and the Etherscan
API (https://etherscan.io/apis, accessed on 15 February 2022.) To obtain the state of the
Uniswap exchange and the tokens, we used the events produced by their respective smart
contracts. Any node connected to Ethereum JSON-RPC API can observe these events and
act accordingly. Events can also be indexed, so that the event history is searchable later.

1. Tokens listed: We obtained the history of all tokens listed in the Uniswap V2 from its
creation to 3 September 2021, asking for all events of the PairCreated type in the
UniswapV2Factory contract.

2. Smart contract and features: After obtaining all listed tokens in Uniswap, with the help
of Etherscan, we downloaded the transactions in which they were created, their smart
contract, their decimals, and their symbol. In order to speed up these calls, we used the
multicall contract (https://etherscan.io/address/0xb1f8e55c7f64d203c1400b9d8555
d050f94adf39, accessed on 15 February 2022) to batch these calls to the blockchain in a
single call. Afterwards, we used Slither [16] to obtain different features of the smart
contract, such as pausable and mintable.

3. Events: From all the pools of Uniswap obtained in Tokens listed, we collected all events
of type Sync, Mint, Burn and Transfer for each of the PairPools obtained. Finally,
we downloaded all Transfer events from each of the tokens.

There are several attributes that we could not download via API, such as the trans-
action creation of a contract and full market cap of a token; however, they are available
on certain block explorers such as Etherscan. In these cases, we have used scrapping
techniques to obtain this information. For example, some of the data that we have not been
able to find via the Etherscan API and Infura include the hash of the transaction in which
tokens were created and tokens that have had some type of external audit.
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6. Token Labelling

In this section, we provide the set of tools and the methodology we used in order
to label the tokens listed in the Uniswap protocol as malicious and non-malicious, and
provide the results obtained using this methodology. First, we define the maximum drop
and the recovery of token prices and liquidity time series. Then, we explain the distribution
of tokens that eventually became inactive or that became a rug pull. Finally, we explain
which methodology we used to accurately label tokens as non-malicious.

6.1. Ground Truth Labelling

One of the final goals of this study is to create an ML algorithm capable of detecting
malicious tokens. To do this, we have built a list of tokens tagged as malicious and non-
malicious. In this case, the label of the malicious tokens has been deduced from a series of
calculations defined below:

Definition 3. Let X = {Xt | t ∈ {0, . . . , S}}, be the time series representing the price or liquidity
in all the token activity up to the last sync event S. The maximum drop is defined as

MD =

∣∣∣∣Xl − Xh
Xh

∣∣∣∣,
where Xh = max{Xτ | τ ∈ {0, . . . , S}}, h = argmax{Xτ | τ ∈ {0, . . . , S}}, and Xl =
min{Xτ | τ ∈ {h, . . . , S}}.

The maximum drop is usually known in the literature as maximum drawdown and
is often used as a risk measure of portfolios (Figure 5). Informally, the maximum drop is
the largest drop from a peak to a trough. In our context, the maximum drop measures a
fall in the price or liquidity of the Uniswap-listed pools. In Section 4, we have seen that
the last step in a simple rug pull is the removal of all liquidity from the pool. Therefore, by
definition, in a simple rug pull, the MD of the liquidity or time series of a rug pull tends to
be approximately 1. However, the opposite implication is not true in general. While the
price maximum drawdown being close to 1 implies that the token is malicious, the MD of
liquidity being 1 does not necessarily imply some malicious behavior. For example, the
developer could have moved the funds to another pool or another DEX project. Moreover,
it could be possible that the market maker just wants to retire their funds and does not
have any more interest in providing liquidity. In general, if the token has a use case and
a market value, other agents will have incentives to take over as market makers. For this
reason, we introduce the recovery.

Definition 4. Let h, l ∈ [0, S] be the elements defined previously. Then, the recovery from Xτ to
XS is computed as

RC =
XS − Xl
Xh − Xl

.

Informally, the recovery is the largest pump from the bottom. This measure makes it
possible to check if the liquidity position and the price of a token have recovered after the
drop. Next, we will show how the data split, taking into account the maximum drawdown
and the recovery.

Figure 6a shows two examples of different rug pulls with no recovery and a maximum
drop of one in liquidity and price, respectively. Moreover, one can deduce that the rug pull
(a) is a simple rug pull while the rug pull (b) is a sell rug pull.
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Figure 5. Maximum drawdown and recovery of ETH price.

(a) (b)

(c) (d)

Figure 6. This figure shows the price and liquidity time series of two different types of rug pulls. The
two first pictures are associated with a simple rug pull with token 0x896a07e3788983ec52eaf0F9C
6F6E031464Ee2CC, while the second pair of pictures is associated with a sell rug pull with token
0x0A7e4D70e10b63FeF9F8dD19FbA3818d15154d2Fa. (a) Liquidity Fast Rug Pull; (b) Price Fast Rug
Pull; (c) Liquidity Rug Pull without Burn Events; (d) Price Rug Pull without Burn Events.

6.1.1. Malicious Token Labelling

Various features were computed, taking into account two properties: fluctuations
in price or liquidity, and activity. As explained above, the maximum drop computes the
greatest drop, either in liquidity or price, during the activity of the tokens.

Most malicious tokens, at some point, lose all their liquidity or their price drops to
zero. However, this does not necessarily indicate malicious behavior, as it may be due to a
simple fluctuation. Thus, we also computed the recovery. If a token loses all its liquidity or
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its price drops to zero and these levels are never recovered, then the probability that the
falls are due to malicious intent increases.

In addition, to ensure that these fluctuations are not due to simple market movement,
we compute the time elapsed since the last movement of the pool or token transfer to
13 September 2021. If more than one month has passed between the last movement or
transaction of the token so far, we consider that the token is inactive. Finally, we obtain a
list of inactive tokens, which have drops in price or liquidity of almost one hundred percent
and which do not recover. Our initial list contained 46,499 tokens. We discarded those that
did not have decimals defined in their contract (169). We then selected those that had a
pool connected to wETH (44,685) and downloaded their Sync, Mint, Burn and Transfer

events. The final list contains 37,891 tokens that have at least one pool connected with
wETH and more than 5 Sync events in all their activity. This last property is necessary to be
able to compute the heuristics used to label the tokens (Figure 7).

86.4%

13.6%

Inactive
Active

(a) Tokens activity

78.2%

8.6%

13.2% Fast Rug Pull

No Burn LP Events
Others

(b) Inactive tokens overview

Figure 7. Pie charts of features activity (a) and maximum drop (b) for the final list of 37,891 tokens.

As explained above, we first checked if the tokens were inactive, i.e, if they had not
registered Transfer or Sync events for more than 30 days (86.4% of the total). We also
computed the maximum liquidity drop and saw that the liquidity of 78.2% of the inactive
pools had been completely withdrawn at some point. Finally, we noticed that only 0.4% of
pools that at some point had lost all their liquidity recovered in all subsequent activity. This
made a total of 24,870 tokens that could be tagged as malicious since they were inactive
tokens that had, at some point, lost all their liquidity and had not recovered it again.

On the other hand, as shown in Figure 8, 8.6% of the inactive tokens did not have any
Burn LP events in all their activity period. However, 79.2% of this 8.6% had seen a price
drop of more than 90% at some point, and only 1.9% recovered their value after the drop.
This adds 2087 tokens that can be identified as malicious since they are inactive, with a
price MD of at least 90% and no recovery.

6.1.2. Non-Malicious Token Labelling

Unlike malicious tokens, non-malicious tokens cannot be chosen from a liquidity,
price, and activity analysis. Given a token, it may be considered malicious if there has
been at least one rug pull at some point in its activity. However, a token that has not had
any rug pull cannot be considered non-malicious, since it could experience a rug pull later
on. Therefore, we take advantage of audits carried out by external companies (Certik,
Quantstamp, Hacken, etc.). It is important to highlight that non-malicious tokens can have
drops in price and liquidity, too. Nevertheless, none of them simultaneously fulfil all three
properties that define malicious tokens, namely inactivity, a sharp drop in price or a sharp
drop in liquidity, and no recovery. Thus, a list of 674 tokens labelled as non-malicious has
been mined from different sources (https://coinmarketcap.com/view/defi/; https://www.
coingecko.com/en/categories/dec entralized-finance-defi; https://etherscan.io/tokens,
all accessed on 15 February 2022). We have also discarded those that are so large that it
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becomes computationally expensive to compute its features—for example, USDT or USDC.
The final list contains 631 tokens labelled as non-malicious.
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Figure 8. Price and liquidity recovery.

7. Scam Detection

We start from a list of tokens labelled as malicious or non-malicious, according to their
features; therefore, it can be considered a binary classification problem. In this classification,
we distinguish between the two types of tokens in the moments prior to the malicious
activity. This means that models are capable of detecting malicious tokens in the activity
prior to the rug pull. In this section, we present two methods: one considering all the
activity of a token, and the other considering just the first 24 h. Moreover, we detail the
different classifiers used in both methods and their hyperparameter optimization. Finally,
we present the results of each method.

7.1. Activity-Based Method

Our goal is to detect malicious tokens at an early stage, i.e., before users lose their
capital. Thus far, we have characterized two main types of rug pull: the ones that lose all
liquidity at some point and the ones where the price drops to almost zero. In this way,
for each token labelled as malicious, we have randomly chosen several evaluation points
prior to the maximum drop. Non-malicious tokens have been evaluated throughout their
activity. Then, for each evaluation point, we have calculated the token features up to that
block and used them to train two ML algorithms in order to find those patterns related to
malicious activity.

In this method, we choose n evaluation blocks at random. For example, Figure 9
shows the price and liquidity of one token labelled as malicious. In this token, liquidity
suddenly drops to zero and does not recover again. Therefore, we consider it to be a fast
rug pull. The three vertical lines leading up to the crash represent the three evaluation
points for that particular token. This means that we have calculated the variables of
that token up to those blocks. In this way, we have proceeded with each of the labelled
tokens. As explained in Section 7.4, the final metrics have been computed taking five
evaluation points on non-malicious tokens and one on malicious tokens. All evaluations
are prior to the malicious act; this implies that this method can later be used as a tool
to detect malicious tokens at any time. However, there are subtleties that can skew the
ML algorithms used. For example, tokens labelled as non-malicious tend to have a much
larger capitalization compared to malicious tokens; therefore, the algorithm could end
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up differentiating between “small” tokens and “large” tokens instead of malicious and
non-malicious. Although this differentiation is not a bad approach to this task, we think
that there may be other situations that require different approaches. In the next method,
we evaluate all tokens at the same temporal evaluation points in order to identify these
possible biases.

(a) (b)

Figure 9. Evaluation points in liquidity (a) and price (b) chosen for token 0x896a07e3788983ec
52eaf0F9C6F6E031464Ee2CC labeled as malicious.

7.2. 24-Hour Early Method

Rug pulls are profitable if their malicious act is done before they are discovered.
Therefore, most rug pulls (93%) occur in the first 24 h after the pool is created. This
encourages us to build a tool to detect malicious tokens at startup. For each labelled token,
we have computed its features in each of the 24 h after its pool creation. Then, we create a
different dataset for each hour in which the tokens are evaluated.

Note that, in this case, we are training the models for each hour; therefore, we only
have one evaluation point for each dataset. This also implies that we will have a smaller
dataset compared to the other method. In Appendix C, we present the different metrics
obtained for each of the hours. Moreover, we can measure the evolution of the predictive
power of the algorithm in the first hours of the token’s life. The fact that this method
requires a certain history to be able to give a prediction implies that the more history we
obtain, the better the prediction. This intuition is confirmed in Section 7.4.

7.3. Machine Learning and Hyperparameter Optimization

Gradient Boosting Decision Tree (GBDT) [41] models offer high performance in classi-
fication tasks with tabular data since they allow the definition of different cost functions,
do not require preprocessing for categorical features, and can handle missing data. Thus,
it seems clear to apply a GBDT model to our problem. In particular, we have used the
XGBoost [42] algorithm.

On the other hand, algorithms with Transformer architecture [43] are obtaining high
results in fields such as natural language processing [44,45], computer vision [46], etc. In
this work, we have used a model based on attention mechanisms called FT-Transformer [6]
in order to test a tabular algorithm with Transformer architecture in our problem.

Hyperparameters cannot be learned during the training process. Furthermore, they
have a significant impact on the performance of the model being trained. Thus, opti-
mizing them is crucial for better efficiency, faster convergence, and overall better results.
In this work, we have used Optuna [47], a software framework designed primarily for
hyperparameter optimization in ML algorithms.

Finally, in order to evaluate the impact of each variable, we have used the SHAP
(SHapley Additive exPlanations) Values [48]. SHAP uses game theory to explain the results
obtained in ML algorithms. In particular, it uses the classical Shapley values of game theory
and their related extensions.

127



Mathematics 2022, 10, 949

7.4. Results

The final list contains 27,588 labelled tokens, 631 labelled as non-malicious tokens and
26,957 labelled as malicious. Within the malicious, 24,870 are fast rug pulls and 2087 do not
contain LP Burn events. We see that there are far fewer non-malicious tokens than malicious
ones. There are many techniques (https://imbalanced-learn.org/stable/references/index.html,
accessed on 15 February 2022) to deal with this problem; however, none of them have been
applied in order to make the results more understandable. Instead, our data augmentation
technique consists of choosing more evaluation points for non-malicious tokens than for ma-
licious tokens. Now, given this dataset, we want to increase the performance in predicting
non-malicious tokens since it would be enough to label all of them as malicious to achieve an
accuracy rate of 97.7%. Therefore, we label the non-malicious tokens as 1 and the malicious
tokens as 0.

We have used the cross-validation method to validate both ML algorithms. Cross-
validation is a resampling method that uses different parts of the data to test and train a
model in different iterations. In particular, we have used the stratified version, in which
the partitions are selected so that the mean response value is approximately the same in
all partitions. In the case of binary classification, this means that each partition contains
roughly the same proportions of the two types of class labels. In the first method, we have
five evaluation points on non-malicious tokens and one on malicious tokens. Thus, in each
of the iterations, the tokens of the training and validation set are separated in a stratified
way with all their corresponding evaluations. This implies that the same token will never
have evaluations in the training and validation set at the same time, and all folds will have
roughly the same number of malicious tokens. Finally, we used five-fold cross-validation;
therefore, all the results will be presented as the mean and standard deviation of all folds.

We have used the xgboost (https://xgboost.readthedocs.io/en/stable/, accessed on
15 February 2022) Python library to apply the XGBoost model to each method. Specifically,
in each of the five folds, we have used the training partition to perform a hyperparameter
optimization (see Appendix B) to later predict the test of the corresponding fold. In the
case of FT-Transformer, we have used the default parameters of the rtdl (https://yandex-
research.github.io/rtdl/stable, accessed on 15 February 2022) Python library, since training
this model is too expensive to perform hyperparameter optimization.

7.4.1. Activity-Based Method Results

Both XGBoost and FT-Transformer obtain high metrics for accuracy, recall, precision,
and F1 score. However, XGBoost outperforms FT-Transformer in all metrics. As we
previously mentioned, unlike XGBoost, FT-Transformer hyperparameters have not been
optimized due to the high computational complexity required to train the model (Table 2).

Table 2. Accuracy, recall, precision and F1 score obtained in a 5-fold cross-validation for first method.

(a) XGBoost metrics.

XGBoost Mean Std

Accuracy 0.9936 0.0029
Recall 0.9540 0.0297

Precision 0.9838 0.0056
F1 score 0.9684 0.0151

(b) FT-Transformer metrics.

FT-Transformer Mean Std

Accuracy 0.9890 0.0036
Recall 0.9180 0.0363

Precision 0.9752 0.0109
F1 score 0.9454 0.0187
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To understand the impact of each feature in both models, we have computed the
SHAP values. In this work, we only focus on XGBoost; however, the process would be the
same for FT-Transformer. The SHAP values assign the importance of each feature for each
prediction. In general, the greater the impact of features on a prediction, the greater the
SHAP value in absolute values.

In Figure 10, we show, on the left side, the feature importance in terms of the SHAP
value applied in the first method, and, on the right, the impact on the final output. As
previously noted, most malicious tokens die in the first 24 h after the pool is created; by
contrast, non-malicious tokens have a longer life. This explains why features such as the
number of transactions or number of unique addresses have so much weight in the model.
Another important feature is the difference in blocks between the creation of the token and
the pool. We notice that a smaller block difference between token and pool creation implies
negative SHAP values, and negative SHAP values should correspond to malicious tokens.
This conclusion coincides with [3] since several of the malicious tokens take advantage of
social trends by copying the name of official tokens and take money from investors who
become confused. This technique implies speed in the creation of the token and the pool,
since otherwise the trend may be lost.

Figure 10. Impact of the variables in the XGBoost model applied to the first method. Mean of SHAP
values on the left and global impact of the features on the right. Images generated from the Python
SHAP library.

7.4.2. 24-Hour Early Method Results

The results of the second method must be understood from another perspective, since
the problem posed is not the same. As we said, the difference with respect to the first
method lies in the fact that, we evaluate all the tokens at a certain time after the creation of
their respective pools.

Figure 11 shows the evolution of the metrics for each of the ML algorithms used.
XGBoost obtains better metrics, except precision in some cases. We also notice that the
metrics of the first hour are lower than those of the last. This confirms the intuition that our
methods require a certain token history in order to work correctly and that models improve
as this history grows. Our algorithm obtains very high accuracy (see Appendix C) even
in the first few hours. However, the precision, recall and F1 score are lower than in the
activity-based method. In the best of cases, i.e., 20 h after the creation of the pool, our best
algorithm obtains a recall score of 0.789. This could indicate that while malicious tokens
are easily detectable in the first few hours, non-malicious tokens require more time. On
the other hand, the precision remains quite high compared to the recall. This implies that,
although the algorithms do not have a strong ability to detect non-malicious tokens, once
they predict that one of them is non-malicious, it is very likely to be the case.
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(a) (b)

Figure 11. Evolution of recall, precision, and F1 score for the XBGoost and FT-Transformer model in
the first 24 h after the creation of the token. (a) XGBoost; (b) FT-Transformer.

7.4.3. Unicrypt Results

As explained in Section 3.3, Unicrypt is a protocol that runs on top of the Uniswap
protocol with the purpose of being a partial solution to rug pulls. In this work, we have
empirically demonstrated that most of the tokens that use Unicrypt are malicious. First,
from our list of labelled tokens, 745 use Unicrypt, 725 are labelled as malicious, and 20
as non-malicious. Then, from the unlabelled tokens, we compute their features up to the
present time and use the activity-based method with the XGBoost algorithm to evaluate
them. Based on these predictions, of the 2544 of the non-labelled tokens using Unicrypt,
2211 are predicted to be malicious and 333 non-malicious.

8. Conclusions

In summary, first, we increased the dataset provided in [3] by 18K scam tokens, finding
new ways of actively executing the rug pulls. Then, we provided a theoretical classifica-
tion to understand the different ways of executing the scam, and through the process of
identifying rug pulls, we found new token smart contract vulnerabilities (composability
attacks) and new ways of money laundering. Based on this theoretical foundation, we
provided a methodology to find rug pulls that had already been executed. Not surpris-
ingly, we found that more than the 97.7% of the tokens labelled were rug pulls. Finally,
we defined two methods that use ML models to distinguish non-malicious tokens from
malicious ones. We also verified the high effectiveness of these models in both scenar-
ios. This implies that new malicious tokens can be detected prior to the malicious act,
and, on the other hand, tokens supported by a strong project can also be detected at
an early stage. The software to replicate the numerical results obtained is provided in
(https://github.com/T2Project/RugPullDetection, accessed on 15 February 2022).

9. Future Work

While our study has produced high precision and accuracy in detecting scams listed in
Uniswap, it carries some limitations. First, we believe that transferring learning techniques
will not obtain the same quality of results in DEXs of other chains such as PancakeSwap
(https://pancakeswap.finance, accessed on 15 February 2022) and QuickSwap (https:
//quickswap.exchange, accessed on 15 February 2022). Since the gasPrice is much lower,
the economic cost of simulating volume and transfers is almost negligible. Therefore, in
order to obtain similar results in other chains, we should repeat the same longitudinal work
and compute new features. In addition, as market trends may change, these algorithms
will have to be retrained in order to keep adding new information.

Second, even though our approach for studying the source code of the tokens with
Slither [16] was efficient and reliable for our purpose, it was not completely accurate, since
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it is a static analysis tool of the code and does not take into account complex composability
problems among other protocols. Therefore, to have more insights for a particular token,
we suggest using stronger testing tools and formal verification tools, such as the ones
provided in [19].

Third, even though the clustering coefficient proved to be useful, computing this
feature is highly time-consuming. Therefore, we propose using other graph analysis
methods, such as topology data analysis, to have a more efficient scam detection algorithm
and obtain even more reliable insights into the transaction graph.
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Appendix A. Table of Features

Table A1. This table describes each feature used in the XGBoost and FT-Transformer classifiers. Note
that apart from the Token group, all features are defined as time series.

Group Name Description

liq_curve HHI applied to LP tokens.
HHI index

tx_curve HHI applied to each token.

n_pool_syncs Total sync events.

weth Total weth.

price Price of token.
Pool

liquidity Total liquidity.

lp_transfer Total number of LP token transfers.

mints Total number of mint events.LP-Token
burns Total number of burn events.

n_transfers Total number of transfers.

n_unique_addresses Total number of unique addresses.Token transfers

clus_coeff Clustering coefficient.

difference_token_pool Number of blocks between token and
pool creation.

lock This feature is 1 if part of the liquidity is
locked and 0 otherwise.

yield This feature is 1 if there is yield farming
involved and 0 otherwise.

Token

burn This feature is 1 if part of the liquidity has
been burned and 0 otherwise.
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Appendix B. Hyperparameters

Table A2. List of hyperparameters optimized using the Optuna Python library.

Model Parameter Type Distribution Range

max_depth Int Uniform [3, 10]

subsample Float Uniform [0.5, 1]

learning_rate Float Uniform [1 × 10−5, 1]

gamma Float Log-Uniform [1 × 10−8, 1 × 102]

lambda Float Log-Uniform [1 × 10−8, 1 × 102]

XGBoost

alpha Float Log-Uniform [1 × 10−8, 1 × 102]

Appendix C. Second Method Results

XGBoost 24 h FT-Transformer 24 h

Hour Accuracy Sensitivity Precision F1_Score Hour Accuracy Sensitivity Precision F1_Score

1 0.990 0.714 0.810 0.758 1 0.989 0.682 0.791 0.729
2 0.991 0.747 0.838 0.789 2 0.988 0.702 0.778 0.734
3 0.991 0.755 0.837 0.793 3 0.990 0.707 0.824 0.755
4 0.992 0.762 0.856 0.806 4 0.987 0.707 0.751 0.724
5 0.992 0.773 0.849 0.809 5 0.990 0.683 0.840 0.749
6 0.992 0.771 0.860 0.813 6 0.989 0.706 0.805 0.749
7 0.992 0.763 0.851 0.804 7 0.990 0.717 0.812 0.760
8 0.991 0.758 0.841 0.797 8 0.990 0.710 0.821 0.759
9 0.991 0.762 0.845 0.801 9 0.990 0.722 0.815 0.763

10 0.992 0.779 0.845 0.810 10 0.990 0.712 0.828 0.762
11 0.992 0.773 0.849 0.808 11 0.990 0.717 0.811 0.759
12 0.992 0.786 0.852 0.816 12 0.989 0.722 0.795 0.755
13 0.992 0.778 0.859 0.815 13 0.989 0.718 0.775 0.745
14 0.992 0.786 0.854 0.817 14 0.989 0.746 0.789 0.764
15 0.992 0.776 0.851 0.811 15 0.990 0.750 0.793 0.770
16 0.992 0.773 0.848 0.808 16 0.990 0.734 0.812 0.767
17 0.992 0.779 0.852 0.813 17 0.991 0.757 0.820 0.784
18 0.992 0.784 0.864 0.821 18 0.991 0.746 0.826 0.782
19 0.992 0.782 0.858 0.818 19 0.991 0.765 0.829 0.792
20 0.992 0.789 0.853 0.819 20 0.990 0.720 0.838 0.765
21 0.992 0.779 0.863 0.818 21 0.991 0.760 0.834 0.793
22 0.992 0.784 0.867 0.823 22 0.991 0.747 0.834 0.786
23 0.992 0.784 0.869 0.824 23 0.991 0.746 0.843 0.786
24 0.992 0.787 0.860 0.821 24 0.991 0.758 0.819 0.785
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Abstract: Cryptocurrencies can be considered as mathematical money. As the most famous cryp-
tocurrency, the Bitcoin price forecasting model is one of the popular mathematical models in financial
technology because of its large price fluctuations and complexity. This paper proposes a novel
ensemble deep learning model to predict Bitcoin’s next 30 min prices by using price data, technical
indicators and sentiment indexes, which integrates two kinds of neural networks, long short-term
memory (LSTM) and gate recurrent unit (GRU), with stacking ensemble technique to improve the
accuracy of decision. Because of the real-time updates of comments on social media, this paper uses
social media texts instead of news websites as the source data of public opinion. It is processed by lin-
guistic statistical method to form the sentiment indexes. Meanwhile, as a financial market forecasting
model, the model selects the technical indicators as input as well. Real data from September 2017 to
January 2021 is used to train and evaluate the model. The experimental results show that the near-real
time prediction has a better performance, with a mean absolute error (MAE) 88.74% better than the
daily prediction. The purpose of this work is to explain our solution and show that the ensemble
method has better performance and can better help investors in making the right investment decision
than other traditional models.

Keywords: cryptocurrencies; forecasting model; financial technology; ensemble learning; Bitcoin
price prediction

MSC: 68Uxx; 68U35

1. Introduction

Bitcoin is the first and the most important cryptocurrency. It is a ledger application
based on blockchain, cryptography and peer-to-peer technology. In the field of financial
technology, many mathematical models are developed to forecast Bitcoin’s future price.
These models can provide investment advice for quantitative investors.

Similar to other assets, such as stocks [1,2] and commodities, Bitcoin price forecasts are
a series of continuous predictions because Bitcoin prices also change over time. One major
difference between Bitcoin and a stock is that stocks trade only at certain times on weekdays,
but the Bitcoin market typically operates around the clock, and investors can buy or sell
Bitcoin all day, which may result in Bitcoin price fluctuations at unpredictable times. We can
learn the stock price prediction method and use it to predict the price of Bitcoin. To address
the time series problem of Bitcoin prices, two types of models have mainly been used in
previous works: traditional time series models, such as autoregressive comprehensive
moving average (ARIMA) [3] and generalized autoregressive conditional heterovariance
(GARCH) [4]. Another is machine learning models, such as random forest (RF), and deep
learning networks, such as recurrent neural networks (RNN), long short-term memory
(LSTM), and gated recurrent units (GRU) [5].
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According to a study by the American Institute of Economic Research (AIER), globally
influential news and sentiment can drive large fluctuations in the price of Bitcoin [6]. Some
research uses sentiment analysis based on Twitter data to predict the price of Bitcoin [5,7]. It
is effective to explore people’s reactions to Bitcoin from tweets since Twitter is an incredibly
rich source of information about how people are feeling about a given topic. Previous
research methods of sentiment analysis based on Bitcoin-related comments can be divided
into two types: dictionary-based methods, such as valence aware dictionary and sentiment
reasoner (VADER) [8], and machine learning-based methods, such as RF [7], hard voting
classifiers [5], deep learning-based classifiers [9], and other specific analyzers [10].

However, the current research still has some limitations: Firstly, in most previous
works, only historical data are used as the input data of the prediction model, which ignores
that prices are also affected by unexpected factors in price data. Secondly, sentiment analysis
simply categorizes every tweet or comment as positive, neutral or negative and then creates
a simple statistic, which loses much emotional detail and is not conducive to learning how
different levels of sentiment affect prices. Thirdly, a single model such as ARIMA, LSTM,
or GRU, is employed by most previous methods. To solve the existing limitations, this
paper proposed following aspects: Firstly, considering the financial nature of Bitcoin, we
added the most commonly used technical indicators in traditional finance as predicting
input. Secondly, instead of using a simple statistical method to categorize the mood trend
of tweets, we used a linguistic method to process tweets about Bitcoin, which proved it
brought a higher accuracy. Thirdly, to improve the prediction results, a stacking ensemble
Deep Learning, combining LSTM and GRU, was trained to forecast the price of the next
time interval. The major steps are as follows. We proposed to use linguistic sentiment
analysis to categorize tweets and a stacking ensemble deep learning model to forecast the
price of the next time interval based on sentiment trend of tweets and technical indicators.
It combines multiple models to add a bias to the final prediction result, which will be offset
by the variance of the neural network, making the prediction of the model less sensitive to
the details of training data.

The rest of this paper is organized as follows: Section 2 shows the previous related
work; Section 3 shows the whole methodology of this paper, including the data acquisition
step, data preprocessing step and stacking ensemble prediction model; Section 4 lists all the
experimental results and compares our method with common methods; Section 5 draws
the conclusion of this paper.

2. Related Work

Many previous studies can mainly be divided into three main models and three main
data categories. The three models include: (1) statistical methods; (2) machine learning;
(3) ensemble learning. The three main data types are as follows: (1) price data, including
opening, highest, lowest, closing, trading volume, number of trades, quote asst volume
and other data; (2) technical indicators based on price data and indicators derived from
market technical statistics, such as moving average convergence divergence (MACD) and
relative strength index on balance volume (RSI OBV) statistics; (3) sentiment indicators
refer to the indicators calculated after natural language processing of text data from social
media during a certain time period; (4) other related data, such as blcokchain hashrate,
number of online nodes, active address, Google trends and other financial indexes.

Early research into the price prediction of bitcoin were mostly based on the statistical
method. P. Katsiampa et al. [11] used price data, and certain types of GARCH models
have been used to calculate the daily closing prices between 18 July 2010 and 1 October
2016. As a result of the paper, AR-CGARCH is the best model. S. Roy et al. [4] used
price data and performed ARIMA, autoregressive (AR), and moving average (MA) models
on the time series dataset. The results of this paper used the ARIMA model to predict
the price of Bitcoin with an accuracy rate of 90.31%. Therefore, it can be said that the
best results are obtained using ARIMA. Ayaz et al. [12] used price data and only used
the ARIMA algorithm to predict the price of Bitcoin. To find the lowest mean square
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error (MSE), the researchers used different fitting functions in the ARIMA algorithm and
found that the lowest MSE = 170,962.195. Because it avoids the use of scaling functions, this
result is different from those of other studies. In a recent paper [13], it proposed a general
method of user behavior analysis and knowledge pattern extraction based on social network
analysis. This method extracts relevant information from the blockchain transaction data in
a specified period, carries out statistics and builds an ego network, and extracts important
information such as active transaction addresses and different user groups. Using Ethereum
blockchain data from 2017–2018, the method was proved to be able to identify bubble
speculators. In 2021, R. K. Jana et al. [14] proposed a regression framework based on
differential evolution to predict bitcoin. They first decomposed the original sequence into
granular linear and nonlinear components using maximum overlapping discrete wavelet
transform, and then fitted polynomial regression with interaction (PRI) and support vector
regression (SVR) on both linear and nonlinear components to obtain the component-
wise projections.Apart from the previously introduced statistical methods, Jong-Min Kim
et al. [15] proposed to use linear and nonlinear error correction models to predict bitcoin log
returns, and compared with neural network, ARIMA and other methods. The experiment
was verified with the price data from 1 January 2019 to 27 August 2021. The results showed
that the error correction model was the best in all evaluation indexes, and MAE was as
low as 1.84, while other comparison models were all above 3.2. They also ran a Granger
causality test on 14 cryptocurrencies.

Over the past few decades, major advances in machine learning have allowed more
accurate methods to spread across the field of quantitative finance. A Bayesian neural net-
work model that uses blockchain information to predict the price of Bitcoin was proposed
by Jang et al. in 2017 [16]. Specifically, they use price data, blockchain data, economic
indices, currency exchange rates and more. Four methods were trained for price prediction
using price data, including logistic regression, support vector machine, RNN and ARIMA
models in [17]. As far as the prediction accuracy of these four methods is concerned,
ARIMA only has a 53% return on the next day’s price prediction, and the long-term perfor-
mance is poor, such as using the price prediction of the last few days to predict the price
of the next 5–7 days. The RNN consistently obtains an approximate accuracy of 50% for
up to 6 days. It does not violate the assumptions of the logistic regression-based model; it
can accurately classify only when there is a separable hyperplane with 47% accuracy. The
support vector machine has an accuracy rate of 48%. Shen et al. [18] used price data for
training the GARCH, simple moving average (SMA) and RNN (GRU) models. The GRU
model performs better than the SMA model with the lowest root MSE (RMSE) and mean
absolute error (MAE) ratios. Some researchers used price data, technical indicators and
a complex neural network called CNN-LSTM [19]. Compared with a single CNN and a
single LSTM model, the results are slightly improved, with the MAE reaching 209.89 and
the RMSE reaching 258.31. The stochastic neural network model has also been used to
predict the price of cryptocurrency [20]. The model introduces layer-wise randomness into
the observed neural network feature activation to simulate market fluctuations. It used
market transaction data, blockchain data, and Twitter and Google Trends data. A latest
research on cryptocurrencies by Wołk [21] used Google Trends and Twitter to predict the
price of cryptocurrencies by distinctive multimodal scheme. However, they used textual
data mechanically, unlike our article, which considers linguistic approaches to textual data.
In 2021, Jagannath et al. [22] proposed a Bitcoin price prediction method using data features
of users, miners, and exchanges. They also propose jSO adaptive deep neural network
optimization algorithm to speed up the training process. The model uses Bitcoin data from
2016 to 2020 for training and testing. The MAE value of LSTM is 2.90, while the MAE value
of this method is 1.89, thus effectively reducing the MAE value. A novel price prediction
model WT-CATCN was proposed in 2021 by Haizhou Guo et al. [23]. It utilizes Wavelet
Transform (WT) and Casual Multi-Head Attention (CA) Temporal Convolutional Network
(TCN) to predict cryptocurrency prices. The data input of the model is divided into three
categories: blockchain transaction information, exchange information, and Google Trends.
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Considering how widespread cryptocurrency information has become, Loginova proposed
a bitcoin price direction prediction method in 2021 that combined the sentiment analysis
model JST and TS-LDA [24]. They used market trading data as well as text data from
Reddit, CryptoCompare and Bitcointalk. The model was verified by using the data from 20
February 2017 to 6 April 2019. The accuracy of the model using JST and TS-LDA was 57%,
which was improved compared with the same model that was not used. For Dogecoin,
which has a huge market cap, Sashank Sridhar et al. proposed a multi-head attention-based
encoder–decoder model for a transformer model to predict its price [25]. It is verified using
real DOGE hourly transaction data from 5 July 2019 to 28 April 2021, with an R-squared
value of 0.8616 for the model. A more complex hybrid framework, DL-GuesS, was pro-
posed by Raj Parekh et al. for cryptocurrency price prediction [26]. This framework takes
into account its interdependence with other cryptocurrencies and market sentiment. The
model uses transaction data from different cryptocurrencies as input, along with Twitter
text. The model was validated using Bitcoin Cash data from March 2021 to April 2021, and
the model MSE value was as low as 0.0011.

Ensemble learning is also a popular method for forecasting. Using this approach,
researchers have been able to improve the accuracy and stability of predictions. Ahmed
Ibrahim [27] used price and sentiment data to predict Bitcoin prices by constructing an
XGBoost-Composite integrated model. A paper using price data to compare different
ensemble models, including averaging, bagging, and stacking was written in 2020 [28].
Among them, stacking has the best performance, but the blending ensemble was not used
in the paper. Other researchers used price data and integrated LSTM models after training
for different lengths of time (days, hours, and minutes) to obtain an integrated model that
was superior to each individual model [29].

Mainly inspired by Li and Pan [1], whose workflow is shown in Figure 1, this paper
designs a series of methods to avoid these current limitations: (1) more data sources are
used as input; (2) linguistic methods are used for sentiment analysis to replace the simple
statistical methods used in most papers; (3) one kind of ensemble model is used for training
and prediction.

Figure 1. The workflow for forecasting stock using news data in Li [1].

However, due to different data sources, the methods proposed in this paper are
somewhat different from those proposed in Li [1]. The differences of specific data sources
are as follows:

1. There is less news about digital currency than stocks, which means there are not
many reports about digital currency in the news, which is not enough to support our
real-time prediction, so we chose social media.

2. Digital currencies are traded 24 h a day and comments on Twitter are live 24 h a day,
so real-time comments on Twitter can be very effective for price forecasting.

138



Mathematics 2022, 10, 1307

3. Li’s work uses two data sources, price and news, to predict price. Considering
the financial properties of digital currency, we use price, comments on Twitter and
technical indicators to predict price.

4. Data preprocessing methods are also different: The text data used in Li [1], namely
news data, does not need to be cleaned and can be scored directly by VADER. More-
over, the Twitter data we obtain from crawlers is very dirty, such as pictures, links,
etc., which need to be cleaned.

3. Methodology

In this paper, sentiment indicators are combined with Bitcoin price data to predict the
future price. The proposed model workflow is shown in Figure 2. In step 1, Twitter data
are collected and processed to form a structured Twitter date, which is in CSV format. In
step 2, the structured Twitter date is sent to the sentiment calculation program. The SGSBI
and SGSDI are calculated and attached to the market sentiment indicator data. In step 3,
Bitcoin price data are collected and processed with TA-LIB to generate price data with
technical indicators. In step 4, two parts of the data are merged by time indexes to evaluate
the models.

Figure 2. The proposed model workflow for Bitcoin price prediction using tweets.

3.1. Bitcoin Price Data

Bitcoin price data is provided by Binance.com. To help Bitcoin researchers, Binance
collects and processes all their trading data and provides them at http://data.binance.
vision/, accessed on 2 November 2021. The data is stored in CSV format. In this paper, the
data from September 2017 to January 2021 are selected as the data for model learning and
prediction in most cases.

3.2. Twitter Data
3.2.1. Data Collection

Twint is used to collect tweets from Twitter in this paper. Twint, which is the abbrevia-
tion for the Twitter Intelligence Tool, is an open source Twitter scraper that searches and
scrapes tweets; it is different from the Twitter Search API. Since no authentication is needed,
Twint is an out-of-the-box tool for anyone who needs to scrape tweets. Additionally, Twint
has no rate limitations, while the Twitter Search API limits a search to the last 3200 tweets.
Certainly, Twint supports almost all the functions of the Twitter Search API, which allows
users to request specific queries and allows filtering based on language, region, geographic
location, and time range. CSV, JSON, and txt are supported output file formats.
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BTC and Bitcoin are the keywords to search for in the related tweets. Instead of #, $
is used for the hashtag symbol to avoid a very large number of unwanted tweets. From
September 2017 to January 2021, more than 7 million tweets were collected.

3.2.2. Sentiment Score Calculation

This paper uses VADER for the basic sentiment score calculation. VADER is an open
source Python library for sentiment analysis based on dictionaries and rules. The library
is used out-of-the-box and does not need to use text data for training. Compared with
traditional sentiment analysis methods, VADER has many advantages: (1) it is suitable for
multiple text types, such as social media; (2) training data are not required; and (3) due to
fast speeds and streaming data, it can be used online.

VADER not only calculates the positive, neutral and negative scores about the input
statement but also provides a compound score, which is a numeric value between −1 and
+1. In general, a compound score from −1 to −0.05 is considered negative, a score from
0.05 to 1 is considered positive, and the rest is considered neural. However, in this way,
information of the numeric score is filtered out. For example, the compound scores 0.12 and
0.86 are both considered positive emotions, but the degree of positive emotion expressed is
not the same.

3.2.3. Small Granularity Sentiment Indicators

According to previous work [30], the sentiment indexes constructed by Antweiler and
Frank have been revised. Specifically, this work took advantage of VADER and the work of
Antweiler and Frank and then proposed small granular sentiment indicators, as shown in
Equations (1)–(3).

SGSBIt =
∑ CPos

t − ∑ CNeg
t

∑ CPos
t + ∑ CNeg

t

(1)

SGSDIt =
∑i∈D(t)(Ci − SGSBIt)2

∑ CPos
t + ∑ CNeg

t

(2)

Comtt = MPos
t + MNeu

t + MNeg
t (3)

3.3. Technical Indicator Calculation

The technical indicators in Table 1, including MACD, SMA, OBV, RSI and MFI, are
calculated based on the raw price data through a Python library called TA-Lib. The input
data to the TA-Lib function are transferred to the ndarray type by numpy in advance.
These technical indicators are chosen because of their popularity in the field of traditional
financial market price forecasting.

The simple moving average (SMA) is a simple technical analysis tool that smooths
out price data by creating a constantly updated average price. A simple moving average
helps cut down the amount of noise on a price chart. The stop and reverse (SAR) indicator
is used by traders to determine trend direction and potential reversals in price. Moving
average convergence divergence (MACD) is a trend-following momentum indicator that
shows the relationship between two moving averages of a security’s price. The MACD
is calculated by subtracting the 26-period exponential moving average (EMA) from the
12-period EMA. The relative strength index (RSI) is a momentum indicator used in technical
analysis that measures the magnitude of recent price changes to evaluate overbought or
oversold conditions in the price of a stock or other asset. The Money Flow Index (MFI) is a
technical oscillator that uses price and volume data for identifying overbought or oversold
signals in an asset. On-balance volume (OBV) is a technical trading momentum indicator
that uses volume flow to predict changes in stock price.
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Table 1. Technical indicators.

Technical Indicators Type Description

MACD: Moving Average Con-
vergence/Divergence

Momentum Indicator Func-
tions

MACD = EMA12-period − EMA26-period

SMA: Simple Moving Average Overlap Studies Functions SMA = P1+P2+. . . +Pn
n

Pn = the price of asset at period n
n = the number of total periods

SAR: Stop And Reverse Overlap Studies Functions SARup = SARprior + AFprior(EPprior − SARprior)
SARdown = SARprior − AFprior(SARprior − EPprior)

OBV: On Balance Volume Volume Indicators i f priceclose
t > priceclose

t−1 :
OBV = OBVprior + Day’s VolumeCurrent
i f priceclose

t = priceclose
t−1 :

OBV = OBVprior(+0)
i f priceclose

t < priceclose
t−1 :

OBV = OBVprior − Day’s VolumeCurrent

RSI: Relative Strength Index Momentum Indicator Func-
tions

RSI = 100 − 100
1+RS

RS = Average gain
Average loss

MFI: Money Flow Index Momentum Indicator Func-
tions

MFI = 100 − 100
1+Money Ratio

MoneyRatio =
Money f lowpositive

14-period

Money f lownegative
14-period

3.4. Stacking Ensemble Neural Network
3.4.1. Long Short-Term Memory

Long short-term memory (LSTM) is a neural network with the ability to remember
long-term and short-term information. It was first proposed by Hochreiter and Schmid-
hub [31] in 1997 and then led to the rise of deep learning in 2012. After undergoing several
generations of development, a relatively systematic and complete framework has been
formed for the LSTM model.

LSTM is a special kind of RNN model that is designed to solve the problem of gradient
dispersion of the RNN model. In traditional RNNs, back propagation through time (BPTT)
is used in the training algorithm. When the training time is relatively long, the residual error
that needs to be returned will decrease exponentially, which leads to slow network weight
updating; hence, it cannot reflect the long-term memory effect of RNNs [32]. Therefore, a
storage unit is needed to store memory, and the architecture of the LSTM model prevents
the problem of long-term dependence.

In an ordinary RNN, which is shown in Figure 3, the structure of the repeating module
is very simple; for example, there is only one tanh layer. LSTM also has a kind of chain
structure, which is shown in Figure 4, but its repeating module structure is different. There
are four neural network layers in the repeating module of LSTM, and the interactions
between them are very special.

The LSTM model can store important past information into the cell state and forget
unimportant information. Its memory cell consists of three parts: the forget gate, the input
gate, and the output gate.
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Figure 3. RNN basic architecture [33].

Figure 4. LSTM basic architecture [33].

The first step of LSTM is to decide what information will be abandoned from the cell
state. The decision is controlled by a sigmoid layer called the “forget gate”. ft (the forget
gate) observes ht−1 (the output vector) and xt (the input vector) and outputs a number
between 0∼1 for each element in the cell state Ct−1, where 1 means “keep this information
completely” and 0 means “discard this information completely”.

ft = σ(Wf xXt + Wf hht−1 + b f ) (4)

The next step is to decide which new information will be stored in the cell state. First,
there is a sigmoid layer called the “input gate” it that determines what information should
be updated. Next, a tanh layer creates a new candidate value c̃t, which may be added to
the cell state.

it = σ(Wixxt + Wihht−1 + bi) (5)

c̃t = σ(Wcxxt + Wchht−1 + bc) (6)

Then, the old cell state Ct−1 updates to the new state ct.

ct = ftct−1 + it c̃t (7)

In the end, the final output ot is supposed to be decided, and it is based on the current
cell state after some filtering. Initially, an output gate in the sigmoid layer is established to
determine which parts of the cell will be output. Then, the cell state is multiplied by the
output gate after passing through the tanh layer, and the output value is between −1∼1.

ot = σ(Woxxt + Wohht−1 + bo) (8)

ht = ottanh(ct) (9)

3.4.2. Gate Recurrent Unit

Proposed by Cho et al. in 2014 [34], Gate recurrent unit (GRU), another special kind of
RNN, was proposed to solve the vanishing gradient problem of RNNs through an update
gate and a reset gate. In addition to eliminating the RNN vanishing gradient problem, the
two gates can store relevant information in the memory cell and pass the values to the next
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steps of the network. The performances of LSTM and GRU are equally matched under
different test conditions. However, there are some differences between GRU and LSTM:
first, GRU does not have a separate memory cell; computationally, GRU is more efficient
than LSTM because of the lack of memory units; and when dealing with small datasets,
GRU is more suitable.

3.4.3. Stacking Ensemble

As a primary paradigm of machine learning, ensemble learning has achieved notable
success in a vast range of real-world applications. One model that fits an entire training
dataset may not be enough to meet all expectations. Many previous studies have shown that
ensemble learning, which combines multiple individual learning algorithms, outperforms
a single learning algorithm in both accuracy and robustness [35].

Thomas G. Dietterich pointed out the reasons for the better performance of ensemble
learning from statistical, computational, and representational aspects [36]. There are various
types of ensemble learning models, such as bagging, boosting, stacking, and blending [36].
A deep learning network, a special kind of artificial neural network, consists of multiple
processing layers. With the ability to mine information from the plethora of historical data
and effectively use that data for future predictions, deep learning has become a popular
choice for problem solving [37]. However, deep learning methods have one obvious
disadvantage: deep learning models are very sensitive to initial conditions. According
to [38], it is computationally expensive to train deep learning neural networks, and even if a
vast amount of time is spent to train a model, the trained network with the best performance
on validation sets may not perform best on new test data. Generally, we could regard
deep learning neural networks as models with low bias but high variances. Combining
the advantages of both deep learning and ensemble learning, ensemble deep models have
been proposed [39]. Specifically, ensemble deep models combine the predictions from
multiple good but different deep learning models. Good means that the performance of
each deep learning neural network used is relatively good. Different means that each
of the deep learning neural networks has different prediction errors. As stated in [40],
different models usually have different errors on a test set, and this has resulted in studies
on model averaging. The combination of ensemble models and deep learning models adds
bias that in turn cancels out the variance in a single training neural network model. The
bias–variance tradeoff is illustrated in the graph in Figure 5.

Figure 5. The bias–variance tradeoff [41].
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In addition to reducing the variance in the prediction, an ensemble deep model can
also produce better predictions than any single best model according to the ensemble model
properties described above.

Our model consists of two levels, shown in Figure 6: level 1 contains five LSTM
and five GRU, which are called sub-models; and level 2 is a single-layer model called the
meta-model. We choose LSTM and GRU as sub-models due to their good performance in
the field of price prediction. Based on a large number of experiments, we set the number
of sub-models in the first layer to five in order to achieve a balance between accuracy and
computation. The steps of the model are as follows:

Figure 6. Stacking ensemble architecture.

1. Data split: Divide the data used into training set and test set as shown in the step (1).
2. Sub-model training: Further divide the training set into five subsets, defined as train1

to train5. Then define the five LSTM instances as LSTM1 to LSTM5, and the five GRU
instances as GRU1 to GRU5.

• Train sub models: Train LSTM1 on train1 to train4, and then predict the result as
Prediction1 on data subset train5. Train LSTM2 on train1, train3 to train5, and
then predict the result as Prediction2 on data subset train4, and so on. The same
action was repeated in the five instances of GRU as shown in the step (2);

• Generate training features for meta-model: Combine prediction1-5 of LSTM
successively and therefore obtain the feature meta-train1 for training meta-
model. The same action was repeated on GRU to obtain the feature meta-train2
for training meta-model as shown in the step (3);

• Create new prediction features for layer two: Make predictions respectively
on LSTM1-5 to obtain five prediction results by using the test set. Average
these results to yield a feature meta-test1 for prediction. The same operation
was repeated on GRU to obtain another feature for prediction as shown in the
step (4).
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3. Meta-model training and predicting: Concatenate meta-train1 and meta-train2 for
training the meta-model. Predict the result by using meta-model through the merging
of meta-test1 and meta-test2 as shown in the step (5).

Let n be sequence length and d be representation Dimension, and the LSTM/GRU of
this model is a single layer. The time complexity of the stacking ensemble is estimated to
be O(n · d2).

3.5. Evaluation Metrics

Many metrics have been used to compare the performance of price trend and price
movement direction predictions of different models. To comprehensively evaluate the per-
formance of the models, four widely used indicators are adopted in the experiments:
the MSE, the MAE, the mean absolute percentage error (MAPE), and the symmetric
MAPE (sMAPE).

MAE =
1
N

N

∑
i=1

|yi − ŷi| (10)

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (11)

MAPE =
100%

N

N

∑
i=1

|yi − ŷi
yi

| (12)

sMAPE =
200%

N

N

∑
i=1

|yi − ŷi|
|yi|+ |ŷi| (13)

where N is the number of predictions, y is the actual value and ŷ is the predicted value of
the model.

The movement direction accuracy (MDA) is an evaluation metric of price movement
direction.

MDA =
Number o f Correct Movement Predictions
Total Number o f Movement Predictions

(14)

4. Result Evaluation

In this section, the proposed method is used to forecast the Bitcoin closing price. We
implement the proposed method using the TensorFlow deep learning framework on TITAN
RTXs through the Python programming language. Many trials of simulation experiments
are conducted to determine the parameters of the model.

The comparative experiments in this paper are divided into two categories: the first is
to compare the performance of different models; the other is to compare the performance
of different categories of data combinations in the forecast.

As shown in Figure 7, the whole data is divided into two parts: training data, and
testing data. The training data is from 24 September 2017 to 11 April 2020, which is used to
train the weak learners in level 1; the testing data is from 12 April 2020 to 30 November
2020, which is used to make the final prediction.

A rolling window with 5 steps is used in these financial time series data, as shown
in Figure 8. In addition, technical indicators and sentiment indicators are calculated as
data sources. Table 2 lists the input features for Bitcoin price prediction from the price data
sector, technical indicator sector, and sentiment indicator sector.
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Figure 7. Schematic diagram of the split dataset.

Figure 8. Schematic diagram of the time step window.

Table 2. Features and indicators used in the model.

Price Data Technical Indicators Sentiment Indicators

Open MACD CA
High RSI SGSBI
Low MFI SGSDI
Close OBV
Volume SMA
Quote Asset Volume
Number of Trades
Taker Buy Base Asset Volume
Taker Buy Quote Asset Volume

The training duration of models are show in Table 3. Stacking ensemble model training
on 30 min interval data only costs about 27 min because of the GPU.

Table 3. Time complexity and training duration of models.

Model
Training Duration (Unit Second) Training Duration (Unit Second)

(30-min Interval) (1-Day Interval)

LSTM 169 26
GRU 154 16
AE 266 33
BE 322 48
SE 1576 99
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The first part is the experiments that compare the different models. The compared
models include not only neural network models, such as LSTM and GRU, but also average
ensemble (AE) and blending ensemble (BE). Both LSTM and GRU are single models that
can be used for prediction. They are essential components of our ensemble models. The
average ensemble model takes the average of the sum of the LSTM and GRU results
as the final result. The MAE, MSE, MAPE, sMAPE, and MDA are used to evaluate the
performance results of the proposed method and other models. All our results are shown
in the Tables 4 and 5.

Table 4. Results of the 30 min intervals.

Price Data Price Data Price Data Price Data
Technical Indicators Sentiment Indicators Technical Indicators

Metric Model Sentiment Indicators

MAE LSTM 312.011825 374.999918 330.661338 412.554188
GRU 268.728793 415.652382 419.355862 389.918484
AE 168.247519 262.082363 172.195087 271.482766
SE 155.933634 130.200637 107.650458 88.740831
BE 156.373369 210.544757 103.320151 188.535888

MSE LSTM 108,823.7765 153,829.8002 121,815.3616 184,271.5385
GRU 105,638.9155 186,314.9489 190,762.1637 165,616.467
AE 48,081.01116 88,879.84332 50,461.551 97,194.7086
SE 60,092.71839 36,440.18042 27,892.31183 30,067.70409
BE 43,270.7287 59,769.57549 31,385.89856 58,818.47366

MAPE LSTM 2.969864 3.592678 3.151563 3.966612
GRU 2.361411 4.008615 4.0305 3.740284
AE 1.483315 2.387113 1.533826 2.457365
SE 1.341431 1.103336 0.951954 0.69763
BE 1.376177 1.932841 0.849297 1.651553

sMAPE LSTM 2.922733 3.524576 3.098525 3.884225
GRU 2.393608 3.924512 3.945382 3.666772
AE 1.497166 2.418689 1.548865 2.490969
SE 1.356031 1.101221 0.958526 0.70038
BE 1.388322 1.954286 0.855509 1.66841

MDA LSTM 51.591618 51.618368 51.654035 51.645118
GRU 48.773963 51.627285 51.716451 51.618368
AE 49.166295 48.72938 49.121712 48.747214
SE 49.478377 51.457869 50.325457 52.144449
BE 49.193045 48.952296 50.50379 48.970129

As shown in Table 6, the proposed stacking ensemble model has amazing performance
in the MAE, MSE, and MDA evaluation categories. In MAPE evaluation, the proposed
stacking ensemble model is the best compared with the other models on the 30 min time
interval, but on the 1-day time interval, the blending ensemble obtains the best MDA score.
In general, the proposed stacking ensemble model outperforms other models in most cases.

Figure 9 shows the results of the different models on the testing data. Figure 10 is
part of Figure 9, the result of stacking ensemble model is marked ‘X’ and the actual value
is marked ‘+’ to illustrate performance of models. The graph visually illustrates that the
prediction results of the stacking ensemble model are closer to the actual closing price, and
the shape of the prediction line is more identical to the shape of the actual line.
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Table 5. Results of 1-day intervals.

Price Data Price Data Price Data Price Data
Technical Indicators Sentiment Indicators Technical Indicators

Metric Model Sentiment Indicators

MAE LSTM 848.14 886.21 710.44 724.19
GRU 853.15 547.62 612.19 854.11
AE 446.10 489.68 454.78 902.65
SE 396.47 382.03 443.76 492.90
BE 395.78 359.08 461.73 521.10

MSE LSTM 1,269,660.00 1,295,847.00 1,019,135.00 1,047,841.00
GRU 1,118,205.00 428,177.66 525,815.54 911,621.13
AE 439,481.27 514,340.94 421,803.11 1,010,587.00
SE 432,656.06 253,018.37 412,734.49 392,582.15
BE 334,694.01 276,185.43 357,483.50 430,310.16

MAPE LSTM 7.05 7.45 5.81 5.92
GRU 7.27 5.26 5.87 8.34
AE 3.73 4.09 3.91 8.82
SE 3.25 3.53 3.73 4.49
BE 3.37 3.18 4.25 4.89

sMAPE LSTM 7.42 7.83 6.06 6.17
GRU 7.62 5.10 5.67 7.93
AE 3.80 4.19 3.91 8.36
SE 3.29 3.46 3.75 4.40
BE 3.44 3.16 4.16 4.74

MDA LSTM 47.21 46.35 48.50 48.93
GRU 42.49 57.94 59.23 57.51
AE 54.51 49.36 57.08 58.37
SE 54.08 59.23 56.65 57.51
BE 52.79 57.08 59.66 59.23

Figure 9. Price + technical indicator + sentiment indicator prediction results of the models.
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Table 6. Comparison of the metrics obtained by the models.

Interval 30 min 1 Day

Price Data Price Data
Technical Indicators Technical Indicators

Metric Model Sentiment Indicators Sentiment Indicators

MAE LSTM 412.554188 724.19
GRU 389.918484 854.11
AE 271.482766 902.65
SE 88.740831 492.90
BE 188.535888 521.10

MSE LSTM 184,271.5385 1,047,841.00
GRU 165,616.467 911,621.13
AE 97,194.7086 1,010,587.00
SE 30,067.70409 392,582.15
BE 58,818.47366 430,310.16

MAPE LSTM 3.966612 5.92
GRU 3.740284 8.34
AE 2.457365 8.82
SE 0.69763 4.49
BE 1.651553 4.89

sMAPE LSTM 3.884225 6.17
GRU 3.666772 7.93
AE 2.490969 8.36
SE 0.70038 4.40
BE 1.66841 4.74

MDA LSTM 51.645118 48.93
GRU 51.618368 57.51
AE 48.747214 58.37
SE 52.144449 57.51
BE 48.970129 59.23

Note: the underlined numbers indicate the best performance out of the different models.

Figure 10. Price + technical indicator + sentiment indicator prediction results of the models from 11
November 2020 to 13 November 2020.
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The second part is the comparative experiments with different data combinations. It
is shown in Table 7 that, for different time intervals, the data combinations that produce
optimal performance are not necessarily the same. Specifically, when the data interval
is one day, the combination of price data and technical indicators has better prediction
performance than other data combinations since it obtains the best value of 492.90 among
all the 1-day interval data combinations. The combination of price data, technical indicators,
and sentiment indicators outperforms the other combinations for time intervals of 30 min,
since it obtains the best value of 88.74 among all data combinations for 30-min intervals.

Table 7. Comparison of the MAE obtained by the stacking ensemble with different intervals.

Price Data Price Data Price Data Price Data
Technical Indicators Sentiment Indicators Technical Indicators

Interval Sentiment Indicators

1 day 396.47 382.03 443.76 492.90
30 min 155.933634 130.200637 107.650458 88.740831

Note: The underlined numbers indicate the best performance out of the different data combinations.

Experiments show that, in most cases, the combination of price data, technical indica-
tors and sentiment indicators outperforms the data combination in previous articles. We
can conclude that the richness of the input data used in the prediction can improve the
accuracy of the prediction.

Furthermore, other metrics are shown in Figure 11. The better the prediction obtained
with the data combination, the redder the values are; the worse the prediction obtained with
the data combination, the whiter its values are. The combination of price data and technical
indicators achieves the best performance for 1-day intervals, and the combination of price
data, technical indicators and sentiment indicators achieves the best performance for 30 min
intervals. From our experiments, we found that price data with technical indicators are
better for short-term predictions, such as predicting the next-day prices; however, price data
with sentiment indicators are better for extra-short-term predictions, such as predicting the
prices in the next 30 min.

Figure 11. Stacking ensemble model prediction results of the data combinations.

Figure 12 shows the testing data with different data combinations. Figure 13 is part of
Figure 12, the result of using all data is marked ‘X’ and the actual value is marked ‘+’ to illus-
trate performance of data combinations. The graph visually illustrates that, for the stacking
ensemble model, the accuracy of the prediction results depends on whether it is used for
short-term prediction or long-term prediction. Generally, the combination of price data and
technical indicators is better for short-term prediction, and the combination of price data,
technical indicators and sentiment indicators is better for extra short-term prediction.

At present, in the research field of Bitcoin price prediction, there are several difficulties
limiting the fair comparison of the new proposed method and previous methods: (1) the
data format is diverse and difficult to unify; (2) the data acquisition methods are different,
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and the versions are different; (3) some implementation details are not mentioned in the
theses of previous studies; (4) the source code is hard to obtain and run in new environments.
Therefore, we briefly compare the results of previous related work with our newly proposed
method in Table 8.

Figure 12. Stacking ensemble model prediction result for different data combinations.

Figure 13. Stacking ensemble model prediction result for different data combinations from 11
November 2020 to 13 November 2020.

Specially, the data combination of price and sentiment indicators under the 1-day
time internal can be considered as the variant of Li and Pan’s proposed method [1] in our
experiments. By this way, it is shown that our proposed method has got the improvement
from Li and Pan’s proposed method.

Bitcoin price data and social media text data are presented in different formats due to
different providers or acquisition tools. Most of the methods in this paper only read data in
one of the formats. For data formats other than the specified format, additional processing
work is required.

As there are no standard open data for Bitcoin price prediction, all researchers collect
data on their own. At present, there are several major trading platforms that provide their
own transaction data for Bitcoin price data. The version differences among Bitcoin’s social
media texts, such as those on Twitter or Reddit, are even more serious because the collection
tools are different and the collection times are different. For example, a tweet that was
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published yesterday may be deleted by the author today. Then, the data version collected
today is not the same as the data version collected yesterday.

Table 8. Comparison of the proposed method and previous methods in Bitcoin price prediction.

Author & Reference No. Year Method Dataset Metric

S, Ji [42] 2019 Deep neural network
(DNN)

Daily Bitcoin price data and
blockchain infomation from 29
November 2011 to 31 Decem-
ber 2018

MAPE: 3.61%

S, Raju [43] 2020 LSTM (LSTM) 634 daily Bitcoin English
tweets and transaction data
from 2017 to 2018

RMSE: 197.515

M, Shin [29] 2021 Ensemble Minute +
Hour + Day LSTM

Transaction data from Decem-
ber 2017 to November 2018 per
3 min

RMSE: 31.60
(weighted price)

Proposed work (ensem-
ble deep model)

2021 Stacking ensemble
deep model of 2 base
models: LSTM & GRU

Tweets, transaction data, tech-
nical data from September 2017
to January 2021 per 30 min

MAE: 88.740831
RMSE: 173.400415
MAPE: 0.69763%

There are many parameters and implementation details in modeling and model train-
ing. In a deep neural network, the structure of each layer has many parameters. However,
these parameters are not all written in the original theses for good reasons. Moreover, there
are many details in modeling, such as the split of training and test data and some shuffle
operations to prevent overfitting of the model. These details can also be missing due to
the lengths of the theses and the focus of the topics. The lack of this information makes it
difficult to reproduce previous methods solely by the theses themselves.

If one is fortunate enough to obtain the source code with the author’s consent, there
will still be environmental and operational difficulties. We know that many machine
learning and statistical toolkits are updated very frequently. A piece of code can run under
the package version used by the author at the time, but it may not be able to run smoothly
under a new version. In addition, it is also possible that the running result is different
from the author’s result due to the inability to obtain the same running environment as
the author.

5. Conclusions

The price of Bitcoin often fluctuates wildly, inspired by the work of Li and Pan [1],
we propose an ensemble deep method, which combines two RNNs, to predict the future
price and price movement of Bitcoin based on the combination of historical transaction
data, tweet sentiment indicators and technical indicators. It is worth noting that we
crawled two datasets at different time intervals: 1 day and 30 min. Because of the financial
attribute of cryptocurrency, four evaluation indicators, the MSE, the MAE, the MAPE, and
the sMAPE, are used to measure the price prediction performance, and the movement
direction accuracy (MDA) is used to measure the price movement prediction. Two types
of comparative experiments are conducted in this research: experiments that compare
different models and experiments that compare the impact of different data combinations
on forecast prices. The results show that in the same situation, a stacking ensemble can
help with fewer training resources and better performance, and social media sentiment
analysis makes a greater contribution to extra short-term price prediction than to short-term
price prediction.

Prediction models and input data sources have great room for improvement in the
future. First, the model can be optimized from the three aspects of the model framework,
model size and optimization process to improve prediction performance [44]. For the
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model framework, we can consider changing the model types and activation function. For
the model size, the width and number of hidden layers are two potential values where
we can make adjustments. For optimization, the proper setting of the hyperparameters is
essential. Second, the inclusion of other data sources may improve the existing forecasting
accuracy. In this research, we consider the historical transaction data, sentiment trends of
Twitter, and technical indicators. However, there may be other potential factors, including
regulatory and legal matters, competition between Bitcoin and other cryptocurrencies, and
the supply and demand of Bitcoin. In addition, the microexpressions of cryptocurrency
investors during trading can also be considered potential factors affecting cryptocurrency
prices. Third, we can also dynamically change the size of the window according to different
data types. For example, news is not published as quickly as social media comments, such
as tweets. Therefore, we can set different window sizes for data with different update
frequencies and study the long-term or short-term influences on prices. Experiments
based on the proposed model can be extended to research on the price prediction of other
cryptocurrencies. The new bitcoin price prediction model proposed by us provides a
reference for practitioners to avoid their potential risks in trading. In addition, researchers
can develop better regulatory measures and laws by studying the relationship 429 between
opinion analysis on social media and price movements of cryptocurrencies.
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Abstract: We develop a medium size dynamic stochastic general equilibrium (DSGE) model to assess
the macroeconomic consequences of introducing an interest-bearing central bank digital currency
(CBDC), an electronic alternative of payment with public use properties of cash and that can furnish
as bank settlement balances. The model consists of seven sectors, namely households, retail firms,
wholesale firms, capital producing firms, commercial banks, central bank, and government, and
offers rich features. The use of cash and CBDC is differentiated with respect to their prices and
transaction costs. In particular, we quantify the effects of negative shock on CBDC transaction cost to
evaluate the potential of CBDC as an alternate instrument in liquidity holding in addition to cash
and bank deposits. We also examine the effects of productivity shock and monetary policy shock on
CBDC interest rate and CBDC demand, and their interaction with other main variables of the model.

Keywords: DSGE model; interest-bearing CBDC; monetary policy; transaction costs

MSC: 91-10; 91B51

JEL Classification: D53; E42; E43; E58

1. Introduction

The rise of privately issued digital currencies supported by the advancement of
transaction validation technology has raised concerns among central banks and other
monetary authorities. The rapid innovation of the payment infrastructure offers new
alternate payment platforms to compete with central bank paper money, i.e., cash as the
only form of central bank money available for customers. Digital or virtual currencies,
popularly known as crypto-currencies, have broadened the option of payment settlement
and have automated contracts. Additionally, due to the invention of blockchain, which
uses distributed ledger technology (DLT), crypto-currencies can function in an open and
decentralized fashion independent of any controlling entity, while ensuring safety and
anonymity [1].

The advent of crypto-currencies as payment solutions has posed challenges to central
banks to consider upgrading the concept and provision of money. This payment diversity
is, however, coincidence with the decline of the use of cash as a means of payment due to
the COVID-19 pandemic. The wish to avoid coronavirus transmission through banknotes
and coins has accelerated a shift from cash to digital transactions. As reported by Bank
for International Settlements (BIS) [2], there was a decline in the total number of cash
withdrawals by 23% and more than 10% in value. It is cited by Balz [3] that the worldwide
transactions using PayPal have increased from about USD 3.26 billion in the first quarter
of 2020 to around USD 3.74 billion in the second quarter. Additionally, the number of
transactions using girocard in Germany in the first semester of 2020 was 21 percent up
on the first two quarters of 2019, increasing the volume of transactions to USD 2.6 billion.
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Cashless payments are expected to continue considering that consumers who had been
conducting such payments prior to the pandemic have been even more likely to do so [4].

Recently, according to what BIS reported in [5], no less than eighty percent of central
banks worldwide have begun studying the process and consequences of introducing their own
version of a digital currency, namely a central bank digital currency (CBDC). Almost 50 percent
of central banks have run CBDC-related experiments or released proofs-of-concept. Moreover,
about 10 percent of the surveyed central banks project to establish a generally available (retail)
CBDC in the short run (up to three years) and around 20 percent in the medium term (up to
six years). In 2014, China’s central bank (PBoC) starts focusing on the development of a CBDC
by forming a special task force. In 2015, the Bank of England was pioneering a series of studies
to assess the potential of CBDCs. In 2017, e-krona was proposed to study by Riksbank, the
central bank of Sweden, in response to the weakening of the use of cash to the lowest level
in the world. This initiative is then followed by Bahamas, the Eastern Caribbean Currency
Union, and the Marshall Islands [6]. Some emerging economies including Tunisia, Lithuania,
Venezuela, and Uruguay also implemented pilot programs to test CBDCs.

A CBDC can loosely be described as an electronic alternative of cash issued by a
central bank. From the household’s perspective, CBDCs can thus mimic the public use
characteristics of cash and from commercial banks and other financial institutions with the
payment system point of views, CBDCs can furnish as electronic central bank deposits,
also known as reserves or settlement balances [7]. From a theoretical viewpoint, there are
two important and long-standing questions regarding the issuance of a CBDC, namely the
provision of public and private money, and the ability of the central bank to harness CBDC
as a direct monetary policy tool to households. A central bank may consider introducing
a CBDC with the following reasons: to ensure payment resilience, prevent private sector
monopolies in the payment market, and strengthen monetary sovereignty [8].

Despite the luminous potential of CBDC, academicians and central banks have been
in the combination of cautious and curious. They have recently started to examine merits
and dangers of introducing CBDC. A series of CBDC-related studies and discussions were
carried-out to address the aforementioned questions by focusing on the consequences of
introducing a CBDC on commercial banks and monetary policy as well as financial stability
and welfare implications [9]. To our knowledge, no study tries to examine the multiple
roles of CBDC in their models. Particularly, there is no existing study that unifies the roles
of CBDC in macroeconomics and monetary policy. Given the existing gaps, the objectives
of this paper are to develop a medium size dynamic stochastic general equilibrium (DSGE)
model in a closed economy, where a CBDC is introduced as an alternative liquidity asset as
well as a monetary policy instrument, and to quantify the macroeconomic consequences
in the presence of interest-bearing CBDCs in competing with cash and bank deposits as
well as the implication for optimal monetary policy. In order to differentiate with other
studies, we extent some models of money-in-utility function [10,11], cash presence [8], price
setting [12], and interest rate [13]. DSGE model is a prominent tool for policy analysis
of central banking and contributes a major strand of the modern macroeconomics liter-
ature. The ability of DSGE models to quantitatively reveal macroeconomic fluctuations
are then strengthened after seminal works of Christiano et al. [14] on the inertia and
persistence of inflation in aggregate quantities subject to a monetary policy shock and
Smets & Wouters [15] on Bayesian estimation of monetary business cycle model with sticky
wages and prices. Since then, DSGE models have extensively been adopted for various
purposes in macroeconomics forecasting.

2. Related Works: Modeling CBDC

From a theoretical point of view, the introduction of central bank digital currency
poses some challenging questions relating to the supply of public and private money
and the ability of the central bank to utilize CBDC as a tool to increase the efficiency of
monetary policy. Despite its potential, CBDCs could threaten the stability of banking and
financial systems. Bank runs and disintermediation may occur when a substantial amount
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of bank deposits is converted into CBDCs. Deposit outflows decrease banks’ funding
ability and therefore, decline the volume of loan, investment, and economic activities in
general [8]. Thus, the focus of theoretical literature in CBDC modeling lays in the effect of
CBDC on commercial banks, monetary policy, financial stability, and welfare implications.
Literature in this topic of research can be divided into three strands [16]: papers introducing
a CBDC in general, papers presenting a CBDC in DSGE model, and those analyzing a
CBDC in an open economy setting.

2.1. Non-DSGE Models

In the first strand, i.e., non-DSGE modeling of CBDC, many researchers utilize a styl-
ized and often two-period model to assess the implication of CBDC in domestic economy.
Agur et al. [17] discuss the optimal design of interest and non-interest bearing CBDCs. In
this network effect induced environment, economic agents may choose cash, CBDC, and
bank deposits based on their preferences over anonymity and security. Two-period model
economy which consists of households, banks, firms, and a central bank is considered to
maximize welfare. In the first period, the central bank decides whether and in what form to
introduce a CBDC. Then, in the second period, households decide to use either cash, bank
deposits, or CBDC (if introduced by central bank) in their transactions. Commercial banks
extend loan to firms by using deposits from households. It is found that, when network
effect matter, the interest bearing CBDC can be introduced by central bank to alleviate the
trade-off between maintaining intermediation versus the diverse instruments of payment.

Andolfatto [18] develops an overlapping generation model as a combination of the
Diamond government debt model and Klein-Monti monopoly bank model to study the
impact of interest bearing CBDC on monopolistic banking sector. It is shown that CBDC has
no damaging effect toward lending activity of banks. More precisely, if the CBDC interest
rate is independently set of the interest of reserve, then the establishment of CBDC will
not discourage the lending activities. Accordingly, if CBDC interest rate is fixed below the
interest of reserve, then there is an incentive for the monopoly banks to match the CBDC
rate for the purpose of retaining deposits. Thus, it is shown by the model that introduction
of an interest-bearing CBDC does reduce bank monopoly profit, but does not necessarily
lead to bank disintermediation.

The optimal monetary in an environment where cash and CBDC co-exist is studied by
Davoodalhosseini [19]. By adapting Lagos–Wright model into two-period setting, i.e., a
model with decentralized and centralized markets, an economy with only cash, only CBDC,
or both of cash and CBDC can be analyzed. It is found that, under small carrying cost, the
introduction of CBDC enables the central bank to acquire better allocations than with cash.
By calibrating the model to the Canadian and US data, it is revealed that introducing CBDC
can lead to an increase of up to 0.64 percent and 1.6 percent in consumption for Canada and
for the US, respectively. The Lagos–Wright model with decentralized–centralized markets
is also considered by [20]. Chiu et al. [21,22] develop a model of a banking system with
imperfect competition to investigate the effect of general equilibrium of establishing CBDC.
It is discovered that the introduction of CBDC as an outside option for households can still
improve the efficiency of bank intermediation and increase lending and aggregate output,
even if its usage is low. Furthermore, when the model is calibrated to the US economy, it is
shown that CBDC can increase the volume of bank lending and investment by 6 percent
under the proper interest rate. The output can also be increased by a maximum of 1 percent.

Keister & Monnet [23] study the effect of CBDC establishment on the financial stability
under the condition of private information about the quality of assets held by the bank.
In this work, the seminal model of Diamond–Dybvig on bank runs is modified in such
a way that patient and impatient agents face two types of liquidity shocks. It is shown
that, by observing the funds inflow into CBDC, the central bank can deduce the financial
condition of bank more quickly and monitoring the flow of funds into this new asset.
Diamond–Dybvig model on bank runs is also adapted by Fernandez-Villaverde et al. [24]
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to study the impact of CBDC on financial stability and bank runs in which banks can offer
nominal contracts. Other papers thematically most similar with this are [25–27].

2.2. DSGE Models

Studies in the second strand employ DSGE framework to model the consequences of CBDC
on economy. It is well known that the dynamic stochastic general equilibrium (DSGE) models
are widely used to explain and predict co-movements of aggregate time series over the business
cycle. DSGE models can be viewed as an objectively good representation of a market economy
mechanism. DSGE models can also be considered as the leading tool to evaluate the relative
strength of interaction among agents [28]. However, the DSGE approach has also received
criticism by economists. Among others, it is raised by [29] that DSGE failed to incorporate key
aspects of economic behavior, especially in predicting or responding to a financial crisis (see
for instance, [30]). Blanchard [31] lists many reasons to dislike current DSGE models: from its
unappealing assumptions and unconvincing estimation method to its inability to communicate
with other types of general equilibrium models and, of course, Lucas’ critique on parameter
instability due to changes in economic policy [32]. Criticism on DSGE is also boosted by the
Austrian school of economic thought. The core of the school lies in the inability of DSGE models
to adapt to economic changes, particularly in dealing with the diversity of agents, preferences,
and information sets. Other concerns relate to the heterogeneity and multi-specification of
capital stock and production function, which can lead to malinvestment and sensitive to policy
shocks [33–35]. Regardless the flaws, DSGE still serves to guide debates about the direction
of the economy [31], provides policy evaluation exercises [36], and offers simplification and
flexibility to be used for many purposes [37]. Rebuilding Macroeconomic Theory, set up by
the Oxford Review of Economic Policy, is a project to rebuild the benchmark New Keynesian
model [30].

Compared to the use of the non-DSGE models, research on the effects of CBDC using
the DSGE models is still rare. Gross & Schiller [8] build a DSGE model to evaluate the
effects of interest and non-interest bearing CBDC, especially in the period of financial crises.
A Gertler–Karadi model is adopted by focusing the household utility maximization, bank
intermediation in lending, and the central bank role. In particular, households have three
instruments of saving with remuneration, liquidity, and risk exposures, i.e., bank deposits,
CBDC, and government bonds. It is found that the effect of bank deposits crowd out can
be mitigated by assigning additional central bank funds or setting a low CBDC interest
rates to disincentivize large-scale CBDC accumulation. Barrdear & Kumhof [38] propose a
monetary-financial DSGE model and assess the steady state effects of an interest-bearing
CBDC. Calibration of the model to pre-2008 US data shows that even if CBDC introduction
of 30 percent of GDP would cause a bank deposits outflow, the output could still increase
by three percent in the long run.

A New Keynesian DSGE model consisting of three economic sectors, namely house-
holds, commercial bank, and central bank, is examined by Luo et al. [39] to analyze the
impact of electronic money (including CBDC) on monetary policy and, specifically, the
impact of behavior changes on savings, loans, output, and interest rate. The simulation
results suggest that electronic money exhibits asymmetric effects on savings and loans,
but an irrational distortion on households, electronic money influences the interest rate
in reverse manner leading to the management difficulties of the micro subjects and affect-
ing the monetary policy effectiveness, and electronic money has the effect of restraining
risk. Lim et al. [40] develop a DSGE model equipped with cash and digital currency to
quantify the effect of loan prime rate (LPR) setting and CBDC introduction in China. Using
Bayesian estimation, the optimal LPR can be designed to improve the stability property of
post-CBDC economy.

2.3. Open Economy Models

Open economy means an economy open to trade and capital flows. The third strand
of research topic extend the DSGE models into open economy context. This direction is
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more challenging compared to a standard closed economy as we now allow, for instance,
the world demand and transmission channel through exchange rate. The results regarding
CBDC effect through DSGE modeling in open economy are thin. George et al. [41] extend
the Barrdear–Kumhof model to a small open economy by introducing foreign sector,
where export–import activities and capital flows are possible. It is discovered that the
introduction of CBDC with an adjustable interest rate may improve the welfare and increase
the monetary policy effectiveness. Moreover, exchange rate and inflation exhibit more
stable movements. Ferrari et al. [16] build a two-country open economy DSGE model to
assess the international transmission of standard monetary policy and technology shocks in
light of two scenarios, namely with and without CBDC, and to explore the monetary policy
optimality and households’ welfare in the economies. It is shown that the introduction of
CBDC strengthen the international spillovers of shocks to a significant extent, thus reinforce
international connections. A DSGE model proposed by Benigno et al. [42] discusses the
two-country open economy nature of more globally issued crypto-currencies, which are
different in safety and reputation with CBDC. The presence of a crypto-currency in a home
and a foreign environment with two national currencies is analyzed in the framework of
monetary policy autonomy.

3. The Model Economy

We follow the standard framework of DSGE modeling to assess the macroeconomic
consequences of introducing an interest-bearing CBDC, especially we want to know how
the cash will compete with CBDC with respect to their prices and transaction costs. In
this section, we outline the economy of our model and expose the optimization problems
solved by households and firms. We also describe the behavior of financial intermediaries
by commercial bank and the monetary and fiscal authorities by the central bank and
the government.

3.1. Assumptions

Our model economy is populated by seven classes of agents: a continuum of identical
households of measure unity indexed by h ∈ [0, 1], a retail firm or final-good producing firm,
a continuum of wholesale firms or intermediate-good producing firms indexed by j ∈ [0, 1], a
capital-producing firm, commercial banks, the central bank as a monetary authority and the
government as a fiscal authority. In a representative agent model, identical agents in household
and firm sectors mean that all agents differ, but they act in such a way that the sum of their
preferences is mathematically equivalent to the decision of one representative agent.

The basic structure of our DSGE model is depicted in Figure 1. The model is built
according to the closed economy New Keynesian framework by [8,43,44]. Households
consume and supply labor to wholesale firms, receive wages, choose the real levels of cash,
deposits, and CBDC to hold at the beginning of the period, and pay lump-sum tax to the
government. As the owners, households also receive dividends from firms and commercial
banks. Retail firm aggregates imperfectly substitutable intermediate goods into a single
final good, which is used for consumption, investment, or government spending. The
final good is sold at a perfectly competitive price. Wholesale firms use the labor provided
by households and capital to produce a unique good that is sold on the monopolistically
competitive market. Wages are fully flexible and adjust to clear the market. Capital-
producing firm purchases the final good for investment and combines it with existing
capital stock to produce new capital goods. Commercial bank is owned by households. The
bank supplies credit to wholesale firms to finance their short-term working capital needs,
supplies credit to the capital-producing firm for investment financing, pays interest on
household deposits and central bank loans, and holds minimum reserves against deposits
at the central bank without remuneration. The central bank regulates the commercial
bank and sets its policy interest rate using a Taylor-type rule and supplies all the credit
demanded by the bank at the prevailing refinance rate. The government issues bonds,
receives tax payments, and makes spending.
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Figure 1. The model structure.

In some respects, we follow approaches developed in previous studies by others and
in different standpoints we make few extensions. Our model has the following features:

1. We consider a money-in-utility (MIU) intertemporal welfare function to be maximized
by households [10,11]. The presence of cash in addition to bank deposits and CBDC
is slightly extend the one by Gross & Schiller [8]. The cash also appears in the
budget constraint.

2. In the profit maximization of wholesale firms, we adopt the so-called Calvo price
setting mechanism, where firms have a certain probability of either keeping the price
fixed in the next period or optimally determining the price [12].

3. Similar to [8,13], the nominal interest rate on CBDC follows the interest rate of central
bank funding considering the financial stress expressed as the percentage deviation
of banks’ equity from steady state. This rule is intended to disincentivize CBDC
accumulation in a crisis.

4. Government bonds are held by banks and the central bank.
5. To quantify the effect of disruptions by economic shocks, our model is equipped with

three shock generators, namely productivity shock, liquidity demand shock, and the
monetary policy shock.

3.2. Households

In this model, the economy is populated by a continuum of households indexed by
h ∈ [0, 1] whose problem is to maximize a particular intertemporal welfare function. To this
end, a money-in-utility function proposed by Sidrauski [10] and in the form of the constant
relative risk aversion (CRRA) utility function is adopted. The lifetime utility function UH

is additively separable into consumption of goods Ch,t, supply of working hours Lh,t, and
saving in the form of bank deposits Dh,t, money holding in cash (real money balance)
Mh,t, and digital money holding in CBDC Eh,t. Each household h wants to maximize the
following expected utility:

UH = E0

∞

∑
i=0

βi

⎛⎜⎜⎜⎝
C1−σ

h,i

1 − σ
+

αe

1 − ηe

(
Eh,i

Pi

)1−ηe

+
αm

1 − ηm

(
Mh,i

Pi

)1−ηm

+
αd

1 − ηd

(
Dh,i

Pi

)1−ηd

+
αl L

1+ϕ
h,i

1 + ϕ

⎞⎟⎟⎟⎠, (1)

where E0 stands for the rational expectation operator conditional on the information set
at time zero. In (1), CBDC, cash, and deposits are expressed in nominal values as they are
weighted by the price level Pi, β ∈ (0, 1) is the intertemporal discount factor, σ ∈ (0, 1) is
the relative risk aversion coefficient, αe, αm, αd > 0 are relative utility weights or preference
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parameters of CBDC, cash, and bank deposits, respectively, ϕ is coefficient relates to
Frisch elasticity of labor supply, and ηe, ηm, ηd > 0 are coefficients relate to elasticity of
bank deposits, cash, and CBDC. Note that we may extend the form of household’s utility
function by introducing wealth in the form of government bonds BH

h,i as discussed by, for
instance, Michaillat & Saez [45]. However, this extension modifies the properties of the
New Keynesian IS curve, where the interest rate is now negatively related to output instead
of being constant, equal to the time discount rate.

Households are assumed to consume goods, invest money, pay taxes, and receive
wages for their labor supplied. Households also own the firms and the banks, and therefore
receive dividends and profits sharing. Decisions made by households in maximizing (1)
must satisfy the following budget constraint:

Pt(Ch,t + INVh,t) + Eh,t + Mh,t + Dh,t + TAXh,t = WtLh,t + RK
t Kh,t

+ (1 + IE
t−1)Eh,t−1 + Mh,t−1 + (1 + ID

t−1)Dh,t−1 + ΠFB
h,t . (2)

The terms on the left-hand side of (2) summarize the use of economic resources by
households, and those on the right-hand side indicate the economic resources. INVh,t is
level of investment, TAXh,t is the lump sum tax, Wt is the level of wages, Kh,t is the capital
stock, RK

t is the return on capital, IE
t is the nominal interest rate of CBDC, ID

t is the nominal
interest rate of bank deposits, and ΠFB

h,t is the profit (dividend) from firms and banks. An
additional equation represents the capital stock dynamics is:

Kh,t+1 = INVh,t + (1 − δ)Kh,t, (3)

where δ is the depreciation rate of physical capital.
Lifetime utility (1) maximization, with respect to Ch,t, Lh,t, Kh,t, Eh,t, Mh,t, and Dh,t, sub-

ject to budget constraint (2) and capital stock (3) yields the following first order conditions:

αlCσ
t Lϕ
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, (4)(

EtCt+1
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t )Et

C−σ
t+1

Pt+1
. (8)

Note that derivation processes allow us to drop the index h from variables. The
complete proofs for (4)–(8) can be found in Appendix B.

Under transaction costs of using cash and CBDC, the total consumption can be decom-
posed as follows:

Ct = CM
t (1 + S(vM

t )) + CE
t (1 + S(vE

t )), (9)

where S(vM
t ) and S(vE

t ) are the transaction costs of using cash and CBDC, respectively, as
functions of money velocities vM

t and vE
t , while CM

t and CE
t are the consumption levels using

cash and CBDC. The money velocities with respect to cash and CBDC are, respectively,
given by:

vM
t =

CM
t

Mt
, (10)

vE
t =

CE
t

Et
. (11)
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In this work, we adopt transaction cost functions proposed by Schmitt-Grohe &
Uribe [46] as follows:

S(vt) = avt +
b
vt

− 2
√

ab, (12)

where a and b are all positive cost parameters. Cost function S has a satiation level of
velocity v∗ =

√
b/a. We can easily verify that S is decreasing when vt < v∗ and increasing

when vt > v∗. The transaction cost functions for cash and CBDC are given by:

SM
t = ZM

t aM
CM

t
Mt

+ bM
Mt

CM
t

− 2
√

aMbM, (13)

SE
t = ZE

t aE
CE

t
Et

+ bE
Et

CE
t
− 2
√

aEbE, (14)

where we denote SM
t = S(vM

t ) and SE
t = S(vE

t ), while ZM
t and ZE

t are the shocks on the
demand for total liquidities in term of cash and CBDC, respectively, which follow first
order autoregressive processes:

ln ZM
t = ρM ln ZM

t−1 + εM
t , (15)

ln ZE
t = ρE ln ZE

t−1 − εE
t , (16)

where ρM, ρE ∈ (0, 1) are the degree of persistence in the cash and CBDC demands, and
εM

t ∼ N(0, σM) and εE
t ∼ N(0, σE) are the errors. As pointed out by [38], an increase in SM

t
or SE

t can be considered as a flight to safety, meaning a higher demand for liquid assets for
a given volume of real economic transactions. CBDC that has cheaper transaction cost than
cash will have smaller parameters values, i.e., aE ≤ aM and bE ≤ bM.

Further, consumption levels by using cash and CBDC are given by:

CM
t =

(
PM

t
Pt

)−ζ

Ct, (17)

CE
t =

(
PE

t
Pt

)−ζ

Ct, (18)

where ζ is the elasticity of substitution between cash and CBDC payments for consumption,
PM

t and PE
t are the prices of goods by using cash and CBDC, respectively, and they govern

the general price:

Pt = ((PM
t )1−ζ + (PE

t )
1−ζ)

1
1−ζ . (19)

The proofs for (17)–(19) are provided in Appendix C.

3.3. Retail Firms

Suppose that at time t wholesale firm j produces Yj,t units of intermediate good
and there are a continuum of intermediate goods over the unit interval [0, 1]. These
intermediate goods are CES aggregated by a retail firm (final good producer) to produce Yt.
The production technology for assembling intermediate goods to produce the final good is
given by the standard Dixit-Stiglitz technology [47]:

Yt =

(∫ 1

0
(Yj,t)

θ−1
θ dj

) θ
θ−1

, (20)

where θ > 1 represents the elasticity of substitution between intermediate goods. With the
nominal price of a final good being denoted by Pt and that of a intermediate good j denoted
by Pj,t, the price of each intermediate good is taken as a given by retail firms. Therefore, the
representative retail firm chooses the quantities of intermediate goods such that maximize
its profits:
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URF = PtYt −
∫ 1

0
Pj,tYj,t dj, (21)

where the first term in (21) is the total revenue from selling final goods and the second term
is the total cost of buying intermediate goods. Substituting the aggregator technology (20)
leads to the following first order condition of profit maximization:

Yj,t =

(Pj,t

Pt

)−θ

Yt. (22)

Equation (22) accounts the demand level of intermediate good j, which is directly
proportional to aggregate demand Yt and inversely proportional to its relative price
level Pt.

3.4. Wholesale Firms

Each wholesale firm j produces a perishable intermediate good that is sold on a
monopolistically competitive market. To produce these goods, each firm rents capital at the
price Rt from the capital good producer and combines it with labor from households. To
produce the output Yt, each wholesale firm has a Cobb–Douglas production function:

Yj,t = AtKα
j,tL

1−α
j,t , (23)

where Kj,t is the amount of capital rented by wholesale firm j from capital market, Lj,t is
the number of working hours supplied by households to firm j, α ∈ (0, 1) is the elasticity
of output with respect to capital, and At is the productivity shock, a variable that can be
interpreted as the level of general knowledge about the arts of production available in an
economy. It is assumed that productivity shocks follow a first-order autoregressive process,
such that:

ln At = ρA ln At−1 + εA
t , (24)

where ρA ∈ (−1, 1) is the degree of persistence of the shock and εA
t ∼ N(0, σA) is the error.

Total wages should be transferred by wholesale firm j to household is WtLj,t. However,
we assume that there is a possibility wholesale firm j can take a loan from commercial bank
to pay some part of wages in advance. The amount of the loan for this purpose, denoted by
QIF

j,t , is given by:

QIF
j,t = kQWtLj,t, (25)

where kQ ∈ (0, 1) is the portion of total wages borrowed from bank. In [44], kQ represents
the strength of the cost channel. As we may write WtLj,t = QIF

j,t + (1 − kQ)WtLj,t and
since it is assumed that short-term loans for working capital do not carry any risk and
are therefore contracted at a rate that reflects only the marginal cost of borrowing from
the central bank, ICB

t , which is the refinance rate [44], then the wages claim faced by the
wholesale firm is given by:

(1 + ICB
t )QIF

j,t + (1 − kQ)WtLj,t = (1 + kQ ICB
t )WtLj,t. (26)

3.4.1. The Cost Minimization Problem

The wholesale firm solves a two-stage optimization problem. First, the firm j takes
the prices of the factors of production (return on capital RK

t and wages Wt) as given and
determines the amount of capital and labor that it will use to minimize its total production
cost. The total cost TCj,t to be minimized by the firm consists of wages bill (26) and
capital rent:

TCj,t = (1 + kQRL
t )WtLj,t + RK

t Kj,t, (27)

subject to production function (23). The corresponding Lagrange function for this prob-
lem is:
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LIF = (1 + kQ ICB
t )WtLj,t + RK

t Kj,t + ΛIF
t (Yj,t − AtKa

j,tL
1−a
j,t ), (28)

where ΛIF
t is the Lagrange multiplier. The first order condition with respect to Lj,t and Kj,t

are, respectively, as follow:

(1 + kQ ICB
t )Wt − (1 − α)ΛIF

t AtKα
j,tL

−α
j,t = 0,

RK
t − αΛIF

t AtKα−1
j,t L1−α

j,t = 0.

From the second condition, we have:

RK
t Kj,t

αLj,t
= ΛIF

t AtKα
j,tL

−α
j,t ,

and substitution to the first condition provides:

Kj,t

Lj,t
=

α(1 + kQ ICB
t )

1 − α

Wt

RK
t

. (29)

Since none of the terms on the right hand side of (29) depend on j, then the capital-labor
ratio will be the same across all firms.

From (29) we may express Kt as:

Kt =
α(1 + kQ ICB

t )

1 − α

Wt

RK
t

Lt. (30)

By substituting (30) into total cost (27) we obtain:

TCt =
1 + kQ ICB

t
1 − α

WtLt, (31)

and by substituting (30) into production function (23) we get:

Yt = At

(
α(1 + kQ ICB

t )

1 − α

Wt

RK
t

)α

Lt,

or equivalently:

Lt =
Yt

At

(
α(1 + kQ ICB

t )

1 − α

Wt

RK
t

)−α

. (32)

Substitution (32) into the total optimal cost function (31) yields:

TCt =
Yt

At

(
(1 + kQ ICB

t )Wt

1 − α

)1−α(
RK

t
α

)α

. (33)

Finally, the marginal cost function MCt is the derivative of the total cost function (33)
with respect to Yt:

MCt =
1
At

(
(1 + kQ ICB

t )Wt

1 − α

)1−α(
RK

t
α

)α

. (34)

Subsequently, we can rewrite Lt in (32) and Kt in (30) in term of MCt, respectively, as
follow:

Lt =
1 − α

1 + kQ ICB
t

MCt
Yt

Wt
, (35)

Kt = αMCt
Yt

RK
t

. (36)
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3.4.2. The Profit Maximization Problem

In the second stage, wholesale firm wants to maximize the real profits it gives back to
households. Since the real marginal cost is the optimal cost of producing one unit of goods,
the firm’s problem is to maximize:

ΠIF
j,t = Pj,tYj,t − MCtYj,t. (37)

In addition to the stochastic discount factor β, firms will also discount their future
profits by φ. We also impose that the wholesale firms face the constraint that they can only
adjust prices following a Calvo-type rule. The wholesale firm has a φ probability of keeping
the price fixed in the next period and a 1 − φ probability of optimally determining its price.
Hence, a wholesale firm wants to maximize:

ΠIF
j,t = Et

∞

∑
s=0

(βφ)s(Pj,tYj,t+s − MCt+sYj,t+s), (38)

subject to production constraint (22), which is adjusted as:

Yj,t+s =

(
Pt+s

Pj,t

)θ

Yt+s. (39)

Substitution the optimal production constraint (39) into profit function (38) gives:

ΠIF
j,t = Et

∞

∑
s=0

(βφ)s(P1−θ
j,t Pθ

t+s − P−θ
j,t Pθ

t+s MCt+s)Yt+s. (40)

The first order condition with respect to Pj,t is then given by:

Et

∞

∑
s=0

(βφ)s((1 − θ)P−θ
j,t Pθ−1

t+s + θP−θ−1
j,t Pθ−1

t+s MCt+s)Yt+s = 0, (41)

or equivalently:

Et

∞

∑
s=0

(βφ)s

(
1 +

θ

1 − θ

MCt+s

Pj,t

)
= 0. (42)

We may proceed (42) to have:

∞

∑
s=0

(βφ)s =
θ

1 − θ
Et

∞

∑
s=0

(βφ)s MCt+s

Pj,t

Pj,t

1 − βφ
=

θ

1 − θ
Et

∞

∑
s=0

(βφ)s MCt+s

Pj,t =
θ(1 − βφ)

1 − θ
Et

∞

∑
s=0

(βφ)s MCt+s.

Instead, we follow the approach adopted by Fernandez-Villaverde et al. [24] to
proceed (41) such that we obtain:

Et

∞

∑
s=0

(βφ)s

(
1 − θ

Pj,t

( Pj,t

Pt+s

)1−θ

+
θ

Pj,t

( Pj,t

Pt+s

)−θ MCt+s

Pt+s

)
Yt+s = 0,

and then becomes:

Et

∞

∑
s=0

(βφ)s

(( Pj,t

Pt+s

)1−θ

+
θ

1 − θ

( Pj,t

Pt+s

)−θ MCt+s

Pt+s

)
Yt+s = 0. (43)

3.5. Capital Producing Firms

In the economy, all the capital is owned by the capital producing firm who adopts a
linear production function to produce capital goods. At the beginning of the period, the
capital producing firm buys INVt of the final goods from the retail firm for investment
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purposes. Because payments for these final goods must be made in advance, the capital
producing firms borrows QCF

t from the commercial bank to purchase the capital. Thus,

QCF
t = INVt. (44)

The loan in (44) must be paid in full plus interest with lending rate IL
t . The capital

producing firms then combines investment goods and the existing capital stock to create
new capital goods Kt+1. The new capital stock is then rented to wholesale firms at the rate
RK

t . Recall that the dynamic of capital stocks is given in (3).
Taking the rental rate of capital RK

t , the lending interest rate IL
t , and the price of the

final goods Pt as given, the capital producing firm chooses the level of the capital stock so
as to maximize the profits to the household. The real profits of the capital producing firm
can be denoted as:

ΠCF
t = RK

t Kt − (1 + IL
t )INVt, (45)

and the value of the discounted stream of dividend payments to the household to be
maximized is then formulated as:

ΠCF = Et

∞

∑
t=0

βtΛH
t ΠCF

t , (46)

where it is assumed, as in [44,48], that the capital producing firm values future profits
according to the household’s intertemporal marginal rate of substitution in consumption
ΛH

t , i.e., the Lagrange multiplier of households’ utility maximization given in (A35). This
assumption is imposed because, in this model, the household and capital producing firm
can be considered as a single unit with respect to housing choices.

From (3), we get INVi = Ki+1 − (1 − δ)Ki, and by substituting it into (46) together
with (45), we have the real profits function to be maximized:

ΠCF = Et

∞

∑
i=0

βiΛH
i (RK

i Ki − (1 + IL
i )(Ki+1 − (1 − δ)Ki)).

By explicitly showing ΠCF
t at time t and t + 1, we have:

ΠCF = · · ·+ βtΛH
t (RK

t Kt − (1 + IL
t )(Kt+1 − (1 − δ)Kt))

βt+1ΛH
t+1(RK

t+1Kt+1 − (1 + IL
t+1)(Kt+2 − (1 − δ)Kt+1)) + · · · ,

from which we obtain the first order condition with respect to Kt+1 as follows:

−ΛH
t (1 + IL

t ) + βEtΛH
t+1(RK

t+1 + (1 − δ)(1 + IL
t+1)) = 0.

Since ΛH
t = −C−σ

t /Pt from (A36), we then have:

C−σ
t
Pt

(1 + IL
t ) = −βEt

C−σ
t+1

Pt+1
(RK

t+1 + (1 − δ)(1 + IL
t+1)). (47)

3.6. Banks

The commercial banks receive deposits Dt from households at the beginning of each
period. These deposits are managed by the banks to finance loans to wholesale firms for
paying wages claim, which for a representative firm j it is QIF

j,t in (25), and to the capital

producing firm for investment QCF
t in (44). Therefore, total lending QB

t provided by the
bank is:

QB
t = QIF

t + QCF
t = kQWtLt + INVt. (48)

As refinancing via the central bank is more expensive than refinancing via deposits,
i.e., ICB

t > ID
t , bank will only demand central bank funding to fill the gap between the

supply of deposits Dt and the maximum amount of total external lending QB
t . If the total
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lending is bigger than deposits, i.e., there is a shortfall in funding, bank borrows from the
central bank QCB

t with a net interest rate ICB
t .

Bank’s liabilities comprise of loans from the central bank QCB
t , bank deposits Dt, and

bank’s equity Nt, while bank’s assets consist of central bank reserves TRt, loans to firms
QB

t , and bonds BB
t as risk-free asset. Thus, the bank’s balance sheet is provided by:

QB
t + TRt + BB

t = QCB
t + Dt + Nt. (49)

As total reserves TRt is a portion ψ of deposit, i.e., TRt = ψDt, and by (48), bank’s
balance sheet (49) is then rewritten as:

QIF
t + QCF

t + BB
t = QCB

t + (1 − ψ)Dt + Nt. (50)

Note that Nt captures the bank’s equity, which is mainly driven by the interest rate
premia. Since commercial bank lends their equity, households’ deposits, and funds from
the central bank to the production sector, then the bank’s equity evolves according to the
following equation:

Nt+1 = (1 + IL
t )Nt + (IL

t − ID
t )Dt + (IL

t − ICB
t )QCB

t . (51)

In (51), IL
t − ID

t and IL
t − ICB

t denote the interest rate premia from deposits and central
bank funds, respectively, by assuming that IL

t ≥ ID
t and IL

t ≥ ICB
t .

The bank’s revenues come from equity (1 + IL
t )Nt, loans to wholesale firms

(1 + ICB
t )QIF

t = kQ(1 + ICB
t )WtLt, loans to capital production firms (1 + IL

t )Q
CF
t =

(1 + IL
t )INVt, and bonds (1 + IB

t )BB
t . Meanwhile, the bank’s liabilities come from de-

posits (1 + ID
t )Dt and central bank loans (1 + ICB

t )QCB
t . Therefore, the bank’s profit to

be maximized is formulated as:

ΠB = (1 + IL
t )Nt + (1 + ICB

t )QIF
t + (1 + IL

t )Q
CF
t + (1 + IB

t )BB
t

− (1 + ID
t )Dt − (1 + ICB

t )QCB
t , (52)

subject to bank’s balance sheet (50). From (50), we may substitute QCB
t as follows:

QCB
t = QIF

t + QCF
t + BB

t − (1 − ψ)Dt − Nt.

Thus, the bank’s profit (52) becomes:

ΠB = (1 + IL
t )Nt + (1 + ICB

t )QIF
t + (1 + IL

t )Q
CF
t + (1 + IB

t )BB
t

− (1 + ID
t )Dt − (1 + ICB

t )(QIF
t + QCF

t + BB
t − (1 − ψ)Dt − Nt). (53)

The banks aim to determine the loan interest rate IL
t and the deposits interest rate ID

t
in order to maximize their profit (53). Instead of maximizing (53) with respect to IL

t and IL
t ,

it will be much easier differentiating (53) with respect to (1 + IL
t ) and (1 + ID

t ). Doing so,
we respectively obtain:

Nt + QCF
t + (1 + IL

t )
∂QCF

t
∂(1 + IL

t )
− (1 + ICB

t )
∂QCF

t
∂(1 + IL

t )
= 0, (54)

−Dt − (1 + ID
t )

∂Dt

∂(1 + ID
t )

+ (1 − ψ)(1 + ICB
t )

∂Dt

∂(1 + ID
t )

= 0. (55)

We derive (54) and (55) by considering that QCF
t is a function of (1 + IL

t ) and Dt is a
function of (1 + ID

t ). Next, we follow an approach in [44] by defining the coefficient of
interest elasticity for loan supply to the wholesale firm φL and that for deposits supply to
households φD as follows:
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φL =
∂QCF

t
∂(1 + IL

t )

1 + IL
t

QCF
t

, (56)

φD =
∂Dt

∂(1 + ID
t )

1 + ID
t

Dt
. (57)

Thus, by reformulating (54) and (55) in terms of φL in (56) and φD in (57), we obtain
the optimal rates of loan and deposits:

1 + IL
t =

φL(1 + ICB
t )INVt

Nt + (1 + φL)INVt
, (58)

1 + ID
t =

φD(1 − ψ)(1 + ICB
t )

1 + φD
. (59)

It is shown in (58) and (59) that loan and deposit rates depend positively on refinance
rate from the central bank ICB

t . It is also known that IL
t depends negatively on the ratio of

bank’s equity and investment Nt/INVt.

3.7. The Central Bank

While the rate of government bonds IB
t follows the interest rate on central bank funding

ICB
t in the way that:

IB
t = ICB

t + ΔB, (60)

where ΔB > 0 is the fixed spread, the nominal interest rate on CBDC IE
t is set by the central

bank. In the case of a non-interest-bearing CBDC, the central bank sets IE
t = 0. In order to

use CBDC as a policy instrument, for an interest-bearing CBDC, the interest rate on CBDC
strictly follows the interest rate on central bank funding with an individual rule-based
determination, as suggested by Gross & Schiller [8]:

IE
t = ICB

t −
(

ΔE + kN
N̄ − Nt

N̄

)
. (61)

The terms in brackets in (61) define the spread between the interest rates on central
bank funding ICB

t and that of CBDC IE
t , where ΔE > 0 is the fixed spread, and Nt is the

bank’s equity with steady state value N̄. If Nt is below its steady state value N̄, then the
spread increases, meaning that the CBDC rate is much lower than the central bank rate.
In (61), the percentage deviation of banks’ equity from steady state (N̄ − Nt)/N̄ represents
the financial stress with kN ∈ (0, 1) denotes the reaction intensity.

The central bank sets the policy interest rate on central bank funding iCB
t according to

a Taylor-type rule. The policy rule is given in the following linear form:

ICB
t = ρR ICB

t−1 + (1 − ρR)(R̄B + πt + φπ(πt − πT) + φy(Yt − Ȳ) + ut, (62)

where ρR ∈ (0, 1) is the interest rate smoothing parameter, R̄B is the steady state value
of the bonds interest rate, πt is the current inflation rate, πT is the central bank’s infla-
tion target, yt is the output with steady state value Ȳ, φπ and φy are, respectively, rela-
tive weights on inflation deviation and the output gap, and ut is the shock of first-order
autoregressive process:

ut = ρuut−1 + εu
t , (63)

where ρu ∈ (−1, 1) is the degree of persistence of the shock and εu
t ∼ N(0, σu) is the error.

The central bank’s assets consist of government bonds holding BCB
t , tax payment TAXt,

and loans to the commercial banks QCB
t , whereas its liabilities comprise total reserves TRt

and currency supplied to households and firms in the forms of cash MS
t and CBDC ES

t . The
central bank’s balance sheet is thus formulated as:
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(1 + IB
t )BCB

t + TAXt + (1 + ICB
t )QCB

t = TRt − TRt−1 + MS
t + ES

t . (64)

Note that profits from bonds holding IB
t BCB

t and from loan ICB
t QCB

t as well as lump
sum tax TAXt are then transferred to the government. Since TRt = ψDt and currencies
supplies can be given by MS

t = Mt − μm Mt−1 and ES
t = Et − μeEt−1 for cash and CBDC,

respectively, then (64) becomes:

(1 + IB
t )BCB

t + TAXt + (1 + ICB
t )QCB

t = ψ(Dt − Dt−1)

+ (Mt − μm Mt−1) + (Et − μeEt−1), (65)

where μm and μe are the measure of nominal rigidity in the money supply process.

3.8. The Government

In the economy, the government purchases the final good from retail firms Gt, collects
taxes from households TAXt, and issues one-period risk-free bonds Bt. The total bonds
issued by government is given by:

Bt = BB
t + BCB

t , (66)

where BB
t are bonds held by commercial bank and BCB

t are those held by the central bank.
The government’s budget constraint is formulated as:

PtGt + (1 + IB
t−1)Bt−1 = TAXt + Bt + ICB

t QCB
t + IB

t BCB
t , (67)

where we assume that the profits earned by the central bank from loans and bonds holding
are transferred to the government as fiscal authority. By (66), the budget constraint (67)
becomes:

PtGt + (1 + IB
t−1)BB

t−1 + BCB
t−1 = TAXt + BB

t + (1 + IB
t )BCB

t + ICB
t QCB

t . (68)

The government’s spending can be a constant fraction kG ∈ (0, 1) of output of the
final goods:

Gt = kGYt, (69)

and since output is divided into consumption, investment, and government spending, then
the economy-wide budget constraint is expressed as:

Yt = Ct + INVt + Gt. (70)

4. Log-Linearization

One easy and common approach to solve and analyze DSGE models is to approx-
imate the nonlinear equations characterizing the equilibrium with the corresponding
log-linearized equations. The principle is to employ a first order Taylor approximation
around a particular point (usually a steady state value) to replace the nonlinear equations
with their approximations, which are linear in the log-deviations of the variables. In this
work, we follow a log-linearization method proposed by Uhlig [49].

Let Xt be the value of variable at time t and X̄ be the steady state value of Xt. The
log-linearized form of Xt, denoted by xt, is defined as:

xt = ln Xt − ln X̄ = ln
Xt

X̄
. (71)

Since the first order Taylor approximation of function h = h(x) around x = a is given
by h(x) ≈ h(a) + h′(a)(x − a), and thus for h(Xt) = ln(Xt/X̄) we have h′(Xt) = 1/Xt,
then the approximation of Xt around its steady state value X̄ in (71) is xt ≈ (Xt − X̄)/X̄,
from which we obtain the equivalency:

Xt ≈ X̄(1 + xt). (72)
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Alternatively, as from (71) we get ln Xt = xt + ln X̄, then by taking the exponent of
both sides, we obtain Xt ≈ X̄ext . By fact that Taylor approximation provides ext ≈ 1 + xt,
then we again reclaim (72).

The nonlinear equations characterizing the equilibrium conditions of the model are
presented in Section 3. The log-linearized version of these equations can be found in
Appendix A.

5. Calibration

In this section, we examine the general equilibrium effects of the introduction of
an interest-bearing CBDC on the macroeconomic. In particular, we inspect the effect of
transaction costs, required reserves ratio, productivity shock, and monetary policy shock
through impulse response functions. An illustrative calibration of the model is performed
for Indonesia as a middle-income country. Other conventional parameters values are taken
from relevant references.

The intertemporal discount factor is β = 0.985, and the relative risk aversion coefficient is
σ = 0.5. Both values are in line with estimates for developing countries [44]. According to [8],
elasticity coefficients of having CBDC, cash, and deposits are set to ηe = ηm = ηd = 0.95. The
relative utility weights or preference parameters of CBDCs, cash, and deposits are assigned to
αe = αm = αd = 0.125, while that of labor time is αl = 3.409. The coefficient relates to Frisch
elasticity of labor supply is ϕ = 0.276 [43].

In the production sector, as is standard in the literature, the depreciation rate of
physical capital is δ = 0.034 and the elasticity of substitution between intermediate goods is
θ = 10. The elasticity of output with respect to capital is set to be α = 0.33 as in [38]. These
values are consistent with estimates for developing countries. The portion of total wages
borrowed from bank, i.e., the strength of the cost channel, is taken to be kQ = 0.75 [44]. In
price determination mechanism, we assume that there is a φ = 0.779 probability of keeping
the price fixed in the next period, and thus a 1 − φ = 0.221 probability of optimally setting
the price [43].

In banking sector, we assume that the constant interest elasticity of the supply of loan
by the wholesale firm is φL = −0.5 and that of deposits by the household is φD = 0.5. For
the parameters related to the central bank, we use the values suggested by Chawwa [50]
based on Indonesia aggregate banking data, the steady state value of required reserves ratio
is ψ = 6.5%, the government spending share is kG = 9%, following the average Indonesia
government consumption relative to GDP, and the steady state value of the policy interest
rate is R̄B = 1.8%. For Taylor rule parameters, we use the conventional values of φπ = 1.5
for the feedback coefficient on inflation and φy = 0.5 for the output gap coefficient, along
with a value of ρR = 0.8 for interest rate smoothing parameter [43]. According to Bank
Indonesia, the inflation target is πT = 3%. The spread of bonds interest rate from central
bank rate is assumed to be ΔB = 0.01 and that of CBDC interest rate is ΔE = 0.005 [8].
Beside a fixed spread, the dynamics of CBDC interest rate depends also on financial stress
as expressed in (61). In this strategy, we set kN = 0.01 as the reaction intensity towards
financial stress [8]. Based on [51], we specify the measure of nominal rigidity in cash and
CBDC supply processes as μm = μe = 1. The degree of persistence in the monetary policy
shock is set to be ρu = 0.74 [52] and that of the productivity shock is φA = 0.97 [53]. In the
case of liquidity shocks, we assume ρM = 0.85 and ρE = 0.9.

The steady state value of all variables are simultaneously calculated based on steady
state conditions derived from equations of motion in Appendix A. As initial values, we
set P̄ = 1, P̄M = 1/3, Ā = 1, and ĪCB = 0.01. Description and value of all parameters are
summarized in Table 1.
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Table 1. The value of parameters.

No. Parameter Description Value

1 β intertemporal discount factor 0.985
2 σ relative risk aversion coefficient 0.5
3 ηm elasticity of having cash 0.95
4 ηe elasticity of having CBDC 0.95
5 ηd elasticity of having bank deposits 0.95
6 ϕ coefficient relates to Frisch elasticity of labor supply 0.276
7 αm relative utility weights or preference parameters of cash 0.1250
8 αe relative utility weights or preference parameters of CBDC 0.1250
9 αd relative utility weights or preference parameters of bank deposits 0.1250

10 αl relative utility weights or preference parameters of labor time 3.409
11 ρM degree of persistence in cash demand shock 0.85
12 ρE degree of persistence in CBDC demand shock 0.9
13 δ depreciation rate of physical capital 0.034
14 θ elasticity of substitution between intermediate goods 10
15 α elasticity of output with respect to capital 0.33
16 ρA degree of persistence in the supply shock 0.97
17 kQ the portion of total wages borrowed from bank (strength of the cost channel) 0.75
18 φ probability of keeping the price fixed in the next period 0.779
19 1 − φ probability of optimally determining the price 0.221
20 ψ share of required reserves 0.065
21 φL constant interest elasticity of the supply of loan by the wholesale firm −0.5
22 φD constant interest elasticity of the supply of deposits by the household 0.5
23 ΔB fixed spread of bonds interest rate from central bank rate 0.01
24 ΔE fixed spread of CBDC interest rate from central bank rate 0.005
25 kN reaction intensity towards financial stress 0.01
26 ρR interest rate smoothing parameter 0.81
27 R̄B steady state value of the policy interest rate 0.018
28 φπ relative weights on inflation deviation 1.5
29 πT inflation target 0.03
30 φy relative weights on output gap 0.125
31 ρu degree of persistence in the monetary policy shock 0.74
32 μm measure of nominal rigidity in the cash supply process 1
33 μe measure of nominal rigidity in the CBDC supply process 1

6. Policy Analysis

In this section, we present the simulation result of the model to explore the responses
of variables with respect to liquidity demand shock, productivity shock, and monetary
policy shock. We use Matlab Dynare to produce the impulse response functions with one
period is a quarter.

6.1. Effects of Liquidity Demand Shock

As stated in (9), consumptions by households are constrained by transaction cost.
The cost is a function of money velocity with two parameters a and b as given in (13)
and (14). Smaller a and b contributes cheaper transaction cost. However, the magnitude
of the cost depends also on the types of money, where in our case is either cash or CBDC,
whose velocities are determined by the model. To assess the effect of transaction costs,
we specify the following cost parameters: aM = aE = 1 and bM = bE = 1.5. By this
setting, we consider a situation where cash and CBDC have the same parameters values,
and thus the same transaction cost provided the velocities of cash and CBDC are identical.
In this simulation, we apply a negative shock on the transaction cost using CBDC as given
in (14) to indicate that CBDC has a lower transaction cost.

Figure 2 shows the impact of negative shock of CBDC transaction cost on several
relevant variables of the model. A negative shock is intended to decrease the transaction
cost using CBDC by 1%. When the shock hits, consumption purchases using CBDC increase
as the cost becomes cheaper, and consumption purchases using cash slightly decrease, see
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Figure 2a. However, in total, consumption purchases decrease. This fact informs us that
households spend more CBDC in purchasing consumption goods, confirmed by a rise
in CBDC demand as a response of shock in Figure 2f, even though the rate of CBDC is
decreased by the shock as indicated by Figure 2d. In contrast to CBDC, the demand of
bank deposits is decreasing even though its rate is increasing, see Figure 2e,f. From the
perspective of price, a negative shock on CBDC cost is responded by a decrease in price
of goods using CBDC pE

t in Figure 2g, which indicates that transaction using CBDC is
cheaper than using cash. However, the general price pt, which is aggregated from prices
of cash and CBDC in (19), does not respond the shock very much as it fluctuates around
its steady state value for all time. This small change in price is followed by a little drop in
inflation rate, see Figure 2c. From the view point of money velocity, the negative shock
of CBDC transaction cost is reacted by a decline in the velocity of CBDC as depicted by
Figure 2h.

Figure 2. The effect of negative shock of CBDC transaction cost on (a) consumption by using cash
cM

t and CBDC cE
t , (b) total consumption ct, (c) inflation πt, (d) CBDC rate iE

t , (e) deposits rate iD
t ,

(f) liquidity holding mt, et, dt, (g) prices pM
t , pE

t , pt, and (h) money velocity vM
t = cM

t − mt and
vE

t = cE
t − et.

The simulation results presented in this section, however, indicate that the issuance
of an interest-bearing CBDC has the potential to become a profitable means of liquidity
storage and to have an impact that does not harm the economy.

6.2. Effects of Productivity Shock

The effects of productivity shock on a number of main variables of the model are
presented in Figure 3. The productivity shock due to the technological advance causes a
rise in the values of the marginal products of labor and capital, and thus firms increase their
demand for production inputs, so investment level increased. When one percent shock in
productivity hits, the demand for labor increases more than 2% during the first two periods
as depicted in Figure 3a. The intensity of labor declines quickly toward steady state. In the
same figure, a similar hike in capital demand is shown, but with a more sloping rise and
fall. Increasing productivity implies that firms produce more outputs (up to 3% hike), but
operate more efficiently so the marginal costs decrease by about 2.5%, see Figure 3e.
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Figure 3. The effect of productivity shock on: (a) Labor lt and capital kt, (b) wages wt and price of
capital rK

t , (c) consumption ct and investment invt, (d) lump-sum tax taxt, (e) output yt, government
spending gt, and marginal cost mct, (f) inflation πt and policy rate iCB

t , (g) liquidity holding mt, et, dt,
(h) price pt, (i) bonds holding bB

t , bCB
t , (j) bond rate iB

t and loan rate iL
t , (k) CBDC rate iE

t , and (l)
deposits rate iD

t .

Meanwhile, inflations slightly fall in the first ten periods as the production becomes
more efficient, see Figure 3f. A small drop in inflation rate causes an increase in the supply
of goods, thus leading to easing in monetary policy. A hike in goods production implies
a rise in the wage and capital return as indicated by Figure 3b. Thus, households tend to
use their time for consumption rather than saving, thus instantaneously decreasing the
holding of cash, CBDC, and deposit about 1% as informed in Figure 3g. Due to the decline
in inflation, the base policy rate which is governed by the Taylor rule also decreases. The
lower base policy rate induces to a direct decrease in the central bank refinance rate, which
in turn decreases the deposit and CBDC rates and thus the demand for bank deposits and
interest bearing CBDCs.

Due to an increased aggregate supply of output, the price level decreased by more
than 2%, see Figure 3h, followed by a small decrease in the inflation rate in the early periods.
The central bank responds with a decline of its policy rate followed by CBDC and banks
rates to make an economic contraction by reducing purchasing power. As the consequence,
bank capital is decreasing due to the decreasing loans and increased liability due to the
rising deposit rate. A decline of policy rate also implies the reduction of bond rate, thus
central banks and banks buy more bonds, as depicted in Figure 3i. As the result, the rising
interest rate makes consumption and investment decline. Both people and firms tend to
save their money in CBDC rather than the deposit due to the CBDC attributes of being a
risk-free asset. Decreasing consumption implies reduced firm productivity, thus reducing
the wage of the labor, moreover, the technology starting to deteriorate as the technology
keeps depreciating. As the sources of tax revenue decreased, see Figure 3d, government
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spending also decreased. In the end, the aggregate demand will be reduced, thus the output
will also be declined.

These results aligned with [40,41]. Both of the results imply that CBDC would likely
make monetary policy more effective. It can be seen by the response of the central bank to-
wards inflation using CBDC rate is effective. Moreover, households show that remunerated
CBDC is more attractive than bonds to fulfill their liquidity, so it enhances the monetary
policy effectiveness.

6.3. Effects of Monetary Policy Shock

Figure 4 depicts the effect of one percent increase in policy interest rate on several main
variables of the model. A hike in policy rate means an increase of the borrowing cost from
central bank, i.e., a decrease in funding provided by central bank. The dynamics of policy
rate are mimicked by the bond rate and the CBDC rate as they are determined according to
a fixed spread of the policy rate in (60) and (61). For CBDC, it is revealed that the financial
stress term expressed in percentage deviation of banks’ equity from steady state gives no
effect in this situation. A rise in policy rate is responded differently by the loan rate and
deposits rate as they have to be determined optimally according to (58) and (59). The loan
rate declines in the first period and increases in the half of remaining periods. While, the
deposits rate declines during the first four periods, following by rises toward its steady
state value.

Figure 4. The effect of monetary policy shock on: (a) Policy rate iCB
t and central bank lending qCB

t ,
(b) loan rate iL

t , (c) bond rate iB
t , (d) deposit rate iD

t , (e) CBDC rate iE
t , (f) inflation πt, (g) consumption

ct and output yt, (h) investment invt, (i) CBDC holding et and deposits dt, (j) wages wt and price of
capital rK

t , (k) bank’s loan qB
t , and (l) bonds holding bB

t , bCB
t .

The rise of CBDC rate immediately leads to the increase of CBDC demand and the
fall of deposits rate directly causes the drop of bank deposits holding. However, the rise of
bond rate is not followed by its demand. Bonds holding by bank and central bank drop by
23% and 13%, respectively, in response to monetary policy shock. These occurrences reveal
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a fact that households already consider CBDC as an alternative instrument of liquidity to
bank deposits. Holding CBDC will increase the household’s overall liquidity, even though
liquidity marginal utility decreased. Therefore, it is more explaining why CBDC is more
attractive than the deposit. Since CBDC is remunerated, the households tend to convert
more CBDC rather than cash or deposits.

There is lag in monetary policy transmission due to the cost adjustment of investment
gradual response. In this lag period, households and firms tend to borrow money from
bank to consume and invest before the bank done adjusting the interest rate, respectively.
This lag explains why initially there is a short span increment in output when there is
increment in the policy rate. After that period, households tend to substitute deposit to cash
and CBDC due to the consideration of risk-free assets. CBDC also become an alternative to
fulfill liquidity demand. The reduction of the deposit implies that banks have reduced credit
supply, thus decreasing their lending power. As a result, there is a decrease in investment,
which implies reduced labor as well as wages. Households also tend to save rather than
take a loan. Reduced household and firm activity imply a reduction in purchasing power,
thus reducing consumption as well as tax revenue. Due to the reduction in tax revenue,
the government is also reducing its government spending. Reduced consumption and
government spending also imply there is an excess supply of goods, which reduces the
price level and inflation rate. Therefore, the reduction of aggregate demand reflects the
reduction of output.

6.4. Implementation of the Analytical Model

Given the models in Section 3, it shows that CBDC involves many interactions among
agents in the economy. Nonetheless, CBDC implementation itself brings both benefits and
consequences [54]. On the high-level, CBDC could increase payment efficiency [55–57],
monetary policy effectiveness [19,58,59], higher financial inclusion [60–62], and provide
traceability [63–65]. This is also supported by the growing technology [66–68], network
effect [17,69], the enthusiasm of CBDC [70–72], and cash inefficiency [73,74].

However, some consequences are the high cost of CBDC infrastructure [56,75], privacy
loss potential [76,77], internet coverage limitation [62,78], and electrical outage [79,80].
This could be worsened by cyberattack threats [81,82], bank disintermediation amid crisis
times [17], unprepared legal aspects [77,83], and private crypto-asset competitions [84–86].

Following the spirits of both CBDC benefits and consequences, we try to introduce
some of the implications. First, CBDC implementation would likely increase budget
spending due to its high cost of infrastructure and would disrupt innovation. Therefore,
proposing a public–private partnership (PPP) allows us to maintain innovation, and also
increase efficiency. The partnership could be with state-owned enterprises or private
entities. Second, implementing CBDC implies that people could access their money 24/7,
which means CBDC withdrawal could be conducted anytime/anywhere amid crisis times.
One idea is to implement the capacity on the CBDC wallet, so there it could limit the
withdrawal and will not create bank disintermediation. Third, implementing alternative
offline payment (e.g., token-based offline CBDC) implies that people need to be aware of
their private keys, otherwise they will lose access to their CBDC. To reduce the risk of losing
the whole CBDC, the wallet could be limited so it will reduce the severity of losing CBDC.
Fourth, implementing traceable CBDC implies that the central bank needs to govern the
legal aspect consisting of the amount of extracted information, CBDC issuance, and eligible
authority for CBDC operators. Those efforts are nothing but to maintain public trust. Fifth,
central banks need to provide any means of backup plan to prevent a single point of failure
risk. Preventing an outage is important because it could disrupt the whole financial system.
Sixth, the central banks must use permissioned DLT to gain sufficient accessibility amid a
decentralized system. Lastly, even though the central banks need to align their system to
achieve interoperability in cross-border transactions, central banks still need to maintain
their sovereignty.
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7. Conclusions

The development of CBDC has been conducted by central banks across the world with
various progress and motivation. From that consideration, implementing CBDC would
likely to have macroeconomy consequences and monetary policy implication. However, it
needs a comprehensive approach to support monetary policy based on those impacts. We
have developed a medium size DSGE model to examine the interaction between CBDC and
other variables and to quantify the macroeconomic effects of CBDC issuance. The proposed
model consists of seven economic agents, namely households, retail firm, wholesale firms,
capital producing firm, commercial bank, the central bank, and the government.

The model consider an economy in which the households may consider CBDC as
a liquidity asset in addition to cash and bank deposits. The introduction of CBDC then
differentiates the amount of consumption and the price in terms of cash and CBDC. As
CBDC is designed to be an interest-bearing, CBDC may compete with cash in consump-
tion process. The attractiveness of CBDC can also be appreciated at the lower transac-
tion cost than cash. Thus, an interest-bearing CBDC can be considered as a profitable
transaction instrument.

We have used the model to explain the main macroeconomic variables responses
to a negative shock on CBDC transaction cost, as well as a positive supply shock, and a
positive shock to the base policy rate. Our findings confirm that CBDC offers a number of
macroeconomic benefits. A lower transaction cost offered by CBDC encourages households
to consume more using CBDC, and thus reducing the purchase using cash. The price
of goods counted in CBDC reduced, while the general price index is about in steady
state leading to a small fall in inflation. As responses to an increase of output due to a
productivity shock, we have shown that households use cash and CBDC in almost similar
manners by reducing the holding for consumption. Responding to a one percent increase
in the base policy rate, we have revealed that the dynamics of the policy interest rate is
directly followed by that of CBDC. Thus, the accumulation of CBDC can be controlled by
the policy rate.

As self-critical and possible limitations and shortcomings, our study considers only the
issuance of retail CBDCs. More general situation in which commercial banks are enabled to
provide loan to firms and to make settlement reserves in term of wholesale CBDCs will
be the future research work. Additionally, the assessment of CBDC issuance in an open
economy might be substantial to emerging countries as they have a significant portion
of exports.
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Appendix A. Log-Linearized Equations

The model consists of 36 variables. Initially, all variables are denoted by capital letters.
After log-linearization, they are denoted by small letters. The description of variables are
presented in Table A1.
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Table A1. The description of variables.

No. Variable Description

1 At, at Productivity shock
2 Bt, bt Government bonds
3 BB

t , bB
t Government bonds held by commercial bank

4 BCB
t , bCB

t Government bonds held by central bank
5 Ct, ct Consumption by households
6 CM

t , cM
t Consumption by households using cash

7 CE
t , cE

t Consumption by households using CBDC
8 Dt, dt Bank deposits holding by households
9 Et, et CBDCs holding by households
10 Gt, gt Government spending
11 IB

t , iB
t Nominal interest rate of government bonds

12 ICB
t , iCB

t Nominal interest rate by central bank (policy rate)
13 ID

t , iD
t Nominal interest rate of bank deposits

14 IE
t , iE

t Nominal interest rate of CBDC
15 IL

t , iL
t Nominal interest rate of loans

16 INVt, invt Investment level
17 Kt, kt Capital stocks
18 Lt, lt Labor supply by households
19 Mt, mt Cash holding by households
20 MCt, mct Marginal cost
21 Nt, nt Bank’s equity
22 Pt, pt Price
23 PM

t , pM
t Price in cash

24 PE
t , pE

t Price in CBDC
25 Πt, πt Inflation rate
26 QCB

t , qCB
t Loans given to commercial banks by central bank

27 RK
t , rK

t Price of capital
28 SM

t , sM
t Transaction cost for cash

29 SE
t , sE

t Transaction cost for CBDC
30 TAXt, taxt Lump sum tax or transfer
31 TRt, trt Reserves
32 ut Monetary policy shock
33 Wt, wt Wages
34 Yt, yt Output
35 ZM

t , zM
t Cash demand shock

36 ZE
t , zE

t CBDC demand shock

The following linear equations, which constitute as the equations of motion of the
model, are derived according to log-linearization method in Section 4.

1. Labor supply:
σct + ϕlt = wt − pt. (A1)

2. CBDC demand:

αe

(
Ē
P̄

)−ηe

ηe(pt − et) = − C̄−σ

P̄
(σct + pt)

+ β
C̄−σ(1 + ĪE)

P̄
Et

(
σct+1 − ĪE

1 + ĪE iE
t + pt+1

)
. (A2)

3. Cash demand:

αm

(
M̄
P̄

)−ηm

ηm(pt − mt) = − C̄−σ

P̄
(σct + pt) + β

C̄−σ

P̄
Et(σct+1 + pt+1). (A3)
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4. Deposits demand:

αd

(
D̄
P̄

)−ηd

ηd(pt − dt) = − C̄−σ

P̄
(σct + pt)

+ β
C̄−σ(1 + ĪD)

P̄
Et

(
σct+1 − ĪD

1 + ĪD iD
t + pt+1

)
. (A4)

5. Euler equation:
σP̄(Etct+1 − ct) = βR̄K(EtrK

t+1 − pt+1). (A5)

6. Consumptions using cash and CBDC:

cM
t = −ζ(pM

t − pt) + ct, (A6)

cE
t = −ζ(pE

t − pt) + ct. (A7)

7. Total consumption with transaction costs:

C̄ct = C̄McM
t + C̄MS̄M(cM

t + sM
t ) + C̄EcE

t + C̄ES̄E(cE
t + sE

t ). (A8)

8. Transaction costs:

S̄MsM
t = aM

C̄M

M̄
(cM

t − mt + zM
t ) + bM

M̄
C̄M (mt − cM

t ), (A9)

S̄EsE
t = aE

C̄E

Ē
(cE

t − et + zE
t ) + bE

Ē
C̄E (et − cE

t ). (A10)

9. General price level:
P̄1−θ pt = (P̄M)1−θ pM

t + (P̄E)1−θ pE
t . (A11)

10. Capital stocks:
kt+1 = δ · invt + (1 − δ)kt. (A12)

11. Cobb–Douglas production function:

yt = at + αkt + (1 − α)lt. (A13)

12. Optimal levels of labor and capital:

lt = mct + yt − kQ ĪCB

1 + kQ ĪCB iCB
t − wt, (A14)

kt = mct + yt − rK
t . (A15)

13. Marginal cost:

mct = −at + (1 − α)

(
kQ ĪCB

1 + kQ ĪCB iCB
t + wt

)
+ αrK

t . (A16)

14. Phillips curve and inflation rate (complete derivation is given in Appendix D):

πt =
(1 − βφ)(1 − φ)

φ
(mct − pt) + βEtπt+1, (A17)

πt = pt − pt−1. (A18)
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15. Capital producing firm:

ĪLiL
t − (1 + ĪL)(σct + pt) = β(1 + R̄K)(1 − δ)(1 + ĪL)Et(σct+1 + pt+1)

− βEt(R̄KrK
t+1 + (1 − δ) ĪLiL

t+1). (A19)

16. Bank’s balance sheet:

kQW̄L̄(wt + lt) + INVinvt + B̄BbB
t = Q̄CBqCB

t + (1 − ψ)D̄dt + Nnt. (A20)

17. Bank’s equity:

N̄(nt+1 − nt) = ĪL N̄(iL
t + nt) + ĪLD̄(iL

t + dt)− ĪDD̄(iD
t + dt)

+ ĪLQ̄CB(iL
t + qCB

t )− ĪCBQ̄CB(iCB
t + qCB

t ). (A21)

18. Loan interest rate:

φL INVinvt + φL ĪCB INV(iCB
t + invt) = N̄nt + (1 + φL)INVinvt

+ N̄ ĪL(nt + iL
t ) + (1 + φL)INVĪL(invt + iL

t ). (A22)

19. Deposits interest rate:

ĪDiD
t =

φD(1 − ψ) ĪCB

1 + φD
iCB
t . (A23)

20. Bonds and CBDC interest rates are already given in linear forms:

iB
t = iCB

t + ΔB, (A24)

iE
t = iCB

t −
(

ΔE + kN
N̄ − nt

N̄

)
. (A25)

21. Taylor rule is also given in linear form:

iCB
t = ρRiCB

t−1 + (1 − ρR)(R̄B + πt + φπ(πt − πT) + φy(yt − Ȳ) + ut. (A26)

22. Central bank’s balance sheet:

B̄CBbCB
t + ĪBB̄CB(iB

t + bCB
t ) + TAXtaxt + Q̄CBqCB

t + ĪCBQ̄CB(iCB
t + qCB

t )

= ψD̄(dt − dt−1) + M̄(mt − μmmt−1) + Ē(et − μeet−1). (A27)

23. Government’s budget constraint:

P̄Ḡ(pt + gt) + B̄BbB
t−1 + ĪBB̄B(iB

t−1 + bB
t−1) + B̄CBbCB

t−1

= TAXtaxt + B̄BbB
t + B̄CBbCB

t + ĪBB̄CB(iB
t + bCB

t ) + ĪCBQ̄CB(iCB
t + qCB

t ). (A28)

24. Economy-wide budget constraint:

Ȳyt = C̄ct + INVinvt + Ḡgt. (A29)

25. Government expenditure:
Ḡgt = kGȲyt. (A30)
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26. Shock generators:

zM
t = ρMzM

t−1 + εM
t , (A31)

zE
t = ρEzE

t−1 − εE
t , (A32)

at = ρAat−1 + εA
t , (A33)

ut = ρuut−1 + εu
t , (A34)

where εM
t , εE

t , εA
t , and εu

t are exogenous shock variables.

Appendix B. Proof of Households Utility Maximization

The Lagrange function LH for the problem of maximization (1) subject to budget
constraint (2) and capital stock (3) is given by:

LH = βt(UH
t + ΛH

t Ht) + βt+1Et(UH
t+1 + ΛH

t+1Ht+1), (A35)

where ΛH
t is the Lagrange multiplier, while UH

t and Ht are given as follow after substitution (3)
into (2):

UH
t =

C1−σ
h,t

1 − σ
+

αe

1 − ηe

(
Eh,t

Pt

)1−ηe

+
αm

1 − ηm

(
Mh,t

Pt

)1−ηm

+
αd

1 − ηd

(
Dh,t

Pt

)1−ηd

+
αl L

1+ϕ
h,t

1 + ϕ
,

Ht = PtCh,t + PtKh,t+1 − Pt(1 − δ)Kh,t + Eh,t + Mh,t + Dh,t + TAXh,t − WtLh,t

− RK
t Kh,t − (1 + IE

t−1)Eh,t−1 − Mh,t−1 − (1 + ID
t−1)Dh,t−1 − ΠFB

h,t .

The Lagrange function (A35) should be maximized with respect to consumption Ch,t,
CBDC holding Eh,t, cash holding Mh,t, deposit holding Dh,t, labor time Lh,t, and capital
stock Kh,t+1. Respectively, we obtain the following relations:

C−σ
h,t = −ΛH

t Pt, (A36)

αe

(
Eh,t

Pt

)−ηe

= −ΛH
t + β(1 + IE

t )EtΛ(t + 1)H , (A37)

αm

(
Mh,t

Pt

)−ηm

= −ΛH
t + βEtΛ(t + 1)H , (A38)

αd

(
Dh,t

Pt

)−ηd

= −ΛH
t + β(1 + ID

t )EtΛ(t + 1)H , (A39)

αl L
ϕ
h,t = −ΛH

t Wt, (A40)

ΛH
t Pt = βEtΛH

t+1((1 − δ)Pt+1 + RK
t+1). (A41)

Note that terms in the right-hand side of (A36)–(A41) are independent of index h. It
means that expressions in the left-hand side are the same across households. Thus, from
now on, we will drop the index h from the expression. From (A36) we have ΛH

t = −C−σ
t /Pt

and from (A40) we obtain ΛH
t = −αl L

ϕ
t /Wt. By equating these two equations we get the

following condition:

αlCσ
t Lϕ

t =
Wt

Pt
. (A42)

Substitution ΛH
t = −C−σ

t /Pt into (A41) provides:(
EtCt+1

Ct

)σ

= β

(
1 − δ +Et

RK
t+1

Pt+1

)
, (A43)
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and substitution ΛH
t = −C−σ

t /Pt into (A41) gives, respectively, the demand for CBDC,
cash, and bank deposits:

αe

(
Et

Pt

)−ηe

=
C−σ

t
Pt

− β(1 + IE
t )Et

C−σ
t+1

Pt+1
, (A44)

αm

(
Mt

Pt

)−ηm

=
C−σ

t
Pt

− βEt
C−σ

t+1
Pt+1

, (A45)

αd

(
Dt

Pt

)−ηd

=
C−σ

t
Pt

− β(1 + ID
t )Et

C−σ
t+1

Pt+1
. (A46)

Appendix C. Proof of Consumption and Price Indices

The households use either cash Mt or CBDC Et to purchase consumption goods. In
this case, the total consumption Ct can be seen as a composite consumption index using
Dixit–Stiglitz aggregator [47]:

Ct =

(
(CM

t )
ζ−1

ζ + (CE
t )

ζ−1
ζ

) ζ
ζ−1

(A47)

Consumption basket (A47) is analogous to the case where there exists non-tradable
(domestic) goods and imported goods. The equations defining CM

t and CE
t are:

CM
t =

(∫ 1

0
(CM

j,t )
a−1

a dj
) a

a−1
, (A48)

CE
t =

(∫ 1

0
(CE

j,t)
b−1

b dj
) b

b−1
, (A49)

where j is index for goods, a and b are the elasticities of substitution between goods. Their
respecting price indices are given as:

PM
t =

(∫ 1

0
(PM

j,t )
1−a dj

) 1
1−a

, (A50)

PE
t =

(∫ 1

0
(PE

j,t)
1−b dj

) 1
1−b

. (A51)

To derive the cash and CBDC consumer price indices, now we will solve three op-
timization problems regarding the consumption levels CM

t , CE
t and Ct. First we solve

households’ cost minimization problem of using cash:

min
CM

j,t

∫ 1

0
PM

j,t CM
j,t dj,

subject to consumption level using cash (A48). The Lagrangian of this problem is given by:

LM =
∫ 1

0
PM

j,t CM
j,t dj + ΛM

t

((∫ 1

0
(CM

j,t )
a−1

a dj
) a

a−1
− CM

t

)
,

where ΛM
t is the Lagrange multiplier. The first order conditions with respect to CM

j,t
produces:

CM
j,t =

(−PM
j,t

ΛM
t

)−a

CM
t . (A52)

By substituting (A52) into constraint (A48), we may reformulate the Lagrange multi-
plier as ΛM

t = −PM
t , and hence (A52) becomes:
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CM
j,t =

(
PM

j,t

PM
t

)−a

CM
t . (A53)

Second we solve households’ cost minimization problem of using CBDC:

min
CE

j,t

∫ 1

0
PE

j,tC
E
j,t dj,

subject to consumption level using CBDC (A49). By exploiting the similar way, we obtain
the demand of good j purchasing by CBDC:

CE
j,t =

(
PE

j,t

PE
t

)−b

CE
t . (A54)

Lastly, we want to minimize the consumption cost of using cash and CBDC:

min
CM

j,t ,CE
j,t

∫ 1

0

(
PM

j,t CM
j,t + PE

j,tC
E
j,t

)
dj,

subject to total consumption (A47). Using the Lagrange method we obtain the first order
conditions with respect to CM

j,t and CE
j,t, respectively, given by:

CM
t =

(
−PM

t
ΛME

t

)−ζ

Ct, (A55)

CE
t =

(
−PE

t
ΛME

t

)−ζ

Ct, (A56)

where ΛME
t is the corresponding Lagrange multiplier for this problem. Substitution (A55)

and (A56) back into (A47) provides the equivalent form of Lagrange multiplier ΛME
t as

follows:

ΛME
t = −((PM

t )1−ζ + (PE
t )

1−ζ)
1

1−ζ .

By denoting:

Pt = ((PM
t )1−ζ + (PE

t )
1−ζ)

1
1−ζ , (A57)

we can then express (A55) and (A56) as:

CM
t =

(
PM

t
Pt

)−ζ

Ct, (A58)

CE
t =

(
PE

t
Pt

)−ζ

Ct. (A59)

Appendix D. Derivation of Phillips Curve

Note that all wholesale firms that fix their prices have the same markup on the same
marginal cost. Thus, in all periods, the optimal price P∗

j,t is the same for all the firms that
set their prices. Thus, the expression for price:

Pt =

(∫ 1

0
P1−θ

j,t dj
) 1

1−θ

=
∫ φ

0
P1−θ

t−1 dj +
∫ 1

φ
(P∗

t )
1−θ dj = φP1−θ

t−1 + (1 − φ)(P∗
t )

1−θ .

By imposing steady state condition P̄ = P̄∗, we obtain the log-linearized form of the
price equation:

pt = φpt−1 + (1 − φ)p∗t . (A60)
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The first order condition (43) can be written as:

Et

∞

∑
s=0

(βφ)s
( Pj,t

Pt+s

)1−θ

Yt+s = Et

∞

∑
s=0

(βφ)s θ

1 − θ

( Pj,t

Pt+s

)−θ MCt+s

Pt+s
Yt+s.

By denoting Pj,t = P∗
t , log-linearization procedure yields:

Et

∞

∑
s=0

(βφ)se(1−θ)(p∗t −pt+s)+yt+s = Et

∞

∑
s=0

(βφ)se−θ(p∗t −pt+s)+mct+s−pt+s+yt+s ,

where we have applied steady state conditions P̄ = P̄∗ and θMC = (θ − 1)P̄ as indicated
in (42). Further, by approximation ex ≈ 1 + x, we have:

Et

∞

∑
s=0

(βφ)s(p∗t − pt+s) = Et

∞

∑
s=0

(βφ)s(mct+s − pt+s)

p∗t Et

∞

∑
s=0

(βφ)s = Et

∞

∑
s=0

(βφ)s pt+s +Et

∞

∑
s=0

(βφ)s(mct+s − pt+s).

By recognizing that the series in the right-hand side is a geometric series with ratio
0 < βφ < 1 and thus converges, then:

p∗t
1 − βφ

= Et

∞

∑
s=0

(βφ)s pt+s +Et

∞

∑
s=0

(βφ)s(mct+s − pt+s)

p∗t = (1 − βφ)Et

∞

∑
s=0

(βφ)s pt+s + (1 − βφ)Et

∞

∑
s=0

(βφ)s(mct+s − pt+s). (A61)

To avoid terms cancellation, we write the first term in the right-hand side of
(A61) as follows:

(1 − βφ)Et

∞

∑
s=0

(βφ)s pt+s = Et

∞

∑
s=0

(βφ)s pt+s −Et

∞

∑
s=0

(βφ)s+1 pt+s

= Et

∞

∑
s=0

(βφ)s pt+s −Et

∞

∑
n=1

(βφ)n pt+n−1

= pt +Et

∞

∑
s=1

(βφ)s pt+s −Et

∞

∑
n=1

(βφ)n pt+n−1

= pt−1 + pt − pt−1 +Et

∞

∑
s=1

(βφ)s(pt+s − pt+s−1)

= pt−1 +Et

∞

∑
s=0

(βφ)s(pt+s − pt+s−1).

By (A18) we obtain:

(1 − βφ)Et

∞

∑
s=0

(βφ)s pt+s = pt−1 +Et

∞

∑
s=0

(βφ)sπt+s. (A62)

Inserting (A62) back into (A61) gives:

p∗t = pt−1 + πt + (1 − βφ)(mct − pt) +Et

∞

∑
s=1

(βφ)sπt+s

+ (1 − βφ)Et

∞

∑
s=1

(βφ)s(mct+s − pt+s). (A63)
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Forwarding the time index one step gives:

p∗t+1 = pt + πt+1 + (1 − βφ)(mct+1 − pt+1) +Et+1

∞

∑
s=1

(βφ)sπt+s+1

+ (1 − βφ)Et+1

∞

∑
s=1

(βφ)s(mct+s+1 − pt+s+1).

Taking the expectation at time t and multiplying by βφ provides:

βφEt p∗t+1 = βφpt +Et

∞

∑
s=0

(βφ)s+1πt+s+1 + (1 − βφ)Et

∞

∑
s=0

(βφ)s+1(mct+s+1 − pt+s+1)

and then:

βφEt(p∗t+1 − pt) = Et

∞

∑
τ=1

(βφ)τπt+τ + (1 − βφ)Et

∞

∑
τ=1

(βφ)τ(mct+τ − pt+τ). (A64)

Replacing the last two terms in the right-hand side of (A63) by the left-hand side
of (A64) results:

p∗t = pt−1 + πt + (1 − βφ)(mct − pt) + βφEt(p∗t+1 − pt). (A65)

Combination of (A18) and (A60) gives:

πt

1 − φ
= p∗t − pt−1

and substitution into (A65) provides:

πt

1 − φ
= πt + (1 − βφ)(mct − pt) + βφEt(p∗t+1 − pt).

Finally we get the Phillips curve:

πt =
(1 − βφ)(1 − φ)

φ
(mct − pt) + βEtπt+1.
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